Kang, Nam Joo; Lee, Ki Won; Shin, Bong Jik; Jung, Sung Keun; Hwang, Mun Kyung; Bode, Ann M.; Heo, Yong-Seok; Dong, Zigang
2009-01-01
Caffeic acid (3,4-dihydroxycinnamic acid) is a well-known phenolic phytochemical present in many foods, including coffee. Recent studies suggested that caffeic acid exerts anticarcinogenic effects, but little is known about the underlying molecular mechanisms and specific target proteins. In this study, we found that Fyn, one of the members of the non-receptor protein tyrosine kinase family, was required for ultraviolet (UV) B-induced cyclooxygenase-2 (COX-2) expression, and caffeic acid suppressed UVB-induced skin carcinogenesis by directly inhibiting Fyn kinase activity. Caffeic acid more effectively suppressed UVB-induced COX-2 expression and subsequent prostaglandin E2 production in JB6 P+ mouse skin epidermal (JB6 P+) cells compared with chlorogenic acid (5-O-caffeoylquinic acid), an ester of caffeic acid with quinic acid. Data also revealed that caffeic acid more effectively induced the downregulation of COX-2 expression at the transcriptional level mediated through the inhibition of activator protein-1 (AP-1) and nuclear factor-κB transcription activity compared with chlorogenic acid. Fyn kinase activity was suppressed more effectively by caffeic acid than by chlorogenic acid, and downstream mitogen-activated protein kinases (MAPKs) were subsequently blocked. Pharmacological Fyn kinase inhibitor (3-(4-chlorophenyl)1-(1,1-dimethylethyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine and leflunomide) data also revealed that Fyn is involved in UVB-induced COX-2 expression mediated through the phosphorylation of MAPKs in JB6 P+ cells. Pull-down assays revealed that caffeic acid directly bound with Fyn and non-competitively with adenosine triphosphate. In vivo data from mouse skin also supported the idea that caffeic acid suppressed UVB-induced COX-2 expression by blocking Fyn kinase activity. These results suggested that this compound could act as a potent chemopreventive agent against skin cancer. PMID:19073879
Caffeic acid protects rat heart mitochondria against isoproterenol-induced oxidative damage
Kumaran, Kandaswamy Senthil
2010-01-01
Cardiac mitochondrial dysfunction plays an important role in the pathology of myocardial infarction. The protective effects of caffeic acid on mitochondrial dysfunction in isoproterenol-induced myocardial infarction were studied in Wistar rats. Rats were pretreated with caffeic acid (15 mg/kg) for 10 days. After the pretreatment period, isoproterenol (100 mg/kg) was subcutaneously injected to rats at an interval of 24 h for 2 days to induce myocardial infarction. Isoproterenol-induced rats showed considerable increased levels of serum troponins and heart mitochondrial lipid peroxidation products and considerable decreased glutathione peroxidase and reduced glutathione. Also, considerably decreased activities of isocitrate, succinate, malate, α-ketoglutarate, and NADH dehydrogenases and cytochrome-C-oxidase were observed in the mitochondria of myocardial-infarcted rats. The mitochondrial calcium, cholesterol, free fatty acids, and triglycerides were considerably increased and adenosine triphosphate and phospholipids were considerably decreased in isoproterenol-induced rats. Caffeic acid pretreatment showed considerable protective effects on all the biochemical parameters studied. Myocardial infarct size was much reduced in caffeic acid pretreated isoproterenol-induced rats. Transmission electron microscopic findings also confirmed the protective effects of caffeic acid. The possible mechanisms of caffeic acid on cardiac mitochondria protection might be due to decreasing free radicals, increasing multienzyme activities, reduced glutathione, and adenosine triphosphate levels and maintaining lipids and calcium. In vitro studies also confirmed the free-radical-scavenging activity of caffeic acid. Thus, caffeic acid protected rat’s heart mitochondria against isoproterenol-induced damage. This study may have a significant impact on myocardial-infarcted patients. PMID:20376586
Caffeic acid protects rat heart mitochondria against isoproterenol-induced oxidative damage.
Kumaran, Kandaswamy Senthil; Prince, Ponnian Stanely Mainzen
2010-11-01
Cardiac mitochondrial dysfunction plays an important role in the pathology of myocardial infarction. The protective effects of caffeic acid on mitochondrial dysfunction in isoproterenol-induced myocardial infarction were studied in Wistar rats. Rats were pretreated with caffeic acid (15 mg/kg) for 10 days. After the pretreatment period, isoproterenol (100 mg/kg) was subcutaneously injected to rats at an interval of 24 h for 2 days to induce myocardial infarction. Isoproterenol-induced rats showed considerable increased levels of serum troponins and heart mitochondrial lipid peroxidation products and considerable decreased glutathione peroxidase and reduced glutathione. Also, considerably decreased activities of isocitrate, succinate, malate, α-ketoglutarate, and NADH dehydrogenases and cytochrome-C-oxidase were observed in the mitochondria of myocardial-infarcted rats. The mitochondrial calcium, cholesterol, free fatty acids, and triglycerides were considerably increased and adenosine triphosphate and phospholipids were considerably decreased in isoproterenol-induced rats. Caffeic acid pretreatment showed considerable protective effects on all the biochemical parameters studied. Myocardial infarct size was much reduced in caffeic acid pretreated isoproterenol-induced rats. Transmission electron microscopic findings also confirmed the protective effects of caffeic acid. The possible mechanisms of caffeic acid on cardiac mitochondria protection might be due to decreasing free radicals, increasing multienzyme activities, reduced glutathione, and adenosine triphosphate levels and maintaining lipids and calcium. In vitro studies also confirmed the free-radical-scavenging activity of caffeic acid. Thus, caffeic acid protected rat's heart mitochondria against isoproterenol-induced damage. This study may have a significant impact on myocardial-infarcted patients.
Effects of caffeic acid on cisplatin-induced hair cell damage in HEI-OC1 auditory cells.
Choi, June; Kim, Shin Hye; Rah, Yoon Chan; Chae, Sung Won; Lee, Jong Dae; Md, Byung Don Lee; Park, Moo Kyun
2014-12-01
Cisplatin is a widely used anticancer chemotherapeutic agent. However, it is notorious for its ototoxicity and nephrotoxicity due to induction of reactive oxygen species (ROS). Caffeic acid is a naturally occurring polyphenol present in honey that is known to reduce the generation of oxygen-derived free radicals. The objective of the present study was to evaluate the protective effects and mechanism underlying the effect of caffeic acid on cisplatin-induced ototoxicity in HEI-OC1 auditory cell lines. Cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Apoptosis was determined by Hoechst 33258 staining and Annexin V-fluorescein isothiocyanate/propidium iodide double staining. Cell cycle stages were analyzed by flow cytometry. The radical-scavenging activity of caffeic acid was assessed using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay. The expression levels of caspase-3, -8, and -9, as well as the activity of caspase-3, were evaluated. Caffeic acid showed a protective effect against cisplatin-induced HEI-OC1 cell damage as demonstrated by the MTT assay. Caffeic acid decreased cell death by apoptosis and necrosis. Caffeic acid showed strong scavenging activity against the radical DPPH and decreased intracellular ROS production. Caffeic acid decreased the expression of caspase-3 and -8 and increased the activity of caspase-3. Caffeic acid attenuated cisplatin-induced hair cell loss in HEI-OC1 cell lines; these effects were mediated by its radical scavenging activity and inhibition of apoptosis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Caffeic acid attenuates lipopolysaccharide-induced sickness behaviour and neuroinflammation in mice.
Basu Mallik, Sanchari; Mudgal, Jayesh; Nampoothiri, Madhavan; Hall, Susan; Dukie, Shailendra Anoopkumar-; Grant, Gary; Rao, C Mallikarjuna; Arora, Devinder
2016-10-06
Accumulating data links inflammation, oxidative stress and immune system in the pathophysiology of major depressive disorders. Sickness behaviour is a set of behavioural changes that develop during infection, eventually leading to decrease in mobility and depressed behaviour. Lipopolysaccharide (LPS) induces a depression-like state in animals that mimics sickness behaviour. Caffeic acid, a naturally occurring polyphenol, possesses antioxidant and anti-inflammatory properties. The present study was designed to explore the potential of caffeic acid against LPS-induced sickness behaviour in mice. Caffeic acid (30mg/kg) and imipramine (15mg/kg) were administered orally one hour prior to LPS (1.5mg/kg) challenge. Behavioural assessment was carried out between 1 and 2h and blood samples were collected at 3h post-LPS injection. Additionally, cytokines (brain and serum) and brain oxidative stress markers were estimated. LPS increased the systemic and brain cytokine levels, altered the anti-oxidant defence and produced key signs of sickness behaviour in animals. Caffeic acid treatment significantly reduced the LPS-induced changes, including reduced expression of inflammatory markers in serum and whole brain. Caffeic acid also exerted an anti-oxidant effect, which was evident from the decreased levels of oxidative stress markers in whole brain. Our data suggests that caffeic acid can prevent the neuroinflammation-induced acute and probably the long term neurodegenerative changes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Zhang, Zhan; Wang, Di; Qiao, Shanlei; Wu, Xinyue; Cao, Shuyuan; Wang, Li; Su, Xiaojian; Li, Lei
2017-07-03
Hepatocellular carcinoma (HCC) treatment remains lack of effective chemopreventive agents, therefore it is very attractive and urgent to discover novel anti-HCC drugs. In the present study, the effects of chlorogenic acid (ChA) and caffeic acid (CaA) on HCC induced by diethylnitrosamine (DEN) were evaluated. ChA or CaA could reduce the histopathological changes and liver injury markers, such as alanine transarninase, aspartate aminotransferase, alkaline phosphatase, total bile acid, total cholesterol, high density lipoprotein cholesterol and low density lipoprotein cholesterol. The underlying mechanisms were investigated by a data integration strategy based on correlation analyses of metabonomics data and 16 S rRNA gene sequencing data. ChA or CaA could inhibit the increase of Rumincoccaceae UCG-004 and reduction of Lachnospiraceae incertae sedis, and Prevotella 9 in HCC rats. The principal component analysis and partial least squares discriminant analysis were applied to reveal the metabolic differences among these groups. 28 different metabolites showed a trend to return to normal in both CaA and ChA treatment. Among them, Bilirubin, L-Tyrosine, L-Methionine and Ethanolamine were correlated increased Rumincoccaceae UCG-004 and decreased of Lachnospiraceae incertae sedis and Prevotella 9. These correlations could be identified as metabolic and microbial signatures of HCC onset and potential therapeutic targets.
2006-03-31
chlorogenic acid , and rosmari- nic acid did not display any cytoprotective effect in this assay at 15 lM (data not shown). Within the same pas- sage of HUVEC...Cytoprotective effect of caffeic acid phenethyl ester (CAPE) and catechol ring-fluorinated CAPE derivatives against menadione-induced oxidative...accepted 13 March 2006 Available online 31 March 2006 Abstract—Caffeic acid phenethyl ester (CAPE), a natural polyphenolic compound with many
Oboh, Ganiyu; Agunloye, Odunayo M; Akinyemi, Ayodele J; Ademiluyi, Adedayo O; Adefegha, Stephen A
2013-02-01
This study sought to investigate and compare the interaction of caffeic acid and chlorogenic acid on acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), and some pro-oxidants (FeSO(4), sodium nitroprusside and quinolinic acid) induced oxidative stress in rat brain in vitro. The result revealed that caffeic acid and chlorogenic acid inhibited AChE and BChE activities in dose-dependent manner; however, caffeic acid had a higher inhibitory effect on AChE and BChE activities than chlorogenic acid. Combination of the phenolic acids inhibited AChE and BChE activities antagonistically. Furthermore, pro-oxidants such as, FeSO(4), sodium nitroprusside and quinolinic acid caused increase in the malondialdehyde (MDA) contents of the brain which was significantly decreased dose-dependently by the phenolic acids. Inhibition of AChE and BChE activities slows down acetylcholine and butyrylcholine breakdown in the brain. Therefore, one possible mechanism through which the phenolic acids exert their neuroprotective properties is by inhibiting AChE and BChE activities as well as preventing oxidative stress-induced neurodegeneration. However, esterification of caffeic acid with quinic acid producing chlorogenic acid affects these neuroprotective properties.
Olayinka, Ebenezer Tunde; Ore, Ayokanmi; Adeyemo, Oluwatobi Adewumi
2017-01-01
Background: It has been postulated that during liver and kidney damage there is a decreased in the antioxidant status associated with a simultaneous increase in the reactive oxygen species and lipid peroxidation. In consonant with this, Capecitabine, an oral chemotherapy and inactive non-cytotoxic fluoropyrimidine considered for the treatment of advance colorectal cancer, has also been shown to induce oxidative stress in liver tissues. Caffeic acid, a typical hydroxycinnamic, has been claimed to be effective against oxidative stress. Therefore, this present work studied the protective effect of caffeic acid on oxidative stress-induced liver and kidney damage by the administration of capecitabine. Methods: Twenty-four male Wistar strain rats were randomly divided into four treatment groups: A. control, B. capecitabine (CPTB)-treated group (30 mg/kg b.w. CPTB), C. caffeic acid (CFA)-treated group (100 mg/kg b.w. CFA) and D. co-treated group with CFA (100 mg/kg b.w.) and CPTB (30 mg/kg b.w.). Results: Caffeic acid administration significantly ameliorated the elevated plasma biomarkers of hepatic and renal tissue damage induced by the capecitabine and improved enzymatic and non-enzymatic antioxidant levels in liver organ. Conclusions: The protective effect of caffeic acid could be attributed to its ability to boost the antioxidant defence system and reduce lipid peroxidation. PMID:29068374
Hsu, F L; Chen, Y C; Cheng, J T
2000-04-01
The antihyperglycemic effect of caffeic acid, one of the phenolic compounds contained in the fruit of Xanthium strumarium, was investigated. After an intravenous injection of caffeic acid into diabetic rats of both streptozotocin-induced and insulin-resistant models, a dose-dependent decrease of plasma glucose was observed. However, a similar effect was not produced in normal rats. An insulin-independent action of caffeic acid can thus be considered. Otherwise, this compound reduced the elevation of plasma glucose level in insulin-resistant rats receiving a glucose challenge test. Also, glucose uptake into the isolated adipocytes was raised by caffeic acid in a concentration-dependent manner. Increase of glucose utilization by caffeic acid seems to be responsible for the lowering of plasma glucose.
Maruyama, Hiroko; Kawakami, Fumitaka; Lwin, Thet-Thet; Imai, Motoki; Shamsa, Fazel
2018-01-01
In this study, we examined the inhibitory effects of ferulic acid and caffeic acid on melanin production using a murine B16 melanoma cell line. The mechanisms by which the two acids inhibit melanin production were investigated by evaluating their effects on the activity of tyrosinase, which is involved is the first step of melanin biosynthesis. Ferulic acid showed no toxicity against the melanoma cells at any dose, whereas caffeic acid exerted cellular toxicity at concentrations higher than 0.35 mM. Both ferulic and caffeic acids effectively inhibited melanin production in the B16 melanoma cells. Ferulic acid reduced tyrosinase activity by directly binding to the enzyme, whereas no binding was observed between caffeic acid and tyrosinase. Both ferulic acid and caffeic acid inhibited casein kinase 2 (CK2)-induced phosphorylation of tyrosinase in a dose-dependent manner in vitro. Ferulic acid was found to be a more effective inhibitor of melanin production than caffeic acid; this difference in the inhibitory efficacy between the two substances could be attributable to the difference in their tyrosine-binding activity. Our analysis revealed that both substances also inhibited the CK2-mediated phosphorylation of tyrosinase.
Effects of caffeic and chlorogenic acids on the rat skeletal system.
Folwarczna, J; Pytlik, M; Zych, M; Cegieła, U; Nowinska, B; Kaczmarczyk-Sedlak, I; Sliwinski, L; Trzeciak, H; Trzeciak, H I
2015-02-01
Caffeic acid, predominantly as esters linked to quinic acid (chlorogenic acids), is a phenolic acid present at high levels in coffee. The aim of the study was to investigate effects of caffeic and chlorogenic acids on the skeletal system of female rats with normal estrogen levels and estrogen-deficient. Caffeic acid (5 and 50 mg/kg p.o. daily) and chlorogenic acid (100 mg/kg p.o. daily) were administered for 4 weeks to non-ovariectomized and bilaterally ovariectomized mature Wistar rats, and their effects were compared with appropriate controls. Moreover, estradiol (0.2 mg/kg p.o. daily) was administered to ovariectomized rats. Bone turnover markers, mass, mineralization and mechanical properties were examined. Although caffeic acid at a low dose exerted some unfavorable effects on the skeletal system, at high doses, caffeic and chlorogenic acids slightly increased mineralization in the tibia and improved mechanical properties of the femoral diaphysis (compact bone). Unlike estradiol, they did not counteract the worsening of the tibial metaphysis bone strength (cancellous bone) and increases in osteocalcin concentration induced by estrogen deficiency. High doses of the phenolic acids slightly favorably affected the rat skeletal system independently of the estrogen status.
Bocco, B M; Fernandes, G W; Lorena, F B; Cysneiros, R M; Christoffolete, M A; Grecco, S S; Lancellotti, C L; Romoff, P; Lago, J H G; Bianco, A C; Ribeiro, M O
2016-03-01
Fractionation of the EtOH extract from aerial parts of Baccharis uncinella C. DC. (Asteraceae) led to isolation of caffeic and ferulic acids, which were identified from spectroscopic and spectrometric evidence. These compounds exhibit antioxidant and anti-inflammatory properties and have been shown to be effective in the prevention/treatment of metabolic syndrome. This study investigated whether the combined treatment of caffeic and ferulic acids exhibits a more significant beneficial effect in a mouse model with metabolic syndrome. The combination treatment with caffeic and ferulic acids was tested for 60 days in C57 mice kept on a high-fat (40%) diet. The data obtained indicated that treatment with caffeic and ferulic acids prevented gain in body weight induced by the high-fat diet and improved hyperglycemia, hypercholesterolemia and hypertriglyceridemia. The expression of a number of metabolically relevant genes was affected in the liver of these animals, showing that caffeic and ferulic acid treatment results in increased cholesterol uptake and reduced hepatic triglyceride synthesis in the liver, which is a likely explanation for the prevention of hepatic steatosis. In conclusion, the combined treatment of caffeic and ferulic acids displayed major positive effects towards prevention of multiple aspects of the metabolic syndrome and liver steatosis in an obese mouse model.
Rainer, Peter P; Primessnig, Uwe; Harenkamp, Sandra; Doleschal, Bernhard; Wallner, Markus; Fauler, Guenter; Stojakovic, Tatjana; Wachter, Rolf; Yates, Ameli; Groschner, Klaus; Trauner, Michael; Pieske, Burkert M; von Lewinski, Dirk
2013-11-01
High bile acid serum concentrations have been implicated in cardiac disease, particularly in arrhythmias. Most data originate from in vitro studies and animal models. We tested the hypotheses that (1) high bile acid concentrations are arrhythmogenic in adult human myocardium, (2) serum bile acid concentrations and composition are altered in patients with atrial fibrillation (AF) and (3) the therapeutically used ursodeoxycholic acid has different effects than other potentially toxic bile acids. Multicellular human atrial preparations ('trabeculae') were exposed to primary bile acids and the incidence of arrhythmic events was assessed. Bile acid concentrations were measured in serum samples from 250 patients and their association with AF and ECG parameters analysed. Additionally, we conducted electrophysiological studies in murine myocytes. Taurocholic acid (TCA) concentration-dependently induced arrhythmias in atrial trabeculae (14/28 at 300 µM TCA, p<0.01) while ursodeoxycholic acid did not. Patients with AF had significantly decreased serum levels of ursodeoxycholic acid conjugates and increased levels of non-ursodeoxycholic bile acids. In isolated myocytes, TCA depolarised the resting membrane potential, enhanced Na(+)/Ca(2+) exchanger (NCX) tail current density and induced afterdepolarisations. Inhibition of NCX prevented arrhythmias in atrial trabeculae. High TCA concentrations induce arrhythmias in adult human atria while ursodeoxycholic acid does not. AF is associated with higher serum levels of non-ursodeoxycholic bile acid conjugates and low levels of ursodeoxycholic acid conjugates. These data suggest that higher levels of toxic (arrhythmogenic) and low levels of protective bile acids create a milieu with a decreased arrhythmic threshold and thus may facilitate arrhythmic events.
Ferdek, Pawel E; Jakubowska, Monika A; Gerasimenko, Julia V; Gerasimenko, Oleg V; Petersen, Ole H
2016-11-01
Acute biliary pancreatitis is a sudden and severe condition initiated by bile reflux into the pancreas. Bile acids are known to induce Ca 2+ signals and necrosis in isolated pancreatic acinar cells but the effects of bile acids on stellate cells are unexplored. Here we show that cholate and taurocholate elicit more dramatic Ca 2+ signals and necrosis in stellate cells compared to the adjacent acinar cells in pancreatic lobules; whereas taurolithocholic acid 3-sulfate primarily affects acinar cells. Ca 2+ signals and necrosis are strongly dependent on extracellular Ca 2+ as well as Na + ; and Na + -dependent transport plays an important role in the overall bile acid uptake in pancreatic stellate cells. Bile acid-mediated pancreatic damage can be further escalated by bradykinin-induced signals in stellate cells and thus killing of stellate cells by bile acids might have important implications in acute biliary pancreatitis. Acute biliary pancreatitis, caused by bile reflux into the pancreas, is a serious condition characterised by premature activation of digestive enzymes within acinar cells, followed by necrosis and inflammation. Bile acids are known to induce pathological Ca 2+ signals and necrosis in acinar cells. However, bile acid-elicited signalling events in stellate cells remain unexplored. This is the first study to demonstrate the pathophysiological effects of bile acids on stellate cells in two experimental models: ex vivo (mouse pancreatic lobules) and in vitro (human cells). Sodium cholate and taurocholate induced cytosolic Ca 2+ elevations in stellate cells, larger than those elicited simultaneously in the neighbouring acinar cells. In contrast, taurolithocholic acid 3-sulfate (TLC-S), known to induce Ca 2+ oscillations in acinar cells, had only minor effects on stellate cells in lobules. The dependence of the Ca 2+ signals on extracellular Na + and the presence of sodium-taurocholate cotransporting polypeptide (NTCP) indicate a Na + -dependent bile acid uptake mechanism in stellate cells. Bile acid treatment caused necrosis predominantly in stellate cells, which was abolished by removal of extracellular Ca 2+ and significantly reduced in the absence of Na + , showing that bile-dependent cell death was a downstream event of Ca 2+ signals. Finally, combined application of TLC-S and the inflammatory mediator bradykinin caused more extensive necrosis in both stellate and acinar cells than TLC-S alone. Our findings shed new light on the mechanism by which bile acids promote pancreatic pathology. This involves not only signalling in acinar cells but also in stellate cells. © 2016 The Authors The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
Wang, Haina; Fang, Zhong-Ze; Meng, Ran; Cao, Yun-Feng; Tanaka, Naoki; Krausz, Kristopher W; Gonzalez, Frank J
2017-07-01
Alpha-naphthyl isothiocyanate (ANIT) is a common hepatotoxicant experimentally used to reproduce the pathologies of drug-induced liver injury in humans, but the mechanism of its toxicity remains unclear. To determine the metabolic alterations following ANIT exposure, metabolomic analyses was performed by use of liquid chromatography-mass spectrometry. Partial least squares discriminant analysis (PLS-DA) of liver, serum, bile, ileum, and cecum of vehicle- and ANIT-treated mice revealed significant alterations of individual bile acids, including increased tauroursodeoxycholic acid, taurohydrodeoxycholic acid, taurochenodeoxycholic acid, and taurodeoxycholic acid, and decreased ω-, β- and tauro-α/β- murideoxycholic acid, cholic acid, and taurocholic acid in the ANIT-treated groups. In accordance with these changes, ANIT treatment altered the expression of mRNAs encoded by genes responsible for the metabolism and transport of bile acids and cholesterol. Pre-treatment of glycyrrhizin (GL) and glycyrrhetinic acid (GA) prevented ANIT-induced liver damage and reversed the alteration of bile acid metabolites and Cyp7a1, Npc1l1, Mttp, and Acat2 mRNAs encoding bile acid transport and metabolism proteins. These results suggested that GL/GA could prevent drug-induced liver injury and ensuing disruption of bile acid metabolism in humans. Published by Elsevier B.V.
Gul, Zulfiye; Demircan, Celaleddin; Bagdas, Deniz; Buyukuysal, Rifat Levent
2016-08-01
The effectiveness of chlorogenic acid and its main metabolites, caffeic and quinic acids, against oxidative stress was investigated. Resveratrol, another natural phenolic compound, was also tested for comparison. Rat cortical slices were incubated with 200 μM H2O2 for 1 h, and alterations in oxidative stress parameters, such as 2, 3, 5-triphenyltetrazolium chloride (TTC) staining and the production of both malondialdehyde (MDA) and reactive oxygen species (ROS), were assayed in the absence or presence of phenolic compounds. Additionally, the effectiveness of chlorogenic acid and other compounds on H2O2-induced increases in fluorescence intensities were also compared in slice-free incubation medium. Although quinic acid failed, chlorogenic and caffeic acids significantly ameliorated the H2O2-induced decline in TTC staining intensities. Although resveratrol also caused an increase in staining intensity, its effect was not dose-dependent; the high concentrations of resveratrol tested in the present study (10 and 100 μM) further lessened the staining of the slices. Additionally, all phenolic compounds significantly attenuated the H2O2-induced increases in MDA and ROS levels in cortical slices. When the IC50 values were compared to H2O2-induced alterations, chlorogenic acid was more potent than either its metabolites or resveratrol for all parameters studied under these experimental conditions. In slice-free experimental conditions, on the other hand, chlorogenic and caffeic acids significantly attenuated the fluorescence emission enhanced by H2O2 with a similar order of potency to that obtained in slice-containing physiological medium. These results indicate that chlorogenic acid is a more potent phenolic compound than resveratrol and its main metabolites caffeic and quinic acids against H2O2-induced alterations in oxidative stress parameters in rat cortical slices.
Kim, So Ra; Jung, Yu Ri; An, Hye Jin; Kim, Dae Hyun; Jang, Eun Ji; Choi, Yeon Ja; Moon, Kyoung Mi; Park, Min Hi; Park, Chan Hum; Chung, Ki Wung; Bae, Ha Ram; Choi, Yung Whan; Kim, Nam Deuk; Chung, Hae Young
2013-01-01
Skin aging is a multisystem degenerative process caused by several factors, such as, UV irradiation, stress, and smoke. Furthermore, wrinkle formation is a striking feature of photoaging and is associated with oxidative stress and inflammatory response. In the present study, we investigated whether caffeic acid, S-allyl cysteine, and uracil, which were isolated from garlic, modulate UVB-induced wrinkle formation and effect the expression of matrix-metalloproteinase (MMP) and NF-κB signaling. The results obtained showed that all three compounds significantly inhibited the degradation of type І procollagen and the expressions of MMPs in vivo and attenuated the histological collagen fiber disorder and oxidative stress in vivo. Furthermore, caffeic acid and S-allyl cysteine were found to decrease oxidative stress and inflammation by modulating the activities of NF-κB and AP-1, and uracil exhibited an indirect anti-oxidant effect by suppressing cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expressions levels and downregulating transcriptional factors. These results suggest that the anti-wrinkle effects of caffeic acid, S-allyl cysteine, and uracil are due to anti-oxidant and/or anti-inflammatory effects. Summarizing, caffeic acid, S-allyl cysteine, and uracil inhibited UVB-induced wrinkle formation by modulating MMP via NF-κB signaling. PMID:24066081
Jakubowska, Monika A.; Gerasimenko, Julia V.; Gerasimenko, Oleg V.; Petersen, Ole H.
2016-01-01
Key points Acute biliary pancreatitis is a sudden and severe condition initiated by bile reflux into the pancreas.Bile acids are known to induce Ca2+ signals and necrosis in isolated pancreatic acinar cells but the effects of bile acids on stellate cells are unexplored.Here we show that cholate and taurocholate elicit more dramatic Ca2+ signals and necrosis in stellate cells compared to the adjacent acinar cells in pancreatic lobules; whereas taurolithocholic acid 3‐sulfate primarily affects acinar cells.Ca2+ signals and necrosis are strongly dependent on extracellular Ca2+ as well as Na+; and Na+‐dependent transport plays an important role in the overall bile acid uptake in pancreatic stellate cells.Bile acid‐mediated pancreatic damage can be further escalated by bradykinin‐induced signals in stellate cells and thus killing of stellate cells by bile acids might have important implications in acute biliary pancreatitis. Abstract Acute biliary pancreatitis, caused by bile reflux into the pancreas, is a serious condition characterised by premature activation of digestive enzymes within acinar cells, followed by necrosis and inflammation. Bile acids are known to induce pathological Ca2+ signals and necrosis in acinar cells. However, bile acid‐elicited signalling events in stellate cells remain unexplored. This is the first study to demonstrate the pathophysiological effects of bile acids on stellate cells in two experimental models: ex vivo (mouse pancreatic lobules) and in vitro (human cells). Sodium cholate and taurocholate induced cytosolic Ca2+ elevations in stellate cells, larger than those elicited simultaneously in the neighbouring acinar cells. In contrast, taurolithocholic acid 3‐sulfate (TLC‐S), known to induce Ca2+ oscillations in acinar cells, had only minor effects on stellate cells in lobules. The dependence of the Ca2+ signals on extracellular Na+ and the presence of sodium–taurocholate cotransporting polypeptide (NTCP) indicate a Na+‐dependent bile acid uptake mechanism in stellate cells. Bile acid treatment caused necrosis predominantly in stellate cells, which was abolished by removal of extracellular Ca2+ and significantly reduced in the absence of Na+, showing that bile‐dependent cell death was a downstream event of Ca2+ signals. Finally, combined application of TLC‐S and the inflammatory mediator bradykinin caused more extensive necrosis in both stellate and acinar cells than TLC‐S alone. Our findings shed new light on the mechanism by which bile acids promote pancreatic pathology. This involves not only signalling in acinar cells but also in stellate cells. PMID:27406326
Donepudi, Ajay C.; Ferrell, Jessica M.; Boehme, Shannon; Choi, Hueng‐Sik
2017-01-01
Alcoholic fatty liver disease (AFLD) is a major risk factor for cirrhosis‐associated liver diseases. Studies demonstrate that alcohol increases serum bile acids in humans and rodents. AFLD has been linked to cholestasis, although the physiologic relevance of increased bile acids in AFLD and the underlying mechanism of increasing the bile acid pool by alcohol feeding are still unclear. In this study, we used mouse models either deficient of or overexpressing cholesterol 7α‐hydroxylase (Cyp7a1), the rate‐limiting and key regulatory enzyme in bile acid synthesis, to study the effect of alcohol drinking in liver metabolism and inflammation. Mice were challenged with chronic ethanol feeding (10 days) plus a binge dose of alcohol by oral gavage (5 g/kg body weight). Alcohol feeding reduced bile acid synthesis gene expression but increased the bile acid pool size, hepatic triglycerides and cholesterol, and inflammation and injury in wild‐type mice and aggravated liver inflammation and injury in Cyp7a1‐deficient mice. Interestingly, alcohol‐induced hepatic inflammation and injury were ameliorated in Cyp7a1 transgenic mice. Conclusion: Alcohol feeding alters hepatic bile acid and cholesterol metabolism to cause liver inflammation and injury, while maintenance of bile acid and cholesterol homeostasis protect against alcohol‐induced hepatic inflammation and injury. Our findings indicate that CYP7A1 plays a key role in protection against alcohol‐induced steatohepatitis. (Hepatology Communications 2018;2:99–112) PMID:29404516
Bile acid-induced necrosis in primary human hepatocytes and in patients with obstructive cholestasis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woolbright, Benjamin L.; Dorko, Kenneth; Antoine, Daniel J.
Accumulation of bile acids is a major mediator of cholestatic liver injury. Recent studies indicate bile acid composition between humans and rodents is dramatically different, as humans have a higher percent of glycine conjugated bile acids and increased chenodeoxycholate content, which increases the hydrophobicity index of bile acids. This increase may lead to direct toxicity that kills hepatocytes, and promotes inflammation. To address this issue, this study assessed how pathophysiological concentrations of bile acids measured in cholestatic patients affected primary human hepatocytes. Individual bile acid levels were determined in serum and bile by UPLC/QTOFMS in patients with extrahepatic cholestasis with,more » or without, concurrent increases in serum transaminases. Bile acid levels increased in serum of patients with liver injury, while biliary levels decreased, implicating infarction of the biliary tracts. To assess bile acid-induced toxicity in man, primary human hepatocytes were treated with relevant concentrations, derived from patient data, of the model bile acid glycochenodeoxycholic acid (GCDC). Treatment with GCDC resulted in necrosis with no increase in apoptotic parameters. This was recapitulated by treatment with biliary bile acid concentrations, but not serum concentrations. Marked elevations in serum full-length cytokeratin-18, high mobility group box 1 protein (HMGB1), and acetylated HMGB1 confirmed inflammatory necrosis in injured patients; only modest elevations in caspase-cleaved cytokeratin-18 were observed. These data suggest human hepatocytes are more resistant to human-relevant bile acids than rodent hepatocytes, and die through necrosis when exposed to bile acids. These mechanisms of cholestasis in humans are fundamentally different to mechanisms observed in rodent models. - Highlights: • Cholestatic liver injury is due to cytoplasmic bile acid accumulation in hepatocytes. • Primary human hepatocytes are resistant to BA-induced injury compared to rodents. • Primary human hepatocytes largely undergo necrosis in response to BA toxicity. • Cholestatic liver injury in vivo is predominantly necrotic with minor apoptosis. • Rodent models of bile acid toxicity may not recapitulate the injury in man.« less
Alvarez, Genoveva; Heredia, Norma; García, Santos
2003-12-01
The effects of low pH and human bile juice on Vibrio cholerae were investigated. A mild stress condition (exposure to acid shock at pH 5.5 or exposure to 3 mg of bile per ml for 20 min) slightly decreased (by < or = 1 log unit) V. cholerae cell viability. However, these treatments induced tolerance to subsequent exposures to more severe stress. In the O1 strain, four proteins were induced in response to acid shock (ca. 101, 94, 90, and 75 kDa), whereas only one protein (ca. 101 kDa) was induced in response to acid shock in the O139 strain. Eleven proteins were induced in response to bile shock in the O1 strain (ca. 106, 103, 101, 96, 88, 86, 84, 80, 66, 56, and 46 kDa), whereas only one protein was induced in response to bile shock in the O139 strain (ca. 88 kDa). V. cholerae O1 and O139 cells that had been preexposed to mild acid shock were twofold more resistant to pH 4.5 (with times required to inactivate 90% of the cell population [D-values] of 59 to 73 min) than were control cells (with D-values of 24 to 27 min). Likewise, cells that were preexposed to mild bile shock (3 mg/ml) were almost twofold more tolerant of severe bile shock (30 mg/ml; D-values, 68 to 87 min) than were control cells (with D-values of 37 to 43 min). These protective effects persisted for at least 1 h after the initial shock but were abolished when chloramphenicol was added to the culture during the shock. Cells preexposed to acid shock exhibited cross-protection against subsequent bile shock. However, cells preexposed to bile shock exhibited no changes in acid tolerance. Bile shock induced a modest reduction (0 to 20%) in enterotoxin production in V. cholerae, whereas acid shock had no effect on enterotoxin levels. Adaptation to acid and bile juice and protection against bile shock in response to preexposure to acid shock would be predicted to enhance the survival of V. cholerae in hosts and in foods. Thus, these adaptations may play an important role in the development of cholera disease.
Abdallah, Fatma Ben; Fetoui, H; Fakhfakh, F; Keskes, L
2012-01-01
Lambda-cyhalothrin (LTC) is a synthetic pyrethroid with a broad spectrum of insecticidal and acaricidal activities used to control wide range of insect pests in a variety of applications. The aim of this study was to examine (i) the potency of LTC to induce oxidative stress response in rat erythrocytes in vitro and (ii) the role of caffeic acid (20 μM) and/or quercetin (10 μM) in preventing the cytotoxic effects. Erythrocytes were divided into four portions. The erythrocytes of the first portion were incubated for 4 h at 37°C with different concentrations (0, 50 and 100 μM) of LTC. The others portions were pretreated with caffeic acid and/or quercetin for 30 min prior to LTC incubation. Lipid peroxidation, protein oxidation, antioxidant enzyme activities and DNA damage were examined. LTC at different concentrations causes increased levels of lipid peroxidation, protein oxidation, DNA damage and decreased antioxidant enzyme activities. Combined caffeic acid and quercetin pretreatments significantly reduced the levels of lipid peroxidation markers, that is thiobarbituric acid reactive substance (TBARS), protein carbonyls (PCO) and decreased DNA damage in LTC portion. Further, combined caffeic acid and quercetin pretreatment maintain antioxidant enzyme activities and glutathione content near to normal values. These results suggest that LTC exerts its toxic effect by increasing lipid peroxidation, altering the antioxidant enzyme activities and DNA damage. Caffeic acid and quercetin pretreatments prevent the toxic effects of LTC, suggesting their role as a potential antioxidant.
Vageli, Dimitra P.; Doukas, Sotirios G.; Sasaki, Clarence T.
2018-01-01
Bile-containing gastro-duodenal reflux has been clinically considered an independent risk factor in hypopharyngeal carcinogenesis. We recently showed that the chronic effect of acidic bile, at pH 4.0, selectively induces NF-κB activation and accelerates the transcriptional levels of genes, linked to head and neck cancer, in normal hypopharyngeal epithelial cells. Here, we hypothesize that NF-κB inhibition is capable of preventing the acidic bile-induced and cancer-related mRNA phenotype, in treated normal human hypopharyngeal cells. In this setting we used BAY 11-7082, a specific and well documented pharmacologic inhibitor of NF-κB, and we observed that BAY 11-7082 effectively inhibits the acidic bile-induced gene expression profiling of the NF-κB signaling pathway (down-regulation of 72 out of 84 analyzed genes). NF-κB inhibition significantly prevents the acidic bile-induced transcriptional activation of NF-κB transcriptional factors, RELA (p65) and c-REL, as well as genes related to and commonly found in established HNSCC cell lines. These include anti-apoptotic bcl-2, oncogenic STAT3, EGFR, ∆Np63, TNF-α and WNT5A, as well as cytokines IL-1β and IL-6. Our findings are consistent with our hypothesis demonstrating that NF-κB inhibition effectively prevents the acidic bile-induced cancer-related mRNA phenotype in normal human hypopharyngeal epithelial cells supporting an understanding that NF-κB may be a critical link between acidic bile and early preneoplastic events in this setting. PMID:29464041
Bispo, Vanderson S; Dantas, Lucas S; Chaves, Adriano B; Pinto, Isabella F D; Silva, Railmara P DA; Otsuka, Felipe A M; Santos, Rodrigo B; Santos, Aline C; Trindade, Danielle J; Matos, Humberto R
2017-01-01
Hepatic disorders such as steatosis and alcoholic steatohepatitis are common diseases that affect thousands of people around the globe. This study aims to identify the main phenol compounds using a new HPLC-ESI+-MS/MS method, to evaluate some oxidative stress parameters and the hepatoprotective action of green dwarf coconut water, caffeic and ascorbic acids on the liver and serum of rats treated with ethanol. The results showed five polyphenols in the lyophilized coconut water spiked with standards: chlorogenic acid (0.18 µM), caffeic acid (1.1 µM), methyl caffeate (0.03 µM), quercetin (0.08 µM) and ferulic acid (0.02 µM) isomers. In the animals, the activity of the serum γ-glutamyltranspeptidase (γ-GT) was reduced to 1.8 I.U/L in the coconut water group, 3.6 I.U/L in the ascorbic acid group and 2.9 I.U/L in the caffeic acid groups, when compared with the ethanol group (5.1 I.U/L, p<0.05). Still in liver, the DNA analysis demonstrated a decrease of oxidized bases compared to ethanol group of 36.2% and 48.0% for pretreated and post treated coconut water group respectively, 42.5% for the caffeic acid group, and 34.5% for the ascorbic acid group. The ascorbic acid was efficient in inhibiting the thiobarbituric acid reactive substances (TBARS) in the liver by 16.5% in comparison with the ethanol group. These data indicate that the green dwarf coconut water, caffeic and ascorbic acids have antioxidant, hepatoprotective and reduced DNA damage properties, thus decreasing the oxidative stress induced by ethanol metabolism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamazaki, Makoto; Miyake, Manami; Sato, Hiroko
2013-04-01
Drug-induced liver injury (DILI) is a significant consideration for drug development. Current preclinical DILI assessment relying on histopathology and clinical chemistry has limitations in sensitivity and discordance with human. To gain insights on DILI pathogenesis and identify potential biomarkers for improved DILI detection, we performed untargeted metabolomic analyses on rats treated with thirteen known hepatotoxins causing various types of DILI: necrosis (acetaminophen, bendazac, cyclosporine A, carbon tetrachloride, ethionine), cholestasis (methapyrilene and naphthylisothiocyanate), steatosis (tetracycline and ticlopidine), and idiosyncratic (carbamazepine, chlorzoxasone, flutamide, and nimesulide) at two doses and two time points. Statistical analysis and pathway mapping of the nearly 1900 metabolitesmore » profiled in the plasma, urine, and liver revealed diverse time and dose dependent metabolic cascades leading to DILI by the hepatotoxins. The most consistent change induced by the hepatotoxins, detectable even at the early time point/low dose, was the significant elevations of a panel of bile acids in the plasma and urine, suggesting that DILI impaired hepatic bile acid uptake from the circulation. Furthermore, bile acid amidation in the hepatocytes was altered depending on the severity of the hepatotoxin-induced oxidative stress. The alteration of the bile acids was most evident by the necrosis and cholestasis hepatotoxins, with more subtle effects by the steatosis and idiosyncratic hepatotoxins. Taking together, our data suggest that the perturbation of bile acid homeostasis is an early event of DILI. Upon further validation, selected bile acids in the circulation could be potentially used as sensitive and early DILI preclinical biomarkers. - Highlights: ► We used metabolomics to gain insights on drug induced liver injury (DILI) in rats. ► We profiled rats treated with thirteen hepatotoxins at two doses and two time points. ► The toxins decreased the liver's ability to uptake bile acid from the circulation. ► Oxidative stress induced by the toxins altered bile acid biosynthesis in the liver. ► Selected bile acids in the plasma and urine could be sensitive DILI biomarkers.« less
Uhlik, Ondrej; Musilova, Lucie; Ridl, Jakub; Hroudova, Miluse; Vlcek, Cestmir; Koubek, Jiri; Holeckova, Marcela; Mackova, Martina; Macek, Tomas
2013-10-01
The aim of the study was to investigate how selected natural compounds (naringin, caffeic acid, and limonene) induce shifts in both bacterial community structure and degradative activity in long-term polychlorinated biphenyl (PCB)-contaminated soil and how these changes correlate with changes in chlorobiphenyl degradation capacity. In order to address this issue, we have integrated analytical methods of determining PCB degradation with pyrosequencing of 16S rRNA gene tag-encoded amplicons and DNA-stable isotope probing (SIP). Our model system was set in laboratory microcosms with PCB-contaminated soil, which was enriched for 8 weeks with the suspensions of flavonoid naringin, terpene limonene, and phenolic caffeic acid. Our results show that application of selected plant secondary metabolites resulted in bacterial community structure far different from the control one (no natural compound amendment). The community in soil treated with caffeic acid is almost solely represented by Proteobacteria, Acidobacteria, and Verrucomicrobia (together over 99 %). Treatment with naringin resulted in an enrichment of Firmicutes to the exclusion of Acidobacteria and Verrucomicrobia. SIP was applied in order to identify populations actively participating in 4-chlorobiphenyl catabolism. We observed that naringin and limonene in soil foster mainly populations of Hydrogenophaga spp., caffeic acid Burkholderia spp. and Pseudoxanthomonas spp. None of these populations were detected among 4-chlorobiphenyl utilizers in non-amended soil. Similarly, the degradation of individual PCB congeners was influenced by the addition of different plant compounds. Residual content of PCBs was lowest after treating the soil with naringin. Addition of caffeic acid resulted in comparable decrease of total PCBs with non-amended soil; however, higher substituted congeners were more degraded after caffeic acid treatment compared to all other treatments. Finally, it appears that plant secondary metabolites have a strong effect on the bacterial community structure, activity, and associated degradative ability.
Palmela, Inês; Correia, Leonor; Silva, Rui F. M.; Sasaki, Hiroyuki; Kim, Kwang S.; Brites, Dora; Brito, Maria A.
2015-01-01
Ursodeoxycholic acid and its main conjugate glycoursodeoxycholic acid are bile acids with neuroprotective properties. Our previous studies demonstrated their anti-apoptotic, anti-inflammatory, and antioxidant properties in neural cells exposed to elevated levels of unconjugated bilirubin (UCB) as in severe jaundice. In a simplified model of the blood-brain barrier, formed by confluent monolayers of a cell line of human brain microvascular endothelial cells, UCB has shown to induce caspase-3 activation and cell death, as well as interleukin-6 release and a loss of blood-brain barrier integrity. Here, we tested the preventive and restorative effects of these bile acids regarding the disruption of blood-brain barrier properties by UCB in in vitro conditions mimicking severe neonatal hyperbilirubinemia and using the same experimental blood-brain barrier model. Both bile acids reduced the apoptotic cell death induced by UCB, but only glycoursodeoxycholic acid significantly counteracted caspase-3 activation. Bile acids also prevented the upregulation of interleukin-6 mRNA, whereas only ursodeoxycholic acid abrogated cytokine release. Regarding barrier integrity, only ursodeoxycholic acid abrogated UCB-induced barrier permeability. Better protective effects were obtained by bile acid pre-treatment, but a strong efficacy was still observed by their addition after UCB treatment. Finally, both bile acids showed ability to cross confluent monolayers of human brain microvascular endothelial cells in a time-dependent manner. Collectively, data disclose a therapeutic time-window for preventive and restorative effects of ursodeoxycholic acid and glycoursodeoxycholic acid against UCB-induced blood-brain barrier disruption and damage to human brain microvascular endothelial cells. PMID:25821432
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeong, Eun Sook; Kim, Gabin; Shin, Ho Jung
A liquid chromatography/time-of-flight mass spectrometry (LC/TOF-MS)-based metabolomics approach was employed to identify endogenous metabolites as potential biomarkers for thioacetamide (TAA)-induced liver injury. TAA (10 and 30 mg/kg), a well-known hepatotoxic agent, was administered daily to male Sprague–Dawley (SD) rats for 28 days. We then conducted untargeted analyses of endogenous serum and liver metabolites. Partial least squares discriminant analysis (PLS-DA) was performed on serum and liver samples to evaluate metabolites associated with TAA-induced perturbation. TAA administration resulted in altered levels of bile acids, acyl carnitines, and phospholipids in serum and in the liver. We subsequently demonstrated and confirmed the occurrence ofmore » compromised bile acid homeostasis. TAA treatment significantly increased serum levels of conjugated bile acids in a dose-dependent manner, which correlated well with toxicity. However, hepatic levels of these metabolites were not substantially changed. Gene expression profiling showed that the hepatic mRNA levels of Ntcp, Bsep, and Oatp1b2 were significantly suppressed, whereas those of basolateral Mrp3 and Mrp4 were increased. Decreased levels of Ntcp, Oatp1b2, and Ostα proteins in the liver were confirmed by western blot analysis. These results suggest that serum bile acids might be increased due to the inhibition of bile acid enterohepatic circulation rather than increased endogenous bile acid synthesis. Moreover, serum bile acids are a good indicator of TAA-induced hepatotoxicity. - Highlights: • Endogenous metabolic profiles were assessed in rat after treatment of thioacetamide. • It significantly increased the levels of bile acids in serum but not in the liver. • Expression of the genes related to bile acid secretion and reuptake was decreased. • Increased serum bile acids result from block of enterohepatic circulation of bile acids.« less
Dietary fish oil regulates gene expression of cholesterol and bile acid transporters in mice.
Kamisako, Toshinori; Tanaka, Yuji; Ikeda, Takanori; Yamamoto, Kazuo; Ogawa, Hiroshi
2012-03-01
Fish oil rich in n-3 polyunsaturated fatty acids is known to affect hepatic lipid metabolism. Several studies have demonstrated that fish oil may affect the bile acid metabolism as well as lipid metabolism, whereas only scarce data are available. The aim of this study was to investigate the effect of fish oil on the gene expression of the transporters and enzymes related to bile acid as well as lipid metabolism in the liver and small intestine. Seven-week old male C57BL/6 mice were fed diets enriched in 10% soybean oil or 10% fish oil for 4 weeks. After 4 weeks, blood, liver and small intestine were obtained. Hepatic mRNA expression of lipids (Abcg5/8, multidrug resistance gene product 2) and bile acids transporters (bile salt export pump, multidrug resistance associated protein 2 and 3, organic solute transporter α) was induced in fish oil-fed mice. Hepatic Cyp8b1, Cyp27a1 and bile acid CoA : amino acid N-acyltransferase were increased in fish oil-fed mice compared with soybean-oil fed mice. Besides, intestinal cholesterol (Abcg5/8) and bile acid transporters (multidrug resistance associated protein 2 and organic solute transporter α) were induced in fish oil-fed mice. Fish oil induced the expression of cholesterol and bile acid transporters not only in liver but in intestine. The upregulation of Abcg5/g8 by fish oil is caused by an increase in cellular 27-HOC through Cyp27a1 induction. The hepatic induction of bile acid synthesis through Cyp27a1 may upregulate expression of bile acid transporters in both organs. © 2012 The Japan Society of Hepatology.
Irinotecan (CPT-11)-induced elevation of bile acids potentiates suppression of IL-10 expression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Zhong-Ze; Department of Toxicology, School of Public Health, Tianjin Medical University, Tianjin; Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences and First Affiliated Hospital of Liaoning Medical University, Dalian
Irinotecan (CPT-11) is a first-line anti-colon cancer drug, however; CPT-11-induced toxicity remains a key factor limiting its clinical application. To search for clues to the mechanism of CPT-11-induced toxicity, metabolomics was applied using ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry. Intraperitoneal injection of 50 mg/kg of CPT-11 induced loss of body weight, and intestine toxicity. Changes in gallbladder morphology suggested alterations in bile acid metabolism, as revealed at the molecular level by analysis of the liver, bile, and ileum metabolomes between the vehicle-treated control group and the CPT-11-treated group. Analysis of immune cell populations further showedmore » that CPT-11 treatment significantly decreased the IL-10-producing CD4 T cell frequency in intestinal lamina propria lymphocytes, but not in spleen or mesenteric lymph nodes. In vitro cell culture studies showed that the addition of bile acids deoxycholic acid and taurodeoxycholic acid accelerated the CPT-11-induced suppression of IL-10 secretion by activated CD4{sup +} naive T cells isolated from mouse splenocytes. These results showed that CPT-11 treatment caused metabolic changes in the composition of bile acids that altered CPT-11-induced suppression of IL-10 expression. - Highlights: • CPT-11 is an effective anticancer drug, but induced toxicity limits its application in the clinic. • CPT-11 decreased IL-10-producing CD4 T cell frequency in intestinal lamina propria lymphocytes. • CPT-11 altered the composition of bile acid metabolites, notably DCA and TDCA in liver, bile and intestine. • DCA and TDCA potentiated CPT-11-induced suppression of IL-10 secretion by active CD4{sup +} naive T cells.« less
Ferraz-Filha, Zilma Schimith; Ferrari, Fernanda Cristina; Araújo, Marcela Carolina de Paula Michel; Bernardes, Ana Catharina Fernandes P. F.
2017-01-01
Tabebuia species (Bignoniaceae) have long been used in folk medicine as anti-inflammatory, antirheumatic, antimicrobial, and antitumor. The aim of this study was to investigate if aqueous extract from the leaves (AEL) of Tabebuia roseoalba (Ridl.) Sandwith, Bignoniaceae, and its constituents could be useful to decrease serum uric acid levels and restrain the gout inflammatory process. HPLC analysis identified caffeic acid and chlorogenic acid in AEL. Antihyperuricemic effects and inhibition of liver XOD (xanthine oxidoreductase) by AEL and identified compounds were evaluated in hyperuricemic mice. Anti-inflammatory activity was evaluated on MSU (monosodium urate) crystal-induced paw edema. In addition, AEL antioxidant activity in vitro was evaluated. AEL, caffeic, and chlorogenic acids were able to reduce serum uric acid levels in hyperuricemic mice probably through inhibition of liver xanthine oxidase activity and significantly decreased the paw edema induced by MSU crystals. AEL showed significant antioxidant activity in all evaluated assays. The results show that the AEL of Tabebuia roseoalba can be a promising agent for treatment for gout and inflammatory diseases. We suggest that caffeic and chlorogenic acids may be responsible for the activities demonstrated by the species. PMID:29375639
Njauw, Ching-Wei; Cheng, Chih-Yang; Ivanov, Viktor A; Khokhlov, Alexei R; Tung, Shih-Huang
2013-03-26
It has been known that the addition of bile salts to lecithin organosols induces the formation of reverse wormlike micelles and that the worms are similar to long polymer chains that entangle each other to form viscoelastic solutions. In this study, we further investigated the effects of different bile salts and bile acids on the growth of lecithin reverse worms in cyclohexane and n-decane. We utilized rheological and small-angle scattering techniques to analyze the properties and structures of the reverse micelles. All of the bile salts can transform the originally spherical lecithin reverse micelles into wormlike micelles and their rheological behaviors can be described by the single-relaxation-time Maxwell model. However, their efficiencies to induce the worms are different. In contrast, before phase separation, bile acids can induce only short cylindrical micelles that are not long enough to impart viscoelasticity. We used Fourier transform infrared spectroscopy to investigate the interactions between lecithin and bile salts/acids and found that different bile salts/acids employ different functional groups to form hydrogen bonds with lecithin. Such effects determine the relative positions of the bile salts/acids in the headgroups of lecithin, thus resulting in varying efficiencies to alter the effective critical packing parameter for the formation of wormlike micelles. This work highlights the importance of intermolecular interactions in molecular self-assembly.
Murthy, Hosakatte Niranjana; Kim, Yun-Soo; Park, So-Young; Paek, Kee-Yoeup
2014-09-01
Caffeic acid derivatives (CADs) are a group of bioactive compounds which are produced in Echinacea species especially Echinacea purpurea, Echinacea angustifolia, and Echinacea pallida. Echinacea is a popular herbal medicine used in the treatment of common cold and it is also a prominent dietary supplement used throughout the world. Caffeic acid, chlorogenic acid (5-O-caffeoylquinic acid), caftaric acid (2-O-caffeoyltartaric acid), cichoric acid (2, 3-O-dicaffeoyltartaric acid), cynarin, and echinacoside are some of the important CADs which have varied pharmacological activities. The concentrations of these bioactive compounds are species specific and also they vary considerably with the cultivated Echinacea species due to geographical location, stage of development, time of harvest, and growth conditions. Due to these reasons, plant cell and organ cultures have become attractive alternative for the production of biomass and caffeic acid derivatives. Adventitious and hairy roots have been induced in E. pupurea and E. angustifolia, and suspension cultures have been established from flask to bioreactor scale for the production of biomass and CADs. Tremendous progress has been made in this area; various bioprocess methods and strategies have been developed for constant high-quality productivity of biomass and secondary products. This review is aimed to discuss biotechnological methods and approaches employed for the sustainable production of CADs.
CYP2E1-dependent elevation of serum cholesterol, triglycerides, and hepatic bile acids by isoniazid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Jie; Krausz, Kristopher W.; Li, Feng
Isoniazid is the first-line medication in the prevention and treatment of tuberculosis. Isoniazid is known to have a biphasic effect on the inhibition–induction of CYP2E1 and is also considered to be involved in isoniazid-induced hepatotoxicity. However, the full extent and mechanism of involvement of CYP2E1 in isoniazid-induced hepatotoxicity remain to be thoroughly investigated. In the current study, isoniazid was administered to wild-type and Cyp2e1-null mice to investigate the potential toxicity of isoniazid in vivo. The results revealed that isoniazid caused no hepatotoxicity in wild-type and Cyp2e1-null mice, but produced elevated serum cholesterol and triglycerides, and hepatic bile acids in wild-typemore » mice, as well as decreased abundance of free fatty acids in wild-type mice and not in Cyp2e1-null mice. Metabolomic analysis demonstrated that production of isoniazid metabolites was elevated in wild-type mice along with a higher abundance of bile acids, bile acid metabolites, carnitine and carnitine derivatives; these were not observed in Cyp2e1-null mice. In addition, the enzymes responsible for bile acid synthesis were decreased and proteins involved in bile acid transport were significantly increased in wild-type mice. Lastly, treatment of targeted isoniazid metabolites to wild-type mice led to similar changes in cholesterol, triglycerides and free fatty acids. These findings suggest that while CYP2E1 is not involved in isoniazid-induced hepatotoxicity, while an isoniazid metabolite might play a role in isoniazid-induced cholestasis through enhancement of bile acid accumulation and mitochondria β-oxidation. -- Highlights: ► Isoniazid metabolites were elevated only in wild-type mice. ► Isoniazid caused no hepatotoxicity in wild-type and Cyp2e1-null mice. ► Isoniazid elevated serum cholesterol and triglycerides, and hepatic bile acids. ► Bile acid transporters were significantly decreased in isoniazid-treated mice.« less
Wang, Ling-Na; Wang, Wei; Hattori, Masao; Daneshtalab, Mohsen; Ma, Chao-Mei
2016-06-08
Chlorogenic acid is a well known natural product with important bioactivities. It contains an ester bond formed between the COOH of caffeic acid and the 3-OH of quinic acid. We synthesized a chlorogenic acid analogue, 3α-caffeoylquinic acid amide, using caffeic and quinic acids as starting materials. The caffeoylquinc acid amide was found to be much more stable than chlorogenic acid and showed anti-Hepatitis C virus (anti-HCV) activity with a potency similar to chlorogenic acid. The caffeoylquinc acid amide potently protected HepG2 cells against oxidative stress induced by tert-butyl hydroperoxide.
Wang, Lirui; Hartmann, Phillipp; Haimerl, Michael; Bathena, Sai P.; Sjöwall, Christopher; Almer, Sven; Alnouti, Yazen; Hofmann, Alan F.; Schnabl, Bernd
2014-01-01
Background & aims Chronic liver disease is characterized by fibrosis that may progress to cirrhosis. Nucleotide oligomerization domain 2 (Nod2), a member of the Nod-like receptor (NLR) family of intracellular immune receptors, plays an important role in the defense against bacterial infection through binding to the ligand muramyl dipeptide (MDP). Here, we investigated the role of Nod2 in the development of liver fibrosis. Methods We studied experimental cholestatic liver disease induced by bile duct ligation or toxic liver disease induced by carbon tetrachloride in wild type and Nod2−/− mice. Results Nod2 deficiency protected mice from cholestatic but not toxin-induced liver injury and fibrosis. Most notably, the hepatic bile acid concentration was lower in Nod2−/− mice than wild type mice following bile duct ligation for 3 weeks. In contrast to wild type mice, Nod2−/− mice had increased urinary excretion of bile acids, including sulfated bile acids, and an upregulation of the bile acid efflux transporters MRP2 and MRP4 in tubular epithelial cells of the kidney. MRP2 and MRP4 were downregulated by IL-1β in a Nod2 dependent fashion. Conclusions Our findings indicate that Nod2 deficiency protects mice from cholestatic liver injury and fibrosis through enhancing renal excretion of bile acids that in turn contributes to decreased concentration of bile acids in the hepatocyte. PMID:24560660
[Correlations of bile acids in the bile of rats in conditions of alloxan induced diabetes melitus].
Danchenko, N M; Vesel'skyĭ, S P; Tsudzevych, B O
2014-01-01
The ratio of bile acids in the bile of rats with alloxan diabetes was investigated using the method of thin-layer chromatography. Changes of coefficients of conjugation and hydroxylation of bile acids were calculated and analyzed in half-hour samples of bile obtained during the 3-hour experiment. It has been found that the processes of conjugation of cholic acid with glycine and taurine are inhibited in alloxan diabetes. At the same time a significant increase of free threehydroxycholic and dixydroxycholic bile acids and conjugates of the latter ones with taurine has been registered. Coefficients of hydroxylation in alloxan diabetes show the domination of "acidic" pathway in bile acid biosynthesis that is tightly connected with the activity of mitochondrial enzymes.
NASA Astrophysics Data System (ADS)
Krimmel, Birgit; Swoboda, Friederike; Solar, Sonja; Reznicek, Gottfried
2010-12-01
The OH-radical induced degradation of hydroxybenzoic acids (HBA), hydroxycinnamic acids (HCiA) and methoxylated derivatives, as well as of chlorogenic acid and rosmarinic acid was studied by gamma radiolysis in aerated aqueous solutions. Primary aromatic products resulting from an OH-radical attachment to the ring (hydroxylation), to the position occupied by the methoxyl group (replacement -OCH 3 by -OH) as well as to the propenoic acid side chain of the cinnamic acids (benzaldehyde formations) were analysed by HPLC-UV and LC-ESI-MS. A comparison of the extent of these processes is given for 3,4-dihydroxybenzoic acid, vanillic acid, isovanillic acid, syringic acid, cinnamic acid, 4-hydroxycinnamic acid, caffeic acid, ferulic acid, isoferulic acid, chlorogenic acid, and rosmarinic acid. For all cinnamic acids and derivatives benzaldehydes were significant oxidation products. With the release of caffeic acid from chlorogenic acid the cleavage of a phenolic glycoside could be demonstrated. Reaction mechanisms are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Qiang; Chen, Xin-li; Wang, Chang-yuan
2015-03-15
Intrahepatic cholestasis is a clinical syndrome with systemic and intrahepatic accumulation of excessive toxic bile acids that ultimately cause hepatobiliary injury. Appropriate regulation of bile acids in hepatocytes is critically important for protection against liver injury. In the present study, we characterized the protective effect of alisol B 23-acetate (AB23A), a natural triterpenoid, on alpha-naphthylisothiocyanate (ANIT)-induced liver injury and intrahepatic cholestasis in mice and further elucidated the mechanisms in vivo and in vitro. AB23A treatment dose-dependently protected against liver injury induced by ANIT through reducing hepatic uptake and increasing efflux of bile acid via down-regulation of hepatic uptake transporters (Ntcp)more » and up-regulation of efflux transporter (Bsep, Mrp2 and Mdr2) expression. Furthermore, AB23A reduced bile acid synthesis through repressing Cyp7a1 and Cyp8b1, increased bile acid conjugation through inducing Bal, Baat and bile acid metabolism through an induction in gene expression of Sult2a1. We further demonstrate the involvement of farnesoid X receptor (FXR) in the hepatoprotective effect of AB23A. The changes in transporters and enzymes, as well as ameliorative liver histology in AB23A-treated mice were abrogated by FXR antagonist guggulsterone in vivo. In vitro evidences also directly demonstrated the effect of AB23A on FXR activation in a dose-dependent manner using luciferase reporter assay in HepG2 cells. In conclusion, AB23A produces protective effect against ANIT-induced hepatotoxity and cholestasis, due to FXR-mediated regulation of transporters and enzymes. - Highlights: • AB23A has at least three roles in protection against ANIT-induced liver injury. • AB23A decreases Ntcp, and increases Bsep, Mrp2 and Mdr2 expression. • AB23A represses Cyp7a1 and Cyp8b1 through inducing Shp and Fgf15 expression. • AB23A increases bile acid metabolism through inducing Sult2a1 expression. • FXR activation is involved in the hepatoprotective effect of AB23A.« less
Anwar, Javed; Spanevello, Roselia Maria; Pimentel, Victor Camera; Gutierres, Jessié; Thomé, Gustavo; Cardoso, Andreia; Zanini, Daniela; Martins, Caroline; Palma, Heloisa Einloft; Bagatini, Margarete Dulce; Baldissarelli, Jucimara; Schmatz, Roberta; Leal, Cláudio Alberto Martins; da Costa, Pauline; Morsch, Vera Maria; Schetinger, Maria Rosa Chitolina
2013-06-01
This study evaluated the effects of caffeic acid on ectonucleotidase activities such as NTPDase (nucleoside triphosphate diphosphohydrolase), Ecto-NPP (nucleotide pyrophosphatase/phosphodiesterase), 5'-nucleotidase and adenosine deaminase (ADA) in platelets and lymphocytes of rats, as well as in the profile of platelet aggregation. Animals were divided into five groups: I (control); II (oil); III (caffeic acid 10 mg/kg); IV (caffeic acid 50 mg/kg); and V (caffeic acid 100 mg/kg). Animals were treated with caffeic acid diluted in oil for 30 days. In platelets, caffeic acid decreased the ATP hydrolysis and increased ADP hydrolysis in groups III, IV and V when compared to control (P<0.05). The 5'-nucleotidase activity was decreased, while E-NPP and ADA activities were increased in platelets of rats of groups III, IV and V (P<0.05). Caffeic acid reduced significantly the platelet aggregation in the animals of groups III, IV and V in relation to group I (P<0.05). In lymphocytes, the NTPDase and ADA activities were increased in all groups treated with caffeic acid when compared to control (P<0.05). These findings demonstrated that the enzymes were altered in tissues by caffeic acid and this compound decreased the platelet aggregation suggesting that caffeic acid should be considered a potentially therapeutic agent in disorders related to the purinergic system. Copyright © 2013 Elsevier Ltd. All rights reserved.
Matejczyk, Marzena; Swislocka, Renata; Kalinowska, Monika; Swidersk, Grzegorz; Lewandowsk, Wlodzimierz; Jablonska-Trypuo, Agata
2017-05-01
Caffeic acid and its derivatives because of its biological activities, including antioxidants, antithrombosis, antihypertensive, antifibrosis, antiviral, and anti-tumor properties are good candidates as adjuvants in anticancer therapy. The aim of this study was the examination of cyto- and genotoxic effect of caffeic acid on Escherichia coli K-12 recA::gfp strain treated with dacarbazine. Obtained results indicate that dacarbazine and caffeic acid influenced the reactivity of recA promoter and modulate the level of gfp expression in genetic construct rrcA::gfpmut2 in E. coli K-12. Simultaneuos administration of dacarbazine with caffeic acid caused the stronger inhibition of the bacteria growth than the dacarbazine and caffeic acid separated administration to bacteria cells. The simultaneous effect of the both tested chemicals - dacarbazine and caffeic acid indicated (cytostatic effect) anticancer activity in relation to bacteria cells. It suggests, that combination of known anticancer drug - dacarbazine w ith caffeic acid exerted synergistic cytotoxic and genotoxic effects toward E. coli K- 12 cells and indicated the possibility of usefulness of caffeic acid as a natural adjuvant in anticancer therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schiller, L.R.; Hogan, R.B.; Morawski, S.G.
1987-01-01
We studied radiolabeled fecal bile acid excretion in 11 normal subjects and 17 patients with idiopathic chronic diarrhea for three major purposes: to establish normal values for this test in the presence of increased stool volumes (induced in normal subjects by ingestion of poorly absorbable solutions); to test for bile acid malabsorption in the patients and to correlate this with an independent test of ileal function, the Schilling test; and to compare the results of the bile acid excretion test with the subsequent effect of a bile acid binding agent (cholestyramine) on stool weight. In normal subjects fecal excretion ofmore » the radiolabel was increased with increasing stool volumes. As a group, patients with idiopathic chronic diarrhea excreted radiolabeled bile acid more rapidly than normal subjects with induced diarrhea (t1/2 56 +/- 8 vs. 236 +/- 60 h, respectively, p less than 0.005). There was a statistically significant positive correlation between t1/2 of radiolabeled bile acid and Schilling test results in these patients. Although 14 of 17 patients absorbed labeled taurocholic acid less well than any of the normal subjects with comparable volumes of induced diarrhea, cholestyramine had no statistically significant effect on stool weight in the patient group, and in none of the patients was stool weight reduced to within the normal range. In summary, most patients with idiopathic chronic diarrhea have bile acid malabsorption (as measured by fecal excretion of labeled bile acid), but they do not respond to cholestyramine therapy with a significant reduction in stool weight. Although the significance of these findings was not clearly established, the most likely interpretation is that bile acid malabsorption is a manifestation of an underlying intestinal motility or absorptive defect rather than the primary cause of diarrhea.« less
Zhang, Linlin; Su, Huizong; Li, Yue; Fan, Yujuan; Wang, Qian; Jiang, Jian; Hu, Yiyang; Chen, Gaofeng; Tan, Bo; Qiu, Furong
2018-03-01
The aim of this study was to determine the effect of ursodeoxycholic acid (UDCA) on the alpha-naphthylisothiocyanate (ANIT)-induced acute and recovery stage of cholestasis model mice. In the acute stage of model mice, pretreatment with UDCA (25, 50, and 100 mg·kg -1 , ig) for 12 days prior to ANIT administration (50 mg·kg -1 , ig) resulted in the dramatic increase in serum biochemistry, with aggrevation of bile infarcts and hepatocyte necrosis. The elevation of beta-muricholic acid (β-MCA), cholic acid (CA), and taurocholic acid (TCA) in serum and liver, and reduction of these bile acids (BAs) in bile was observed. In contrast, in the recovery stage of model mice, treatment with UDCA (25, 50, and 100 mg·kg -1 , ig) for 7 days after ANIT administration (50 mg·kg -1 , ig) resulted in the significant decrease in levels of serum alanine aminotransferase (ALT) and total bile acid (TBA). Liver injury was attenuated, and the levels of TBA, CA, TCA, and β-MCA in the liver were significantly decreased. Additionally, UDCA can upregulate expression of BSEP, but it cannot upregulate expression of AE2. UDCA, which induced BSEP to increase bile acid-dependent bile flow, aggravated cholestasis and liver injury when the bile duct was obstructed in the acute stage of injury in model mice. In contrast, UDCA alleviated cholestasis and liver injury induced by ANIT when the obstruction was improved in the recovery stage. Copyright © 2018. Published by Elsevier Inc.
Bi, Jie; Liu, Song; Du, Guocheng; Chen, Jian
2016-04-01
Changes of bile salt tolerance, morphology and amount of bile acid within cells were studied to evaluate the exact effects of bile salt hydrolase (BSH) on bile salt tolerance of microorganism. The effect of BSHs on the bile salt tolerance of Lactococcus lactis was examined by expressing two BSHs (BSH1 and BSH2). Growth of L. lactis expressing BSH1 or BSH2 was better under bile salt stress compared to wild-type L. lactis. As indicated by transmission electron microscopy, bile acids released by the action of BSH induced the formation of micelles around the membrane surface of cells subject to conjugated bile salt stress. A similar micelle containing bile acid was observed in the cytoplasm by liquid chromatography-mass spectrometry. BSH1 produced fewer bile acid micelles in the cytoplasm and achieved better cell growth of L. lactis compared to BSH2. Expression of BSH improved bile salt tolerance of L. lactis but excessive production by BSH of bile acid micelles in the cytoplasm inhibited cell growth.
Bile acid metabolism and signaling in cholestasis, inflammation and cancer
Apte, Udayan
2015-01-01
Bile acids are synthesized from cholesterol in the liver. Some cytochrome P450 (CYP) enzymes play key roles in bile acid synthesis. Bile acids are physiological detergent molecules, so are highly cytotoxic. They undergo enterohepatic circulation and play important roles in generating bile flow and facilitating biliary secretion of endogenous metabolites and xenobiotics and intestinal absorption of dietary fats and lipid soluble vitamins. Bile acid synthesis, transport and pool size are therefore tightly regulated under physiological conditions. In cholestasis, impaired bile flow leads to accumulation of bile acids in the liver, causing hepatocyte and biliary injury and inflammation. Chronic cholestasis is associated with fibrosis, cirrhosis and eventually liver failure. Chronic cholestasis also increases the risk of developing hepatocellular or cholangiocellular carcinomas. Extensive research in the last two decades has shown that bile acids act as signaling molecules that regulate various cellular processes. The bile acid-activated nuclear receptors are ligand-activated transcriptional factors that play critical roles in the regulation of bile acid, drug and xenobiotic metabolism. In cholestasis, these bile acid-activated receptors regulate a network of genes involved in bile acid synthesis, conjugation, transport and metabolism to alleviate bile acid-induced inflammation and injury. Additionally, bile acids are known to regulate cell growth and proliferation, and altered bile acid levels in diseased conditions have been implicated in liver injury/regeneration and tumorigenesis. We will cover the mechanisms that regulate bile acid homeostasis and detoxification during cholestasis, and the roles of bile acids in the initiation and regulation of hepatic inflammation, regeneration and carcinogenesis. PMID:26233910
Interactions between gut bacteria and bile in health and disease.
Long, Sarah L; Gahan, Cormac G M; Joyce, Susan A
2017-08-01
Bile acids are synthesized from cholesterol in the liver and released into the intestine to aid the digestion of dietary lipids. The host enzymes that contribute to bile acid synthesis in the liver and the regulatory pathways that influence the composition of the total bile acid pool in the host have been well established. In addition, the gut microbiota provides unique contributions to the diversity of bile acids in the bile acid pool. Gut microbial enzymes contribute significantly to bile acid metabolism through deconjugation and dehydroxylation reactions to generate unconjugated bile acids and secondary bile acids. These microbial enzymes (which include bile salt hydrolase (BSH) and bile acid-inducible (BAI) enzymes) are essential for bile acid homeostasis in the host and represent a vital contribution of the gut microbiome to host health. Perturbation of the gut microbiota in disease states may therefore significantly influence bile acid signatures in the host, especially in the context of gastrointestinal or systemic disease. Given that bile acids are ligands for host cell receptors (including the FXR, TGR5 and Vitamin D Receptor) alterations to microbial enzymes and associated changes to bile acid signatures have significant consequences for the host. In this review we examine the contribution of microbial enzymes to the process of bile acid metabolism in the host and discuss the implications for microbe-host signalling in the context of C. difficile infection, inflammatory bowel disease and other disease states. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kakimoto, Toshiaki; Kanemoto, Hideyuki; Fukushima, Kenjiro; Ohno, Koichi; Tsujimoto, Hajime
2017-12-01
OBJCTIVE To investigate the effects of dietary lipid overload on bile acid metabolism and gallbladder motility in healthy dogs. ANIMALS 7 healthy Beagles. PROCEDURES In a crossover study, dogs were fed a high-fat-high-cholesterol diet (HFCD) or a low-fat diet (LFD) for a period of 2 weeks. After a 4-month washout period, dogs were fed the other diet for 2 weeks. Before and at the end of each feeding period, the concentrations of each of the gallbladder bile acids, cholecystokinin (CCK)-induced gallbladder motility, and bile acid metabolism-related hepatic gene expression were examined in all dogs. RESULTS The HFCD significantly increased plasma total cholesterol concentrations. The HFCD also increased the concentration of taurochenodeoxycholic acid and decreased the concentration of taurocholic acid in bile and reduced gallbladder contractility, whereas the LFD significantly decreased the concentration of taurodeoxycholic acid in bile. Gene expression analysis revealed significant elevation of cholesterol 7α-hydroxylase mRNA expression after feeding the HFCD for 2 weeks, but the expression of other genes was unchanged. CONCLUSIONS AND CLINICAL RELEVANCE Feeding the HFCD and LFD for 2 weeks induced changes in gallbladder bile acid composition and gallbladder motility in dogs. In particular, feeding the HFCD caused an increase in plasma total cholesterol concentration, an increase of hydrophobic bile acid concentration in bile, and a decrease in gallbladder sensitivity to CCK. These results suggested that similar bile acid compositional changes and gallbladder hypomotility might be evident in dogs with hyperlipidemia.
Piazzon, A; Vrhovsek, U; Masuero, D; Mattivi, F; Mandoj, F; Nardini, M
2012-12-19
The main metabolites of caffeic and ferulic acids (ferulic acid-4'-O-sulfate, caffeic acid-4'-O-sulfate, and caffeic acid-3'-O-sulfate), the most representative phenolic acids in fruits and vegetables, and the acyl glucuronide of ferulic acid were synthesized, purified, and tested for their antioxidant activity in comparison with those of their parent compounds and other related phenolics. Both the ferric reducing antioxidant power (FRAP) assay and the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging method were used. Ferulic acid-4'-O-sulfate and ferulic acid-4'-O-glucuronide exhibited very low antioxidant activity, while the monosulfate derivatives of caffeic acid were 4-fold less efficient as the antioxidant than caffeic acid. The acyl glucuronide of ferulic acid showed strong antioxidant action. The antioxidant activity of caffeic acid-3'-O-glucuronide and caffeic acid-4'-O-glucuronide was also studied. Our results demonstrate that some of the products of phenolic acid metabolism still retain strong antioxidant properties. Moreover, we first demonstrate the ex vivo synthesis of the acyl glucuronide of ferulic acid by mouse liver microsomes, in addition to the phenyl glucuronide.
Synthesis and evaluation of multifunctional ferulic and caffeic acid dimers for Alzheimer's disease.
He, Xi-Xin; Yang, Xiao-Hong; Ou, Rui-Ying; Ouyang, Ying; Wang, Sheng-Nan; Chen, Zi-Wei; Wen, Shi-Jun; Pi, Rong-Biao
2017-03-01
In this study, a series of novel ferulic and caffeic acid dimers was designed and synthesised, and their multifunctional properties against Alzheimer's disease (AD) were evaluated. Results showed that our multifunctional strategy was great supported by enhancing the inhibition of Aβ 1-42 self-induced aggregation. Moreover, 7b also had potent protective effects against glutamate-induced cell death without significant cell toxicity in mouse hippocampal neuronal HT22 cells and 10c effectively scavenged diphenylpicrylhydrazyl free radicals. Collectively, these data strongly encourage further optimisation of 7b as a new hit to develop multifunctional agents for the treatment of AD.
Ibitoye, Oluwayemisi B; Ajiboye, Taofeek O
2017-12-20
This study investigated the influence of caffeic, ferulic, gallic and protocatechuic acids on high-fructose diet-induced metabolic syndrome in rats. Oral administration of the phenolic acids significantly reversed high-fructose diet-mediated increase in body mass index and blood glucose. Furthermore, phenolic acids restored high-fructose diet-mediated alterations in metabolic hormones (insulin, leptin and adiponectin). Similarly, elevated tumour necrosis factor-α, interleukin-6 and -8 were significantly lowered. Administration of phenolic acids restored High-fructose diet-mediated increase in the levels of lipid parameters and indices of atherosclerosis, cardiac and cardiovascular diseases. High-fructose diet-mediated decrease in activities of antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and glucose 6-phosphate dehydrogenase) and increase in oxidative stress biomarkers (reduced glutathione, lipid peroxidation products, protein oxidation and fragmented DNA) were significantly restored by the phenolic acids. The result of this study shows protective influence of caffeic acid, ferulic acid, gallic acid and protocatechuic acid in high-fructose diet-induced metabolic syndrome.
Taurocholic acid metabolism by gut microbes and colon cancer
Ridlon, Jason M.; Wolf, Patricia G.; Gaskins, H. Rex
2016-01-01
ABSTRACT Colorectal cancer (CRC) is one of the most frequent causes of cancer death worldwide and is associated with adoption of a diet high in animal protein and saturated fat. Saturated fat induces increased bile secretion into the intestine. Increased bile secretion selects for populations of gut microbes capable of altering the bile acid pool, generating tumor-promoting secondary bile acids such as deoxycholic acid and lithocholic acid. Epidemiological evidence suggests CRC is associated with increased levels of DCA in serum, bile, and stool. Mechanisms by which secondary bile acids promote CRC are explored. Furthermore, in humans bile acid conjugation can vary by diet. Vegetarian diets favor glycine conjugation while diets high in animal protein favor taurine conjugation. Metabolism of taurine conjugated bile acids by gut microbes generates hydrogen sulfide, a genotoxic compound. Thus, taurocholic acid has the potential to stimulate intestinal bacteria capable of converting taurine and cholic acid to hydrogen sulfide and deoxycholic acid, a genotoxin and tumor-promoter, respectively. PMID:27003186
Portela, José Luiz; Soares, Deividi; Rosa, Hemerson; Roos, Daniel Henrique; Pinton, Simone; Ávila, Daiana Silva; Puntel, Robson L
2017-05-01
Studies comparing the effects of phytochemicals under different regimens of exposure are necessary to give a better indication about their mechanism(s) of protection. Hence, in the present study, we investigated the preventive (pre-incubation), protective (co-incubation) and/or remediative (post-incubation) activity of chlorogenic acid and caffeic acids, in comparison with Ilex paraguariensis crude extract, against t-butyl hydroperoxide (t-BHP)-induced damage to human erythrocytes. We found that both caffeic and chlorogenic acids were able to prevent and revert the hemolysis associated with t-BHP exposure. By contrast, isolated compounds (alone or in combination) presented no effect on basal and/or t-BHP-induced non-protein thiol (NPSH) oxidation or production of thiobarbituric acid reactive substances (TBBARS). In turn, I. paraguariensis extract was effective to prevent, protect and revert the hemolysis associated with t-BHP exposure. Moreover, I. paraguariensis significantly protects and reverts t-BHP-induced NPSH oxidation and TBARS production. We have found that I. paraguariensis extract acts better with respect to the protection and reversion of t-BHP-associated changes, whereas isolated compounds are more active in preventing and reverting t-BHP pro-hemolytic action. Moreover, our data suggest that the pro-hemolytic activity of t-BHP may occur via mechanism(s) other(s) than lipid peroxidation and/or NPSH oxidation. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Rebai, Olfa; Belkhir, Manel; Sanchez-Gomez, María Victoria; Matute, Carlos; Fattouch, Sami; Amri, Mohamed
2017-12-01
The present study has been designed to explore the molecular mechanism and signaling pathway targets of chlorogenic acid (CGA) and its main hydrolysates, caffeic (CA) and quinic acid in the protective effect against glutamate-excitotoxicity. For this purpose 8-DIV cortical neurons in primary culture were exposed to 50 μM L-glutamic acid plus 10 µM glycine, with or without 10-100 μM tested compounds. Chlorogenic acid and caffeic acid via their antioxidant properties inhibited cell death induced by glutamate in dose depended manner. However, quinic acid slightly protects neurons at a higher dose. DCF, JC-1 and Ca 2+ sensitive fluorescent dye fura-2, were used to measure intracellular ROS accumulation, mitochondrial membrane potential integration and intracellular calcium concentration [Ca 2+ ] i . Results indicate that similarly, CGA acts as a protective agent against glutamate-induced cortical neurons injury by suppressing the accumulation of endogenous ROS and restore the mitochondrial membrane potential, activate the enzymatic antioxidant system by the increase levels of SOD activity and modulate the rise of intracellular calcium levels by increasing the rise of intracellular concentrations of Ca 2+ caused by glutamate overstimulation. PKC signaling cascade appear to be engaged in this protective mechanism. Interseling, CGA and CA also exhibit antiapoptotic properties against glutamate-induced cleaved activation of pro-caspases; caspase 1,8 and 9 and calpain (PD 150606,Calpeptin and MDL 28170).These data suggest that neuroprotective activity of CGA ester may occurs throught its hydrolysate,the caffeic acid and its interaction with intracellular molecules suggesting that CGA exert its neuroprotection via its caffeoly acid group that might potentially be used as a therapeutic agent in neurodegeneratives disorders associated with glutamate excitotoxicity.
Takahama, Umeo; Hirota, Sachiko
2011-06-08
During the digestion of starch in foods, starch is mixed with bile in the duodenum. Because fatty acids and some kinds of polyphenols could bind to starch, it was postulated that bile salts might also bind to starch. The purpose of this paper is to study the effects of bile and bile salts on starch/iodine complex formation and pancreatin-induced starch digestion. Bile suppressed starch/iodine complex formation and inhibited pancreatin-induced starch digestion slightly in control buckwheat starch, but did so significantly in buckwheat starch from which fatty acids and polyphenols had been extracted. Such significant suppression and inhibition by bile were also observed in a reagent soluble starch. The effects of cholate and taurocholate on the starch/iodine complex formation and the pancreatin-induced starch digestion were essentially the same as those of bile. Bile, cholate, and taurocholate suppressed amylose/iodine complex formation more significantly than amylopectin/iodine complex formation and inhibited pancreatin-induced amylose digestion more effectively than the digestion of amylopectin. It is concluded from the results that bile salts could bind to starch, especially amylose, the helical structures of which were not occupied by other molecules such as fatty acids and polyphenols, and that the binding resulted in the inhibition of starch digestion by pancreatin. The conclusion suggests that the function of bile salts can be discussed from the point of not only lipid digestion but also starch digestion.
Crawford, Robert W.; Keestra, A. Marijke; Winter, Sebastian E.; Xavier, Mariana N.; Tsolis, Renée M.; Tolstikov, Vladimir; Bäumler, Andreas J.
2012-01-01
Intestinal inflammation changes the luminal habitat for microbes through mechanisms that have not been fully resolved. We noticed that the FepE regulator of very long O-antigen chain assembly in the enteric pathogen Salmonella enterica serotype Typhimurium (S. Typhimurium) conferred a luminal fitness advantage in the mouse colitis model. However, a fepE mutant was not defective for survival in tissue, resistance to complement or resistance to polymyxin B. We performed metabolite profiling to identify changes in the luminal habitat that accompany S. Typhimurium-induced colitis. This analysis suggested that S. Typhimurium-induced colitis increased the luminal concentrations of total bile acids. A mutation in fepE significantly reduced the minimal inhibitory concentration (MIC) of S. Typhimurium for bile acids in vitro. Oral administration of the bile acid sequestrant cholestyramine resin lowered the concentrations of total bile acids in colon contents during S. Typhimurium infection and significantly reduced the luminal fitness advantage conferred by the fepE gene in the mouse colitis model. Collectively, these data suggested that very long O-antigen chains function in bile acid resistance of S. Typhimurium, a property conferring a fitness advantage during luminal growth in the inflamed intestine. PMID:23028318
Prasadani, W. Chaturi; Senanayake, Chaturi M.; Jayathilaka, Nimanthi; Ekanayake, Sagarika
2017-01-01
Polyphenolic antioxidants are mainly absorbed through passive paracellular permeation regulated by tight junctions. Some fatty acids are known to modulate tight junctions. Fatty acids resulting from the digestion of edible oils may improve the absorption of polyphenolic antioxidants. Therefore, we explored the effect of three edible oils on the intestinal absorption of caffeic acid. Rats were fed with soybean oil and caffeic acid dissolved in distilled water. Caffeic acid contents in the plasma collected up to 1 hr were quantified. The experiment was repeated with coconut oil and olive oil. Component fatty acids of the oils were individually tested in vitro for their effect on permeability of caffeic acid using Caco-2 cell monolayers. Highest absorption of caffeic acid was observed in animals fed with coconut oil. In vitro transport percentages of caffeic acid in 2.5 mmol/L solutions of fatty acids were 22.01±0.12 (lauric), 15.30 ± 0.25 (myristic acid), 13.59 ± 0.35 (linoleic acid), 3.70 ± 0.09 (oleic acid) and 0.10–2.0 (all other fatty acids). Lauric acid and myristic acid are the two major fatty acids present in coconut oil. Therefore, these fatty acids may contribute to the higher absorption of caffeic acid in the presence of coconut oil. PMID:28617858
Mechanisms of bile acid mediated inflammation in the liver.
Li, Man; Cai, Shi-Ying; Boyer, James L
2017-08-01
Bile acids are synthesized in the liver and are the major component in bile. Impaired bile flow leads to cholestasis that is characterized by elevated levels of bile acid in the liver and serum, followed by hepatocyte and biliary injury. Although the causes of cholestasis have been extensively studied, the molecular mechanisms as to how bile acids initiate liver injury remain controversial. In this chapter, we summarize recent advances in the pathogenesis of bile acid induced liver injury. These include bile acid signaling pathways in hepatocytes as well as the response of cholangiocytes and innate immune cells in the liver in both patients with cholestasis and cholestatic animal models. We focus on how bile acids trigger the production of molecular mediators of neutrophil recruitment and the role of the inflammatory response in this pathological process. These advances point to a number of novel targets where drugs might be judged to be effective therapies for cholestatic liver injury. Copyright © 2017 Elsevier Ltd. All rights reserved.
All-trans retinoic acid regulates hepatic bile acid homeostasis
Yang, Fan; He, Yuqi; Liu, Hui-Xin; Tsuei, Jessica; Jiang, Xiaoyue; Yang, Li; Wang, Zheng-Tao; Wan, Yu-Jui Yvonne
2014-01-01
Retinoic acid (RA) and bile acids share common roles in regulating lipid homeostasis and insulin sensitivity. In addition, the receptor for RA (retinoid x receptor) is a permissive partner of the receptor for bile acids, farnesoid x receptor (FXR/NR1H4). Thus, RA can activate the FXR-mediated pathway as well. The current study was designed to understand the effect of all-trans RA on bile acid homeostasis. Mice were fed an all-trans RA-supplemented diet and the expression of 46 genes that participate in regulating bile acid homeostasis was studied. The data showed that all-trans RA has a profound effect in regulating genes involved in synthesis and transport of bile acids. All-trans RA treatment reduced the gene expression levels of Cyp7a1, Cyp8b1, and Akr1d1, which are involved in bile acid synthesis. All-trans RA also decreased the hepatic mRNA levels of Lrh-1 (Nr5a2) and Hnf4α (Nr2a1), which positively regulate the gene expression of Cyp7a1 and Cyp8b1. Moreover, all-trans RA induced the gene expression levels of negative regulators of bile acid synthesis including hepatic Fgfr4, Fxr, and Shp (Nr0b2) as well as ileal Fgf15. All-trans RA also decreased the expression of Abcb11 and Slc51b, which have a role in bile acid transport. Consistently, all-trans RA reduced hepatic bile acid levels and the ratio of CA/CDCA, as demonstrated by liquid chromatography-mass spectrometry. The data suggest that all-trans RA-induced SHP may contribute to the inhibition of CYP7A1 and CYP8B1, which in turn reduces bile acid synthesis and affects lipid absorption in the gastrointestinal tract. PMID:25175738
Accatino, L; Pizarro, M; Solís, N; Koenig, C S
1995-01-18
This study was undertaken to gain insights into the characteristics of the polymolecular association between canalicular membrane enzymes, bile acids, cholesterol and phospholipids in bile and into the celular mechanisms whereby the enzymes are secreted into bile. With this purpose, we studied the distribution of bile acids, cholesterol, phospholipids, proteins and representative canalicular membrane enzymes (alkaline phosphatase, 5'-nucleotidase and gamma-glutamyl transpeptidase), which can be considered specific marker constituents, in bile fractions enriched in phospholipid-cholesterol lamellar structures (multilamellar and unilamellar vesicles) and bile acid-mixed micelles. These fractions were isolated by ultracentrifugation from human hepatic bile, normal rat bile and bile of rats treated with diosgenin, a steroid that induces a marked increase in biliary cholesterol secretion, and were characterized by density, lipid composition and transmission electron microscopy. These studies demonstrate that alkaline phosphatase, 5'-nucleotidase and gamma-glutamyl transpeptidase are secreted into both human and rat bile where they are preferentially associated with bile acid-mixed micelles, suggesting a role for bile acids in both release of these enzymes and lipids from the canalicular membrane and solubilization in bile. In addition, heterogeneous association of these enzymes with nonmicellar, lamellar structures in human and rat bile is consistent with the hypothesis that processes independent of the detergent effects of bile acids might also result in the release of specific intrinsic membrane proteins into bile.
