Sample records for caffeine enhances upper

  1. Caffeine Consumption, Expectancies of Caffeine-Enhanced Performance, and Caffeinism Symptoms among University Students.

    ERIC Educational Resources Information Center

    Bradley, John R.; Petree, Allen

    1990-01-01

    Gathered self-report data on college students' (n=797) expectations of caffeine-enhanced performance, level of beverage caffeine consumed daily, and caffeinism signs experienced after consumption of caffeinated beverages. Results supported extending the expectancies model of substance use motivation from alcohol to caffeine. (Author/ABL)

  2. Is caffeine a cognitive enhancer?

    PubMed

    Nehlig, Astrid

    2010-01-01

    The effects of caffeine on cognition were reviewed based on the large body of literature available on the topic. Caffeine does not usually affect performance in learning and memory tasks, although caffeine may occasionally have facilitatory or inhibitory effects on memory and learning. Caffeine facilitates learning in tasks in which information is presented passively; in tasks in which material is learned intentionally, caffeine has no effect. Caffeine facilitates performance in tasks involving working memory to a limited extent, but hinders performance in tasks that heavily depend on working memory, and caffeine appears to rather improve memory performance under suboptimal alertness conditions. Most studies, however, found improvements in reaction time. The ingestion of caffeine does not seem to affect long-term memory. At low doses, caffeine improves hedonic tone and reduces anxiety, while at high doses, there is an increase in tense arousal, including anxiety, nervousness, jitteriness. The larger improvement of performance in fatigued subjects confirms that caffeine is a mild stimulant. Caffeine has also been reported to prevent cognitive decline in healthy subjects but the results of the studies are heterogeneous, some finding no age-related effect while others reported effects only in one sex and mainly in the oldest population. In conclusion, it appears that caffeine cannot be considered a ;pure' cognitive enhancer. Its indirect action on arousal, mood and concentration contributes in large part to its cognitive enhancing properties.

  3. Caffeine and caffeine sodium benzoate have a sunscreen effect, enhance UVB-induced apoptosis, and inhibit UVB-induced skin carcinogenesis in SKH-1 mice.

    PubMed

    Lu, Yao-Ping; Lou, You-Rong; Xie, Jian-Guo; Peng, Qing-Yun; Zhou, Sherry; Lin, Yong; Shih, Weichung Joe; Conney, Allan H

    2007-01-01

    Topical application of caffeine sodium benzoate (caffeine-SB) immediately after UVB irradiation of SKH-1 mice enhanced UVB-induced apoptosis by a 2- to 3-fold greater extent than occurred after the topical application of an equimolar amount of caffeine. Although topical application of caffeine-SB or caffeine enhanced UVB-induced apoptosis, both substances were inactive on non-UVB-treated normal skin. Topical application of caffeine-SB or caffeine (each has UVB absorption properties) 0.5 h before irradiation with a high dose of UVB decreased UVB-induced thymine dimer formation and sunburn lesions (sunscreen effect). Caffeine-SB was more active than an equimolar amount of caffeine in exerting a sunscreen effect. In additional studies, caffeine-SB strongly inhibited the formation of tumors in UVB-pretreated 'high-risk mice' and in tumor-bearing mice, and the growth of UVB-induced tumors was also inhibited. Caffeine-SB and caffeine are the first examples of compounds that have both a sunscreen effect and enhance UVB-induced apoptosis. Our studies suggest that caffeine-SB and caffeine may be good agents for inhibiting the formation of sunlight-induced skin cancer.

  4. Caffeine potentiates the enhancement by choline of striatal acetylcholine release

    NASA Technical Reports Server (NTRS)

    Johnson, D. A.; Ulus, I. H.; Wurtman, R. J.

    1992-01-01

    We investigated the effect of peripherally administered caffeine (50 mg/kg), choline (30, 60, or 120 mg/kg) or combinations of both drugs on the spontaneous release of acetylcholine (ACh) from the corpus striatum of anesthetized rats using in vivo microdialysis. Caffeine alone or choline in the 30 or 60 mg/kg dose failed to increase ACh in microdialysis samples; the 120 mg/kg choline dose significantly enhanced ACh during the 80 min following drug administration. Coadministration of caffeine with choline significantly increased ACh release after each of the choline doses tested. Peak microdialysate levels with the 120 mg/kg dose were increased 112% when caffeine was additionally administered, as compared with 54% without caffeine. These results indicate that choline administration can enhance spontaneous ACh release from neurons, and that caffeine, a drug known to block adenosine receptors on these neurons, can amplify the choline effect.

  5. Caffeine ingestion enhances Wingate performance: a meta-analysis.

    PubMed

    Grgic, Jozo

    2018-03-01

    The positive effects of caffeine ingestion on aerobic performance are well-established; however, recent findings are suggesting that caffeine ingestion might also enhance components of anaerobic performance. A commonly used test of anaerobic performance and power output is the 30-second Wingate test. Several studies explored the effects of caffeine ingestion on Wingate performance, with equivocal findings. To elucidate this topic, this paper aims to determine the effects of caffeine ingestion on Wingate performance using meta-analytic statistical techniques. Following a search through PubMed/MEDLINE, Scopus, and SportDiscus ® , 16 studies were found meeting the inclusion criteria (pooled number of participants = 246). Random-effects meta-analysis of standardized mean differences (SMD) for peak power output and mean power output was performed. Study quality was assessed using the modified version of the PEDro checklist. Results of the meta-analysis indicated a significant difference (p = .005) between the placebo and caffeine trials on mean power output with SMD values of small magnitude (0.18; 95% confidence interval: 0.05, 0.31; +3%). The meta-analysis performed for peak power output indicated a significant difference (p = .006) between the placebo and caffeine trials (SMD = 0.27; 95% confidence interval: 0.08, 0.47 [moderate magnitude]; +4%). The results from the PEDro checklist indicated that, in general, studies are of good and excellent methodological quality. This meta-analysis adds on to the current body of evidence showing that caffeine ingestion can also enhance components of anaerobic performance. The results presented herein may be helpful for developing more efficient evidence-based recommendations regarding caffeine supplementation.

  6. Radiation enhanced reactivation of herpes simplex virus: effect of caffeine.

    PubMed

    Hellman, K B; Lytle, C D; Bockstahler, L E

    1976-09-01

    Ultaviolet enhanced (Weigle) reactivation of UV-irradiated herpes simplex virus in UV-irradiated CV-1 monkey kidney cell monolayers was decreased by caffeine. X-ray enhanced reactivation of UV-irradiated virus in X-irradiated monolayers (X-ray reactivation) and UV- or X-ray-inactivated capacity of the cells to support unirradiated virus plaque formation were unaffected by caffeine. The results suggest that a caffeine-sensitive process is necessary for the expression of Weigle reactivation for herpes virus. Since cafeine did not significantly affect X-ray reactivation, different mechanisms may be responsible for the expression of Weigle reactivation and X-ray reactivation.

  7. Nearly half of the adolescents in an Italian school-based study exceeded the recommended upper limits for daily caffeine consumption.

    PubMed

    Santangelo, Barbara; Lapolla, Rosa; Rutigliano, Irene; Pettoello Mantovani, Massimo; Campanozzi, Angelo

    2018-06-01

    No data are available on caffeine consumption among Italian adolescents. We investigated caffeine intake from coffee, soft drinks and energy drinks in a sample of Italian adolescents and determined if they exceeded the recommended limits. The study comprised 1213 adolescents with a mean age of 15.1 years (range 12-19) from four schools in Foggia, southern Italy. Caffeine intake was assessed using an anonymous self-reported questionnaire during the 2013/2014 school year. We calculated the percentage of daily caffeine consumers, their mean intake of caffeine from beverages and the contribution of each beverage category to the total caffeine intake. Approximately 76% of the sample consumed caffeine every day, amounting to 125.5 ± 69.2 mg/day and 2.1 ± 1.2 mg/kg/day. When we applied the reference values from the Academy of Pediatrics, we found that 46% of the adolescents exceeded the recommended upper limits. Coffee was the most frequently consumed caffeinated drink and the main contributor to daily caffeine intake. More than three quarters (76%) of the Italian adolescents in our study drank coffee on a daily basis and nearly half (46%) exceeded the recommended upper limits. Strategies are needed to reduce caffeine consumption by adolescents. ©2018 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  8. Spectroscopic study of surface enhanced Raman scattering of caffeine on borohydride-reduced silver colloids

    NASA Astrophysics Data System (ADS)

    Chen, Xiaomin; Gu, Huaimin; Shen, Gaoshan; Dong, Xiao; Kang, Jian

    2010-06-01

    The surface enhanced Raman scattering (SERS) of caffeine on borohydride-reduced silver colloids system under different aqueous solution environment has been studied in this paper. The relative intensity of SERS of caffeine significantly varies with different concentrations of sodium chloride and silver particles. However, at too high or too low concentration of sodium chloride and silver particle, the enhancement of SERS spectra is not evident. The SERS spectra of caffeine suggest that the contribution of the charge transfer mechanism to SERS may be dominant. The chloride ions can significantly enhance the efficiency of SERS, while the enhancement is selective, as the efficiency in charge transfer enhancement is higher than in electromagnetic enhancement. Therefore, it can be concluded that the active site of chloride ion locates on the bond between the caffeine and the silver surface. In addition, the SERS spectra of caffeine on borohydride-reduced and citrate-reduced silver colloids are different, which may be due to different states caffeine adsorbed on silver surface under different silver colloids.

  9. Use of coffee, caffeinated drinks and caffeine tablets for cognitive enhancement in pupils and students in Germany.

    PubMed

    Franke, A G; Christmann, M; Bonertz, C; Fellgiebel, A; Huss, M; Lieb, K

    2011-11-01

    Substance use for cognitive enhancement (CE) is a topic of increasing importance. There are only few data about substances, prevalence rates and factors associated with CE. The aim of this study was to assess first data about the use of coffee, caffeinated drinks and caffeine tablets for CE at school and university. A self-report questionnaire was developed to analyze 1 547 pupils and students about their use of coffee, caffeine tablets, and caffeinated drinks for CE and factors associated with this use. Lifetime, past-year, and past-month prevalence for the use of coffee for CE was 53.2%, 8.5%, and 6.3%, for the use of caffeinated drinks 39%, 10.7%, and 6.3%, and for the use of caffeine tablets 10.5%, 3.8%, and 0.8%. Use of caffeinated substances for CE was influenced by gender and school grades. The use of coffee and caffeinated drinks for CE was found to be widespread in the surveyed population. Although the use of caffeine tablets was found to be smaller than the above-mentioned means, it still indicates a relatively high disposition for using tablets for purposes of CE. © Georg Thieme Verlag KG Stuttgart · New York.

  10. Caffeine: cognitive and physical performance enhancer or psychoactive drug?

    PubMed

    Cappelletti, Simone; Piacentino, Daria; Daria, Piacentino; Sani, Gabriele; Aromatario, Mariarosaria

    2015-01-01

    Caffeine use is increasing worldwide. The underlying motivations are mainly concentration and memory enhancement and physical performance improvement. Coffee and caffeine-containing products affect the cardiovascular system, with their positive inotropic and chronotropic effects, and the central nervous system, with their locomotor activity stimulation and anxiogenic-like effects. Thus, it is of interest to examine whether these effects could be detrimental for health. Furthermore, caffeine abuse and dependence are becoming more and more common and can lead to caffeine intoxication, which puts individuals at risk for premature and unnatural death. The present review summarizes the main findings concerning caffeine's mechanisms of action (focusing on adenosine antagonism, intracellular calcium mobilization, and phosphodiesterases inhibition), use, abuse, dependence, intoxication, and lethal effects. It also suggests that the concepts of toxic and lethal doses are relative, since doses below the toxic and/or lethal range may play a causal role in intoxication or death. This could be due to caffeine's interaction with other substances or to the individuals' preexisting metabolism alterations or diseases.

  11. Caffeine in floral nectar enhances a pollinator's memory of reward.

    PubMed

    Wright, G A; Baker, D D; Palmer, M J; Stabler, D; Mustard, J A; Power, E F; Borland, A M; Stevenson, P C

    2013-03-08

    Plant defense compounds occur in floral nectar, but their ecological role is not well understood. We provide evidence that plant compounds pharmacologically alter pollinator behavior by enhancing their memory of reward. Honeybees rewarded with caffeine, which occurs naturally in nectar of Coffea and Citrus species, were three times as likely to remember a learned floral scent as were honeybees rewarded with sucrose alone. Caffeine potentiated responses of mushroom body neurons involved in olfactory learning and memory by acting as an adenosine receptor antagonist. Caffeine concentrations in nectar did not exceed the bees' bitter taste threshold, implying that pollinators impose selection for nectar that is pharmacologically active but not repellent. By using a drug to enhance memories of reward, plants secure pollinator fidelity and improve reproductive success.

  12. Acute stress blocks the caffeine-induced enhancement of contextual memory retrieval in mice.

    PubMed

    Pierard, Chistophe; Krazem, Ali; Henkous, Nadia; Decorte, Laurence; Béracochéa, Daniel

    2015-08-15

    This study investigated in mice the dose-effect of caffeine on memory retrieval in non-stress and stress conditions. C57 Bl/6 Jico mice learned two consecutive discriminations (D1 and D2) in a four-hole board which involved either distinct contextual (CSD) or similar contextual (SSD) cues. All mice received an i.p. injection of vehicle or caffeine (8, 16 or 32mg/kg) 30min before the test session. Results showed that in non-stress conditions, the 16mg/kg caffeine dose induced a significant enhancement of D1 performance in CSD but not in SSD. Hence, we studied the effect of an acute stress (electric footshocks) administered 15min before the test session on D1 performance in caffeine-treated mice. Results showed that stress significantly decreased D1 performance in vehicle-treated controls and the memory-enhancing effect induced by the 16mg/kg caffeine dose in non-stress condition is no longer observed. Interestingly, whereas caffeine-treated mice exhibited weaker concentrations of plasma corticosterone as compared to vehicles in non-stress condition, stress significantly increased plasma corticosterone concentrations in caffeine-treated mice which reached similar level to that of controls. Overall, the acute stress blocked both the endocrinological and memory retrieval enhancing effects of caffeine. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Caffeine: a potential complexing agent for solubility and dissolution enhancement of celecoxib.

    PubMed

    Shakeel, Faiyaz; Faisal, Mohammed S

    2010-01-01

    Complexation of caffeine with the drug celecoxib was used to enhance its solubility as well as in vitro dissolution in the present investigation. Caffeine was extracted from tea leaves using the sublimation method. A molecular complex (1:1) of caffeine-celecoxib was prepared using the solubility method. The solubility of celecoxib in distilled water and the caffeine complex was determined using a HPLC method at a wavelength of 250 nm. Dissolution studies of pure celecoxib, a marketed capsule (Celebrex), and the complex were performed using USP dissolution apparatus I for pure celecoxib and the complex and apparatus II for the capsule in distilled water. The highest solubility (48.32 mg/mL) as well as percent dissolution (90.54%) of celecoxib was obtained with the caffeine-celecoxib complex. The results for solubility and dissolution were highly significant as compared to pure celecoxib and the marketed capsule (p < 0.01). These results suggest that caffeine is a promising complexing agent for solubility as well as dissolution enhancement of the poorly soluble drug celecoxib.

  14. Effects of upper respiratory tract illnesses, ibuprofen and caffeine on reaction time and alertness.

    PubMed

    Smith, Andrew P; Nutt, David J

    2014-05-01

    Compared with healthy individuals, those with upper respiratory tract illnesses (URTIs) report reduced alertness and have slower reaction times. It is important to evaluate medication that can remove this behavioural malaise. The aim of this study was to compare the effects of a combination of ibuprofen plus caffeine with ibuprofen and caffeine alone, and placebo on malaise associated with URTIs, as measured by psychomotor performance and mood testing. Volunteers were randomly assigned to one of four medication conditions as follows: 200 mg ibuprofen and 100 mg caffeine; 200 mg ibuprofen; 100 mg caffeine; placebo. A single oral dose was given and testing followed for 3 h. Efficacy variables were based on the volunteers' performance, measured by psychomotor performance and mood. The pre-drug results confirmed that those with an URTI had a more negative mood and impaired performance. Results from the simple reaction time task, at both 55- and 110-min post-dosing, showed that a single-dose of caffeinated products (I200/C100 and CAF100) led to significantly faster reaction times than IBU200 and placebo. These effects were generally confirmed with the other performance tasks. Subjective measures showed that the combination of ibuprofen and caffeine was superior to the other conditions. There were no serious adverse events reported, and study medication was well tolerated. The results from the post-drug assessments suggest that a combination of ibuprofen and caffeine was the optimum treatment for malaise associated with URTIs in that it had significant effects on objective performance and subjective measures.

  15. Action of caffeine on x-irradiated HeLa cells. VII. Evidence that caffeine enhances expression of potentially lethal radiation damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beetham, K.L.; Tolmach, L.J.

    1984-12-01

    HeLa cells irradiated with 2 Gy of 220-kV X rays suffer a 60-70% loss of colony-forming ability which is increased to 90% by postirradiation treatment with 10 mM caffeine for 6 hr. The detailed postirradiation patterns of cell death and sister-cell fusion in such cultures and in cultures in which the colony-forming ability was brought to about the same level by treatment with a larger (4 Gy) X-ray dose alone or by longer (48 hr) treatment with 10 mM caffeine alone were recorded by time-lapse cinemicrography. Because the patterns of cell death and fusion differ radically in irradiated and inmore » caffeine-treated cultures, the response of the additional cells killed by the combined treatment can be identified as X-ray induced rather than caffeine induced. The appearance of cultures after several days of incubation confirms the similarity of the post-treatment patterns of proliferation in cultures suffering enhanced killing to those occurring in cultures treated with larger doses of X rays alone. It is concluded that x rays do not sensitize cells to caffeine, but rather that caffeine enhanced the expression of potentially lethal radiation-induced damage.« less

  16. Synergistic Skin Penetration Enhancer and Nanoemulsion Formulations Promote the Human Epidermal Permeation of Caffeine and Naproxen.

    PubMed

    Abd, Eman; Namjoshi, Sarika; Mohammed, Yousuf H; Roberts, Michael S; Grice, Jeffrey E

    2016-01-01

    We examined the extent of skin permeation enhancement of the hydrophilic drug caffeine and lipophilic drug naproxen applied in nanoemulsions incorporating skin penetration enhancers. Infinite doses of fully characterized oil-in-water nanoemulsions containing the skin penetration enhancers oleic acid or eucalyptol as oil phases and caffeine (3%) or naproxen (2%) were applied to human epidermal membranes in Franz diffusion cells, along with aqueous control solutions. Caffeine and naproxen fluxes were determined over 8 h. Solute solubility in the formulations and in the stratum corneum (SC), as well as the uptake of product components into the SC were measured. The nanoemulsions significantly enhanced the skin penetration of caffeine and naproxen, compared to aqueous control solutions. Caffeine maximum flux enhancement was associated with a synergistic increase in both caffeine SC solubility and skin diffusivity, whereas a formulation-increased solubility in the SC was the dominant determinant for increased naproxen fluxes. Enhancements in SC solubility were related to the uptake of the formulation excipients containing the active compounds into the SC. Enhanced skin penetration in these systems is largely driven by uptake of formulation excipients containing the active compounds into the SC with impacts on SC solubility and diffusivity.

  17. Caffeine expectancies influence the subjective and behavioral effects of caffeine.

    PubMed

    Harrell, Paul T; Juliano, Laura M

    2009-12-01

    This study investigated the independent and interactive effects of caffeine pharmacology and expected effects of caffeine on performance and subjective outcomes. Abstinent coffee drinkers (n = 60) consumed decaffeinated coffee with either 280 mg or 0 mg added caffeine. Caffeine dose was crossed with varying instructions that the coffee would either enhance or impair performance in a 2 x 2 factorial design. Performance, mood, caffeine withdrawal, and negative somatic effects were assessed. Relative to placebo, caffeine improved reaction time and accuracy on the rapid visual information processing task, a measure of vigilance. However, there was a significant dose by expectancy interaction that revealed that among participants given placebo coffee, "impair" instructions produced better performance than "enhance" instructions. Caffeine also improved psychomotor performance as indicated by a finger tapping task with no main effects of expectancy or interactions. Impair instructions produced greater reports of negative somatic effects than enhance instructions, but only when caffeine was administered. Manipulating the expected effects of caffeine altered the behavioral and subjective effects of caffeine. A significant dose by expectancy interaction revealed a somewhat paradoxical outcome in the placebo conditions whereby those told "impair" performed better than those told "enhance." This may reflect compensatory responding as has been observed in similar studies using alcohol (Fillmore et al. Psychopharmacology 115:383-388, 1994). Impair instructions led to greater negative somatic effects only when caffeine was administered supporting the active placebo hypothesis.

  18. Acute Caffeine Consumption Enhances the Executive Control of Visual Attention in Habitual Consumers

    ERIC Educational Resources Information Center

    Brunye, Tad T.; Mahoney, Caroline R.; Lieberman, Harris R.; Giles, Grace E.; Taylor, Holly A.

    2010-01-01

    Recent work suggests that a dose of 200-400mg caffeine can enhance both vigilance and the executive control of visual attention in individuals with low caffeine consumption profiles. The present study seeks to determine whether individuals with relatively high caffeine consumption profiles would show similar advantages. To this end, we examined…

  19. Caffeine and anaerobic performance: ergogenic value and mechanisms of action.

    PubMed

    Davis, J K; Green, J Matt

    2009-01-01

    The effect caffeine elicits on endurance performance is well founded. However, comparatively less research has been conducted on the ergogenic potential of anaerobic performance. Some studies showing no effect of caffeine on performance used untrained subjects and designs often not conducive to observing an ergogenic effect. Recent studies incorporating trained subjects and paradigms specific to intermittent sports activity support the notion that caffeine is ergogenic to an extent with anaerobic exercise. Caffeine seems highly ergogenic for speed endurance exercise ranging in duration from 60 to 180 seconds. However, other traditional models examining power output (i.e. 30-second Wingate test) have shown minimal effect of caffeine on performance. Conversely, studies employing sport-specific methodologies (i.e. hockey, rugby, soccer) with shorter duration (i.e. 4-6 seconds) show caffeine to be ergogenic during high-intensity intermittent exercise. Recent studies show caffeine affects isometric maximal force and offers introductory evidence for enhanced muscle endurance for lower body musculature. However, isokinetic peak torque, one-repetition maximum and muscular endurance for upper body musculature are less clear. Since relatively few studies exist with resistance training, a definite conclusion cannot be reached on the extent caffeine affects performance. It was previously thought that caffeine mechanisms were associated with adrenaline (epinephrine)-induced enhanced free-fatty acid oxidation and consequent glycogen sparing, which is the leading hypothesis for the ergogenic effect. It would seem unlikely that the proposed theory would result in improved anaerobic performance, since exercise is dominated by oxygen-independent metabolic pathways. Other mechanisms for caffeine have been suggested, such as enhanced calcium mobilization and phosphodiesterase inhibition. However, a normal physiological dose of caffeine in vivo does not indicate this mechanism plays a

  20. Caffeine in floral nectar enhances a pollinator’s memory of reward

    PubMed Central

    Wright, G. A.; Baker, D. D.; Palmer, M. J.; Stabler, D.; Mustard, J. A.; Power, E. F.; Borland, A. M.; Stevenson, P. C.

    2015-01-01

    Plant defence compounds occur in floral nectar, but their ecological role is not well-understood. We provide the first evidence that plant compounds pharmacologically alter pollinator behaviour by enhancing their memory of reward. Honeybees rewarded with caffeine, which occurs naturally in nectar of Coffea and Citrus species, were three times more likely to remember a learned floral scent than those rewarded with sucrose alone. Caffeine potentiated responses of mushroom body neurons involved in olfactory learning and memory by acting as an adenosine receptor antagonist. Caffeine concentrations in nectar never exceeded the bees’ bitter taste threshold, implying that pollinators impose selection for nectar that is pharmacologically active but not repellent. By using a drug to enhance memories of reward, plants secure pollinator fidelity and improve reproductive success. PMID:23471406

  1. Enhancement of SV40 transformation by treatment of C3H2K cells with uv light and caffeine. I. Combined effect of uv light and caffeine. [Mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ide, T.; Anzai, K.; Andoh, T.

    1975-08-01

    Treatment of cultured mouse cells, C3H2K, with uv light and/or caffeine enhanced the frequency of SV40-induced transformation. This enhancement depends upon the doses of uv and caffeine and the mode of combination of these agents. Irradiation of cells with increasing doses of uv just before infection resulted in approximately 2-fold enhancement of the transformation frequency up to a dose of 90 ergs/mm/sup 2/ and 3.3-fold at 150 ergs/mm/sup 2/. Addition of 1 mM caffeine to the medium for 4 days subsequent to infection brought about a 2-fold enhancement. When cells were irradiated and treated with 1 mM caffeine, the enhancementmore » was approximately 4-fold up to a uv dose of 90 ergs/mm/sup 2/ and 5.9-fold at 150 ergs/mm/sup 2/. When 0.1 to 4 mM caffeine was added for 4 days postinfection, the absolute number of transformations increased, and an enhancement ratio of 1.3 to 6.8 resulted. After the addition of the same increasing doses of caffeine to uv-irradiated cells (75 ergs/mm/sup 2/), the enhancement of transformation frequency was even higher ranging 2.0 to 13.3. The transformation frequencies thus obtained by the double treatment were always higher than those predicted if uv and caffeine acted additively. The transformation frequency was little affected by the addition of dibutyrylcyclic AMP and theophylline.« less

  2. Caffeine: Cognitive and Physical Performance Enhancer or Psychoactive Drug?

    PubMed Central

    Cappelletti, Simone; Daria, Piacentino; Sani, Gabriele; Aromatario, Mariarosaria

    2015-01-01

    Caffeine use is increasing worldwide. The underlying motivations are mainly concentration and memory enhancement and physical performance improvement. Coffee and caffeine-containing products affect the cardiovascular system, with their positive inotropic and chronotropic effects, and the central nervous system, with their locomotor activity stimulation and anxiogenic-like effects. Thus, it is of interest to examine whether these effects could be detrimental for health. Furthermore, caffeine abuse and dependence are becoming more and more common and can lead to caffeine intoxication, which puts individuals at risk for premature and unnatural death. The present review summarizes the main findings concerning caffeine’s mechanisms of action (focusing on adenosine antagonism, intracellular calcium mobilization, and phosphodiesterases inhibition), use, abuse, dependence, intoxication, and lethal effects. It also suggests that the concepts of toxic and lethal doses are relative, since doses below the toxic and/or lethal range may play a causal role in intoxication or death. This could be due to caffeine’s interaction with other substances or to the individuals' preexisting metabolism alterations or diseases. PMID:26074744

  3. The effects of low and moderate doses of caffeine supplementation on upper and lower body maximal voluntary concentric and eccentric muscle force.

    PubMed

    Tallis, Jason; Yavuz, Harley C M

    2018-03-01

    Despite the growing quantity of literature exploring the effect of caffeine on muscular strength, there is a dearth of data that directly explores differences in erogenicity between upper and lower body musculature and the dose-response effect. The present study sought to investigate the effects of low and moderate doses of caffeine on the maximal voluntary strength of the elbow flexors and knee extensors. Ten nonspecifically strength-trained, recreationally active participants (aged 21 ± 0.3 years) completed the study. Using a randomised, counterbalanced, and double-blind approach, isokinetic concentric and eccentric strength was measured at 60 and 180°/s following administration of a placebo, 3 mg·kg -1 body mass caffeine, and 6 mg·kg -1 body mass caffeine. There was no effect of caffeine on the maximal voluntary concentric and eccentric strength of the elbow flexors, or the eccentric strength of the knee extensors. Both 3 and 6 mg·kg -1 body mass caffeine caused a significant increase in peak concentric force of the knee extensors at 180°/s. No difference was apparent between the 2 concentrations. Only 6 mg·kg -1 body mass caused an increase in peak concentric force during repeated contractions. The results infer that the effective caffeine concentration to evoke improved muscle performance may be related to muscle mass and contraction type. The present work indicates that a relatively low dose of caffeine treatment may be effective for improving lower body muscular strength, but may have little benefit for the strength of major muscular groups of the upper body.

  4. Enhancement of nootropic effect of duloxetine and bupropion by caffeine in mice.

    PubMed

    Kale, Pravin Popatrao; Addepalli, Veeranjaneyulu

    2015-01-01

    The existing evidence suggests an association between depression and memory impairment. The objective of present study was to assess the effect of low dose caffeine with duloxetine and bupropion on memory. Mice were divided randomly into seven groups. Intra-peritoneal treatment of normal saline (10 ml/kg), caffeine (10 mg/kg), duloxetine (10 mg/kg), bupropion alone (10 mg/kg), caffeine + duloxetine (5 mg/kg, each), caffeine + bupropion (5 mg/kg, each), and bupropion + duloxetine (5 mg/kg, each) were given to groups I-VII, respectively. Elevated plus maze was used to evaluate transfer latency (TL) and Morris water maze was used to estimate the time spent in target quadrant. Caffeine with duloxetine treated group was better than other combination treated groups in terms of a significant decrease in TL and increase in the time spent in target quadrant recorded. Combining lower dose of caffeine with duloxetine may enhance cognitive benefits than respective monotherapies.

  5. Enhancement of nootropic effect of duloxetine and bupropion by caffeine in mice

    PubMed Central

    Kale, Pravin Popatrao; Addepalli, Veeranjaneyulu

    2015-01-01

    Objective: The existing evidence suggests an association between depression and memory impairment. The objective of present study was to assess the effect of low dose caffeine with duloxetine and bupropion on memory. Materials and Methods: Mice were divided randomly into seven groups. Intra-peritoneal treatment of normal saline (10 ml/kg), caffeine (10 mg/kg), duloxetine (10 mg/kg), bupropion alone (10 mg/kg), caffeine + duloxetine (5 mg/kg, each), caffeine + bupropion (5 mg/kg, each), and bupropion + duloxetine (5 mg/kg, each) were given to groups I-VII, respectively. Elevated plus maze was used to evaluate transfer latency (TL) and Morris water maze was used to estimate the time spent in target quadrant. Results: Caffeine with duloxetine treated group was better than other combination treated groups in terms of a significant decrease in TL and increase in the time spent in target quadrant recorded. Conclusion: Combining lower dose of caffeine with duloxetine may enhance cognitive benefits than respective monotherapies. PMID:25878382

  6. Caffeine and exercise.

    PubMed

    Paluska, Scott A

    2003-08-01

    Caffeine is the most commonly consumed drug in the world, and athletes frequently use it as an ergogenic aid. It improves performance and endurance during prolonged, exhaustive exercise. To a lesser degree it also enhances short-term, high-intensity athletic performance. Caffeine improves concentration, reduces fatigue, and enhances alertness. Habitual intake does not diminish caffeine's ergogenic properties. Several mechanisms have been proposed to explain the physiologic effects of caffeine, but adenosine receptor antagonism most likely accounts for the primary mode of action. It is relatively safe and has no known negative performance effects, nor does it cause significant dehydration or electrolyte imbalance during exercise. Routine caffeine consumption may cause tolerance or dependence, and abrupt discontinuation produces irritability, mood shifts, headache, drowsiness, or fatigue. Major sport governing bodies ban excessive use of caffeine, but current monitoring techniques are inadequate, and ethical dilemmas persist regarding caffeine intake by athletes.

  7. Low dose of caffeine enhances the efficacy of antidepressants in major depressive disorder and the underlying neural substrates.

    PubMed

    Liu, Qing-Shan; Deng, Ran; Fan, Yuyan; Li, Keqin; Meng, Fangang; Li, Xueli; Liu, Rui

    2017-08-01

    Caffeine is one of the most frequently used psychoactive substances ingested mainly via beverage or food products. Major depressive disorder is a serious and devastating psychiatric disorder. Emerging evidence indicates that caffeine enhances the antidepressant-like activity of common antidepressant drugs in rodents. However, whether joint administration of low dose of caffeine enhances the antidepressant actions in depressed patients remains unclear. A total of 95 male inpatients were assigned to three groups and were asked to take either caffeine (60, 120 mg) or placebo (soymilk powder) daily for 4 wk on the basis of their current antidepressant medications. Results showed that chronic supplementation with low dose of caffeine (60 mg) produced rapid antidepressant action by reduction of depressive scores. Furthermore, low dose of caffeine improved cognitive performance in depressed patients. However, caffeine did not affect sleep as measured by overnight polysomnography. Moreover, chronic caffeine consumption elicited inhibition of hypothalamic-pituitary-adrenal axis activation by normalization of salivary cortisol induced by Trier social stress test. These findings indicated the potential benefits of further implications of supplementary administration of caffeine to reverse the development of depression and enhance the outcome of antidepressants treatment in major depressive disorder. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Caffeine enhances real-world language processing: evidence from a proofreading task.

    PubMed

    Brunyé, Tad T; Mahoney, Caroline R; Rapp, David N; Ditman, Tali; Taylor, Holly A

    2012-03-01

    Caffeine has become the most prevalently consumed psychostimulant in the world, but its influences on daily real-world functioning are relatively unknown. The present work investigated the effects of caffeine (0 mg, 100 mg, 200 mg, 400 mg) on a commonplace language task that required readers to identify and correct 4 error types in extended discourse: simple local errors (misspelling 1- to 2-syllable words), complex local errors (misspelling 3- to 5-syllable words), simple global errors (incorrect homophones), and complex global errors (incorrect subject-verb agreement and verb tense). In 2 placebo-controlled, double-blind studies using repeated-measures designs, we found higher detection and repair rates for complex global errors, asymptoting at 200 mg in low consumers (Experiment 1) and peaking at 400 mg in high consumers (Experiment 2). In both cases, covariate analyses demonstrated that arousal state mediated the relationship between caffeine consumption and the detection and repair of complex global errors. Detection and repair rates for the other 3 error types were not affected by caffeine consumption. Taken together, we demonstrate that caffeine has differential effects on error detection and repair as a function of dose and error type, and this relationship is closely tied to caffeine's effects on subjective arousal state. These results support the notion that central nervous system stimulants may enhance global processing of language-based materials and suggest that such effects may originate in caffeine-related right hemisphere brain processes. Implications for understanding the relationships between caffeine consumption and real-world cognitive functioning are discussed. PsycINFO Database Record (c) 2012 APA, all rights reserved.

  9. Caffeine Expectancy Questionnaire (CaffEQ): construction, psychometric properties, and associations with caffeine use, caffeine dependence, and other related variables.

    PubMed

    Huntley, Edward D; Juliano, Laura M

    2012-09-01

    Expectancies for drug effects predict drug initiation, use, cessation, and relapse, and may play a causal role in drug effects (i.e., placebo effects). Surprisingly little is known about expectancies for caffeine even though it is the most widely used psychoactive drug in the world. In a series of independent studies, the nature and scope of caffeine expectancies among caffeine consumers and nonconsumers were assessed, and a comprehensive and psychometrically sound Caffeine Expectancy Questionnaire (CaffEQ) was developed. After 2 preliminary studies, the CaffEQ was administered to 1,046 individuals from the general population along with other measures of interest (e.g., caffeine use history, anxiety). Exploratory factor analysis of the CaffEQ yielded a 7-factor solution. Subsequently, an independent sample of 665 individuals completed the CaffEQ and other measures, and a subset (n = 440) completed the CaffEQ again approximately 2 weeks later. Confirmatory factor analysis revealed good model fit, and test-retest reliability was very good. The frequency and quantity of caffeine use were associated with greater expectancies for withdrawal/dependence, energy/work enhancement, appetite suppression, social/mood enhancement, and physical performance enhancement and lower expectancies for anxiety/negative physical effects and sleep disturbance. Caffeine expectancies predicted various caffeine- associated features of substance dependence (e.g., use despite harm, withdrawal incidence and severity, perceived difficulty stopping use, tolerance). Expectancies for caffeine consumed via coffee were stronger than for caffeine consumed via soft drinks or tea. The CaffEQ should facilitate the advancement of our knowledge of caffeine and drug use in general. PsycINFO Database Record (c) 2012 APA, all rights reserved.

  10. Caffeine-enhanced survival of radiation-sensitive, repair-deficient Chinese hamster cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Utsumi, H.; Elkind, M.M.

    1983-11-01

    A clone of V79 Chinese hamster cells (V79-AL162/S-10) with unique properties has been isolated after a challenge of parental cells (V79-AL162) with 1 mM ouabain. Compared with parental cells, or with other clones isolated after the ouabain challenge, these cells form smaller colonies, are more sensitive to both x rays and fission-spectrum neutrons, and respond atypically to a postirradiation treatment with caffeine. Their enhanced response to x rays results mainly from a large reduction in the shoulder of their survival curve, probably because in late S phase, the most resistant phase in the cell cycle, the survival curve of thesemore » cells has a reduced shoulder width. Caffeine, and to a lesser extent theophylline, added to the colony-forming medium immediately after exposure appreciably increases the width of the shoulder of these sensitive cells, whereas caffeine has the opposite effect on the response of normal V79 cells. Thus the unique response of the V79-AL162/S-10 cells to a radiation posttreatment with caffeine (increased survival) results from a net increase in their ability to repair damage that is otherwise lethal; caffeine treatment ordinarly prevents normal V79 cells from repairing damage that is only potentially lethal.« less

  11. Extraction and removal of caffeine from green tea by ultrasonic-enhanced supercritical fluid.

    PubMed

    Tang, Wei-Qiang; Li, Di-Cai; Lv, Yang-Xiao; Jiang, Jian-Guo

    2010-05-01

    Low-caffeine or caffeine-removed tea and its products are widely welcomed on market in recent years. In the present study, we adopt ultrasonic-enhanced supercritical fluid extraction process to remove caffeine from green tea. An orthogonal experiment (L16 (4(5))) was applied to optimize the best removal conditions. Extraction pressure, extraction time, power of ultrasound, moisture content, and temperature were the main factors to influence the removal rate of caffeine from green tea. The 5 factors chosen for the present investigation were based on the results of a single-factor test. The optimum removal conditions were determined as follows: extraction pressure of 30 MPa, temperature at 55 degrees C, time of 4 h, 30% moisture content, and ultrasound power of 100 W. Chromatogram and ultraviolet analysis of raw material and decaffeinates suggests that under optimized conditions, the caffeine of green tea was effectively removed and minished without damaging the structure of active ingredients in green tea.

  12. Make Caffeine Visible: a Fluorescent Caffeine “Traffic Light” Detector

    NASA Astrophysics Data System (ADS)

    Xu, Wang; Kim, Tae-Hyeong; Zhai, Duanting; Er, Jun Cheng; Zhang, Liyun; Kale, Anup Atul; Agrawalla, Bikram Keshari; Cho, Yoon-Kyoung; Chang, Young-Tae

    2013-07-01

    Caffeine has attracted abundant attention due to its extensive existence in beverages and medicines. However, to detect it sensitively and conveniently remains a challenge, especially in resource-limited regions. Here we report a novel aqueous phase fluorescent caffeine sensor named Caffeine Orange which exhibits 250-fold fluorescence enhancement upon caffeine activation and high selectivity. Nuclear magnetic resonance spectroscopy and Fourier transform infrared spectroscopy indicate that π-stacking and hydrogen-bonding contribute to their interactions while dynamic light scattering and transmission electron microscopy experiments demonstrate the change of Caffeine Orange ambient environment induces its fluorescence emission. To utilize this probe in real life, we developed a non-toxic caffeine detection kit and tested it for caffeine quantification in various beverages. Naked-eye sensing of various caffeine concentrations was possible based on color changes upon irradiation with a laser pointer. Lastly, we performed the whole system on a microfluidic device to make caffeine detection quick, sensitive and automated.

  13. Sleep Deprivation Impairs and Caffeine Enhances My Performance, but Not Always Our Performance.

    PubMed

    Faber, Nadira S; Häusser, Jan A; Kerr, Norbert L

    2017-02-01

    What effects do factors that impair or enhance performance in individuals have when these individuals act in groups? We provide a framework, called the GIE ("Effects of Grouping on Impairments and Enhancements") framework, for investigating this question. As prominent examples for individual-level impairments and enhancements, we discuss sleep deprivation and caffeine. Based on previous research, we derive hypotheses on how they influence performance in groups, specifically process gains and losses in motivation, individual capability, and coordination. We conclude that the effect an impairment or enhancement has on individual-level performance is not necessarily mirrored in group performance: grouping can help or hurt. We provide recommendations on how to estimate empirically the effects individual-level performance impairments and enhancements have in groups. By comparing sleep deprivation to stress and caffeine to pharmacological cognitive enhancement, we illustrate that we cannot readily generalize from group results on one impairment or enhancement to another, even if they have similar effects on individual-level performance.

  14. Removal of caffeine from green tea by microwave-enhanced vacuum ice water extraction.

    PubMed

    Lou, Zaixiang; Er, Chaojuan; Li, Jing; Wang, Hongxin; Zhu, Song; Sun, Juntao

    2012-02-24

    In order to selectively remove caffeine from green tea, a microwave-enhanced vacuum ice water extraction (MVIE) method was proposed. The effects of MVIE variables including extraction time, microwave power, and solvent to solid radio on the removal yield of caffeine and the loss of total phenolics (TP) from green tea were investigated. The optimized conditions were as follows: solvent (mL) to solid (g) ratio was 10:1, microwave extraction time was 6 min, microwave power was 350 W and 2.5 h of vacuum ice water extraction. The removal yield of caffeine by MVIE was 87.6%, which was significantly higher than that by hot water extraction, indicating a significant improvement of removal efficiency. Moreover, the loss of TP of green tea in the proposed method was much lower than that in the hot water extraction. After decaffeination by MVIE, the removal yield of TP tea was 36.2%, and the content of TP in green tea was still higher than 170 mg g(-1). Therefore, the proposed microwave-enhanced vacuum ice water extraction was selective, more efficient for the removal of caffeine. The main phenolic compounds of green tea were also determined, and the results indicated that the contents of several catechins were almost not changed in MVIE. This study suggests that MVIE is a new and good alternative for the removal of caffeine from green tea, with a great potential for industrial application. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Caffeine may enhance orthodontic tooth movement through increasing osteoclastogenesis induced by periodontal ligament cells under compression.

    PubMed

    Yi, Jianru; Yan, Boxi; Li, Meile; Wang, Yu; Zheng, Wei; Li, Yu; Zhao, Zhihe

    2016-04-01

    Caffeine is the kernel component of coffee and has multiple effects on bone metabolism. Here we aimed to investigate the effects of caffeine intake on orthodontic tooth movement (OTM). (1) In the in vivo study, two groups comprising 15 randomly assigned rats each underwent orthodontic treatment. One group ingested caffeine at 25mg/kg body weight per day and the other, plain water. After 3 weeks, the degree of tooth movement and effect on the periodontium were assessed. (2) In the in vitro study, we established a model mimicking the essential bioprocess of OTM, which contained a periodontal ligament tissue model (PDLtm), and a co-culture system of osteoblasts (OBs) and osteoclast precursors (pre-OCs). After being subjected to static compressive force with or without caffeine administration, the conditioned media from the PDLtm were used for the OB/pre-OC co-cultures to induce osteoclastogenesis. (1) In vivo, the caffeine group displayed a significantly greater rate of tooth movement than the control. The alveolar bone mineral density and bone volume fraction were similar between the two groups; however, immunohistochemical staining showed that the caffeine group had significantly more TRAP(+) osteoclasts and higher RANKL expression in the compressed periodontium. (2) In vitro, caffeine at 0.01mM significantly enhanced the compression-induced expression of RANKL and COX-2, as well as prostaglandin E2 production in the PDLtm. Furthermore, the "caffeine+compression"-conditioned media induced significantly more TRAP(+) OC formation when compared with compression alone. Daily intake of caffeine, at least at some specific dosage, may enhance OTM through increasing osteoclastogenesis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Sleep Deprivation Impairs and Caffeine Enhances My Performance, but Not Always Our Performance

    PubMed Central

    Faber, Nadira S.; Häusser, Jan A.; Kerr, Norbert L.

    2016-01-01

    What effects do factors that impair or enhance performance in individuals have when these individuals act in groups? We provide a framework, called the GIE ("Effects of Grouping on Impairments and Enhancements”) framework, for investigating this question. As prominent examples for individual-level impairments and enhancements, we discuss sleep deprivation and caffeine. Based on previous research, we derive hypotheses on how they influence performance in groups, specifically process gains and losses in motivation, individual capability, and coordination. We conclude that the effect an impairment or enhancement has on individual-level performance is not necessarily mirrored in group performance: grouping can help or hurt. We provide recommendations on how to estimate empirically the effects individual-level performance impairments and enhancements have in groups. By comparing sleep deprivation to stress and caffeine to pharmacological cognitive enhancement, we illustrate that we cannot readily generalize from group results on one impairment or enhancement to another, even if they have similar effects on individual-level performance. PMID:26468077

  17. Differential responsiveness to caffeine and perceived effects of caffeine in moderate and high regular caffeine consumers.

    PubMed

    Attwood, A S; Higgs, S; Terry, P

    2007-03-01

    Individual differences in responsiveness to caffeine occur even within a caffeine-consuming population, but the factors that mediate differential responsiveness remain unclear. To compare caffeine's effects on performance and mood in a group of high vs moderate consumers of caffeine and to examine the potential role of subjective awareness of the effects of caffeine in mediating any differential responsiveness. Two groups of regular caffeine consumers (<200 mg/day and >200 mg/day) attended two sessions at which mood and cognitive functions were measured before and 30 min after consumption of 400-mg caffeine or placebo in a capsule. Cognitive tests included visual information processing, match-to-sample visual search (MTS) and simple and choice reaction times. Post-session questionnaires asked participants to describe any perceived effect of capsule consumption. High consumers, but not moderate consumers, demonstrated significantly faster simple and choice reaction times after caffeine relative to placebo. These effects were not attributable to obvious group differences in withdrawal or tolerance because there were no group differences in baseline mood or in reports of negative affect after caffeine. Instead, the high consumers were more likely to report experiencing positive effects of caffeine, whereas the moderate consumers were more likely to report no effect. The sensitivity of caffeine consumers to the mood- and performance-enhancing effects of caffeine is related to their levels of habitual intake. High caffeine consumers are more likely than moderate consumers to perceive broadly positive effects of caffeine, and this may contribute to their levels of use.

  18. Enhancing physical performance in elite junior tennis players with a caffeinated energy drink.

    PubMed

    Gallo-Salazar, César; Areces, Francisco; Abián-Vicén, Javier; Lara, Beatriz; Salinero, Juan José; Gonzalez-Millán, Cristina; Portillo, Javier; Muñoz, Victor; Juarez, Daniel; Del Coso, Juan

    2015-04-01

    The aim of this study was to investigate the effectiveness of a caffeinated energy drink to enhance physical performance in elite junior tennis players. In 2 different sessions separated by 1 wk, 14 young (16 ± 1 y) elite-level tennis players ingested 3 mg caffeine per kg body mass in the form of an energy drink or the same drink without caffeine (placebo). After 60 min, participants performed a handgrip-strength test, a maximal-velocity serving test, and an 8 × 15-m sprint test and then played a simulated singles match (best of 3 sets). Instantaneous running speed during the matches was assessed using global positioning (GPS) devices. Furthermore, the matches were videotaped and notated afterward. In comparison with the placebo drink, the ingestion of the caffeinated energy drink increased handgrip force by ~4.2% ± 7.2% (P = .03) in both hands, the running pace at high intensity (46.7 ± 28.5 vs 63.3 ± 27.7 m/h, P = .02), and the number of sprints (12.1 ± 1.7 vs 13.2 ± 1.7, P = .05) during the simulated match. There was a tendency for increased maximal running velocity during the sprint test (22.3 ± 2.0 vs 22.9 ± 2.1 km/h, P = .07) and higher percentage of points won on service with the caffeinated energy drink (49.7% ± 9.8% vs 56.4% ± 10.0%, P = .07) in comparison with the placebo drink. The energy drink did not improve ball velocity during the serving test (42.6 ± 4.8 vs 42.7 ± 5.0 m/s, P = .49). The preexercise ingestion of caffeinated energy drinks was effective to enhance some aspects of physical performance of elite junior tennis players.

  19. Dietary caffeine, performance and mood: enhancing and restorative effects after controlling for withdrawal reversal.

    PubMed

    James, Jack E; Gregg, M Elizabeth; Kane, Marian; Harte, Frances

    2005-01-01

    This study aimed to determine whether sustained (i.e. dietary) use of caffeine has net effects on performance and mood compared with sustained abstinence, and whether dietary caffeine restores performance and mood adversely affected by sleep restriction. Participants (n = 96) alternated weekly between ingesting placebo and caffeine (1.75 mg/kg) three times daily for 4 consecutive weeks, while either rested or sleep restricted. Performance involved either a single task requiring sustained vigilance or a varied battery of brief psychomotor and cognitive tasks, and mood was assessed using the Profile of Mood States. Caffeine had no significant net enhancing effects for either performance or mood when participants were rested, and produced no net restorative effects when performance and mood were degraded by sleep restriction. Copyright 2005 S. Karger AG, Basel

  20. Caffeine Promotes Global Spatial Processing in Habitual and Non-Habitual Caffeine Consumers

    PubMed Central

    Giles, Grace E.; Mahoney, Caroline R.; Brunyé, Tad T.; Taylor, Holly A.; Kanarek, Robin B.

    2013-01-01

    Information processing is generally biased toward global cues, often at the expense of local information. Equivocal extant data suggests that arousal states may accentuate either a local or global processing bias, at least partially dependent on the nature of the manipulation, task, and stimuli. To further differentiate the conditions responsible for such equivocal results we varied caffeine doses to alter physiological arousal states and measured their effect on tasks requiring the retrieval of local versus global spatial knowledge. In a double-blind, repeated-measures design, non-habitual (Experiment 1; N = 36, M = 42.5 ± 28.7 mg/day caffeine) and habitual (Experiment 2; N = 34, M = 579.5 ± 311.5 mg/day caffeine) caffeine consumers completed four test sessions corresponding to each of four caffeine doses (0, 100, 200, 400 mg). During each test session, participants consumed a capsule containing one of the three doses of caffeine or placebo, waited 60 min, and then completed two spatial tasks, one involving memorizing maps and one spatial descriptions. A spatial statement verification task tested local versus global spatial knowledge by differentially probing memory for proximal versus distal landmark relationships. On the map learning task, results indicated that caffeine enhanced memory for distal (i.e., global) compared to proximal (i.e., local) comparisons at 100 (marginal), 200, and 400 mg caffeine in non-habitual consumers, and marginally beginning at 200 mg caffeine in habitual consumers. On the spatial descriptions task, caffeine enhanced memory for distal compared to proximal comparisons beginning at 100 mg in non-habitual but not habitual consumers. We thus provide evidence that caffeine-induced physiological arousal amplifies global spatial processing biases, and these effects are at least partially driven by habitual caffeine consumption. PMID:24146646

  1. Enhancing physical performance in male volleyball players with a caffeine-containing energy drink.

    PubMed

    Del Coso, Juan; Pérez-López, Alberto; Abian-Vicen, Javier; Salinero, Juan Jose; Lara, Beatriz; Valadés, David

    2014-11-01

    There are no scientific data about the effects of caffeine intake on volleyball performance. The aim of this study was to investigate the effect of a caffeine-containing energy drink to enhance physical performance in male volleyball players. A double-blind, placebo-controlled, randomized experimental design was used. In 2 different sessions separated by 1 wk, 15 college volleyball players ingested 3 mg of caffeine per kg of body mass in the form of an energy drink or the same drink without caffeine (placebo). After 60 min, participants performed volleyball-specific tests: standing spike test, maximal squat jump (SJ), maximal countermovement jump (CMJ), 15-s rebound jump test (15RJ), and agility T-test. Later, a simulated volleyball match was played and recorded. In comparison with the placebo drink, the ingestion of the caffeinated energy drink increased ball velocity in the spike test (73 ± 9 vs 75 ± 10 km/h, P < .05) and the mean jump height in SJ (31.1 ± 4.3 vs 32.7 ± 4.2 cm, P < .05), CMJ (35.9 ± 4.6 vs 37.7 ± 4.4 cm, P < .05), and 15RJ (29.0 ± 4.0 vs 30.5 ± 4.6 cm, P < .05). The time to complete the agility test was significantly reduced with the caffeinated energy drink (10.8 ± 0.7 vs 10.3 ± 0.4 s, P < .05). In addition, players performed successful volleyball actions more frequently (24.6% ± 14.3% vs 34.3% ± 16.5%, P < .05) with the ingestion of the caffeinated energy drink than with the placebo drink during the simulated game. A caffeine-containing energy drink, with a dose equivalent to 3 mg of caffeine per kg body mass, might be an effective ergogenic aid to improve physical performance and accuracy in male volleyball players.

  2. Caffeine Use and Extroversion.

    ERIC Educational Resources Information Center

    Landrum, R. Eric; Meliska, Charles J.

    Some research on the stimulant effect of caffeine suggests that the amount of behavioral enhancement produced by caffeine may depend on subjects' prior experience with the task and the drug. A study was undertaken to test whether prior experience with a task while under the influence of caffeine would facilitate performance of that task. Male…

  3. Action of caffeine on x-irradiated HeLa cells. III. enhancement of x-ray-induced killing during G/sub 2/ arrest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Busse, P.M.; Bose, S.K.; Jones, R.W.

    1978-11-01

    The ability of caffeine to enhance the expression of potentially lethal x-ray damage in HeLa S3 cells was examined as a function of the age of the cells in the generation cycle. Synchronous populations were irradiated at different times after mitotic collection and treated for various intervals with 1 mM caffeiene, which causes negligible killing of unirradiated cells. The response was thereby determined as a function of cell age at both the time of irradiation and the time of exposure to caffeine. The amount of cell killing depends strongly on when in the cycle caffeine is present and only weaklymore » on when the cells are irradiated. If cells are irradiated in early G/sub 1/, caffeine treatment enhances killing for 2 to 3 hr. No additional enhancement is observed until 16 to 17 hr postcollection, corresponding to G/sub 2/; here they enter a second period of much greater sensitivity. Similarly, fluorodeoxyuridine resynchronized cells irradiated during S and treated with caffeine suffer no enhanced killing until they pass into this sensitive phase in G/sub 2/, approximately 7 hr after release from the fluorodeoxyuridine block. The sensitive period appears to coincide with G/sub 2/ arrest. The rate and extent of killing during this period are dependent upon the x-ray dose and the caffeine concentration. In the absence of caffeine, cells irradiated in G/sub 1/ lose sensitivity to caffeine in about 9 hr; they do so faster in G/sub 2/. It is concluded that the potentially lethal x-ray damage expressed on treatment with caffeine is retained for many hours in the presence of caffeine and is maximally manifested by G/sub 2/-arrested cells.« less

  4. Caffeine: sleep and daytime sleepiness.

    PubMed

    Roehrs, Timothy; Roth, Thomas

    2008-04-01

    Caffeine is one of the most widely consumed psychoactive substances and it has profound effects on sleep and wake function. Laboratory studies have documented its sleep-disruptive effects. It clearly enhances alertness and performance in studies with explicit sleep deprivation, restriction, or circadian sleep schedule reversals. But, under conditions of habitual sleep the evidence indicates that caffeine, rather then enhancing performance, is merely restoring performance degraded by sleepiness. The sleepiness and degraded function may be due to basal sleep insufficiency, circadian sleep schedule reversals, rebound sleepiness, and/or a withdrawal syndrome after the acute, over-night, caffeine discontinuation typical of most studies. Studies have shown that caffeine dependence develops at relatively low daily doses and after short periods of regular daily use. Large sample and population-based studies indicate that regular daily dietary caffeine intake is associated with disturbed sleep and associated daytime sleepiness. Further, children and adolescents, while reporting lower daily, weight-corrected caffeine intake, similarly experience sleep disturbance and daytime sleepiness associated with their caffeine use. The risks to sleep and alertness of regular caffeine use are greatly underestimated by both the general population and physicians.

  5. Action of caffeine on x-irradiated HeLa cells. IV. Progression delays and enhanced cell killing at high caffeine concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolmach, L.J.; Busse, P.M.

    1980-05-01

    The response of x-irradiated and unirradiated HeLa S3 cells to treatment with caffeine at concentrations between 1 and 10 nM has been examined with respect to both delay in progression through the cell generation cycle and enhancement of the expression of potentially lethal x-ray damage. Progression is delayed in a concentration-dependent fashion: the generation time is doubled at about 4 mM. The duration of G/sub 1/ is lengthened, and the rate of DNA synthesis is reduced, although the kinetics are different in the two phases; the rate of DNA synthesis is usually unaffected at 1 or 2 mM, while theremore » is no concentration threshold for the slowing of progression through G/sub 1/. Progression through G/sub 2/ appears to be unaffected by concentrations up to at least 10 mM. Killing of irradiated cells in G/sub 2/ is somewhat greater after treatment with the higher caffeine concentrations than reported previously for 1 mM. Moreover, an additional mode of killing is observed in irradiated G/sub 1/ cells which had been found previously to be only slightly affected by 1 mM caffeine; they suffer extensive killing at concentrations above 5 mM. The time-survival curves for irradiated, caffeine-treated G/sub 1/ and G/sub 2/ cells have characteristically different shapes. The dose-survival curves for cells treated with the higher caffeine concentrations display steeper terminal slopes and narrower shoulders.« less

  6. Caffeine Toxicity Due to Supplement Use in Caffeine--Naïve Individual: A Cautionary Tale.

    PubMed

    Lystrup, Robert M; Leggit, Jeffery C

    2015-08-01

    Thousands of military members self-medicate with dietary supplements containing unknown quantities of pharmacologically active compounds. These poorly regulated substances can cause real harm to the military population, especially when they contain stimulants such as caffeine. When taken regularly, caffeine has several performance-enhancing benefits. However, when used excessively or in vulnerable populations, caffeine can cause several unwanted side effects such as nervousness, sensory disturbances, insomnia, arrhythmia, excitability, inattentiveness, restlessness, mood changes, gastrointestinal disturbances, and even psychosis. Vulnerable patients include the caffeine-naïve, physiologically stressed, young, and mentally ill patients. One such case describes a caffeine-naïve service member who suffered an adverse reaction after taking an allegedly moderate dose of caffeine from a pill he obtained from a teammate. This case highlights the importance of supplement awareness among service members, increased provider vigilance, third party verification, and enhanced regulation on the approval and marketing of dietary supplements. Reprint & Copyright © 2015 Association of Military Surgeons of the U.S.

  7. Enhanced Brain Amyloid-β Clearance by Rifampicin and Caffeine as a Possible Protective Mechanism Against Alzheimer’s Disease

    PubMed Central

    Qosa, Hisham; Abuznait, Alaa H.; Hill, Ronald A.; Kaddoumi, Amal

    2014-01-01

    Rifampicin and caffeine are widely used drugs with reported protective effect against Alzheimer’s disease (AD). However, the mechanism underlying this effect is incompletely understood. In this study, we have hypothesized that enhanced amyloid-β (Aβ) clearance from the brain across the blood-brain barrier (BBB) of wild-type mice treated with rifampicin or caffeine is caused by both drugs potential to upregulate low-density lipoprotein receptor related protein-1 (LRP1) and/or P-glycoprotein (P-gp) at the BBB. Expression studies of LRP1 and P-gp in brain endothelial cells and isolated mice brain microvessels following treatment with rifampicin or caffeine demonstrated both drugs as P-gp inducers, and only rifampicin as an LRP1 inducer. Also, brain efflux index (BEI%) studies conducted on C57BL/6 mice treated with either drug to study alterations in Aβ clearance demonstrated the BEI% of Aβ in rifampicin (82.4 ± 4.3%) and caffeine (80.4 ± 4.8%) treated mice were significantly higher than those of control mice (62.4 ±6.1%, p <0.01). LRP1 and P-gp inhibition studies confirmed the importance of both proteins to the clearance of Aβ, and that enhanced clearance following drugs treatment was caused by LRP1 and/or P-gp upregulation at the mouse BBB. Furthermore, our results provided evidence for the presence of a yet to be identified transporter/receptor that plays significant role in Aβ clearance and is upregulated by caffeine and rifampicin. In conclusion, our results demonstrated the upregulation of LRP1 and P-gp at the BBB by rifampicin and caffeine enhanced brain Aβ clearance, and this effect could explain, at least in part, the protective effect of rifampicin and caffeine against AD. PMID:22504320

  8. Performance effects and metabolic consequences of caffeine and caffeinated energy drink consumption on glucose disposal.

    PubMed

    Shearer, Jane; Graham, Terry E

    2014-10-01

    This review documents two opposing effects of caffeine and caffeine-containing energy drinks, i.e., their positive effects on athletic performance and their negative impacts on glucose tolerance in the sedentary state. Analysis of studies examining caffeine administration prior to performance-based exercise showed caffeine improved completion time by 3.6%. Similar analyses following consumption of caffeine-containing energy drinks yielded positive, but more varied, benefits, which were likely due to the diverse nature of the studies performed, the highly variable composition of the beverages consumed, and the range of caffeine doses administered. Conversely, analyses of studies administering caffeine prior to either an oral glucose tolerance test or insulin clamp showed a decline in whole-body glucose disposal of ~30%. The consequences of this resistance are unknown, but there may be implications for the development of a number of chronic diseases. Both caffeine-induced performance enhancement and insulin resistance converge with the primary actions of caffeine on skeletal muscle. © 2014 International Life Sciences Institute.

  9. Sensitization to caffeine and cross-sensitization to amphetamine: influence of individual response to caffeine.

    PubMed

    Simola, Nicola; Cauli, Omar; Morelli, Micaela

    2006-09-15

    The present study evaluated the ability of a subchronic intermittent administration of caffeine to induce a sensitized motor response and correlated the individual susceptibility of rats to acute caffeine to the development of sensitization. Moreover, individual susceptibility to caffeine and development of motor behaviour sensitization were correlated to the behavioural response obtained after a challenge with amphetamine. To this end, rats were subdivided in "low" and "high" responders according to their individual susceptibility to acute caffeine established on the basis of the motor activity observed after the first caffeine administration. "Low" and "high" responder rats were then repeatedly and intermittently treated with caffeine (15 mg/kg, i.p.), or vehicle, every other day for fourteen days. Three days after treatment discontinuation, behavioural activation induced by acute amphetamine (0.5 mg/kg, s.c.) was measured in vehicle- and caffeine-pretreated rats. Subchronic caffeine resulted in motor sensitization of a variable degree among rats and no difference were observed between "low" and "high" responders. Moreover, caffeine pretreatment potentiated the behavioural effects of amphetamine according to the degree of caffeine sensitization but not to individual susceptibility to acute caffeine. These results demonstrate that individual susceptibility to acute caffeine does not influence the modifications in caffeine motor effects produced by its subchronic administration and does not affect the enhancement of acute behavioural effects of amphetamine in caffeine-pretreated rats, rather sensitization to subchronic caffeine administration critically influences the behavioural effects of amphetamine.

  10. Caffeine Citrate Dosing Adjustments to Assure Stable Caffeine Concentrations in Preterm Neonates.

    PubMed

    Koch, Gilbert; Datta, Alexandre N; Jost, Kerstin; Schulzke, Sven M; van den Anker, John; Pfister, Marc

    2017-12-01

    To identify dosing strategies that will assure stable caffeine concentrations in preterm neonates despite changing caffeine clearance during the first 8 weeks of life. A 3-step simulation approach was used to compute caffeine doses that would achieve stable caffeine concentrations in the first 8 weeks after birth: (1) a mathematical weight change model was developed based on published weight distribution data; (2) a pharmacokinetic model was developed based on published models that accounts for individual body weight, postnatal, and gestational age on caffeine clearance and volume of distribution; and (3) caffeine concentrations were simulated for different dosing regimens. A standard dosing regimen of caffeine citrate (using a 20 mg/kg loading dose and 5 mg/kg/day maintenance dose) is associated with a maximal trough caffeine concentration of 15 mg/L after 1 week of treatment. However, trough concentrations subsequently exhibit a clinically relevant decrease because of increasing clearance. Model-based simulations indicate that an adjusted maintenance dose of 6 mg/kg/day in the second week, 7 mg/kg/day in the third to fourth week and 8 mg/kg/day in the fifth to eighth week assures stable caffeine concentrations with a target trough concentration of 15 mg/L. To assure stable caffeine concentrations during the first 8 weeks of life, the caffeine citrate maintenance dose needs to be increased by 1 mg/kg every 1-2 weeks. These simple adjustments are expected to maintain exposure to stable caffeine concentrations throughout this important developmental period and might enhance both the short- and long-term beneficial effects of caffeine treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Caffeine and adenosine.

    PubMed

    Ribeiro, Joaquim A; Sebastião, Ana M

    2010-01-01

    Caffeine causes most of its biological effects via antagonizing all types of adenosine receptors (ARs): A1, A2A, A3, and A2B and, as does adenosine, exerts effects on neurons and glial cells of all brain areas. In consequence, caffeine, when acting as an AR antagonist, is doing the opposite of activation of adenosine receptors due to removal of endogenous adenosinergic tonus. Besides AR antagonism, xanthines, including caffeine, have other biological actions: they inhibit phosphodiesterases (PDEs) (e.g., PDE1, PDE4, PDE5), promote calcium release from intracellular stores, and interfere with GABA-A receptors. Caffeine, through antagonism of ARs, affects brain functions such as sleep, cognition, learning, and memory, and modifies brain dysfunctions and diseases: Alzheimer's disease, Parkinson's disease, Huntington's disease, Epilepsy, Pain/Migraine, Depression, Schizophrenia. In conclusion, targeting approaches that involve ARs will enhance the possibilities to correct brain dysfunctions, via the universally consumed substance that is caffeine.