Bile acid excess induces cardiomyopathy and metabolic dysfunctions in the heart
Desai, Moreshwar; Mathur, Bhoomika; Eblimit, Zeena; Vasquez, Hernan; Taegtmeyer, Heinrich; Karpen, Saul; Penny, Daniel J.; Moore, David D.; Anakk, Sayeepriyadarshini
2017-01-01
Cardiac dysfunction in patients with liver cirrhosis is strongly associated with increased serum bile acid concentrations. Here we show that excess bile acids decrease fatty acid oxidation in cardiomyocytes and can cause heart dysfunction, a cardiac syndrome that we term Cholecardia. Fxr; Shp double knockout (DKO) mice, a model for bile acid overload, display cardiac hypertrophy, bradycardia, and exercise intolerance. In addition, DKO mice exhibit an impaired cardiac response to catecholamine challenge. Consistent with this decreased cardiac function, we show that elevated serum bile acids reduce cardiac fatty acid oxidation both in vivo and ex vivo. We find that increased bile acid levels suppress expression of Pgc1α, a key regulator of fatty acid metabolism, and that Pgc1α overexpression in cardiac cells was able to rescue the bile acid-mediated reduction in fatty acid oxidation genes. Importantly, intestinal bile acid sequestration with cholestyramine was sufficient to reverse the observed heart dysfunction in the DKO mice. Conclusions Overall, we propose that decreased Pgc1α expression contributes to the metabolic dysfunction in Cholecardia, and that reducing serum bile acid concentrations will be beneficial against metabolic and pathological changes in the heart. PMID:27774647
Vauzour, David; Corona, Giulia; Spencer, Jeremy P E
2010-09-01
Parkinson's disease is characterized by a progressive and selective loss of dopaminergic neurons in the substantia nigra. Recent investigations have shown that conjugates such as the 5-S-cysteinyl-dopamine, possess strong neurotoxicity and may contribute to the underlying progression of the disease pathology. Although the neuroprotective actions of flavonoids are well reported, that of hydroxycinnamates and other phenolic acids is less established. We show that the hydroxycinnamates caffeic acid and p-coumaric acid, the hydroxyphenethyl alcohol, tyrosol, and a Champagne wine extract rich in these components protect neurons against injury induced by 5-S-cysteinyl-dopamine in vitro. The protection induced by these polyphenols was equal to or greater than that observed for the flavonoids, (+)-catechin, (-)-epicatechin and quercetin. For example, p-coumaric acid evoked significantly more protection at 1muM (64.0+/-3.1%) than both (-)-epicatechin (46.0+/-4.1%, p<0.05) and (+)-catechin (13.1+/-3.0%, p<0.001) at the same concentration. These data indicate that hydroxycinnamates, phenolic acids and phenolic alcohol are also capable of inducing neuroprotective effects to a similar extent to that seen with flavonoids. Copyright © 2010. Published by Elsevier Inc.
In vitro antiviral efficacy of caffeic acid against canine distemper virus.
Wu, Zong-Mei; Yu, Zhen-Jiang; Cui, Zhen-Qiang; Peng, Lu-Yuan; Li, Hao-Ran; Zhang, Chun-Lei; Shen, Hai-Qing; Yi, Peng-Fei; Fu, Ben-Dong
2017-09-01
Canine distemper (CD) is a highly contagious disease caused by the canine distemper virus (CDV), and mortality can be as high as 100%. However, there is no specific treatment for CD. In this study, the antiviral activity of the caffeic acid against CDV was evaluated in vitro. The results showed that the IC 50 of the caffeic acid against CDV at 1 and 2 h post infection (PI) is 23.3 and 32.3 μg/mL, respectively. Consistently, at 1 and 2 h PI, the caffeic acid exhibited a reduced (23.3-57.0% and 37.2-38.1%) viral inhibitory effect in vero cells. Furthermore, the caffeic acid plus Ribavirin (RBV) has greater antiviral activity against CDV than the caffeic acid or RBV individually. In addition, the caffeic acid reduced the total viral RNA synthesis by 59-86% at 24-72 h. Therefore, our data provided the experimental evidence that the caffeic acid effectively inhibited CDV infection in vero cells, which may potentially be used to treat clinical disease associated with CDV infection. Copyright © 2017. Published by Elsevier Ltd.
The effects of gallic/ferulic/caffeic acids on colour intensification and anthocyanin stability.
Qian, Bing-Jun; Liu, Jian-Hua; Zhao, Shu-Juan; Cai, Jian-Xiong; Jing, Pu
2017-08-01
The mechanism by which copigments stabilize colour, by protecting anthocyanin chromophores from nucleophilic attack, seems well accepted. This study was to determine effects of gallic/ferulic/caffeic acids on colour intensification and anthocyanin stability. Molecular dynamics simulations were applied to explore molecular interactions. Phenolic acids intensified the colour by 19%∼27%. Colour fading during heating followed first-order reactions with half-lives of 3.66, 9.64, 3.50, and 3.39h, whereas anthocyanin degradation, determined by the pH differential method (or HPLC-PDA), followed second-order reactions with half-lives of 3.29 (3.40), 3.43 (3.39), 2.29 (0.39), and 2.72 (0.32)h alone or with gallic/ferulic/caffeic acids, respectively, suggesting that anthocyanin degradation was faster than the colour fading. The strongest protection of gallic acids might be attributed to the shortest distance (4.37Å) of its aromatic ring to the anthocyanin (AC) panel. Hyperchromic effects induced by phenolic acids were pronounced and they obscured the accelerated anthocyanin degradation due to self-association interruption. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schiller, L.R.; Bilhartz, L.E.; Santa Ana, C.A.
Fecal recovery of radioactivity after ingestion of a bolus of radiolabeled bile acid is abnormally high in most patients with idiopathic chronic diarrhea. To evaluate the significance of this malabsorption, concurrent fecal excretion of both exogenous radiolabeled bile acid and endogenous (unlabeled) bile acid were measured in patients with idiopathic chronic diarrhea. Subjects received a 2.5-microCi oral dose of taurocholic acid labeled with 14C in the 24th position of the steroid moiety. Endogenous bile acid excretion was measured by a hydroxysteroid dehydrogenase assay on a concurrent 72-h stool collection. Both radiolabeled and endogenous bile acid excretion were abnormally high inmore » most patients with chronic diarrhea compared with normal subjects, even when equivoluminous diarrhea was induced in normal subjects by ingestion of osmotically active solutions. The correlation between radiolabeled and endogenous bile acid excretion was good. However, neither radiolabeled nor endogenous bile acid excretion was as abnormal as is typically seen in patients with ileal resection, and none of these diarrhea patients responded to treatment with cholestyramine with stool weights less than 200 g. These results suggest (a) that this radiolabeled bile acid excretion test accurately reflects excess endogenous bile acid excretion; (b) that excess endogenous bile acid excretion is not caused by diarrhea per se; (c) that spontaneously occurring idiopathic chronic diarrhea is often associated with increased endogenous bile acid excretion; and (d) that bile acid malabsorption is not likely to be the primary cause of diarrhea in most of these patients.« less
Weerachayaphorn, Jittima; Mennone, Albert; Soroka, Carol J.; Harry, Kathy; Hagey, Lee R.; Kensler, Thomas W.
2012-01-01
The transcription factor nuclear factor-E2-related factor 2 (Nrf2) is a key regulator for induction of hepatic detoxification and antioxidant mechanisms, as well as for certain hepatobiliary transporters. To examine the role of Nrf2 in bile acid homeostasis and cholestasis, we assessed the determinants of bile secretion and bile acid synthesis and transport before and after bile duct ligation (BDL) in Nrf2−/− mice. Our findings indicate reduced rates of biliary bile acid and GSH excretion, higher levels of intrahepatic bile acids, and decreased expression of regulators of bile acid synthesis, Cyp7a1 and Cyp8b1, in Nrf2−/− compared with wild-type control mice. The mRNA expression of the bile acid transporters bile salt export pump (Bsep) and organic solute transporter (Ostα) were increased in the face of impaired expression of the multidrug resistance-associated proteins Mrp3 and Mrp4. Deletion of Nrf2 also decreased ileal apical sodium-dependent bile acid transporter (Asbt) expression, leading to reduced bile acid reabsorption and increased loss of bile acid in feces. Finally, when cholestasis is induced by BDL, liver injury was not different from that in wild-type BDL mice. These Nrf2−/− mice also had increased pregnane X receptor (Pxr) and Cyp3a11 mRNA expression in association with enhanced hepatic bile acid hydroxylation. In conclusion, this study finds that Nrf2 plays a major role in the regulation of bile acid homeostasis in the liver and intestine. Deletion of Nrf2 results in a cholestatic phenotype but does not augment liver injury following BDL. PMID:22345550
Mandal, Santi M; Chakraborty, Dipjyoti; Dutta, Suhrid R; Ghosh, Ananta K; Pati, Bikas R; Korpole, Suresh; Paul, Debarati
2016-06-01
A range of phenolic acids, viz., p-coumaric acid, 4-hydroxybenzaldehyde, 4-hydroxybenzoic acid, protocatechuic acid, caffeic acid, ferulic acid, and cinnamic acid have been isolated and identified by LC-MS analysis in the roots and root nodules of Mimosa pudica. The effects of identified phenolic acids on the regulation of nodulation (nod) genes have been evaluated in a betarhizobium isolate of M. pudica root nodule. Protocatechuic acid and p-hydroxybenzoic acid were most effective in inducing nod gene, whereas caffeic acid had no significant effect. Phenylalanine ammonia lyase, peroxidase, and polyphenol oxidase activities were estimated, indicating regulation and metabolism of phenolic acids in root nodules. These results showed that nodD gene expression of betarhizobium is regulated by simple phenolic acids such as protocatechuic acid and p-hydroxybenzoic acid present in host root nodule and sustains nodule organogenesis.
Lim, Kyung-Min; Bae, SeungJin; Koo, Jung Eun; Kim, Eun-Sun; Bae, Ok-Nam; Lee, Joo Young
2015-04-01
Skin inflammation plays a central role in the pathophysiology and symptoms of diverse chronic skin diseases including atopic dermatitis (AD). In this study, we examined if caffeic acid phenethyl ester (CAPE), a skin-permeable bioactive compound from propolis, was protective against skin inflammation using in vitro cell system and in vivo animal disease models. CAPE suppressed TNF-α-induced NF-κB activation and expression of inflammatory cytokines in human keratinocytes (HaCaT). The potency and efficacy of CAPE were superior to those of a non-phenethyl derivative, caffeic acid. Consistently, topical treatment of CAPE (0.5 %) attenuated 12-O-tetradecanoylphorbol-13-acetate(TPA)-induced skin inflammation on mouse ear as CAPE reduced ear swelling and histologic inflammation scores. CAPE suppressed increased expression of pro-inflammatory molecules such as TNF-α, cyclooxygenase-2 and inducible NO synthase in TPA-stimulated skin. TPA-induced phosphorylation of IκB and ERK was blocked by CAPE suggesting that protective effects of CAPE on skin inflammation is attributed to inhibition of NF-κB activation. Most importantly, in an oxazolone-induced chronic dermatitis model, topical application of CAPE (0.5 and 1 %) was effective in alleviating AD-like symptoms such as increases of trans-epidermal water loss, skin thickening and serum IgE as well as histologic inflammation assessment. Collectively, our results propose CAPE as a promising candidate for a novel topical drug for skin inflammatory diseases.
IL-17A Synergistically Enhances Bile Acid–Induced Inflammation during Obstructive Cholestasis
O'Brien, Kate M.; Allen, Katryn M.; Rockwell, Cheryl E.; Towery, Keara; Luyendyk, James P.; Copple, Bryan L.
2014-01-01
During obstructive cholestasis, increased concentrations of bile acids activate ERK1/2 in hepatocytes, which up-regulates early growth response factor 1, a key regulator of proinflammatory cytokines, such as macrophage inflammatory protein 2 (MIP-2), which, in turn, exacerbates cholestatic liver injury. Recent studies have indicated that IL-17A contributes to hepatic inflammation during obstructive cholestasis, suggesting that bile acids and IL-17A may interact to regulate hepatic inflammatory responses. We treated mice with an IL-17A neutralizing antibody or control IgG and subjected them to bile duct ligation. Neutralization of IL-17A prevented up-regulation of proinflammatory cytokines, hepatic neutrophil accumulation, and liver injury, indicating an important role for IL-17A in neutrophilic inflammation during cholestasis. Treatment of primary mouse hepatocytes with taurocholic acid (TCA) increased the expression of MIP-2. Co-treatment with IL-17A synergistically enhanced up-regulation of MIP-2 by TCA. In contrast to MIP-2, IL-17A did not affect up-regulation of Egr-1 by TCA, indicating that IL-17A does not affect bile acid–induced activation of signaling pathways upstream of early growth response factor 1. In addition, bile acids increased expression of IL-23, a key regulator of IL-17A production in hepatocytes in vitro and in vivo. Collectively, these data identify bile acids as novel triggers of the IL-23/IL-17A axis and suggest that IL-17A promotes hepatic inflammation during cholestasis by synergistically enhancing bile acid–induced production of proinflammatory cytokines by hepatocytes. PMID:24012680
Wu, Wei-Bin; Menon, Ramkumar; Xu, Yue-Ying; Zhao, Jiu-Ru; Wang, Yan-Lin; Liu, Yuan; Zhang, Hui-Juan
2016-01-01
Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy-specific disorder characterised by raised bile acids in foetal-maternal circulation, which threatens perinatal health. During the progression of ICP, the effect of oxidative stress is underscored. Peroxiredoxin-3 (PRDX3) is a mitochondrial antioxidant enzyme that is crucial to balance intracellular oxidative stress. However, the role of PRDX3 in placental trophoblast cells under ICP is not fully understood. We demonstrated that the level of PRDX3 was downregulated in ICP placentas as well as bile acids–treated trophoblast cells and villous explant in vitro. Toxic levels of bile acids and PRDX3 knockdown induced oxidative stress and mitochondrial dysfunction in trophoblast cells. Moreover, silencing of PRDX3 in trophoblast cell line HTR8/SVneo induced growth arrest and cellular senescence via activation of p38-mitogen-activated protein kinase (MAPK) and induction of p21WAF1/CIP and p16INK4A. Additionally, enhanced cellular senescence, determined by senescence-associated beta-galactosidase staining, was obviously attenuated by p38-MAPK inhibitor SB203580. Our data determined that exposure to bile acid decreased PRDX3 level in human trophoblasts. PRDX3 protected trophoblast cells against mitochondrial dysfunction and cellular senescence induced by oxidative stress. Our results suggest that decreased PRDX3 by excessive bile acids in trophoblasts plays a critical role in the pathogenesis and progression of ICP. PMID:27958341
Melatonin protects against taurolithocholic-induced oxidative stress in rat liver.
Fuentes-Broto, Lorena; Miana-Mena, Francisco J; Piedrafita, Eduardo; Berzosa, César; Martínez-Ballarín, Enrique; García-Gil, Francisco A; Reiter, Russel J; García, Joaquín J
2010-08-01
Cholestasis, encountered in a variety of clinical disorders, is characterized by intracellular accumulation of toxic bile acids in the liver. Furthermore, oxidative stress plays an important role in the pathogenesis of bile acids. Taurolithocholic acid (TLC) was revealed in previous studies as the most pro-oxidative bile acid. Melatonin, a well-known antioxidant, is a safe and widely used therapeutic agent. Herein, we investigated the hepatoprotective role of melatonin on lipid and protein oxidation induced by TLC alone and in combination with FeCl(3) and ascorbic acid in rat liver homogenates and hepatic membranes. The lipid peroxidation products, malondialdehyde and 4-hydroxyalkenals (MDA + 4-HDA), and carbonyl levels were quantified as indices of oxidative damage to hepatic lipids and proteins, respectively. In the current study, the rise in MDA + 4-HDA levels induced by TLC was inhibited by melatonin in a concentration-dependent manner in both liver homogenates and in hepatic membranes. Melatonin also had protective effects against structural damage to proteins induced by TLC in membranes. These results suggest that the indoleamine melatonin may potentially act as a protective agent in the therapy of those diseases that involve bile acid toxicity. Published 2010 Wiley-Liss, Inc.
Qi, Yunpeng; Jiang, Changtao; Cheng, Jie; Krausz, Kristopher W.; Li, Tiangang; Ferrell, Jessica M.; Gonzalez, Frank J.; Chiang, John Y.L.
2014-01-01
Bile acid synthesis is the major pathway for catabolism of cholesterol. Cholesterol 7α-hydroxylase (CYP7A1) is the rate-limiting enzyme in the bile acid biosynthetic pathway in the liver and plays an important role in regulating lipid, glucose and energy metabolism. Transgenic mice overexpressing CYP7A1 (CYP7A1-tg mice) were resistant to high-fat diet (HFD)-induced obesity, fatty liver, and diabetes. However the mechanism of resistance to HFD-induced obesity of CYP7A1-tg mice has not been determined. In this study, metabolomic and lipidomic profiles of CYP7A1-tg mice were analyzed to explore the metabolic alterations in CYP7A1-tg mice that govern the protection against obesity and insulin resistance by using ultra-performance liquid chromatography-coupled with electrospray ionization quadrupole time-of-flight mass spectrometry combined with multivariate analyses. Lipidomics analysis identified seven lipid markers including lysophosphatidylcholines, phosphatidylcholines, sphingomyelins and ceramides that were significantly decreased in serum of HFD-fed CYP7A1-tg mice. Metabolomics analysis identified 13 metabolites in bile acid synthesis including taurochenodeoxycholic acid, taurodeoxycholic acid, tauroursodeoxycholic acid, taurocholic acid, and tauro-β-muricholic acid (T-β-MCA) that differed between CYP7A1-tg and wild-type mice. Notably, T-β-MCA, an antagonist of the farnesoid X receptor (FXR) was significantly increased in intestine of CYP7A1-tg mice. This study suggests that reducing 12α-hydroxylated bile acids and increasing intestinal T-β-MCA may reduce high fat diet-induced increase of phospholipids, sphingomyelins and ceramides, and ameliorate diabetes and obesity. PMID:24796972
Belay, Abebe; Kim, Hyung Kook; Hwang, Yoon-Hwae
2016-03-01
The interactions of caffeine (CF) with chlorogenic acid (CGA) and caffeic acid (CFA) were investigated by fluorescence quenching, UV/vis and Fourier transform infrared (FTIR) spectroscopic techniques. The results of the study indicated that the fluorescence quenching between caffeine and hydroxycinnamic acids could be rationalized in terms of static quenching or the formation of non-fluorescent CF-CFA and CF-CGA complexes. From fluorescence quenching spectral analysis, the quenching constant (KSV), quenching rate constant (kq), number of binding sites (n), thermodynamic properties and conformational changes of the interaction were determined. The quenching constants (KSV) between CF and CGA, CFA are 1.84 × 10(4) and 1.04 × 10(4) L/mol at 298 K and their binding site n is ~ 1. Thermodynamic parameters determined using the Van't Hoff equation indicated that hydrogen bonds and van der Waal's forces have a major role in the reaction of caffeine with caffeic acid and chlorogenic acid. The 3D fluorescence, UV/vis and FTIR spectra also showed that the binding of CF with CFA and CGA induces conformational changes in CFA and CGA. Copyright © 2015 John Wiley & Sons, Ltd.
Altered Bile Acid Metabolome in Patients with Nonalcoholic Steatohepatitis.
Ferslew, Brian C; Xie, Guoxiang; Johnston, Curtis K; Su, Mingming; Stewart, Paul W; Jia, Wei; Brouwer, Kim L R; Barritt, A Sidney
2015-11-01
The prevalence of nonalcoholic fatty liver disease (NAFLD) and steatohepatitis (NASH) is increasing at an alarming rate. The role of bile acids in the development and progression of NAFLD to NASH and cirrhosis is poorly understood. This study aimed to quantify the bile acid metabolome in healthy subjects and patients with non-cirrhotic NASH under fasting conditions and after a standardized meal. Liquid chromatography tandem mass spectroscopy was used to quantify 30 serum and 16 urinary bile acids from 15 healthy volunteers and 7 patients with biopsy-confirmed NASH. Bile acid concentrations were measured at two fasting and four post-prandial time points following a high-fat meal to induce gallbladder contraction and bile acid reabsorption from the intestine. Patients with NASH had significantly higher total serum bile acid concentrations than healthy subjects under fasting conditions (2.2- to 2.4-fold increase in NASH; NASH 2595-3549 µM and healthy 1171-1458 µM) and at all post-prandial time points (1.7- to 2.2-fold increase in NASH; NASH 4444-5898 µM and healthy 2634-2829 µM). These changes were driven by increased taurine- and glycine-conjugated primary and secondary bile acids. Patients with NASH exhibited greater variability in their fasting and post-prandial bile acid profile. Results indicate that patients with NASH have higher fasting and post-prandial exposure to bile acids, including the more hydrophobic and cytotoxic secondary species. Increased bile acid exposure may be involved in liver injury and the pathogenesis of NAFLD and NASH.
2010-06-11
the cinnamic acid phenyl ring. Although compound 4c proved to be very cytotoxic in HUVEC over a 24 h period, the toxicity is less apparent over a 5 h...drug development process, as it determines how much of the initial dose actually reaches the target site. Cinnamic acid -derived amides are known to...Synthesis of a series of caffeic acid phenethyl amide (CAPA) fluorinated derivatives: Comparison of cytoprotective effects to caffeic acid phenethyl
Kawaguchi, Hideo; Katsuyama, Yohei; Danyao, Du; Kahar, Prihardi; Nakamura-Tsuruta, Sachiko; Teramura, Hiroshi; Wakai, Keiko; Yoshihara, Kumiko; Minami, Hiromichi; Ogino, Chiaki; Ohnishi, Yasuo; Kondo, Ahikiko
2017-07-01
Caffeic acid (3,4-dihydroxycinnamic acid) serves as a building block for thermoplastics and a precursor for biologically active compounds and was recently produced from glucose by microbial fermentation. To produce caffeic acid from inedible cellulose, separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) reactions were compared using kraft pulp as lignocellulosic feedstock. Here, a tyrosine-overproducing Escherichia coli strain was metabolically engineered to produce caffeic acid from glucose by introducing the genes encoding a 4-hydroxyphenyllactate 3-hydroxylase (hpaBC) from Pseudomonas aeruginosa and tyrosine ammonia lyase (fevV) from Streptomyces sp. WK-5344. Using the resulting recombinant strain, the maximum yield of caffeic acid in SSF (233 mg/L) far exceeded that by SHF (37.9 mg/L). In the SSF with low cellulase loads (≤2.5 filter paper unit/g glucan), caffeic acid production was markedly increased, while almost no glucose accumulation was detected, indicating that the E. coli cells experienced glucose limitation in this culture condition. Caffeic acid yield was also negatively correlated with the glucose concentration in the fermentation medium. In SHF, the formation of by-product acetate and the accumulation of potential fermentation inhibitors increased significantly with kraft pulp hydrolysate than filter paper hydrolysate. The combination of these inhibitors had synergistic effects on caffeic acid fermentation at low concentrations. With lower loads of cellulase in SSF, less potential fermentation inhibitors (furfural, 5-hydroxymethyfurfural, and 4-hydroxylbenzoic acid) accumulated in the medium. These observations suggest that glucose limitation in SSF is crucial for improving caffeic acid yield, owing to reduced by-product formation and fermentation inhibitor accumulation.
Yamada, Shoji; Takashina, Yoko; Watanabe, Mitsuhiro; Nagamine, Ryogo; Saito, Yoshimasa; Kamada, Nobuhiko; Saito, Hidetsugu
2018-01-01
Gut microbiota plays a significant role in the development of hepatocellular carcinoma (HCC) in non-alcoholic steatohepatitis (NASH). However, understanding of the precise mechanism of this process remains incomplete. A new class steatohepatitis-inducing high-fat diet (HFD), namely STHD-01, can promote the development of HCC without the administration of chemical carcinogens. Using this diet, we comprehensively analyzed changes in the gut microbiota and its metabolic functions during the development of HCC in NASH. Mice fed the STHD-01 developed NASH within 9 weeks. NASH further progressed into HCC by 41 weeks. Treatment with antibiotics significantly attenuated liver pathology and suppressed tumor development, indicating the critical role of the gut microbiota in tumor development in this model. Accumulation of cholesterol and bile acids in the liver and feces increased after feeding the mice with STHD-01. Treatment with antibiotics did not reverse these phenotypes. In contrast, accumulation of secondary bile acids was dramatically reduced after the treatment with antibiotics, suggesting the critical role of the gut microbiota in the conversion of primary bile acids to secondary bile acids. Secondary bile acids such as deoxycholic acid activated the mTOR, pathway in hepatocytes. Activation of mTOR was observed in the liver of mice fed STHD-01, and the activation was reduced when mice were treated with antibiotics. Collectively, bile acid metabolism by the gut microbiota promotes HCC development in STHD-01-induced NASH. PMID:29515780
Brydon, W G; Nyhlin, H; Eastwood, M A; Merrick, M V
1996-02-01
To assess the reliability of serum 7 alpha-hydroxy-4-cholesten-3-one (7 alpha-3ox-C) in the differential diagnosis of bile acid induced diarrhoea by comparison with 75selenohomocholyltaurine whole body retention (SeHCAT WBR). One hundred and sixty-four patients with chronic diarrhoea were investigated prospectively in two centres (Edinburgh and Sweden) by two different tests which measure bile acid loss or synthesis: the SeHCAT test which measures the 7-day SeHCAT WBR and serum 7 alpha-3ox-C which reflects the rate of bile acid synthesis. Forty-six patients had SeHCAT WBR of less than 10% (19 with ileal disease or resection, nine with idiopathic bile acid induced diarrhoea and 18 with miscellaneous causes for bile acid induced diarrhoea). All patients with ileal or idiopathic disease showed a favorable response to treatment as did 13 of the miscellaneous group. Serum 7 alpha-3ox-C was raised in all subjects with ileal disease/resection, seven patients with idiopathic disease and all subjects in the miscellaneous group who responded to treatment. Sixteen out of 118 patients with SeHCAT WBR greater than or equal to 10% had raised serum 7 alpha-3ox-C. The positive predictive value of serum 7 alpha-3ox-C was 74%. The high negative predictive value (98%) of serum 7 alpha-3ox-C indicates the possible use of this test for excluding bile acid malabsorption in this population. All but two subjects who responded to treatment had raised serum 7 alpha-3ox-C concentrations. The possibility that the sensitivity of the test can be improved by repeat testing needs to be further investigated. There was a significant correlation between fractional catabolic rate (FCR) SeHCAT and serum 7 alpha-3ox-C (r = 0.63, P < 0.0001). Further data are required to validate the reference range in women over 70 years of age.
A Surgical Model in Male Obese Rats Uncovers Protective Effects of Bile Acids Post-Bariatric Surgery
Setchell, Kenneth DR; Kirby, Michelle; Myronovych, Andriy; Ryan, Karen K.; Ibrahim, Samar H.; Berger, Jose; Smith, Kathi; Toure, Mouhamadoul; Woods, Stephen C.; Seeley, Randy J.
2013-01-01
Bariatric surgery elevates serum bile acids. Conjugated bile acid administration, such as tauroursodeoxycholic acid (TUDCA), improves insulin sensitivity, whereas short-circuiting bile acid circulation through ileal interposition surgery in rats raises TUDCA levels. We hypothesized that bariatric surgery outcomes could be recapitulated by short circuiting the normal enterohepatic bile circulation. We established a model wherein male obese rats underwent either bile diversion (BD) or Sham (SH) surgery. The BD group had a catheter inserted into the common bile duct and its distal end anchored into the middistal jejunum for 4–5 weeks. Glucose tolerance, insulin and glucagon-like peptide-1 (GLP-1) response, hepatic steatosis, and endoplasmic reticulum (ER) stress were measured. Rats post-BD lost significantly more weight than the SH rats. BD rats gained less fat mass after surgery. BD rats had improved glucose tolerance, increased higher postprandial glucagon-like peptide-1 response and serum bile acids but less liver steatosis. Serum bile acid levels including TUDCA concentrations were higher in BD compared to SH pair-fed rats. Fecal bile acid levels were not different. Liver ER stress (C/EBP homologous protein mRNA and pJNK protein) was decreased in BD rats. Bile acid gavage (TUDCA/ursodeoxycholic acid [UDCA]) in diet-induced obese rats, elevated serum TUDCA and concomitantly reduced hepatic steatosis and ER stress (C/EBP homologous protein mRNA). These data demonstrate the ability of alterations in bile acids to recapitulate important metabolic improvements seen after bariatric surgery. Further, our work establishes a model for focused study of bile acids in the context of bariatric surgery that may lead to the identification of therapeutics for metabolic disease. PMID:23592746
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Won Il; Park, Min Jung; An, Jin Kwang
2008-05-02
Bile reflux is considered to be one of the most important causative factors in gastric carcinogenesis, due to the attendant inflammatory changes in the gastric mucosa. In this study, we have assessed the molecular mechanisms inherent to the contribution of bile acid to the transcriptional regulation of inflammatory-related genes. In this study, we demonstrated that bile acid induced the expression of the SHP orphan nuclear receptor at the transcriptional level via c-Jun activation. Bile acid also enhanced the protein interaction of NF-{kappa}B and SHP, thereby resulting in an increase in c-Jun expression and the production of the inflammatory cytokine, TNF{alpha}.more » These results indicate that bile acid performs a critical function in the regulation of the induction of inflammatory-related genes in gastric cells, and that bile acid-mediated gene expression provides a pre-clue for the development of gastric cellular malformation.« less
Arnous, Anis; Meyer, Anne S
2009-12-01
The ability of grape skins to catalyze in vitro conversion of p-coumaric acid to the more potent antioxidant caffeic acid was studied. Addition of different concentrations of p-coumaric to red grape skins (Cabernet Sauvignon) resulted in formation of caffeic acid. This caffeic acid formation (Y) correlated positively and linearly to p-coumaric acid consumption (X): Y = 0.5 X + 9.5; R (2) = 0.96, P < 0.0001. The kinetics of caffeic acid formation with time in response to initial p-coumaric acid levels and at different grape skin concentrations, indicated that the grape skins harboured an o-hydroxylation activity, proposedly a monophenol- or a flavonoid 3'-monooxygenase activity (EC 1.14.18.1 or EC 1.14.13.21). The K (m) of this crude o-hydroxylation activity in the red grape skin was 0.5 mM with p-coumaric acid.
Wang, Yongqing; Aoki, Hiroaki; Yang, Jing; Peng, Kesong; Liu, Runping; Li, Xiaojiaoyang; Qiang, Xiaoyan; Sun, Lixin; Gurley, Emily C; Lai, Guanhua; Zhang, Luyong; Liang, Guang; Nagahashi, Masayuki; Takabe, Kazuaki; Pandak, William M; Hylemon, Phillip B.; Zhou, Huiping
2017-01-01
Bile duct obstruction is a potent stimulus for cholangiocyte proliferation, especially for large cholangiocytes. Our previous studies reported that conjugated bile acids (CBAs) activate the AKT and ERK1/2 signaling pathways via the sphingosine 1-phosphate receptor 2 (S1PR2) in hepatocytes and cholangiocarcinoma cells. It also has been reported that taurocholate (TCA) promotes large cholangiocyte proliferation and protects cholangiocytes from bile duct ligation (BDL)-induced apoptosis. However, the role of S1PR2 in bile acid-mediated cholangiocyte proliferation and cholestatic liver injury has not been elucidated. Here we report that S1PR2 is the predominant S1PR expressed in cholangiocytes. Both TCA- and S1P-induced activation of ERK1/2 and AKT were inhibited by JTE-013, a specific antagonist of S1PR2, in cholangiocytes. In addition, TCA- and S1P-induced cell proliferation and migration were inhibited by JTE-013 and a specific shRNA of S1PR2 as well as chemical inhibitors of ERK1/2 and AKT in mouse cholangiocytes. In BDL mice, the expression of S1PR2 was upregulated in whole liver and cholangiocytes. S1PR2 deficiency significantly reduced BDL-induced cholangiocyte proliferation and cholestatic injury as indicated by significant reduction of inflammation and liver fibrosis in S1PR2−/− mice. Treatment of BDL mice with JTE-013 significantly reduced total bile acid levels in the serum and cholestatic liver injury. This study suggests that the CBA-induced activation of S1PR2-mediated signaling pathways plays a critical role in obstructive cholestasis and may represent a novel therapeutic target for cholestatic liver diseases. PMID:28120434
Asai, Saori; Kusada, Mio; Watanabe, Suzuyo; Kawashima, Takuji; Nakamura, Tadashi; Shimada, Masaya; Goto, Tsuyoshi; Nagaoka, Satoshi
2014-01-01
Royal jelly (RJ) intake lowers serum cholesterol levels in animals and humans, but the active component in RJ that lowers serum cholesterol level and its molecular mechanism are unclear. In this study, we set out to identify the bile acid-binding protein contained in RJ, because dietary bile acid-binding proteins including soybean protein and its peptide are effective in ameliorating hypercholesterolemia. Using a cholic acid-conjugated column, we separated some bile acid-binding proteins from RJ and identified the major RJ protein 1 (MRJP1), MRJP2, and MRJP3 as novel bile acid-binding proteins from RJ, based on matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Purified MRJP1, which is the most abundant protein of the bile acid-binding proteins in RJ, exhibited taurocholate-binding activity in vitro. The micellar solubility of cholesterol was significantly decreased in the presence of MRJP1 compared with casein in vitro. Liver bile acids levels were significantly increased, and cholesterol 7α-hydroxylase (CYP7A1) mRNA and protein tended to increase by MRJP1 feeding compared with the control. CYP7A1 mRNA and protein levels were significantly increased by MRJP1 tryptic hydrolysate treatment compared with that of casein tryptic hydrolysate in hepatocytes. MRJP1 hypocholesterolemic effect has been investigated in rats. The cholesterol-lowering action induced by MRJP1 occurs because MRJP1 interacts with bile acids induces a significant increase in fecal bile acids excretion and a tendency to increase in fecal cholesterol excretion and also enhances the hepatic cholesterol catabolism. We have identified, for the first time, a novel hypocholesterolemic protein, MRJP1, in RJ. Interestingly, MRJP1 exhibits greater hypocholesterolemic activity than the medicine β-sitosterol in rats. PMID:25144734
Nguyen, T-V; Tanihara, F; Do, Ltk; Sato, Y; Taniguchi, M; Takagi, M; Van Nguyen, T; Otoi, T
2017-12-01
Chlorogenic acid (CGA) is a quinic acid conjugate of caffeic acid, and a phytochemical found in many fruits and beverages that acts as an antioxidant. The present study investigated the effects of CGA supplementation during in vitro maturation (IVM), on in vitro development of porcine oocytes, to improve the porcine in vitro production (IVP) system. Oocytes were matured either without (control) or with CGA (10, 50, 100 and 200 μM). Subsequently, the matured oocytes were fertilized and cultured in vitro for 7 day. The rates of maturation, fertilization and blastocyst formation of oocytes matured with 50 μM CGA were significantly (p < .05) higher than those of the control oocytes. Hydrogen peroxide (H 2 O 2 ) is one of the reactive oxygen species and induces DNA damage in porcine oocytes. When oocytes were matured with 1 mM H 2 O 2 to assess the protective effect of CGA, 50 μM CGA supplementation improved the maturation rate and the proportion of DNA-fragmented nuclei in oocytes compared with control oocytes matured without CGA. Moreover, when oocytes were matured with either 50 μM CGA (control) or caffeic acid (10, 50 and 100 μM), the rates of maturation, fertilization and the blastocyst formation of oocytes matured with 50 μM CGA were similar to those of oocytes matured with 10 and 50 μM caffeic acid. Our results suggest that CGA has comparable effects to caffeic acid, and IVM with 50 μM CGA is particularly beneficial to IVP of porcine embryos and protects oocytes from DNA damage induced by oxidative stress. Supplementation of CGA to the maturation medium has a potential to improve porcine IVP system. © 2017 Blackwell Verlag GmbH.
Kulik, Tetiana V; Lipkovska, Natalia O; Barvinchenko, Valentyna M; Palyanytsya, Borys B; Kazakova, Olga A; Dudik, Olesia O; Menyhárd, Alfréd; László, Krisztina
2016-05-15
Thermochemical studies of hydroxycinnamic acid derivatives and their surface complexes are important for the pharmaceutical industry, medicine and for the development of technologies of heterogeneous biomass pyrolysis. In this study, structural and thermal transformations of caffeic acid complexes on silica surfaces were studied by UV-Vis spectroscopy, thermogravimetric analysis, temperature programmed desorption mass spectrometry (TPD MS) and quantum chemical methods. Two types of caffeic acid surface complexes are found to form through phenolic or carboxyl groups. The kinetic parameters of the chemical reactions of caffeic acid on silica surface are calculated. The mechanisms of thermal transformations of the caffeic chemisorbed surface complexes are proposed. Thermal decomposition of caffeic acid complex chemisorbed through grafted ester group proceeds via three parallel reactions, producing ketene, vinyl and acetylene derivatives of 1,2-dihydroxybenzene. Immobilization of phenolic acids on the silica surface improves greatly their thermal stability. Copyright © 2016 Elsevier Inc. All rights reserved.
Endo, Satoshi; Hoshi, Manami; Matsunaga, Toshiyuki; Inoue, Takahiro; Ichihara, Kenji; Ikari, Akira
2018-02-26
Propolis, a resinous substance produced by honeybees, possesses various biological actions including anticancer activity towards tumor cells. Recently, the ethanol extract of Brazilian green propolis has been shown to induce autophagy, which is known to be induced in treatment of cancer cells with anticancer drugs, leading to cancer cell survival and decreased sensitivity to anticancer agents. In this study, we aimed to identify autophagy-inducing components of the propolis and elucidated the reciprocal relationship between anticancer cytotoxicity and protective autophagy in prostate cancer CWR22Rv1 cells. Among eight cinnamic acid derivatives [chlorogenic acid, p-coumaric acid, caffeic acid, 3,4-caffeoylquinic acid, artepillin C (ArtC), baccharin, drupanin and caffeic acid phenethyl ester] in propolis, only ArtC showed high autophagy-inducing activity accompanying LC3-II upregulation. ArtC was also induced apoptosis as revealed by DNA fragmentation and increases in cleaved caspase-3 and poly ADP-ribose polymerase. The apoptosis induced by ArtC was exacerbated by cotreatment with autophagy inhibitors (chloroquine, wortmannin and U0126). The cotreatment further induced necroptosis accompanying increased expression of receptor-interacting serine/threonine protein kinases 1 and 3. These data indicate that cytotoxicity of ArtC to the prostate cancer cells is dampened by induced autophagy, but is markedly augmented by inhibition of autophagy. Therefore, the combination of ArtC and autophagy inhibitors may be a novel complementary-alternative treatment for prostate cancer. Copyright © 2018 Elsevier Inc. All rights reserved.
James, Laura; Yan, Ke; Pence, Lisa; Simpson, Pippa; Bhattacharyya, Sudeepa; Gill, Pritmohinder; Letzig, Lynda; Kearns, Gregory; Beger, Richard
2015-01-01
Metabolomics approaches have enabled the study of new mechanisms of liver injury in experimental models of drug toxicity. Disruption of bile acid homeostasis is a known mechanism of drug induced liver injury. The relationship of individual bile acids to indicators of oxidative drug metabolism (acetaminophen protein adducts) and liver injury was examined in children with acetaminophen overdose, hospitalized children with low dose exposure to acetaminophen, and children with no recent exposure to acetaminophen. Nine bile acids were quantified through targeted metabolomic analysis in the serum samples of the three groups. Bile acids were compared to serum levels of acetaminophen protein adducts and alanine aminotransferase. Glycodeoxycholic acid, taurodeoxycholic acid, and glycochenodeoxycholic acid were significantly increased in children with acetaminophen overdose compared to healthy controls. Among patients with acetaminophen overdose, bile acids were higher in subjects with acetaminophen protein adduct values > 1.0 nmol/mL and modest correlations were noted for three bile acids and acetaminophen protein adducts as follows: taurodeoxycholic acid (R=0.604; p<0.001), glycodeoxycholic acid (R=0.581; p<0.001), and glycochenodeoxycholic acid (R=0.571; p<0.001). Variability in bile acids was greater among hospitalized children receiving low doses of acetaminophen than in healthy children with no recent acetaminophen exposure. Compared to bile acids, acetaminophen protein adducts more accurately discriminated among children with acetaminophen overdose, children with low dose exposure to acetaminophen, and healthy control subjects. In children with acetaminophen overdose, elevations of conjugated bile acids were associated with specific indicators of acetaminophen metabolism and non-specific indicators of liver injury.
Antioxidant and prooxidant nature of hydroxycinnamic acid derivatives ferulic and caffeic acids.
Maurya, Dharmendra Kumar; Devasagayam, Thomas Paul Asir
2010-12-01
Dietary polyphenols are beneficial to human health by exerting various biological effects. Ferulic and caffeic acids are hydroxycinnamic acid derivatives widely distributed in plant-derived food products. Studies indicate that some dietary compounds may have concentration-dependent antioxidant or prooxidant activities. The present study concerns such activities of ferulic and caffeic acids. They have concentration-dependent antioxidant effects in terms of inhibition of lipid peroxidation and reactive oxygen species-scavenging after 2,2'-azobis-amidinopropane dihydrochloride-induced damage in mouse liver microsomes and splenic lymphocytes respectively. They also show differential scavenging of nitric oxide, superoxide and 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid radical (ABTS*(+)). In DPPH (1,1-diphenyl picrylhydrazyl) assay above 20 μM the absorbance start increasing due to the formation of an unknown adduct which has a shoulder at 517 nm. However, in Fenton reaction, above 5 μM, they behave as prooxidants and the possible mechanisms responsible for their prooxidant property may be related to their ferric reducing ability. These findings may have significant health implications where these natural compounds are being used/consumed. Copyright © 2010 Elsevier Ltd. All rights reserved.
Tanida, Isei; Shirasago, Yoshitaka; Suzuki, Ryosuke; Abe, Ryo; Wakita, Takaji; Hanada, Kentaro; Fukasawa, Masayoshi
2015-01-01
Multipurpose cohort studies have demonstrated that coffee consumption reduces the risk of hepatocellular carcinoma (HCC). Given that one of the main causes of HCC is hepatitis C virus (HCV) infection, we examined the effect of caffeic acid, a major organic acid derived from coffee, on the propagation of HCV using an in vitro naïve HCV particle-infection and production system within human hepatoma-derived Huh-7.5.1-8 cells. When cells were treated with 1% coffee extract or 0.1% caffeic acid for 1-h post HCV infection, the amount of HCV particles released into the medium at 3 and 4 days post-infection considerably decreased. In addition, HCV-infected cells cultured with 0.001% caffeic acid for 4 days, also released less HCV particles into the medium. Caffeic acid treatment inhibited the initial stage of HCV infection (i.e., between virion entry and the translation of the RNA genome) in both HCV genotypes 1b and 2a. These results suggest that the treatment of cells with caffeic acid may inhibit HCV propagation.
Zhang, Yuanyuan; Jackson, Jonathan P; St Claire, Robert L; Freeman, Kimberly; Brouwer, Kenneth R; Edwards, Jeffrey E
2017-08-01
Farnesoid X receptor (FXR) is a master regulator of bile acid homeostasis through transcriptional regulation of genes involved in bile acid synthesis and cellular membrane transport. Impairment of bile acid efflux due to cholangiopathies results in chronic cholestasis leading to abnormal elevation of intrahepatic and systemic bile acid levels. Obeticholic acid (OCA) is a potent and selective FXR agonist that is 100-fold more potent than the endogenous ligand chenodeoxycholic acid (CDCA). The effects of OCA on genes involved in bile acid homeostasis were investigated using sandwich-cultured human hepatocytes. Gene expression was determined by measuring mRNA levels. OCA dose-dependently increased fibroblast growth factor-19 (FGF-19) and small heterodimer partner (SHP) which, in turn, suppress mRNA levels of cholesterol 7-alpha-hydroxylase (CYP7A1), the rate-limiting enzyme for de novo synthesis of bile acids. Consistent with CYP7A1 suppression, total bile acid content was decreased by OCA (1 μmol/L) to 42.7 ± 20.5% relative to control. In addition to suppressing de novo bile acids synthesis, OCA significantly increased the mRNA levels of transporters involved in bile acid homeostasis. The bile salt excretory pump (BSEP), a canalicular efflux transporter, increased by 6.4 ± 0.8-fold, and the basolateral efflux heterodimer transporters, organic solute transporter α (OST α ) and OST β increased by 6.4 ± 0.2-fold and 42.9 ± 7.9-fold, respectively. The upregulation of BSEP and OST α and OST β, by OCA reduced the intracellular concentrations of d 8 -TCA, a model bile acid, to 39.6 ± 8.9% relative to control. These data demonstrate that OCA does suppress bile acid synthesis and reduce hepatocellular bile acid levels, supporting the use of OCA to treat bile acid-induced toxicity observed in cholestatic diseases. © 2017 Intercept Pharmaceuticals. Pharmacology Research & Perspectives published by John Wiley & Sons Ltd, British Pharmacological Society and American Society for Pharmacology and Experimental Therapeutics.
Pedò, Massimo; Löhr, Frank; D'Onofrio, Mariapina; Assfalg, Michael; Dötsch, Volker; Molinari, Henriette
2009-12-18
Bile acid molecules are transferred vectorially between basolateral and apical membranes of hepatocytes and enterocytes in the context of the enterohepatic circulation, a process regulating whole body lipid homeostasis. This work addresses the role of the cytosolic lipid binding proteins in the intracellular transfer of bile acids between different membrane compartments. We present nuclear magnetic resonance (NMR) data describing the ternary system composed of the bile acid binding protein, bile acids, and membrane mimetic systems, such as anionic liposomes. This work provides evidence that the investigated liver bile acid binding protein undergoes association with the anionic membrane and binding-induced partial unfolding. The addition of the physiological ligand to the protein-liposome mixture is capable of modulating this interaction, shifting the equilibrium towards the free folded holo protein. An ensemble of NMR titration experiments, based on nitrogen-15 protein and ligand observation, confirm that the membrane and the ligand establish competing binding equilibria, modulating the cytoplasmic permeability of bile acids. These results support a mechanism of ligand binding and release controlled by the onset of a bile salt concentration gradient within the polarized cell. The location of a specific protein region interacting with liposomes is highlighted.
From Reflux Esophagitis to Esophageal Adenocarcinoma
Souza, Rhonda F.
2016-01-01
Reflux esophagitis causes Barrett's metaplasia, an abnormal esophageal mucosa predisposed to adenocarcinoma. Medical therapy for reflux esophagitis focuses on decreasing gastric acid production with proton pump inhibitors. We have reported that reflux esophagitis in a rat model develops from a cytokine-mediated inflammatory injury, not from a caustic chemical (acid) injury. In this model, refluxed acid and bile stimulate the release of inflammatory cytokines from esophageal squamous cells, recruiting lymphocytes first to the submucosa and later to the luminal surface. Emerging studies on acute reflux esophagitis in humans support this new concept, suggesting that reflux-induced cytokine release may be a future target for medical therapies. Sometimes, reflux esophagitis heals with Barrett's metaplasia, a process facilitated by reflux-related nitric oxide (NO) production and Sonic Hedgehog secretion by squamous cells. We have shown that NO reduces expression of genes that promote a squamous cell phenotype, while Hedgehog signaling induces genes that mediate the development of the columnar cell phenotypes of Barrett's metaplasia. Agents targeting esophageal NO production or Hedgehog signaling conceivably could prevent the development of Barrett's esophagus. Persistent reflux promotes cancer in Barrett's metaplasia. We have reported that acid and bile salts induce DNA damage in Barrett's cells. Bile salts also cause NF-κB activation in Barrett's cells, enabling them to resist apoptosis in the setting of DNA damage, and likely contributing to carcinogenesis. Oral treatment with ursodeoxycholic acid prevents the esophageal DNA damage and NF-κB activation induced by toxic bile acids. Altering bile acid composition might be another approach to cancer prevention. PMID:27331918
From Reflux Esophagitis to Esophageal Adenocarcinoma.
Souza, Rhonda F
Reflux esophagitis causes Barrett's metaplasia, an abnormal esophageal mucosa predisposed to adenocarcinoma. Medical therapy for reflux esophagitis focuses on decreasing gastric acid production with proton pump inhibitors. We have reported that reflux esophagitis in a rat model develops from a cytokine-mediated inflammatory injury, not from a caustic chemical (acid) injury. In this model, refluxed acid and bile stimulate the release of inflammatory cytokines from esophageal squamous cells, recruiting lymphocytes first to the submucosa and later to the luminal surface. Emerging studies on acute reflux esophagitis in humans support this new concept, suggesting that reflux-induced cytokine release may be a future target for medical therapies. Sometimes, reflux esophagitis heals with Barrett's metaplasia, a process facilitated by reflux-related nitric oxide (NO) production and Sonic Hedgehog (Hh) secretion by squamous cells. We have shown that NO reduces expression of genes that promote a squamous cell phenotype, while Hh signaling induces genes that mediate the development of the columnar cell phenotypes of Barrett's metaplasia. Agents targeting esophageal NO production or Hh signaling conceivably could prevent the development of Barrett's esophagus. Persistent reflux promotes cancer in Barrett's metaplasia. We have reported that acid and bile salts induce DNA damage in Barrett's cells. Bile salts also cause NF-x03BA;B activation in Barrett's cells, enabling them to resist apoptosis in the setting of DNA damage and likely contributing to carcinogenesis. Oral treatment with ursodeoxycholic acid prevents the esophageal DNA damage and NF-x03BA;B activation induced by toxic bile acids. Altering bile acid composition might be another approach to cancer prevention. © 2016 S. Karger AG, Basel.
Shin, Hee Soon; Satsu, Hideo; Bae, Min-Jung; Totsuka, Mamoru; Shimizu, Makoto
2017-02-20
Chlorogenic acid (CHA) and caffeic acid (CA) are phenolic compounds found in coffee, which inhibit oxidative stress-induced interleukin (IL)-8 production in intestinal epithelial cells, thereby suppressing serious cellular injury and inflammatory intestinal diseases. Therefore, we investigated the anti-inflammatory mechanism of CHA and CA, both of which inhibited hydrogen peroxide (H₂O₂)-induced IL-8 transcriptional activity. They also significantly suppressed nuclear factor kappa-light-chain-enhancer of activated B cells ( NF-κB ) transcriptional activity, nuclear translocation of the p65 subunit, and phosphorylation of IκB kinase (IKK). Additionally, upstream of IKK, protein kinase D (PKD) was also suppressed. Finally, we found that they scavenged H₂O₂-induced reactive oxygen species (ROS) and the functional moiety responsible for the anti-inflammatory effects of CHA and CA was the catechol group. Therefore, we conclude that the presence of catechol groups in CHA and CA allows scavenging of intracellular ROS, thereby inhibiting H₂O₂-induced IL-8 production via suppression of PKD-NF-κB signaling in human intestinal epithelial cells.
Saad, Ramadan A; Mahmoud, Yomna I
2014-12-01
Ursodeoxycholic acid is the most widely used drug for treating cholestatic liver diseases. However, its effect on the male reproductive system alterations associated with cholestasis has never been studied. Thus, this study aimed to investigate the effect of ursodeoxycholic acid on cholestasis-induced alterations in the male reproductive system. Cholestasis was induced by bile duct ligation. Bile duct-ligated rats had higher cholestasis biomarkers and lower levels of testosterone, LH and FSH than did the Sham rats. They also had lower reproductive organs weights, and lower sperm motility, density and normal morphology than those of Sham rats. Histologically, these animals suffered from testicular tubular atrophy, interstitial edema, thickening of basement membranes, vacuolation, and depletion of germ cells. After ursodeoxycholic acid administration, cholestasis-induced structural and functional alterations were significantly ameliorated. In conclusion, ursodeoxycholic acid can ameliorate the reproductive complications of chronic cholestasis in male patients, which represents an additional benefit to this drug. Copyright © 2014 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuo, H.-C.; Kuo, W.-H.; Lee, Y.-J.
2006-10-01
All-trans retinoic acid (ATRA) induces complete remission in a high proportion of patients with acute promyelocytic leukemia (APL); however, the response is sometimes very slow. Furthermore, relapse and resistance to treatment often occur despite continued treatment with ATRA. Thereafter, combination treatment strategies have been suggested to circumvent these problems. The present study demonstrates that caffeic acid phenethyl ester (CAPE), a major component of honeybee propolis, enhanced ATRA-induced granulocytic differentiation in HL-60, a human promyelocytic cell line. The differentiation was assessed by Wright-Giemsa stain, nitroblue tetrazolium reduction, and membrane differentiation marker CD11b. In addition, CAPE enhanced ATRA-induced cell cycle arrest atmore » the G1 phase by decreasing the association of cdk2-cyclin E complex. Finally, it was demonstrated that CAPE promoted the ATRA-mediated nuclear transcription activation of RAR{alpha} assessed by EMSA assay and enhanced the expression of target genes including RAR{alpha}, C/EBP{epsilon}, and p21 protein resulting in the differentiation development of leukemia. It is suggested that CAPE possesses the potential to enhance the efficiency of ATRA in the differentiation therapy of APL.« less
INTRACELLULAR SIGNALING BY BILE ACIDS
Anwer, Mohammed Sawkat
2014-01-01
Bile acids, synthesized from cholesterol, are known to produce beneficial as well as toxic effects in the liver. The beneficial effects include choleresis, immunomodulation, cell survival, while the toxic effects include cholestasis, apoptosis and cellular toxicity. It is believed that bile acids produce many of these effects by activating intracellular signaling pathways. However, it has been a challenge to relate intracellular signaling to specific and at times opposing effects of bile acids. It is becoming evident that bile acids produce different effects by activating different isoforms of phosphoinositide 3-kinase (PI3K), Protein kinase Cs (PKCs), and mitogen activated protein kinases (MAPK). Thus, the apoptotic effect of bile acids may be mediated via PI3K-110γ, while cytoprotection induce by cAMP-GEF pathway involves activation of PI3K-p110α/β isoforms. Atypical PKCζ may mediate beneficial effects and nPKCε may mediate toxic effects, while cPKCα and nPKCδ may be involved in both beneficial and toxic effects of bile acids. The opposing effects of nPKCδ activation may depend on nPKCδ phosphorylation site(s). Activation of ERK1/2 and JNK1/2 pathway appears to mediate beneficial and toxic effects, respectively, of bile acids. Activation of p38α MAPK and p38β MAPK may mediate choleretic and cholestatic effects, respectively, of bile acids. Future studies clarifying the isoform specific effects on bile formation should allow us to define potential therapeutic targets in the treatment of cholestatic disorders. PMID:25378891
Celińska-Janowicz, Katarzyna; Zaręba, Ilona; Lazarek, Urszula; Teul, Joanna; Tomczyk, Michał; Pałka, Jerzy; Miltyk, Wojciech
2018-01-01
Propolis evokes several therapeutic properties, including anticancer activity. These activities are attributed to the action of polyphenols. Previously it has been demonstrated, that one of the most abundant polyphenolic compounds in ethanolic extracts of propolis are chrysin, caffeic acid, p -coumaric acid, and ferulic acid. Although their pro-apoptotic activity on human tongue squamous cell carcinoma cells (CAL-27) was established previously, the detailed mechanism of this process remains unclear. Considering the crucial role of proline metabolism and proline dehydrogenase/proline oxidase (PRODH/POX) in the regulation of cancer cell survival/apoptosis, we studied these processes in polyphenol-treated CAL-27 cells. All studied polyphenols evoked anti-proliferative activity, accompanied by increased PRODH/POX, P53, active caspases-3 and -9 expressions and decreased collagen biosynthesis, prolidase activity and proline concentration in CAL-27 cells. These data suggest that polyphenols of propolis induce PRODH/POX-dependent apoptosis through up-regulation of mitochondrial proline degradation and down-regulation of proline utilization for collagen biosynthesis.
Celińska-Janowicz, Katarzyna; Zaręba, Ilona; Lazarek, Urszula; Teul, Joanna; Tomczyk, Michał; Pałka, Jerzy; Miltyk, Wojciech
2018-01-01
Propolis evokes several therapeutic properties, including anticancer activity. These activities are attributed to the action of polyphenols. Previously it has been demonstrated, that one of the most abundant polyphenolic compounds in ethanolic extracts of propolis are chrysin, caffeic acid, p-coumaric acid, and ferulic acid. Although their pro-apoptotic activity on human tongue squamous cell carcinoma cells (CAL-27) was established previously, the detailed mechanism of this process remains unclear. Considering the crucial role of proline metabolism and proline dehydrogenase/proline oxidase (PRODH/POX) in the regulation of cancer cell survival/apoptosis, we studied these processes in polyphenol-treated CAL-27 cells. All studied polyphenols evoked anti-proliferative activity, accompanied by increased PRODH/POX, P53, active caspases-3 and -9 expressions and decreased collagen biosynthesis, prolidase activity and proline concentration in CAL-27 cells. These data suggest that polyphenols of propolis induce PRODH/POX-dependent apoptosis through up-regulation of mitochondrial proline degradation and down-regulation of proline utilization for collagen biosynthesis. PMID:29681859
Oboh, Ganiyu; Agunloye, Odunayo M; Adefegha, Stephen A; Akinyemi, Ayodele J; Ademiluyi, Adedayo O
2015-03-01
Chlorogenic acid is a major phenolic compound that forms a substantial part of plant foods and is an ester of caffeic acid and quinic acid. However, the effect of the structures of both chlorogenic and caffeic acids on their antioxidant and antidiabetic potentials have not been fully understood. Thus, this study sought to investigate and compare the interaction of caffeic acid and chlorogenic acid with α-amylase and α-glucosidase (key enzymes linked to type 2 diabetes) activities in vitro. The inhibitory effect of the phenolic acids on α-amylase and α-glucosidase activities was evaluated. Thereafter, their antioxidant activities as typified by their 1,1-diphenyl-2 picrylhydrazyl radical scavenging ability and ferric reducing antioxidant properties were determined. The results revealed that both phenolic acids inhibited α-amylase and α-glucosidase activities in a dose-dependent manner (2-8 μg/mL). However, caffeic acid had a significantly (p<0.05) higher inhibitory effect on α-amylase [IC50 (concentration of sample causing 50% enzyme inhibition)=3.68 μg/mL] and α-glucosidase (IC50=4.98 μg/mL) activities than chlorogenic acid (α-amylase IC50=9.10 μg/mL and α-glucosidase IC50=9.24 μg/mL). Furthermore, both phenolic acids exhibited high antioxidant properties, with caffeic acid showing higher effects. The esterification of caffeic acid with quinic acid, producing chlorogenic acid, reduces their ability to inhibit α-amylase and α-glucosidase activities. Thus, the inhibition of α-amylase and α-glucosidase activities by the phenolic acids could be part of the possible mechanism by which the phenolic acids exert their antidiabetic effects.
Specific bile acids inhibit hepatic fatty acid uptake
Nie, Biao; Park, Hyo Min; Kazantzis, Melissa; Lin, Min; Henkin, Amy; Ng, Stephanie; Song, Sujin; Chen, Yuli; Tran, Heather; Lai, Robin; Her, Chris; Maher, Jacquelyn J.; Forman, Barry M.; Stahl, Andreas
2012-01-01
Bile acids are known to play important roles as detergents in the absorption of hydrophobic nutrients and as signaling molecules in the regulation of metabolism. Here we tested the novel hypothesis that naturally occurring bile acids interfere with protein-mediated hepatic long chain free fatty acid (LCFA) uptake. To this end stable cell lines expressing fatty acid transporters as well as primary hepatocytes from mouse and human livers were incubated with primary and secondary bile acids to determine their effects on LCFA uptake rates. We identified ursodeoxycholic acid (UDCA) and deoxycholic acid (DCA) as the two most potent inhibitors of the liver-specific fatty acid transport protein 5 (FATP5). Both UDCA and DCA were able to inhibit LCFA uptake by primary hepatocytes in a FATP5-dependent manner. Subsequently, mice were treated with these secondary bile acids in vivo to assess their ability to inhibit diet-induced hepatic triglyceride accumulation. Administration of DCA in vivo via injection or as part of a high-fat diet significantly inhibited hepatic fatty acid uptake and reduced liver triglycerides by more than 50%. In summary, the data demonstrate a novel role for specific bile acids, and the secondary bile acid DCA in particular, in the regulation of hepatic LCFA uptake. The results illuminate a previously unappreciated means by which specific bile acids, such as UDCA and DCA, can impact hepatic triglyceride metabolism and may lead to novel approaches to combat obesity-associated fatty liver disease. PMID:22531947
Boldine enhances bile production in rats via osmotic and Farnesoid X receptor dependent mechanisms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cermanova, Jolana; Kadova, Zuzana; Deparment of Pharmacology and Toxicology, Charles University in Prague, Faculty of Pharmacy in Hradec Kralove
Boldine, the major alkaloid from the Chilean Boldo tree, is used in traditional medicine to support bile production, but evidence to support this function is controversial. We analyzed the choleretic potential of boldine, including its molecular background. The acute- and long-term effects of boldine were evaluated in rats either during intravenous infusion or after 28-day oral treatment. Infusion of boldine instantly increased the bile flow 1.4-fold in healthy rats as well as in animals with Mrp2 deficiency or ethinylestradiol induced cholestasis. This effect was not associated with a corresponding increase in bile acid or glutathione biliary excretion, indicating that themore » effect is not related to stimulation of either bile acid dependent or independent mechanisms of bile formation and points to the osmotic activity of boldine itself. We subsequently analyzed bile production under conditions of changing biliary excretion of boldine after bolus intravenous administration and found strong correlations between both parameters. HPLC analysis showed that bile concentrations of boldine above 10 μM were required for induction of choleresis. Importantly, long-term pretreatment, when the bile collection study was performed 24-h after the last administration of boldine, also accelerated bile formation despite undetectable levels of the compound in bile. The effect paralleled upregulation of the Bsep transporter and increased biliary clearance of its substrates, bile acids. We consequently confirmed the ability of boldine to stimulate the Bsep transcriptional regulator, FXR receptor. In conclusion, our study clarified the mechanisms and circumstances surrounding the choleretic activity of boldine. - Highlights: • Boldine may increase bile production by direct as well as indirect mechanisms. • Biliary concentrations of boldine above 10 μM directly stimulate bile production. • Long-term oral boldine administration increases bile acid (BA) biliary secretion. • Boldine induces Bsep-mediated transport of BA by FXR receptor stimulation.« less
Zhu, Lili; Wang, Lei; Cao, Fei; Liu, Peng; Bao, Haidong; Yan, Yumei; Dong, Xin; Wang, Dong; Wang, Zhongyu; Gong, Peng
2018-03-01
The purpose of the present study was to investigate the effect and potential mechanism of chlorogenic acid (CA) on liver injury induced by cholestasis in a rat model of bile duct ligation (BDL). Rats received vehicle or CA (20, 50, or 100 mg/kg per day) orally for 3 days. On the 4th day, the rats underwent sham or BDL surgery, and were orally administrated vehicle or CA for 3 or 7 days. mRNA and protein expression levels were evaluated by qRT-PCR and western blot. After BDL, plasma levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL), and total bile acids (TBA) were increased and typical pathological changes were observed in liver morphology. Hepatic uptake transporters (Ntcp, Oatp 1a4, and Oatp 1b2) were downregulated, while efflux transporters (Bsep and Mrp 2/3/4) were upregulated. BDL inhibited the expressions of Cyp7a1, Cyp8b1, and Cyp27a1 and induced Ugt1a1. CA treatment decreased ALT, AST, TBIL, and TBA (P < 0.05) and alleviated the liver pathological changes. The degree of expression changes in the transporters and enzymes was extended by CA (P < 0.05). SIRT1 protein was induced after CA treatment in BDL rats. Chlorogenic acid attenuated hepatotoxicity and cholestasis by decreasing the uptake and synthesis of bilirubin and bile acids and accelerating the metabolism and efflux of bilirubin and bile acids. © 2018 Japanese Society of Hepato-Biliary-Pancreatic Surgery.
Michael, E S; Kuliopulos, A; Covic, L; Steer, M L; Perides, G
2013-03-01
Pancreatic acinar cells express proteinase-activated receptor-2 (PAR2) that is activated by trypsin-like serine proteases and has been shown to exert model-specific effects on the severity of experimental pancreatitis, i.e., PAR2(-/-) mice are protected from experimental acute biliary pancreatitis but develop more severe secretagogue-induced pancreatitis. P2pal-18S is a novel pepducin lipopeptide that targets and inhibits PAR2. In studies monitoring PAR2-stimulated intracellular Ca(2+) concentration changes, we show that P2pal-18S is a full PAR2 inhibitor in acinar cells. Our in vivo studies show that P2pal-18S significantly reduces the severity of experimental biliary pancreatitis induced by retrograde intraductal bile acid infusion, which mimics injury induced by endoscopic retrograde cholangiopancreatography (ERCP). This reduction in pancreatitis severity is observed when the pepducin is given before or 2 h after bile acid infusion but not when it is given 5 h after bile acid infusion. Conversely, P2pal-18S increases the severity of secretagogue-induced pancreatitis. In vitro studies indicate that P2pal-18S protects acinar cells against bile acid-induced injury/death, but it does not alter bile acid-induced intracellular zymogen activation. These studies are the first to report the effects of an effective PAR2 pharmacological inhibitor on pancreatic acinar cells and on the severity of experimental pancreatitis. They raise the possibility that a pepducin such as P2pal-18S might prove useful in the clinical management of patients at risk for developing severe biliary pancreatitis such as occurs following ERCP.
Radiation induced chemical changes of phenolic compounds in strawberries
NASA Astrophysics Data System (ADS)
Breitfellner, F.; Solar, S.; Sontag, G.
2003-06-01
In unirradiated strawberries four phenolic acids (gallic acid, p-coumaric acid, caffeic acid and 4-hydroxybenzoic acid), the flavonoids (+)-catechin, (-)-epicatechin and glycosides from kaempferol and quercetin were determined by reversed phase chromatography with diode array detection. Characteristic linear dose/concentration relationships were found for 4-hydroxybenzoic acid and two unidentified compounds. One of them may be usable as marker to prove an irradiation treatment.
Singh, Namrata; Bhattacharyya, Debasish
2016-04-15
An ether extract of nine different bacterial metabolites in combination with two solvent extract (ether followed by ethanol) of bile lipids from ox gall bladder is used as an immune stimulator drug. Over the years bile acids are discussed regarding their anti-oxidant and lipid peroxidation properties. Since some of the bile acids are known to be potent antioxidants, presence of similar activity in the solvent extract of ox bile lipid was investigated using TLC and reverse phase HPLC systems. Fractions from HPLC were analyzed with mass spectrometry using electrospray ionization. The presence of twelve different bile acids along with other substances in small proportions including fatty acids, sulfate conjugates and bile pigments were confirmed. The twelve separated peaks had similar retention times as those of tauroursodeoxycholic acid, glycoursodeoxycholic acid, taurocholic acid, glycocholic acid, glycochenodeoxycholic acid, taurochenodeoxycholic acid, taurodeoxycholic acid, cholic acid, ursodeoxycholic acid, chenodeoxycholic acid, deoxycholic acid, and lithocholic acid. Subsequently, all fractions were tested for their anti-oxidative property on HepG2 cells exposed to H2O2 that served as an oxidative injury model. Four fluorescent dyes H2DCF DA, MitoSOX red, Amplex red and DAF-2 DA were used for estimation of reactive radicals in the HepG2 cells. Among the separated bile acids, tauroursodeoxycholic acid, glycoursodeoxycholic acid and ursodeoxycholic acid prevented the HepG2 cells from H2O2-induced oxidative stress. Copyright © 2015 Elsevier B.V. All rights reserved.
Gauthier, Léa; Bonnin-Verdal, Marie-Noelle; Marchegay, Gisèle; Pinson-Gadais, Laetitia; Ducos, Christine; Richard-Forget, Florence; Atanasova-Penichon, Vessela
2016-03-16
Fusarium Head Blight and Gibberella Ear Rot, mainly caused by the fungi Fusarium graminearum and Fusarium culmorum, are two of the most devastating diseases of small-grain cereals and maize. In addition to yield loss, these diseases frequently result in contamination of kernels with toxic type B trichothecenes. The potential involvement of chlorogenic acid in cereal resistance to Fusarium Head Blight and Gibberella Ear Rot and to trichothecene accumulation was the focus of this study. The effects of chlorogenic acid and one of its hydrolyzed products, caffeic acid, on fungal growth and type B trichothecenes biosynthesis were studied using concentrations close to physiological amounts quantified in kernels and a set of F. graminearum and F. culmorum strains. Both chlorogenic and caffeic acids negatively impact fungal growth and mycotoxin production, with caffeic acid being significantly more toxic. Inhibitory efficiencies of both phenolic acids were strain-dependent. To further investigate the antifungal and anti "mycotoxin" effect of chlorogenic and caffeic acids, the metabolic fate of these two phenolic acids was characterized in supplemented F. graminearum broths. For the first time, our results demonstrated the ability of F. graminearum to degrade chlorogenic acid into caffeic, hydroxychlorogenic and protocatechuic acids and caffeic acid into protocatechuic and hydroxycaffeic acids. Some of these metabolic products can contribute to the inhibitory efficiency of chlorogenic acid that, therefore, can be compared as a "pro-drug". As a whole, our data corroborate the contribution of chlorogenic acid to the chemical defense that cereals employ to counteract F. graminearum and its production of mycotoxins. Copyright © 2016 Elsevier B.V. All rights reserved.
Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor.
Inagaki, Takeshi; Moschetta, Antonio; Lee, Youn-Kyoung; Peng, Li; Zhao, Guixiang; Downes, Michael; Yu, Ruth T; Shelton, John M; Richardson, James A; Repa, Joyce J; Mangelsdorf, David J; Kliewer, Steven A
2006-03-07
Obstruction of bile flow results in bacterial proliferation and mucosal injury in the small intestine that can lead to the translocation of bacteria across the epithelial barrier and systemic infection. These adverse effects of biliary obstruction can be inhibited by administration of bile acids. Here we show that the farnesoid X receptor (FXR), a nuclear receptor for bile acids, induces genes involved in enteroprotection and inhibits bacterial overgrowth and mucosal injury in ileum caused by bile duct ligation. Mice lacking FXR have increased ileal levels of bacteria and a compromised epithelial barrier. These findings reveal a central role for FXR in protecting the distal small intestine from bacterial invasion and suggest that FXR agonists may prevent epithelial deterioration and bacterial translocation in patients with impaired bile flow.
Simsek, Meric; Quezada-Calvillo, Roberto; Nichols, Buford L; Hamaker, Bruce R
2017-05-24
Diverse natural phenolic compounds show inhibition activity of intestinal α-glucosidases, which may constitute the molecular basis for their ability to control systemic glycemia. Additionally, phenolics can modify mRNA expression for proteins involved in nutritional, metabolic or immune processes. To explore the possibility that phenolics can regulate the mRNA expression, enzymatic activity, and protein synthesis/processing of intestinal Maltase-Glucoamylase (MGAM) and Sucrase-Isomaltase (SI), small intestinal explants from Balb/c mice were cultured for 24 h in the presence or absence of gallic acid, caffeic acid, and (+)-catechin at 0.1, 0.5, and 1 mM. We measured the levels of MGAM and SI mRNA expression by qRT-PCR, maltase and sucrase activities by a standard colorimetric method and the molecular size distribution of MGAM and SI proteins by western blotting. mRNA expression for MGAM was induced by the three phenolic compounds at 0.1 mM. mRNA expression for SI was induced by caffeic and gallic acids, but not by (+)-catechin. Caffeic acid was the most effective inducer of mRNA expression of these enzymes. Total maltase and sucrase activities were not affected by treatment with phenolics. The proportion of high molecular size forms of MGAM was significantly increased by two of the three phenolic compounds, but little effect was observed on SI proteins. Thus, changes in the protein synthesis/processing, affecting the proportions of the different molecular forms of MGAM, may account for the lack of correlation between mRNA expression and enzymatic activity.
Van den Bossche, Lien; Hindryckx, Pieter; Devisscher, Lindsey; Devriese, Sarah; Van Welden, Sophie; Holvoet, Tom; Vilchez-Vargas, Ramiro; Vital, Marius; Pieper, Dietmar H.; Vanden Bussche, Julie; Vanhaecke, Lynn; Van de Wiele, Tom; De Vos, Martine
2017-01-01
ABSTRACT The promising results seen in studies of secondary bile acids in experimental colitis suggest that they may represent an attractive and safe class of drugs for the treatment of inflammatory bowel diseases (IBD). However, the exact mechanism by which bile acid therapy confers protection from colitogenesis is currently unknown. Since the gut microbiota plays a crucial role in the pathogenesis of IBD, and exogenous bile acid administration may affect the community structure of the microbiota, we examined the impact of the secondary bile acid ursodeoxycholic acid (UDCA) and its taurine or glycine conjugates on the fecal microbial community structure during experimental colitis. Daily oral administration of UDCA, tauroursodeoxycholic acid (TUDCA), or glycoursodeoxycholic acid (GUDCA) equally lowered the severity of dextran sodium sulfate-induced colitis in mice, as evidenced by reduced body weight loss, colonic shortening, and expression of inflammatory cytokines. Illumina sequencing demonstrated that bile acid therapy during colitis did not restore fecal bacterial richness and diversity. However, bile acid therapy normalized the colitis-associated increased ratio of Firmicutes to Bacteroidetes. Interestingly, administration of bile acids prevented the loss of Clostridium cluster XIVa and increased the abundance of Akkermansia muciniphila, bacterial species known to be particularly decreased in IBD patients. We conclude that UDCA, which is an FDA-approved drug for cholestatic liver disorders, could be an attractive treatment option to reduce dysbiosis and ameliorate inflammation in human IBD. IMPORTANCE Secondary bile acids are emerging as attractive candidates for the treatment of inflammatory bowel disease. Although bile acids may affect the intestinal microbial community structure, which significantly contributes to the course of these inflammatory disorders, the impact of bile acid therapy on the fecal microbiota during colitis has not yet been considered. Here, we studied the alterations in the fecal microbial abundance in colitic mice following the administration of secondary bile acids. Our results show that secondary bile acids reduce the severity of colitis and ameliorate colitis-associated fecal dysbiosis at the phylum level. This study indicates that secondary bile acids might act as a safe and effective drug for inflammatory bowel disease. PMID:28115375
Van den Bossche, Lien; Hindryckx, Pieter; Devisscher, Lindsey; Devriese, Sarah; Van Welden, Sophie; Holvoet, Tom; Vilchez-Vargas, Ramiro; Vital, Marius; Pieper, Dietmar H; Vanden Bussche, Julie; Vanhaecke, Lynn; Van de Wiele, Tom; De Vos, Martine; Laukens, Debby
2017-04-01
The promising results seen in studies of secondary bile acids in experimental colitis suggest that they may represent an attractive and safe class of drugs for the treatment of inflammatory bowel diseases (IBD). However, the exact mechanism by which bile acid therapy confers protection from colitogenesis is currently unknown. Since the gut microbiota plays a crucial role in the pathogenesis of IBD, and exogenous bile acid administration may affect the community structure of the microbiota, we examined the impact of the secondary bile acid ursodeoxycholic acid (UDCA) and its taurine or glycine conjugates on the fecal microbial community structure during experimental colitis. Daily oral administration of UDCA, tauroursodeoxycholic acid (TUDCA), or glycoursodeoxycholic acid (GUDCA) equally lowered the severity of dextran sodium sulfate-induced colitis in mice, as evidenced by reduced body weight loss, colonic shortening, and expression of inflammatory cytokines. Illumina sequencing demonstrated that bile acid therapy during colitis did not restore fecal bacterial richness and diversity. However, bile acid therapy normalized the colitis-associated increased ratio of Firmicutes to Bacteroidetes Interestingly, administration of bile acids prevented the loss of Clostridium cluster XIVa and increased the abundance of Akkermansia muciniphila , bacterial species known to be particularly decreased in IBD patients. We conclude that UDCA, which is an FDA-approved drug for cholestatic liver disorders, could be an attractive treatment option to reduce dysbiosis and ameliorate inflammation in human IBD. IMPORTANCE Secondary bile acids are emerging as attractive candidates for the treatment of inflammatory bowel disease. Although bile acids may affect the intestinal microbial community structure, which significantly contributes to the course of these inflammatory disorders, the impact of bile acid therapy on the fecal microbiota during colitis has not yet been considered. Here, we studied the alterations in the fecal microbial abundance in colitic mice following the administration of secondary bile acids. Our results show that secondary bile acids reduce the severity of colitis and ameliorate colitis-associated fecal dysbiosis at the phylum level. This study indicates that secondary bile acids might act as a safe and effective drug for inflammatory bowel disease. Copyright © 2017 American Society for Microbiology.
Zhu, He; Long, Min-Hui; Wu, Jie; Wang, Meng-Meng; Li, Xiu-Yang; Shen, Hong; Xu, Jin-Di; Zhou, Li; Fang, Zhi-Jun; Luo, Yi; Li, Song-Lin
2015-12-02
Cyclophosphamide (CP), a chemotherapeutic agent, is restricted due to its side effects, especially hepatotoxicity. Ginseng has often been clinically used with CP in China, but whether and how ginseng reduces the hepatotoxicity is unknown. In this study, the hepatoprotective effects and mechanisms under the combined usage were investigated. It was found that ginseng could ameliorate CP-induced elevations of ALP, ALT, ALS, MDA and hepatic deterioration, enhance antioxidant enzymes' activities and GSH's level. Metabolomics study revealed that 33 endogenous metabolites were changed by CP, 19 of which were reversed when ginseng was co-administrated via two main pathways, i.e., GSH metabolism and primary bile acids synthesis. Furthermore, ginseng could induce expression of GCLC, GCLM, GS and GST, which associate with the disposition of GSH, and expression of FXR, CYP7A1, NTCP and MRP 3, which play important roles in the synthesis and transport of bile acids. In addition, NRF 2, one of regulatory elements on the expression of GCLC, GCLM, GS, GST, NTCP and MRP3, was up-regulated when ginseng was co-administrated. In conclusion, ginseng could alleviate CP-induced hepatotoxicity via modulating the disordered homeostasis of GSH and bile acid, which might be mediated by inducing the expression of NRF 2 in liver.
Liu, Hailiang; Pathak, Preeti; Boehme, Shannon; Chiang, John Y. L.
2016-01-01
Cholesterol 7α-hydroxylase (CYP7A1) plays a critical role in control of bile acid and cholesterol homeostasis. Bile acids activate farnesoid X receptor (FXR) and Takeda G protein-coupled receptor 5 (TGR5) to regulate lipid, glucose, and energy metabolism. However, the role of bile acids in hepatic inflammation and fibrosis remains unclear. In this study, we showed that adenovirus-mediated overexpression of Cyp7a1 ameliorated lipopolysaccharide (LPS)-induced inflammatory cell infiltration and pro-inflammatory cytokine production in WT and TGR5-deficient (Tgr5−/−) mice, but not in FXR-deficient (Fxr−/−) mice, suggesting that bile acid signaling through FXR protects against hepatic inflammation. Nuclear factor κ light-chain enhancer of activated B cells (NF-κB)-luciferase reporter assay showed that FXR agonists significantly inhibited TNF-α-induced NF-κB activity. Furthermore, chromatin immunoprecipitation and mammalian two-hybrid assays showed that ligand-activated FXR interacted with NF-κB and blocked recruitment of steroid receptor coactivator-1 to cytokine promoter and resulted in inhibition of NF-κB activity. Methionine/choline-deficient (MCD) diet increased hepatic inflammation, free cholesterol, oxidative stress, apoptosis, and fibrosis in CYP7A1-deficient (Cyp7a1−/−) mice compared with WT mice. Remarkably, adenovirus-mediated overexpression of Cyp7a1 effectively reduced hepatic free cholesterol and oxidative stress and reversed hepatic inflammation and fibrosis in MCD diet-fed Cyp7a1−/− mice. Current studies suggest that increased Cyp7a1 expression and bile acid synthesis ameliorate hepatic inflammation through activation of FXR, whereas reduced bile acid synthesis aggravates MCD diet-induced hepatic inflammation and fibrosis. Maintaining bile acid and cholesterol homeostasis is important for protecting against liver injury and nonalcoholic fatty liver disease. PMID:27534992
Reder, Nicholas P; Davis, Christopher S; Kovacs, Elizabeth J; Fisichella, P Marco
2014-06-01
Gastroesophageal reflux disease (GERD) is thought to lead to aspiration and bronchiolitis obliterans syndrome after lung transplantation. Unfortunately, the identification of patients with GERD who aspirate still lacks clear diagnostic indicators. The authors hypothesized that symptoms of GERD and detection of pepsin and bile acids in the bronchoalveolar lavage fluid (BAL) and exhaled breath condensate (EBC) are effective for identifying lung transplantation patients with GERD-induced aspiration. From November 2009 to November 2010, 85 lung transplantation patients undergoing surveillance bronchoscopy were prospectively enrolled. For these patients, self-reported symptoms of GERD were correlated with levels of pepsin and bile acids in BAL and EBC and with GERD status assessed by 24-h pH monitoring. The sensitivity and specificity of pepsin and bile acids in BAL and EBC also were compared with the presence of GERD in 24-h pH monitoring. The typical symptoms of GERD (heartburn and regurgitation) had modest sensitivity and specificity for detecting GERD and aspiration. The atypical symptoms of GERD (aspiration and bronchitis) showed better identification of aspiration as measured by detection of pepsin and bile acids in BAL. The sensitivity and specificity of pepsin in BAL compared with GERD by 24-h pH monitoring were respectively 60 and 45 %, whereas the sensitivity and specificity of bile acids in BAL were 67 and 80 %. These data indicate that the measurement of pepsin and bile acids in BAL can provide additional data for identifying lung transplantation patients at risk for GERD-induced aspiration compared with symptoms or 24-h pH monitoring alone. These results support a diagnostic role for detecting markers of aspiration in BAL, but this must be validated in larger studies.
Cho, Jeong-Yong; Kim, Chan Mi; Lee, Hyoung Jae; Lee, Sang-Hyun; Cho, Jeong-An; Kim, Wol-Soo; Park, Keun-Hyung; Moon, Jae-Hak
2013-05-15
Six triterpenes, including three caffeoyl triterpenes, were purified and isolated from pear fruit ( Pyrus pyrifolia Nakai cv. Chuwhangbae) peel extracts using various column chromatography techniques with a guided 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging assay. The isolated compounds were identified as betulinic aldehyde (1), lupeol (2), betulinic acid (3), 3-O-cis-caffeoylbetulinic acid (4), 3-O-trans-caffeoylbetulinic acid (5), and 3-O-trans-caffeoyloleanolic acid (6) on the basis of nuclear magnetic resonance spectroscopy and electrospray ionization mass spectrometry. Four compounds (1, 4-6) were identified from Asian pear fruit for the first time. In addition, compounds 4-6, containing a caffeic acid moiety, showed higher DPPH radical-scavenging and suppression effects against copper ion-induced oxidation of rat blood plasma than other compounds without a caffeic acid moiety.
Dietrich, Christoph G; Martin, Ina V; Porn, Anne C; Voigt, Sebastian; Gartung, Carsten; Trautwein, Christian; Geier, Andreas
2007-09-01
Fasting induces numerous adaptive changes in metabolism by several central signaling pathways, the most important represented by the HNF4alpha/PGC-1alpha-pathway. Because HNF4alpha has been identified as central regulator of basolateral bile acid transporters and a previous study reports increased basolateral bile acid uptake into the liver during fasting, we hypothesized that HNF4alpha is involved in fasting-induced bile acid uptake via upregulation of basolateral bile acid transporters. In rats, mRNA of Ntcp, Oatp1, and Oatp2 were significantly increased after 48 h of fasting. Protein expression as determined by Western blot showed significant increases for all three transporters 72 h after the onset of fasting. Whereas binding activity of HNF1alpha in electrophoretic mobility shift assays remained unchanged, HNF4alpha binding activity to the Ntcp promoter was increased significantly. In line with this result, we found significantly increased mRNA expression of HNF4alpha and PGC-1alpha. Functional studies in HepG2 cells revealed an increased endogenous NTCP mRNA expression upon cotransfection with either HNF4alpha, PGC-1alpha, or a combination of both. We conclude that upregulation of the basolateral bile acid transporters Ntcp, Oatp1, and Oatp2 in fasted rats is mediated via the HNF4alpha/PGC-1alpha pathway.
Dissecting the regulation of bile-induced biofilm formation in Staphylococcus aureus.
Ulluwishewa, Dulantha; Wang, Liang; Pereira, Callen; Flynn, Stephanie; Cain, Elizabeth; Stick, Stephen; Reen, F Jerry; Ramsay, Joshua P; O'Gara, Fergal
2016-08-01
Aspiration of bile into the cystic fibrosis (CF) lung has emerged as a prognostic factor for reduced microbial lung biodiversity and the establishment of often fatal, chronic pathogen infections. Staphylococcus aureus is one of the earliest pathogens detected in the lungs of children with CF, and once established as a chronic infection, strategies for its eradication become limited. Several lung pathogens are stimulated to produce biofilms in vitro in the presence of bile. In this study, we further investigated the effects of bile on S. aureus biofilm formation. Most clinical S. aureus strains and the laboratory strain RN4220 were stimulated to form biofilms with sub-inhibitory concentrations of bovine bile. Additionally, we observed bile-induced sensitivity to aminoglycosides, which we exploited in a bursa aurealis transposon screen to isolate mutants reduced in aminoglycoside sensitivity and augmented in bile-induced biofilm formation. We identified five mutants that exhibited hypersensitivity to bile with respect to bile-induced biofilm formation, three of which carried transposon insertions within gene clusters involved in wall teichoic acid (WTA) biosynthesis or transport. Strain TM4 carried an insertion between the divergently oriented tagH and tagG genes, which encode the putative WTA membrane translocation apparatus. Ectopic expression of tagG in TM4 restored a wild-type bile-induced biofilm response, suggesting that reduced translocation of WTA in TM4 induced sensitivity to bile and enhanced the bile-induced biofilm formation response. We propose that WTA may be important for protecting S. aureus against exposure to bile and that bile-induced biofilm formation may be an evolved response to protect cells from bile-induced cell lysis.
Protection of Flos Lonicerae against acetaminophen-induced liver injury and its mechanism.
Jiang, Ping; Sheng, Yu-chen; Chen, Yu-hao; Ji, Li-li; Wang, Zheng-tao
2014-11-01
This study aims to observe the protective action of Flos Lonicerae (FL) aqueous extract against acetaminophen (AP)-induced liver injury and its mechanism. Results show that FL decreases AP-increased serum alanine/aspartate transaminases (ALT/AST) activity, as well as total bilirubin (TB) amount, in mice. Histological evaluation of the liver further confirms the protection of FL against AP-induced hepatotoxicity. TdT-mediated biotin-dUTP nick-end labeling (TUNEL) assay shows that FL reduces AP-increased apoptotic cells. Furthermore, AP-decreased liver glutamate-cysteine ligase (GCL) enzymatic activity and glutathione (GSH) amount are both reversed by FL because of the increased expression of the catalytic subunit of GCL (GCLC) protein. The amount of chlorogenic acid (CGA), caffeic acid, and luteolin, the main active compounds in FL, is detected by high-performance liquid chromatography (HPLC). In addition, cell viability assay demonstrates that polyphenols in FL, such as CGA, caffeic acid, as well as isochlorogenic acids A, B, and C, can reverse AP-induced cytotoxicity. In conclusion, FL can prevent AP-induced liver injury by inhibiting apoptosis. The cellular antioxidant enzyme GCL is also involved in such protection. Polyphenols may be the main active hepato-protective ingredients in FL. Copyright © 2014 Elsevier B.V. All rights reserved.
Ikegami, Tadashi; Krilov, Lada; Meng, Jianping; Patel, Bhumika; Chapin-Kennedy, Kelli; Bouscarel, Bernard
2006-11-01
Dihydroxy bile acids like chenodeoxycholic acid (CDCA) induce heterologous glucagon receptor desensitization. We previously demonstrated that protein kinase C (PKC) was activated by certain bile acids and mediated the CDCA-induced decrease in glucagon responsiveness. The aim of the present study was to explore the role of PKC in the phosphorylation and desensitization of the glucagon receptor by CDCA. Desensitization was evaluated by measuring adenylyl cyclase activity. Receptor phosphorylation was assayed by metabolic labeling with [gamma-(32)P] ATP. Protein kinase C (PKC) translocation and activation was visualized by fluorescence microscopy. CDCA decreased cAMP production induced by glucagon in a dose-dependent manner without affecting cAMP synthesis through stimulation of either stimulatory GTP-binding protein (Gs) by NaF or adenylyl cyclase by forskolin. The CDCA-induced inhibition of adenylyl cyclase activity was potentiated by the phosphatase inhibitor, okadaic acid. The desensitizing effect of CDCA was bile acid-specific and was significantly reduced in the presence of PKC inhibitors and after PKC down-regulation by phorbol 12-myristate 13-acetate. CDCA increased glucagon receptor phosphorylation more than 3-fold at concentrations as low as 25 mum. Furthermore, CDCA significantly stimulated human recombinant PKCalpha autophosphorylation in vitro, as well as PKCalpha translocation to the plasma membrane and phosphorylation in vivo at concentrations as low as 25 mum. CDCA also stimulated PKCdelta translocation to the perinuclear region. Activated PKCalpha, PKCzeta, and to a lesser extent, PKCdelta, phosphorylated the glucagon receptor in vitro. This study demonstrates that certain bile acids, such as CDCA, stimulate phosphorylation and heterologous desensitization of the glucagon receptor, involving at least PKCalpha activation.
Dai, Li; Zang, Chengxu; Tian, Shujuan; Liu, Wei; Tan, Shanlun; Cai, Zhan; Ni, Tingjunhong; An, Maomao; Li, Ran; Gao, Yue; Zhang, Dazhi; Jiang, Yuanying
2015-01-01
A series of caffeic acid amides were designed, synthesized, and their synergistic activity with fluconazole against fluconazole-resistant Candida albicans was evaluated in vitro. The title caffeic acid amides 3-30 except 26 exhibited potent activity, and the subsequent SAR study was conducted. Compound 3, 5, 21, and 34c, at a concentration of 1.0 μg/ml, decreased the MIC₈₀ of fluconazole from 128.0 μg/ml to 1.0-0.5 μg/ml against the fluconazole-resistant C. albicans. This result suggests that the caffeic acid amides, as synergists, can sensitize drug-resistant fungi to fluconazole. The SAR study indicated that the dihydroxyl groups and the amido groups linking to phenyl or heterocyclic rings are the important pharmacophores of the caffeic acid amides.
Interactive effects of gallic/ferulic/caffeic acids and anthocyanins on pigment thermal stabilities.
Qian, Bing-Jun; Liu, Jian-Hua; Zhao, Shu-Juan; Cai, Jian-Xiong; Jing, Pu
2017-06-01
The data presented in this article are related to the research article entitled "The effects of gallic/ferulic/caffeic acids on colour intensification and anthocyanin stability" (Qian et al., 2017) [1]. This paper described preparation and isolation of anthocyanins from purple sweet potatoes (PSP) and the time-course of anthocyanin profiles treated with gallic, ferulic, or caffeic acids at 95 °C. The color appearance of PSPanthocyanins alone, or with gallic, ferulic, or caffeic acids was described after the 15 h of thermal treatment. The high resolution mass spectrographs of PSP anthocyanins were determined using UPLC-ESI-HRMS. The spatial interaction of peonidin 3-O-(2-O-β-D-glucopyranocyl-β-D-glucopyranoide)-5-O-β-D-glucopyranoside and gallic/ferulic/caffeic acids was illustrated by molecular dynamic simulation.
Burgos-Morón, Estefanía; Calderón-Montaño, José Manuel; Orta, Manuel Luis; Guillén-Mancina, Emilio; Mateos, Santiago; López-Lázaro, Miguel
2016-01-01
Epidemiological studies have found a positive association between coffee consumption and a lower risk of cardiovascular disorders, some cancers, diabetes, Parkinson and Alzheimer disease. Coffee consumption, however, has also been linked to an increased risk of developing some types of cancer, including bladder cancer in adults and leukemia in children of mothers who drink coffee during pregnancy. Since cancer is driven by the accumulation of DNA alterations, the ability of the coffee constituent caffeic acid to induce DNA damage in cells may play a role in the carcinogenic potential of this beverage. This carcinogenic potential may be exacerbated in cells with DNA repair defects. People with the genetic disease Fanconi Anemia have DNA repair deficiencies and are predisposed to several cancers, particularly acute myeloid leukemia. Defects in the DNA repair protein Fanconi Anemia D2 (FANCD2) also play an important role in the development of a variety of cancers (e.g., bladder cancer) in people without this genetic disease. This communication shows that cells deficient in FANCD2 are hypersensitive to the cytotoxicity (clonogenic assay) and DNA damage (γ-H2AX and 53BP1 focus assay) induced by caffeic acid and by a commercial lyophilized coffee extract. These data suggest that people with Fanconi Anemia, or healthy people who develop sporadic mutations in FANCD2, may be hypersensitive to the carcinogenic activity of coffee. PMID:27399778
Burgos-Morón, Estefanía; Calderón-Montaño, José Manuel; Orta, Manuel Luis; Guillén-Mancina, Emilio; Mateos, Santiago; López-Lázaro, Miguel
2016-07-08
Epidemiological studies have found a positive association between coffee consumption and a lower risk of cardiovascular disorders, some cancers, diabetes, Parkinson and Alzheimer disease. Coffee consumption, however, has also been linked to an increased risk of developing some types of cancer, including bladder cancer in adults and leukemia in children of mothers who drink coffee during pregnancy. Since cancer is driven by the accumulation of DNA alterations, the ability of the coffee constituent caffeic acid to induce DNA damage in cells may play a role in the carcinogenic potential of this beverage. This carcinogenic potential may be exacerbated in cells with DNA repair defects. People with the genetic disease Fanconi Anemia have DNA repair deficiencies and are predisposed to several cancers, particularly acute myeloid leukemia. Defects in the DNA repair protein Fanconi Anemia D2 (FANCD2) also play an important role in the development of a variety of cancers (e.g., bladder cancer) in people without this genetic disease. This communication shows that cells deficient in FANCD2 are hypersensitive to the cytotoxicity (clonogenic assay) and DNA damage (γ-H2AX and 53BP1 focus assay) induced by caffeic acid and by a commercial lyophilized coffee extract. These data suggest that people with Fanconi Anemia, or healthy people who develop sporadic mutations in FANCD2, may be hypersensitive to the carcinogenic activity of coffee.
Clinical Study of Ursodeoxycholic Acid in Barrett’s Esophagus Patients
Banerjee, Bhaskar; Shaheen, Nicholas J.; Martinez, Jessica A.; Hsu, Chiu-Hsieh; Trowers, Eugene; Gibson, Blake A.; Della’Zanna, Gary; Richmond, Ellen; Chow, H-H. Sherry
2016-01-01
Prior research strongly implicates gastric acid and bile acids, two major components of the gastroesophageal refluxate, in the development of Barrett’s esophagus (BE) and its pathogenesis. Ursodeoxycholic acid (UDCA), a hydrophilic bile acid, has been shown to protect esophageal cells against oxidative stress induced by cytotoxic bile acids. We conducted a pilot clinical study to evaluate the clinical activity of UDCA in patients with BE. Twenty-nine BE patients received UDCA treatment at a daily dose of 13–15 mg/kg/day for six months. The clinical activity of UDCA was assessed by evaluating changes in gastric bile acid composition and markers of oxidative DNA damage (8-hydroxydeoxyguanosine, 8OHdG), cell proliferation (Ki67), and apoptosis (cleaved caspase 3, CC3) in BE epithelium. The bile acid concentrations in gastric fluid were measured by liquid chromatography-mass spectrometry. At baseline, UDCA (sum of unchanged and glycine/taurine conjugates) accounted for 18.2% of total gastric bile acids. Post UDCA intervention, UDCA increased significantly to account for 93.39% of total gastric bile acids (p<0.0001). The expression of markers of oxidative DNA damage, cell proliferation, and apoptosis was assessed in the BE biopsies by immunohistochemistry. The selected tissue biomarkers were unchanged after 6 months of UDCA intervention. We conclude that high dose UDCA supplementation for six months resulted in favorable changes in gastric bile acid composition but did not modulate selected markers of oxidative DNA damage, cell proliferation, and apoptosis in the BE epithelium. PMID:26908564
Goldman, Aaron; Shahidullah, Mohammad; Goldman, David; Khailova, Ludmila; Watts, George; Delamere, Nicholas; Dvorak, Katerina
2010-12-01
Barrett's oesophagus is a premalignant disease associated with oesophageal adenocarcinoma. The major goal of this study was to determine the mechanism responsible for bile acid-induced alteration in intracellular pH (pH(i)) and its effect on DNA damage in cells derived from normal oesophagus (HET1A) or Barrett's oesophagus (CP-A). Cells were exposed to bile acid cocktail (BA) and/or acid in the presence/absence of inhibitors of nitric oxide synthase (NOS) or sodium-hydrogen exchanger (NHE). Nitric oxide (NO), pH(i) and DNA damage were measured by fluorescent imaging and comet assay. Expression of NHE1 and NOS in cultured cells and biopsies from Barrett's oesophagus or normal squamous epithelium was determined by RT-PCR, immunoblotting or immunohistochemistry. A dose dependent decrease in pH(i) was observed in CP-A cells exposed to BA. This effect of BA is the consequence of NOS activation and increased NO production, which leads to NHE inhibition. Exposure of oesophageal cells to acid in combination with BA synergistically decreased pH(i). The decrease was more pronounced in CP-A cells and resulted in >2-fold increase in DNA damage compared to acid treatment alone. Examination of biopsies and cell lines revealed robust expression of NHE1 in Barrett's oesophagus but an absence of NHE1 in normal epithelium. The results of this study identify a new mechanism of bile acid-induced DNA damage. We found that bile acids present in the refluxate activate immediately all three isoforms of NOS, which leads to an increased NO production and NHE inhibition. This consequently results in increased intracellular acidification and DNA damage, which may lead to mutations and cancer progression. Therefore, we propose that in addition to gastric reflux, bile reflux should be controlled in patients with Barrett's oesophagus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wells, P.G.; Zubovits, J.T.; Wong, S.T.
1989-02-01
Teratogenicity of the anticonvulsant drug phenytoin is thought to involve its bioactivation by cytochromes P-450 to a reactive arene oxide intermediate. We hypothesized that phenytoin also may be bioactivated to a teratogenic free radical intermediate by another enzymatic system, prostaglandin synthetase. To evaluate the teratogenic contribution of this latter pathway, an irreversible inhibitor of prostaglandin synthetase, acetylsalicylic acid (ASA), 10 mg/kg intraperitoneally (ip), was administered to pregnant CD-1 mice at 9:00 AM on Gestational Days 12 and 13, 2 hr before phenytoin, 65 mg/kg ip. Other groups were pretreated 2 hr prior to phenytoin administration with either the antioxidant caffeicmore » acid or the free radical spin trapping agent alpha-phenyl-N-t-butylnitrone (PBN). Caffeic acid and PBN were given ip in doses that respectively were up to 1.0 to 0.05 molar equivalents to the dose of phenytoin. Dams were killed on Day 19 and the fetuses were assessed for teratologic anomalies. A similar study evaluated the effect of ASA on the in vivo covalent binding of radiolabeled phenytoin administered on Day 12, in which case dams were killed 24 hr later on Day 13. ASA pretreatment produced a 50% reduction in the incidence of fetal cleft palates induced by phenytoin (p less than 0.05), without significantly altering the incidence of resorptions or mean fetal body weight. Pretreatment with either caffeic acid or PBN resulted in dose-related decreases in the incidence of fetal cleft palates produced by phenytoin, with maximal respective reductions of 71 and 82% at the highest doses of caffeic acid and PBN (p less than 0.05).« less
Kilani-Jaziri, Soumaya; Mokdad-Bzeouich, Imen; Krifa, Mounira; Nasr, Nouha; Ghedira, Kamel; Chekir-Ghedira, Leila
2017-10-01
Many studies have been performed to assess the potential utility of natural products as immunomodulatory agents to enhance host responses and to reduce damage to the human body. To determine whether phenolic compounds (caffeic, ferulic, and p-coumaric acids) have immunomodulatory effects and clarify which types of immune effector cells are stimulated in vitro, we evaluated their effect on splenocyte proliferation and lysosomal enzyme activity. We also investigated the activity of natural killer (NK) cells and cytotoxic T lymphocytes (CTL). In addition, induction of the cellular antioxidant activity in splenocytes, macrophages, and red blood cells was determined by measuring the fluorescence of the DCF product. The study first results indicated that caffeic, ferulic, and p-coumaric acids significantly promote LPS-stimulated splenocyte proliferation, suggesting a potential activation of B cells, and enhanced humoral immune response in hosts treated by the tested natural products. Phenolic acids significantly enhanced the killing activity of isolated NK and CTL cells but had negligible effects on mitogen-induced proliferation of splenic T cells. We showed that caffeic acid enhances lysosomal enzyme activity in murine peritoneal macrophages, suggesting a potential role in activating such cells. Immunomodulatory activity was concomitant with the cellular antioxidant effect in macrophages and splenocytes of caffeic and ferulic acids. We conclude from this study that caffeic, ferulic, and p-coumaric acids exhibited an immunomodulatory effect which could be ascribed, in part, to their cytoprotective effect via their antioxidant capacity. Furthermore, these results suggest that these natural products could be potentially used to modulate immune cell functions in physiological and pathological conditions.
The roles of bile acids and sphingosine-1-phosphate signaling in the hepatobiliary diseases
Nagahashi, Masayuki; Yuza, Kizuki; Hirose, Yuki; Nakajima, Masato; Ramanathan, Rajesh; Hait, Nitai C.; Hylemon, Phillip B.; Zhou, Huiping; Takabe, Kazuaki; Wakai, Toshifumi
2016-01-01
Based on research carried out over the last decade, it has become increasingly evident that bile acids act not only as detergents, but also as important signaling molecules that exert various biological effects via activation of specific nuclear receptors and cell signaling pathways. Bile acids also regulate the expression of numerous genes encoding enzymes and proteins involved in the synthesis and metabolism of bile acids, glucose, fatty acids, and lipoproteins, as well as energy metabolism. Receptors activated by bile acids include, farnesoid X receptor α, pregnane X receptor, vitamin D receptor, and G protein-coupled receptors, TGR5, muscarinic receptor 2, and sphingosine-1-phosphate receptor (S1PR)2. The ligand of S1PR2, sphingosine-1-phosphate (S1P), is a bioactive lipid mediator that regulates various physiological and pathophysiological cellular processes. We have recently reported that conjugated bile acids, via S1PR2, activate and upregulate nuclear sphingosine kinase 2, increase nuclear S1P, and induce genes encoding enzymes and transporters involved in lipid and sterol metabolism in the liver. Here, we discuss the role of bile acids and S1P signaling in the regulation of hepatic lipid metabolism and in hepatobiliary diseases. PMID:27459945
Guo, Qiaosheng; Fang, Hailing; Shen, Haijin
2010-05-01
To evaluate the quality of Flos Chrysanthemi Indici which produced in twenty-two different producing places. Chlorogenic acid and caffeic acid were analyzed on a Shim-pack C8 colunm (4.6 mm x 250 mm, 5 microm) eluted with the mobile phase consisted of acetonitrile-0.5% phosphoric acid( 19:81). The detection wavelength was set at 326 nm. Linarin were eluted with the mobile phase consisted of methanol-water-acetic acid(26: 23: 1). The detection wavelength was set at 334 nm. The column temperature was 25 degrees C. The flow rate was 1.0 mL x min . The linear response ranged within 2.5-50 microg for chlorogenic acid (r = 0.998), 2.5-25 microg for caffeic acid (r = 0.998) and 4.97-41.47 microg for linarin (r = 0.999), respectively. Recoveries were 100.8% with RSD 2.1% for chlorogenic acid, 96.2% with RSD 2.3% for caffeic acid and 103.7% with RSD 1.8% for linarin. There was a significant difference in the content of chlorogenic acid, caffeic acid, linarin among the samples. The content of chlorogenic in the sample from Fengdou Chongqing city was the highest in those from other places. The content of caffeic acid in the all samples is very low. The content of linarin in the samples from Jiangsu province and Anhui province almost reached the national standard in pharmacopoeia.
Pathak, Preeti; Liu, Hailiang; Boehme, Shannon; Xie, Cen; Krausz, Kristopher W; Gonzalez, Frank; Chiang, John Y L
2017-06-30
The bile acid-activated receptors, nuclear farnesoid X receptor (FXR) and the membrane Takeda G-protein receptor 5 (TGR5), are known to improve glucose and insulin sensitivity in obese and diabetic mice. However, the metabolic roles of these two receptors and the underlying mechanisms are incompletely understood. Here, we studied the effects of the dual FXR and TGR5 agonist INT-767 on hepatic bile acid synthesis and intestinal secretion of glucagon-like peptide-1 (GLP-1) in wild-type, Fxr -/- , and Tgr5 -/- mice. INT-767 efficaciously stimulated intracellular Ca 2+ levels, cAMP activity, and GLP-1 secretion and improved glucose and lipid metabolism more than did the FXR-selective obeticholic acid and TGR5-selective INT-777 agonists. Interestingly, INT-767 reduced expression of the genes in the classic bile acid synthesis pathway but induced those in the alternative pathway, which is consistent with decreased taurocholic acid and increased tauromuricholic acids in bile. Furthermore, FXR activation induced expression of FXR target genes, including fibroblast growth factor 15, and unexpectedly Tgr5 and prohormone convertase 1/3 gene expression in the ileum. We identified an FXR-responsive element on the Tgr5 gene promoter. Fxr -/- and Tgr5 -/- mice exhibited reduced GLP-1 secretion, which was stimulated by INT-767 in the Tgr5 -/- mice but not in the Fxr -/- mice. Our findings uncovered a novel mechanism in which INT-767 activation of FXR induces Tgr5 gene expression and increases Ca 2+ levels and cAMP activity to stimulate GLP-1 secretion and improve hepatic glucose and lipid metabolism in high-fat diet-induced obese mice. Activation of both FXR and TGR5 may therefore represent an effective therapy for managing hepatic steatosis, obesity, and diabetes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Redova, Martina; Chlapek, Petr; Loja, Tomas; Zitterbart, Karel; Hermanova, Marketa; Sterba, Jaroslav; Veselska, Renata
2010-02-01
We investigated the possible modulation by LOX/ COX inhibitors of all-trans retinoic acid (ATRA)-induced cell differentiation in two established neuroblastoma cell lines, SH-SY5Y and SK-N-BE(2). Caffeic acid, as an inhibitor of 5-lipoxygenase, and celecoxib, as an inhibitor of cyclooxygenase-2, were chosen for this study. The effects of the combined treatment with ATRA and LOX/COX inhibitors on neuroblastoma cells were studied using cell morphology assessment, detection of differentiation markers by immunoblotting, measurement of proliferation activity, and cell cycle analysis and apoptosis detection by flow cytometry. The results clearly demonstrated the potential of caffeic acid to enhance ATRA-induced cell differentiation, especially in the SK-N-BE(2) cell line, whereas application of celecoxib alone or with ATRA led predominantly to cytotoxic effects in both cell lines. Moreover, the higher sensitivity of the SK-N-BE(2) cell line to combined treatment with ATRA and LOX/COX inhibitors suggests that cancer stem cells are a main target for this therapeutic approach. Nevertheless, further detailed study of the phenomenon of enhanced cell differentiation by expression profiling is needed.
Yin, Yuli; Yan, Liang; Zhang, Zhaohui; Wang, Jing; Luo, Ningjing
2016-04-01
We describe novel cinnamic acid polydopamine-coated magnetic imprinted polymers for the simultaneous selective extraction of cinnamic acid, ferulic acid and caffeic acid from radix scrophulariae sample. The novel magnetic imprinted polymers were synthesized by surface imprinting polymerization using magnetic multi-walled carbon nanotubes as the support material, cinnamic acid as the template and dopamine as the functional monomer. The magnetic imprinted polymers were characterized by transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy and vibrating sample magnetometry. The results revealed that the magnetic imprinted polymers had outstanding magnetic properties, high adsorption capacity, selectivity and fast kinetic binding toward cinnamic acid, ferulic acid and caffeic acid. Coupled with high-performance liquid chromatography, the extraction conditions of the magnetic imprinted polymers as a magnetic solid-phase extraction sorbent were investigated in detail. The proposed imprinted magnetic solid phase extraction procedure has been used for the purification and enrichment of cinnamic acid, ferulic acid and caffeic acid successfully from radix scrophulariae extraction sample with recoveries of 92.4-115.0% for cinnamic acid, 89.4-103.0% for ferulic acid and 86.6-96.0% for caffeic acid. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Weibin; Liu, Xijun; Peng, Xiaomin
Highlights: • FXR deficiency enhanced MCD diet-induced hepatic fibrosis. • FXR deficiency attenuated MCD diet-induced hepatic steatosis. • FXR deficiency repressed genes involved in fatty acid uptake and triglyceride accumulation. - Abstract: Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases, and the pathogenesis is still not well known. The farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily and plays an essential role in maintaining bile acid and lipid homeostasis. In this study, we study the role of FXR in the pathogenesis of NFALD. We found that FXR deficient (FXR{sup −/−})more » mice fed methionine- and choline-deficient (MCD) diet had higher serum ALT and AST activities and lower hepatic triglyceride levels than wild-type (WT) mice fed MCD diet. Expression of genes involved in inflammation (VCAM-1) and fibrosis (α-SMA) was increased in FXR{sup −/−} mice fed MCD diet (FXR{sup −/−}/MCD) compared to WT mice fed MCD diet (WT/MCD). Although MCD diet significantly induced hepatic fibrosis in terms of liver histology, FXR{sup −/−}/MCD mice showed less degree of hepatic steatosis than WT/MCD mice. Moreover, FXR deficiency synergistically potentiated the elevation effects of MCD diet on serum and hepatic bile acids levels. The super-physiological concentrations of hepatic bile acids in FXR{sup −/−}/MCD mice inhibited the expression of genes involved in fatty acid uptake and triglyceride accumulation, which may be an explanation for less steatosis in FXR{sup −/−}/MCD mice in contrast to WT/MCD mice. These results suggest that hepatic bile acids accumulation could override simple steatosis in hepatic injury during the progression of NAFLD and further emphasize the role of FXR in maintaining hepatic bile acid homeostasis in liver disorders and in hepatic protection.« less
Shin, Hee Soon; Satsu, Hideo; Bae, Min-Jung; Totsuka, Mamoru; Shimizu, Makoto
2017-01-01
Chlorogenic acid (CHA) and caffeic acid (CA) are phenolic compounds found in coffee, which inhibit oxidative stress-induced interleukin (IL)-8 production in intestinal epithelial cells, thereby suppressing serious cellular injury and inflammatory intestinal diseases. Therefore, we investigated the anti-inflammatory mechanism of CHA and CA, both of which inhibited hydrogen peroxide (H2O2)-induced IL-8 transcriptional activity. They also significantly suppressed nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) transcriptional activity, nuclear translocation of the p65 subunit, and phosphorylation of IκB kinase (IKK). Additionally, upstream of IKK, protein kinase D (PKD) was also suppressed. Finally, we found that they scavenged H2O2-induced reactive oxygen species (ROS) and the functional moiety responsible for the anti-inflammatory effects of CHA and CA was the catechol group. Therefore, we conclude that the presence of catechol groups in CHA and CA allows scavenging of intracellular ROS, thereby inhibiting H2O2-induced IL-8 production via suppression of PKD-NF-κB signaling in human intestinal epithelial cells. PMID:28230729
Spilioti, Eliana; Jaakkola, Mari; Tolonen, Tiina; Lipponen, Maija; Virtanen, Vesa; Chinou, Ioanna; Kassi, Eva; Karabournioti, Sofia; Moutsatsou, Paraskevi
2014-01-01
The phenolic acid profile of honey depends greatly on its botanical and geographical origin. In this study, we carried out a quantitative analysis of phenolic acids in the ethyl acetate extract of 12 honeys collected from various regions in Greece. Our findings indicate that protocatechuic acid, p-hydroxybenzoic acid, vanillic acid, caffeic acid and p-coumaric acid are the major phenolic acids of the honeys examined. Conifer tree honey (from pine and fir) contained significantly higher concentrations of protocatechuic and caffeic acid (mean: 6640 and 397 µg/kg honey respectively) than thyme and citrus honey (mean of protocatechuic and caffeic acid: 437.6 and 116 µg/kg honey respectively). p-Hydroxybenzoic acid was the dominant compound in thyme honeys (mean: 1252.5 µg/kg honey). We further examined the antioxidant potential (ORAC assay) of the extracts, their ability to influence viability of prostate cancer (PC-3) and breast cancer (MCF-7) cells as well as their lowering effect on TNF- α-induced adhesion molecule expression in endothelial cells (HAEC). ORAC values of Greek honeys ranged from 415 to 2129 µmol Trolox equivalent/kg honey and correlated significantly with their content in protocatechuic acid (p<0.001), p-hydroxybenzoic acid (p<0.01), vanillic acid (p<0.05), caffeic acid (p<0.01), p-coumaric acid (p<0.001) and their total phenolic content (p<0.001). Honey extracts reduced significantly the viability of PC-3 and MCF-7 cells as well as the expression of adhesion molecules in HAEC. Importantly, vanillic acid content correlated significantly with anticancer activity in PC-3 and MCF-7 cells (p<0.01, p<0.05 respectively). Protocatechuic acid, vanillic acid and total phenolic content correlated significantly with the inhibition of VCAM-1 expression (p<0.05, p<0.05 and p<0.01 respectively). In conclusion, Greek honeys are rich in phenolic acids, in particular protocatechuic and p-hydroxybenzoic acid and exhibit significant antioxidant, anticancer and antiatherogenic activities which may be attributed, at least in part, to their phenolic acid content. PMID:24752205
Higashimura, Yasuki; Naito, Yuji; Takagi, Tomohisa; Uchiyama, Kazuhiko; Mizushima, Katsura; Ushiroda, Chihiro; Ohnogi, Hiromu; Kudo, Yoko; Yasui, Madoka; Inui, Seina; Hisada, Takayoshi; Honda, Akira; Matsuzaki, Yasushi; Yoshikawa, Toshikazu
2016-03-15
High-fat diet (HFD)-induced alteration in the gut microbial composition, known as dysbiosis, is increasingly recognized as a major risk factor for various diseases, including colon cancer. This report describes a comprehensive investigation of the effect of agaro-oligosaccharides (AGO) on HFD-induced gut dysbiosis, including alterations in short-chain fatty acid contents and bile acid metabolism in mice. C57BL/6N mice were fed a control diet or HFD, with or without AGO. Terminal restriction fragment-length polymorphism (T-RFLP) analysis produced their fecal microbiota profiles. Profiles of cecal organic acids and serum bile acids were determined, respectively, using HPLC and liquid chromatography-tandem mass spectrometry systems. T-RFLP analyses showed that an HFD changed the gut microbiota significantly. Changes in the microbiota composition induced by an HFD were characterized by a decrease in the order Lactobacillales and by an increase in the Clostridium subcluster XIVa. These changes of the microbiota community generated by HFD treatment were suppressed by AGO supplementation. As supported by the data of the proportion of Lactobacillales order, the concentration of lactic acid increased in the HFD + AGO group. Data from the serum bile acid profile showed that the level of deoxycholic acid, a carcinogenic secondary bile acid produced by gut bacteria, was increased in HFD-receiving mice. The upregulation tended to be suppressed by AGO supplementation. Finally, results show that AGO supplementation suppressed the azoxymethane-induced generation of aberrant crypt foci in the colon derived from HFD-treated mice. Our results suggest that oral intake of AGO prevents HFD-induced gut dysbiosis, thereby inhibiting colon carcinogenesis. Copyright © 2016 the American Physiological Society.
Maillette de Buy Wenniger, Lucas J; Hohenester, Simon; Maroni, Luca; van Vliet, Sandra J; Oude Elferink, Ronald P; Beuers, Ulrich
2015-01-01
Destruction of cholangiocytes is the hallmark of chronic cholangiopathies such as primary biliary cirrhosis. Under physiologic conditions, cholangiocytes display a striking resistance to the high, millimolar concentrations of toxic bile salts present in bile. We recently showed that a 'biliary HCO3(-) umbrella', i.e. apical cholangiocellular HCO3(-) secretion, prevents cholangiotoxicity of bile acids, and speculated on a role for extracellular membrane-bound glycans in the stabilization of this protective layer. This paper summarizes published and thus far unpublished evidence supporting the role of the glycocalyx in stabilizing the 'biliary HCO3(-) umbrella' and thus preventing cholangiotoxicity of bile acids. The apical glycocalyx of a human cholangiocyte cell line and mouse liver sections were visualized by electron microscopy. FACS analysis was used to characterize the surface glycan profile of cultured human cholangiocytes. Using enzymatic digestion with neuraminidase the cholangiocyte glycocalyx was desialylated to test its protective function. Using lectin assays, we demonstrated that the main N-glycans in human and mouse cholangiocytes were sialylated biantennary structures, accompanied by high expression of the H-antigen (α1-2 fucose). Apical neuraminidase treatment induced desialylation without affecting cell viability, but lowered cholangiocellular resistance to bile acid-induced toxicity: both glycochenodeoxycholate and chenodeoxycholate (pKa ≥4), but not taurochenodeoxycholate (pKa <2), displayed cholangiotoxic effects after desialylation. A 24-hour reconstitution period allowed cholangiocytes to recover to a pretreatment bile salt susceptibility pattern. Experimental evidence indicates that an apical cholangiocyte glycocalyx with glycosylated mucins and other glycan-bearing membrane glycoproteins stabilizes the 'biliary HCO3(-) umbrella', thus aiding in the protection of human cholangiocytes against bile acid toxicity. 2015 S. Karger AG, Basel.
Nasr Bouzaiene, Nouha; Kilani Jaziri, Soumaya; Kovacic, Hervé; Chekir-Ghedira, Leila; Ghedira, Kamel; Luis, José
2015-11-05
Reactive oxygen species are well-known mediators of various biological responses. In this study, we examined the effect of three phenolic acids, caffeic, coumaric and ferulic acids, on superoxide anion production, adhesion and migration of human lung (A549) and colon adenocarcinoma (HT29-D4) cancer cell lines. Proliferation of both tumor cells was inhibited by phenolic acids. Caffeic, coumaric and ferulic acids also significantly inhibited superoxide production in A549 and HT29-D4 cells. Superoxide anion production decreased by 92% and 77% at the highest tested concentration (200 µM) of caffeic acid in A549 and HT29-D4 cell lines respectively. Furthermore, A549 and HT29-D4 cell adhesion was reduced by 77.9% and 79.8% respectively at the higher tested concentration of ferulic acid (200 µM). Migration assay performed towards A549 cell line, revealed that tested compounds reduced significantly cell migration. At the highest concentration tested (200 µM), the covered surface was 7.7%, 9.5% and 35% for caffeic, coumaric or ferulic acids, respectively. These results demonstrate that caffeic, coumaric and ferulic acids may participate as active ingredients in anticancer agents against lung and colon cancer development, at adhesion and migration steps of tumor progression. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tolba, Mai F.
Glucocorticoid-induced osteoporosis (GIO) is one of the most common causes of secondary osteoporosis. Given that glucocorticoids are considered as a main component of the treatment protocols for a variety of inflammation and immune-mediated diseases besides its use as adjuvant to several chemotherapeutic agents, it is crucial to find ways to overcome this critical adverse effect. Caffeic acid phenethyl ester (CAPE), which is a natural compound derived from honeybee propolis displayed promising antiosteoporotic effects against mechanical bone injury in various studies. The current work aimed at investigating the potential protective effect of CAPE against GIO in vivo with emphasis on themore » modulation of oxidative status and receptor activator of NF-kB ligand (RANKL)/osteoprotegrin (OPG) signaling. The results showed that CAPE opposed dexamethasone (DEX)-mediated alterations in bone histology and tartarate-resistant acid phosphatase (TRAP) activity. In addition, CAPE restored oxidative balance, Runt-related transcription factor 2 (RunX2) expression and reduced caspase-3 activity in femur tissues. Co-administration of CAPE with DEX normalized RANKL/OPG ratio and Akt activation indicating a reduction in DEX-osteoclastogenesis. In conclusion, concurrent treatment of CAPE with DEX exhibited promising effects in the protection against DEX-induced osteoporosis through opposing osteoclastogenesis and protecting osteoblasts. The potent antioxidant activity of CAPE is, at least in part, involved in its anti-apoptotic effects and modulation of RunX2 and RANKL/OPG signals. The use of CAPE-enriched propolis formulas is strongly recommended for patients on chronic glucocorticoid therapy to help in the attenuation of GIO. - Highlights: • Caffeic acid phenethyl ester (CAPE) counteracts DEX-induced osteoporosis. • CAPE hinders DEX-induced alterations in oxidation parameters as GSH, SOD and MDA. • CAPE opposes osteoclastogenesis via suppressing RANL/OPG ratio and Akt signals. • CAPE supports the osteoblasts via modulating caspase-3 and RUNX2 signals.« less
Estiú, Maria C; Monte, Maria J; Rivas, Laura; Moirón, Maria; Gomez-Rodriguez, Laura; Rodriguez-Bravo, Tomas; Marin, Jose JG; Macias, Rocio IR
2015-01-01
Aim Intrahepatic cholestasis of pregnancy (ICP) is characterized by pruritus and elevated bile acid concentrations in maternal serum. This is accompanied by an enhanced risk of intra-uterine and perinatal complications. High concentrations of sulphated progesterone metabolites (PMS) have been suggested to be involved in the multifactorial aetiopathogenesis of ICP. The aim of this study was to investigate further the mechanism accounting for the beneficial effect of oral administration of ursodeoxycholic acid (UDCA), which is the standard treatment, regarding bile acid and PMS homeostasis in the mother-placenta-foetus trio. Method Using HPLC-MS/MS bile acids and PMS were determined in maternal and foetal serum and placenta. The expression of ABC proteins in placenta was determined by real time quantitative PCR (RT-QPCR) and immunofluorescence. Results In ICP, markedly increased concentrations of bile acids (tauroconjugates > glycoconjugates >> unconjugated), progesterone and PMS in placenta and maternal serum were accompanied by enhanced concentrations in foetal serum of bile acids, but not of PMS. UDCA treatment reduced bile acid accumulation in the mother-placenta-foetus trio, but had no significant effect on progesterone and PMS concentrations. ABCG2 mRNA abundance was increased in placentas from ICP patients vs. controls and remained stable following UDCA treatment, despite an apparent further increase in ABCG2. Conclusion UDCA administration partially reduces ICP-induced bile acid accumulation in mothers and foetuses despite the lack of effect on concentrations of progesterone and PMS in maternal serum. Up-regulation of placental ABCG2 may play an important role in protecting the foetus from high concentrations of bile acids and PMS during ICP. PMID:25099365
Estiú, Maria C; Monte, Maria J; Rivas, Laura; Moirón, Maria; Gomez-Rodriguez, Laura; Rodriguez-Bravo, Tomas; Marin, Jose J G; Macias, Rocio I R
2015-02-01
Intrahepatic cholestasis of pregnancy (ICP) is characterized by pruritus and elevated bile acid concentrations in maternal serum. This is accompanied by an enhanced risk of intra-uterine and perinatal complications. High concentrations of sulphated progesterone metabolites (PMS) have been suggested to be involved in the multifactorial aetiopathogenesis of ICP. The aim of this study was to investigate further the mechanism accounting for the beneficial effect of oral administration of ursodeoxycholic acid (UDCA), which is the standard treatment, regarding bile acid and PMS homeostasis in the mother-placenta-foetus trio. Using HPLC-MS/MS bile acids and PMS were determined in maternal and foetal serum and placenta. The expression of ABC proteins in placenta was determined by real time quantitative PCR (RT-QPCR) and immunofluorescence. In ICP, markedly increased concentrations of bile acids (tauroconjugates > glycoconjugates > unconjugated), progesterone and PMS in placenta and maternal serum were accompanied by enhanced concentrations in foetal serum of bile acids, but not of PMS. UDCA treatment reduced bile acid accumulation in the mother-placenta-foetus trio, but had no significant effect on progesterone and PMS concentrations. ABCG2 mRNA abundance was increased in placentas from ICP patients vs. controls and remained stable following UDCA treatment, despite an apparent further increase in ABCG2. UDCA administration partially reduces ICP-induced bile acid accumulation in mothers and foetuses despite the lack of effect on concentrations of progesterone and PMS in maternal serum. Up-regulation of placental ABCG2 may play an important role in protecting the foetus from high concentrations of bile acids and PMS during ICP. © 2014 The British Pharmacological Society.
Gebhardt, R
2002-09-01
The effects of water-soluble extracts of artichoke (Cynara scolymus L.) leaves on taurolithocholate-induced cholestatic bile canalicular membrane distortions were studied in primary cultured rat hepatocytes using electron microscopy. Artichoke extracts at concentrations between 0.08 and 0.5 mg/ml were able to prevent the formation of bizarre canalicular membrane transformations in a dose-dependent manner when added simultaneously with the bile acid. However, prevention also occurred when the hepatocytes were preincubated with the extracts, indicating that absorption of the bile acid to components of the extracts was not involved. These results demonstrate that artichoke leaf extracts exert a potent anticholestatic action at least in the case of taurolithocholate. This effect may contribute to the overall hepatoprotective influence of this herbal formulation.
Westermann, Martin; Lambeck, Sandro; Lupp, Amelie; Rudiger, Alain; Dyson, Alex; Carré, Jane E.; Kortgen, Andreas; Krafft, Christoph; Popp, Jürgen; Sponholz, Christoph; Fuhrmann, Valentin; Hilger, Ingrid; Claus, Ralf A.; Riedemann, Niels C.; Wetzker, Reinhard; Singer, Mervyn; Trauner, Michael; Bauer, Michael
2012-01-01
Background Hepatic dysfunction and jaundice are traditionally viewed as late features of sepsis and portend poor outcomes. We hypothesized that changes in liver function occur early in the onset of sepsis, yet pass undetected by standard laboratory tests. Methods and Findings In a long-term rat model of faecal peritonitis, biotransformation and hepatobiliary transport were impaired, depending on subsequent disease severity, as early as 6 h after peritoneal contamination. Phosphatidylinositol-3-kinase (PI3K) signalling was simultaneously induced at this time point. At 15 h there was hepatocellular accumulation of bilirubin, bile acids, and xenobiotics, with disturbed bile acid conjugation and drug metabolism. Cholestasis was preceded by disruption of the bile acid and organic anion transport machinery at the canalicular pole. Inhibitors of PI3K partially prevented cytokine-induced loss of villi in cultured HepG2 cells. Notably, mice lacking the PI3Kγ gene were protected against cholestasis and impaired bile acid conjugation. This was partially confirmed by an increase in plasma bile acids (e.g., chenodeoxycholic acid [CDCA] and taurodeoxycholic acid [TDCA]) observed in 48 patients on the day severe sepsis was diagnosed; unlike bilirubin (area under the receiver-operating curve: 0.59), these bile acids predicted 28-d mortality with high sensitivity and specificity (area under the receiver-operating curve: CDCA: 0.77; TDCA: 0.72; CDCA+TDCA: 0.87). Conclusions Liver dysfunction is an early and commonplace event in the rat model of sepsis studied here; PI3K signalling seems to play a crucial role. All aspects of hepatic biotransformation are affected, with severity relating to subsequent prognosis. Detected changes significantly precede conventional markers and are reflected by early alterations in plasma bile acids. These observations carry important implications for the diagnosis of liver dysfunction and pharmacotherapy in the critically ill. Further clinical work is necessary to extend these concepts into clinical practice. Please see later in the article for the Editors' Summary PMID:23152722
Wang, Renxue; Liu, Lin; Sheps, Jonathan A; Forrest, Dana; Hofmann, Alan F; Hagey, Lee R; Ling, Victor
2013-08-15
The bile salt export pump (BSEP), encoded by the abcb11 gene, is the major canalicular transporter of bile acids from the hepatocyte. BSEP malfunction in humans causes bile acid retention and progressive liver injury, ultimately leading to end-stage liver failure. The natural, hydrophilic, bile acid ursodeoxycholic acid (UDCA) is efficacious in the treatment of cholestatic conditions, such as primary biliary cirrhosis and cholestasis of pregnancy. The beneficial effects of UDCA include promoting bile flow, reducing hepatic inflammation, preventing apoptosis, and maintaining mitochondrial integrity in hepatocytes. However, the role of BSEP in mediating UDCA efficacy is not known. Here, we used abcb11 knockout mice (abcb11-/-) to test the effects of acute and chronic UDCA administration on biliary secretion, bile acid composition, liver histology, and liver gene expression. Acutely infused UDCA, or its taurine conjugate (TUDC), was taken up by the liver but retained, with negligible biliary output, in abcb11-/- mice. Feeding UDCA to abcb11-/- mice led to weight loss, retention of bile acids, elevated liver enzymes, and histological damage to the liver. Semiquantitative RT-PCR showed that genes encoding Mdr1a and Mdr1b (canalicular) as well as Mrp4 (basolateral) transporters were upregulated in abcb11-/- mice. We concluded that infusion of UDCA and TUDC failed to induce bile flow in abcb11-/- mice. UDCA fed to abcb11-/- mice caused liver damage and the appearance of biliary tetra- and penta-hydroxy bile acids. Supplementation with UDCA in the absence of Bsep caused adverse effects in abcb11-/- mice.
Zhou, Yong; Doyen, Rand; Lichtenberger, Lenard M.
2013-01-01
In cholestatic liver diseases, the ability of hydrophobic bile acids to damage membranes of hepatocytes/ductal cells contributes to their cytotoxicity. However, ursodeoxycholic acid (UDC), a hydrophilic bile acid, is used to treat cholestasis because it protects membranes. It has been well established that bile acids associate with and solubilize free cholesterol (CHOL) contained within the lumen of the gallbladder because of their structural similarities. However, there is a lack of understanding of how membrane CHOL, which is a well-established membrane stabilizing agent, is involved in cytotoxicity of hydrophobic bile acids and the cytoprotective effect of UDC. We utilized phospholipid liposomes to examine the ability of membrane CHOL to influence toxicity of individual bile acids, such as UDC and the highly toxic sodium deoxycholate (SDC), as well as the cytoprotective mechanism of UDC against SDC-induced cytotoxicity by measuring membrane permeation and intramembrane dipole potential. The kinetics of bile acid solubilization of phosphatidylcholine liposomes containing various levels of CHOL was also characterized. It was found that the presence of CHOL in membranes significantly reduced the ability of bile acids to damage synthetic membranes. UDC effectively prevented damaging effects of SDC on synthetic membranes only in the presence of membrane CHOL, while UDC enhances the damaging effects of SDC in the absence of CHOL. This further demonstrates that the cytoprotective effects of UDC depend upon the level of CHOL in the lipid membrane. Thus, changes in cell membrane composition, such as CHOL content, potentially influence the efficacy of UDC as the primary drug used to treat cholestasis. PMID:19150330
Chemoprevention of esophageal adenocarcinoma in a rat model by ursodeoxycholic acid.
Ojima, Eisuke; Fujimura, Takashi; Oyama, Katsunobu; Tsukada, Tomoya; Kinoshita, Jun; Miyashita, Tomoharu; Tajima, Hidehiro; Fushida, Sachio; Harada, Shin-ichi; Mukaisho, Ken-ichi; Hattori, Takanori; Ohta, Tetsuo
2015-08-01
Reflux of bile acid into the esophagus induces esophagitis, inflammation-stimulated hyperplasia, metaplasia such as Barrett's esophagus (BE), and esophageal adenocarcinoma (EAC). Caudal-type homeobox 2 (Cdx2) via nuclear factor (NF)-κB induced by bile acid is an important factor in the development of BE and EAC. In colorectal cancer, experimental data suggest a chemopreventive effect of ursodeoxycholic acid (UDCA). We hypothesized that UDCA may protect against the esophageal inflammation-metaplasia-carcinoma sequence by decreasing the overall proportion of the toxic bile acids. Wistar male rats that underwent a duodenoesophageal reflux procedure were divided into two groups. One group was given commercial chow (control group), and the other was given experimental chow containing UDCA (UDCA group). The animals were killed at 40 weeks after surgery, and their bile and esophagus were examined. In the UDCA group, the esophagitis was milder and the incidence of BE was significantly lower (p < 0.05) than in the control group, and EAC was not observed (p < 0.05). In analysis of the compartment of bile acid, UDCA was markedly increased in the UDCA group compared with the control group (32.7 ± 11.4 vs. 0.82 ± 0.33 mmol/L, p < 0.05) and cholic acid was decreased (32.7 ± 4.05 vs. 60.9 ± 8.26 mmol/L, p < 0.05). Expression intensity of Cdx2 and NF-κB was greater in the control group than in the UDCA group (p < 0.05). UDCA may be a chemopreventive agent against EAC by varying the bile acid composition.
Maruf, Abdullah Al; Lip, HoYin; Wong, Horace; O'Brien, Peter J
2015-06-05
Glyoxal (GO) and methylglyoxal (MGO) cause protein and nucleic acid carbonylation and oxidative stress by forming reactive oxygen and carbonyl species which have been associated with toxic effects that may contribute to cardiovascular disease, complications associated with diabetes mellitus, Alzheimer's and Parkinson's disease. GO and MGO can be formed through oxidation of commonly used reducing sugars e.g., fructose under chronic hyperglycemic conditions. GO and MGO form advanced glycation end products which lead to an increased potential for developing inflammatory diseases. In the current study, we have investigated the protective effects of ferulic acid and related polyphenols e.g., caffeic acid, p-coumaric acid, methyl ferulate, ethyl ferulate, and ferulaldehyde on GO- or MGO-induced cytotoxicity and oxidative stress (ROS formation, protein carbonylation and mitochondrial membrane potential maintenance) in freshly isolated rat hepatocytes. To investigate and compare the protective effects of ferulic acid and related polyphenols against GO- or MGO-induced toxicity, five hepatocyte models were used: (a) control hepatocytes, (b) GSH-depleted hepatocytes, (c) catalase-inhibited hepatocytes, (d) aldehyde dehydrogenase (ALDH2)-inhibited hepatocytes, and (e) hepatocyte inflammation system (a non-toxic H2O2-generating system). All of the polyphenols tested significantly decreased GO- or MGO-induced cytotoxicity, ROS formation and improved mitochondrial membrane potential in these models. The rank order of their effectiveness was caffeic acid∼ferulaldehyde>ferulic acid>ethyl ferulate>methyl ferulate>p-coumaric acid. Ferulic acid was found to decrease protein carbonylation in GSH-depleted hepatocytes. This study suggests that ferulic acid and related polyphenols can be used therapeutically to inhibit or decrease GO- or MGO-induced hepatotoxicity. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
A nuclear-receptor-dependent phosphatidylcholine pathway with antidiabetic effects.
Lee, Jae Man; Lee, Yoon Kwang; Mamrosh, Jennifer L; Busby, Scott A; Griffin, Patrick R; Pathak, Manish C; Ortlund, Eric A; Moore, David D
2011-05-25
Nuclear hormone receptors regulate diverse metabolic pathways and the orphan nuclear receptor LRH-1 (also known as NR5A2) regulates bile acid biosynthesis. Structural studies have identified phospholipids as potential LRH-1 ligands, but their functional relevance is unclear. Here we show that an unusual phosphatidylcholine species with two saturated 12 carbon fatty acid acyl side chains (dilauroyl phosphatidylcholine (DLPC)) is an LRH-1 agonist ligand in vitro. DLPC treatment induces bile acid biosynthetic enzymes in mouse liver, increases bile acid levels, and lowers hepatic triglycerides and serum glucose. DLPC treatment also decreases hepatic steatosis and improves glucose homeostasis in two mouse models of insulin resistance. Both the antidiabetic and lipotropic effects are lost in liver-specific Lrh-1 knockouts. These findings identify an LRH-1 dependent phosphatidylcholine signalling pathway that regulates bile acid metabolism and glucose homeostasis.
Mroz, Magdalena S; Lajczak, Natalia K; Goggins, Bridie J; Keely, Simon; Keely, Stephen J
2018-03-01
The intestinal epithelium constitutes an innate barrier which, upon injury, undergoes self-repair processes known as restitution. Although bile acids are known as important regulators of epithelial function in health and disease, their effects on wound healing processes are not yet clear. Here we set out to investigate the effects of the colonic bile acids, deoxycholic acid (DCA) and ursodeoxycholic acid (UDCA), on epithelial restitution. Wound healing in T 84 cell monolayers grown on transparent, permeable supports was assessed over 48 h with or without bile acids. Cell migration was measured in Boyden chambers. mRNA and protein expression were measured by RT-PCR and Western blotting. DCA (50-150 µM) significantly inhibited wound closure in cultured epithelial monolayers and attenuated cell migration in Boyden chamber assays. DCA also induced nuclear accumulation of the farnesoid X receptor (FXR), whereas an FXR agonist, GW4064 (10 µM), inhibited wound closure. Both DCA and GW4064 attenuated the expression of CFTR Cl - channels, whereas inhibition of CFTR activity with either CFTR- inh -172 (10 µM) or GlyH-101 (25 µM) also prevented wound healing. Promoter/reporter assays revealed that FXR-induced downregulation of CFTR is mediated at the transcriptional level. In contrast, UDCA (50-150 µM) enhanced wound healing in vitro and prevented the effects of DCA. Finally, DCA inhibited and UDCA promoted mucosal healing in an in vivo mouse model. In conclusion, these studies suggest bile acids are important regulators of epithelial wound healing and are therefore good targets for development of new drugs to modulate intestinal barrier function in disease treatment. NEW & NOTEWORTHY The secondary bile acid, deoxycholic acid, inhibits colonic epithelial wound healing, an effect which appears to be mediated by activation of the nuclear bile acid receptor, FXR, with subsequent downregulation of CFTR expression and activity. In contrast, ursodeoxycholic acid promotes wound healing, suggesting it may provide an alternative approach to prevent the losses of barrier function that are associated with mucosal inflammation in IBD patients.
Induction of antioxidant flavonol biosynthesis in fresh-cut potatoes. Effect of domestic cooking.
Tudela, Juan A; Cantos, Emma; Espín, Juan C; Tomás-Barberán, Francisco A; Gil, María I
2002-10-09
The effect of fresh-cutting and subsequent cold storage on phenolic compounds from five long-term-stored potato cultivars (Agria, Cara, Liseta, Monalisa, and Spunta) was studied. Fresh-cutting induced the biosynthesis of three flavonols, which were identified by HPLC-DAD-ESIMS as quercetin 3-rutinoside, quercetin 3-diglucoside, and quercetin 3-glucosylrutinoside. The flavonols were detected after a lag period of 3 days of cold storage. The content ranged from 6 to 14 mg/100 g of fresh weight depending on the cultivar after 6 days of storage. Chlorogenic acid as the main caffeic acid derivative and the amino acids tyrosine and tryptophan were also quantified. The effect of cold storage under light or in dark was studied with new-season-harvested Monalisa potatoes. The flavonol induction was higher in fresh-cut potatoes stored under light than in the dark. However, caffeic acid derivatives were not affected. Domestic cooking such as boiling, microwaving, and frying provoked a partial loss of the flavonols, which were retained in the range of 4-16 mg per serving (213 g). Steam-cooking resulted in the highest retention of caffeic acid derivatives and aromatic amino acids compared with the other cooking methods studied. This means that due to the large amount of potatoes consumed in the Western diet, fresh-cut potatoes can be a significant source of health-promoting phenolics.
2008-06-08
reported here show that CAPE induces HO-1 in human endothelial cells. The major signaling transduction involved in HO-1 induction by those electrophilic ...phenethyl ester (CAPE) and catechol ring- fluorinated CAPE derivatives against menadione-induced oxidative stress in human endothelial cells. Bioorganic
The modulatory effects of caffeic acid on human monocytes and its involvement in propolis action.
Búfalo, Michelle Cristiane; Sforcin, José Maurício
2015-05-01
Researchers have been interested in investigating the mechanisms of action of propolis and the compounds involved in its biological activity; however, the effect of its isolated constituents on human immune cells still deserves investigation. Thus, this study aimed to verify the action of caffeic acid on human monocytes in an attempt to verify its effects on the innate immunity, and to analyse its participation in propolis activity. Monocytes viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method after incubation with caffeic acid. Cell markers expression by monocytes (Toll-like receptors (TLR)-2, TLR-4, human leukocyte antigen (HLA)-DR and CD80) was analysed by flow cytometry. TNF-α and IL-10 production was determined by enzyme-linked immunosorbent assay and the activity of monocytes against Candida albicans was investigated after incubation with different concentrations of caffeic acid. Caffeic acid downregulated TLR-2 and HLA-DR expression and inhibited cytokine production whereas it upregulated the fungicidal activity of monocytes, without affecting cell viability. Caffeic acid exerted an immunomodulatory action in human monocytes in the evaluated parameters depending on concentration, with no cytotoxic effects. Moreover, it was partially involved in propolis action. © 2015 Royal Pharmaceutical Society.
Lajczak, Natalia K; Saint-Criq, Vinciane; O'Dwyer, Aoife M; Perino, Alessia; Adorini, Luciano; Schoonjans, Kristina; Keely, Stephen J
2017-09-01
Bile acids and epithelial-derived human β-defensins (HβDs) are known to be important factors in the regulation of colonic mucosal barrier function and inflammation. We hypothesized that bile acids regulate colonic HβD expression and aimed to test this by investigating the effects of deoxycholic acid (DCA) and ursodeoxycholic acid on the expression and release of HβD1 and HβD2 from colonic epithelial cells and mucosal tissues. DCA (10-150 µM) stimulated the release of both HβD1 and HβD2 from epithelial cell monolayers and human colonic mucosal tissue in vitro In contrast, ursodeoxycholic acid (50-200 µM) inhibited both basal and DCA-induced defensin release. Effects of DCA were mimicked by the Takeda GPCR 5 agonist, INT-777 (50 μM), but not by the farnesoid X receptor agonist, GW4064 (10 μM). INT-777 also stimulated colonic HβD1 and HβD2 release from wild-type, but not Takeda GPCR 5 -/- , mice. DCA stimulated phosphorylation of the p65 subunit of NF-κB, an effect that was attenuated by ursodeoxycholic acid, whereas an NF-κB inhibitor, BMS-345541 (25 μM), inhibited DCA-induced HβD2, but not HβD1, release. We conclude that bile acids can differentially regulate colonic epithelial HβD expression and secretion and discuss the implications of our findings for intestinal health and disease.-Lajczak, N. K., Saint-Criq, V., O'Dwyer, A. M., Perino, A., Adorini, L., Schoonjans, K., Keely, S. J. Bile acids deoxycholic acid and ursodeoxycholic acid differentially regulate human β-defensin-1 and -2 secretion by colonic epithelial cells. © FASEB.
Agilan, Balupillai; Rajendra Prasad, N; Kanimozhi, Govindasamy; Karthikeyan, Ramasamy; Ganesan, Muthusamy; Mohana, Shanmugam; Velmurugan, Devadasan; Ananthakrishnan, Dhanapalan
2016-05-01
Signal transducers and activators of transcription 3 (STAT3) play a critical role in inflammation, proliferation and carcinogenesis. Inhibition of JAK-STAT3 signaling is proved to be a novel target for prevention of UVB-induced skin carcinogenesis. In this study, chronic UVB irradiation (180 mJ cm(-2) ; weekly thrice for 30 weeks) induces the expression of IL-10 and JAK1 that eventually activates the STAT3 which leads to the transcription of proliferative and antiapoptotic markers such as PCNA, Cyclin-D1, Bcl2 and Bcl-xl, respectively. Caffeic acid (CA) inhibits JAK-STAT3 signaling, thereby induces apoptotic cell death by upregulating Bax, Cytochrome-C, Caspase-9 and Caspase-3 expression in mouse skin. Furthermore, TSP-1 is an antiangiogeneic protein, which is involved in the inhibition of angiogenesis and proliferation. Chronic UVB exposure decreased the expression of TSP-1 and pretreatment with CA prevented the UVB-induced loss of TSP-1 in UVB-irradiated mouse skin. Thus, CA offers protection against UVB-induced photocarcinogenesis probably through modulating the JAK-STAT3 in the mouse skin. © 2016 The American Society of Photobiology.
Goss, John A; Barshes, Neal R; Karpen, Saul J; Gao, Feng-Qin; Wyllie, Samuel
2008-04-01
Both Atp7b (Wilson disease gene) and Atp7a (Menkes disease gene) have been reported to be trafficked by copper. Atp7b is trafficked to the bile duct canaliculi and Atp7a to the plasma membrane. Whether or not liver ischemia or ischemia-reperfusion modulates Atp7b expression and trafficking has not been reported. In this study, we report for the first time that the multi-specific metal transporter Atp7b is significantly induced and trafficked by both liver ischemia alone and liver ischemia-reperfusion, as judged by immunohistochemistry and Western blot analyses. Although hepatocytes also stained for Atp7b, localized intense staining of Atp7b was found on bile duct canaliculi. Inductive coupled plasma-mass spectrometry analysis of bile copper, iron, zinc, and manganese found a corresponding significant increase in biliary iron. In our attempt to determine if the increased biliary iron transport observed may be a result of altered bile flow, lysosomal trafficking, or glutathione biliary transport, we measured bile flow, bile acid phosphatase activity, and glutathione content. No significant difference was found in bile flow, bile acid phosphatase activity, and glutathione, between control livers and livers subjected to ischemia-reperfusion. Thus, we conclude that liver ischemia and ischemia-reperfusion induction and trafficking Atp7b to the bile duct canaliculi may contribute to preferential iron transport into bile.
Akomolafe, S F; Akinyemi, A J; Ogunsuyi, O B; Oyeleye, S I; Oboh, G; Adeoyo, O O; Allismith, Y R
2017-09-01
Caffeine and caffeic acid are two bioactive compounds that are present in plant foods and are major constituent of coffee, cocoa, tea, cola drinks and chocolate. Although not structurally related, caffeine and caffeic acid has been reported to elicit neuroprotective properties. However, their different proportional distribution in food sources and possible effect of such interactions are not often taken into consideration. Therefore, in this study, we investigated the effect of caffeine, caffeic acid and their various combinations on activities of some enzymes [acetylcholinesterase (AChE), monoamine oxidase (MAO) ecto-nucleoside triphosphate diphosphohydrolase (E-NTPase), ecto-5 1 -nucleotidase (E-NTDase) and Na + /K + ATPase relevant to neurodegeneration in vitro in rat brain. The stock concentration of caffeine and caffiec acid and their various proportional combinations were prepared and their interactions with the activities of these enzymes were assessed (in vitro) in different brain structures. The Fe 2+ and Cu 2+ chelating abilities of the samples were also investigated. The results revealed that caffeine, caffeic acid and their various combinations exhibited inhibitory effect on activities of AChE, MAO, E-NTPase and E-NTDase, but stimulatory effect on Na + /K + ATPase activity. The combinations also exhibited Fe 2+ and Cu 2+ chelating abilities. Considering the various combinations, a higher caffeine to caffeic acid ratio produced significantly highest enzyme modulatory effects; these were significantly lower to the effect of caffeine alone but significantly higher than the effect of caffeic acid alone. These findings may provide new insight into the effect of proportional combination of these bioactive compounds as obtained in many foods especially with respect to their neuroprotective effects. Copyright © 2017 Elsevier B.V. All rights reserved.
Clinical Study of Ursodeoxycholic Acid in Barrett's Esophagus Patients.
Banerjee, Bhaskar; Shaheen, Nicholas J; Martinez, Jessica A; Hsu, Chiu-Hsieh; Trowers, Eugene; Gibson, Blake A; Della'Zanna, Gary; Richmond, Ellen; Chow, H-H Sherry
2016-07-01
Prior research strongly implicates gastric acid and bile acids, two major components of the gastroesophageal refluxate, in the development of Barrett's esophagus and its pathogenesis. Ursodeoxycholic acid (UDCA), a hydrophilic bile acid, has been shown to protect esophageal cells against oxidative stress induced by cytotoxic bile acids. We conducted a pilot clinical study to evaluate the clinical activity of UDCA in patients with Barrett's esophagus. Twenty-nine patients with Barrett's esophagus received UDCA treatment at a daily dose of 13 to 15 mg/kg/day for 6 months. The clinical activity of UDCA was assessed by evaluating changes in gastric bile acid composition and markers of oxidative DNA damage (8-hydroxydeoxyguanosine), cell proliferation (Ki67), and apoptosis (cleaved caspase-3) in Barrett's esophagus epithelium. The bile acid concentrations in gastric fluid were measured by liquid chromatography/mass spectrometry. At baseline, UDCA (sum of unchanged and glycine/taurine conjugates) accounted for 18.2% of total gastric bile acids. After UDCA intervention, UDCA increased significantly to account for 93.4% of total gastric bile acids (P < 0.0001). The expression of markers of oxidative DNA damage, cell proliferation, and apoptosis was assessed in the Barrett's esophagus biopsies by IHC. The selected tissue biomarkers were unchanged after 6 months of UDCA intervention. We conclude that high-dose UDCA supplementation for 6 months resulted in favorable changes in gastric bile acid composition but did not modulate selected markers of oxidative DNA damage, cell proliferation, and apoptosis in the Barrett's esophagus epithelium. Cancer Prev Res; 9(7); 528-33. ©2016 AACRSee related article by Brian J. Reid, p. 512. ©2016 American Association for Cancer Research.
Mitamura, Kuniko; Hori, Naohiro; Mino, Shiori; Iida, Takashi; Hofmann, Alan F; Ikegawa, Shigeo
2012-04-01
The 3-sulfates of the S-acyl glutathione (GSH) conjugates of five natural bile acids (cholic, chenodeoxycholic, deoxycholic, ursodeoxycholic, and lithocholic) were synthesized as reference standards in order to investigate their possible formation by a rat liver cytosolic fraction. Their structures were confirmed by proton nuclear magnetic resonance, as well as by means of electrospray ionization-linear ion-trap mass spectrometry with negative-ion detection. Upon collision-induced dissociation, structurally informative product ions were observed. Using a triple-stage quadrupole instrument, selected reaction monitoring analyses by monitoring characteristic transition ions allowed the achievement of a highly sensitive and specific assay. This method was used to determine whether the 3-sulfates of the bile acid-GSH conjugates (BA-GSH) were formed when BA-GSH were incubated with a rat liver cytosolic fraction to which 3'-phosphoadenosine 5'-phosphosulfate had been added. The S-acyl linkage was rapidly hydrolyzed to form the unconjugated bile acid. A little sulfation of the GSH conjugates occurred, but greater sulfation at C-3 of the liberated bile acid occurred. Sulfation was proportional to the hydrophobicity of the unconjugated bile acid. Thus GSH conjugates of bile acids as well as their C-3 sulfates if formed in vivo are rapidly hydrolyzed by cytosolic enzymes. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Silva, I; Campos, F M; Hogg, T; Couto, J A
2011-08-01
To evaluate the effect of wine phenolic compounds on the production of volatile phenols (4-vinylphenol [4VP] and 4-ethylphenol [4EP]) from the metabolism of p-coumaric acid by lactic acid bacteria (LAB). Lactobacillus plantarum, Lactobacillus collinoides and Pediococcus pentosaceus were grown in MRS medium supplemented with p-coumaric acid, in the presence of different phenolic compounds: nonflavonoids (hydroxycinnamic and benzoic acids) and flavonoids (flavonols and flavanols). The inducibility of the enzymes involved in the p-coumaric acid metabolism was studied in resting cells. The hydroxycinnamic acids tested stimulated the capacity of LAB to synthesize volatile phenols. Growth in the presence of hydroxycinnamic acids, especially caffeic acid, induced the production of 4VP by resting cells. The hydroxybenzoic acids did not significantly affect the behaviour of the studied strains. Some of the flavonoids showed an effect on the production of volatile phenols, although strongly dependent on the bacterial species. Relatively high concentrations (1 g l(-1) ) of tannins inhibited the synthesis of 4VP by Lact. plantarum. Hydroxycinnamic acids were the main compounds stimulating the production of volatile phenols by LAB. The results suggest that caffeic and ferulic acids induce the synthesis of the cinnamate decarboxylase involved in the metabolism of p-coumaric acid. On the other hand, tannins exert an inhibitory effect. This study highlights the capacity of LAB to produce volatile phenols and that this activity is markedly influenced by the phenolic composition of the medium. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.
Synthesis and antioxidant properties of caffeic acid corn bran arabinoxylan esters.
Li, Y; Zhu, Y; Liang, R; Yang, C
2017-08-01
As a potential of bioactive additives, corn bran arabinoxylan (CAX) was prominent in its probiotic benefits and immuno-enhancing activities. To improve the antioxidant ability of CAX, naturally occurring caffeic acid (CA) was covalently attached to CAX by esterification to generate caffeic acid corn bran arabinoxylan esters (CA-CAX) with various degrees of substitution (DS). The structure of CA-CAX was analysed by NMR, and the DS was determined by HPLC. The antioxidant activity of CA-CAX was investigated on scavenging the 2,2'-diphenyl-1-picrylhydrazyl (DPPH) radical and autoxidazing methyl linoleate, and an aqueous linolenic acid dispersion was also used as an in vitro test system to examine the inhibition effect of CA-CAX on the lipid peroxidation level after UV exposure. The ability of CA-CAX to prevent H 2 O 2 -induced oxidative damage of cell was studied by reducing MDA levels and increasing SOD and GSH-Px activities in human hepatocarcinoma (HepG2) cell. The results certificated that CA was linked to CAX successfully with various DS. Compared with CAX, the antioxidant capacity of CA-CAX was improved significantly and enhanced with the increasing concentration and DS. © 2017 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Theriot, Casey M.; Koenigsknecht, Mark J.; Carlson, Paul E.; Hatton, Gabrielle E.; Nelson, Adam M.; Li, Bo; Huffnagle, Gary B.; Li, Jun; Young, Vincent B.
2014-01-01
Antibiotics can have significant and long lasting effects on the gastrointestinal tract microbiota, reducing colonization resistance against pathogens including Clostridium difficile. Here we show that antibiotic treatment induces substantial changes in the gut microbial community and in the metabolome of mice susceptible to C. difficile infection. Levels of secondary bile acids, glucose, free fatty acids, and dipeptides decrease, whereas those of primary bile acids and sugar alcohols increase, reflecting the modified metabolic activity of the altered gut microbiome. In vitro and ex vivo analyses demonstrate that C. difficile can exploit specific metabolites that become more abundant in the mouse gut after antibiotics, including primary bile acid taurocholate for germination, and carbon sources mannitol, fructose, sorbitol, raffinose and stachyose for growth. Our results indicate that antibiotic-mediated alteration of the gut microbiome converts the global metabolic profile to one that favors C. difficile germination and growth. PMID:24445449
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moscovitz, Jamie E.; Kong, Bo; Buckley, Kyle
The farnesoid X receptor (Fxr) controls bile acid homeostasis by coordinately regulating the expression of synthesizing enzymes (Cyp7a1, Cyp8b1), conjugating enzymes (Bal, Baat) and transporters in the ileum (Asbt, Ostα/β) and liver (Ntcp, Bsep, Ostβ). Transcriptional regulation by Fxr can be direct, or through the ileal Fgf15/FGF19 and hepatic Shp pathways. Circulating bile acids are increased during pregnancy due to hormone-mediated disruption of Fxr signaling. While this adaptation enhances lipid absorption, elevated bile acids may predispose women to develop maternal cholestasis. The objective of this study was to determine whether short-term treatment of pregnant mice with GW4064 (a potent FXRmore » agonist) restores Fxr signaling to the level observed in virgin mice. Plasma, liver and ilea were collected from virgin and pregnant mice administered vehicle or GW4064 by oral gavage. Treatment of pregnant mice with GW4064 induced ileal Fgf15, Shp and Ostα/β mRNAs, and restored hepatic Shp, Bal, Ntcp, and Bsep back to vehicle-treated virgin levels. Pregnant mice exhibited 2.5-fold increase in Cyp7a1 mRNA compared to virgin controls, which was reduced by GW4064. Similarly treatment of mouse primary hepatocytes with plasma isolated from pregnant mice induced Cyp7a1 mRNA by nearly 3-fold as compared to virgin plasma, which could be attenuated by co-treatment with either GW4064 or recombinant FGF19 protein. Collectively, these data reveal that repressed activity of intestinal and hepatic Fxr in pregnancy, as previously demonstrated, may be restored by pharmacological activation. This study provides the basis for a novel approach to restore bile acid homeostasis in patients with maternal cholestasis. - Highlights: • Ileal bile acid pathways are altered in pregnancy in an Fxr-dependent manner. • Ileal Fxr/Fgf contributes to changes in hepatic bile acid synthesis and transport. • Treatment of pregnant mice with an Fxr agonist restores bile acid homeostasis.« less
Cyphert, Holly A.; Ge, Xuemei; Kohan, Alison B.; Salati, Lisa M.; Zhang, Yanqiao; Hillgartner, F. Bradley
2012-01-01
Previous studies have shown that starvation or consumption of a high fat, low carbohydrate (HF-LC) ketogenic diet induces hepatic fibroblast growth factor 21 (FGF21) gene expression in part by activating the peroxisome proliferator-activated receptor-α (PPARα). Using primary hepatocyte cultures to screen for endogenous signals that mediate the nutritional regulation of FGF21 expression, we identified two sources of PPARα activators (i.e. nonesterified unsaturated fatty acids and chylomicron remnants) that induced FGF21 gene expression. In addition, we discovered that natural (i.e. bile acids) and synthetic (i.e. GW4064) activators of the farnesoid X receptor (FXR) increased FGF21 gene expression and secretion. The effects of bile acids were additive with the effects of nonesterified unsaturated fatty acids in regulating FGF21 expression. FXR activation of FGF21 gene transcription was mediated by an FXR/retinoid X receptor binding site in the 5′-flanking region of the FGF21 gene. FGF19, a gut hormone whose expression and secretion is induced by intestinal bile acids, also increased hepatic FGF21 secretion. Deletion of FXR in mice suppressed the ability of an HF-LC ketogenic diet to induce hepatic FGF21 gene expression. The results of this study identify FXR as a new signaling pathway activating FGF21 expression and provide evidence that FXR activators work in combination with PPARα activators to mediate the stimulatory effect of an HF-LC ketogenic diet on FGF21 expression. We propose that the enhanced enterohepatic flux of bile acids during HF-LC consumption leads to activation of hepatic FXR and FGF19 signaling activity and an increase in FGF21 gene expression and secretion. PMID:22661717
Activation of Sirt1/FXR Signaling Pathway Attenuates Triptolide-Induced Hepatotoxicity in Rats.
Yang, Jing; Sun, Lixin; Wang, Lu; Hassan, Hozeifa M; Wang, Xuan; Hylemon, Phillip B; Wang, Tao; Zhou, Huiping; Zhang, Luyong; Jiang, Zhenzhou
2017-01-01
Triptolide (TP), a diterpenoid isolated from Tripterygium wilfordii Hook F, has an excellent pharmacological profile of immunosuppression and anti-tumor activities, but its clinical applications are severely restricted due to its severe and cumulative toxicities. The farnesoid X receptor (FXR) is the master bile acid nuclear receptor and plays an important role in maintaining hepatic metabolism homeostasis. Hepatic Sirtuin (Sirt1) is a key regulator of the FXR signaling pathway and hepatic metabolism homeostasis. The aims of this study were to determine whether Sirt1/FXR signaling pathway plays a critical role in TP-induced hepatotoxicity. Our study revealed that the intragastric administration of TP (400 μg/kg body weight) for 28 consecutive days increased bile acid accumulation, suppressed hepatic gluconeogenesis in rats. The expression of bile acid transporter BSEP was significantly reduced and cholesterol 7α-hydroxylase (CYP7A1) was markedly increased in the TP-treated group, whereas the genes responsible for hepatic gluconeogenesis were suppressed in the TP-treated group. TP also modulated the FXR and Sirt1 by decreasing its expression both in vitro and in vivo . The Sirt1 agonist SRT1720 and the FXR agonist obeticholic acid (OCA) were used both in vivo and in vitro . The remarkable liver damage induced by TP was attenuated by treatment with either SRT1720 or OCA, as reflected by decreased levels of serum total bile acids and alkaline phosphatase and increased glucose levels. Meanwhile, SRT1720 significantly alleviated TP-induced FXR suppression and FXR-targets involved in hepatic lipid and glucose metabolism. Based on these results, we conclude that Sirt1/FXR inactivation plays a critical role in TP-induced hepatotoxicity. Moreover, Sirt1/FXR axis represents a novel therapeutic target that could potentially ameliorate TP-induced hepatotoxicity.
Antidiabetic actions of a phosphatidylcholine ligand for nuclear receptor LRH-1
Lee, Jae Man; Lee, Yoon Kwang; Mamrosh, Jennifer L.; Busby, Scott A.; Griffin, Patrick R.; Pathak, Manish C.; Ortlund, Eric A.; Moore, David D.
2011-01-01
Nuclear hormone receptors regulate diverse metabolic pathways and the orphan nuclear receptor LRH-1 (NR5A2) regulates bile acid biosynthesis1,2. Structural studies have identified phospholipids as potential LRH-1 ligands3–5, but their functional relevance is unclear. Here we show that an unusual phosphatidylcholine species with two saturated 12 carbon fatty acid acyl side chains (dilauroyl phosphatidylcholine, DLPC) is an LRH-1 agonist ligand in vitro. DLPC treatment induces bile acid biosynthetic enzymes in mouse liver, increases bile acid levels, and lowers hepatic triglycerides and serum glucose. DLPC treatment also decreases hepatic steatosis and improves glucose homeostasis in two mouse models of insulin resistance. Both the antidiabetic and lipotropic effects are lost in liver specific Lrh-1 knockouts. These findings identify an LRH-1 dependent phosphatidylcholine signaling pathway that regulates bile acid metabolism and glucose homeostasis. PMID:21614002
Oleanolic acid alters bile acid metabolism and produces cholestatic liver injury in mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jie, E-mail: JLiu@kumc.edu; Zunyi Medical College, Zunyi 563003; Lu, Yuan-Fu
2013-11-01
Oleanolic acid (OA) is a triterpenoids that exists widely in plants. OA is effective in protecting against hepatotoxicants. Whereas a low dose of OA is hepatoprotective, higher doses and longer-term use of OA produce liver injury. This study characterized OA-induced liver injury in mice. Adult C57BL/6 mice were given OA at doses of 0, 22.5, 45, 90, and 135 mg/kg, s.c., daily for 5 days, and liver injury was observed at doses of 90 mg/kg and above, as evidenced by increases in serum activities of alanine aminotransferase and alkaline phosphatase, increases in serum total bilirubin, as well as by livermore » histopathology. OA-induced cholestatic liver injury was further evidenced by marked increases of both unconjugated and conjugated bile acids (BAs) in serum. Gene and protein expression analysis suggested that livers of OA-treated mice had adaptive responses to prevent BA accumulation by suppressing BA biosynthetic enzyme genes (Cyp7a1, 8b1, 27a1, and 7b1); lowering BA uptake transporters (Ntcp and Oatp1b2); and increasing a BA efflux transporter (Ostβ). OA increased the expression of Nrf2 and its target gene, Nqo1, but decreased the expression of AhR, CAR and PPARα along with their target genes, Cyp1a2, Cyp2b10 and Cyp4a10. OA had minimal effects on PXR and Cyp3a11. Taken together, the present study characterized OA-induced liver injury, which is associated with altered BA homeostasis, and alerts its toxicity potential. - Highlights: • Oleanolic acid at higher doses and long-term use may produce liver injury. • Oleanolic acid increased serum ALT, ALP, bilirubin and bile acid concentrations. • OA produced feathery degeneration, inflammation and cell death in the liver. • OA altered bile acid homeostasis, affecting bile acid synthesis and transport.« less
cGMP stimulates bile acid-independent bile formation and biliary bicarbonate excretion.
Myers, N C; Grune, S; Jameson, H L; Sawkat-Anwer, M
1996-03-01
The effect of guanosine 3',5'-cyclic monophosphate (cGMP) on hepatic bile formation was studied in isolated perfused rat livers and rat hepatocytes. Studies in isolated perfused rat livers showed that infusion of 8-bromoguanosine 3',5'-cyclic monophosphate (8-BrcGMP, 3 micromol/min or 100 microM) 1) increased bile flow without affecting biliary excretion of simultaneously infused taurocholate, 2) increased biliary concentration and excretion of HCO3(-) but did not affect biliary excretion of glutathione, and 3) increased net perfusate H+ efflux without affecting hepatic O2 uptake. Studies in isolated rat hepatocytes showed that 1) 8-BrcGMP increased intracellular pH in the presence (but not in the absence) of extracellular HCO-3, and effect inhibited by 4,4' -diisothiocyanostilbene-2,2'-disulfonic acid and Na+ replacement, 2) 8-BrcGMP did not affect taurocholate uptake and intracellular [Ca2+], and 3) bile acids, like ursodeoxycholate and cholate, did not increase cellular cGMP. Taken together, these results indicate that cGMP stimulates bile acid-independent bile formation, in part by stimulating biliary HCO3- excretion. cGMP may increase HCO3- excretion by stimulating sinusoidal Na+ - HCO3- cotransport, but not Na+/H+ exchange. cGMP, unlike adenosine 3',5'-cyclic monophosphate, may not regulate hepatic taurocholate transport, and bile acid-induced HCO3- rich choleresis may not be mediated via cGMP.
da Silva, Lívia M; Frión-Herrera, Yahima; Bartolomeu, Ariane R; Gorgulho, Carolina Mendonça; Sforcin, José M
2017-11-01
The effects of propolis and phenolic compounds (caffeic acid - Caf; dihydrocinnamic acid - Cin; p-coumaric acid - Cou) in the same quantity found in our propolis sample were investigated on human laryngeal epidermoid carcinoma (HEp-2) cells. Cell viability, apoptosis/necrosis and cell cycle arrest, P53 and CASPASE-3 gene expression, generation of reactive oxygen species (ROS) and the ability of propolis to induce doxorubicin (DOX) efflux using a P-glycoprotein (P-gp) inhibitor (verapamil) were assayed. Propolis exerted a cytotoxic effect on HEp-2 cells, whereas isolated compounds had no effect on cell viability. Higher concentrations were tested and Caf induced late apoptosis or necrosis in HEp-2 cells, while propolis induced apoptosis, both probably due to ROS generation. P53 expression was downregulated by propolis but not by Caf. CASPASE-3 expression was correlated with induction of both early and late apoptosis, with both propolis and Caf alone upregulating its expression. Propolis induced cell cycle arrest at G2/M phase and Caf at S phase. Propolis but not Caf may act as a P-gp inhibitor by modulating P-gp activity and inhibiting DOX efflux. Propolis exerted cytotoxic effects on HEp-2 cells, and the mechanisms are discussed, showing its potential as an antitumour drug. © 2017 Royal Pharmaceutical Society.
Azay-Milhau, Jacqueline; Ferrare, Karine; Leroy, Jeremy; Aubaterre, Jordan; Tournier, Michel; Lajoix, Anne-Dominique; Tousch, Didier
2013-11-25
In Eurasia folk medicine, roots of chicory (Cichorium intybus L.) have been reported to exert antidiabetic benefits. In vitro, a natural chicoric acid extract (NCRAE) from Cichorium intybus root has been shown to increase insulin secretion by pancreatic β-cells and glucose uptake by muscle cells. In vitro experiments were designed to compare the effects of two hydroxycinnamic acids, caffeic and ferulic acids, to those obtained with NCRAE (50 and 100 µg.mL(-1)) on the three major tissues implicated in glycemic regulation (pancreas, muscle and liver). In vivo experiments were performed in Wistar rats submitted to a daily intraperitoneal injection of NCRAE (3, 15 or 30 mg kg(-1)) for 4 days. On the fourth day, an intraperitoneal glucose tolerance test (IPGTT; 1 g kg(-1)) was carried out. Our results show that the three compounds we used are able each to induce an original response. Caffeic acid mainly promotes a decrease in hepatic glycogenolysis. Ferulic acid elicits a clear increase of insulin release and a reduction of hepatic glycogenolysis. However, this compound induces an inhibition of muscle glucose uptake. NCRAE provokes an increase of insulin release and glucose uptake without any effect on hepatic glycogenolysis. We could also show that none of these compounds implicates hepatic glucose 6-phosphatase in contrast to chlorogenic acid, known as an inhibitor of glucose 6-phosphatase and which is able to decrease glucose output from hepatocytes. Our results point out that NCRAE is able to decrease blood glucose without any effect hepatic effect. Our in vivo experiments bring evidence that 4 daily IP administrations of NCRAE improve IP glucose tolerance in a dose-dependent manner and mainly via an insulin sensitizing effect. We conclude that NCRAE presents an antihyperglycemic effect essentially due to a peripheral effect on muscle glucose uptake. © 2013 Elsevier Ireland Ltd. All rights reserved.
Dilger, Karin; Hohenester, Simon; Winkler-Budenhofer, Ursula; Bastiaansen, Barbara A J; Schaap, Frank G; Rust, Christian; Beuers, Ulrich
2012-07-01
Ursodeoxycholic acid (UDCA) exerts anticholestatic, antifibrotic and antiproliferative effects in primary biliary cirrhosis (PBC) via mechanisms not yet fully understood. Its adequate biliary enrichment is considered mandatory for therapeutic efficacy. However, precise determination of biliary enrichment of UDCA is not possible in clinical practice. Therefore, we investigated (i) the relationship between biliary enrichment and plasma pharmacokinetics of UDCA, (ii) the effect of UDCA on plasma and biliary bile acid composition and conjugation patterns, and (iii) on the intestinal detoxification machinery in patients with PBC and healthy controls. In 11 PBC patients and 11 matched healthy subjects, cystic bile and duodenal tissue were collected before and after 3 weeks of administration of UDCA (15 mg/kg/day). Extensive pharmacokinetic profiling of bile acids was performed. The effect of UDCA on the intestinal detoxification machinery was studied by quantitative PCR and Western blotting. The relative fraction of UDCA and its conjugates in plasma at trough level[x] correlated with their biliary enrichment[y] (r=0.73, p=0.0001, y=3.65+0.49x). Taurine conjugates of the major hydrophobic bile acid, chenodeoxycholic acid, were more prominent in bile of PBC patients than in that of healthy controls. Biliary bile acid conjugation patterns normalized after treatment with UDCA. UDCA induced duodenal expression of key export pumps, BCRP and P-glycoprotein. Biliary and trough plasma enrichment of UDCA are closely correlated in PBC and health. Taurine conjugation may represent an adaptive mechanism in PBC against chenodeoxycholic acid-mediated bile duct damage. UDCA may stabilize small intestinal detoxification by upregulation of efflux pumps. Copyright © 2012. Published by Elsevier B.V.
Dang, Yun-jie; Zhu, Chun-yan
2015-03-01
Cardiac disease has emerged as the leading cause of death worldwide, and food rich in phenolic acids has drawn much attention as sources of active substances of hypolipidemic drug. Ananas comosus L. (pineapple) is one of the most popular tropical and subtropical fruits. Isolated from pineapple leaves, EAL(Extract of Ananas Comosus L. Leaves) is rich in phenolic acids, such as p-coumaric acid, caffeic acid, and other phenolics, highly relevant to the putative cardiovascular-protective effects, which suggests its potential to be a new plant medicine for treatment of cardiac disease, but little is known about absorption, distribution, metabolism, and excretion of EAL in animals or human beings. In this study, we employed cDNA microarray, Caco-2 cell lines, and rat intestinal model to explore the absorption behavior of p-coumaric acid and caffeic acid in EAL. The permeation of 2 substances was concentration and time dependent. Results also indicated that monocarboxylic acid transporter was involved in the transepithelial transport of p-coumaric acid and caffeic acid. © 2015 Institute of Food Technologists®
Reinders, Robert D.; Biesterveld, Steef; Bijker, Peter G. H.
2001-01-01
The effects of proline and caffeic acid on the survival of Shiga toxin-producing Escherichia coli (STEC) O157:H7 strain ATCC 43895 in a model apple juice medium were studied. It is hypothesized that the inhibitory effect of caffeic acid may explain why almost all outbreaks of STEC O157:H7 infections linked to apple juice or cider have occurred in October or November. PMID:11375209
Li, Jin; Bai, Yang; Bai, Yun; Zhu, Ruichao; Liu, Wei; Cao, Jun; An, Mingrui; Tan, Zhijing; Chang, Yan-Xu
2017-01-01
Naoxintong capsule (NXTC) was a famous patent medicine of Traditional Chinese Medicine (TCM) to treat cerebrovascular diseases in China. An LC-MS/MS method was developed for simultaneous determination of 11 major ingredients (paeoniflorin, ecdysterone, amygdalin, mulberroside A, caffeic acid, ferulic acid, salvianolic acid B, astragaloside IV, formononetin, cryptotanshinone, and tanshinone IIA) in NXTC in rat plasma. All analytes were separated on an Eclipse plus C 18 column using a gradient mobile phase system of acetonitrile-0.1% formic acid aqueous solution. The lower limits of quantification of 11 ingredients were between 0.075 and 10 ng mL -1 . The precision was less than 15% and the accuracies were between 85% and 115%. The results showed that caffeic acid, ferulic acid, formononetin, cryptotanshinone, and tanshinone IIA could be detected after oral administration of NXTC. The validated method was successfully applied to pharmacokinetic study of the caffeic acid, ferulic acid, formononetin, cryptotanshinone, and tanshinone IIA in rats after oral administration of NXTC at single and triple dose.
Tolba, Mai F; Omar, Hany A; Azab, Samar S; Khalifa, Amani E; Abdel-Naim, Ashraf B; Abdel-Rahman, Sherif Z
2016-10-02
Propolis, a honey bee product, has been used in folk medicine for centuries for the treatment of abscesses, canker sores and for wound healing. Caffeic acid phenethyl ester (CAPE) is one of the most extensively investigated active components of propolis which possess many biological activities, including antibacterial, antiviral, antioxidant, anti-inflammatory, and anti-cancer effects. CAPE is a polyphenolic compound characterized by potent antioxidant and cytoprotective activities and protective effects against ischemia-reperfusion (I/R)-induced injury in multiple tissues such as brain, retina, heart, skeletal muscles, testis, ovaries, intestine, colon, and liver. Furthermore, several studies indicated the protective effects of CAPE against chemotherapy-induced adverse drug reactions (ADRs) including several antibiotics (streptomycin, vancomycin, isoniazid, ethambutol) and chemotherapeutic agents (mitomycin, doxorubicin, cisplatin, methotrexate). Due to the broad spectrum of pharmacological activities of CAPE, this review makes a special focus on the recently published data about CAPE antioxidant activity as well as its protective effects against I/R-induced injury and many adverse drug reactions.
Matsumoto, Takayuki; Horiuchi, Masako; Kamata, Katsuo; Seyama, Yoshiyuki
2009-06-01
The medical mechanism against type I allergies is to block the release or production of chemical mediators from mast cells or to block the H(1)-receptor signaling. We previously reported that the anti-allergic action of the dry powder from Bidens pilosa L. var. radiata SCHERFF treated with the enzyme cellulosine (eMMBP) was dependent on the inhibition of histamine release from mast cells. Here, we investigate that the effect of fractions in eMMBP on the histamine-induced contraction in guinea pig ileum and on the release of histamine in rat peritoneal mast cells. The histamine-induced contraction in guinea pig ileum is dose-dependently inhibited by ketotifen, an antagonist of H(1)-receptor. Fractions contained caffeic acid, caffeoylquinic acid and fractions contained flavonoids such as hyperin and isoquercitrin in eMMBP inhibit histamine release from mast cells, but only flavonoids such as hyperin, isoquercitrin and rutin suppress the histamine-induced contraction in guinea pig ileum. Moreover, the histamine-induced contraction was not affected by caffeic acid, however, such contraction was significantly inhibited by rutin. These results suggest that the primary antagonists of H(1)- receptor are different from the components in eMMBP that inhibit histamine release, and that these components participate in the anti-allergic activity of eMMBP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Hyung Gyun; Han, Eun Hee; Im, Ji Hye
2015-09-25
Caffeic acid phenethyl ester (CAPE), a natural component of propolis, is reported to have anticarcinogenic properties, although its precise chemopreventive mechanism remains unclear. In this study, we examined the effects of CAPE on 3-methylcholanthrene (3-MC)-induced CYP1A1 expression and activities. CAPE reduced the formation of the benzo[a]pyrene-DNA adduct. Moreover, CAPE inhibited 3-MC-induced CYP1A1 activity, mRNA expression, protein level, and promoter activity. CAPE treatment also decreased 3-MC-inducible xenobiotic-response element (XRE)-linked luciferase, aryl hydrocarbons receptor (AhR) transactivation and nuclear localization. CAPE induced hypoxia inducible factor-1α (HIF-1α) protein level and HIF-1α responsible element (HRE) transcriptional activity. CAPE-mediated HIF-1α reduced 3-MC-inducible CYP1A1 protein expression. Takenmore » together, CAPE decreases 3-MC-mediated CYP1A1 expression, and this inhibitory response is associated with inhibition of AhR and HIF-1α induction. - Highlights: • CAPE reduced the formation of the benzo[a]pyrene-DNA adduct. • CAPE inhibited 3-MC-induced CYP1A1 expression. • CAPE induced HIF-1α induction. • CAPE-mediated HIF-1α reduced 3-MC-inducible CYP1A1 expression.« less
Ajiboye, Taofeek O; Skiebe, Evelyn; Wilharm, Gottfried
2018-05-01
Phenolic acids with catechol groups are good prooxidants because of their low redox potential. In this study, we provided data showing that phenolic acids, caffeic acid, gallic acid and protocatechuic acid, enhanced colistin-mediated bacterial death by inducing redox imbalance. The minimum inhibitory concentrations of these phenolic acids against Acinetobacter baumannii AB5075 were considerably lowered for ΔsodB and ΔkatG mutants. Checkerboard assay shows synergistic interactions between colistin and phenolic acids. The phenolic acids exacerbated colistin-induced oxidative stress in A. baumannii AB5075 through increased superoxide anion generation, NAD + /NADH and ADP/ATP ratio. In parallel, the level of reduced glutathione was significantly lowered. We conclude that phenolic acids potentiate colistin-induced oxidative stress in A. baumannii AB5075 by increasing ROS generation, energy metabolism and electron transport chain activity with a concomitant decrease in glutathione. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Singh, Manish; Bajaj, Avinash
2014-09-28
We used eight bile acid cationic lipids differing in the number of hydroxyl groups and performed in-depth differential scanning calorimetry studies on model membranes doped with different percentages of these cationic bile acids. These studies revealed that the number and positioning of free hydroxyl groups on bile acids modulate the phase transition and co-operativity of membranes. Lithocholic acid based cationic lipids having no free hydroxyl groups gel well with dipalmitoylphosphatidylcholine (DPPC) membranes. Chenodeoxycholic acid lipids having one free hydroxyl group at the 7'-carbon position disrupt the membranes and lower their co-operativity. Deoxycholic acid and cholic acid based cationic lipids have free hydroxyl groups at the 12'-carbon position, and at 7'- and 12'-carbon positions respectively. Doping of these lipids at high concentrations increases the co-operativity of membranes suggesting that these lipids might induce self-assembly in DPPC membranes. These different modes of interactions between cationic lipids and model membranes would help in future for exploring their use in DNA/drug delivery.
Cui, Yunfeng; Li, Zhonglian; Zhao, Erpeng; Zhang, Ju; Cui, Naiqiang
2012-01-01
Aims: We designed this study to get insight into the disorder of lipid metabolism during cholesterol gallstone formation and evaluate the effect of ursodeoxycholic acid on the improvement of bile lithogenicity and on expression of lipid related genes. Methods: Rabbit cholesterol gallstone models were induced by high cholesterol diet. Bile, blood and liver tissues were obtained from rabbits after 0, 1, 2, 3, 4 and 5 weeks. Bile and blood lipids were measured enzymatically. 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), cytochrome P450, family 7, subfamily A, polypeptide 1 (CYP7A1) and sterol carrier protein 2 (SCP2) mRNA expressions were detected by using quantitative real-time RT-PCR. Cholesterol saturation index (CSI) was calculated by using Carey table to represent the bile lithogenicity. Results: Rates of gallstone formation of the 4 and 5 week treatment groups were 100 %, but that of the ursodeoxycholic acid treatment group was only 33.3 %. Expression of HMGCR and SCP2 mRNA in the 4 week group was upregulated and that of CYP7A1 mRNA decreased as compared with the 0 week group. Ursodeoxycholic acid could significantly extend nucleation time of bile and lower CSI. Ursodeoxycholic acid could reduce the expression of SCP2, but couldn't influence expression of HMGCR and CYP7A1. Conclusions: Abnormal expression of HMGCR, CYP7A1 and SCP2 might lead to high lithogenicity of bile. Ursodeoxycholic acid could improve bile lipids and lower bile lithogenicity, thereby reducing the incidence of gallstones. So it might be a good preventive drug for cholesterol gallstones. PMID:27847447
Microbiota-Derived Metabolic Factors Reduce Campylobacteriosis in Mice.
Sun, Xiaolun; Winglee, Kathryn; Gharaibeh, Raad Z; Gauthier, Josee; He, Zhen; Tripathi, Prabhanshu; Avram, Dorina; Bruner, Steven; Fodor, Anthony; Jobin, Christian
2018-05-01
Campylobacter jejuni, a prevalent foodborne bacterial pathogen, exploits the host innate response to induce colitis. Little is known about the roles of microbiota in C jejuni-induced intestinal inflammation. We investigated interactions between microbiota and intestinal cells during C jejuni infection of mice. Germ-free C57BL/6 Il10 -/- mice were colonized with conventional microbiota and infected with a single dose of C jejuni (10 9 colony-forming units/mouse) via gavage. Conventional microbiota were cultured under aerobic, microaerobic, or anaerobic conditions and orally transplanted into germ-free Il10 -/- mice. Colon tissues were collected from mice and analyzed by histology, real-time polymerase chain reaction, and immunoblotting. Fecal microbiota and bile acids were analyzed with 16S sequencing and high-performance liquid chromatography with mass spectrometry, respectively. Introduction of conventional microbiota reduced C jejuni-induced colitis in previously germ-free Il10 -/- mice, independent of fecal load of C jejuni, accompanied by reduced activation of mammalian target of rapamycin. Microbiota transplantation and 16S ribosomal DNA sequencing experiments showed that Clostridium XI, Bifidobacterium, and Lactobacillus were enriched in fecal samples from mice colonized with microbiota cultured in anaerobic conditions (which reduce colitis) compared with mice fed microbiota cultured under aerobic conditions (susceptible to colitis). Oral administration to mice of microbiota-derived secondary bile acid sodium deoxycholate, but not ursodeoxycholic acid or lithocholic acid, reduced C jejuni-induced colitis. Depletion of secondary bile acid-producing bacteria with antibiotics that kill anaerobic bacteria (clindamycin) promoted C jejuni-induced colitis in specific pathogen-free Il10 -/- mice compared with the nonspecific antibiotic nalidixic acid; colitis induction by antibiotics was associated with reduced level of luminal deoxycholate. We identified a mechanism by which the microbiota controls susceptibility to C jejuni infection in mice, via bacteria-derived secondary bile acids. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.
Pinelliae Rhizoma Praeparatum Involved in the Regulation of Bile Acids Metabolism in Hepatic Injury.
Guo, Shun; Zhang, Song; Liu, Linna; Yang, Peng; Dang, Xueliang; Wei, Huamei; Hu, Na; Shi, Lei; Zhang, Yan
2018-06-01
Pinelliae Rhizoma Praeparatum (PRP) as traditional Chinese medicine had been used for hepatic diseases in combinative forms. However, the effect of PRP was not clear when used alone. So to explore the hepatoprotective/hepatotoxin of PRP is necessary. The activities of PRP were investigated in acetaminophen-induced hepatic injury mice. Liver function markers, hepatic oxidative stress markers were evaluated. Bile acids metabolic transports and nuclear factor erythroid 2-related factor 2 (Nrf2) were detected. As a drug for the treatment of liver diseases, PRP slightly restored the parameters towards normal in model mice only in low dosage, and also had no antioxidant activity and regulate Nrf2. Cholestasis was significantly elevated in model mice when pretreatment with routine or high dosage of PRP, but had no effect on normal mice. Bile salt export pump (Bsep) and multidrug resistance-associated protein 2 (Mrp2) in model mice were markedly increased when pretreatment with low dose PRP, but significantly decreased when pretreatment in routine or high dosage. Mrp3 was significantly induced in model mice after pretreatment of PRP. But the adjustment effect to bile acids transporters by PRP was not significant in normal mice. These results reveal that PRP has the different effects on bile acids transporter in hepatic injury mice, and therefore, the dosage of PRP need to be paid attention to when it is used in clinical hepatic injury.