  12. Subjective, behavioral, and physiological effects of acute caffeine in light, nondependent caffeine users.

    PubMed

    Childs, Emma; de Wit, Harriet

    2006-05-01

    Caffeine produces mild psychostimulant effects that are thought to underlie its widespread use. However, the direct effects of caffeine are difficult to evaluate in regular users of caffeine because of tolerance and withdrawal. Indeed, some researchers hypothesize that the psychostimulant effects of caffeine are due largely to the reversal of withdrawal and question whether there are direct effects of caffeine consumption upon mood, alertness, or mental performance in nondependent individuals. This study investigated the physiological, subjective, and behavioral effects of 0, 50, 150, and 450 mg caffeine in 102 light, nondependent caffeine users. Using a within-subjects design, subjects participated in four experimental sessions, in which they received each of the four drug conditions in random order under double blind conditions. Participants completed subjective effects questionnaires and vital signs were measured before and at repeated time points after drug administration. Forty minutes after the capsules were ingested, subjects completed behavioral tasks that included tests of sustained attention, short-term memory, psychomotor performance, and behavioral inhibition. Caffeine significantly increased blood pressure, and produced feelings of arousal, positive mood, and high. Caffeine increased the number of hits and decreased reaction times in a vigilance task, but impaired performance on a memory task. We confirm that acute doses of caffeine, at levels typically found in a cup of coffee, produce stimulant-like subjective effects and enhance performance in light, nondependent caffeine users. These findings support the idea that the drug has psychoactive effects even in the absence of withdrawal.

  13. Acute effects of theanine, caffeine and theanine-caffeine combination on attention.

    PubMed

    Kahathuduwa, Chanaka N; Dassanayake, Tharaka L; Amarakoon, A M Tissa; Weerasinghe, Vajira S

    2017-07-01

    l-theanine is a constituent of tea which is claimed to enhance cognitive functions. We aimed to determine whether theanine and theanine-caffeine combination have acute positive effects on cognitive and neurophysiological measures of attention, compared to caffeine (a positive control) and a placebo in healthy individuals. In a placebo-controlled, five-way crossover trial in 20 healthy male volunteers, we compared the effects of l-theanine (200 mg), caffeine (160 mg), their combination, black tea (one cup) and a placebo (distilled water) on cognitive (simple [SVRT] and recognition visual reaction time [RVRT]) and neurophysiological (event-related potentials [ERPs]) measures of attention. We also recorded visual (VEPs) and motor evoked potentials (MEPs) to examine any effects of treatments on peripheral visual and motor conduction, respectively. Mean RVRT was significantly improved by theanine (P = 0.019), caffeine (P = 0.043), and theanine-caffeine combination (P = 0.001), but not by tea (P = 0.429) or placebo (P = 0.822). VEP or MEP latencies or SVRT did not show significant inter-treatment differences. Theanine (P = 0.001) and caffeine (P = 0.001) elicited significantly larger mean peak-to-peak N2-P300 ERP amplitudes than the placebo, whereas theanine-caffeine combination elicited a significantly larger mean N2-P300 amplitude than placebo (P < 0.001), theanine (P = 0.029) or caffeine (P = 0.005). No significant theanine × caffeine interaction was observed for RVRT or N2-P300 amplitude. A dose of theanine equivalent of eight cups of back tea improves cognitive and neurophysiological measures of selective attention, to a degree that is comparable with that of caffeine. Theanine and caffeine seem to have additive effects on attention in high doses.

  14. Caffeine ingestion enhances perceptual responses during intermittent exercise in female team-game players.

    PubMed

    Ali, Ajmol; O'Donnell, Jemma; Von Hurst, Pamela; Foskett, Andrew; Holland, Sherina; Starck, Carlene; Rutherfurd-Markwick, Kay

    2016-01-01

    We examined the influence of caffeine supplementation on cognitive performance and perceptual responses in female team-game players taking low-dose monophasic oral contraceptives of the same hormonal composition. Ten females (24 ± 4 years; 59.7 ± 3.5 kg body mass; 2-6 training sessions per week) took part in a randomised, double-blind, placebo-controlled crossover-design trial. A 90-min intermittent treadmill-running protocol was completed 60 min following ingestion of a capsule containing either 6 mg • kg(-1) anhydrous caffeine or artificial sweetener (placebo). Perceptual responses (ratings of perceived exertion (RPE), feeling scale (FS), felt arousal scale (FAS)), mood (profile of mood states (POMS)) and cognitive performance (Stroop test, choice reaction time (CRT)) were completed before, during and after the exercise protocol, as well as after ~12 h post exercise. Caffeine ingestion significantly enhanced the ratings of pleasure (P = 0.008) and arousal (P = 0.002) during the exercise protocol, as well as increased vigour (POMS; P = 0.007), while there was a tendency for reduced fatigue (POMS; P = 0.068). Caffeine ingestion showed a tendency to decrease RPE (P = 0.068) and improve reaction times in the Stroop (P = 0.072) and CRT (P = 0.087) tests. Caffeine supplementation showed a positive effect on perceptual parameters by increasing vigour and a tendency to decrease fatigue during intermittent running activity in female games players taking low-dose monophasic oral contraceptive steroids (OCS).

  15. The Effects of Caffeine Use on Driving Safety Among Truck Drivers Who Are Habitual Caffeine Users.

    PubMed

    Heaton, Karen; Griffin, Russell

    2015-08-01

    The purpose of this study was to describe caffeine use among a group of habitual caffeine users, truck drivers, and to explore the associations between caffeine use and critical safety events by age in the naturalistic work setting. A secondary analysis of existing data from the Naturalistic Truck Driving Study was conducted. Analyses focused on the association between sleep and caffeine consumption by duty status, comparisons of sleep and caffeine use by age, and the associations between caffeine use and safety-critical events (SCEs). Findings indicated differences in caffeine use by duty status. However, no difference in sleep time by duty status, or between sleep time and caffeine use was found regardless of when the caffeine was consumed during the 5 hours prior to sleep. Sleep time did not vary significantly by age, although increasing age was associated with decreased caffeine use. Overall, a 6% reduction in the rate of SCEs per eight ounces of caffeinated beverage consumed was found. This study makes a unique scientific contribution because it uses real-time observations of truckers in the naturalistic work setting. It also does not involve caffeine withdrawal but rather an investigation of the effects of the naturalistic consumption of caffeine on sleep and driving performance. Findings suggest that caffeine use among habitual users offers a protective effect for safety-critical driving events. Occupational health nurses may use this information to counsel workers in the use of caffeine to enhance driving safety. © 2015 The Author(s).

  16. Methylphenidate, modafinil, and caffeine for cognitive enhancement in chess: A double-blind, randomised controlled trial.

    PubMed

    Franke, Andreas G; Gränsmark, Patrik; Agricola, Alexandra; Schühle, Kai; Rommel, Thilo; Sebastian, Alexandra; Balló, Harald E; Gorbulev, Stanislav; Gerdes, Christer; Frank, Björn; Ruckes, Christian; Tüscher, Oliver; Lieb, Klaus

    2017-03-01

    Stimulants and caffeine have been proposed for cognitive enhancement by healthy subjects. This study investigated whether performance in chess - a competitive mind game requiring highly complex cognitive skills - can be enhanced by methylphenidate, modafinil or caffeine. In a phase IV, randomized, double-blind, placebo-controlled trial, 39 male chess players received 2×200mg modafinil, 2×20mg methylphenidate, and 2×200mg caffeine or placebo in a 4×4 crossover design. They played twenty 15-minute games during two sessions against a chess program (Fritz 12; adapted to players' strength) and completed several neuropsychological tests. Marked substance effects were observed since all three substances significantly increased average reflection time per game compared to placebo resulting in a significantly increased number of games lost on time with all three treatments. Treatment effects on chess performance were not seen if all games (n=3059) were analysed. Only when controlling for game duration as well as when excluding those games lost on time, both modafinil and methylphenidate enhanced chess performance as demonstrated by significantly higher scores in the remaining 2876 games compared to placebo. In conjunction with results from neuropsychological testing we conclude that modifying effects of stimulants on complex cognitive tasks may in particular result from more reflective decision making processes. When not under time pressure, such effects may result in enhanced performance. Yet, under time constraints more reflective decision making may not improve or even have detrimental effects on complex task performance. Copyright © 2017 Elsevier B.V. and ECNP. All rights reserved.

  17. Caffeine depression of spontaneous activity in rabbit sino-atrial node cells.

    PubMed

    Satoh, H

    1993-05-01

    1. Effects of caffeine on the action potentials and the membrane currents in spontaneously beating rabbit sino-atrial (SA) node cells were examined using a two-microelectrode technique. 2. Cumulative administrations of caffeine (1-10 mM) caused a negative chronotropic effect in a concentration-dependent manner, which was not modified by atropine (0.1 microM). At 10 mM, caffeine increased the amplitude and prolonged the duration of action potentials significantly; the other parameters were unaffected. 3. In 3 of 16 preparations, caffeine (5 mM) elicited arrhythmia. At high Ca2+ (8.1 mM), caffeine (5 mM) increased the incidence of arrhythmia. 4. Caffeine (0.5-10 mM) enhanced the slow inward current, but at 10 mM decreased the enhanced peak current by 5 mM. The hyperpolarization-activated inward current was also enhanced by caffeine, but 10 mM caffeine decreased the current peak as compared with that at 5 mM. In addition, caffeine inhibited the delayed rectifying outward current in a concentration-dependent manner, accompanied by a depressed activation curve without any shift in the half-maximum activation voltage. 5. Caffeine elevated the cytoplasmic Ca2+ level in the SA node cells loaded with Ca(2+)-sensitive fluorescent dye (fura-2). 6. These results suggest that caffeine enhances and/or inhibits the ionic currents and elicits arrhythmia due to the induction of cellular calcium overload.

  18. Investigation of the binding sites and orientation of caffeine on human serum albumin by surface-enhanced Raman scattering and molecular docking

    NASA Astrophysics Data System (ADS)

    Wang, Weinan; Zhang, Wei; Duan, Yaokai; Jiang, Yong; Zhang, Liangren; Zhao, Bing; Tu, Pengfei

    2013-11-01

    Fluorescence, normal Raman and surface-enhanced Raman scattering (SERS) were introduced to explore the absorptive geometry of caffeine on Human Serum Albumin (HSA) at physiological condition. The molecular docking was also employed to make a better understanding of the interaction between caffeine and HSA as well as to elucidate the detailed information of the major binding site. The results showed that caffeine could bind to HSA via the hydrophobic force of aromatic stacking and the main binding group on caffeine could be the pyrimidine ring. In addition, a consecutive set of changes in the orientation of caffeine molecule had been demonstrated during the process of caffeine binding to HSA, and the primary binding site was considered to be a hydrophobic cavity formed by Leu198, Lys199, Ser202, Phe211, Trp214, Val344, Ser454 and Leu481 in domain II.

  19. Metabolic effects of physiological levels of caffeine in myotubes.

    PubMed

    Schnuck, Jamie K; Gould, Lacey M; Parry, Hailey A; Johnson, Michele A; Gannon, Nicholas P; Sunderland, Kyle L; Vaughan, Roger A

    2018-02-01

    Caffeine has been shown to stimulate multiple major regulators of cell energetics including AMP-activated protein kinase (AMPK) and Ca 2+ /calmodulin-dependent protein kinase II (CaMKII). Additionally, caffeine induces peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and mitochondrial biogenesis. While caffeine enhances oxidative metabolism, experimental concentrations often exceed physiologically attainable concentrations through diet. This work measured the effects of low-level caffeine on cellular metabolism and gene expression in myotubes, as well as the dependence of caffeine's effects on the nuclear receptor peroxisome proliferator-activated receptor beta/delta (PPARβ/δ). C2C12 myotubes were treated with various doses of caffeine for up to 24 h. Gene and protein expression were measured via qRT-PCR and Western blot, respectively. Cellular metabolism was determined via oxygen consumption and extracellular acidification rate. Caffeine significantly induced regulators of mitochondrial biogenesis and oxidative metabolism. Mitochondrial staining was suppressed in PPARβ/δ-inhibited cells which was rescued by concurrent caffeine treatment. Caffeine-treated cells also displayed elevated peak oxidative metabolism which was partially abolished following PPARβ/δ inhibition. Similar to past observations, glucose uptake and GLUT4 content were elevated in caffeine-treated cells, however, glycolytic metabolism was unaltered following caffeine treatment. Physiological levels of caffeine appear to enhance cell metabolism through mechanisms partially dependent on PPARβ/δ.

  20. Enhancement of cytogenetic damage and of antineoplastic effect by caffeine in Ehrlich ascites tumor cells treated with cyclophosphamide in vivo.

    PubMed

    Mourelatos, D; Dozi-Vassiliades, J; Kotsis, A; Gourtsas, C

    1988-03-01

    Enhanced cytogenetic damage by cyclophosphamide (CP) was observed when Ehrlich ascites tumor cells were exposed in vivo to nontoxic concentrations of caffeine. One h before i.p. injection of 5-bromodeoxyuridine adsorbed to activated charcoal Ehrlich ascites tumor-bearing mice treated i.p. with CP appear to have a dose-dependent increase in sister chromatid exchange rates and cell division delays. Caffeine increased the survival time of the Ehrlich ascites tumor-bearing mice treated with CP and markedly reduced the ascitic volume. Therefore, the in vivo antitumor effect by CP in conjunction with caffeine appears to correlate well with the in vivo synergistic effect on cytogenetic damage caused by the combined CP plus caffeine treatment.

  1. Caffeine suppresses exercise-enhanced long-term and location memory in middle-aged rats: Involvement of hippocampal Akt and CREB signaling.

    PubMed

    Cechella, José L; Leite, Marlon R; da Rocha, Juliana T; Dobrachinski, Fernando; Gai, Bibiana M; Soares, Félix A A; Bresciani, Guilherme; Royes, Luiz F F; Zeni, Gilson

    2014-11-05

    The cognitive function decline is closely related with brain changes generated by age. The ability of caffeine and exercise to prevent memory impairment has been reported in animal models and humans. The purpose of the present study was to investigate whether swimming exercise and caffeine administration enhance memory in middle-aged Wistar rats. Male Wistar rats (18months) received caffeine at a dose of 30mg/kg, 5days per week by a period of 4weeks. Animals were subjected to swimming training with a workload (3% of body weight, 20min per day for 4weeks). After 4weeks, the object recognition test (ORT) and the object location test (OLT) were performed. The results of this study demonstrated that caffeine suppressed exercise-enhanced long-term (ORT) and spatial (OLT) memory in middle-aged and this effect may be related to a decrease in hippocampal p-CREB signaling. This study also provided evidence that the effects of this protocol on memory were not accompanied by alterations in the levels of activated Akt. The [(3)H] glutamate uptake was reduced in hippocampus of rats administered with caffeine and submitted to swimming protocol. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Caffeine intake is associated with pupil dilation and enhanced accommodation

    PubMed Central

    Abokyi, S; Owusu-Mensah, J; Osei, K A

    2017-01-01

    Purpose It is purported that caffeine, an autonomic stimulant, affects visual performance. This study sought to assess whether caffeine intake was associated with changes in pupil size and/or amplitude of accommodation. Patients and methods A double-masked, crossover study was conducted in 50 healthy subjects of age range 19 to 25 years. Subjects were randomized to treatments such that subjects consumed either 250 mg caffeine drink or vehicle on separate days. Amplitude of accommodation was measured by the push-up technique, and pupil size using a millimeter ruler fixed to a slit lamp biomicroscope in dim illumination (5 lux). Amplitude of accommodation and pupil size were taken at baseline, and at 30, 60 and 90 min time points post treatment. Repeated measures one-way ANOVA and paired t-test were used in analyzing data. Results Amplitude of accommodation and pupil size after caffeine intake were significantly greater than vehicle (P<0.001) at each time point. Consumption of the caffeine beverage was associated with significant increases in amplitude of accommodation and pupil size with time (P<0.001). Amplitude of accommodation rose from 12.4 (±2.2 D) at baseline to 15.8(±2.6 D) at 90 min. Similarly, pupil size increased from 3.4 (±0.4 mm) at baseline to 4.5 (±0.72 mm) at 90 min. Consumption of vehicle was not associated with increase in amplitude of accommodation or pupil size with time. Conclusion Pupil size and accommodation are affected after ingestion of caffeine. This study suggests caffeine may have some influence on visual functions. PMID:27983733

  3. International society of sports nutrition position stand: caffeine and performance

    PubMed Central

    2010-01-01

    Position Statement: The position of The Society regarding caffeine supplementation and sport performance is summarized by the following seven points: 1.) Caffeine is effective for enhancing sport performance in trained athletes when consumed in low-to-moderate dosages (~3-6 mg/kg) and overall does not result in further enhancement in performance when consumed in higher dosages (≥ 9 mg/kg). 2.) Caffeine exerts a greater ergogenic effect when consumed in an anhydrous state as compared to coffee. 3.) It has been shown that caffeine can enhance vigilance during bouts of extended exhaustive exercise, as well as periods of sustained sleep deprivation. 4.) Caffeine is ergogenic for sustained maximal endurance exercise, and has been shown to be highly effective for time-trial performance. 5.) Caffeine supplementation is beneficial for high-intensity exercise, including team sports such as soccer and rugby, both of which are categorized by intermittent activity within a period of prolonged duration. 6.) The literature is equivocal when considering the effects of caffeine supplementation on strength-power performance, and additional research in this area is warranted. 7.) The scientific literature does not support caffeine-induced diuresis during exercise, or any harmful change in fluid balance that would negatively affect performance. PMID:20205813

  4. Enhancement of High-Intensity Actions and Physical Performance During a Simulated Brazilian Jiu-Jitsu Competition With a Moderate Dose of Caffeine.

    PubMed

    Diaz-Lara, Francisco Javier; Del Coso, Juan; Portillo, Javier; Areces, Francisco; García, Jose Manuel; Abián-Vicén, Javier

    2016-10-01

    Although caffeine is one of the most commonly used substances in combat sports, information about its ergogenic effects on these disciplines is very limited. To determine the effectiveness of ingesting a moderate dose of caffeine to enhance overall performance during a simulated Brazilian jiu-jitsu (BJJ) competition. Fourteen elite BJJ athletes participated in a double-blind, placebo-controlled experimental design. In a random order, the athletes ingested either 3 mg/kg body mass of caffeine or a placebo (cellulose, 0 mg/kg) and performed 2 simulated BJJ combats (with 20 min rest between them), following official BJJ rules. Specific physical tests such as maximal handgrip dynamometry, maximal height during a countermovement jump, permanence during a maximal static-lift test, peak power in a bench-press exercise, and blood lactate concentration were measured at 3 specific times: before the first combat and immediately after the first and second combats. The combats were video-recorded to analyze fight actions. After the caffeine ingestion, participants spent more time in offensive actions in both combats and revealed higher blood lactate values (P < .05). Performance in all physical tests carried out before the first combat was enhanced with caffeine (P < .05), and some improvements remained after the first combat (eg, maximal static-lift test and bench-press exercise; P < .05). After the second combat, the values in all physical tests were similar between caffeine and placebo. Caffeine might be an effective ergogenic aid for improving intensity and physical performance during successive elite BJJ combats.

  5. Effects of Adolescent Caffeine Consumption on Cocaine Sensitivity

    PubMed Central

    O'Neill, Casey E; Levis, Sophia C; Schreiner, Drew C; Amat, Jose; Maier, Steven F; Bachtell, Ryan K

    2015-01-01

    Caffeine is the most commonly used psychoactive substance, and consumption by adolescents has risen markedly in recent years. We identified the effects of adolescent caffeine consumption on cocaine sensitivity and determined neurobiological changes within the nucleus accumbens (NAc) that may underlie caffeine-induced hypersensitivity to cocaine. Male Sprague-Dawley rats consumed caffeine (0.3 g/l) or water for 28 days during adolescence (postnatal day 28–55; P28–P55) or adulthood (P67–P94). Testing occurred in the absence of caffeine during adulthood (P62–82 or P101–121). Cocaine-induced and quinpirole (D2 receptor agonist)-induced locomotion was enhanced in rats that consumed caffeine during adolescence. Adolescent consumption of caffeine also enhanced the development of a conditioned place preference at a sub-threshold dose of cocaine (7.5 mg/kg, i.p.). These behavioral changes were not observed in adults consuming caffeine for an equivalent period of time. Sucrose preferences were not altered in rats that consumed caffeine during adolescence, suggesting there are no differences in natural reward. Caffeine consumption during adolescence reduced basal dopamine levels and augmented dopamine release in the NAc in response to cocaine (5 mg/kg, i.p.). Caffeine consumption during adolescence also increased the expression of the dopamine D2 receptor, dopamine transporter, and adenosine A1 receptor and decreased adenosine A2A receptor expression in the NAc. Consumption of caffeine during adulthood increased adenosine A1 receptor expression in the NAc, but no other protein expression changes were observed. Together these findings suggest that caffeine consumption during adolescence produced changes in the NAc that are evident in adulthood and may contribute to increases in cocaine-mediated behaviors. PMID:25328052

  6. Effects of caffeine deprivation on taste and mood.

    PubMed

    Brauer, L.H.; Buican, B.; de Wit, H.

    1994-04-01

    Despite its ubiquitous consumption in the natural environment, caffeine has not been a reliable reinforcer in laboratory settings. The reinforcing effects of caffeine are greater in caffeine-dependent subjects relative to non-dependent subjects, but the mechanism underlying this difference remains unclear. We hypothesized that deprivation from caffeine would produce alterations in subjective ratings of stimuli commonly associated with caffeine consumption. Specifically, we hypothesized that hedonic ratings of the coffee taste would be selectively enhanced following caffeine deprivation. Twelve regular caffeine users received acute doses of caffeine (300mg) or placebo after 33h of caffeine deprivation or non-deprivation. They rated the taste of coffee and sucrose, saccharin, and quinine solutions on intensity, bitterness, sweetness, pleasantness, and unpleasantness. Contrary to our hypothesis, subjects' ratings of the pleasantness of the coffee taste were not significantly altered by caffeine deprivation. However, subjects' ratings of the bitterness and sweetness of the coffee taste and ratings of the sucrose solution were altered by caffeine. Implications of these data for caffeine self-administration are discussed.

  7. Effects of Caffeine on Olfactory Learning in Crickets.

    PubMed

    Sugimachi, Seigo; Matsumoto, Yukihisa; Mizunami, Makoto; Okada, Jiro

    2016-10-01

    Caffeine is a plant-derived alkaloid that is generally known as a central nervous system (CNS) stimulant. In order to examine the effects of caffeine on higher CNS functions in insects, we used an appetitive olfactory learning paradigm for the cricket Gryllus bimaculatus. Crickets can form significant long-term memories (LTMs) after repetitive training sessions, during which they associate a conditioned stimulus (CS: odor) with an unconditioned stimulus (US: reward). Administration of hemolymphal injections of caffeine established LTM after only single-trial conditioning over a wide range of caffeine dosages (1.6 µµg/kg to 39 mg/kg). We investigated the physiological mechanisms underlying this enhancement of olfactory learning performance pharmacologically, focusing on three major physiological roles of caffeine: 1) inhibition of phosphodiesterase (PDE), 2) agonism of ryanodine receptors, and 3) antagonism of adenosine receptors. Application of drugs relevant to these actions resulted in significant effects on LTM formation. These results suggest that externally applied caffeine enhances LTM formation in insect olfactory learning via multiple cellular mechanisms.

  8. Expectation of having consumed caffeine can improve performance and mood.

    PubMed

    Dawkins, Lynne; Shahzad, Fatima-Zahra; Ahmed, Suada S; Edmonds, Caroline J

    2011-12-01

    We explored whether caffeine, and expectation of having consumed caffeine, affects attention, reward responsivity and mood using double-blinded methodology. 88 participants were randomly allocated to 'drink-type' (caffeinated/decaffeinated coffee) and 'expectancy' (told caffeinated/told decaffeinated coffee) manipulations. Both caffeine and expectation of having consumed caffeine improved attention and psychomotor speed. Expectation enhanced self-reported vigour and reward responsivity. Self-reported depression increased at post-drink for all participants, but less in those receiving or expecting caffeine. These results suggest caffeine expectation can affect mood and performance but do not support a synergistic effect. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Caffeine enhances and accelerates the expression of sensitization induced by coca paste indicating its relevance as a main adulterant.

    PubMed

    Prieto, José P; Galvalisi, Martín; López-Hill, Ximena; Meikle, María N; Abin-Carriquiry, Juan A; Scorza, Cecilia

    2015-08-01

    Caffeine is an active adulterant found in several drugs of abuse including coca paste (CP). We had previously demonstrated that caffeine potentiated the acute stimulant effect induced by CP seized samples. The role of caffeine in the expression of sensitization elicited by a CP seized sample (CP1) was here evaluated. CP1 (equivalent dose of 10 mg/kg of cocaine), cocaine (pure, 10 mg/kg), a combination of cocaine 10 mg/kg plus caffeine 2.5 mg/kg (CP1-surrogate) and saline (control) were intraperitoneally injected in male rats under two different sensitization schedules. Ambulatory locomotion was recorded in 58 animals. After five daily CP1 injections and 5 days of withdrawal, CP1-challenged animals displayed a more robust sensitization than cocaine-treated animals. When a 3 injections-regime of CP1-surrogate or cocaine was assayed, only CP1-surrogate was able to elicit sensitization. Caffeine enhances and accelerates the CP1-induced sensitization. Results may shed light on the fast and high dependence observed in CP users. © American Academy of Addiction Psychiatry.

  10. The pH dependent Raman spectroscopic study of caffeine

    NASA Astrophysics Data System (ADS)

    Kang, Jian; Gu, Huaimin; Zhong, Liang; Hu, Yongjun; Liu, Fang

    2011-02-01

    First of all the surface enhanced Raman spectroscopy (SERS) and normal Raman spectra of caffeine aqueous solution were obtained at different pH values. In order to obtain the detailed vibrational assignments of the Raman spectroscopy, the geometry of caffeine molecule was optimized by density functional theory (DFT) calculation. By comparing the SERS of caffeine with its normal spectra at different pH values; it is concluded that pH value can dramatically affect the SERS of caffeine, but barely affect the normal Raman spectrum of caffeine aqueous solution. It can essentially affect the reorientation of caffeine molecule to the Ag colloid surface, but cannot impact the vibration of functional groups and chemical bonds in caffeine molecule.

  11. Caffeine in the management of patients with headache.

    PubMed

    Lipton, Richard B; Diener, Hans-Christoph; Robbins, Matthew S; Garas, Sandy Yacoub; Patel, Ketu

    2017-10-24

    Caffeinated headache medications, either alone or in combination with other treatments, are widely used by patients with headache. Clinicians should be familiar with their use as well as the chemistry, pharmacology, dietary and medical sources, clinical benefits, and potential safety issues of caffeine. In this review, we consider the role of caffeine in the over-the-counter treatment of headache. The MEDLINE and Cochrane databases were searched by combining "caffeine" with the terms "headache," "migraine," and "tension-type." Studies that were not placebo-controlled or that involved medications available only with a prescription, as well as those not assessing patients with migraine and/or tension-type headache (TTH), were excluded. Compared with analgesic medication alone, combinations of caffeine with analgesic medications, including acetaminophen, acetylsalicylic acid, and ibuprofen, showed significantly improved efficacy in the treatment of patients with TTH or migraine, with favorable tolerability in the vast majority of patients. The most common adverse events were nervousness (6.5%), nausea (4.3%), abdominal pain/discomfort (4.1%), and dizziness (3.2%). This review provides evidence for the role of caffeine as an analgesic adjuvant in the acute treatment of primary headache with over-the-counter drugs, caffeine doses of 130 mg enhance the efficacy of analgesics in TTH and doses of ≥100 mg enhance benefits in migraine. Additional studies are needed to assess the relationship between caffeine dosing and clinical benefits in patients with TTH and migraine.

  12. Caffeine withdrawal symptoms and self-administration following caffeine deprivation.

    PubMed

    Mitchell, S H; de Wit, H; Zacny, J P

    1995-08-01

    This study examined the effects of complete or partial caffeine deprivation on withdrawal symptomatology and self-administration of coffee in caffeine-dependent coffee drinkers. Nine habitual coffee drinkers abstained from dietary sources of caffeine for 33.5 h. Caffeine deprivation was manipulated by administering capsules containing 0%, 50%, or 100% of each subject's daily caffeine intake (complete, partial, and no deprivation conditions). Caffeine withdrawal symptomatology was measured using self-report questionnaires. Caffeine self-administration was measured using: i) the amount of coffee subjects earned on a series of concurrent random-ratio schedules that yielded coffee and money reinforcers; ii) the amount of earned coffee they consumed. Saliva samples revealed that subjects complied with the caffeine abstinence instructions. Caffeine withdrawal symptoms occurred reliably following complete caffeine deprivation, though not in the partial deprivation condition. Caffeine self-administration was not related to deprivation condition. We conclude that caffeine withdrawal symptomatology is not necessarily associated with increased caffeine consumption.

  13. Caffeine as a model drug of dependence: recent developments in understanding caffeine withdrawal, the caffeine dependence syndrome, and caffeine negative reinforcement.

    PubMed

    Griffiths, R R; Chausmer, A L

    2000-11-01

    Caffeine is an excellent model compound for understanding drugs of abuse/dependence. The results of self-administration and choice studies in humans clearly demonstrate the reinforcing effects of low and moderate doses of caffeine. Caffeine reinforcement has been demonstrated in about 45% of normal subjects with histories of moderate and heavy caffeine use. Recent studies provide compelling evidence that caffeine physical dependence potentiates the reinforcing effects of caffeine through the mechanism of withdrawal symptom avoidance. Tolerance to the subjective and sleep-disrupting effects of caffeine in humans has been demonstrated. Physical dependence as reflected in a withdrawal syndrome in humans has been repeatedly demonstrated in adults and recently demonstrated in children. Withdrawal severity is an increasing function of caffeine maintenance dose, with withdrawal occurring at doses as low as 100 mg per day. Increased cerebral blood flow may be the physiological mechanism for caffeine withdrawal headache. Case studies in adults and adolescents clearly demonstrate that some individuals meet DSM-IV diagnostic criteria for a substance dependence syndrome on caffeine, including feeling compelled to continue caffeine use despite desires and recommendations to the contrary. Survey data suggest that 9% to 30% percent of caffeine consumers may be caffeine dependent according to DSM-IV criteria.

  14. Caffeine increases the motivation to obtain non-drug reinforcers in rats

    PubMed Central

    Sheppard, A. Brianna; Gross, Skyler C.; Pavelka, Sarah A.; Hall, Melanie J.; Palmatier, Matthew I.

    2012-01-01

    BACKGROUND Caffeine is widely considered to be a reinforcer in humans, but this effect is difficult to measure in non-human animals. We hypothesized that caffeine may have dual reinforcing effects comparable to nicotine - limited primary reinforcing effects, but potent reinforcement enhancing effects. The present studies tested this hypothesis by investigating the effect of caffeine on responding for non-drug rewards. METHODS In two experiments, rats were shaped to respond on a progressive ratio (PR) schedule for sucrose solution (20% w/v; Experiment 1) or a fixed ratio 2 (FR2) schedule for a moderately reinforcing visual stimulus (VS; Experiment 2). Pretreatment with various doses of caffeine (0–50 mg/kg, intraperitoneal injection) were administered prior to tests over successive week days (M-F). In Experiment 1, acute administration of low-moderate caffeine doses (6.25–25 mg/kg) increased responding for sucrose under the PR schedule. This effect of caffeine declined over the initial 15 test days. In Experiment 2, only acute pretreatment with 12.5 mg/kg caffeine increased responding for the visual stimulus and complete tolerance to this effect of caffeine was observed over the 15 days of testing. In follow up tests we found that abstinence periods of 4 and 8 days resulted in incomplete recovery of the enhancing effects of caffeine. CONCLUSION The findings suggest that caffeine enhances the reinforcing effects of non-drug stimuli, but that the pharmacological profile of these effects may differ from other psychomotor stimulants. PMID:22336397

  15. Caffeinated energy drinks--a growing problem.

    PubMed

    Reissig, Chad J; Strain, Eric C; Griffiths, Roland R

    2009-01-01

    Since the introduction of Red Bull in Austria in 1987 and in the United States in 1997, the energy drink market has grown exponentially. Hundreds of different brands are now marketed, with caffeine content ranging from a modest 50 mg to an alarming 505 mg per can or bottle. Regulation of energy drinks, including content labeling and health warnings differs across countries, with some of the most lax regulatory requirements in the U.S. The absence of regulatory oversight has resulted in aggressive marketing of energy drinks, targeted primarily toward young males, for psychoactive, performance-enhancing and stimulant drug effects. There are increasing reports of caffeine intoxication from energy drinks, and it seems likely that problems with caffeine dependence and withdrawal will also increase. In children and adolescents who are not habitual caffeine users, vulnerability to caffeine intoxication may be markedly increased due to an absence of pharmacological tolerance. Genetic factors may also contribute to an individual's vulnerability to caffeine-related disorders including caffeine intoxication, dependence, and withdrawal. The combined use of caffeine and alcohol is increasing sharply, and studies suggest that such combined use may increase the rate of alcohol-related injury. Several studies suggest that energy drinks may serve as a gateway to other forms of drug dependence. Regulatory implications concerning labeling and advertising, and the clinical implications for children and adolescents are discussed.

  16. Caffeinated Energy Drinks -- A Growing Problem

    PubMed Central

    Reissig, Chad J.; Strain, Eric C.; Griffiths, Roland R.

    2009-01-01

    Since the introduction of Red Bull in Austria in 1987 and in the United States in 1997, the energy drink market has grown exponentially. Hundreds of different brands are now marketed, with caffeine content ranging from a modest 50 mg to an alarming 505 mg per can or bottle. Regulation of energy drinks, including content labeling and health warnings differs across countries, with some of the most lax regulatory requirements in the U.S. The absence of regulatory oversight has resulted in aggressive marketing of energy drinks, targeted primarily toward young males, for psychoactive, performance-enhancing and stimulant drug effects. There are increasing reports of caffeine intoxication from energy drinks, and it seems likely that problems with caffeine dependence and withdrawal will also increase. In children and adolescents who are not habitual caffeine users, vulnerability to caffeine intoxication may be markedly increased due to an absence of pharmacological tolerance. Genetic factors may also contribute to an individual’s vulnerability to caffeine related disorders including caffeine intoxication, dependence, and withdrawal. The combined use of caffeine and alcohol is increasing sharply, and studies suggest that such combined use may increase the rate of alcohol-related injury. Several studies suggest that energy drinks may serve as a gateway to other forms of drug dependence. Regulatory implications concerning labeling and advertising, and the clinical implications for children and adolescents are discussed. PMID:18809264

  17. Caffeinated forage tricks honeybees into increasing foraging and recruitment behaviors.

    PubMed

    Couvillon, Margaret J; Al Toufailia, Hasan; Butterfield, Thomas M; Schrell, Felix; Ratnieks, Francis L W; Schürch, Roger

    2015-11-02

    In pollination, plants provide food reward to pollinators who in turn enhance plant reproduction by transferring pollen, making the relationship largely cooperative; however, because the interests of plants and pollinators do not always align, there exists the potential for conflict, where it may benefit both to cheat the other [1, 2]. Plants may even resort to chemistry: caffeine, a naturally occurring, bitter-tasting, pharmacologically active secondary compound whose main purpose is to detract herbivores, is also found in lower concentrations in the nectar of some plants, even though nectar, unlike leaves, is made to be consumed by pollinators. [corrected]. A recent laboratory study showed that caffeine may lead to efficient and effective foraging by aiding honeybee memory of a learned olfactory association [4], suggesting that caffeine may enhance bee reward perception. However, without field data, the wider ecological significance of caffeinated nectar remains difficult to interpret. Here we demonstrate in the field that caffeine generates significant individual- and colony-level effects in free-flying worker honeybees. Compared to a control, a sucrose solution with field-realistic doses of caffeine caused honeybees to significantly increase their foraging frequency, waggle dancing probability and frequency, and persistency and specificity to the forage location, resulting in a quadrupling of colony-level recruitment. An agent-based model also demonstrates how caffeine-enhanced foraging may reduce honey storage. Overall, caffeine causes bees to overestimate forage quality, tempting the colony into sub-optimal foraging strategies, which makes the relationship between pollinator and plant less mutualistic and more exploitative. VIDEO ABSTRACT. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Caffeine Content Labeling: A Missed Opportunity for Promoting Personal and Public Health

    PubMed Central

    Kole, Jon

    2013-01-01

    Current regulation of caffeine-containing products is incoherent, fails to protect consumers' interests, and should be modified in multiple ways. We make the case for one of the regulatory reforms that are needed: all consumable products containing added caffeine should be required by the Food and Drug Administration (FDA) to include caffeine quantity on their labels. Currently, no foods or beverages that contain caffeine are required to include caffeine content on their labels. Strengthening these lax labeling requirements could prevent direct caffeine-induced harm, protect those most vulnerable to caffeine-related side effects, and enhance consumer autonomy and effective caffeine use. Consumers have an interest in regulating their intake of caffeine and thus, ought to know how much caffeine their foods and beverages contain. PMID:24761278

  19. Enhanced mood and psychomotor performance by a caffeine-containing energy capsule in fatigued individuals.

    PubMed

    Childs, Emma; de Wit, Harriet

    2008-02-01

    Caffeine produces mild psychostimulant effects that may be particularly evident in individuals whose mood or performance is impaired by sleep restriction or caffeine withdrawal. Caffeinated energy drinks have been shown to improve energy and cognition but expectancy effects cannot be ruled out in these studies. Very few studies have examined the effects of caffeine-containing energy capsules upon behavioral and subjective measures. This study compared the effects of a caffeine-containing (200 mg) supplement (CAF) or placebo in capsule form after prolonged wakefulness, in participants who varied in their level of habitual caffeine use. Thirty-five healthy volunteers (16 male, 19 female) participated in two experimental sessions in which they remained awake between 5 p.m. and 5 a.m. At 3:30 a.m. they consumed CAF or placebo in random order under double-blind conditions. Participants completed subjective effects questionnaires and performed computerized attention tasks before and after consuming capsules. Heart rate and blood pressure were monitored at regular intervals. Compared to measures at 5 p.m., participants reported more tiredness and mood disturbance at 3 a.m., and exhibited longer reaction times and more attentional lapses. Heavier caffeine consumers exhibited the greatest decreases in Profile of Mood States (POMS) Vigor. CAF produced stimulant-like effects and significantly improved mood and reaction times upon the tasks. These effects did not vary with level of habitual caffeine consumption. These findings indicate that consumption of a caffeine-containing food supplement improves subjective state and cognitive performance in fatigued individuals that is likely a result of its caffeine content. 2008 APA

  20. Low-dose caffeine administered in chewing gum does not enhance cycling to exhaustion.

    PubMed

    Ryan, Edward J; Kim, Chul-Ho; Muller, Matthew D; Bellar, David M; Barkley, Jacob E; Bliss, Matthew V; Jankowski-Wilkinson, Andrea; Russell, Morgan; Otterstetter, Ronald; Macander, Daniela; Glickman, Ellen L; Kamimori, Gary H

    2012-03-01

    Low-dose caffeine administered in chewing gum does not enhance cycling to exhaustion. The purpose of the current investigation was to examine the effect of low-dose caffeine (CAF) administered in chewing gum at 3 different time points during submaximal cycling exercise to exhaustion. Eight college-aged (26 ± 4 years), physically active (45.5 ± 5.7 ml·kg(-1)·min(-1)) volunteers participated in 4 experimental trials. Two pieces of caffeinated chewing gum (100 mg per piece, total quantity of 200 mg) were administered in a double-blind manner at 1 of 3 time points (-35, -5, and +15 minutes) with placebo at the other 2 points and at all 3 points in the control trial. The participants cycled at 85% of maximal oxygen consumption until volitional fatigue and time to exhaustion (TTE) were recorded in minutes. Venous blood samples were obtained at -40, -10, and immediately postexercise and analyzed for serum-free fatty acid and plasma catecholamine concentrations. Oxygen consumption, respiratory exchange ratio, heart rate, glucose, lactate, ratings of perceived exertion, and perceived leg pain measures were obtained at baseline and every 10 minutes during cycling. The results showed that there were no significant differences between the trials for any of the parameters measured including TTE. These findings suggest that low-dose CAF administered in chewing gum has no effect on TTE during cycling in recreational athletes and is, therefore, not recommended.

  1. Effect of different protocols of caffeine intake on metabolism and endurance performance.

    PubMed

    Cox, Gregory R; Desbrow, Ben; Montgomery, Paul G; Anderson, Megan E; Bruce, Clinton R; Macrides, Theodore A; Martin, David T; Moquin, Angela; Roberts, Alan; Hawley, John A; Burke, Louise M

    2002-09-01

    Competitive athletes completed two studies of 2-h steady-state (SS) cycling at 70% peak O(2) uptake followed by 7 kJ/kg time trial (TT) with carbohydrate (CHO) intake before (2 g/kg) and during (6% CHO drink) exercise. In Study A, 12 subjects received either 6 mg/kg caffeine 1 h preexercise (Precaf), 6 x 1 mg/kg caffeine every 20 min throughout SS (Durcaf), 2 x 5 ml/kg Coca-Cola between 100 and 120 min SS and during TT (Coke), or placebo. Improvements in TT were as follows: Precaf, 3.4% (0.2-6.5%, 95% confidence interval); Durcaf, 3.1% (-0.1-6.5%); and Coke, 3.1% (-0.2-6.2%). In Study B, eight subjects received 3 x 5 ml/kg of different cola drinks during the last 40 min of SS and TT: decaffeinated, 6% CHO (control); caffeinated, 6% CHO; decaffeinated, 11% CHO; and caffeinated, 11% CHO (Coke). Coke enhanced TT by 3.3% (0.8-5.9%), with all trials showing 2.2% TT enhancement (0.5-3.8%; P < 0.05) due to caffeine. Overall, 1) 6 mg/kg caffeine enhanced TT performance independent of timing of intake and 2) replacing sports drink with Coca-Cola during the latter stages of exercise was equally effective in enhancing endurance performance, primarily due to low intake of caffeine (approximately 1.5 mg/kg).

  2. Effects of dietary caffeine on mood when rested and sleep restricted.

    PubMed

    James, Jack E; Gregg, M Elizabeth

    2004-07-01

    Prolonged use of caffeine can lead to physical dependence evidenced by characteristic withdrawal symptoms during abstinence. Debate exists as to whether mood enhancement by caffeine represents a net effect or merely the restoration of abstinence-induced mood decrements. One aim of this study was to determine the net effects on mood of dietary caffeine compared with prolonged abstinence. In addition, the study aimed to determine whether caffeine restores mood degraded by a non-caffeine source, namely, sleep restriction. A double-blind placebo-controlled cross-over design was employed in which 48 male and female volunteers alternated weekly between ingesting placebo and caffeine (1.75 mg/kg) three times daily for 4 consecutive weeks, while being either rested or sleep restricted. Mood was assessed using a computerized version of the profile of mood states (POMS), giving scores for overall mood and six mood dimensions. Gender had small effects on mood, whereas all mood dimensions were markedly adversely affected by sleep restriction. Caffeine had no significant net enhancing effects on mood when participants were rested, and produced no net restorative effects when mood was degraded by sleep restriction. On the contrary, caffeine-induced decrements in mood were observed during both conditions of rest and sleep restriction. Copyright 2004 John Wiley & Sons, Ltd.

  3. Effects of caffeine intake on muscle strength and power: a systematic review and meta-analysis.

    PubMed

    Grgic, Jozo; Trexler, Eric T; Lazinica, Bruno; Pedisic, Zeljko

    2018-01-01

    Caffeine is commonly used as an ergogenic aid. Literature about the effects of caffeine ingestion on muscle strength and power is equivocal. The aim of this systematic review and meta-analysis was to summarize results from individual studies on the effects of caffeine intake on muscle strength and power. A search through eight databases was performed to find studies on the effects of caffeine on: (i) maximal muscle strength measured using 1 repetition maximum tests; and (ii) muscle power assessed by tests of vertical jump. Meta-analyses of standardized mean differences (SMD) between placebo and caffeine trials from individual studies were conducted using the random effects model. Ten studies on the strength outcome and ten studies on the power outcome met the inclusion criteria for the meta-analyses. Caffeine ingestion improved both strength (SMD = 0.20; 95% confidence interval [CI]: 0.03, 0.36; p  = 0.023) and power (SMD = 0.17; 95% CI: 0.00, 0.34; p  = 0.047). A subgroup analysis indicated that caffeine significantly improves upper (SMD = 0.21; 95% CI: 0.02, 0.39; p  = 0.026) but not lower body strength (SMD = 0.15; 95% CI: -0.05, 0.34; p  = 0.147). The meta-analyses showed significant ergogenic effects of caffeine ingestion on maximal muscle strength of upper body and muscle power. Future studies should more rigorously control the effectiveness of blinding. Due to the paucity of evidence, additional findings are needed in the female population and using different forms of caffeine, such as gum and gel.

  4. Caffeine Enhances Real-World Language Processing: Evidence from a Proofreading Task

    ERIC Educational Resources Information Center

    Brunye, Tad T.; Mahoney, Caroline R.; Rapp, David N.; Ditman, Tali; Taylor, Holly A.

    2012-01-01

    Caffeine has become the most prevalently consumed psychostimulant in the world, but its influences on daily real-world functioning are relatively unknown. The present work investigated the effects of caffeine (0 mg, 100 mg, 200 mg, 400 mg) on a commonplace language task that required readers to identify and correct 4 error types in extended…

  5. The effect of caffeine on skeletal muscle anabolic signaling and hypertrophy.

    PubMed

    Moore, Timothy M; Mortensen, Xavier M; Ashby, Conrad K; Harris, Alexander M; Kump, Karson J; Laird, David W; Adams, Aaron J; Bray, Jeremy K; Chen, Ting; Thomson, David M

    2017-06-01

    Caffeine is a widely consumed stimulant with the potential to enhance physical performance through multiple mechanisms. However, recent in vitro findings have suggested that caffeine may block skeletal muscle anabolic signaling through AMP-activated protein kinase (AMPK)-mediated inhibition of mechanistic target of rapamycin (mTOR) signaling pathway. This could negatively affect protein synthesis and the capacity for muscle growth. The primary purpose of this study was to assess the effect of caffeine on in vivo AMPK and mTOR pathway signaling, protein synthesis, and muscle growth. In cultured C2C12 muscle cells, physiological levels of caffeine failed to impact mTOR activation or myoblast proliferation or differentiation. We found that caffeine administration to mice did not significantly enhance the phosphorylation of AMPK or inhibit signaling proteins downstream of mTOR (p70S6k, S6, or 4EBP1) or protein synthesis after a bout of electrically stimulated contractions. Skeletal muscle-specific knockout of LKB1, the primary AMPK activator in skeletal muscle, on the other hand, eliminated AMPK activation by contractions and enhanced S6k, S6, and 4EBP1 activation before and after contractions. In rats, the addition of caffeine did not affect plantaris hypertrophy induced by the tenotomy of the gastrocnemius and soleus muscles. In conclusion, caffeine administration does not impair skeletal muscle load-induced mTOR signaling, protein synthesis, or muscle hypertrophy.

  6. Conditioned Reinforcement and Locomotor Activating Effects of Caffeine and Ethanol Combinations in Mice

    PubMed Central

    Hilbert, Megan L.T.; May, Christina E.; Griffin, William C.

    2013-01-01

    A growing trend among ethanol drinkers, especially young adults, is to combine caffeinated energy drinks with ethanol during a drinking episode. The primary active ingredient of these mixers is caffeine, which may significantly interact with ethanol. We tested the two hypotheses that caffeine would enhance ethanol-conditioned place preference and also enhance ethanol-stimulated locomotor activity. The interactive pharmacology of ethanol and caffeine was examined in C57BL/6J (B6) mice in a conditioned place preference procedure with 1.75 g/kg ethanol and 3 mg/kg caffeine. Additionally, we used B6 mice to evaluate ethanol/caffeine combinations on locomotor activity using 3 doses of ethanol (1.75, 2.5 and 3.25 g/kg) and 2 two doses of caffeine (3 and 15 mg/kg). Both ethanol and caffeine administered alone increased preference for the drug paired side, though the effect of caffeine was more modest than that of ethanol. The drug combination produced significant place preference itself, but this was not greater than that for ethanol alone. Additionally, the combination of caffeine and ethanol significantly increased locomotion compared to giving either drug alone. The effect was strongest with a stimulatory dose of ethanol (1.75 g/kg) and waned with increasing doses of ethanol. Thus, combinations of caffeine and ethanol had significant conditioned reinforcing and locomotor activating effects in mice. PMID:23872371

  7. [Caffeine dependence].

    PubMed

    Ogawa, Naoshi; Ueki, Hirofumi

    2010-08-01

    Caffeine is the most widely consumed psychoactive substance in the world and is a legal stimulant that is readily available to children. The potential for dependence on caffeine has been debated. Presently, due to a paucity of clinical evidence on caffeine dependence, no such diagnosis is included in the Diagnostic and Statistical Manual of Mental Disorders Fourth Edition, Text Revision (DSM-IV-TR). Although in recent studies, a subset of the general population was found to demonstrate caffeine dependence. It is valuable for psychiatrists and primary care physicians to recognize caffeine dependence as a clinical syndrome, since some people are distressed by their caffeine use and feel they can not control or stop their problematic use.

  8. The acute effect of a caffeine-containing energy drink on mood state, readiness to invest effort, and resistance exercise to failure.

    PubMed

    Duncan, Michael J; Smith, Mike; Cook, Kathryn; James, Rob S

    2012-10-01

    The efficacy of caffeine ingestion in enhancing aerobic performance is well established. The evidence for caffeine's effects on resistance exercise is mixed and has not fully examined the associated psychological and psychophysiological changes. This study examined acute effects of ingesting a caffeine-containing energy drink on repetitions to failure, the rating of perceived exertion (RPE), and the readiness to invest physical effort (RTIPE) and mental effort during resistance exercise to failure. Thirteen resistance-trained men took part in this double-blind, randomized cross-over experimental study whereby they ingested a caffeinated (179 mg) energy drink or placebo solution 60 minutes before completing a bout of resistance exercise comprising bench press, deadlift, prone row, and back squat exercise to failure at an intensity of 60% 1-repetition maximum. Experimental conditions were separated by at least 48 hours. Participants completed significantly greater repetitions to failure, irrespective of exercise, in the energy drink condition (p = 0.015). Rating of perceived exertion was significantly higher in the placebo condition (p = 0.02) and was significantly higher during lower-body exercises compared with upper-body exercises irrespective of the substance ingested (p = 0.0001). Readiness to invest mental effort was greater with the energy drink condition (p = 0.04), irrespective of time. A significant time × substance interaction (p = 0.036) for RTIPE indicated that RTIPE increased for both placebo and energy drink conditions preingestion to pre-exercise, but the magnitude of increase was greater with the energy drink condition compared with placebo. This resulted in higher RTIPE postexercise for the energy drink condition. These results suggest that acute ingestion of a caffeine-containing energy drink can enhance resistance exercise performance to failure and positively enhance psychophysiological factors related to exertion in trained men.

  9. Caffeine increases striatal dopamine D2/D3 receptor availability in the human brain.

    PubMed

    Volkow, N D; Wang, G-J; Logan, J; Alexoff, D; Fowler, J S; Thanos, P K; Wong, C; Casado, V; Ferre, S; Tomasi, D

    2015-04-14

    Caffeine, the most widely consumed psychoactive substance in the world, is used to promote wakefulness and enhance alertness. Like other wake-promoting drugs (stimulants and modafinil), caffeine enhances dopamine (DA) signaling in the brain, which it does predominantly by antagonizing adenosine A2A receptors (A2AR). However, it is unclear if caffeine, at the doses consumed by humans, increases DA release or whether it modulates the functions of postsynaptic DA receptors through its interaction with adenosine receptors, which modulate them. We used positron emission tomography and [(11)C]raclopride (DA D2/D3 receptor radioligand sensitive to endogenous DA) to assess if caffeine increased DA release in striatum in 20 healthy controls. Caffeine (300 mg p.o.) significantly increased the availability of D2/D3 receptors in putamen and ventral striatum, but not in caudate, when compared with placebo. In addition, caffeine-induced increases in D2/D3 receptor availability in the ventral striatum were associated with caffeine-induced increases in alertness. Our findings indicate that in the human brain, caffeine, at doses typically consumed, increases the availability of DA D2/D3 receptors, which indicates that caffeine does not increase DA in the striatum for this would have decreased D2/D3 receptor availability. Instead, we interpret our findings to reflect an increase in D2/D3 receptor levels in striatum with caffeine (or changes in affinity). The association between increases in D2/D3 receptor availability in ventral striatum and alertness suggests that caffeine might enhance arousal, in part, by upregulating D2/D3 receptors.

  10. Caffeine increases striatal dopamine D2/D3 receptor availability in the human brain

    PubMed Central

    Volkow, N D; Wang, G-J; Logan, J; Alexoff, D; Fowler, J S; Thanos, P K; Wong, C; Casado, V; Ferre, S; Tomasi, D

    2015-01-01

    Caffeine, the most widely consumed psychoactive substance in the world, is used to promote wakefulness and enhance alertness. Like other wake-promoting drugs (stimulants and modafinil), caffeine enhances dopamine (DA) signaling in the brain, which it does predominantly by antagonizing adenosine A2A receptors (A2AR). However, it is unclear if caffeine, at the doses consumed by humans, increases DA release or whether it modulates the functions of postsynaptic DA receptors through its interaction with adenosine receptors, which modulate them. We used positron emission tomography and [11C]raclopride (DA D2/D3 receptor radioligand sensitive to endogenous DA) to assess if caffeine increased DA release in striatum in 20 healthy controls. Caffeine (300 mg p.o.) significantly increased the availability of D2/D3 receptors in putamen and ventral striatum, but not in caudate, when compared with placebo. In addition, caffeine-induced increases in D2/D3 receptor availability in the ventral striatum were associated with caffeine-induced increases in alertness. Our findings indicate that in the human brain, caffeine, at doses typically consumed, increases the availability of DA D2/D3 receptors, which indicates that caffeine does not increase DA in the striatum for this would have decreased D2/D3 receptor availability. Instead, we interpret our findings to reflect an increase in D2/D3 receptor levels in striatum with caffeine (or changes in affinity). The association between increases in D2/D3 receptor availability in ventral striatum and alertness suggests that caffeine might enhance arousal, in part, by upregulating D2/D3 receptors. PMID:25871974

  11. Caffeine increases striatal dopamine D 2/D 3 receptor availability in the human brain

    DOE PAGES

    Volkow, N. D.; Wang, G. -J.; Logan, J.; ...

    2015-04-14

    Caffeine, the most widely consumed psychoactive substance in the world, is used to promote wakefulness and enhance alertness. Like other wake-promoting drugs (stimulants and modafinil), caffeine enhances dopamine (DA) signaling in the brain, which it does predominantly by antagonizing adenosine A 2A receptors (A 2AR). However, it is unclear if caffeine, at the doses consumed by humans, increases DA release or whether it modulates the functions of postsynaptic DA receptors through its interaction with adenosine receptors, which modulate them. We used positron emission tomography and [ 11C]raclopride (DA D 2/D 3 receptor radioligand sensitive to endogenous DA) to assess ifmore » caffeine increased DA release in striatum in 20 healthy controls. Caffeine (300mg p.o.) significantly increased the availability of D 2/D 3 receptors in putamen and ventral striatum, but not in caudate, when compared with placebo. In addition, caffeine-induced increases in D 2/D 3 receptor availability in the ventral striatum were associated with caffeine-induced increases in alertness. Our findings indicate that in the human brain, caffeine, at doses typically consumed, increases the availability of DA D 2/D 3 receptors, which indicates that caffeine does not increase DA in the striatum for this would have decreased D 2/D 3 receptor availability. Instead, we interpret our findings to reflect an increase in D 2/D 3 receptor levels in striatum with caffeine (or changes in affinity). Furthermore, the association between increases in D 2/D 3 receptor availability in ventral striatum and alertness suggests that caffeine might enhance arousal, in part, by upregulating D 2/D 3 receptors.« less

  12. Caffeine increases striatal dopamine D 2/D 3 receptor availability in the human brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volkow, N. D.; Wang, G. -J.; Logan, J.

    Caffeine, the most widely consumed psychoactive substance in the world, is used to promote wakefulness and enhance alertness. Like other wake-promoting drugs (stimulants and modafinil), caffeine enhances dopamine (DA) signaling in the brain, which it does predominantly by antagonizing adenosine A 2A receptors (A 2AR). However, it is unclear if caffeine, at the doses consumed by humans, increases DA release or whether it modulates the functions of postsynaptic DA receptors through its interaction with adenosine receptors, which modulate them. We used positron emission tomography and [ 11C]raclopride (DA D 2/D 3 receptor radioligand sensitive to endogenous DA) to assess ifmore » caffeine increased DA release in striatum in 20 healthy controls. Caffeine (300mg p.o.) significantly increased the availability of D 2/D 3 receptors in putamen and ventral striatum, but not in caudate, when compared with placebo. In addition, caffeine-induced increases in D 2/D 3 receptor availability in the ventral striatum were associated with caffeine-induced increases in alertness. Our findings indicate that in the human brain, caffeine, at doses typically consumed, increases the availability of DA D 2/D 3 receptors, which indicates that caffeine does not increase DA in the striatum for this would have decreased D 2/D 3 receptor availability. Instead, we interpret our findings to reflect an increase in D 2/D 3 receptor levels in striatum with caffeine (or changes in affinity). Furthermore, the association between increases in D 2/D 3 receptor availability in ventral striatum and alertness suggests that caffeine might enhance arousal, in part, by upregulating D 2/D 3 receptors.« less

  13. Caffeine consumption.

    PubMed

    Barone, J J; Roberts, H R

    1996-01-01

    Scientific literature cites a wide range of values for caffeine content in food products. The authors suggest the following standard values for the United States: coffee (5 oz) 85 mg for ground roasted coffee, 60 mg for instant and 3 mg for decaffeinated; tea (5 oz): 30 mg for leaf/bag and 20 mg for instant; colas: 18 mg/6 oz serving; cocoa/hot chocolate: 4 mg/5 oz; chocolate milk: 4 mg/6 oz; chocolate candy: 1.5-6.0 mg/oz. Some products from the United Kingdom and Denmark have higher caffeine content. Caffeine consumption survey data are limited. Based on product usage and available consumption data, the authors suggest a mean daily caffeine intake for US consumers of 4 mg/kg. Among children younger than 18 years of age who are consumers of caffeine-containing foods, the mean daily caffeine intake is about 1 mg/kg. Both adults and children in Denmark and UK have higher levels of caffeine intake.

  14. The paradox of caffeine-zolpidem interaction: a network analysis.

    PubMed

    Myslobodsky, Michael

    2009-10-01

    A widely prescribed and potent short-acting hypnotic, zolpidem has become the mainstay for the treatment of middle-of-the-night sleeplessness. It is expected to be antagonized by caffeine. Paradoxically, in some cases caffeine appears to slightly enhance zolpidem sedation. The pharmacokinetic and pharmacodynamic nature of this odd effect remains unexplored. The purpose of this study is to reproduce a hypothetical molecular network recruited by caffeine when co-administered with zolpidem using Ingenuity Pathway Analysis. Thus generated, network drew attention to several possible contributors to caffeine sedation, such as tachykinin precursor 1, cannabinoid, and GABA receptors. The present overview is centered on the possibility that caffeine potentiation of zolpidem sedation does not involve a centralized interaction of specific neurotransmitters, but rather is contributed by its antioxidant capacity. It is proposed that by modifying the cellular redox state, caffeine ultimately reduces the pool of reactive oxygen species, thereby increasing the bioavailability of endogenous melatonin for interaction with zolpidem. This side effect of caffeine encourages further studies of multiple antioxidants as an attractive way to potentially increasing somnolence.

  15. Interindividual Differences in Caffeine Metabolism and Factors Driving Caffeine Consumption.

    PubMed

    Nehlig, Astrid

    2018-04-01

    Most individuals adjust their caffeine intake according to the objective and subjective effects induced by the methylxanthine. However, to reach the desired effects, the quantity of caffeine consumed varies largely among individuals. It has been known for decades that the metabolism, clearance, and pharmacokinetics of caffeine is affected by many factors such as age, sex and hormones, liver disease, obesity, smoking, and diet. Caffeine also interacts with many medications. All these factors will be reviewed in the present document and discussed in light of the most recent data concerning the genetic variability affecting caffeine levels and effects at the pharmacokinetic and pharmacodynamic levels that both critically drive the level of caffeine consumption. The pharmacokinetics of caffeine are highly variable among individuals due to a polymorphism at the level of the CYP1A2 isoform of cytochrome P450, which metabolizes 95% of the caffeine ingested. Moreover there is a polymorphism at the level of another critical enzyme, N -acetyltransferase 2. At the pharmacodynamic level, there are several polymorphisms at the main brain target of caffeine, the adenosine A2A receptor or ADORA2. Genetic studies, including genome-wide association studies, identified several loci critically involved in caffeine consumption and its consequences on sleep, anxiety, and potentially in neurodegenerative and psychiatric diseases. We start reaching a better picture on how a multiplicity of biologic mechanisms seems to drive the levels of caffeine consumption, although much more knowledge is still required to understand caffeine consumption and effects on body functions. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  16. Caffeine synergizes with another coffee component to increase plasma GCSF: linkage to cognitive benefits in Alzheimer's mice.

    PubMed

    Cao, Chuanhai; Wang, Li; Lin, Xiaoyang; Mamcarz, Malgorzata; Zhang, Chi; Bai, Ge; Nong, Jasson; Sussman, Sam; Arendash, Gary

    2011-01-01

    Retrospective and prospective epidemiologic studies suggest that enhanced coffee/caffeine intake during aging reduces risk of Alzheimer's disease (AD). Underscoring this premise, our studies in AD transgenic mice show that long-term caffeine administration protects against cognitive impairment and reduces brain amyloid-β levels/deposition through suppression of both β- and γ-secretase. Because coffee contains many constituents in addition to caffeine that may provide cognitive benefits against AD, we examined effects of caffeinated and decaffeinated coffee on plasma cytokines, comparing their effects to caffeine alone. In both AβPPsw+PS1 transgenic mice and non-transgenic littermates, acute i.p. treatment with caffeinated coffee greatly and specifically increased plasma levels of granulocyte-colony stimulating factor (GCSF), IL-10, and IL-6. Neither caffeine solution alone (which provided high plasma caffeine levels) or decaffeinated coffee provided this effect, indicating that caffeine synergized with some as yet unidentified component of coffee to selectively elevate these three plasma cytokines. The increase in GCSF is particularly important because long-term treatment with coffee (but not decaffeinated coffee) enhanced working memory in a fashion that was associated only with increased plasma GCSF levels among all cytokines. Since we have previously reported that long-term GCSF treatment enhances cognitive performance in AD mice through three possible mechanisms (e.g., recruitment of microglia from bone marrow, synaptogenesis, and neurogenesis), the same mechanisms could be complimentary to caffeine's established ability to suppress Aβ production. We conclude that coffee may be the best source of caffeine to protect against AD because of a component in coffee that synergizes with caffeine to enhance plasma GCSF levels, resulting in multiple therapeutic actions against AD.

  17. Effects of dilute aqueous NaCl solution on caffeine aggregation

    NASA Astrophysics Data System (ADS)

    Sharma, Bhanita; Paul, Sandip

    2013-11-01

    The effect of salt concentration on association properties of caffeine molecule was investigated by employing molecular dynamics simulations in isothermal-isobaric ensemble of eight caffeine molecules in pure water and three different salt (NaCl) concentrations, at 300 K temperature and 1 atm pressure. The concentration of caffeine was taken almost at the solubility limit. With increasing salt concentration, we observe enhancement of first peak height and appearance of a second peak in the caffeine-caffeine distribution function. Furthermore, our calculated solvent accessible area values and cluster structure analyses suggest formation of higher order caffeine cluster on addition of salt. The calculated hydrogen bond properties reveal that there is a modest decrease in the average number of water-caffeine hydrogen bonds on addition of NaCl salt. Also observed are: (i) decrease in probability of salt contact ion pair as well as decrease in the solvent separated ion pair formation with increasing salt concentration, (ii) a modest second shell collapse in the water structure, and (iii) dehydration of hydrophobic atomic sites of caffeine on addition of NaCl.

  18. Effects of dilute aqueous NaCl solution on caffeine aggregation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Bhanita; Paul, Sandip, E-mail: sandipp@iitg.ernet.in

    The effect of salt concentration on association properties of caffeine molecule was investigated by employing molecular dynamics simulations in isothermal-isobaric ensemble of eight caffeine molecules in pure water and three different salt (NaCl) concentrations, at 300 K temperature and 1 atm pressure. The concentration of caffeine was taken almost at the solubility limit. With increasing salt concentration, we observe enhancement of first peak height and appearance of a second peak in the caffeine-caffeine distribution function. Furthermore, our calculated solvent accessible area values and cluster structure analyses suggest formation of higher order caffeine cluster on addition of salt. The calculated hydrogenmore » bond properties reveal that there is a modest decrease in the average number of water-caffeine hydrogen bonds on addition of NaCl salt. Also observed are: (i) decrease in probability of salt contact ion pair as well as decrease in the solvent separated ion pair formation with increasing salt concentration, (ii) a modest second shell collapse in the water structure, and (iii) dehydration of hydrophobic atomic sites of caffeine on addition of NaCl.« less

  19. Caffeine Concentrations in Coffee, Tea, Chocolate, and Energy Drink Flavored E-liquids

    PubMed Central

    Lisko, Joseph G.; Lee, Grace E.; Kimbrell, J. Brett; Rybak, Michael E.; Valentin-Blasini, Liza; Watson, Clifford H.