Masubuchi, Noriko; Nishiya, Takayoshi; Imaoka, Masako; Mizumaki, Kiyoko; Okazaki, Osamu
2016-08-05
Promising biomarkers were identified in adult male Crl:CD (SD) rats for the screening of new chemical entities for their potential to cause liver injury. We examined the serum biochemistry, liver histopathology, and bile acid profiles by LC-MS/MS, and the mRNA expression of transporters and CYPs by an RT-PCR after the following treatments to male Crl:CD (SD) rats: (a) bile duct ligation (BDL); (b) a single oral dose of 150 mg/kg α-naphthylisothiocyanate (ANIT); and (c) repeated oral doses of a novel pyrrolidinecarboxylic acid derivative (abbreviated as PCA) at 30, 300, and 1000 mg/kg. The serum total bile acid levels and bilirubin concentrations were found to be elevated in all of the groups. However, the bile acid component profiles of the PCA group differed significantly from BDL and ANIT models: deoxycholic acid, lithocholic acid, and sulfated bile acids were upregulated in a dose-dependent manner only in the PCA group. In addition, the PCA group demonstrated high levels of hepatic heme oxygenase-1 expression, whereas the profiles of the mRNA levels of the hepatic transporters and CYPs of all groups were found to be similar. The histopathological findings, for both the BDL and ANIT groups, were of bile duct hyperplasia, hepatocyte degeneration and necrosis. In contrast, only bile duct hyperplasia and hepatocyte degeneration were observed in the PCA group, even at a lethal dose. These results indicated that PCA induced a cholestatic condition and the increase of oxidative stress markers implies that this will also lead hepatocellular injury. In conclusion, the serum bile acid components and sulfated bile acid levels, and the expression of oxidative stress markers could provide information that aids in the diagnosis of liver injury type and helps to elucidate the mechanisms of hepatotoxicity. These findings can be extrapolated into our clinical investigation. The analysis of these crucial biomarkers is likely to be a useful screening tool in the lead optimization phase of drug discovery. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Filik, Hayati; Çetintaş, Gamze; Avan, Asiye Aslıhan; Aydar, Sevda; Koç, Serkan Naci; Boz, İsmail
2013-11-15
An electrochemical sensor composed of Nafion-graphene nanocomposite film for the voltammetric determination of caffeic acid (CA) was studied. A Nafion graphene oxide-modified glassy carbon electrode was fabricated by a simple drop-casting method and then graphene oxide was electrochemically reduced over the glassy carbon electrode. The electrochemical analysis method was based on the adsorption of caffeic acid on Nafion/ER-GO/GCE and then the oxidation of CA during the stripping step. The resulting electrode showed an excellent electrocatalytical response to the oxidation of caffeic acid (CA). The electrochemistry of caffeic acid on Nafion/ER-GO modified glassy carbon electrodes (GCEs) were studied by cyclic voltammetry and square-wave adsorption stripping voltammetry (SW-AdSV). At optimized test conditions, the calibration curve for CA showed two linear segments: the first linear segment increased from 0.1 to 1.5 and second linear segment increased up to 10 µM. The detection limit was determined as 9.1×10(-8) mol L(-1) using SW-AdSV. Finally, the proposed method was successfully used to determine CA in white wine samples. Copyright © 2013 Elsevier B.V. All rights reserved.
Guariglia-Oropeza, Veronica; Orsi, Renato H.; Guldimann, Claudia; Wiedmann, Martin; Boor, Kathryn J.
2018-01-01
Listeria monocytogenes uses a variety of transcriptional regulation strategies to adapt to the extra-host environment, the gastrointestinal tract, and the intracellular host environment. While the alternative sigma factor SigB has been proposed to be a key transcriptional regulator that facilitates L. monocytogenes adaptation to the gastrointestinal environment, the L. monocytogenes' transcriptional response to bile exposure is not well-understood. RNA-seq characterization of the bile stimulon was performed in two L. monocytogenes strains representing lineages I and II. Exposure to bile at pH 5.5 elicited a large transcriptomic response with ~16 and 23% of genes showing differential transcription in 10403S and H7858, respectively. The bile stimulon includes genes involved in motility and cell wall modification mechanisms, as well as genes in the PrfA regulon, which likely facilitate survival during the gastrointestinal stages of infection that follow bile exposure. The fact that bile exposure induced the PrfA regulon, but did not induce further upregulation of the SigB regulon (beyond that expected by exposure to pH 5.5), suggests a model where at the earlier stages of gastrointestinal infection (e.g., acid exposure in the stomach), SigB-dependent gene expression plays an important role. Subsequent exposure to bile induces the PrfA regulon, potentially priming L. monocytogenes for subsequent intracellular infection stages. Some members of the bile stimulon showed lineage- or strain-specific distribution when 27 Listeria genomes were analyzed. Even though sigB null mutants showed increased sensitivity to bile, the SigB regulon was not found to be upregulated in response to bile beyond levels expected by exposure to pH 5.5. Comparison of wildtype and corresponding ΔsigB strains newly identified 26 SigB-dependent genes, all with upstream putative SigB-dependent promoters. PMID:29467736
Caffeic Acid Derivatives in Dried Lamiaceae and Echinacea purpurea Products
USDA-ARS?s Scientific Manuscript database
The concentrations of caffeic acid derivatives within Lamiaceae and Echinacea (herb, spice, tea, and dietary supplement forms) readily available in the U.S. marketplace (n=72) were determined. After the first identification of chicoric acid in Ocimum basilicum (basil), the extent to which chicoric a...
Hu, Peng-Li; Yuan, Ya-Hong; Yue, Tian-Li
2018-01-01
This study aimed to analyze the bile acid patterns in commercially available oxgall powders used for evaluation of the bile tolerance ability of probiotic bacteria. Qxgall powders purchased from Sigma-Aldrich, Oxoid and BD Difco were dissolved in distilled water, and analyzed. Conjugated bile acids were profiled by ion-pair high-performance liquid chromatography (HPLC), free bile acids were detected as their p-bromophenacyl ester derivatives using reversed-phase HPLC after extraction with acetic ether, and total bile acids were analyzed by enzymatic-colorimetric assay. The results showed that 9 individual bile acids (i.e., taurocholic acid, glycocholic acid, taurodeoxycholic acid, glycodeoxycholic acid, taurochenodeoxycholic acid, glycochenodeoxycholic acid, cholic acid, chenodeoxycholic acid, deoxycholic acid) were present in each of the oxgall powders tested. The content of total bile acid among the three oxgall powders was similar; however, the relative contents of the individual bile acids among these oxgall powders were significantly different (P < 0.001). The oxgall powder from Sigma-Aldrich was closer to human bile in the ratios of glycine-conjugated bile acids to taurine-conjugated bile acids, dihydroxy bile acids to trihydroxy bile acids, and free bile acids to conjugated bile acids than the other powders were. It was concluded that the oxgall powder from Sigma-Aldrich should be used instead of those from Oxoid and BD Difco to evaluate the bile tolerance ability of probiotic bacteria as human bile model. PMID:29494656
Bile Acid Metabolism in Liver Pathobiology
Chiang, John Y. L.; Ferrell, Jessica M.
2018-01-01
Bile acids facilitate intestinal nutrient absorption and biliary cholesterol secretion to maintain bile acid homeostasis, which is essential for protecting liver and other tissues and cells from cholesterol and bile acid toxicity. Bile acid metabolism is tightly regulated by bile acid synthesis in the liver and bile acid biotransformation in the intestine. Bile acids are endogenous ligands that activate a complex network of nuclear receptor farnesoid X receptor and membrane G protein-coupled bile acid receptor-1 to regulate hepatic lipid and glucose metabolic homeostasis and energy metabolism. The gut-to-liver axis plays a critical role in the regulation of enterohepatic circulation of bile acids, bile acid pool size, and bile acid composition. Bile acids control gut bacteria overgrowth, and gut bacteria metabolize bile acids to regulate host metabolism. Alteration of bile acid metabolism by high-fat diets, sleep disruption, alcohol, and drugs reshapes gut microbiome and causes dysbiosis, obesity, and metabolic disorders. Gender differences in bile acid metabolism, FXR signaling, and gut microbiota have been linked to higher prevalence of fatty liver disease and hepatocellular carcinoma in males. Alteration of bile acid homeostasis contributes to cholestatic liver diseases, inflammatory diseases in the digestive system, obesity, and diabetes. Bile acid-activated receptors are potential therapeutic targets for developing drugs to treat metabolic disorders. PMID:29325602
Trautwein, E A; Forgbert, K; Rieckhoff, D; Erbersdobler, H F
1999-01-29
To examine the impact on bile acid metabolism and fecal steroid excretion as a mechanism involved in the lipid-lowering action of beta-cyclodextrin and resistant starch in comparison to cholestyramine, male golden Syrian hamsters were fed 0% (control), 8% or 12% of beta-cyclodextrin or resistant starch or 1% cholestyramine. Resistant starch, beta-cyclodextrin and cholestyramine significantly lowered plasma total cholesterol and triacylglycerol concentrations compared to control. Distinct changes in the bile acid profile of gallbladder bile were caused by resistant starch, beta-cyclodextrin and cholestyramine. While cholestyramine significantly reduced chenodeoxycholate independently of its taurine-glycine conjugation, beta-cyclodextrin and resistant starch decreased especially the percentage of taurochenodeoxycholate by -75% and -44%, respectively. As a result, the cholate:chenodeoxycholate ratio was significantly increased by 100% with beta-cyclodextrin and by 550% with cholestyramine while resistant starch revealed no effect on this ratio. beta-Cyclodextrin and resistant starch, not cholestyramine, significantly increased the glycine:taurine conjugation ratio demonstrating the predominance of glycine conjugated bile acids. Daily fecal excretion of bile acids was 4-times higher with 8% beta-cyclodextrin and 19-times with 1% cholestyramine compared to control. beta-Cyclodextrin and cholestyramine also induced a 2-fold increase in fecal neutral sterol excretion, demonstrating the sterol binding capacity of these two compounds. Resistant starch had only a modest effect on fecal bile acid excretion (80% increase) and no effect on excretion of neutral sterols, suggesting a weak interaction with intestinal steroid absorption. These data demonstrate the lipid-lowering potential of beta-cyclodextrin and resistant starch. An impaired reabsorption of circulating bile acids and intestinal cholesterol absorption leading to an increase in fecal bile acid and neutral sterol excretion is most likely the primary mechanism responsible for the lipid-lowering action of beta-cyclodextrin. In contrast, other mechanisms involving the alterations in the biliary bile acid profile or repressed hepatic lipogenesis, e.g., VLDL production, appear to be involved in the hypolipidemic effect of resistant starch.
Degradation of caffeic acid in subcritical water and online HPLC-DPPH assay of degradation products.
Khuwijitjaru, Pramote; Suaylam, Boonyanuch; Adachi, Shuji
2014-02-26
Caffeic acid was subjected to degradation under subcritical water conditions within 160-240 °C and at a constant pressure of 5 MPa in a continuous tubular reactor. Caffeic acid degraded quickly at these temperatures; the main products identified by liquid chromatography-diode array detection/mass spectrometry were hydroxytyrosol, protocatechuic aldehyde, and 4-vinylcatechol. The reaction rates for the degradation of caffeic acid and the formation of products were evaluated. Online high-performance liquid chromatography/2,2-diphenyl-1-picryhydrazyl assay was used to determine the antioxidant activity of each product in the solution. It was found that the overall antioxidant activity of the treated solution did not change during the degradation process. This study showed a potential of formation of antioxidants from natural phenolic compounds under these subcritical water conditions, and this may lead to a discovering of novel antioxidants compounds during the extraction by this technique.
The components of Melissa officinalis L. that influence protein biosynthesis in-vitro.
Chlabicz, J; Gałasiński, W
1986-11-01
An investigation of an inhibiting activity of a substance(s) in a tanninless extract from Melissa officinalis leaves on protein biosynthesis in-vitro has been made. At least two components which inhibited protein biosynthesis were present in the extract; these were caffeic acid and an unidentified glycoside. Freshly prepared buffered solutions of caffeic acid inhibited protein biosynthesis less than solutions stored for several days at room temperature (20 degrees C). In this case derivatives of caffeic acid were formed, which may be responsible for the increase in the inhibitory effect of stored caffeic acid solution. An inhibitor, in the homogeneous state, was also isolated from the glycoside fraction of M. officinalis. Studies on the mechanism of the action of this inhibitor revealed its effect is to use the result of a direct interaction with elongation factor EF-2, and the blocking of the binding reaction of EF-2 with ribosomes.
Bilirubin and bile acids removal by haemoperfusion through synthetic resin "Persorb".
Filip, K; Malý, J; Horký, J; Tlustáková, M; Kálal, J; Vrána, M
1990-01-01
A new type of styrene-divinylbenzene copolymer coated with polyhema was tested for biocompatibility and ability to remove bile acid, bilirubin, phenols and cholesterol in dogs with surgically induced biliary obstruction. After 4-hr hemoperfusion through a polypropylene column containing 325 g of resin, performed 7-10 days after the ligature of the cystic and common bile duct, the serum levels of bile acids, bilirubin, phenols and cholesterol decreased by 60.9 +/- 30.3% (p less than 0.001), 34.8 +/- 12.2% (p less than 0.001), 19.4 +/- 15.6% (p less than 0.001) and 15.3 +/- 4.2% (p less than 0.05), respectively. The procedure was well tolerated, no bleeding or other adverse reactions occurred. The average platelet count decreased by 19.4 +/- 15.6% (p less than 0.05). Hemoperfusion through the Czechoslovak resin coated with polyhema is safe and efficient for removal of bile acids and other protein-bound and lipid-soluble substances which accumulate in cholestatic syndromes and hepatic failure. Thus, it may play an important role in the treatment of such events as a method of artificial liver support.
2017-01-01
Summary The inhibitory activity and binding characteristics of caffeic acid, p-coumaric acid, quercetin and capsaicin, four phenolic compounds found in hot pepper, against porcine pancreatic lipase activity were studied and compared to hot pepper extract. Quercetin was the strongest inhibitor (IC50=(6.1±2.4) µM), followed by p-coumaric acid ((170.2±20.6) µM) and caffeic acid ((401.5±32.1) µM), while capsaicin and a hot pepper extract had very low inhibitory activity. All polyphenolic compounds showed a mixed-type inhibition. Fluorescence spectroscopy studies showed that polyphenolic compounds had the ability to quench the intrinsic fluorescence of pancreatic lipase by a static mechanism. The sequence of Stern-Volmer constant was quercetin, followed by caffeic and p-coumaric acids. Molecular docking studies showed that caffeic acid, quercetin and p-coumaric acid bound near the active site, while capsaicin bound far away from the active site. Hydrogen bonds and π-stacking hydrophobic interactions are the main pancreatic lipase-polyphenolic compound interactions observed. PMID:29540986
Peng, Sui; Huo, Xiaofang; Rezaei, Davood; Zhang, Qiuyang; Zhang, Xi; Yu, Chunhua; Asanuma, Kiyotaka; Cheng, Edaire; Pham, Thai H; Wang, David H; Chen, Minhu; Souza, Rhonda F; Spechler, Stuart Jon
2014-07-15
Hydrophobic bile acids like deoxycholic acid (DCA), which cause oxidative DNA damage and activate NF-κB in Barrett's metaplasia, might contribute to carcinogenesis in Barrett's esophagus. We have explored mechanisms whereby ursodeoxycholic acid (UDCA, a hydrophilic bile acid) protects against DCA-induced injury in vivo in patients and in vitro using nonneoplastic, telomerase-immortalized Barrett's cell lines. We took biopsies of Barrett's esophagus from 21 patients before and after esophageal perfusion with DCA (250 μM) at baseline and after 8 wk of oral UDCA treatment. DNA damage was assessed by phospho-H2AX expression, neutral CometAssay, and phospho-H2AX nuclear foci formation. Quantitative PCR was performed for antioxidants including catalase and GPX1. Nrf2, catalase, and GPX1 were knocked down with siRNAs. Reporter assays were performed using a plasmid construct containing antioxidant responsive element. In patients, baseline esophageal perfusion with DCA significantly increased phospho-H2AX and phospho-p65 in Barrett's metaplasia. Oral UDCA increased GPX1 and catalase levels in Barrett's metaplasia and prevented DCA perfusion from inducing DNA damage and NF-κB activation. In cells, DCA-induced DNA damage and NF-κB activation was prevented by 24-h pretreatment with UDCA, but not by mixing UDCA with DCA. UDCA activated Nrf2 signaling to increase GPX1 and catalase expression, and protective effects of UDCA pretreatment were blocked by siRNA knockdown of these antioxidants. UDCA increases expression of antioxidants that prevent toxic bile acids from causing DNA damage and NF-κB activation in Barrett's metaplasia. Elucidation of this molecular pathway for UDCA protection provides rationale for clinical trials on UDCA for chemoprevention in Barrett's esophagus. Copyright © 2014 the American Physiological Society.
Peng, Sui; Huo, Xiaofang; Rezaei, Davood; Zhang, Qiuyang; Zhang, Xi; Yu, Chunhua; Asanuma, Kiyotaka; Cheng, Edaire; Pham, Thai H.; Wang, David H.; Chen, Minhu; Spechler, Stuart Jon
2014-01-01
Hydrophobic bile acids like deoxycholic acid (DCA), which cause oxidative DNA damage and activate NF-κB in Barrett's metaplasia, might contribute to carcinogenesis in Barrett's esophagus. We have explored mechanisms whereby ursodeoxycholic acid (UDCA, a hydrophilic bile acid) protects against DCA-induced injury in vivo in patients and in vitro using nonneoplastic, telomerase-immortalized Barrett's cell lines. We took biopsies of Barrett's esophagus from 21 patients before and after esophageal perfusion with DCA (250 μM) at baseline and after 8 wk of oral UDCA treatment. DNA damage was assessed by phospho-H2AX expression, neutral CometAssay, and phospho-H2AX nuclear foci formation. Quantitative PCR was performed for antioxidants including catalase and GPX1. Nrf2, catalase, and GPX1 were knocked down with siRNAs. Reporter assays were performed using a plasmid construct containing antioxidant responsive element. In patients, baseline esophageal perfusion with DCA significantly increased phospho-H2AX and phospho-p65 in Barrett's metaplasia. Oral UDCA increased GPX1 and catalase levels in Barrett's metaplasia and prevented DCA perfusion from inducing DNA damage and NF-κB activation. In cells, DCA-induced DNA damage and NF-κB activation was prevented by 24-h pretreatment with UDCA, but not by mixing UDCA with DCA. UDCA activated Nrf2 signaling to increase GPX1 and catalase expression, and protective effects of UDCA pretreatment were blocked by siRNA knockdown of these antioxidants. UDCA increases expression of antioxidants that prevent toxic bile acids from causing DNA damage and NF-κB activation in Barrett's metaplasia. Elucidation of this molecular pathway for UDCA protection provides rationale for clinical trials on UDCA for chemoprevention in Barrett's esophagus. PMID:24852569
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blazquez, Alba G., E-mail: albamgb@usal.es; CIBERehd, Instituto de Salud Carlos III, Madrid; Briz, Oscar, E-mail: obriz@usal.es
Acetaminophen is used as first-choice drug for pain relief during pregnancy. Here we have investigated the effect of acetaminophen at subtoxic doses on the expression of ABC export pumps in trophoblast cells and its functional repercussion on the placental barrier during maternal cholestasis. The incubation of human choriocarcinoma cells (JAr, JEG-3 and BeWo) with acetaminophen for 48 h resulted in no significant changes in the expression and/or activity of MDR1 and MRPs. In contrast, in JEG-3 cells, BCRP mRNA, protein, and transport activity were reduced. In rat placenta, collected at term, acetaminophen administration for the last three days of pregnancymore » resulted in enhanced mRNA, but not protein, levels of Mrp1 and Bcrp. In fact, a decrease in Bcrp protein was found. Using in situ perfused rat placenta, a reduction in the Bcrp-dependent fetal-to-maternal bile acid transport after treating the dams with acetaminophen was found. Complete biliary obstruction in pregnant rats induced a significant bile acid accumulation in fetal serum and tissues, which was further enhanced when the mothers were treated with acetaminophen. This drug induced increased ROS production in JEG-3 cells and decreased the total glutathione content in rat placenta. Moreover, the NRF2 pathway was activated in JEG-3 cells as shown by an increase in nuclear NRF2 levels and an up-regulation of NRF2 target genes, NQO1 and HMOX-1, which was not observed in rat placenta. In conclusion, acetaminophen induces in placenta oxidative stress and a down-regulation of BCRP/Bcrp, which may impair the placental barrier to bile acids during maternal cholestasis. - Highlights: • Acetaminophen induces changes in placental BCRP expression in vitro. • This drug reduces the ability of placental cells to export BCRP substrates. • Acetaminophen induces changes in Bcrp expression in rat placenta. • Placental barrier to bile acids is impaired in rats treated with this drug.« less
Metformin interferes with bile acid homeostasis through AMPK-FXR crosstalk
Lien, Fleur; Berthier, Alexandre; Bouchaert, Emmanuel; Gheeraert, Céline; Alexandre, Jeremy; Porez, Geoffrey; Prawitt, Janne; Dehondt, Hélène; Ploton, Maheul; Colin, Sophie; Lucas, Anthony; Patrice, Alexandre; Pattou, François; Diemer, Hélène; Van Dorsselaer, Alain; Rachez, Christophe; Kamilic, Jelena; Groen, Albert K.; Staels, Bart; Lefebvre, Philippe
2014-01-01
The nuclear bile acid receptor farnesoid X receptor (FXR) is an important transcriptional regulator of bile acid, lipid, and glucose metabolism. FXR is highly expressed in the liver and intestine and controls the synthesis and enterohepatic circulation of bile acids. However, little is known about FXR-associated proteins that contribute to metabolic regulation. Here, we performed a mass spectrometry–based search for FXR-interacting proteins in human hepatoma cells and identified AMPK as a coregulator of FXR. FXR interacted with the nutrient-sensitive kinase AMPK in the cytoplasm of target cells and was phosphorylated in its hinge domain. In cultured human and murine hepatocytes and enterocytes, pharmacological activation of AMPK inhibited FXR transcriptional activity and prevented FXR coactivator recruitment to promoters of FXR-regulated genes. Furthermore, treatment with AMPK activators, including the antidiabetic biguanide metformin, inhibited FXR agonist induction of FXR target genes in mouse liver and intestine. In a mouse model of intrahepatic cholestasis, metformin treatment induced FXR phosphorylation, perturbed bile acid homeostasis, and worsened liver injury. Together, our data indicate that AMPK directly phosphorylates and regulates FXR transcriptional activity to precipitate liver injury under conditions favoring cholestasis. PMID:24531544
Cheng, Yaofeng; Chen, Shenjue; Freeden, Chris; Chen, Weiqi; Zhang, Yueping; Abraham, Pamela; Nelson, David M; Humphreys, W Griffith; Gan, Jinping; Lai, Yurong
2017-09-01
The interference of bile acid secretion through bile salt export pump (BSEP) inhibition is one of the mechanisms for troglitazone (TGZ)-induced hepatotoxicity. Here, we investigated the impact of single or repeated oral doses of TGZ (200 mg/kg/day, 7 days) on bile acid homoeostasis in wild-type (WT) and Bsep knockout (KO) rats. Following oral doses, plasma exposures of TGZ were not different between WT and KO rats, and were similar on day 1 and day 7. However, plasma exposures of the major metabolite, troglitazone sulfate (TS), in KO rats were 7.6- and 9.3-fold lower than in WT on day 1 and day 7, respectively, due to increased TS biliary excretion. With Bsep KO, the mRNA levels of multidrug resistance-associated protein 2 (Mrp2), Mrp3, Mrp4, Mdr1, breast cancer resistance protein (Bcrp), sodium taurocholate cotransporting polypeptide, small heterodimer partner, and Sult2A1 were significantly altered in KO rats. Following seven daily TGZ treatments, Cyp7A1 was significantly increased in both WT and KO rats. In the vehicle groups, plasma exposures of individual bile acids demonstrated variable changes in KO rats as compared with WT. WT rats dosed with TGZ showed an increase of many bile acid species in plasma on day 1, suggesting the inhibition of Bsep. Conversely, these changes returned to base levels on day 7. In KO rats, alterations of most bile acids were observed after seven doses of TGZ. Collectively, bile acid homeostasis in rats was regulated through bile acid synthesis and transport in response to Bsep deficiency and TGZ inhibition. Additionally, our study is the first to demonstrate that repeated TGZ doses can upregulate Cyp7A1 in rats. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.
Inoue, Takuya; Wang, Joon-Ho; Higashiyama, Masaaki; Rudenkyy, Sergiy; Higuchi, Kazuhide; Guth, Paul H.; Engel, Eli; Kaunitz, Jonathan D.
2012-01-01
Intestinal endocrine cells release gut hormones, including glucagon-like peptides (GLPs), in response to luminal nutrients. Luminal l-glutamate (l-Glu) and 5′-inosine monophosphate (IMP) synergistically increases duodenal HCO3− secretion via GLP-2 release. Since L cells express the bile acid receptor TGR5 and dipeptidyl peptidase (DPP) IV rapidly degrades GLPs, we hypothesized that luminal amino acids or bile acids stimulate duodenal HCO3− secretion via GLP-2 release, which is enhanced by DPPIV inhibition. We measured HCO3− secretion with pH and CO2 electrodes using a perfused rat duodenal loop under isoflurane anesthesia. l-Glu (10 mM) and IMP (0.1 mM) were luminally coperfused with or without luminal perfusion (0.1 mM) or intravenous (iv) injection (3 μmol/kg) of the DPPIV inhibitor NVP728. The loop was also perfused with a selective TGR5 agonist betulinic acid (BTA, 10 μM) or the non-bile acid type TGR5 agonist 3-(2-chlorophenyl)-N-(4-chlorophenyl)-N,5-dimethylisoxazole-4-carboxamide (CCDC; 10 μM). DPPIV activity visualized by use of the fluorogenic substrate was present on the duodenal brush border and submucosal layer, both abolished by the incubation with NVP728 (0.1 mM). An iv injection of NVP728 enhanced l-Glu/IMP-induced HCO3− secretion, whereas luminal perfusion of NVP728 had no effect. BTA or CCDC had little effect on HCO3− secretion, whereas NVP728 iv markedly enhanced BTA- or CCDC-induced HCO3− secretion, the effects inhibited by a GLP-2 receptor antagonist. Coperfusion of the TGR5 agonist enhanced l-Glu/IMP-induced HCO3− secretion with the enhanced GLP-2 release, suggesting that TGR5 activation amplifies nutrient sensing signals. DPPIV inhibition potentiated luminal l-Glu/IMP-induced and TGR5 agonist-induced HCO3− secretion via a GLP-2 pathway, suggesting that the modulation of the local concentration of the endogenous secretagogue GLP-2 by luminal compounds and DPPIV inhibition helps regulate protective duodenal HCO3− secretion. PMID:22821947
Inoue, Takuya; Wang, Joon-Ho; Higashiyama, Masaaki; Rudenkyy, Sergiy; Higuchi, Kazuhide; Guth, Paul H; Engel, Eli; Kaunitz, Jonathan D; Akiba, Yasutada
2012-10-01
Intestinal endocrine cells release gut hormones, including glucagon-like peptides (GLPs), in response to luminal nutrients. Luminal L-glutamate (L-Glu) and 5'-inosine monophosphate (IMP) synergistically increases duodenal HCO3- secretion via GLP-2 release. Since L cells express the bile acid receptor TGR5 and dipeptidyl peptidase (DPP) IV rapidly degrades GLPs, we hypothesized that luminal amino acids or bile acids stimulate duodenal HCO3- secretion via GLP-2 release, which is enhanced by DPPIV inhibition. We measured HCO3- secretion with pH and CO2 electrodes using a perfused rat duodenal loop under isoflurane anesthesia. L-Glu (10 mM) and IMP (0.1 mM) were luminally coperfused with or without luminal perfusion (0.1 mM) or intravenous (iv) injection (3 μmol/kg) of the DPPIV inhibitor NVP728. The loop was also perfused with a selective TGR5 agonist betulinic acid (BTA, 10 μM) or the non-bile acid type TGR5 agonist 3-(2-chlorophenyl)-N-(4-chlorophenyl)-N,5-dimethylisoxazole-4-carboxamide (CCDC; 10 μM). DPPIV activity visualized by use of the fluorogenic substrate was present on the duodenal brush border and submucosal layer, both abolished by the incubation with NVP728 (0.1 mM). An iv injection of NVP728 enhanced L-Glu/IMP-induced HCO3- secretion, whereas luminal perfusion of NVP728 had no effect. BTA or CCDC had little effect on HCO3- secretion, whereas NVP728 iv markedly enhanced BTA- or CCDC-induced HCO3- secretion, the effects inhibited by a GLP-2 receptor antagonist. Coperfusion of the TGR5 agonist enhanced L-Glu/IMP-induced HCO3- secretion with the enhanced GLP-2 release, suggesting that TGR5 activation amplifies nutrient sensing signals. DPPIV inhibition potentiated luminal L-Glu/IMP-induced and TGR5 agonist-induced HCO3- secretion via a GLP-2 pathway, suggesting that the modulation of the local concentration of the endogenous secretagogue GLP-2 by luminal compounds and DPPIV inhibition helps regulate protective duodenal HCO3- secretion.
Qiao, Xue; Ye, Min; Pan, De-lin; Miao, Wen-juan; Xiang, Cheng; Han, Jian; Guo, De-an
2011-01-07
Animal biles and gallstones are popularly used in traditional Chinese medicines, and bile acids are their major bioactive constituents. Some of these medicines, like cow-bezoar, are very expensive, and may be adulterated or even replaced by less expensive but similar species. Due to poor ultraviolet absorbance and structural similarity of bile acids, effective technology for species differentiation and quality control of bile-based Chinese medicines is still lacking. In this study, a rapid and reliable method was established for the simultaneous qualitative and quantitative analysis of 18 bile acids, including 6 free steroids (cholic acid, chenodeoxycholic acid, deoxycholic acid, lithocholic acid, hyodeoxycholic acid, and ursodeoxycholic acid) and their corresponding glycine conjugates and taurine conjugates, by using liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS). This method was used to analyze six bile-based Chinese medicines: bear bile, cattle bile, pig bile, snake bile, cow-bezoar, and artificial cow-bezoar. Samples were separated on an Atlantis dC₁₈ column and were eluted with methanol-acetonitrile-water containing ammonium acetate. The mass spectrometer was monitored in the negative electrospray ionization mode. Total ion currents of the samples were compared for species differentiation, and the contents of bile acids were determined by monitoring specific ion pairs in a selected reaction monitoring program. All 18 bile acids showed good linearity (r² > 0.993) in a wide dynamic range of up to 2000-fold, using dehydrocholic acid as the internal standard. Different animal biles could be explicitly distinguished by their major characteristic bile acids: tauroursodeoxycholic acid and taurochenodeoxycholic acid for bear bile, glycocholic acid, cholic acid and taurocholic acid for cattle bile, glycohyodeoxycholic acid and glycochenodeoxycholic acid for pig bile, and taurocholic acid for snake bile. Furthermore, cattle bile, cow-bezoar, and artificial cow-bezoar could be differentiated by the existence of hyodeoxycholic acid and the ratio of cholic acid to deoxycholic acid. This study provided bile acid profiles of bile-based Chinese medicines for the first time, which could be used for their quality control. Copyright © 2010 Elsevier B.V. All rights reserved.
Proceedings of the Natick Science Symposium (4th) Held in Natick, Massachusetts on 9-10 June 1992
1992-09-01
HQ - hydroquinone; MG - methyl gallate; CA - caffeic acid ; CHIA - chlorogenic acid ; GA - gallic acid ; FOLY - polymeric antioxidant. Values shown...examples 268 FQRrER & BIACK (qu~tin, hydroquinone, caffeic acid , chlorogenic acid and gallic acid ) , these are relatively ineffective in HSV...unless covalently bonded to the membrane. 279 SENECAL & RAND A membrane lactase reactor, modelled after the mammalian small intestine, has been
Boldine enhances bile production in rats via osmotic and farnesoid X receptor dependent mechanisms.
Cermanova, Jolana; Kadova, Zuzana; Zagorova, Marie; Hroch, Milos; Tomsik, Pavel; Nachtigal, Petr; Kudlackova, Zdenka; Pavek, Petr; Dubecka, Michaela; Ceckova, Martina; Staud, Frantisek; Laho, Tomas; Micuda, Stanislav
2015-05-15
Boldine, the major alkaloid from the Chilean Boldo tree, is used in traditional medicine to support bile production, but evidence to support this function is controversial. We analyzed the choleretic potential of boldine, including its molecular background. The acute- and long-term effects of boldine were evaluated in rats either during intravenous infusion or after 28-day oral treatment. Infusion of boldine instantly increased the bile flow 1.4-fold in healthy rats as well as in animals with Mrp2 deficiency or ethinylestradiol induced cholestasis. This effect was not associated with a corresponding increase in bile acid or glutathione biliary excretion, indicating that the effect is not related to stimulation of either bile acid dependent or independent mechanisms of bile formation and points to the osmotic activity of boldine itself. We subsequently analyzed bile production under conditions of changing biliary excretion of boldine after bolus intravenous administration and found strong correlations between both parameters. HPLC analysis showed that bile concentrations of boldine above 10 μM were required for induction of choleresis. Importantly, long-term pretreatment, when the bile collection study was performed 24-h after the last administration of boldine, also accelerated bile formation despite undetectable levels of the compound in bile. The effect paralleled upregulation of the Bsep transporter and increased biliary clearance of its substrates, bile acids. We consequently confirmed the ability of boldine to stimulate the Bsep transcriptional regulator, FXR receptor. In conclusion, our study clarified the mechanisms and circumstances surrounding the choleretic activity of boldine. Copyright © 2015 Elsevier Inc. All rights reserved.
Marzioni, Marco; Francis, Heather; Benedetti, Antonio; Ueno, Yoshiyuki; Fava, Giammarco; Venter, Juliet; Reichenbach, Ramona; Mancino, Maria Grazia; Summers, Ryun; Alpini, Gianfranco; Glaser, Shannon
2006-01-01
Chronic cholestatic liver diseases are characterized by impaired balance between proliferation and death of cholangiocytes, as well as vanishing of bile ducts and liver failure. Ursodeoxycholic acid (UDCA) is a bile acid widely used for the therapy of cholangiopathies. However, little is known of the cytoprotective effects of UDCA on cholangiocytes. Therefore, UDCA and its taurine conjugate tauroursodeoxycholic acid (TUDCA) were administered in vivo to rats simultaneously subjected to bile duct ligation and vagotomy, a model that induces cholestasis and loss of bile ducts by apoptosis of cholangiocytes. Because these two bile acids act through Ca2+ signaling, animals were also treated with BAPTA/AM (an intracellular Ca2+ chelator) or Gö6976 (a Ca2+-dependent protein kinase C-α inhibitor). The administration of UDCA or TUDCA prevented the induction of apoptosis and the loss of proliferative and functional responses observed in the bile duct ligation-vagotomized rats. These effects were neutralized by the simultaneous administration of BAPTA/AM or Gö6976. UDCA and TUDCA enhanced intracellular Ca2+ and IP3 levels, together with increased phosphorylation of protein kinase C-α. Parallel changes were observed regarding the activation of the MAPK and PI3K pathways, changes that were abolished by addition of BAPTA/AM or Gö6976. These studies provide information that may improve the response of cholangiopathies to medical therapy. PMID:16436655
Lima, Rogério Barbosa; Salvador, Victor Hugo; dos Santos, Wanderley Dantas; Bubna, Gisele Adriana; Finger-Teixeira, Aline; Soares, Anderson Ricardo; Marchiosi, Rogério; Ferrarese, Maria de Lourdes Lucio; Ferrarese-Filho, Osvaldo
2013-01-01
Cinnamic acid and its hydroxylated derivatives (p-coumaric, caffeic, ferulic and sinapic acids) are known allelochemicals that affect the seed germination and root growth of many plant species. Recent studies have indicated that the reduction of root growth by these allelochemicals is associated with premature cell wall lignification. We hypothesized that an influx of these compounds into the phenylpropanoid pathway increases the lignin monomer content and reduces the root growth. To confirm this hypothesis, we evaluated the effects of cinnamic, p-coumaric, caffeic, ferulic and sinapic acids on soybean root growth, lignin and the composition of p-hydroxyphenyl (H), guaiacyl (G) and syringyl (S) monomers. To this end, three-day-old seedlings were cultivated in nutrient solution with or without allelochemical (or selective enzymatic inhibitors of the phenylpropanoid pathway) in a growth chamber for 24 h. In general, the results showed that 1) cinnamic, p-coumaric, caffeic and ferulic acids reduced root growth and increased lignin content; 2) cinnamic and p-coumaric acids increased p-hydroxyphenyl (H) monomer content, whereas p-coumaric, caffeic and ferulic acids increased guaiacyl (G) content, and sinapic acid increased sinapyl (S) content; 3) when applied in conjunction with piperonylic acid (PIP, an inhibitor of the cinnamate 4-hydroxylase, C4H), cinnamic acid reduced H, G and S contents; and 4) when applied in conjunction with 3,4-(methylenedioxy)cinnamic acid (MDCA, an inhibitor of the 4-coumarate:CoA ligase, 4CL), p-coumaric acid reduced H, G and S contents, whereas caffeic, ferulic and sinapic acids reduced G and S contents. These results confirm our hypothesis that exogenously applied allelochemicals are channeled into the phenylpropanoid pathway causing excessive production of lignin and its main monomers. By consequence, an enhanced stiffening of the cell wall restricts soybean root growth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Mi Hee; Kang, Dong Woo; Jung, Yunjin
2013-12-06
Highlights: •We found CAFÉ, a natural product that suppresses expression and activity of PLD1. •CAPE decreased PLD1 expression by inhibiting NFκB transactivation. •CAPE rapidly inhibited PLD activity via its binding to a Cys837 of PLD1. •PLD1 downregulation by CAPE inhibited invasion and proliferation of glioma cells. -- Abstract: Upregulation of phospholipase D (PLD) is functionally linked with oncogenic signals and tumorigenesis. Caffeic acid phenethyl ester (CAPE) is an active compound of propolis extract that exhibits anti-proliferative, anti-inflammatory, anti-oxidant, and antineoplastic properties. In this study, we demonstrated that CAPE suppressed the expression of PLD1 at the transcriptional level via inhibition ofmore » binding of NFκB to PLD1 promoter. Moreover, CAPE, but not its analogs, bound to a Cys837 residue of PLD1 and inhibited enzymatic activity of PLD. CAPE also decreased activation of matrix metalloproteinases-2 induced by phosphatidic acid, a product of PLD activity. Ultimately, CAPE-induced downregulation of PLD1 suppressed invasion and proliferation of glioma cells. Taken together, the results of this study indicate that CAPE might contribute to anti-neoplastic effect by targeting PLD1.« less
Regulation of hepatic bile acid transporters Ntcp and Bsep expression.
Cheng, Xingguo; Buckley, David; Klaassen, Curtis D
2007-12-03
Sodium-taurocholate cotransporting polypeptide (Ntcp) and bile salt export pump (Bsep) are two key transporters for hepatic bile acid uptake and excretion. Alterations in Ntcp and Bsep expression have been reported in pathophysiological conditions. In the present study, the effects of age, gender, and various chemicals on the regulation of these two transporters were characterized in mice. Ntcp and Bsep mRNA levels in mouse liver were low in the fetus, but increased to its highest expression at parturition. After birth, mouse Ntcp and Bsep mRNA decreased by more than 50%, and then gradually increased to adult levels by day 30. Expression of mouse Ntcp mRNA and protein exhibit higher levels in female than male livers. No gender difference exists in BSEP/Bsep expression in human and mouse livers. Hormone replacements conducted in gonadectomized, hypophysectomized, and lit/lit mice indicate that female-predominant Ntcp expression in mouse liver is due to the inhibitory effect of male-pattern GH secretion, but not sex hormones. Ntcp and Bsep expression are in general resistant to induction by a large battery of microsomal enzyme inducers. Administration of cholestyramine increased Ntcp, whereas chenodeoxycholic acid (CDCA) increased Bsep mRNA expression. In conclusion, mouse Ntcp and Bsep are regulated by age, gender, cholestyramine, and bile acid, but resistant to induction by most microsomal enzyme inducers.
In vitro inhibition of OATP-mediated uptake of phalloidin using bile acid derivatives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herraez, Elisa; Macias, Rocio I.R.; Vazquez-Tato, Jose
2009-08-15
Hepatocyte uptake of phalloidin is carried out mainly by OATP1B1. We have used this compound as a prototypic substrate and assayed the ability to inhibit OATP-mediated phalloidin transport of four bile acid derivatives (BALU-1, BALU-2, BALU-3 and BALU-4) that showed positive results in preliminary screening. Using Xenopus laevis oocytes for heterologous expression of transporters, BALUs were found to inhibit taurocholic acid (TCA) transport by OATP1B1 (but not OATP1B3) as well as by rat Oatp1a1, Oatp1a4 and Oatp1b2. The study of their ability to inhibit sodium-dependent bile acid transporters revealed that the four BALUs induced an inhibition of rat Asbt-mediated TCAmore » transport, which was similar to TCA-induced self-inhibition. Regarding human NTCP and rat Ntcp, BALU-1 differs from the other three BALUS in its lack of effect on TCA transport by these proteins. Using HPLC-MS/MS and CHO cells stably expressing OATP1B1 the ability of BALU-1 to inhibit the uptake of phalloidin itself by this transporter was confirmed. Kinetic analysis using X. laevis oocytes revealed that BALU-1-induced inhibition of OATP1B1 was mainly due to a competitive mechanism (Ki = 8 {mu}M). In conclusion, BALU-1 may be useful as a pharmacological tool to inhibit the uptake of compounds mainly taken up by OATP1B1 presumably without impairing bile acid uptake by the major carrier accounting for this process, i.e., NTCP.« less
UDCA and CDCA alleviate 17α-ethinylestradiol-induced cholestasis through PKA-AMPK pathways in rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xiaojiaoyang; Yuan, Zihang
Estrogen-induced cholestasis, known as intrahepatic cholestasis of pregnancy (ICP), is an estrogen-related liver disease that is widely recognized as female or pregnancy-specific. Our previous findings showed that the synthetic estrogen, 17α-ethinylestradiol (EE), induced cholestatic injury through ERK1/2-LKB1-AMP-activated protein kinase (AMPK) signaling pathway and its mediated suppression of farnesoid X receptor (FXR). To investigate the role played by bile acids in EE-induced cholestasis, we evaluated the effects of chenodeoxycholic acid (CDCA), ursodeoxycholic acid (UDCA) and deoxycholic acid (DCA) on sandwich cultured rat primary hepatocytes (SCRHs) and an in vivo rat model. Our results showed that, both CDCA and UDCA significantly inducedmore » time- and concentration-dependent reduction in AMPK phosphorylation in SCRHs. Despite having different effects on FXR activation, CDCA and UDCA both inhibited EE-induced AMPK activation, accompanied with the up-regulation of FXR and its downstream bile acid transporters. However, although DCA activates FXR and induces SHP, it was unable to alleviate EE-induced FXR suppression and further aggravated EE-induced cholestasis. We further demonstrated that both CDCA and UDCA, but not DCA, activated cyclic AMP dependent protein kinase (PKA) in SCRHs and the livers of male rats (8 weeks old) liver. Furthermore, PKA antagonist, H89, blocked the AMPK inhibition by CDCA and UDCA, and pharmacological and genetic activation of PKA suppressed EE-induced AMPK activation and its downstream effects. Collectively, these results suggest that CDCA and UDCA protect against estrogen-induced cholestatic injury via PKA signaling pathway and up-regulation of EE-suppressed FXR, which suggests a potential therapeutic target for ICP. - Highlights: • AMPK is involved in cholestatic liver injury with bile acid dysregulation. • CDCA and UDCA inhibit the phosphorylation of AMPK and alleviate estrogen-induced cholestasis. • PKA activation contributes to the CDCA- and UDCA-induced protective effects. • FXR up-regulation may be critical for improvement of cholestasis.« less
Bhullar, Khushwant S; Lassalle-Claux, Grégoire; Touaibia, Mohamed; Rupasinghe, H P Vasantha
2014-05-05
Hypertension is a crucial risk factor for cardiovascular diseases and contributes to one third of global mortality. In addition to conventional antihypertensive drugs such as captopril, naturally occurring phytochemicals and their analogs are used for reducing the risk and occurrence of hypertension. Herein, we demonstrate the possible use of caffeic acid and its derivatives in the treatment of hypertension through multi-target modulation of renin-angiotensin-aldosterone system (RAAS). Caffeic acid along with its nineteen novel derivatives, chlorogenic acid, quercetin and captopril were all investigated for the inhibition of renin and angiotensin converting enzyme (ACE) activities and production of aldosterone. Compound 22 with CH2CH(Ph)2 moiety exhibited the strongest renin inhibition (IC50=229µM) among all compounds tested (P≤0.05). Caffeic acid was the weakest renin inhibitor (IC50=5704µM) among all the compounds assayed. Similar to renin inhibition, compound 22 (IC50=9.1µM) also exhibited about 47 times stronger ACE inhibition compared to the parent compound. Analysis of aldosterone revealed that compound 8 with n-Pr moiety was the strongest modulator of aldosterone production among all the derivatives (P≤0.05). Toxicity analysis using human fibroblasts (WI-38 cells) confirmed the non-toxic manifestations of caffeic acid and its derivatives in comparison to clinically used drug captopril. Copyright © 2014 Elsevier B.V. All rights reserved.
New insights into bile acid malabsorption.
Johnston, Ian; Nolan, Jonathan; Pattni, Sanjeev S; Walters, Julian R F
2011-10-01
Bile acid malabsorption occurs when there is impaired absorption of bile acids in the terminal ileum, so interrupting the normal enterohepatic circulation. The excess bile acids in the colon cause diarrhea, and treatment with bile acid sequestrants is beneficial. The condition can be diagnosed with difficulty by measuring fecal bile acids, or more easily by retention of selenohomocholyltaurine (SeHCAT), where this is available. Chronic diarrhea caused by primary bile acid diarrhea appears to be common, but is under-recognized where SeHCAT testing is not performed. Measuring excessive bile acid synthesis with 7α-hydroxy-4-cholesten-3-one may be an alternative means of diagnosis. It appears that there is no absorption defect in primary bile acid diarrhea but, instead, an overproduction of bile acids. Fibroblast growth factor 19 (FGF19) inhibits hepatic bile acid synthesis. Defective production of FGF19 from the ileum may be the cause of primary bile acid diarrhea.
Fukuda, Toshihiko; Kuroda, Takahiro; Kono, Miki; Hyoguchi, Mai; Tanaka, Mitsuru; Matsui, Toshiro
2015-10-01
Aging deteriorates vascular functions such as vascular reactivity and stiffness. Thus far, various reports suggest that bioactive compounds can improve vascular functions. However, few age-related studies of natural bioactive compounds are available. The present study attempted to evaluate age-related vasorelaxation of bioactive cinnamic acids, caffeic acid, and ferulic acid using aged rat thoracic aorta. Vasorelaxation was evaluated in thoracic aorta from both 8, 18, and 40 weeks old Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR) respectively. The result indicated that caffeic acid possessed the vasorelaxation regardless of aging in WKY and SHR. Moreover, the vasorelaxation of ferulic acid enhanced with aging in SHR. The vasorelaxation behavior was acted in an endothelium-independent manner. To access structure importance of enhanced vasorelaxation, analogues of ferulic acid were tested. In 40 weeks old SHR, 3,4-dimethoxycinnamic acid and coniferyl alcohol exhibited equivalent vasorelaxation activity with ferulic acid, providing the structural importance of methoxy-modified 3-position on the phenyl ring and 2-propenoic moiety. These results firstly demonstrated that enhanced vasorelaxation of ferulic acid with aging and 3,4-dimethoxycinnamic acid and coniferyl alcohol, along with ferulic acid, might exhibit the therapeutic potential of vasoactive power with aging.
Zambonin, Laura; Caliceti, Cristiana; Vieceli Dalla Sega, Francesco; Fiorentini, Diana; Hrelia, Silvana; Landi, Laura; Prata, Cecilia
2012-01-01
Caffeic, syringic, and protocatechuic acids are phenolic acids derived directly from food intake or come from the gut metabolism of polyphenols. In this study, the antioxidant activity of these compounds was at first evaluated in membrane models, where caffeic acid behaved as a very effective chain-breaking antioxidant, whereas syringic and protocatechuic acids were only retardants of lipid peroxidation. However, all three compounds acted as good scavengers of reactive species in cultured cells subjected to exogenous oxidative stress produced by low level of H2O2. Many tumour cells are characterised by increased ROS levels compared with their noncancerous counterparts. Therefore, we investigated whether phenolic acids, at low concentrations, comparable to those present in human plasma, were able to decrease basal reactive species. Results show that phenolic acids reduced ROS in a leukaemia cell line (HEL), whereas no effect was observed in normal cells, such as HUVEC. The compounds exhibited no toxicity to normal cells while they decreased proliferation in leukaemia cells, inducing apoptosis. In the debate on optimal ROS-manipulating strategies in cancer therapy, our work in leukaemia cells supports the antioxidant ROS-depleting approach. PMID:22792417
Giles, David K.; Hankins, Jessica V.; Guan, Ziqiang; Trent, M. Stephen
2011-01-01
Summary The Gram-negative bacteria Vibrio cholerae poses significant public health concerns by causing an acute intestinal infection afflicting millions of people each year. V. cholerae motility, as well as virulence factor expression and outer membrane protein production, have been shown to be affected by bile (Childers & Klose, 2007). The current study examines the effects of bile on V. cholerae phospholipids. Bile exposure caused significant alterations to the phospholipid profile of V. cholerae but not of other enteric pathogens. These changes consisted of a quantitative increase and migratory difference in cardiolipin, decreases in phosphatidylglycerol and phosphatidylethanolamine, and the dramatic appearance of an unknown phospholipid determined to be lyso-phosphatidylethanolamine. Major components of bile were not responsible for the observed changes, but long chain polyunsaturated fatty acids, which are minor components of bile, were shown to be incorporated into phospholipids of V. cholerae. Although the bile-induced phospholipid profile was independent of the V. cholerae virulence cascade, we identified another relevant environment in which V. cholerae assimilates unique fatty acids into its membrane phospholipids—marine sediment. Our results suggest that Vibrio species possess unique machinery conferring the ability to take up a wider range of exogenous fatty acids than other enteric bacteria. PMID:21255114
Obeticholic acid protects mice against lipopolysaccharide-induced liver injury and inflammation.
Xiong, Xi; Ren, Yuqian; Cui, Yun; Li, Rui; Wang, Chunxia; Zhang, Yucai
2017-12-01
Cholestasis, as a main manifestation, induces liver injury during sepsis. The farnesoid X receptor (FXR) plays an important role in regulating bile acid homeostasis. Whether FXR activation by its agonist obeticholic acid (OCA) is contributed to improve sepsis-induced liver injury remains unknown. The aim of the present study was to investigate the effect of OCA on lipopolysaccharide (LPS)-induced acute liver injury in mice. 8-week old male C57BL/6J mice were randomly divided into control group, LPS group, oral OCA group and LPS plus oral OCA (LPS + OCA) group. The serum and livers were collected for further analysis. Serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bile acid (TBA) and total bilirubin (TBIL) were measured at indicated time after LPS administration. Liver sections were stained with hematoxylin & eosin (H&E). Orally OCA pretreatment stimulated the expression of FXR and BSEP in livers and protected mice from LPS-induced hepatocyte apoptosis and inflammatory infiltration. Consistently, LPS-induced higher serum levels of ALT, AST, TBA and TBIL were significantly reversed by OCA administration. Meanwhile, the mRNA levels of interleukin 1β (IL-1β), tumor necrosis factor α (TNF-α) and IL-6 were decreased in livers of mice in LPS + OCA group compared with LPS group. Further investigation indicated that the higher expression of ATF4 and LC3II/I were associated with the protective effect of OCA on LPS-induced liver injury. Orally OCA pretreatment protects mice from LPS-induced liver injury possibly contributed by improved bile acid homeostasis, decreased inflammatory factors and ATF4-mediated autophagy activity in hepatocytes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Guo, Yao Xue; Xu, Xue Fei; Zhang, Qi Zhi; Li, Chun; Deng, Ye; Jiang, Pei; He, Lei Yan; Peng, Wen Xing
2015-01-01
Co-treatment of isoniazid (INH) and rifampicin (RFP) is well known for clinically apparent liver injury. However, the mechanism of INH/RFP-induced liver injury is controversial. Emerging evidence shows links between inhibition of bile acids transporters and drug-induced liver injury (DILI). The present study investigates whether sodium taurocholate cotransporting polypeptide (NTCP/Ntcp; SLC10A1) and bile salt export pump (BSEP/Bsep; ABCB11) are involved in the anti-tuberculosis medicines induced liver injury. ICR female mice were intragastrically treated with INH (50 or 100 mg/kg), RFP (100 or 200 mg/kg), or the combination of INH/RFP (50 + 100 mg/kg or 100 + 200 mg/kg) for 14 consecutive days. Liver histopathological examination, serum biochemical and liver malondialdehyde tests were evaluated. Apparent histopathological alterations and hepatic oxidative stress showed in INH (100 mg/kg), RFP (200 mg/kg) and their combination group. The hepatoxic effect was also indicated by increased serum biomarkers, such as aspartate transaminase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), direct bilirubin (DBil), total bilirubin (TBil) and total bile acids (TBA). Both doses of INH/RFP administration significantly down-regulated the expression of Ntcp and Bsep in liver. Furthermore, the combination of INH and RFP displayed stronger effect on the expression of Ntcp compared with the corresponding dose of INH or RFP alone. In conclusion, down-regulated expression of hepatic Ntcp and Bsep might play an important role in the development of INH and RFP induced liver injury.
Biotechnological Production of Caffeic Acid by Bacterial Cytochrome P450 CYP199A2
Arai, Yuka; Kino, Kuniki
2012-01-01
Caffeic acid is a biologically active molecule that has various beneficial properties, including antioxidant, anticancer, and anti-inflammatory activities. In this study, we explored the catalytic potential of a bacterial cytochrome P450, CYP199A2, for the biotechnological production of caffeic acid. When the CYP199A2 enzyme was reacted with p-coumaric acid, it stoichiometrically produced caffeic acid. The crystal structure of CYP199A2 shows that Phe at position 185 is situated directly above, and only 6.35 Å from, the heme iron. This F185 residue was replaced with hydrophobic or hydroxylated amino acids using site-directed mutagenesis to create mutants with novel and improved catalytic properties. In whole-cell assays with the known substrate of CYP199A2, 2-naphthoic acid, only the wild-type enzyme hydroxylated 2-naphthoic acid at the C-7 and C-8 positions, whereas all of the active F185 mutants exhibited a preference for C-5 hydroxylation. Interestingly, several F185 mutants (F185V, F185L, F185I, F185G, and F185A mutants) also acquired the ability to hydroxylate cinnamic acid, which was not hydroxylated by the wild-type enzyme. These results demonstrate that F185 is an important residue that controls the regioselectivity and the substrate specificity of CYP199A2. Furthermore, Escherichia coli cells expressing the F185L mutant exhibited 5.5 times higher hydroxylation activity for p-coumaric acid than those expressing the wild-type enzyme. By using the F185L whole-cell catalyst, the production of caffeic acid reached 15 mM (2.8 g/liter), which is the highest level so far attained in biotechnological production of this compound. PMID:22729547
Zhang, Yaochen; Kim, Don-Kyu; Lee, Ji-Min; Park, Seung Bum; Jeong, Won-IL; Kim, Seong Heon; Lee, In-Kyu; Lee, Chul-Ho; Chiang, John Y.L.; Choi, Hueng-Sik
2017-01-01
Bile acids are primarily synthesized from cholesterol in the liver and have important roles in dietary lipid absorption and cholesterol homoeostasis. Detailed roles of the orphan nuclear receptors regulating cholesterol 7α-hydroxylase (CYP7A1), the rate-limiting enzyme in bile acid synthesis, have not yet been fully elucidated. In the present study, we report that oestrogen-related receptor γ (ERRγ) is a novel transcriptional regulator of CYP7A1 expression. Activation of cannabinoid receptor type 1 (CB1 receptor) signalling induced ERRγ-mediated transcription of the CYP7A1 gene. Overexpression of ERRγ increased CYP7A1 expression in vitro and in vivo, whereas knockdown of ERRγ attenuated CYP7A1 expression. Deletion analysis of the CYP7A1 gene promoter and a ChIP assay revealed an ERRγ -binding site on the CYP7A1 gene promoter. Small heterodimer partner (SHP) inhibited the transcriptional activity of ERRγ and thus regulated CYP7A1 expression. Overexpression of ERRγ led to increased bile acid levels, whereas an inverse agonist of ERRγ, GSK5182, reduced CYP7A1 expression and bile acid synthesis. Finally, GSK5182 significantly reduced hepatic CB1 receptor-mediated induction of CYP7A1 expression and bile acid synthesis in alcohol-treated mice. These results provide the molecular mechanism linking ERRγ and bile acid metabolism. PMID:26348907
Fernandes, Carlos; Pinto, Miguel; Martins, Cláudia; Gomes, Maria João; Sarmento, Bruno; Oliveira, Paulo J; Remião, Fernando; Borges, Fernanda
2018-05-16
The uptake and transport of dietary antioxidants remains the most important setback for their application in therapy. To overcome the limitations, a PEGylated-based platform was developed to improve the delivery properties of two dietary hydroxycinnamic (HCA) antioxidants-caffeic and ferulic acids. The antioxidant properties of the new polymer-antioxidant conjugates (PEGAntiOxs), prepared by linking poly(ethylene glycol) (PEG) to the cinnamic acids by a one-step Knovenagel condensation reaction, were evaluated. PEGAntiOxs present a higher lipophilicity than the parent compounds (caffeic and ferulic acids) and similar, or higher, antioxidant properties. PEGAntiOxs were not cytotoxic at the tested concentrations in SH-SY5Y, Caco-2, and hCMEC/D3 cells. By contrast, cytotoxic effects in hCMEC/D3 and SH-SY5Y cells were observed, at 50 and 100 μM, for caffeic and ferulic acids. PEGAntiOxs operate as antioxidants against several oxidative stress-cellular inducers in a neuronal cell-based model, and were able to inhibit glycoprotein-P in Caco-2 cells. PEGAntiOxs can cross hCMEC/D3 monolayer cells, a model of the blood-brain barrier (BBB) endothelial membrane. In summary, PEGAntiOxs are valid antioxidant prototypes that can uphold the antioxidant properties of HCAs, reduce their cytotoxicity, and improve their BBB permeability. PEGAntiOxs can be used in the near future as drug candidates to prevent or slow oxidative stress associated with neurodegenerative diseases.
Hassan, Amir; Ahmed, Mansoor; Rasheed, Munawwer; Mansoor, Najia; Khan, Rafeeq Alam; Kamal, Mustafa; Rashid, Mohammad Abdur
2015-07-01
Bile from gallbladders of Arius platystomus (Singhara), Arius tenuispinis (Khagga), Pomadasys commersonni (Holoola) and Kishinoella tonggol (Dawan) were derivatised and analysed by GC-MS for identification of bile acids and bile alcohols. Cholic acid and Chenodeoxycholic acid were found as major bile acids in Arius platystomus, Arius tenuispinis and Pomadasys commersonni. Other bile acids identified in Arius platystomus were allochenodeoxycholic acid, allodeoxycholic acid, 3α,7α,12α-trihydroxy-24-methyl-5β-cholestane-26-oic acid, and 3α,7α,12α, 24-tetrahydroxy-5α-cholestane-26-oic acid. Cholesterol was found as major bile alcohol in Arius platystomus, Arius tenuispinis and Pomadasys commersonni. Cholic acid was the major bile acid identified in the bile of Kishinoella tonggol while other bile acids included 3α,7α,12α-tridydroxy-5α-cholestanoic acid and 3α,7α,12α-tridydroxy-5β-cholestanoic acid. Bile alcohol 5β-cyprinol was present in significant amounts with 5β-cholestane-3α,7α,12α,24-tetrol being the other contributors in the bile of Kishinoella tonggol.
Ultrasensitive detection of phenolic antioxidants by surface enhanced Raman spectroscopy
NASA Astrophysics Data System (ADS)
Ornelas-Soto, N.; Aguilar-Hernández, I. A.; Afseth, N.; López-Luke, T.; Contreras-Torres, F. F.; Wold, J. P.
2017-08-01
Surface-Enhanced Raman Spectroscopy (SERS) is a powerful surface-sensitive technique to study the vibrational properties of analytes at very low concentrations. In this study, ferulic acid, p-coumaric acid, caffeic acid and sinapic acid were analyzed by SERS using Ag colloids. Analytes were detected up to 2.5x10-9M. For caffeic acid and coumaric acid, this detection limit has been reached for the first time, as well as the SERS analysis of sinapic acid using silver colloids.
A synthetic biology-based device prevents liver injury in mice.
Bai, Peng; Ye, Haifeng; Xie, Mingqi; Saxena, Pratik; Zulewski, Henryk; Charpin-El Hamri, Ghislaine; Djonov, Valentin; Fussenegger, Martin
2016-07-01
The liver performs a panoply of complex activities coordinating metabolic, immunologic and detoxification processes. Despite the liver's robustness and unique self-regeneration capacity, viral infection, autoimmune disorders, fatty liver disease, alcohol abuse and drug-induced hepatotoxicity contribute to the increasing prevalence of liver failure. Liver injuries impair the clearance of bile acids from the hepatic portal vein which leads to their spill over into the peripheral circulation where they activate the G-protein-coupled bile acid receptor TGR5 to initiate a variety of hepatoprotective processes. By functionally linking activation of ectopically expressed TGR5 to an artificial promoter controlling transcription of the hepatocyte growth factor (HGF), we created a closed-loop synthetic signalling network that coordinated liver injury-associated serum bile acid levels to expression of HGF in a self-sufficient, reversible and dose-dependent manner. After implantation of genetically engineered human cells inside auto-vascularizing, immunoprotective and clinically validated alginate-poly-(L-lysine)-alginate beads into mice, the liver-protection device detected pathologic serum bile acid levels and produced therapeutic HGF levels that protected the animals from acute drug-induced liver failure. Genetically engineered cells containing theranostic gene circuits that dynamically interface with host metabolism may provide novel opportunities for preventive, acute and chronic healthcare. Liver diseases leading to organ failure may go unnoticed as they do not trigger any symptoms or significant discomfort. We have designed a synthetic gene circuit that senses excessive bile acid levels associated with liver injuries and automatically produces a therapeutic protein in response. When integrated into mammalian cells and implanted into mice, the circuit detects the onset of liver injuries and coordinates the production of a protein pharmaceutical which prevents liver damage. Copyright © 2016 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Akomolafe, S F; Akinyemi, A J; Oboh, G; Oyeleye, S I; Ajayi, O B; Omonisi, A E; Owolabi, F L; Atoyebi, D A; Ige, F O; Atoki, V A
2018-03-01
This study assessed the effects of caffeine combined with caffeic acid on some biomarkers of male reproductive function using normal albino Wistar rats. Rats were divided into four groups (n = 6) and treated for seven successive days; group 1 represents the control rats; group 2 rats were treated with 50 mg/kg body weight (BW) of caffeine only; group 3 rats were treated with 50 mg/kg BW of caffeic acid, while the rats in group 4 were cotreated with an equal combination of caffeine and caffeic acid. The results revealed significant increase in reproductive hormone, testicular and epididymal nitric oxide levels of the rats. Moreover, decreased oxidative stress in the testes and epididymides of the treated rats was evidenced by significant increase in total and nonprotein thiol levels, catalase and superoxide dismutase activities. Similarly, decreased testicular cholesterol level with concomitant elevation in testicular steroidogenic enzyme activities, glycogen and zinc levels were observed in the treated rats. No morphological changes were observed as revealed by the photomicrographs from light microscopy in treated rats. Nevertheless, the combination therapy exhibited additive/synergistic effect on these biochemical indices than when they were administered singly. This study suggests the combination therapy of caffeine and caffeic acid at the dose tested for improving male reproductive function. © 2017 Blackwell Verlag GmbH.
Susiarjo, Martha; Xin, Frances; Stefaniak, Martha; Mesaros, Clementina; Simmons, Rebecca A; Bartolomei, Marisa S
2017-08-01
Increasing evidence has demonstrated that exposure to endocrine-disrupting chemicals impacts maternal and fetal health, but the underlying mechanisms are still unclear. We previously showed that dietary exposure to 10 µg/kg body weight (bw)/d and 10 mg/kg bw/d of bisphenol A (BPA) during pregnancy induced metabolic abnormalities in F1 male offspring and gestational glucose intolerance in F0 pregnant mice. The aim of this study was to elucidate the underlying etiologies of BPA exposure-induced metabolic disease by analyzing the male fetal liver metabolome. Using the Metabolon Discover HD4 Platform, our laboratory identified metabolic pathways that were altered by BPA exposure, including biochemicals in lipid and amino acid metabolism. Specifically, primary and secondary bile acids were increased in liver from BPA-exposed embryonic day 18.5 male fetuses. We subsequently showed that increased bile acid was associated with a defective farnesoid X receptor-dependent negative feedback mechanism in BPA-exposed fetuses. In addition, through metabolomics, we observed that BPA-exposed fetuses had elevated tryptophan levels. Independent liquid chromatography and mass spectrometry measurement revealed that BPA-exposed dams also had increased tryptophan levels relative to those of controls. Because several key enzymes in tryptophan catabolism are vitamin B6 dependent and vitamin B6 deficiencies have been linked to gestational diabetes, we tested the impact of vitamin B6 supplementation and showed that it rescued gestational glucose intolerance in BPA-exposed pregnant mice. Our study has therefore identified two pathways (bile acid and tryptophan metabolism) that potentially underlie BPA-induced maternal and fetal metabolic disease. Copyright © 2017 Endocrine Society.
A Continuous, Quantitative Fluorescent Assay for Plant Caffeic acid O-Methyltransferases
USDA-ARS?s Scientific Manuscript database
Plant caffeic acid O-methyltransferases (COMTs) use s-adenosylmethionine (ado-met), as a methyl donor to transmethylate their preferred (phenolic) substrates in-vivo, and will generally utilize a range of phenolic compounds in-vitro. Collazo et al. (2005; Analytical Biochemistry 342: 86-92) have pu...
Yoo, Sae-Rom; Seo, Chang-Seob; Lee, Na-Ri; Shin, Hyeun-Kyoo; Jeong, Soo-Jin
2015-01-01
Objective: Xanthii fructus (Compositae) is a traditional herbal medicine used for treating headache, toothache, pruritus, empyema, and rhinitis. In this study of the quality control of X. fructus, we performed simultaneous analysis of nine marker compounds: Protocatechuic acid (1), chlorogenic acid (2), caffeic acid (3), 4,5-dicaffeoylquinic acid (4), ferulic acid (5), 3,5-dicaffeoylquinic acid (6), 1,3-dicaffeoylquinic acid (7), 1,4-dicaffeoylquinic acid (8), and 4,5-dicaffeoylquinic acid (9). Materials and Methods: Nine components were separated using reversed-phase SunFire™ C18 analytical column and analyzed using high-performance liquid chromatography. We examined the biological effects of the nine marker compounds by determining their anti-inflammatory activities in the murine macrophage cell line RAW 264.7. Results: Among the nine marker compounds, eight significantly inhibited lipopolysaccharide (LPS)-stimulated tumor necrosis factor-alpha (TNF-α) production. 1, 3, 5 had significant inhibitory effects on LPS-induced prostaglandin E2 (PGE2) production in RAW 264.7 cells. None of the tested marker compounds had a significant effect on interleukin-6 production in LPS-treated RAW 264.7 cells. Our data demonstrated that each marker compound from X. fructus exerts anti-inflammatory activity by targeting different inflammation-related pathways such as the TNF-α or PGE2 pathway. Conclusion: Further experiments using in vitro and in vivo models are needed to identify the mechanisms responsible for the anti-inflammatory properties of each marker compound. SUMMARY Simultaneous analysis of nine phenylpropanoids in the Xanthii fructus was established using HPLC-PDA system.1,4-dicaffeoylquinic acid significantly inhibited LPS-stimulated TNF-a production.Protocatechuic acid, caffeic acid and ferulic acid had significant inhibitory effects on LPS-induced PGE2 production in RAW 264.7 cells. PMID:27013799
Ge, Xiaolong; Ding, Chao; Zhao, Wei; Xu, Lizhi; Tian, Hongliang; Gong, Jianfeng; Zhu, Minsheng; Li, Jieshou; Li, Ning
2017-01-13
The gastrointestinal motility is affected by gut microbiota and the relationship between them has become a hot topic. However, mechanisms of microbiota in regulating motility have not been well defined. We thus investigated the effect of microbiota depletion by antibiotics on gastrointestinal motility, colonic serotonin levels, and bile acids metabolism. After 4 weeks with antibiotics treatments, gastrointestinal and colon transit, defecation frequency, water content, and other fecal parameters were measured and analyzed in both wild-type and antibiotics-treated mice, respectively. Contractility of smooth muscle, serotonin levels, and bile acids levels in wild-type and antibiotics-treated mice were also analyzed. After antibiotics treatment, the richness and diversity of intestinal microbiota decreased significantly, and the fecal of mice had less output (P < 0.01), more water content (P < 0.01), and longer pellet length (P < 0.01). Antibiotics treatment in mice also resulted in delayed gastrointestinal and colonic motility (P < 0.05), and inhibition of phasic contractions of longitudinal muscle from isolated proximal colon (P < 0.01). In antibiotics-treated mice, serotonin, tryptophan hydroxylase 1, and secondary bile acids levels were decreased. Gut microbiota play an important role in the regulation of intestinal bile acids and serotonin metabolism, which could probably contribute to the association between gut microbiota and gastrointestinal motility as intermediates.
Chen, Ming-Ju; Tang, Hsin-Yu; Chiang, Ming-Lun
2017-09-01
Lactobacillus kefiranofaciens M1 is a probiotic strain isolated from Taiwanese kefir grains. The present study evaluated the effects of heat, cold, acid and bile salt adaptations on the stress tolerance of L. kefiranofaciens M1. The regulation of protein expression of L. kefiranofaciens M1 under these adaptation conditions was also investigated. The results showed that adaptation of L. kefiranofaciens M1 to heat, cold, acid and bile salts induced homologous tolerance and cross-protection against heterologous challenge. The extent of induced tolerance varied depending on the type and condition of stress. Proteomic analysis revealed that 27 proteins exhibited differences in expression between non-adapted and stress-adapted L. kefiranofaciens M1 cells. Among these proteins, three proteins involved in carbohydrate metabolism (triosephosphate isomerase, enolase and NAD-dependent glycerol-3-phosphate dehydrogenase), two proteins involved in pH homeostasis (ATP synthase subunits AtpA and AtpB), two stress response proteins (chaperones DnaK and GroEL) and one translation-related protein (30S ribosomal protein S2) were up-regulated by three of the four adaptation treatments examined. The increased synthesis of these stress proteins might play a critical protective role in the cellular defense against heat, cold, acid and bile salt stresses. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kimoto-Nira, Hiromi; Kobayashi, Miho; Nomura, Masaru; Sasaki, Keisuke; Suzuki, Chise
2009-05-31
Bile resistance is one of the basic characteristics of probiotic bacteria. The aim of this study was to investigate the characteristics of bile resistance in lactococci by studying the relationship between bile resistance and cellular fatty acid composition in lactococcci grown on different media. We determined the bile resistance of 14 strains in lactose-free M17 medium supplemented with either glucose only (GM17) or lactose only (LM17). Gas chromatographic analyses of free lipids extracted from the tested strains were used for determining their fatty acid composition. A correlation analysis of all strains grown in both media revealed significant positive correlations between bile resistance and relative contents of hexadecanoic acid and octadecenoic acid, and negative correlations between bile resistance and relative contents of hexadecenoic acid and C-19 cyclopropane fatty acid. It is also a fact that the fatty acids associated with bile resistance depended on species, strain, and/or growth medium. In L. lactis subsp. cremoris strains grown in GM17 medium, the bile-resistant strains had significantly more octadecenoic acid than the bile-sensitive strains. In LM17 medium, bile-resistant strains had significantly more octadecenoic acid and significantly less C-19 cyclopropane fatty acid than the bile-sensitive strains. In L. lactis subsp. lactis strains, bile resistances of some of the tested strains were altered by growth medium. Some strains were resistant to bile in GM17 medium but sensitive to bile in LM17 medium. Some strains were resistant in both media tested. The strains grown in GM17 medium had significantly more hexadecanoic acid and octadecenoic acid, and significantly less tetradecanoic acid, octadecadienoic acid and C-19 cyclopropane fatty acid than the strains grown in LM17 medium. In conclusion, the fatty acid compositions of the bile-resistant lactococci differed from those of the bile-sensitive ones. More importantly, our data suggest that altering their fatty acid composition (i.e. increased hexadecanoic acid and octadecenoic acid and decreased hexadecenoic acid and C-19 cyclopropane fatty acid) by changing growth conditions may be a useful way to enhance their bile resistance in lactococci.
Yuan, Bin; Ren, Ying-Long; Ma, Li; Gu, Hao; Wang, Yun; Qiao, Yan-Jiang
2014-02-01
To discuss the rationality of the clinical replacement of traditional Chinese medicine (TCM) bear bile with bile acid constituents, and analyze the difference between these constituents and bear bile in drug properties. Summarizing the drug properties of bear bile by reference to medical literatures for drug properties of TCM bear bile and Science of Traditional Chinese Medicine (China Press of Traditional Chinese Medicine, 2007). Analyzing and summarizing the pharmacological effects of main bile acid constituents according to relevant literatures for studies on pharmacological effects of main bile acid constituents in CNKI database. Predicating the drug properties of these bile acid constituents by using the drug property predication model established by the study group according the pharmacological effects of main bile acid constituents in the paper, and compare the prediction results with the drug properties of bear bile. Bile acid constituents in bear bile were mostly cold in property, bitter in taste, and the combination of their drug properties could reflect the combined drug properties of bear bile. All of these bile acid constituents in bear bile could show part of effects of bear bile. Attention shall be given to regulate the medication scheme in clinical application according to actual conditions.
Lima, Rogério Barbosa; Salvador, Victor Hugo; dos Santos, Wanderley Dantas; Bubna, Gisele Adriana; Finger-Teixeira, Aline; Soares, Anderson Ricardo; Marchiosi, Rogério; Ferrarese, Maria de Lourdes Lucio; Ferrarese-Filho, Osvaldo
2013-01-01
Cinnamic acid and its hydroxylated derivatives (p-coumaric, caffeic, ferulic and sinapic acids) are known allelochemicals that affect the seed germination and root growth of many plant species. Recent studies have indicated that the reduction of root growth by these allelochemicals is associated with premature cell wall lignification. We hypothesized that an influx of these compounds into the phenylpropanoid pathway increases the lignin monomer content and reduces the root growth. To confirm this hypothesis, we evaluated the effects of cinnamic, p-coumaric, caffeic, ferulic and sinapic acids on soybean root growth, lignin and the composition of p-hydroxyphenyl (H), guaiacyl (G) and syringyl (S) monomers. To this end, three-day-old seedlings were cultivated in nutrient solution with or without allelochemical (or selective enzymatic inhibitors of the phenylpropanoid pathway) in a growth chamber for 24 h. In general, the results showed that 1) cinnamic, p-coumaric, caffeic and ferulic acids reduced root growth and increased lignin content; 2) cinnamic and p-coumaric acids increased p-hydroxyphenyl (H) monomer content, whereas p-coumaric, caffeic and ferulic acids increased guaiacyl (G) content, and sinapic acid increased sinapyl (S) content; 3) when applied in conjunction with piperonylic acid (PIP, an inhibitor of the cinnamate 4-hydroxylase, C4H), cinnamic acid reduced H, G and S contents; and 4) when applied in conjunction with 3,4-(methylenedioxy)cinnamic acid (MDCA, an inhibitor of the 4-coumarate:CoA ligase, 4CL), p-coumaric acid reduced H, G and S contents, whereas caffeic, ferulic and sinapic acids reduced G and S contents. These results confirm our hypothesis that exogenously applied allelochemicals are channeled into the phenylpropanoid pathway causing excessive production of lignin and its main monomers. By consequence, an enhanced stiffening of the cell wall restricts soybean root growth. PMID:24312480
The suppression of the N-nitrosating reaction by chlorogenic acid.
Kono, Y; Shibata, H; Kodama, Y; Sawa, Y
1995-01-01
N-Nitrosation of a model aromatic amine (2,3-diamino-naphthalene) by the N-nitrosating agent produced by nitrite in acidic solution was inhibited by a polyphenol, chlorogenic acid, which is an ester of caffeic acid quinic acid. Caffeic acid also inhibited the N-nitrosation, but quinic acid did not. 1,2-Benzenediols and 3,4-dihydroxybenzoic acid had inhibitory activities. Chlorogenic acid, caffeic acid, 1,2-benzenediols and 3,4-dihydroxybenzoic acid were able to scavenge the stable free radical, 1,1-diphenyl-2-picrylhydrazyl. Chlorogenic acid was found to be nitrated by acidic nitrite. The kinetic studies and the nitration observed only by bubbling of nitric oxide plus nitrogen dioxide gases indicated that the nitrating agent was nitrogen sesquioxide. The observations showed that the mechanism by which chlorogenic acid inhibited N-nitrosation of 2,3-diamino-naphthalene is due to its ability to scavenge the nitrosating agent, nitrogen sesquioxide. Chlorogenic acid may be effective not only in protecting against oxidative damage but also in inhibiting potentially mutagenic and carcinogenic reactions in vivo. PMID:8554543
The bile acid composition of crane gallbladder bile
Serafin, J.A.
1983-01-01
1. The biliary bile acids of the whooping crane (Grus americana) and the Florida sandhill crane (G. canadensis pratensis) have been examined.2. Cholic acid (CA), chenodeoxycholic acid (CDOCA) and lithocholic acid were found in bile from both species of these North American cranes.3. CDOCA and CA were the primary bile acids in both species, together constituting 70% or more of the bile acids by weight.4. The primary bile acids of cranes appear to be the same as those that have been identified in other avian species.
Liu, Aiming; Krausz, Kristopher W; Fang, Zhong-Ze; Brocker, Chad; Qu, Aijuan; Gonzalez, Frank J
2014-04-01
Gemfibrozil, a ligand of peroxisome proliferator-activated receptor α (PPARα), is one of the most widely prescribed anti-dyslipidemia fibrate drugs. Among the adverse reactions observed with gemfibrozil are alterations in liver function, cholestatic jaundice, and cholelithiasis. However, the mechanisms underlying these toxicities are poorly understood. In this study, wild-type and Ppara-null mice were dosed with a gemfibrozil-containing diet for 14 days. Ultra-performance chromatography electrospray ionization quadrupole time-of-flight mass spectrometry-based metabolomics and traditional approaches were used to assess the mechanism of gemfibrozil-induced hepatotoxicity. Unsupervised multivariate data analysis revealed four lysophosphatidylcholine components in wild-type mice that varied more dramatically than those in Ppara-null mice. Targeted metabolomics revealed taurocholic acid and tauro-α-muricholic acid/tauro-β-muricholic acid were significantly increased in wild-type mice, but not in Ppara-null mice. In addition to the above perturbations in metabolite homeostasis, phenotypic alterations in the liver were identified. Hepatic genes involved in metabolism and transportation of lysophosphatidylcholine and bile acid compounds were differentially regulated between wild-type and Ppara-null mice, in agreement with the observed downstream metabolic alterations. These data suggest that PPARα mediates gemfibrozil-induced hepatotoxicity in part by disrupting phospholipid and bile acid homeostasis.
Purushotham, Aparna; Xu, Qing; Lu, Jing; Foley, Julie F.; Yan, Xingjian; Kim, Dong-Hyun; Kemper, Jongsook Kim
2012-01-01
SIRT1, a highly conserved NAD+-dependent protein deacetylase, is a key metabolic sensor that directly links nutrient signals to animal metabolic homeostasis. Although SIRT1 has been implicated in a number of hepatic metabolic processes, the mechanisms by which hepatic SIRT1 modulates bile acid metabolism are still not well understood. Here we report that deletion of hepatic SIRT1 reduces the expression of farnesoid X receptor (FXR), a nuclear receptor that regulates bile acid homeostasis. We provide evidence that SIRT1 regulates the expression of FXR through hepatocyte nuclear factor 1α (HNF1α). SIRT1 deficiency in hepatocytes leads to decreased binding of HNF1α to the FXR promoter. Furthermore, we show that hepatocyte-specific deletion of SIRT1 leads to derangements in bile acid metabolism, predisposing the mice to development of cholesterol gallstones on a lithogenic diet. Taken together, our findings indicate that SIRT1 plays a vital role in the regulation of hepatic bile acid homeostasis through the HNF1α/FXR signaling pathway. PMID:22290433
Wang, Jin; Zhao, Yong-ming; Zhang, Man-li; Shi, Qing-wen
2015-04-01
A rapid and sensitive high-performance liquid chromatographic (HPLC) method was developed for the simultaneous separation and determination of chlorogenic acid, caffeic acid, alantolactone and isoalantolactone in Inula helenium. The HPLC separation was performed on an Elite Hypersil C18 column (200 × 4.6 mm i.d., 5 µm particle size) with a gradient elution of solvent A (acetonitrile) and solvent B (0.1% phosphoric acid in water) at a flow rate of 1.0 mL/min. Detection was monitored at 225 nm. The recovery of chlorogenic acid ranged from 95.6 to 107.7%, the recovery of caffeic acid ranged from 95.4 to 104.2%, the recovery of alantolactone ranged from 95.8 to 100.8% and the recovery of isoalantolactone ranged from 96.5 to 102.3%. The retention times for chlorogenic acid, caffeic acid, alantolactone and isoalantolactone were 5.2, 7.1, 25.6 and 26.6 min with the limits of detection of 0.069, 0.021, 0.039 and 0.051 µg/mL, respectively. Relative standard deviation for the intra-day and inter-day was ≤2.5%. The validated method is reliable for the routine control of these four compounds in I. helenium. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Normal or increased bile acid uptake in isolated mucosa from patients with bile acid malabsorption.
Bajor, Antal; Kilander, Anders; Fae, Anita; Gälman, Cecilia; Jonsson, Olof; Ohman, Lena; Rudling, Mats; Sjövall, Henrik; Stotzer, Per-Ove; Ung, Kjell-Arne
2006-04-01
Bile acid malabsorption as reflected by an abnormal Se-labelled homocholic acid-taurine (SeHCAT) test is associated with diarrhoea, but the mechanisms and cause-and-effect relations are unclear. Primarily, to determine whether there is a reduced active bile acid uptake in the terminal ileum in patients with bile acid malabsorption. Secondarily, to study the linkage between bile acid malabsorption and hepatic bile acid synthesis. Ileal biopsies were taken from patients with diarrhoea and from controls with normal bowel habits. Maximal active bile acid uptake was assessed in ileal biopsies using a previously validated technique based on uptake of C-labelled taurocholate. To monitor the hepatic synthesis, 7alpha-hydroxy-4-cholesten-3-one, a bile acid precursor, was assayed in blood. The SeHCAT-retention test was used to diagnose bile acid malabsorption. The taurocholate uptake in specimens from diarrhoea patients was higher compared with the controls [median, 7.7 (n=53) vs 6.1 micromol/g per min (n=17)] (P<0.01) but no difference was seen between those with bile acid malabsorption (n=18) versus diarrhoea with a normal SeHCAT test (n=23). The SeHCAT values and 7alpha-hydroxy-4-cholesten-3-one were inversely correlated. The data do not support bile acid malabsorption being due to a reduced active bile acid uptake capacity in the terminal ileum.
Pseudomonas putida F1 uses energy taxis to sense hydroxycinnamic acids
Hughes, Jonathan G.; Zhang, Xiangsheng; Parales, Juanito V.; Ditty, Jayna L.; Parales, Rebecca E.
2017-01-01
Soil bacteria such as pseudomonads are widely studied due to their diverse metabolic capabilities, particularly the ability to degrade both naturally occurring and xenobiotic aromatic compounds. Chemotaxis, the directed movement of cells in response to chemical gradients, is common in motile soil bacteria and the wide range of chemicals detected often mirrors the metabolic diversity observed. Pseudomonas putida F1 is a soil isolate capable of chemotaxis toward, and degradation of, numerous aromatic compounds. We showed that P. putida F1 is capable of degrading members of a class of naturally occurring aromatic compounds known as hydroxycinnamic acids, which are components of lignin and are ubiquitous in the soil environment. We also demonstrated the ability of P. putida F1 to sense three hydroxycinnamic acids: p-coumaric, caffeic and ferulic acids. The chemotaxis response to hydroxycinnamic acids was induced during growth in the presence of hydroxycinnamic acids and was negatively regulated by HcaR, the repressor of the hydroxycinnamic acid catabolic genes. Chemotaxis to the three hydroxycinnamic acids was dependent on catabolism, as a mutant lacking the gene encoding feruloyl-CoA synthetase (Fcs), which catalyzes the first step in hydroxycinnamic acid degradation, was unable to respond chemotactically toward p-coumaric, caffeic, or ferulic acids. We tested whether an energy taxis mutant could detect hydroxycinnamic acids and determined that hydroxycinnamic acid sensing is mediated by the energy taxis receptor Aer2. PMID:28954643
Therapeutic targeting of bile acids
Gores, Gregory J.
2015-01-01
The first objectives of this article are to review the structure, chemistry, and physiology of bile acids and the types of bile acid malabsorption observed in clinical practice. The second major theme addresses the classical or known properties of bile acids, such as the role of bile acid sequestration in the treatment of hyperlipidemia; the use of ursodeoxycholic acid in therapeutics, from traditional oriental medicine to being, until recently, the drug of choice in cholestatic liver diseases; and the potential for normalizing diverse bowel dysfunctions in irritable bowel syndrome, either by sequestering intraluminal bile acids for diarrhea or by delivering more bile acids to the colon to relieve constipation. The final objective addresses novel concepts and therapeutic opportunities such as the interaction of bile acids and the microbiome to control colonic infections, as in Clostridium difficile-associated colitis, and bile acid targeting of the farnesoid X receptor and G protein-coupled bile acid receptor 1 with consequent effects on energy expenditure, fat metabolism, and glycemic control. PMID:26138466
Kahlon, Talwinder Singh; Chiu, Mei-Chen M; Chapman, Mary H
2008-06-01
Bile acid binding capacity has been related to the cholesterol-lowering potential of foods and food fractions. Lowered recirculation of bile acids results in utilization of cholesterol to synthesize bile acid and reduced fat absorption. Secondary bile acids have been associated with increased risk of cancer. Bile acid binding potential has been related to lowering the risk of heart disease and that of cancer. Previously, we have reported bile acid binding by several uncooked vegetables. However, most vegetables are consumed after cooking. How cooking would influence in vitro bile acid binding of various vegetables was investigated using a mixture of bile acids secreted in human bile under physiological conditions. Eight replicate incubations were conducted for each treatment simulating gastric and intestinal digestion, which included a substrate only, a bile acid mixture only, and 6 with substrate and bile acid mixture. Cholestyramine (a cholesterol-lowering, bile acid binding drug) was the positive control treatment and cellulose was the negative control. Relative to cholestyramine, in vitro bile acid binding on dry matter basis was for the collard greens, kale, and mustard greens, 13%; broccoli, 10%; Brussels sprouts and spinach, 8%; green bell pepper, 7%; and cabbage, 5%. These results point to the significantly different (P < or = .05) health-promoting potential of collard greens = kale = mustard greens > broccoli > Brussels sprouts = spinach = green bell pepper > cabbage as indicated by their bile acid binding on dry matter basis. Steam cooking significantly improved the in vitro bile acid binding of collard greens, kale, mustard greens, broccoli, green bell pepper, and cabbage compared with previously observed bile acid binding values for these vegetables raw (uncooked). Inclusion of steam-cooked collard greens, kale, mustard greens, broccoli, green bell pepper, and cabbage in our daily diet as health-promoting vegetables should be emphasized. These green/leafy vegetables, when consumed regularly after steam cooking, would lower the risk of cardiovascular disease and cancer, advance human nutrition research, and improve public health.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lake, April D.; Novak, Petr; Shipkova, Petia
2013-04-15
Bile acids (BAs) have many physiological roles and exhibit both toxic and protective influences within the liver. Alterations in the BA profile may be the result of disease induced liver injury. Nonalcoholic fatty liver disease (NAFLD) is a prevalent form of chronic liver disease characterized by the pathophysiological progression from simple steatosis to nonalcoholic steatohepatitis (NASH). The hypothesis of this study is that the ‘classical’ (neutral) and ‘alternative’ (acidic) BA synthesis pathways are altered together with hepatic BA composition during progression of human NAFLD. This study employed the use of transcriptomic and metabolomic assays to study the hepatic toxicologic BAmore » profile in progressive human NAFLD. Individual human liver samples diagnosed as normal, steatosis, and NASH were utilized in the assays. The transcriptomic analysis of 70 BA genes revealed an enrichment of downregulated BA metabolism and transcription factor/receptor genes in livers diagnosed as NASH. Increased mRNA expression of BAAT and CYP7B1 was observed in contrast to decreased CYP8B1 expression in NASH samples. The BA metabolomic profile of NASH livers exhibited an increase in taurine together with elevated levels of conjugated BA species, taurocholic acid (TCA) and taurodeoxycholic acid (TDCA). Conversely, cholic acid (CA) and glycodeoxycholic acid (GDCA) were decreased in NASH liver. These findings reveal a potential shift toward the alternative pathway of BA synthesis during NASH, mediated by increased mRNA and protein expression of CYP7B1. Overall, the transcriptomic changes of BA synthesis pathway enzymes together with altered hepatic BA composition signify an attempt by the liver to reduce hepatotoxicity during disease progression to NASH. - Highlights: ► Altered hepatic bile acid composition is observed in progressive NAFLD. ► Bile acid synthesis enzymes are transcriptionally altered in NASH livers. ► Increased levels of taurine and conjugated bile acids are observed in NASH. ► Hepatic bile acid synthesis shifts toward the alternative pathway in NASH.« less
USDA-ARS?s Scientific Manuscript database
Some forages crops, such as red clover, accumulate high levels of caffeic acid derivatives. Oxidation of these o-diphenols to quinones by endogenous polyphenol oxidases (PPOs) and the subsequent reactions of these quinones (probably with endogenous plant proteases) result in a significant reduction ...
USDA-ARS?s Scientific Manuscript database
We cloned the full-length of the gene putatively encoding caffeic acid O-methyltransferase (COMT) from kenaf (Hibiscus cannabinus L.) using degenerate primers and the RACE (rapid amplification of cDNA ends) method. Kenaf is an herbaceous and rapidly growing dicotyledonous plant with great potential ...
Role of O-methyltransferase in the lignification of Douglas-fir cultured tissue
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monroe, S.H.
1983-01-01
O-methyltransferase (OMT) is a key enzyme in the biosynthesis of lignin. This enzyme was isolated and characterized in an effort to understand why Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) callus tissue does not form appreciable amounts of lignin yet does form large amounts of the related flavonoids and tannins. It was shown that the OMT in the callus tissue is a cell wall associated, membrane-bound enzyme, in contrast to that of all reported plant species and to Douglas-fir seedlings, which have either a microsomal or soluble OMT. The effect this had on the OMT kinetic constants was studied. It was foundmore » that the callus OMT had much higher K/sub m/ constants for caffeic acid in both the membrane-bound and free forms compared with seedlings. The callus membrane-bound K/sub m/ for caffeic acid is 333 ..mu..M. The callus membrane-free K/sub m/ for caffeic acid is 250 ..mu..M. The seedling K/sub m/ for caffeic acid is 90 ..mu..M.« less
Garrido, E Manuela P J; Cerqueira, Ana S; Chavarria, Daniel; Silva, Tiago; Borges, Fernanda; Garrido, Jorge M P J
2018-07-15
Caffeic acid phenethyl ester (CAPE) is a bioactive polyphenolic compound obtained from propolis extract. Although it has a broad therapeutic potential, the bioavailability of CAPE is limited, due to reduced solubility and poor plasmatic stability. Efforts to reduce these pharmacokinetic drawbacks resulted in the synthesis of caffeic acid phenethyl amide (CAPA). Cyclodextrins have been proved as promising excipients for the formulation of active ingredients. Herein, we report the inclusion complexation behavior and binding ability of CAPE and CAPA with hydroxypropyl-β-cyclodextrin (HP-β-CD). The supramolecular interactions were examined through UV and FTIR spectroscopy, DSC, 1 H NMR and 2D ROESY. The CAPE/HP-β-CD and CAPA/HP-β-CD inclusion complexes stability constants were determined to be, respectively, 2911.6 and 584.6 M -1 in water and 2866.2 and 700.1 M -1 at physiological pH. The aqueous solubility increased notably, proving that HP-β-CD can be potentially useful to improve the biological, chemical and physical properties of CAPE and CAPA. Copyright © 2018 Elsevier Ltd. All rights reserved.
Leslie, Elaine M; Watkins, Paul B; Kim, Richard B; Brouwer, Kim L R
2007-06-01
Bile acid accumulation in hepatocytes due to inhibition of the canalicular bile salt export pump (BSEP/ABCB11) has been proposed as a mechanism for bosentan-induced hepatotoxicity. The observation that bosentan does not induce hepatotoxicity in rats, although bosentan has been reported to inhibit rat Bsep and cause elevated serum bile acids, challenges this mechanism. The lack of hepatotoxicity could be explained if bosentan inhibited hepatocyte uptake as well as canalicular efflux of bile acids. In the current study, bosentan was found to be a more potent inhibitor of Na(+)-dependent taurocholate uptake in rat (IC(50) 5.4 microM) than human (IC(50) 30 microM) suspended hepatocytes. In addition, bosentan was a more potent inhibitor of taurocholate uptake by rat Na(+)-dependent taurocholate co-transporting polypeptide (Ntcp/Slc10a1) (IC(50) 0.71 microM) than human NTCP (SLC10A1) (IC(50) 24 microM) expressed in HEK293 cells. Thus, bosentan is a more potent inhibitor of Ntcp than NTCP, and this should result in less intrahepatocyte accumulation of bile acids in rats during bosentan treatment. To begin characterization of this species difference, two chimeric molecules were generated and expressed in HEK293 cells; NTCP(1-140)/Ntcp(141-362) and Ntcp(1-140)/NTCP(141-349). The mode of bosentan inhibition was noncompetitive for Ntcp, and competitive for NTCP (K(i) 18 microM) and NTCP(1-140)/Ntcp(141-362) (K(i) 1.7 microM); bosentan affected both the K(m) and V(max) of Ntcp(1-140)/NTCP(141-349) (K(i) 7.0 microM). The carboxyl portions of NTCP and Ntcp were found to confer species differences in basal taurocholate transport V(max). In conclusion, differential inhibition of Ntcp and NTCP may represent a novel mechanism for species differences in bosentan-induced hepatotoxicity.
Dietary fat and gut microbiota interactions determine diet-induced obesity in mice.
Kübeck, Raphaela; Bonet-Ripoll, Catalina; Hoffmann, Christina; Walker, Alesia; Müller, Veronika Maria; Schüppel, Valentina Luise; Lagkouvardos, Ilias; Scholz, Birgit; Engel, Karl-Heinz; Daniel, Hannelore; Schmitt-Kopplin, Philippe; Haller, Dirk; Clavel, Thomas; Klingenspor, Martin
2016-12-01
Gut microbiota may promote positive energy balance; however, germfree mice can be either resistant or susceptible to diet-induced obesity (DIO) depending on the type of dietary intervention. We here sought to identify the dietary constituents that determine the susceptibility to body fat accretion in germfree (GF) mice. GF and specific pathogen free (SPF) male C57BL/6N mice were fed high-fat diets either based on lard or palm oil for 4 wks. Mice were metabolically characterized at the end of the feeding trial. FT-ICR-MS and UPLC-TOF-MS were used for cecal as well as hepatic metabolite profiling and cecal bile acids quantification, respectively. Hepatic gene expression was examined by qRT-PCR and cecal gut microbiota of SPF mice was analyzed by high-throughput 16S rRNA gene sequencing. GF mice, but not SPF mice, were completely DIO resistant when fed a cholesterol-rich lard-based high-fat diet, whereas on a cholesterol-free palm oil-based high-fat diet, DIO was independent of gut microbiota. In GF lard-fed mice, DIO resistance was conveyed by increased energy expenditure, preferential carbohydrate oxidation, and increased fecal fat and energy excretion. Cecal metabolite profiling revealed a shift in bile acid and steroid metabolites in these lean mice, with a significant rise in 17β-estradiol, which is known to stimulate energy expenditure and interfere with bile acid metabolism. Decreased cecal bile acid levels were associated with decreased hepatic expression of genes involved in bile acid synthesis. These metabolic adaptations were largely attenuated in GF mice fed the palm-oil based high-fat diet. We propose that an interaction of gut microbiota and cholesterol metabolism is essential for fat accretion in normal SPF mice fed cholesterol-rich lard as the main dietary fat source. This is supported by a positive correlation between bile acid levels and specific bacteria of the order Clostridiales (phylum Firmicutes ) as a characteristic feature of normal SPF mice fed lard. In conclusion, our study identified dietary cholesterol as a candidate ingredient affecting the crosstalk between gut microbiota and host metabolism.
Färkkilä, M A; Kairemo, K J; Taavitsainen, M J; Strandberg, T A; Miettinen, T A
1996-04-01
1. Plasma lathosterol concentration, known to reflect cholesterol and bile acid synthesis, was evaluated as a screening test for bile acid malabsorption, comparing it with faecal bile acid measurements, SeHCAT test and Schilling test in 22 subjects of whom six were healthy controls and 16 had Crohn's disease with ileal resections of varying length. 2. Plasma lathosterols and other non-cholesterol sterols were determined by GLC. Faecal bile acids were measured by GLC, and SeHCAT retention times by gamma camera. The study subjects were divided into two groups according to the degree of bile acid malabsorption: controls (faecal bile acids < 10 mg day-1 kg-1, n = 9) and bile acid malabsorption (faecal bile acids > 10 mg day-1 kg-1, n = 13). 3. Faecal bile acid excretion was 5.9 +/- 1.0 mg day-1 kg-1 in control subjects and 45.7 +/- 6.1 mg day-1 kg-1 in the bile acid malabsorption group. The biological half-life of 75SeHCAT (T1/2) was 95.6 +/- 16.3 h and 14.1 +/- 4.1 h, respectively. Plasma lathosterol levels were significantly elevated in patients with bile acid malabsorption (742 +/- 84 micrograms/ml compared with 400 +/- 59 micrograms/ml in control subjects) and correlated closely with faecal bile acid levels (r = 0.779, P < 0.001), with 75SeHCAT T1/2 (r = -0.524, P < 0.05) and with Schilling test (r = -0.591, P < 0.05). Significant correlations were also obtained for delta 8-cholestenol with faecal bile acids (r = 0.784, P < 0.001) and 75SeHCAT (r = -0.505, P < 0.05). The biological half-life of SeHCAT correlated with faecal bile acid excretion (r = -0.702, P < 0.001). Using mean+2 SD of lathosterol (In micrograms/ml cholesterol) as a cut-off value and 10 mg day-1 kg-1 as the upper limit for faecal bile acid excretion, the test gives 100% sensitivity and 82% specificity for plasma lathosterol determination to detect bile acid malabsorption. 4. The results indicate that both the 75SeHCAT test and plasma lathosterol detect bile acid malabsorption in patients with ileal resections for Crohn's disease. However, plasma lathosterol is a simpler and less expensive method.
Yang, Qiaoling; Yang, Fan; Tang, Xiaowen; Ding, Lili; Xu, Ying; Xiong, Yinhua; Wang, Zhengtao; Yang, Li
2015-04-16
Yin-Chen-Hao-Tang (YCHT), a commonly used as a traditional chinese medicine for liver disease. Several studies indicated that YCHT may improving hepatic triglyceride metabolism and anti-apoptotic response as well as decreasing oxidative stress .However, little is known about the role of YCHT in chlorpromazine (CPZ) -induced chlolestatic liver injury. Therefore, we aimed to facilitate the understanding of the pathogenesis of cholestatic liver injury and evaluate the effect of Yin-Chen-Hao-Tang (YCHT) on chlorpromazine (CPZ)-induced cholestatic liver injury in rats based on the change of bile acids (BAs) and free fatty acids (FFAs) alone with the biochemical indicators and histological examination. We conducted an experiment on CPZ-induced cholestatic liver injury in Wistar rats with and without YCHT for nine consecutive days. Serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), albumin (ALB), total bilirubin (TBIL), total cholesterol (TC), triglycerides (TG), low density lipoprotein-cholesterol (LDL-C) were measured to evaluate the protective effect of YCHT against chlorpromazine (CPZ)-induced cholestatic liver injury. Histopathology of the liver tissue showed that pathological injuries were relieved after YCHT pretreatment. In addition, ultra-performance lipid chromatography coupled with quadrupole mass spectrometry (UPLC-MS) and gas chromatography coupled with mass spectrometry (GC-MS) was applied to determine the content of bile acids, free fatty acids, respectively. Obtained data showed that YCHT attenuated the effect of CPZ-induced cholestatic liver injury, which was manifested by the serum biochemical parameters and histopathology of the liver tissue. YCHT regulated the lipid levels as indicated by the reversed serum levels of TC, TG, and LDL-C. YCHT also regulated the disorder of BA and FFA metabolism by CPZ induction. Results indicated that YCHT exerted a protective effect on CPZ-induced cholestasis liver injury. The variance of BA and FFA concentrations can be used to evaluate the cholestatic liver injury caused by CPZ and the hepatoprotective effect of YCHT.
Bouscarel, B; Fromm, H; Ceryak, S; Cassidy, M M
1991-01-01
Ursodeoxycholic acid (UDCA), in contrast to both chenodeoxycholic acid (CDCA), its 7 alpha-epimer, and lithocholic acid, enhanced receptor-dependent low-density lipoprotein (LDL) uptake and degradation in isolated hamster hepatocytes. The increase in cell-associated LDL was time- and concentration-dependent, with a maximum effect observed at approx. 60 min with 1 mM-UDCA. This increase was not associated with a detergent effect of UDCA, as no significant modifications were observed either in the cellular release of lactate dehydrogenase or in Trypan Blue exclusion. The effect of UDCA was not due to a modification of the LDL particle, but rather was receptor-related. UDCA (1 mM) maximally increased the number of 125I-LDL-binding sites (Bmax.) by 35%, from 176 to 240 ng/mg of protein, without a significant modification of the binding affinity. Furthermore, following proteolytic degradation of the LDL receptor with Pronase, specific LDL binding decreased to the level of non-specific binding, and the effect of UDCA was abolished. Conversely, the trihydroxy 7 beta-hydroxy bile acid ursocholic acid and its 7 alpha-epimer, cholic acid, induced a significant decrease in LDL binding by approx. 15%. The C23 analogue of UDCA (nor-UDCA) and CDCA did not affect LDL binding. On the other hand, UDCA conjugated with either glycine (GUDCA) or taurine (TUDCA), increased LDL binding to the same extent as did the free bile acid. The half maximum time (t1/2) to reach the full effect was 1-2 min for UDCA and TUDCA, while GUDCA had a much slower t1/2 of 8.3 min. Ketoconazole (50 microM), an antifungal agent, increased LDL binding, but this effect was not additive when tested in the presence of 0.7 mM-UDCA. The results of the studies indicate that, in isolated hamster hepatocytes, the UDCA-induced increase in receptor-dependent LDL binding and uptake represents a direct effect of this bile acid. The action of the bile acid is closely related to its specific structural conformation, since UDCA and its conjugates are the only bile acids shown to express this ability thus far. However, certain agents other than bile acids, such as ketoconazole, have a similar effect. Finally, the studies suggest that the recruitment of LDL receptors from a latent pool in the hepatocellular membrane may be the mechanism by which UDCA exerts its direct effect. Images Fig. 6. PMID:1764022
Doden, Heidi; Sallam, Lina A; Devendran, Saravanan; Ly, Lindsey; Doden, Greta; Daniel, Steven L; Alves, João M P; Ridlon, Jason M
2018-05-15
Bile acids are important cholesterol-derived nutrient signaling hormones, synthesized in the liver, that act as detergents to solubilize dietary lipids. Bile acid 7α-dehydroxylating gut bacteria generate the toxic bile acids deoxycholic acid and lithocholic acid from host bile acids. The ability of these bacteria to remove the 7-hydroxyl group is partially dependent on 7α-hydroxysteroid dehydrogenase (HSDH) activity, which reduces 7-oxo-bile acids generated by other gut bacteria. 3α-HSDH has an important enzymatic activity in the bile acid 7α-dehydroxylation pathway. 12α-HSDH activity has been reported for the low-activity bile acid 7α-dehydroxylating bacterium Clostridium leptum ; however, this activity has not been reported for high-activity bile acid 7α-dehydroxylating bacteria, such as Clostridium scindens , Clostridium hylemonae , and Clostridium hiranonis Here, we demonstrate that these strains express bile acid 12α-HSDH. The recombinant enzymes were characterized from each species and shown to preferentially reduce 12-oxolithocholic acid to deoxycholic acid, with low activity against 12-oxochenodeoxycholic acid and reduced activity when bile acids were conjugated to taurine or glycine. Phylogenetic analysis suggests that 12α-HSDH is widespread among Firmicutes , Actinobacteria in the Coriobacteriaceae family, and human gut Archaea IMPORTANCE 12α-HSDH activity has been established in the medically important bile acid 7α-dehydroxylating bacteria C. scindens , C. hiranonis , and C. hylemonae Experiments with recombinant 12α-HSDHs from these strains are consistent with culture-based experiments that show a robust preference for 12-oxolithocholic acid over 12-oxochenodeoxycholic acid. Phylogenetic analysis identified novel members of the gut microbiome encoding 12α-HSDH. Future reengineering of 12α-HSDH enzymes to preferentially oxidize cholic acid may provide a means to industrially produce the therapeutic bile acid ursodeoxycholic acid. In addition, a cholic acid-specific 12α-HSDH expressed in the gut may be useful for the reduction in deoxycholic acid concentration, a bile acid implicated in cancers of the gastrointestinal (GI) tract. Copyright © 2018 American Society for Microbiology.
Hepatoprotective effect of chitosan-caffeic acid conjugate against ethanol-treated mice.
Park, Soo Yeon; Ahn, Ginnae; Um, Ju Hyung; Han, Eui Jeong; Ahn, Chang-Bum; Yoon, Na Young; Je, Jae-Young
2017-10-02
The chitosan-caffeic acid (CCA) conjugate shows a hepatoprotective effect against oxidative stress-induced hepatic damage in cultured hepatocytes. The objective of this study is the verification of the hepatoprotective effect of the CCA in vivo against ethanol-induced liver injury in mice. The administration of ethanol resulted in the increase of the serum-aminotransferase activities (AST and ALT), triglycerides, total cholesterol, and lipid peroxidation. The CCA co-administration, however, significantly (p<0.05) ameliorated these serum biomarkers. The antioxidant-enzyme activities in the liver tissue, including those of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), were significantly decreased by a chronic ethanol administration, whereas the hepatic lipid-peroxidation level was increased. Moreover, the chronic ethanol administration elevated the gene expression of pro-inflammatory cytokines such as tumor-necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in the liver tissue. The CCA co-administration, however, significantly (p<0.05) increased the activities of the SOD, CAT, and GPx and caused the down-regulation of the TNF-α- and IL-6-gene expressions in the liver tissue. An histopathologic evaluation also supported the hepatoprotective effect of the CCA against ethanol-induced hepatotoxicity in the mice. Copyright © 2017 Elsevier GmbH. All rights reserved.
Gun, Aburrahman; Bilgic, Sedat; Kocaman, Nevin; Ozan, Gonca
2016-01-01
Fructose corn syrup is cheap sweetener and prolongs the shelf life of products, but fructose intake causes hyperinsulinemia, hypertriglyceridemia, and hypertension. All of them are referred to as metabolic syndrome and they are risk factors for cardiovascular diseases. Hence, the harmful effects of increased fructose intake on health and their prevention should take greater consideration. Caffeic Acid Phenethyl Ester (CAPE) has beneficial effects on metabolic syndrome and vascular function which is important in the prevention of cardiovascular disease. However, there are no known studies about the effect of CAPE on fructose-induced vascular dysfunction. In this study, we examined the effect of CAPE on vascular dysfunction due to high fructose corn syrup (HFCS). HFCS (6 weeks, 30% fed with drinking water) caused vascular dysfunction, but treatment with CAPE (50 micromol/kg i.p. for the last two weeks) effectively restored this problem. Additionally, hypertension in HFCS-fed rats was also decreased in CAPE supplemented rats. CAPE supplements lowered HFCS consumption-induced raise in blood glucose, homocysteine, and cholesterol levels. The aorta tissue endothelial nitric oxide synthase (eNOS) production was decreased in rats given HFCS and in contrast CAPE supplementation efficiently increased its production. The presented results showed that HFCS-induced cardiovascular abnormalities could be prevented by CAPE treatment. PMID:27042260
Gun, Aburrahman; Ozer, Mehmet Kaya; Bilgic, Sedat; Kocaman, Nevin; Ozan, Gonca
2016-01-01
Fructose corn syrup is cheap sweetener and prolongs the shelf life of products, but fructose intake causes hyperinsulinemia, hypertriglyceridemia, and hypertension. All of them are referred to as metabolic syndrome and they are risk factors for cardiovascular diseases. Hence, the harmful effects of increased fructose intake on health and their prevention should take greater consideration. Caffeic Acid Phenethyl Ester (CAPE) has beneficial effects on metabolic syndrome and vascular function which is important in the prevention of cardiovascular disease. However, there are no known studies about the effect of CAPE on fructose-induced vascular dysfunction. In this study, we examined the effect of CAPE on vascular dysfunction due to high fructose corn syrup (HFCS). HFCS (6 weeks, 30% fed with drinking water) caused vascular dysfunction, but treatment with CAPE (50 micromol/kg i.p. for the last two weeks) effectively restored this problem. Additionally, hypertension in HFCS-fed rats was also decreased in CAPE supplemented rats. CAPE supplements lowered HFCS consumption-induced raise in blood glucose, homocysteine, and cholesterol levels. The aorta tissue endothelial nitric oxide synthase (eNOS) production was decreased in rats given HFCS and in contrast CAPE supplementation efficiently increased its production. The presented results showed that HFCS-induced cardiovascular abnormalities could be prevented by CAPE treatment.
Yılmaz, Ahmet; Elbey, Bilal; Yazgan, Ümit Can; Dönder, Ahmet; Arslan, Necmi; Arslan, Serkan; Alabalık, Ulaş; Aslanhan, Hamza
2016-01-01
Background. The aim of the study was to analyse the effect of caffeic acid phenethyl ester (CAPE) on fluoxetine-induced hepatotoxicity in rats. Materials and Methods. Group I served as control. Group II received CAPE intraperitoneally. Group III received fluoxetine per orally. Group IV received fluoxetine and CAPE. The total antioxidant capacity (TAC), total oxidant status (TOS), oxidative stress index (OSI), and liver enzymes including paraoxonase-1 (PON-1), aspartate transaminase, and alanine transaminase levels were measured. Liver tissues were processed histopathologically for evaluation of liver injury and to validate the serum enzyme levels. Results. An increase in TOS and OSI and a decrease in TAC and PON-1 levels in serum and liver tissues of Group III were observed compared to Groups I and II. After treatment with CAPE, the level of TOS and OSI decreased while TAC and PON-1 increased in serum and liver in Group IV. Histopathological examination of the liver revealed hepatic injury after fluoxetine treatment and reduction of injury with CAPE treatment. Conclusion. Our results suggested that CAPE treatment provided protection against fluoxetine toxicity. Following CAPE treatment with fluoxetine-induced hepatotoxicity, TOS and OSI levels decreased, whereas PON-1 and TAC increased in the serum and liver.
Mechanisms of triglyceride metabolism in patients with bile acid diarrhea
Sagar, Nidhi Midhu; McFarlane, Michael; Nwokolo, Chuka; Bardhan, Karna Dev; Arasaradnam, Ramesh Pulendran
2016-01-01
Bile acids (BAs) are essential for the absorption of lipids. BA synthesis is inhibited through intestinal farnesoid X receptor (FXR) activity. BA sequestration is known to influence BA metabolism and control serum lipid concentrations. Animal data has demonstrated a regulatory role for the FXR in triglyceride metabolism. FXR inhibits hepatic lipogenesis by inhibiting the expression of sterol regulatory element binding protein 1c via small heterodimer primer activity. Conversely, FXR promotes free fatty acids oxidation by inducing the expression of peroxisome proliferator-activated receptor α. FXR can reduce the expression of microsomal triglyceride transfer protein, which regulates the assembly of very low-density lipoproteins (VLDL). FXR activation in turn promotes the clearance of circulating triglycerides by inducing apolipoprotein C-II, very low-density lipoproteins receptor (VLDL-R) and the expression of Syndecan-1 together with the repression of apolipoprotein C-III, which increases lipoprotein lipase activity. There is currently minimal clinical data on triglyceride metabolism in patients with bile acid diarrhoea (BAD). Emerging data suggests that a third of patients with BAD have hypertriglyceridemia. Further research is required to establish the risk of hypertriglyceridaemia in patients with BAD and elicit the mechanisms behind this, allowing for targeted treatment. PMID:27570415
Yamato, Mayumi; Shiba, Takeshi; Ide, Tomomi; Seri, Naoko; Kudo, Wataru; Ando, Makoto; Yamada, Ken-ichi; Kinugawa, Shintaro; Tsutsui, Hiroyuki
2012-01-01
Tumor necrosis factor-α (TNF-α) is one of the main mediators of inflammatory response activated by fatty acids in obesity, and this signaling through TNF-α receptor (TNFR) is responsible for obesity-associated insulin resistance. Recently, TNF-α has shown to affect lipid metabolism including the regulation of lipase activity and bile acid synthesis. However, there is scanty in vivo evidence for the involvement of TNF-α in this process, and the mechanistic role of TNFR remains unclear. In this study, TNFR2 knockout mice (R2KO) and wild-type (WT) mice were fed commercial normal diet (ND) or high-fat diet (HFD) for 8 weeks. In R2KO/HFD mice, the increase in body weight and the accumulation of fat were significantly ameliorated compared with WT/HFD mice in association with the decrease in plasma total cholesterol (137.7±3.1 vs. 98.6±3.1 mg/dL, P<0.005), glucose (221.9±14.7 vs. 167.3±8.1 mg/dL, P<0.01), and insulin (5.1±0.3 vs. 3.4±0.3 ng/mL, P<0.05). Fecal excretion of lipid contents was significantly increased in R2KO mice. In R2KO/HFD mice, the decrease in hepatic cholesterol-7a-hydroxylase activity, the rate-limiting enzyme in bile acid synthesis, was inhibited (1.7±0.2 vs. 8.1±1.0 pmol/min/mg protein, P<0.01). These results suggested that HFD-induced obesity with metabolic derangements could be ameliorated in mice lacking TNF-α receptor 2 via increasing fecal bile acid and lipid content excretion. Therefore, TNF-α signaling through TNFR2 is essentially involved in the bile acid synthesis and excretion of lipids, resulting in its beneficial effects.
Hagey, Lee R.; Kakiyama, Genta; Muto, Akina; Iida, Takashi; Mushiake, Kumiko; Goto, Takaaki; Mano, Nariyasu; Goto, Junichi; Oliveira, Cleida A.; Hofmann, Alan F.
2009-01-01
The chemical structures of the three major bile acids present in the gallbladder bile of the Red-winged tinamou (Rhynchotus rufescens), an early evolving, ground-living bird related to ratites, were determined. Bile acids were isolated by preparative reversed-phase HPLC. Two of the compounds were identified as the taurine N-acylamidates of (25R)-3α,7α-dihydroxy-5β-cholestan-27-oic acid (constituting 22% of biliary bile acids) and (25R)-3α,7α,12α-trihydroxy-5β-cholestan-27-oic acid (constituting 51%). The remaining compound, constituting 21% of biliary bile acids, was an unknown C27 bile acid. Its structure was elucidated by LC/ESI-MS/MS and NMR and shown to be the taurine conjugate of (25R)-1β,3α,7α-trihydroxy-5β-cholestan-27-oic acid, a C27 trihydroxy bile acid not previously reported. Although C27 bile acids with a 1β-hydroxyl group have been identified as trace bile acids in the alligator, this is the first report of a major biliary C27 bile acid possessing a 1β-hydroxyl group. PMID:19011113
Bu, Pengli; Le, Yuan; Zhang, Yue; Zhang, Youcai; Cheng, Xingguo
2017-01-01
Sodium-taurocholate co-transporting polypeptide (Ntcp/NTCP) is the major uptake transporter of bile salts in mouse and human livers. In certain diseases, including endotoxemia, cholestasis, diabetes, and hepatocarcinoma, Ntcp/NTCP expression is markedly reduced, which interferes with enterohepatic circulation of bile salts, impairing the absorption of lipophilic compounds. Therefore, normal Ntcp/NTCP expression in the liver is physiologically important. Berberine is an herbal medicine used historically to improve liver function and has recently been shown to repress STAT signaling. However, berberine effects on Ntcp/NTCP expression are unknown, prompting use to investigate this possible connection. Our results showed that berberine dose-dependently increased Ntcp expression in male mouse liver and decreased taurocholic acid levels in serum but increased them in the liver. In mouse and human hepatoma cells, berberine induced Ntcp/NTCP mRNA and protein expression and increased cellular uptake of [3H] taurocholate. Mechanistically, berberine decreased nuclear protein levels of phospho-JAK2 and phospho-STAT5, thus disrupting the JAK2-STAT5 signaling. Moreover, berberine stimulated luciferase reporter expression from the mouse Ntcp promoter when one putative STAT5 response element (RE) (−1137 bp) was deleted and from the human NTCP promoter when three putative STAT5REs (−2898, −2164, and −691 bp) were deleted. Chromatin immunoprecipitation demonstrated that berberine decreased binding of phospho-STAT5 protein to the−2164 and −691 bp STAT5REs in the human NTCP promoter. In summary, berberine-disrupted STAT5 signaling promoted mouse and human Ntcp/NTCP expression, resulting in enhanced bile acid uptake. Therefore, berberine may be a therapeutic candidate compound for maintaining bile acid homeostasis. PMID:28154180
Bu, Pengli; Le, Yuan; Zhang, Yue; Zhang, Youcai; Cheng, Xingguo
2017-03-17
Sodium-taurocholate co-transporting polypeptide (Ntcp/NTCP) is the major uptake transporter of bile salts in mouse and human livers. In certain diseases, including endotoxemia, cholestasis, diabetes, and hepatocarcinoma, Ntcp/NTCP expression is markedly reduced, which interferes with enterohepatic circulation of bile salts, impairing the absorption of lipophilic compounds. Therefore, normal Ntcp/NTCP expression in the liver is physiologically important. Berberine is an herbal medicine used historically to improve liver function and has recently been shown to repress STAT signaling. However, berberine effects on Ntcp/NTCP expression are unknown, prompting use to investigate this possible connection. Our results showed that berberine dose-dependently increased Ntcp expression in male mouse liver and decreased taurocholic acid levels in serum but increased them in the liver. In mouse and human hepatoma cells, berberine induced Ntcp/NTCP mRNA and protein expression and increased cellular uptake of [3H] taurocholate. Mechanistically, berberine decreased nuclear protein levels of phospho-JAK2 and phospho-STAT5, thus disrupting the JAK2-STAT5 signaling. Moreover, berberine stimulated luciferase reporter expression from the mouse Ntcp promoter when one putative STAT5 response element (RE) (-1137 bp) was deleted and from the human NTCP promoter when three putative STAT5REs (-2898, -2164, and -691 bp) were deleted. Chromatin immunoprecipitation demonstrated that berberine decreased binding of phospho-STAT5 protein to the-2164 and -691 bp STAT5REs in the human NTCP promoter. In summary, berberine-disrupted STAT5 signaling promoted mouse and human Ntcp/NTCP expression, resulting in enhanced bile acid uptake. Therefore, berberine may be a therapeutic candidate compound for maintaining bile acid homeostasis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Bile Acid Metabolism and Signaling
Chiang, John Y. L.
2015-01-01
Bile acids are important physiological agents for intestinal nutrient absorption and biliary secretion of lipids, toxic metabolites, and xenobiotics. Bile acids also are signaling molecules and metabolic regulators that activate nuclear receptors and G protein-coupled receptor (GPCR) signaling to regulate hepatic lipid, glucose, and energy homeostasis and maintain metabolic homeostasis. Conversion of cholesterol to bile acids is critical for maintaining cholesterol homeostasis and preventing accumulation of cholesterol, triglycerides, and toxic metabolites, and injury in the liver and other organs. Enterohepatic circulation of bile acids from the liver to intestine and back to the liver plays a central role in nutrient absorption and distribution, and metabolic regulation and homeostasis. This physiological process is regulated by a complex membrane transport system in the liver and intestine regulated by nuclear receptors. Toxic bile acids may cause inflammation, apoptosis, and cell death. On the other hand, bile acid-activated nuclear and GPCR signaling protects against inflammation in liver, intestine, and macrophages. Disorders in bile acid metabolism cause cholestatic liver diseases, dyslipidemia, fatty liver diseases, cardiovascular diseases, and diabetes. Bile acids, bile acid derivatives, and bile acid sequestrants are therapeutic agents for treating chronic liver diseases, obesity, and diabetes in humans. PMID:23897684
Hofmann, Alan F.; Hagey, Lee R.
2014-01-01
During the last 80 years there have been extraordinary advances in our knowledge of the chemistry and biology of bile acids. We present here a brief history of the major achievements as we perceive them. Bernal, a physicist, determined the X-ray structure of cholesterol crystals, and his data together with the vast chemical studies of Wieland and Windaus enabled the correct structure of the steroid nucleus to be deduced. Today, C24 and C27 bile acids together with C27 bile alcohols constitute most of the bile acid “family”. Patterns of bile acid hydroxylation and conjugation are summarized. Bile acid measurement encompasses the techniques of GC, HPLC, and MS, as well as enzymatic, bioluminescent, and competitive binding methods. The enterohepatic circulation of bile acids results from vectorial transport of bile acids by the ileal enterocyte and hepatocyte; the key transporters have been cloned. Bile acids are amphipathic, self-associate in solution, and form mixed micelles with polar lipids, phosphatidylcholine in bile, and fatty acids in intestinal content during triglyceride digestion. The rise and decline of dissolution of cholesterol gallstones by the ingestion of 3,7-dihydroxy bile acids is chronicled. Scientists from throughout the world have contributed to these achievements. PMID:24838141
Ferreira, Isabel C. F. R.; Barros, Lillian; Carvalho, Ana Maria; Soares, Graça; Henriques, Mariana
2014-01-01
The present work aims to assess the antibacterial potential of phenolic extracts, recovered from plants obtained on the North East of Portugal, and of their phenolic compounds (ellagic, caffeic, and gallic acids, quercetin, kaempferol, and rutin), against bacteria commonly found on skin infections. The disk diffusion and the susceptibility assays were used to identify the most active extracts and phenolic compounds. The effect of selected phenolic compounds on animal cells was assessed by determination of cellular metabolic activity. Gallic acid had a higher activity, against gram-positive (S. epidermidis and S. aureus) and gram-negative bacteria (K. pneumoniae) at lower concentrations, than the other compounds. The caffeic acid, also, showed good antibacterial activity against the 3 bacteria used. The gallic acid was effective against the 3 bacteria without causing harm to the animal cells. Gallic and caffeic acid showed a promising applicability as antibacterial agents for the treatment of infected wounds. PMID:24804249
Dokuyucu, Recep; Bilgili, Ali; Hanedan, Basak; Dogan, Hatice; Dokuyucu, Ahmet; Celik, Muhammed Murat
2016-12-22
Chlorpyrifos (CPF), insecticide widely used in agriculture, may cause poisonings in the case of humans. As a result, there is a large amount of treatment research underway to focus on the possibility of chlorpyrifos induced poisonings. The aim of this study has been to evaluate the effects of caffeic acid phenethyl ester (CAPE) and intralipid (IL) on hepatotoxicity induced by chlorpyrifos in the case of rats. The rats in this study were treated with CPF (10 mg/kg body weight (b.w.), orally), CAPE (10 μmol/kg b.w., intraperitoneally), IL (18.6 ml/kg b.w., orally), CPF+CAPE, CPF+IL, and CPF+CAPE+IL. The plasma total oxidant capacity (TOC), total antioxidant capacity (TAC) were measured and the oxidative stress index (OSI) was calculated. Liver histopathology and immunohistochemical staining were performed. Chlorpyrifos statistically significantly decreased the TAC levels in the rats' plasma and increased the apoptosis and the TOC and OSI levels. In the chlorpyrifos induced liver injury, CAPE and CAPE+IL significantly decreased the plasma OSI levels and the apoptosis, and significantly increased the plasma TAC levels. This study revealed that CAPE and CAPE+IL attenuate chlorpyrifos induced liver injuries by decreasing oxidative stress and apoptosis. Med Pr 2016;67(6):743-749. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.
Antistaphylococcal and biofilm inhibitory activities of gallic, caffeic, and chlorogenic acids.
Luís, Ângelo; Silva, Filomena; Sousa, Sónia; Duarte, Ana Paula; Domingues, Fernanda
2014-01-01
Staphylococcus aureus is a Gram-positive pathogen which is able to form biofilms, exhibiting a more pronounced resistance to antibiotics and disinfectants. The hurdles posed in eradicating biofilms have driven the search for new compounds able to fight these structures. Phenolic compounds constitute one of the most numerous and ubiquitous group of plant secondary metabolites with many biological activities. The aim of the present work was to study the potential antimicrobial and antibiofilm properties of gallic, caffeic, and chlorogenic acids against S. aureus as well to elucidate its mechanism of action. It was concluded that the phenolic acids studied in this work have antistaphylococcal properties. For instance, gallic acid is able to influence the adhesion properties of S. aureus. The phenolic acids tested were also able to inhibit the production of α-hemolysin by this microorganism, with the exception of chlorogenic acid. Regarding its mechanism of action, caffeic acid interferes with the stability of the cell membrane and with the metabolic activity of the cells of S. aureus.
Potential of nor-Ursodeoxycholic Acid in Cholestatic and Metabolic Disorders.
Trauner, Michael; Halilbasic, Emina; Claudel, Thierry; Steinacher, Daniel; Fuchs, Claudia; Moustafa, Tarek; Pollheimer, Marion; Krones, Elisabeth; Kienbacher, Christian; Traussnigg, Stefan; Kazemi-Shirazi, Lili; Munda, Petra; Hofer, Harald; Fickert, Peter; Paumgartner, Gustav
2015-01-01
24-nor-ursodeoxycholic acid (norUDCA) is a side-chain shortened derivate of ursodeoxycholic acid (UDCA). Since norUDCA is only ineffectively conjugated with glycine or taurine, it has specific physicochemical and therapeutic properties distinct from UDCA. Nonamidated norUDCA undergoes cholehepatic shunting enabling 'ductular targeting' and inducing a bicarbonate-rich hypercholeresis, with cholangioprotective effects. At the same time it has direct anti-inflammatory, antilipotoxic, anti fibrotic, and antiproliferative properties targeting various liver cell populations. norUDCA appears to be one of the most promising novel treatment approaches targeting the liver and the bile duct system at multifactorial and multicellular levels. This review article is a summary of a lecture given at the XXIII International Bile Acid Meeting (Falk Symposium 194) on 'Bile Acids as Signal Integrators and Metabolic Modulators' held in Freiburg, October 8-9, 2014, and summarizes the recent progress with norUDCA as a novel therapeutic approach in cholestatic and metabolic (liver) disorders. 2015 S. Karger AG, Basel.
Disulfide bridge regulates ligand-binding site selectivity in liver bile acid-binding proteins.
Cogliati, Clelia; Tomaselli, Simona; Assfalg, Michael; Pedò, Massimo; Ferranti, Pasquale; Zetta, Lucia; Molinari, Henriette; Ragona, Laura
2009-10-01
Bile acid-binding proteins (BABPs) are cytosolic lipid chaperones that play central roles in driving bile flow, as well as in the adaptation to various pathological conditions, contributing to the maintenance of bile acid homeostasis and functional distribution within the cell. Understanding the mode of binding of bile acids with their cytoplasmic transporters is a key issue in providing a model for the mechanism of their transfer from the cytoplasm to the nucleus, for delivery to nuclear receptors. A number of factors have been shown to modulate bile salt selectivity, stoichiometry, and affinity of binding to BABPs, e.g. chemistry of the ligand, protein plasticity and, possibly, the formation of disulfide bridges. Here, the effects of the presence of a naturally occurring disulfide bridge on liver BABP ligand-binding properties and backbone dynamics have been investigated by NMR. Interestingly, the disulfide bridge does not modify the protein-binding stoichiometry, but has a key role in modulating recognition at both sites, inducing site selectivity for glycocholic and glycochenodeoxycholic acid. Protein conformational changes following the introduction of a disulfide bridge are small and located around the inner binding site, whereas significant changes in backbone motions are observed for several residues distributed over the entire protein, both in the apo form and in the holo form. Site selectivity appears, therefore, to be dependent on protein mobility rather than being governed by steric factors. The detected properties further establish a parallelism with the behaviour of human ileal BABP, substantiating the proposal that BABPs have parallel functions in hepatocytes and enterocytes.
Effect of high pressure on peanut allergens in the presence of polyphenol oxidase and caffeic acid
USDA-ARS?s Scientific Manuscript database
High pressure (HP) enhances enzymatic reactions. Because polyphenol oxidase (PPO) is an enzyme, and reduces IgE binding of peanut allergens in presence of caffeic acid (CA), we postulated that a further reduction in IgE binding can be achieved, using HP together with PPO and CA. Peanut extracts cont...
Furuya, Toshiki; Kino, Kuniki
2014-02-01
4-Hydroxyphenylacetate 3-hydroxylases (HPAHs) of the two-component flavin-dependent monooxygenase family are attractive enzymes that possess the catalytic potential to synthesize valuable ortho-diphenol compounds from simple monophenol compounds. In this study, we investigated the catalytic activity of HPAH from Pseudomonas aeruginosa strain PAO1 toward cinnamic acid derivatives. We prepared Escherichia coli cells expressing the hpaB gene encoding the monooxygenase component and the hpaC gene encoding the oxidoreductase component. E. coli cells expressing HpaBC exhibited no or very low oxidation activity toward cinnamic acid, o-coumaric acid, and m-coumaric acid, whereas they rapidly oxidized p-coumaric acid to caffeic acid. Interestingly, after p-coumaric acid was almost completely consumed, the resulting caffeic acid was further oxidized to 3,4,5-trihydroxycinnamic acid. In addition, HpaBC exhibited oxidation activity toward 3-(4-hydroxyphenyl)propanoic acid, ferulic acid, and coniferaldehyde to produce the corresponding ortho-diphenols. We also investigated a flask-scale production of caffeic acid from p-coumaric acid as the model reaction for HpaBC-catalyzed syntheses of hydroxycinnamic acids. Since the initial concentrations of the substrate p-coumaric acid higher than 40 mM markedly inhibited its HpaBC-catalyzed oxidation, the reaction was carried out by repeatedly adding 20 mM of this substrate to the reaction mixture. Furthermore, by using the HpaBC whole-cell catalyst in the presence of glycerol, our experimental setup achieved the high-yield production of caffeic acid, i.e., 56.6 mM (10.2 g/L) within 24 h. These catalytic activities of HpaBC will provide an easy and environment-friendly synthetic approach to hydroxycinnamic acids.
Nyhlin, H; Brydon, G; Danielsson, A; Eriksson, F
1990-01-01
Seventeen patients were operated on with intestinal shunts for morbid obesity, in eight a biliointestinal bypass (BI) was constructed and in the rest a conventional jejunoileal (JI)-shunt. The reduction in weight was similar in both groups, and so was malabsorption of fat, but the BI-group had significantly less bowel motions with less watery diarrhoea. Bile acid malabsorption was measured both chemically by estimating the total amount of faecal bile acids excreted, as well as indirectly by using a 75Se-labelled synthetic bile acid (SeHCAT). Both techniques revealed a substantial loss of bile acid after both types of operation, but patients with BI bypass surgery had significantly lower elimination time of the bile acid than those with JI-shunts. There was a significant negative correlation between SeHCAT retention and total faecal bile acids. However, some patients with low SeHCAT retention had normal or even reduced output of faecal bile acids. Estimation of faecal bile acids may display false negative results when the bile acid pool is decreased. The SeHCAT-test seems to be a better technique for measuring bile acid losses. The study suggests that BI bypass surgery for obesity seems to be advantageous over the JI shunt in reducing the postoperative loss of bile acids and choleretic diarrhoea, without influencing the weight loss.
Zhao, Mei-Fen; Huang, Peng; Ge, Chun-Lin; Sun, Tao; Ma, Zhi-Gang; Ye, Fei-Fei
2016-02-28
To identify conjugated bile acids in gallbladder bile and serum as possible biomarkers for cholesterol polyps (CPs) and adenomatous polyps (APs). Gallbladder bile samples and serum samples were collected from 18 patients with CPs (CP group), 9 patients with APs (AP group), and 20 patients with gallstones (control group) from March to November, 2013. High performance liquid chromatography (HPLC) assay with ultraviolent detection was used to detect the concentration of 8 conjugated bile acids (glycocholic acid, GCA; taurocholic acid, TCA; glycochenodeoxycholic acid, GCDCA; taurochenodeoxycholic acid, TCDCA; glycodeoxycholic acid, GDCA; taurodeoxycholic acid, TDCA; taurolithocholic acid, TLCA; tauroursodeoxycholic acid, TUDCA) in bile samples and serum samples. The diagnostic efficacy of serum GCA, GCDCA and TCDCA was evaluated. These 8 conjugated bile acids in gallbladder bile and serum were completely identified within 10 minutes with good linearity (correlation coefficient: R>0.9900; linearity range: 3.91-500 µg/mL). Among these conjugated bile acids, the levels of gallbladder bile GCDCA and TCDCA in the CP group were significantly higher than those in the AP group (p<0.05). Furthermore, serum GCDCA and TCDCA as well as GCA were significantly higher in the AP group than the CP group (p<0.05). Serum GCDCA alone (≤12 µg/mL) had relatively better diagnostic efficacy than the other conjugated bile acids. The levels of serum GCA, GCDCA and TCDCA may be valuable for differentiation of APs and CPs.
Bile Acid Signaling in Metabolic Disease and Drug Therapy
Li, Tiangang
2014-01-01
Bile acids are the end products of cholesterol catabolism. Hepatic bile acid synthesis accounts for a major fraction of daily cholesterol turnover in humans. Biliary secretion of bile acids generates bile flow and facilitates hepatobiliary secretion of lipids, lipophilic metabolites, and xenobiotics. In the intestine, bile acids are essential for the absorption, transport, and metabolism of dietary fats and lipid-soluble vitamins. Extensive research in the last 2 decades has unveiled new functions of bile acids as signaling molecules and metabolic integrators. The bile acid–activated nuclear receptors farnesoid X receptor, pregnane X receptor, constitutive androstane receptor, vitamin D receptor, and G protein–coupled bile acid receptor play critical roles in the regulation of lipid, glucose, and energy metabolism, inflammation, and drug metabolism and detoxification. Bile acid synthesis exhibits a strong diurnal rhythm, which is entrained by fasting and refeeding as well as nutrient status and plays an important role for maintaining metabolic homeostasis. Recent research revealed an interaction of liver bile acids and gut microbiota in the regulation of liver metabolism. Circadian disturbance and altered gut microbiota contribute to the pathogenesis of liver diseases, inflammatory bowel diseases, nonalcoholic fatty liver disease, diabetes, and obesity. Bile acids and their derivatives are potential therapeutic agents for treating metabolic diseases of the liver. PMID:25073467
Microbiota-induced obesity requires farnesoid X receptor
Parséus, Ava; Sommer, Nina; Sommer, Felix; Caesar, Robert; Molinaro, Antonio; Ståhlman, Marcus; Greiner, Thomas U; Perkins, Rosie; Bäckhed, Fredrik
2017-01-01
Objective The gut microbiota has been implicated as an environmental factor that modulates obesity, and recent evidence suggests that microbiota-mediated changes in bile acid profiles and signalling through the bile acid nuclear receptor farnesoid X receptor (FXR) contribute to impaired host metabolism. Here we investigated if the gut microbiota modulates obesity and associated phenotypes through FXR. Design We fed germ-free (GF) and conventionally raised (CONV-R) wild-type and Fxr−/− mice a high-fat diet (HFD) for 10 weeks. We monitored weight gain and glucose metabolism and analysed the gut microbiota and bile acid composition, beta-cell mass, accumulation of macrophages in adipose tissue, liver steatosis, and expression of target genes in adipose tissue and liver. We also transferred the microbiota of wild-type and Fxr-deficient mice to GF wild-type mice. Results The gut microbiota promoted weight gain and hepatic steatosis in an FXR-dependent manner, and the bile acid profiles and composition of faecal microbiota differed between Fxr−/− and wild-type mice. The obese phenotype in colonised wild-type mice was associated with increased beta-cell mass, increased adipose inflammation, increased steatosis and expression of genes involved in lipid uptake. By transferring the caecal microbiota from HFD-fed Fxr−/− and wild-type mice into GF mice, we showed that the obesity phenotype was transferable. Conclusions Our results indicate that the gut microbiota promotes diet-induced obesity and associated phenotypes through FXR, and that FXR may contribute to increased adiposity by altering the microbiota composition. PMID:26740296
Consequences of bile salt biotransformations by intestinal bacteria
Ridlon, Jason M.; Harris, Spencer C.; Bhowmik, Shiva; Kang, Dae-Joong; Hylemon, Phillip B.
2016-01-01
ABSTRACT Emerging evidence strongly suggest that the human “microbiome” plays an important role in both health and disease. Bile acids function both as detergents molecules promoting nutrient absorption in the intestines and as hormones regulating nutrient metabolism. Bile acids regulate metabolism via activation of specific nuclear receptors (NR) and G-protein coupled receptors (GPCRs). The circulating bile acid pool composition consists of primary bile acids produced from cholesterol in the liver, and secondary bile acids formed by specific gut bacteria. The various biotransformation of bile acids carried out by gut bacteria appear to regulate the structure of the gut microbiome and host physiology. Increased levels of secondary bile acids are associated with specific diseases of the GI system. Elucidating methods to control the gut microbiome and bile acid pool composition in humans may lead to a reduction in some of the major diseases of the liver, gall bladder and colon. PMID:26939849
Batta, A K; Salen, G; Shefer, S
1985-01-01
We have examined the mechanism for the bacterial transformation of chenodeoxycholic acid and lithocholic acid into the corresponding 3 beta-hydroxy epimers with the use of 3 alpha- and 3 beta-tritiated bile acids. The 3-oxo bile acids were transformed into the 3 alpha- (85%) and 3 beta- (15%) hydroxy bile acids after 20-hr incubation with Clostridium perfringens. Approximately 75% radioactivity was recovered in the aqueous medium when [3 beta-3H]chenodeoxycholic acid or [3 beta-3H]lithocholic acid was incubated with the bacteria, and approximately 15% of radioactivity in the bile acid fraction was associated with the 3 alpha-position of the iso-bile acids. When [3 beta-3H]chenodeoxycholic acid was incubated with unlabeled 3-oxo-5 beta-cholanoic acid, tritiated litho- and iso-lithocholic acids were recovered. These results can be explained only when a 3-oxo intermediate is postulated, and the 3 beta-hydrogen in the bile acids is transferred by the bacterial coenzyme (NAD+ or NADP+) to the 3 alpha-position in the iso-bile acids during the reduction of the 3-oxo compounds.
Hofmann, Alan F; Hagey, Lee R
2014-08-01
During the last 80 years there have been extraordinary advances in our knowledge of the chemistry and biology of bile acids. We present here a brief history of the major achievements as we perceive them. Bernal, a physicist, determined the X-ray structure of cholesterol crystals, and his data together with the vast chemical studies of Wieland and Windaus enabled the correct structure of the steroid nucleus to be deduced. Today, C24 and C27 bile acids together with C27 bile alcohols constitute most of the bile acid "family". Patterns of bile acid hydroxylation and conjugation are summarized. Bile acid measurement encompasses the techniques of GC, HPLC, and MS, as well as enzymatic, bioluminescent, and competitive binding methods. The enterohepatic circulation of bile acids results from vectorial transport of bile acids by the ileal enterocyte and hepatocyte; the key transporters have been cloned. Bile acids are amphipathic, self-associate in solution, and form mixed micelles with polar lipids, phosphatidylcholine in bile, and fatty acids in intestinal content during triglyceride digestion. The rise and decline of dissolution of cholesterol gallstones by the ingestion of 3,7-dihydroxy bile acids is chronicled. Scientists from throughout the world have contributed to these achievements. Copyright © 2014 by the American Society for Biochemistry and Molecular Biology, Inc.
Weingarden, Alexa R; Chen, Chi; Bobr, Aleh; Yao, Dan; Lu, Yuwei; Nelson, Valerie M; Sadowsky, Michael J; Khoruts, Alexander
2014-02-15
Fecal microbiota transplantation (FMT) has emerged as a highly effective therapy for refractory, recurrent Clostridium difficile infection (CDI), which develops following antibiotic treatments. Intestinal microbiota play a critical role in the metabolism of bile acids in the colon, which in turn have major effects on the lifecycle of C. difficile bacteria. We hypothesized that fecal bile acid composition is altered in patients with recurrent CDI and that FMT results in its normalization. General metabolomics and targeted bile acid analyses were performed on fecal extracts from patients with recurrent CDI treated with FMT and their donors. In addition, 16S rRNA gene sequencing was used to determine the bacterial composition of pre- and post-FMT fecal samples. Taxonomic bacterial composition of fecal samples from FMT recipients showed rapid change and became similar to the donor after the procedure. Pre-FMT fecal samples contained high concentrations of primary bile acids and bile salts, while secondary bile acids were nearly undetectable. In contrast, post-FMT fecal samples contained mostly secondary bile acids, as did non-CDI donor samples. Therefore, our analysis showed that FMT resulted in normalization of fecal bacterial community structure and metabolic composition. Importantly, metabolism of bile salts and primary bile acids to secondary bile acids is disrupted in patients with recurrent CDI, and FMT corrects this abnormality. Since individual bile salts and bile acids have pro-germinant and inhibitory activities, the changes suggest that correction of bile acid metabolism is likely a major mechanism by which FMT results in a cure and prevents recurrence of CDI.
Role of bile acids in carcinogenesis of pancreatic cancer: An old topic with new perspective
Feng, Hui-Yi; Chen, Yang-Chao
2016-01-01
The role of bile acids in colorectal cancer has been well documented, but their role in pancreatic cancer remains unclear. In this review, we examined the risk factors of pancreatic cancer. We found that bile acids are associated with most of these factors. Alcohol intake, smoking, and a high-fat diet all lead to high secretion of bile acids, and bile acid metabolic dysfunction is a causal factor of gallstones. An increase in secretion of bile acids, in addition to a long common channel, may result in bile acid reflux into the pancreatic duct and to the epithelial cells or acinar cells, from which pancreatic adenocarcinoma is derived. The final pathophysiological process is pancreatitis, which promotes dedifferentiation of acinar cells into progenitor duct-like cells. Interestingly, bile acids act as regulatory molecules in metabolism, affecting adipose tissue distribution, insulin sensitivity and triglyceride metabolism. As a result, bile acids are associated with three risk factors of pancreatic cancer: obesity, diabetes and hypertriglyceridemia. In the second part of this review, we summarize several studies showing that bile acids act as cancer promoters in gastrointestinal cancer. However, more question are raised than have been solved, and further oncological and physiological experiments are needed to confirm the role of bile acids in pancreatic cancer carcinogenesis. PMID:27672269
Serum bile acid concentrations in dairy cattle with hepatic lipidosis.
Garry, F B; Fettman, M J; Curtis, C R; Smith, J A
1994-01-01
This study was designed to evaluate serum bile acid measurements as indicatory, of liver function and/or hepatic fat infiltration in dairy cattle. Serum bile acid concentrations were measured in healthy dairy cattle at different stages of lactation after fasting or feeding. Bile acid concentrations were compared with liver fat content and sulfobromophthalein (BSP) half-life (T 1/2). Serum bile acid concentrations were higher in cows in early lactation and with higher daily milk production. Compared with prefasting values, bile acid concentrations were decreased at 8, 14, and 24 hours of fasting. Blood samples from fed cows at 1- to 2-hour intervals had wide and inconsistent variations in bile acid concentration. Because serum bile acids correlated well with BSP T 1/2, it is suggested that both measurements evaluate a similar aspect of liver function. Neither bile acids nor BSP T 1/2 correlated with differences in liver fat content among cows. Because of large variability in serum bile acid concentrations in fed cows and the lack of correlation of measured values with liver fat content, bile acid determinations do not appear useful for showing changes in hepatic function in fed cows with subclinical hepatic lipidosis nor serve as a screening test for this condition.
Kakiyama, Genta; Muto, Akina; Takei, Hajime; Nittono, Hiroshi; Murai, Tsuyoshi; Kurosawa, Takao; Hofmann, Alan F.; Pandak, William M.; Bajaj, Jasmohan S.
2014-01-01
We have developed a simple and accurate HPLC method for measurement of fecal bile acids using phenacyl derivatives of unconjugated bile acids, and applied it to the measurement of fecal bile acids in cirrhotic patients. The HPLC method has the following steps: 1) lyophilization of the stool sample; 2) reconstitution in buffer and enzymatic deconjugation using cholylglycine hydrolase/sulfatase; 3) incubation with 0.1 N NaOH in 50% isopropanol at 60°C to hydrolyze esterified bile acids; 4) extraction of bile acids from particulate material using 0.1 N NaOH; 5) isolation of deconjugated bile acids by solid phase extraction; 6) formation of phenacyl esters by derivatization using phenacyl bromide; and 7) HPLC separation measuring eluted peaks at 254 nm. The method was validated by showing that results obtained by HPLC agreed with those obtained by LC-MS/MS and GC-MS. We then applied the method to measuring total fecal bile acid (concentration) and bile acid profile in samples from 38 patients with cirrhosis (17 early, 21 advanced) and 10 healthy subjects. Bile acid concentrations were significantly lower in patients with advanced cirrhosis, suggesting impaired bile acid synthesis. PMID:24627129
Nunes, Cláudia; Maricato, Élia; Cunha, Ângela; Nunes, Alexandra; da Silva, José A Lopes; Coimbra, Manuel A
2013-01-02
The use of chitosan films has been limited due to their high degradability in aqueous acidic media. In order to produce chitosan films with high antioxidant activity and insoluble in acid solutions caffeic acid was grafted to chitosan by a radical mechanism using ammonium cerium (IV) nitrate (60 mM). Genipin was used as cross-linker. This methodology originated films with 80% higher antioxidant activity than the pristine film. Also, these films only lost 11% of their mass upon seven days immersion into an aqueous solution at pH 3.5 under stirring. The films surface wettability (contact angle 105°), mechanical properties (68 MPa of tensile strength and 4% of elongation at break), and thermal stability for temperatures lower than 300 °C were not significantly influenced by the covalent linkage of caffeic acid and genipin to chitosan. Due to their characteristics, mainly higher antioxidant activity and lower solubility, these are promising materials to be used as active films. Copyright © 2012 Elsevier Ltd. All rights reserved.
In vitro digestion with bile acids enhances the bioaccessibility of kale polyphenols.
Yang, Isabelle; Jayaprakasha, Guddarangavvanahally K; Patil, Bhimanagouda
2018-02-21
Kale (Brassica oleracea) is a leafy green vegetable belonging to the Brassicaceae family, and kale leaves have large amounts of dietary fiber and polyphenolics. Dietary fiber can bind bile acids, thus potentially decreasing cholesterol levels; however, whether the polyphenols from kale contribute to in vitro bile acid binding capacity remains unclear. In the present study, kale was extracted with hexane, acetone, and MeOH : water and the dried extracts, as well as the fiber-rich residue, were tested for their bile acid binding capacity. The fiber-rich residue bound total bile acids in amounts equivalent to that bound by raw kale. The lyophilized acetone extract bound significantly more glycochenodeoxycholate and glycodeoxycholate and less of other bile acids. To test whether bile acid binding enhanced the bioaccessibility of polyphenolic compounds from kale, we used ultra-performance liquid chromatography coupled with electrospray ionization/quadrupole-time-of-flight mass spectrometry to identify chemical constituents and measure their bioaccessibility in an in vitro digestion reaction. This identified 36 phenolic compounds in kale, including 18 kaempferol derivatives, 13 quercetin derivatives, 4 sinapoyl derivatives, and one caffeoylquinic acid. The bioaccessibility of these phenolics was significantly higher (69.4%) in digestions with bile acids. Moreover, bile acids enhanced the bioaccessibility of quercetin by 25 times: only 2.7% of quercetin derivatives were bioaccessible in the digestion without bile acids, but with bile acids, their accessibility increased to 69.5%. Bile acids increased the bioaccessibility of kaempferol from 37.7% to 69.2%. The extractability and biostability of total phenolics in the digested residue increased 1.8 fold in the digestions with bile acids. These results demonstrated the potential use of kale to improve human health.
Role of bile acids and bile acid binding agents in patients with collagenous colitis
Ung, K; Gillberg, R; Kilander, A; Abrahamsson, H
2000-01-01
BACKGROUND—In a retrospective study bile acid malabsorption was observed in patients with collagenous colitis. AIMS—To study the occurrence of bile acid malabsorption and the effect of bile acid binders prospectively in patients with chronic diarrhoea and collagenous colitis. METHODS—Over 36 months all patients referred because of chronic diarrhoea completed a diagnostic programme, including gastroscopy with duodenal biopsy, colonoscopy with biopsies, and the 75Se-homocholic acid taurine (75SeHCAT) test for bile acid malabsorption. Treatment with a bile acid binder (cholestyramine in 24, colestipol in three) was given, irrespective of the results of the 75SeHCAT test. RESULTS—Collagenous colitis was found in 28 patients (six men, 22 women), 27 of whom had persistent symptoms and completed the programme. Four patients had had a previous cholecystectomy or a distal gastric resection. The 75SeHCAT test was abnormal in 12/27 (44%) of the collagenous colitis patients with 75SeHCAT values 0.5-9.7%, and normal in 15 patients (56%). Bile acid binding treatment was followed by a rapid, marked, or complete improvement in 21/27 (78%) of the collagenous colitis patients. Rapid improvement occurred in 11/12 (92%) of the patients with bile acid malabsorption compared with 10/15 (67%) of the patients with normal 75SeHCAT tests. CONCLUSION—Bile acid malabsorption is common in patients with collagenous colitis and is probably an important pathophysiological factor. Because of a high response rate without serious side effects, bile acid binding treatment should be considered for collagenous colitis, particularly patients with bile acid malabsorption. Keywords: bile acid malabsorption; collagenous colitis; diarrhoea; cholestyramine; colestipol PMID:10644309
Suga, Takahiro; Sato, Toshihiro; Maekawa, Masamitsu; Goto, Junichi; Mano, Nariyasu
2017-01-01
Bile acids, the metabolites of cholesterol, are signaling molecules that play critical role in many physiological functions. They undergo enterohepatic circulation through various transporters expressed in intestine and liver. Human organic anion-transporting polypeptides (OATP) 1B1 and OATP1B3 contribute to hepatic uptake of bile acids such as taurocholic acid. However, the transport properties of individual bile acids are not well understood. Therefore, we selected HEK293 cells overexpressing OATP1B1 and OATP1B3 to evaluate the transport of five major human bile acids (cholic acid, chenodeoxycholic acid, deoxycholic acid, ursodeoxycholic acid, lithocholic acid) together withtheir glycine and taurine conjugates via OATP1B1 and OATP1B3. The bile acids were quantified by liquid chromatography-tandem mass spectrometry. The present study revealed that cholic acid, chenodeoxyxcholic acid, and deoxycholic acid were transported by OATP1B1 and OATP1B3, while ursodeoxycholic acid and lithocholic acid were not significantly transported by OATPs. However, all the conjugated bile acids were taken up rapidly by OATP1B1 and OATP1B3. Kinetic analyses revealed the involvement of saturable OATP1B1- and OATP1B3-mediated transport of bile acids. The apparent Km values for OATP1B1 and OATP1B3 of the conjugated bile acids were similar (0.74–14.7 μM for OATP1B1 and 0.47–15.3 μM for OATP1B3). They exhibited higher affinity than cholic acid (47.1 μM for OATP1B1 and 42.2 μM for OATP1B3). Our results suggest that conjugated bile acids (glycine and taurine) are preferred to unconjugated bile acids as substrates for OATP1B1 and OATP1B3. PMID:28060902
Sestili, Piero; Diamantini, Giuseppe; Bedini, Annalida; Cerioni, Liana; Tommasini, Ilaria; Tarzia, Giorgio; Cantoni, Orazio
2002-01-01
The protective effects of selected members from a series of caffeic acid esters and flavonoids were tested in various toxicity paradigms using U937 cells, previously shown to be sensitive to either iron chelators or bona fide radical scavengers or to both classes of compounds. It was found that all the protective polyphenols were active at very low concentrations and that their effects were observed only under those conditions in which iron chelators also afforded protection. Consistently, active polyphenolic compounds, unlike the inactive ones, effectively chelated iron in an in vitro system. It follows that, at least under the experimental conditions utilized in the present study, the most prominent activity of these polyphenolic compounds resides in their ability to chelate iron. Further studies revealed that the protective effects afforded by the caffeic acid esters and flavonoids were largely mediated by the catechol moiety and that the relative biological potency of these compounds was a direct function of their lipophilicity. PMID:11988084
USDA-ARS?s Scientific Manuscript database
With S-adenosylmethionine (SAM) acting as the methyl donor, caffeic acid O-methyltransferase from Sorghum bicolor (SbCOMT) methylates the 5-hydroxyl group of its preferred substrate, 5-hydroxyconiferaldehyde, to form sinapaldehyde. In order to determine the mechanism of SbCOMT and understand the red...
Yoshimoto, Makoto; Kurata-Azuma, Rie; Fujii, Makoto; Hou, De-Xing; Ikeda, Kohji; Yoshidome, Tomohisa; Osako, Miho
2004-12-01
Phenolic composition and radical scavenging activity in the shochu distillery by-products of sweetpotato (Ipomoea batatas L.) treated with koji (Aspergillus awamori mut.) and cellulase (Cellulosin T2) were investigated to develop new uses. Koji and Cellulosin T2 treatment of shochu distillery by-products from sweetpotatoes, rice, and barley increased phenolic content. Caffeic acid was identified as a dominant phenolic component in the shochu distillery by-products of the sweetpotato. Adding koji and/or Cellulosin T2 to the shochu distillery by-product indicated that koji was involved in caffeic acid production. Caffeic acid was not detected in raw or steamed roots of "Koganesengan", the material of sweetpotato for shochu production, suggesting that it is produced during shochu fermentation. The phenolic content and radical scavenging activity the shochu distillery by-product treated with koji and Cellulosin T2 were superior to those of commercial vinegar. These results suggest that koji treatment of sweetpotato-derived shochu distillery by-products has potential for food materials with physiological functions. Further koji treatment of sweetpotato shochu-distillery by-products may be applicable to mass production of caffeic acid.
Coelho, Vanessa Rodrigues; Vieira, Caroline Gonçalves; de Souza, Luana Pereira; da Silva, Lucas Lima; Pflüger, Pricila; Regner, Gabriela Gregory; Papke, Débora Kuck Mausolff; Picada, Jaqueline Nascimento; Pereira, Patrícia
2016-11-01
The goal of this study was to investigate the effects of rosmarinic acid (RA) and caffeic acid (CA) in the acute pentylenetetrazole (PTZ) and pilocarpine (PIL) seizure models. We also evaluated the effect of RA and CA on the diazepam (DZP)-induced sleeping time test and its possible neuroprotective effect against the genotoxic damage induced by PTZ and PIL. Mice were treated intraperitoneally (i.p.) with saline, RA (2 or 4 mg/kg), or CA (4 or 8 mg/kg) alone or associated to low-dose DZP. After, mice received a single dose of PTZ (88 mg/kg) or PIL (250 mg/kg) and were monitored for the percentage of seizures and the latency to first seizure (LFS) >3 s. Vigabatrin and DZP were used as positive controls. In the DZP-induced sleeping time test, mice were treated with RA and CA and 30 min after receiving DZP (25 mg/kg, i.p.). The alkaline comet assay was performed after acute seizure tests to evaluate the antigenotoxic profiles of RA and CA. The doses of RA and CA tested alone did not reduce the occurrence of seizures induced by PTZ or PIL. The association of 4 mg/kg RA + low-dose DZP was shown to increase LFS in the PTZ model, compared to the group that received only the DZP. In the DZP-induced sleeping time test, the latency to sleep was reduced by 4 mg/kg RA and 8 mg/kg CA. The PTZ-induced genotoxic damage was not prevented by RA or CA, but the PIL-induced genotoxic damage was decreased by pretreatment with 4 mg/kg RA (in cortex) and 4 mg/kg CA (in hippocampus). In conclusion, RA and CA presented neuroprotective effect against PIL-induced genotoxic damage and reduced the latency to DZP-induced sleep. Of the rosmarinic acid, 4 mg/kg enhanced the DZP effect in the increase of latency to clonic PTZ-induced seizures.
Nocturnal weakly acidic reflux promotes aspiration of bile acids in lung transplant recipients.
Blondeau, Kathleen; Mertens, Veerle; Vanaudenaerde, Bart A; Verleden, Geert M; Van Raemdonck, Dirk E; Sifrim, Daniel; Dupont, Lieven J
2009-02-01
Gastroesophageal reflux (GER) and aspiration of bile acids have been implicated as non-alloimmune risk factors for the development of bronchiolitis obliterans syndrome (BOS) after lung transplantation. The aim of our study was to investigate the association between GER and gastric aspiration of bile acids and to establish which reflux characteristics may promote aspiration of bile acids into the lungs and may feature as a potential diagnostic tool in identifying lung transplantation (LTx) patients at risk for aspiration. Twenty-four stable LTx recipients were studied 1 year after transplantation. All patients underwent 24-hour ambulatory impedance-pH recording for the detection of acid (pH <4) and weakly acidic (pH 4 to 7) reflux. On the same day, bronchoalveolar lavage fluid (BALF) was collected and then analyzed for the presence of bile acids (Bioquant enzymatic assay). Increased GER was detected in 13 patients, of whom 9 had increased acid reflux and 4 had exclusively increased weakly acidic reflux. Sixteen patients had detectable bile acids in the BALF (0.6 [0.4 to 1.5] micromol/liter). The 24-hour esophageal volume exposure was significantly increased in patients with bile acids compared to patients without bile acids in the BALF. Acid exposure and the number of reflux events (total, acid and weakly acidic) were unrelated to the presence of bile acids in the BALF. However, both nocturnal volume exposure and the number of nocturnal weakly acidic reflux events were significantly higher in patients with bile acids in the BALF. Weakly acidic reflux events, especially during the night, are associated with the aspiration of bile acids in LTx recipients and may therefore feature as a potential risk factor for the development of BOS.
Guth, C; Beuers, U; Beckh, K
2016-09-01
Intermittent cholestatic liver disease may indicate an inherited deficiency of bile salt transport proteins. Episodes of cholestasis may start during pregnancy or during use of oral contraceptives or other medication. We describe the case of a 22-year-old mother with increasing jaundice and severe pruritus two weeks after starting hormonal contraception. A few months before she was suffering from intrahepatic cholestasis of pregnancy (ICP). Liver biopsy showed bland cholestasis with canalicular bile plugs. Treatment with ursodeoxycholic acid was not effective. Finally, rifampicin induced a complete remission of the cholestasis. Genetic testing showed a heterozygous mutation in the ABCB11 gene encoding the bile salt export pump (BSEP). Rifampicin activates nuclear receptors and may induce alternative pathways for the excretion of bile salts in patients with ABCB11 deficiency. © Georg Thieme Verlag KG Stuttgart · New York.
NASA Astrophysics Data System (ADS)
Min, Jiang; Meng-Xia, Xie; Dong, Zheng; Yuan, Liu; Xiao-Yu, Li; Xing, Chen
2004-04-01
Cinnamic acid and its derivatives possess various biological effects in remedy of many diseases. Interaction of cinnamic acid and its hydroxyl derivatives, p-coumaric acid and caffeic acid, with human serum albumin (HSA), and concomitant changes in its conformation were studied using fluorescence and Fourier transform infrared spectroscopic methods. Fluorescence data revealed the presence of one binding site on HSA for cinnamic acid and its hydroxyl derivatives, and their binding constants ( KA) are caffeic acid> p-coumaric acid> cinnamic acid when Cdrug/ CHSA ranging from 1 to 10. The changes of the secondary structure of HSA after interacting with the three drugs are estimated, respectively by combining the curve-fitting results of amid I and amid III bands. The α-helix structure has a decrease of ≈9, 5 and 3% after HSA interacted with caffeic acid, p-coumaric acid and cinnamic acid, respectively. It was found that the hydroxyls substituted on aromatic ring of the drugs play an important role in the changes of protein's secondary structure. Combining the result of fluorescence quenching and the changes of secondary structure of HSA after interaction with the three drugs, the drug-HSA interaction mode was discussed.
Role of bile acids and bile acid binding agents in patients with collagenous colitis.
Ung, K A; Gillberg, R; Kilander, A; Abrahamsson, H
2000-02-01
In a retrospective study bile acid malabsorption was observed in patients with collagenous colitis. To study the occurrence of bile acid malabsorption and the effect of bile acid binders prospectively in patients with chronic diarrhoea and collagenous colitis. Over 36 months all patients referred because of chronic diarrhoea completed a diagnostic programme, including gastroscopy with duodenal biopsy, colonoscopy with biopsies, and the (75)Se-homocholic acid taurine ((75)SeHCAT) test for bile acid malabsorption. Treatment with a bile acid binder (cholestyramine in 24, colestipol in three) was given, irrespective of the results of the (75)SeHCAT test. Collagenous colitis was found in 28 patients (six men, 22 women), 27 of whom had persistent symptoms and completed the programme. Four patients had had a previous cholecystectomy or a distal gastric resection. The (75)SeHCAT test was abnormal in 12/27 (44%) of the collagenous colitis patients with (75)SeHCAT values 0.5-9.7%, and normal in 15 patients (56%). Bile acid binding treatment was followed by a rapid, marked, or complete improvement in 21/27 (78%) of the collagenous colitis patients. Rapid improvement occurred in 11/12 (92%) of the patients with bile acid malabsorption compared with 10/15 (67%) of the patients with normal (75)SeHCAT tests. Bile acid malabsorption is common in patients with collagenous colitis and is probably an important pathophysiological factor. Because of a high response rate without serious side effects, bile acid binding treatment should be considered for collagenous colitis, particularly patients with bile acid malabsorption.
Green, J; Kellogg, T; Keirs, R; Cooper, R
1987-11-01
A bile acid analogue, SEHCAT (tauro-23-75SE-selena-homocholic acid), was used to determine bile acid pool size, turnover time, and distribution in the developing broiler chick. Bile acid pool size was significantly affected by age and followed a quintic trend (a fifth degree polynomial). It remained steady until 30 days of age when it decreased significantly and then rose significantly at 37 days of age. The bile acid pool half-life remained constant until 28 days of age when it increased significantly and then held steady until it increased again at 8 wk of age following a quartic trend. The distribution of bile acids was affected by age with the amount in the gizzard, duodenum, cloaca, liver, and gall bladder varying significantly with age. Jejunal, ileal, and cecal bile acids did not vary significantly with age. Liver bile acid levels followed a quintic trend, rising until 23 days of age and dropping sharply at 30 days of age and holding steady.
Photinon, Kanokorn; Chalermchart, Yongyuth; Khanongnuch, Chartchai; Wang, Shih-Han; Liu, Chung-Chiun
2010-01-01
A thick-film electrochemical sensor with an iridium-carbon working electrode was used for determining polyphenols and their antioxidant capacity in white wine. Caffeic acid was used as a model species because it has the ability to produce the highest oxidation current. The correlation coefficient of 0.9975 was obtained between sensor response and caffeic acid content. The total phenolic content (TPC) and scavenging activity on 1,1-diphenyl-2-pycrylhydrazyl (DPPH·) radical were also found to be strongly correlated with the concentration of caffeic acid, with a correlation coefficient of 0.9823 and 0.9958, respectively. The sensor prototype was proven to be a simple, efficient and cost effective device to evaluate the antioxidant capacity of substances. PMID:22294893
Photinon, Kanokorn; Chalermchart, Yongyuth; Khanongnuch, Chartchai; Wang, Shih-Han; Liu, Chung-Chiun
2010-01-01
A thick-film electrochemical sensor with an iridium-carbon working electrode was used for determining polyphenols and their antioxidant capacity in white wine. Caffeic acid was used as a model species because it has the ability to produce the highest oxidation current. The correlation coefficient of 0.9975 was obtained between sensor response and caffeic acid content. The total phenolic content (TPC) and scavenging activity on 1,1-diphenyl-2-pycrylhydrazyl (DPPH·) radical were also found to be strongly correlated with the concentration of caffeic acid, with a correlation coefficient of 0.9823 and 0.9958, respectively. The sensor prototype was proven to be a simple, efficient and cost effective device to evaluate the antioxidant capacity of substances.
Nucleation time of gall bladder bile in gall stone patients: influence of bile acid treatment.
Sahlin, S; Ahlberg, J; Angelin, B; Reihnér, E; Einarsson, K
1991-01-01
The time required for precipitation of cholesterol crystals (nucleation time, NT) was determined and related to the cholesterol saturation in gall bladder bile of gall stone free subjects (n = 11), patients with pigment stones (n = 3), and patients with cholesterol gall stones (n = 30) undergoing cholecystectomy. Seven of the gall stone patients had been treated with chenodeoxycholic acid (CDCA) and nine with ursodeoxycholic acid (UDCA), 15 mg/kg/day for three weeks before operation. NT was longer in gall stone free subjects (mean, 20 days), patients with pigment stones (14 days) and patients treated with CDCA (24 days) and UDCA (17 days) compared with untreated patients with cholesterol gall stones (1.5 days). In spite of low cholesterol saturation and prolonged NT, and in contrast to those treated with CDCA, four of the nine patients treated with UDCA had cholesterol crystals in their bile. These observations give further support to the concept that the mechanism for inducing gall stone dissolution may be different for CDCA and UDCA. PMID:1773966
Center, S A; Thompson, M; Guida, L
1993-05-01
Concentrations of 3 alpha-hydroxylated bile acids were measured in serum and urine of clinically normal (healthy) cats (n = 6), cats with severe hepatic lipidosis (n = 9), and cats with complete bile duct occlusion (n = 4). Bile acid concentrations were measured by use of a gradient flow high-performance liquid chromatography procedure with an acetonitrile and ammonium phosphate mobile phase and an in-line postanalytic column containing 3 alpha-hydroxy-steroid dehydrogenase and a fluorescence detector. Specific identification of all bile acid peaks was not completed; unidentified moieties were represented in terms of their elution time (in minutes). Significant differences in serum and urine bile acid concentrations, quantitative and proportional, were determined among groups of cats. Cats with hepatic lipidosis and bile duct occlusion had significantly (P > or = 0.05) greater total serum and urine bile acids concentrations than did healthy cats. The proportion of hydrophobic bile acids in serum, those eluting at > or = 400 minutes, was 1.9% for healthy cats, 3.3% for cats with lipidosis, and 5.4% for bile duct-obstructed cats. Both groups of ill cats had a broader spectrum of unidentified late-eluting serum bile acids than did healthy cats; the largest spectrum developed in bile duct-occluded cats.(ABSTRACT TRUNCATED AT 250 WORDS)
USDA-ARS?s Scientific Manuscript database
Bile acid binding capacity has been related to cholesterol-lowering potential of foods and food fractions. Lowered recirculating bile acids results in utilization of cholesterol to synthesize bile acid and reduced fat absorption. Secondary bile acids have been associated with increased risk of can...
Liu, Jun; Pu, Huimin; Chen, Chong; Liu, Yunpeng; Bai, Ruyu; Kan, Juan; Jin, Changhai
2018-01-10
The ascorbic acid (AA) and hydroxyl peroxide (H 2 O 2 ) redox pair induced free radical grafting reaction is a promising approach to conjugate phenolic groups with chitosan (CS). In order to reveal the exact mechanisms of the AA/H 2 O 2 redox pair induced grafting reaction, free radicals generated in the AA/H 2 O 2 redox system were compared with hydroxyl radical ( • OH) produced in the Fe 2+ /H 2 O 2 redox system. Moreover, the structural and physicochemical properties of caffeic acid grafted CS (CA-g-CS) synthesized in these two redox systems were compared. Results showed that only ascorbate radical (Asc •- ) was produced in the AA/H 2 O 2 system. The reaction between Asc •- and CS produced novel carbon-centered radicals, whereas no new free radicals were detected when • OH reacted with CS. Thin layer chromatography, UV-vis, Fourier transform infrared, and nuclear magnetic resonance spectroscopic analyses all confirmed that CA was successfully grafted onto CS through Asc •- . However, CA could be hardly grafted onto CS via • OH. CA-g-CS synthesized through Asc •- exhibited lower thermal stability and crystallinity than the reaction product obtained through • OH. For the first time, our results demonstrated that the synthesis of CA-g-CS in the AA/H 2 O 2 redox system was mediated by Asc •- rather than • OH.
Bile acids. XLIV, quantitation of bile acids from the bile fistula rat given (4-14C) cholesterol.
Siegfried, C M; Doisy, E A; Elliott, W H
1975-01-24
The bile acids derived from [4-14-C]cholesterol administered intracardially to rats with cannulated bile ducts were identified and quantitated. Over a period of 28 days about 90% of the administered 14-C was found in bile of which 73% was retained in the biliary acid fraction. [7beta-3-H]cholic acid, alpha-muri[3beta-3-H]cholic acid, beta-muri[3beta-3-H]cholic acid and litho[3beta-3-H]cholic acid were prepared with specific activities of about 30 muCi/mg by reduction of appropriate ketonic precursors with NaB3H4 and were added to the biliary acid fraction. After separation and purification of the bile acids, cholic, chenodeoxycholic, alpha- and beta-muricholic acids accounted for 70, 16, 7.5 and 6.1%, respectively, of the 14-C in the biliary acid fraction. The specific activities of these isolated 14-C-labeled acids were almost identical. Lithocholic acid accounted for a maximum of 0.2% and ursodeoxycholic acid and 7-oxolithocholic acid could account for no more than 2% of the biliary 14-C. Gas-liquid chromatography on 3% OV-17 of the trimethylsilyl ether derivatives of the methyl esters of the common bile acids of rat bile results in their complete separation and provides a convenient means of estimating the relative proportions of these acids in rat bile. By this method, the relative amounts of the four major acids, cholic, chenodeoxycholic, alpha- and beta-muricholic acids were 63, 20, 8 and 6%, respectively.
Review article: bile acid diarrhoea - pathogenesis, diagnosis and management.
Mottacki, N; Simrén, M; Bajor, A
2016-04-01
Bile acid diarrhoea results from imbalances in the homoeostasis of bile acids in the enterohepatic circulation. It can be a consequence of ileal disease/dysfunction, associated with other GI pathology or can be idiopathic. To summarise the different types of bile acid diarrhoea and discuss the currently available diagnostic methods and treatments. Bile acid diarrhoea is found in up to 40% of patients diagnosed as having functional diarrhoea/IBS-D, and in up to 80% of patients who have undergone ileal resection. It is likely under-diagnosed and under-treated. In idiopathic disease, errors in regulation feedback of fibroblast growth factor 19 contribute to the development of the condition. Clinical therapeutic trials for bile acid diarrhoea have been used to diagnose it, but the 75 SeHCAT test is the primary current method. It is sensitive, specific and widely available, though not in the USA. Other diagnostic methods (such as serum measurement of the bile acid intermediate 7α-hydroxy-4-cholesten-3-one, or C4) have less widespread availability and documentation, and some (such as faecal measurement of bile acids) are significantly more complex and costly. First-line treatment of bile acid diarrhoea is with the bile acid sequestrant cholestyramine, which can be difficult to administer and dose due to gastrointestinal side effects. These side effects are less prominent in newer agents such as colesevelam, which may provide higher efficacy, tolerability and compliance. Bile acid diarrhoea is common, and likely under-diagnosed. Bile acid diarrhoea should be considered relatively early in the differential diagnosis of chronic diarrhoea. © 2016 John Wiley & Sons Ltd.
Martin, Gregory G.; Atshaves, Barbara P.; Landrock, Kerstin K.; Landrock, Danilo; Storey, Stephen M.; Howles, Philip N.; Kier, Ann B.
2014-01-01
On the basis of their abilities to bind bile acids and/or cholesterol, the physiological role(s) of liver fatty acid-binding protein (L-FABP) and sterol carrier protein (SCP) 2/SCP-x (SCP-2/SCP-x) gene products in biliary bile acid and cholesterol formation was examined in gene-ablated male mice. L-FABP (LKO) or L-FABP/SCP-2/SCP-x [triple-knockout (TKO)] ablation markedly decreased hepatic bile acid concentration, while SCP-2/SCP-x [double-knockout (DKO)] ablation alone had no effect. In contrast, LKO increased biliary bile acid, while DKO and TKO had no effect on biliary bile acid levels. LKO and DKO also altered biliary bile acid composition to increase bile acid hydrophobicity. Furthermore, LKO and TKO decreased hepatic uptake and biliary secretion of high-density lipoprotein (HDL)-derived 22-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-23,24-bisnor-5-cholen-3β-ol (NBD-cholesterol), while DKO alone had no effect. Finally, LKO and, to a lesser extent, DKO decreased most indexes contributing to cholesterol solubility in biliary bile. These results suggest different, but complementary, roles for L-FABP and SCP-2/SCP-x in biliary bile acid and cholesterol formation. L-FABP appears to function more in hepatic retention of bile acids as well as hepatic uptake and biliary secretion of HDL-cholesterol. Conversely, SCP-2/SCP-x may function more in formation and biliary secretion of bile acid, with less impact on hepatic uptake or biliary secretion of HDL-cholesterol. PMID:25277800
Klinkspoor, J H; Yoshida, T; Lee, S P
1998-05-15
1. Bile salts stimulate mucin secretion by the gallbladder epithelium. We have investigated whether this stimulatory effect is due to a detergent effect of bile salts. 2. The bile salts taurocholic acid (TC) and tauroursodeoxycholic acid (TUDC) and the detergents Triton X-100 (12.5-400 microM) and Tween-20 (0.1-3.2 mM) were applied to monolayers of cultured dog gallbladder epithelial cells. Mucin secretion was studied by measuring the secretion of [3H]N-acetyl-d-glucosamine-labelled glycoproteins. We also attempted to alter the fluidity of the apical membrane of the cells through extraction of cholesterol with beta-cyclodextrin (2.5-15 mM). The effect on TUDC-induced mucin secretion was studied. Cell viability was assessed by measuring lactate dehydrogenase (LDH) leakage or 51Cr release. 3. In contrast with the bile salts, the detergents were not able to cause an increase in mucin secretion without causing concomitant cell lysis. Concentrations of detergent that increased mucin release (>100 microM Triton X-100, >0.8 mM Tween-20), caused increased LDH release. Incubation with beta-cyclodextrin resulted in effective extraction of cholesterol without causing an increase in 51Cr release. However, no effect of the presumed altered membrane fluidity on TUDC (10 mM)-induced mucin secretion was observed. 4. The stimulatory effect of bile salts on mucin secretion by gallbladder epithelial cells is not affected by the fluidity of the apical membrane of the cells and also cannot be mimicked by other detergents. We conclude that the ability of bile salts to cause mucin secretion by the gallbladder epithelium is not determined by their detergent properties.
Liquid crystal based biosensors for bile acid detection
NASA Astrophysics Data System (ADS)
He, Sihui; Liang, Wenlang; Tanner, Colleen; Fang, Jiyu; Wu, Shin-Tson
2013-03-01
The concentration level of bile acids is a useful indicator for early diagnosis of liver diseases. The prevalent measurement method in detecting bile acids is the chromatography coupled with mass spectrometry, which is precise yet expensive. Here we present a biosensor platform based on liquid crystal (LC) films for the detection of cholic acid (CA). This platform has the advantage of low cost, label-free, solution phase detection and simple analysis. In this platform, LC film of 4-Cyano-4'-pentylbiphenyl (5CB) was hosted by a copper grid supported with a polyimide-coated glass substrate. By immersing into sodium dodecyl sulfate (SDS) solution, the LC film was coated with SDS which induced a homeotropic anchoring of 5CB. Addition of CA introduced competitive adsorption between CA and SDS at the interface, triggering a transition from homeotropic to homogeneous anchoring. The detection limit can be tuned by changing the pH value of the solution from 12uM to 170uM.
Russo, Giorgio Ivan; Campisi, Daniele; Di Mauro, Marina; Regis, Federica; Reale, Giulio; Marranzano, Marina; Ragusa, Rosalia; Solinas, Tatiana; Madonia, Massimo; Cimino, Sebastiano; Morgia, Giuseppe
2017-12-05
Dietary polyphenols gained the interest of the scientific community due to their wide content in a variety of plant-derived foods and beverages commonly consumed, such as fruits, vegetables, coffee, tea, and cocoa . We aimed to investigate whether there was an association between dietary phenolic acid consumption and prostate cancer (PCa) in South Italy. We conducted a population-based case-control study from January 2015 to December 2016 in a single institution of the municipality of Catania, southern Italy (Registration number: 41/2015). Patients with elevated PSA and/or suspicious PCa underwent transperineal prostate biopsy. A total of 118 histopathological-verified PCa cases were collected and a total of 222 controls were selected from a sample of 2044 individuals. Dietary data were collected by using two food frequency questionnaires and data on the phenolic acids content in foods was obtained from the Phenol-Explorer database (www.phenol-explorer.eu). Association between dietary intake of phenolic acids and PCa was calculated through logistic regression analysis. We found lower levels of caffeic acid (2.28 mg/day vs. 2.76 mg/day; p < 0.05) and ferulic acid (2.80 mg/day vs. 4.04 mg/day; p < 0.01) in PCa when compared to controls. The multivariate logistic regression showed that both caffeic acid (OR = 0.32; p < 0.05) and ferulic acid (OR = 0.30; p < 0.05) were associated with reduced risk of PCa. Higher intake of hydroxybenzoic acids and caffeic acids were associated with lower risk of advanced PCa. High intake of caffeic acid and ferulic acid may be associated with reduced risk of PCa.
Ren, Jie; Zhang, Nan; Liao, Haihan; Chen, Si; Xu, Ling; Li, Jing; Yang, Zheng; Deng, Wei; Tang, Qizhu
2017-07-15
To explore the effects of caffeic acid phenethyl ester (CAPE) on cardiac hypertrophy induced by pressure overload. Male wild-type C57 mice, aged 8-10weeks, were used for aortic banding (AB) to induce cardiac hypertrophy. CAPE or (resveratrol) RS was administered from the 3rd day after AB surgery for 6weeks. Echocardiography and hemodynamic analysis were performed to estimate cardiac function. Mice hearts were collected for H&E and PSR staining. Western blot analysis and quantitative PCR were performed for to investigate molecular mechanism. We further confirmed our findings in H9c2 cardiac fibroblasts treated with PE or CAPE. CAPE protected against cardiac hypertrophy induced by pressure overload, as evidenced by inhibition of cardiac hypertrophy and improvement in mouse cardiac function. The effect of CAPE on cardiac hypertrophy was mediated via inhibition of the MEK/ERK and TGFβ-Smad signaling pathways. We also demonstrated that CAPE protected H9c2 cells from PE-induced hypertrophy in vitro via a similar molecular mechanism as seen in the mouse heart. Finally, CAPE seemed to be as effective as RS for treatment of pressure overload induced mouse cardiac hypertrophy. Our results suggest that CAPE may play an important role in the regulation of cardiac hypertrophy induced by pressure overload via negative regulation of the MEK/ERK and TGFβ/Smad signaling pathways. These results indicate that CAPE could potentially be used for treatment of cardiac hypertrophy. Copyright © 2017 Elsevier Inc. All rights reserved.
González-Rubio, Sandra; Linares, Clara I.; Aguilar-Melero, Patricia; Rodríguez-Perálvarez, Manuel; Montero-Álvarez, José L.
2016-01-01
The harmful effects of bile acid accumulation occurring during cholestatic liver diseases have been associated with oxidative stress increase and endothelial nitric oxide synthase (NOS-3) expression decrease in liver cells. We have previously reported that glycochenodeoxycholic acid (GCDCA) down-regulates gene expression by increasing SP1 binding to the NOS-3 promoter in an oxidative stress dependent manner. In the present study, we aimed to investigate the role of transcription factor (TF) AP-1 on the NOS-3 deregulation during GCDCA-induced cholestasis. The cytotoxic response to GCDCA was characterized by 1) the increased expression and activation of TFs cJun and c-Fos; 2) a higher binding capability of these at position -666 of the NOS-3 promoter; 3) a decrease of the transcriptional activity of the promoter and the expression and activity of NOS-3; and 4) the expression increase of cyclin D1. Specific inhibition of AP-1 by the retinoid SR 11302 counteracted the cytotoxic effects induced by GCDCA while promoting NOS-3 expression recovery and cyclin D1 reduction. NOS activity inhibition by L-NAME inhibited the protective effect of SR 11302. Inducible NOS isoform was no detected in this experimental model of cholestasis. Our data provide direct evidence for the involvement of AP-1 in the NOS-3 expression regulation during cholestasis and define a critical role for NOS-3 in regulating the expression of cyclin D1 during the cell damage induced by bile acids. AP-1 appears as a potential therapeutic target in cholestatic liver diseases given its role as a transcriptional repressor of NOS-3. PMID:27490694
Enright, Elaine F; Joyce, Susan A; Gahan, Cormac G M; Griffin, Brendan T
2017-04-03
In recent years, the gut microbiome has gained increasing appreciation as a determinant of the health status of the human host. Bile salts that are secreted into the intestine may be biotransformed by enzymes produced by the gut bacteria. To date, bile acid research at the host-microbe interface has primarily been directed toward effects on host metabolism. The aim of this work was to investigate the effect of changes in gut microbial bile acid metabolism on the solubilization capacity of bile salt micelles and consequently intraluminal drug solubility. First, the impact of bile acid metabolism, mediated in vivo by the microbial enzymes bile salt hydrolase (BSH) and 7α-dehydroxylase, on drug solubility was assessed by comparing the solubilization capacity of (a) conjugated vs deconjugated and (b) primary vs secondary bile salts. A series of poorly water-soluble drugs (PWSDs) were selected as model solutes on the basis of an increased tendency to associate with bile micelles. Subsequently, PWSD solubility and dissolution was evaluated in conventional biorelevant simulated intestinal fluid containing host-derived bile acids, as well as in media modified to contain microbial bile acid metabolites. The findings suggest that deconjugation of the bile acid steroidal core, as dictated by BSH activity, influences micellar solubilization capacity for some PWSDs; however, these differences appear to be relatively minor. In contrast, the extent of bile acid hydroxylation, regulated by microbial 7α-dehydroxylase, was found to significantly affect the solubilization capacity of bile salt micelles for all nine drugs studied (p < 0.05). Subsequent investigations in biorelevant media containing either the trihydroxy bile salt sodium taurocholate (TCA) or the dihydroxy bile salt sodium taurodeoxycholate (TDCA) revealed altered drug solubility and dissolution. Observed differences in biorelevant media appeared to be both drug- and amphiphile (bile salt/lecithin) concentration-dependent. Our studies herein indicate that bile acid modifications occurring at the host-microbe interface could lead to alterations in the capacity of intestinal bile salt micelles to solubilize drugs, providing impetus to consider the gut microbiota in the drug absorption process. In the clinical setting, disruption of the gut microbial ecosystem, through disease or antibiotic treatment, could transform the bile acid pool with potential implications for drug absorption and bioavailability.
NASA Astrophysics Data System (ADS)
Amir, Md.; Tunesi, Mawada M.; Soomro, Razium A.; Baykal, Abdülhadi; Kalwar, Nazar H.