    2017-01-01

    Introduction Most electronic cigarettes (e-cigarettes) contain a solution of propylene glycol/glycerin and nicotine, as well as flavors. E-cigarettes and their associated e-liquids are available in numerous flavor varieties. A subset of the flavor varieties include coffee, tea, chocolate, and energy drink, which, in beverage form, are commonly recognized sources of caffeine. Recently, some manufacturers have begun marketing e-liquid products as energy enhancers that contain caffeine as an additive. Methods A Gas Chromatography-Mass Spectrometry (GC-MS) method for the quantitation of caffeine in e-liquids was developed, optimized and validated. The method was then applied to assess caffeine concentrations in 44 flavored e-liquids from cartridges, disposables, and refill solutions. Products chosen were flavors traditionally associated with caffeine (ie, coffee, tea, chocolate, and energy drink), marketed as energy boosters, or labeled as caffeine-containing by the manufacturer. Results Caffeine was detected in 42% of coffee-flavored products, 66% of tea-flavored products, and 50% of chocolate-flavored e-liquids (limit of detection [LOD] – 0.04 μg/g). Detectable caffeine concentrations ranged from 3.3 μg/g to 703 μg/g. Energy drink-flavored products did not contain detectable concentrations of caffeine. Eleven of 12 products marketed as energy enhancers contained caffeine, though in widely varying concentrations (31.7 μg/g to 9290 μg/g). Conclusions E-liquid flavors commonly associated with caffeine content like coffee, tea, chocolate, and energy drink often contained caffeine, but at concentrations significantly lower than their dietary counterparts. Estimated daily exposures from all e-cigarette products containing caffeine were much less than ingestion of traditional caffeinated beverages like coffee. Implications This study presents an optimized and validated method for the measurement of caffeine in e-liquids. The method is applicable to all e

  20. Genome-wide association study of caffeine metabolites provides new insights to caffeine metabolism and dietary caffeine-consumption behavior.

    PubMed

    Cornelis, Marilyn C; Kacprowski, Tim; Menni, Cristina; Gustafsson, Stefan; Pivin, Edward; Adamski, Jerzy; Artati, Anna; Eap, Chin B; Ehret, Georg; Friedrich, Nele; Ganna, Andrea; Guessous, Idris; Homuth, Georg; Lind, Lars; Magnusson, Patrik K; Mangino, Massimo; Pedersen, Nancy L; Pietzner, Maik; Suhre, Karsten; Völzke, Henry; Bochud, Murielle; Spector, Tim D; Grabe, Hans J; Ingelsson, Erik

    2016-12-15

    Caffeine is the most widely consumed psychoactive substance in the world and presents with wide interindividual variation in metabolism. This variation may modify potential adverse or beneficial effects of caffeine on health. We conducted a genome-wide association study (GWAS) of plasma caffeine, paraxanthine, theophylline, theobromine and paraxanthine/caffeine ratio among up to 9,876 individuals of European ancestry from six population-based studies. A single SNP at 6p23 (near CD83) and several SNPs at 7p21 (near AHR), 15q24 (near CYP1A2) and 19q13.2 (near CYP2A6) met GW-significance (P < 5 × 10-8) and were associated with one or more metabolites. Variants at 7p21 and 15q24 associated with higher plasma caffeine and lower plasma paraxanthine/caffeine (slow caffeine metabolism) were previously associated with lower coffee and caffeine consumption behavior in GWAS. Variants at 19q13.2 associated with higher plasma paraxanthine/caffeine (slow paraxanthine metabolism) were also associated with lower coffee consumption in the UK Biobank (n = 94 343, P < 1.0 × 10-6). Variants at 2p24 (in GCKR), 4q22 (in ABCG2) and 7q11.23 (near POR) that were previously associated with coffee consumption in GWAS were nominally associated with plasma caffeine or its metabolites. Taken together, we have identified genetic factors contributing to variation in caffeine metabolism and confirm an important modulating role of systemic caffeine levels in dietary caffeine consumption behavior. Moreover, candidate genes identified encode proteins with important clinical functions that extend beyond caffeine metabolism. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Clinical and Physiological Correlates of Caffeine and Caffeine Metabolites in Primary Insomnia

    PubMed Central

    Youngberg, Mark R.; Karpov, Irina O.; Begley, Amy; Pollock, Bruce G.; Buysse, Daniel J.

    2011-01-01

    Objectives: To explore the relationship between plasma concentrations of caffeine and subjective and polysomnographic measures of sleep in both good sleeper controls (GSC) and individuals with primary insomnia (PI), following the consumption of low-moderate quantities of caffeine in the home environment. Methods: 65 PI and 29 GSC, each consuming < 4 four coffee cup equivalents of caffeine daily, were recruited. Subjects completed a diary detailing sleep habits and caffeine consumption, one night of polysomnography, and a blood sample for measurement of plasma caffeine and its metabolites at bedtime. Plasma concentrations of caffeine, its primary metabolite, paraxanthine, and other metabolites were determined for each subject and correlated with self-report and polysomnographic measures. Results: No statistically significant differences were found between GSC and PI with respect to number of caffeinated beverages consumed (p = 0.91), estimated absolute caffeine ingestion (p = 0.48), time of caffeine consumption (p = 0.22), or plasma concentrations of caffeine (p = 0.92) or paraxanthine (p = 0.88). Significant correlations were found between plasma concentrations of caffeine/paraxanthine and endorsed caffeine intake (r = 0.58, p < 0.05) and estimated absolute caffeine ingestion (r = 0.57, p < 0.05). Plasma caffeine/paraxanthine was significantly correlated with percent stage 1 sleep (r = 0.32, p < 0.05). However, plasma concentrations of caffeine/paraxanthine were not significantly correlated with other subjective or polysomnographic measures of sleep disturbance in either GSC or PI. Conclusions: These data suggest that low-moderate amounts of caffeine consumed in the home environment, and mostly during morning hours, have little effect on subjective or polysomnographic measures of sleep in GSC or PI. Citation: Youngberg MR; Karpov IO; Begley A; Pollock BG; Buysse DJ. Clinical and physiological correlates of caffeine and caffeine metabolites in primary insomnia. J

  2. The perspective of caffeine and caffeine derived compounds in therapy.

    PubMed

    Pohanka, M

    2015-01-01

    Caffeine (1,3,7-trimethylxanthine) is a plant secondary metabolite with a significant impact on multiple processes and regulatory pathways in the body. Though major part of the population meets caffeine via coffee, tea or chocolate, it has also an important role in pharmacology and it is used as a supplementary substance in medicaments. Currently, the ability of caffeine to ameliorate some neurodegenerative disorders is proved in some studies. This review describes basic data about caffeine including toxicity, pharmacokinetics, biological mechanism of the action, and metabolism. Beside this, promising applications of caffeine, new medicaments and derivatives are discussed. Relevant papers and inventions are depicted in the manuscript. Caffeine is a pharmacologically promising substance that deserves big consideration in the current research and development. The compound has several reasons to be an object of scientific interest and to be used for pharmacology purposes. Despite an extensive research for a long time, no significantly negative effects on human health were proved hence caffeine can be considered as a completely safe compound. The recent data about amelioration of neurodegenerative and other disorders are promising and deserving more work on the issue. ARTICLE HIGHLIGHTS: Caffeine is a purine alkaloid from plants and it has a broad use in current pharmacology. Caffeine is a competitive antagonist of neurotransmitter adenosine on adenosine receptors. The substance is added as a supplementary to drugs and food.Besides interfering on adenosine receptors, caffeine interacts with acetylcholinesterase, monoamine oxidase, phosphodiesterase, ryanodine receptors and others.Current research is devoted to the role of caffeine in neurodegenerative diseases and immunity alteration. New chemical compounds based on caffeine moiety are prepared (Tab. 4, Fig. 6, Ref. 149).

  3. Exercise and sport performance with low doses of caffeine.

    PubMed

    Spriet, Lawrence L

    2014-11-01

    Caffeine is a popular work-enhancing supplement that has been actively researched since the 1970s. The majority of research has examined the effects of moderate to high caffeine doses (5-13 mg/kg body mass) on exercise and sport. These caffeine doses have profound effects on the responses to exercise at the whole-body level and are associated with variable results and some undesirable side effects. Low doses of caffeine (<3 mg/kg body mass, ~200 mg) are also ergogenic in some exercise and sport situations, although this has been less well studied. Lower caffeine doses (1) do not alter the peripheral whole-body responses to exercise; (2) improve vigilance, alertness, and mood and cognitive processes during and after exercise; and (3) are associated with few, if any, side effects. Therefore, the ergogenic effect of low caffeine doses appears to result from alterations in the central nervous system. However, several aspects of consuming low doses of caffeine remain unresolved and suffer from a paucity of research, including the potential effects on high-intensity sprint and burst activities. The responses to low doses of caffeine are also variable and athletes need to determine whether the ingestion of ~200 mg of caffeine before and/or during training and competitions is ergogenic on an individual basis.

  4. Effects of caffeine on performance and mood depend on the level of caffeine abstinence.

    PubMed

    Yeomans, Martin R; Ripley, Tamzin; Davies, Laura H; Rusted, Jennifer M; Rogers, Peter J

    2002-11-01

    Most studies of the effects of caffeine on performance have used regular caffeine consumers who are deprived at test. Thus the reported effects of caffeine could be explained through reversal of caffeine withdrawal. To test how preloading deprived caffeine consumers with 0, 1 or 2 mg/kg caffeine altered the subsequent ability of caffeine to modify mood and performance. Thirty moderate caffeine consumers were given a drink containing 0, 1 or 2 mg/kg caffeine at breakfast followed 60 min later by a second drink containing either 0 or 1 mg/kg caffeine. Performance on a measure of sustained attention and mood were measured before and after each drink. Administration of both 1 and 2 mg/kg caffeine at breakfast decreased reaction time and 1 mg/kg caffeine also increased performance accuracy on the sustained attention (RVIP) task relative to placebo. Both breakfast doses of caffeine also improved rated mental alertness. Similarly, 1 mg/kg caffeine administered 60 min after breakfast decreased reaction time and increased rated mental alertness in the group who had not been given caffeine at breakfast. However, this second dose of caffeine had no effect on subsequent performance or mood in the two groups who had received caffeine at breakfast. Caffeine reliably improved performance on a sustained attention task, and increased rated mental alertness, in moderate caffeine consumers who were tested when caffeine-deprived. However, caffeine had no such effects when consumers were no longer caffeine deprived. These data are consistent with the view that reversal of caffeine withdrawal is a major component of the effects of caffeine on mood and performance.

  5. Pre-existent expectancy effects in the relationship between caffeine and performance.

    PubMed

    Elliman, Nicola A; Ash, Jennifer; Green, Michael W

    2010-10-01

    The present study investigated the impact of pre-existent expectancy regarding the effects of the caffeine load of a drink and the perception of the caffeine content on subjective mood and vigilance performance. Caffeine deprived participants (N=25) were tested in four conditions (within subjects design), using a 2×2 design, with caffeine load and information regarding the caffeine content of the drink. In two sessions, they were given caffeinated coffee and in two were given decaffeinated coffee. Within these two conditions, on one occasion they were given accurate information about the drink and on the other they were given inaccurate information about the drink. Mood and vigilance performance were assessed post ingestion. Caffeine was found to enhance performance, but only when participants were accurately told they were receiving it. When decaffeinated coffee was given, performance was poorer, irrespective of expectancy. However, when caffeine was given, but participants were told it was decaffeinated coffee, performance was as poor as when no caffeine had been administered. There were no easily interpretable effects on mood. The pharmacological effects of caffeine appear to act synergistically with expectancy.

  6. Caffeine Enhances Memory Performance in Young Adults during Their Non-optimal Time of Day

    PubMed Central

    Sherman, Stephanie M.; Buckley, Timothy P.; Baena, Elsa; Ryan, Lee

    2016-01-01

    Many college students struggle to perform well on exams in the early morning. Although students drink caffeinated beverages to feel more awake, it is unclear whether these actually improve performance. After consuming coffee (caffeinated or decaffeinated), college-age adults completed implicit and explicit memory tasks in the early morning and late afternoon (Experiment 1). During the morning, participants ingesting caffeine demonstrated a striking improvement in explicit memory, but not implicit memory. Caffeine did not alter memory performance in the afternoon. In Experiment 2, participants engaged in cardiovascular exercise in order to examine whether increases in physiological arousal similarly improved memory. Despite clear increases in physiological arousal, exercise did not improve memory performance compared to a stretching control condition. These results suggest that caffeine has a specific benefit for memory during students’ non-optimal time of day – early morning. These findings have real-world implications for students taking morning exams. PMID:27895607

  7. Understanding adolescent caffeine use: connecting use patterns with expectancies, reasons, and sleep.

    PubMed

    Bryant Ludden, Alison; Wolfson, Amy R

    2010-06-01

    Little is known about adolescents' caffeine use, yet caffeinated soda, and more recently coffee and energy drinks, are part of youth culture. This study examines adolescents' caffeine use and, using cluster analysis, identifies three groups of caffeine users who differed in their reasons for use, expectancies, and sleep behaviors. In this high school student sample (N = 197), 95% of participants reported recent caffeine use-most often soda-where typical first use of the day was in the evening. Results reveal that adolescents in the mixed use and high soda use groups consumed similar amounts of soda, reporting significantly more use than the low caffeine use group. In contrast with high soda users, mixed users drank more coffee, expected more dependence symptoms and energy enhancement from caffeine, and were more likely to report getting up early, daytime sleepiness, and using caffeine to get through the day.

  8. A comparison of the effects of caffeine following abstinence and normal caffeine use.

    PubMed

    Addicott, Merideth A; Laurienti, Paul J

    2009-12-01

    Caffeine typically produces positive effects on mood and performance. However, tolerance may develop following habitual use, and abrupt cessation can result in withdrawal symptoms, such as fatigue. This study investigated whether caffeine has a greater stimulant effect in a withdrawn state compared to a normal caffeinated state, among moderate daily caffeine consumers. Using a within-subjects design, 17 caffeine consumers (mean +/- sd = 375 +/- 101 mg/day) ingested placebo or caffeine (250 mg) following 30-h of caffeine abstention or normal dietary caffeine use on four separate days. Self-reported mood and performance on choice reaction time, selective attention, and memory tasks were measured. Caffeine had a greater effect on mood and choice reaction time in the abstained state than in the normal caffeinated state, but caffeine improved selective attention and memory in both states. Although improvements in mood and reaction time may best explained as relief from withdrawal symptoms, other performance measures showed no evidence of withdrawal and were equally sensitive to an acute dose of caffeine in the normal caffeinated state.

  9. A comparison of the effects of caffeine following abstinence and normal caffeine use

    PubMed Central

    Addicott, Merideth A.

    2010-01-01

    Rationale Caffeine typically produces positive effects on mood and performance. However, tolerance may develop following habitual use, and abrupt cessation can result in withdrawal symptoms, such as fatigue. This study investigated whether caffeine has a greater stimulant effect in a withdrawn state compared to a normal caffeinated state, among moderate daily caffeine consumers. Materials and methods Using a within-subjects design, 17 caffeine consumers (mean±sd=375±101 mg/day) ingested placebo or caffeine (250 mg) following 30-h of caffeine abstention or normal dietary caffeine use on four separate days. Self-reported mood and performance on choice reaction time, selective attention, and memory tasks were measured. Results Caffeine had a greater effect on mood and choice reaction time in the abstained state than in the normal caffeinated state, but caffeine improved selective attention and memory in both states. Conclusions Although improvements in mood and reaction time may best explained as relief from withdrawal symptoms, other performance measures showed no evidence of withdrawal and were equally sensitive to an acute dose of caffeine in the normal caffeinated state. PMID:19777214

  10. Caffeine provokes adverse interactions with 3,4-methylenedioxymethamphetamine (MDMA, ‘ecstasy’) and related psychostimulants: mechanisms and mediators

    PubMed Central

    Vanattou-Saïfoudine, N; McNamara, R; Harkin, A

    2012-01-01

    Concomitant consumption of caffeine with recreational psychostimulant drugs of abuse can provoke severe acute adverse reactions in addition to longer term consequences. The mechanisms by which caffeine increases the toxicity of psychostimulants include changes in body temperature regulation, cardiotoxicity and lowering of the seizure threshold. Caffeine also influences the stimulatory, discriminative and reinforcing effects of psychostimulant drugs. In this review, we consider our current understanding of such caffeine-related drug interactions, placing a particular emphasis on an adverse interaction between caffeine and the substituted amphetamine, 3,4-methylenedioxymethamphetamine (MDMA, ‘ecstasy’), which has been most recently described and characterized. Co-administration of caffeine profoundly enhances the acute toxicity of MDMA in rats, as manifested by high core body temperature, tachycardia and increased mortality. In addition, co-administration of caffeine enhances the long-term serotonergic neurotoxicity induced by MDMA. Observations to date support an interactive model of drug-induced toxicity comprising MDMA-related enhancement of dopamine release coupled to a caffeine-mediated antagonism of adenosine receptors in addition to inhibition of PDE. These experiments are reviewed together with reports of caffeine-related drug interactions with cocaine, d-amphetamine and ephedrine where similar mechanisms are implicated. Understanding the underlying mechanisms will guide appropriate intervention strategies for the management of severe reactions and potential for increased drug-related toxicity, resulting from concomitant caffeine consumption. PMID:22671762

  11. Caffeine Concentrations in Coffee, Tea, Chocolate, and Energy Drink Flavored E-liquids.

    PubMed

    Lisko, Joseph G; Lee, Grace E; Kimbrell, J Brett; Rybak, Michael E; Valentin-Blasini, Liza; Watson, Clifford H

    2017-04-01

    Most electronic cigarettes (e-cigarettes) contain a solution of propylene glycol/glycerin and nicotine, as well as flavors. E-cigarettes and their associated e-liquids are available in numerous flavor varieties. A subset of the flavor varieties include coffee, tea, chocolate, and energy drink, which, in beverage form, are commonly recognized sources of caffeine. Recently, some manufacturers have begun marketing e-liquid products as energy enhancers that contain caffeine as an additive. A Gas Chromatography-Mass Spectrometry (GC-MS) method for the quantitation of caffeine in e-liquids was developed, optimized and validated. The method was then applied to assess caffeine concentrations in 44 flavored e-liquids from cartridges, disposables, and refill solutions. Products chosen were flavors traditionally associated with caffeine (ie, coffee, tea, chocolate, and energy drink), marketed as energy boosters, or labeled as caffeine-containing by the manufacturer. Caffeine was detected in 42% of coffee-flavored products, 66% of tea-flavored products, and 50% of chocolate-flavored e-liquids (limit of detection [LOD] - 0.04 µg/g). Detectable caffeine concentrations ranged from 3.3 µg/g to 703 µg/g. Energy drink-flavored products did not contain detectable concentrations of caffeine. Eleven of 12 products marketed as energy enhancers contained caffeine, though in widely varying concentrations (31.7 µg/g to 9290 µg/g). E-liquid flavors commonly associated with caffeine content like coffee, tea, chocolate, and energy drink often contained caffeine, but at concentrations significantly lower than their dietary counterparts. Estimated daily exposures from all e-cigarette products containing caffeine were much less than ingestion of traditional caffeinated beverages like coffee. This study presents an optimized and validated method for the measurement of caffeine in e-liquids. The method is applicable to all e-liquid matrices and could potentially be used to ensure regulatory

  12. The Effects of Caffeine on Vertical Jump Height and Execution in Collegiate Athletes.

    PubMed

    Bloms, Lucas P; Fitzgerald, John S; Short, Martin W; Whitehead, James R

    2016-07-01

    Bloms, LP, Fitzgerald, JS, Short, MW, and Whitehead, JR. The effects of caffeine on vertical jump height and execution in collegiate athletes. J Strength Cond Res 30(7): 1855-1861, 2016-Caffeine ingestion elicits a variety of physiological effects that may be beneficial to maximal-intensity exercise performance, although its effectiveness and physical mechanism of action enhancing ballistic task performance are unclear. The purpose of this study was to examine the effects of caffeine ingestion on vertical jump height and jump execution in Division I collegiate athletes. The study used a single-blind, randomized, crossover design. Athletes (n = 25) consumed either caffeine (5 mg·kg) or placebo. After a 60-minute waiting period, athletes performed 3 squat jumps (SJ) and 3 countermovement jumps (CMJ) while standing on a force platform. Jump height and execution variables were calculated from mechanography data. In comparison with placebo, caffeine increased SJ height (32.8 ± 6.2 vs. 34.5 ± 6.7 cm; p = 0.001) and CMJ height (36.4 ± 6.9 vs. 37.9 ± 7.4 cm; p = 0.001). Peak force (p = 0.032) and average rate of force development (p = 0.037) were increased during the CMJ in the caffeine trail compared with the control. Time to half peak force was the only execution variable improved with caffeine (p = 0.019) during the SJ. It seems that caffeine affects both height and execution of jumping. Our data indicate that the physical mechanism of jump enhancement is increased peak force production or rate of force development during jumping depending on technique. The physical mechanism of jump enhancement suggests that the ergogenic effects of caffeine may transfer to other ballistic tasks involving the lower-body musculature in collegiate athletes.

  13. The Taste of Caffeine

    PubMed Central

    Tordoff, Michael G.

    2017-01-01

    Many people avidly consume foods and drinks containing caffeine, despite its bitter taste. Here, we review what is known about caffeine as a bitter taste stimulus. Topics include caffeine's action on the canonical bitter taste receptor pathway and caffeine's action on noncanonical receptor-dependent and -independent pathways in taste cells. Two conclusions are that (1) caffeine is a poor prototypical bitter taste stimulus because it acts on bitter taste receptor-independent pathways, and (2) caffeinated products most likely stimulate “taste” receptors in nongustatory cells. This review is relevant for taste researchers, manufacturers of caffeinated products, and caffeine consumers. PMID:28660093

  14. Effects of caffeine on the inflammatory response induced by a 15-km run competition.

    PubMed

    Tauler, Pedro; Martínez, Sonia; Moreno, Carlos; Monjo, Marta; Martínez, Pau; Aguiló, Antoni

    2013-07-01

    The objective of this study is as follows: 1) to determine the effects of caffeine supplementation on the inflammatory response (IL-6 and IL-10 levels and leukocyte numbers) induced by a 15-km run competition and 2) to examine the effect of caffeine supplementation on the energetic metabolites as well as on the exercise-induced oxidative stress. A double-blinded study of supplementation with caffeine was performed. Athletes participating in the study (n = 33) completed a 15-km run competition. Before competition, athletes took 6 mg · kg(-1) body weight of caffeine (caffeine group, n = 17) or a placebo (placebo group, n = 16). Blood samples were taken before and after competition (immediately and after 2-h recovery). Leukocyte numbers were determined in blood. Concentrations of oxidative stress markers, antioxidants, interleukins (IL-6 and IL-10), caffeine, adrenaline, and energetic metabolites were measured in plasma or serum. Caffeine supplementation induced higher increases in circulating total leukocytes and neutrophils, with significant differences between groups after recovery. Adrenaline, glucose, and lactate levels increased after exercise, with higher increases in the caffeine group. Exercise induced significant increases in IL-6 and IL-10 plasma levels, with higher increases in the caffeine group. Caffeine supplementation induced higher increases in oxidative stress markers after the competition. Caffeine supplementation induced higher levels of IL-6 and IL-10 in response to exercise, enhancing the anti-inflammatory response. The caffeine-induced increase in adrenaline could be responsible for the higher increase in IL-6 levels, as well as for the increased lactate levels. Furthermore, caffeine seems to enhance oxidative stress induced by exercise.

  15. Espresso coffees, caffeine and chlorogenic acid intake: potential health implications.

    PubMed

    Crozier, Thomas W M; Stalmach, Angelique; Lean, Michael E J; Crozier, Alan

    2012-01-01

    HPLC analysis of 20 commercial espresso coffees revealed 6-fold differences in caffeine levels, a 17-fold range of caffeoylquinic acid contents, and 4-fold differences in the caffeoylquinic acid : caffeine ratio. These variations reflect differences in batch-to-batch bean composition, possible blending of arabica with robusta beans, as well as roasting and grinding procedures, but the predominant factor is likely to be the amount of beans used in the coffee-making/barista processes. The most caffeine in a single espresso was 322 mg and a further three contained >200 mg, exceeding the 200 mg day(-1) upper limit recommended during pregnancy by the UK Food Standards Agency. This snap-shot of high-street expresso coffees suggests the published assumption that a cup of strong coffee contains 50 mg caffeine may be misleading. Consumers at risk of toxicity, including pregnant women, children and those with liver disease, may unknowingly ingest excessive caffeine from a single cup of espresso coffee. As many coffee houses prepare larger volume coffees, such as Latte and Cappuccino, by dilution of a single or double shot of expresso, further study on these products is warranted. New data are needed to provide informative labelling, with attention to bean variety, preparation, and barista methods.

  16. Caffeine dosing strategies to optimize alertness during sleep loss.

    PubMed

    Vital-Lopez, Francisco G; Ramakrishnan, Sridhar; Doty, Tracy J; Balkin, Thomas J; Reifman, Jaques

    2018-05-28

    Sleep loss, which affects about one-third of the US population, can severely impair physical and neurobehavioural performance. Although caffeine, the most widely used stimulant in the world, can mitigate these effects, currently there are no tools to guide the timing and amount of caffeine consumption to optimize its benefits. In this work, we provide an optimization algorithm, suited for mobile computing platforms, to determine when and how much caffeine to consume, so as to safely maximize neurobehavioural performance at the desired time of the day, under any sleep-loss condition. The algorithm is based on our previously validated Unified Model of Performance, which predicts the effect of caffeine consumption on a psychomotor vigilance task. We assessed the algorithm by comparing the caffeine-dosing strategies (timing and amount) it identified with the dosing strategies used in four experimental studies, involving total and partial sleep loss. Through computer simulations, we showed that the algorithm yielded caffeine-dosing strategies that enhanced performance of the predicted psychomotor vigilance task by up to 64% while using the same total amount of caffeine as in the original studies. In addition, the algorithm identified strategies that resulted in equivalent performance to that in the experimental studies while reducing caffeine consumption by up to 65%. Our work provides the first quantitative caffeine optimization tool for designing effective strategies to maximize neurobehavioural performance and to avoid excessive caffeine consumption during any arbitrary sleep-loss condition. © 2018 The Authors. Journal of Sleep Research published by John Wiley & Sons Ltd on behalf of European Sleep Research Society.

  17. Caffeine dependence in teenagers.

    PubMed

    Bernstein, Gail A; Carroll, Marilyn E; Thuras, Paul D; Cosgrove, Kelly P; Roth, Megan E

    2002-03-01

    This study identifies and characterizes symptoms of caffeine dependence in adolescents. Thirty-six adolescents who consumed caffeine daily and had some features of caffeine dependence on telephone screen were scheduled for outpatient evaluation. Evaluation included the Diagnostic Interview Schedule for Children-IV-Youth Version (DISC-IV) and modified DISC-IV questions that assessed caffeine dependence based on DSM-IV substance dependence criteria. Of 36 subjects, 41.7% (n=15) reported tolerance to caffeine, 77.8% (n=28) described withdrawal symptoms after cessation or reduction of caffeine intake, 38.9% (n=14) reported desire or unsuccessful attempts to control use, and 16.7% (n=6) endorsed use despite knowledge of physical or psychological problems associated with caffeine. There was no significant difference in the amount of caffeine consumed daily by caffeine dependent versus non-dependent teenagers. These findings are important due to the vast number of adolescents who drink caffeinated beverages.

  18. Caffeine

    MedlinePlus

    ... most of their caffeine from soft drinks and energy drinks. (In addition to caffeine, these also can have ... SoBe No Fear 8 ounces 83 mg Monster energy drink 16 ounces 160 mg Rockstar energy drink 8 ...

  19. Caffeine

    MedlinePlus

    ... medicines for alertness contain synthetic caffeine. So do energy drinks and "energy-boosting" gums and snacks. Most people consume caffeine ... of cola: 35-45 mg An 8-ounce energy drink: 70-100 mg An 8-ounce cup ...

  20. Caffeine controversies.

    PubMed

    Gentle, Samuel J; Travers, Colm P; Carlo, Waldemar A

    2018-04-01

    Caffeine use in preterm infants has endured several paradigms: from standard of care to possible neurotoxin to one of the few medications for which there is evidence of bronchopulmonary dysplasia (BPD) risk reduction. The purpose of the review is to analyze this dynamic trajectory and discuss controversies that still remain after decades of caffeine use. Following concerns for caffeine safety in preterm infants, a large randomized controlled trial demonstrated a reduction in BPD and treatment for patent ductus arteriosus. The lower rate of death or neurodevelopmental impairment noted at 18-21 months was not statistically different at later timepoints; however, infants in the caffeine group had lower rates of motor impairment at 11-year follow-up. The time of caffeine therapy initiation is now substantially earlier, and doses used are sometimes higher that previously used, but there are limited data to support these practices. Caffeine therapy for apnea of prematurity (AOP) remains one of the pillars of neonatal care, although more evidence to support dosing and timing of initiation and discontinuation are needed.

  1. Caffeine restores regional brain activation in acute hypoglycaemia in healthy volunteers.

    PubMed

    Rosenthal, M J; Smith, D; Yaguez, L; Giampietro, V; Kerr, D; Bullmore, E; Brammer, M; Williams, S C R; Amiel, S A

    2007-07-01

    Caffeine enhances counterregulatory responses to acute hypoglycaemia. Our aim was to explore its effects on cortical function, which are not known at present. Regional brain activation during performance of the four-choice reaction time (4CRT) at different levels of complexity was measured using functional magnetic resonance imaging (fMRI) at euglycaemia (5 mmol/l) and hypoglycaemia (2.6 mmol/l) in the presence and absence of caffeine in six healthy right-handed men. During hypoglycaemia, caffeine enhanced adrenaline responses to hypoglycaemia (2.5 +/- 0.7 nmol/l to 4.0 +/- 1.0 nmol/l, P = 0.01) and restored the brain activation response to the non-cued 4CRT, the linear increases in regional brain activation associated with increased task complexity and the ability to respond to a cue that were lost in hypoglycaemia alone. Caffeine can sustain regional brain activation patterns lost in acute hypoglycaemia, with some restoration of cortical function and enhanced adrenaline responsiveness. A methodology has been established that may help in the development of therapies to protect against severe hypoglycaemia in insulin therapy for patients with diabetes and problematic hypoglycaemia.

  2. Effects of blue light and caffeine on mood.

    PubMed

    Ekström, Johan G; Beaven, C Martyn

    2014-09-01

    Both short wavelength (blue) light and caffeine have been studied for their mood enhancing effects on humans. The ability of blue light to increase alertness, mood and cognitive function via non-image forming neuropathways has been suggested as a non-pharmacological countermeasure for depression across a range of occupational settings. This experimental study compared blue light and caffeine and aimed to test the effects of blue light/placebo (BLU), white light/240-mg caffeine (CAF), blue light/240-mg caffeine (BCAF) and white light/placebo (PLA), on mood. A randomised, controlled, crossover design study was used, in a convenience population of 20 healthy volunteers. The participants rated their mood on the Swedish Core Affect Scales (SCAS) prior to and after each experimental condition to assess the dimensions of valence and activation. There was a significant main effect of light (p = 0.009), and the combination of blue light and caffeine had clear positive effects on core effects (ES, ranging from 0.41 to 1.20) and global mood (ES, 0.61 ± 0.53). The benefits of the combination of blue light and caffeine should be further investigated across a range of applications due to the observed effects on the dimensions of arousal, valence and pleasant activation.

  3. Discriminative Stimulus Effects of Binary Drug Mixtures: Studies with Cocaine, MDPV, and Caffeine.

    PubMed

    Collins, Gregory T; Abbott, Megan; Galindo, Kayla; Rush, Elise L; Rice, Kenner C; France, Charles P

    2016-10-01

    Illicit drug preparations often include more than one pharmacologically active compound. For example, cocaine and synthetic cathinones [e.g., 3,4-methylenedioxypyrovalerone (MDPV)] are often mixed with caffeine before sale. Caffeine is likely added to these preparations because it is inexpensive and legal; however, caffeine might also mimic or enhance some of the effects of cocaine or MDPV. In these studies, male Sprague-Dawley rats were trained to discriminate 10 mg/kg cocaine from saline, and the discriminative stimulus effects of cocaine, caffeine, and MDPV were evaluated alone and as binary mixtures (cocaine and caffeine, MDPV and caffeine, and cocaine and MDPV) at fixed-dose ratios of 3:1, 1:1, and 1:3 relative to the dose of each drug that produced 50% cocaine-appropriate responding. Dose-addition analyses were used to determine the nature of the drug-drug interactions for each mixture (e.g., additive, supra-additive, or subadditive). Although additive interactions were observed for most mixtures, supra-additive interactions were observed at the 50% effect level for the 1:1 mixture of cocaine and caffeine and at the 80% effect level for all three mixtures of cocaine and caffeine, as well as for the 3:1 and 1:3 mixtures of cocaine and MDPV. These results demonstrate that with respect to cocaine-like discriminative stimulus effects, caffeine can function as a substitute in drug preparations containing either cocaine or MDPV, with enhancements of cocaine-like effects possible under certain conditions. Further research is needed to determine whether similar interactions exist for other abuse-related or toxic effects of drug preparations, including cocaine, synthetic cathinones, and caffeine. U.S. Government work not protected by U.S. copyright.

  4. Discriminative Stimulus Effects of Binary Drug Mixtures: Studies with Cocaine, MDPV, and Caffeine

    PubMed Central

    Abbott, Megan; Galindo, Kayla; Rush, Elise L.; Rice, Kenner C.; France, Charles P.

    2016-01-01

    Illicit drug preparations often include more than one pharmacologically active compound. For example, cocaine and synthetic cathinones [e.g., 3,4-methylenedioxypyrovalerone (MDPV)] are often mixed with caffeine before sale. Caffeine is likely added to these preparations because it is inexpensive and legal; however, caffeine might also mimic or enhance some of the effects of cocaine or MDPV. In these studies, male Sprague-Dawley rats were trained to discriminate 10 mg/kg cocaine from saline, and the discriminative stimulus effects of cocaine, caffeine, and MDPV were evaluated alone and as binary mixtures (cocaine and caffeine, MDPV and caffeine, and cocaine and MDPV) at fixed-dose ratios of 3:1, 1:1, and 1:3 relative to the dose of each drug that produced 50% cocaine-appropriate responding. Dose-addition analyses were used to determine the nature of the drug-drug interactions for each mixture (e.g., additive, supra-additive, or subadditive). Although additive interactions were observed for most mixtures, supra-additive interactions were observed at the 50% effect level for the 1:1 mixture of cocaine and caffeine and at the 80% effect level for all three mixtures of cocaine and caffeine, as well as for the 3:1 and 1:3 mixtures of cocaine and MDPV. These results demonstrate that with respect to cocaine-like discriminative stimulus effects, caffeine can function as a substitute in drug preparations containing either cocaine or MDPV, with enhancements of cocaine-like effects possible under certain conditions. Further research is needed to determine whether similar interactions exist for other abuse-related or toxic effects of drug preparations, including cocaine, synthetic cathinones, and caffeine. PMID:27493274

  5. Caffeine at work.

    PubMed

    Smith, Andrew P

    2005-08-01

    There is a large literature on the effects of caffeine on performance. Most of the studies have been conducted in the laboratory and further information is required on the effects of caffeine consumption on performance and safety at work. The present studies aimed to determine whether the level of caffeine consumption influenced changes in alertness and performance over the working day. Secondary analyses of a large epidemiological database were also conducted to examine associations between caffeine consumption and cognitive failures and accidents at work. In the first study 110 volunteers, all of whom were regular caffeine consumers, rated their alertness and carried out a simple reaction time task before and after work on a Monday and Friday. Caffeine consumption during the day was recorded and volunteers were sub-divided into low and high consumers on the basis of a median split (220 mg/day). The second study involved secondary analyses of a database formed by combining the Bristol Stress and Health at Work and Cardiff Health and Safety at Work studies. In the first analyses associations between caffeine consumption and frequency of cognitive failures were examined in a sample of 1253 white-collar workers. The second set of analyses examined associations between caffeine consumption and accidents at work in a sample of 1555 workers who were especially at risk of having an accident. The results from the first study showed that those who consumed higher levels of caffeine reported significantly greater increases in alertness over the working day and a significantly smaller slowing of reaction time. The results from the second study demonstrated significant associations between caffeine consumption and fewer cognitive failures and accidents at work. After controlling for possible confounding factors it was found that higher caffeine consumption was associated with about half the risk of frequent/very frequent cognitive failures and a similar reduction in risk for

  6. Acute consumption of a caffeinated energy drink enhances aspects of performance in sprint swimmers.

    PubMed

    Lara, Beatriz; Ruiz-Vicente, Diana; Areces, Francisco; Abián-Vicén, Javier; Salinero, Juan José; Gonzalez-Millán, Cristina; Gallo-Salazar, César; Del Coso, Juan

    2015-09-28

    This study investigated the effect of a caffeinated energy drink on various aspects of performance in sprint swimmers. In a randomised and counterbalanced order, fourteen male sprint swimmers performed two acute experimental trials after the ingestion of a caffeinated energy drink (3 mg/kg) or after the ingestion of the same energy drink without caffeine (0 mg/kg; placebo). After 60 min of ingestion of the beverages, the swimmers performed a countermovement jump, a maximal handgrip test, a 50 m simulated competition and a 45 s swim at maximal intensity in a swim ergometer. A blood sample was withdrawn 1 min after the completion of the ergometer test. In comparison with the placebo drink, the intake of the caffeinated energy drink increased the height in the countermovement jump (49.4 (SD 5.3) v. 50.9 (SD 5.2) cm, respectively; P<0.05) and maximal force during the handgrip test with the right hand (481 (SD 49) v. 498 (SD 43) N; P<0.05). Furthermore, the caffeinated energy drink reduced the time needed to complete the 50 m simulated swimming competition (27.8 (SD 3.4) v. 27.5 (SD 3.2) s; P<0.05), and it increased peak power (273 (SD 55) v. 303 (SD 49) W; P <0.05) and blood lactate concentration (11.0 (SD 2.0) v. 11.7 (SD 2.1) mM; P<0.05) during the ergometer test. The caffeinated energy drink did not modify the prevalence of insomnia (7 v. 7%), muscle pain (36 v. 36%) or headache (0 v. 7%) during the hours following its ingestion (P>0.05). A caffeinated energy drink increased some aspects of swimming performance in competitive sprinters, whereas the side effects derived from the intake of this beverage were marginal at this dosage.

  7. Estimation of caffeine intake from analysis of caffeine metabolites in wastewater.

    PubMed

    Gracia-Lor, Emma; Rousis, Nikolaos I; Zuccato, Ettore; Bade, Richard; Baz-Lomba, Jose Antonio; Castrignanò, Erika; Causanilles, Ana; Hernández, Félix; Kasprzyk-Hordern, Barbara; Kinyua, Juliet; McCall, Ann-Kathrin; van Nuijs, Alexander L N; Plósz, Benedek G; Ramin, Pedram; Ryu, Yeonsuk; Santos, Miguel M; Thomas, Kevin; de Voogt, Pim; Yang, Zhugen; Castiglioni, Sara

    2017-12-31

    Caffeine metabolites in wastewater were investigated as potential biomarkers for assessing caffeine intake in a population. The main human urinary metabolites of caffeine were measured in the urban wastewater of ten European cities and the metabolic profiles in wastewater were compared with the human urinary excretion profile. A good match was found for 1,7-dimethyluric acid, an exclusive caffeine metabolite, suggesting that might be a suitable biomarker in wastewater for assessing population-level caffeine consumption. A correction factor was developed considering the percentage of excretion of this metabolite in humans, according to published pharmacokinetic studies. Daily caffeine intake estimated from wastewater analysis was compared with the average daily intake calculated from the average amount of coffee consumed by country per capita. Good agreement was found in some cities but further information is needed to standardize this approach. Wastewater analysis proved useful to providing additional local information on caffeine use. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Caffeine prevents changes in muscle caused by high-intensity interval training.

    PubMed

    Vieira, Juliano M; Gutierres, Jessié M; Carvalho, Fabiano B; Pereira, Luciane B; Oliveira, Liziele S; Morsch, Vera Maria; Schetinger, Maria Rosa C; Rodrigues, Marília V; Leitemperger, Jossiele; Loro, Vânia; Krewer, Cristina C; Vencato, Marina S; Spanevello, Roselia M

    2017-05-01

    The use of ergogenic substances such as caffeine has become a strategy to enhance sports performance. In the present study we evaluated the effects of high-intensity interval training (HIIT) associated with caffeine intake on acetylcholinesterase (AChE) and Ca 2+ ATPase activity and glycogen levels in the muscles of rats were evaluated. The animals were divided in groups: control, caffeine 4 or 8mg/kg, HIIT, HIIT plus caffeine 4 or caffeine 8mg/kg. Our results showed a decrease in glycogen levels in muscle in all trained groups after acute session exercise, while that an increase in glycogen levels was observed in all groups in relation to control in chronic exercise protocol. HIIT increases the thickness of the left ventricle and the Ca 2+ -ATPase activity and decrease the AChE activity in gastrocnemius muscle. Caffeine treatment prevents changes in enzymes activities as well as left ventricular hypertrophy adaptation induced by HIIT. Our findings suggest that caffeine modulates crucial pathways for muscle contraction in HIIT. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. Consumption of caffeinated beverages and the awareness of their caffeine content among Dutch students.

    PubMed

    Mackus, Marlou; van de Loo, Aurora J A E; Benson, Sarah; Scholey, Andrew; Verster, Joris C

    2016-08-01

    The purpose of the current study was to examine the knowledge of caffeine content of a variety of caffeinated beverages among Dutch university students. A pencil-and-paper survey was conducted among N = 800 Dutch students. Most participants (87.8%) reported consuming caffeinated beverages during the past 24 h. Their mean ± SD past 24-h caffeine intake from beverages was 144.2 ± 169.5 mg (2.2 ± 3.0 mg/kg bw). Most prevalent sources of caffeine were coffee beverages (50.8%) and tea (34.8%), followed by energy drink (9.2%), cola (4.7%), and chocolate milk (0.5%). Participants had poor knowledge on the relative caffeine content of caffeinated beverages. That is, they overestimated the caffeine content of energy drinks and cola, and underestimated the caffeine content of coffee beverages. If caffeine consumption is a concern, it is important to inform consumers about the caffeine content of all caffeine containing beverages, including coffee and tea. The current findings support previous research that the most effective way to reduce caffeine intake is to limit the consumption of coffee beverages and tea. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Effects of caffeine and carbohydrate mouth rinses on repeated sprint performance.

    PubMed

    Beaven, C Martyn; Maulder, Peter; Pooley, Adrian; Kilduff, Liam; Cook, Christian

    2013-06-01

    Our purpose was to examine the effectiveness of carbohydrate and caffeine mouth rinses in enhancing repeated sprint ability. Previously, studies have shown that a carbohydrate mouth rinse (without ingestion) has beneficial effects on endurance performance that are related to changes in brain activity. Caffeine ingestion has also demonstrated positive effects on sprint performance. However, the effects of carbohydrate or caffeine mouth rinses on intermittent sprints have not been examined previously. Twelve males performed 5 × 6-s sprints interspersed with 24 s of active recovery on a cycle ergometer. Twenty-five milliliters of either a noncaloric placebo, a 6% glucose, or a 1.2% caffeine solution was rinsed in the mouth for 5 s prior to each sprint in a double-blinded and balanced cross-over design. Postexercise maximal heart rate and perceived exertion were recorded, along with power measures. A second experiment compared a combined caffeine-carbohydrate rinse with carbohydrate only. Compared with the placebo mouth rinse, carbohydrate substantially increased peak power in sprint 1 (22.1 ± 19.5 W; Cohen's effect size (ES), 0.81), and both caffeine (26.9 ± 26.9 W; ES, 0.71) and carbohydrate (39.1 ± 25.8 W; ES, 1.08) improved mean power in sprint 1. Experiment 2 demonstrated that a combination of caffeine and carbohydrate improved sprint 1 power production compared with carbohydrate alone (36.0 ± 37.3 W; ES, 0.81). We conclude that carbohydrate and (or) caffeine mouth rinses may rapidly enhance power production, which could have benefits for specific short sprint exercise performance. The ability of a mouth-rinse intervention to rapidly improve maximal exercise performance in the absence of fatigue suggests a central mechanism.

  11. Feeling smart: Effects of caffeine and glucose on cognition, mood and self-judgment.

    PubMed

    Ullrich, Susann; de Vries, Yfke C; Kühn, Simone; Repantis, Dimitris; Dresler, Martin; Ohla, Kathrin

    2015-11-01

    During education and early career, young adults often face examinations and assessment centers. Coffee and energy drinks are convenient and commonly used to enhance or maintain performance in these situations. Whether these macronutrients improve performance in a demanding and drawn-out multi-task situation is not clear. Using double-blind, placebo-controlled studies, we set out to examine the effects of caffeine and glucose in an assessment center-like situation, under natural consumption conditions, in a group of young adults who were heterogeneous with respect to consumption patterns. We measured multi-task performance including logical thinking, processing speed, numeric and verbal memory, attention and the ability to concentrate, and mood over a two-hour period. Caffeine and glucose were administered in common beverages with appropriate placebo controls allowing the assessment of psychological effects of expectancy. Importantly, and in contrast to most previous studies, participants retained their habitual caffeine and sugar intake (studies 1 and 2) as this represents common behavior. Based on the bulk of literature, we hypothesized that (i) caffeine enhances attentional performance and mood, while performance in more complex tasks will remain unchanged, and that (ii) glucose enhances performance on memory tasks accompanied with negative mood. Our results provide evidence that neither caffeine nor glucose significantly influence cognitive performance when compared with placebo, water, or no treatment controls in a multi-task setting. Yet, caffeine and, by trend, placebo improve dispositions such that participants perceive preserved mental energy throughout the test procedure. These subjective effects were stronger after 24 h caffeine abstinence (study 3). Future studies will have to address whether these mood changes actually result in increased motivation during a challenging task.

  12. Effect of Caffeine on Oxidative Stress During Maximum Incremental Exercise

    PubMed Central

    Olcina, Guillermo J.; Muñoz, Diego; Timón, Rafael; Caballero, M. Jesús; Maynar, Juan I.; Córdova, Alfredo; Maynar, Marcos

    2006-01-01

    Caffeine (1,3,7-trimethylxanthine) is an habitual substance present in a wide variety of beverages and in chocolate-based foods and it is also used as adjuvant in some drugs. The antioxidant ability of caffeine has been reported in contrast with its pro- oxidant effects derived from its action mechanism such as the systemic release of catecholamines. The aim of this work was to evaluate the effect of caffeine on exercise oxidative stress, measuring plasma vitamins A, E, C and malonaldehyde (MDA) as markers of non enzymatic antioxidant status and lipid peroxidation respectively. Twenty young males participated in a double blind (caffeine 5mg·kg- 1 body weight or placebo) cycling test until exhaustion. In the exercise test, where caffeine was ingested prior to the test, exercise time to exhaustion, maximum heart rate, and oxygen uptake significantly increased, whereas respiratory exchange ratio (RER) decreased. Vitamins A and E decreased with exercise and vitamin C and MDA increased after both the caffeine and placebo tests but, regarding these particular variables, there were no significant differences between the two test conditions. The results obtained support the conclusion that this dose of caffeine enhances the ergospirometric response to cycling and has no effect on lipid peroxidation or on the antioxidant vitamins A, E and C. Key Points Caffeine ingestion may improve maximal aerobic performance in non trained men. Cellular oxidative damage is not altered by caffeine ingestion in maximal aerobic exercises. Antioxidant response to exercise, vitamins A, E and C, is not modified by caffeine action in maximal aerobic efforts. PMID:24357958

  13. Chronic Caffeine Treatment Protects Against α-Synucleinopathy by Reestablishing Autophagy Activity in the Mouse Striatum.

    PubMed

    Luan, Yanan; Ren, Xiangpeng; Zheng, Wu; Zeng, Zhenhai; Guo, Yingzi; Hou, Zhidong; Guo, Wei; Chen, Xingjun; Li, Fei; Chen, Jiang-Fan

    2018-01-01

    Despite converging epidemiological evidence for the inverse relationship of regular caffeine consumption and risk of developing Parkinson's disease (PD) with animal studies demonstrating protective effect of caffeine in various neurotoxin models of PD, whether caffeine can protect against mutant α-synuclein (α-Syn) A53T-induced neurotoxicity in intact animals has not been examined. Here, we determined the effect of chronic caffeine treatment using the α-Syn fibril model of PD by intra-striatal injection of preformed A53T α-Syn fibrils. We demonstrated that chronic caffeine treatment blunted a cascade of pathological events leading to α-synucleinopathy, including pSer129α-Syn-rich aggregates, apoptotic neuronal cell death, microglia, and astroglia reactivation. Importantly, chronic caffeine treatment did not affect autophagy processes in the normal striatum, but selectively reversed α-Syn-induced defects in macroautophagy (by enhancing microtubule-associated protein 1 light chain 3, and reducing the receptor protein sequestosome 1, SQSTM1/p62) and chaperone-mediated autophagy (CMA, by enhancing LAMP2A). These findings support that caffeine-a strongly protective environment factor as suggested by epidemiological evidence-may represent a novel pharmacological therapy for PD by targeting autophagy pathway.

  14. Modulatory effects of caffeine on oxidative stress and anxiety-like behavior in ovariectomized rats.

    PubMed

    Caravan, Ionut; Sevastre Berghian, Alexandra; Moldovan, Remus; Decea, Nicoleta; Orasan, Remus; Filip, Gabriela Adriana

    2016-09-01

    Menopause is accompanied by enhanced oxidative stress and behavioral changes, effects attenuated by antioxidants. The aim of this study was to evaluate the effects of caffeine on behavior and oxidative stress in an experimental model of menopause. Female rats were divided into the following groups: sham-operated (CON), sham-operated and caffeine-treated (CAF), ovariectomized (OVX), ovariectomized and caffeine-treated (OVX+CAF). Caffeine (6 mg/kg) and vehicle were administered for 21 days (subchronic) and 42 days (chronic), using 2 experimental subsets. Behavioral tests and oxidative stress parameters in the blood, whole brain, and hippocampus were assessed. The subchronic administration of caffeine decreased the lipid peroxidation and improved the antioxidant defense in the blood and brain. The GSH/GGSG ratio in the brain was improved by chronic administration, with reduced activities of antioxidant enzymes and enhanced nitric oxide and malondialdehyde levels. In particular, the lipid peroxidation in the hippocampus decreased in both experiments. The rats became hyperactive after 21 days of treatment, but no effect was observed after chronic administration. In both experimental subsets, caffeine had anxiolytic effects as tested in elevated plus maze. The administration of low doses of caffeine, for a short period of time, may be a new therapeutic approach to modulating the oxidative stress and anxiety in menopause.

  15. Caffeine alters emotion and emotional responses in low habitual caffeine consumers.

    PubMed

    Giles, Grace E; Spring, Alexander M; Urry, Heather L; Moran, Joseph M; Mahoney, Caroline R; Kanarek, Robin B

    2018-02-01

    Caffeine reliably increases emotional arousal, but it is unclear whether and how it influences other dimensions of emotion such as emotional valence. These experiments documented whether caffeine influences emotion and emotion regulation choice and success. Low to abstinent caffeine consumers (maximum 100 mg/day) completed measures of state anxiety, positive and negative emotion, and salivary cortisol before, 45 min after, and 75 min after consuming 400 mg caffeine or placebo. Participants also completed an emotion regulation choice task, in which they chose to employ cognitive reappraisal or distraction in response to high and low intensity negative pictures (Experiment 1), or a cognitive reappraisal task, in which they employed cognitive reappraisal or no emotion regulation strategy in response to negative and neutral pictures (Experiment 2). State anxiety, negative emotion, and salivary cortisol were heightened both 45 and 75 min after caffeine intake relative to placebo. In Experiment 1, caffeine did not influence the frequency with which participants chose reappraisal or distraction, but reduced negativity of the picture ratings. In Experiment 2, caffeine did not influence cognitive reappraisal success. Thus, caffeine mitigated emotional responses to negative situations, but not how participants chose to regulate such responses or the success with which they did so.

  16. Caffeine Reinforces Flavor Preference and Behavior in Moderate Users but Not in Low Caffeine Users

    ERIC Educational Resources Information Center

    Dack, Charlotte; Reed, Phil

    2009-01-01

    The study examined the role of caffeine consumption in caffeine reinforcement. Previous findings have shown that caffeine reinforced flavor preference in moderate caffeine consumers who are caffeine deprived. However, most of these studies have employed rating procedures only, and have not shown the effectiveness of caffeine to reinforce behaviors…

  17. Twelve weeks supplementation with an extended-release caffeine and ATP-enhancing supplement may improve body composition without affecting hematology in resistance-trained men.

    PubMed

    Joy, Jordan M; Vogel, Roxanne M; Moon, Jordan R; Falcone, Paul H; Mosman, Matt M; Kim, Michael P

    2016-01-01

    Increased ATP levels may enhance training-induced muscle accretion and fat loss, and caffeine is a known ergogenic aid. A novel supplement containing ancient peat and apple extracts has reported enhanced mitochondrial ATP production and it has been coupled with an extended-release caffeine. Therefore, the purpose of this investigation was to determine the effects of this supplement on body composition when used in conjunction with 12 weeks of resistance training. Twenty-one resistance-trained subjects (27.2 ± 5.6y; 173.5 ± 5.7 cm; 82.8 ± 12.0 kg) completed this study. Subjects supplemented daily with either 1 serving of the supplement (TRT), which consisted of 150 mg ancient peat and apple extracts, 180 mg blend of caffeine anhydrous and pterostilbene-bound caffeine, and 38 mg B vitamins, or an equal-volume, visually-identical placebo (PLA) 45 min prior to training or at the same time of day on rest days. Supervised resistance training consisted of 8 weeks of daily undulating periodized training followed by a 2-week overreach and a 2-week taper phase. Body composition was assessed using DEXA and ultrasound at weeks 0, 4, 8, 10, and 12. Vital signs and blood markers were assessed at weeks 0, 8, and 12. Significant group x time (p < 0.05) interactions were present for cross-sectional area of the rectus femoris, which increased in TRT (+1.07 cm(2)) versus PLA (-0.08 cm(2)), as well as muscle thickness (TRT: +0.49 cm; PLA: +0.04 cm). A significant group x time (p < 0.05) interaction existed for creatinine (TRT: +0.00 mg/dL; PLA: +0.15 mg/dL) and estimated glomerular filtration rate (TRT: -0.70 mL/min/1.73; PLA: -14.6 mL/min/1.73), which remained within clinical ranges, but no other significant observations were observed. Supplementation with a combination of extended-release caffeine and ancient peat and apple extracts may enhance resistance training-induced skeletal muscle hypertrophy without adversely affecting blood chemistry.

  18. A Comparison of Blue Light and Caffeine Effects on Cognitive Function and Alertness in Humans

    PubMed Central

    Beaven, C. Martyn; Ekström, Johan

    2013-01-01

    The alerting effects of both caffeine and short wavelength (blue) light have been consistently reported. The ability of blue light to enhance alertness and cognitive function via non-image forming neuropathways have been suggested as a non-pharmacological countermeasure for drowsiness across a range of occupational settings. Here we compare and contrast the alerting and psychomotor effects of 240 mg of caffeine and a 1-h dose of ~40 lx blue light in a non-athletic population. Twenty-one healthy subjects performed a computer-based psychomotor vigilance test before and after each of four randomly assigned trial conditions performed on different days: white light/placebo; white light/240 mg caffeine; blue light/placebo; blue light/240 mg caffeine. The Karolinska Sleepiness Scale was used to assess subjective measures of alertness. Both the caffeine only and blue light only conditions enhanced accuracy in a visual reaction test requiring a decision and an additive effect was observed with respect to the fastest reaction times. However, in a test of executive function, where a distraction was included, caffeine exerted a negative effect on accuracy. Furthermore, the blue light only condition consistently outperformed caffeine when both congruent and incongruent distractions were presented. The visual reactions in the absence of a decision or distraction were also enhanced in the blue light only condition and this effect was most prominent in the blue-eyed participants. Overall, blue light and caffeine demonstrated distinct effects on aspects of psychomotor function and have the potential to positively influence a range of settings where cognitive function and alertness are important. Specifically, despite the widespread use of caffeine in competitive sporting environments, the possible impact of blue light has received no research attention. PMID:24282477

  19. Effect of melatonin and caffeine interaction on caffeine induced oxidative stress and sleep disorders.

    PubMed

    Obochi, G O; Amali, O O E; Ochalefu, D O

    2010-11-24

    Effect of interaction of melatonin and caffeine on caffeine induced oxidative stress and sleep disorders was studied. Fifteen wistar rats were randomly assigned into three study groups. The animals in group 1 (the control) received a placebo of 10.0 ml distilled water via gastric intubation. The hosts in groups 2 and 3 were treated with 100 mg caffeine/ kg, or melatonin/ kg, respectively, in a total volume of 10.0 ml vehicle. The experiment lasted for 30 days. One day after the final exposure, the animals were euthanized by inhalation of overdose of chloroform. Blood was collected by cardiac puncture. Serum was obtained by centrifugation (6000 Xg, 30 mins), and used for serum total protein and serum blood urea nitrogen levels. The brain of each rat was also harvested and processed into whole homogenate, frozen in liquid nitrogen (N2), and maintained at -80oC until used for total brain cholesterol and tryptophan levels. The results showed that interaction of melatonin and caffeine enhanced protein synthesis; stimulated gonadotrophin release,  and could be used as oral contraceptive for women, and may be beneficial in the treatment of impotence (androgen depression), leading to improved reproductive and sex life; stimulated tryptophan metabolism, which prevents vitamin B6 deficiency, anemia, negative nitrogen balance, tissue wasting and accumulation of xanthurenic acid, which promotes sleep; and could be beneficial in the treatment of hyper cholesterolemia, thereby preventing coronary heart disease, and post menopausal osteoporosis.

  20. Use of Taguchi methodology to enhance the yield of caffeine removal with growing cultures of Pseudomonas pseudoalcaligenes.

    PubMed

    Ashengroph, Morahem; Ababaf, Sajad

    2014-12-01

    Microbial caffeine removal is a green solution for treatment of caffeinated products and agro-industrial effluents. We directed this investigation to optimizing a bio-decaffeination process with growing cultures of Pseudomonas pseudoalcaligenes through Taguchi methodology which is a structured statistical approach that can be lowered variations in a process through Design of Experiments (DOE). Five parameters, i.e. initial fructose, tryptone, Zn(+2) ion and caffeine concentrations and also incubation time selected and an L16 orthogonal array was applied to design experiments with four 4-level factors and one 3-level factor (4(4) × 1(3)). Data analysis was performed using the statistical analysis of variance (ANOVA) method. Furthermore, the optimal conditions were determined by combining the optimal levels of the significant factors and verified by a confirming experiment. Measurement of residual caffeine concentration in the reaction mixture was performed using high-performance liquid chromatography (HPLC). Use of Taguchi methodology for optimization of design parameters resulted in about 86.14% reduction of caffeine in 48 h incubation when 5g/l fructose, 3 mM Zn(+2) ion and 4.5 g/l of caffeine are present in the designed media. Under the optimized conditions, the yield of degradation of caffeine (4.5 g/l) by the native strain of Pseudomonas pseudoalcaligenes TPS8 has been increased from 15.8% to 86.14% which is 5.4 fold higher than the normal yield. According to the experimental results, Taguchi methodology provides a powerful methodology for identifying the favorable parameters on caffeine removal using strain TPS8 which suggests that the approach also has potential application with similar strains to improve the yield of caffeine removal from caffeine containing solutions.

  1. Improved 2000-meter rowing performance in competitive oarswomen after caffeine ingestion.

    PubMed

    Anderson, M E; Bruce, C R; Fraser, S F; Stepto, N K; Klein, R; Hopkins, W G; Hawley, J A

    2000-12-01

    Eight competitive oarswomen (age, 22 +/- 3 years; mass, 64.4 +/- 3.8 kg) performed three simulated 2,000-m time trials on a rowing ergometer. The trials, which were preceded by a 24-hour dietary and training control and 72 hours of caffeine abstinence, were conducted 1 hour after ingesting caffeine (6 or 9 mg á kg-1 body mass) or placebo. Plasma free fatty acid concentrations before exercise were higher with caffeine than placebo (0.67 +/- 0.34 vs. 0.72 +/- 0.36 vs. 0.30 +/- 0.10 mM for 6 and 9 mg á kg-1 caffeine and placebo, respectively; p <.05). Performance time improved 0.7% (95% confidence interval [CI] 0 to 1.5%) with 6 mg á kg-1 caffeine and 1. 3% (95% CI 0.5 to 2.0%) with 9 mg á kg-1 caffeine. The first 500 m of the 2,000 m was faster with the higher caffeine dose compared with placebo or the lower dose (1.53 +/- 0.52 vs.1.55 +/- 0.62 and 1. 56 +/- 0.43 min; p =.02). We concluded that caffeine produces a worthwhile enhancement of performance in a controlled laboratory setting, primarily by improving the first 500 m of a 2,000-m row.

  2. Quantitative HPLC Analysis of an Analgesic/Caffeine Formulation: Determination of Caffeine

    NASA Astrophysics Data System (ADS)

    Ferguson, Glenda K.

    1998-04-01

    A modern high performance liquid chromatography (HPLC) laboratory experiment which entails the separation of acetaminophen, aspirin, and caffeine and the quantitative assay of caffeine in commercial mixtures of these compounds has been developed. Our HPLC protocol resolves these compounds in only three minutes with a straightforward chromatographic apparatus which consists of a C-18 column, an isocratic mobile phase, UV detection at 254 nm, and an integrator; an expensive, sophisticated system is not required. The separation is both repeatable and rapid. Moreover, the experiment can be completed in a single three-hour period. The experiment is appropriate for any chemistry student who has completed a minimum of one year of general chemistry and is ideal for an analytical or instrumental analysis course. The experiment detailed herein involves the determination of caffeine in Goody's Extra Strength Headache Powders, a commercially available medication which contains acetaminophen, aspirin, and caffeine as active ingredients. However, the separation scheme is not limited to this brand of medication nor is it limited to caffeine as the analyte. With only minor procedural modifications, students can simultaneously quantitate all of these compounds in a commercial mixture. In our procedure, students prepare a series of four caffeine standard solutions as well as a solution from a pharmaceutical analgesic/caffeine mixture, chromatographically analyze each solution in quadruplicate, and plot relative average caffeine standard peak area versus concentration. From the mathematical relationship that results, the concentration of caffeine in the commercial formulation is obtained. Finally, the absolute standard deviation of the mean concentration is calculated.

  3. Caffeine content of decaffeinated coffee.

    PubMed

    McCusker, Rachel R; Fuehrlein, Brian; Goldberger, Bruce A; Gold, Mark S; Cone, Edward J

    2006-10-01

    Caffeine is the most widely consumed drug in the world with coffee representing a major source of intake. Despite widespread availability, various medical conditions necessitate caffeine-restricted diets. Patients on certain prescription medications are advised to discontinue caffeine intake. Such admonition has implications for certain psychiatric patients because of pharmacokinetic interactions between caffeine and certain anti-anxiety drugs. In an effort to abstain from caffeine, patients may substitute decaffeinated for caffeinated coffee. However, decaffeinated beverages are known to contain caffeine in varying amounts. The present study determined the caffeine content in a variety of decaffeinated coffee drinks. In phase 1 of the study, 10 decaffeinated samples were collected from different coffee establishments. In phase 2 of the study, Starbucks espresso decaffeinated (N=6) and Starbucks brewed decaffeinated coffee (N=6) samples were collected from the same outlet to evaluate variability of caffeine content of the same drink. The 10 decaffeinated coffee samples from different outlets contained caffeine in the range of 0-13.9 mg/16-oz serving. The caffeine content for the Starbucks espresso and the Starbucks brewed samples collected from the same outlet were 3.0-15.8 mg/shot and 12.0-13.4 mg/16-oz serving, respectively. Patients vulnerable to caffeine effects should be advised that caffeine may be present in coffees purported to be decaffeinated. Further research is warranted on the potential deleterious effects of consumption of "decaffeinated" coffee that contains caffeine on caffeine-restricted patients. Additionally, further exploration is merited for the possible physical dependence potential of low doses of caffeine such as those concentrations found in decaffeinated coffee.