2018-04-01
The study demonstrates the potential application of caffeic acid-functionalized magnetite nanoparticles (CA-Fe3O4 NPs) as an effective electrode modifying material for the electrochemical oxidation of the 6-thioguanine (6-TG) drug. The functionalized Fe3O4 NPs were prepared using simple wet-chemical methodology where the used caffeic acid acted simultaneously as growth controlling and functionalizing agent. The study discusses the influence of an effective functionalization on the signal sensitivity observed for the electro-oxidation of 6-TG over CA-Fe3O4 NPs in comparison to a glassy carbon electrode modified with bare and nicotinic acid (NA)-functionalized Fe3O4 NPs. The experiment results provided sufficient evidence to support the importance of favorable functionality to achieve higher signal sensitivity for the electro-oxidation of 6-TG. The presence of favorable interactions between the active functional moieties of caffeic acid and 6-TG synergized with the greater surface area of magnetic NPs produces a stable electro-oxidation signal within the working range of 0.01-0.23 μM with sensitive up to 0.001 μM. Additionally, the sensor showed the strong anti-interference potential against the common co-existing drug molecules such as benzoic acid, acetaminophen, epinephrine, norepinephrine, glucose, ascorbic acid and l-cysteine. In addition, the successful quantification of 6-TG from the commercial tablets obtained from local pharmacy further signified the practical capability of the discussed sensor.
Borghede, Märta K; Schlütter, Jacob M; Agnholt, Jørgen S; Christensen, Lisbet A; Gormsen, Lars C; Dahlerup, Jens F
2011-12-01
The liver produces and secretes bile acids into the small intestine. In the small intestine, most of the bile acids are absorbed in the distal ileum with portal vein transportation back to the liver and resecretion (enterohepatic recycling). Increased spillover of bile acids from the small intestine into the colon (bile acid malabsorption) may affect the secretion of colonic water and electrolytes and result in watery diarrhoea. The aim of this study was to investigate the frequency of bile acid malabsorption and treatment responses to cholestyramine with (75)SeHCAT scanning among patients suffering from chronic watery diarrhoea. This was a retrospective study that included all patients who received a (75)SeHCAT scan over a five-year period (2004-2009). In total, 298 patients (198 females, 100 men) with a median age of 42 years (range 16-82 years) were investigated. Bile acid malabsorption ((75)SeHCAT retention<15% after seven days) was identified in 201 patients (68%, 95% confidence interval (CI): 62%-73%). Bile acid malabsorption due to ileal dysfunction (Type I) was found in 77 patients, idiopathic bile acid malabsorption (Type II) was found in 68 patients and 56 patients with other conditions had bile acid malabsorption (Type III). Of the 150 patients who were able to take cholestyramine continuously, 108 patients (71%, CI: 63%-78%) reported a positive effect on their bowel habits. Bile acid malabsorption is a frequent problem in patients with chronic watery diarrhoea. Treatment with bile acid binders was effective regardless of type and severity. Copyright © 2011 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.
Interaction of Gut Microbiota with Bile Acid Metabolism and its Influence on Disease States
Staley, Christopher; Weingarden, Alexa R.
2016-01-01
Primary bile acids serve important roles in cholesterol metabolism, lipid digestion, host-microbe interactions, and regulatory pathways in the human host. While most bile acids are reabsorbed and recycled via enterohepatic cycling, ~5% serve as substrates for bacterial biotransformation in the colon. Enzymes involved in various transformations have been characterized from cultured gut bacteria and reveal taxa-specific distribution. More recently, bioinformatic approaches have revealed greater diversity in isoforms of these enzymes, and the microbial species in which they are found. Thus, the functional roles played by the bile acid-transforming gut microbiota and the distribution of resulting secondary bile acids, in the bile acid pool, may be profoundly affected by microbial community structure and function. Bile acids and the composition of the bile acid pool have historically been hypothesized to be associated with several disease states, including recurrent Clostridium difficile infection, inflammatory bowel diseases, metabolic syndrome, and several cancers. Recently, however, emphasis has been placed on how microbial communities in the dysbiotic gut may alter the bile acid pool to potentially cause or mitigate disease onset. This review highlights the current understanding of the interactions between the gut microbial community, bile acid biotransformation, and disease states, and addresses future directions to better understand these complex associations. PMID:27888332
Autio, Kaija J; Schmitz, Werner; Nair, Remya R; Selkälä, Eija M; Sormunen, Raija T; Miinalainen, Ilkka J; Crick, Peter J; Wang, Yuqin; Griffiths, William J; Reddy, Janardan K; Baes, Myriam; Hiltunen, J Kalervo
2014-07-01
Cholesterol is catabolized to bile acids by peroxisomal β-oxidation in which the side chain of C27-bile acid intermediates is shortened by three carbon atoms to form mature C24-bile acids. Knockout mouse models deficient in AMACR (α-methylacyl-CoA racemase) or MFE-2 (peroxisomal multifunctional enzyme type 2), in which this β-oxidation pathway is prevented, display a residual C24-bile acid pool which, although greatly reduced, implies the existence of alternative pathways of bile acid synthesis. One alternative pathway could involve Mfe-1 (peroxisomal multifunctional enzyme type 1) either with or without Amacr. To test this hypothesis, we generated a double knockout mouse model lacking both Amacr and Mfe-1 activities and studied the bile acid profiles in wild-type, Mfe-1 and Amacr single knockout mouse line and Mfe-1 and Amacr double knockout mouse lines. The total bile acid pool was decreased in Mfe-1-/- mice compared with wild-type and the levels of mature C24-bile acids were reduced in the double knockout mice when compared with Amacr-deficient mice. These results indicate that Mfe-1 can contribute to the synthesis of mature bile acids in both Amacr-dependent and Amacr-independent pathways.
Gilat, T; Somjen, G; Mazur, Y; Leikin-Frenkel, A; Rosenberg, R; Halpern, Z; Konikoff, F.
2001-01-01
BACKGROUND—Cholesterol gall stones are a frequent disease for which at present surgery is the usual therapy. Despite the importance of bile acids it has become evident that phospholipids are the main cholesterol solubilisers in bile. Even phospholipid components, such as fatty acids, have anticrystallising activity. AIM—To synthesise fatty acid bile acid conjugates (FABACs) and study their effects on cholesterol crystallisation in bile in vitro and in vivo. METHODS—FABACs were prepared by conjugation of cholic acid at position 3 with saturated fatty acids of variable chain length using an amide bond. Cholesterol crystallisation and its kinetics (crystal observation time, crystal mass) were studied in model bile, pooled enriched human bile, and fresh human bile using FABACs with saturated fatty acids of varying chain length (C-6 to C-22). Absorption of FABACs into blood and bile was tested in hamsters. Prevention of biliary cholesterol crystallisation in vivo was tested in hamsters and inbred mice. RESULTS—FABACs strongly inhibited cholesterol crystallisation in model as well as native bile. The FABACs with longer acyl chains (C-16 to C-22) were more effective. At a concentration of 5 mM, FABACs almost completely inhibited cholesterol crystallisation in fresh human bile for 21 days. FABACs were absorbed and found in both portal and heart blood of hamsters. Levels in bile were 2-3 times higher than in blood, indicating active secretion. Appreciable levels were found in the systemic circulation 24-48 hours after a single administration. Ingested FABACs completely prevented the formation of cholesterol crystals in the gall bladders of hamsters and mice fed a lithogenic diet. CONCLUSIONS—FABACs are potent inhibitors of cholesterol crystallisation in bile. They are absorbed and secreted into bile and prevent the earliest step of cholesterol gall stone formation in animals. These compounds may be of potential use in cholesterol gall stone disease in humans. Keywords: gall stones; bile; phospholipids; cholesterol crystallisation; fatty acid bile acid conjugates PMID:11115826
Rat Liver Canalicular Membrane Vesicles Contain an ATP-Dependent Bile Acid Transport System
NASA Astrophysics Data System (ADS)
Nishida, Toshirou; Gatmaitan, Zenaida; Che, Mingxin; Arias, Irwin M.
1991-08-01
The secretion of bile by the liver is primarily determined by the ability of the hepatocyte to transport bile acids into the bile canaliculus. A carrier-mediated process for the transport of taurocholate, the major bile acid in humans and rats, was previously demonstrated in canalicular membrane vesicles from rat liver. This process is driven by an outside-positive membrane potential that is, however, insufficient to explain the large bile acid concentration gradient between the hepatocyte and bile. In this study, we describe an ATP-dependent transport system for taurocholate in inside-out canalicular membrane vesicles from rat liver. The transport system is saturable, temperature-dependent, osmotically sensitive, specifically requires ATP, and does not function in sinusoidal membrane vesicles and right side-out canalicular membrane vesicles. Transport was inhibited by other bile acids but not by substrates for the previously demonstrated ATP-dependent canalicular transport systems for organic cations or nonbile acid organic anions. Defects in ATP-dependent canalicular transport of bile acids may contribute to reduced bile secretion (cholestasis) in various developmental, inheritable, and acquired disorders.
Organochloride pesticides modulated gut microbiota and influenced bile acid metabolism in mice.
Liu, Qian; Shao, Wentao; Zhang, Chunlan; Xu, Cheng; Wang, Qihan; Liu, Hui; Sun, Haidong; Jiang, Zhaoyan; Gu, Aihua
2017-07-01
Organochlorine pesticides (OCPs) can persistently accumulate in body and threaten human health. Bile acids and intestinal microbial metabolism have emerged as important signaling molecules in the host. However, knowledge on which intestinal microbiota and bile acids are modified by OCPs remains unclear. In this study, adult male C57BL/6 mice were exposed to p, p'-dichlorodiphenyldichloroethylene (p, p'-DDE) and β-hexachlorocyclohexane (β-HCH) for 8 weeks. The relative abundance and composition of various bacterial species were analyzed by 16S rRNA gene sequencing. Bile acid composition was analyzed by metabolomic analysis using UPLC-MS. The expression of genes involved in hepatic and enteric bile acids metabolism was measured by real-time PCR. Expression of genes in bile acids synthesis and transportation were measured in HepG2 cells incubated with p, p'-DDE and β-HCH. Our findings showed OCPs changed relative abundance and composition of intestinal microbiota, especially in enhanced Lactobacillus with bile salt hydrolase (BSH) activity. OCPs affected bile acid composition, enhanced hydrophobicity, decreased expression of genes on bile acid reabsorption in the terminal ileum and compensatory increased expression of genes on synthesis of bile acids in the liver. We demonstrated that chronic exposure of OCPs could impair intestinal microbiota; as a result, hepatic and enteric bile acid profiles and metabolism were influenced. The findings in this study draw our attention to the hazards of chronic OCPs exposure in modulating bile acid metabolism that might cause metabolic disorders and their potential to cause related diseases in human. Copyright © 2017 Elsevier Ltd. All rights reserved.
Abdel-Latif, Mohamed M; Inoue, Hiroyasu; Reynolds, John V
2016-09-01
Ursodeoxycholic acid (UDCA) was reported to reduce bile acid toxicity, but the mechanisms underlying its cytoprotective effects are not fully understood. The aim of the present study was to examine the effects of UDCA on the modulation of deoxycholic acid (DCA)-induced signal transduction in oesophageal cancer cells. Nuclear factor-κB (NF-κB) and activator protein-1 (AP-1) activity was assessed using a gel shift assay. NF-κB activation and translocation was performed using an ELISA-based assay and immunofluorescence analysis. COX-2 expression was analysed by western blotting and COX-2 promoter activity was assessed by luciferase assay. DCA induced NF-κB and AP-1 DNA-binding activities in SKGT-4 and OE33 cells. UDCA pretreatment inhibited DCA-induced NF-κB and AP-1 activation and NF-κB translocation. This inhibitory effect was coupled with a blockade of IκB-α degradation and inhibition of phosphorylation of IKK-α/β and ERK1/2. Moreover, UDCA pretreatment inhibited COX-2 upregulation. Using transient transfection of the COX-2 promoter, UDCA pretreatment abrogated DCA-induced COX-2 promoter activation. In addition, UDCA protected oesophageal cells from the apoptotic effects of deoxycholate. Our findings indicate that UDCA inhibits DCA-induced signalling pathways in oesophageal cancer cells. These data indicate a possible mechanistic role for the chemopreventive actions of UDCA in oesophageal carcinogenesis.
Multiple copies of a bile acid-inducible gene in Eubacterium sp. strain VPI 12708.
Gopal-Srivastava, R; Mallonee, D H; White, W B; Hylemon, P B
1990-01-01
Eubacterium sp. strain VPI 12708 is an anaerobic intestinal bacterium which possesses inducible bile acid 7-dehydroxylation activity. Several new polypeptides are produced in this strain following induction with cholic acid. Genes coding for two copies of a bile acid-inducible 27,000-dalton polypeptide (baiA1 and baiA2) have been previously cloned and sequenced. We now report on a gene coding for a third copy of this 27,000-dalton polypeptide (baiA3). The baiA3 gene has been cloned in lambda DASH on an 11.2-kilobase DNA fragment from a partial Sau3A digest of the Eubacterium DNA. DNA sequence analysis of the baiA3 gene revealed 100% homology with the baiA1 gene within the coding region of the 27,000-dalton polypeptides. The baiA2 gene shares 81% sequence identity with the other two genes at the nucleotide level. The flanking nucleotide sequences associated with the baiA1 and baiA3 genes are identical for 930 bases in the 5' direction from the initiation codon and for at least 325 bases in the 3' direction from the stop codon, including the putative promoter regions for the genes. An additional open reading frame (occupying from 621 to 648 bases, depending on the correct start codon) was found in the identical 5' regions associated with the baiA1 and baiA3 clones. The 5' sequence 930 bases upstream from the baiA1 and baiA3 genes was totally divergent. The baiA2 gene, which is part of a large bile acid-inducible operon, showed no homology with the other two genes either in the 5' or 3' direction from the polypeptide coding region, except for a 15-base-pair presumed ribosome-binding site in the 5' region. These studies strongly suggest that a gene duplication (baiA1 and baiA3) has occurred and is stably maintained in this bacterium. Images PMID:2376563
Recent advances in the understanding of bile acid malabsorption.
Pattni, Sanjeev; Walters, Julian R F
2009-01-01
Bile acid malabsorption (BAM) is a syndrome of chronic watery diarrhoea with excess faecal bile acids. Disruption of the enterohepatic circulation of bile acids following surgical resection is a common cause of BAM. The condition is easily diagnosed by the selenium homocholic acid taurine (SeHCAT) test and responds to bile acid sequestrants. Idiopathic BAM (IBAM, primary bile acid diarrhoea) is the condition where no definitive cause for low SeHCAT retention can be identified. Review of PubMed and major journals. Evidence is accumulating that BAM is more prevalent than first thought. Management of chronic diarrhoea involves excluding secondary causes. Treatment of the condition is with bile acid binders. SeHCAT testing is not widely performed, limiting awareness of how common this condition can be. The underlying mechanism for IBAM has been unclear. Increasing awareness of the condition is important. Alternative mechanisms of IBAM have been suggested which involve an increased bile acid pool size and reduced negative feedback regulation of bile acid synthesis by FGF19. New sequestrants are available. Further research into the precise mechanism of IBAM is needed. Improvements in the recognition of the condition and optimization of treatment are required.
Martin, Gregory G; Atshaves, Barbara P; Landrock, Kerstin K; Landrock, Danilo; Storey, Stephen M; Howles, Philip N; Kier, Ann B; Schroeder, Friedhelm
2014-12-01
On the basis of their abilities to bind bile acids and/or cholesterol, the physiological role(s) of liver fatty acid-binding protein (L-FABP) and sterol carrier protein (SCP) 2/SCP-x (SCP-2/SCP-x) gene products in biliary bile acid and cholesterol formation was examined in gene-ablated male mice. L-FABP (LKO) or L-FABP/SCP-2/SCP-x [triple-knockout (TKO)] ablation markedly decreased hepatic bile acid concentration, while SCP-2/SCP-x [double-knockout (DKO)] ablation alone had no effect. In contrast, LKO increased biliary bile acid, while DKO and TKO had no effect on biliary bile acid levels. LKO and DKO also altered biliary bile acid composition to increase bile acid hydrophobicity. Furthermore, LKO and TKO decreased hepatic uptake and biliary secretion of high-density lipoprotein (HDL)-derived 22-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-23,24-bisnor-5-cholen-3β-ol (NBD-cholesterol), while DKO alone had no effect. Finally, LKO and, to a lesser extent, DKO decreased most indexes contributing to cholesterol solubility in biliary bile. These results suggest different, but complementary, roles for L-FABP and SCP-2/SCP-x in biliary bile acid and cholesterol formation. L-FABP appears to function more in hepatic retention of bile acids as well as hepatic uptake and biliary secretion of HDL-cholesterol. Conversely, SCP-2/SCP-x may function more in formation and biliary secretion of bile acid, with less impact on hepatic uptake or biliary secretion of HDL-cholesterol. Copyright © 2014 the American Physiological Society.
History of hepatic bile formation: old problems, new approaches.
Javitt, Norman B
2014-12-01
Studies of hepatic bile formation reported in 1958 established that it was an osmotically generated water flow. Intravenous infusion of sodium taurocholate established a high correlation between hepatic bile flow and bile acid excretion. Secretin, a hormone that stimulates bicarbonate secretion, was also found to increase hepatic bile flow. The sources of the water entering the biliary system with these two stimuli were differentiated by the use of mannitol. An increase in its excretion parallels the increase in bile flow in response to bile acids but not secretin, which led to a quantitative distinction between canalicular and ductular water flow. The finding of aquaglyceroporin-9 in the basolateral surface of the hepatocyte accounted for the rapid entry of mannitol into hepatocytes and its exclusion from water movement in the ductules where aquaporin-1 is present. Electron microscopy demonstrated that bile acids generate the formation of vesicles that contain lecithin and cholesterol after their receptor-mediated canalicular transport. Biophysical studies established that the osmotic effect of bile acids varies with their concentration and also with the proportion of mono-, di-, and trihydroxy bile acids and provides a basis for understanding their physiological effects. Because of the varying osmotic effect of bile acids, it is difficult to quantify bile acid independent flow generated by other solutes, such as glutathione, which enters the biliary system. Monohydroxy bile acids, by markedly increasing aggregation number, severely reduce water flow. Developing biomarkers for the noninvasive assessment of normal hepatic bile flow remains an elusive goal that merits further study. Copyright © 2014 The American Physiological Society.
Caffeic acid phenethyl ester protects kidneys against acetylsalicylic acid toxicity in rats.
Bozkurt, Yasar; Bozkurt, Mehtap; Turkçu, Gul; Sancaktutar, Ahmet Ali; Soylemez, Haluk; Penbegul, Necmettin; Atar, Murat; Bodakcı, Mehmet Nuri; Hatipoglu, Namık Kemal; Yuksel, Hatice; Kıbrıslı, Erkan; Yavuz, Celal
2012-01-01
The aim of this study was to investigate the protective effect of caffeic acid phenethyl ester (CAPE) on acetylsalicylic acid (ASA)-induced renal damage in rats. A total of 40 rats were randomly divided into five groups, with eight rats in each group-group 1: control, not receiving any medication; group 2: ASA (50 mg/kg/day); group 3: ASA (50 mg/kg/day) + CAPE (20 μg/kg/day); group 4: ASA (100 mg/kg/day); and group 5: ASA (100 mg/kg/day) + CAPE (20 μg/kg/day). ASA and CAPE were given via orogastric gavage for 5 days. The total oxidant status (TOS), total antioxidant capacity (TAC), and paraoxonase-1 (PON-1) activity of the blood samples and kidney tissues were determined. Histopathological examinations of the kidneys were performed using light microscopic methods. The TOS level in the serum of rats and kidney tissues given ASA (groups 2 and 4) significantly increased, but the levels of TAC and PON-1 in these tissues significantly decreased in group 4 when compared with the control rats (p < 0.05). The levels of TAC and PON-1 in the kidney tissues increased and the levels of TOS decreased in the CAPE treatment groups (groups 3 and 5) when compared with the rats in the no CAPE treatment groups (groups 2 and 4). The PON-1, TAC, and TOS values reverted to normal levels in group 5 when compared to group 4 (p < 0.05). These results were supported by histopathological observation. Oxidative stress plays an important role in ASA-induced nephrotoxicity, and CAPE may protect against ASA-induced nephrotoxicity in rats.
NASA Astrophysics Data System (ADS)
Yuan, Jiaojiao; Li, Bing; Qin, Frank G. F.; Tu, Junling
2018-01-01
High purify oleuropein (81.04% OL) was hydrolyzed by hemicellulase and phenols was existed in the ethyl acetate extract of enzymatic hydrolysate (EAE). The results presented that there were hydroxytyrosol (HT), tyrosol, caffeic acid, 3,4-dihydroxybenzoic acid, 3,4-dihydroxy phenylacetic acid in EAE by HPLC, and HT content was 19.36%. Antioxidant activities (DPPH radical scavenging capacity) were all added as the samples concentration increased, and dose-effect relationships also existed. HT possessed the highest DPPH radical scavenging capacity, followed by Vc, and eugenol, OL, caffeic acid, 3,4-dihydroxy phenylacetic acid and 3,4-dihydroxybenzoic acid.
Sun, Lijun; Chen, Weiqi; Meng, Yonghong; Yang, Xingbin; Yuan, Li; Guo, Yurong; Warren, Frederick J; Gidley, Michael J
2016-10-01
Young apple polyphenols (YAP) and nine types of phenolic compounds were investigated regarding the inhibitory activity against porcine pancreatic α-amylase (PPA) in vitro. Tannic acid, chlorogenic acid and caffeic acid in YAP showed relatively high inhibition with the IC50 values of 0.30, 1.96 and 3.69mg/mL, respectively. A detailed kinetics of inhibition study revealed that YAP and tannic acid were competitive inhibitors of PPA, whereas chlorogenic acid and caffeic acid were mixed inhibitors, exhibiting both competitive and uncompetitive characteristics. The fluorescence of PPA could be significantly quenched by YAP and the three polyphenols, and their quenching constants were determined. The results showed that for the polyphenols investigated, the order of the apparent static quenching constants (KFQ) was in agreement with that of the reciprocal competitive inhibition constants (1/Kic) (tannic acid>chlorogenic acid>caffeic acid>epicatechin); both of the parameters were contrary to the order of the IC50 values. Thus, combining detailed kinetics and fluorescence quenching studies can be applied to characterise the interactions between polyphenols in young apples and α-amylase. Copyright © 2016 Elsevier Ltd. All rights reserved.
In Vitro Binding Capacity of Bile Acids by Defatted Corn Protein Hydrolysate
Kongo-Dia-Moukala, Jauricque Ursulla; Zhang, Hui; Irakoze, Pierre Claver
2011-01-01
Defatted corn protein was digested using five different proteases, Alcalase, Trypsin, Neutrase, Protamex and Flavourzyme, in order to produce bile acid binding peptides. Bile acid binding capacity was analyzed in vitro using peptides from different proteases of defatted corn hydrolysate. Some crystalline bile acids like sodium glycocholate, sodium cholate and sodium deoxycholate were individually tested using HPLC to see which enzymes can release more peptides with high bile acid binding capacity. Peptides from Flavourzyme defatted corn hydrolysate exhibited significantly (p < 0.05) stronger bile acid binding capacity than all others hydrolysates tested and all crystalline bile acids tested were highly bound by cholestyramine, a positive control well known as a cholesterol-reducing agent. The bile acid binding capacity of Flavourzyme hydrolysate was almost preserved after gastrointestinal proteases digestion. The molecular weight of Flavourzyme hydrolysate was determined and most of the peptides were found between 500–180 Da. The results showed that Flavourzyme hydrolysate may be used as a potential cholesterol-reducing agent. PMID:21541043
Hvas, Christian Lodberg; Ott, Peter; Paine, Peter; Lal, Simon; Jørgensen, Søren Peter; Dahlerup, Jens Frederik
2018-01-01
Bile acid diarrhea results from excessive amounts of bile acids entering the colon due to hepatic overexcretion of bile acids or bile acid malabsorption in the terminal ileum. The main therapies include bile acid sequestrants, such as colestyramine and colesevelam, which may be given in combination with the opioid receptor agonist loperamide. Some patients are refractory to conventional treatments. We report the use of the farnesoid X receptor agonist obeticholic acid in a patient with refractory bile acid diarrhea and subsequent intestinal failure. A 32-year-old woman with quiescent colonic Crohn’s disease and a normal terminal ileum had been diagnosed with severe bile acid malabsorption and complained of watery diarrhea and fatigue. The diarrhea resulted in hypokalemia and sodium depletion that made her dependent on twice weekly intravenous fluid and electrolyte infusions. Conventional therapies with colestyramine, colesevelam, and loperamide had no effect. Second-line antisecretory therapies with pantoprazole, liraglutide, and octreotide also failed. Third-line treatment with obeticholic acid reduced the number of stools from an average of 13 to an average of 7 per 24 h and improved the patient’s quality of life. The fluid and electrolyte balances normalized. The effect was sustained during follow-up for 6 mo with treatment at a daily dosage of 25 mg. The diarrhea worsened shortly after cessation of obeticholic acid. This case report supports the initial report that obeticholic acid may reduce bile acid production and improve symptoms in patients with bile acid diarrhea. PMID:29881241
Jia, Li; Shigwedha, Nditange; Mwandemele, Osmund D
2010-01-01
The survival of bifidobacteria in simulated conditions of the gastrointestinal (GI) tract was studied based on the D- and z-value concept. Some Bifidobacterium spp. are probiotics that improve microbial balance in the human GI tract. Because they are sensitive to low pH and bile salt concentrations, their viability in the GI tract is limited. The D- and z-value approach was therefore adopted as a result of observing constant log-cell reduction (90%) when Bifidobacterium spp. were exposed to these 2 different stressing factors. Survivals of one strain each or 4 species of Bifidobacterium was studied at pH between 3.0 and 4.5 and in ox-bile between 0.15% and 0.60% for times up to 41 h. From the D(acid)- and D(bile)-values, the order of resistance to acid and bile was B. bifidum > B. infantis > B. longum > B. adolescentis. While the former 3 strains retained high cell viability at pH 3.5 (>5.5 log CFU/mL after 5 h) and at elevated bile salt concentration of 0.6% (>4.5 log CFU/mL after 3 h), B. adolescentis was less resistant (<3.4 log CFU/mL). The z(acid)- and z(bile)-values calculated from the D(acid)- and D(bile)-values ranged from 1.11 to 1.55 pH units and 0.40% to 0.49%, respectively. The results suggest that the D(acid)-, D(bile)-, z(acid)-, and z(bile)-value approach could be more appropriate than the screening and selection method in evaluating survival of probiotic bacteria, and in measuring their tolerance or resistance to gastric acidity and the associated bile salt concentration in the small intestine. The evaluation of the tolerance of bifidobacteria to bile salts and low pH has been made possible by use of D- and z-value concept. The calculated z(acid)- and z(bile)-values were all fairly similar for the strains used and suggest the effect of increasing the bile salt concentration or decreasing the pH on the D(acid)- and D(bile)-values. This approach would be useful for predicting the suitability of bifidobacteria and other lactic acid bacteria (LAB) as probiotics for use in real-life situations.
Rethinking the bile acid/gut microbiome axis in cancer
Phelan, John P.; Reen, F. Jerry; Caparros-Martin, Jose A.; O'Connor, Rosemary; O'Gara, Fergal
2017-01-01
Dietary factors, probiotic agents, aging and antibiotics/medicines impact on gut microbiome composition leading to disturbances in localised microbial populations. The impact can be profound and underlies a plethora of human disorders, including the focus of this review; cancer. Compromised microbiome populations can alter bile acid signalling and produce distinct pathophysiological bile acid profiles. These in turn have been associated with cancer development and progression. Exposure to high levels of bile acids, combined with localised molecular/genome instability leads to the acquisition of bile mediated neoplastic alterations, generating apoptotic resistant proliferation phenotypes. However, in recent years, several studies have emerged advocating the therapeutic benefits of bile acid signalling in suppressing molecular and phenotypic hallmarks of cancer progression. These studies suggest that in some instances, bile acids may reduce cancer phenotypic effects, thereby limiting metastatic potential. In this review, we contextualise the current state of the art to propose that the bile acid/gut microbiome axis can influence cancer progression to the extent that classical in vitro cancer hallmarks of malignancy (cell invasion, cell migration, clonogenicity, and cell adhesion) are significantly reduced. We readily acknowledge the existence of a bile acid/gut microbiome axis in cancer initiation, however, in light of recent advances, we focus exclusively on the role of bile acids as potentially beneficial molecules in suppressing cancer progression. Finally, we theorise that suppressing aggressive malignant phenotypes through bile acid/gut microbiome axis modulation could uncover new and innovative disease management strategies for managing cancers in vulnerable cohorts. PMID:29383197
Liang, Zongsuo; Ma, Yini; Xu, Tao; Cui, Beimi; Liu, Yan; Guo, Zhixin; Yang, Dongfeng
2013-01-01
Salvia miltiorrhiza is one of the most important traditional Chinese medicinal plants because of its excellent performance in treating coronary heart disease. Phenolic acids mainly including caffeic acid, rosmarinic acid and salvianolic acid B are a group of active ingredients in S. miltiorrhiza. Abscisic acid (ABA), gibberellin (GA) and ethylene are three important phytohormones. In this study, effects of the three phytohormones and their interactions on phenolic production in S. miltiorrhiza hairy roots were investigated. The results showed that ABA, GA and ethylene were all effective to induce production of phenolic acids and increase activities of PAL and TAT in S. miltiorrhiza hairy roots. Effects of phytohormones were reversed by their biosynthetic inhibitors. Antagonistic actions between the three phytohormones played important roles in the biosynthesis of phenolic acids. GA signaling is necessary for ABA and ethylene-induced phenolic production. Yet, ABA and ethylene signaling is probably not necessary for GA3-induced phenolic production. The complex interactions of phytohormones help us reveal regulation mechanism of secondary metabolism and scale-up production of active ingredients in plants.
Xu, Tao; Cui, Beimi; Liu, Yan; Guo, Zhixin; Yang, Dongfeng
2013-01-01
Salvia miltiorrhiza is one of the most important traditional Chinese medicinal plants because of its excellent performance in treating coronary heart disease. Phenolic acids mainly including caffeic acid, rosmarinic acid and salvianolic acid B are a group of active ingredients in S. miltiorrhiza. Abscisic acid (ABA), gibberellin (GA) and ethylene are three important phytohormones. In this study, effects of the three phytohormones and their interactions on phenolic production in S. miltiorrhiza hairy roots were investigated. The results showed that ABA, GA and ethylene were all effective to induce production of phenolic acids and increase activities of PAL and TAT in S. miltiorrhiza hairy roots. Effects of phytohormones were reversed by their biosynthetic inhibitors. Antagonistic actions between the three phytohormones played important roles in the biosynthesis of phenolic acids. GA signaling is necessary for ABA and ethylene-induced phenolic production. Yet, ABA and ethylene signaling is probably not necessary for GA3-induced phenolic production. The complex interactions of phytohormones help us reveal regulation mechanism of secondary metabolism and scale-up production of active ingredients in plants. PMID:24023778
FXR signaling in the enterohepatic system
Matsubara, Tsutomu; Li, Fei; Gonzalez, Frank J.
2012-01-01
Enterohepatic circulation serves to capture bile acids and other steroid metabolites produced in the liver and secreted to the intestine, for reabsorption back into the circulation and reuptake to the liver. This process is under tight regulation by nuclear receptor signaling. Bile acids, produced from cholesterol, can alter gene expression in the liver and small intestine via activating the nuclear receptors farnesoid X receptor (FXR; NR1H4), pregnane X receptor (PXR; NR1I2), vitamin D receptor (VDR; NR1I1), G protein coupled receptor TGR5, and other cell signaling pathways (JNK1/2, AKT and ERK1/2). Among these controls, FXR is known to be a major bile acid-responsive ligand-activated transcription factor and a crucial control element for maintaining bile acid homeostasis. FXR has a high affinity for several major endogenous bile acids, notably cholic acid, deoxycholic acid, chenodeoxycholic acid, and lithocholic acid. By responding to excess bile acids, FXR is a bridge between the liver and small intestine to control bile acid levels and regulate bile acid synthesis and enterohepatic flow. FXR is highly expressed in the liver and gut, relative to other tissues, and contributes to the maintenance of cholesterol/bile acid homeostasis by regulating a variety of metabolic enzymes and transporters. FXR activation also affects lipid and glucose metabolism, and can influence drug metabolism. PMID:22609541
Role of the Intestinal Bile Acid Transporters in Bile Acid and Drug Disposition
Dawson, Paul A.
2011-01-01
Membrane transporters expressed by the hepatocyte and enterocyte play critical roles in maintaining the enterohepatic circulation of bile acids, an effective recycling and conservation mechanism that largely restricts these potentially cytotoxic detergents to the intestinal and hepatobiliary compartments. In doing so, the hepatic and enterocyte transport systems ensure a continuous supply of bile acids to be used repeatedly during the digestion of multiple meals throughout the day. Absorption of bile acids from the intestinal lumen and export into the portal circulation is mediated by a series of transporters expressed on the enterocyte apical and basolateral membranes. The ileal apical sodium-dependent bile acid cotransporter (abbreviated ASBT; gene symbol, SLC10A2) is responsible for the initial uptake of bile acids across the enterocyte brush border membrane. The bile acids are then efficiently shuttled across the cell and exported across the basolateral membrane by the heteromeric Organic Solute Transporter, OSTα-OSTβ. This chapter briefly reviews the tissue expression, physiology, genetics, pathophysiology, and transport properties of the ASBT and OSTα-OSTα. In addition, the chapter discusses the relationship between the intestinal bile acid transporters and drug metabolism, including development of ASBT inhibitors as novel hypocholesterolemic or hepatoprotective agents, prodrug targeting of the ASBT to increase oral bioavailability, and involvement of the intestinal bile acid transporters in drug absorption and drug-drug interactions. PMID:21103970
Bile acid receptors link nutrient sensing to metabolic regulation
Li, Jibiao; Li, Tiangang
2017-01-01
Non-alcoholic fatty liver disease (NAFLD) is a common liver disease in Western populations. Non-alcoholic steatohepatitis (NASH) is a more debilitating form of NAFLD characterized by hepatocellular injury and inflammation, which significantly increase the risk of end-stage liver and cardiovascular diseases. Unfortunately, there are no available drug therapies for NASH. Bile acids are physiological detergent molecules that are synthesized from cholesterol exclusively in the hepatocytes. Bile acids circulate between the liver and intestine, where they are required for cholesterol solubilization in the bile and dietary fat emulsification in the gut. Bile acids also act as signaling molecules that regulate metabolic homeostasis and inflammatory processes. Many of these effects are mediated by the bile acid-activated nuclear receptor farnesoid X receptor (FXR) and the G protein-coupled receptor TGR5. Nutrient signaling regulates hepatic bile acid synthesis and circulating plasma bile acid concentrations, which in turn control metabolic homeostasis. The FXR agonist obeticholic acid has had beneficial effects on NASH in recent clinical trials. Preclinical studies have suggested that the TGR5 agonist and the FXR/TGR5 dual agonist are also potential therapies for metabolic liver diseases. Extensive studies in the past few decades have significantly improved our understanding of the metabolic regulatory function of bile acids, which has provided the molecular basis for developing promising bile acid-based therapeutic agents for NASH treatment. PMID:29098111
Im, Sung-Eun; Yoon, Hyungeun; Nam, Tae-Gyu; Heo, Ho Jin; Lee, Chang Yong; Kim, Dae-Ok
2010-08-01
In recent decades, romaine lettuce has been one of the fastest growing vegetables with respect to its consumption and production. An understanding is needed of the effect of major phenolic phytochemicals from romaine lettuce on biological protection for neuron-like PC-12 cells. Phenolics in fresh romaine lettuce were extracted, and then its total phenolics and total antioxidant capacity were measured spectrophotometrically. Neuroprotective effects of phenolic extract of romaine lettuce and its pure caffeic acid derivatives (caffeic, chicoric, chlorogenic, and isochlorogenic acids) in PC-12 cells were evaluated using two different in vitro methods: lactate dehydrogenase release and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction assays. Total phenolics and total antioxidant capacity of 100 g of fresh romaine lettuce averaged 22.7 mg of gallic acid equivalents and 31.0 mg of vitamin C equivalents, respectively. The phenolic extract of romaine lettuce protected PC-12 cells against oxidative stress caused by H(2)O(2) in a dose-dependent manner. Isochlorogenic acid, one of the phenolics in romaine lettuce, showed stronger neuroprotection than the other three caffeic acid derivatives also found in the lettuce. Although romaine lettuce had lower levels of phenolics and antioxidant capacity compared to other common vegetables, its contribution to total antioxidant capacity and antineurodegenerative effect in human diets would be higher because of higher amounts of its daily per capita consumption compared to other common vegetables.
Hepatocyte-based in vitro model for assessment of drug-induced cholestasis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatterjee, Sagnik, E-mail: Sagnik.Chatterjee@pharm.kuleuven.be; Richert, Lysiane, E-mail: l.richert@kaly-cell.com; Augustijns, Patrick, E-mail: Patrick.Augustijns@pharm.kuleuven.be
Early detection of drug-induced cholestasis remains a challenge during drug development. We have developed and validated a biorelevant sandwich-cultured hepatocytes- (SCH) based model that can identify compounds causing cholestasis by altering bile acid disposition. Human and rat SCH were exposed (24–48 h) to known cholestatic and/or hepatotoxic compounds, in the presence or in the absence of a concentrated mixture of bile acids (BAs). Urea assay was used to assess (compromised) hepatocyte functionality at the end of the incubations. The cholestatic potential of the compounds was expressed by calculating a drug-induced cholestasis index (DICI), reflecting the relative residual urea formation bymore » hepatocytes co-incubated with BAs and test compound as compared to hepatocytes treated with test compound alone. Compounds with clinical reports of cholestasis, including cyclosporin A, troglitazone, chlorpromazine, bosentan, ticlopidine, ritonavir, and midecamycin showed enhanced toxicity in the presence of BAs (DICI ≤ 0.8) for at least one of the tested concentrations. In contrast, the in vitro toxicity of compounds causing hepatotoxicity by other mechanisms (including diclofenac, valproic acid, amiodarone and acetaminophen), remained unchanged in the presence of BAs. A safety margin (SM) for drug-induced cholestasis was calculated as the ratio of lowest in vitro concentration for which was DICI ≤ 0.8, to the reported mean peak therapeutic plasma concentration. SM values obtained in human SCH correlated well with reported % incidence of clinical drug-induced cholestasis, while no correlation was observed in rat SCH. This in vitro model enables early identification of drug candidates causing cholestasis by disturbed BA handling. - Highlights: • Novel in vitro assay to detect drug-induced cholestasis • Rat and human sandwich-cultured hepatocytes (SCH) as in vitro models • Cholestatic compounds sensitize SCH to toxic effects of accumulating bile acids • Drug-induced cholestasis index (DICI) as measure of a drug's cholestatic signature • In vitro findings correlate well with clinical reports on cholestasis.« less
NASA Astrophysics Data System (ADS)
Roy, Nayan; Paul, Pradip C.; Singh, T. Sanjoy
2015-05-01
Fluorescence properties of Schiff base - N,N‧-bis(salicylidene) - 1,2-phenylenediamine (LH2) is used to study the micelles formed by aggregation of different important bile acids like cholic acid, deoxycholic acid, chenodeoxycholic acid and glycocholic acid by steady state and picosecond time-resolved fluorescence spectroscopy. The fluorescence band intensity was found out to increase with concomitant red shift with gradual addition of different bile acids. Binding constant of the probe with different bile acids as well as critical micelle concentration was obtained from the variation of fluorescence intensity on increasing concentration of bile acids in the medium. The increase in fluorescence quantum yields, fluorescence decay times and substantial decrease in nonradiative decay rate constants in bile acids micellar environment points to the restricted motion of the fluorophore inside the micellar subdomains.
Rifampicin Induces Bicarbonate-Rich Choleresis in Rats: Involvement of Anion Exchanger 2.
Wang, Wei; Ren, Xiaofei; Cai, Yi; Chen, Lihong; Zhang, Weiping; Xu, Jianming
2016-01-01
Previous studies have shown that rifampicin induced choleresis, the mechanisms of which have not been described. The aim of this study was to investigate the mechanisms underlying in vivo rifampicin-induced choleresis. In one experimental set, rats were treated chronically with rifampicin on days 1, 3 and 7. Serum and biliary parameters were assayed, and mRNA and protein levels, as well as the locations of the hepatic export transporters were analyzed by real-time PCR, western blot and immunofluorescence. Ductular mass was evaluated immunohistochemically. In another experimental set, rats received an acute infusion of rifampicin. The amount of rifampicin in bile was detected using HPLC. Biliary parameters were monitored following intrabiliary retrograde fluxes of the Cl(-)/HCO3 (-) exchange inhibitor 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) or 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) in the infused rats. Biliary bicarbonate output increased in parallel to the augmented bile flow in response to rifampicin, and this effect was abolished with intrabiliary administration of DIDS, but not NPPB. The biliary secretion of rifampicin with increases in bile flow and biliary rifampicin in response to different infused doses of the antibiotic show no significant correlations. After rifampicin treatment, the expression level of anion exchanger 2 (AE2) increased, while the location of hepatic transporters did not change. However, RIF treatment did not increase ductular mass significantly. These results indicate that the increase in bile flow induced by rifampicin is mainly due to increased HCO3 (-) excretion mediated by increased AE2 protein expression and activity.
Characterization of a novel organic solute transporter homologue from Clonorchis sinensis
Dai, Fuhong; Lee, Ji-Yun; Pak, Jhang Ho; Sohn, Woon-Mok
2018-01-01
Clonorchis sinensis is a liver fluke that can dwell in the bile ducts of mammals. Bile acid transporters function to maintain the homeostasis of bile acids in C. sinensis, as they induce physiological changes or have harmful effects on C. sinensis survival. The organic solute transporter (OST) transports mainly bile acid and belongs to the SLC51 subfamily of solute carrier transporters. OST plays a critical role in the recirculation of bile acids in higher animals. In this study, we cloned full-length cDNA of the 480-amino acid OST from C. sinensis (CsOST). Genomic analysis revealed 11 exons and nine introns. The CsOST protein had a ‘Solute_trans_a’ domain with 67% homology to Schistosoma japonicum OST. For further analysis, the CsOST protein sequence was split into the ordered domain (CsOST-N) at the N-terminus and disordered domain (CsOST-C) at the C-terminus. The tertiary structure of each domain was built using a threading-based method and determined by manual comparison. In a phylogenetic tree, the CsOST-N domain belonged to the OSTα and CsOST-C to the OSTβ clade. These two domains were more highly conserved with the OST α- and β-subunits at the structure level than at sequence level. These findings suggested that CsOST comprised the OST α- and β-subunits. CsOST was localized in the oral and ventral suckers and in the mesenchymal tissues abundant around the intestine, vitelline glands, uterus, and testes. This study provides fundamental data for the further understanding of homologues in other flukes. PMID:29702646
Montagnani, Marco; Abrahamsson, Anna; Gälman, Cecilia; Eggertsen, Gösta; Marschall, Hanns-Ulrich; Ravaioli, Elisa; Einarsson, Curt; Dawson, Paul A
2006-01-01
The etiology of most cases of idiopathic bile acid malabsorption (IBAM) is unknown. In this study, a Swedish family with bile acid malabsorption in three consecutive generations was screened for mutations in the ileal apical sodium-bile acid cotransporter gene (ASBT; gene symbol, SLC10A2) and in the genes for several of the nuclear receptors known to be important for ASBT expression: the farnesoid X receptor (FXR) and peroxisome proliferator activated receptor alpha (PPARα). The patients presented with a clinical history of idiopathic chronic watery diarrhea, which was responsive to cholestyramine treatment and consistent with IBAM. Bile acid absorption was determined using 75Se-homocholic acid taurine (SeHCAT); bile acid synthesis was estimated by measuring the plasma levels of 7α-hydroxy-4-cholesten-3-one (C4). The ASBT, FXR, and PPARα genes in the affected and unaffected family members were analyzed using single stranded conformation polymorphism (SSCP), denaturing HPLC, and direct sequencing. No ASBT mutations were identified and the ASBT gene did not segregate with the bile acid malabsorption phenotype. Similarly, no mutations or polymorphisms were identified in the FXR or PPARα genes associated with the bile acid malabsorption phenotype. These studies indicate that the intestinal bile acid malabsorption in these patients cannot be attributed to defects in ASBT. In the absence of apparent ileal disease, alternative explanations such as accelerated transit through the small intestine may be responsible for the IBAM. PMID:17171805
Garro, María Filomena; Salinas Ibáñez, Angel Gabriel; Vega, Alba Edith; Arismendi Sosa, Andrea Celeste; Pelzer, Lilian; Saad, José Roberto; Maria, Alejandra Olivia
2015-12-24
Lithraea molleoides (Vell.) Engl. (Anacardiaceae) is a medicinal plant traditionally used in South America to treat various ailments, including diseases of the digestive system. To evaluate the in vivo antiulcer and antimicrobial activities against Helicobacter pylori of L. molleoides and its isolated compounds. Methanolic extract 250 and 500 mg/kg, (LmE 250 and LmE 500, respectively) and infusions, 10 g and 20 g en 100mL (LmI 10 and LmI 20, respectively) of L. molleoides was evaluated for antiulcer activity against 0.6N HCl, 0.2N NaOH, 200mg/kg acetilsalicilic acid and absolute ethanol-induced gastric ulcers in rats. The degree of erosion in the glandular part of the stomach was assessed from a scoring system. Acute toxicity in mice was also evaluated. The antiulcer effect of the isolated compounds (catechol, mannitol, rutin, gallic acid, ferulic acid and caffeic acid, 100mg/kg) was evaluated against absolute ethanol-induced gastric ulcers in rats. The anti-Helicobacter pylori activity of L. molleoides and isolated compounds was performed using broth dilution methods. The LmE 250, LmE 500, LmI 10 and LmI 20 produced significant inhibition on the ulcer index in 0.6N HCl, 0.2N NaOH, 200mg/kg acetilsalicilic acid and absolute ethanol- induced gastric ulcers in rats. The isolated compounds, catechol, mannitol, rutin, ferulic acid and caffeic acid were active in absolute ethanol- induced gastric ulcers in rats. L. molleoides and different compounds showed antimicrobial activity in all strains tested. The lowest MIC value (0. 5 μg/mL) was obtained with catechol in six of eleven strains assayed. No signs of toxicity were observed with doses up to 2g/kg in an acute toxicity assay. These findings indicate that L. molleoides displays potential antiulcerogenic and antimicrobial activities and the identification of active principles could support the use of this plant for the treatment of digestive affections. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Jiao, Li; Gan-Schreier, Hongying; Zhu, Xingya; Wei, Wang; Tuma-Kellner, Sabine; Liebisch, Gerhard; Stremmel, Wolfgang; Chamulitrat, Walee
2017-12-01
Ageing is a major risk factor for various forms of liver and gastrointestinal (GI) disease and genetic background may contribute to the pathogenesis of these diseases. Group VIA phospholipase A2 or iPLA 2 β is a homeostatic PLA 2 by playing a role in phospholipid metabolism and remodeling. Global iPLA 2 β -/- mice exhibit aged-dependent phenotypes with body weight loss and abnormalities in the bone and brain. We have previously reported the abnormalities in these mutant mice showing susceptibility for chemical-induced liver injury and colitis. We hypothesize that iPLA 2 β deficiency may sensitize with ageing for an induction of GI injury. Male wild-type and iPLA 2 β -/- mice at 4 and 20-22months of age were studied. Aged, but not young, iPLA 2 β -/- mice showed increased hepatic fibrosis and biliary ductular expansion as well as severe intestinal atrophy associated with increased apoptosis, pro-inflammation, disrupted tight junction, and reduced number of mucin-containing globlet cells. This damage was associated with decreased expression of intestinal endoplasmic stress XBP1 and its regulator HNF1α, FATP4, ACSL5, bile-acid transport genes as well as nuclear receptors LXRα and FXR. By LC/MS-MS profiling, iPLA 2 β deficiency in aged mice caused an increase of intestinal arachidonate-containing phospholipids concomitant with a decrease in ceramides. By the suppression of intestinal FXR/FGF-15 signaling, hepatic bile-acid synthesis gene expression was increased leading to an elevation of secondary and hydrophobic bile acids in liver, bile, and intestine. In conclusions, ageing sensitized by iPLA 2 β deficiency caused a decline of key intestinal homeostatic genes resulting in the development of GI disease in a gut-to-liver manner. Copyright © 2017 Elsevier B.V. All rights reserved.
A new mechanism for bile acid diarrhea: defective feedback inhibition of bile acid biosynthesis.
Walters, Julian R F; Tasleem, Ali M; Omer, Omer S; Brydon, W Gordon; Dew, Tracy; le Roux, Carel W
2009-11-01
Primary (idiopathic) bile acid malabsorption (BAM) is a common, yet underrecognized, chronic diarrheal syndrome. Diagnosis is difficult without selenium homocholic acid taurine (SeHCAT) testing. The diarrhea results from excess colonic bile acids, but the pathogenesis is unclear. Fibroblast growth factor 19 (FGF19), produced in the ileum in response to bile acid absorption, regulates hepatic bile acid synthesis. We proposed that FGF19 is involved in bile acid diarrhea and measured its levels in patients with BAM. Blood was collected from fasting patients with chronic diarrhea; BAM was diagnosed by SeHCAT. Serum FGF19 was measured by enzyme-linked immunosorbent assay. Serum 7alpha-hydroxy-4-cholesten-3-one (C4) was determined using high-performance liquid chromatography, to quantify bile acid synthesis. Data were compared between patients and subjects without diarrhea (controls). Samples were taken repeatedly after meals from several subjects. The median C4 level was significantly higher in patients with primary BAM than in controls (51 vs 18 ng/mL; P < .0001). The median FGF19 level was significantly lower in patients with BAM (120 vs 231 pg/mL; P < .0005). There was a significant inverse relationship between FGF19 and C4 levels (P < .0004). Low levels of FGF19 were also found in patients with postcholecystectomy and secondary bile acid diarrhea. Abnormal patterns of FGF19 levels were observed throughout the day in some patients with primary BAM. Patients with BAM have reduced serum FGF19 which may be useful in diagnosis. We propose a mechanism whereby impaired FGF19 feedback inhibition causes excessive bile acid synthesis that exceeds the normal capacity for ileal reabsorption, producing bile acid diarrhea.
Beaudoin, M; Carey, M C; Small, D M
1975-01-01
Bile salts play a major role in bile formation and biliary lipid secretion. Sodium taurodihydrofusidate (TDHF), a derivative of the antibiotic fusidic acid, closely resembles bile salts in terms of structure, micellar characteristics, and capacity ot solubilize otherwise insolbule lipids. We have therefore studied the biliary secretion of this bile salt analogue and its influence on bile formation and biliary lipid secretion in primates. Alert, unanesthetized female rhesus monkeys prepared with a total biliary fistula were allowed to reach a steady bile salt secretion rate before each study. In three animals (group I),[14C]TDHF was infused intravenously. Most of the compound was secreted rapidly in bile chemically unchanged. The biliary secretion of this drug produced a twofold increase in bile flow; however, the bile salt output was markedly reduced during the infusion. In spite of this reduction, the phospholipid output remained essentially unchanged whereas the cholesterol output increased almost twofold. In five other animals (group II), the effect of TDHF on the bile salt secretion was further investigated by an intravenous infusion of [14C]taurocholate followed by a combined infusion of [14C]taurocholate and TDHF. When TDHF was added to the infusate, a reduction in the [14C]taurocholate output and a progressive rise in the plasma [14C]taurocholate concentration were observed in each animal. An analysis of the data in both groups indicates that (a) the most likely explanation to account for the decreased bile salt output is that the bile salt analogue, TDHF, interfered with bile salt secretion into the biliary canaliculi; (b) TDHF induces a greater secretion of biliary water than was observed with bile salts, an effect consistent with a stimulation of the bile salt-independent canalicular flow; (c) at similar 3alpha-hydroxysteroid secretion rates TDHF caused a significant increase in cholesterol secretion compared to that induced by bile salt. This finding suggests that TDHF affects cholesterol metabolism or secretion in a way distinct from bile salts. Thus, the solubilization of biliary lipids in mixed micelles, although essential, is only one of the factors which determine their secretion into bile. PMID:811689
Production of caffeoylmalic acid from glucose in engineered Escherichia coli.
Li, Tianzhen; Zhou, Wei; Bi, Huiping; Zhuang, Yibin; Zhang, Tongcun; Liu, Tao
2018-07-01
To achieve biosynthesis of caffeoylmalic acid from glucose in engineered Escherichia coli. We constructed the biosynthetic pathway of caffeoylmalic acid in E. coli by co-expression of heterologous genes RgTAL, HpaBC, At4CL2 and HCT2. To enhance the production of caffeoylmalic acid, we optimized the tyrosine metabolic pathway of E. coli to increase the supply of the substrate caffeic acid. Consequently, an E. coli-E. coli co-culture system was used for the efficient production of caffeoylmalic acid. The final titer of caffeoylmalic acid reached 570.1 mg/L. Microbial production of caffeoylmalic acid using glucose has application potential. In addition, microbial co-culture is an efficient tool for producing caffeic acid esters.
Santos, João L A; Bispo, Vanderson S; Filho, Adriano B C; Pinto, Isabella F D; Dantas, Lucas S; Vasconcelos, Daiane F; Abreu, Fabíula F; Melo, Danilo A; Matos, Isaac A; Freitas, Florêncio P; Gomes, Osmar F; Medeiros, Marisa H G; Matos, Humberto R
2013-01-01
Coconut water contains several uncharacterized substances and is widely used in the human consumption. In this paper we detected and quantified ascorbic acid and caffeic acid and total phenolics in several varieties of coconut using HPLS/MS/MS (25.8 ± 0.6 µg/mL and 1.078 ± 0.013 µg/mL and 99.7 µg/mL, respectively, in the green dwarf coconut water, or 10 mg and 539 µg and 39.8 mg for units of coconut consumed, 500 ± 50 mL). The antioxidant potential of four coconut varieties (green dwarf, yellow dwarf, red dwarf and yellow Malaysian) was compared with two industrialized coconut waters and the lyophilized water of the green dwarf variety. All varieties were effective in scavenging the DPPH radical (IC₅₀=73 µL) and oxide nitric (0.1 mL with an IP of 29.9%) as well as in inhibiting the in vitro production of thiobarbituric acid reactive substances (1 mL with an IP of 34.4%), highlighting the antioxidant properties of the green dwarf which it is the most common used. In cell culture, the green dwarf water was efficient in protecting against oxidative damages induced by hydrogen peroxide.
Baghdasaryan, Anna; Fuchs, Claudia D; Österreicher, Christoph H; Lemberger, Ursula J; Halilbasic, Emina; Påhlman, Ingrid; Graffner, Hans; Krones, Elisabeth; Fickert, Peter; Wahlström, Annika; Ståhlman, Marcus; Paumgartner, Gustav; Marschall, Hanns-Ulrich; Trauner, Michael
2016-03-01
Approximately 95% of bile acids (BAs) excreted into bile are reabsorbed in the gut and circulate back to the liver for further biliary secretion. Therefore, pharmacological inhibition of the ileal apical sodium-dependent BA transporter (ASBT/SLC10A2) may protect against BA-mediated cholestatic liver and bile duct injury. Eight week old Mdr2(-/-) (Abcb4(-/-)) mice (model of cholestatic liver injury and sclerosing cholangitis) received either a diet supplemented with A4250 (0.01% w/w) - a highly potent and selective ASBT inhibitor - or a chow diet. Liver injury was assessed biochemically and histologically after 4weeks of A4250 treatment. Expression profiles of genes involved in BA homeostasis, inflammation and fibrosis were assessed via RT-PCR from liver and ileum homogenates. Intestinal inflammation was assessed by RNA expression profiling and immunohistochemistry. Bile flow and composition, as well as biliary and fecal BA profiles were analyzed after 1week of ASBT inhibitor feeding. A4250 improved sclerosing cholangitis in Mdr2(-/-) mice and significantly reduced serum alanine aminotransferase, alkaline phosphatase and BAs levels, hepatic expression of pro-inflammatory (Tnf-α, Vcam1, Mcp-1) and pro-fibrogenic (Col1a1, Col1a2) genes and bile duct proliferation (mRNA and immunohistochemistry for cytokeratin 19 (CK19)). Furthermore, A4250 significantly reduced bile flow and biliary BA output, which correlated with reduced Bsep transcription, while Ntcp and Cyp7a1 were induced. Importantly A4250 significantly reduced biliary BA secretion but preserved HCO3(-) and biliary phospholipid secretion resulting in an increased HCO3(-)/BA and PL/BA ratio. In addition, A4250 profoundly increased fecal BA excretion without causing diarrhea and altered BA pool composition, resulting in diminished concentrations of primary BAs tauro-β-muricholic acid and taurocholic acid. Pharmacological ASBT inhibition attenuates cholestatic liver and bile duct injury by reducing biliary BA concentrations in mice. Copyright © 2015 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Phillips, F; Muls, A C G; Lalji, A; Andreyev, H J N
2015-08-01
Gastrointestinal (GI) symptoms during and after cancer therapy can significantly affect quality of life and interfere with treatment. This study assessed whether bile acid malabsorption (BAM) or bile acid diarrhoea (BAD) are important causes of diarrhoea associated with cancer treatment. A retrospective analysis was carried out of consecutive patients assessed for BAM using ((75) Se) Selenium homocholic acid taurocholate (SeHCAT) scanning, after reporting any episodes of loose stool, attending a gastroenterology clinic in a cancer centre. Between 2009 and 2013, 506 consecutive patients (54.5% male; age range: 20-91 years), were scanned. BAM/BAD was diagnosed in 215 (42.5%). It was mild in 25.6%, moderate in 29.3% and severe in 45.1%. Pelvic chemoradiation had induced BAM in > 50% of patients. BAM was also frequent after treatment for conditions not previously associated with BAM, such as anal and colorectal cancer, and was present in > 75% of patients referred after pancreatic surgery. It was also unexpectedly frequent in patients who were treated for malignancy outside the GI tract, such as breast cancer and haematological malignancy. BAM/BAD are very common and under-appreciated causes of GI symptoms after cancer treatment. Health professionals should have a low threshold in suspecting this condition, as diagnosis and treatment can significantly improve quality of life. Colorectal Disease © 2015 The Association of Coloproctology of Great Britain and Ireland.
Intestinal transport and metabolism of bile acids
Dawson, Paul A.; Karpen, Saul J.
2015-01-01
In addition to their classical roles as detergents to aid in the process of digestion, bile acids have been identified as important signaling molecules that function through various nuclear and G protein-coupled receptors to regulate a myriad of cellular and molecular functions across both metabolic and nonmetabolic pathways. Signaling via these pathways will vary depending on the tissue and the concentration and chemical structure of the bile acid species. Important determinants of the size and composition of the bile acid pool are their efficient enterohepatic recirculation, their host and microbial metabolism, and the homeostatic feedback mechanisms connecting hepatocytes, enterocytes, and the luminal microbiota. This review focuses on the mammalian intestine, discussing the physiology of bile acid transport, the metabolism of bile acids in the gut, and new developments in our understanding of how intestinal metabolism, particularly by the gut microbiota, affects bile acid signaling. PMID:25210150
Bile Routing Modification Reproduces Key Features of Gastric Bypass in Rat.
Goncalves, Daisy; Barataud, Aude; De Vadder, Filipe; Vinera, Jennifer; Zitoun, Carine; Duchampt, Adeline; Mithieux, Gilles
2015-12-01
To evaluate the role of bile routing modification on the beneficial effects of gastric bypass surgery on glucose and energy metabolism. Gastric bypass surgery (GBP) promotes early improvements in glucose and energy homeostasis in obese diabetic patients. A suggested mechanism associates a decrease in hepatic glucose production to an enhanced intestinal gluconeogenesis. Moreover, plasma bile acids are elevated after GBP and bile acids are inhibitors of gluconeogenesis. In male Sprague-Dawley rats, we performed bile diversions from the bile duct to the midjejunum or the mid-ileum to match the modified bile delivery in the gut occurring in GBP. Body weight, food intake, glucose tolerance, insulin sensitivity, and food preference were analyzed. The expression of gluconeogenesis genes was evaluated in both the liver and the intestine. Bile diversions mimicking GBP promote an increase in plasma bile acids and a marked improvement in glucose control. Bile bioavailability modification is causal because a bile acid sequestrant suppresses the beneficial effects of bile diversions on glucose control. In agreement with the inhibitory role of bile acids on gluconeogenesis, bile diversions promote a blunting in hepatic glucose production, whereas intestinal gluconeogenesis is increased in the gut segments devoid of bile. In rats fed a high-fat-high-sucrose diet, bile diversions improve glucose control and dramatically decrease food intake because of an acquired disinterest in fatty food. This study shows that bile routing modification is a key mechanistic feature in the beneficial outcomes of GBP.
Bile Routing Modification Reproduces Key Features of Gastric Bypass in Rat
Goncalves, Daisy; Barataud, Aude; De Vadder, Filipe; Vinera, Jennifer; Zitoun, Carine; Duchampt, Adeline; Mithieux, Gilles
2015-01-01
STRUCTURED ABSTRACT Objective To evaluate the role of bile routing modification on the beneficial effects of gastric bypass surgery on glucose and energy metabolism. Summary background data Gastric bypass surgery (GBP) promotes early improvements in glucose and energy homeostasis in obese diabetic patients. A suggested mechanism associates a decrease in hepatic glucose production (HGP) to an enhanced intestinal gluconeogenesis (IGN). Moreover, plasma bile acids are elevated after GBP and bile acids are inhibitors of gluconeogenesis. Methods In male Sprague-Dawley rats, we performed bile diversions from the bile duct to the mid-jejunum or the mid-ileum to match the modified bile delivery in the gut occurring in GBP. Body weight, food intake, glucose tolerance, insulin sensitivity and food preference were analyzed. The expression of gluconeogenesis genes was evaluated in both the liver and the intestine. Results Bile diversions mimicking GBP promote an increase in plasma bile acids and a marked improvement in glucose control. Bile bioavailability modification is causal since a bile acid sequestrant suppresses the beneficial effects of bile diversions on glucose control. In agreement with the inhibitory role of bile acids on gluconeogenesis, bile diversions promote a blunting in HGP, whereas IGN is increased in the gut segments devoid of bile. In rats fed a high fat-high sucrose diet, bile diversions improve glucose control and dramatically decrease food intake due to an acquired disinterest in fatty food. Conclusion This study shows that bile routing modification is a key mechanistic feature in the beneficial outcomes of GBP. PMID:25575265
Eusufzai, S; Axelson, M; Angelin, B; Einarsson, K
1993-01-01
The synthesis of bile acids is regulated by a homeostatic mechanism in which bile acids returning to the liver from the intestine inhibit their own synthesis. Serum concentrations of the bile acid intermediate 7 alpha-hydroxy-4-cholesten-3-one reflect the rate of bile acid synthesis whereas bile acid malabsorption can be determined by the SeHCAT test. This study was done to evaluate the correlation between the two tests in humans. Twenty eight patients with chronic diarrhoea were included in the study. Fasting serum was collected for the determination of 7 alpha-hydroxy-4-cholesten-3-one, and on the same day the gamma emitting bile acid analogue SeHCAT was given orally and its fractional catabolic rate assessed by repeated external counting over the upper abdomen during the next seven days. There was a highly significant positive correlation between the two tests (Rs = 0.80, p < 0.001). The results show a close relation between intestinal loss and hepatic synthesis of bile acids and imply that analysis of 7 alpha-hydroxy-4-cholesten-3-one in serum should now be evaluated as a possible convenient method for assessing bile acid malabsorption in patients with diarrhoea. PMID:8504974
Defining primary bile acid diarrhea: making the diagnosis and recognizing the disorder.
Walters, Julian R F
2010-10-01
Chronic diarrhea due to bile acid malabsorption may be considered as contributing to the diagnosis when it results from secondary causes, such as ileal resection affecting the enterohepatic circulation. However, the primary form (also known as idiopathic bile acid malabsorption) is not well recognized as a common condition and patients are left undiagnosed. Primary bile acid diarrhea can be diagnosed by the nuclear medicine 75Se-homocholyltaurine (SeHCAT) test, although this is unavailable or underutilized in many settings. A systematic review suggests that approximately 30% of patients who would otherwise be diagnosed with diarrhea-predominant irritable bowel syndrome or functional diarrhea have abnormal SeHCAT retention. Serum 7α-hydroxy-4-cholesten-3-one can also be measured to show increased bile acid synthesis. The reasons for the lack of recognition of primary bile acid diarrhea are discussed, and these are compared with the other common cause of malabsorption, celiac disease. The lack of a clear pathophysiological mechanism has been a problem, but recent evidence suggests that impaired feedback control of hepatic bile acid synthesis by the ileal hormone FGF19 results in overproduction of bile acids. The identification of FGF19 as the central mechanism opens up new areas for development in the diagnosis and treatment of primary bile acid diarrhea.
Eusufzai, S; Axelson, M; Angelin, B; Einarsson, K
1993-05-01
The synthesis of bile acids is regulated by a homeostatic mechanism in which bile acids returning to the liver from the intestine inhibit their own synthesis. Serum concentrations of the bile acid intermediate 7 alpha-hydroxy-4-cholesten-3-one reflect the rate of bile acid synthesis whereas bile acid malabsorption can be determined by the SeHCAT test. This study was done to evaluate the correlation between the two tests in humans. Twenty eight patients with chronic diarrhoea were included in the study. Fasting serum was collected for the determination of 7 alpha-hydroxy-4-cholesten-3-one, and on the same day the gamma emitting bile acid analogue SeHCAT was given orally and its fractional catabolic rate assessed by repeated external counting over the upper abdomen during the next seven days. There was a highly significant positive correlation between the two tests (Rs = 0.80, p < 0.001). The results show a close relation between intestinal loss and hepatic synthesis of bile acids and imply that analysis of 7 alpha-hydroxy-4-cholesten-3-one in serum should now be evaluated as a possible convenient method for assessing bile acid malabsorption in patients with diarrhoea.
Bile Acid Signaling Pathways from the Enterohepatic Circulation to the Central Nervous System
Mertens, Kim L.; Kalsbeek, Andries; Soeters, Maarten R.; Eggink, Hannah M.
2017-01-01
Bile acids are best known as detergents involved in the digestion of lipids. In addition, new data in the last decade have shown that bile acids also function as gut hormones capable of influencing metabolic processes via receptors such as FXR (farnesoid X receptor) and TGR5 (Takeda G protein-coupled receptor 5). These effects of bile acids are not restricted to the gastrointestinal tract, but can affect different tissues throughout the organism. It is still unclear whether these effects also involve signaling of bile acids to the central nervous system (CNS). Bile acid signaling to the CNS encompasses both direct and indirect pathways. Bile acids can act directly in the brain via central FXR and TGR5 signaling. In addition, there are two indirect pathways that involve intermediate agents released upon interaction with bile acids receptors in the gut. Activation of intestinal FXR and TGR5 receptors can result in the release of fibroblast growth factor 19 (FGF19) and glucagon-like peptide 1 (GLP-1), both capable of signaling to the CNS. We conclude that when plasma bile acids levels are high all three pathways may contribute in signal transmission to the CNS. However, under normal physiological circumstances, the indirect pathway involving GLP-1 may evoke the most substantial effect in the brain. PMID:29163019
Benbettaïeb, Nasreddine; Tanner, Cadhla; Cayot, Philippe; Karbowiak, Thomas; Debeaufort, Frédéric
2018-03-01
This work deals with the study of the release kinetics of some natural antioxidants (ferulic acid, caffeic acid and tyrosol) from chitosan-fish gelatin edible films immersed ethanol at 96%, as well as the kinetics of their antioxidant activity using the DPPH assay. The aim was to determine how film functional properties influence the release kinetic and antioxidant activity. The addition of antioxidants to chitosan-fish gelatin matrix decreased the water vapour permeability by more than 30%. The tensile strength (TS) increased up to 50% after the incorporation of antioxidants. Some molecular interactions between polymer chains and antioxidants were confirmed by FTIR where spectra displayed a shift of the amide-III peak. Films containing caffeic acid or a caffeic-ferulic acid mixture exhibited the highest radical scavenging activity, leading to a 90% antioxidant activity at equilibrium but the release rate controlled the efficacy of the system. Copyright © 2017 Elsevier Ltd. All rights reserved.
Geenes, Victoria; Lövgren-Sandblom, Anita; Benthin, Lisbet; Lawrance, Dominic; Chambers, Jenny; Gurung, Vinita; Thornton, Jim; Chappell, Lucy; Khan, Erum; Dixon, Peter; Marschall, Hanns-Ulrich; Williamson, Catherine
2014-01-01
Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy-specific liver disorder associated with an increased risk of adverse fetal outcomes. It is characterised by raised maternal serum bile acids, which are believed to cause the adverse outcomes. ICP is commonly treated with ursodeoxycholic acid (UDCA). This study aimed to determine the fetal and maternal bile acid profiles in normal and ICP pregnancies, and to examine the effect of UDCA treatment. Matched maternal and umbilical cord serum samples were collected from untreated ICP (n = 18), UDCA-treated ICP (n = 46) and uncomplicated pregnancy (n = 15) cases at the time of delivery. Nineteen individual bile acids were measured using HPLC-MS/MS. Maternal and fetal serum bile acids are significantly raised in ICP compared with normal pregnancy (p = <0.0001 and <0.05, respectively), predominantly due to increased levels of conjugated cholic and chenodeoxycholic acid. There are no differences between the umbilical cord artery and cord vein levels of the major bile acid species. The feto-maternal gradient of bile acids is reversed in ICP. Treatment with UDCA significantly reduces serum bile acids in the maternal compartment (p = <0.0001), thereby reducing the feto-maternal transplacental gradient. UDCA-treatment does not cause a clinically important increase in lithocholic acid (LCA) concentrations. ICP is associated with significant quantitative and qualitative changes in the maternal and fetal bile acid pools. Treatment with UDCA reduces the level of bile acids in both compartments and reverses the qualitative changes. We have not found evidence to support the suggestion that UDCA treatment increases fetal LCA concentrations to deleterious levels. PMID:24421907
Geenes, Victoria; Lövgren-Sandblom, Anita; Benthin, Lisbet; Lawrance, Dominic; Chambers, Jenny; Gurung, Vinita; Thornton, Jim; Chappell, Lucy; Khan, Erum; Dixon, Peter; Marschall, Hanns-Ulrich; Williamson, Catherine
2014-01-01
Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy-specific liver disorder associated with an increased risk of adverse fetal outcomes. It is characterised by raised maternal serum bile acids, which are believed to cause the adverse outcomes. ICP is commonly treated with ursodeoxycholic acid (UDCA). This study aimed to determine the fetal and maternal bile acid profiles in normal and ICP pregnancies, and to examine the effect of UDCA treatment. Matched maternal and umbilical cord serum samples were collected from untreated ICP (n = 18), UDCA-treated ICP (n = 46) and uncomplicated pregnancy (n = 15) cases at the time of delivery. Nineteen individual bile acids were measured using HPLC-MS/MS. Maternal and fetal serum bile acids are significantly raised in ICP compared with normal pregnancy (p = <0.0001 and <0.05, respectively), predominantly due to increased levels of conjugated cholic and chenodeoxycholic acid. There are no differences between the umbilical cord artery and cord vein levels of the major bile acid species. The feto-maternal gradient of bile acids is reversed in ICP. Treatment with UDCA significantly reduces serum bile acids in the maternal compartment (p = <0.0001), thereby reducing the feto-maternal transplacental gradient. UDCA-treatment does not cause a clinically important increase in lithocholic acid (LCA) concentrations. ICP is associated with significant quantitative and qualitative changes in the maternal and fetal bile acid pools. Treatment with UDCA reduces the level of bile acids in both compartments and reverses the qualitative changes. We have not found evidence to support the suggestion that UDCA treatment increases fetal LCA concentrations to deleterious levels.
1998-08-01
vitamins (C and E) and natural compounds (caffeic acid phenethyl ester [CAPE] and epigallocatechin gallate [ EGCG ] may be protective against mammary...caffeic acid phenethyl ester (CAPE), and epigallocatechin gallate ( EGCG ) in inhibiting DNA damage. These antioxidants are found in natural products such...as fruits and vegetables (vitamins C and E), the popular medicine honeybee propolis (CAPE), or green tea ( EGCG ). Studies carried out to date suggest
Risstad, Hilde; Kristinsson, Jon A; Fagerland, Morten W; le Roux, Carel W; Birkeland, Kåre I; Gulseth, Hanne L; Thorsby, Per M; Vincent, Royce P; Engström, My; Olbers, Torsten; Mala, Tom
2017-09-01
Bile acids have been proposed as key mediators of the metabolic effects after bariatric surgery. Currently no reports on bile acid profiles after duodenal switch exist, and long-term data after gastric bypass are lacking. To investigate bile acid profiles up to 5 years after Roux-en-Y gastric bypass and biliopancreatic diversion with duodenal switch and to explore the relationship among bile acids and weight loss, lipid profile, and glucose metabolism. Two Scandinavian University Hospitals. We present data from a randomized clinical trial of 60 patients with body mass index 50-60 kg/m 2 operated with gastric bypass or duodenal switch. Repeated measurements of total and individual bile acids from fasting serum during 5 years after surgery were performed. Mean concentrations of total bile acids increased from 2.3 µmol/L (95% confidence interval [CI], -.1 to 4.7) at baseline to 5.9 µmol/L (3.5-8.3) 5 years after gastric bypass and from 1.0 µmol/L (95% CI, -1.4 to 3.5) to 9.5 µmol/L (95% CI, 7.1-11.9) after duodenal switch; mean between-group difference was -4.8 µmol/L (95% CI, -9.3 to -.3), P = .036. Mean concentrations of primary bile acids increased more after duodenal switch, whereas secondary bile acids increased proportionally across the groups. Higher levels of total bile acids at 5 years were associated with lower body mass index, greater weight loss, and lower total cholesterol. Total bile acid concentrations increased substantially over 5 years after both gastric bypass and duodenal switch, with greater increases in total and primary bile acids after duodenal switch. (Surg Obes Relat Dis 2017;0:000-000.) © 2017 American Society for Metabolic and Bariatric Surgery. All rights reserved. Copyright © 2017 American Society for Bariatric Surgery. Published by Elsevier Inc. All rights reserved.
García-Padial, Marcos; Martínez-Ohárriz, María Cristina; Navarro-Blasco, Iñigo; Zornoza, Arantza
2013-12-18
Tyrosol and caffeic acid are biophenols that contribute to the beneficial properties of virgin olive oil. The influence of hydroxypropyl-β-cyclodextrin (HPβ-CD) on their respective antioxidant capacities was analyzed. The ORAC antioxidant activity of tyrosol (expressed as μM Trolox equivalents/μM Tyrosol) was 0.83 ± 0.03 and it increased up to 1.20 ± 0.11 in the presence of 0.8 mM HPβ-CD. However, the ORAC antioxidant activity of caffeic acid experienced no change. The different effect of HPβ-CD on each compound was discussed. In addition, the effect of increasing concentrations of different cyclodextrins in the development of ORAC-fluorescence (ORAC-FL) assays was studied. The ORAC signal was higher for HPβ-CD, followed by Mβ-CD, β-CD, γ-CD and finally α-CD. These results could be explained by the formation of inclusion complexes with fluorescein.
Zhang, Jie; Fan, Yeqin; Gong, Yajun; Chen, Xiaoyong; Wan, Luosheng; Zhou, Chenggao; Zhou, Jiewen; Ma, Shuangcheng; Wei, Feng; Chen, Jiachun; Nie, Jing
2017-11-15
Snake bile is one of the most expensive traditional Chinese medicines (TCMs). However, due to the complicated constitutes of snake bile and the poor ultraviolet absorbance of some trace bile acids (BAs), effective analysis methods for snake bile acids were still unavailable, making it difficult to solve adulteration problems. In present study, ultrahigh-performance liquid chromatography with triple quadrupole linear ion trap mass spectrometry (UHPLC-QqQ-MS/MS) was applied to conduct a quantitative analysis on snake BAs. The mass spectrometer was monitored in the negative ion mode, and multiple-reaction monitoring (MRM) program was used to determine the contents of BAs in snake bile. In all, 61 snake bile from 17 commonly used species of three families (Elapidae, Colubridae and Viperidae), along with five batches of commercial snake bile from four companies, were collected and detected. Nine components, Tauro-3α,12α-dihydroxy-7-oxo-5β-cholenoic acid (T1), Tauro-3α,7α,12α,23R-tetrahydroxy-5β-cholenoic acid (T2), taurocholic acid (TCA), glycocholic acid (GCA), taurochenodeoxycholic acid (TCDCA), taurodeoxycholic acid (TDCA), cholic acid (CA), Tauro-3α,7α-dihydroxy-12-oxo-5β-cholenoic acid (T3), and Tauro-3α,7α,9α,16α-tetrahydroxy-5β-cholenoic acid (T4) were simultaneously and rapidly determined for the first time. In these BAs, T1 and T2, self-prepared with purity above 90%, were first reported with their quantitative determination, and the latter two (T3 and T4) were tentatively determined by quantitative analysis multi-components by single marker (QAMS) method for roughly estimating the components without reference. The developed method was validated with acceptable linearity (r 2 ≥0.995), precision (RSD<6.5%) and recovery (RSD<7.5%). It turned out that the contents of BAs among different species were also significantly different; T1 was one of the principle bile acids in some common snake bile, and also was the characteristic one in Viperidae and Elapidae; T2 was the dominant components in Enhydris chinensis. This quantitative study of BAs in snake bile is a remarkable improvement for clarifying the bile acid compositions and evaluating the quality of snake bile. Copyright © 2017 Elsevier B.V. All rights reserved.
Lee, A; Eschenbruch, R; Waller, J
1985-09-01
The effect of phenolic compounds, ethyl alcohol, and sodium metabisulphite on the lytic activity of virulent bacteriophage PL-1 on a Lactobacillus casei S strain isolated from a lactic acid beverage fermentation was investigated. Catechin, caffeic, and gallic acids, commercially produced red, white, and champagne tannins, ethyl alcohol, and sodium metabisulphite inhibited plaque formation. Catechin, caffeic, and gallic acids were the most effective inhibitors of plaque formation. Commercially supplied oenocyanin was not effective.
Lv, Long-Xian; Yan, Ren; Shi, Hai-Yan; Shi, Ding; Fang, Dai-Qiong; Jiang, Hui-Yong; Wu, Wen-Rui; Guo, Fei-Fei; Jiang, Xia-Wei; Gu, Si-Lan; Chen, Yun-Bo; Yao, Jian; Li, Lan-Juan
2017-01-06
Lactobacillus salivarius LI01, isolated from healthy humans, has demonstrated probiotic properties in the prevention and treatment of liver failure. Tolerance to bile stress is crucial to allow lactobacilli to survive in the gastrointestinal tract and exert their benefits. In this work, we used a Digital Gene Expression transcriptomic and iTRAQ LC-MS/MS proteomic approach to examine the characteristics of LI01 in response to bile stress. Using culture medium with or without 0.15% ox bile, 591 differentially transcribed genes and 347 differentially expressed proteins were detected in LI01. Overall, we found the bile resistance of LI01 to be based on a highly remodeled cell envelope and a reinforced bile efflux system rather than on the activity of bile salt hydrolases. Additionally, some differentially expressed genes related to regulatory systems, the general stress response and central metabolism processes, also play roles in stress sensing, bile-induced damage prevention and energy efficiency. Moreover, bile salts appear to enhance proteolysis and amino acid uptake (especially aromatic amino acids) by LI01, which may support the liver protection properties of this strain. Altogether, this study establishes a model of global response mechanism to bile stress in L. salivarius LI01. L. salivarius strain LI01 exhibits not only antibacterial and antifungal properties but also exerts a good health-promoting effect in acute liver failure. As a potential probiotic strain, the bile-tolerance trait of strain LI01 is important, though this has not yet been explored. In this study, an analysis based on DGE and iTRAQ was performed to investigate the gene expression in strain LI01 under bile stress at the mRNA and protein levels, respectively. To our knowledge, this work also represents the first combined transcriptomic and proteomic analysis of the bile stress response mechanism in L. salivarius. Copyright © 2016. Published by Elsevier B.V.
Zhang, Li-fang; Liu, Ling-sheng; Chu, Xiao-man; Xie, Hao; Cao, Li-juan; Guo, Cen; A, Ji-ye; Cao, Bei; Li, Meng-jie; Wang, Guang-ji; Hao, Hai-ping
2014-01-01
Aim: To investigate the potential interactive effects of a high-fat diet (HFD) and valproic acid (VPA) on hepatic steatosis and hepatotoxicity in rats. Methods: Male SD rats were orally administered VPA (100 or 500 mg·kg−1·d−1) combined with HFD or a standard diet for 8 weeks. Blood and liver samples were analyzed to determine lipid levels and hepatic function biomarkers using commercial kit assays. Low-molecular-weight compounds in serum, urine and bile samples were analyzed using a metabonomic approach based on GC/TOF-MS. Results: HFD alone induced extensive hepatocyte steatosis and edema in rats, while VPA alone did not cause significant liver lesions. VPA significantly aggravated HFD-induced accumulation of liver lipids, and caused additional spotty or piecemeal necrosis, accompanied by moderate infiltration of inflammatory cells in the liver. Metabonomic analysis of serum, urine and bile samples revealed that HFD significantly increased the levels of amino acids, free fatty acids (FFAs) and 3-hydroxy-butanoic acid, whereas VPA markedly decreased the levels of amino acids, FFAs and the intermediate products of the tricarboxylic acid cycle (TCA) compared with the control group. HFD aggravated VPA-induced inhibition on lipid and amino acid metabolism. Conclusion: HFD magnifies VPA-induced impairment of mitochondrial β-oxidation of FFAs and TCA, thereby increases hepatic steatosis and hepatotoxicity. The results suggest the patients receiving VPA treatment should be advised to avoid eating HFD. PMID:24442146
Rees, David O; Crick, Peter J; Jenkins, Gareth J; Wang, Yuqin; Griffiths, William J; Brown, Tim H; Al-Sarireh, Bilal
2017-11-01
Bile acids have been implicated in the development of gastrointestinal malignancies. Both the specific nature of individual bile acids and their concentration appear key factors in the carcinogenic potency of bile. Using liquid chromatography mass spectrometry (LC-MS) we performed quantitative profiling of bile extracted directly from the common bile duct in 30 patients (15 patients with pancreatic cancer and 15 patients with benign disease). Separation and detection of bile acids was performed using a 1.7μm particle size reversed-phase C 18 LC column at a flow rate of 200μL/min with negative electrospray ionization MS. A significant difference (p=0.018) was seen in the concentration of unconjugated cholic acid in the malignant group (0.643mmol/L) compared to the benign group (0.022mmol/L), with an overall significant difference (p=0.04) seen in the level of total unconjugated bile acids in the malignant group (1.816mmol/L) compared to the benign group (0.069mmol/L). This finding may offer the possibility of both understanding the biology of cancer development in the pancreas, as well as offering a potential diagnostic avenue to explore. However, a larger study is necessary to confirm the alterations in bile acid profiles reported here and explore factors such as diet and microbial populations on the bile acid profiles of these patient groups. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Si, Gu Leng Ri; Yao, Peng; Shi, Luwen
2015-08-01
A valid and efficient reversed-phase ultra-fast liquid chromatography method was developed for the simultaneous determination of 13 bile acids in the bile of three mammal species, including rat, pig and human gallstone patients. Chromatographic separation was performed with a Shim-pack XR-ODS column, and the mobile phase consisted of acetonitrile and potassium phosphate buffer (pH 2.6) at a flow rate of 0.5 mL min(-1). The linear detection range of most bile acids ranged from 2 to 600 ng µL(-1) with a good correlation coefficient (>0.9995). The precision of each bile acid was <1.8% for intraday and <4.8% for interday. All bile acids were separated in 15 min with satisfactory resolution, and the total analysis time was 18 min, including equilibration. The method was successfully applied in rapid screening of bile samples from the three mammals. Significant metabolic frameworks of bile acids among various species were observed, whereas considerable quantitative variations in both inter- and intraspecies were also observed, especially for gallstone patients. Our results suggest that detecting the change of bile acid profiles could be applied for the diagnosis of gallstone disease. © Crown copyright 2014.
Bile acids: analysis in biological fluids and tissues
Griffiths, William J.; Sjövall, Jan
2010-01-01
The formation of bile acids/bile alcohols is of major importance for the maintenance of cholesterol homeostasis. Besides their functions in lipid absorption, bile acids/bile alcohols are regulatory molecules for a number of metabolic processes. Their effects are structure-dependent, and numerous metabolic conversions result in a complex mixture of biologically active and inactive forms. Advanced methods are required to characterize and quantify individual bile acids in these mixtures. A combination of such analyses with analyses of the proteome will be required for a better understanding of mechanisms of action and nature of endogenous ligands. Mass spectrometry is the basic detection technique for effluents from chromatographic columns. Capillary liquid chromatography-mass spectrometry with electrospray ionization provides the highest sensitivity in metabolome analysis. Classical gas chromatography-mass spectrometry is less sensitive but offers extensive structure-dependent fragmentation increasing the specificity in analyses of isobaric isomers of unconjugated bile acids. Depending on the nature of the bile acid/bile alcohol mixture and the range of concentration of individuals, different sample preparation sequences, from simple extractions to group separations and derivatizations, are applicable. We review the methods currently available for the analysis of bile acids in biological fluids and tissues, with emphasis on the combination of liquid and gas phase chromatography with mass spectrometry. PMID:20008121
Gu, Shenghua; Cao, Bei; Sun, Runbin; Tang, Yueqing; Paletta, Janice L.; Wu, Xiao-Lei; Liu, Linsheng; Zha, Weibin; Zhao, Chunyan; Li, Yan; Radlon, Jason M.; Hylemon, Phillip B.; Zhou, Huiping; Aa, Jiye; Wang, Guangji
2014-01-01
Clinic and animal studies demonstrated that oral-administrated berberine had distinct lipid-lowering effect. However, pharmacokinetic studies showed berberine was poorly absorbed into the body so that the levels of berberine in the blood and target tissues were far below the effective concentrations revealed. To probe the underlying mechanism, the effect of berberine on biological system was studied on a high-fat-diet-induced hamster hyperlipidemia model. Our results showed that intragastric-administered berberine was poorly absorbed into circulation and most berberine accumulated in gut content. Although the bioavailability for intragastric-administered berberine was much lower than that of intraperitoneal-administered berberine, it had stronger lipid-lowing effect, indicating gastrointestinal is a potential target for hypolipidemic effect of berberine. Metabolomic study on both serum and gut content showed that oral-administrated berberine significantly regulated molecules involved in lipid metabolism, and increased the generation of bile acids in the hyperlipidemic model. DNA analysis revealed that the oral-administered berberine modulated the gut microbiota, and BBR showed a significant inhibition on the 7α-dehydroxylation conversion of cholic acid to deoxycholic acid, indicating a decreased elimination of bile acids in the gut. However, in model hamsters, elevated bile acids failed to down-regulate the expression and function of CYP7A1 in a negative feed-back way. It was suggested that the hypocholesterolemic effect for oral-administrated berberine is involved in its effect on modulating the turnover of bile acids and farnesoid X receptor signal pathway. PMID:25411028
Budesonide treatment is associated with increased bile acid absorption in collagenous colitis.
Bajor, A; Kilander, A; Gälman, C; Rudling, M; Ung, K-A
2006-12-01
Bile acid malabsorption is frequent in collagenous colitis and harmful bile acids may play a pathophysiological role. Glucocorticoids increase ileal bile acid transport. Budesonide have its main effect in the terminal ileum. To evaluate whether the symptomatic effect of budesonide is linked to increased uptake of bile acids. Patients with collagenous colitis were treated with budesonide 9 mg daily for 12 weeks. Prior to and after 8 weeks of treatment, the (75)SeHCAT test, an indirect test for the active uptake of bile acid-s, measurements of serum 7alpha-hydroxy-4-cholesten-3-one, an indicator of hepatic bile acid synthesis, and registration of symptoms were performed. The median (75)SeHCAT retention increased from 18% to 35% (P < 0.001, n = 25) approaching the values of healthy controls (38%). The 7alpha-hydroxy-4-cholesten-3-one values decreased significantly among those with initially high synthesis (from 36 to 23 ng/mL, P = 0.04, n = 9); however, for the whole group the values were not altered (19 ng/mL vs. 13 ng/mL, P = 0.23, N.S., n = 19). The normalization of the (75)SeHCAT test and the reduction of bile acid synthesis in patients with initially high synthetic rate, suggests that the effect of budesonide in collagenous colitis may be in part due to decreased bile acid load on the colon.
Damsgaard, B; Dalby, H R; Krogh, K; Jørgensen, S M D; Arveschough, A K; Agnholt, J; Dahlerup, J F; Jørgensen, S P
2018-04-01
Excessive amounts of bile acids entering the colon due to bile acid malabsorption cause chronic bile acid diarrhoea. Diagnosis is possible by measuring the retention fraction of orally ingested 75 Selenium homotaurocholic acid (SeHCAT). The knowledge of long-term effects of medical treatment is sparse. To describe diarrhoea, adherence to treatment, treatment effects and quality of life in a large, well-defined cohort of patients with bile acid diarrhoea. A retrospective survey was performed among 594 patients with bile acid malabsorption verified by SeHCAT scans at our unit between 2003 and 2016. Questionnaires about medical history, diarrhoea, use of medication, and quality of life scores were mailed to all patients. Among 594 patients 377 (69%) responded. Among respondents, 121 (32%) had bile acid diarrhoea due to ileal disease or resection (type 1), 198 (52%) idiopathic bile acid diarrhoea (type 2) and 58 (16%) bile acid diarrhoea due to other non-ileal disease, mainly cholecystectomy (type 3). At follow-up, half of the patients, 184 (50%), reported improvement of diarrhoea. However, 273 patients (74%) still reported diarrhoea and 234 (62%) regularly used anti-diarrhoeal medication. In spite of treatment, 235 (64%) considered reduced quality of life by diarrhoea and 184 (50%) reported that diarrhoea was unaltered or worse than before established diagnosis. Many patients with bile acid diarrhoea continue to have bothersome diarrhoea in spite of correct diagnosis and treatment. © 2018 John Wiley & Sons Ltd.
USDA-ARS?s Scientific Manuscript database
Bile acids (BAs) have an important role in the control of fat, glucose and cholesterol metabolism. Synthesis of bile acids is the major pathway for the metabolism of cholesterol and for the excretion of excess cholesterol in mammals. Bile acid intermediates and/or their metabolites are excreted in...
Microbiota-induced obesity requires farnesoid X receptor.
Parséus, Ava; Sommer, Nina; Sommer, Felix; Caesar, Robert; Molinaro, Antonio; Ståhlman, Marcus; Greiner, Thomas U; Perkins, Rosie; Bäckhed, Fredrik
2017-03-01
The gut microbiota has been implicated as an environmental factor that modulates obesity, and recent evidence suggests that microbiota-mediated changes in bile acid profiles and signalling through the bile acid nuclear receptor farnesoid X receptor (FXR) contribute to impaired host metabolism. Here we investigated if the gut microbiota modulates obesity and associated phenotypes through FXR. We fed germ-free (GF) and conventionally raised (CONV-R) wild-type and Fxr-/- mice a high-fat diet (HFD) for 10 weeks. We monitored weight gain and glucose metabolism and analysed the gut microbiota and bile acid composition, beta-cell mass, accumulation of macrophages in adipose tissue, liver steatosis, and expression of target genes in adipose tissue and liver. We also transferred the microbiota of wild-type and Fxr -deficient mice to GF wild-type mice. The gut microbiota promoted weight gain and hepatic steatosis in an FXR-dependent manner, and the bile acid profiles and composition of faecal microbiota differed between Fxr-/- and wild-type mice. The obese phenotype in colonised wild-type mice was associated with increased beta-cell mass, increased adipose inflammation, increased steatosis and expression of genes involved in lipid uptake. By transferring the caecal microbiota from HFD-fed Fxr-/- and wild-type mice into GF mice, we showed that the obesity phenotype was transferable. Our results indicate that the gut microbiota promotes diet-induced obesity and associated phenotypes through FXR, and that FXR may contribute to increased adiposity by altering the microbiota composition. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Poša, Mihalj; Tepavčević, Vesna
2011-09-01
The formation of mixed micelles built of 7,12-dioxolithocholic and the following hydrophobic bile acids was examined by conductometric method: cholic (C), deoxycholic (D), chenodeoxycholic (CD), 12-oxolithocholic (12-oxoL), 7-oxolithocholic (7-oxoL), ursodeoxycholic (UD) and hiodeoxycholic (HD). Interaction parameter (β) in the studied binary mixed micelles had negative value, suggesting synergism between micelle building units. Based on β value, the hydrophobic bile acids formed two groups: group I (C, D and CD) and group II (12-oxoL, 7-oxoL, UD and HD). Bile acids from group II had more negative β values than bile acids from group I. Also, bile acids from group II formed intermolecular hydrogen bonds in aggregates with both smaller (2) and higher (4) aggregation numbers, according to the analysis of their stereochemical (conformational) structures and possible structures of mixed micelles built of these bile acids and 7,12-dioxolithocholic acid. Haemolytic potential and partition coefficient of nitrazepam were higher in mixed micelles built of the more hydrophobic bile acids (C, D, CD) and 7,12-dioxolithocholic acid than in micelles built only of 7,12-dioxolithocholic acid. On the other hand, these mixed micelles still had lower values of haemolytic potential than micelles built of C, D or CD. The mixed micelles that included bile acids: 12-oxoL, 7-oxoL, UD or HD did not significantly differ from the micelles of 7,12-dioxolithocholic acid, observing the values of their haemolytic potential. Copyright © 2011 Elsevier B.V. All rights reserved.
Attakpa, Eugène S; Djibril, Naguibou M; Baba-Moussa, Farid; Yessoufou, Ganiou; Sezan, Alphonse
2013-01-01
Bile acids are synthesized in the liver from cholesterol. This study investigated the impact and expression of different carriers of bile acid in the liver and kidneys. Eight-week-old male mice were used, which were fed for 15 days and divided into two groups: 15 mice fed with standard diet (control group) and another 15 mice fed with a rich diet of 5% cholesterol (second group). Bile acid dosage was based on their oxidation by 7α hydroxyl-steroid dehydrogenize. The mRNA expression was quantitatively analyzed by the real time of polymerase chain reaction (RT-PCR), and the expression of the renal carrier bile acid protein was analyzed by Western blot. The expression of bile salt export pump involved in the uptake of bile acids in the basolateral membrane of hepatocytes revealed no differences between the two groups of mice. However, the expression of multidrug resistance-associated protein 2 was reduced in mice of the second group. Moreover, the expressions of organic anion transporting polypeptide 4, organic anion transporting polypeptide 1, and sodium taurocholate co-transporting polypeptide (Ntcp) involved in the uptake of bile acids in the apical pole of hepatocytes are suppressed in mice of the second group. The expression of multidrug resistance-associated protein 3 involved in the secretion of bile acids in the apical membrane of hepatocytes revealed no significant differences between the two groups. In mice of the second group, blood concentration of bile acids on the last day was increased. In those mice, the expression of intestinal bile acid transporter was reduced in the kidneys compared with the control mice.
Liaset, Bjørn; Hao, Qin; Jørgensen, Henry; Hallenborg, Philip; Du, Zhen-Yu; Ma, Tao; Marschall, Hanns-Ulrich; Kruhøffer, Mogens; Li, Ruiqiang; Li, Qibin; Yde, Christian Clement; Criales, Gabriel; Bertram, Hanne C.; Mellgren, Gunnar; Øfjord, Erik Snorre; Lock, Erik-Jan; Espe, Marit; Frøyland, Livar; Madsen, Lise; Kristiansen, Karsten
2011-01-01
Bile acids (BAs) are powerful regulators of metabolism, and mice treated orally with cholic acid are protected from diet-induced obesity, hepatic lipid accumulation, and increased plasma triacylglycerol (TAG) and glucose levels. Here, we show that plasma BA concentration in rats was elevated by exchanging the dietary protein source from casein to salmon protein hydrolysate (SPH). Importantly, the SPH-treated rats were resistant to diet-induced obesity. SPH-treated rats had reduced fed state plasma glucose and TAG levels and lower TAG in liver. The elevated plasma BA concentration was associated with induction of genes involved in energy metabolism and uncoupling, Dio2, Pgc-1α, and Ucp1, in interscapular brown adipose tissue. Interestingly, the same transcriptional pattern was found in white adipose tissue depots of both abdominal and subcutaneous origin. Accordingly, rats fed SPH-based diet exhibited increased whole body energy expenditure and heat dissipation. In skeletal muscle, expressions of the peroxisome proliferator-activated receptor β/δ target genes (Cpt-1b, Angptl4, Adrp, and Ucp3) were induced. Pharmacological removal of BAs by inclusion of 0.5 weight % cholestyramine to the high fat SPH diet attenuated the reduction in abdominal obesity, the reduction in liver TAG, and the decrease in nonfasted plasma TAG and glucose levels. Induction of Ucp3 gene expression in muscle by SPH treatment was completely abolished by cholestyramine inclusion. Taken together, our data provide evidence that bile acid metabolism can be modulated by diet and that such modulation may prevent/ameliorate the characteristic features of the metabolic syndrome. PMID:21680746
UV-induced solvent free synthesis of truxillic acid-bile acid conjugates
NASA Astrophysics Data System (ADS)
Koivukorpi, Juha; Kolehmainen, Erkki
2009-07-01
The solvent free UV-induced [2 + 2] intermolecular cycloaddition of two molecules of 3α-cinnamic acid ester of methyl lithocholate produced in 99% yield of α- and ɛ-truxillic acid-bis(methyl lithocholate) isomers, which possess two structurally different potential binding sites. A prerequisite for this effective solid state reaction is a proper self-assembled crystal structure of the starting conjugate crystallized from acetonitrile. The crystallization of cinnamic acid ester of methyl lithocholate from acetonitrile produces two different crystalline forms (polymorphs), which is the reason for the solid state formation of two isomers of truxillic acid-bis(methyl lithocholate).
Sarafian, Magali H; Lewis, Matthew R; Pechlivanis, Alexandros; Ralphs, Simon; McPhail, Mark J W; Patel, Vishal C; Dumas, Marc-Emmanuel; Holmes, Elaine; Nicholson, Jeremy K
2015-10-06
Bile acids are important end products of cholesterol metabolism. While they have been identified as key factors in lipid emulsification and absorption due to their detergent properties, bile acids have also been shown to act as signaling molecules and intermediates between the host and the gut microbiota. To further the investigation of bile acid functions in humans, an advanced platform for high throughput analysis is essential. Herein, we describe the development and application of a 15 min UPLC procedure for the separation of bile acid species from human biofluid samples requiring minimal sample preparation. High resolution time-of-flight mass spectrometry was applied for profiling applications, elucidating rich bile acid profiles in both normal and disease state plasma. In parallel, a second mode of detection was developed utilizing tandem mass spectrometry for sensitive and quantitative targeted analysis of 145 bile acid (BA) species including primary, secondary, and tertiary bile acids. The latter system was validated by testing the linearity (lower limit of quantification, LLOQ, 0.25-10 nM and upper limit of quantification, ULOQ, 2.5-5 μM), precision (≈6.5%), and accuracy (81.2-118.9%) on inter- and intraday analysis achieving good recovery of bile acids (serum/plasma 88% and urine 93%). The ultra performance liquid chromatography-mass spectrometry (UPLC-MS)/MS targeted method was successfully applied to plasma, serum, and urine samples in order to compare the bile acid pool compositional difference between preprandial and postprandial states, demonstrating the utility of such analysis on human biofluids.
Ion-neutral Clustering of Bile Acids in Electrospray Ionization Across UPLC Flow Regimes
NASA Astrophysics Data System (ADS)
Brophy, Patrick; Broeckling, Corey D.; Murphy, James; Prenni, Jessica E.
2018-02-01
Bile acid authentic standards were used as model compounds to quantitatively evaluate complex in-source phenomenon on a UPLC-ESI-TOF-MS operated in the negative mode. Three different diameter columns and a ceramic-based microfluidic separation device were utilized, allowing for detailed descriptions of bile acid behavior across a wide range of flow regimes and instantaneous concentrations. A custom processing algorithm based on correlation analysis was developed to group together all ion signals arising from a single compound; these grouped signals produce verified compound spectra for each bile acid at each on-column mass loading. Significant adduction was observed for all bile acids investigated under all flow regimes and across a wide range of bile acid concentrations. The distribution of bile acid containing clusters was found to depend on the specific bile acid species, solvent flow rate, and bile acid concentration. Relative abundancies of each cluster changed non-linearly with concentration. It was found that summing all MS level (low collisional energy) ions and ion-neutral adducts arising from a single compound improves linearity across the concentration range (0.125-5 ng on column) and increases the sensitivity of MS level quantification. The behavior of each cluster roughly follows simple equilibrium processes consistent with our understanding of electrospray ionization mechanisms and ion transport processes occurring in atmospheric pressure interfaces. [Figure not available: see fulltext.
Bile acid disease: the emerging epidemic.
Oduyebo, Ibironke; Camilleri, Michael
2017-05-01
Our objective was to review advances in bile acids in health and disease published in the last 2 years. Bile acid diarrhea (BAD) is recognized as a common cause of chronic diarrhea, and its recognition has been facilitated by development of new screening tests. Primary BAD can account for 30% of cases of chronic diarrhea. The mechanisms leading to BAD include inadequate feedback regulation by fibroblast growth factor 19 (FGF-19) from ileal enterocytes, abnormalities in synthesis or degradation of proteins involved in FGF-19 regulation in hepatocytes and variations as a function of the bile acid receptor, TGR5 (GPBAR1). SeHCAT is the most widely used test for diagnosis of BAD. There has been significant validation of fasting serum FGF-19 and 7 α-hydroxy-cholesten-3-one (C4), a surrogate measure of bile acid synthesis. Bile acid sequestrants are the primary treatments for BAD; the farnesoid X-receptor-FGF-19 pathway provides alternative therapeutic targets for BAD. Bile acid-stimulated intestinal mechanisms contribute to the beneficial effects of bariatric surgery on obesity, glycemic control and the treatment of recurrent Clostridium difficile infection. Renewed interest in the role of bile acids is leading to novel management of diverse diseases besides BAD.
Lima, Valéria N; Oliveira-Tintino, Cícera D M; Santos, Enaide S; Morais, Luís P; Tintino, Saulo R; Freitas, Thiago S; Geraldo, Yuri S; Pereira, Raimundo L S; Cruz, Rafael P; Menezes, Irwin R A; Coutinho, Henrique D M
2016-10-01
The indiscriminate use of antimicrobial drugs has increased the spectrum of exposure of these organisms. In our studies, these phenolic compounds were evaluated: gallic acid, caffeic acid and pyrogallol. The antibacterial, antifungal and modulatory of antibiotic activities of these compounds were assayed using microdilution method of Minimum Inhibitory Concentration (MIC) to bacteria and Minimum Fungicide Concentration (MFC) to fungi. The modulation was made by comparisons of the MIC and MFC of the compounds alone and combined with drugs against bacteria and fungi respectively, using a sub-inhibitory concentration of 128 μg/mL of substances (MIC/8). All substances not demonstrated clinically relevant antibacterial activity with a MIC above ≥1024 μg/mL. As a result, we observed that the caffeic acid presented a potentiating antibacterial effect over the 3 groups of bacteria studied. Pyrogallol showed a synergistic effect with two of the antibiotics tested, but only against Staphylococcus aureus. In general, caffeic acid was the substance that presented with the greatest number of antibiotics and with the greatest number of bacteria. In relation to the antifungal activity of all the compounds, the verified results were ≥1024 μg/mL, not demonstrating significant activity. Regarding potentiation of the effect of fluconazole, was observed synergistic effect only when assayed against Candida tropicalis, with all substances. Therefore, as can be seen, the compounds presented as substances that can be promising potentiating agents of antimicrobial drugs, even though they do not have direct antibacterial and antifungal action. Copyright © 2016 Elsevier Ltd. All rights reserved.
Strong activation of bile acid-sensitive ion channel (BASIC) by ursodeoxycholic acid
Wiemuth, Dominik; Sahin, Hacer; Lefèvre, Cathérine M.T.; Wasmuth, Hermann E.; Gründer, Stefan
2013-01-01
Bile acid-sensitive ion channel (BASIC) is a member of the DEG/ENaC gene family of unknown function. Rat BASIC (rBASIC) is inactive at rest. We have recently shown that cholangiocytes, the epithelial cells lining the bile ducts, are the main site of BASIC expression in the liver and identified bile acids, in particular hyo- and chenodeoxycholic acid, as agonists of rBASIC. Moreover, it seems that extracellular divalent cations stabilize the resting state of rBASIC, because removal of extracellular divalent cations opens the channel. In this addendum, we demonstrate that removal of extracellular divalent cations potentiates the activation of rBASIC by bile acids, suggesting an allosteric mechanism. Furthermore, we show that rBASIC is strongly activated by the anticholestatic bile acid ursodeoxycholic acid (UDCA), suggesting that BASIC might mediate part of the therapeutic effects of UDCA. PMID:23064163
The bile acid-sensitive ion channel (BASIC) is activated by alterations of its membrane environment.
Schmidt, Axel; Lenzig, Pia; Oslender-Bujotzek, Adrienne; Kusch, Jana; Lucas, Susana Dias; Gründer, Stefan; Wiemuth, Dominik
2014-01-01
The bile acid-sensitive ion channel (BASIC) is a member of the DEG/ENaC family of ion channels. Channels of this family are characterized by a common structure, their physiological functions and modes of activation, however, are diverse. Rat BASIC is expressed in brain, liver and intestinal tract and activated by bile acids. The physiological function of BASIC and its mechanism of bile acid activation remain a puzzle. Here we addressed the question whether amphiphilic bile acids activate BASIC by directly binding to the channel or indirectly by altering the properties of the surrounding membrane. We show that membrane-active substances other than bile acids also affect the activity of BASIC and that activation by bile acids and other membrane-active substances is non-additive, suggesting that BASIC is sensitive for changes in its membrane environment. Furthermore based on results from chimeras between BASIC and ASIC1a, we show that the extracellular and the transmembrane domains are important for membrane sensitivity.
Chazouillères, O; Marteau, P; Haniche, M; Jian, R; Poupon, R
1996-12-01
The effect of cholestasis on ileal bile acid absorption is controversial in animal models (up- or down-regulation) and unknown in humans. We therefore studied values of the selena homotaurocholic acid (SeHCAT) test before and after long-term administration (>3 months, 13-15 mg/kg/day) of ursodeoxycholic acid (UDCA) in 27 patients with chronic cholestatic liver diseases (24 women, 3 men; mean age, 50 years; 24 primary biliary cirrhosis, 2 secondary biliary cirrhosis, 2 others). The control group consisted of 14 healthy volunteers. Seven-day SeHCAT percentage retention was identical in the 12 untreated cholestatic patients (serum bilirubin, 75+/-42 micromol/L, alkaline phosphatase, 4.2+/-1.0 N; mean+/-SEM) and in the control group (43.6+/-2.9 and 43.8+/-4.2%, respectively). In the 22 patients treated by UDCA for 38+/-8 months, SeHCAT percentage retention was 20.3+/-3.0%. In the seven patients with the SeHCAT test done before and after UDCA treatment (16+/-5 months), SeHCAT percentage retention decreased significantly under UDCA therapy (42.0+/-4.4 vs 19.4+/-4.1%; P < 0.02). We conclude that, in patients with chronic cholestasis (1) SeHCAT percentage retention is not altered-taken together with the known defect of biliary excretion, this lack of increase in SeHCAT percentage retention argues against up-regulation of bile acid ileal transport; and (2) UDCA treatment induces a decrease in the SeHCAT percentage retention-this effect may be related primarily to a decreased bile acid ileal absorption.
Structural basis of the alternating-access mechanism in a bile acid transporter
NASA Astrophysics Data System (ADS)
Zhou, Xiaoming; Levin, Elena J.; Pan, Yaping; McCoy, Jason G.; Sharma, Ruchika; Kloss, Brian; Bruni, Renato; Quick, Matthias; Zhou, Ming
2014-01-01
Bile acids are synthesized from cholesterol in hepatocytes and secreted through the biliary tract into the small intestine, where they aid in absorption of lipids and fat-soluble vitamins. Through a process known as enterohepatic recirculation, more than 90% of secreted bile acids are then retrieved from the intestine and returned to the liver for resecretion. In humans, there are two Na+-dependent bile acid transporters involved in enterohepatic recirculation, the Na+-taurocholate co-transporting polypeptide (NTCP; also known as SLC10A1) expressed in hepatocytes, and the apical sodium-dependent bile acid transporter (ASBT; also known as SLC10A2) expressed on enterocytes in the terminal ileum. In recent years, ASBT has attracted much interest as a potential drug target for treatment of hypercholesterolaemia, because inhibition of ASBT reduces reabsorption of bile acids, thus increasing bile acid synthesis and consequently cholesterol consumption. However, a lack of three-dimensional structures of bile acid transporters hampers our ability to understand the molecular mechanisms of substrate selectivity and transport, and to interpret the wealth of existing functional data. The crystal structure of an ASBT homologue from Neisseria meningitidis (ASBTNM) in detergent was reported recently, showing the protein in an inward-open conformation bound to two Na+ and a taurocholic acid. However, the structural changes that bring bile acid and Na+ across the membrane are difficult to infer from a single structure. To understand the structural changes associated with the coupled transport of Na+ and bile acids, here we solved two structures of an ASBT homologue from Yersinia frederiksenii (ASBTYf) in a lipid environment, which reveal that a large rigid-body rotation of a substrate-binding domain gives the conserved `crossover' region, where two discontinuous helices cross each other, alternating accessibility from either side of the cell membrane. This result has implications for the location and orientation of the bile acid during transport, as well as for the translocation pathway for Na+.
Structural basis of the alternating-access mechanism in a bile acid transporter
Zhou, Xiaoming; Levin, Elena J.; Pan, Yaping; McCoy, Jason G.; Sharma, Ruchika; Kloss, Brian; Bruni, Renato; Quick, Matthias; Zhou, Ming
2014-01-01
Bile acids are synthesized from cholesterol in hepatocytes and secreted via the biliary tract into the small intestine, where they aid in absorption of lipids and fat-soluble vitamins. Through a process known as enterohepatic recirculation, more than 90% of secreted bile acids are then retrieved from the intestine and returned to the liver for re-secretion1. In humans, there are two Na+-dependent bile acid transporters involved in enterohepatic recirculation, the Na+-taurocholate co-transporting polypeptide (NTCP or SLC10A1) expressed in hepatocytes, and the apical sodium-dependent bile acid transporter (ASBT or SLC10A2) expressed on enterocytes in the terminal ileum2. In recent years, ASBT has attracted much interest as a potential drug target for treatment of hypercholesterolemia, because inhibition of ASBT reduces reabsorption of bile acids, thus increasing bile acid synthesis and consequently cholesterol consumption3,4. However, a lack of 3-dimensional structures of bile acid transporters hampers our ability to understand the molecular mechanisms of substrate selectivity and transport, and to interpret the wealth of existing functional data2,5-8. The crystal structure of an ASBT homolog from Neisseria meningitidis (ASBTNM) in detergent was reported recently9, showing the protein in an inward-open conformation bound to two Na+ and a taurocholic acid. However, the structural changes that bring bile acid and Na+ across the membrane are difficult to infer from a single structure. To understand better the structural changes associated with the coupled transport of Na+ and bile acids, we crystallized and solved two structures of a ASBT homolog from Yersinia frederiksenii (ASBTYf) in a lipid environment, which reveal that a large rigid-body rotation of a substrate-binding domain gives alternate accessibility to the highly conserved “crossover” region, where two discontinuous transmembrane helices cross each other. This result has implications for the location and orientation of the bile acid during transport, as well as for the translocation pathway for Na+. PMID:24317697
Nutrient-sensing nuclear receptors PPARα and FXR control liver energy balance.
Preidis, Geoffrey A; Kim, Kang Ho; Moore, David D
2017-04-03
The nuclear receptors PPARα (encoded by NR1C1) and farnesoid X receptor (FXR, encoded by NR1H4) are activated in the liver in the fasted and fed state, respectively. PPARα activation induces fatty acid oxidation, while FXR controls bile acid homeostasis, but both nuclear receptors also regulate numerous other metabolic pathways relevant to liver energy balance. Here we review evidence that they function coordinately to control key nutrient pathways, including fatty acid oxidation and gluconeogenesis in the fasted state and lipogenesis and glycolysis in the fed state. We have also recently reported that these receptors have mutually antagonistic impacts on autophagy, which is induced by PPARα but suppressed by FXR. Secretion of multiple blood proteins is a major drain on liver energy and nutrient resources, and we present preliminary evidence that the liver secretome may be directly suppressed by PPARα, but induced by FXR. Finally, previous studies demonstrated a striking deficiency in bile acid levels in malnourished mice that is consistent with results in malnourished children. We present evidence that hepatic targets of PPARα and FXR are dysregulated in chronic undernutrition. We conclude that PPARα and FXR function coordinately to integrate liver energy balance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geest, Rick van der, E-mail: r.van.der.geest@lacdr
Cholestatic liver disease is characterized by a disruption of bile flow, bile acid toxicity, liver injury, and hypercholesterolemia. Relatively high secretion of glucocorticoids by the adrenals has been observed under cholestatic conditions. Here we investigated a contribution of the rise in endogenous glucocorticoids to initial stage cholestasis pathology. Adrenalectomized or sham-operated control C57BL/6 mice were given an oral dose of alpha-naphthylisothiocyanate to induce cholestasis. Adrenalectomy effectively lowered plasma corticosterone levels (18 ± 5 ng/ml vs 472 ± 58 ng/ml; P < 0.001) and disrupted the metabolic and anti-inflammatory glucocorticoid function. Adrenal removal did not exacerbate the cholestasis extent. In contrast,more » the cholestasis-associated liver injury was markedly lower in adrenalectomized mice as compared to controls as evidenced by a 84%–93% decrease in liver necrosis and plasma alanine aminotransferase and bile acid levels (P < 0.001 for all). Gene expression analysis on livers from adrenalectomized mice suggested the absence of bile acid toxicity-associated farnesoid X receptor signaling in the context of a 44% (P < 0.01) and 82% (P < 0.001) reduction in sodium/bile acid cotransporter member 1 transcript level as compared to respectively control and non-diseased mice. Adrenalectomy reduced the expression of the cholesterol synthesis gene HMG-CoA reductase by 70% (P < 0.05), which translated into a 73% lower plasma total cholesterol level (P < 0.05). Treatment of C57BL/6 mice with the glucocorticoid receptor antagonist RU-486 recapitulated the protective effect of adrenalectomy on indices of liver injury and hypercholesterolemia. In conclusion, we have shown that endogenous glucocorticoids exacerbate the liver injury and hypercholesterolemia associated with acute cholestasis in mice. - Highlights: • Cholestasis is associated with increased plasma glucocorticoid levels in mice. • Adrenalectomy lowers cholestasis-associated liver injury and hypercholesterolemia. • GR antagonist RU-486 similarly improves the cholestasis phenotype. • Endogenous glucocorticoids promote re-uptake of circulating bile acids into liver.« less
Staurosporine synergistically potentiates the deoxycholate-mediated induction of COX-2 expression.
Saeki, Tohru; Inui, Haruka; Fujioka, Saya; Fukuda, Suguru; Nomura, Ayumi; Nakamura, Yasushi; Park, Eun Young; Sato, Kenji; Kanamoto, Ryuhei
2014-08-01
Colorectal cancer is a major cause of cancer-related death in western countries, and thus there is an urgent need to elucidate the mechanism of colorectal tumorigenesis. A diet that is rich in fat increases the risk of colorectal tumorigenesis. Bile acids, which are secreted in response to the ingestion of fat, have been shown to increase the risk of colorectal tumors. The expression of cyclooxygenase (COX)-2, an inducible isozyme of cyclooxygenase, is induced by bile acids and correlates with the incidence and progression of cancers. In this study, we investigated the signal transduction pathways involved in the bile-acid-mediated induction of COX-2 expression. We found that staurosporine (sts), a potent protein kinase C (PKC) inhibitor, synergistically potentiated the deoxycholate-mediated induction of COX-2 expression. Sts did not increase the stabilization of COX-2 mRNA. The sts- and deoxycholate-mediated synergistic induction of COX-2 expression was suppressed by a membrane-permeable Ca(2+) chelator, a phosphoinositide 3-kinase inhibitor, a nuclear factor-κB pathway inhibitor, and inhibitors of canonical and stress-inducible mitogen-activated protein kinase pathways. Inhibition was also observed using PKC inhibitors, suggesting the involvement of certain PKC isozymes (η, θ, ι, ζ, or μ). Our results indicate that sts exerts its potentiating effects via the phosphorylation of p38. However, the effects of anisomycin did not mimic those of sts, indicating that although p38 activation is required, it does not enhance deoxycholate-induced COX-2 expression. We conclude that staurosporine synergistically enhances deoxycholate-induced COX-2 expression in RCM-1 colon cancer cells. © 2014 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
Effect of Peripheral 5-HT on Glucose and Lipid Metabolism in Wether Sheep
Watanabe, Hitoshi; Saito, Ryo; Nakano, Tatsuya; Takahashi, Hideyuki; Takahashi, Yu; Sumiyoshi, Keisuke; Sato, Katsuyoshi; Chen, Xiangning; Okada, Natsumi; Iwasaki, Shunsuke; Harjanti, Dian W.; Sekiguchi, Natsumi; Sano, Hiroaki; Kitazawa, Haruki; Rose, Michael T.; Ohwada, Shyuichi; Watanabe, Kouichi; Aso, Hisashi
2014-01-01
In mice, peripheral 5-HT induces an increase in the plasma concentrations of glucose, insulin and bile acids, and a decrease in plasma triglyceride, NEFA and cholesterol concentrations. However, given the unique characteristics of the metabolism of ruminants relative to monogastric animals, the physiological role of peripheral 5-HT on glucose and lipid metabolism in sheep remains to be established. Therefore, in this study, we investigated the effect of 5-HT on the circulating concentrations of metabolites and insulin using five 5-HT receptor (5HTR) antagonists in sheep. After fasting for 24 h, sheep were intravenously injected with 5-HT, following which-, plasma glucose, insulin, triglyceride and NEFA concentrations were significantly elevated. In contrast, 5-HT did not affect the plasma cholesterol concentration, and it induced a decrease in bile acid concentrations. Increases in plasma glucose and insulin concentrations induced by 5-HT were attenuated by pre-treatment with Methysergide, a 5HTR 1, 2 and 7 antagonist. Additionally, decreased plasma bile acid concentrations induced by 5-HT were blocked by pre-treatment with Ketanserin, a 5HTR 2A antagonist. However, none of the 5HTR antagonists inhibited the increase in plasma triglyceride and NEFA levels induced by 5-HT. On the other hand, mRNA expressions of 5HTR1D and 1E were observed in the liver, pancreas and skeletal muscle. These results suggest that there are a number of differences in the physiological functions of peripheral 5-HT with respect to lipid metabolism between mice and sheep, though its effect on glucose metabolism appears to be similar between these species. PMID:24505376
Zhu, Andy Z. X.; Johnson, Mike; Yu, Shaoxia; Moriya, Yuu; Ebihara, Takuya; Csizmadia, Vilmos; Grieves, Jessica; Paton, Martin; Liao, Mingxiang; Gemski, Christopher; Pan, Liping; Vakilynejad, Majid; Dragan, Yvonne P.; Chowdhury, Swapan K.; Kirby, Patrick J.
2017-01-01
Abstract Fasiglifam (TAK-875), a Free Fatty Acid Receptor 1 (FFAR1) agonist in development for the treatment of type 2 diabetes, was voluntarily terminated in phase 3 due to adverse liver effects. A mechanistic investigation described in this manuscript focused on the inhibition of bile acid (BA) transporters as a driver of the liver findings. TAK-875 was an in vitro inhibitor of multiple influx (NTCP and OATPs) and efflux (BSEP and MRPs) hepatobiliary BA transporters at micromolar concentrations. Repeat dose studies determined that TAK-875 caused a dose-dependent increase in serum total BA in rats and dogs. Additionally, there were dose-dependent increases in both unconjugated and conjugated individual BAs in both species. Rats had an increase in serum markers of liver injury without correlative microscopic signs of tissue damage. Two of 6 dogs that received the highest dose of TAK-875 developed liver injury with clinical pathology changes, and by microscopic analysis had portal granulomatous inflammation with neutrophils around a crystalline deposition. The BA composition of dog bile also significantly changed in a dose-dependent manner following TAK-875 administration. At the highest dose, levels of taurocholic acid were 50% greater than in controls with a corresponding 50% decrease in taurochenodeoxycholic acid. Transporter inhibition by TAK-875 may cause liver injury in dogs through altered bile BA composition characteristics, as evidenced by crystalline deposition, likely composed of test article, in the bile duct. In conclusion, a combination of in vitro and in vivo evidence suggests that BA transporter inhibition could contribute to TAK-875-mediated liver injury in dogs. PMID:28108665
Gälman, Cecilia; Miquel, Juan Francisco; Pérez, Rosa Maria; Einarsson, Curt; Ståhle, Lars; Marshall, Guillermo; Nervi, Flavio; Rudling, Mats
2004-03-01
Gallstone disease is an important, costly health-care problem in Western societies. It is still unclear whether hepatic lipid regulatory enzymes play primary or secondary roles in gallstone formation. In this study, the aim was to investigate whether the synthesis of bile acids and cholesterol is increased in gallstone disease and to test whether such a metabolic change, if present, might occur before gallstone formation. A total of 125 Chilean Hispanic women (80 without gallstones and 45 with gallstones) matched for age and body mass index were investigated, along with 40 Chilean Mapuche Indian women (20 without gallstones and 20 with gallstones), a population group in which the prevalence for gallstone disease is very high. Fasting blood plasma samples were assayed for 7 alpha-hydroxy-4-cholesten-3-one and lathosterol, 2 strong indicators for hepatic bile acid and body cholesterol synthesis, respectively. Plasma 7 alpha-hydroxy-4-cholesten-3-one levels, corrected for plasma cholesterol, were significantly increased by 50% in Hispanic women with gallstones as compared with gallstone-free Hispanics (P < 0.006). As compared with Hispanic women without gallstones, plasma 7 alpha-hydroxy-4-cholesten-3-one levels were increased by > or =100% (P < 0.002) in Mapuche Indian women, independently of whether gallstones were present. Plasma lathosterol, corrected for plasma cholesterol, was significantly increased by 22% in Hispanic women with gallstones and in Mapuche Indian women compared with Hispanic women. The results indicate that the synthesis of bile acids and cholesterol is induced in gallstone disease and precedes gallstone development. These inductions presumably occur as a response to an increased intestinal loss of bile acids.
Hatano, Ryo; Kawaguchi, Kotoku; Togashi, Fumitaka; Sugata, Masato; Masuda, Shizuka; Asano, Shinji
2017-01-01
Ursodeoxycholic acid (UDCA) is a hydrophilic bile acid that possesses many pharmacological effects, including increasing bile flow, changing the hydrophobicity of the bile acid pool, and modulation of the immune response. UDCA has been approved for treating cholestatic liver disease, such as primary biliary cholangitis. However, several unanticipated severe side effects of UDCA are observed in cholestatic patients, and its pharmacological benefits remain controversial. We reported that ezrin-knockdown (Vil2 kd/kd ) mice exhibited severe hepatic injury because of a functional disorder in bile duct fluidity and alkalinity regulation, resembling human intrahepatic cholestatic disease. Here we used Vil2 kd/kd mice as a cholestatic model to investigate the pharmacological effects of UDCA. We investigated the effects of oral and parenteral administration of UDCA on Vil2 kd/kd mice. In Vil2 kd/kd mice, fed a 0.5% (w/w) UDCA diet for 3 weeks, hepatic injury was exacerbated, although oral administration of a lower dose of UDCA slightly improved hepatic function in Vil2 kd/kd mice. On the other hand, intraperitoneal administration of UDCA (50 mg/kg/d) ameliorated hepatic function and markedly reduced periductal fibrosis and cholangiocyte proliferation in Vil2 kd/kd mice although biliary pH and HCO 3 - concentration were not improved. The expression levels of inflammatory and profibrotic genes were also significantly decreased in these mice. Furthermore, UDCA prevented cholangiocytes from hydrophobic bile acid-induced cytotoxicity independent of extracellular pH in in vitro experiments. These results suggest that an appropriate dosage of UDCA can ameliorate the intrahepatic cholestasis in Vil2 kd/kd mice without changing the biliary bicarbonate secretion.
Omar, Hany A; Tolba, Mai F
2018-06-01
Benign prostate hypertrophy (BPH) is among the most common diseases with a huge impact on the quality of life of elderly men. There is a current need for the development of well-tolerated and effective preventive strategies to improve the clinical outcome. Caffeic acid phenethyl ester (CAPE) is an important active ingredient isolated from honey-bee propolis with potent anti-proliferative, anti-inflammatory and antioxidant effects. These properties promote CAPE as a promising candidate to be tested as an alternative therapy for BPH, which is still uninvestigated. Herein, we tested the ability of CAPE to guard against testosterone-induced BPH and investigated the involvement of IGF1-R/Akt/β-catenin signaling as a protective mechanism in testosterone-induced BPH rat model. Treatment with CAPE reduced testosterone-induced increase in the prostate index and histopathological alterations. In addition, co-treatment with CAPE significantly suppressed insulin-like growth factor-1 receptor (IGF-1R)/Akt/β-catenin/cyclinD1 axis as well as tumor necrosis factor-α level and nuclear factor (NF)-kB activity. Furthermore, the treatment with CAPE replenished the antioxidant defense systems, superoxide dismutase (SOD) and reduced glutathione (GSH) with subsequent reduction in prostate tissue lipid peroxides. This study highlights the potential merit of CAPE-enriched propolis formulations to protect elderly men against the development of BPH. © 2018 IUBMB Life, 70(6):519-528, 2018. © 2018 International Union of Biochemistry and Molecular Biology.
Choi, Jun Hyeon; Park, Sun Hong; Jung, Jae-Kyung; Cho, Won-Jea; Ahn, Byeongwoo; Yun, Cheong-Yong; Choi, Yong Pyo; Yeo, Jong Hun; Lee, Heesoon; Hong, Jin Tae; Han, Sang-Bae; Kim, Youngsoo
2017-01-01
Targeting myeloid differentiation protein 2 (MD-2) or Toll-like receptor 4 (TLR4) with small molecule inhibitor rescues the systemic inflammatory response syndrome (SIRS) in sepsis due to infection with Gram-negative bacteria but not other microbes. Herein, we provided IκB kinase β (IKKβ) in innate immune process as a molecular target of caffeic acid cyclohexylamide (CGA-JK3) in the treatment of polymicrobial TLR agonists-induced lethal inflammation. CGA-JK3 ameliorated E. coli lipopolysaccharide (LPS, MD-2/TLR4 agonist)-induced endotoxic shock, cecal ligation and puncture (CLP)-challenged septic shock or LPS plus D-galactosamine (GalN)-induced acute liver failure (ALF) in C57BL/6J mice. As a molecular basis, CGA-JK3 inhibited IKKβ-catalyzed kinase activity in a competitive mechanism with respect to ATP, displaced fluorescent ATP probe from the complex with IKKβ, and docked at the ATP-binding active site on the crystal structure of human IKKβ. Furthermore, CGA-JK3 inhibited IKKβ-catalyzed IκB phosphorylation, which is an axis leading to IκB degradation in the activating pathway of nuclear factor-κB (NF-κB), in macrophages stimulated with TLR (1/2, 2/6, 4, 5, 7, 9) agonists from Gram-positive/negative bacteria and viruses. CGA-JK3 consequently interrupted IKKβ-inducible NF-κB activation and NF-κB-regulated expression of TNF-α, IL-1α or HMGB-1 gene, thereby improving TLRs-associated redundant inflammatory responses in endotoxemia, polymicrobial sepsis and ALF. PMID:28145460
Bile acid composition of gallbladder contents in dogs with gallbladder mucocele and biliary sludge.
Kakimoto, Toshiaki; Kanemoto, Hideyuki; Fukushima, Kenjiro; Ohno, Koichi; Tsujimoto, Hajime
2017-02-01
OBJECTIVE To examine bile acid composition of gallbladder contents in dogs with gallbladder mucocele and biliary sludge. ANIMALS 18 dogs with gallbladder mucocele (GBM group), 8 dogs with immobile biliary sludge (i-BS group), 17 dogs with mobile biliary sludge (m-BS group), and 14 healthy dogs (control group). PROCEDURES Samples of gallbladder contents were obtained by use of percutaneous ultrasound-guided cholecystocentesis or during cholecystectomy or necropsy. Concentrations of 15 bile acids were determined by use of highperformance liquid chromatography, and a bile acid compositional ratio was calculated for each group. RESULTS Concentrations of most bile acids in the GBM group were significantly lower than those in the control and m-BS groups. Compositional ratio of taurodeoxycholic acid, which is 1 of 3 major bile acids in dogs, was significantly lower in the GBM and i-BS groups, compared with ratios for the control and m-BS groups. The compositional ratio of taurocholic acid was significantly higher and that of taurochenodeoxycholic acid significantly lower in the i-BS group than in the control group. CONCLUSIONS AND CLINICAL RELEVANCE In this study, concentrations and fractions of bile acids in gallbladder contents were significantly different in dogs with gallbladder mucocele or immobile biliary sludge, compared with results for healthy control dogs. Studies are needed to determine whether changes in bile acid composition are primary or secondary events of gallbladder abnormalities.
The ulcerogenic effect of bile and bile acid in rats during immobilization stress
NASA Technical Reports Server (NTRS)
Weisener, J.
1980-01-01
The effect of different concentrations of oxen bile and individual bile acids or their sodium salts on the gastric mucosa of rats was investigated in combination with immobilization stress. A statistically significant higher frequency of ulcers was only determined in the application of 10% oxen bile. Dosages on 10% sodium glycocholic acid demonstrated strong toxic damage with atonic dilation of the stomach and extensive mucosal bleeding.
Changes in the faecal bile acid profile in dogs fed dry food vs high content of beef: a pilot study.
Herstad, Kristin Marie Valand; Rønning, Helene Thorsen; Bakke, Anne Marie; Moe, Lars; Skancke, Ellen
2018-05-11
Dogs are fed various diets, which also include components of animal origin. In humans, a high-fat/low-fibre diet is associated with higher faecal levels of bile acids, which can influence intestinal health. It is unknown how an animal-based diet high in fat and low in fibre influences the faecal bile acid levels and intestinal health in dogs. This study investigated the effects of high intake of minced beef on the faecal bile acid profile in healthy, adult, client-owned dogs (n = 8) in a 7-week trial. Dogs were initially adapted to the same commercial dry food. Thereafter, incremental substitution of the dry food by boiled minced beef over 3 weeks resulted in a diet in which 75% of each dog's total energy requirement was provided as minced beef during week 5. Dogs were subsequently reintroduced to the dry food for the last 2 weeks of the study. The total taurine and glycine-conjugated bile acids, the primary bile acids chenodeoxycholic acid and cholic acid, and the secondary bile acids lithocholic acid, deoxycholic acid (DCA) and ursodeoxycholic acid (UDCA) were analysed, using liquid chromatography-tandem mass spectrometry. The faecal quantities of DCA were significantly higher in dogs fed the high minced beef diet. These levels reversed when dogs were reintroduced to the dry food diet. The faecal levels of UDCA and taurine-conjugated bile acids had also increased in response to the beef diet, but this was only significant when compared to the last dry food period. These results suggest that an animal-based diet with high-fat/low-fibre content can influence the faecal bile acids levels. The consequences of this for canine colonic health will require further investigation.
Overexpression of the cholesterol-binding protein MLN64 induces liver damage in the mouse
Tichauer, Juan Enrique; Morales, María Gabriela; Amigo, Ludwig; Galdames, Leopoldo; Klein, Andrés; Quiñones, Verónica; Ferrada, Carla; R, Alejandra Alvarez; Rio, Marie-Christine; Miquel, Juan Francisco; Rigotti, Attilio; Zanlungo, Silvana
2007-01-01
AIM: To examine the in vivo phenotype associated with hepatic metastatic lymph node 64 (MLN64) over-expression. METHODS: Recombinant-adenovirus-mediated MLN64 gene transfer was used to overexpress MLN64 in the livers of C57BL/6 mice. We measured the effects of MLN64 overexpression on hepatic cholesterol content, bile flow, biliary lipid secretion and apoptosis markers. For in vitro studies cultured CHO cells with transient MLN64 overexpression were utilized and apoptosis by TUNEL assay was measured. RESULTS: Livers from Ad.MLN64-infected mice exhibited early onset of liver damage and apoptosis. This response correlated with increases in liver cholesterol content and biliary bile acid concentration, and impaired bile flow. We investigated whether liver MLN64 expression could be modulated in a murine model of hepatic injury. We found increased hepatic MLN64 mRNA and protein levels in mice with chenodeoxycholic acid-induced liver damage. In addition, cultured CHO cells with transient MLN64 overexpression showed increased apoptosis. CONCLUSION: In summary, hepatic MLN64 over-expression induced damage and apoptosis in murine livers and altered cholesterol metabolism. Further studies are required to elucidate the relevance of these findings under physiologic and disease conditions. PMID:17589922
In Vitro Modeling of Bile Acid Processing by the Human Fecal Microbiota.
Martin, Glynn; Kolida, Sofia; Marchesi, Julian R; Want, Elizabeth; Sidaway, James E; Swann, Jonathan R
2018-01-01
Bile acids, the products of concerted host and gut bacterial metabolism, have important signaling functions within the mammalian metabolic system and a key role in digestion. Given the complexity of the mega-variate bacterial community residing in the gastrointestinal tract, studying associations between individual bacterial genera and bile acid processing remains a challenge. Here, we present a novel in vitro approach to determine the bacterial genera associated with the metabolism of different primary bile acids and their potential to contribute to inter-individual variation in this processing. Anaerobic, pH-controlled batch cultures were inoculated with human fecal microbiota and treated with individual conjugated primary bile acids (500 μg/ml) to serve as the sole substrate for 24 h. Samples were collected throughout the experiment (0, 5, 10, and 24 h) and the bacterial composition was determined by 16S rRNA gene sequencing and the bile acid signatures were characterized using a targeted ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) approach. Data fusion techniques were used to identify statistical bacterial-metabolic linkages. An increase in gut bacteria associated bile acids was observed over 24 h with variation in the rate of bile acid metabolism across the volunteers ( n = 7). Correlation analysis identified a significant association between the Gemmiger genus and the deconjugation of glycine conjugated bile acids while the deconjugation of taurocholic acid was associated with bacteria from the Eubacterium and Ruminococcus genera. A positive correlation between Dorea and deoxycholic acid production suggest a potential role for this genus in cholic acid dehydroxylation. A slower deconjugation of taurocholic acid was observed in individuals with a greater abundance of Parasutterella and Akkermansia . This work demonstrates the utility of integrating compositional (metataxonomics) and functional (metabonomics) systems biology approaches, coupled to in vitro model systems, to study the biochemical capabilities of bacteria within complex ecosystems. Characterizing the dynamic interactions between the gut microbiota and the bile acid pool enables a greater understanding of how variation in the gut microbiota influences host bile acid signatures, their associated functions and their implications for health.
Huebbe, Patricia; Nikolai, Sibylle; Schloesser, Anke; Herebian, Diran; Campbell, Graeme; Glüer, Claus-Christian; Zeyner, Annette; Demetrowitsch, Tobias; Schwarz, Karin; Metges, Cornelia C; Roeder, Thomas; Schultheiss, Gerhard; Ipharraguerre, Ignacio R; Rimbach, Gerald
2017-09-26
In this study we addressed the questions whether an Atlantic brown algae extract (BAE) affects diet induced obesity in mice and which would be the primary targets and underlying key mechanisms. Male C57 BL/6 mice were fed a hypercaloric diet, referred to as high fat diet (HFD), supplemented with a freeze-dried aqueous BAE from Saccorhiza polyschides (5 %) for 8 months. Compared to the control group, dietary BAE supplementation significantly attenuated increase in body weight and fat mass. We observed apparent metabolic improvement including normalization of blood glucose, reduced plasma leptin, reduced fecal bile salt hydrolase activity with lower microbial production of toxic bile acid metabolites in the gut and increased systemic bile acid circulation in BAE-fed mice counteracting adverse effects of long term HFD feeding. Survival of mice receiving dietary BAE supplementation appeared slightly enhanced; however, median and maximal life spans as well as hepatic mTOR activation were not significantly different between BAE and control mice. We suggest that the beneficial metabolic effects of our BAE are at least partly mediated by alterations in gut microbiota associated with fermentation of indigestible polysaccharides that are major components of brown algae such as alginates and fucoidans. We moreover propose a multi-factorial mechanism that involves profound alterations in bile acid homeostasis, changes in intestinal and systemic glucose metabolism likely including increased intestinal gluconeogenesis, increased activity of the intestinally derived hormone GLP-1 contributing to promote systemic insulin sensitivity, and inhibition of α-amylase activity, which expectably limits dietary carbohydrate digestion and glucose release.
Metabolic Profiling of the Novel Hypoxia-Inducible Factor 2α Inhibitor PT2385 In Vivo and In Vitro.
Xie, Cen; Gao, Xiaoxia; Sun, Dongxue; Zhang, Youbo; Krausz, Kristopher W; Qin, Xuemei; Gonzalez, Frank J
2018-04-01
PT2385 is a first-in-class, selective small-molecule inhibitor of hypoxia-inducible factor-2 α (HIF-2 α ) developed for the treatment of advanced clear cell renal cell carcinoma. Preclinical results demonstrated that PT2385 has potent antitumor efficacy in mouse xenograft models of kidney cancer. It also has activity toward metabolic disease in a mouse model. However, no metabolism data are currently publically available. It is of great importance to characterize the metabolism of PT2385 and identify its effect on systemic homeostasis in mice. High-resolution mass spectrometry-based metabolomics was performed to profile the biotransformation of PT2385 and PT2385-induced changes in endogenous metabolites. Liver microsomes and recombinant drug-metabolizing enzymes were used to determine the mechanism of PT2385 metabolism. Real-time polymerase chain reaction analysis was employed to investigate the reason for the PT2385-induced bile acid dysregulation. A total of 12 metabolites of PT2385 was characterized, generated from hydroxylation (M1, M2), dihydroxylation and desaturation (M3, M4), oxidative-defluorination (M7), glucuronidation (M8), N -acetylcysteine conjugation (M9), and secondary methylation (M5, M6) and glucuronidation (M10, M11, and M12). CYP2C19 was the major contributor to the formation of M1, M2, and M7, UGT2B17 to M8, and UGT1A1/3 to M10-M12. The bile acid metabolites taurocholic acid and tauro- β -muricholic acid were elevated in serum and liver of mice after PT2385 treatment. Gene expression analysis further revealed that intestinal HIF-2 α inhibition by PT2385 treatment upregulated the hepatic expression of CYP7A1, the rate-limiting enzyme in bile acid synthesis. This study provides metabolic data and an important reference basis for the safety evaluation and rational clinical application of PT2385. U.S. Government work not protected by U.S. copyright.
Metabolic Profiling of the Novel Hypoxia-Inducible Factor 2α Inhibitor PT2385 In Vivo and In Vitro
Xie, Cen; Gao, Xiaoxia; Sun, Dongxue; Zhang, Youbo; Krausz, Kristopher W.; Qin, Xuemei
2018-01-01
PT2385 is a first-in-class, selective small-molecule inhibitor of hypoxia-inducible factor-2α (HIF-2α) developed for the treatment of advanced clear cell renal cell carcinoma. Preclinical results demonstrated that PT2385 has potent antitumor efficacy in mouse xenograft models of kidney cancer. It also has activity toward metabolic disease in a mouse model. However, no metabolism data are currently publically available. It is of great importance to characterize the metabolism of PT2385 and identify its effect on systemic homeostasis in mice. High-resolution mass spectrometry–based metabolomics was performed to profile the biotransformation of PT2385 and PT2385-induced changes in endogenous metabolites. Liver microsomes and recombinant drug-metabolizing enzymes were used to determine the mechanism of PT2385 metabolism. Real-time polymerase chain reaction analysis was employed to investigate the reason for the PT2385-induced bile acid dysregulation. A total of 12 metabolites of PT2385 was characterized, generated from hydroxylation (M1, M2), dihydroxylation and desaturation (M3, M4), oxidative-defluorination (M7), glucuronidation (M8), N-acetylcysteine conjugation (M9), and secondary methylation (M5, M6) and glucuronidation (M10, M11, and M12). CYP2C19 was the major contributor to the formation of M1, M2, and M7, UGT2B17 to M8, and UGT1A1/3 to M10–M12. The bile acid metabolites taurocholic acid and tauro-β-muricholic acid were elevated in serum and liver of mice after PT2385 treatment. Gene expression analysis further revealed that intestinal HIF-2α inhibition by PT2385 treatment upregulated the hepatic expression of CYP7A1, the rate-limiting enzyme in bile acid synthesis. This study provides metabolic data and an important reference basis for the safety evaluation and rational clinical application of PT2385. PMID:29363499
2007-01-01
Methods. To establish the maximal LDH 2,3,7,8-tetrachloro- activity achievable from these cells, untreated control cells were grown dibenzo-p- dioxin to the...to modulated by AhR (Miao et al., 2005). Curcumin has been induce apoptosis. CAPE may be involved in anoikis, that is, shown to compete with dioxin ...the AhR directly binds (Miao et al., 2005). adhesion kinase (Weyant et al., 2000). Also, CAPE-induced Exposure of Hepalclc7 cells to dioxin results in
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kern, F., Jr.; Everson, G.T.; DeMark, B.
Reported are biliary lipid composition and secretion, bile acid composition and kinetics, and gallbladder function in a group of healthy, nonobese women taking a contraceptive steroid preparation. A comparable group of healthy women served as controls. Biliary lipid secretion rate was measured by the marker perfusion technique. Bile acid distribution was determined by gas-lipid chromatography. The pool size, FTR, and synthesis rate of each bile acid were measured by using CA and CDCA labeled with the stable isotope of carbon, /sup 13/C. In some of the subjects gallbladder storage and emptying were measured during the kinetic study, by real-time ultrasonography.more » Contraceptive steroid use was associated with a significant increase in biliary cholesterol saturation and in the lithogenic index of bile. The rate of cholesterol secretion in the contraceptive steroid group was 50% greater than in the control (p << 0.001) and the rate of bile acid secretion was reduced (p < 0.02). The total bile acid pool size was significantly increased by contraceptive steroids. The major increase occurred in the CA pool (p < 0.04). The daily rate of enterohepatic cycles of the bile acid pool was decreased by contraceptive steroids from 6.6 to 4.3 (p < 0.01). The only effect of contraceptive steroids on gallbladder function was a slower emptying rate in response to intraduodenal amino acid infusion. No index of gallbladder function correlated significantly with any parameter of bile acid kinetics in this small group of subjects. The findings confirm the lithogenic effect of contraceptive steroids and indicate that its causes are an increase in cholesterol secretion and a decrease in bile acid secretion.« less
Telbisz, Ágnes; Özvegy-Laczka, Csilla; Hegedűs, Tamás; Váradi, András; Sarkadi, Balázs
2013-03-01
The human ABCG2 multidrug transporter actively extrudes a wide range of hydrophobic drugs and xenobiotics recognized by the transporter in the membrane phase. In order to examine the molecular nature of the transporter and its effects on the lipid environment, we have established an efficient protocol for the purification and reconstitution of the functional protein. We found that the drug-stimulated ATPase and the transport activity of ABCG2 are fully preserved by applying excess lipids and mild detergents during solubilization, whereas a detergent-induced dissociation of the ABCG2 dimer causes an irreversible inactivation. By using the purified and reconstituted protein we demonstrate that cholesterol is an essential activator, whereas bile acids are important modulators of ABCG2 activity. Both wild-type ABCG2 and its R482G mutant variant require cholesterol for full activity, although they exhibit different cholesterol sensitivities. Bile acids strongly decrease the basal ABCG2-ATPase activity both in the wild-type ABCG2 and in the mutant variant. These data reinforce the results for the modulatory effects of cholesterol and bile acids of ABCG2 investigated in a complex cell membrane environment. Moreover, these experiments open the possibility to perform functional and structural studies with a purified, reconstituted and highly active ABCG2 multidrug transporter.
Srinivasan, Krishnapura
2013-04-25
Spices are valued for their medicinal properties besides their use as food adjuncts to enhance the sensory quality of food. Dietary garlic, onion, fenugreek, red pepper, turmeric, and ginger have been proven to be effective hypocholesterolemics in experimentally induced hypercholesterolemia. The hypolipidemic potential of fenugreek in diabetic subjects and of garlic and onion in humans with induced lipemia has been demonstrated. Capsaicin and curcumin - the bioactive compounds of red pepper and turmeric - are documented to be efficacious at doses comparable to usual human intake. Capsaicin and curcumin have been shown to be hypotriglyceridemic, thus preventing accumulation of fat in the liver under adverse situations by enhancing triglyceride transport out of the liver. Capsaicin, curcumin, fenugreek, ginger, and onion enhance secretion of bile acids into bile. These hypocholesterolemic spices/spice principles reduce blood and liver cholesterol by enhancing cholesterol conversion to bile acids through activation of hepatic cholesterol-7α-hydroxylase. Many human trials have been carried out with garlic, onion, and fenugreek. The mechanism underlying the hypocholesterolemic and hypotriglyceridemic influence of spices is fairly well understood. Health implications of the hypocholesterolemic effect of spices experimentally documented are cardio-protection, protection of the structural integrity of erythrocytes by restoration of membrane cholesterol/phospholipid profile and prevention of cholesterol gallstones by modulation of the cholesterol saturation index in bile.
Bile Acid Responses in Methane and Non-Methane Producers to Standard Breakfast Meals
USDA-ARS?s Scientific Manuscript database
Bile acids and their conjugates are important regulators of glucose homeostasis. Previous research has revealed the ratio of cholic acid to deoxycholic acid to affect insulin resistance in humans. Bile acid de-conjugation and intestinal metabolism depend on gut microbes which may be affected by hos...
Genetics Home Reference: congenital bile acid synthesis defect type 1
... type 1 Congenital bile acid synthesis defect type 1 Printable PDF Open All Close All Enable Javascript to view the expand/collapse boxes. Description Congenital bile acid synthesis defect type 1 ...
Physiological and molecular biochemical mechanisms of bile formation
Reshetnyak, Vasiliy Ivanovich
2013-01-01
This review considers the physiological and molecular biochemical mechanisms of bile formation. The composition of bile and structure of a bile canaliculus, biosynthesis and conjugation of bile acids, bile phospholipids, formation of bile micellar structures, and enterohepatic circulation of bile acids are described. In general, the review focuses on the molecular physiology of the transporting systems of the hepatocyte sinusoidal and apical membranes. Knowledge of physiological and biochemical basis of bile formation has implications for understanding the mechanisms of development of pathological processes, associated with diseases of the liver and biliary tract. PMID:24259965
Migliori, Massimiliano; Cantaluppi, Vincenzo; Mannari, Claudio; Bertelli, Alberto A E; Medica, Davide; Quercia, Alessandro Domenico; Navarro, Victor; Scatena, Alessia; Giovannini, Luca; Biancone, Luigi; Panichi, Vincenzo
2015-01-01
Several studies demonstrated that endothelium dependent vasodilatation is impaired in cardiovascular and chronic kidney diseases because of oxidant stress-induced nitric oxide availability reduction. The Mediterranean diet, which is characterized by food containing phenols, was correlated with a reduced incidence of cardiovascular diseases and delayed progression toward end stage chronic renal failure. Previous studies demonstrated that both red and white wine exert cardioprotective effects. In particular, wine contains Caffeic acid (CAF), an active component with known antioxidant activities. The aim of the present study was to investigate the protective effect of low doses of CAF on oxidative stress-induced endothelial injury. CAF increased basal as well as acetylcholine-induced NO release by a mechanism independent from eNOS expression and phosphorylation. In addition, low doses of CAF (100 nM and 1 μM) increased proliferation and angiogenesis and inhibited leukocyte adhesion and endothelial cell apoptosis induced by hypoxia or by the uremic toxins ADMA, p-cresyl sulfate and indoxyl sulfate. The biological effects exerted by CAF on endothelial cells may be at least in part ascribed to modulation of NO release and by decreased ROS production. In an experimental model of kidney ischemia-reperfusion injury in mice, CAF significantly decreased tubular cell apoptosis, intraluminal cast deposition and leukocyte infiltration. The results of the present study suggest that CAF, at very low dosages similar to those observed after moderate white wine consumption, may exert a protective effect on endothelial cell function by modulating NO release independently from eNOS expression and phosphorylation. CAF-induced NO modulation may limit cardiovascular and kidney disease progression associated with oxidative stress-mediated endothelial injury.
Graham, D Y; Osato, M S
2000-01-01
Helicobacter pylori (H. pylori) growth is inhibited by bile yet it can grow in the duodenal bulb and cause ulcer disease. The aim of this study was to test the effect of bile on H. pylori viability and growth and to determine whether acidification of bile reduces its inhibitory activity. Fresh human bile was collected at laparotomy and tested for inhibitory activity of H. pylori using broth dilution assays. Six clinical isolates of H. pylori obtained from patients with duodenal ulcer were used for each experiment. The bile was diluted from 1:3 to 1:192; its inhibitory effect on H. pylori was tested before and after acidification, treatment with cholestyramine, or chloroform. Bile was acidified to a pH of 2-6, centrifuged at 8000 rpm for 20 min to remove precipitated bile acids, and the supernatant pH readjusted. Controls included BHI broth without bile (positive control) and bile that was acidified to pH 2 and neutralized without centrifugation. Human bile inhibited H. pylori growth in a dose dependent manner. Growth of all strains was supported for all strains only at a dilution of 1:192. In contrast, after acidification to pH < or =5 and centrifugation to remove precipitated bile acids, all strains grew at a bile dilution of 1:12. Neither chloroform extraction of lipids, nor acidification without centrifugation removed the inhibitory action of bile. In contrast, cholestyramine sequestration of bile acids completely removed all inhibitory activity. The duodenal acid load may be the critical factor to explain the ability of H. pylori to colonize the duodenal bulb by precipitating glycine-conjugated bile salts. The combination of a high duodenal acid load and H. pylori infection is likely the critical event in the pathogenesis of H. pylori-related duodenal ulcer disease.
Preparation of the 3-monosulphates of cholic acid, chenodeoxycholic acid and deoxycholic acid.
Haslewood, E S; Haslewood, G A
1976-01-01
1. The 3-sulphates of cholic, chenodeoxycholic and deoxycholic acids were prepared as crystalline disodium salts. 2. The method described shows that it is possible to prepare specific sulphate esters of polyhydroxy bile acids and to remove protecting acyl groups without removing the sulphate. 3. A study of bile acid sulphate solvolysis showed that none of the usual methods give the original bile acid in major yield in a single step. 4. An understanding of the preparation, properties and methods of solvolysis of bile acid sulphates is basic for investigations of cholestasis and liver disease. PMID:938488
Shin, Hee Soon; Satsu, Hideo; Bae, Min-Jung; Zhao, Zhaohui; Ogiwara, Haru; Totsuka, Mamoru; Shimizu, Makoto
2015-02-01
Chlorogenic acid (CHA) is an antioxidant polyphenol prevalent in human diet, with coffee, fruits, and vegetables being its main source. Effects of CHA and CHA metabolites were evaluated on the IL-8 production in human intestinal Caco-2 cells induced by combined stimulation with tumour necrosis factor alpha (TNFα) and H2O2. CHA and caffeic acid (CA) inhibited TNFα- and H2O2-induced IL-8 production. We also examined the in vivo effects of CHA and CA using dextran sulphate sodium (DSS)-induced colitis in mice. CHA attenuated DSS-induced body weight loss, diarrhea, fecal blood, and shortening of colon and dramatically improved colitis histological scores. Furthermore, increases in the mRNA expression of colonic macrophage inflammatory protein 2 and IL-1β, which were induced by DSS, were significantly suppressed by CHA supplementation. These results suggest that dietary CHA use may aid in the prevention of intestinal inflammatory conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ursodeoxycholic acid attenuates colonic epithelial secretory function
Kelly, Orlaith B; Mroz, Magdalena S; Ward, Joseph B J; Colliva, Carolina; Scharl, Michael; Pellicciari, Roberto; Gilmer, John F; Fallon, Padraic G; Hofmann, Alan F; Roda, Aldo; Murray, Frank E; Keely, Stephen J
2013-01-01
Dihydroxy bile acids, such as chenodeoxycholic acid (CDCA), are well known to promote colonic fluid and electrolyte secretion, thereby causing diarrhoea associated with bile acid malabsorption. However, CDCA is rapidly metabolised by colonic bacteria to ursodeoxycholic acid (UDCA), the effects of which on epithelial transport are poorly characterised. Here, we investigated the role of UDCA in the regulation of colonic epithelial secretion. Cl− secretion was measured across voltage-clamped monolayers of T84 cells and muscle-stripped sections of mouse or human colon. Cell surface biotinylation was used to assess abundance/surface expression of transport proteins. Acute (15 min) treatment of T84 cells with bilateral UDCA attenuated Cl− secretory responses to the Ca2+ and cAMP-dependent secretagogues carbachol (CCh) and forskolin (FSK) to 14.0 ± 3.8 and 40.2 ± 7.4% of controls, respectively (n= 18, P < 0.001). Investigation of the molecular targets involved revealed that UDCA acts by inhibiting Na+/K+-ATPase activity and basolateral K+ channel currents, without altering their cell surface expression. In contrast, intraperitoneal administration of UDCA (25 mg kg−1) to mice enhanced agonist-induced colonic secretory responses, an effect we hypothesised to be due to bacterial metabolism of UDCA to lithocholic acid (LCA). Accordingly, LCA (50–200 μm) enhanced agonist-induced secretory responses in vitro and a metabolically stable UDCA analogue, 6α-methyl-UDCA, exerted anti-secretory actions in vitro and in vivo. In conclusion, UDCA exerts direct anti-secretory actions on colonic epithelial cells and metabolically stable derivatives of the bile acid may offer a new approach for treating intestinal diseases associated with diarrhoea. PMID:23507881
Bile acid malabsorption in Crohn's disease and indications for its assessment using SeHCAT.
Nyhlin, H; Merrick, M V; Eastwood, M A
1994-01-01
Patients with Crohn's disease who suffer from longstanding diarrhoea that does not respond to conventional treatment pose a common clinical problem. Bile acid malabsorption is a possible cause, although its prevalence and clinical importance is unclear. This paper explores the clinical indications for referring patients with Crohn's disease for bile acid assessment and the extent of bile acid malabsorption in this selected group of patients. The selenium labelled bile acid SeHCAT was used to assess the effect of disease on the integrity of the enterohepatic circulation. Altogether 76% of the patients referred for bile acid assessment had longstanding diarrhoea that had not responded to conventional anti-diarrhoeal treatment or an increase in steroid therapy as their sole or predominant symptom. Ninety per cent of patients with bowel resections, almost exclusively ileocaecal, had abnormal SeHCAT retention (< 5% at seven days). Twenty eight per cent of patients with Crohn's disease who had not undergone resection 28% had a SeHCAT retention < 5%, signifying bile acid malabsorption. Nineteen of 22 patients given cholestyramine treatment subsequent to the SeHCAT test had a good symptomatic response. In conclusion, the prevalence of bile acid malabsorption in this selected group with Crohn's disease is sufficiently high to justify performing the SeHCAT test in order to separate the various differential diagnoses.
Santa Cruz, Vicente; Liu, Hanlin; Kaphalia, Lata; Kanz, Mary F.
2007-01-01
Methylenedianiline (DAPM) is considered a cholangiodestructive toxicant in vivo. Increases in biliary inorganic phosphate (Pi) and glucose occur prior to biliary epithelial cell (BEC) injury, which could be due to increased paracellular permeability and/or impairment of Pi and glucose uptake by BEC. To evaluate these possibilities, we induced mild injury [loss of BEC from major bile ducts (6 h), ultrastructural alterations in BEC mitochondria and Golgi cisternae (3 h), and striking increases in biliary Pi and glucose (3–6 h)] with 25 mg DAPM/kg and then assessed temporal alterations in tight junction (TJ) permeability by measuring bile to plasma (B:P) ratios of [3H]-inulin. Parameters maintained by hepatocytes in bile were unchanged (bile flow, bile acids, bilirubin) or only transiently perturbed (protein, glutathione). Minimal elevations in B:P ratios of inulin occurred temporally later (4 h) in DAPM-treated rats than increases in biliary Pi and glucose. To confirm a direct effect of DAPM on BEC TJs, we measured transepithelial resistance (TER) and bi-ionic potentials of BEC monolayers prior to and after exposure to pooled (4 to 6) bile samples collected from untreated rats (Basal Bile) or rats treated with 50 mg DAPM/ kg (DAPM-Bile). BEC TJs were found to be cation selective. Exposure to DAPM-Bile for 1 h decreased TERs by ~35% and decreased charge selectivity of BEC TJs while exposure to Basal Bile had no effects. These observations indicate that DAPM-Bile impairs paracellular permeability of BEC in vitro. Further, our in vivo model suggests that increases in paracellular permeability induced by DAPM are localized to BEC because bile flow and constituents excreted by hepatocytes were unchanged; BEC damage was temporally correlated with increases in biliary Pi and glucose; and elevations in B:P ratios of inulin were delayed and minimal. PMID:17178199
Zhang, Jie; He, Kan; Cai, Lining; Chen, Yu-Chuan; Yang, Yifan; Shi, Qin; Woolf, Thomas F.; Ge, Weigong; Guo, Lei; Borlak, Jürgen; Tong, Weida
2018-01-01
Interference of bile salt transport is one of the underlying mechanisms for drug-induced liver injury (DILI). We developed a novel bile salt transport activity assay involving in situ biosynthesis of bile salts from their precursors in primary human, monkey, dog, rat, and mouse hepatocytes in suspension as well as LC-MS/MS determination of extracellular bile salts transported out of hepatocytes. Glycine- and taurine-conjugated bile acids were rapidly formed in hepatocytes and effectively transported into the extracellular medium. The bile salt formation and transport activities were time– and bile-acid-concentration–dependent in primary human hepatocytes. The transport activity was inhibited by the bile salt export pump (BSEP) inhibitors ketoconazole, saquinavir, cyclosporine, and troglitazone. The assay was used to test 86 drugs for their potential to inhibit bile salt transport activity in human hepatocytes, which included 35 drugs associated with severe DILI (sDILI) and 51 with non-severe DILI (non-sDILI). Approximately 60% of the sDILI drugs showed potent inhibition (with IC50 values <50 μM), but only about 20% of the non-sDILI drugs showed this strength of inhibition in primary human hepatocytes and these drugs are associated only with cholestatic and mixed hepatocellular cholestatic (mixed) injuries. The sDILI drugs, which did not show substantial inhibition of bile salt transport activity, are likely to be associated with immune-mediated liver injury. Twenty-four drugs were also tested in monkey, dog, rat and mouse hepatocytes. Species differences in potency were observed with mouse being less sensitive than other species to inhibition of bile salt transport. In summary, a novel assay has been developed using hepatocytes in suspension from human and animal species that can be used to assess the potential for drugs and/or drug-derived metabolites to inhibit bile salt transport and/or formation activity. Drugs causing sDILI, except those by immune-mediated mechanism, are highly associated with potent inhibition of bile salt transport. PMID:27000539
Zhang, Jie; He, Kan; Cai, Lining; Chen, Yu-Chuan; Yang, Yifan; Shi, Qin; Woolf, Thomas F; Ge, Weigong; Guo, Lei; Borlak, Jürgen; Tong, Weida
2016-08-05
Interference of bile salt transport is one of the underlying mechanisms for drug-induced liver injury (DILI). We developed a novel bile salt transport activity assay involving in situ biosynthesis of bile salts from their precursors in primary human, monkey, dog, rat, and mouse hepatocytes in suspension as well as LC-MS/MS determination of extracellular bile salts transported out of hepatocytes. Glycine- and taurine-conjugated bile acids were rapidly formed in hepatocytes and effectively transported into the extracellular medium. The bile salt formation and transport activities were time‒ and bile-acid-concentration‒dependent in primary human hepatocytes. The transport activity was inhibited by the bile salt export pump (BSEP) inhibitors ketoconazole, saquinavir, cyclosporine, and troglitazone. The assay was used to test 86 drugs for their potential to inhibit bile salt transport activity in human hepatocytes, which included 35 drugs associated with severe DILI (sDILI) and 51 with non-severe DILI (non-sDILI). Approximately 60% of the sDILI drugs showed potent inhibition (with IC50 values <50 μM), but only about 20% of the non-sDILI drugs showed this strength of inhibition in primary human hepatocytes and these drugs are associated only with cholestatic and mixed hepatocellular cholestatic (mixed) injuries. The sDILI drugs, which did not show substantial inhibition of bile salt transport activity, are likely to be associated with immune-mediated liver injury. Twenty-four drugs were also tested in monkey, dog, rat and mouse hepatocytes. Species differences in potency were observed with mouse being less sensitive than other species to inhibition of bile salt transport. In summary, a novel assay has been developed using hepatocytes in suspension from human and animal species that can be used to assess the potential for drugs and/or drug-derived metabolites to inhibit bile salt transport and/or formation activity. Drugs causing sDILI, except those by immune-mediated mechanism, are highly associated with potent inhibition of bile salt transport. Published by Elsevier Ireland Ltd.
Comparison of different immobilized systems in the removal of peanut allergens from peanut extracts.
USDA-ARS?s Scientific Manuscript database
The objective of this study was to determine which of the magnetic-bead systems (Ca2+, Fe3+, caffeic acid, hydrophobic) would bind and separate peanut allergens from other proteins in a peanut extract more efficiently. Commercial Ca2+ and hydrophobic magnetic beads, and caffeic-beads (prepared by at...
Morin, Pier; St-Coeur, Patrick-Denis; Doiron, Jérémie A; Cormier, Marc; Poitras, Julie J; Surette, Marc E; Touaibia, Mohamed
2017-07-06
Glioblastoma multiforme (GBM) is an aggressive brain tumor that correlates with short patient survival and for which therapeutic options are limited. Polyphenolic compounds, including caffeic acid phenethyl ester (CAPE, 1a ), have been investigated for their anticancer properties in several types of cancer. To further explore these properties in brain cancer cells, a series of caffeic and ferulic acid esters bearing additional oxygens moieties (OH or OCH₃) were designed and synthesized. (CAPE, 1a ), but not ferulic acid phenethyl ester (FAPE, 1b ), displayed substantial cytotoxicity against two glioma cell lines. Some but not all selected compounds derived from both (CAPE, 1a ) and (FAPE, 1b ) also displayed cytotoxicity. All CAPE-derived compounds were able to significantly inhibit 5-lipoxygenase (5-LO), however FAPE-derived compounds were largely ineffective 5-LO inhibitors. Molecular docking revealed new hydrogen bonds and π-π interactions between the enzyme and some of the investigated compounds. Overall, this work highlights the relevance of exploring polyphenolic compounds in cancer models and provides additional leads in the development of novel therapeutic strategies in gliomas.
Li, Weina; Li, Xuesong; Zhu, Wei; Li, Changxu; Xu, Dan; Ju, Yong; Li, Guangtao
2011-07-21
Based on a topochemical approach, a strategy for efficiently producing main-chain poly(bile acid)s in the solid state was developed. This strategy allows for facile and scalable synthesis of main-chain poly(bile acid)s not only with high molecular weights, but also with quantitative conversions and yields.
Greenrod, William; Fenech, Michael
2003-03-01
We have tested the hypothesis that the alcoholic and phenolic components of wine are protective against the DNA-damaging and cytotoxic effects of hydrogen peroxide and gamma-radiation in vitro. The components of wine tested were ethanol, glycerol, a mixture of the phenolic compounds catechin and caffeic acid and tartaric acid, all at concentrations that were 2.5 or 10.0% of the concentration in a typical Australian white wine (Riesling). These components were tested individually or combined as a mixture and compared to a white wine stripped of polyphenols, as well as a Hanks balanced salt solution control, which was the diluent for the wine components. The effect of the components was tested in lymphocytes, using the cytokinesis-block micronucleus assay, after 30 min incubation in plasma or whole blood for the hydrogen peroxide or gamma-radiation challenge, respectively. The results obtained showed that ethanol, glycerol, the catechin-caffeic acid mixture, the mixture of all components and the stripped white wine significantly reduced the DNA-damaging effects of hydrogen peroxide and gamma-radiation (P = 0.043-0.001, ANOVA). The strongest protective effect against DNA damage by gamma-irradiation was observed for the catechin-caffeic acid mixture and the mixture of all components (30 and 32% reduction, respectively). These two treatments as well as ethanol produced the strongest protective effects against DNA damage by hydrogen peroxide (24, 25 and 18%, respectively). The protection provided by the mixture did not account for the expected additive protective effects of the individual components. Ethanol was the only component that significantly increased baseline DNA damage rate, however, this effect was negated in the mixture. In conclusion, our results suggest that the main phenolic and alcoholic components of wine can reduce the DNA-damaging effects of two important oxidants, i.e. hydrogen peroxide and ionizing radiation, in this physiologically relevant in vitro system.
Peters, A Michael; Walters, Julian R F
2013-10-01
Measurement of the whole body retention of orally administered (75)SeHCAT is used to investigate patients with unexplained diarrhoea. Retention values of <15 % at 7 days post-administration are taken to indicate bile acid malabsorption (BAM). Whilst idiopathic BAM is frequently diagnosed with (75)SeHCAT, functional and morphological studies of the terminal ileum rarely show any abnormality, so the disorder may be more appropriately termed bile acid diarrhoea (BAD). In addition to malabsorption, excess bile acid may reach the colon, where the events leading to diarrhoea take place, as a result firstly of increased bile acid synthesis and secondly of an increased recycling rate of bile acids. Increased recycling has been largely ignored as a cause of BAD, but, as shown in this study, can readily result in excess bile acids reaching the colon even when ileal absorption efficiency is normal (i.e. 95-97 %). There needs to be a re-evaluation of the causes of BAD in patients without a history of previous intestinal resection or evidence of ileal pathology, such as Crohn's disease.
Winston, Jenessa A; Theriot, Casey M
2016-10-01
Clostridium difficile is an anaerobic, Gram positive, spore-forming bacillus that is the leading cause of nosocomial gastroenteritis. Clostridium difficile infection (CDI) is associated with increasing morbidity and mortality, consequently posing an urgent threat to public health. Recurrence of CDI after successful treatment with antibiotics is high, thus necessitating discovery of novel therapeutics against this pathogen. Susceptibility to CDI is associated with alterations in the gut microbiota composition and bile acid metabolome, specifically a loss of microbial derived secondary bile acids. This review aims to summarize in vitro, ex vivo, and in vivo studies done by our group and others that demonstrate how secondary bile acids affect the different stages of the C. difficile life cycle. Understanding the dynamic interplay of C. difficile and microbial derived secondary bile acids within the gastrointestinal tract will shed light on how bile acids play a role in colonization resistance against C. difficile. Rational manipulation of secondary bile acids may prove beneficial as a treatment for patients with CDI. Published by Elsevier Ltd.
Bel-Rhlid, Rachid; Crespy, Vanessa; Pagé-Zoerkler, Nicole; Nagy, Kornél; Raab, Thomas; Hansen, Carl-Erik
2009-09-09
Rosmarinic acid (RA) was identified as one of the main components of rosemary extracts and has been ascribed to a number of health benefits. Several studies suggested that after ingestion, RA is metabolized by gut microflora into caffeic acid and derivatives. However, only limited information on the microorganisms and enzymes involved in this biotransformation is available. In this study, we investigated the hydrolysis of RA from rosemary extract with enzymes and a probiotic bacterium Lactobacillus johnsonii NCC 533. Chlorogenate esterase from Aspergillus japonicus (0.02 U/mg) hydrolyzed 90% of RA (5 mg/mL) after 2 h at pH 7.0 and 40 degrees C. Complete hydrolysis of RA (5 mg/mL) was achieved with a preparation of L. johnsonii (25 mg/mL, 3.3 E9 cfu/g) after 2 h of incubation at pH 7.0 and 37 degrees C. No hydrolysis of RA was observed after the passage of rosemary extract through the gastrointestinal tract model (GI model). Thus, RA is hydrolyzed neither chemically under the conditions of the GI model (temperature, pH, and bile salts) nor by secreted enzymatic activity (lipase and pancreatic enzymes). The addition of L. johnsonii cells to rosemary extract in the GI model resulted in substantial hydrolysis of RA (up to 99%).
Fang, Changming; Filipp, Fabian V; Smith, Jeffrey W
2012-04-01
Ursodeoxycholic acid (UDCA, ursodiol) is used to prevent damage to the liver in patients with primary biliary cirrhosis. The drug also prevents the progression of colorectal cancer and the recurrence of high-grade colonic dysplasia. However, the molecular mechanism by which UDCA elicits its beneficial effects is not entirely understood. The aim of this study was to determine whether ileal bile acid binding protein (IBABP) has a role in mediating the effects of UDCA. We find that UDCA binds to a single site on IBABP and increases the affinity for major human bile acids at a second binding site. As UDCA occupies one of the bile acid binding sites on IBABP, it reduces the cooperative binding that is often observed for the major human bile acids. Furthermore, IBABP is necessary for the full activation of farnesoid X receptor α (FXRα) by bile acids, including UDCA. These observations suggest that IBABP may have a role in mediating some of the intestinal effects of UDCA.
Fang, Changming; Filipp, Fabian V.; Smith, Jeffrey W.
2012-01-01
Ursodeoxycholic acid (UDCA, ursodiol) is used to prevent damage to the liver in patients with primary biliary cirrhosis. The drug also prevents the progression of colorectal cancer and the recurrence of high-grade colonic dysplasia. However, the molecular mechanism by which UDCA elicits its beneficial effects is not entirely understood. The aim of this study was to determine whether ileal bile acid binding protein (IBABP) has a role in mediating the effects of UDCA. We find that UDCA binds to a single site on IBABP and increases the affinity for major human bile acids at a second binding site. As UDCA occupies one of the bile acid binding sites on IBABP, it reduces the cooperative binding that is often observed for the major human bile acids. Furthermore, IBABP is necessary for the full activation of farnesoid X receptor α (FXRα) by bile acids, including UDCA. These observations suggest that IBABP may have a role in mediating some of the intestinal effects of UDCA. PMID:22223860
Mamoon, Abulkhair; Subauste, Angela; Subauste, Maria C; Subauste, Jose
2014-10-25
Retinoic acid (RA) affects multiple aspects of development, embryogenesis and cell differentiation processes. The liver is a major organ that stores RA suggesting that retinoids play an important role in the function of hepatocytes. In our previous studies, we have demonstrated the involvement of small heterodimer partner (SHP) in RA-induced signaling in a non-transformed hepatic cell line AML 12. In the present study, we have identified several critical genes in lipid homeostasis (Apoa1, Apoa2 and ApoF) that are repressed by RA-treatment in a SHP dependent manner, in vitro and also in vivo with the use of the SHP null mice. In a similar manner, RA also represses several critical genes involved in bile acid metabolism (Cyp7a1, Cyp8b1, Mdr2, Bsep, Baat and Ntcp) via upregulation of SHP. Collectively our data suggest that SHP plays a major role in RA-induced potential changes in pathophysiology of metabolic disorders in the liver. Copyright © 2014. Published by Elsevier B.V.
Bessone, Fernando; Roma, Marcelo Gabriel
2016-01-01
Ursodeoxycholic acid (UDCA) is the first choice medication for most cholestatic hepatopathies, due to its capability to counteract inflammation and bile-acid-induced liver damage, two common features in cholestasis. However, UDCA is usually contraindicated in obstructive cholestasis, due to the alleged risk of biliary integrity disruption due to its choleretic effect. We report on an 83-year-old man with an unsuspected malignant biliary obstruction who received moderate doses of UDCA (8-12 mg/kg/day) for 5 weeks, because the preliminary evidence suggested he had chemotherapy-induced cholestasis. Liver integrity was extensively protected by UDCA, as indicated by a marked decrease in serum liver enzymes, despite a steady increase in the levels of bilirubin and serum bile acids due to the obstructive process. In conclusion, this report shows, for the first time in humans, that moderate UDCA doses can reduce liver injury associated with complete biliary obstruction. This may contribute to a better understanding of the risk-benefit ratio of the use of UDCA in obstructive cholangiopathies.
Bile acid aspiration in suspected ventilator-associated pneumonia.
Wu, Yu-Chung; Hsu, Po-Kuei; Su, Kang-Cheng; Liu, Lung-Yu; Tsai, Cheng-Chien; Tsai, Shu-Ho; Hsu, Wen-Hu; Lee, Yu-Chin; Perng, Diahn-Warng
2009-07-01
The aims of this study were to measure the levels of bile acids in patients with suspected ventilator-associated pneumonia (VAP) and provide a possible pathway for neutrophilic inflammation to explain its proinflammatory effect on the airway. Bile acid levels were measured by spectrophotometric enzymatic assay, and liquid chromatography mass spectrometry was used to quantify the major bile acids. Alveolar cells were grown on modified air-liquid interface culture inserts, and bile acids were then employed to stimulate the cells. Reverse transcriptase polymerase chain reaction and Western blots were used to determine the involved gene expression and protein levels. The mean (+/- SE) concentration of total bile acids in tracheal aspirates was 6.2 +/- 2.1 and 1.1 +/- 0.4 mumol/L/g sputum, respectively, for patients with and without VAP (p < 0.05). The interleukin (IL)-8 level was significantly higher in the VAP group (p < 0.05). The major bile acid, chenodeoxycholic acid, stimulated alveolar epithelial cells to increase IL-8 production at both the messenger RNA and protein level through p38 and c-Jun N-terminal kinase (JNK) activation. The selective p38 and JNK inhibitors, as well as dexamethasone, successfully inhibited IL-8 production. These data suggest that early intervention to prevent bile acid aspiration may reduce the intensity of neutrophilic inflammation in intubated and mechanically ventilated patients in the ICU.
Antioxidative effect of lipophilized caffeic acid in fish oil enriched mayonnaise and milk.
Alemán, Mercedes; Bou, Ricard; Guardiola, Francesc; Durand, Erwann; Villeneuve, Pierre; Jacobsen, Charlotte; Sørensen, Ann-Dorit Moltke
2015-01-15
The antioxidative effect of lipophilized caffeic acid was assessed in two different fish oil enriched food products: mayonnaise and milk. In both emulsion systems, caffeic acid esterified with fatty alcohols of different chain lengths (C1-C20) were better antioxidants than the original phenolic compound. The optimal chain length with respect to protection against oxidation was, however, different for the two food systems. Fish oil enriched mayonnaise with caffeates of medium alkyl chain length (butyl, octyl and dodecyl) added resulted in a better oxidative stability than caffeates with shorter (methyl) or longer (octadecyl) alkyl chains. Whereas in fish oil enriched milk emulsions the most effective caffeates were those with shorter alkyl chains (methyl and butyl) rather than the ones with medium and long chains (octyl, dodecyl, hexadecyl and eicosyl). These results demonstrate that there might be an optimum alkyl chain length for each phenolipid in each type of emulsion systems. Copyright © 2014 Elsevier Ltd. All rights reserved.
Herbert Falk: a vital force in the renaissance of bile acid research and bile acid therapy.
Hofmann, Alan F
2011-01-01
Herbert Falk died on August 8, 2008, after a long illness. It was his vision that initiated the Bile Acid Meetings and brought to market chenodeoxycholic acid and ursodeoxycholic acid for the dissolution of cholesterol gallstones as well as the successful treatment of cholestatic liver disease. The 1st Bile Acid Meeting was a small workshop held at the University Hospital of Freiburg in 1970. Great interest in the topic was evident at that small meeting and led to a larger meeting in 1972, whose scope included both the basic and clinical aspects of bile acids. These meetings have continued at biennial intervals, the 2010 meeting being the 21st. The program has always included discussions of the most fundamental aspects of bile acid biosynthesis and metabolism as well as clinical applications of bile acid therapy. The meetings featured brief presentations, ample time for discussion, and imaginative social programs. They have always been flawlessly organized. Social programs usually included a hike through the beautiful countryside of the Black Forest followed by dinner in a rustic restaurant. Herbert Falk took part in these programs, personally welcoming every participant. In the warm glow of the 'Badische' hospitality, friendships developed, and scientific collaborations were often arranged. From a scientific standpoint, there has been enormous progress in understanding the chemistry and biology of bile acids. Herbert Falk established the Windaus Prize in 1978, and the prize has been given to individuals whose contributions moved the field forward. These bile acid meetings have been marvelous, rewarding experiences. We must all be grateful to Herbert Falk's vision in establishing the Falk Foundation that has so generously sponsored these meetings. We also express our gratitude to his widow, Ursula Falk, who continues this worthy tradition. Copyright © 2011 S. Karger AG, Basel.
Assfalg, Michael; Gianolio, Eliana; Zanzoni, Serena; Tomaselli, Simona; Russo, Vito Lo; Cabella, Claudia; Ragona, Laura; Aime, Silvio; Molinari, Henriette
2007-11-01
The binding affinities of a selected series of Gd(III) chelates bearing bile acid residues, potential hepatospecific MRI contrast agents, to a liver cytosolic bile acid transporter, have been determined through relaxivity measurements. The Ln(III) complexes of compound 1 were selected for further NMR structural analysis aimed at assessing the molecular determinants of binding. A number of NMR experiments have been carried out on the bile acid-like adduct, using both diamagnetic Y(III) and paramagnetic Gd(III) complexes, bound to a liver bile acid binding protein. The identified protein "hot spots" defined a single binding site located at the protein portal region. The presented findings will serve in a medicinal chemistry approach for the design of hepatocytes-selective gadolinium chelates for liver malignancies detection.
Intestinal bile acid malabsorption in cystic fibrosis.
O'Brien, S; Mulcahy, H; Fenlon, H; O'Broin, A; Casey, M; Burke, A; FitzGerald, M X; Hegarty, J E
1993-08-01
This study aimed at examining the mechanisms participating in excessive faecal bile acid loss in cystic fibrosis. The study was designed to define the relation between faecal fat and faecal bile acid loss in patients with and without cystic fibrosis related liver disease; to assess terminal ileal bile acid absorption by a seven day whole body retention of selenium labelled homotaurocholic acid (SeHCAT); and to determine if small intestinal bacterial overgrowth contributes to faecal bile acid loss. The study population comprised 40 patients (27 men; median age 18 years) with cystic fibrosis (n = 8) and without (n = 32) liver disease and eight control subjects. Faecal bile acid excretion was significantly higher in cystic fibrosis patients without liver disease compared with control subjects (mean (SEM) 21.5 (2.4) and 7.3 (1.2) micromoles/kg/24 hours respectively; p < 0.01) and patients with liver disease (7.9 (1.3) micromoles/kg/24 hours; p < 0.01). No correlation was found between faecal fat (g fat/24 hours) and faecal bile acid (micromoles 24 hours) excretion. Eight (33%) of cystic fibrosis patients had seven day SeHCAT retention < 10% (normal retention > 20%). SeHCAT retention in cystic fibrosis patients with liver disease was comparable with control subjects (30.0 (SEM) 8.3% v 36.8 (5.9)%; p = NS) while SeHCAT retention in cystic fibrosis patients who did not have liver disease was significantly reduced (19.9 (3.8); p < 0.05). Although evidence of small bowel bacterial overgrowth was present in 40% of patients no relation was found between breath hydrogen excretion, faecal fat, and faecal bile acid loss. The results are consistent with the presence of an abnormality in terminal ideal function in patients with cystic fibrosis who do not have liver disease and that a defect in the ileal absorption of bile acids may be a contributory factor to excessive faecal bile acid loss. Faecal bile acid loss in cystic fibrosis is unrelated to the presence of intraluminal fat or intestinal bacterial overgrowth.
Intestinal bile acid malabsorption in cystic fibrosis.
O'Brien, S; Mulcahy, H; Fenlon, H; O'Broin, A; Casey, M; Burke, A; FitzGerald, M X; Hegarty, J E
1993-01-01
This study aimed at examining the mechanisms participating in excessive faecal bile acid loss in cystic fibrosis. The study was designed to define the relation between faecal fat and faecal bile acid loss in patients with and without cystic fibrosis related liver disease; to assess terminal ileal bile acid absorption by a seven day whole body retention of selenium labelled homotaurocholic acid (SeHCAT); and to determine if small intestinal bacterial overgrowth contributes to faecal bile acid loss. The study population comprised 40 patients (27 men; median age 18 years) with cystic fibrosis (n = 8) and without (n = 32) liver disease and eight control subjects. Faecal bile acid excretion was significantly higher in cystic fibrosis patients without liver disease compared with control subjects (mean (SEM) 21.5 (2.4) and 7.3 (1.2) micromoles/kg/24 hours respectively; p < 0.01) and patients with liver disease (7.9 (1.3) micromoles/kg/24 hours; p < 0.01). No correlation was found between faecal fat (g fat/24 hours) and faecal bile acid (micromoles 24 hours) excretion. Eight (33%) of cystic fibrosis patients had seven day SeHCAT retention < 10% (normal retention > 20%). SeHCAT retention in cystic fibrosis patients with liver disease was comparable with control subjects (30.0 (SEM) 8.3% v 36.8 (5.9)%; p = NS) while SeHCAT retention in cystic fibrosis patients who did not have liver disease was significantly reduced (19.9 (3.8); p < 0.05). Although evidence of small bowel bacterial overgrowth was present in 40% of patients no relation was found between breath hydrogen excretion, faecal fat, and faecal bile acid loss. The results are consistent with the presence of an abnormality in terminal ideal function in patients with cystic fibrosis who do not have liver disease and that a defect in the ileal absorption of bile acids may be a contributory factor to excessive faecal bile acid loss. Faecal bile acid loss in cystic fibrosis is unrelated to the presence of intraluminal fat or intestinal bacterial overgrowth. PMID:8174969
Sepe, Valentina; Renga, Barbara; Festa, Carmen; D'Amore, Claudio; Masullo, Dario; Cipriani, Sabrina; Di Leva, Francesco Saverio; Monti, Maria Chiara; Novellino, Ettore; Limongelli, Vittorio; Zampella, Angela; Fiorucci, Stefano
2014-09-25
Bile acids are signaling molecules interacting with the nuclear receptor FXR and the G-protein coupled receptor 1 (GP-BAR1/TGR5). GP-BAR1 is a promising pharmacological target for the treatment of steatohepatitis, type 2 diabetes, and obesity. Endogenous bile acids and currently available semisynthetic bile acids are poorly selective toward GP-BAR1 and FXR. Thus, in the present study we have investigated around the structure of UDCA, a clinically used bile acid devoid of FXR agonist activity, to develop a large family of side chain modified 3α,7β-dihydroxyl cholanoids that selectively activate GP-BAR1. In vivo and in vitro pharmacological evaluation demonstrated that administration of compound 16 selectively increases the expression of pro-glucagon 1, a GP-BAR1 target, in the small intestine, while it had no effect on FXR target genes in the liver. Further, compound 16 results in a significant reshaping of bile acid pool in a rodent model of cholestasis. These data demonstrate that UDCA is a useful scaffold to generate novel and selective steroidal ligands for GP-BAR1.