  4. Effects of caffeine and caffeine withdrawal on mood and cognitive performance degraded by sleep restriction.

    PubMed

    Rogers, Peter J; Heatherley, Susan V; Hayward, Robert C; Seers, Helen E; Hill, Joanne; Kane, Marian

    2005-06-01

    It has been suggested that caffeine is most likely to benefit mood and performance when alertness is low. To measure the effects of caffeine on psychomotor and cognitive performance, mood, blood pressure and heart rate in sleep-restricted participants. To do this in a group of participants who had also been previously deprived of caffeine for 3 weeks, thereby potentially removing the confounding effects of acute caffeine withdrawal. Participants were moderate to moderate-high caffeine consumers who were provided with either decaffeinated tea and/or coffee for 3 weeks (LTW) or regular tea and/or coffee for 3 weeks (overnight caffeine-withdrawn participants, ONW). Then, following overnight caffeine abstinence, they were tested on a battery of tasks assessing mood, cognitive performance, etc. before and after receiving caffeine (1.2 mg/kg) or on another day after receiving placebo. Final analyses were based on 17 long-term caffeine-withdrawn participants (LTW) and 17 ONW participants whose salivary caffeine levels on each test day confirmed probable compliance with the instructions concerning restrictions on consumption of caffeine-containing drinks. Acute caffeine withdrawal (ONW) had a number of negative effects, including impairment of cognitive performance, increased headache, and reduced alertness and clear-headedness. Caffeine (versus placebo) did not significantly improve cognitive performance in LTW participants, although it prevented further deterioration of performance in ONW participants. Caffeine increased tapping speed (but tended to impair hand steadiness), increased blood pressure, and had some effects on mood in both groups. The findings provide strong support for the withdrawal reversal hypothesis. In particular, cognitive performance was found to be affected adversely by acute caffeine withdrawal and, even in the context of alertness lowered by sleep restriction, cognitive performance was not improved by caffeine in the absence of these withdrawal

  5. Caffeine Consumption by College Undergraduates.

    ERIC Educational Resources Information Center

    Loke, Wing Hong

    1988-01-01

    Surveyed 542 undergraduates concerning their caffeine consumption. Found that subjects consumed less caffeine than average caffeine-drinking population. Coffee was main beverage used. Subjects reported drinking more caffeine when preparing for examinations. Suggests that caffeine may have some beneficial effects on learning. (Author/NB)

  6. Cognitive and mood improvements of caffeine in habitual consumers and habitual non-consumers of caffeine.

    PubMed

    Haskell, Crystal F; Kennedy, David O; Wesnes, Keith A; Scholey, Andrew B

    2005-06-01

    The cognitive and mood effects of caffeine are well documented. However, the majority of studies in this area involve caffeine-deprived, habitual caffeine users. It is therefore unclear whether any beneficial findings are due to the positive effects of caffeine or to the alleviation of caffeine withdrawal. The present placebo-controlled, double-blind, balanced crossover study investigated the acute cognitive and mood effects of caffeine in habitual users and habitual non-users of caffeine. Following overnight caffeine withdrawal, 24 habitual caffeine consumers (mean=217 mg/day) and 24 habitual non-consumers (20 mg/day) received a 150 ml drink containing either 75 or 150 mg of caffeine or a matching placebo, at intervals of > or =48 h. Cognitive and mood assessments were undertaken at baseline and 30 min post-drink. These included the Cognitive Drug Research computerised test battery, two serial subtraction tasks, a sentence verification task and subjective visual analogue mood scales. There were no baseline differences between the groups' mood or performance. Following caffeine, there were significant improvements in simple reaction time, digit vigilance reaction time, numeric working memory reaction time and sentence verification accuracy, irrespective of group. Self-rated mental fatigue was reduced and ratings of alertness were significantly improved by caffeine independent of group. There were also group effects for rapid visual information processing false alarms and spatial memory accuracy with habitual consumers outperforming non-consumers. There was a single significant interaction of group and treatment effects on jittery ratings. Separate analyses of each groups' responses to caffeine revealed overlapping but differential responses to caffeine. Caffeine tended to benefit consumers' mood more while improving performance more in the non-consumers. These results do not support a withdrawal alleviation model. Differences in the patterns of responses to

  7. Caffeine's implications for women's health and survey of obstetrician-gynecologists' caffeine knowledge and assessment practices.

    PubMed

    Anderson, Britta L; Juliano, Laura M; Schulkin, Jay

    2009-09-01

    Caffeine has relevance for women's health and pregnancy, including significant associations with spontaneous abortion and low birth weight. According to scientific data, pregnant women and women of reproductive age should be advised to limit their caffeine consumption. This article reviews the implications of caffeine for women's psychological and physical health, and presents data on obstetrician-gynecologists' (ob-gyns) knowledge and practices pertaining to caffeine. Ob-gyns (N = 386) who are members of the American College of Obstetricians and Gynecologists' Collaborative Ambulatory Research Network responded to a 21-item survey about caffeine. Although most knew that caffeine is passed through breast milk, only 24.8% were aware that caffeine metabolism significantly slows as pregnancy progresses. Many respondents were not aware of the caffeine content of commonly used products, such as espresso and Diet Coke, with 14.3% and 57.8% indicating amounts within an accurate range, respectively. Furthermore, ob-gyns did not take into account large differences in caffeine content across different caffeinated beverages with most recommending one to two servings of coffee or tea or soft drinks per day. There was substantial inconsistency in what was considered to be "high levels" of maternal caffeine consumption, with only 31.6% providing a response. When asked to indicate the risk that high levels of caffeine have on various pregnancy outcomes, responses were not consistent with scientific data. For example, respondents overestimated the relative risk of stillbirths and underestimated the relative risk of spontaneous abortion. There was great variability in assessment and advice practices pertaining to caffeine. More than half advise their pregnant patients to consume caffeine under certain circumstances, most commonly to alleviate headache and caffeine withdrawal. The data suggest that ob-gyns could benefit from information about caffeine and its relevance to their

  8. Absence of reinforcing, mood and psychomotor performance effects of caffeine in habitual non-consumers of caffeine.

    PubMed

    Rogers, Peter J; Martin, James; Smith, Chloe; Heatherley, Susan V; Smit, Hendrik J

    2003-04-01

    The extent to which the measured (and felt) psychostimulant effects of caffeine represent a real benefit of caffeine consumption or merely withdrawal reversal is unclear. Results showing positive psychostimulant effects of acute caffeine administration in habitual non-consumers of caffeine would provide evidence for a net benefit of caffeine unconfounded by withdrawal. To compare the mood, alerting, psychomotor and reinforcing effects of caffeine in caffeine non-consumers and acutely (overnight) withdrawn caffeine consumers. In experiment 1, these participants consumed two differently flavoured drinks, one containing 100 mg caffeine and the other containing no caffeine. Each drink was consumed on 4 separate days in semi-random order, and self-ratings of mood and alertness were completed before and after drink consumption. On day 9, both drinks contained 50 mg caffeine and drink preference (choice) and intake were assessed. In experiment 2, mood, alertness and performance on a long-duration simple reaction time task were assessed before and after administration of 100 mg or placebo in a single test session. Prior to receiving caffeine, the (overnight withdrawn) caffeine consumers were less alert and more tense than the non-consumers. Caffeine only had significant reinforcing, mood and psychomotor performance effects in the caffeine consumers. The reinforcing effect of caffeine was evident from an effect on drink intake, but drink choice was unaffected. Caffeine increased self-rated alertness of both caffeine consumers and non-consumers; however, for some of the non-consumers this was associated with a worsening of performance. These results support the hypothesis that the psychostimulant and related effects of caffeine are due largely to withdrawal reversal.

  9. The effects of caffeine in women during aerobic-dance bench stepping.

    PubMed

    Ahrens, Jennifer N; Lloyd, Lisa K; Crixell, Sylvia H; Walker, John L

    2007-02-01

    People of all ages and fitness levels participate regularly in aerobic-dance bench stepping (ADBS) to increase fitness and control body weight. Any reasonable method for enhancing the experience or effectiveness of ADBS would be beneficial. This study examined the acute effects of a single dose of caffeine on physiological responses during ADBS in women. When compared with a placebo, neither a 3- nor a 6-mg/kg dose of caffeine altered physiological responses or rating of perceived exertion (RPE) in 20 women (age 19-28 y) of average fitness level, not habituated to caffeine, while they performed an ADBS routine. Since neither dose of caffeine had any effect on VO2, VCO2, minute ventilation, respiratory-exchange ratio, rate of energy expenditure, heart rate, or RPE during ADBS exercise, it would not be prudent for a group exercise leader to recommend caffeine to increase energy cost or decrease perception of effort in an ADBS session. Furthermore, caffeine ingestion should not interfere with monitoring intensity using heart rate or RPE during ADBS.

  10. Using Caffeine Pills for Performance Enhancement. An Experimental Study on University Students' Willingness and Their Intention to Try Neuroenhancements.

    PubMed

    Brand, Ralf; Koch, Helen

    2016-01-01

    Recent research has indicated that university students sometimes use caffeine pills for neuroenhancement (NE; non-medical use of psychoactive substances or technology to produce a subjective enhancement in psychological functioning and experience), especially during exam preparation. In our factorial survey experiment, we manipulated the evidence participants were given about the prevalence of NE amongst peers and measured the resulting effects on the psychological predictors included in the Prototype-Willingness Model of risk behavior. Two hundred and thirty-one university students were randomized to a high prevalence condition (read faked research results overstating usage of caffeine pills amongst peers by a factor of 5; 50%), low prevalence condition (half the estimated prevalence; 5%) or control condition (no information about peer prevalence). Structural equation modeling confirmed that our participants' willingness and intention to use caffeine pills in the next exam period could be explained by their past use of neuroenhancers, attitude to NE and subjective norm about use of caffeine pills whilst image of the typical user was a much less important factor. Provision of inaccurate information about prevalence reduced the predictive power of attitude with respect to willingness by 40-45%. This may be because receiving information about peer prevalence which does not fit with their perception of the social norm causes people to question their attitude. Prevalence information might exert a deterrent effect on NE via the attitude-willingness association. We argue that research into NE and deterrence of associated risk behaviors should be informed by psychological theory.

  11. Using Caffeine Pills for Performance Enhancement. An Experimental Study on University Students’ Willingness and Their Intention to Try Neuroenhancements

    PubMed Central

    Brand, Ralf; Koch, Helen

    2016-01-01

    Recent research has indicated that university students sometimes use caffeine pills for neuroenhancement (NE; non-medical use of psychoactive substances or technology to produce a subjective enhancement in psychological functioning and experience), especially during exam preparation. In our factorial survey experiment, we manipulated the evidence participants were given about the prevalence of NE amongst peers and measured the resulting effects on the psychological predictors included in the Prototype-Willingness Model of risk behavior. Two hundred and thirty-one university students were randomized to a high prevalence condition (read faked research results overstating usage of caffeine pills amongst peers by a factor of 5; 50%), low prevalence condition (half the estimated prevalence; 5%) or control condition (no information about peer prevalence). Structural equation modeling confirmed that our participants’ willingness and intention to use caffeine pills in the next exam period could be explained by their past use of neuroenhancers, attitude to NE and subjective norm about use of caffeine pills whilst image of the typical user was a much less important factor. Provision of inaccurate information about prevalence reduced the predictive power of attitude with respect to willingness by 40-45%. This may be because receiving information about peer prevalence which does not fit with their perception of the social norm causes people to question their attitude. Prevalence information might exert a deterrent effect on NE via the attitude-willingness association. We argue that research into NE and deterrence of associated risk behaviors should be informed by psychological theory. PMID:26903909

  12. A Combination of Amino Acids and Caffeine Enhances Sprint Running Capacity in a Hot, Hypoxic Environment.

    PubMed

    Eaton, Tom R; Potter, Aaron; Billaut, François; Panchuk, Derek; Pyne, David B; Gore, Christopher J; Chen, Ting-Ting; McQuade, Leon; Stepto, Nigel K

    2016-02-01

    Heat and hypoxia exacerbate central nervous system (CNS) fatigue. We therefore investigated whether essential amino acid (EAA) and caffeine ingestion attenuates CNS fatigue in a simulated team sport-specific running protocol in a hot, hypoxic environment. Subelite male team sport athletes (n = 8) performed a repeat sprint running protocol on a nonmotorized treadmill in an extreme environment on 4 separate occasions. Participants ingested one of four supplements: a double placebo, 3 mg.kg-1 body mass of caffeine + placebo, 2 x 7 g EAA (Musashi Create)+placebo, or caffeine + EAA before each exercise session using a randomized, double-blind crossover design. Electromyography (EMG) activity and quadriceps evoked responses to magnetic stimulation were assessed from the dominant leg at preexercise, halftime, and postexercise. Central activation ratio (CAR) was used to quantify completeness of quadriceps activation. Oxygenation of the prefrontal cortex was measured via near-infrared spectroscopy. Mean sprint work was higher (M = 174 J, 95% CI [23, 324], p < .05, d = 0.30; effect size, likely beneficial) in the caffeine + EAA condition versus EAAs alone. The decline in EMG activity was less (M = 13%, 95% CI [0, 26]; p < .01, d = 0.58, likely beneficial) in caffeine + EAA versus EAA alone. Similarly, the pre- to postexercise decrement in CAR was significantly less (M = -2.7%, 95% CI [0.4, 5.4]; p < .05, d = 0.50, likely beneficial) when caffeine + EAA were ingested compared with placebo. Cerebral oxygenation was lower (M = -5.6%, 95% CI [1.0, 10.1]; p < .01, d = 0.60, very likely beneficial) in the caffeine + EAA condition compared with LNAA alone. Co-ingestion of caffeine and EAA appears to maintain muscle activation and central drive, with a small improvement in running performance.

  13. Development of the caffeine withdrawal symptom questionnaire: caffeine withdrawal symptoms cluster into 7 factors.

    PubMed

    Juliano, Laura M; Huntley, Edward D; Harrell, Paul T; Westerman, Ashley T

    2012-08-01

    Habitual caffeine consumers who abstain from caffeine experience withdrawal symptoms such as headache, fatigue, difficulty concentrating, mood disturbances, and flu-like symptoms (Juliano and Griffiths, 2004). The caffeine withdrawal syndrome has been documented across many experimental studies; however, little is known about how withdrawal symptoms co-vary during a discrete episode. Furthermore, a validated measure of caffeine withdrawal is lacking. To develop, evaluate, and reduce a 23-item measure of caffeine withdrawal symptoms; the Caffeine Withdrawal Symptom Questionnaire (CWSQ), to a set of composite variables. Caffeine consumers (N=213) completed the CWSQ after 16h of caffeine abstinence. A subset of participants also completed the CWSQ during a preceding baseline period and/or after double-blind consumption of caffeinated coffee. Principal components analysis resulted in a solution comprised of 7-factors: (1) Fatigue/drowsiness; (2) Low alertness/difficulty concentrating; (3) Mood disturbances; (4) Low sociability/motivation to work; (5) Nausea/upset stomach; (6) Flu-like feelings; and (7) Headache. With the exception of nausea/upset stomach, the CWSQ total score and individual composite scores were significantly greater during caffeine abstinence relative to both baseline and double-blind consumption of caffeinated coffee, thereby demonstrating sensitivity of the measure. Compared to non-daily coffee consumers, daily consumers had greater increases in total withdrawal, fatigue/drowsiness, low alertness/difficulty concentrating, mood disturbances, and headache. Future directions include replication, assessment on a clinical population, and further examination of psychometric properties of the CWSQ. The CWSQ should facilitate the assessment and diagnosis of caffeine withdrawal and increase our knowledge of the caffeine withdrawal syndrome. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. Caffeine: Friend or Foe?

    PubMed

    Doepker, Candace; Lieberman, Harris R; Smith, Andrew Paul; Peck, Jennifer D; El-Sohemy, Ahmed; Welsh, Brian T

    2016-01-01

    The debate on the safety of and regulatory approaches for caffeine continues among various stakeholders and regulatory authorities. This decision-making process comes with significant challenges, particularly when considering the complexities of the available scientific data, making the formulation of clear science-based regulatory guidance more difficult. To allow for discussions of a number of key issues, the North American Branch of the International Life Sciences Institute (ILSI) convened a panel of subject matter experts for a caffeine-focused session entitled "Caffeine: Friend or Foe?," which was held during the 2015 ILSI Annual Meeting. The panelists' expertise covered topics ranging from the natural occurrence of caffeine in plants and interindividual metabolism of caffeine in humans to specific behavioral, reproductive, and cardiovascular effects related to caffeine consumption. Each presentation highlighted the potential risks, benefits, and challenges that inform whether caffeine exposure warrants concern. This paper aims to summarize the key topics discussed during the session.

  15. Modeling caffeine concentrations with the Stanford Caffeine Questionnaire: preliminary evidence for an interaction of chronotype with the effects of caffeine on sleep.

    PubMed

    Nova, Philip; Hernandez, Beatriz; Ptolemy, Adam S; Zeitzer, Jamie M

    2012-04-01

    To examine the validity of a novel caffeine intake questionnaire and to examine the effects of caffeine on sleep in college students. One-week, ad libitum behavior of 50 university students (28 female, 22 male; aged 20.9 ± 1.78 years) was examined with sleep logs, wrist actigraphy, and a novel daily questionnaire assessing caffeine intake at different times of day. Saliva samples were collected for caffeine assessment (questionnaire validation) and DNA extraction, and for analysis of a single nucleotide polymorphism in the adenosine receptor 2A (ADORA2A) gene. The caffeine questionnaire was able to accurately predict salivary concentrations of caffeine (R(2) = 0.41, P<0.001). Estimations of integrated salivary caffeine concentration during sleep were correlated with wake after sleep onset (WASO) most strongly in morning-type individuals (R(2) = 0.49; P<0.001, ANOVA), less so in intermediate chronotypes (R(2) = 0.16; P<0.001, ANOVA), and not significantly in evening-types (R(2) = 0.00098; P = 0.13, ANOVA). Using multivariate modeling methods we found that the ADORA2A genotype did not moderate the effects of caffeine on WASO, but did independently alter WASO such that those with the CC genotype had nearly three-times as much WASO as those with CT or TT. Our questionnaire was able to accurately predict salivary caffeine concentrations and helped to describe a novel relationship between the effects of caffeine on sleep and genotype and chronotype. Published by Elsevier B.V.

  16. Cardiovascular Effects of Caffeine

    PubMed Central

    Myers, Martin G.

    1992-01-01

    A review of the literature on the cardiovascular effects of caffeine indicates that moderate caffeine consumption does not cause cardiac arrhythmias, hypertension, or an increased incidence of coronary heart disease. Caffeine use is often associated with atherogenic behavior, such as cigarette smoking. Failure to take into account covariables for cardiovascular disease could be responsible for commonly held misconceptions about caffeine and heart disease. PMID:21221403

  17. Caffeine intake increases plasma ketones: an acute metabolic study in humans.

    PubMed

    Vandenberghe, Camille; St-Pierre, Valérie; Courchesne-Loyer, Alexandre; Hennebelle, Marie; Castellano, Christian-Alexandre; Cunnane, Stephen C

    2017-04-01

    Brain glucose uptake declines during aging and is significantly impaired in Alzheimer's disease. Ketones are the main alternative brain fuel to glucose so they represent a potential approach to compensate for the brain glucose reduction. Caffeine is of interest as a potential ketogenic agent owing to its actions on lipolysis and lipid oxidation but whether it is ketogenic in humans is unknown. This study aimed to evaluate the acute ketogenic effect of 2 doses of caffeine (2.5; 5.0 mg/kg) in 10 healthy adults. Caffeine given at breakfast significantly stimulated ketone production in a dose-dependent manner (+88%; +116%) and also raised plasma free fatty acids. Whether caffeine has long-term ketogenic effects or could enhance the ketogenic effect of medium chain triglycerides remains to be determined.

  18. The effect of caffeine and albuterol on body composition and metabolic rate

    PubMed Central

    Liu, Ann G.; Arceneaux, Kenneth P.; Chu, Jessica T.; Jacob, Gregory; Schreiber, Allyson L.; Tipton, Russell C.; Yu, Ying; Johnson, William D.; Greenway, Frank L.; Primeaux, Stefany D.

    2015-01-01

    Objective Caffeine and ephedrine was an effective combination therapy for weight loss until ephedrine was removed from the market due to safety concerns. We investigated the combination of caffeine and albuterol as a possibly safer alternative to ephedrine. Design and Methods In a series of experiments using cultured adipocytes, rat models, and humans, we evaluated the effects of caffeine and albuterol on lipolysis, metabolic rate, food intake, and body composition. Results Both caffeine and albuterol enhanced lipolysis in cultured adipocytes. Acute treatment of humans with caffeine and/or albuterol increased resting metabolic rate. Longer-term studies of rats revealed a trend for increased metabolic rate with albuterol treatment. There was increased lean mass gain concurrent with decreased fat mass gain with caffeine/albuterol treatment that was greater than albuterol treatment alone. Conclusions In rats, albuterol with caffeine produced significantly greater increases in lean body mass and reductions in fat mass without changes in food intake after 4-8 weeks of treatment. Since caffeine and albuterol are approved for the treatment of asthma in children and adolescents at the doses tested and change body composition without changing food intake, this combination may deserve further exploration for use in treating pediatric obesity. PMID:26239482

  19. Alcohol and caffeine consumption and decreased fertility.

    PubMed

    Hakim, R B; Gray, R H; Zacur, H

    1998-10-01

    To examine the effects of alcohol and caffeine on conception. Prospective observational study. Healthy volunteers in two manufacturing facilities. One hundred twenty-four women who provided daily urine samples for measurement of steroid hormones and hCG, and prospective information about alcohol and caffeine consumption. Probability of conception per 100 menstrual cycles. There was >50% reduction in the probability of conception during a menstrual cycle during which participants consumed alcohol. Caffeine consumption did not independently affect the probability of conception but may enhance alcohol's negative effect. Women who abstained from alcohol and consumed less than one cup of coffee or its equivalent per day conceived 26.9 pregnancies per 100 menstrual cycles compared with 10.5 per 100 menstrual cycles among those who consumed any alcohol and more than one cup of coffee per day. This study revealed an independent dose-related negative effect of alcohol consumption on the ability to conceive. Our results suggest that women who are attempting to conceive should abstain from consuming alcohol.

  20. Separate and joint effects of alcohol and caffeine on conflict monitoring and adaptation.

    PubMed

    Bailey, Kira; Amlung, Michael T; Morris, David H; Price, Mason H; Von Gunten, Curtis; McCarthy, Denis M; Bartholow, Bruce D

    2016-04-01

    Caffeine is commonly believed to offset the acute effects of alcohol, but some evidence suggests that cognitive processes remain impaired when caffeine and alcohol are coadministered. No previous study has investigated the separate and joint effects of alcohol and caffeine on conflict monitoring and adaptation, processes thought to be critical for self-regulation. This was the purpose of the current study. Healthy, young adult social drinkers recruited from the community completed a flanker task after consuming one of four beverages in a 2 × 2 experimental design: Alcohol + caffeine, alcohol + placebo caffeine, placebo alcohol + caffeine, or placebo alcohol + placebo caffeine. Accuracy, response time, and the amplitude of the N2 component of the event-related potential (ERP), a neural index of conflict monitoring, were examined as a function of whether or not conflict was present (i.e., whether or not flankers were compatible with the target) on both the previous trial and the current trial. Alcohol did not abolish conflict monitoring or adaptation. Caffeine eliminated conflict adaptation in sequential trials but also enhanced neural conflict monitoring. The combined effect of alcohol and caffeine was apparent only in how previous conflict affected the neural conflict monitoring response. Together, the findings suggest that caffeine leads to exaggeration of attentional resource utilization, which could provide short-term benefits but lead to problems conserving resources for when they are most needed.

  1. Caffeine Stimulation of Cortisol Secretion Across the Waking Hours in Relation to Caffeine Intake Levels

    PubMed Central

    Lovallo, William R.; Whitsett, Thomas L.; al'Absi, Mustafa; Sung, Bong Hee; Vincent, Andrea S.; Wilson, Michael F.

    2008-01-01

    Objective Caffeine increases cortisol secretion in people at rest or undergoing mental stress. It is not known whether tolerance develops in this response with daily intake of caffeine in the diet. We therefore tested the cortisol response to caffeine challenge after controlled levels of caffeine intake. Methods Men (N = 48) and women (N = 48) completed a double-blind, crossover trial conducted over 4 weeks. On each week, subjects abstained for 5 days from dietary caffeine and instead took capsules totaling 0 mg, 300 mg, and 600 mg/day in 3 divided doses. On day 6, they took capsules with either 0 mg or 250 mg at 9:00 AM, 1:00 PM, and 6:00 PM, and cortisol was sampled from saliva collected at 8 times from 7:30 AM to 7:00 PM. Results After 5 days of caffeine abstinence, caffeine challenge doses caused a robust increase in cortisol across the test day (p < .0001). In contrast, 5 days of caffeine intake at 300 mg/day and 600 mg/day abolished the cortisol response to the initial 9:00 AM caffeine dose, although cortisol levels were again elevated between 1:00 PM and 7:00 PM (p = .02 to .002) after the second caffeine dose taken at 1:00 PM. Cortisol levels declined to control levels during the evening sampling period. Conclusion Cortisol responses to caffeine are reduced, but not eliminated, in healthy young men and women who consume caffeine on a daily basis. PMID:16204431

  2. Adolescent caffeine consumption increases adulthood anxiety-related behavior and modifies neuroendocrine signaling

    PubMed Central

    O’Neill, Casey E.; Newsom, Ryan J.; Stafford, Jacob; Scott, Talia; Archuleta, Solana; Levis, Sophia C.; Spencer, Robert L.; Campeau, Serge; Bachtell, Ryan K.

    2016-01-01

    Caffeine is a commonly used psychoactive substance and consumption by children and adolescents continues to rise. Here, we examine the lasting effects of adolescent caffeine consumption on anxiety-related behaviors and several neuroendocrine measures in adulthood. Adolescent male Sprague-Dawley rats consumed caffeine (0.3 g/L) for 28 consecutive days from postnatal day 28 (P28) to P55. Age-matched control rats consumed water. Behavioral testing for anxiety-related behavior began in adulthood (P62) 7 days after removal of caffeine. Adolescent caffeine consumption enhanced anxiety-related behavior in an open field, social interaction test, and elevated plus maze. Similar caffeine consumption in adult rats did not alter anxiety-related behavior after caffeine removal. Characterization of neuroendocrine measures was next assessed to determine whether the changes in anxiety were associated with modifications in the HPA axis. Blood plasma levels of corticosterone (CORT) were assessed throughout the caffeine consumption procedure in adolescent rats. Adolescent caffeine consumption elevated plasma CORT 24 h after initiation of caffeine consumption that normalized over the course of the 28-day consumption procedure. CORT levels were also elevated 24 h after caffeine removal and remained elevated for 7 days. Despite elevated basal CORT in adult rats that consumed caffeine during adolescence, the adrenocorticotropic hormone (ACTH) and CORT response to placement on an elevated pedestal (a mild stressor) was significantly blunted. Lastly, we assessed changes in basal and stress-induced c-fos and corticotropin-releasing factor (Crf) mRNA expression in brain tissue collected at 7 days withdrawal from adolescent caffeine. Adolescent caffeine consumption increased basal c-fos mRNA in the paraventricular nucleus of the hypothalamus. Adolescent caffeine consumption had no other effects on the basal or stress-induced c-fos mRNA changes. Caffeine consumption during adolescence

  3. Lower-upper-threshold correlation for underwater range-gated imaging self-adaptive enhancement.

    PubMed

    Sun, Liang; Wang, Xinwei; Liu, Xiaoquan; Ren, Pengdao; Lei, Pingshun; He, Jun; Fan, Songtao; Zhou, Yan; Liu, Yuliang

    2016-10-10

    In underwater range-gated imaging (URGI), enhancement of low-brightness and low-contrast images is critical for human observation. Traditional histogram equalizations over-enhance images, with the result of details being lost. To compress over-enhancement, a lower-upper-threshold correlation method is proposed for underwater range-gated imaging self-adaptive enhancement based on double-plateau histogram equalization. The lower threshold determines image details and compresses over-enhancement. It is correlated with the upper threshold. First, the upper threshold is updated by searching for the local maximum in real time, and then the lower threshold is calculated by the upper threshold and the number of nonzero units selected from a filtered histogram. With this method, the backgrounds of underwater images are constrained with enhanced details. Finally, the proof experiments are performed. Peak signal-to-noise-ratio, variance, contrast, and human visual properties are used to evaluate the objective quality of the global and regions of interest images. The evaluation results demonstrate that the proposed method adaptively selects the proper upper and lower thresholds under different conditions. The proposed method contributes to URGI with effective image enhancement for human eyes.

  4. Caffeine and the dopaminergic system.

    PubMed

    Cauli, O; Morelli, M

    2005-03-01

    Caffeine is the most widely consumed psychostimulant substance, being self-administered throughout a wide range of conditions and present in numerous dietary products. Due to its widespread use and low abuse potential, caffeine is considered an atypical drug of abuse. The main mechanism of action of caffeine occurs via the blockade of adenosine A1 and A2A receptors. Adenosine is a modulator of CNS neurotransmission and its modulation of dopamine transmission through A2A receptors has been implicated in the effects of caffeine. This review provides an updated summary of the results reported in the literature concerning the behavioural pharmacology of caffeine and the neurochemical mechanisms underlying the psychostimulant effects elicited by caffeine. The review focuses on the effects of caffeine mediated by adenosine A2A receptors and on the influence that pre-exposure to caffeine may exert on the effects of classical drugs of abuse.

  5. The acute effects of a caffeine-containing supplement on strength, muscular endurance, and anaerobic capabilities.

    PubMed

    Beck, Travis W; Housh, Terry J; Schmidt, Richard J; Johnson, Glen O; Housh, Dona J; Coburn, Jared W; Malek, Moh H

    2006-08-01

    The purpose of this study was to examine the acute effects of a caffeine-containing supplement on upper- and lower-body strength and muscular endurance as well as anaerobic capabilities. Thirty-seven resistance-trained men (mean +/- SD, age: 21 +/- 2 years) volunteered to participate in this study. On the first laboratory visit, the subjects performed 2 Wingate Anaerobic Tests (WAnTs) to determine peak power (PP) and mean power (MP), as well as tests for 1 repetition maximum (1RM), dynamic constant external resistance strength, and muscular endurance (TOTV; total volume of weight lifted during an endurance test with 80% of the 1RM) on the bilateral leg extension (LE) and free-weight bench press (BP) exercises. Following a minimum of 48 hours of rest, the subjects returned to the laboratory for the second testing session and were randomly assigned to 1 of 2 groups: a supplement group (SUPP; n = 17), which ingested a caffeine-containing supplement, or a placebo group (PLAC; n = 20), which ingested a cellulose placebo. One hour after ingesting either the caffeine-containing supplement or the placebo, the subjects performed 2 WAnTs and were tested for 1RM strength and muscular endurance on the LE and BP exercises. The results indicated that there was a significant (p < 0.05) increase in BP 1RM for the SUPP group, but not for the PLAC group. The caffeine-containing supplement had no effect, however, on LE 1RM, LE TOTV, BP TOTV, PP, and MP. Thus, the caffeine-containing supplement may be an effective supplement for increasing upper-body strength and, therefore, could be useful for competitive and recreational athletes who perform resistance training.

  6. Activation of Peripheral κ-Opioid Receptors Normalizes Caffeine Effects Modified in Nicotine-Dependent Rats during Nicotine Withdrawal.

    PubMed

    Sudakov, S K; Bogdanova, N G

    2016-10-01

    The study examined the effect of peripheral (intragastric) ICI-204,448, an agonist of gastric κ-opioid receptors, on the psychostimulating and anxiolytic effects of caffeine in nicotinedependent rats at the stage of nicotine withdrawal. In these rats, the effects of caffeine (10 mg/kg) were perverted. In nicotine-dependent rats, caffeine produced an anxiolytic effect accompanied by pronounced stimulation of motor activity, in contrast to anxiogenic effect induced by caffeine in intact rats without nicotine dependence. During nicotine withdrawal, nicotine-dependent rats demonstrated enhanced sensitivity to nicotine. Intragastric administration of κ-opioid receptor agonist ICI-204,448 normalized the effect of caffeine in nicotinedependent rats. We have previously demonstrated that activation of peripheral κ-opioid receptors inhibited central κ-opioid activity and eliminated manifestations of nicotine withdrawal syndrome in nicotine-dependent rats, e.g. metabolism activation, stimulation of motor activity, and enhancement of food consumption. In its turn, inhibition of central κ-opioid structures activates the brain adenosine system, which can attenuate the caffeine-induced effects in nicotine-dependent rats.

  7. Modification of caffeine-induced injury in Ca2+-free perfused rat hearts. Relationship to the calcium paradox.

    PubMed Central

    Vander Heide, R. S.; Altschuld, R. A.; Lamka, K. G.; Ganote, C. E.

    1986-01-01

    The pathogenesis of the calcium paradox has not been established. In calcium-free perfused hearts, caffeine, which releases calcium from the sarcoplasmic reticulum, causes severe myocardial injury, with creatine kinase (CK) release and contraction band necrosis similar in many respects to the calcium paradox. It has been postulated that contracture, initiated by a small rise in intracellular calcium, may cause sarcolemmal injury in both the calcium paradox and caffeine-induced myocardial injury. The present study was initiated to determine whether interventions which modulate caffeine-induced contracture will also correspondingly alter cellular injury. The effects of caffeine dose, procaine, extended calcium-free perfusion, elevated potassium, temperature, and increasing intracellular sodium on caffeine-induced contracture were examined in Langendorff-perfused adult rat hearts. Caffeine-induced contracture at 22 C increased over a dose range of 5-40 mM caffeine. Procaine, which inhibits caffeine-induced calcium release at doses between 5 and 20 mM, progressively reduced contracture caused by addition of 20 mM caffeine at 22 C. Hearts perfused with calcium-free solution containing 16 mM K+ showed a reduction in caffeine-induced contracture. Extended calcium-free perfusion (20 minutes) at temperatures from 18 to 37 C resulted in a progressive reduction of caffeine-induced contracture. Each of these interventions was also found to inhibit caffeine-induced injury at 37 C. Low temperature was found to have complex effects. Hypothermia enhanced caffeine contractures but also protected hearts from cell separations and CK release. Increasing intracellular sodium was found to enhance caffeine-induced contracture at 37 C. There was a direct correlation between measured intracellular sodium levels and the magnitude and duration of caffeine-induced contracture. These results demonstrate a direct correlation between the magnitude of contracture and myocardial injury in calcium

  8. A Randomized, Two-Way Crossover Study to Evaluate the Pharmacokinetics of Caffeine Delivered Using Caffeinated Chewing Gum Versus a Marketed Caffeinated Beverage in Healthy Adult Volunteers.

    PubMed

    Sadek, Paul; Pan, Xiao; Shepherd, Phil; Malandain, Elise; Carney, John; Coleman, Hugh

    2017-12-01

    Background: This study was conducted to compare the pharmacokinetics of caffeine delivered using caffeinated chewing gum to that delivered using a marketed caffeinated beverage (instant coffee) in 16 healthy adult volunteers. Materials and Methods: This was a controlled open-label, randomized, two-period crossover study. Caffeinated chewing gum and a serving of instant coffee, each containing ∼50 mg caffeine, were administered with blood samples collected before and up to 24 hours after administration starts. Plasma caffeine levels were analyzed using validated liquid chromatography coupled with tandem mass spectrometry methodology. Results: There were no statistical differences between the two caffeine products in t max ( p  = 0.3308) and k a ( p  = 0.3894). Although formulated at ∼50 mg caffeine each, mean dose released from chewing gum was ∼18% less than beverage. Dose-normalized area under the concentration-time curve (AUC) 0-t , AUC 0-∞ , and C max was similar between products. Although the criteria were not set a priori and the study was not powered for concluding bioequivalence, the 90% confidence intervals fell within the bioequivalence limit of 80% to 125%. Conclusions: Existing scientific literature on caffeine, based mostly on data from caffeinated beverages, can be leveraged to support the safety of caffeine delivered by chewing gum and current maximum safe caffeine dose advice should be applicable irrespective of delivery method.

  9. Cognitive and psychomotor performance, mood, and pressor effects of caffeine after 4, 6 and 8 h caffeine abstinence.

    PubMed

    Heatherley, Susan V; Hayward, Robert C; Seers, Helen E; Rogers, Peter J

    2005-04-01

    Many studies have found that caffeine consumed after overnight caffeine abstinence improves cognitive performance and mood. Much less is known, however, about the effects of caffeine after shorter periods of caffeine abstinence. The aim of this study was to measure the effects on psychomotor and cognitive performance, mood, hand steadiness, blood pressure and heart rate of caffeine administration after periods of 4, 6, and 8 h of caffeine abstinence. Participants (n = 49, 27 female) were moderate to moderate-high caffeine consumers (mean daily intake 370 mg/day). Following overnight caffeine abstinence, a 'pre-dose' of caffeine (1.2 mg/kg) was administered at 9 A.M, 11 A.M or 1 P.M. The participants started a baseline battery of measurements at 4 P.M.: before receiving caffeine (1.2 mg/kg) or placebo at 5 P.M.: They then performed the battery of tests again, starting at 5:30 P.M. This was a double-blind, placebo-controlled, randomised study. Performance and mood measurements confirmed a psychostimulant action of caffeine (versus placebo), but only after 8 h of caffeine abstinence. Caffeine also increased blood pressure after 8-h abstinence, whereas hand steadiness was decreased and perception of task demand was increased by caffeine after 4 h, but not after 6- and 8-h abstinence. A second cup-of-coffee equivalent dose of caffeine only reliably affected cognitive performance and mood after an 8-h interval between doses, but not after shorter intervals (when caffeine had some adverse effects). These results show that, apart from caffeine consumption soon after waking, the daily pattern of caffeine intake of many typical caffeine consumers is not well explained by the short-term psychostimulant effects of caffeine.

  10. Effects of low doses of caffeine on cognitive performance, mood and thirst in low and higher caffeine consumers.

    PubMed

    Smit, H J; Rogers, P J

    2000-10-01

    Caffeine is present in many widely consumed drinks and some foods. In the fairly extensive literature on the psychostimulant effects of caffeine, there are few dose-response studies and even fewer studies of the effects of doses of caffeine lower than 50 mg (the range of the amounts of caffeine contained in, for example, a typical serving of tea or cola). This study measured the effects of 0, 12.5, 25, 50 and 100 mg caffeine on cognitive performance, mood and thirst in adults with low and moderate to high habitual caffeine intakes. This was a double-blind, within-subjects study. Following overnight caffeine abstinence, participants (n=23) completed a test battery once before and three times after placebo or caffeine administration. The test battery consisted of two performance tests, a long duration simple reaction time task and a rapid visual information processing task, and a mood questionnaire (including also an item on thirst). Effects on performance and mood confirmed a psychostimulant action of caffeine. All doses of caffeine significantly affected cognitive performance, and the dose-response relationships for these effects were rather flat. The effects on performance were more marked in individuals with a higher level of habitual caffeine intake, whereas caffeine increased thirst only in low caffeine consumers. After overnight caffeine abstinence, caffeine can significantly affect cognitive performance, mood and thirst at doses within and even lower than the range of amounts of caffeine contained in a single serving of popular caffeine-containing drinks. Regular caffeine consumers appear to show substantial tolerance to the thirst-increasing but not to the performance and mood effects of caffeine.

  11. Caffeine and psychiatric symptoms: a review.

    PubMed

    Broderick, Pamela; Benjamin, Ashley B

    2004-12-01

    Caffeine is a widely used psychoactive substance that has the potential to contribute to many psychiatric symptoms. This review article aims to address the specific research studies and case reports that relate caffeine to psychiatric symptoms. Caffeine can cause anxiety symptoms in normal individuals, especially in vulnerable patients, like those with pre-existing anxiety disorders. Caffeine use is also associated with symptoms of depression due to either a self-medication theory, or a theory that caffeine itself causes changes in mood. Psychosis can be induced in normal individuals ingesting caffeine at toxic doses, and psychotic symptoms can also be worsened in schizophrenic patients using caffeine. Sleep and symptoms of ADHD may be altered by caffeine as well. Prevention of caffeine-induced psychiatric symptoms is possible by recognizing, educating, and treating patients using a tapering approach.

  12. Caffeine in the milk prevents respiratory disorders caused by in utero caffeine exposure in rats.

    PubMed

    Bodineau, Laurence; Saadani-Makki, Fadoua; Jullien, Hugues; Frugière, Alain

    2006-01-25

    Consequences of postnatal caffeine exposure by the milk on ponto-medullary respiratory disturbances observed following an in utero caffeine exposure were analysed. Ponto-medullary-spinal cord preparations from newborn rats exposed to caffeine during gestation but not after the birth display an increase in respiratory frequency and an exaggeration of the hypoxic respiratory depression compared to not treated preparations. These data suggest that tachypneic and apneic episodes encountered in human newborns whose mother consumed caffeine during pregnancy are due in large part to central effect of caffeine at the ponto-medullary level. Both baseline respiratory frequency increase and emphasis of hypoxic respiratory depression are not encountered if rat dams consumed caffeine during nursing. Our hypothesis is that newborn rats exposed to caffeine during gestation but not after the birth would be in withdrawal situation whereas, when caffeine is present in drinking fluid of lactating dams, it goes down the milk and is able to prevent ponto-medullary respiratory disturbances.

  13. Effect of caffeine contained in a cup of coffee on microvascular function in healthy subjects.

    PubMed

    Noguchi, Katsuhiko; Matsuzaki, Toshihiro; Sakanashi, Mayuko; Hamadate, Naobumi; Uchida, Taro; Kina-Tanada, Mika; Kubota, Haruaki; Nakasone, Junko; Sakanashi, Matao; Ueda, Shinichiro; Masuzaki, Hiroaki; Ishiuchi, Shogo; Ohya, Yusuke; Tsutsui, Masato

    2015-02-01

    Recent epidemiological studies have demonstrated that coffee drinking is associated with reduced mortality of cardiovascular disease. However, its precise mechanisms remain to be clarified. In this study, we examined whether single ingestion of caffeine contained in a cup of coffee improves microvascular function in healthy subjects. A double-blind, placebo-controlled, crossover study was performed in 27 healthy volunteers. A cup of either caffeinated or decaffeinated coffee was drunk by the subjects, and reactive hyperemia of finger blood flow was assessed by laser Doppler flowmetry. In an interval of more than 2 days, the same experimental protocol was repeated with another coffee in a crossover manner. Caffeinated coffee intake slightly but significantly elevated blood pressure and decreased finger blood flow as compared with decaffeinated coffee intake. There was no significant difference in heart rate between caffeinated and decaffeinated coffee intake. Importantly, caffeinated coffee intake significantly enhanced post-occlusive reactive hyperemia of finger blood flow, an index of microvascular endothelial function, compared with decaffeinated coffee intake. These results provide the first evidence that caffeine contained in a cup of coffee enhances microvascular function in healthy individuals. Copyright © 2015 Japanese Pharmacological Society. Production and hosting by Elsevier B.V. All rights reserved.

  14. Prenatal caffeine ingestion induces transgenerational neuroendocrine metabolic programming alteration in second generation rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Hanwen; Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071; Deng, Zixin

    Our previous studies have demonstrated that prenatal caffeine ingestion induces an increased susceptibility to metabolic syndrome with alterations of glucose and lipid metabolic phenotypes in adult first generation (F1) of intrauterine growth retardation (IUGR) rats, and the underlying mechanism is originated from a hypothalamic–pituitary–adrenal (HPA) axis-associated neuroendocrine metabolic programming alteration in utero. This study aims to investigate the transgenerational effects of this programming alteration in adult second generation (F2). Pregnant Wistar rats were administered with caffeine (120 mg/kg·d) from gestational day 11 until delivery. Four groups in F2 were set according to the cross-mating between control and caffeine-induced IUGR rats.more » F2 were subjected to a fortnight ice water swimming stimulus on postnatal month 4, and blood samples were collected before and after stress. Results showed that the majority of the activities of HPA axis and phenotypes of glucose and lipid metabolism were altered in F2. Particularly, comparing with the control group, caffeine groups had an enhanced corticosterone levels after chronic stress. Compared with before stress, the serum glucose levels were increased in some groups whereas the triglyceride levels were decreased. Furthermore, total cholesterol gain rates were enhanced but the high-density lipoprotein-cholesterol gain rates were decreased in most caffeine groups after stress. These transgenerational effects were characterized partially with gender and parental differences. Taken together, these results indicate that the reproductive and developmental toxicities and the neuroendocrine metabolic programming mechanism by prenatal caffeine ingestion have transgenerational effects in rats, which may help to explain the susceptibility to metabolic syndrome and associated diseases in F2. - Highlights: • Caffeine-induced neuroendocrine metabolic programming of HPA has hereditary effect. • Caffeine

  15. Development of a biosensor for caffeine.

    PubMed

    Babu, V R Sarath; Patra, S; Karanth, N G; Kumar, M A; Thakur, M S

    2007-01-23

    We have utilized a microbe, which can degrade caffeine to develop an Amperometric biosensor for determination of caffeine in solutions. Whole cells of Pseudomonas alcaligenes MTCC 5264 having the capability to degrade caffeine were immobilized on a cellophane membrane with a molecular weight cut off (MWCO) of 3000-6000 by covalent crosslinking method using glutaraledhyde as the bifunctional crosslinking agent and gelatin as the protein based stabilizing agent (PBSA). The biosensor system was able to detect caffeine in solution over a concentration range of 0.1 to 1 mg mL(-1). With read-times as short as 3 min, this caffeine biosensor acts as a rapid analysis system for caffeine in solutions. Interestingly, successful isolation and immobilization of caffeine degrading bacteria for the analysis of caffeine described here was enabled by a novel selection strategy that incorporated isolation of caffeine degrading bacteria capable of utilizing caffeine as the sole source of carbon and nitrogen from soils and induction of caffeine degrading capacity in bacteria for the development of the biosensor. This biosensor is highly specific for caffeine and response to interfering compounds such as theophylline, theobromine, paraxanthine, other methyl xanthines and sugars was found to be negligible. Although a few biosensing methods for caffeine are reported, they have limitations in application for commercial samples. The development and application of new caffeine detection methods remains an active area of investigation, particularly in food and clinical chemistry. The optimum pH and temperature of measurement were 6.8 and 30+/-2 degrees C, respectively. Interference in analysis of caffeine due to different substrates was observed but was not considerable. Caffeine content of commercial samples of instant tea and coffee was analyzed by the biosensor and the results compared well with HPLC analysis.

  16. Evaluating Dependence Criteria for Caffeine.

    PubMed

    Striley, Catherine L W; Griffiths, Roland R; Cottler, Linda B

    2011-12-01

    Background: Although caffeine is the most widely used mood-altering drug in the world, few studies have operationalized and characterized Diagnostic and Statistical Manual IV (DSM-IV) substance dependence criteria applied to caffeine. Methods: As a part of a nosological study of substance use disorders funded by the National Institute on Drug Abuse, we assessed caffeine use and dependence symptoms among high school and college students, drug treatment patients, and pain clinic patients who reported caffeine use in the last 7 days and also reported use of alcohol, nicotine, or illicit drugs within the past year ( n =167). Results: Thirty-five percent met the criteria for dependence when all seven of the adopted DSM dependence criteria were used. Rates of endorsement of several of the most applicable diagnostic criteria were as follows: 26% withdrawal, 23% desire to cut down or control use, and 44% continued use despite harm. In addition, 34% endorsed craving, 26% said they needed caffeine to function, and 10% indicated that they talked to a physician or counselor about problems experienced with caffeine. There was a trend towards increased caffeine dependence among those dependent on nicotine or alcohol. Within a subgroup that had used caffeine, alcohol, and nicotine in the past year, 28% fulfilled criteria for caffeine dependence compared to 50% for alcohol and 80% for nicotine. Conclusion: The present study adds to a growing literature suggesting the reliability, validity, and clinical utility of the caffeine dependence diagnosis. Recognition of caffeine dependence in the DSM-V may be clinically useful.

  17. (-)Ephedrine and caffeine mutually potentiate one another's amphetamine-like stimulus effects.

    PubMed

    Young, R; Gabryszuk, M; Glennon, R A

    1998-10-01

    Using rats trained to discriminate 1 mg/kg of (+)amphetamine (ED50 = 0.4 mg/kg) from saline vehicle in a two-lever drug discrimination procedure, it was shown that (-)ephedrine (ED50 = 4.5 mg/kg), but not (+)ephedrine, substitutes for the (+)AMPH stimulus. It was also shown that caffeine (ED50 = 12.9 mg/kg) can substitute for (+)amphetamine in a dose-related fashion. Doses of (-)ephedrine and caffeine, which produced < or = 1% drug-appropriate responding when administered alone, were able to enhance each other's stimulus effects when administered in combination such that there was a twofold leftward shift in their respective dose-response curves. Furthermore, stimulus generalization occurred when a dose of caffeine that produced saline-appropriate responding when administered alone was administered in combination with (+)ephedrine. It would appear that low doses of (-)ephedrine and caffeine may mutually potentiate one another's stimulus effects in (+)AMPH-trained rats, and that a combination of caffeine and (+)ephedrine result in altered stimulus character when compared to comparable doses of either agent administered alone.

  18. Administration of Caffeine in Alternate Forms.

    PubMed

    Wickham, Kate A; Spriet, Lawrence L

    2018-03-01

    There has been recent interest in the ergogenic effects of caffeine delivered in low doses (~ 200 mg or ~ 3 mg/kg body mass) and administered in forms other than capsules, coffee and sports drinks, including chewing gum, bars, gels, mouth rinses, energy drinks and aerosols. Caffeinated chewing gum is absorbed quicker through the buccal mucosa compared with capsule delivery and absorption in the gut, although total caffeine absorption over time is not different. Rapid absorption may be important in many sporting situations. Caffeinated chewing gum improved endurance cycling performance, and there is limited evidence that repeated sprint cycling and power production may also be improved. Mouth rinsing with caffeine may stimulate nerves with direct links to the brain, in addition to caffeine absorption in the mouth. However, caffeine mouth rinsing has not been shown to have significant effects on cognitive performance. Delivering caffeine with mouth rinsing improved short-duration, high-intensity, repeated sprinting in normal and depleted glycogen states, while the majority of the literature indicates no ergogenic effect on aerobic exercise performance, and resistance exercise has not been adequately studied. Studies with caffeinated energy drinks have generally not examined the individual effects of caffeine on performance, making conclusions about this form of caffeine delivery impossible. Caffeinated aerosol mouth and nasal sprays may stimulate nerves with direct brain connections and enter the blood via mucosal and pulmonary absorption, although little support exists for caffeine delivered in this manner. Overall, more research is needed examining alternate forms of caffeine delivery including direct measures of brain activation and entry of caffeine into the blood, as well as more studies examining trained athletes and female subjects.

  19. Spectrophotometric Analysis of Caffeine

    PubMed Central

    Ahmad Bhawani, Showkat; Fong, Sim Siong; Mohamad Ibrahim, Mohamad Nasir

    2015-01-01

    The nature of caffeine reveals that it is a bitter white crystalline alkaloid. It is a common ingredient in a variety of drinks (soft and energy drinks) and is also used in combination with various medicines. In order to maintain the optimum level of caffeine, various spectrophotometric methods have been developed. The monitoring of caffeine is very important aspect because of its consumption in higher doses that can lead to various physiological disorders. This paper incorporates various spectrophotometric methods used in the analysis of caffeine in various environmental samples such as pharmaceuticals, soft and energy drinks, tea, and coffee. A range of spectrophotometric methodologies including chemometric techniques and derivatization of spectra have been used to analyse the caffeine. PMID:26604926

  20. The effect of caffeine ingestion on mood state and bench press performance to failure.

    PubMed

    Duncan, Michael J; Oxford, Samuel W

    2011-01-01

    Research has suggested that caffeine enhances aerobic performance. The evidence for high-intensity, short-term exercise, particularly resistance exercise is mixed and has not fully examined the psychological changes that occur after this mode of exercise with caffeine ingestion. This study examined the effect of caffeine (5 mg · kg(-1)) vs. placebo on bench press exercise to failure and the mood state response pre to postexercise. Thirteen moderately trained men (22.7 ± 6.0 years) completed 2 laboratory visits, after determination of 1 repetition maximum (1RM) on the bench press, where they performed bench press repetitions to failure at a load of 60% 1RM. Mood state was assessed 60 minutes pre and immediately post-substance ingestion. Borg's rating of perceived exertion (RPE) and peak blood lactate (PBla) were assessed after each test, and peak heart rate (PHR) was determined using heart rate telemetry. Participants completed significantly more repetitions to failure (p = 0.031) and lifted significantly greater weight (p = 0.027) in the caffeine condition compared to the placebo condition. The PHR (p = 0.0001) and PBla (p = 0.002) were higher after caffeine ingestion. The RPE was not different across conditions (p = 0.082). Mood state scores for vigor were greater (p = 0.001) and fatigue scores lower (p = 0.04) in the presence of caffeine. Fatigue scores were greater postexercise (p = 0.001) compared to scores pre exercise across conditions. Caffeine ingestion enhances performance in short-term, resistance exercise to failure and may favorably change the mood state response to exercise compared to a placebo.

  1. Effects of dietary caffeine on EEG, performance and mood when rested and sleep restricted.

    PubMed

    Keane, Michael A; James, Jack E

    2008-12-01

    Until recently, little account had been taken of the confounding effects of caffeine withdrawal and withdrawal reversal when examining the net effects of dietary caffeine. By including a manipulation involving sleep restriction, the present study aimed to extend recent findings from research in which caffeine withdrawal and withdrawal reversal were controlled. The main aims of the study were to examine the net effects of caffeine, as well as its potential restorative effects following sleep restriction, on EEG, performance and mood. A randomised cross-over design was used in which 15 participants alternated weekly between ingesting placebo and caffeine (1.75 mg/kg) three times daily for four consecutive weeks following either usual sleep or sleep restriction. EEG activity was measured at 32 sites during eyes closed, eyes open and performance of a vigilance task. Modest effects of caffeine were found in the delta and beta bandwidths, but no main effects of caffeine were observed in the theta or alpha bandwidths. Overall, the effects of caffeine on EEG activity were relatively few, weak and inconsistent, and no evidence was found of net restorative effects of caffeine for any outcome variables. The findings do not support the use of caffeine as a means for enhancing human function or as an antidote to the negative effects of sleep loss.

  2. Multi-ingredient, caffeine-containing dietary supplements: history, safety, and efficacy.

    PubMed

    Gurley, Bill J; Steelman, Susan C; Thomas, Sheila L

    2015-02-01

    Our objective was to review the history, safety, and efficacy of caffeine-containing dietary supplements in the United States and Canada. PubMed and Web of Science databases (1980-2014) were searched for articles related to the pharmacology, toxicology, and efficacy of caffeine-containing dietary supplements with an emphasis on Ephedra-containing supplements, Ephedra-free supplements, and energy drinks or shots. Among the first and most successful dietary supplements to be marketed in the United States were those containing Ephedra—combinations of ephedrine alkaloids, caffeine, and other phytochemicals. A decade after their inception, serious tolerability concerns prompted removal of Ephedra supplements from the US and Canadian markets. Ephedra-free products, however, quickly filled this void. Ephedra-free supplements typically contain multiple caffeine sources in conjunction with other botanical extracts whose purposes can often be puzzling and their pharmacologic properties difficult to predict. Ingestion of these products in the form of tablets, capsules, or other solid dosage forms as weight loss aids, exercise performance enhancers, or energy boosters have once again brought their tolerability and efficacy into question. In addition to Ephedra-free solid dosage forms, caffeine-containing energy drinks have gained a foothold in the world market along with concerns about their tolerability. This review addresses some of the pharmacologic and pharmaceutical issues that distinguish caffeine-containing dietary supplement formulations from traditional caffeine-containing beverages. Such distinctions may account for the increasing tolerability concerns affiliated with these products. Copyright © 2015 Elsevier HS Journals, Inc. All rights reserved.

  3. Acute caffeine administration effect on brain activation patterns in mild cognitive impairment.

    PubMed

    Haller, Sven; Montandon, Marie-Louise; Rodriguez, Cristelle; Moser, Dominik; Toma, Simona; Hofmeister, Jeremy; Sinanaj, Indrit; Lovblad, Karl-Olof; Giannakopoulos, Panteleimon

    2014-01-01

    Previous studies showed that acute caffeine administration enhances task-related brain activation in elderly individuals with preserved cognition. To explore the effects of this widely used agent on cognition and brain activation in early phases of cognitive decline, we performed a double-blinded, placebo-controlled functional magnetic resonance imaging (fMRI) study during an n-back working memory task in 17 individuals with mild cognitive impairment (MCI) compared to 17 age-matched healthy controls (HC). All individuals were regular caffeine consumers with an overnight abstinence and given 200 mg caffeine versus placebo tablets 30 minutes before testing. Analyses included assessment of task-related activation (general linear model), functional connectivity (tensorial-independent component analysis, TICA), baseline perfusion (arterial spin labeling, ASL), grey matter density (voxel-based morphometry, VBM), and white matter microstructure (tract-based spatial statistics, TBSS). Acute caffeine administration induced a focal activation of the prefrontal areas in HC with a more diffuse and posteromedial activation pattern in MCI individuals. In MCI, TICA documented a significant caffeine-related enhancement in the prefrontal cortex, supplementary motor area, ventral premotor and parietal cortex as well as the basal ganglia and cerebellum. The absence of significant group differences in baseline ASL perfusion patterns supports a neuronal rather than a purely vascular origin of these differences. The VBM and TBSS analyses excluded potentially confounding differences in grey matter density and white matter microstructure between MCI and HC. The present findings suggest a posterior displacement of working memory-related brain activation patterns after caffeine administration in MCI that may represent a compensatory mechanism to counterbalance a frontal lobe dysfunction.

  4. Caffeine levels in beverages from Argentina's market: application to caffeine dietary intake assessment.

    PubMed

    Olmos, V; Bardoni, N; Ridolfi, A S; Villaamil Lepori, E C

    2009-03-01

    The caffeine content of different beverages from Argentina's market was measured. Several brands of coffees, teas, mates, chocolate milks, soft and energy drinks were analysed by high-performance liquid chromatography (HPLC) with ultraviolet detection. The highest concentration level was found in short coffee (1.38 mg ml(-1)) and the highest amount per serving was found in instant coffee (95 mg per serving). A consumption study was also carried out among 471 people from 2 to 93 years of age to evaluate caffeine total dietary intake by age and to identify the sources of caffeine intake. The mean caffeine intake among adults was 288 mg day(-1) and mate was the main contributor to that intake. The mean caffeine intake among children of 10 years of age and under was 35 mg day(-1) and soft drinks were the major contributors to that intake. Children between 11 and 15 years old and teenagers (between 16 and 20 years) had caffeine mean intakes of 120 and 240 mg day(-1), respectively, and mate was the major contributor to those intakes. Drinking mate is a deep-rooted habit among Argentine people and it might be the reason for their elevated caffeine mean daily intake.

  5. Effect of caffeine on induction of endogenous type C virus in mouse cells in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niwa, O.; Sugahara, T.

    1981-08-01

    The effect of caffeine on the expression of murine endogenous virus in mouse cells induced by radiation and chemicals was studied. Postirradiation treatment of K-BALB cells with caffeine enhanced cell killing as well as the induction of xenotropic virus after ultraviolet light irradiation. The degree of enhancement for the virus induction was comparable to that for cell killing. On the other hand, colony-forming ability and the expression of xenotropic virus of K-BALB cells after X-irradiation were unaffected by caffeine. These data suggest a linear relationship between the degree of endogenous virus expression and the amount of lethal damages after irradiation.more » For induction by halogenated pyrimidines, a 24-hr incubation of AKR2B cells with caffeine after 5-iodo-2'-deoxyuridine treatment resulted in marked suppression of the expression of ecotropic virus. On the contrary, in K-BALB cells, caffeine exerted only a small effect on 5-iodo-2'-deoxyuridine-induced expression of ecotropic and xenotropic viruses. These results indicate that, although using the same inducing agent, the pathway of endogenous virus induction may be different for AKR2B cells and for K-BALB cells.« less

  6. Clinical importance of caffeine dependence and abuse.

    PubMed

    Ogawa, Naoshi; Ueki, Hirofumi

    2007-06-01

    Caffeine is the most widely consumed psychoactive substance and is a legal stimulant that is readily available to children. Caffeine has occasionally been considered a drug of abuse and the potential for dependence on caffeine has been debated. Presently, due to a paucity of clinical evidence on caffeine dependence or abuse, no such diagnosis is included in the Diagnostic and Statistical Manual of Mental Disorder-fourth edition. The authors present two cases of abuse or dependence on the caffeine contained in 'eutrophic' (energy/nutritional) beverages or caffeine preparations, followed by a review of clinical studies demonstrating evidence that some people can manifest a clinical syndrome of caffeine dependence or abuse. The cases suggest that caffeine can produce a clinical dependence syndrome similar to those produced by other psychoactive substances and has a potential for abuse. In a recent study using a structured interview and the Diagnostic and Statistical Manual of Mental Disorder-fourth edition criteria for substance dependence and abuse, a subset of the general population was found to demonstrate caffeine dependence or caffeine abuse. Therefore, the authors propose that companies or businesses manufacturing or marketing caffeine or products containing caffeine must meet the following guidelines: (i) clearly indicate the caffeine content of products containing comparatively higher quantities of caffeine; (ii) warn that such products should be avoided by infants and children wherever possible, and inform adult consumers about the precise quantity of caffeine that is considered safe for consumption; and (iii) clearly state that consuming large quantities of caffeine and the long-term use of caffeine carry health risks.

  7. Sleep-Disordered Breathing and Caffeine Consumption

    PubMed Central

    Aurora, R. Nisha; Crainiceanu, Ciprian; Caffo, Brian

    2012-01-01

    Background: Sleepiness is one of the most burdensome symptoms of sleep-disordered breathing (SDB). While caffeine is frequently used to avert sleepiness, the association between SDB and caffeine use has not been thoroughly explored. The current study examined whether SDB is associated with caffeine consumption and if factors such as sex, age, and daytime sleepiness explain or modify the association. Methods: Data from the Sleep Heart Health Study, a community-based study on the consequences of SDB, were used to characterize the association between SDB and caffeine intake. SDB was assessed with full-montage polysomnography. Caffeine use was quantified as the number of cans of soda or the cups of coffee or tea consumed daily. The Epworth Sleepiness Scale was used to assess daytime sleepiness. Multivariable negative binomial regression models were used to characterize the independent association between SDB and caffeine use. Results: Caffeinated soda, but not tea or coffee, intake was independently associated with SDB severity. Compared with participants without SDB, the relative ratios for caffeinated soda consumption in women with mild, moderate, and severe SDB were 1.20 (CI, 1.03-1.41), 1.46 (CI, 1.14-1.87), and 1.73 (CI, 1.23-2.42), respectively. For men, an association was only noted with severe SDB and caffeinated soda use. Age did not modify the SDB-caffeine association, and sleepiness could not explain the observed associations. Conclusions: SDB is independently associated with caffeinated soda use in the general community. Identifying excessive caffeine used in SDB has potential significance given the cardiovascular effects of caffeine and untreated SDB. PMID:22459776

  8. Caffeine content of beverages as consumed.

    PubMed Central

    Gilbert, R. M.; Marshman, J. A.; Schwieder, M.; Berg, R.

    1976-01-01

    Quantitative analysis of beverages prepared at home by staff of the Addiction Research Foundation revealed a lower and much more variable caffeine content of both tea and coffee than had been reported in earlier studies, most of which were based on analysis of laboratory-prepared beverages. Median caffeine concentration of 37 home-prepared samples of tea was 27 mg per cup (range, 8 to 91 mg); for 46 coffee samples the median concentration was 74 mg per cup (range, 29 to 176 mg). If tea and coffee as drunk contain less caffeine than generally supposed, the potency of caffeine may be greater than commonly realized, as may the relative caffeine content of certain commercial preparations, including chocolate and colas. The substantial variation in caffeine content emphasizes the need to establish actual caffeine intake in clinical, epidemiologic and experimental investigations of caffeine effects. PMID:1032351

  9. Altered expression of the caffeine synthase gene in a naturally caffeine-free mutant of Coffea arabica.

    PubMed

    Maluf, Mirian Perez; da Silva, Carla Cristina; de Oliveira, Michelle de Paula Abreu; Tavares, Aline Gomes; Silvarolla, Maria Bernadete; Guerreiro, Oliveiro

    2009-10-01

    In this work, we studied the biosynthesis of caffeine by examining the expression of genes involved in this biosynthetic pathway in coffee fruits containing normal or low levels of this substance. The amplification of gene-specific transcripts during fruit development revealed that low-caffeine fruits had a lower expression of the theobromine synthase and caffeine synthase genes and also contained an extra transcript of the caffeine synthase gene. This extra transcript contained only part of exon 1 and all of exon 3. The sequence of the mutant caffeine synthase gene revealed the substitution of isoleucine for valine in the enzyme active site that probably interfered with enzymatic activity. These findings indicate that the absence of caffeine in these mutants probably resulted from a combination of transcriptional regulation and the presence of mutations in the caffeine synthase amino acid sequence.

  10. Altered expression of the caffeine synthase gene in a naturally caffeine-free mutant of Coffea arabica

    PubMed Central

    2009-01-01

    In this work, we studied the biosynthesis of caffeine by examining the expression of genes involved in this biosynthetic pathway in coffee fruits containing normal or low levels of this substance. The amplification of gene-specific transcripts during fruit development revealed that low-caffeine fruits had a lower expression of the theobromine synthase and caffeine synthase genes and also contained an extra transcript of the caffeine synthase gene. This extra transcript contained only part of exon 1 and all of exon 3. The sequence of the mutant caffeine synthase gene revealed the substitution of isoleucine for valine in the enzyme active site that probably interfered with enzymatic activity. These findings indicate that the absence of caffeine in these mutants probably resulted from a combination of transcriptional regulation and the presence of mutations in the caffeine synthase amino acid sequence. PMID:21637458

  11. [Combined effect of cisplatin and caffeine on murine B16-BL6 melanoma cells].

    PubMed

    Yasutake, H; Tsuchiya, H; Sugihara, M; Tomita, K; Ueda, Y; Tanaka, M; Sasaki, T

    1989-05-01

    Combined effect of cisplatin and caffeine on murine B16-BL6 melanoma cells was studied. Synergistic inhibition of the cell growth was observed when caffeine (2 mM) was added continuously after one hour exposure of cisplatin. On the other hand, when caffeine was added before one hour exposure of cisplatin or one hour simultaneous exposure with cisplatin, synergistic effect was not shown. In the analysis of DNA histogram obtained from flow cytometry, S and G2/M accumulation was observed by the treatment of cisplatin and that accumulation was reduced by the combination of cisplatin and caffeine. From this findings, it was suggested that caffeine would inhibit DNA repair process. Furthermore, according to morphological studies with hematoxylin-eosin stain and Fontana-Masson stain, the addition of caffeine alone resulted in mild swelling of melanoma cells and the decrease of nuclear-cytoplasmic ratio. The combination of cisplatin and caffeine caused marked swelling of melanoma cells and remarkable increase of dendrite-like processes. Melanogenesis was also enhanced by the addition of these two drugs. Many matured melanosomes, increases of mitochondria, Golgi's apparatus and endoplasmic reticula were observed by the use of electron microscope. These findings implied that the combination of cisplatin and caffeine induced a differentiation of murine melanoma cells.