Iguchi, Yusuke; Yamaguchi, Masafumi; Sato, Hiroyuki; Kihira, Kenji; Nishimaki-Mogami, Tomoko; Une, Mizuho
2010-01-01
TGR5 is a G protein-coupled receptor that is activated by bile acids, resulting in an increase in cAMP levels and the subsequent modulation of energy expenditure in brown adipose tissue and muscle. Therefore, the development of a TGR5-specific agonist could lead to the prevention and treatment of various metabolic disorders related to obesity. In the present study, we evaluated the ability of bile alcohols, which are structurally and physiologically similar to bile acids and are produced as the end products of cholesterol catabolism in evolutionarily primitive vertebrates, to act as TGR5 agonists. In a cell-based reporter assay and a cAMP production assay performed in vitro, most bile alcohols with a side chain containing hydroxyl group(s) were highly efficacious agonists for TGR5 comparable to its most potent ligand in the naturally occurring bile acid, lithocholic acid. However, the abilities of the bile alcohols to activate TGR5 varied with the position and number of the hydroxyl substituent in the side chain. Additionally, the conformation of the steroidal nucleus of bile alcohols is also important for its activity as a TGR5 agonist. Thus, we have provided new insights into the structure-activity relationships of bile alcohols as TGR5 agonists. PMID:20023205
Pattni, S S; Brydon, W G; Dew, T; Johnston, I M; Nolan, J D; Srinivas, M; Basumani, P; Bardhan, K D; Walters, J R F
2013-10-01
Bile acid diarrhoea is a common, under-diagnosed cause of chronic watery diarrhoea, responding to specific treatment with bile acid sequestrants. We previously showed patients with bile acid diarrhoea have lower median levels compared with healthy controls, of the ileal hormone fibroblast growth factor 19 (FGF19), which regulates bile acid synthesis. To measure serum FGF19 and SeHCAT retention prospectively in patients with chronic diarrhoea. One hundred and fifty-two consecutive patients were grouped according to (75) Se-homocholic acid taurine (SeHCAT) 7-day retention: normal (>15%) in 72 (47%) diarrhoea controls; ≤15% in 54 (36%) with primary bile acid diarrhoea, and in 26 (17%) with secondary bile acid diarrhoea. Fasting blood was assayed for FGF19, 7α-hydroxy-4-cholesten-3-one (C4) and total bile acids. FGF19 was significantly lower in the primary bile acid diarrhoea group compared with the diarrhoea control group (median 147 vs. 225 pg/mL, P < 0.001), and also in the secondary group (P < 0.006). FGF19 and SeHCAT values were positively correlated (rs = 0.44, P < 0.001); both were inversely related to C4. Other significant relationships included SeHCAT and body mass index (BMI)(P = 0.02), and FGF19 with age (P < 0.01). The negative and positive predictive values of FGF19 ≤ 145 pg/mL for a SeHCAT <10% were 82% and 61%, respectively, and were generally improved in an index including BMI, age and C4. In a subset of 28 primary patients, limited data suggested that FGF19 could predict response to sequestrant therapy. Reduced fibroblast growth factor 19 is a feature of bile acid diarrhoea. Further studies will fully define its role in predicting the response of these patients to therapy. © 2013 John Wiley & Sons Ltd.
Anjum, Varisha; Arora, Poonam; Ansari, Shahid Husain; Najmi, Abul Kalam; Ahmad, Sayeed
2017-12-01
Carica papaya Linn. (Caricaceae) leaf (CPL) juice has long been traditionally used in ethnomedicine for dengue fever. The study examines the effects of standardized CPL aqueous extract (SCPLE) on platelet count, extramedullary haematopoiesis (EMH), and immunomodulation in cyclophosphamide (CP)-induced animal model of thrombocytopenia. The extract was analyzed for myricetin, caffeic acid, trans-ferulic acid, and kaempferol using HPTLC for standardization followed by UPLC-qTOF/MS fingerprinting for metabolite signature. The effects of SCPLE (50 and 150 mg/kg p.o.) on proliferative response of platelet count and total leucocyte count (TLC) were observed up to 14 days in Wistar rat. However, delayed-type hypersensitivity (DTH), haemagglutination titre (HT), and in vivo carbon clearance were examined as immunomodulatory parameters in albino mice at 150 mg/kg p.o. against CP. The quantitative HPTLC estimation of SCPLE showed the presence of myricetin, caffeic acid, trans-ferulic acid, and kaempferol up to 280.16 ± 5.99, 370.18 ± 6.27, 1110.86 ± 2.97, and 160.53 ± 2.48 (μg/g), respectively. Twenty-four metabolites were identified using UPLC-qTOF/MS. Oral administration of SCPLE (150 mg/kg) in thrombocytopenic rats exhibited significant (p < 0.01) increase in thrombocytes (1014.83 × 10 3 cells/mm 3 ), DTH response (0.16 ± 0.004), and phagocytic index (63.15% increase) as compared to CP-induced thrombocytopenia group. Histopathological studies showed minimal fibrosis in spleen histology. Results suggest CPL can mediate the release of platelets providing the means for the treatment and prevention of dengue.
Schacht, Anna Christina; Sørensen, Michael; Munk, Ole Lajord; Frisch, Kim
2016-04-01
During cholestasis, accumulation of conjugated bile acids may occur in the liver and lead to hepatocellular damage. Inspired by our recent development of N-(11)C-methyl-glycocholic acid-that is, (11)C-cholylsarcosine-a tracer for PET of the endogenous glycine conjugate of cholic acid, we report here a radiosynthesis of N-(11)C-methyl-taurine-conjugated bile acids and biodistribution studies in pigs by PET/CT. A radiosynthesis of N-(11)C-methyl-taurine-conjugated bile acids was developed and used to prepare N-(11)C-methyl-taurine conjugates derived from cholic, chenodeoxycholic, deoxycholic, ursodeoxycholic, and lithocholic acid. The lipophilicity of these new tracers was determined by reversed-phase thin-layer chromatography. The effect of lipophilicity and structure on the biodistribution was investigated in pigs by PET/CT using the tracers derived from cholic acid (3α-OH, 7α-OH, 12α-OH), ursodeoxycholic acid (3α-OH, 7β-OH), and lithocholic acid (3α-OH). The radiosyntheses of the N-(11)C-methyl-taurine-conjugated bile acids proceeded with radiochemical yields of 61% (decay-corrected) or greater and radiochemical purities greater than 99%. PET/CT in pigs revealed that the tracers were rapidly taken up by the liver and secreted into bile. There was no detectable radioactivity in urine. Significant reflux of N-(11)C-methyl-taurolithocholic acid into the stomach was observed. We have successfully developed a radiosynthesis of N-(11)C-methyl-taurine-conjugated bile acids. These tracers behave in a manner similar to endogenous taurine-conjugated bile acids in vivo and are thus promising for functional PET of patients with cholestatic diseases. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Cheng, Long; Zhao, Lijin; Li, Dajiang; Liu, Zipei; Chen, Geng; Tian, Feng; Li, Xiaowu; Wang, Shuguang
2010-07-27
The pathogenesis of nonanastomotic strictures with a patent hepatic artery remains to be investigated. This study focuses on the role of cholangiocyte bile acid transporters in bile duct injury after liver transplantation. Sprague-Dawley rats were divided into three groups (n=20 for each): the sham-operated group (Sham), the transplant group with 1-hr donor liver cold preservation (CP-1h), and the transplant group with 12-hr donor liver cold preservation (CP-12h). Bile was collected for biochemical analysis. The histopathologic evaluation of bile duct injury was performed and the cholangiocyte bile acid transporters apical sodium-dependent bile acid transporter (ASBT), ileal lipid binding protein (ILBP), and Ostalpha/Ostbeta were investigated. RESULTS.: The immunohistochemical assay suggested that ASBT and ILBP were expressed exclusively on large bile duct epithelial cells, whereas Ostalpha and Ostbeta were expressed on both small and large bile ducts. Western blot and quantitative polymerase chain reaction analysis showed that the expression levels of these transporters dramatically decreased after transplantation. It took seven to 14 days for ILBP, Ostalpha, and Ostbeta to recover, whereas ASBT recovered within 3 days and even reached a peak above the normal level seven days after operation. In the CP-12h group, the ratios of the ASBT/ILBP, ASBT/Ostalpha and ASBT/Ostbeta expression levels were correlated with the injury severity scores of large but not small bile ducts. The results suggest that the unparallel alteration of cholangiocyte bile acid transporters may play a potential role in large bile duct injury after liver transplantation with prolonged donor liver preservation.
An Intestinal Farnesoid X Receptor–Ceramide Signaling Axis Modulates Hepatic Gluconeogenesis in Mice
Xie, Cen; Shi, Jingmin; Gao, Xiaoxia; Sun, Dongxue; Sun, Lulu; Wang, Ting; Takahashi, Shogo; Anitha, Mallappa; Krausz, Kristopher W.; Patterson, Andrew D.
2017-01-01
Increasing evidence supports the view that intestinal farnesoid X receptor (FXR) is involved in glucose tolerance and that FXR signaling can be profoundly impacted by the gut microbiota. Selective manipulation of the gut microbiota–FXR signaling axis was reported to significantly impact glucose intolerance, but the precise molecular mechanism remains largely unknown. Here, caffeic acid phenethyl ester (CAPE), an over-the-counter dietary supplement and an inhibitor of bacterial bile salt hydrolase, increased levels of intestinal tauro-β-muricholic acid, which selectively suppresses intestinal FXR signaling. Intestinal FXR inhibition decreased ceramide levels by suppressing expression of genes involved in ceramide synthesis specifically in the intestinal ileum epithelial cells. The lower serum ceramides mediated decreased hepatic mitochondrial acetyl-CoA levels and pyruvate carboxylase (PC) activities and attenuated hepatic gluconeogenesis, independent of body weight change and hepatic insulin signaling in vivo; this was reversed by treatment of mice with ceramides or the FXR agonist GW4064. Ceramides substantially attenuated mitochondrial citrate synthase activities primarily through the induction of endoplasmic reticulum stress, which triggers increased hepatic mitochondrial acetyl-CoA levels and PC activities. These results reveal a mechanism by which the dietary supplement CAPE and intestinal FXR regulates hepatic gluconeogenesis and suggest that inhibiting intestinal FXR is a strategy for treating hyperglycemia. PMID:28223344
Appleby, R N; Bajor, A; Gillberg, P-G; Graffner, H; Simrén, M; Ung, K A; Walters, Jrf
2017-04-01
Primary bile acid diarrhoea (BAD) is associated with increased bile acid synthesis and low fibroblast growth factor 19 (FGF19). Bile acid sequestrants are used as therapy, but are poorly tolerated and may exacerbate FGF19 deficiency. The purpose of this study was to evaluate the pharmacological effects of conventional sequestrants and a colonic-release formulation preparation of colestyramine (A3384) on bile acid metabolism and bowel function in patients with BAD. Patients with seven-day 75 selenium-homocholic acid taurine (SeHCAT) scan retention <10% were randomised in a double-blind protocol to two weeks treatment with twice-daily A3384 250 mg ( n = 6), 1 g ( n = 7) or placebo ( n = 6). Thirteen patients were taking conventional sequestrants at the start of the study. Symptoms were recorded and serum FGF19 and 7α-hydroxy-4-cholesten-3-one (C4) measured. Median serum FGF19 on conventional sequestrant treatment was 28% lower than baseline values in BAD ( p < 0.05). C4 on conventional sequestrant treatment was 58% higher in BAD ( p < 0.001). No changes were seen on starting or withdrawing A3384. A3384 improved diarrhoeal symptoms, with a median reduction of 2.2 points on a 0-10 Likert scale compared to placebo, p < 0.05. Serum FGF19 was suppressed and bile acid production up-regulated on conventional bile acid sequestrants, but not with A3384. This colonic-release formulation of colestyramine produced symptomatic benefit in patients with BAD.
Bajor, A; Gillberg, P-G; Graffner, H; Simrén, M; Ung, KA; Walters, JRF
2016-01-01
Background Primary bile acid diarrhoea (BAD) is associated with increased bile acid synthesis and low fibroblast growth factor 19 (FGF19). Bile acid sequestrants are used as therapy, but are poorly tolerated and may exacerbate FGF19 deficiency. Aim The purpose of this study was to evaluate the pharmacological effects of conventional sequestrants and a colonic-release formulation preparation of colestyramine (A3384) on bile acid metabolism and bowel function in patients with BAD. Methods Patients with seven-day 75selenium-homocholic acid taurine (SeHCAT) scan retention <10% were randomised in a double-blind protocol to two weeks treatment with twice-daily A3384 250 mg (n = 6), 1 g (n = 7) or placebo (n = 6). Thirteen patients were taking conventional sequestrants at the start of the study. Symptoms were recorded and serum FGF19 and 7α-hydroxy-4-cholesten-3-one (C4) measured. Results Median serum FGF19 on conventional sequestrant treatment was 28% lower than baseline values in BAD (p < 0.05). C4 on conventional sequestrant treatment was 58% higher in BAD (p < 0.001). No changes were seen on starting or withdrawing A3384. A3384 improved diarrhoeal symptoms, with a median reduction of 2.2 points on a 0–10 Likert scale compared to placebo, p < 0.05. Conclusions Serum FGF19 was suppressed and bile acid production up-regulated on conventional bile acid sequestrants, but not with A3384. This colonic-release formulation of colestyramine produced symptomatic benefit in patients with BAD. PMID:28507750
Mice with chimeric livers are an improved model for human lipoprotein metabolism.
Ellis, Ewa C S; Naugler, Willscott Edward; Nauglers, Scott; Parini, Paolo; Mörk, Lisa-Mari; Jorns, Carl; Zemack, Helen; Sandblom, Anita Lövgren; Björkhem, Ingemar; Ericzon, Bo-Göran; Wilson, Elizabeth M; Strom, Stephen C; Grompe, Markus
2013-01-01
Rodents are poor model for human hyperlipidemias because total cholesterol and low density lipoprotein levels are very low on a normal diet. Lipoprotein metabolism is primarily regulated by hepatocytes and we therefore assessed whether chimeric mice extensively repopulated with human cells can model human lipid and bile acid metabolism. FRG [ F ah(-/-) R ag2(-/-)Il2r g (-/-)]) mice were repopulated with primary human hepatocytes. Serum lipoprotein lipid composition and distribution (VLDL, LDL, and HDL) was analyzed by size exclusion chromatography. Bile was analyzed by LC-MS or by GC-MS. RNA expression levels were measured by quantitative RT-PCR. Chimeric mice displayed increased LDL and VLDL fractions and a lower HDL fraction compared to wild type, thus significantly shifting the ratio of LDL/HDL towards a human profile. Bile acid analysis revealed a human-like pattern with high amounts of cholic acid and deoxycholic acid (DCA). Control mice had only taurine-conjugated bile acids as expcted, but highly repopulated mice had glycine-conjugated cholic acid as found in human bile. RNA levels of human genes involved in bile acid synthesis including CYP7A1, and CYP27A1 were significantly upregulated as compared to human control liver. However, administration of recombinant hFGF19 restored human CYP7A1 levels to normal. Humanized-liver mice showed a typical human lipoprotein profile with LDL as the predominant lipoprotein fraction even on a normal diet. The bile acid profile confirmed presence of an intact enterohepatic circulation. Although bile acid synthesis was deregulated in this model, this could be fully normalized by FGF19 administration. Taken together these data indicate that chimeric FRG-mice are a useful new model for human lipoprotein and bile-acid metabolism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Qingyong, E-mail: li_qingyong@126.com; Zhang, Li; Zu, Yuangang
2013-04-19
Graphical abstract: - Highlights: • Anticancer effects of B4, a novel berberine–bile acid analog, were tested. • B4 inhibited cell proliferation in hepatocellular carcinoma cells. • It also stimulated mitochondrial ROS production and membrane depolarization. • Effects of B4 were inhibited by a non-specific ROS scavenger. • Regulation of ROS generation may be a strategy for treating hepatic carcinoma. - Abstract: 2,3-Methenedioxy-9-O-(3′α,7′α-dihydroxy-5′β-cholan-24′-propy-lester) berberine (B4) is a novel berberine–bile acid analog synthesized in our laboratory. Previously, we showed that B4 exerted greater cytotoxicity than berberine in several human cancer cell lines. Therefore, we further evaluated the mechanism governing its anticancer actionsmore » in hepatocellular carcinoma SMMC-7721 cells. B4 inhibited the proliferation of SMMC-7721 cells, and stimulated reactive oxygen species (ROS) production and mitochondrial membrane depolarization; anti-oxidant capacity was reduced. B4 also induced the release of cytochrome c from the mitochondria to the cytosol and an increase in poly ADP-ribose polymerase (PARP) cleavage products, reflective of caspase-3 activation. Moreover, B4 induced the nuclear translocation of apoptosis-inducing factor (AIF) and a rise in DNA fragmentation. Pretreatment with the anti-oxidant N-acetylcysteine (NAC) inhibited B4-mediated effects, including cytotoxicity, ROS production, mitochondrial membrane depolarization increase in intracellular Ca{sup 2+}, cytochrome c release, PARP cleavage, and AIF translocation. Our data suggest that B4 induces ROS-triggered caspase-dependent and caspase-independent apoptosis pathways in SMMC-7721 cells and that ROS production may be a specific potential strategy for treating hepatic carcinoma.« less
Bile acid malabsorption in Crohn's disease and indications for its assessment using SeHCAT.
Nyhlin, H; Merrick, M V; Eastwood, M A
1994-01-01
Patients with Crohn's disease who suffer from longstanding diarrhoea that does not respond to conventional treatment pose a common clinical problem. Bile acid malabsorption is a possible cause, although its prevalence and clinical importance is unclear. This paper explores the clinical indications for referring patients with Crohn's disease for bile acid assessment and the extent of bile acid malabsorption in this selected group of patients. The selenium labelled bile acid SeHCAT was used to assess the effect of disease on the integrity of the enterohepatic circulation. Altogether 76% of the patients referred for bile acid assessment had longstanding diarrhoea that had not responded to conventional anti-diarrhoeal treatment or an increase in steroid therapy as their sole or predominant symptom. Ninety per cent of patients with bowel resections, almost exclusively ileocaecal, had abnormal SeHCAT retention (< 5% at seven days). Twenty eight per cent of patients with Crohn's disease who had not undergone resection 28% had a SeHCAT retention < 5%, signifying bile acid malabsorption. Nineteen of 22 patients given cholestyramine treatment subsequent to the SeHCAT test had a good symptomatic response. In conclusion, the prevalence of bile acid malabsorption in this selected group with Crohn's disease is sufficiently high to justify performing the SeHCAT test in order to separate the various differential diagnoses. PMID:8307458
Zhang, Yong; Li, Jing; Zhang, Weiqi; Wang, Rongsheng; Qiu, Qiaoqing; Luo, Feng; Hikichi, Yasufumi; Ohnishi, Kouhei; Ding, Wei
2017-01-01
Hydroxycinnamic acids (HCAs) are typical monocyclic phenylpropanoids, including cinnamic acid (Cin), coumaric acid (Cou), caffeic acid (Caf), ferulic acid (FA) and their isomers, and involved in the interactions between pathogens and host plants. Here, we focused on the impact of HCAs on expression of type III secretion system (T3SS) in Ralstonia solanacearum . FA significantly induced the expression of the T3SS and some type III effectors (T3Es) genes in hrp -inducing medium, while did not the other HCAs. However, exogenously supplemented FA did not affect the T3SS expression in planta and the elicitation of the hypersensitive response (HR) in tobacco leaves. Consistent with its central roles in pathogenicity, the FA-induced expression of the T3SS led to significant promotion on infection process of R. solanacearum in tomato plants under hydroponics cultivation. Moreover, the FA-induced expression of the T3SS was specifically mediated by the well-characterized signaling cascade PrhA-prhI/R-PrhJ-HrpG-HrpB, independent of the other known regulatory pathways. In summary, our results demonstrated that FA, a novel inducer of the T3SS in R. solanacearum , was able to promote its infection process in host plants under hydroponics condition.
Effects of dose, flow rate, and bile acid on diclofenac disposition in the perfused rat liver.
Uraki, Misato; Kawase, Atsushi; Matsushima, Yuka; Iwaki, Masahiro
2016-06-01
An in situ perfused rat liver system is useful for studying the hepatic disposition of drugs and their metabolites. However, the effects of the perfusion conditions on drug disposition are unclear. We examined the effects of conditions such as flow rate (13 or 26 mL/min) and bile acid on disposition of diclofenac (DF) as a model drug and DF metabolites [diclofenac-1-O-acyl glucuronide (DF-Glu) or 4'-hydroxydiclofenac (DF-4'OH)] in the absence of albumin. DF, DF-Glu, and DF-4'OH concentrations in the perfusate and cumulative amounts of DF-Glu excreted in bile were measured using high-performance liquid chromatography methods. DF in the perfusate was rapidly eliminated as the perfusate flow rate increased. The area under the plasma concentration-time curve from 0 to 60 min (AUC0-60) for DF-Glu and DF-4'OH in a perfusate containing bile acid was lower at a flow rate of 26 and 13 mL/min, respectively. The bile flow rate at 26 mL/min with 24 μM of bile acid in the perfusate was significantly higher (ca. 3.5 times) compared with that at 13 mL/min without bile acid. Cumulative biliary DF-Glu excretion was also dramatically affected by the flow rate and addition of bile acid. This study indicated that the flow rate and bile acid in the perfused rat liver were key factors for bile flow rate and DF, DF-Glu, and DF-4'OH disposition in the absence of albumin.
Fujita, Kyosuke; Iguchi, Yusuke; Une, Mizuho; Watanabe, Shiro
2017-04-01
The farnesoid X receptor (FXR) is a major nuclear receptor of bile acids; its activation suppresses sterol regulatory element-binding protein 1c (SREBP1c)-mediated lipogenesis and decreases the lipid contents in the liver. There are many reports showing that the administration of ursodeoxycholic acid (UDCA) suppresses lipogenesis and reduces the lipid contents in the liver of experimental animals. Since UDCA is not recognized as an FXR agonist, these effects of UDCA cannot be readily explained by its direct activation of FXR. We observed that the dietary administration of UDCA in mice decreased the expression levels of SREBP1c and its target lipogenic genes. Alpha- and β-muricholic acids (MCA) and cholic acid (CA) were the major bile acids in the mouse liver but their contents decreased upon UDCA administration. The hepatic contents of chenodeoxycholic acid and deoxycholic acid (DCA) were relatively low but were not changed by UDCA. UDCA did not show FXR agonistic or antagonistic potency in in vitro FXR transactivation assay. Taking these together, we deduced that the above-mentioned change in hepatic bile acid composition induced upon UDCA administration might cause the relative increase in the FXR activity in the liver, mainly by the reduction in the content of β-MCA, a farnesoid X receptor antagonist, which suggests a mechanism by which UDCA suppresses lipogenesis and decreases the lipid contents in the mouse liver.
Macias, R I; Monte, M J; El-Mir, M Y; Villanueva, G R; Marin, J J
1998-09-01
Rat liver uptake and bile output of the cytostatic complex cis-diammineplatinum(II)-chlorocholylglycinate (Bamet-R2) were studied. Up to 100 microM, Bamet-R2 uptake by rat hepatocytes in primary culture followed saturation kinetics (Vmax = 0.65 +/- 0.12 nmol/5 min per mg protein; K(M) = 45.2 +/- 10.7 microM). Bamet-R2 uptake was lower than that of cholylglycinate (CG) but higher than that of cisplatin. Replacement of 116 mM NaCl by 116 mM choline chloride did not significantly reduce Bamet-R2 uptake. Addition of 500 microM CG, cholic acid, estrone sulfate, or ouabain to 50 microM Bamet-R2-containing incubation media inhibited Bamet-R2 uptake. No liver biotransformation of Bamet-R2 occurred, as indicated by HPLC analysis of bile collected from anesthetized rats after intravenous administration of the drug. Bamet-R2 uptake and secretion into bile by isolated rat livers exceeded those of cisplatin but were lower than those of CG. Differences between Bamet-R2 and CG were more marked for bile output than for liver uptake. Thus, higher Bamet-R2 than CG or cisplatin liver content was found. Co-administration of Bamet-R2 and CG revealed that CG induced a slight reduction in Bamet-R2 uptake and a marked inhibition in Bamet-R2 bile output. By contrast, Bamet-R2 had no effect on CG on either liver uptake or bile output. In sum, the present data indicate that Bamet-R2 is efficiently taken up and secreted into bile by the rat liver by mechanisms shared in part by natural bile acids.
Kato, Takuya; Hayashi, Hisamitsu; Sugiyama, Yuichi
2010-09-01
The reduced expression of the bile salt export pump (BSEP/ABCB11) at the canalicular membrane is associated with cholestasis-induced hepatotoxicity due to the accumulation of bile acids in hepatocytes. We previously reported that 4-phenylbutyrate (4PBA), an approved drug for urea cycle disorders, is a promising agent for intrahepatic cholestasis because it increases both the cell surface expression and the transport capacity of BSEP. In the present study, we searched for effective compounds other than 4PBA by focusing on short- and medium-chain fatty acids, which have similar characteristics to 4PBA such as their low-molecular-weight and a carboxyl group. In transcellular transport studies using Madin-Darby canine kidney (MDCK) II cells, all short- and medium-chain fatty acids tested except for formate, acetate, and hexanoic acid showed more potent effects on wild type (WT) BSEP-mediated [3H]taurocholate transport than did 4PBA. The increase in WT BSEP transport with butyrate and octanoic acid treatment correlated with an increase in its expression at the cell surface. Two PFIC2-type variants, E297G and D482G BSEP, were similarly affected with both compounds treatment. The prolonged half-life of cell surface-resident WT BSEP was responsible for this increased octanoic acid-stimulated transport, but not for that of butyrate. In conclusion, short- and medium-chain fatty acids have potent effects on the increase in WT and PFIC2-type BSEP-mediated transport in MDCK II cells. Although both short- and medium-chain fatty acids enhance the transport capacity of WT and PFIC2-type BSEP by inducing those expressions at the cell surface, the underlying mechanism seems to differ between fatty acids. 2010 Elsevier B.V. All rights reserved.
Feline hepatic biotransformation of diazepam: Differences between cats and dogs.
van Beusekom, Cyrina D; van den Heuvel, Jeroen J M W; Koenderink, Jan B; Russel, Frans G M; Schrickx, Johannes A
2015-12-01
In contrast to humans and dogs, diazepam has been reported to induce severe hepatic side effects in cats, particularly after repeated dosing. With the aim to elucidate the mechanisms underlying this apparent sensitivity of cats to drug-induced liver injury, in a series of in vitro experiments, the feline-specific biotransformation of diazepam was studied with liver microsomes obtained from cats and dogs and the possible inhibition of the bile salt export pump (Bsep) was measured in isolated membrane vesicles overexpressing feline and canine Bsep. In line with previous in vivo studies, the phase I metabolites nordiazepam, temazepam and oxazepam were measurable in microsomal incubations, although enzyme velocity of demethylases and hydroxylases differed significantly between cats and dogs. In cats, the main metabolite was temazepam, which also could be glucuronidated. In contrast to dogs, no other glucuronidated metabolites could be observed. In addition, in the membrane vesicles an inhibition of the transport of the Bsep substrate taurocholic acid could be observed in the presence of diazepam and its metabolites. It was concluded that both mechanisms, the slow biotransformation of diazepam as well the inhibition of the bile acid efflux that results in an accumulation of bile acids in the hepatocytes, seem to contribute to the liver injury observed in cats following repetitive treatment with diazepam. Copyright © 2015 Elsevier Ltd. All rights reserved.
Binding of bile acids by pastry products containing bioactive substances during in vitro digestion.
Dziedzic, Krzysztof; Górecka, Danuta; Szwengiel, Artur; Smoczyńska, Paulina; Czaczyk, Katarzyna; Komolka, Patrycja
2015-03-01
The modern day consumer tends to choose products with health enhancing properties, enriched in bioactive substances. One such bioactive food component is dietary fibre, which shows a number of physiological properties including the binding of bile acids. Dietary fibre should be contained in everyday, easily accessible food products. Therefore, the aim of this study was to determine sorption capacities of primary bile acid (cholic acid - CA) and secondary bile acids (deoxycholic - DCA and lithocholic acids - LCA) by muffins (BM) and cookies (BC) with bioactive substances and control muffins (CM) and cookies (CC) in two sections of the in vitro gastrointestinal tract. Variations in gut flora were also analysed in the process of in vitro digestion of pastry products in a bioreactor. Enzymes: pepsin, pancreatin and bile salts: cholic acid, deoxycholic acid and lithocholic acid were added to the culture. Faecal bacteria, isolated from human large intestine, were added in the section of large intestine. The influence of dietary fibre content in cookies and concentration of bile acids in two stages of digestion were analysed. Generally, pastry goods with bioactive substances were characterized by a higher content of total fibre compared with the control samples. These products also differ in the profile of dietary fibre fractions. Principal Component Analysis (PCA) showed that the bile acid profile after two stages of digestion depends on the quality and quantity of fibre. The bile acid profile after digestion of BM and BC forms one cluster, and with the CM and CC forms a separate cluster. High concentration of H (hemicellulose) is positively correlated with LCA (low binding effect) and negatively correlated with CA and DCA contents. The relative content of bile acids in the second stage of digestion was in some cases above the content in the control sample, particularly LCA. This means that the bacteria introduced in the 2nd stage of digestion synthesize the LCA.
Torres, J; Palmela, C; Brito, H; Bao, X; Ruiqi, H; Moura-Santos, P; Pereira da Silva, J; Oliveira, A; Vieira, C; Perez, K; Itzkowitz, S H; Colombel, J F; Humbert, L; Rainteau, D; Cravo, M; Rodrigues, C M; Hu, J
2018-02-01
Patients with primary sclerosing cholangitis associated with inflammatory bowel disease (PSC-IBD) have a very high risk of developing colorectal neoplasia. Alterations in the gut microbiota and/or gut bile acids could account for the increase in this risk. However, no studies have yet investigated the net result of cholestasis and a potentially altered bile acid pool interacting with a dysbiotic gut flora in the inflamed colon of PSC-IBD. The aim of this study was to compare the gut microbiota and stool bile acid profiles, as well as and their correlation in patients with PSC-IBD and inflammatory bowel disease alone. Thirty patients with extensive colitis (15 with concomitant primary sclerosing cholangitis) were prospectively recruited and fresh stool samples were collected. The microbiota composition in stool was profiled using bacterial 16S rRNA sequencing. Stool bile acids were assessed by high-performance liquid chromatography tandem mass spectrometry. The total stool bile acid pool was significantly reduced in PSC-IBD. Although no major differences were observed in the individual bile acid species in stool, their overall combination allowed a good separation between PSC-IBD and inflammatory bowel disease. Compared with inflammatory bowel disease alone, PSC-IBD patients demonstrated a different gut microbiota composition with enrichment in Ruminococcus and Fusobacterium genus compared with inflammatory bowel disease. At the operational taxonomic unit level major shifts were observed within the Firmicutes (73%) and Bacteroidetes phyla (17%). Specific microbiota-bile acid correlations were observed in PSC-IBD, where 12% of the operational taxonomic units strongly correlated with stool bile acids, compared with only 0.4% in non-PSC-IBD. Patients with PSC-IBD had distinct microbiota and microbiota-stool bile acid correlations as compared with inflammatory bowel disease. Whether these changes are associated with, or may predispose to, an increased risk of colorectal neoplasia needs to be further clarified.
Walters, Julian R. F.; Pattni, Sanjeev S.
2010-01-01
Bowel symptoms including diarrhoea can be produced when excess bile acids (BA) are present in the colon. This condition, known as bile acid or bile salt malabsorption, has been under recognized, as the best diagnostic method, the 75Se-homocholic acid taurine (SeHCAT) test, is not available in many countries and is not fully utilized in others. Reduced SeHCAT retention establishes that this is a complication of many other gastrointestinal diseases. Repeated studies show SeHCAT tests are abnormal in about 30% of patients otherwise diagnosed as diarrhoea-predominant irritable bowel syndrome or functional diarrhoea, with an estimated population prevalence of around 1%. Recent work suggests that the condition previously called idiopathic bile acid malabsorption (BAM) is not in fact due to a defect in absorption, but results from an overproduction of BA because of defective feedback inhibition of hepatic bile acid synthesis, a function of the ileal hormone fibroblast growth factor 19 (FGF19). The approach to treatment currently depends on binding excess BA, to reduce their secretory actions, using colestyramine, colestipol and, most recently, colesevelam. Colesevelam has a number of potential advantages that merit further investigation in trials directed at patients with bile acid diarrhoea. PMID:21180614
Walters, Julian R F; Pattni, Sanjeev S
2010-11-01
Bowel symptoms including diarrhoea can be produced when excess bile acids (BA) are present in the colon. This condition, known as bile acid or bile salt malabsorption, has been under recognized, as the best diagnostic method, the (75)Se-homocholic acid taurine (SeHCAT) test, is not available in many countries and is not fully utilized in others. Reduced SeHCAT retention establishes that this is a complication of many other gastrointestinal diseases. Repeated studies show SeHCAT tests are abnormal in about 30% of patients otherwise diagnosed as diarrhoea-predominant irritable bowel syndrome or functional diarrhoea, with an estimated population prevalence of around 1%. Recent work suggests that the condition previously called idiopathic bile acid malabsorption (BAM) is not in fact due to a defect in absorption, but results from an overproduction of BA because of defective feedback inhibition of hepatic bile acid synthesis, a function of the ileal hormone fibroblast growth factor 19 (FGF19). The approach to treatment currently depends on binding excess BA, to reduce their secretory actions, using colestyramine, colestipol and, most recently, colesevelam. Colesevelam has a number of potential advantages that merit further investigation in trials directed at patients with bile acid diarrhoea.
A Substrate Pharmacophore for the Human Sodium Taurocholate Co-transporting Polypeptide
Dong, Zhongqi; Ekins, Sean; Polli, James E.
2014-01-01
Human Sodium Taurocholate Co-transporting Polypeptide (NTCP) is the main bile acid uptake transporter in the liver with the capability to translocate xenobiotics. While its inhibitor requirements have been recently characterized, its substrate requirements have not. The objectives of this study were a) to elucidate NTCP substrate requirements using native bile acids and bile acid analogs, b) to develop the first pharmacophore for NTCP substrates and compare it with the inhibitor pharmacophores, and c) to identify additional NTCP novel substrates. Thus, 18 native bile acids and two bile acid conjugates were initially assessed for NTCP inhibition and/or uptake, which suggested a role of hydroxyl pattern and steric interaction in NTCP binding and translocation. A common feature pharmacophore for NTCP substrate uptake was developed, using 14 native bile acids and bile acid conjugates, yielding a model which featured three hydrophobes, one hydrogen bond donor, one negative ionizable feature and three excluded volumes. This model was used to search a database of FDA approved drugs and retrieved the majority of the known NTCP substrates. Among the retrieved drugs, irbesartan and losartan were identified as novel NTCP substrates, suggesting a potential role of NTCP in drug disposition. PMID:25448570
2015-01-01
A novel trifluorinated cholic acid derivative, CA-lys-TFA, was designed and synthesized for use as a tool to measure bile acid transport noninvasively using magnetic resonance imaging (MRI). In the present study, the in vivo performance of CA-lys-TFA for measuring bile acid transport by MRI was investigated in mice. Gallbladder CA-lys-TFA content was quantified using MRI and liquid chromatography/tandem mass spectrometry. Results in wild-type (WT) C57BL/6J mice were compared to those in mice lacking expression of Asbt, the ileal bile acid transporter. 19F signals emanating from the gallbladders of WT mice 7 h after oral gavage with 150 mg/kg CA-lys-TFA were reproducibly detected by MRI. Asbt-deficient mice administered the same dose had undetectable 19F signals by MRI, and gallbladder bile CA-lys-TFA levels were 30-fold lower compared to WT animals. To our knowledge, this represents the first report of in vivo imaging of an orally absorbed drug using 19F MRI. Fluorinated bile acid analogues have potential as tools to measure and detect abnormal bile acid transport by MRI. PMID:24708306
Green synthesis of gold-chitosan nanocomposites for caffeic acid sensing.
Di Carlo, Gabriella; Curulli, Antonella; Toro, Roberta G; Bianchini, Chiara; De Caro, Tilde; Padeletti, Giuseppina; Zane, Daniela; Ingo, Gabriel M
2012-03-27
In this work, colloidal gold nanoparticles (AuNPs) stabilized into a chitosan matrix were prepared using a green route. The synthesis was carried out by reducing Au(III) to Au(0) in an aqueous solution of chitosan and different organic acids (i.e., acetic, malonic, or oxalic acid). We have demonstrated that by varying the nature of the acid it is possible to tune the reduction rate of the gold precursor (HAuCl(4)) and to modify the morphology of the resulting metal nanoparticles. The use of chitosan, a biocompatible and biodegradable polymer with a large number of amino and hydroxyl functional groups, enables the simultaneous synthesis and surface modification of AuNPs in one pot. Because of the excellent film-forming capability of this polymer, AuNPs-chitosan solutions were used to obtain hybrid nanocomposite films that combine highly conductive AuNPs with a large number of organic functional groups. Herein, Au-chitosan nanocomposites are successfully proposed as sensitive and selective electrochemical sensors for the determination of caffeic acid, an antioxidant that has recently attracted much attention because of its benefits to human health. A linear response was obtained over a wide range of concentration from 5.00 × 10(-8) M to 2.00 × 10(-3) M, and the limit of detection (LOD) was estimated to be 2.50 × 10(-8) M. Moreover, further analyses have demonstrated that a high selectivity toward caffeic acid can be achieved without interference from catechin or ascorbic acid (flavonoid and nonphenolic antioxidants, respectively). This novel synthesis approach and the high performances of Au-chitosan hybrid materials in the determination of caffeic acid open up new routes in the design of highly efficient sensors, which are of great interest for the analysis of complex matrices such as wine, soft drinks, and fruit beverages. © 2012 American Chemical Society
Saraswathi, Viswanathan; Perriotte-Olson, Curtis; Ganesan, Murali; Desouza, Cyrus V; Alnouti, Yazen; Duryee, Michael J; Thiele, Geoffrey M; Nordgren, Tara M; Clemens, Dahn L
2017-04-01
We sought to determine whether a combination of purified n-3 fatty acids (n-3) and SC-560 (SC), a cyclooxygenase-1-specific inhibitor, is effective in ameliorating nonalcoholic fatty liver disease in obesity. Female wild-type mice were fed a high-fat and high-cholesterol diet (HF) supplemented with n-3 in the presence or absence of SC. Mice treated with SC alone exhibited no change in liver lipids, whereas n-3-fed mice tended to have lower hepatic lipids. Mice given n-3+SC had significantly lower liver lipids compared with HF controls indicating enhanced lipid clearance. Total and sulfated bile acids were significantly higher only in n-3+SC-treated mice compared with chow diet (CD) controls. Regarding mechanisms, the level of pregnane X receptor (PXR), a nuclear receptor regulating drug/bile detoxification, was significantly higher in mice given n-3 or n-3+SC. Studies in precision-cut liver slices and in cultured hepatoma cells showed that n-3+SC enhanced not only the expression/activation of PXR and its target genes but also the expression of farnesoid X receptor (FXR), another regulator of bile synthesis/clearance, indicating that n-3+SC can induce both PXR and FXR. The mRNA level of FGFR4 which inhibits bile formation showed a significant reduction in Huh 7 cells upon n-3 and n-3+SC treatment. PXR overexpression in hepatoma cells confirmed that n-3 or SC each induced the expression of PXR target genes and in combination had an enhanced effect. Our findings suggest that combining SC with n-3 potentiates its lipid-lowering effect, in part, by enhanced PXR and/or altered FXR/FGFR4 signaling. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ellinger-Ziegelbauer, Heidrun, E-mail: heidrun.ellinger-ziegelbauer@bayerhealthcare.com; Adler, Melanie; Amberg, Alexander
2011-04-15
The InnoMed PredTox consortium was formed to evaluate whether conventional preclinical safety assessment can be significantly enhanced by incorporation of molecular profiling ('omics') technologies. In short-term toxicological studies in rats, transcriptomics, proteomics and metabolomics data were collected and analyzed in relation to routine clinical chemistry and histopathology. Four of the sixteen hepato- and/or nephrotoxicants given to rats for 1, 3, or 14 days at two dose levels induced similar histopathological effects. These were characterized by bile duct necrosis and hyperplasia and/or increased bilirubin and cholestasis, in addition to hepatocyte necrosis and regeneration, hepatocyte hypertrophy, and hepatic inflammation. Combined analysis ofmore » liver transcriptomics data from these studies revealed common gene expression changes which allowed the development of a potential sequence of events on a mechanistic level in accordance with classical endpoint observations. This included genes implicated in early stress responses, regenerative processes, inflammation with inflammatory cell immigration, fibrotic processes, and cholestasis encompassing deregulation of certain membrane transporters. Furthermore, a preliminary classification analysis using transcriptomics data suggested that prediction of cholestasis may be possible based on gene expression changes seen at earlier time-points. Targeted bile acid analysis, based on LC-MS metabonomics data demonstrating increased levels of conjugated or unconjugated bile acids in response to individual compounds, did not provide earlier detection of toxicity as compared to conventional parameters, but may allow distinction of different types of hepatobiliary toxicity. Overall, liver transcriptomics data delivered mechanistic and molecular details in addition to the classical endpoint observations which were further enhanced by targeted bile acid analysis using LC/MS metabonomics.« less
Li, Wenyuan; Gao, Wei; Zhao, Jing; Cui, Guanghong; Shao, Aijuan; Huang, Luqi
2012-01-01
To study the mechanism of secondary metabolites of some phenolic acids in the hairy roots of Salvia miltiorrhiza induced by methyl jasmonate. The hairy roots of S. miltiorrhiza were induced with methyl jasmonate (100 micromol x L(-1)) and collected at 0, 12, 24, 36 h after treatment. Real-time quantitative PCR was used for detecting the mRNA expression level of the key enzyme genes on the secondary metabolites pathway of rosmarinic acid, while a LC-MS method was developed to determine the content of rosmarinic acid, caffeic acid and salvianolic acid B. The concentration of phenolic acids grew up and accumulated quickly in the hairy roots with exogenous signal molecule MJ induced, and it was showed that the content of CA and RA reached the maximum after 24 h and the content of LAB reached the maximum in 36 h by MJ induced. The induction mechanism may be activated with different levels of RA synthesis in PAL, 4CL, C4H genes on the key enzyme phenylalanine pathway and TAT, HPPR genes on tyrosine pathway. The time of gene expression was different, among them, 4CL and PAL genes were more important. In a word, the result can provide some basis data about the mechanism of secondary metabolites of phenolic acids for further research.
Circadian dysregulation disrupts bile acid homeostasis
USDA-ARS?s Scientific Manuscript database
Bile acids are potentially toxic compounds and their levels of hepatic production, uptake, and export are tightly regulated by many inputs, including circadian rhythm. We tested the impact of disrupting the peripheral circadian clock on integral steps of bile acid homeostasis. Both restricted feedi...
2008-03-06
Caffeic acid phenethyl ester (CAPE), a plant-derived polyphenolic compound (Fig. 1), is a component of bee propolis . Propolis has been used as a folk...analytical methods have been documented. These include an HPLC-UV determination of CAPE from a propolis -containing gel [13], HPLC-ESI-MS measurement...of CAPE from crude propolis [14], and HPLC- ESI-MS/MS analysis of CAPE in biological samples [15]. In this paper, we developed a method using ultra
Bile-acid-induced cell injury and protection
Perez, Maria J; Briz, Oscar
2009-01-01
Several studies have characterized the cellular and molecular mechanisms of hepatocyte injury caused by the retention of hydrophobic bile acids (BAs) in cholestatic diseases. BAs may disrupt cell membranes through their detergent action on lipid components and can promote the generation of reactive oxygen species that, in turn, oxidatively modify lipids, proteins, and nucleic acids, and eventually cause hepatocyte necrosis and apoptosis. Several pathways are involved in triggering hepatocyte apoptosis. Toxic BAs can activate hepatocyte death receptors directly and induce oxidative damage, thereby causing mitochondrial dysfunction, and induce endoplasmic reticulum stress. When these compounds are taken up and accumulate inside biliary cells, they can also cause apoptosis. Regarding extrahepatic tissues, the accumulation of BAs in the systemic circulation may contribute to endothelial injury in the kidney and lungs. In gastrointestinal cells, BAs may behave as cancer promoters through an indirect mechanism involving oxidative stress and DNA damage, as well as acting as selection agents for apoptosis-resistant cells. The accumulation of BAs may have also deleterious effects on placental and fetal cells. However, other BAs, such as ursodeoxycholic acid, have been shown to modulate BA-induced injury in hepatocytes. The major beneficial effects of treatment with ursodeoxycholic acid are protection against cytotoxicity due to more toxic BAs; the stimulation of hepatobiliary secretion; antioxidant activity, due in part to an enhancement in glutathione levels; and the inhibition of liver cell apoptosis. Other natural BAs or their derivatives, such as cholyl-N-methylglycine or cholylsarcosine, have also aroused pharmacological interest owing to their protective properties. PMID:19360911
Fursule, R A; Patil, S D
2010-06-16
Phaseolus trilobus Ait (Fabaceae) is extensively used by tribal people of Nandurbar district (Maharashtra, India) in the treatment of Jaundice and other liver disorders. of the present study was to assess the medicinal claim of Phaseolus trilobus as hepatoprotective and antioxidant. The hepatoprotective activity of methanol and aqueous extract of Phaseolus trilobus was evaluated by bile duct ligation induced liver fibrosis and antioxidant activity was evaluated using in vitro and in vivo antioxidant models viz anti-lipid peroxidation assay, super oxide radical scavenging assay and glutathione estimation in liver. Liver function tests were carried out to detect hepatoprotective activity, which was further supported by histopathological examination. Methanol and aqueous extracts of Phaseolus trilobus reduced elevated level of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), bilirubin and hydroxyproline significantly (p<0.01) in bile duct ligated Wistar rats, proving hepatoprotective activity comparable with Silymarin. Both the extracts were found to reduce the elevated levels of serum thiobarbituric acid reactive substance (TBARS) and elevate superoxide scavenging radical activity proving antioxidant activity comparable with ascorbic acid. The reduced level of glutathione was found to be elevated in liver proving antioxidant activity comparable with Silymarin. Phaseolus trilobus posses hepatoprotective property and is effective in oxidative stress induced cholestatic hepatic injury. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.
Chou, Tsui-Wei; Ma, Chien-Ya; Cheng, Hsing-Hsien; Chen, Ya-Yen; Lai, Ming-Hoang
2009-01-01
The aim of this study was to determine the effects of rice bran oil (RBO) on lipid metabolism and insulin resistance in rats with streptozotocin/nicotinamide-induced type 2 diabetes mellitus (T2DM). Rats were divided into two groups: the control group (15% soybean oil, contains 0 g γ-oryzanol and 0 g γ-tocotrienol/150 g oil for 5 weeks) and the RBO group (15% RBO, contains 5.25 g γ-oryzanol and 0.9 g γ-tocotrienol/150 g oil for 5 weeks). Compared with the control group, the RBO group had a lower plasma nonesterified fatty acid concentration, ratio of total to high-density-lipoprotein cholesterol, hepatic cholesterol concentration, and area under the curve for insulin. The RBO group had a higher high-density-lipoprotein cholesterol concentration and greater excretion of fecal neutral sterols and bile acid than did the control group. RBO may improve lipid abnormalities, reduce the atherogenic index, and suppress the hyperinsulinemic response in rats with streptozotocin/nicotinamide-induced T2DM. In addition, RBO can lead to increased fecal neutral sterol and bile acid excretion. PMID:19590704
Fu, Suneng; Fan, Jason; Blanco, Joshua; Gimenez-Cassina, Alfredo; Danial, Nika N.; Watkins, Steve M.; Hotamisligil, Gökhan S.
2012-01-01
Obesity-associated metabolic complications are generally considered to emerge from abnormalities in carbohydrate and lipid metabolism, whereas the status of protein metabolism is not well studied. Here, we performed comparative polysome and associated transcriptional profiling analyses to study the dynamics and functional implications of endoplasmic reticulum (ER)–associated protein synthesis in the mouse liver under conditions of obesity and nutrient deprivation. We discovered that ER from livers of obese mice exhibits a general reduction in protein synthesis, and comprehensive analysis of polysome-bound transcripts revealed extensive down-regulation of protein synthesis machinery, mitochondrial components, and bile acid metabolism in the obese translatome. Nutrient availability also plays an important but distinct role in remodeling the hepatic ER translatome in lean and obese mice. Fasting in obese mice partially reversed the overall translatomic differences between lean and obese nonfasted controls, whereas fasting of the lean mice mimicked many of the translatomic changes induced by the development of obesity. The strongest examples of such regulations were the reduction in Cyp7b1 and Slco1a1, molecules involved in bile acid metabolism. Exogenous expression of either gene significantly lowered plasma glucose levels, improved hepatic steatosis, but also caused cholestasis, indicating the fine balance bile acids play in regulating metabolism and health. Together, our work defines dynamic regulation of the liver translatome by obesity and nutrient availability, and it identifies a novel role for bile acid metabolism in the pathogenesis of metabolic abnormalities associated with obesity. PMID:22927828
Fu, Suneng; Fan, Jason; Blanco, Joshua; Gimenez-Cassina, Alfredo; Danial, Nika N; Watkins, Steve M; Hotamisligil, Gökhan S
2012-08-01
Obesity-associated metabolic complications are generally considered to emerge from abnormalities in carbohydrate and lipid metabolism, whereas the status of protein metabolism is not well studied. Here, we performed comparative polysome and associated transcriptional profiling analyses to study the dynamics and functional implications of endoplasmic reticulum (ER)-associated protein synthesis in the mouse liver under conditions of obesity and nutrient deprivation. We discovered that ER from livers of obese mice exhibits a general reduction in protein synthesis, and comprehensive analysis of polysome-bound transcripts revealed extensive down-regulation of protein synthesis machinery, mitochondrial components, and bile acid metabolism in the obese translatome. Nutrient availability also plays an important but distinct role in remodeling the hepatic ER translatome in lean and obese mice. Fasting in obese mice partially reversed the overall translatomic differences between lean and obese nonfasted controls, whereas fasting of the lean mice mimicked many of the translatomic changes induced by the development of obesity. The strongest examples of such regulations were the reduction in Cyp7b1 and Slco1a1, molecules involved in bile acid metabolism. Exogenous expression of either gene significantly lowered plasma glucose levels, improved hepatic steatosis, but also caused cholestasis, indicating the fine balance bile acids play in regulating metabolism and health. Together, our work defines dynamic regulation of the liver translatome by obesity and nutrient availability, and it identifies a novel role for bile acid metabolism in the pathogenesis of metabolic abnormalities associated with obesity.
Zhang, Zhan; Wu, Xinyue; Cao, Shuyuan; Wang, Li; Wang, Di; Yang, Hui; Feng, Yiming; Wang, Shoulin; Li, Lei
2016-01-01
Emerging evidence shows that dietary agents and phytochemicals contribute to the prevention and treatment of ulcerative colitis (UC). We first reported the effects of dietary caffeic acid (CaA) on murine experimental colitis and on fecal microbiota. Colitis was induced in C57BL/6 mice by administration of 2.5% dextran sulfate sodium (DSS). Mice were fed a control diet or diet with CaA (1 mM). Our results showed that dietary CaA exerted anti-inflammatory effects in DSS colitis mice. Moreover, CaA could significantly suppress the secretion of IL-6, TNFα, and IFNγ and the colonic infiltration of CD3+ T cells, CD177+ neutrophils and F4/80+ macrophages via inhibition of the activation of NF-κB signaling pathway. Analysis of fecal microbiota showed that CaA could restore the reduction of richness and inhibit the increase of the ratio of Firmicute to Bacteroidetes in DSS colitis mice. And CaA could dramatically increase the proportion of the mucin-degrading bacterium Akkermansia in DSS colitis mice. Thus, CaA could ameliorate colonic pathology and inflammation in DSS colitis mice, and it might be associated with a proportional increase in Akkermansia. PMID:27177331
Caffeic Acid Phenethyl Ester Regulates PPAR's Levels in Stem Cells-Derived Adipocytes
Vanella, Luca; Tibullo, Daniele; Godos, Justyna; Pluchinotta, Francesca Romana; Di Giacomo, Claudia; Sorrenti, Valeria; Acquaviva, Rosaria; Russo, Alessandra; Li Volti, Giovanni; Barbagallo, Ignazio
2016-01-01
Hypertrophic obesity inhibits activation of peroxisome proliferators-activated receptor gamma (PPARγ), considered the key mediator of the fully differentiated and insulin sensitive adipocyte phenotype. We examined the effects of Caffeic Acid Phenethyl Ester (Cape), isolated from propolis, a honeybee hive product, on Adipose Stem Cells (ASCs) differentiation to the adipocyte lineage. Finally we tested the effects of Cape on insulin-resistant adipocytes. Quantification of Oil Red O-stained cells showed that lipid droplets decreased following Cape treatment as well as radical oxygen species formation. Additionally, exposure of ASC to high glucose levels decreased adiponectin and increased proinflammatory cytokines mRNA levels, which were reversed by Cape-mediated increase of insulin sensitivity. Cape treatment resulted in decreased triglycerides synthesis and increased beta-oxidation. Exposure of ASCs to Lipopolysaccharide (LPS) induced a reduction of PPARγ, an increase of IL-6 levels associated with a well-known stimulation of lipolysis; Cape partially attenuated the LPS-mediated effects. These observations reveal the main role of PPARγ in the adipocyte function and during ASC differentiation. As there is now substantial interest in functional food and nutraceutical products, the observed therapeutic value of Cape in insulin-resistance related diseases should be taken into consideration. PMID:26904104
Studer, Nicolas; Desharnais, Lyne; Beutler, Markus; Brugiroux, Sandrine; Terrazos, Miguel A; Menin, Laure; Schürch, Christian M; McCoy, Kathy D; Kuehne, Sarah A; Minton, Nigel P; Stecher, Bärbel; Bernier-Latmani, Rizlan; Hapfelmeier, Siegfried
2016-01-01
Bile acids, important mediators of lipid absorption, also act as hormone-like regulators and as antimicrobial molecules. In all these functions their potency is modulated by a variety of chemical modifications catalyzed by bacteria of the healthy gut microbiota, generating a complex variety of secondary bile acids. Intestinal commensal organisms are well-adapted to normal concentrations of bile acids in the gut. In contrast, physiological concentrations of the various intestinal bile acid species play an important role in the resistance to intestinal colonization by pathogens such as Clostridium difficile . Antibiotic therapy can perturb the gut microbiota and thereby impair the production of protective secondary bile acids. The most important bile acid transformation is 7α-dehydroxylation, producing deoxycholic acid (DCA) and lithocholic acid (LCA). The enzymatic pathway carrying out 7α-dehydroxylation is restricted to a narrow phylogenetic group of commensal bacteria, the best-characterized of which is Clostridium scindens . Like many other intestinal commensal species, 7-dehydroxylating bacteria are understudied in vivo . Conventional animals contain variable and uncharacterized indigenous 7α-dehydroxylating organisms that cannot be selectively removed, making controlled colonization with a specific strain in the context of an undisturbed microbiota unfeasible. In the present study, we used a recently established, standardized gnotobiotic mouse model that is stably associated with a simplified murine 12-species "oligo-mouse microbiota" (Oligo-MM 12 ). It is representative of the major murine intestinal bacterial phyla, but is deficient for 7α-dehydroxylation. We find that the Oligo-MM 12 consortium carries out bile acid deconjugation, a prerequisite for 7α-dehydroxylation, and confers no resistance to C. difficile infection (CDI). Amendment of Oligo-MM 12 with C. scindens normalized the large intestinal bile acid composition by reconstituting 7α-dehydroxylation. These changes had only minor effects on the composition of the native Oligo-MM 12 , but significantly decreased early large intestinal C. difficile colonization and pathogenesis. The delayed pathogenesis of C. difficile in C. scindens -colonized mice was associated with breakdown of cecal microbial bile acid transformation.
van Hasselt, P M; Janssens, G E P J; Slot, T K; van der Ham, M; Minderhoud, T C; Talelli, M; Akkermans, L M; Rijcken, C J F; van Nostrum, C F
2009-01-19
The purpose of this study was to assess the ability of polymeric micelles to enable gastrointestinal absorption of the extremely hydrophobic compound vitamin K, by comparison of its absorption in bile duct ligated and sham operated rats. Hereto, vitamin K was encapsulated in micelles composed of mPEG(5000)-b-p(HPMAm-lac(2)), a thermosensitive block copolymer. Vitamin K plasma levels rose significantly upon gastric administration of 1 mg vitamin K encapsulated in polymeric micelles in sham operated rats, but not after bile duct ligation (AUC 4543 and 1.64 ng/mL/h respectively, p<0.01). Duodenal administration of polymeric micelles together with bile acids in bile duct ligated rats fully restored absorption. Dynamic light scattering time series showed a significant and dose dependent rise in micellar size in the presence of bile acids in vitro, indicating the gradual formation of mixed micelles during the first 3 h of incubation. The highest bile acid amounts (11 mM deoxycholic acid and 41 mM taurocholic acid) eventually caused aggregation of the loaded micelles after the formation of mixed micelles. These data suggest that the gastrointestinal absorption of encapsulated vitamin K from polymeric micelles is mediated by free bile and that uptake of intact micelles through pinocytosis is insignificant.
Nasmyth, D G; Johnston, D; Williams, N S; King, R F; Burkinshaw, L; Brooks, K
1989-03-01
Bile acid absorption was investigated using 75Se Taurohomocholate (SeHCAT) in controls and patients who had undergone total colectomy with either conventional ileostomy or pouch-anal anastomosis for ulcerative colitis or adenomatous polyposis. Whole-body retention of SeHCAT after 168 hours was greater in the controls than the patients who had undergone colectomy (P less than .05). Retention of SeHCAT did not differ significantly between patients with an ileostomy and patients with pouch-anal anastomosis, but patients with an ileostomy and ileal resection of more than 20 cm retained less SeHCAT than patients with a pouch-anal anastomosis (P less than .01). Analysis of fecal bile acids from ileostomies and pouches showed that bacterial metabolism of primary conjugated bile acids was greater in patients with a pouch. It was concluded that bile acid absorption was not significantly impaired by construction of a pouch compared with conventional ileostomy, but bacterial metabolism of bile acids was greater in the pouches.
Binding of cholesterol and bile acid to hemicelluloses from rice bran.
Hu, Guohua; Yu, Wenjian
2013-06-01
The objective of this study was to investigate the possibility of using hemicellulose from rice bran to scavenge cholesterol and bile acid in vitro study. This paper demonstrates that rice bran hemicellulose A (RBHA), rice bran hemicellulose B (RBHB) and rice bran hemicellulose C (RBHC) have the potential for binding cholesterol and bile acid. The quantity of cholesterol and bile acid bound varies from one rice bran fibre to another. As it can be inferred from the results of the study, RBHB was characterized by the highest capacity for cholesterol binding, followed by RBHC and RBHA. Binding of cholesterol and bile acid to rice bran insoluble dietary fibre (RBDF) and cellulose from rice bran was found to be poor. Lignin from rice bran was the least active fraction for binding cholesterol and bile acid. This confirms that the RBHB preparation from defatted rice bran has great potential in food applications, especially in the development of functional foods.
Jo, Sun-Young; Lee, Naree; Hong, Sung-Moon; Jung, Hak Hyun; Chae, Sung-Won
2013-09-01
Otitis media is one of the most common diseases in pediatric populations. Recent research on its pathogenesis has focused on air pollution. Chronic exposure to particulate air pollution is associated with the impairment of middle ear function. However, the mechanisms and the underlying inhibitory pathways, especially in the human middle ear, remain unknown. Caffeic acid phenethyl ester (CAPE) is a biologically active ingredient of propolis, a product of honeybee hives, which has anti-oxidative and anti-inflammatory activities. The aim of this study was to evaluate the inhibitory effect of CAPE on diesel exhaust particle (DEP)-induced inflammation of human middle ear epithelial cells and to determine the underlying pathway of the action of CAPE. The inflammatory damage caused by DEPs and the anti-inflammatory effects of CAPE were determined by measuring the levels of tumor necrosis factor alpha and nicotinamide adenine dinucleotide phosphate oxidase (NOX) 4 with real-time reverse transcription polymerase chain reaction and Western blot analysis. The oxidative stress induced by DEPs and the anti-oxidative effects of CAPE were directly evaluated by measuring reactive oxygen species production by use of flow cytometric analysis of 2',7'-dichlorofluorescein diacetate. The effects of CAPE were compared with those of N-acetyl-L-cysteine, which has anti-oxidative and anti-inflammatory effects. Use of CAPE significantly inhibited DEP-induced up-regulation of tumor necrosis factor alpha and NOX4 expression in a dose- and time-dependent manner. The accumulation of reactive oxygen species induced by DEPs was decreased by pretreatment with CAPE. The anti-inflammatory and anti-oxidative effects of CAPE were similar to those of N-acetyl-L-cysteine. The inflammation induced by DEP is reduced by CAPE via the inhibition of NOX4 expression. These findings suggest that CAPE might be used as a therapeutic agent against DEP-induced inflammation of human middle ear epithelial cells.
[Structure determination of three novel bile acids from bear bile powder].
Jian, Long-Hai; Mao, Xiu-Hong; Wang, Ke; Ji, Shen
2013-08-01
A method of LC-QTOF/MS combining with chemical synthesis has been used to determine the structures of three novel bile acids from bear bile powder. Reference substances of tauroursodeoxycholic acid and taurochenodeoxycholic acid were oxidized by pyridinium chlorochromate. The products were analyzed by LC-QTOF/MS. Total 4 products including 3 isomers were predicted and identified according to the PCC oxidation theory and LC-QTOF/MS results. Bear bile powder samples were dissolved by methanol and analyzed by LC-QTOF/MS. Three unknown peaks were found and identified as 2-[[(3beta, 5beta)-3-hydroxy-7, 24-dioxocholan-24-yl]amino]-ethanesulfonic acid, 2-[[(5beta)-3, 7, 24-trioxocholan-24-yl]amino]-ethanesulfonic acid and 2-[[(5beta, 7beta)-7-hydroxy-3, 24-dioxocholan-24-yl]amino]-ethanesulfonic acid, separately, by matching their results with that of oxidation products above.
Evolution of substrate specificity for the bile salt transporter ASBT (SLC10A2)[S
Lionarons, Daniël A.; Boyer, James L.; Cai, Shi-Ying
2012-01-01
The apical Na+-dependent bile salt transporter (ASBT/SLC10A2) is essential for maintaining the enterohepatic circulation of bile salts. It is not known when Slc10a2 evolved as a bile salt transporter or how it adapted to substantial changes in bile salt structure during evolution. We characterized ASBT orthologs from two primitive vertebrates, the lamprey that utilizes early 5α-bile alcohols and the skate that utilizes structurally different 5β-bile alcohols, and compared substrate specificity with ASBT from humans who utilize modern 5β-bile acids. Everted gut sacs of skate but not the more primitive lamprey transported 3H-taurocholic acid (TCA), a modern 5β-bile acid. However, molecular cloning identified ASBT orthologs from both species. Cell-based assays using recombinant ASBT/Asbt's indicate that lamprey Asbt has high affinity for 5α-bile alcohols, low affinity for 5β-bile alcohols, and lacks affinity for TCA, whereas skate Asbt showed high affinity for 5α- and 5β-bile alcohols but low affinity for TCA. In contrast, human ASBT demonstrated high affinity for all three bile salt types. These findings suggest that ASBT evolved from the earliest vertebrates by gaining affinity for modern bile salts while retaining affinity for older bile salts. Also, our results indicate that the bile salt enterohepatic circulation is conserved throughout vertebrate evolution. PMID:22669917
Glucuronidation of 6 alpha-hydroxy bile acids by human liver microsomes.
Radomińska-Pyrek, A; Zimniak, P; Irshaid, Y M; Lester, R; Tephly, T R; St Pyrek, J
1987-01-01
The glucuronidation of 6-hydroxylated bile acids by human liver microsomes has been studied in vitro; for comparison, several major bile acids lacking a 6-hydroxyl group were also investigated. Glucuronidation rates for 6 alpha-hydroxylated bile acids were 10-20 times higher than those of substrates lacking a hydroxyl group in position 6. The highest rates measured were for hyodeoxy- and hyocholic acids, and kinetic analyses were carried out using these substrates. Rigorous product identification by high-field proton nuclear magnetic resonance and by electron impact mass spectrometry of methyl ester/peracetate derivatives revealed that 6-O-beta-D-glucuronides were the exclusive products formed in these enzymatic reactions. These results, together with literature data, indicate that 6 alpha-hydroxylation followed by 6-O-glucuronidation constitutes an alternative route of excretion of toxic hydrophobic bile acids. PMID:3110212
Centuori, Sara M; Martinez, Jesse D
2014-10-01
A high-fat diet coincides with increased levels of bile acids. This increase in bile acids, particularly deoxycholic acid (DCA), has been strongly associated with the development of colon cancer. Conversely, ursodeoxycholic acid (UDCA) may have chemopreventive properties. Although structurally similar, DCA and UDCA present different biological and pathological effects in colon cancer progression. The differential regulation of cancer by these two bile acids is not yet fully understood. However, one possible explanation for their diverging effects is their ability to differentially regulate signaling pathways involved in the multistep progression of colon cancer, such as the epidermal growth factor receptor (EGFR)-mitogen-activated protein kinase (MAPK) pathway. This review will examine the biological effects of DCA and UDCA on colon cancer development, as well as the diverging effects of these bile acids on the oncogenic signaling pathways that play a role in colon cancer development, with a particular emphasis on bile acid regulation of the EGFR-MAPK pathway.
Centuori, Sara M.; Martinez, Jesse D.
2014-01-01
A high fat diet coincides with elevated levels of bile acids. This elevation of bile acids, particularly deoxycholic acid (DCA), has been strongly associated with the development of colon cancer. Conversely, ursodeoxycholic acid (UDCA) may have chemopreventive properties. Although structurally similar, DCA and UDCA present different biological and pathological effects in colon cancer progression. The differential regulation of cancer by these two bile acids is not yet fully understood. However, one possible explanation for their diverging effects is their ability to differentially regulate signaling pathways involved in the multistep progression of colon cancer, such as the epidermal growth factor receptor (EGFR) mitogen-activated protein kinase (MAPK) pathway. This review will examine the biological effects of DCA and UDCA on colon cancer development, as well as the diverging effects of these bile acids on the oncogenic signaling pathways that play a role in colon cancer development, with a particular emphasis on bile acid regulation of the EGFR-MAPK pathway. PMID:25027205
Vargas, Luis A; Olson, Douglas W; Aryana, Kayanush J
2015-04-01
Acid tolerance and bile tolerance are important probiotic characteristics. Whey proteins contain branched-chain amino acids, which play a role in muscle building and are popular among athletes. Increasing emphasis is being placed on diets containing less carbohydrate, less fat, and more protein. The effect of incremental additions of whey protein isolate (WPI) on probiotic characteristics of pure cultures is not known. The objective of this study was to determine the influence of added WPI on acid tolerance and bile tolerance of pure cultures of Streptococcus thermophilus ST-M5 and Lactobacillus bulgaricus LB-12. The WPI was used at 0 (control), 1, 2 and 3% (wt/vol). Assessment of acid tolerance was conducted on pure cultures at 30-min intervals for 2h of acid exposure and bile tolerance at 1-h intervals for 5h of bile exposure. Use of 1, 2, and 3% WPI improved acid tolerance of Strep. thermophilus ST-M5 and Lb. bulgaricus LB-12. The highest counts for acid tolerance of Strep. thermophilus ST-M5 and Lb. bulgaricus LB-12 were obtained when 3% WPI was used. Use of 2 and 3% WPI improved bile tolerance of Strep. thermophilus ST-M5 and Lb. bulgaricus LB-12 over 5h of bile exposure. The use of WPI is recommended to improve acid and bile tolerance of the yogurt culture bacteria Strep. thermophilus ST-M5 and Lb. bulgaricus LB-12. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Free radical scavengers and antioxidants from Lemongrass (Cymbopogon citratus (DC.) Stapf.).
Cheel, José; Theoduloz, Cristina; Rodríguez, Jaime; Schmeda-Hirschmann, Guillermo
2005-04-06
Methanol, MeOH/water extracts, infusion, and decoction of Cymbopogon citratus were assessed for free radical scavenging effects measured by the bleaching of the 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radical, scavenging of the superoxide anion, and inhibition of the enzyme xanthine oxidase (XO) and lipid peroxidation in human erythrocytes. The extracts presented effect in the DPPH and superoxide anion assay, with values ranging between 40 and 68% and 15-32% at 33 and 50 microg/mL, respectively, inhibited lipid peroxidation in erythrocytes by 19-71% at 500 microg/mL and were inactive toward the XO at 50 microg/mL. Isoorientin, isoscoparin, swertiajaponin, isoorientin 2' '-O-rhamnoside, orientin, chlorogenic acid, and caffeic acid were isolated and identified by spectroscopic methods. Isoorientin and orientin presented similar activities toward the DPPH (IC(50): 9-10 microM) and inhibited lipid peroxidation by 70% at 100 microg/mL. Caffeic and chlorogenic acid were active superoxide anion scavengers with IC(50) values of 68.8 and 54.2 microM, respectively, and a strong effect toward DPPH. Caffeic acid inhibited lipid peroxidation by 85% at 100 microg/mL.
Damasceno, Sarah S; Dantas, Bruna B; Ribeiro-Filho, Jaime; Antônio M Araújo, Demetrius; Galberto M da Costa, José
2017-01-01
The antioxidant properties of caffeic and ferulic acids in biological systems have been extensively demonstrated. As antioxidants, these compounds prevent the production of reactive oxygen species (ROS), which cause cell lesions that are associated with the development of several diseases, including cancer. Recent findings suggest that the chemoprotective action of these phenolic acids occurs through the following mechanisms: regulation of gene expression, chelation and / or reduction of transition metals, formation of covalent adducts and direct toxicity. The biological efficacy of these promising chemoprotective agents is strongly related with their chemical structure. Therefore, in this study, we discuss the structural characteristics of ferulic and caffeic acids that are responsible for their biological activities, as well as the mechanisms of action involved with the anti-cancer activity. Several reports indicated that the antioxidant effect of these phenylpropanoids results from reactions with free radicals with formation of stable products in the cells. The chelating effect of these compounds was also reported as an important protective mechanism against oxidative. Finally, the lipophilicity of these agents facilitates their entry into the cells, and thus, contributes to the anticancer activity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Bile Acids Improve the Antimicrobial Effect of Rifaximin▿ †
Darkoh, Charles; Lichtenberger, Lenard M.; Ajami, Nadim; Dial, Elizabeth J.; Jiang, Zhi-Dong; DuPont, Herbert L.
2010-01-01
Diarrhea is one of the most common infirmities affecting international travelers, occurring in 20 to 50% of persons from industrialized countries visiting developing regions. Enterotoxigenic Escherichia coli (ETEC) is the most common causative agent and is isolated from approximately half of the cases of traveler's diarrhea. Rifaximin, a largely water-insoluble, nonabsorbable (<0.4%) antibiotic that inhibits bacterial RNA synthesis, is approved for use for the treatment of traveler's diarrhea caused by diarrheagenic E. coli. However, the drug has minimal effect on the bacterial flora or the infecting E. coli strain in the aqueous environment of the colon. The purpose of the present study was to evaluate the antimicrobial effect and bioavailability of rifaximin in aqueous solution in the presence and absence of physiologic concentrations of bile acids. The methods used included growth measurement of ETEC (strain H10407), rifaximin solubility measurements, total bacterial protein determination, and assessment of the functional activity of rifaximin by monitoring inhibition of bacterial β-galactosidase expression. Solubility studies showed rifaximin to be 70- to 120-fold more soluble in bile acids (approximately 30% in 4 mM bile acids) than in aqueous solution. Addition of both purified bile acids and human bile to rifaximin at subinhibitory and inhibitory concentrations significantly improved the drug's anti-ETEC effect by 71% and 73%, respectively, after 4 h. This observation was confirmed by showing a decrease in the overall amount of total bacterial protein expressed during incubation of rifaximin plus bile acids. Rifaximin-treated samples containing bile acids inhibited the expression of ETEC β-galactosidase at a higher magnitude than samples that did not contain bile acids. The study provides data showing that bile acids solubilize rifaximin on a dose-response basis, increasing the drug's bioavailability and antimicrobial effect. These observations suggest that rifaximin may be more effective in the treatment of infections in the small intestine, due to the higher concentration of bile in this region of the gastrointestinal tract than in the colon. The water insolubility of rifaximin is the likely explanation for the drug's minimal effects on colonic flora and fecal pathogens, despite in vitro susceptibility. PMID:20547807
[Simultaneous determination of eight kinds of conjunct bile acids in human bile by R-HPLC].
Dai, Z; Tan, G; Qian, K; Chen, X
1997-01-01
A method for the simultaneous determination of eight kinds of conjunct bile acids in human bile was developed by HPLC. They were separated on a YWG-C18 (3 microns) column at 30 degrees C, with methanol/water (65/35, V/V, pH3.0) as mobile phase, and detection wavelength at UV 210 nm. The linear ranges were 50-1,000 microns.ml-1, the recoveries were 91.2%-108.6%. The biles of 30 cases with cholelithiasis cholecystolithiasis and 20 cases without gallstone were detected by HPLC. The results showed that the constitution of bile acids was different between patients with cholelithiasis cholecystolithiasis and patients without gallstone.
Agatonovic-Kustrin, S; Loescher, Christine M
2013-10-10
Calendula officinalis, commonly known Marigold, has been traditionally used for its anti-inflammatory effects. The aim of this study was to investigate the capacity of an artificial neural network (ANN) to analyse thin layer chromatography (TLC) chromatograms as fingerprint patterns for quantitative estimation of chlorogenic acid, caffeic acid and rutin in Calendula plant extracts. By applying samples with different weight ratios of marker compounds to the system, a database of chromatograms was constructed. A hundred and one signal intensities in each of the HPTLC chromatograms were correlated to the amounts of applied chlorogenic acid, caffeic acid, and rutin using an ANN. The developed ANN correlation was used to quantify the amounts of 3 marker compounds in calendula plant extracts. The minimum quantifiable level (MQL) of 610, 190 and 940 ng and the limit of detection (LD) of 183, 57 and 282 ng were established for chlorogenic, caffeic acid and rutin, respectively. A novel method for quality control of herbal products, based on HPTLC separation, high resolution digital plate imaging and ANN data analysis has been developed. The proposed method can be adopted for routine evaluation of the phytochemical variability in calendula extracts. Copyright © 2013 Elsevier B.V. All rights reserved.
Miura, Yukari; Inai, Miyuki; Honda, Sari; Masuda, Akiko; Masuda, Toshiya
2014-10-01
The effect of polyphenols and related phenolic compounds on the reduction of metmyoglobin (MetMb) to oxymyoglobin (MbO2), in the presence of cysteine, was investigated. Caffeic acid, dihydrocaffeic acid, and hydroxtyrosol (600 μmol/L) did not show any reducing activity individually. However, their highly potent activity in the reduction of MetMb to MbO2 was observed in the presence of equimolar amounts of cysteine. On the basis of the analytical results for the redox reaction products generated during the MetMb-reducing reaction of caffeic acid, we proposed a mechanism for the polyphenol-mediated reduction of MetMb. As per the proposed mechanism, the antioxidant polyphenols having a catechol substructure can effectively reduce MetMb to MbO2 with chemical assistance from nucleophilic reactive thiol compounds such as cysteine. Moreover, cysteine-coupled polyphenols such as cysteinylcaffeic acids (which are coupling products of caffeic acid and cysteine) can be used as preserving agents for retaining the fresh meat color, because of their powerful reducing effect on MetMb. The reduction of MetMb to MbO2 changes the color of meat from brown to the more desirable bright red.
Comparison of bee products based on assays of antioxidant capacities.
Nakajima, Yoshimi; Tsuruma, Kazuhiro; Shimazawa, Masamitsu; Mishima, Satoshi; Hara, Hideaki
2009-02-26
Bee products (including propolis, royal jelly, and bee pollen) are popular, traditional health foods. We compared antioxidant effects among water and ethanol extracts of Brazilian green propolis (WEP or EEP), its main constituents, water-soluble royal jelly (RJ), and an ethanol extract of bee pollen. The hydrogen peroxide (H2O2)-, superoxide anion (O2.-)-, and hydroxyl radical (HO.)- scavenging capacities of bee products were measured using antioxidant capacity assays that employed the reactive oxygen species (ROS)-sensitive probe 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate, acetyl ester (CM-H2DCFDA) or aminophenyl fluorescein (APF). The rank order of antioxidant potencies was as follows: WEP > EEP > pollen, but neither RJ nor 10-hydroxy-2-decenoic acid (10-HDA) had any effects. Concerning the main constituents of WEP, the rank order of antioxidant effects was: caffeic acid > artepillin C > drupanin, but neither baccharin nor coumaric acid had any effects. The scavenging effects of caffeic acid were as powerful as those of trolox, but stronger than those of N-acetyl cysteine (NAC) or vitamin C. On the basis of the present assays, propolis is the most powerful antioxidant of all the bee product examined, and its effect may be partly due to the various caffeic acids it contains. Pollen, too, exhibited strong antioxidant effects.
Acid and bile tolerance of spore-forming lactic acid bacteria.
Hyronimus, B; Le Marrec, C; Sassi, A H; Deschamps, A
2000-11-01
Criteria for screening probiotics such as bile tolerance and resistance to acids were studied with 13 spore-forming lactic acid producing bacteria. Different strains of Sporolactobacillus, Bacillus laevolacticus, Bacillus racemilacticus and Bacillus coagulans grown in MRS broth were subjected to low pH conditions (2, 2.5 and 3) and increasing bile concentrations. Among these microorganisms, Bacillus laevolacticus DSM 6475 and all Sporolactobacillus strains tested except Sporolactobacillus racemicus IAM 12395, were resistant to pH 3. Only Bacillus racemilacticus and Bacillus coagulans strains were tolerant to bile concentrations over 0.3% (w/v).
Park, Miseon; Rafii, Fatemeh
2018-01-01
Clostridium perfringens is the second most common cause of bacterial foodborne illness in the United States, with nearly a million cases each year. C. perfringens enterotoxin (CPE), produced during sporulation, damages intestinal epithelial cells by pore formation, which results in watery diarrhea. The effects of low concentrations of nisin and bile acids on sporulation and toxin production were investigated in C. perfringens SM101, which carries an enterotoxin gene on the chromosome, in a nutrient-rich medium. Bile acids and nisin increased production of enterotoxin in cultures; bile acids had the highest effect. Both compounds stimulated the transcription of enterotoxin and sporulation-related genes and production of spores during the early growth phase. They also delayed spore outgrowth and nisin was more inhibitory. Bile acids and nisin enhanced enterotoxin production in some but not all other C. perfringens isolates tested. Low concentrations of bile acids and nisin may act as a stress signal for the initiation of sporulation and the early transcription of sporulation-related genes in some strains of C. perfringens , which may result in increased strain-specific production of enterotoxin in those strains. This is the first report showing that nisin and bile acids stimulated the transcription of enterotoxin and sporulation-related genes in a nutrient-rich bacterial culture medium.
Matsuhisa, Takeshi; Tsukui, Taku
2012-05-01
During endoscopic examinations we collected fluid in the stomach that included reflux fluid from the duodenum, and assessed the effect of quantitatively determined bile acids on glandular atrophy and intestinal metaplasia using biopsy specimens. A total of 294 outpatients were enrolled in this study. Total bile acid concentration was measured by an enzyme immunoassay. Glandular atrophy and intestinal metaplasia scores were graded according to the Updated Sydney System. An effect of refluxed bile acids on atrophy and intestinal metaplasia was shown in the high-concentration reflux group in comparison with the control group. However, when the odds ratios (ORs) were calculated according to whether Helicobacter pylori (H. pylori) infection was present, no significant associations were shown between reflux bile acids and atrophy in either the H. pylori-positive cases or -negative cases. The same was true for intestinal metaplasia in the H. pylori-positive cases, whereas intestinal metaplasia was more pronounced in the high-concentration reflux group in the H. pylori-negative cases (OR 2.4, 95%CI 1.1-5.6). We could not clarify the effect of the reflux of bile acids into the stomach in the progression of atrophy. High-concentration bile acids had an effect on the progression of intestinal metaplasia in the H. pylori-negative cases.
Pournaras, Dimitri J.; Glicksman, Clare; Vincent, Royce P.; Kuganolipava, Shophia; Alaghband-Zadeh, Jamie; Mahon, David; Bekker, Jan H.R.; Ghatei, Mohammad A.; Bloom, Stephen R.; Walters, Julian R.F.; le Roux, Carel W.
2012-01-01
Gastric bypass leads to the remission of type 2 diabetes independently of weight loss. Our hypothesis is that changes in bile flow due to the altered anatomy may partly explain the metabolic outcomes of the operation. We prospectively studied 12 patients undergoing gastric bypass and six patients undergoing gastric banding over a 6-wk period. Plasma fibroblast growth factor (FGF)19, stimulated by bile acid absorption in the terminal ileum, and plasma bile acids were measured. In canine and rodent models, we investigated changes in the gut hormone response after altered bile flow. FGF19 and total plasma bile acids levels increased after gastric bypass compared with no change after gastric banding. In the canine model, both food and bile, on their own, stimulated satiety gut hormone responses. However, when combined, the response was doubled. In rats, drainage of endogenous bile into the terminal ileum was associated with an enhanced satiety gut hormone response, reduced food intake, and lower body weight. In conclusion, after gastric bypass, bile flow is altered, leading to increased plasma bile acids, FGF19, incretin. and satiety gut hormone concentrations. Elucidating the mechanism of action of gastric bypass surgery may lead to novel treatments for type 2 diabetes. PMID:22673227
Metabolism of hydroxycinnamic acids and esters by Brettanomyces in different red wines
USDA-ARS?s Scientific Manuscript database
Depending on the cultivars and other factors, differing concentrations of hydroxycinnamic acids (caffeic, p-coumaric, and ferulic acids) and their corresponding tartaric acid esters (caftaric, coutaric, and fertaric acid, respectively) are found in red wines. Hydroxycinnamic acids are metabolized by...
Wu, Ting; Zhang, Jun; Tan, Heng-Shan; Ju, Wen-Zheng; Xu, Xiang-Yang
2014-05-01
To establish a LC-MS/MS method for quantification of chlorogenic acid, caffeic acid, 3,4-DCQA, ferulic acid and cinnamic acid in rats plasma and study its pharmacokinetics after administration of Mailuoning injection at a single dose to rats. Plasma samples were acidified with hydrochloric acid and extracted with ethyl acetate. The analytes were determined by LC-MS-MS using a ZOBAX SB C18 column with a mobile phase of methanol-water (containing 2 mmol x L(-1) ammonium acetic) (60:40)at a flow rate of 0.5 mL x min(-1) and detected using ESI with negative ionization mode. Ions monitored in the multiple reaction monitoring (MRM) mode were m/z 353.1/191.0 [M-H]- for chlorogenic acid, m/z 178.9/134.9 [M-H]- for caffeic acid, m/z 515.2/353.0 [M-H]-for 3,4-DCQA, m/z 193.0/133.9 [M-H]-for ferulic acid, m/z 146.9/102.9 [M-H]- for cinnamic acid and m/z 246.0/125.8 [M-H]- for tinidazole (IS). After administration of Mailuoning injection at a single dose to eight Sprague-Dawley rats, the concentrations of chlorogenic acid, caffeic acid, 3,4-DCQA, ferulic acid and cinnamic acid in plasma were determined by LC-MS/MS method. The main pharmacokinetics parameters of measured data were caluculated by using DASver 1.0 software. The linear concentration ranges of the calibration curves for chlorogenic acid, caffeic acid, 3,4-DCQA and cinnamic acid were 2.006-1,027 microg x L(-1) (r = 0.999 6), 1.953-1,000 microg x L(-1) (r = 0.999 7), 28.51-1.459 x 10(4) microg x L(-1) (r = 0.998 9), 1.836-940.0, g x L(-1) (r = 0.997 7) and 4.780-2,447 microg x L(-1) (r = 0.998 6) respectively. The inner and inter-days relative standard deviations were both less than 5.0%, indicating legitimate precise and accuracy to the requirement of biological sample analysis. For chlorogenic acid, the pharmacokinetic parameter t1/2, AUC0-t, and CL were (49.78 +/- 12.81) min, (123.55 +/- 14.82) mg x min x L(-1) and (0.004 3 +/- 0.000 5) L x min(-1), respectively. For caffeic acid, the pharmacokinetic parameter t1/2, AUC0-t, and CL were (36.65 +/- 10.59) min, (91.67 +/- 11.77) mg x min L(-1) and (0.005 7 +/- 0.000 7) L x min(-1), respectively. For 3,4-DCQA, the pharmacokinetic parameter t1/2, AUC0-t, and CL were (50.08 +/- 13.78) min, (278.34 +/- 31.82) mg x min x L-1 and (0.001 6 +/- 0.000 2) L x min(-1), respectively. For ferulic acid, the pharmacokinetic parameter t1/2, AUC0-t, and CL were (51.39 +/- 15.52) min, (34.72 +/- 4.67) mg x min x L(-1) and (0.000 4 +/- 0.0001) L x min(-1), respectively. For cinnamic acid, the pharmacokinetic parameter t1/2, AUCo-t, and CL were (74.42 +/- 18.32) min, (34.63 +/- 4.82) mg x min x L(-1) and (0.007 7 +/- 0.001 1) L x min-', respectively. The assay method is proved to be sensitive, accurate and convenient. It can be applied to the pharmacokinetic study of chlorogenic acid, caffeic acid, 3,4-DCQA, ferulic acid and cinnamic acid.
Athmouni, Khaled; Belhaj, Dalel; Mkadmini Hammi, Khaoula; El Feki, Abdelfattah; Ayadi, Habib
2017-11-20
A total of five components (Catechin, Caffeic acid, Ferulic acid, Rosmarinic acid, and Amentoflavone) were identified in Periploca angustifolia leaf methanolic extract. This extract did not cause any cytotoxic effect on HepG2 cell line within the range of concentrations tested (0-400 µg mL -1 ). Thus, pre-treatment with 100 µg mL -1 of P. angustifolia leaf methanolic extract (PAE) significantly (p < .05) protective HepG2 cells against cytotoxicity induced by cadmium exposure. However, Cd-intoxication significantly (p < .05) increased alanine and aspartate amino transferases serum activities (ALT and AST) and bilirubin content by 1.85-, 1.13-, and 3.55-fold, respectively. The levels of hepatic antioxidant parameters including superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) were significantly (p < .05) decreased in Cd-intoxicated rats with concomitant enhancement of lipid peroxidation. Our results showed that P. angustifolia leaf methanolic extract can induce antioxidant effects and also exerts beneficial effects for the treatment of Cd-induced hepatotoxicity.
NASA Astrophysics Data System (ADS)
Li, Shuang; Huang, Kelong; Zhong, Ming; Guo, Jun; Wang, Wei-zheng; Zhu, Ronghua
2010-10-01
The substitution of the hydrogen on aromatic and esterification of carboxyl group of the phenol compounds plays an important role in their bio-activities. In this paper, caffeic acid (CaA), chlorogenic acid (ChA) and ferulic acid (FA) were selected to investigate the binding to bovine serum albumin (BSA) using UV absorption spectroscopy, fluorescence spectroscopy and synchronous fluorescence spectroscopy. It was found that the methoxyl group substituting for the 3-hydroxyl group of CaA decreased the affinity for BSA and the esterification of carboxyl group of CaA with quinic acid increased the affinities. The affinities of ChA and FA with BSA were more sensitive to the temperature than that of CaA with BSA. Synchronous fluorescence spectroscopy and time-resolved fluorescence indicated that the Stern-Volmer plots largely deviated from linearity at high concentrations and were caused by complete quenching of the tyrosine fluorescence of BSA.
Marschall, Hanns-Ulrich; Wagner, Martin; Zollner, Gernot; Fickert, Peter; Diczfalusy, Ulf; Gumhold, Judith; Silbert, Dagmar; Fuchsbichler, Andrea; Benthin, Lisbet; Grundström, Rosita; Gustafsson, Ulf; Sahlin, Staffan; Einarsson, Curt; Trauner, Michael
2005-08-01
Rifampicin (RIFA) and ursodeoxycholic acid (UDCA) improve symptoms and biochemical markers of liver injury in cholestatic liver diseases by largely unknown mechanisms. We aimed to study the molecular mechanisms of action of these drugs in humans. Thirty otherwise healthy gallstone patients scheduled for cholestectomy were randomized to RIFA (600 mg/day for 1 week) or UDCA (1 g/day for 3 weeks) or no medication before surgery. Routine biochemistry, lipids, and surrogate markers for P450 activity (4beta-hydroxy cholesterol, 4beta-OH-C) and bile acid synthesis (7alpha-hydroxy-4-cholesten-3-one, C-4) were measured in serum. Bile acids were analyzed in serum, urine, and bile. A wedge liver biopsy specimen was taken to study expression of hepatobiliary ABC transporters as well as detoxification enzymes and regulatory transcription factors. RIFA enhanced bile acid detoxification as well as bilirubin conjugation and excretion as reflected by enhanced expression of CYP3A4, UGT1A1, and MRP2. These molecular effects were paralleled by decreased bilirubin and deoxycholic acid concentrations in serum and decreased lithocholic and deoxycholic acid concentrations in bile. UDCA on the other hand stimulated the expression of BSEP, MDR3, and MRP4. UDCA became the predominant bile acid after UDCA treatment and lowered the biliary cholesterol saturation index. RIFA enhances bile acid detoxification as well as bilirubin conjugation and export systems, whereas UDCA stimulates the expression of transporters for canalicular and basolateral bile acid export as well as the canalicular phospholipid flippase. These independent but complementary effects may justify a combination of both agents for the treatment of cholestatic liver diseases.
Begley, Máire; Gahan, Cormac G. M.; Hill, Colin
2002-01-01
Bile is one of many barriers that Listeria monocytogenes must overcome in the human gastrointestinal tract in order to infect and cause disease. We demonstrated that stationary-phase cultures of L. monocytogenes LO28 were able to tolerate concentrations of bovine, porcine, and human bile and bile acids well in excess of those encountered in vivo. Strain LO28 was relatively bile resistant compared with other clinical isolates of L. monocytogenes, as well as with Listeria innocua, Salmonella enterica serovar Typhimurium LT2, and Lactobacillus sakei. While exponential-phase L. monocytogenes LO28 cells were exquisitely sensitive to unconjugated bile acids, prior adaptation to sublethal levels of bile acids or heterologous stresses, such as acid, heat, salt, or sodium dodecyl sulfate (SDS), significantly enhanced bile resistance. This adaptive response was independent of protein synthesis, and in the cases of bile and SDS adaptation, occurred in seconds. In order to identify genetic loci involved in the bile tolerance phenotype of L. monocytogenes LO28, transposon (Tn917) and plasmid (pORI19) integration banks were screened for bile-sensitive mutants. The disrupted genes included a homologue of the capA locus required for capsule formation in Bacillus anthracis; a gene encoding the transcriptional regulator ZurR; a homologue of an Escherichia coli gene, lytB, involved in isoprenoid biosynthesis; a gene encoding a homologue of the Bacillus subtilis membrane protein YxiO; and a gene encoding an amino acid transporter with a putative role in pH homeostasis, gadE. Interestingly, all of the identified loci play putative roles in maintenance of the cell envelope or in stress responses. PMID:12450822
Chicoric Acid Found in Basil (Ocimum basilicum L.) Leaves
USDA-ARS?s Scientific Manuscript database
This is the first report to identify the presence of chicoric acid (cichoric acid; also known as dicaffeoyltartaric acid) in basil leaves. Rosmarinic acid, chicoric acid, and caftaric acid (in the order of most abundant to least; all derivatives of caffeic acid) were identified in fresh basil leaves...
Mostarda, Serena; Passeri, Daniela; Carotti, Andrea; Cerra, Bruno; Colliva, Carolina; Benicchi, Tiziana; Macchiarulo, Antonio; Pellicciari, Roberto; Gioiello, Antimo
2018-01-20
Glucuronidation is considered an important detoxification pathway of bile acids especially in cholestatic conditions. Glucuronides are less toxic than the parent free forms and are more easily excreted in urine. However, the pathophysiological significance of bile acid glucuronidation is still controversial and debated among the scientific community. Progress in this field has been strongly limited by the lack of appropriate methods for the preparation of pure glucuronides in the amount needed for biological and pharmacological studies. In this work, we have developed a new synthesis of bile acid C3-glucuronides enabling the convenient preparation of gram-scale quantities. The synthesized compounds have been characterized in terms of physicochemical properties and abilities to modulate key nuclear receptors including the farnesoid X receptor (FXR). In particular, we found that C3-glucuronides of chenodeoxycholic acid and lithocholic acid, respectively the most abundant and potentially cytotoxic species formed in patients affected by cholestasis, behave as FXR agonists and positively regulate the gene expression of transporter proteins, the function of which is critical in human conditions related to imbalances of bile acid homeostasis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.