  12. Altered brain serotonergic neurotransmission following caffeine withdrawal produces behavioral deficits in rats.

    PubMed

    Khaliq, Saima; Haider, Saida; Naqvi, Faizan; Perveen, Tahira; Saleem, Sadia; Haleem, Darakhshan Jabeen

    2012-01-01

    Caffeine administration has been shown to enhance performance and memory in rodents and humans while its withdrawal on the other hand produces neurobehavioral deficits which are thought to be mediated by alterations in monoamines neurotransmission. A role of decreased brain 5-HT (5-hydroxytryptamine, serotonin) levels has been implicated in impaired cognitive performance and depression. Memory functions of rats were assessed by Water Maze (WM) and immobility time by Forced Swim Test (FST). The results of this study showed that repeated caffeine administration for 6 days at 30 mg/kg dose significantly increases brain 5-HT (p<0.05) and 5-HIAA (p<0.05) levels and its withdrawal significantly (p<0.05) decreased brain 5-HT levels. A significant decrease in latency time was exhibited by rats in the WM repeatedly injected with caffeine. Withdrawal of caffeine however produced memory deficits and significantly increases the immobility time of rats in FST. The results of this study are linked with caffeine induced alterations in serotonergic neurotransmission and its role in memory and depression.

  13. Caffeine Induces the Stress Response and Up-Regulates Heat Shock Proteins in Caenorhabditis elegans.

    PubMed

    Al-Amin, Mohammad; Kawasaki, Ichiro; Gong, Joomi; Shim, Yhong-Hee

    2016-02-01

    Caffeine has both positive and negative effects on physiological functions in a dose-dependent manner. C. elegans has been used as an animal model to investigate the effects of caffeine on development. Caffeine treatment at a high dose (30 mM) showed detrimental effects and caused early larval arrest. We performed a comparative proteomic analysis to investigate the mode of action of high-dose caffeine treatment in C. elegans and found that the stress response proteins, heat shock protein (HSP)-4 (endoplasmic reticulum [ER] chaperone), HSP-6 (mitochondrial chaperone), and HSP-16 (cytosolic chaperone), were induced and their expression was regulated at the transcriptional level. These findings suggest that high-dose caffeine intake causes a strong stress response and activates all three stress-response pathways in the worms, including the ER-, mitochondrial-, and cytosolic pathways. RNA interference of each hsp gene or in triple combination retarded growth. In addition, caffeine treatment stimulated a food-avoidance behavior (aversion phenotype), which was enhanced by RNAi depletion of the hsp-4 gene. Therefore, up-regulation of hsp genes after caffeine treatment appeared to be the major responses to alleviate stress and protect against developmental arrest.

  14. Effects of caffeine on alcohol-related changes in behavioural control and perceived intoxication in light caffeine consumers.

    PubMed

    Attwood, Angela S; Rogers, Peter J; Ataya, Alia F; Adams, Sally; Munafò, Marcus R

    2012-06-01

    Caffeinated alcoholic beverages have been associated with increased risk of alcohol-related harms. However, few studies have examined these combined effects on behavioural control, which is believed to underlie many of the negative effects of alcohol consumption. In addition, studies have often omitted subjective measures, and none have directly assessed the role of caffeine consumer history. To examine the combined effects of alcohol and caffeine on measures of behavioural control and perceived intoxication in abstinent, light caffeine consumers. Participants (n = 28; 50% male) attended four sessions at which they consumed one of the following beverages in a randomised order: placebo, alcohol alone (0.6 g/kg), caffeine alone (2.0 mg/kg), and alcohol/caffeine. They completed measures of mood, intoxication, anxiety and alcohol craving before and after a task battery comprising measures of behavioural control and reaction time performance. Caffeine attenuated alcohol-related performance deficits on stop-signal accuracy, had no effect on go-no-go performance deficits, and worsened accuracy on the Stroop task. Caffeine did not influence absolute changes in perceived intoxication but there was suggestion that caffeine may have changed the nature of intoxication with increases in stimulation. Caffeine appears to have mixed effects on alcohol intoxication that are task-dependent. We found increased stimulation in the alcohol/caffeine condition, supporting the contention that caffeinated alcoholic beverages enable an individual to drink for longer. Future research should model real world drinking behaviour by examining how these effects change across multiple drink administrations.

  15. Caffeine withdrawal and high-intensity endurance cycling performance.

    PubMed

    Irwin, Christopher; Desbrow, Ben; Ellis, Aleisha; O'Keeffe, Brooke; Grant, Gary; Leveritt, Michael

    2011-03-01

    In this study, we investigated the impact of a controlled 4-day caffeine withdrawal period on the effect of an acute caffeine dose on endurance exercise performance. Twelve well-trained and familiarized male cyclists, who were caffeine consumers (from coffee and a range of other sources), were recruited for the study. A double-blind placebo-controlled cross-over design was employed, involving four experimental trials. Participants abstained from dietary caffeine sources for 4 days before the trials and ingested capsules (one in the morning and one in the afternoon) containing either placebo or caffeine (1.5 mg · kg(-1) body weight · day(-1)). On day 5, capsules containing placebo or caffeine (3 mg · kg(-1) body weight) were ingested 90 min before completing a time trial, equivalent to one hour of cycling at 75% peak sustainable power output. Hence the study was designed to incorporate placebo-placebo, placebo-caffeine, caffeine-placebo, and caffeine-caffeine conditions. Performance time was significantly improved after acute caffeine ingestion by 1:49 ± 1:41 min (3.0%, P = 0.021) following a withdrawal period (placebo-placebo vs. placebo-caffeine), and by 2:07 ± 1:28 min (3.6%, P = 0.002) following the non-withdrawal period (caffeine-placebo vs. caffeine-caffeine). No significant difference was detected between the two acute caffeine trials (placebo-caffeine vs. caffeine-caffeine). Average heart rate throughout exercise was significantly higher following acute caffeine administration compared with placebo. No differences were observed in ratings of perceived exertion between trials. A 3 mg · kg(-1) dose of caffeine significantly improves exercise performance irrespective of whether a 4-day withdrawal period is imposed on habitual caffeine users.

  16. Guarana Provides Additional Stimulation over Caffeine Alone in the Planarian Model

    PubMed Central

    Moustakas, Dimitrios; Mezzio, Michael; Rodriguez, Branden R.; Constable, Mic Andre; Mulligan, Margaret E.; Voura, Evelyn B.

    2015-01-01

    The stimulant effect of energy drinks is primarily attributed to the caffeine they contain. Many energy drinks also contain other ingredients that might enhance the tonic effects of these caffeinated beverages. One of these additives is guarana. Guarana is a climbing plant native to the Amazon whose seeds contain approximately four times the amount of caffeine found in coffee beans. The mix of other natural chemicals contained in guarana seeds is thought to heighten the stimulant effects of guarana over caffeine alone. Yet, despite the growing use of guarana as an additive in energy drinks, and a burgeoning market for it as a nutritional supplement, the science examining guarana and how it affects other dietary ingredients is lacking. To appreciate the stimulant effects of guarana and other natural products, a straightforward model to investigate their physiological properties is needed. The planarian provides such a system. The locomotor activity and convulsive response of planarians with substance exposure has been shown to provide an excellent system to measure the effects of drug stimulation, addiction and withdrawal. To gauge the stimulant effects of guarana we studied how it altered the locomotor activity of the planarian species Dugesia tigrina. We report evidence that guarana seeds provide additional stimulation over caffeine alone, and document the changes to this stimulation in the context of both caffeine and glucose. PMID:25880065

  17. Combined caffeine and carbohydrate ingestion: effects on nocturnal sleep and exercise performance in athletes.

    PubMed

    Miller, Ben; O'Connor, Helen; Orr, Rhonda; Ruell, Patricia; Cheng, Hoi Lun; Chow, Chin Moi

    2014-12-01

    In athletes, caffeine use is common although its effects on sleep have not been widely studied. This randomised, double-blind, placebo-controlled crossover trial investigated the effects of late-afternoon caffeine and carbohydrate-electrolyte (CEB) co-ingestion on cycling performance and nocturnal sleep. Six male cyclists/triathletes (age 27.5 ± 6.9 years) completed an afternoon training session (TS; cycling 80 min; 65% VO₂max) followed by a 5 kJ kg(-1) cycling time trial (TT). Caffeine (split dose 2 × 3 mg kg(-1)) or placebo was administered 1 h prior and 40 min into the TS. A 7.4% CEB (3 ml kg(-1) every 15 min) was administered during the TS, followed 30 min after by a standardised evening meal. Participants retired at their usual bedtime and indices of sleep duration and quality were monitored via polysomnography. mean ± SD. All participants performed better in the caffeine TT (caffeine 19.7 ± 3.3; placebo 20.5 ± 3.5 min; p = 0.006), while ratings of perceived exertion (caffeine 12.0 ± 0.6; placebo 12.9 ± 0.7; p = 0.004) and heart rate (caffeine 175 ± 6; placebo 167 ± 11 bpm; p = 0.085) were lower in the caffeine TS. Caffeine intake induced significant disruptions to a number of sleep indices including increased sleep onset latency (caffeine 51.1 ± 34.7; placebo 10.2 ± 4.2 min; p = 0.028) and decreased sleep efficiency (caffeine 76.1 ± 19.6; placebo 91.5 ± 4.2%; p = 0.028), rapid eye movement sleep (caffeine 62.1 ± 19.6; placebo 85.8 ± 24.7 min; p = 0.028) and total sleep time (caffeine 391 ± 97; placebo 464 ± 49 min; p = 0.028). This study supports a performance-enhancing effect of caffeine, although athletes (especially those using caffeine for late-afternoon/evening training and competition) should consider its deleterious effects on sleep.

  18. Effects of Smoking Cues on Caffeine Urges in Heavy Smokers and Caffeine Consumers with and without Schizophrenia

    PubMed Central

    Adolfo, Amy B.; AhnAllen, Christopher G.; Tidey, Jennifer W.

    2009-01-01

    Cigarette smoking and caffeine use are established and problematic drug-use behaviors in people with schizophrenia. Associative links between drugs of abuse may occur but the relationship between caffeine use and cigarette smoking has received little attention in schizophrenia. In this cross-cue reactivity laboratory study, we examined the effects of neutral and smoking cues on craving for caffeinated beverages in participants with schizophrenia or schizoaffective disorder (SS; n = 15) and non-psychiatric controls (CS; n = 18) all of whom were heavy smokers and daily caffeine users. Participants were tested under non-abstinent and 5-hour abstinent conditions. SS tended to report greater daily levels of caffeine use than CS. Although this difference was not significant, that may be due to the small sample sizes as the size of this effect was large. Daily caffeine intake was significantly correlated with daily smoking rate in SS but not CS. A significant interaction between group and cue type after controlling for caffeine intake indicated that exposure to smoking cues increased urge for caffeinated beverages in SS but not CS. These results indicate support for associative connections between cigarette smoking cues and craving for caffeine in smokers with schizophrenia. PMID:19006656

  19. Alcohol and Caffeine: The Perfect Storm

    PubMed Central

    O'Brien, Mary Claire

    2011-01-01

    Although it is widely believed that caffeine antagonizes the intoxicating effects of alcohol, the molecular mechanisms underlying their interaction are incompletely understood. It is known that both caffeine and alcohol alter adenosine neurotransmission, but the relationship is complex, and may be dose dependent. In this article, we review the available literature on combining caffeine and alcohol. Ethical constraints prohibit laboratory studies that would mimic the high levels of alcohol intoxication achieved by many young people in real-world settings, with or without the addition of caffeine. We propose a possible neurochemical mechanism for the increase in alcohol consumption and alcohol-related consequences that have been observed in persons who simultaneously consume caffeine. Caffeine is a nonselective adenosine receptor antagonist. During acute alcohol intake, caffeine antagonizes the “unwanted” effects of alcohol by blocking the adenosine A1 receptors that mediate alcohol's somnogenic and ataxic effects. The A1 receptor–mediated “unwanted” anxiogenic effects of caffeine may be ameliorated by alcohol-induced increase in the extracellular concentration of adenosine. Moreover, by means of interactions between adenosine A2A and dopamine D2 receptors, caffeine-mediated blockade of adenosine A2A receptors can potentiate the effects of alcohol-induced dopamine release. Chronic alcohol intake decreases adenosine tone. Caffeine may provide a “treatment” for the withdrawal effects of alcohol by blocking the effects of upregulated A1 receptors. Finally, blockade of A2A receptors by caffeine may contribute to the reinforcing effects of alcohol. PMID:24761263

  20. The Effects of Preexercise Caffeinated Coffee Ingestion on Endurance Performance: An Evidence-Based Review.

    PubMed

    Higgins, Simon; Straight, Chad R; Lewis, Richard D

    2016-06-01

    Endurance athletes commonly ingest caffeine as a means to enhance training intensity and competitive performance. A widely-used source of caffeine is coffee, however conflicting evidence exists regarding the efficacy of coffee in improving endurance performance. In this context, the aims of this evidence-based review were threefold: 1) to evaluate the effects of preexercise coffee on endurance performance, 2) to evaluate the effects of coffee on perceived exertion during endurance performance, and 3) to translate the research into usable information for athletes to make an informed decision regarding the intake of caffeine via coffee as a potential ergogenic aid. Searches of three major databases were performed using terms caffeine and coffee, or coffee-caffeine, and endurance, or aerobic. Included studies (n = 9) evaluated the effects of caffeinated coffee on human subjects, provided the caffeine dose administered, administered caffeine ≥ 45 min before testing, and included a measure of endurance performance (e.g., time trial). Significant improvements in endurance performance were observed in five of nine studies, which were on average 24.2% over controls for time to exhaustion trials, and 3.1% for time to completion trials. Three of six studies found that coffee reduced perceived exertion during performance measures significantly more than control conditions (p < .05). Based on the reviewed studies there is moderate evidence supporting the use of coffee as an ergogenic aid to improve performance in endurance cycling and running. Coffee providing 3-8.1 mg/kg (1.36-3.68 mg/lb) of caffeine may be used as a safe alternative to anhydrous caffeine to improve endurance performance.

  1. Caffeine dependence in combination with a family history of alcoholism as a predictor of continued use of caffeine during pregnancy.

    PubMed

    Svikis, Dace S; Berger, Nathan; Haug, Nancy A; Griffiths, Roland R

    2005-12-01

    The purpose of the study was to examine whether caffeine dependence and a family history of alcoholism are associated with continued use of caffeine during pregnancy. Forty-four women seeking obstetrical care in an office-based practice completed questionnaires and provided saliva samples at three prenatal visits occurring 2-3, 3-4, and 7 months postconception. On visit 1, the patients received the physician's instructions to stop using caffeine. Structured interviews were used to assign a diagnosis of caffeine dependence (lifetime) and to identify family history of alcoholism. Outcome measures included self-reported levels of caffeine use and saliva caffeine levels at the three prenatal visits. Although most women eliminated or substantially reduced their caffeine consumption between pregnancy awareness and prenatal visit 1, those with a lifetime diagnosis of caffeine dependence and a family history of alcoholism had higher levels of caffeine use and lower rates of abstinence throughout pregnancy. Saliva caffeine levels confirmed these effects. Withdrawal symptoms, functional impairment, and craving were cited as reasons they failed to eliminate or cut back on caffeine use. Fifty percent of the women with both a lifetime diagnosis of caffeine dependence and a family history of alcoholism continued to use caffeine in amounts (>300 mg/day) greater than those considered safe during pregnancy, compared to none of the women without caffeine dependence and a family history of alcoholism. Women with a lifetime diagnosis of caffeine dependence and a family history of alcoholism also reported higher rates of past cigarette smoking and problematic alcohol use. Caffeine-dependent women with a family history of alcoholism were not able to follow their physician's advice to reduce or eliminate caffeine consumption during pregnancy, despite their wanting to do so. This subgroup may require more intensive intervention to ensure caffeine abstinence and may be at greater risk for

  2. 21 CFR 182.1180 - Caffeine.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Caffeine. 182.1180 Section 182.1180 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN....1180 Caffeine. (a) Product. Caffeine. (b) Tolerance. 0.02 percent. (c) Limitations, restrictions, or...

  3. 21 CFR 182.1180 - Caffeine.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Caffeine. 182.1180 Section 182.1180 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN....1180 Caffeine. (a) Product. Caffeine. (b) Tolerance. 0.02 percent. (c) Limitations, restrictions, or...

  4. 21 CFR 182.1180 - Caffeine.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Caffeine. 182.1180 Section 182.1180 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN....1180 Caffeine. (a) Product. Caffeine. (b) Tolerance. 0.02 percent. (c) Limitations, restrictions, or...

  5. Effects of a single, oral 60 mg caffeine dose on attention in healthy adult subjects.

    PubMed

    Wilhelmus, Micha Mm; Hay, Justin L; Zuiker, Rob Gja; Okkerse, Pieter; Perdrieu, Christelle; Sauser, Julien; Beaumont, Maurice; Schmitt, Jeroen; van Gerven, Joop Ma; Silber, Beata Y

    2017-02-01

    Caffeine induces positive effects on sustained attention, although studies assessing the acute effects of low caffeine dose (<75 mg) on sustained attention are limited and use short-term tests. Therefore, we investigated the acute effects of a 60 mg dose of caffeine on sustained attention in tests lasting up to 45 minutes using 82 low or non-caffeine-consuming healthy male ( n=41) and female ( n=41) adults aged between 40 and 60 years. Vigilance was measured using Mackworth Clock test, Rapid Visual Information Processing Test, adaptive tracking test, saccadic eye movement and attention switch test. Effects on mood and fatigue were analysed using Bond and Lader and Caffeine Research visual analogue scales, and Samn-Perelli questionnaire. Saliva sampling was performed for both compliance and caffeine pharmacokinetic analysis. Administration of a 60 mg caffeine dose resulted in a significant improvement in sustained attention compared with the placebo. Also a significantly improved peak saccadic velocity and reaction time performance was found, and decreased error rate. Significantly increased feelings of alertness, contentment and overall mood after caffeine treatment compared with placebo were observed. This study demonstrated that in healthy adult subjects oral administration of a single 60 mg caffeine dose elicited a clear enhancement of sustained attention and alertness, measured both in multiple objective performances and in subjective scales.

  6. Stimulatory effect of oral administration of tea, coffee or caffeine on UVB-induced apoptosis in the epidermis of SKH-1 mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conney, Allan H.; Zhou, Sherry; Lee Maojung

    Oral administration of green tea or a caffeine solution, but not decaffeinated green tea, inhibits UVB-induced complete carcinogenesis in SKH-1 mice. Oral administration of green tea, coffee or a caffeine solution for 2 weeks enhanced UVB-induced increases in apoptosis in the epidermis, but these treatments had no effect in non-UVB treated normal epidermis. Our results suggest that administration of green tea, coffee and caffeine may inhibit UVB-induced carcinogenesis - at least in part - by enhancing UVB-induced apoptosis. Plasma levels of caffeine observed after its oral administration at cancer-preventive dose levels were within the range observed in moderate coffee drinkers.more » Topical applications of caffeine to mice previously treated with UVB for 20 weeks (high risk mice without tumors) inhibited the formation of tumors and stimulated apoptosis in the tumors but not in areas of the epidermis away from tumors. The selective effects of caffeine administration to stimulate UVB-induced apoptosis or apoptosis in tumors but not in normal epidermis or in areas of the epidermis away from tumors is of considerable interest, but the reasons for the selective effects of caffeine on apoptosis in DNA damaged tissues are unknown. Further studies are needed to determine mechanisms of these effects of caffeine and to determine the effects of caffeine administration on sunlight-induced actinic keratoses and squamous cell carcinomas in humans.« less

  7. Effects of repeated doses of caffeine on mood and performance of alert and fatigued volunteers.

    PubMed

    Smith, Andrew; Sutherland, David; Christopher, Gary

    2005-11-01

    Evidence for behavioural effects of caffeine is well documented in the literature. It is associated with increased subjective alertness, improved reaction time and enhanced encoding of new information. These effects are most prominent in low arousal situations. However, there is an ongoing debate as to whether such changes are in fact improvements or merely a reversal of the negative effects of a period of caffeine withdrawal (e.g. overnight abstinence). To avoid such a confound this study included multiple doses of caffeine which were administered under double-blind conditions to participants who had ingested their normal daily quota of caffeine. In the present study participants were fatigued by carrying out a prolonged testing schedule in the evening. Sixty volunteers, all regular caffeine consumers, took part in the study. They attended for three sessions on separate days. They were instructed to consume normal amounts of caffeinated beverages. Consumption was measured by a diary and saliva samples were taken and caffeine assays conducted. A baseline test session was carried out at 18.00h and following this a double blind placebo controlled caffeine challenge (1.5mg/kg) conducted. The test battery was repeated twice approximately 30 minutes after the caffeine challenge. Following this another drink was administered and the test battery repeated twice more. On one test session volunteers had placebo in both drinks, in another they had caffeine in both drinks and another caffeine in the first and placebo in the second. Order of conditions was balanced across subjects. The results showed that caffeine led to a more positive mood and improved performance on a number of tasks. Different effects of caffeine were seen depending on the person's level of arousal. Linear effects of caffeine dose were also observed. This is evidence against the argument that behavioural changes due to caffeine are merely the reversal of negative effects of a long period of caffeine

  8. Effects of Cola-Flavored Beverages and Caffeine on Streptococcus mutans Biofilm Formation and Metabolic Activity.

    PubMed

    Dotsey, Roger P; Moser, Elizabeth A S; Eckert, George J; Gregory, Richard L

    To examine the effects of cola-flavored beverages and caffeine on growth and metabolism of Streptococcus mutans biofilm. This study was designed to determine if carbonated beverages or caffeine can increase S. mutans growth and biofilm formation and metabolic activity in vitro, potentially leading to increased S. mutans-associated cariogenicity in children that consume them. Six different cola-flavored products, plus pure caffeine, and pure high fructose corn syrup (HFCS), at different concentrations similar to those in the beverages were tested. A 16-hour culture of S. mutans was treated with different dilutions in bacteriological media. To test for the effect on biofilm formation, the biofilm was stained with crystal violet. The absorbance was determined to evaluate biofilm growth. Biofilm metabolic activity was measured based on biofilm having the ability to reduce XTT to a water-soluble orange compound. The inclusion of HFCS in the beverages, as well as pure HFCS, significantly enhanced bacterial biofilm formation and metabolic activity. Pure caffeine and the presence of caffeine in beverages did not significantly increase biofilm formation, but pure caffeine significantly increased metabolism, and Diet Coke had significantly greater metabolic activity than Caffeine-Free Diet Coke. HFCS increases both the biofilm formation and metabolism of S. mutans, and caffeine in some cases increases metabolism of S. mutans.

  9. 21 CFR 182.1180 - Caffeine.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Caffeine. 182.1180 Section 182.1180 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Multiple Purpose GRAS Food Substances § 182.1180 Caffeine. (a) Product. Caffeine. (b...

  10. Characterization of Individuals Seeking Treatment for Caffeine Dependence

    PubMed Central

    Juliano, Laura M.; Evatt, Daniel P.; Richards, Brian D.; Griffiths, Roland R.

    2013-01-01

    Previous investigations have identified individuals who meet criteria for DSM-IV-TR substance dependence as applied to caffeine, but there is little research on treatments for caffeine dependence. This study aimed to thoroughly characterize individuals who are seeking treatment for problematic caffeine use. Ninety-four individuals who identified as being psychologically or physically dependent on caffeine, or who had tried unsuccessfully to modify caffeine consumption participated in a face-to-face diagnostic clinical interview. They also completed measures concerning caffeine use and quitting history, reasons for seeking treatment, and standardized self-report measures of psychological functioning. Caffeine treatment seekers (mean age 41 yrs, 55% women) consumed an average of 548 mg caffeine per day. The primary source of caffeine was coffee for 50% of the sample and soft drinks for 37%. Eighty-eight percent reported prior serious attempts to modify caffeine use (mean 2.7 prior attempts) and 43% reported being advised by a medical professional to reduce or eliminate caffeine. Ninety-three percent met criteria for caffeine dependence when generic DSM-IV-TR substance dependence criteria were applied to caffeine use. The most commonly endorsed criteria were withdrawal (96%), persistent desire or unsuccessful efforts to control use (89%), and use despite knowledge of physical or psychological problems caused by caffeine (87%). The most common reasons for wanting to modify caffeine use were health-related (59%) and not wanting to be dependent on caffeine (35%). This investigation reveals that there are individuals with problematic caffeine use who are seeking treatment, and suggests that there is a need for effective caffeine dependence treatments. PMID:22369218

  11. Effects of catechins and caffeine on the development of atherosclerosis in mice.

    PubMed

    Liu, Litong; Nagai, Izumi; Gao, Ying; Matsushima, Yoshibumi; Kawai, Yoshichika; Sayama, Kazutoshi

    2017-10-01

    Atherosclerosis is one of the diseases related to metabolic syndrome which is caused by obesity. Previous reports have shown that green tea and its components have anti-obesity effect. We examined whether catechins and caffeine can prevent the development of atherosclerosis by oral administration, singly or in combination to the atherosclerosis model mice. Results demonstrated that the number of atherosclerotic regions in the aorta was significantly reduced by the combined treatment, and the atherosclerotic area was also improved. Serum HDL-C increased by caffeine single treatment, but no effect on the TG and TC by any treatments. Moreover, ECG illuviated to atheromatous lesions in aorta and the illuviation was enhanced by caffeine. The mRNA expression levels of LOX-1 and TNF-α showed a tendency to suppress by the combined treatment. These results indicated that the combined administration of catechins and caffeine has the inhibitory effect on the development of atherosclerosis in mice.

  12. Effects of caffeine or RX821002 in rats with a neonatal ventral hippocampal lesion

    PubMed Central

    Sandner, Guy; Angst, Marie-Josée; Guiberteau, Thierry; Guignard, Blandine; Nehlig, Astrid

    2014-01-01

    Rats with a neonatal ventral hippocampal lesion (NVHL) are used to model schizophrenia. They show enhanced locomotion and difficulties in learning after puberty. Such behavioral modifications are strengthened by dopaminergic psychostimulant drugs, which is also relevant for schizophrenia because illustrating its dopaminergic facet. But it remains questionable that only dopaminergic drugs elicit such effects. The behavioral effects could simply represent a non specific arousal, in which case NVHL rats should also be hyper-responsive to other vigilance enhancing drugs. We administered an adenosine (caffeine) or an adrenaline receptor antagonist, (RX821002) at doses documented to modify alertness of rats, respectively 5 mg/kg and 1 mg/kg. Rats were selected prior to the experiments using magnetic resonance imaging (MRI). Each group contained typical and similar NVHL lesions. They were compared to sham lesioned rats. We evaluated locomotion in a new environment and the capacity to remember a visual or acoustic cue that announced the occurrence of food. Both caffeine and RX82100 enhanced locomotion in the novel environment, particularly in NVHL rats. But, RX82100 had a biphasic effect on locomotion, consisting of an initial reduction preceding the enhancement. It was independent of the lesion. Caffeine did not modify the learning performance of NVHL rats. But, RX821002 was found to facilitate learning. Patients tend to intake much more caffeine than healthy people, which has been interpreted as a means to counter some cognitive deficits. This idea was not validated with the present results. But adrenergic drugs could be helpful for attenuating some of their cognitive deficits. PMID:24478661

  13. Characterization of individuals seeking treatment for caffeine dependence.

    PubMed

    Juliano, Laura M; Evatt, Daniel P; Richards, Brian D; Griffiths, Roland R

    2012-12-01

    Previous investigations have identified individuals who meet criteria for Diagnostic and Statistical Manual of Mental Disorders (4th ed., text rev.; DSM-IV-TR; American Psychiatric Association, 2000) substance dependence as applied to caffeine, but there is little research on treatments for caffeine dependence. This study aimed to thoroughly characterize individuals who are seeking treatment for problematic caffeine use. Ninety-four individuals who identified as being psychologically or physically dependent on caffeine, or who had tried unsuccessfully to modify caffeine consumption participated in a face-to-face diagnostic clinical interview. They also completed measures concerning caffeine use and quitting history, reasons for seeking treatment, and standardized self-report measures of psychological functioning. Caffeine treatment seekers (mean age 41 years, 55% women) consumed an average of 548 mg caffeine per day. The primary source of caffeine was coffee for 50% of the sample and soft drinks for 37%. Eighty-eight percent reported prior serious attempts to modify caffeine use (mean 2.7 prior attempts), and 43% reported being advised by a medical professional to reduce or eliminate caffeine. Ninety-three percent met criteria for caffeine dependence when generic DSM-IV-TR substance dependence criteria were applied to caffeine use. The most commonly endorsed criteria were withdrawal (96%), persistent desire or unsuccessful efforts to control use (89%), and use despite knowledge of physical or psychological problems caused by caffeine (87%). The most common reasons for wanting to modify caffeine use were health-related (59%) and not wanting to be dependent on caffeine (35%). This investigation reveals that there are individuals with problematic caffeine use who are seeking treatment and suggests that there is a need for effective caffeine dependence treatments. 2013 APA, all rights reserved

  14. Caffeine and cardiovascular health.

    PubMed

    Turnbull, Duncan; Rodricks, Joseph V; Mariano, Gregory F; Chowdhury, Farah

    2017-10-01

    This report evaluates the scientific literature on caffeine with respect to potential cardiovascular outcomes, specifically relative risks of total cardiovascular disease (CVD), coronary heart disease (CHD) and acute myocardial infarction (AMI), effects on arrhythmia, heart failure, sudden cardiac arrest, stroke, blood pressure, hypertension, and other biomarkers of effect, including heart rate, cerebral blood flow, cardiac output, plasma homocysteine levels, serum cholesterol levels, electrocardiogram (EKG) parameters, heart rate variability, endothelial/platelet function and plasma/urine catecholamine levels. Caffeine intake has been associated with a range of reversible and transient physiological effects broadly and cardiovascular effects specifically. This report attempts to understand where the delineations exist in caffeine intake and corresponding cardiovascular effects among various subpopulations. The available literature suggests that cardiovascular effects experienced by caffeine consumers at levels up to 600 mg/day are in most cases mild, transient, and reversible, with no lasting adverse effect. The point at which caffeine intake may cause harm to the cardiovascular system is not readily identifiable in part because data on the effects of daily intakes greater than 600 mg is limited. However, the evidence considered within this review suggests that typical moderate caffeine intake is not associated with increased risks of total cardiovascular disease; arrhythmia; heart failure; blood pressure changes among regular coffee drinkers; or hypertension in baseline populations. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Caffeine as an opioid analgesic adjuvant in fibromyalgia

    PubMed Central

    Scott, J Ryan; Hassett, Afton L; Brummett, Chad M; Harris, Richard E; Clauw, Daniel J; Harte, Steven E

    2017-01-01

    Background Caffeine’s properties as an analgesic adjuvant with nonsteroidal anti-inflammatory drugs/acetaminophen are well documented. However, little clinical research has explored caffeine’s effects on opioid analgesia. This study assessed the effects of caffeine consumption on pain and other symptoms in opioid-using and nonusing chronic pain patients meeting the survey criteria for fibromyalgia. Materials and methods Patients presenting to a university-based pain clinic completed validated self-report questionnaires assessing symptoms. Patients (N=962) meeting the fibromyalgia survey criteria were stratified by opioid use and further split into groups based on caffeine amount consumed per day (no caffeine, or low, moderate, high caffeine). Analysis of covariance with Dunnett’s post hoc testing compared pain and symptom severity between the no caffeine group and the caffeine consuming groups. Results In opioid users, caffeine consumption had modest but significant effects on pain, catastrophizing, and physical function. Lower levels of pain interference were associated with low and moderate caffeine use compared to no caffeine intake. Lower pain catastrophizing and higher physical function were observed in all caffeine dose groups, relative to the no caffeine group. Lower pain severity and depression were observed only in the moderate caffeine group. In opioid nonusers, low caffeine intake was associated with higher physical function; however, no other significant effects were observed. Conclusion Caffeine consumption was associated with decreased pain and symptom severity in opioid users, but not in opioid nonusers, indicating caffeine may act as an opioid adjuvant in fibromyalgia-like chronic pain patients. These data suggest that caffeine consumption concomitant with opioid analgesics could provide therapeutic benefits not seen with opioids or caffeine alone. PMID:28814895

  16. Acute effects of caffeine on several operant behaviors in rhesus monkeys.

    PubMed

    Buffalo, E A; Gillam, M P; Allen, R R; Paule, M G

    1993-11-01

    The acute effects of 1,3-trimethylxanthine (caffeine) were assessed using an operant test battery (OTB) of complex food-reinforced tasks that are thought to depend upon relatively specific brain functions, such as motivation to work for food (progressive ratio, PR), learning (incremental repeated acquisition, IRA), color and position discrimination (conditioned position responding, CPR), time estimation (temporal response differentiation, TRD), and short-term memory and attention (delayed matching-to-sample, DMTS). Endpoints included response rates (RR), accuracies (ACC), and percent task completed (PTC). Caffeine sulfate (0.175-20.0 mg/kg, IV), given 15 min pretesting, produced significant dose-dependent decreases in TRD percent task completed and accuracy at doses > or = 5.6 mg/kg. Caffeine produced no systematic effects on either DMTS or PR responding, but low doses tended to enhance performance in both IRA and CPR tasks. Thus, in monkeys, performance of an operant task designed to model time estimation is more sensitive to the disruptive effects of caffeine than is performance of the other tasks in the OTB.

  17. Caffeine-induced psychiatric manifestations: a review.

    PubMed

    Wang, Hee Ryung; Woo, Young Sup; Bahk, Won-Myong

    2015-07-01

    The association between caffeine consumption and various psychiatric manifestations has long been observed. We present two cases that show the ability of caffeine to induce psychotic and manic symptoms, and we also review the extant literature on caffeine-induced psychiatric manifestations. On the basis of our own and others' findings, we suggest that caffeine may be related to not only de-novo psychotic or mood symptoms but also to aggravation of pre-existing psychotic or mood disorders. We therefore suggest that caffeine consumption among patients with mood or psychotic symptoms should be assessed carefully in clinical practice as part of routine psychiatric evaluations.

  18. Effects of caffeine on prolonged intermittent-sprint ability in team-sport athletes.

    PubMed

    Schneiker, Knut Thomas; Bishop, David; Dawson, Brian; Hackett, Laurence Peter

    2006-03-01

    Caffeine can be a powerful ergogenic aid for the performance of prolonged, submaximal exercise. Little evidence, however, supports an ergogenic effect of caffeine on intermittent-sprint performance. Hence, this study was conducted to examine the effects of acute caffeine ingestion on prolonged intermittent-sprint performance. Using a double-blind, placebo-controlled design, 10 male team-sport athletes (amateur level, VO2peak 56.5 +/- 8.0 mL x kg(-1) x min(-1)) completed two exercise trials, separated by 7 d, 60 min after ingestion of either 6 mg x kg(-1) caffeine or placebo. The exercise trial was performed on a front-access cycle ergometer and consisted of 2 x 36-min halves, each composed of 18 x 4-s sprints with 2-min active recovery at 35% VO2peak between each sprint. Urinary caffeine levels were measured after exercise. The total amount of sprint work performed during the caffeine trial was 8.5% greater than that performed during the placebo trial in the first half (75,165.4 +/- 3,902.9 vs 69,265.6 +/- 3,719.7 J, P < 0.05), and was 7.6% greater in the second half (73,978.7 +/- 4,092.6 vs 68,783.2 +/- 3,574.4 J, P < 0.05). Similarly, the mean peak power score achieved during sprints in the caffeine trial was 7.0% greater than that achieved during the placebo trial in the first half (1330.9 +/- 68.2 vs 1244.2 +/- 60.7 W, P < 0.05), and was 6.6% greater in the second half (1314.5 +/- 68.4 vs 1233.2 +/- 59.9 W, P < 0.05). Urinary caffeine levels following the caffeine trial ranged from 3.5 to 9.1 microg x mL(-1) (6.9 +/- 0.6 microg x mL(-1)). This study revealed that acute caffeine ingestion can significantly enhance performance of prolonged, intermittent-sprint ability in competitive, male, team-sport athletes.

  19. Effects of oral administration of caffeine and D-ribose on mental fatigue.

    PubMed

    Ataka, Suzuka; Tanaka, Masaaki; Nozaki, Satoshi; Mizuma, Hiroshi; Mizuno, Kei; Tahara, Tsuyoshi; Sugino, Tomohiro; Shirai, Tomoko; Kajimoto, Yoshitaka; Kuratsune, Hirohiko; Kajimoto, Osami; Watanabe, Yasuyoshi

    2008-03-01

    We examined the effects of administering two different candidate antifatigue substances, caffeine and D-ribose, on mental fatigue. In a double-blinded, placebo-controlled, three-way crossover design, 17 healthy volunteers were randomized to oral caffeine (200 mg/d), D-ribose (2000 mg/d), or placebo for 8 d. As fatigue-inducing mental tasks, subjects performed a 30-min Uchida-Kraepelin psychodiagnostic test and a 30-min advanced trail-making test on four occasions. During the tasks, the task performance of the caffeine group was better than that of the placebo group. However, after the fatigue-inducing tasks, although subjective perception of fatigue, motivation, or sleepiness was not significantly different, plasma branched-chain amino acid levels in the caffeine group were lower than those of the placebo group. Administration of D-ribose had no effect. Because plasma branched-chain amino acid levels are decreased by mental fatigue, these results suggest that administration of caffeine improved task performance through the enhancement of central nervous system activity without increasing the sensation of fatigue. However, further decreases in branched-chain amino acid levels indicate that caffeine might promote deeper fatigue than placebo. Unfortunately, research subsequent to our study design has shown that D-ribose dosing higher than we used is needed to see a clinical effect and therefore no conclusions can be made from this study as to the efficacy of D-ribose.

  20. Effects of chronic administration of caffeine and stress on feeding behavior of rats.

    PubMed

    Pettenuzzo, Leticia Ferreira; Noschang, Cristie; von Pozzer Toigo, Eduardo; Fachin, Andrelisa; Vendite, Deusa; Dalmaz, Carla

    2008-10-20

    Anorectic effects of caffeine are controversial in the literature, while stress and obesity are growing problems in our society. Since many stressed people are coffee drinkers, the objective of the present study was to evaluate the effect of stress and chronic administration of caffeine on feeding behavior and body weight in male and female rats. Wistar rats (both males and females) were divided into 3 groups: control (receiving water), caffeine 0.3 g/L and caffeine 1.0 g/L (in the drinking water). These groups were subdivided into non-stressed and stressed (repeated-restraint stress for 40 days). During the entire treatment, chow consumption was monitored and rats were weighed monthly. Afterwards, feeding behavior was evaluated during 3-min trials in food-deprived and ad libitum fed animals and also in repeated exposures, using palatable food (Froot Loops and Cheetos). Chronic administration of caffeine did not affect rat chow consumption or body weight gain, but diminished the consumption of both salty (Cheetos) and sweet (Froot Loops) palatable food. In the repeated trial tests, stress diminished savory snack consumption in the later exposures [I.S. Racotta, J. Leblanc, D. Richard The effect of caffeine on food intake in rats: involvement of corticotropin-releasing factor and the sympatho-adrenal system. Pharmacol Biochem Behav. 1994, 48:887-892; S.D. Comer, M. Haney, R.W. Foltin, M.W. Fischman Effects of caffeine withdrawal on humans living in a residential laboratory. Exp Clin Psychopharmacol. 1997, 5:399-403; A. Jessen, B. Buemann, S. Toubro, I.M. Skovgaard, A. Astrup The appetite-suppressant effect of nicotine is enhanced by caffeine. Diab Ob Metab. 2005, 7:327-333; J.M. Carney Effects of caffeine, theophylline and theobromine on scheduled controlled responding in rats. Br J Pharmacol. 1982, 75:451-454] and caffeine diminished consumption of both palatable foods (savory and sweet) during the early and later exposures. Most responses to caffeine were stronger

  1. Salivary caffeine concentrations are comparable to plasma concentrations in preterm infants receiving extended caffeine therapy

    PubMed Central

    Liu, Xiaoxi; Rhein, Lawrence M.; Darnall, Robert A.; Corwin, Michael J.; McEntire, Betty L.; Ward, Robert M.; James, Laura P.; Sherwin, Catherine M. T.; Heeren, Timothy C.; Hunt, Carl E.

    2016-01-01

    Aims Caffeine concentrations in preterm infants are usually measured in the blood. However, salivary assays may provide a valid and practical alternative. The present study explored the validity and clinical utility of salivary caffeine concentrations as an alternative to blood concentrations and developed a novel plasma/salivary caffeine distribution model. Methods Paired salivary and plasma samples were obtained in 29 infants. Salivary samples were obtained using a commercially available salivary collection system. Caffeine concentrations in the saliva and plasma were determined using high‐performance liquid chromatography. A population pharmacokinetic (PK) model was developed using NONMEM 7.3. Results The mean (± standard deviation) gestational age (GA) at birth and birth weight were 27.9 ± 2.1 weeks and 1171.6 ± 384.9 g, respectively. Paired samples were obtained at a mean postmenstrual age (PMA) of 35.5 ± 1.1 weeks. The range of plasma caffeine concentrations was 9.5–54.1 μg ml−1, with a mean difference (95% confidence interval) between plasma and salivary concentrations of −0.18 μg ml−1 (−1.90, 1.54). Salivary and plasma caffeine concentrations were strongly correlated (Pearson's correlation coefficient = 0.87, P < 0.001). Caffeine PK in plasma and saliva was simultaneously described by a three‐compartment recirculation model. Current body weight, birth weight, GA, PMA and postnatal age were not significantly correlated with any PK parameter. Conclusions Salivary sampling provides an easy, non‐invasive method for measuring caffeine concentrations. Salivary concentrations correlate highly with plasma concentrations. Caffeine PK in saliva and plasma are well described by a three‐compartment recirculation model. PMID:27145974

  2. Effects of caffeine on persistence and reinstatement of nicotine-seeking behavior in rats: interaction with nicotine-associated cues

    PubMed Central

    Jernigan, Courtney

    2013-01-01

    Rationale Caffeine and nicotine are the most commonly co-used psychostimulants. However, it is still unclear whether caffeine exposure enhances nicotine-seeking behavior. Objective The present study examined the effects of caffeine on nicotine-seeking in rats trained to self-administer nicotine with and without presession administration of caffeine. Methods Male Sprague–Dawley rats were trained to intravenously self-administer nicotine (0.03 mg/kg/infusion, freebase) on a fixed ratio 5 schedule of reinforcement and associate a stimulus cue with each nicotine administration. Five minutes before the sessions, the rats received an intraperitoneal administration of caffeine (5 mg/kg). Extinction tests were conducted under four conditions: presession caffeine administration, response-contingent presentation of nicotine cues, neither condition, or both conditions. Reinstatement tests were conducted after responding was extinguished by withholding presession caffeine, nicotine, and its cues. A separate group of rats trained without presession caffeine exposure was also subjected to the reinstatement tests. Results In the rats trained with presession caffeine exposure, continued caffeine administration sustained nicotine-seeking responses and interacted with nicotine cues to significantly delay the extinction of nicotine-seeking behavior. Readministration of caffeine after extinction effectively reinstated nicotine-seeking behavior. In caffeine-naive rats, caffeine administration did not reinstate extinguished nicotine-seeking behavior but significantly potentiated the cue-induced reinstatement of nicotine-seeking. Conclusion These data demonstrate that caffeine administration sustained and reinstated nicotine-seeking behavior, possibly via its acquired discriminative-stimulus properties predictive of nicotine availability. These findings suggest that smokers who attempt to quit may benefit from stopping caffeine consumption. PMID:21947355

  3. Subjective Responses to Caffeine Are Influenced by Caffeine Dose, Sex, and Pubertal Stage

    PubMed Central

    Ziegler, Amanda M.; Martin, Catherine; de Wit, Harriet

    2015-01-01

    Background: Our previous work has shown that there are sex differences in subjective responses to acute caffeine administration in adolescents. The purpose of this study was to determine if these sex differences are dependent on pubertal development. Materials and Methods: We examined subjective responses before and after administration of 0, 1, and 2 mg/kg of caffeine in pre- and postpubertal boys and girls (n = 112). In addition, we examined differences in subjective responses to acute caffeine in both the luteal and follicular phases of the menstrual cycle in postpubertal girls. Results: Caffeine at both doses resulted in greater changes in responses on the Addiction Research Center Inventory and the Brief Assessment of Mood States compared with placebo. Girls reported greater increases from baseline to peak in feeling different and liking the feeling than boys after 2 mg/kg of caffeine regardless of pubertal stage. Postpubertal girls also had a greater decrease from baseline in reports of feeling high and greater increases from baseline in reports of wanting more than postpubertal males. Finally, girls had greater changes (both increases and decreases) in responses on the Brief Mood Questionnaire when in the follicular phase compared with the luteal phase. This was also true for reports of feeling high and feeling different on the Drug Effects Questionnaire. None of these effects varied as a function of usual caffeine use, suggesting that differences are not the result of tolerance or sensitization. Conclusions: These results suggest that subjective responses to caffeine emerge before puberty, but sex differences may be strengthened after pubertal development. PMID:26649252

  4. The Safety of Ingested Caffeine: A Comprehensive Review

    PubMed Central

    Temple, Jennifer L.; Bernard, Christophe; Lipshultz, Steven E.; Czachor, Jason D.; Westphal, Joslyn A.; Mestre, Miriam A.

    2017-01-01

    Caffeine is the most widely consumed psychoactive drug in the world. Natural sources of caffeine include coffee, tea, and chocolate. Synthetic caffeine is also added to products to promote arousal, alertness, energy, and elevated mood. Over the past decade, the introduction of new caffeine-containing food products, as well as changes in consumption patterns of the more traditional sources of caffeine, has increased scrutiny by health authorities and regulatory bodies about the overall consumption of caffeine and its potential cumulative effects on behavior and physiology. Of particular concern is the rate of caffeine intake among populations potentially vulnerable to the negative effects of caffeine consumption: pregnant and lactating women, children and adolescents, young adults, and people with underlying heart or other health conditions, such as mental illness. Here, we review the research into the safety and safe doses of ingested caffeine in healthy and in vulnerable populations. We report that, for healthy adults, caffeine consumption is relatively safe, but that for some vulnerable populations, caffeine consumption could be harmful, including impairments in cardiovascular function, sleep, and substance use. We also identified several gaps in the literature on which we based recommendations for the future of caffeine research. PMID:28603504

  5. Caffeine Consumption Among Naval Aviation Candidates.

    PubMed

    Sather, Thomas E; Williams, Ronald D; Delorey, Donald R; Woolsey, Conrad L

    2017-04-01

    Education frequently dictates students need to study for prolonged periods of time to adequately prepare for examinations. This is especially true with aviation preflight indoctrination (API) candidates who have to assimilate large volumes of information in a limited amount of time during API training. The purpose of this study was to assess caffeine consumption patterns (frequency, type, and volume) among naval aviation candidates attending API to determine the most frequently consumed caffeinated beverage and to examine if the consumption of a nonenergy drink caffeinated beverage was related to energy drink consumption. Data were collected by means of an anonymous 44-item survey administered and completed by 302 students enrolled in API at Naval Air Station Pensacola, FL. Results indicated the most frequently consumed caffeinated beverage consumed by API students was coffee (86.4%), with daily coffee consumption being approximately 28% and the most frequent pattern of consumption being 2 cups per day (85%). The least frequently consumed caffeinated beverages reported were energy drinks (52%) and energy shots (29.1%). The present study also found that the consumption patterns (weekly and daily) of caffeinated beverages (coffee and cola) were positively correlated to energy drink consumption patterns. Naval aviation candidates' consumption of caffeinated beverages is comparable to other college and high school cohorts. This study found that coffee and colas were the beverages of choice, with energy drinks and energy shots being the least frequently reported caffeinated beverages used. Additionally, a relationship between the consumption of caffeinated beverages and energy drinks was identified.Sather TE, Williams RD, Delorey DR, Woolsey CL. Caffeine consumption among naval aviation candidates. Aerosp Med Hum Perform. 2017; 88(4):399-405.

  6. Caffeine, mental health, and psychiatric disorders.

    PubMed

    Lara, Diogo R

    2010-01-01

    Caffeine intake is so common that its pharmacological effects on the mind are undervalued. Since it is so readily available, individuals can adjust their own dose, time of administration and dose intervals of caffeine, according to the perceived benefits and side effects of each dose. This review focuses on human studies of caffeine in subjects with and without psychiatric disorders. Besides the possibility of mild drug dependence, caffeine may bring benefits that contribute to its widespread use. These benefits seem to be related to adaptation of mental energy to the context by increasing alertness, attention, and cognitive function (more evident in longer or more difficult tasks or situations of low arousal) and by elevating mood. Accordingly, moderate caffeine intake (< 6 cups/day) has been associated with less depressive symptoms, fewer cognitive failures, and lower risk of suicide. However, its putative therapeutic effects on depression and ADHD have been insufficiently studied. Conversely, in rare cases high doses of caffeine can induce psychotic and manic symptoms, and more commonly, anxiety. Patients with panic disorder and performance social anxiety disorder seem to be particularly sensitive to the anxiogenic effects of caffeine, whereas preliminary data suggests that it may be effective for some patients with obsessive compulsive disorder (OCD). The threshold for the anxiogenic effect of caffeine is influenced by a polymorphism of the A2A receptor. In summary, caffeine can be regarded as a pharmacological tool to increase energy and effortful behavior in daily activities. More populational (cross-sectional and prospective) and experimental studies are necessary to establish the role of caffeine intake in psychiatric disorders, especially its putative efficacy on depressive mood and cognitive/attentional disorders.

  7. Effects of caffeine and aspirin on light resistance training performance, perceived exertion, and pain perception.

    PubMed

    Hudson, Geoffrey M; Green, J Matt; Bishop, Phillip A; Richardson, Mark T

    2008-11-01

    This study compared independent effects of caffeine and aspirin on muscular endurance (repetitions), heart rate (HR), perceived exertion (RPE), and perceived pain index (PPI) during light resistance training bouts performed to volitional failure. It was hypothesized that the hypoalgesic properties of these ergogenic aids would decrease pain perception and potentially result in enhanced performance. College-aged men (n = 15) participated in a within-subjects, double-blind study with three independent, counterbalanced sessions wherein aspirin (10 mg x kg(-1)), caffeine (6 mg x kg(-1)), or matched placebo were ingested 1 hour before exercise, and RPE, HR, PPI, and repetitions (per set and total per exercise) were recorded at 100% of individual, predetermined, 12-repetition maximum for leg extensions (LE) and seated arm curls (AC). Repeated-measures analyses of variance were used for between-trial comparisons. Caffeine resulted in significantly greater (p < 0.05) HR (LE and AC), total repetitions (LE), and repetitions in set 1 (LE and AC) compared with aspirin and placebo. Aspirin resulted in significantly higher PPI in set 1 (LE). In LE, 47% of participants' performance exceeded the predetermined effect size (>or= 5 repetitions) for total repetitions, with 53% exceeding the effect size (>or= 2 repetitions) for repetitions in set 1 with caffeine (vs. placebo). In AC, 53% (total repetitions) and 47% (set 1 repetitions) of participants exceeded effect sizes with caffeine (vs. placebo), with only 13% experiencing decrements in performance (total repetitions). Aspirin also produced a higher PPI and RPE overall and in set 1 (vs. placebo). This study demonstrates that caffeine significantly enhanced resistance training performance in LE and AC, whereas aspirin did not. Athletes may improve their resistance training performance by acute ingestion of caffeine. As with most ergogenic aids, our analyses indicate that individual responses vary greatly.

  8. Effects of caffeine on performance and mood: withdrawal reversal is the most plausible explanation.

    PubMed

    James, Jack E; Rogers, Peter J

    2005-10-01

    Although it is widely believed that caffeine can enhance human performance and mood, the validity of this belief has been questioned, giving rise to debate. The central question is whether superior performance and mood after caffeine represent net benefits, or whether differences between caffeine and control conditions are due to reversal of adverse withdrawal effects. To provide a focussed review of relevant experimental studies with the aim of clarifying current understanding regarding the effects of caffeine on human performance and mood. To avoid the shortcomings of standard placebo-controlled studies, which are ambiguous due to failure to control for the confounding influence of withdrawal reversal, three main experimental approaches have been employed: studies that compare consumers and low/non-consumers, pre-treatment and ad lib consumption studies, and long-term withdrawal studies. Of the three approaches, only long-term withdrawal studies are capable of unambiguously revealing the net effects of caffeine. Overall, there is little evidence of caffeine having beneficial effects on performance or mood under conditions of long-term caffeine use vs abstinence. Although modest acute effects may occur following initial use, tolerance to these effects appears to develop in the context of habitual use of the drug. Appropriately controlled studies show that the effects of caffeine on performance and mood, widely perceived to be net beneficial psychostimulant effects, are almost wholly attributable to reversal of adverse withdrawal effects associated with short periods of abstinence from the drug.

  9. Caffeine promotes wakefulness via dopamine signaling in Drosophila

    PubMed Central

    Nall, Aleksandra H.; Shakhmantsir, Iryna; Cichewicz, Karol; Birman, Serge; Hirsh, Jay; Sehgal, Amita

    2016-01-01

    Caffeine is the most widely-consumed psychoactive drug in the world, but our understanding of how caffeine affects our brains is relatively incomplete. Most studies focus on effects of caffeine on adenosine receptors, but there is evidence for other, more complex mechanisms. In the fruit fly Drosophila melanogaster, which shows a robust diurnal pattern of sleep/wake activity, caffeine reduces nighttime sleep behavior independently of the one known adenosine receptor. Here, we show that dopamine is required for the wake-promoting effect of caffeine in the fly, and that caffeine likely acts presynaptically to increase dopamine signaling. We identify a cluster of neurons, the paired anterior medial (PAM) cluster of dopaminergic neurons, as the ones relevant for the caffeine response. PAM neurons show increased activity following caffeine administration, and promote wake when activated. Also, inhibition of these neurons abrogates sleep suppression by caffeine. While previous studies have focused on adenosine-receptor mediated mechanisms for caffeine action, we have identified a role for dopaminergic neurons in the arousal-promoting effect of caffeine. PMID:26868675

  10. Caffeine and headache: specific remarks.

    PubMed

    Espinosa Jovel, C A; Sobrino Mejía, F E

    Caffeine is the most widely used psychostimulant worldwide. Excessive caffeine consumption induces a series of both acute and chronic biological and physiological changes that may give rise to cognitive decline, depression, fatigue, insomnia, cardiovascular changes, and headache. Chronic consumption of caffeine promotes a pro-nociceptive state of cortical hyperexcitability that can intensify a primary headache or trigger a headache due to excessive analgesic use. This review offers an in-depth analysis of the physiological mechanisms of caffeine and its relationship with headache. Copyright © 2014 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  11. Caffeine's Influence on Nicotine's Effects in Nonsmokers

    PubMed Central

    Blank, Melissa D.; Kleykamp, Bethea A.; Jennings, Janine M.; Eissenberg, Thomas

    2011-01-01

    Objective To determine if nicotine's effects are influenced by caffeine in nonsmoking, moderate-caffeine consuming individuals (N=20). Methods The first 3 sessions included one of 3 randomly ordered, double-blind caffeine doses (0, 75, or 150 mg, oral [po]) and 2 single-blind nicotine gum doses (2 and 4 mg) in ascending order. The fourth session (single blind) repeated the 0 mg caffeine condition. Results Nicotine increased heart rate and subjective ratings indicative of aversive effects, and decreased reaction times. These effects were independent of caffeine dose and reliable across sessions. Conclusions In nonsmokers, nicotine effects are not influenced by moderate caffeine doses. PMID:17555378

  12. Comparing the benefits of caffeine, naps and placebo on verbal, motor and perceptual memory.

    PubMed

    Mednick, Sara C; Cai, Denise J; Kanady, Jennifer; Drummond, Sean P A

    2008-11-03

    Caffeine, the world's most common psychoactive substance, is used by approximately 90% of North Americans everyday. Little is known, however, about its benefits for memory. Napping has been shown to increase alertness and promote learning on some memory tasks. We directly compared caffeine (200mg) with napping (60-90min) and placebo on three distinct memory processes: declarative verbal memory, procedural motor skills, and perceptual learning. In the verbal task, recall and recognition for unassociated words were tested after a 7h retention period (with a between-session nap or drug intervention). A second, different, word list was administered post-intervention and memory was tested after a 20min retention period. The non-declarative tasks (finger tapping task (FTT) and texture discrimination task (TDT)) were trained before the intervention and then retested afterwards. Naps enhanced recall of words after a 7h and 20min retention interval relative to both caffeine and placebo. Caffeine significantly impaired motor learning compared to placebo and naps. Napping produced robust perceptual learning compared with placebo; however, naps and caffeine were not significantly different. These findings provide evidence of the limited benefits of caffeine for memory improvement compared with napping. We hypothesize that impairment from caffeine may be restricted to tasks that contain explicit information; whereas strictly implicit learning is less compromised.

  13. Comparing the benefits of Caffeine, Naps and Placebo on Verbal, Motor and Perceptual Memory

    PubMed Central

    Mednick, Sara C.; Cai, Denise J.; Kanady, Jennifer; Drummond, Sean P.A.

    2008-01-01

    Caffeine, the world’s most common psychoactive substance, is used by approximately 90% of North Americans everyday. Little is known, however, about its benefits for memory. Napping has been shown to increase alertness and promote learning on some memory tasks. We directly compared caffeine (200mg) with napping (60–90 minutes) and placebo on three distinct memory processes: declarative verbal memory, procedural motor skills, and perceptual learning. In the verbal task, recall and recognition for unassociated words were tested after a 7hr retention period (with a between-session nap or drug intervention). A second, different, word list was administered post-intervention and memory was tested after a 20min retention period. The non-declarative tasks (finger tapping task and texture discrimination task) were trained before the intervention and then retested afterwards. Naps enhanced recall of words after a 7hr and 20min retention interval relative to both caffeine and placebo. Caffeine significantly impaired motor learning compared to placebo and naps. Napping produced robust perceptual learning compared with placebo; however, naps and caffeine were not significantly different. These findings provide evidence of the limited benefits of caffeine for memory improvement compared with napping. We hypothesize that impairment from caffeine may be restricted to tasks that contain explicit information; whereas strictly implicit learning is less compromised. PMID:18554731

  14. Chronic ingestion of a low dose of caffeine induces tolerance to the performance benefits of caffeine.

    PubMed

    Beaumont, Ross; Cordery, Philip; Funnell, Mark; Mears, Stephen; James, Lewis; Watson, Phillip

    2017-10-01

    This study examined effects of 4 weeks of caffeine supplementation on endurance performance. Eighteen low-habitual caffeine consumers (<75 mg · day -1 ) were randomly assigned to ingest caffeine (1.5-3.0 mg · kg -1 day -1 ; titrated) or placebo for 28 days. Groups were matched for age, body mass, V̇O 2peak and W max (P > 0.05). Before supplementation, all participants completed one V̇O 2peak test, one practice trial and 2 experimental trials (acute 3 mg · kg -1 caffeine [precaf] and placebo [testpla]). During the supplementation period a second V̇O 2peak test was completed on day 21 before a final, acute 3 mg · kg -1 caffeine trial (postcaf) on day 29. Trials consisted of 60 min cycle exercise at 60% V̇O 2peak followed by a 30 min performance task. All participants produced more external work during the precaf trial than testpla, with increases in the caffeine (383.3 ± 75 kJ vs. 344.9 ± 80.3 kJ; Cohen's d effect size [ES] = 0.49; P = 0.001) and placebo (354.5 ± 55.2 kJ vs. 333.1 ± 56.4 kJ; ES = 0.38; P = 0.004) supplementation group, respectively. This performance benefit was no longer apparent after 4 weeks of caffeine supplementation (precaf: 383.3 ± 75.0 kJ vs. postcaf: 358.0 ± 89.8 kJ; ES = 0.31; P = 0.025), but was retained in the placebo group (precaf: 354.5 ± 55.2 kJ vs. postcaf: 351.8 ± 49.4 kJ; ES = 0.05; P > 0.05). Circulating caffeine, hormonal concentrations and substrate oxidation did not differ between groups (all P > 0.05). Chronic ingestion of a low dose of caffeine develops tolerance in low-caffeine consumers. Therefore, individuals with low-habitual intakes should refrain from chronic caffeine supplementation to maximise performance benefits from acute caffeine ingestion.

  15. Acetaminophen, Butalbital, and Caffeine

    MedlinePlus

    The combination of acetaminophen, Butalbital, Caffeine comes as a capsule and tablet to take by mouth. It usually is taken every 4 hours ... explain any part you do not understand. Take acetaminophen, Butalbital, Caffeine exactly as directed. Do not take ...

  16. Aspirin, Butalbital, and Caffeine

    MedlinePlus

    The combination of aspirin, butalbital, and caffeine comes as a capsule and tablet to take by mouth. It usually is taken every 4 ... explain any part you do not understand. Take aspirin, butalbital, and caffeine exactly as directed. Do not ...

  17. Caffeine tolerance: behavioral, electrophysiological and neurochemical evidence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, D.T.; Khan, S.; Forde, J.

    The development of tolerance to the stimulatory action of caffeine upon mesencephalic reticular neurons and upon spontaneous locomotor activity was evaluated in rats after two weeks of chronic exposure to low doses of caffeine (5-10 mg/kg/day via their drinking water). These doses are achievable through dietary intake of caffeine-containing beverages in man. Concomitant measurement of (/sup 3/H)-CHA binding in the mesencephalic reticular formation was also carried out in order to explore the neurochemical basis of the development of tolerance. Caffeine, 2.5 mg/kg i.v., markedly increased the firing rate of reticular neurons in caffeine naive rats but failed to modify themore » neuronal activity in a group exposed chronically to low doses of caffeine. In addition, in spontaneous locomotor activity studies, the data show a distinct shift to the right of the caffeine dose-response curve in caffeine pretreated rats. These results clearly indicate that tolerance develops to the stimulatory action of caffeine upon the reticular formation at the single neuronal activity level as well as upon spontaneous locomotor activity. Furthermore, in chronically caffeine exposed rats, an increase in the number of binding sites for (/sup 3/H)-CHA was observed in reticular formation membranes without any change in receptor affinity. 28 references, 4 figures.« less

  18. Reinforcing effects of caffeine in coffee and capsules.

    PubMed

    Griffiths, R R; Bigelow, G E; Liebson, I A

    1989-09-01

    In a residential research ward the reinforcing and subjective effects of caffeine were studied under double-blind conditions in volunteer subjects with histories of heavy coffee drinking. In Experiment 1, 6 subjects had 13 opportunities each day to self-administer either a caffeine (100 mg) or a placebo capsule for periods of 14 to 61 days. All subjects developed a clear preference for caffeine, with intake of caffeine becoming relatively stable after preference had been attained. Preference for caffeine was demonstrated whether or not preference testing was preceded by a period of 10 to 37 days of caffeine abstinence, suggesting that a recent history of heavy caffeine intake (tolerance/dependence) was not a necessary condition for caffeine to function as a reinforcer. In Experiment 2, 6 subjects had 10 opportunities each day to self-administer a cup of coffee or (on different days) a capsule, dependent upon completing a work requirement that progressively increased and then decreased over days. Each day, one of four conditions was studied: caffeinated coffee (100 mg/cup), decaffeinated coffee, caffeine capsules (100 mg/capsule), or placebo capsules. Caffeinated coffee maintained the most self-administration, significantly higher than decaffeinated coffee and placebo capsules but not different from caffeine capsules. Both decaffeinated coffee and caffeine capsules were significantly higher than placebo capsules but not different from each other. In both experiments, subject ratings of "linking" of coffee or capsules covaried with the self-administration measures. These experiments provide the clearest demonstrations to date of the reinforcing effects of caffeine in capsules and in coffee.

  19. Reinforcing effects of caffeine in coffee and capsules.

    PubMed Central

    Griffiths, R R; Bigelow, G E; Liebson, I A

    1989-01-01

    In a residential research ward the reinforcing and subjective effects of caffeine were studied under double-blind conditions in volunteer subjects with histories of heavy coffee drinking. In Experiment 1, 6 subjects had 13 opportunities each day to self-administer either a caffeine (100 mg) or a placebo capsule for periods of 14 to 61 days. All subjects developed a clear preference for caffeine, with intake of caffeine becoming relatively stable after preference had been attained. Preference for caffeine was demonstrated whether or not preference testing was preceded by a period of 10 to 37 days of caffeine abstinence, suggesting that a recent history of heavy caffeine intake (tolerance/dependence) was not a necessary condition for caffeine to function as a reinforcer. In Experiment 2, 6 subjects had 10 opportunities each day to self-administer a cup of coffee or (on different days) a capsule, dependent upon completing a work requirement that progressively increased and then decreased over days. Each day, one of four conditions was studied: caffeinated coffee (100 mg/cup), decaffeinated coffee, caffeine capsules (100 mg/capsule), or placebo capsules. Caffeinated coffee maintained the most self-administration, significantly higher than decaffeinated coffee and placebo capsules but not different from caffeine capsules. Both decaffeinated coffee and caffeine capsules were significantly higher than placebo capsules but not different from each other. In both experiments, subject ratings of "linking" of coffee or capsules covaried with the self-administration measures. These experiments provide the clearest demonstrations to date of the reinforcing effects of caffeine in capsules and in coffee. PMID:2794839

  20. Placebo caffeine reduces withdrawal in abstinent coffee drinkers.

    PubMed

    Mills, Llewellyn; Boakes, Robert A; Colagiuri, Ben

    2016-04-01

    Expectancies have been shown to play a role in the withdrawal syndrome of many drugs of addiction; however, no studies have examined the effects of expectancies across a broad range of caffeine withdrawal symptoms, including craving. The purpose of the current study was to use caffeine as a model to test the effect of expectancy on withdrawal symptoms, specifically whether the belief that one has ingested caffeine is sufficient to reduce caffeine withdrawal symptoms and cravings in abstinent coffee drinkers. We had 24-h abstinent regular coffee drinkers complete the Caffeine Withdrawal Symptom Questionnaire (CWSQ) before and after receiving decaffeinated coffee. One-half of the participants were led to believe the coffee was regular caffeinated coffee (the 'Told Caffeine' condition) and one-half were told that it was decaffeinated (the 'Told Decaf' condition). Participants in the Told Caffeine condition reported a significantly greater reduction in the factors of cravings, fatigue, lack of alertness and flu-like feelings of the CWSQ, than those in the Told Decaf condition. Our results indicated that the belief that one has consumed caffeine can affect caffeine withdrawal symptoms, especially cravings, even when no caffeine was consumed. © The Author(s) 2016.

  1. UV-B-induced damage to the lens in vitro: prevention by caffeine.

    PubMed

    Varma, Shambhu D; Hegde, Kavita R; Kovtun, Svitlana

    2008-10-01

    Ultraviolet (UV) irradiation is one of the significant risk factors in the genesis of cataracts. Pathogenetically, the process can be triggered by the intraocular generation of various reactive species of oxygen that are well known to be initiated by the penetration of light, especially of the UV frequencies. The contribution of UV exposure in the etiology of this disease is likely to increase further due to ozone depletion in the upper atmosphere. The present studies were undertaken to examine if the UV effects can be attenuated with the xanthine-based alkaloids primarily present in tea and coffee. We have examined this possibility by in vitro lens culture studies with caffeine. As expected, mice lenses incubated in Tyrode solution exposed to UV at 302 nm are physiologically damaged, as evidenced by the inhibition of the active transport of (86)Rb(+), an ion acting as a surrogate of the K(+). There was a simultaneous decrease in the levels of adenosine triphosphate and glutathione. The addition of caffeine to the medium prevented such deleterious effects. That caffeine and perhaps other xanthinoids have a protective effect against cataract formation induced by UV has hence been demonstrated for the first time.

  2. Length dependence of staircase potentiation: interactions with caffeine and dantrolene sodium.

    PubMed

    Rassier, D E; MacIntosh, B R

    2000-04-01

    In skeletal muscle, there is a length dependence of staircase potentiation for which the mechanism is unclear. In this study we tested the hypothesis that abolition of this length dependence by caffeine is effected by a mechanism independent of enhanced Ca2+ release. To test this hypothesis we have used caffeine, which abolishes length dependence of potentiation, and dantrolene sodium, which inhibits Ca2+ release. In situ isometric twitch contractions of rat gastrocnemius muscle before and after 20 s of repetitive stimulation at 5 Hz were analyzed at optimal length (Lo), Lo - 10%, and Lo + 10%. Potentiation was observed to be length dependent, with an increase in developed tension (DT) of 78 +/- 12, 51 +/- 5, and 34 +/- 9% (mean +/- SEM), at Lo - 10%, Lo, and Lo + 10%, respectively. Caffeine diminished the length dependence of activation and suppressed the length dependence of staircase potentiation, giving increases in DT of 65+/-13, 53 +/- 11, and 45 +/- 12% for Lo - 10%, Lo, and Lo + 10%, respectively. Dantrolene administered after caffeine did not reverse this effect. Dantrolene alone depressed the potentiation response, but did not affect the length dependence of staircase potentiation, with increases in DT of 58 +/- 17, 26 +/- 8, and 18 +/- 7%, respectively. This study confirms that there is a length dependence of staircase potentiation in mammalian skeletal muscle which is suppressed by caffeine. Since dantrolene did not alter this suppression of the length dependence of potentiation by caffeine, it is apparently not directly modulated by Ca2+ availability in the myoplasm.

  3. The caffeine contents of non-alcoholic beverages.

    PubMed

    Galasko, G T; Furman, K I; Alberts, E

    1989-01-01

    The caffeine content of a number of non-alcoholic beverages was determined using HPLC. It was found that Diet Coke had a greater caffeine content than Coke (4.15 compared with 3.13 mg/fl oz), Tab is virtually caffeine free, and Lucozade, sold as a tonic, contains more caffeine than any of the other carbonated beverages tested (5.17 mg/fl oz). The pure instant coffee tested contained much more caffeine than the coffee/chicory mixtures (12.61 compared with 3.18 mg/fl oz). The caffeine content of Ceylon tea blends increases with the time the tea is allowed to draw (from about 8 mg/fl oz after 1 min to about 12 mg/fl oz after 20 min). Tea that has been allowed to draw for 20 min has a caffeine content similar to that of pure coffee.

  4. Determination of caffeine and identification of undeclared substances in dietary supplements and caffeine dietary exposure assessment.

    PubMed

    Neves, Diana Brito da Justa; Caldas, Eloisa Dutra

    2017-07-01

    Caffeine is one of the most consumed stimulants in the world, and is a frequent ingredient of dietary supplements. The aims of this work were to validate a GC-MS method for the quantitation of caffeine and identification of other substances in supplements, mainly weight loss products, and to estimate the caffeine intake by consumers. Sample preparation included extraction with chloroform:water in ultrasonic bath, centrifugation and analysis of the organic layer for caffeine quantitation, and extraction with methanol for identification of other substances. A total of 213 samples of 52 supplement products not registered in Brazil and seized by the Brazilian Federal Police were analyzed. From the 109 samples that declared the amount of caffeine present, 26.6% contained more than 120% of the specified content. Considering the maximum recommended dose stated on the product labels, the consumption of 47.9% of the samples would lead to a daily intake of caffeine above the safe limit of 400 mg. Undeclared drugs, including sibutramine, phenolphthalein, amphepramone and femproporex were found in 28 samples. These results show that consumers of dietary supplements should be aware that these products might contain caffeine at levels that could represent potential health risks, in addition to undeclared pharmaceutical drugs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Caffeine Increases Work Done above Critical Power, but Not Anaerobic Work.

    PubMed

    Silveira, Rodrigo; Andrade-Souza, Victor Amorim; Arcoverde, Lucyana; Tomazini, Fabiano; Sansonio, André; Bishop, David John; Bertuzzi, Romulo; Lima-Silva, Adriano Eduardo

    2018-01-01

    The assumption that the curvature constant (W') of the power-duration relationship represents anaerobic work capacity is a controversial, unresolved question. We investigated if caffeine ingestion could increase total work done above critical power (CP), and if this would be accompanied by greater anaerobic energy expenditure and by an enhanced maintenance of maximal oxidative metabolic rate. Nine men (26.6 ± 5.3 yr, V˙O2max 40.6 ± 5.8 mL·kg·min) cycled until exhaustion at different exercise intensities on different days to determine the CP and W'. On separated days, participants cycled until exhaustion in the severe-intensity domain (136% ± 7% of CP) after ingesting either caffeine (5 mg·kg body mass) or a placebo. Time to exhaustion was 34% longer with caffeine compared with placebo, and this was accompanied by a greater work done above CP (23.7 ± 5.7 vs 17.5 ± 3.6 kJ; 130% ± 30% vs 95% ± 14% of W', P < 0.01). Caffeine increased the aerobic energy expenditure (296.4 ± 91.0 vs 210.2 ± 71.9 kJ, P < 0.01), but not anaerobic lactic, anaerobic alactic, and total anaerobic (lactic + alactic) energy expenditure. The end values of heart rate and ventilation were higher with caffeine, but the V˙O2 end was similar between conditions and was not different from V˙O2max. Caffeine did not change time to reach V˙O2max but increased time maintained at V˙O2max (199.3 ± 105.9 vs 111.9 ± 87.1 s, P < 0.05). Caffeine increased total work done above CP, but this was not associated with greater anaerobic work. Rather, this was associated with a higher tolerance to maintain exercise at maximal oxidative metabolic rate.

  6. Effects of a combination of 3,4-methylenedioxymeth amphetamine and caffeine on real time stimulated dopamine release in the rat striatum: Studies using fast cyclic voltammetry.

    PubMed

    O'Connor, J J; O'Boyle, K M; Lowry, J P

    2018-04-15

    It is well documented that caffeine exacerbates the hyperthermia associated with acute exposure to 3,4-methylenedioxymethamphetamine (MDMA) in rats. Previous reports have also indicated that MDMA-related enhancement of dopamine release is exacerbated in the presence of caffeine. In the present study we have examined whether the effects of MDMA on real-time stimulated dopamine release, in the absence of uptake inhibition, are accentuated in the presence of caffeine. Isolated striatal slices from adult male Wistar rats were treated acutely with MDMA, caffeine, or a combination, and their effects on single and 5pulse stimulated dopamine release monitored using the technique of fast cyclic voltammetry. Caffeine at 10 or 100μM had no significant effect on single pulse stimulated dopamine release. However 100μM caffeine caused a significant peak increase in 5pulse stimulated dopamine release. Both 1 and 30μM MDMA gave rise to a significant increase in both single and 5-pulse dopamine release and reuptake. A combination of 100μM caffeine and 1 or 30μM MDMA did not significantly enhance the effects of MDMA on single or 5pulse dopamine release and reuptake when compared to that applied alone. Utilizing single action potential dependent dopamine release, these results do not demonstrate a caffeine-enhanced MDMA-induced dopamine release. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Role of adenosine receptors in caffeine tolerance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holtzman, S.G.; Mante, S.; Minneman, K.P.

    1991-01-01

    Caffeine is a competitive antagonist at adenosine receptors. Receptor up-regulation during chronic drug treatment has been proposed to be the mechanism of tolerance to the behavioral stimulant effects of caffeine. This study reassessed the role of adenosine receptors in caffeine tolerance. Separate groups of rats were given scheduled access to drinking bottles containing plain tap water or a 0.1% solution of caffeine. Daily drug intake averaged 60-75 mg/kg and resulted in complete tolerance to caffeine-induced stimulation of locomotor activity, which could not be surmounted by increasing the dose of caffeine. 5'-N-ethylcarboxamidoadenosine (0.001-1.0 mg/kg) dose dependently decreased the locomotor activity ofmore » caffeine-tolerant rats and their water-treated controls but was 8-fold more potent in the latter group. Caffeine (1.0-10 mg/kg) injected concurrently with 5-N-ethylcarboxamidoadenosine antagonized the decreases in locomotor activity comparably in both groups. Apparent pA2 values for tolerant and control rats also were comparable: 5.05 and 5.11. Thus, the adenosine-antagonist activity of caffeine was undiminished in tolerant rats. The effects of chronic caffeine administration on parameters of adenosine receptor binding and function were measured in cerebral cortex. There were no differences between brain tissue from control and caffeine-treated rats in number and affinity of adenosine binding sites or in receptor-mediated increases (A2 adenosine receptor) and decreases (A1 adenosine receptor) in cAMP accumulation. These results are consistent with theoretical arguments that changes in receptor density should not affect the potency of a competitive antagonist. Experimental evidence and theoretical considerations indicate that up-regulation of adenosine receptors is not the mechanism of tolerance to caffeine-induced stimulation of locomotor activity.« less

  8. The effects of caffeine on wound healing.

    PubMed

    Ojeh, Nkemcho; Stojadinovic, Olivera; Pastar, Irena; Sawaya, Andrew; Yin, Natalie; Tomic-Canic, Marjana

    2016-10-01

    The purine alkaloid caffeine is a major component of many beverages such as coffee and tea. Caffeine and its metabolites theobromine and xanthine have been shown to have antioxidant properties. Caffeine can also act as adenosine-receptor antagonist. Although it has been shown that adenosine and antioxidants promote wound healing, the effect of caffeine on wound healing is currently unknown. To investigate the effects of caffeine on processes involved in epithelialisation, we used primary human keratinocytes, HaCaT cell line and ex vivo model of human skin. First, we tested the effects of caffeine on cell proliferation, differentiation, adhesion and migration, processes essential for normal wound epithelialisation and closure. We used 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) proliferation assay to test the effects of seven different caffeine doses ranging from 0·1 to 5 mM. We found that caffeine restricted cell proliferation of keratinocytes in a dose-dependent manner. Furthermore, scratch wound assays performed on keratinocyte monolayers indicated dose-dependent delays in cell migration. Interestingly, adhesion and differentiation remained unaffected in monolayer cultures treated with various doses of caffeine. Using a human ex vivo wound healing model, we tested topical application of caffeine and found that it impedes epithelialisation, confirming in vitro data. We conclude that caffeine, which is known to have antioxidant properties, impedes keratinocyte proliferation and migration, suggesting that it may have an inhibitory effect on wound healing and epithelialisation. Therefore, our findings are more in support of a role for caffeine as adenosine-receptor antagonist that would negate the effect of adenosine in promoting wound healing. © 2014 The Authors. International Wound Journal © 2014 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  9. Caffeine Use and Young Adult Women.

    ERIC Educational Resources Information Center

    Vener, Arthur M.; Krupka, Lawrence R.

    1982-01-01

    Surveyed college women and men and found that caffeine was consumed by a large proportion of the respondents. Women consumed a larger amount of caffeine and used more substances containing this drug. An increase in caffeine usage with increased psychic stress was observed for women only. (Author)

  10. Maternal caffeine intake during pregnancy and orofacial clefts.

    PubMed

    Collier, Sarah A; Browne, Marilyn L; Rasmussen, Sonja A; Honein, Margaret A

    2009-10-01

    Moderate caffeine intake during pregnancy is common, but little is known about its potential association with birth defects. The National Birth Defects Prevention Study is a population-based, case-control study of major birth defects, excluding infants with single-gene disorders and chromosomal abnormalities. This analysis includes infants with cleft lip with or without cleft palate (CL/P) and cleft palate only (CPO), excluding infants whose cleft was secondary to holoprosencephaly or amniotic band sequence. Mothers reported dietary caffeine intake from coffee, tea, sodas, and chocolate in the year before pregnancy and reported intake of medications containing caffeine during pregnancy. We assessed the association between dietary caffeine intake, frequency of consuming each type of caffeinated beverage, medications containing caffeine, and CL/P or CPO among infants born from October 1997 through December 2004. This analysis included 1531 infants with CL/P, 813 infants with CPO, and 5711 infants with no major birth defects (controls). Examining dietary sources among control mothers, 11% reported consuming at least 300 mg of caffeine per day and 17% reported consuming less than 10 mg of caffeine per day; high consumption (>or=3 servings per day) was reported by 8% (coffee), 4% (tea), and 15% (sodas); medications containing at least 100 mg caffeine/dose were reported by less than 1%. Although some effect estimates were elevated for moderate caffeine intake from all beverages, estimates were closer to the null for high caffeine levels. Isolated CL/P was associated with use of medications containing at least 100 mg of caffeine per dose. Our data do not suggest an association between maternal dietary caffeine intake and orofacial clefts, but caffeine-containing medications merit further study.

  11. Nutrition Influences Caffeine-Mediated Sleep Loss in Drosophila.

    PubMed

    Keebaugh, Erin S; Park, Jin Hong; Su, Chenchen; Yamada, Ryuichi; Ja, William W

    2017-11-01

    Plant-derived caffeine is regarded as a defensive compound produced to prevent herbivory. Caffeine is generally repellent to insects and often used to study the neurological basis for aversive responses in the model insect, Drosophila melanogaster. Caffeine is also studied for its stimulatory properties where sleep or drowsiness is suppressed across a range of species. Since limiting access to food also inhibits fly sleep-an effect known as starvation-induced sleep suppression-we tested whether aversion to caffeinated food results in reduced nutrient intake and assessed how this might influence fly studies on the stimulatory effects of caffeine. We measured sleep and total consumption during the first 24 hours of exposure to caffeinated diets containing a range of sucrose concentrations to determine the relative influence of caffeine and nutrient ingestion on sleep. Experiments were replicated using three fly strains. Caffeine reduced total consumption and nighttime sleep, but only at intermediate sucrose concentrations. Although sleep can be modeled by an exponential dose response to nutrient intake, caffeine-mediated sleep loss cannot be explained by absolute caffeine or sucrose ingestion alone. Instead, reduced sleep strongly correlates with changes in total consumption due to caffeine. Other bitter compounds phenocopy the effect of caffeine on sleep and food intake. Our results suggest that a major effect of dietary caffeine is on fly feeding behavior. Changes in feeding behavior may drive caffeine-mediated sleep loss. Future studies using psychoactive compounds should consider the potential impact of nutrition when investigating effects on sleep. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  12. The Effects of Caffeine on Athletic Performance

    ERIC Educational Resources Information Center

    McDaniel, Larry W.; McIntire, Kyle; Streitz, Carmyn; Jackson, Allen; Gaudet, Laura

    2010-01-01

    Athletes who use caffeine before exercising or competition may be upgrading themselves more than they realize. Caffeine is classified as a stimulant and is the most commonly used drug in the world. Caffeine has the same affects that amphetamines and cocaine have, just to a lesser degree. Caffeine crosses the membranes of all the body's tissues. It…

  13. The interoceptive Pavlovian stimulus effects of caffeine

    PubMed Central

    Murray, Jennifer E.; Li, Chia; Palmatier, Matthew I.

    2007-01-01

    The present research sought to test whether caffeine functioned as a Pavlovian cue in two ways—as a positive drug feature or as a conditional stimulus (CS). As a positive feature (Experiment 1), brief light presentations were followed by sucrose only on sessions in which caffeine (10 mg/kg) was administered. On intermixed saline sessions, light presentations were not followed by sucrose. The light came to control robust goal-tracking (i.e., conditioned responding) only in caffeine sessions. Thus, caffeine disambiguates when the light was paired with sucrose. Decreasing the dose of caffeine decreased the conditioned responding evoked by the light (ED50=4.16 mg/kg). Neither nicotine nor amphetamine substituted for the caffeine feature. As a CS, caffeine (10 or 30 mg/kg, Experiments 2a and 2b, respectively) signaled intermittent access to sucrose—no light presentations. No sucrose or lights were presented on intermixed saline sessions. The caffeine CS, regardless of training dose, acquired the ability to evoke only a weak goal-tracking CR. The nature of this dissociation between caffeine as a drug feature versus a CS is discussed within the context of past research finding a similar dissociation with amphetamine and chlordiazepoxide, but not with nicotine. PMID:17477964

  14. Acute Ingestion of Caffeinated Chewing Gum Improves Repeated Sprint Performance of Team Sport Athletes With Low Habitual Caffeine Consumption.

    PubMed

    Evans, Mark; Tierney, Peter; Gray, Nicola; Hawe, Greg; Macken, Maria; Egan, Brendan

    2018-04-23

    The effects of acute ingestion of caffeine on short-duration high-intensity performance are equivocal, while studies of novel modes of delivery and the efficacy of low doses of caffeine are warranted. The aims of the present study were to investigate the effect of acute ingestion of caffeinated chewing gum on repeated sprint performance (RSP) in team sport athletes, and whether habitual caffeine consumption alters the ergogenic effect, if any, on RSP. A total of 18 male team sport athletes undertook four RSP trials using a 40-m maximum shuttle run test, which incorporates 10 × 40-m sprints with 30 s between the start of each sprint. Each participant completed two familiarization sessions, followed by caffeine (CAF; caffeinated chewing gum; 200 mg caffeine) and placebo (PLA; noncaffeinated chewing gum) trials in a randomized, double-blind manner. RSP, assessed by sprint performance decrement (%), did not differ (p = .209; effect size = 0.16; N = 18) between CAF (5.00 ± 2.84%) and PLA (5.43 ± 2.68%). Secondary analysis revealed that low habitual caffeine consumers (<40 mg/day, n = 10) experienced an attenuation of sprint performance decrement during CAF relative to PLA (5.53 ± 3.12% vs. 6.53 ± 2.91%, respectively; p = .049; effect size = 0.33); an effect not observed in moderate/high habitual caffeine consumers (>130 mg/day, n = 6; 3.98 ± 2.57% vs. 3.80 ± 1.79%, respectively; p = .684; effect size = 0.08). The data suggest that a low dose of caffeine in the form of caffeinated chewing gum attenuates the sprint performance decrement during RSP by team sport athletes with low, but not moderate-to-high, habitual consumption of caffeine.

  15. Coffee, caffeine, and sleep: A systematic review of epidemiological studies and randomized controlled trials.

    PubMed

    Clark, Ian; Landolt, Hans Peter

    2017-02-01

    Caffeine is the most widely consumed psychoactive substance in the world. It is readily available in coffee and other foods and beverages, and is used to mitigate sleepiness, enhance performance, and treat apnea in premature infants. This review systematically explores evidence from epidemiological studies and randomized controlled trials as to whether coffee and caffeine have deleterious effects on sleep. Caffeine typically prolonged sleep latency, reduced total sleep time and sleep efficiency, and worsened perceived sleep quality. Slow-wave sleep and electroencephalographic (EEG) slow-wave activity were typically reduced, whereas stage-1, wakefulness, and arousals were increased. Dose- and timing-response relationships were established. The sleep of older adults may be more sensitive to caffeine compared to younger adults. Pronounced individual differences are also present in young people, and genetic studies isolated functional polymorphisms of genes implicated in adenosine neurotransmission and metabolism contributing to individual sensitivity to sleep disruption by caffeine. Most studies were conducted in male adults of Western countries, which limits the generalizability of the findings. Given the importance of good sleep for general health and functioning, longitudinal investigations aimed at establishing possible causal relationships among coffee- and caffeine-induced changes in sleep quality and health development are warranted. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Caffeine and the olfactory bulb.

    PubMed

    Hadfield, M G

    1997-08-01

    Caffeine, a popular CNS stimulant, is the most widely used neuroactive drug. Present in coffee, tea, chocolate, and soft drinks as well as over-the-counter and prescription medications, it influences millions of users. This agent has achieved recent notoriety because its dependency consequences and addictive potential have been re-examined and emphasized. Caffeine's central actions are thought to be mediated through adenosine (A) receptors and monoamine neurotransmitters. The present article suggests that the olfactory bulb (OB) may be an important site in the brain that is responsible for caffeine's central actions in several species. This conclusion is based on the extraordinarily robust and selective effects of caffeine on norepinephrine (NE), dopamine (DA), and particularly serotonin (5HT) utilization in the OB of mice. We believe that these phenomena should be given appropriate consideration as a basis for caffeine's central actions, even in primates. Concurrently, we review a rich rodent literature concerned with A, 5HT, NE, and DA receptors in the OB and related structures along with other monoamine parameters. We also review a more limited literature concerned with the primate OB. Finally, we cite the literature that treats the dependency and addictive effects of caffeine in humans, and relate the findings to possible olfactory mechanisms.

  17. Design, formulation and evaluation of caffeine chewing gum.

    PubMed

    Aslani, Abolfazl; Jalilian, Fatemeh

    2013-01-01

    Caffeine which exists in drinks such as coffee as well as in drug dosage forms in the global market is among the materials that increase alertness and decrease fatigue. Compared to other forms of caffeine, caffeine gum can create faster and more prominent effects. In this study, the main goal is to design a new formulation of caffeine gum with desirable taste and assess its physicochemical properties. Caffeine gum was prepared by softening of gum bases and then mixing with other formulation ingredients. To decrease the bitterness of caffeine, sugar, aspartame, liquid glucose, sorbitol, manitol, xylitol, and various flavors were used. Caffeine release from gum base was investigated by mechanical chewing set. Content uniformity test was also performed on the gums. The gums were evaluated in terms of organoleptic properties by the Latin-Square design at different stages. After making 22 formulations of caffeine gums, F11 from 20 mg caffeine gums and F22 from 50 mg caffeine gums were chosen as the best formulation in organoleptic properties. Both types of gum released about 90% of their own drug content after 30 min. Drug content of 20 and 50 mg caffeine gum was about 18.2-21.3 mg and 45.7-53.6 mg respectively. In this study, 20 and 50 mg caffeine gums with suitable and desirable properties (i.e., good taste and satisfactory release) were formulated. The best flavor for caffeine gum was cinnamon. Both kinds of 20 and 50 mg gums succeeded in content uniformity test.

  18. Design, formulation and evaluation of caffeine chewing gum

    PubMed Central

    Aslani, Abolfazl; Jalilian, Fatemeh

    2013-01-01

    Background: Caffeine which exists in drinks such as coffee as well as in drug dosage forms in the global market is among the materials that increase alertness and decrease fatigue. Compared to other forms of caffeine, caffeine gum can create faster and more prominent effects. In this study, the main goal is to design a new formulation of caffeine gum with desirable taste and assess its physicochemical properties. Materials and Methods: Caffeine gum was prepared by softening of gum bases and then mixing with other formulation ingredients. To decrease the bitterness of caffeine, sugar, aspartame, liquid glucose, sorbitol, manitol, xylitol, and various flavors were used. Caffeine release from gum base was investigated by mechanical chewing set. Content uniformity test was also performed on the gums. The gums were evaluated in terms of organoleptic properties by the Latin-Square design at different stages. Results: After making 22 formulations of caffeine gums, F11 from 20 mg caffeine gums and F22 from 50 mg caffeine gums were chosen as the best formulation in organoleptic properties. Both types of gum released about 90% of their own drug content after 30 min. Drug content of 20 and 50 mg caffeine gum was about 18.2-21.3 mg and 45.7-53.6 mg respectively. Conclusion: In this study, 20 and 50 mg caffeine gums with suitable and desirable properties (i.e., good taste and satisfactory release) were formulated. The best flavor for caffeine gum was cinnamon. Both kinds of 20 and 50 mg gums succeeded in content uniformity test. PMID:24223387

  19. Biphasic effects of oxotremorine-M on turning behavior induced by caffeine in 6-OHDA-lesioned rats.

    PubMed

    Núñez-Taltavull, Juan Francisco; Prat, Gemma; Rubio, Antonia; Robledo, Patricia; Casas, Miguel

    2004-12-03

    This work studied the interactions between cholinergic and adenosine systems in the denervated striatum. For that purpose, we evaluated the effects of an intrastriatal administration of the muscarincic receptor agonist, oxotremorine-M on turning behavior induced by systemic caffeine in unilaterally 6-hydroxydopamine-lesioned rats. Low doses of oxotremorine-M (0.1 ng/microl) enhanced, whereas high doses (100 ng/microl) attenuated contralateral turning induced by caffeine. These results support a functional link between muscarinic and adenosinergic systems in the denervated striatum and suggest opposite actions of muscarinic M2 and M1 receptors on caffeine-induced turning behavior.

  20. The neuroprotective effects of caffeine in neurodegenerative diseases.

    PubMed

    Kolahdouzan, Mahshad; Hamadeh, Mazen J

    2017-04-01

    Caffeine is the most widely used psychostimulant in Western countries, with antioxidant, anti-inflammatory and anti-apoptotic properties. In Alzheimer's disease (AD), caffeine is beneficial in both men and women, in humans and animals. Similar effects of caffeine were observed in men with Parkinson's disease (PD); however, the effect of caffeine in female PD patients is controversial due to caffeine's competition with estrogen for the estrogen-metabolizing enzyme, CYP1A2. Studies conducted in animal models of amyotrophic lateral sclerosis (ALS) showed protective effects of A 2 A R antagonism. A study found caffeine to be associated with earlier age of onset of Huntington's disease (HD) at intakes >190 mg/d, but studies in animal models have found equivocal results. Caffeine is protective in AD and PD at dosages equivalent to 3-5 mg/kg. However, further research is needed to investigate the effects of caffeine on PD in women. As well, the effects of caffeine in ALS, HD and Machado-Joseph disease need to be further investigated. Caffeine's most salient mechanisms of action relevant to neurodegenerative diseases need to be further explored. © 2017 John Wiley & Sons Ltd.

  1. Caffeine deprivation affects vigilance performance and mood.

    PubMed

    Lane, J D; Phillips-Bute, B G

    1998-08-01

    The effects of brief caffeine deprivation on vigilance performance, mood, and symptoms of caffeine withdrawal were studied in habitual coffee drinkers. Thirty male and female coffee drinkers were tested twice at midday (1130 to 1330 hours) after mornings in which they either consumed caffeinated beverages ad lib or abstained. Vigilance performance was tested with a 30-min computerized visual monitoring task. Mood and withdrawal symptom reports were collected by questionnaires. Caffeine deprivation was associated with impaired vigilance performance characterized by a reduction in the percentage of targets detected and an increase in response time, and by subjective reports of decreased vigor and increased fatigue and symptoms characterized by sleepiness, headache, and reduced ability to work. Even short periods of caffeine deprivation, equivalent in length to skipping regular morning coffee, can produce deficits in sustained attention and noticeable unpleasant caffeine-withdrawal symptoms in habitual coffee drinkers. Such symptoms may be a common side-effect of habitual caffeine consumption that contributes to the maintenance of this behavior.

  2. Anxiogenic effects of caffeine on panic and depressed patients.

    PubMed

    Lee, M A; Flegel, P; Greden, J F; Cameron, O G

    1988-05-01

    Caffeine increases anxiety in people with anxiety disorders. To determine whether caffeine exerts a similar effect in depression, the authors compared retrospective reports of caffeine intake and symptoms produced by caffeine ingestion in patients with panic disorder, patients with major depression, and control subjects. Panic patients consumed less caffeine and reported more symptoms than depressed or control subjects. Although depressed patients did not differ from control subjects in caffeine intake or most symptoms, more depressed patients reported that caffeine induced anxiety. These data support prior reports that panic patients have increased sensitivity to caffeine; some depressed patients may also have increased sensitivity.

  3. Hyperalgesia, low-anxiety, and impairment of avoidance learning in neonatal caffeine-treated rats.

    PubMed

    Pan, Hong-Zhen; Chen, Hwei-Hsien

    2007-03-01

    The nonselective adenosine receptor antagonist caffeine is used clinically to treat apnea in preterm infants. The brain developmental stage of preterm infants is usually at a period of rapid brain growth, referred as brain growth spurt, which occurs during early postnatal life in rats and is highly sensitive to central nervous system (CNS) acting drugs. The aim of this work was to study whether caffeine treatment during brain growth spurt produces long-term effects on the adenosine receptor-regulated behaviors including nociception, anxiety, learning, and memory. Neonatal male and female Sprague-Dawley rats were administered either deionized water or caffeine (15-20 mg kg(-1) day(-1)) through gavage (0.05 ml/10 g) over postnatal days (PN) 2-6. The hot-plate test, elevated plus-maze, dark-light transition test, and step-through inhibitory avoidance learning task were examined in juvenile rats. Furthermore, the responses to adenosine A(1) receptor agonist N(6)-cyclopentyladenosine (CPA)-induced hypothermia and A(2A) receptor agonist CGS21680-induced locomotor depression were also compared. Caffeine-treated rats showed hyperalgesia in hot-plate test, less anxiety than controls in the elevated plus-maze and dark-light transition, and impairment in step-through avoidance learning test. Moreover, the responses to CPA-induced hypothermia and CGS21680-induced locomotor depression were enhanced in caffeine-treated rats. These results indicate that caffeine exposure during brain growth spurt alters the adenosine receptor-regulated behaviors and the responsiveness to adenosine agonists, suggesting the risk of adenosine receptor-related behavioral dysfunction may exist in preterm newborns treated for apnea with caffeine.

  4. Caffeine enhances the speed of the recovery of the hypothalamo-pituitary-adrenocortical axis after chronic prednisolone administration in the rat.

    PubMed

    Marzouk, H F; Zuyderwijk, J; Uitterlinden, P; van Koetsveld, P; Blijd, J J; Abou-Hashim, E M; el-Kannishy, M H; de Jong, F H; Lamberts, S W

    1991-11-01

    Chronic administration of corticosteroids results in a suppression of the hypothalamo-pituitary-adrenocortical (HPA) axis. The time course of the recovery of the HPA axis depends on the dose and duration of corticosteroid administration. We investigated the recovery of the HPA axis after 14 days of prednisolone administration to rats at a dose of 2.0 mg/rat/day via the drinking water (188 mumol/l). The in vitro corticosterone production by dispersed adrenal cells in response to increasing concentrations of ACTH had recovered 3 days after stopping prednisolone administration. In parallel the initially suppressed plasma corticosterone concentrations had recovered after 3 days, while the pituitary ACTH content had recovered after 5 days. We investigated the possibility to enhance the speed of the recovery of the HPA axis by the simultaneous administration of two drugs with known CRF-stimulating activity via the drinking water. Caffeine in a dose of 100 mg/kg body weight enhanced the recovery of the prednisolone-suppressed HPA axis significantly. One day after the end of prednisolone administration a significant increase in the adrenal weight, in the corticosterone production by dispersed adrenal cells, as well as in the plasma corticosterone concentrations, and in the pituitary ACTH content was observed in the caffeine-treated rats. Chlorimipramine (20 mg/kg body weight), on the other hand, did not influence the prednisolone-mediated suppression of the HPA axis.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Caffeine and suicide: a systematic review.

    PubMed

    Silva, Adriana Cardoso; de Oliveira Ribeiro, Natalia Pinho; de Mello Schier, Alexandre Rafael; Pereira, Valeska Martinho; Vilarim, Marina Machado; Pessoa, Tamires Marinho; Arias-Carrión, Oscar; Machado, Sergio; Nardi, Antonio Egidio

    2014-01-01

    Suicide is considered a deliberate act initiated and concluded by a person with full knowledge or expectation of a fatal result, and one of the main symptoms of depression. An individual's conscious and excessive ingestion of a damaging substance is also considered to be an attempted suicide. Despite limited knowledge of caffeine abuse, deaths from overdose of caffeine have been reported in the literature. Thus, this study aims to review the existing literature on caffeine consumption and suicide attempts and deaths, investigating the relation between caffeine consumption and suicide attempts and deaths. We found 24 studies that discuss the relationship between caffeine and suicide. The findings revealed that, despite being an addictive substance and potentially fatal in higher doses, caffeine was still a rare factor in a number of studies concerning its relation with suicide attempts and death. The majority of the research found in this study was of the case study type. Furthermore, the majority of studies focus on the assistance offered to the victim and the procedures undertaken to control the bodily damage created. The existing studies indicate the substance may act as either a direct or an indirect agent in suicide. Therefore, a better understanding of how caffeine may be linked to suicide is crucial for its prevention.

  6. Caffeine enhanced measurement of mutagenesis by low levels of [gamma]-irradiation in human lymphocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puck, T.P.; Johnson, R.; Waldren, C.A.

    1993-09-01

    The well-known action of caffeine in synergizing mutagenesis (including chromosome aberrations) of agents like ionizing radiation by inhibition of cellular repair processes has been incorporated into a rapid procedure for detection of mutagenicity with high sensitivity. Effects of 5-10 rads of [gamma]-irradiation, which approximate the human lifetime dose accumulation from background radiation, can be detected in a two-day procedure using an immortalized human WBC culture. Chromosomally visible lesions are scored on cells incubated for 2 h after irradiation in the presence and absence of 1.0 mg/ml of caffeine. An eightfold amplification of scorable lesions is achieved over the action ofmore » radiation alone. This approach provides a closer approximation to absolute mutagenicity unmitigated by repair processes, which can vary in different situations. It is proposed that mutagenesis testing of this kind, using caffiene or other repair-inhibitory agents, be employed to identify mutagens in their effective concentrations to which human populations may be exposed; to detect agents such as caffeine that may synergize mutagenic actions and pose epidemiologic threats; and to discover effective anti-mutagens. Information derived from the use of such procedures may help prevent cancer and newly acquired genetic disease.« less

  7. HPLC determination of caffeine in coffee beverage

    NASA Astrophysics Data System (ADS)

    Fajara, B. E. P.; Susanti, H.

    2017-11-01

    Coffee is the second largest beverage which is consumed by people in the world, besides the water. One of the compounds which contained in coffee is caffeine. Caffeine has the pharmacological effect such as stimulating the central nervous system. The purpose of this study is to determine the level of caffeine in coffee beverages with HPLC method. Three branded coffee beverages which include in 3 of Top Brand Index 2016 Phase 2 were used as samples. Qualitative analysis was performed by Parry method, Dragendorff reagent, and comparing the retention time between sample and caffeine standard. Quantitative analysis was done by HPLC method with methanol-water (95:5v/v) as mobile phase and ODS as stationary phasewith flow rate 1 mL/min and UV 272 nm as the detector. The level of caffeine data was statistically analyzed using Anova at 95% confidence level. The Qualitative analysis showed that the three samples contained caffeine. The average of caffeine level in coffee bottles of X, Y, and Z were 138.048 mg/bottle, 109.699 mg/bottle, and 147.669 mg/bottle, respectively. The caffeine content of the three coffee beverage samples are statistically different (p<0.05). The levels of caffeine contained in X, Y, and Z coffee beverage samples were not meet the requirements set by the Indonesian Standard Agency of 50 mg/serving.

  8. What can isolated skeletal muscle experiments tell us about the effects of caffeine on exercise performance?

    PubMed Central

    Tallis, Jason; Duncan, Michael J; James, Rob S

    2015-01-01

    Caffeine is an increasingly popular nutritional supplement due to the legal, significant improvements in sporting performance that it has been documented to elicit, with minimal side effects. Therefore, the effects of caffeine on human performance continue to be a popular area of research as we strive to improve our understanding of this drug and make more precise recommendations for its use in sport. Although variations in exercise intensity seems to affect its ergogenic benefits, it is largely thought that caffeine can induce significant improvements in endurance, power and strength-based activities. There are a number of limitations to testing caffeine-induced effects on human performance that can be better controlled when investigating its effects on isolated muscles under in vitro conditions. The hydrophobic nature of caffeine results in a post-digestion distribution to all tissues of the body making it difficult to accurately quantify its key mechanism of action. This review considers the contribution of evidence from isolated muscle studies to our understating of the direct effects of caffeine on muscle during human performance. The body of in vitro evidence presented suggests that caffeine can directly potentiate skeletal muscle force, work and power, which may be important contributors to the performance-enhancing effects seen in humans. PMID:25988508

  9. (-)-Epigallocatechin-3-O-gallate (EGCG) attenuates the hemodynamics stimulated by caffeine through decrease of catecholamines release.

    PubMed

    Han, Jin-Yi; Moon, Yong-Jin; Han, Jong-Hyun; Kim, Jong-Hoon; Woo, Jae-Hoon; Yoo, Hwan-Soo; Hong, Jin Tae; Ahn, Hee-Yul; Hong, Jong-Myeon; Oh, Ki-Wan

    2016-09-01

    A human study of the effects on hemodynamics of caffeine and epigallocatechin-3-O-gallate (EGCG) was performed. Caffeine tablets (200 mg) were orally administered to healthy males aged between 25 and 35 years 30 min after oral administration of EGCG tablets (100 and 200 mg). The increase in BP induced by caffeine was inhibited when co-administrated with EGCG. We found that caffeine slightly decreased heart rate (HR) in the volunteers. Although EGCG enhanced HR reduction, the effect was not significant. In addition, caffeine increased blood catecholamine levels, but EGCG inhibited the increase in noradrenaline, adrenaline and dopamine levels induced by caffeine. Whether EGCG decreases the elevated HR and systolic perfusion pressure, and ventricular contractility induced by adrenergic agonists in the isolated rat heart was investigated. The modified Krebs-Henseleit solution was perfused through a Langendorff apparatus to the isolated hearts of rats. HR, systolic perfusion pressure, and developed maximal rates of contraction (+dP/dtmax) and relaxation (-dP/dtmax) were increased by epinephrine (EP) and isoproterenol (IP). In contrast, EGCG decreased the elevated HR, systolic perfusion pressure, and left ventricular ±dp/dtmax induced by EP and/or IP. In conclusion, EGCG could attenuate the hemodynamics stimulated by caffeine through decreasing catecholamine release.

  10. Transfer of Nicotine, Cotinine and Caffeine Into Breast Milk in a Smoker Mother Consuming Caffeinated Drinks.

    PubMed

    Calvaresi, Valeria; Escuder, Diana; Minutillo, Adele; Bastons-Compta, Adriana; García-Algar, Oscar; Pallás Alonso, Carmen Rosa; Pacifici, Roberta; Pichini, Simona

    2016-07-01

    Although the habits of cigarette smoking and associated coffee drinking are generally ceased during pregnancy, they are often reinitiated after delivery when the breastfeeding period starts. This is a case report of a 32-year-old lactating smoker mother who consumed caffeinated drinks and who agreed to donate breast milk after smoking one cigarette (containing 0.6 mg of nicotine) and drinking one cup of espresso (containing 80 mg of caffeine) for an investigation of the excretion of nicotine, its major metabolite cotinine and caffeine into the breast milk and subsequent transfer to the infant. Nicotine and its metabolite cotinine peaked in the breast milk at 0.5 h after the cigarette smoking, and caffeine peaked 2 h after drinking coffee. Moreover, the nicotine disappeared from the milk by 3 h, the caffeine required 24 h and the cotinine required 72 h. The relative infant doses of caffeine, nicotine and cotinine were found to be 8.9, 12.8 and 77.6%, respectively. In the light of these results obtained after the mother smoked only one cigarette and consumed one cup of espresso, if a lactating mother cannot refrain from smoking cigarettes, she should extend the time between the last smoked cigarette and breastfeeding to at least 3 h when the nicotine has been completely eliminated from the milk. Similarly, nursing mothers should also drink coffee sparingly and immediately after nursing and avoid coffee or caffeinated beverages for at least 4 h prior to breastfeeding to minimize the infant's exposure to caffeine. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Energy drinks and the neurophysiological impact of caffeine.

    PubMed

    Persad, Leeana Aarthi Bagwath

    2011-01-01

    Caffeine is the most widely used psychoactive stimulant with prevalent use across all age groups. It is a naturally occurring substance found in the coffee bean, tea leaf, the kola nut, cocoa bean. Recently there has been an increase in energy drink consumption leading to caffeine abuse, with aggressive marketing and poor awareness on the consequences of high caffeine use. With caffeine consumption being so common, it is vital to know the impact caffeine has on the body, as its effects can influence cardio-respiratory, endocrine, and perhaps most importantly neurological systems. Detrimental effects have being described especially since an over consumption of caffeine has being noted. This review focuses on the neurophysiological impact of caffeine and its biochemical pathways in the human body.

  12. Energy Drinks and the Neurophysiological Impact of Caffeine

    PubMed Central

    Persad, Leeana Aarthi Bagwath

    2011-01-01

    Caffeine is the most widely used psychoactive stimulant with prevalent use across all age groups. It is a naturally occurring substance found in the coffee bean, tea leaf, the kola nut, cocoa bean. Recently there has been an increase in energy drink consumption leading to caffeine abuse, with aggressive marketing and poor awareness on the consequences of high caffeine use. With caffeine consumption being so common, it is vital to know the impact caffeine has on the body, as its effects can influence cardio-respiratory, endocrine, and perhaps most importantly neurological systems. Detrimental effects have being described especially since an over consumption of caffeine has being noted. This review focuses on the neurophysiological impact of caffeine and its biochemical pathways in the human body. PMID:22025909

  13. An evaluation of a caffeinated taurine drink on mood, memory and information processing in healthy volunteers without caffeine abstinence.

    PubMed

    Warburton, D M; Bersellini, E; Sweeney, E

    2001-11-01

    Caffeine is present in a wide variety of beverages, often together with a number of other ingredients, such as sugars, taurine, glucuronolactone and vitamins. However, the majority of psychopharmacological studies have used pure caffeine tablets or drinks with doses in excess of those normally consumed in daily life. In addition, all the participants are usually deprived of caffeine for 10 h or more before the study. Consequently, it has been argued that any improvement in performance is only due to a reversal of caffeine withdrawal. The present two studies tested participants who had minimal deprivation from caffeine (an hour or less) with an 80-mg caffeinated (80 mg/250 ml), taurine-containing beverage (commercially available) verum, which also contained sugars, glucuronolactone and vitamins. The placebos in the two studies were a sugar-free and a sugar-containing drink, in order to examine the effects of the sugar. In total, 42 participants were tested with a rapid visual information test, a verbal reasoning test, a verbal and non-verbal memory test and a set of mood measures. Prior to testing, they were allowed ad libitum caffeinated beverages until 1 h before testing (study 1) and unrestricted caffeine use before testing (study 2). In both studies, the caffeinated, taurine-containing beverage produced improved attention and verbal reasoning, in comparison with a sugar-free and the sugar-containing drinks. The improvement with the verum drink was manifested in terms of both the mean number correct and the reaction times. Another important finding was the reduction in the variability of attentional performance between participants. No effects on memory were found. There were no differences in performance between the glucose and sugar-free drinks. Moderate doses of caffeine and taurine can improve information processing in individuals who could not have been in caffeine withdrawal.

  14. Improved Exercise Tolerance with Caffeine Is Associated with Modulation of both Peripheral and Central Neural Processes in Human Participants.

    PubMed

    Bowtell, Joanna L; Mohr, Magni; Fulford, Jonathan; Jackman, Sarah R; Ermidis, Georgios; Krustrup, Peter; Mileva, Katya N

    2018-01-01

    Caffeine has been shown to enhance exercise performance and capacity. The mechanisms remain unclear but are suggested to relate to adenosine receptor antagonism, resulting in increased central motor drive, reduced perception of effort, and altered peripheral processes such as enhanced calcium handling and extracellular potassium regulation. Our aims were to investigate how caffeine (i) affects knee extensor PCr kinetics and pH during repeated sets of single-leg knee extensor exercise to task failure and (ii) modulates the interplay between central and peripheral neural processes. We hypothesized that the caffeine-induced extension of exercise capacity during repeated sets of exercise would occur despite greater disturbance of the muscle milieu due to enhanced peripheral and corticospinal excitatory output, central motor drive, and muscle contractility. Nine healthy active young men performed five sets of intense single-leg knee extensor exercise to task failure on four separate occasions: for two visits (6 mg·kg -1 caffeine vs placebo), quadriceps 31 P-magnetic resonance spectroscopy scans were performed to quantify phosphocreatine kinetics and pH, and for the remaining two visits (6 mg·kg -1 caffeine vs placebo), femoral nerve electrical and transcranial magnetic stimulation of the quadriceps cortical motor area were applied pre- and post exercise. The total exercise time was 17.9 ± 6.0% longer in the caffeine (1,225 ± 86 s) than in the placebo trial (1,049 ± 73 s, p  = 0.016), and muscle phosphocreatine concentration and pH ( p < 0.05) were significantly lower in the latter sets of exercise after caffeine ingestion. Voluntary activation (VA) (peripheral, p  = 0.007; but not supraspinal, p  = 0.074), motor-evoked potential (MEP) amplitude ( p  = 0.007), and contractility (contraction time, p  = 0.009; and relaxation rate, p  = 0.003) were significantly higher after caffeine consumption, but at task failure MEP

  15. Associations of Urinary Caffeine and Caffeine Metabolites With Arterial Stiffness in a Large Population-Based Study.

    PubMed

    Ponte, Belen; Pruijm, Menno; Ackermann, Daniel; Ehret, Georg; Ansermot, Nicolas; Staessen, Jan A; Vogt, Bruno; Pechère-Bertschi, Antoinette; Burnier, Michel; Martin, Pierre-Yves; Eap, Chin B; Bochud, Murielle; Guessous, Idris

    2018-05-01

    To assess the influence of caffeine on arterial stiffness by exploring the association of urinary excretion of caffeine and its related metabolites with pulse pressure (PP) and pulse wave velocity (PWV). Families were randomly selected from the general population of 3 Swiss cities from November 25, 2009, through April 4, 2013. Pulse pressure was defined as the difference between the systolic and diastolic blood pressures obtained by 24-hour ambulatory monitoring. Carotid-femoral PWV was determined by applanation tonometry. Urinary caffeine, paraxanthine, theophylline, and theobromine excretions were measured in 24-hour urine collections. Multivariate linear and logistic mixed models were used to explore the associations of quartiles of urinary caffeine and metabolite excretions with PP, high PP, and PWV. We included 863 participants with a mean ± SD age of 47.1±17.6 years, 24-hour PP of 41.9±9.2 mm Hg, and PWV of 8.0±2.3 m/s. Mean (SE) brachial PP decreased from 43.5 (0.5) to 40.5 (0.6) mm Hg from the lowest to the highest quartiles of 24-hour urinary caffeine excretion (P<.001). The odds ratio (95% CI) of high PP decreased linearly from 1.0 to 0.52 (0.31-0.89), 0.38 (0.22-0.65), and 0.31 (0.18-0.55) from the lowest to the highest quartile of 24-hour urinary caffeine excretion (P<.001). Mean (SE) PWV in the highest caffeine excretion quartile was significantly lower than in the lowest quartile (7.8 [0.1] vs 8.1 [0.1] m/s; P=.03). Similar associations were found for paraxanthine and theophylline, whereas no associations were found with theobromine. Urinary caffeine, paraxanthine, and theophylline excretions were associated with decreased parameters of arterial stiffness, suggesting a protective effect of caffeine intake beyond its blood pressure-lowering effect. Copyright © 2017 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  16. Towards generating caffeine-free tea by metabolic engineering.

    PubMed

    Yadav, Sudesh Kumar; Ahuja, Paramvir Singh

    2007-12-01

    Tea is a rich source of antioxidants which are contributing substantially to the promotion of health and the prevention of various chronic diseases. Despite the fact that tea has various important compounds, it also contains a purine alkaloid, caffeine. High intake of tea leads to an increase in level of caffeine in addition to its important antioxidant constituents. Increased level of caffeine causes several health related problems. Therefore, tea can become a most useful source of beneficial compounds, if only its caffeine level is either decreased or eliminated all together from the plant itself. This could be achieved through either of the techniques; overexpressing caffeine degradative pathway genes or silencing caffeine biosynthesis pathway gene. The identification and cloning of caffeine biosynthesis in tea and degradative genes in microorganisms opens up the possibility of using genetic engineering to produce naturally decaffeinated tea. Here we review these different strategies which can be employed to make caffeine-free tea, a human health beneficial drink.

  17. Caffeine reduces dipyridamole-induced myocardial ischemia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smits, P.; Aengevaeren, W.R.; Corstens, F.H.

    1989-10-01

    The mechanism of action of coronary vasodilation after dipyridamole may be based on inhibition of cellular uptake of circulating endogenous adenosine. Since caffeine has been reported to be a competitive antagonist of adenosine we studied the effect of caffeine on the outcome of dipiridamole-{sup 201}Tl cardiac imaging in one patient. During caffeine abstinence dipyridamole induced myocardial ischemia with down-slope ST depressions on the ECG, and reversible perfusion defects on the scintigrams. When the test was repeated 1 wk later on similar conditions, but now shortly after infusion of caffeine (4 mg/kg), the ECG showed nodepressions, and the scintigrams only slightmore » signs of ischemia. We conclude that when caffeine abstinence is not sufficient, the widespread use of coffee and related products may be responsible for false-negative findings in dipyridamole-201Tl cardiac imaging.« less

  18. Creatine and Caffeine: Considerations for Concurrent Supplementation.

    PubMed

    Trexler, Eric T; Smith-Ryan, Abbie E

    2015-12-01

    Nutritional supplementation is a common practice among athletes, with creatine and caffeine among the most commonly used ergogenic aids. Hundreds of studies have investigated the ergogenic potential of creatine supplementation, with consistent improvements in strength and power reported for exercise bouts of short duration (≤ 30 s) and high intensity. Caffeine has been shown to improve endurance exercise performance, but results are mixed in the context of strength and sprint performance. Further, there is conflicting evidence from studies comparing the ergogenic effects of coffee and caffeine anhydrous supplementation. Previous research has identified independent mechanisms by which creatine and caffeine may improve strength and sprint performance, leading to the formulation of multi-ingredient supplements containing both ingredients. Although scarce, research has suggested that caffeine ingestion may blunt the ergogenic effect of creatine. While a pharmacokinetic interaction is unlikely, authors have suggested that this effect may be explained by opposing effects on muscle relaxation time or gastrointestinal side effects from simultaneous consumption. The current review aims to evaluate the ergogenic potential of creatine and caffeine in the context of high-intensity exercise. Research directly comparing coffee and caffeine anhydrous is discussed, along with previous studies evaluating the concurrent supplementation of creatine and caffeine.

  19. Effects of Caffeine on Crayfish Muscle Fibers

    PubMed Central

    Chiarandini, Dante J.; Reuben, John P.; Brandt, Philip W.; Grundfest, Harry

    1970-01-01

    Contractions are evoked in single muscle fibers of crayfish by intracellular as well as extracellular applications of caffeine. Responses to external applications in concentrations above 2 mM could be induced indefinitely. With concentrations above 5 mM the caffeine-induced responses were highly repeatable. Tensions were transient even when the caffeine remained in the bath. There was no change in resting potential, but during the contraction the effective resistance decreased about 10%. A number of factors (change in pH, Ca, K, and Cl) modified the responses. The time course of the tension was greatly prolonged when the transverse tubular system (TTS) was s swollen and was again shortened when the TTS was caused to shrink. An increased permeability to Ca induced by caffeine was evidenced by the transformation of the normally graded electrical responses to Ca spikes, which are insensitive to tetrodotoxin. The overshoot is a function of both external Ca and caffeine. A 10-fold change in Ca changed the overshoot by 19 mv in the presence of 10 mM caffeine and by 29 mv in 80 mM caffeine. The role of the increased permeability to Ca for caffeine-induced contractions will be analyzed in the accompanying paper. PMID:5443468

  20. Systematic review of randomised controlled trials of the effects of caffeine or caffeinated drinks on blood glucose concentrations and insulin sensitivity in people with diabetes mellitus.

    PubMed

    Whitehead, N; White, H

    2013-04-01

    Compounds other than macronutrients have been shown to influence blood glucose concentrations and insulin sensitivity in people with diabetes, with caffeine being one such substance. The present study systematically reviewed the evidence of the effects of caffeine on blood glucose concentrations and/or insulin sensitivity in people with diabetes. Four databases, including MEDLINE and EMBASE, were searched up to 1 February 2012. Randomised controlled trials (RCTs) investigating the effects of caffeine on blood glucose and/or insulin sensitivity in humans, diagnosed with type I, type II or gestational diabetes mellitus (GDM), were included. Quality assessment and data extraction were conducted and agreed by both authors. Of 253 articles retrieved, nine trials (134 participants) were identified. Trials in people with type II diabetes demonstrated that the ingestion of caffeine (approximately 200-500 mg) significantly increased blood glucose concentrations by 16-28% of the area under the curve (AUC) and insulin concentrations by 19-48% of the AUC when taken prior to a glucose load, at the same time as decreasing insulin sensitivity by 14-37%. In type I diabetes, trials indicated enhanced recognition and a reduced duration of hypoglycaemic episodes following ingestion of 400-500 mg caffeine, without altering glycated haemoglobin. In GDM, a single trial demonstrated that approximately 200 mg of caffeine induced a decrease in insulin sensitivity by 18% and a subsequent increase in blood glucose concentrations by 19% of the AUC. Evidence indicates a negative effect of caffeine intake on blood glucose control in individuals with type II diabetes, as replicated in a single trial in GDM. Larger-scale RCTs of longer duration are needed to determine the effects of timing and dose. Early indications of a reduced duration and an improved awareness of hypoglycaemia in type I diabetes require further confirmation. © 2013 The Authors Journal of Human Nutrition and Dietetics

  1. Concentration- and age-dependent effects of chronic caffeine on contextual fear conditioning in C57BL/6J mice

    PubMed Central

    Poole, Rachel L.; Braak, David; Gould, Thomas J.

    2015-01-01

    Chronic caffeine exerts negligible effects on learning and memory in normal adults, but it is unknown whether this is also true for children and adolescents. The hippocampus, a brain region important for learning and memory, undergoes extensive structural and functional modifications during pre-adolescence and adolescence. As a result, chronic caffeine may have differential effects on hippocampus-dependent learning in pre-adolescents and adolescents compared with adults. Here, we characterized the effects of chronic caffeine and withdrawal from chronic caffeine on hippocampus-dependent (contextual) and hippocampus-independent (cued) fear conditioning in pre-adolescent, adolescent, and adult mice. The results indicate that chronic exposure to caffeine during pre-adolescence and adolescence enhances or impairs contextual conditioning depending on concentration, yet has no effect on cued conditioning. In contrast, withdrawal from chronic caffeine impairs contextual conditioning in pre-adolescent mice only. No changes in learning were seen for adult mice for either the chronic caffeine or withdrawal conditions. These findings support the hypothesis that chronic exposure to caffeine during pre-adolescence and adolescence can alter learning and memory and as changes were only seen in hippocampus-dependent learning, this suggests that the developing hippocampus may be sensitive to the effects of caffeine. PMID:25827925

  2. Caffeine impairs the acquisition and retention, but not the consolidation of Pavlovian conditioned freezing in mice

    PubMed Central

    Dubroqua, Sylvain; Low, Samuel R.L.; Yee, Benjamin K.; Singer, Philipp

    2014-01-01

    Rationale The psychoactive substance, caffeine may improve cognitive performance, but its direct impact on learning and memory remains ill-defined. Conflicting reports suggest that caffeine may impair as well as enhance Pavlovian fear conditioning in animals, and its effect may vary across different phases of learning. Objectives To dissect the effect of a motor-stimulant dose of caffeine (30 mg/kg i.p.) on acquisition, retrieval or consolidation of conditioned fear in C57BL/6 mice. Methods Fear conditioning was evaluated in a conditioned freezing paradigm comprising 3 tone-shock pairings and a two-way active avoidance paradigm lasting two consecutive days with 80 conditioning trials per test session. Results Conditioning to both the discrete tone conditioned stimulus (CS) and the context was markedly impaired by caffeine. The deficits were similarly evident when caffeine was administered prior to acquisition or retrieval (48 and 72 h after conditioning); and the most severe impairment was seen in animals given caffeine before acquisition and before retrieval. A comparable deficit was observed in the conditioned active avoidance test. By contrast, caffeine administered immediately following acquisition neither affected the expression of tone freezing nor context freezing. Conclusions The present study challenges the previous report that caffeine primarily disrupts hippocampus-dependent conditioning to the context. At the relevant dose range, acute caffeine likely exerts more widespread impacts beyond the hippocampus, including amygdala and striatum that are anatomically connected to the hippocampus; and together they support the acquisition and retention of fear memories to discrete stimuli as well as diffused contextual cues. PMID:25172668

  3. Caffeine-containing energy drink improves physical performance of elite rugby players during a simulated match.

    PubMed

    Del Coso, Juan; Ramírez, Juan A; Muñoz, Gloria; Portillo, Javier; Gonzalez-Millán, Cristina; Muñoz, Víctor; Barbero-Álvarez, José C; Muñoz-Guerra, Jesús

    2013-04-01

    The purpose of this study was to investigate the effectiveness of a caffeine-containing energy drink in enhancing rugby players' physical performance during a simulated match. A second purpose was to determine the urinary caffeine excretion derived from the energy drink intake. In a randomized and counterbalanced order, 26 elite rugby players (mean ± SD for age and body mass, 25 ± 2 y and 93 ± 15 kg) played 2 simulated rugby games (2 × 30 min) 60 min after ingesting (i) 3 mg of caffeine per kilogram of body mass in the form of an energy drink (Fure, ProEnergetics) or (ii) the same drink without caffeine (placebo). During the matches, the individual running distance and the instantaneous speed were measured, and the number of running actions above 20 km·h(-1) (i.e., sprints) were determined, using global positioning system devices. The number of impacts above 5 g during the matches was determined by accelerometry. The ingestion of the energy drink, compared with the placebo, increased the total distance covered during the match (4749 ± 589 vs 5139 ± 475 m, p < 0.05), the running distance covered at more than 20 km·h(-1) (184 ± 38 vs 208 ± 38 m, p < 0.05), and the number of sprints (10 ± 7 vs 12 ± 7, p < 0.05). The ingestion of the energy drink also resulted in a greater overall number of impacts (481 ± 352 vs 641 ± 366, p < 0.05) and a higher postexercise urine caffeine concentration (0.1 ± 0.1 vs 2.4 ± 0.9 μg·mL(-1), p < 0.05). The use of an energy drink with a caffeine dose equivalent to 3 mg·kg(-1) considerably enhanced the movement patterns of rugby players during a simulated match.

  4. The metabolic and performance effects of caffeine compared to coffee during endurance exercise.

    PubMed

    Hodgson, Adrian B; Randell, Rebecca K; Jeukendrup, Asker E

    2013-01-01

    There is consistent evidence supporting the ergogenic effects of caffeine for endurance based exercise. However, whether caffeine ingested through coffee has the same effects is still subject to debate. The primary aim of the study was to investigate the performance enhancing effects of caffeine and coffee using a time trial performance test, while also investigating the metabolic effects of caffeine and coffee. In a single-blind, crossover, randomised counter-balanced study design, eight trained male cyclists/triathletes (Mean ± SD: Age 41 ± 7 y, Height 1.80 ± 0.04 m, Weight 78.9 ± 4.1 kg, VO2 max 58 ± 3 ml • kg(-1) • min(-1)) completed 30 min of steady-state (SS) cycling at approximately 55% VO2max followed by a 45 min energy based target time trial (TT). One hour prior to exercise each athlete consumed drinks consisting of caffeine (5 mg CAF/kg BW), instant coffee (5 mg CAF/kg BW), instant decaffeinated coffee or placebo. The set workloads produced similar relative exercise intensities during the SS for all drinks, with no observed difference in carbohydrate or fat oxidation. Performance times during the TT were significantly faster (~5.0%) for both caffeine and coffee when compared to placebo and decaf (38.35 ± 1.53, 38.27 ± 1.80, 40.23 ± 1.98, 40.31 ± 1.22 min respectively, p<0.05). The significantly faster performance times were similar for both caffeine and coffee. Average power for caffeine and coffee during the TT was significantly greater when compared to placebo and decaf (294 ± 21 W, 291 ± 22 W, 277 ± 14 W, 276 ± 23 W respectively, p<0.05). No significant differences were observed between placebo and decaf during the TT. The present study illustrates that both caffeine (5 mg/kg/BW) and coffee (5 mg/kg/BW) consumed 1 h prior to exercise can improve endurance exercise performance.

  5. The Metabolic and Performance Effects of Caffeine Compared to Coffee during Endurance Exercise

    PubMed Central

    Hodgson, Adrian B.; Randell, Rebecca K.; Jeukendrup, Asker E.

    2013-01-01

    There is consistent evidence supporting the ergogenic effects of caffeine for endurance based exercise. However, whether caffeine ingested through coffee has the same effects is still subject to debate. The primary aim of the study was to investigate the performance enhancing effects of caffeine and coffee using a time trial performance test, while also investigating the metabolic effects of caffeine and coffee. In a single-blind, crossover, randomised counter-balanced study design, eight trained male cyclists/triathletes (Mean±SD: Age 41±7y, Height 1.80±0.04 m, Weight 78.9±4.1 kg, VO2 max 58±3 ml•kg−1•min−1) completed 30 min of steady-state (SS) cycling at approximately 55% VO2max followed by a 45 min energy based target time trial (TT). One hour prior to exercise each athlete consumed drinks consisting of caffeine (5 mg CAF/kg BW), instant coffee (5 mg CAF/kg BW), instant decaffeinated coffee or placebo. The set workloads produced similar relative exercise intensities during the SS for all drinks, with no observed difference in carbohydrate or fat oxidation. Performance times during the TT were significantly faster (∼5.0%) for both caffeine and coffee when compared to placebo and decaf (38.35±1.53, 38.27±1.80, 40.23±1.98, 40.31±1.22 min respectively, p<0.05). The significantly faster performance times were similar for both caffeine and coffee. Average power for caffeine and coffee during the TT was significantly greater when compared to placebo and decaf (294±21 W, 291±22 W, 277±14 W, 276±23 W respectively, p<0.05). No significant differences were observed between placebo and decaf during the TT. The present study illustrates that both caffeine (5 mg/kg/BW) and coffee (5 mg/kg/BW) consumed 1 h prior to exercise can improve endurance exercise performance. PMID:23573201

  6. Association of the Anxiogenic and Alerting Effects of Caffeine with ADORA2A and ADORA1 Polymorphisms and Habitual Level of Caffeine Consumption

    PubMed Central

    Rogers, Peter J; Hohoff, Christa; Heatherley, Susan V; Mullings, Emma L; Maxfield, Peter J; Evershed, Richard P; Deckert, Jürgen; Nutt, David J

    2010-01-01

    Caffeine, a widely consumed adenosine A1 and A2A receptor antagonist, is valued as a psychostimulant, but it is also anxiogenic. An association between a variant within the ADORA2A gene (rs5751876) and caffeine-induced anxiety has been reported for individuals who habitually consume little caffeine. This study investigated whether this single nucleotide polymorphism (SNP) might also affect habitual caffeine intake, and whether habitual intake might moderate the anxiogenic effect of caffeine. Participants were 162 non-/low (NL) and 217 medium/high (MH) caffeine consumers. In a randomized, double-blind, parallel groups design they rated anxiety, alertness, and headache before and after 100 mg caffeine and again after another 150 mg caffeine given 90 min later, or after placebo on both occasions. Caffeine intake was prohibited for 16 h before the first dose of caffeine/placebo. Results showed greater susceptibility to caffeine-induced anxiety, but not lower habitual caffeine intake (indeed coffee intake was higher), in the rs5751876 TT genotype group, and a reduced anxiety response in MH vs NL participants irrespective of genotype. Apart from the almost completely linked ADORA2A SNP rs3761422, no other of eight ADORA2A and seven ADORA1 SNPs studied were found to be clearly associated with effects of caffeine on anxiety, alertness, or headache. Placebo administration in MH participants decreased alertness and increased headache. Caffeine did not increase alertness in NL participants. With frequent consumption, substantial tolerance develops to the anxiogenic effect of caffeine, even in genetically susceptible individuals, but no net benefit for alertness is gained, as caffeine abstinence reduces alertness and consumption merely returns it to baseline. PMID:20520601

  7. The effects of caffeine on the cholinergic system.

    PubMed

    Pohanka, Miroslav

    2014-01-01

    Caffeine is a secondary metabolite of tea and coffee plants. It is the active psychostimulant ingredient of widely consumed beverages, chocolate and some drugs as well. The major pathways for caffeine including interaction with adenosine receptors have been identified but caffeine has several minor pathways as well that remain poorly understood including the cholinergic system. Given the role of caffeine in the cholinergic system, some molecular targets have been tracked and a mechanism of its action has been proposed in research studies. However, the biological effect of caffeine on the cholinergic system is not completely understood. The present review focuses on the role of caffeine in the cholinergic system.

  8. Genetic tests in mice of caffeine alone and in combination with mutagens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thayer, P.S.; Kensler, C.J.

    1973-06-01

    The possible mutagenicity of caffeine was studied in mice by the dominant-lethal method, in three experiments. Male mice were given caffeine in drinking water for 8 weeks at 3.6, 13.4, 49, and 122 mg/kg/day (comparable to human consumption of 2.8 to 95 cups of coffee per day). Subsequent mating of each of six males from each group to five females per week for 8 weeks showed no significant increase in dominant-lethal mutations (embryonic deaths) whether expressed as early deaths per pregnant female or as mutation index. Although males consuming the two higher levels of caffeine produced fewer pregnancies, litter sizesmore » of females giving birth were not reduced. Single ip injections of caffeine (15 mg/kg) were given to groups of male mice prior to, subsequent to, and immediately at the time of receiving x-rays (100 R). Each of five males from each group was mated to five females per week for 7 weeks. Embryonic deaths did not show any enhancing effect of caffeine on the mutagenicity produced by the irradiation. Three groups of male mice ingested caffeine in water for 16 weeks at levels of 0, 4, and 13 mg/kg/day. Subgroups of five from each group were given either: no further treatment, a single dose of triethylene melamine at 0.2 mg/kg, or 100 R of x ray, and mated for 7 weeks as above. Fertility and litter size were not affected by the caffeine pretreatment, nor did it modify the induction of dominant-lethal mutations by triethylene melamine or x rays. Litter sizes showed no significant preimplantation losses in any experiment. Thus, under the conditions described herein and at the doses employed (higher than human exposure), there was no evidence for the mutagenicity of caffeine or the inhibition of DNA repair mechanisms in these mammalian systems. (auth)« less

  9. Effects of Caffeine Supplementation on Plasma and Blood Mononuclear Cell Interleukin-10 Levels After Exercise.

    PubMed

    Tauler, Pedro; Martinez, Sonia; Martinez, Pau; Lozano, Leticia; Moreno, Carlos; Aguiló, Antoni

    2016-02-01

    This study compared the response of interleukin (IL)-10, and also of IL-6 and IL-12 p40, to exercise and caffeine supplementation between plasma and blood mononuclear cells (BMNCs). Participants in the study (n = 28) were randomly allocated in a double-blind fashion to either caffeine (n = 14) or placebo (n = 14) treatments. One hour before completing a 15-km run competition, athletes took 6 mg/kg body mass of caffeine or a placebo. Plasma and BMNCs were purified from blood samples taken before and after competition. Concentrations of interleukins (IL-10, IL-6, and IL-12 p40), cyclic adenosine monophosphate (cAMP), caffeine, adrenaline, and cortisol were measured in plasma. IL-10, IL-6, and IL-12 p40 and cAMP levels were also determined in BMNCs. Exercise induced significant increases in IL-6 and IL-10 plasma levels, with higher increases in the caffeine-supplemented group. After 2-hr recovery, these levels returned to almost preexercise values. However, no effect of caffeine on BMNC cytokines was observed. IL-10, IL-6, and IL-12 p40 levels in BMNCs increased mainly at 2 hr postexercise. cAMP levels increased postexercise in plasma and after recovery in BMNCs, but no effects of caffeine were observed. In conclusion, caffeine did not modify cytokine levels in BMNCs in response to exercise. However, higher increases of IL-10 were observed in plasma after exercise in the supplemented participants, which could suppose an enhancement of the anti-inflammatory properties of exercise.

  10. Simultaneous Determination of Caffeine and Vitamin B6 in Energy Drinks by High-Performance Liquid Chromatography (HPLC)

    ERIC Educational Resources Information Center

    Leacock, Rachel E.; Stankus, John J.; Davis, Julian M.

    2011-01-01

    A high-performance liquid chromatography experiment to determine the concentration of caffeine and vitamin B6 in sports energy drinks has been developed. This laboratory activity, which is appropriate for an upper-level instrumental analysis course, illustrates the standard addition method and simultaneous determination of two species. (Contains 1…

  11. Caffeine and diphenyl diselenide improve long-term memory impaired in middle-aged rats.

    PubMed

    Leite, Marlon R; Marcondes Sari, Marcel Henrique; de Freitas, Mayara L; Oliveira, Lia P; Dalmolin, Laíza; Brandão, Ricardo; Zeni, Gilson

    2014-05-01

    The aim of the present study was to evaluate the effects of diphenyl diselenide (PhSe)2 supplemented diet (10ppm) associated to the administration of caffeine (15mg/kg; i.g.) for 30days on the novel object recognition memory in middle-aged rats. The present findings showed that (PhSe)2-supplemented diet enhanced short-term memory, but not long-term memory, of middle-aged rats in the novel object recognition task. The (PhSe)2 supplemented diet associated with caffeine administration improved long-term memory, but did not alter short-term memory, impaired in middle-aged rats. Daily caffeine administration to middle-aged rats had no effect on the memory tasks. Diet supplemented with (PhSe)2 plus caffeine administration increased the number of crossings and rearings reduced in middle-aged rats. Caffeine administration plus (PhSe)2 diets were effective in increasing the number of rearings and crossings, respectively, in middle-aged rats, [(3)H] glutamate uptake was reduced in hippocampal slices of rats from (PhSe)2 and caffeine plus (PhSe)2 groups. In addition, animals supplemented with (PhSe)2 showed an increase in the pCREB/CREB ratio whereas pAkt/Akt ratio was not modified. These results suggest that the effects of (PhSe)2 on the short-term memory may be related to its ability to decrease the uptake of glutamate, influencing the increase of CREB phosphorylation. (PhSe)2-supplemented diet associated to the administration of caffeine improved long-term memory impaired in middle-aged rats, an effect independent of CREB and Akt phosphorylation. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Caffeine effects on mood and memory.

    PubMed

    Herz, R S

    1999-09-01

    The purpose of the present research was to assess whether a psychoactive dose of caffeine would have differential affects on the mood dimensions of arousal versus feelings of pleasantness and whether these mood alterations would influence memory either by (1) the experience of arousal at learning and/or (2) altered and congruent mood states at learning and recall. To address these questions, the administration of 5 mg/kg caffeine or placebo at learning and retrieval sessions was manipulated and subjects' mood was evaluated by several different self-report measures. Sixteen words were incidentally studied during the learning session and memory was evaluated by the number of words correctly recalled at the retrieval session two days later. Results revealed that caffeine reliably increased arousal, but did not affect any emotion dimensions related to feelings of pleasure. Subjects who received caffeine at learning and retrieval were also in equivalent mood states at both sessions. Moreover, caffeine did not produce any effects on memory; thus, neither hypothesis concerning the influence of arousal on memory was supported. These data show that caffeine is a useful method for manipulating arousal in the laboratory without influencing feelings of pleasantness or learning and memory performance.

  13. Pharmacokinetic and pharmacodynamic interactions between zolpidem and caffeine.

    PubMed

    Cysneiros, R M; Farkas, D; Harmatz, J S; von Moltke, L L; Greenblatt, D J

    2007-07-01

    The kinetic and dynamic interaction of caffeine and zolpidem was evaluated in a double-blind, single-dose, six-way crossover study of 7.5 mg zolpidem (Z) or placebo (P) combined with low-dose caffeine (250 mg), high-dose caffeine (500 mg), or placebo. Caffeine coadministration modestly increased maximum plasma concentration (C(max)) and area under the plasma concentration-time curve of zolpidem by 30-40%, whereas zolpidem did not significantly affect the pharmacokinetics of caffeine or its metabolites. Compared to P+P, Z+P significantly increased sedation, impaired digit-symbol substitution test performance, slowed tapping speed and reaction time, increased EEG relative beta amplitude, and impaired delayed recall. Caffeine partially, but not completely, reversed most pharmacodynamic effects of zolpidem. Thus, caffeine only incompletely reverses zolpidem's sedative and performance-impairing effects, and cannot be considered as an antidote to benzodiazepine agonists.

  14. The effect of self-regulated caffeine use on cognition in young adults.

    PubMed

    Harvanko, Arit M; Derbyshire, Katherine L; Schreiber, Liana R N; Grant, Jon E

    2015-03-01

    Based on previous observational studies that have suggested self-regulated caffeine use by older adults may enhance reaction time performance and vigilance on cognitive tasks, the current study sought to examine whether this effect held true for young adults as well. One hundred and four young adults from two major metropolitan areas, ages 18-29 years, not meeting the criteria for a current psychiatric disorder, completed several cognitive tasks related to decision-making (Cambridge Gamble Task), response inhibition and reaction time (stop-signal task), and vigilance and reaction time (Rapid Visual Information Processing). Caffeine usage was self-reported using a reliable quantity and frequency questionnaire. Self-reported caffeine usage was not significantly associated with any of the cognitive measures used in this study after controlling for age, gender, cigarette smoking, alcohol use, cannabis use, and gambling frequency. These data suggest that self-regulated caffeine usage may not have a significant impact on reaction time, vigilance, response inhibition, or decision-making in young adults, or that these effects are contingent upon other variables not accounted for in the current study. Copyright © 2015 John Wiley & Sons, Ltd.

  15. Effects of caffeine in overnight-withdrawn consumers and non-consumers.

    PubMed

    Smith, Andrew P; Christopher, Gary; Sutherland, David

    2006-01-01

    A number of recent studies have suggested that caffeine only improves mood and cognitive performance in regular caffeine consumers who are caffeine withdrawn at test (the "withdrawal hypothesis"). This can be tested by investigating the effects of caffeine in non-consumers of caffeine. To compare the effects of 2 mg/kg caffeine on mood and cognitive performance in overnight-withdrawn consumers and non-consumers of caffeine. Twenty-five overnight-withdrawn consumers and twenty-five non-consumers of caffeine were tested in a within-subjects design where they were given a drink containing 2 mg/kg caffeine on one test day and placebo on another test day. The order of conditions (caffeine/placebo) was counterbalanced. Mood and performance measures were taken before and after each drink, and pre-drink measures were used as covariates in the analysis of post-drink measures. Analysis of baseline scores revealed no significant effects of caffeine withdrawal. Caffeine generally improved mood and cognitive performance, relative to placebo, in both subjects groups. These effects did not differ significantly between groups apart from three measures (fewer lapses of attention and ratings of alertness and anxiety) where the effects of caffeine were larger in the non-consumers. The present study revealed no negative effects of caffeine withdrawal. Beneficial effects of caffeine were observed in both withdrawn consumers and in non-consumers. Therefore, the withdrawal hypothesis is not an adequate explanation for the effects of caffeine.

  16. Temporal patterns of caffeine intake in the United States.

    PubMed

    Martyn, Danika; Lau, Annette; Richardson, Philip; Roberts, Ashley

    2018-01-01

    To investigate whether caffeine intake among adolescents and adults in the U.S. varies across the week or throughout the day, data from a 7-day online beverage consumption survey (2010-2011) were analyzed. Mean (206.8-213.0 mg/day) and 90th percentile (437.4-452.6 mg/day) daily caffeine intakes among consumers 13 years and older were relatively constant across the week with no marked difference among weekdays versus weekend days. Percent consumers of caffeinated beverages likewise remained stable across the week. Mean daily caffeine intake for coffee and energy drink consumers 13 years and older was higher than contributions for tea and carbonated soft drink consumers. Caffeinated beverage consumers (13 + yrs) consumed most of their caffeine in the morning (61% versus 21% and 18% in the afternoon and evening) which was driven by coffee. Caffeinated beverage consumption patterns among adolescents (13-17 yrs) - who typically consume less daily caffeine - were more evenly distributed throughout the day. These findings provide insight into U.S. temporal caffeine consumption patterns among specific caffeinated beverage consumers and different age brackets. These data suggest that while caffeine intakes do not vary from day-to-day, mornings generally drive the daily caffeine intake of adults and is predominantly attributed to coffee. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Caffeine Use Disorder: A Comprehensive Review and Research Agenda.

    PubMed

    Meredith, Steven E; Juliano, Laura M; Hughes, John R; Griffiths, Roland R

    2013-09-01

    Caffeine is the most commonly used drug in the world. Although consumption of low to moderate doses of caffeine is generally safe, an increasing number of clinical studies are showing that some caffeine users become dependent on the drug and are unable to reduce consumption despite knowledge of recurrent health problems associated with continued use. Thus, the World Health Organization and some health care professionals recognize caffeine dependence as a clinical disorder. In this comprehensive literature review, we summarize published research on the biological evidence for caffeine dependence; we provide a systematic review of the prevalence of caffeine dependence and rates of endorsement of clinically meaningful indicators of distress and functional impairment among habitual caffeine users; we discuss the diagnostic criteria for Caffeine Use Disorder-a condition for further study included in the Diagnostic and Statistical Manual of Mental Disorders ( 5 th ed .); and we outline a research agenda to help guide future clinical, epidemiological, and genetic investigations of caffeine dependence. Numerous controlled laboratory investigations reviewed in this article show that caffeine produces behavioral and physiological effects similar to other drugs of dependence. Moreover, several recent clinical studies indicate that caffeine dependence is a clinically meaningful disorder that affects a nontrivial proportion of caffeine users. Nevertheless, more research is needed to determine the reliability, validity, and prevalence of this clinically important health problem.

  18. Caffeine Use Disorder: A Comprehensive Review and Research Agenda

    PubMed Central

    Meredith, Steven E.; Juliano, Laura M.; Hughes, John R.

    2013-01-01

    Caffeine is the most commonly used drug in the world. Although consumption of low to moderate doses of caffeine is generally safe, an increasing number of clinical studies are showing that some caffeine users become dependent on the drug and are unable to reduce consumption despite knowledge of recurrent health problems associated with continued use. Thus, the World Health Organization and some health care professionals recognize caffeine dependence as a clinical disorder. In this comprehensive literature review, we summarize published research on the biological evidence for caffeine dependence; we provide a systematic review of the prevalence of caffeine dependence and rates of endorsement of clinically meaningful indicators of distress and functional impairment among habitual caffeine users; we discuss the diagnostic criteria for Caffeine Use Disorder—a condition for further study included in the Diagnostic and Statistical Manual of Mental Disorders (5th ed.); and we outline a research agenda to help guide future clinical, epidemiological, and genetic investigations of caffeine dependence. Numerous controlled laboratory investigations reviewed in this article show that caffeine produces behavioral and physiological effects similar to other drugs of dependence. Moreover, several recent clinical studies indicate that caffeine dependence is a clinically meaningful disorder that affects a nontrivial proportion of caffeine users. Nevertheless, more research is needed to determine the reliability, validity, and prevalence of this clinically important health problem. PMID:24761279

  19. Prior sleep with zolpidem enhances the effect of caffeine or modafinil during 18 hours continuous work.

    PubMed

    Batéjat, Denise; Coste, Olivier; Van Beers, Pascal; Lagarde, Didier; Piérard, Christophe; Beaumont, Maurice

    2006-05-01

    Continuous military operations may disrupt sleep-wakefulness cycles, resulting in impaired performance and fatigue. We assessed the treatment efficacy of a hypnotic-psychostimulant combination to maintain sleep quality, performance, and alertness during a 42-h simulated military operation. A 6-h prophylactic sleep period with zolpidem (ZOL) followed by a 18-h continuous work period with administration at midway of 300 mg of slow release caffeine (CAF) or 200 mg of modafinil (MOD) was performed by eight healthy male subjects. Performance level was assessed with a reaction time test, a memory search test, a dual task, an attention test, and a computerized Stroop test. Cortical activation level was evaluated by the Critical Flicker Frequency test. Subjective sleepiness was evaluated using a visual analog scale and questionnaires. Effects of drugs on prophylactic and recovery sleep were also quantified from EEG recordings. CAF and MOD maintained performance and alertness throughout the 18-h work period. As shown by EEG recordings, ZOL improved prophylactic sleep without any deleterious effect on performance immediately after waking. As a result of its positive effects on prophylactic sleep, a lower pressure for slow wave sleep during recovery sleep was observed; nevertheless, zolpidem did not enhance the effects of either psychostimulant on performance. MOD and CAF may be of value in promoting performance and wakefulness during shiftwork or military operations while zolpidem improves prophylactic sleep quality without any deleterious effect after waking. We concluded that a zolpidem/ caffeine or modafinil combination could be useful in a context of environmental conditions not conducive to sleep.

  20. Caffeine addiction: Need for awareness and research and regulatory measures.

    PubMed

    Jain, Shobhit; Srivastava, Adya Shanker; Verma, Raghunath Prasad; Maggu, Gaurav

    2017-02-04

    Caffeine consumption has been constantly growing in India especially among children and youngsters. Addictive potential of caffeine has long been reported, still there is lack of awareness about caffeine abuse in India. There is an intense need for appropriate public health regulatory measures and awareness about addictive potential & harms related to caffeine. To the best of our knowledge this is first case from India highlighting several important issues with progressive caffeine abuse resulting in dependence leading to physical, psychological, academic and social consequences; psychotic symptoms during intoxication; predisposing factors as impulsivity and novelty seeking traits in pre-morbid personality; psychosis in family; poor awareness of health hazards even among medical professionals. Widely variable caffeine containing products are available but caffeine content or its safety limit is not mentioned on caffeine products in India. Due to harmful consequences, legal availability to children, growing consumption of caffeine products, it is utmost essential to recognize caffeine as addictive substance and impose regulatory measures on sale, advertisement, maximum caffeine content, health consequences and safety limits of caffeine containing products. Further school teachers, parents and medical practitioners need to be made aware of health hazards of caffeine. Caffeine use shall always be enquired from patients presenting with psychiatric complaints. Further research and survey are required on caffeine use and related problems. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Trends in Caffeine Intake Among US Children and Adolescents

    PubMed Central

    Branum, Amy M.; Rossen, Lauren M.; Schoendorf, Kenneth C.

    2016-01-01

    BACKGROUND AND OBJECTIVE Physicians and policy makers are increasingly interested in caffeine intake among children and adolescents in the advent of increasing energy drink sales. However, there have been no recent descriptions of caffeine or energy drink intake in the United States. We aimed to describe trends in caffeine intake over the past decade among US children and adolescents. METHODS We assessed trends and demographic differences in mean caffeine intake among children and adolescents by using the 24-hour dietary recall data from the 1999–2010 NHANES. In addition, we described the proportion of caffeine consumption attributable to different beverages, including soda, energy drinks, and tea. RESULTS Approximately 73% of children consumed caffeine on a given day. From 1999 to 2010, there were no significant trends in mean caffeine intake overall; however, caffeine intake decreased among 2- to 11-year-olds (P < .01) and Mexican-American children (P = .003). Soda accounted for the majority of caffeine intake, but this contribution declined from 62% to 38% (P < .001). Coffee accounted for 10% of caffeine intake in 1999–2000 but increased to nearly 24% of intake in 2009–2010 (P < .001). Energy drinks did not exist in 1999–2000 but increased to nearly 6% of caffeine intake in 2009–2010. CONCLUSIONS Mean caffeine intake has not increased among children and adolescents in recent years. However, coffee and energy drinks represent a greater proportion of caffeine intake as soda intake has declined. These findings provide a baseline for caffeine intake among US children and young adults during a period of increasing energy drink use. PMID:24515508

  2. Caffeine Bitterness is Related to Daily Caffeine Intake and Bitter Receptor mRNA Abundance in Human Taste Tissue

    PubMed Central

    Lipchock, Sarah V.; Spielman, Andrew I.; Mennella, Julie A.; Mansfield, Corrine J.; Hwang, Liang-Dar; Douglas, Jennifer E.; Reed, Danielle R.

    2018-01-01

    We investigated whether the abundance of bitter receptor mRNA expression from human taste papillae is related to an individual’s perceptual ratings of bitter intensity and habitual intake of bitter drinks. Ratings of the bitterness of caffeine and quinine and three other bitter stimuli (urea, propylthiouracil, and denatonium benzoate) were compared with relative taste papilla mRNA abundance of bitter receptors that respond to the corresponding bitter stimuli in cell-based assays (TAS2R4, TAS2R10, TAS2R38, TAS2R43, and TAS2R46). We calculated caffeine and quinine intake from a food frequency questionnaire. The bitterness of caffeine was related to the abundance of the combined mRNA expression of these known receptors, r = 0.47, p = .05, and self-reported daily caffeine intake, t(18) = 2.78, p = .012. The results of linear modeling indicated that 47% of the variance among subjects in the rating of caffeine bitterness was accounted for by these two factors (habitual caffeine intake and taste receptor mRNA abundance). We observed no such relationships for quinine but consumption of its primary dietary form (tonic water) was uncommon. Overall, diet and TAS2R gene expression in taste papillae are related to individual differences in caffeine perception. PMID:28118781

  3. Caffeine use and dependence in adolescents: one-year follow-up.

    PubMed

    Oberstar, Joel V; Bernstein, Gail A; Thuras, Paul D

    2002-01-01

    The objectives were to conduct a 1-year follow-up of daily caffeine-using adolescents to further describe caffeine dependence symptoms and to determine whether caffeine dependence is associated with other substance dependence disorders. Twenty-one of 36 (58.3%) adolescents who participated in a study of caffeine dependence returned for follow-up. The previous study was a case series of adolescents who consumed caffeine daily and met some Diagnostic and Statistical Manual of Mental Disorders (fourth edition) substance dependence criteria as applied to caffeine. At follow-up, caffeine consumption from beverages was 179.9 +/- 151.8 mg/day. Of the 21 teenagers, 23.8% (n = 5) met criteria for caffeine dependence. Four of these participants developed caffeine dependence during the follow-up period. Other substance dependence disorders were not overrepresented in the caffeine dependent group compared to the caffeine nondependent group. The most commonly reported withdrawal symptoms in dependent teenagers (at baseline and follow-up combined) were feeling drowsy/tired, fatigued, or sluggish/slowed down (83.3% each) and headache (75.0%). Caffeine dependence occurs in some adolescents who drink caffeine daily and is marked by symptoms similar to those found in adults.

  4. Antibacterial activity of caffeine against plant pathogenic bacteria.

    PubMed

    Sledz, Wojciech; Los, Emilia; Paczek, Agnieszka; Rischka, Jacek; Motyka, Agata; Zoledowska, Sabina; Piosik, Jacek; Lojkowska, Ewa

    2015-01-01

    The objective of the present study was to evaluate the antibacterial properties of a plant secondary metabolite - caffeine. Caffeine is present in over 100 plant species. Antibacterial activity of caffeine was examined against the following plant-pathogenic bacteria: Ralstonia solanacearum (Rsol), Clavibacter michiganesis subsp. sepedonicus (Cms), Dickeya solani (Dsol), Pectobacterium atrosepticum (Pba), Pectobacterium carotovorum subsp. carotovorum (Pcc), Pseudomonas syringae pv. tomato (Pst), and Xanthomonas campestris subsp. campestris (Xcc). MIC and MBC values ranged from 5 to 20 mM and from 43 to 100 mM, respectively. Caffeine increased the bacterial generation time of all tested species and caused changes in cell morphology. The influence of caffeine on the synthesis of DNA, RNA and proteins was investigated in cultures of plant pathogenic bacteria with labelled precursors: [(3)H]thymidine, [(3)H]uridine or (14)C leucine, respectively. RNA biosynthesis was more affected than DNA or protein biosynthesis in bacterial cells treated with caffeine. Treatment of Pba with caffeine for 336 h did not induce resistance to this compound. Caffeine application reduced disease symptoms caused by Dsol on chicory leaves, potato slices, and whole potato tubers. The data presented indicate caffeine as a potential tool for the control of diseases caused by plant-pathogenic bacteria, especially under storage conditions.

  5. Caffeine Consumption and Sleep Quality in Australian Adults

    PubMed Central

    Watson, Emily J.; Coates, Alison M.; Kohler, Mark; Banks, Siobhan

    2016-01-01

    Caffeine is commonly consumed to help offset fatigue, however, it can have several negative effects on sleep quality and quantity. The aim of this study was to determine the relationship between caffeine consumption and sleep quality in adults using a newly validated caffeine food frequency questionnaire (C-FFQ). In this cross sectional study, 80 adults (M ± SD: 38.9 ± 19.3 years) attended the University of South Australia to complete a C-FFQ and the Pittsburgh Sleep Quality Index (PSQI). Caffeine consumption remained stable across age groups while the source of caffeine varied. Higher total caffeine consumption was associated with decreased time in bed, as an estimate of sleep time (r = −0.229, p = 0.041), but other PSQI variables were not. Participants who reported poor sleep (PSQI global score ≥ 5) consumed 192.1 ± 122.5 mg (M ± SD) of caffeine which was significantly more than those who reported good sleep quality (PSQI global score < 5; 125.2 ± 62.6 mg; p = 0.008). The C-FFQ was found to be a quick but detailed way to collect population based caffeine consumption data. The data suggests that shorter sleep is associated with greater caffeine consumption, and that consumption is greater in adults with reduced sleep quality. PMID:27527212

  6. Maternal caffeine consumption and risk of cardiovascular malformations.

    PubMed

    Browne, Marilyn L; Bell, Erin M; Druschel, Charlotte M; Gensburg, Lenore J; Mitchell, Allen A; Lin, Angela E; Romitti, Paul A; Correa, Adolfo

    2007-07-01

    The physiologic effects and common use of caffeine during pregnancy call for examination of maternal caffeine consumption and risk of birth defects. Epidemiologic studies have yielded mixed results, but such studies have grouped etiologically different defects and have not evaluated effect modification. The large sample size and precise case classification of the National Birth Defects Prevention Study allowed us to examine caffeine consumption and specific cardiovascular malformation (CVM) case groups. We studied consumption of caffeinated coffee, tea, soda, and chocolate to estimate total caffeine intake and separately examined exposure to each caffeinated beverage. Smoking, alcohol, vasoactive medications, folic acid supplement use, and infant gender were evaluated for effect modification. Maternal interview reports for 4,196 CVM case infants overall and 3,957 control infants were analyzed. We did not identify any significant positive associations between maternal caffeine consumption and CVMs. For tetralogy of Fallot, nonsignificant elevations in risk were observed for moderate (but not high) caffeine intake overall and among nonsmokers (ORs of 1.3 to 1.5). Risk estimates for both smoking and consuming caffeine were less than the sum of the excess risks for each exposure. We observed an inverse trend between coffee intake and risk of atrial septal defect; however, this single significant pattern of association might have been a chance finding. Our study found no evidence for an appreciable teratogenic effect of caffeine with regard to CVMs. (c) 2007 Wiley-Liss, Inc.

  7. Caffeine, coffee, and appetite control: a review.

    PubMed

    Schubert, Matthew M; Irwin, Christopher; Seay, Rebekah F; Clarke, Holly E; Allegro, Deanne; Desbrow, Ben

    2017-12-01

    Coffee and caffeine consumption has global popularity. However, evidence for the potential of these dietary constituents to influence energy intake, gut physiology, and appetite perceptions remains unclear. The purpose of this review was to examine the evidence regarding coffee and caffeine's influence on energy intake and appetite control. The literature was examined for studies that assessed the effects of caffeine and coffee on energy intake, gastric emptying, appetite-related hormones, and perceptual measures of appetite. The literature review indicated that coffee administered 3-4.5 h before a meal had minimal influence on food and macronutrient intake, while caffeine ingested 0.5-4 h before a meal may suppress acute energy intake. Evidence regarding the influence of caffeine and coffee on gastric emptying, appetite hormones, and appetite perceptions was equivocal. The influence of covariates such as genetics of caffeine metabolism and bitter taste phenotype remain unknown; longer controlled studies are needed.

  8. Energy drink consumption and impact on caffeine risk.

    PubMed

    Thomson, Barbara M; Campbell, Donald M; Cressey, Peter; Egan, Ursula; Horn, Beverley

    2014-01-01

    The impact of caffeine from energy drinks occurs against a background exposure from naturally occurring caffeine (coffee, tea, cocoa and foods containing these ingredients) and caffeinated beverages (kola-type soft drinks). Background caffeine exposure, excluding energy drinks, was assessed for six New Zealand population groups aged 15 years and over (n = 4503) by combining concentration data for 53 caffeine-containing foods with consumption information from the 2008/09 New Zealand Adult Nutrition Survey (ANS). Caffeine exposure for those who consumed energy drinks (n = 138) was similarly assessed, with inclusion of energy drinks. Forty-seven energy drink products were identified on the New Zealand market in 2010. Product volumes ranged from 30 to 600 ml per unit, resulting in exposures of 10-300 mg caffeine per retail unit consumed. A small percentage, 3.1%, of New Zealanders reported consuming energy drinks, with most energy drink consumers (110/138) drinking one serving per 24 h. The maximum number of energy drinks consumed per 24 h was 14 (total caffeine of 390 mg). A high degree of brand loyalty was evident. Since only a minor proportion of New Zealanders reported consuming energy drinks, a greater number of New Zealanders exceeded a potentially adverse effect level (AEL) of 3 mg kg(-1) bw day(-1) for caffeine from caffeine-containing foods than from energy drinks. Energy drink consumption is not a risk at a population level because of the low prevalence of consumption. At an individual level, however, teenagers, adults (20-64 years) and females (16-44 years) were more likely to exceed the AEL by consuming energy drinks in combination with caffeine-containing foods.

  9. Impact of caffeine and coffee on our health.

    PubMed

    Gonzalez de Mejia, Elvira; Ramirez-Mares, Marco Vinicio

    2014-10-01

    Coffee is the most frequently consumed caffeine-containing beverage. The caffeine in coffee is a bioactive compound with stimulatory effects on the central nervous system and a positive effect on long-term memory. Although coffee consumption has been historically linked to adverse health effects, new research indicates that coffee consumption may be beneficial. Here we discuss the impact of coffee and caffeine on health and bring attention to the changing caffeine landscape that includes new caffeine-containing energy drinks and supplements, often targeting children and adolescents. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Legitimacy of concerns about caffeine and energy drink consumption.

    PubMed

    Wesensten, Nancy J

    2014-10-01

    Whether caffeine and energy drink consumption presents a critical emerging health problem is not currently known. Available evidence suggests that energy drink consumption represents a change in the ways in which individuals in the United States consume caffeine but that the amount of caffeine consumed daily has not appreciably increased. In the present review, the question of whether Americans are sleep deprived (a potential reason for using caffeine) is briefly explored. Reported rates of daily caffeine consumption (based on beverage formulation) and data obtained from both civilian and military populations in the United States are examined, the efficacy of ingredients other than caffeine in energy drinks is discussed, and the safety and side effects of caffeine are addressed, including whether evidence supports the contention that excessive caffeine/energy drink consumption induces risky behavior. The available evidence suggests that the main legitimate concern regarding caffeine and energy drink use is the potential negative impact on sleep but that, otherwise, there is no cause for concern regarding caffeine use in the general population. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  11. Caffeine's Vascular Mechanisms of Action

    PubMed Central

    Echeverri, Darío; Montes, Félix R.; Cabrera, Mariana; Galán, Angélica; Prieto, Angélica

    2010-01-01

    Caffeine is the most widely consumed stimulating substance in the world. It is found in coffee, tea, soft drinks, chocolate, and many medications. Caffeine is a xanthine with various effects and mechanisms of action in vascular tissue. In endothelial cells, it increases intracellular calcium stimulating the production of nitric oxide through the expression of the endothelial nitric oxide synthase enzyme. Nitric oxide is diffused to the vascular smooth muscle cell to produce vasodilation. In vascular smooth muscle cells its effect is predominantly a competitive inhibition of phosphodiesterase, producing an accumulation of cAMP and vasodilation. In addition, it blocks the adenosine receptors present in the vascular tissue to produce vasoconstriction. In this paper the main mechanisms of action of caffeine on the vascular tissue are described, in which it is shown that caffeine has some cardiovascular properties and effects which could be considered beneficial. PMID:21188209

  12. Effect of a moderate caffeine dose on endurance cycle performance and thermoregulation during prolonged exercise in the heat.

    PubMed

    Beaumont, Ross E; James, Lewis J

    2017-11-01

    This study investigated the influence of a moderate caffeine dose on endurance cycle performance and thermoregulation during prolonged exercise in high ambient temperature. Double-blind cross-over study. Eight healthy, recreationally active males (mean±SD; age: 22±1 years; body mass: 71.1±8.5kg; VO 2peak : 55.9±5.8mLkg -1 min -1 ; W max : 318±37W) completed one VO 2peak test, one familiarisation trial and two experimental trials. After an overnight fast, participants ingested a placebo or a 6mgkg -1 caffeine dose 60min before exercise. The exercise protocol consisted of 60min of cycle exercise at 55% W max , followed by a 30min performance task (total kJ produced) in 30°C and 50% RH. Performance was enhanced (Cohen's d effect size=0.22) in the caffeine trial (363.8±47.6kJ) compared with placebo (353.0±49.0kJ; p=0.004). Caffeine did not influence core (p=0.188) or skin temperature (p=0.577) during exercise. Circulating prolactin (p=0.572), cortisol (p=0.842) and the estimated rates of fat (p=0.722) and carbohydrate oxidation (p=0.454) were also similar between trial conditions. Caffeine attenuated perceived exertion during the initial 60min of exercise (p=0.033), with no difference in thermal stress across trials (p=0.911). Supplementation with 6mgkg -1 caffeine improved endurance cycle performance in a warm environment, without differentially influencing thermoregulation during prolonged exercise at a fixed work-rate versus placebo. Therefore, moderate caffeine doses which typically enhance performance in temperate environmental conditions also appear to benefit endurance performance in the heat. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  13. Low-dose caffeine physical dependence in humans.

    PubMed

    Griffiths, R R; Evans, S M; Heishman, S J; Preston, K L; Sannerud, C A; Wolf, B; Woodson, P P

    1990-12-01

    This study investigated the effects of terminating low dose levels of caffeine (100 mg/day) in 7 normal humans. Substitution of placebo capsules for caffeine capsules occurred under double-blind conditions while subjects rated various dimensions of their mood and behavior. In the first phase of the study, substitution of placebo for 12 consecutive days resulted in an orderly withdrawal syndrome in 4 subjects which peaked on days 1 or 2 and progressively decreased toward prewithdrawal levels over about 1 week. Data from the remaining three subjects provided no evidence of withdrawal. In the second phase of the study, the generality of the withdrawal effect was examined by repeatedly substituting placebo for 100 mg/day of caffeine for 1-day periods separated by an average of 9 days. Despite differences within and across subjects with respect to the presence, nature and magnitude of symptoms, each of the seven subjects demonstrated a statistically significant withdrawal effect. Although the phenomenon of caffeine withdrawal has been described previously, the present report documents that the incidence of caffeine withdrawal is higher (100% of subjects), the daily dose level at which withdrawal occurs is lower (roughly equivalent to the amount of caffeine in a single cup of strong brewed coffee or 3 cans of caffeinated soft drink) and the range of symptoms experienced is broader (including headache, fatigue and other dysphoric mood changes, muscle pain/stiffness, flu-like feelings, nausea/vomiting and craving for caffeine) than heretofore recognized.

  14. Caffeine Improves Left Hemisphere Processing of Positive Words

    PubMed Central

    Kuchinke, Lars; Lux, Vanessa

    2012-01-01

    A positivity advantage is known in emotional word recognition in that positive words are consistently processed faster and with fewer errors compared to emotionally neutral words. A similar advantage is not evident for negative words. Results of divided visual field studies, where stimuli are presented in either the left or right visual field and are initially processed by the contra-lateral brain hemisphere, point to a specificity of the language-dominant left hemisphere. The present study examined this effect by showing that the intake of caffeine further enhanced the recognition performance of positive, but not negative or neutral stimuli compared to a placebo control group. Because this effect was only present in the right visual field/left hemisphere condition, and based on the close link between caffeine intake and dopaminergic transmission, this result points to a dopaminergic explanation of the positivity advantage in emotional word recognition. PMID:23144893

  15. Effects of hyperoxia and caffeine on the expression of fragile site at Xq27.3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rafi, S.K.; Surana, R.B.; Christopher, K.L.

    1996-02-02

    To enhance the cytogenetic expression of the fragile X chromosome, we studied the effects of hyperoxia and caffeine on the induction of fragile Xq27.3. A lymphoblastoid cell line (GM 06912) derived from a fragile X male proband was cultured in RPMI 1640 containing 16% dialyzed fetal calf serum. The cells were synchronously subjected to one of 3 different atmospheric oxygen tensions (21%, 21.3 kPa, hyperoxic) during the last 24 hours of the 72 hour culture, immediately after the addition of 2{prime}-deoxy-5-fluorouridine (FUdR) at 25 ng/ml. To study the enhancing effect of caffeine, with or without hyperoxia, a second set ofmore » cultures was additionally subjected to caffeine (2.5 mM) during the last 6 hours of the culture. When the fragility of hyperoxic cells (38.1 kPa dissolved oxygen) was compared to that of normoxic control cells (13.3 kPa dissolved oxygen), the difference was significant (P < 0.05). These data suggest that there is a mean increase in the fragile Xq27.3 expressivity as the dissolved oxygen tension increases. Additionally, we observed that caffeine, with or without hyperoxia, significantly (P <0.05) suppressed the expression of the fragile X site in this lymphoblastoid cell line. 34 refs., 2 tabs.« less

  16. The Tea Tree Genome Provides Insights into Tea Flavor and Independent Evolution of Caffeine Biosynthesis.

    PubMed

    Xia, En-Hua; Zhang, Hai-Bin; Sheng, Jun; Li, Kui; Zhang, Qun-Jie; Kim, Changhoon; Zhang, Yun; Liu, Yuan; Zhu, Ting; Li, Wei; Huang, Hui; Tong, Yan; Nan, Hong; Shi, Cong; Shi, Chao; Jiang, Jian-Jun; Mao, Shu-Yan; Jiao, Jun-Ying; Zhang, Dan; Zhao, Yuan; Zhao, You-Jie; Zhang, Li-Ping; Liu, Yun-Long; Liu, Ben-Ying; Yu, Yue; Shao, Sheng-Fu; Ni, De-Jiang; Eichler, Evan E; Gao, Li-Zhi

    2017-06-05

    Tea is the world's oldest and most popular caffeine-containing beverage with immense economic, medicinal, and cultural importance. Here, we present the first high-quality nucleotide sequence of the repeat-rich (80.9%), 3.02-Gb genome of the cultivated tea tree Camellia sinensis. We show that an extraordinarily large genome size of tea tree is resulted from the slow, steady, and long-term amplification of a few LTR retrotransposon families. In addition to a recent whole-genome duplication event, lineage-specific expansions of genes associated with flavonoid metabolic biosynthesis were discovered, which enhance catechin production, terpene enzyme activation, and stress tolerance, important features for tea flavor and adaptation. We demonstrate an independent and rapid evolution of the tea caffeine synthesis pathway relative to cacao and coffee. A comparative study among 25 Camellia species revealed that higher expression levels of most flavonoid- and caffeine- but not theanine-related genes contribute to the increased production of catechins and caffeine and thus enhance tea-processing suitability and tea quality. These novel findings pave the way for further metabolomic and functional genomic refinement of characteristic biosynthesis pathways and will help develop a more diversified set of tea flavors that would eventually satisfy and attract more tea drinkers worldwide. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  17. HR-TEM and FT-Raman dataset of the caffeine interacted Phe-Phe peptide nanotube for possible sensing applications.

    PubMed

    Narayanan, A Lakshmi; Dhamodaran, M; Solomon, J Samu; Karthikeyan, B; Govindhan, R

    2018-02-01

    Sensing ability of caffeine interaction with Phe-Phe annotates (PNTs), is presented (Govindhan et al., 2017; Karthikeyan et al., 2014; Tavagnacco et al., 2013; Kennedy et al., 2011; Wang et al., 2017) [1-5] in this data set. Investigation of synthesized caffeine carrying peptide nanotubes are carried out by FT-Raman spectral analysis and high resolution transmission electron microscopy (HR-TEM). Particle size of the caffeine loaded PNTs is < 40 nm. The FT-Raman spectrum signals are enhanced in the region of 400-1700 cm -1 . These data are ideal tool for the applications like biosensing and drug delivery research (DDS).

  18. Variation in caffeine concentration in single coffee beans.

    PubMed

    Fox, Glen P; Wu, Alex; Yiran, Liang; Force, Lesleigh

    2013-11-13

    Twenty-eight coffee samples from around the world were tested for caffeine levels to develop near-infrared reflectance spectroscopy (NIRS) calibrations for whole and ground coffee. Twenty-five individual beans from five of those coffees were used to develop a NIRS calibration for caffeine concentration in single beans. An international standard high-performance liquid chromatography method was used to analyze for caffeine content. Coffee is a legal stimulant and possesses a number of heath properties. However, there is variation in the level of caffeine in brewed coffee and other caffeinated beverages. Being able to sort beans on the basis of caffeine concentration will improve quality control in the level of caffeine in those beverages. The range in caffeine concentration was from 0.01 mg/g (decaffeinated coffee) to 19.9 mg/g (Italian coffee). The majority of coffees were around 10.0-12.0 mg/g. The NIRS results showed r(2) values for bulk unground and ground coffees were >0.90 with standard errors <2 mg/g. For the single-bean calibration the r(2) values were between 0.85 and 0.93 with standard errors of cross validation of 0.8-1.6 mg/g depending upon calibration. The results showed it was possible to develop NIRS calibrations to estimate the caffeine concentration of individual coffee beans. One application of this calibration could be sorting beans on caffeine concentration to provide greater quality control for high-end markets. Furthermore, bean sorting may open new markets for novel coffee products.

  19. Caffeine: implications of recent research for clinical practice.

    PubMed

    Wells, Susan J

    1984-07-01

    Caffeine is a central nervous system stimulant that has come under increasing scrutiny due to its effects on the health and mental health of those who consume it. This article summarizes the physiological effects of caffeine, reviews recent research on behavioral and mood changes associated with consumption, and discusses clinical implications for the mental health professional. Data on caffeine consumption and principal sources of caffeine are outlined.

  20. 24h withdrawal following repeated administration of caffeine attenuates brain serotonin but not tryptophan in rat brain: implications for caffeine-induced depression.

    PubMed

    Haleem, D J; Yasmeen, A; Haleem, M A; Zafar, A

    1995-01-01

    Caffeine injected at doses of 20, 40 and 80 mg/kg increased brain levels of tryptophan, 5-hydroxytryptamine (5-HT) and 5-hydroxyindole acetic acid (5-HIAA) in rat brain. In view of a possible role of 5-HT in caffeine-induced depression the effects of repeated administration of high doses of caffeine on brain 5-HT metabolism are investigated in rats. Caffeine was injected at doses of 80 mg/kg daily for five days. Control animals were injected with saline daily for five days. On the 6th day caffeine (80 mg/kg) injected to 5 day saline injected rats increased brain levels of tryptophan, 5-HT and 5-HIAA. Plasma total tryptophan levels were not affected and free tryptophan increased. Brain levels of 5-HT and 5-HIAA but not tryptophan decreased in 5 day caffeine injected rats injected with saline on the 6th day. Plasma total and free tryptophan were not altered in these rats. Caffeine-induced increases of brain tryptophan but not 5-HT and 5-HIAA were greater in 5 day caffeine than 5 day saline injected rats. The findings are discussed as repeated caffeine administration producing adaptive changes in the serotonergic neurons to decrease the conversion of tryptophan to 5-HT and this may precipitate depression particularly in conditions of caffeine withdrawal.

  1. Determination of the caffeine contents of various food items within the Austrian market and validation of a caffeine assessment tool (CAT).

    PubMed

    Rudolph, E; Färbinger, A; König, J

    2012-01-01

    The caffeine content of 124 products, including coffee, coffee-based beverages, energy drinks, tea, colas, yoghurt and chocolate, were determined using RP-HPLC with UV detection after solid-phase extraction. Highest concentrations of caffeine were found for coffee prepared from pads (755 mg l⁻¹) and regular filtered coffee (659 mg l⁻¹). The total caffeine content of coffee and chocolate-based beverages was between 15 mg l⁻¹ in chocolate milk and 448 mg l⁻¹ in canned ice coffee. For energy drinks the caffeine content varied in a range from 266 to 340 mg l⁻¹. Caffeine concentrations in tea and ice teas were between 13 and 183 mg l⁻¹. Coffee-flavoured yoghurts ranged from 33 to 48 mg kg⁻¹. The caffeine concentration in chocolate and chocolate bars was between 17 mg kg⁻¹ in whole milk chocolate and 551 mg kg⁻¹ in a chocolate with coffee filling. A caffeine assessment tool was developed and validated by a 3-day dietary record (r²= 0.817, p < 0.01) using these analytical data and caffeine saliva concentrations (r²= 0.427, p < 0.01).

  2. Caffeine and sports performance.

    PubMed

    Burke, Louise M

    2008-12-01

    Athletes are among the groups of people who are interested in the effects of caffeine on endurance and exercise capacity. Although many studies have investigated the effect of caffeine ingestion on exercise, not all are suited to draw conclusions regarding caffeine and sports performance. Characteristics of studies that can better explore the issues of athletes include the use of well-trained subjects, conditions that reflect actual practices in sport, and exercise protocols that simulate real-life events. There is a scarcity of field-based studies and investigations involving elite performers. Researchers are encouraged to use statistical analyses that consider the magnitude of changes, and to establish whether these are meaningful to the outcome of sport. The available literature that follows such guidelines suggests that performance benefits can be seen with moderate amounts (~3 mg.kg-1 body mass) of caffeine. Furthermore, these benefits are likely to occur across a range of sports, including endurance events, stop-and-go events (e.g., team and racquet sports), and sports involving sustained high-intensity activity lasting from 1-60 min (e.g., swimming, rowing, and middle and distance running races). The direct effects on single events involving strength and power, such as lifts, throws, and sprints, are unclear. Further studies are needed to better elucidate the range of protocols (timing and amount of doses) that produce benefits and the range of sports to which these may apply. Individual responses, the politics of sport, and the effects of caffeine on other goals, such as sleep, hydration, and refuelling, also need to be considered.

  3. The Effects of Low Dose Buccal Administered Caffeine on RPE and Pain during an Upper Body Muscle Endurance Test and Lower Body Anaerobic Test

    ERIC Educational Resources Information Center

    Bellar, David M.; Judge, Lawrence W.; Kamimori, Gary H.; Glickman, Ellen L.

    2012-01-01

    To date there have been a number of studies that have assessed the effects of caffeine on Rated Perceived Exertion (RPE) and Pain Scale scores during continuous exercise. Presently there is little information about the effects of caffeine on RPE and Pain Scale scores during short term, anaerobic and muscle endurance activity. The purpose of the…

  4. The Relationship Between Caffeine, Sleep, and Behavior in Children.

    PubMed

    Watson, Emily J; Banks, Siobhan; Coates, Alison M; Kohler, Mark J

    2017-04-15

    To examine caffeine consumption from various dietary sources in a cohort of Australian children and the relationship between caffeine consumption, sleep, and daytime behavior. Children aged 8 to 12 years and their parents/guardians completed a battery of questionnaires. Children completed a caffeine questionnaire while parents completed questionnaires regarding demographics, sleep, and behavior. The final sample consisted of 309 children (mean ± standard deviation [SD] age 10.6 ± 1.3 years, male = 48%) and corresponding parent reports. On average a mean ± SD 10.2 ± 17.4 mg/day of caffeine was consumed with a range of zero to 151 mg/day. Of the children who consumed caffeine (87% of the sample), the largest contributor was coffee and tea; making up 41% of total caffeine intake, and sodas (soft drinks) contributed to 40% of caffeine intake. Total caffeine consumption was significantly associated with sleep routine ( r = 0.152); morning tiredness ( r = 0.129); restless sleep ( r = 0.113); and internalizing behavioral problems ( r = 0.128). Using path analysis, caffeine consumption was positively associated with morning tiredness (β = 0.111, P = .050) which was positively associated with internalizing behaviors (β = 0.432, P < .001). The addition of sleep routine and restless sleep to the model led to a complete mediation of caffeine consumption on morning tiredness, as well as a partial mediation of the association between morning tiredness and internal behaviors. In 8- to 12-year-olds the primary sources of caffeine are coffee/tea and sodas. Overall mean caffeine consumption is small by adult standards but has an effect on behavior and sleep in children. The effect on behavior is mediated by disrupted sleep, indicating that caffeine is a contributor to sleep problems and related behavior in children. © 2017 American Academy of Sleep Medicine

  5. Separating neural and vascular effects of caffeine using simultaneous EEG–FMRI: Differential effects of caffeine on cognitive and sensorimotor brain responses

    PubMed Central

    Diukova, Ana; Ware, Jennifer; Smith, Jessica E.; Evans, C. John; Murphy, Kevin; Rogers, Peter J.; Wise, Richard G.

    2012-01-01

    The effects of caffeine are mediated through its non-selective antagonistic effects on adenosine A1 and A2A adenosine receptors resulting in increased neuronal activity but also vasoconstriction in the brain. Caffeine, therefore, can modify BOLD FMRI signal responses through both its neural and its vascular effects depending on receptor distributions in different brain regions. In this study we aim to distinguish neural and vascular influences of a single dose of caffeine in measurements of task-related brain activity using simultaneous EEG–FMRI. We chose to compare low-level visual and motor (paced finger tapping) tasks with a cognitive (auditory oddball) task, with the expectation that caffeine would differentially affect brain responses in relation to these tasks. To avoid the influence of chronic caffeine intake, we examined the effect of 250 mg of oral caffeine on 14 non and infrequent caffeine consumers in a double-blind placebo-controlled cross-over study. Our results show that the task-related BOLD signal change in visual and primary motor cortex was significantly reduced by caffeine, while the amplitude and latency of visual evoked potentials over occipital cortex remained unaltered. However, during the auditory oddball task (target versus non-target stimuli) caffeine significantly increased the BOLD signal in frontal cortex. Correspondingly, there was also a significant effect of caffeine in reducing the target evoked response potential (P300) latency in the oddball task and this was associated with a positive potential over frontal cortex. Behavioural data showed that caffeine also improved performance in the oddball task with a significantly reduced number of missed responses. Our results are consistent with earlier studies demonstrating altered flow-metabolism coupling after caffeine administration in the context of our observation of a generalised caffeine-induced reduction in cerebral blood flow demonstrated by arterial spin labelling (19

  6. The Relationship Between Caffeine, Sleep, and Behavior in Children

    PubMed Central

    Watson, Emily J.; Banks, Siobhan; Coates, Alison M.; Kohler, Mark J.

    2017-01-01

    Study Objectives: To examine caffeine consumption from various dietary sources in a cohort of Australian children and the relationship between caffeine consumption, sleep, and daytime behavior. Methods: Children aged 8 to 12 years and their parents/guardians completed a battery of questionnaires. Children completed a caffeine questionnaire while parents completed questionnaires regarding demographics, sleep, and behavior. Results: The final sample consisted of 309 children (mean ± standard deviation [SD] age 10.6 ± 1.3 years, male = 48%) and corresponding parent reports. On average a mean ± SD 10.2 ± 17.4 mg/day of caffeine was consumed with a range of zero to 151 mg/day. Of the children who consumed caffeine (87% of the sample), the largest contributor was coffee and tea; making up 41% of total caffeine intake, and sodas (soft drinks) contributed to 40% of caffeine intake. Total caffeine consumption was significantly associated with sleep routine (r = 0.152); morning tiredness (r = 0.129); restless sleep (r = 0.113); and internalizing behavioral problems (r = 0.128). Using path analysis, caffeine consumption was positively associated with morning tiredness (β = 0.111, P = .050) which was positively associated with internalizing behaviors (β = 0.432, P < .001). The addition of sleep routine and restless sleep to the model led to a complete mediation of caffeine consumption on morning tiredness, as well as a partial mediation of the association between morning tiredness and internal behaviors. Conclusions: In 8- to 12-year-olds the primary sources of caffeine are coffee/tea and sodas. Overall mean caffeine consumption is small by adult standards but has an effect on behavior and sleep in children. The effect on behavior is mediated by disrupted sleep, indicating that caffeine is a contributor to sleep problems and related behavior in children. Citation: Watson EJ, Banks S, Coates AM, Kohler MJ. The relationship between caffeine, sleep and behavior in children

  7. Caffeine alters the behavioural and body temperature responses to mephedrone without causing long-term neurotoxicity in rats.

    PubMed

    Shortall, Sinead E; Green, A Richard; Fone, Kevin Cf; King, Madeleine V

    2016-07-01

    Administration of caffeine with 3,4-methylenedioxymethamphetamine (MDMA) alters the pharmacological properties of MDMA in rats. The current study examined whether caffeine alters the behavioural and neurochemical effects of mephedrone, which has similar psychoactive effects to MDMA. Rats received either saline, mephedrone (10 mg/kg), caffeine (10 mg/kg) or combined caffeine and mephedrone intraperitoneally twice weekly on consecutive days for three weeks. Locomotor activity (days 1 and 16), novel object discrimination (NOD, day 2), elevated plus maze (EPM) exploration (day 8), rectal temperature changes (day 9) and pre-pulse inhibition (PPI) of acoustic startle response (day 15) were assessed. Seven days after the final injection, brain regions were collected for the measurement of 5-hydroxytryptamine (5-HT), dopamine and their metabolites. Combined caffeine and mephedrone further enhanced the locomotor response observed following either drug administered alone, and converted mephedrone-induced hypothermia to hyperthermia. Co-administration also abolished mephedrone-induced anxiogenic response on the EPM, but had no effect on NOD or PPI. Importantly, no long-term neurotoxicity was detected following repeated mephedrone alone or when co-administered with caffeine. In conclusion, the study suggests a potentially dangerous effect of concomitant caffeine and mephedrone, and highlights the importance of taking polydrug use into consideration when investigating the acute adverse effect profile of popular recreational drugs. © The Author(s) 2016.

  8. Degradation of caffeine by conductive diamond electrochemical oxidation.

    PubMed

    Indermuhle, Chloe; Martín de Vidales, Maria J; Sáez, Cristina; Robles, José; Cañizares, Pablo; García-Reyes, Juan F; Molina-Díaz, Antonio; Comninellis, Christos; Rodrigo, Manuel A

    2013-11-01

    The use of Conductive-Diamond Electrochemical Oxidation (CDEO) and Sonoelectrochemical Oxidation (CDSEO) has been evaluated for the removal of caffeine of wastewater. Effects of initial concentration, current density and supporting electrolyte on the process efficiency are assessed. Results show that caffeine is very efficiently removed with CDEO and that depletion of caffeine has two stages depending on its concentration. At low concentrations, opposite to what it is expected in a mass-transfer controlled process, the efficiency increases with current density very significantly, suggesting a very important role of mediated oxidation processes on the removal of caffeine. In addition, the removal of caffeine is faster than TOC, indicating the formation of reaction intermediates. The number and relative abundance of them depend on the operating conditions and supporting electrolyte used. In chloride media, removal of caffeine is faster and more efficiently, although the occurrence of more intermediates takes place. CDSEO does not increase the efficiency of caffeine removal, but it affects to the formation of intermediates. A detailed characterization of intermediates by liquid chromatography time-of-flight mass spectrometry seems to indicate that the degradation of caffeine by CDEO follows an oxidation pathway similar to mechanism proposed by other advanced oxidation processes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Validation of caffeine dehydrogenase from Pseudomonas sp. strain CBB1 as a suitable enzyme for a rapid caffeine detection and potential diagnostic test.

    PubMed

    Mohanty, Sujit K; Yu, Chi Li; Gopishetty, Sridhar; Subramanian, Mani

    2014-08-06

    Excess consumption of caffeine (>400 mg/day/adult) can lead to adverse health effects. Recent introduction of caffeinated products (gums, jelly beans, energy drinks) might lead to excessive consumption, especially among children and nursing mothers, hence attracting the Food and Drug Administration's attention and product withdrawals. An "in-home" test will aid vigilant consumers in detecting caffeine in beverages and milk easily and quickly, thereby restricting its consumption. Known diagnostic methods lack speed and sensitivity. We report a caffeine dehydrogenase (Cdh)-based test which is highly sensitive (1-5 ppm) and detects caffeine in beverages and mother's milk in 1 min. Other components in these complex test samples do not interfere with the detection. Caffeine-dependent reduction of the dye iodonitrotetrazolium chloride results in shades of pink proportional to the levels in test samples. This test also estimates caffeine levels in pharmaceuticals, comparable to high-performance liquid chromatography. The Cdh-based test is the first with the desired attributes of a rapid and robust caffeine diagnostic kit.

  10. Reversal of caffeine withdrawal by ingestion of a soft beverage.

    PubMed

    Watson, J M; Lunt, M J; Morris, S; Weiss, M J; Hussey, D; Kerr, D

    2000-05-01

    Followlng regular use, acute cessation of caffeine is associated with a characteristic withdrawal syndrome. Despite this, caffeine remains popular with its consumers. The aim of this study was to examine the physiologic and psychologic effects of small caffeine doses, administered in the form of a market-leading soft drink, on healthy women who were acutely withdrawn from caffeine. After 48-h abstinence and overnight fast, 11 healthy (22 to 40 years) female volunteers, all regular caffeine users (daily consumption 143 to 773 mg) consumed using a double-blind. randomized, controlled cross-over design either 2 tins of regular or caffeine-free Diet Coke. On both visits a Mars bar was eaten to prevent hypoglycaemia. Thus, the caffeine load was 76 or 10 mg respectively. Following ingestion of regular Diet Coke, there was a l0% fall in middle cerebral artery velocity (95% CI [6%-l4%], p < 0.005 versus caffeine free) and improvement in feelings of pleasure (p < 0.046) and energy (p < 0.037). Intellectual function (4-choice reaction time) was unaffected by caffeine status. On both visits, ingestion of Diet Coke induced a pressor response (maximum rise in systolic pressure +15+/- 2 mm Hg with caffeine and +l2 +/- 2 mm Hg with caffeine-free beverage, both p < 0.001 compared with baseline). In conclusion, in women acutely withdrawn from caffeine, ingestion of a popular soft beverage containing modest amounts of caffeine is associated with demonstrable physiologic and psychologic effects.

  11. D-ribose--an additive with caffeine.

    PubMed

    Herrick, Jim; Shecterle, L M; St Cyr, J A

    2009-05-01

    Caffeine acts as a stimulant, in which approximately 90% of people in the United States consume daily. Besides its beneficial effects, many individuals have experienced unpleasant reactions following the consumption of caffeine: such as insomnia, an increase in heart rate, feelings of nervousness, headaches, occasional lightheadedness, a state of "jitters," and a potential "crash" state following its metabolism. Researchers have proposed mechanisms responsible for caffeine's interactions, which include its blocking capacity of adenosine receptors, its role with the pituitary gland, increasing levels of dopamine, and its role with the intracellular release of calcium from the sarcoplasmic reticulum, which is dependent on intracellular adenosine triphosphate levels. Specific substrates have been investigated to lessen the undesirable effects of caffeine and still preserve its stimulatory benefits. The results of these investigations have produced no positive consensus. However, D-ribose, an important pentose carbohydrate in the energy molecule of adenosine triphosphate, as well as our genetic code and other cellular processes, could offer such a solution to this problem. D-ribose could potentially aid in maintaining or potentially lowering extra-cellular adenosine concentrations, aid in the flux of intracellular calcium, aid in intracellular energy production, and potentially lessen the perceived "crash" state felt by many. Every cell requires adequate levels of energy to maintain its integrity and function. Caffeine has the potential to task this energy equilibrium. D-ribose with caffeine may be the substrate to aid in the potential intracellular energy demand, aid in lessening the perceived unpleasant side effects of caffeine, and still preserving the desired benefits of this stimulant consumed by all of us daily.

  12. Individual differences affecting caffeine intake. Analysis of consumption behaviours for different times of day and caffeine sources.

    PubMed

    Penolazzi, Barbara; Natale, Vincenzo; Leone, Luigi; Russo, Paolo Maria

    2012-06-01

    The main purpose of the present study was to investigate the individual variables contributing to determine the high variability in the consumption behaviours of caffeine, a psychoactive substance which is still poorly investigated in comparison with other drugs. The effects of a large set of specific personality traits (i.e., Impulsivity, Sensation Seeking, Anxiety, Reward Sensitivity and Circadian Preference) were compared along with some relevant socio-demographic variables (i.e., gender and age) and cigarette smoking behaviour. Analyses revealed that daily caffeine intake was significantly higher for males, older people, participants smoking more cigarettes and showing higher scores on Impulsivity, Sensation Seeking and a facet of Reward Sensitivity. However, more detailed analyses showed that different patterns of individual variables predicted caffeine consumption when the times of day and the caffeine sources were considered. The present results suggest that such detailed analyses are required to detect the critical predictive variables that could be obscured when only total caffeine intake during the entire day is considered. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Dose response effects of a caffeine-containing energy drink on muscle performance: a repeated measures design

    PubMed Central

    2012-01-01

    Background Energy drinks have become the most used caffeine-containing beverages in the sport setting. The aim of this study was to determine the effects of two doses of a caffeine-containing energy drink on muscle performance during upper- and lower-body power-load tests. Methods In a randomized order, twelve active participants ingested 1 and 3 mg of caffeine per kg of body weight using a commercially available energy drink (Fure®, ProEnergetics) or the same drink without caffeine (placebo; 0 mg/kg). After sixty minutes, resting metabolic rate, heart rate and blood pressure were determined. Then, half-squat and bench-press power production with loads from 10 to 100% of 1 repetition maximum was determined using a rotator encoder. Results In comparison to the placebo, the ingestion of the caffeinated drink increased mean arterial pressure (82 ± 7 < 88 ± 8 ≈ 90 ± 6 mmHg for 0 mg/kg, 1 mg/kg, 3 mg/kg of caffeine, respectively; P < 0.05) and heart rate (57 ± 7 < 59 ± 8 < 62 ± 8 beats/min, respectively; P < 0.05) at rest in a dose response manner, though it did not affect resting metabolic rate. While the ingestion of 1 mg/kg of caffeine did not affect maximal power during the power-load tests with respect to the placebo, 3 mg/kg increased maximal power in the half-squat (2554 ± 167 ≈ 2549 ± 161 < 2726 ± 167 W, respectively; P < 0.05) and bench-press actions (349 ± 34 ≈ 358 ± 35 < 375 ± 33 W, respectively; P < 0.05). Conclusions A caffeine dose of at least 3 mg/kg in the form of an energy drink is necessary to significantly improve half-squat and bench-press maximal muscle power. PMID:22569090

  14. Behavioral Management of Excessive Caffeine Consumption: Three Case Studies.

    ERIC Educational Resources Information Center

    Johnson-Greene, Douglas; And Others

    Although caffeine is seemingly harmless in ordinary daily intake, there has been increasing concern about the possible side effects of habitual caffeine ingestion. The excessive daily ingestion of caffeine in the form of coffee, soda pop, tea, and various medications may lead to a chronic disorder known as caffeinism. This study tested the…

  15. Fewer but heavier caffeine consumers in schizophrenia: a case-control study.

    PubMed

    Gurpegui, Manuel; Aguilar, M Carmen; Martínez-Ortega, José M; Jurado, Dolores; Diaz, Francisco J; Quintana, Hernando M; de Leon, Jose

    2006-09-01

    According to the literature, there is an association between schizophrenia and caffeine consumption, but it is not clear whether schizophrenia is associated with either higher prevalence of daily caffeine intake or the amount consumed. In this study we compared our previously published schizophrenia patients (n=250) with a control sample (n=290) after controlling for demographic variables and tobacco and alcohol consumption. Current caffeine intake was less frequent in schizophrenia patients (59%, 147/250) than in controls (70%, 204/290). In the multivariate analyses, caffeine intake was less frequent at an older age and in schizophrenia patients, and more frequent in smokers and alcohol users. Among caffeine consumers, heavy caffeine intake (> or =200 mg/day) was significantly associated with schizophrenia (64%, 94/147 in schizophrenia versus 36%, 73/204 in controls), as well as older age and smoking. Daily amount of caffeine intake and smoked cigarettes correlated significantly in the schizophrenia group but not in the control group; the correlation of caffeine intake with nicotine dependence was low and non-significant in both groups. The association between current smoking and heavy caffeine intake may be partly explained by a pharmacokinetic effect: tobacco smoke compounds induce caffeine metabolism by the cytochrome P450 1A2. Although schizophrenia by itself may be associated with heavy caffeine intake in caffeine users, part of this association was explained by the association between schizophrenia and smoking. The relationship between caffeine and alcohol intake appeared to be more complex; alcohol and caffeine use were significantly associated, but within caffeine users alcohol was associated with less frequent heavy caffeine consumption among smokers. In future studies, the measurement of plasma caffeine levels will help both to better define heavy caffeine intake and to control for smoking pharmacokinetic effects.

  16. A Preliminary Investigation of Caffeinated Alcohol Use During Spring Break.

    PubMed

    Linden-Carmichael, Ashley N; Lau-Barraco, Cathy

    2016-06-06

    Caffeinated alcoholic beverages (e.g., Red Bull and vodka) are popular but associated with negative consequences. CABs may be particularly popular during Spring Break, a potentially risky social event. We aimed to identify the prevalence of Spring Break caffeinated alcohol use, determine how caffeinated alcohol use Spring Break drinking habits differ from usual, and examine the association between Spring Break caffeinated alcohol use and alcohol-related problems. Data were collected from 95 college students during March of 2013 and 2014. Students completed questionnaires of their alcohol and caffeinated alcohol use before and during Spring Break and Spring Break alcohol-related problems. Approximately 54% of students used caffeinated alcohol during Spring Break. Spring Break caffeinated alcohol use was associated with more alcohol-related problems, even after controlling for other alcohol consumed and Spring Break vacation status. Caffeinated alcoholic beverages are commonly consumed during Spring Break and their use uniquely predicted harms. Prevention efforts placed on caffeinated alcoholic beverage users may be helpful in reducing Spring Break-related harms.

  17. Effects of coffee and caffeine anhydrous on strength and sprint performance

    PubMed Central

    TREXLER, ERIC T.; SMITH-RYAN, ABBIE E.; ROELOFS, ERICA J.; HIRSCH, KATIE R.; MOCK, MEREDITH G.

    2015-01-01

    Caffeine and coffee are widely used among active individuals to enhance performance. The purpose of the current study was to compare the effects of acute coffee (COF) and caffeine anhydrous (CAF) intake on strength and sprint performance. Fifty-four resistance-trained males completed strength testing, consisting of one-rep max (1RM) and repetitions to fatigue (RTF) at 80% of 1RM for leg press (LP) and bench press (BP). Participants then completed five, ten-second cycle ergometer sprints separated by one minute of rest. Peak power (PP) and total work (TW) were recorded for each sprint. At least 48 hours later, participants returned and ingested a beverage containing CAF (300 mg flat dose; yielding 3–5 mg/kg bodyweight), COF (8.9 g; 303 mg caffeine), or placebo (PLA; 3.8 g noncaloric flavoring) 30 minutes before testing. LP 1RM was improved more by COF than CAF (p=0.04), but not PLA (p=0.99). Significant interactions were not observed for BP 1RM, BP RTF, or LP RTF (p>0.05). There were no sprint × treatment interactions for PP or TW (p>0.05). 95% confidence intervals revealed a significant improvement in sprint 1 TW for CAF, but not COF or PLA. For PLA, significant reductions were observed in sprint 4 PP, sprint 2 TW, sprint 4 TW, and average TW; significant reductions were not observed with CAF or COF. Neither COF nor CAF improved strength outcomes more than PLA, while both groups attenuated sprint power reductions to a similar degree. Coffee and caffeine anhydrous may be considered suitable pre-exercise caffeine sources for high-intensity exercise. PMID:26394649

  18. Effects of coffee and caffeine anhydrous on strength and sprint performance.

    PubMed

    Trexler, Eric T; Smith-Ryan, Abbie E; Roelofs, Erica J; Hirsch, Katie R; Mock, Meredith G

    2016-09-01

    Caffeine and coffee are widely used among active individuals to enhance performance. The purpose of the current study was to compare the effects of acute coffee (COF) and caffeine anhydrous (CAF) intake on strength and sprint performance. Fifty-four resistance-trained males completed strength testing, consisting of one-rep max (1RM) and repetitions to fatigue (RTF) at 80% of 1RM for leg press (LP) and bench press (BP). Participants then completed five, 10-second cycle ergometer sprints separated by one minute of rest. Peak power (PP) and total work (TW) were recorded for each sprint. At least 48 hours later, participants returned and ingested a beverage containing CAF (300 mg flat dose; yielding 3-5 mg/kg bodyweight), COF (8.9 g; 303 mg caffeine), or placebo (PLA; 3.8 g non-caloric flavouring) 30 minutes before testing. LP 1RM was improved more by COF than CAF (p = .04), but not PLA (p = .99). Significant interactions were not observed for BP 1RM, BP RTF, or LP RTF (p > .05). There were no sprint × treatment interactions for PP or TW (p > .05). 95% confidence intervals revealed a significant improvement in sprint 1 TW for CAF, but not COF or PLA. For PLA, significant reductions were observed in sprint 4 PP, sprint 2 TW, sprint 4 TW, and average TW; significant reductions were not observed with CAF or COF. Neither COF nor CAF improved strength outcomes more than PLA, while both groups attenuated sprint power reductions to a similar degree. Coffee and caffeine anhydrous may be considered suitable pre-exercise caffeine sources for high-intensity exercise.

  19. Caffeine Withdrawal and Dependence: A Convenience Survey Among Addiction Professionals.

    PubMed

    Budney, Alan J; Brown, Pamela C; Griffiths, Roland R; Hughes, John R; Juliano, Laura M

    2013-06-01

    Caffeine withdrawal was included in the research appendix of the DSM-IV to encourage additional research to assist with determining its status for the next version of the manual. Caffeine dependence was not included because of a lack of empirical research at the time of publication. This study assessed the beliefs of addiction professionals about the clinical importance of caffeine withdrawal and dependence. A 6-item survey was developed and delivered electronically to the members of six professional organizations that focus on addiction. Open-ended comments were also solicited. Five hundred members responded. The majority (95%) thought that cessation of caffeine could produce a withdrawal syndrome, and that caffeine withdrawal can have clinical importance (73%); however, only half (48%) thought that caffeine withdrawal should be included in the Diagnostic and Statistical Manual of Mental Disorders (DSM). A majority (58%) believed that some people develop caffeine dependence; however, only 44% indicated that it should be in the DSM. Comments suggested that trepidation about inclusion of caffeine diagnoses was due to the concerns about the field of psychiatry being criticized for including common disorders with a relatively low clinical severity. Others, however, expressed an urgent need to take caffeine-related problems more seriously. The majority of addiction professionals believe that caffeine withdrawal and dependence disorders exist and are clinically important; however, these professionals are divided in whether caffeine withdrawal and dependence should be included in DSM. Wider dissemination of the extant literature on caffeine withdrawal and additional research on caffeine dependence will be needed to provide additional guidance to policymakers and healthcare workers.

  20. Caffeine for apnea of prematurity: Effects on the developing brain.

    PubMed

    Atik, Anzari; Harding, Richard; De Matteo, Robert; Kondos-Devcic, Delphi; Cheong, Jeanie; Doyle, Lex W; Tolcos, Mary

    2017-01-01

    Caffeine is a methylxanthine that is widely used to treat apnea of prematurity (AOP). In preterm infants, caffeine reduces the duration of respiratory support, improves survival rates and lowers the incidence of cerebral palsy and cognitive delay. There is, however, little evidence relating to the immediate and long-term effects of caffeine on brain development, especially at the cellular and molecular levels. Experimental data are conflicting, with studies showing that caffeine can have either adverse or benefical effects in the developing brain. The aim of this article is to review current understanding of how caffeine ameliorates AOP, the cellular and molecular mechanisms by which caffeine exerts its effects and the effects of caffeine on brain development. A better knowledge of the effects of caffeine on the developing brain at the cellular and/or molecular level is essential in order to understand the basis for the impact of caffeine on postnatal outcome. The studies reviewed here suggest that while caffeine has respiratory benefits for preterm infants, it may have adverse molecular and cellular effects on the developing brain; indeed a majority of experimental studies suggest that regardless of dose or duration of administration, caffeine leads to detrimental changes within the developing brain. Thus there is an urgent need to assess the impact of caffeine, at a range of doses, on the structure and function of the developing brain in preclinical studies, particularly using clinically relevant animal models. Future studies should focus on determining the maximal dose of caffeine that is safe for the preterm brain. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Caffeine: How Much Is Too Much?

    MedlinePlus

    ... caffeine content in beverages varies widely, especially among energy drinks. Although caffeine use may be safe for adults, ... you're getting from foods and beverages, including energy drinks. Read labels carefully. But remember that your estimate ...

  2. Caffeine antagonism of alcohol-induced driving impairment.

    PubMed

    Liguori, A; Robinson, J H

    2001-07-01

    The extent to which caffeine antagonizes alcohol-induced impairment of simulated automobile driving at the current lowest legal American limit (0.08% BrAC) was the focus of this study. Fifteen adults swallowed a capsule (0, 200, or 400 mg caffeine) then drank a beverage (0.0 or 0.6 g/kg ethanol) in a within-subject, double-blind, randomized procedure. Forty-five minutes later, participants completed a test battery of subjective effects scales, dynamic posturography, critical flicker fusion (CFF), choice reaction time (CRT), divided attention (Stroop test), and simulated driving. Alcohol alone increased ratings of 'dizzy', 'drug effect', and 'high', slowed CRT and brake latency, and increased body sway. Caffeine alone increased ratings of 'alert' and 'jittery', but did not significantly affect body sway or psychomotor performance. Both caffeine doses comparably counteracted alcohol impairment of brake latency but not CRT or body sway. Brake latency with either alcohol-caffeine combination remained significantly longer than that with placebo. Stroop and CFF performance were unaffected by any drug condition. The results suggest that caffeine may increase alertness and improve reaction time after alcohol use but will not completely counteract alcohol impairment in a driver.

  3. Caffeine Content in Popular Energy Drinks and Energy Shots.

    PubMed

    Attipoe, Selasi; Leggit, Jeffrey; Deuster, Patricia A

    2016-09-01

    The use of energy beverages is high among the general population and military personnel. Previous studies have reported discrepancies between the actual amount of caffeine in products and the amount of caffeine on stated labels. Thus, the purpose of this study was to examine the content of caffeine listed on the labels of various energy drinks and energy shots. Top-selling energy drinks (n = 9) and energy shots (n = 5) were purchased from retail stores. Three of each of the 14 products were purchased and analyzed for caffeine content by an independent laboratory. Of the 14 products tested, 5 did not provide caffeine amounts on their facts panel-of those, 3 listed caffeine as an ingredient and 2 listed caffeine as part of a proprietary blend. The remaining 9 (of 14) products stated the amounts of caffeine on their labels, all of which were within 15% of the amount indicated on the label. In this study, although the energy beverages that indicated the amount of caffeine it contained had values within ±15% of the amount listed on the label, a potentially acceptable range, this finding is not acceptable with regard to current labeling regulations, which require added ingredients to total 100%. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.

  4. Pathway-specific effect of caffeine on protection against UV irradiation-induced apoptosis in corneal epithelial cells.

    PubMed

    Wang, Ling; Lu, Luo

    2007-02-01

    To define the role of molecular interaction between the UV-induced JNK (c-Jun N-terminal kinase) cascade and corneal epithelial cell apoptosis and protection against apoptosis by caffeine. Rabbit and human corneal epithelial cells were cultured in DMEM/F12 medium containing 10% FBS and 5 microg/mL insulin at 37 degrees C in 5% CO(2). DNA fragmentation and ethidium bromide/acridine orange (EB/AO) nuclear staining were performed to detect cell death. Western blot, immunoprecipitation, and kinase assays were used to measure UV-induced mitogen-activated protein (MAP) kinase activity. UV irradiation-induced apoptosis through apoptosis signal-regulating kinase 1 (ASK1) and MAKK4 (SEK1) upstream from JNK was caffeine sensitive. Caffeine (1,3,7-trimethylxanthine), an agent that is one of the most popular additions to food consumed in the world and a potential enhancer of chemotherapy, effectively protected corneal epithelial cells against apoptosis by its specific effect on the JNK cascade. Theophylline (1,3-dimethylxanthine) exhibited an effect similar to that of caffeine on prevention of UV irradiation-induced apoptosis. However, alterations of either intracellular cAMP or Ca(2+) levels did not alter the effect of caffeine on the JNK signaling pathway. In addition, the blockade of PI3K-like kinases by wortmannin had no impact on the protective effect of caffeine against UV irradiation-induced apoptosis, suggesting that the protective effect of caffeine acts through a specific mechanism involving UV irradiation-induced activation of ASK1 and SEK1. In contrast, caffeine had no effects on melphalan-, hyperosmotic stress-, or IL-1beta-induced activation of the JNK signaling pathway in these cells. UV irradiation stress-induced activation of the ASK1-SEK1-JNK signaling pathway leading to apoptosis is a caffeine-sensitive process, and caffeine, as a multifunctional agent in cells, can specifically interact with the pathway to protect against apoptosis.

  5. Coffee with co-workers: role of caffeine on evaluations of the self and others in group settings.

    PubMed

    Unnava, Vasu; Singh, Amit Surendra; Unnava, H Rao

    2018-03-01

    This research explores the effect of consuming a moderate amount of commercially available caffeinated coffee on an individual's self-evaluated participation in a group activity and subsequent evaluations of the experience. Across two studies, results show that consuming a moderate amount of caffeinated coffee prior to indulging in a group activity enhances an individual's task-relevant participation in the group activity. In addition, subjective evaluations of the participation of other group members and oneself are also positively influenced. Finally, the positive impact of consuming a moderate amount of caffeinated coffee on the evaluation of participation of other group members and oneself is moderated by a sense of an increased level of alertness.

  6. The influence of CYP1A2 genotype in the blood pressure response to caffeine ingestion is affected by physical activity status and caffeine consumption level.

    PubMed

    Soares, Rogerio Nogueira; Schneider, Augusto; Valle, Sandra Costa; Schenkel, Paulo Cavalheiro

    2018-03-06

    This study aimed to investigate whether the influence of CYP1A2 genotype in the blood pressure (BP) response to caffeine ingestion was affected by physical activity status and habitual caffeine consumption. Thirty-seven participants (19-50 years old) took place in the study and were categorized according to i) genotype: CYP1A2 (AA) "fast metabolizer", and CYP1A2 (AC) "slow metabolizer"; ii) physical activity level: sedentary (S) and physically active (A); and iii) caffeine consumption level: non-habitual caffeine consumer (NC) and habitual heavy caffeine consumer (C). All groups had BP assessed before (basal) and 1 hourh after (post) caffeine ingestion (6 mg·kg -1 ). It was observed that AC genotype individuals had increased basal-DBP and post-caffeine SBP when compared to AA individuals. Additionally, acute caffeine ingestion increased SBP only in the AC group. It was also found that physical activity only modulated the BP responses to acute caffeine ingestion in AC individuals. Furthermore, the results indicated that the habitual heavy caffeine consumers AC individuals had increased basal-DBP when compared to the AA ones. Our results suggest that the influence of CYP1A2 genotype in the basal and post-caffeine BP response to caffeine ingestion is modified by physical activity status and caffeine consumption level. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Caffeine daily intake from dietary sources in Brazil.

    PubMed

    Camargo, M C; Toledo, M C; Farah, H G

    1999-02-01

    A survey on the potential intake of caffeine was carried out in Campinas, SP, Brazil, in the summer of 1993. The survey was based on a representative sample of 600 individuals, 9-80 years old, who were asked about their habitual usage of coffee, tea, chocolate products and carbonated beverages. Caffeine levels in the products were determined by high performance liquid chromatography with a UV-visible detector at 254 nm. Individual daily intakes (mg/kg b.w.) of caffeine were calculated from the consumption data generated by the survey and the caffeine content of the analysed products. Of all those interviewed, 81% consumed soft drinks regularly, 75% coffee, 65% chocolate products and 37% tea. Of the analysed products, coffee showed the highest amount of caffeine. The average and median potential daily intake of caffeine by the studied population were, respectively, 2.74 and 1.85 mg/kg b.w. Coffee, tea, chocolate products and carbonated beverages accounted for median individual daily intakes of 1.90, 0.32, 0.19, and 0.19 mg/kg b.w., respectively. These data show that coffee is the most important vehicle for caffeine intake within the studied population.

  8. Behavioral treatment of caffeinism: reducing excessive coffee drinking.

    PubMed Central

    Foxx, R M; Rubinoff, A

    1979-01-01

    Excessive coffee drinking can have deleterious effects because of the large amounts of caffeine that are ingested. Caffeine is thought to be addicting, and prolonged and excessive use can lead to caffeinism, a condition that has serious behavioral and physiological side effects. The present study developed and evaluated a treatment program to reduce excessive daily coffee drinking to moderate and presumably safer levels. Three habitual coffee drinkers received individualized changing criterion programs that systematically and gradually reduced their daily caffeine intake. The coffee drinkers were required to self-monitor and plot their daily intake of caffeine. They received monetary prizes for not exceeding the treatment phase criteria and forfeited a portion of their pretreatment deposit when they did. Their coffee drinking decreased from almost nine cups per day (over 1100 mg of caffeine) during baseline to less than three cups per day (less than 343 mg) at the end of treatment or a reduction of 69%. The treatment effect was maintained during a 10-month follow-up, averaging a 67% reduction from baseline. The program appears to be a reasonable method of reducing and then maintaining daily caffeine intake at less harmful levels. PMID:511802

  9. Interaction of caffeine with the SOS response pathway in Escherichia coli.

    PubMed

    Whitney, Alyssa K; Weir, Tiffany L

    2015-01-01

    Previous studies have highlighted the antimicrobial activity of caffeine, both individually and in combination with other compounds. A proposed mechanism for caffeine's antimicrobial effects is inhibition of bacterial DNA repair pathways. The current study examines the influence of sub-lethal caffeine levels on the growth and morphology of SOS response pathway mutants of Escherichia coli. Growth inhibition after treatment with caffeine and methyl methane sulfonate (MMS), a mutagenic agent, was determined for E. coli mutants lacking key genes in the SOS response pathway. The persistence of caffeine's effects was explored by examining growth and morphology of caffeine and MMS-treated bacterial isolates in the absence of selective pressure. Caffeine significantly reduced growth of E. coli recA- and uvrA-mutants treated with MMS. However, there was no significant difference in growth between umuC-isolates treated with MMS alone and MMS in combination with caffeine after 48 h of incubation. When recA-isolates from each treatment group were grown in untreated medium, bacterial isolates that had been exposed to MMS or MMS with caffeine showed increased growth relative to controls and caffeine-treated isolates. Morphologically, recA-isolates that had been treated with caffeine and both caffeine and MMS together had begun to display filamentous growth. Caffeine treatment further reduced growth of recA- and uvrA-mutants treated with MMS, despite a non-functional SOS response pathway. However, addition of caffeine had very little effect on MMS inhibition of umuC-mutants. Thus, growth inhibition of E. coli with caffeine treatment may be driven by caffeine interaction with UmuC, but also appears to induce damage by additional mechanisms as evidenced by the additive effects of caffeine in recA- and uvrA-mutants.

  10. Perturbation of cytosolic calcium by 2-aminoethoxydiphenyl borate and caffeine affects zebrafish myofibril alignment.

    PubMed

    Wu, Hsin-Ju; Fong, Tsorng-Harn; Chen, Shen-Liang; Wei, Jen-Cheng; Wang, I-Jong; Wen, Chi-Chung; Chang, Chao-Yuan; Chen, Xing-Guang; Chen, Wei-Yu; Chen, Hui-Min; Horng, Juin-Lin; Wang, Yun-Hsin; Chen, Yau-Hung

    2015-03-01

    The objective of the current study was to investigate the effects of Ca(2+) levels on myofibril alignment during zebrafish embryogenesis. To investigate how altered cytoplasmic Ca(2+) levels affect myofibril alignment, we exposed zebrafish embryos to 2-aminothoxyldiphenyl borate (2-APB; an inositol 1,4,5-trisphosphate receptor inhibitor that reduces cytosolic Ca(2+) levels) and caffeine (a ryanodine receptor activator that enhances cytosolic Ca(2+) levels). The results demonstrated that the most evident changes in zebrafish embryos treated with 2-APB were shorter body length, curved trunk and malformed somite boundary. In contrast, such malformed phenotypes were evident neither in untreated controls nor in caffeine-treated embryos. Subtle morphological changes, including changes in muscle fibers, F-actin and ultrastructures were easily observed by staining with specific monoclonal antibodies (F59 and α-laminin), fluorescent probes (phalloidin) and by transmission electron microscopy. Our data suggested that: (1) the exposure to 2-APB and/or caffeine led to myofibril misalignment; (2) 2-APB-treated embryos displayed split and short myofibril phenotypes, whereas muscle fibers from caffeine-treated embryos were twisted and wavy; and (3) zebrafish embryos co-exposed to 2-APB and caffeine resulted in normal myofibril alignment. In conclusion, we proposed that cytosolic Ca(2+) is important for myogenesis, particularly for myofibril alignment. Copyright © 2014 John Wiley & Sons, Ltd.

  11. Acute effects of caffeine in volunteers with different patterns of regular consumption.

    PubMed

    Hewlett, Paul; Smith, Andrew

    2006-04-01

    The effects of caffeine on mood and performance are well established. One explanation of these effects is that caffeine removes negative effects induced by prior caffeine withdrawal. This was tested here by comparing effects of caffeine in withdrawn consumers and non-consumers (who by definition were not withdrawn). The present study aimed to determine whether caffeine withdrawal influenced mood and performance by comparing regular consumers who had been withdrawn from caffeine overnight with non-consumers. Following this the effects of acute caffeine challenges were compared in withdrawn consumers and non-consumers. In addition, comparisons were made between those with higher and lower caffeine consumption. One hundred seventy-six volunteers participated in the study. Regular caffeine consumption was assessed by questionnaire and this showed that 56 of the sample did not regularly consume caffeinated beverages. Volunteers were instructed to abstain from caffeine overnight and then completed a baseline session measuring mood and a range of cognitive functions at 08.00 the next day. Following this approximately half of the volunteers were given 1 mg/kg caffeine in a milkshake or water (in the 'no caffeine' condition they were given just the milkshake or water) and the test battery repeated one hour later. A second test battery was carried out at 12.00 and a second caffeine challenge at 13.00. A final test session was carried out at 15.00. The baseline data revealed little evidence of effects of caffeine withdrawal on performance and mood. In contrast to this, caffeine produced a number of significant improvements in performance. There were some differences in the effects of caffeine on regular and non-consumers, with caffeine tending to reduce reaction time in regular consumers while the opposite was true for non-consumers. The present results show little evidence of effects of caffeine withdrawal on performance. In contrast, caffeine challenge produced improvements

  12. Alteration of carotid body chemoreflexes after neonatal intermittent hypoxia and caffeine treatment in rat pups.

    PubMed

    Julien, Cécile A; Joseph, Vincent; Bairam, Aida

    2011-08-15

    In human neonates, caffeine therapy for apnoea of prematurity, especially when associated with hypoxemia, is maintained for several weeks after birth. In the present study, we used newborn rats and whole-body plethysmography to test whether chronic exposure to neonatal caffeine treatment (NCT), alone or combined with neonatal intermittent hypoxia (n-IH) alters: (1) baseline ventilation and response to hypoxia (12% O(2), 20 min); and (2) response to acute i.p. injection of caffeine citrate (20 mg/kg) or domperidone, a peripheral dopamine D2 receptor antagonist (1 mg/kg). Four groups of rats were studied as follows: raised under normal conditions with daily gavage with water (NWT) or NCT, or exposed to n-IH (n-IH+NWT and n-IH+NCT) from postnatal days 3 to 12. In n-IH+NCT rats, baseline ventilation was higher than in the other groups. Caffeine or domperidone enhanced baseline ventilation only in NWT and n-IH+NWT rats, but neither caffeine nor domperidone affected the hypoxic ventilatory response in these groups. In n-IH+NWT rats, the response during the early phase of hypoxia (<10 min) was higher than in other groups. During the late response phase to hypoxia (20 min), ventilation was lower in n-IH+NWT and n-IH+NCT rats compared to NWT or NCT, and were not affected by caffeine or domperidone injection. NCT or caffeine injection decreased baseline apnoea frequency in all groups. These data suggest that chronic exposure to NCT alters both carotid body dopaminergic and adenosinergic systems and central regulation of breathing under baseline conditions and in response to hypoxia. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Caffeine Eye Drops Protect Against UV-B Cataract

    PubMed Central

    Kronschläger, Martin; Löfgren, Stefan; Yu, Zhaohua; Talebizadeh, Nooshin; Varma, Shambhu D.; Söderberg, Per

    2013-01-01

    The purpose of this study was to investigate if topically applied caffeine protects against in vivo ultraviolet radiation cataract and if so, to estimate the protection factor. Three experiments were carried out. First, two groups of Sprague-Dawley rats were pre-treated with a single application of either placebo or caffeine eye drops in both eyes. All animals were then unilaterally exposed in vivo to 8 kJ/m2 UV-B radiation for 15 min. One week later, the lens GSH levels were measured and the degree of cataract was quantified by measurement of in vitro lens light scattering. In the second experiment, placebo and caffeine pre-treated rats were divided in five UV-B radiation dose groups, receiving 0.0, 2.6, 3.7, 4.5 or 5.2 kJ/m2 UV-B radiation in one eye. Lens light scattering was determined after one week. In the third experiment, placebo and caffeine pre-treated rats were UV-B-exposed and the presence of activated caspase-3 was visualized by immunohistochemistry. There was significantly less UV-B radiation cataract in the caffeine group than in the placebo group (95% confidence interval for mean difference in lens light scattering between the groups = 0.10 ± 0.05 tEDC), and the protection factor for caffeine was 1.23. There was no difference in GSH levels between the placebo- and the caffeine group. There was more caspase-3 staining in UV-B-exposed lenses from the placebo group than in UV-B-exposed lenses from the caffeine group. Topically applied caffeine protects against ultraviolet radiation cataract, reducing lens sensitivity 1.23 times. PMID:23644096

  14. Caffeine Induces a Stimulant Effect and Increases Dopamine Release in the Nucleus Accumbens Shell Through the Pulmonary Inhalation Route of Administration in Rats.

    PubMed

    Galvalisi, Martín; Prieto, José Pedro; Martínez, Marcela; Abin-Carriquiry, Juan Andrés; Scorza, Cecilia

    2017-01-01

    Oral, intraperitoneal, or intravenous have been the common routes of administration used to study the behavioral and neurochemical pharmacology of caffeine, one of the most widely used psychoactive substances worldwide. We have reported that caffeine is an active adulterant frequently found in coca-paste (CP)-seized samples, a highly addictive form of smokable cocaine. The role of caffeine in the psychostimulant and neurochemical effects induced by CP remains under study. No preclinical animal studies have been performed so far to characterize the effects of caffeine when it is administered through the pulmonary inhalation route. Caffeine (10, 25, and 50 mg) was volatilized and rats were exposed to one inhalation session of its vapor. The stimulant effect was automatically recorded and plasmatic levels of caffeine were measured. Caffeine capability (50 mg) to increase extracellular dopamine (DA) levels in nucleus accumbens shell was also studied by in vivo microdialysis in non-anesthetized animals. A dose-dependent stimulant effect induced by volatilized caffeine was observed and this effect was directly related with caffeine plasmatic levels. A significant increase in the extracellular DA was achieved after 50 mg of volatilized caffeine exposure. This is the first report showing pharmacological acute effects of caffeine through the pulmonary inhalation route of administration and suggests that this could be a condition under which caffeine can elevate its weak reinforcing effect and even enhance the psychostimulant effect and abuse liability of smokable adulterated psychostimulant drugs.

  15. Homologous recombination as a potential target for caffeine radiosensitization in mammalian cells: reduced caffeine radiosensitization in XRCC2 and XRCC3 mutants

    NASA Technical Reports Server (NTRS)

    Asaad, N. A.; Zeng, Z. C.; Guan, J.; Thacker, J.; Iliakis, G.

    2000-01-01

    The radiosensitizing effect of caffeine has been associated with the disruption of multiple DNA damage-responsive cell cycle checkpoints, but several lines of evidence also implicate inhibition of DNA repair. The role of DNA repair inhibition in caffeine radiosensitization remains uncharacterized, and it is unknown which repair process, or lesion, is affected. We show that a radiosensitive cell line, mutant for the RAD51 homolog XRCC2 and defective in homologous recombination repair (HRR), displays significantly diminished caffeine radiosensitization that can be restored by expression of XRCC2. Despite the reduced radiosensitization, caffeine effectively abrogates checkpoints in S and G2 phases in XRCC2 mutant cells indicating that checkpoint abrogation is not sufficient for radiosensitization. Another radiosensitive line, mutant for XRCC3 and defective in HRR, similarly shows reduced caffeine radiosensitization. On the other hand, a radiosensitive mutant (irs-20) of DNA-PKcs with a defect in non-homologous end-joining (NHEJ) is radiosensitized by caffeine to an extent comparable to wild-type cells. In addition, rejoining of radiation-induced DNA DSBs, that mainly reflects NHEJ, remains unaffected by caffeine in XRCC2 and XRCC3 mutants, or their wild-type counterparts. These observations suggest that caffeine targets steps in HRR but not in NHEJ and that abrogation of checkpoint response is not sufficient to explain radiosensitization. Indeed, immortalized fibroblasts from AT patients show caffeine radiosensitization despite the checkpoint defects associated with ATM mutation. We propose that caffeine radiosensitization is mediated by inhibition of stages in DNA DSB repair requiring HRR and that checkpoint disruption contributes by allowing these DSBs to transit into irreparable states. Thus, checkpoints may contribute to genomic stability by promoting error-free HRR.

  16. Caffeine delays autonomic recovery following acute exercise.

    PubMed

    Bunsawat, Kanokwan; White, Daniel W; Kappus, Rebecca M; Baynard, Tracy

    2015-11-01

    Impaired autonomic recovery of heart rate (HR) following exercise is associated with an increased risk of sudden death. Caffeine, a potent stimulator of catecholamine release, has been shown to augment blood pressure (BP) and sympathetic nerve activity; however, whether caffeine alters autonomic function after a bout of exercise bout remains unclear. In a randomized, crossover study, 18 healthy individuals (26 ± 1 years; 23.9 ± 0.8 kg·m(-2)) ingested caffeine (400 mg) or placebo pills, followed by a maximal treadmill test to exhaustion. Autonomic function and ventricular depolarization/repolarization were determined using heart rate variability (HRV) and corrected QT interval (QTc), respectively, at baseline, 5, 15, and 30 minutes post-exercise. Maximal HR (HRmax) was greater with caffeine (192 ± 2 vs. 190 ± 2 beat·min(-1), p < 0.05). During recovery, HR, mean arterial pressure (MAP), and diastolic blood pressure (DBP) remained elevated with caffeine (p < 0.05). Natural log transformation of low-to-high frequency ratio (LnLF/LnHF) of HRV was increased compared with baseline at all time points in both trials (p < 0.05), with less of an increase during 5 and 15 minutes post-exercise in the caffeine trial (p < 0.05). QTc increased from baseline at all time points in both trials, with greater increases in the caffeine trial (p < 0.05). Caffeine ingestion disrupts post-exercise autonomic recovery because of increased sympathetic nerve activity. The prolonged sympathetic recovery time could subsequently hinder baroreflex function during recovery and disrupt the stability of autonomic function, potentiating a pro-arrhythmogenic state in young adults. © The European Society of Cardiology 2014.

  17. The Interaction of Sorbitol with Caffeine in Aqueous Solution

    PubMed Central

    Tavagnacco, Letizia; Brady, John W.; Cesàro, Attilio

    2013-01-01

    Molecular dynamics simulations were carried out on a system of caffeine interacting with the sugar alcohol sorbitol. The system examined had a caffeine concentration 0.083 m and a sugar concentration 1.08 m. The trajectories of all molecules in the system were collected over a period of 80 ns and analyzed to determine whether there is any tendency for sorbitol to bind to caffeine, and if so, by what mechanism. The results show that the sorbitol molecules have an affinity for the caffeine molecules and that the binding occurred by the interaction of the aliphatic hydrophobic protons of the sugar with the caffeine face. This intermolecular association via face-to-face stacking, as suggested by simulation studies, is similar to that found for sucrose and for D-glucose, which overwhelmingly exists in the pyranose ring chair form in aqueous solution, as well as for caffeine-caffeine association. The sorbitol molecules, however, exist as relatively extended chains and are, therefore, topologically quite different from the sugars sucrose and glucose. The comparison of the average conformation of sorbitol molecules bound to caffeine with that of molecules in the free state shows a substantial similarity. PMID:24000279

  18. The Interaction of Sorbitol with Caffeine in Aqueous Solution.

    PubMed

    Tavagnacco, Letizia; Brady, John W; Cesàro, Attilio

    2013-09-01

    Molecular dynamics simulations were carried out on a system of caffeine interacting with the sugar alcohol sorbitol. The system examined had a caffeine concentration 0.083 m and a sugar concentration 1.08 m. The trajectories of all molecules in the system were collected over a period of 80 ns and analyzed to determine whether there is any tendency for sorbitol to bind to caffeine, and if so, by what mechanism. The results show that the sorbitol molecules have an affinity for the caffeine molecules and that the binding occurred by the interaction of the aliphatic hydrophobic protons of the sugar with the caffeine face. This intermolecular association via face-to-face stacking, as suggested by simulation studies, is similar to that found for sucrose and for D-glucose, which overwhelmingly exists in the pyranose ring chair form in aqueous solution, as well as for caffeine-caffeine association. The sorbitol molecules, however, exist as relatively extended chains and are, therefore, topologically quite different from the sugars sucrose and glucose. The comparison of the average conformation of sorbitol molecules bound to caffeine with that of molecules in the free state shows a substantial similarity.

  19. Endorsement of DSM-IV dependence criteria among caffeine users.

    PubMed

    Hughes, J R; Oliveto, A H; Liguori, A; Carpenter, J; Howard, T

    1998-10-01

    The purpose of this article is to determine whether some caffeine users endorse clinical indicators of dependence and abuse. We asked 162 randomly-selected caffeine users generic DSM-IV criteria for dependence, abuse, intoxication and withdrawal pertaining to their caffeine use in the last year via a structured telephone interview. The prevalence of endorsement of dependence items was 56% for strong desire or unsuccessful attempt to stop use, 50% for spending a great deal of time with the drug, 28% for using more than intended, 18% for withdrawal, 14% for using despite knowledge of harm, 8% for tolerance and 1% for foregoing activities to use. Seven percent of users met DSM-IV criteria for caffeine intoxication and, among those who had tried to stop caffeine permanently, 24% met DSM-IV research criteria for caffeine withdrawal. Test-retest interviews for dependency agreed in 29/30 cases (97%). Eight expert substance abuse clinicians agreed with self-endorsed caffeine dependence 91% of the time. Our results replicate earlier work and suggest that a substantial proportion of caffeine users exhibit dependence-like behaviors. Further studies are needed to determine whether such users exhibit a clinically significant syndrome of drug dependence.

  20. Excess caffeine exposure impairs eye development during chick embryogenesis

    PubMed Central

    Ma, Zheng-lai; Wang, Guang; Cheng, Xin; Chuai, Manli; Kurihara, Hiroshi; Lee, Kenneth Ka Ho; Yang, Xuesong

    2014-01-01

    Caffeine has been an integral component of our diet and medicines for centuries. It is now known that over consumption of caffeine has detrimental effects on our health, and also disrupts normal foetal development in pregnant mothers. In this study, we investigated the potential teratogenic effect of caffeine over-exposure on eye development in the early chick embryo. Firstly, we demonstrated that caffeine exposure caused chick embryos to develop asymmetrical microphthalmia and induced the orbital bone to develop abnormally. Secondly, caffeine exposure perturbed Pax6 expression in the retina of the developing eye. In addition, it perturbed the migration of HNK-1+ cranial neural crest cells. Pax6 is an important gene that regulates eye development, so altering the expression of this gene might be the cause for the abnormal eye development. Thirdly, we found that reactive oxygen species (ROS) production was significantly increased in eye tissues following caffeine treatment, and that the addition of anti-oxidant vitamin C could rescue the eyes from developing abnormally in the presence of caffeine. This suggests that excess ROS induced by caffeine is one of the mechanisms involved in the teratogenic alterations observed in the eye during embryogenesis. In sum, our experiments in the chick embryo demonstrated that caffeine is a potential teratogen. It causes asymmetrical microphthalmia to develop by increasing ROS production and perturbs Pax6 expression. PMID:24636305

  1. Caffeine Use Disorder: A Review of the Evidence and Future Implications.

    PubMed

    Addicott, Merideth A

    2014-09-01

    The latest edition of the Diagnostic and Statistical Manual (DSM-5) has introduced new provisions for caffeine-related disorders. Caffeine Withdrawal is now an officially recognized diagnosis, and criteria for caffeine use disorder have been proposed for additional study. caffeine use disorder is intended to be characterized by cognitive, behavioral, and physiological symptoms indicative of caffeine use despite significant caffeine-related problems, similar to other Substance Use Disorders. However, since nonproblematic caffeine use is so common and widespread, it may be difficult for some health professionals to accept that caffeine use can result in the same types of pathological behaviors caused by alcohol, cocaine, opiates, or other drugs of abuse. Yet there is evidence that some individuals are psychologically and physiologically dependent on caffeine, although the prevalence and severity of these problems is unknown. This article reviews the recent changes to the DSM, the concerns regarding these changes, and some potential impacts these changes could have on caffeine consumers.

  2. Cardiovascular Responses to Caffeine by Gender and Pubertal Stage

    PubMed Central

    Ziegler, Amanda M.; Graczyk, Adam; Bendlin, Ashley; Sion, Teresa; Vattana, Karina

    2014-01-01

    BACKGROUND: Caffeine use is on the rise among children and adolescents. Previous studies from our laboratory reported gender differences in the effects of caffeine in adolescents. The purpose of this study was to test the hypotheses that gender differences in cardiovascular responses to caffeine emerge after puberty and that cardiovascular responses to caffeine differ across the phases of the menstrual cycle. METHODS: To test these hypotheses, we examined heart rate and blood pressure before and after administration of placebo and 2 doses of caffeine (1 and 2 mg/kg) in prepubertal (8- to 9-year-olds; n = 52) and postpubertal (15- to 17-year-olds; n = 49) boys (n = 54) and girls (n = 47) by using a double-blind, placebo-controlled, dose-response design. RESULTS: There was an interaction between gender and caffeine dose, with boys having a greater response to caffeine than girls. In addition, we found interactions between pubertal phase, gender, and caffeine dose, with gender differences present in postpubertal, but not in prepubertal, participants. Finally, we found differences in responses to caffeine across the menstrual cycle in post-pubertal girls, with decreases in heart rate greater in the midluteal phase and blood pressure increases greater in the midfollicular phase of the menstrual cycle. CONCLUSIONS: These data suggest that gender differences in response to caffeine emerge after puberty. Future research will determine the extent to which these gender differences are mediated by physiological factors, such as steroid hormones, or psychosocial factors, such as more autonomy and control over beverage purchases. PMID:24935999

  3. Caffeine Consumption Patterns and Beliefs of College Freshmen

    ERIC Educational Resources Information Center

    McIlvain, Gary E.; Noland, Melody P.; Bickel, Robert

    2011-01-01

    Background: Caffeine consumption by young people has increased dramatically over the last decade through increased coffee consumption and "energy drinks." In higher amounts, caffeine causes many adverse effects that are cause for concern. Purpose: Purposes of this study were to determine: (1) the amount of caffeine consumed by a sample…

  4. Economic evaluation of caffeine for apnea of prematurity.

    PubMed

    Dukhovny, Dmitry; Lorch, Scott A; Schmidt, Barbara; Doyle, Lex W; Kok, Joke H; Roberts, Robin S; Kamholz, Karen L; Wang, Na; Mao, Wenyang; Zupancic, John A F

    2011-01-01

    To determine the cost-effectiveness of treatment with caffeine compared with placebo for apnea of prematurity in infants with birth weights less than 1250 g, from birth through 18 to 21 months' corrected age. We undertook a retrospective economic evaluation of the cost per survivor without neurodevelopmental impairment by using individual-patient data from the Caffeine for Apnea of Prematurity clinical trial (N = 1869). We included direct medical costs either to the insurance payer or the hospital but excluded costs to parents and society, such as lost productivity. We used a price of $0.21/mg of generic caffeine citrate for our base-case analysis. All costs were expressed in 2008 Canadian dollars and discounted at 3%. The time horizon for this analysis extended through 18 to 21 months' corrected age to match the clinical trial. The mean cost per infant was $124 466 in the caffeine group and $133 505 in the placebo group (difference: $9039 [-14 749 to -3375]; adjusted P = .014). Cost-effectiveness analysis showed caffeine to be a dominant or "win-win" therapy: in >99% of 1000 bootstrap replications of the analysis, caffeine-treated infants had simultaneously better outcomes and lower mean costs. These results were robust to a 1000% increase in the individual resource items, including the price of caffeine citrate. In comparison with placebo, caffeine therapy for apnea of prematurity in infants weighing less than 1250 g is economically appealing for infants up to 18 to 21 months' corrected age.

  5. Extraction of Caffeine--A Modern Experiment

    ERIC Educational Resources Information Center

    Cohen, Paul Shea; Smith, Eileen Patricia

    1969-01-01

    Describes an organic chemistry experiment suitable for high school students in second year or an advanced chemistry course. The techniques for the extraction and purification of caffeine from various household materials are described. Further experimentation with the extracted caffeine is suggested. (LC)

  6. Withdrawal syndrome after the double-blind cessation of caffeine consumption.

    PubMed

    Silverman, K; Evans, S M; Strain, E C; Griffiths, R R

    1992-10-15

    People who stop consuming caffeine may have symptoms, but the incidence and severity of caffeine withdrawal are not known. This study was performed to determine the effects in the general population of ending one's dietary intake of caffeine. We studied 62 normal adults whose intake of caffeine was low to moderate (mean amount, 235 mg--the equivalent of 2.5 cups of coffee--per day). They completed questionnaires about symptoms and tests of their mood and performance when consuming their normal diets (base-line period) and at the end of each of two two-day periods during which they consumed caffeine-free diets and under double-blind conditions received capsules containing placebo (placebo period) or caffeine (caffeine period) in amounts equal to their daily caffeine consumption. More subjects had abnormally high Beck Depression Inventory scores (11 percent), high scores on the trait scale of the State-Trait Anxiety Inventory (8 percent), low vigor scores (11 percent) and high fatigue scores (8 percent) on the Profile of Mood States, and moderate or severe headache (52 percent) during the placebo period than during either the base-line period (2, 0, 0, 0, and 2 percent, respectively; P less than 0.05) or the caffeine period (3, 2, 2, 0, and 6 percent; P less than 0.05). More subjects reported unauthorized use of medications during the placebo period (13 percent) than during the caffeine period (2 percent, P = 0.017). Performance of a tapping task was slower during the placebo period than during the base-line and caffeine periods (P less than 0.01). Persons who consume low or moderate amounts of caffeine may have a withdrawal syndrome after their daily consumption of caffeine ceases.

  7. Caffeine and theanine exert opposite effects on attention under emotional arousal.

    PubMed

    Giles, Grace E; Mahoney, Caroline R; Brunyé, Tad T; Taylor, Holly A; Kanarek, Robin B

    2017-01-01

    Tea is perceived as more relaxing than coffee, even though both contain caffeine. L-theanine in tea may account for the difference. Consumed together, caffeine and theanine exert similar cognitive effects to that of caffeine alone, but exert opposite effects on arousal, in that caffeine accentuates and theanine mitigates physiological and felt stress responses. We evaluated whether caffeine and theanine influenced cognition under emotional arousal. Using a double-blind, repeated-measures design, 36 participants received 4 treatments (200 mg caffeine + 0 mg theanine, 0 mg caffeine + 200 mg theanine, 200 mg caffeine + 200 mg theanine, 0 mg caffeine + 0 mg theanine) on separate days. Emotional arousal was induced by highly arousing negative film clips and pictures. Mood, salivary cortisol, and visual attention were evaluated. Caffeine accentuated global processing of visual attention on the hierarchical shape task (p < 0.05), theanine accentuated local processing (p < 0.05), and the combination did not differ from placebo. Caffeine reduced flanker conflict difference scores on the Attention Network Test (p < 0.05), theanine increased difference scores (p < 0.05), and the combination did not differ from placebo. Thus, under emotional arousal, caffeine and theanine exert opposite effects on certain attentional processes, but when consumed together, they counteract the effects of each other.

  8. Assessment of the ergogenic effect of caffeine supplementation on mood, anticipation timing, and muscular strength in older adults

    PubMed Central

    Tallis, Jason; Duncan, Michael J; Wright, Sheila Leddington; Eyre, Emma L J; Bryant, Elizabeth; Langdon, Dominic; James, Rob S

    2013-01-01

    The effect of caffeine to promote improvements in mood, cognition, and exercise performance has been well established in young and athletic adults. However, little is known about whether such nutritional ergogenic aids are effective in enhancing psychological well-being, physiological or cognitive performance in older adults. This study assesses the ergogenic effect of caffeine on mood, perceptual-motor coupling, and muscular strength in an older human population. Following a familiarization session, 12 apparently healthy volunteers (nine females and three males; 69 ± 6 years) completed two laboratory visits. “Pre ingestion” trials of mood state Brunel Mood State Inventory (BRUMS) and coincidence anticipation performance (Bassin anticipation timer) at slow (3 mph) and fast (8 mph) stimulus speeds were completed on both visits. Using a randomized, double-blind, cross-over design, participants consumed either caffeine (3 mg/kg body mass) or a placebo. Sixty minutes postingestion participants repeated the trials before completing a set of 10 consecutive repetitions of maximal knee extension using isokinetic dynamometry. Rating of perceived exertion (RPE) was assessed following the fifth and final repetition. Caffeine ingestion significantly improved mood state scores for vigor by 17% (P = 0.009) and reduced absolute error by 35% (P = 0.045) during coincidence anticipation assessment at 8 mph compared to placebo. There were no other significant effects. Caffeine ingestion failed to augment maximal voluntary contraction of the knee extensors and RPE did not prove to be significantly different to from placebo (P > 0.33 in each case). Acute caffeine ingestion may not be an effective ergogenic aid for improving muscular strength in older adults but could possibly be used as a nutrition supplement for enhancing mood and improving cognitive performance in daily living tasks where interceptive timing skills are required. PMID:24303144

  9. Caffeine-containing energy drink improves sprint performance during an international rugby sevens competition.

    PubMed

    Del Coso, Juan; Portillo, Javier; Muñoz, Gloria; Abián-Vicén, Javier; Gonzalez-Millán, Cristina; Muñoz-Guerra, Jesús

    2013-06-01

    The aim of this study was to determine the effects of a caffeine-containing energy drink on physical performance during a rugby sevens competition. A second purpose was to investigate the post-competition urinary caffeine concentration derived from the energy drink intake. On two non-consecutive days of a friendly tournament, 16 women from the Spanish National rugby sevens Team (mean age and body mass = 23 ± 2 years and 66 ± 7 kg) ingested 3 mg of caffeine per kg of body mass in the form of an energy drink (Fure(®), ProEnergetics) or the same drink without caffeine (placebo). After 60 min for caffeine absorption, participants performed a 15-s maximal jump test, a 6 × 30 m sprint test, and then played three rugby sevens games against another national team. Individual running pace and instantaneous speed during the games were assessed using global positioning satellite (GPS) devices. Urine samples were obtained pre and post-competition. In comparison to the placebo, the ingestion of the energy drink increased muscle power output during the jump series (23.5 ± 10.1 vs. 25.6 ± 11.8 kW, P = 0.05), running pace during the games (87.5 ± 8.3 vs. 95.4 ± 12.7 m/min, P < 0.05), and pace at sprint velocity (4.6 ± 3.3 vs. 6.1 ± 3.4 m/min, P < 0.05). However, the energy drink did not affect maximal running speed during the repeated sprint test (25.0 ± 1.5 vs. 25.0 ± 1.7 km/h). The ingestion of the energy drink resulted in a higher post-competition urine caffeine concentration than the placebo (3.3 ± 0.7 vs. 0.2 ± 0.1 μg/mL; P < 0.05). In summary, 3 mg/kg of caffeine in the form of a commercially available energy drink considerably enhanced physical performance during a women's rugby sevens competition.

  10. [Caffeine: a nutrient, a drug or a drug of abuse].

    PubMed

    Pardo Lozano, Ricardo; Alvarez García, Yolanda; Barral Tafalla, Diego; Farré Albaladejo, Magí

    2007-01-01

    Coffee, tea, chocolate and caffeinated drinks are the main sources of caffeine, which is consumed in almost all ages and socioeconomic levels. Caffeine acts as a non-selective adenosine receptor antagonist in the central nervous system. Its main effects are as psychostimulant, acting in addition on the respiratory, muscular and cardiovascular systems. Basically, caffeine is metabolized by the hepatic cytochrome P-450 1A2 enzymes (CYP1A2). Several drugs can interact with its metabolism. The observed interindividual differences of its effects can be explained by variations in its metabolism. The main therapeutic use of caffeine is bronchodilator in respiratory diseases. Other possible uses are under investigation. Acute or chronic consumption of caffeine can induce several adverse effects, including intoxication that can be lethal. Finally, caffeine can be considered a drug of abuse. It has positive reinforcing actions, produces tolerance, and a withdrawal syndrome after stopping its consumption. Caffeine can cause different mental disorders such as dependence, which is not included in the DSM-IV-R, withdrawal syndrome and intoxication. Depending on its use, caffeine can be considered a nutrient, a drug or a drug of abuse.

  11. Caffeine, cognitive failures and health in a non-working community sample.

    PubMed

    Smith, Andrew P

    2009-01-01

    Most studies of the effects of caffeine on performance have been conducted in the laboratory and further information is required on the real-life effects of caffeine consumption on cognition. In addition, possible effects of caffeine consumption on a range of health outcomes should also be assessed in these studies to enable cost-benefit analyses to be conducted. Secondary analyses of a large epidemiological database (N = 3223 non-working participants, 57% female, with a mean age of 49.6 years, range 17-92 years) were conducted to examine associations between caffeine consumption (mean caffeine consumption was 140 mg/day, range 0-1800 mg) and cognitive failures (errors of memory, attention and action) in a non-working sample. Associations between caffeine consumption and physical and mental health problems were also examined. The study involved secondary analyses of a database formed by combining the Bristol Stress and Health at Work and Cardiff Health and Safety at Work studies. Associations between caffeine consumption and frequency of cognitive failures and health outcomes were examined in a sample of non-workers. After controlling for possible confounding factors significant associations between caffeine consumption and fewer cognitive failures were observed. Initial analyses suggested that many health variables were associated with regular level of caffeine consumption. However, most of the significant effects of caffeine disappeared when demographic and lifestyle factors were controlled for. Consumption of caffeine was, however, associated with a reduced risk of depression. These effects were also observed in separate analyses examining the source of the caffeine (coffee and tea). Overall, the results show that caffeine consumption may benefit cognitive functioning in a non-working population. This confirms earlier findings from working samples. This beneficial effect of caffeine was not associated with negative health consequences. Indeed, consumption of

  12. Caffeine, creatine, GRIN2A and Parkinson's disease progression.

    PubMed

    Simon, David K; Wu, Cai; Tilley, Barbara C; Lohmann, Katja; Klein, Christine; Payami, Haydeh; Wills, Anne-Marie; Aminoff, Michael J; Bainbridge, Jacquelyn; Dewey, Richard; Hauser, Robert A; Schaake, Susen; Schneider, Jay S; Sharma, Saloni; Singer, Carlos; Tanner, Caroline M; Truong, Daniel; Wei, Peng; Wong, Pei Shieen; Yang, Tianzhong

    2017-04-15

    Caffeine is neuroprotective in animal models of Parkinson's disease (PD) and caffeine intake is inversely associated with the risk of PD. This association may be influenced by the genotype of GRIN2A, which encodes an NMDA-glutamate-receptor subunit. In two placebo-controlled studies, we detected no association of caffeine intake with the rate of clinical progression of PD, except among subjects taking creatine, for whom higher caffeine intake was associated with more rapid progression. We now have analyzed data from 420 subjects for whom DNA samples and caffeine intake data were available from a placebo-controlled study of creatine in PD. The GRIN2A genotype was not associated with the rate of clinical progression of PD in the placebo group. However, there was a 4-way interaction between GRIN2A genotype, caffeine, creatine and the time since baseline. Among subjects in the creatine group with high levels of caffeine intake, but not among those with low caffeine intake, the GRIN2A T allele was associated with more rapid progression (p=0.03). These data indicate that the deleterious interaction between caffeine and creatine with respect to rate of progression of PD is influenced by GRIN2A genotype. This example of a genetic factor interacting with environmental factors illustrates the complexity of gene-environment interactions in the progression of PD. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Physiology, biochemistry and possible applications of microbial caffeine degradation.

    PubMed

    Gummadi, Sathyanarayana N; Bhavya, B; Ashok, Nandhini

    2012-01-01

    Caffeine, a purine alkaloid is a constituent of widely consumed beverages. The scientific evidence which has proved the harm of this alkaloid has paved the way for innumerable research in the area of caffeine degradation. In addition to this, the fact that the by-products of the coffee and tea industry pollute the environment has called for the need of decaffeinating coffee and tea industry's by-products. Though physical and chemical methods for decaffeination are available, the lack of specificity for removal of caffeine in these techniques and their non-eco-friendly nature has opened the area of microbial and enzymatic degradation of caffeine. Another important application of microbial caffeine degradation apart from its advantages like specificity, eco-friendliness and cost-effectiveness is the fact that this process will enable the production of industrially and medically useful components of the caffeine degradation pathway like theobromine and theophylline. This is a comprehensive review which mainly focuses on caffeine degradation, large-scale degradation of the same and its applications in the industrial world.

  14. [Caffeine--common ingredient in a diet and its influence on human health].

    PubMed

    Wierzejska, Regina

    2012-01-01

    Caffeine is widely consumed by people of all ages. In the last period a market of caffeine-containing products, particularly energy drinks and food supplements increased. Caffeine for years is under discussion, whether has positive whether adverse impact on health. Children are a group of special anxieties. Caffeine is a stimulant of central nervous system and therefore is probably the most commonly used psychoactive substance in the world. The physiological effect of caffeine and the lack of nutrition value causes a great interest its impact on health, especially with reference to the risk of cardiovascular diseases. Results of scientific research are not clear. The influence of caffeine on the human body is conditioned with the individual metabolism of caffeine which also depends on many endogenic and environmental factors. According to the current knowledge moderate caffeine intake by healthy adults at a dose level of 400 mg a day is not associated with adverse effects, but it also depends on other health determinants of a lifestyle. Excessive caffeine consumption can cause negative health consequences such as psychomotor agitation, insomnia, headache, gastrointestinal complaints. Adverse effect of caffeine intoxication is classified in World Health Organization's International Classification of Diseases (ICD-10). Metabolism of caffeine by pregnant woman is slowed down. Caffeine and its metabolites pass freely across the placenta into a fetus. For this reason pregnant women should limit caffeine intake. Children and adolescents should also limit daily caffeine consumption. It results from the influence of caffeine on the central nervous system in the period of rapid growth and the final stage of brain development, calcium balance and sleep duration. Average daily caffeine consumption in European countries ranging from 280-490 mg. The highest caffeine intake is in Scandinavian countries what results from the great consumption of the coffee. As far as caffeine

  15. Caffeine Extraction from Raw and Roasted Coffee Beans.

    PubMed

    Chiang, Donyau; Lin, Chih-Yang; Hu, Chen-Ti; Lee, Sanboh

    2018-04-01

    Coffee is a stimulant, psychoactive, popular daily beverage, and its caffeine affects human physiological health and behavior. These important issues prompted us to study caffeine extraction from both the raw and roasted coffee beans of 3 types at different temperatures. A hemispheric model is developed to simulate the extraction process of the caffeine from the coffee beans of hemisphere is proposed. The experimental data are in good agreement with the predicted model. The effective diffusivities of caffeine in both the raw and roasted beans increase with temperature in all 3 types. An incubation period, decreasing with increasing temperature, is observed in all samples studied. Caffeine extraction in roasted beans is more rapid than that for the raw beans and the time difference is significant at low temperatures. In both the raw and roasted samples, caffeine diffusion in the raw beans and the incubation behavior are thermally activated processes. Single activation energies are obtained for diffusion within the extraction temperature range for all beans tested with the exception of one type of the coffee beans, Mandheling, which exhibits 2 activation energies in raw samples. The surface energies of the epidermis of the raw beans and roasted beans obtained from the contact angle measurements are used to interpret the difference of incubation periods. This study has a potential application to the decaffeinated coffee industry.Caffeine affects human physiological health and behavior so that caffeine extraction from coffee beans of different types at different temperatures is important for product refining and customers. © 2018 Institute of Food Technologists®.

  16. Single and combined effects of beetroot juice and caffeine supplementation on cycling time trial performance.

    PubMed

    Lane, Stephen C; Hawley, John A; Desbrow, Ben; Jones, Andrew M; Blackwell, James R; Ross, Megan L; Zemski, Adam J; Burke, Louise M

    2014-09-01

    Both caffeine and beetroot juice have ergogenic effects on endurance cycling performance. We investigated whether there is an additive effect of these supplements on the performance of a cycling time trial (TT) simulating the 2012 London Olympic Games course. Twelve male and 12 female competitive cyclists each completed 4 experimental trials in a double-blind Latin square design. Trials were undertaken with a caffeinated gum (CAFF) (3 mg·kg(-1) body mass (BM), 40 min prior to the TT), concentrated beetroot juice supplementation (BJ) (8.4 mmol of nitrate (NO3(-)), 2 h prior to the TT), caffeine plus beetroot juice (CAFF+BJ), or a control (CONT). Subjects completed the TT (females: 29.35 km; males: 43.83 km) on a laboratory cycle ergometer under conditions of best practice nutrition: following a carbohydrate-rich pre-event meal, with the ingestion of a carbohydrate-electrolyte drink and regular oral carbohydrate contact during the TT. Compared with CONT, power output was significantly enhanced after CAFF+BJ and CAFF (3.0% and 3.9%, respectively, p < 0.01). There was no effect of BJ supplementation when used alone (-0.4%, p = 0.6 compared with CONT) or when combined with caffeine (-0.9%, p = 0.4 compared with CAFF). We conclude that caffeine (3 mg·kg(-1) BM) administered in the form of a caffeinated gum increased cycling TT performance lasting ∼50-60 min by ∼3%-4% in both males and females. Beetroot juice supplementation was not ergogenic under the conditions of this study.

  17. Cytochrome P450-Dependent Metabolism of Caffeine in Drosophila melanogaster

    PubMed Central

    Coelho, Alexandra; Fraichard, Stephane; Le Goff, Gaëlle; Faure, Philippe; Artur, Yves; Ferveur, Jean-François; Heydel, Jean-Marie

    2015-01-01

    Caffeine (1, 3, 7-trimethylxanthine), an alkaloid produced by plants, has antioxidant and insecticide properties that can affect metabolism and cognition. In vertebrates, the metabolites derived from caffeine have been identified, and their functions have been characterized. However, the metabolites of caffeine in insects remain unknown. Thus, using radiolabelled caffeine, we have identified some of the primary caffeine metabolites produced in the body of Drosophila melanogaster males, including theobromine, paraxanthine and theophylline. In contrast to mammals, theobromine was the predominant metabolite (paraxanthine in humans; theophylline in monkeys; 1, 3, 7-trimethyluric acid in rodents). A transcriptomic screen of Drosophila flies exposed to caffeine revealed the coordinated variation of a large set of genes that encode xenobiotic-metabolizing proteins, including several cytochromes P450s (CYPs) that were highly overexpressed. Flies treated with metyrapone—an inhibitor of CYP enzymes—showed dramatically decreased caffeine metabolism, indicating that CYPs are involved in this process. Using interference RNA genetic silencing, we measured the metabolic and transcriptomic effect of three candidate CYPs. Silencing of CYP6d5 completely abolished theobromine synthesis, whereas CYP6a8 and CYP12d1 silencing induced different consequences on metabolism and gene expression. Therefore, we characterized several metabolic products and some enzymes potentially involved in the degradation of caffeine. In conclusion, this pioneer approach to caffeine metabolism in insects opens novel perspectives for the investigation of the physiological effects of caffeine metabolites. It also indicates that caffeine could be used as a biomarker to evaluate CYP phenotypes in Drosophila and other insects. PMID:25671424

  18. A hypothalamic–pituitary–adrenal axis-associated neuroendocrine metabolic programmed alteration in offspring rats of IUGR induced by prenatal caffeine ingestion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, D.; Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071; Wu, Y.

    Caffeine is a definite factor of intrauterine growth retardation (IUGR). Previously, we have confirmed that prenatal caffeine ingestion inhibits the development of hypothalamic–pituitary–adrenal (HPA) axis, and alters the glucose and lipid metabolism in IUGR fetal rats. In this study, we aimed to verify a programmed alteration of neuroendocrine metabolism in prenatal caffeine ingested-offspring rats. The results showed that prenatal caffeine (120 mg/kg.day) ingestion caused low body weight and high IUGR rate of pups; the concentrations of blood adrenocorticotropic hormone (ACTH) and corticosterone in caffeine group were significantly increased in the early postnatal period followed by falling in late stage; themore » level of blood glucose was unchanged, while blood total cholesterol (TCH) and triglyceride (TG) were markedly enhanced in adult. After chronic stress, the concentrations and the gain rates of blood ACTH and corticosterone were obviously increased, meanwhile, the blood glucose increased while the TCH and TG decreased in caffeine group. Further, the hippocampal mineralocorticoid receptor (MR) expression in caffeine group was initially decreased and subsequently increased after birth. After chronic stress, the 11β-hydroxysteroid dehydrogenase-1, glucocorticoid receptor (GR), MR as well as the MR/GR ratio were all significantly decreased. These results suggested that prenatal caffeine ingestion induced the dysfunction of HPA axis and associated neuroendocrine metabolic programmed alteration in IUGR offspring rats, which might be related with the functional injury of hippocampus. These observations provide a valuable experimental basis for explaining the susceptibility of IUGR offspring to metabolic syndrome and associated diseases. -- Highlights: ► Prenatal caffeine ingestion induced HPA axis dysfunction in IUGR offspring rats. ► Caffeine induced a neuroendocrine metabolic programmed alteration in offspring rats. ► Caffeine induced a

  19. Caffeine May Reduce Perceived Sweet Taste in Humans, Supporting Evidence That Adenosine Receptors Modulate Taste.

    PubMed

    Choo, Ezen; Picket, Benjamin; Dando, Robin

    2017-09-01

    Multiple recent reports have detailed the presence of adenosine receptors in sweet sensitive taste cells of mice. These receptors are activated by endogenous adenosine in the plasma to enhance sweet signals within the taste bud, before reporting to the primary afferent. As we commonly consume caffeine, a powerful antagonist for such receptors, in our daily lives, an intriguing question we sought to answer was whether the caffeine we habitually consume in coffee can inhibit the perception of sweet taste in humans. 107 panelists were randomly assigned to 2 groups, sampling decaffeinated coffee supplemented with either 200 mg of caffeine, about the level found in a strong cup of coffee, or an equally bitter concentration of quinine. Participants subsequently performed sensory testing, with the session repeated in the alternative condition in a second session on a separate day. Panelists rated both the sweetened coffee itself and subsequent sucrose solutions as less sweet in the caffeine condition, despite the treatment having no effect on bitter, sour, salty, or umami perception. Panelists were also unable to discern whether they had consumed the caffeinated or noncaffeinated coffee, with ratings of alertness increased equally, but no significant improvement in reaction times, highlighting coffee's powerful placebo effect. This work validates earlier observations in rodents in a human population. © 2017 Institute of Food Technologists®.

  20. Caffeine and acetaminophen association: Effects on mitochondrial bioenergetics.

    PubMed

    Gonçalves, Débora F; de Carvalho, Nelson R; Leite, Martim B; Courtes, Aline A; Hartmann, Diane D; Stefanello, Sílvio T; da Silva, Ingrid K; Franco, Jéferson L; Soares, Félix A A; Dalla Corte, Cristiane L

    2018-01-15

    Many studies have been demonstrating the role of mitochondrial function in acetaminophen (APAP) hepatotoxicity. Since APAP is commonly consumed with caffeine, this work evaluated the effects of the combination of APAP and caffeine on hepatic mitochondrial bioenergetic function in mice. Mice were treated with caffeine (20mg/kg, intraperitoneal (i.p.)) or its vehicle and, after 30minutes, APAP (250mg/kg, i.p.) or its vehicle. Four hours later, livers were removed, and the parameters associated with mitochondrial function and oxidative stress were evaluated. Hepatic cellular oxygen consumption was evaluated by high-resolution respirometry (HRR). APAP treatment decreased cellular oxygen consumption and mitochondrial complex activities in the livers of mice. Additionally, treatment with APAP increased swelling of isolated mitochondria from mice livers. On the other hand, caffeine administered with APAP was able to improve hepatic mitochondrial bioenergetic function. Treatment with APAP increased lipid peroxidation and reactive oxygen species (ROS) production and decreased glutathione levels in the livers of mice. Caffeine administered with APAP was able to prevent lipid peroxidation and the ROS production in mice livers, which may be associated with the improvement of mitochondrial function caused by caffeine treatment. We suggest that the antioxidant effects of caffeine and/or its interactions with mitochondrial bioenergetics may be involved in its beneficial effects against APAP hepatotoxicity. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Caffeine accelerates recovery from general anesthesia via multiple pathways.

    PubMed

    Fong, Robert; Khokhar, Suhail; Chowdhury, Atif N; Xie, Kelvin G; Wong, Josiah Hiu-Yuen; Fox, Aaron P; Xie, Zheng

    2017-09-01

    Various studies have explored different ways to speed emergence from anesthesia. Previously, we have shown that three drugs that elevate intracellular cAMP (forskolin, theophylline, and caffeine) accelerate emergence from anesthesia in rats. However, our earlier studies left two main questions unanswered. First, were cAMP-elevating drugs effective at all anesthetic concentrations? Second, given that caffeine was the most effective of the drugs tested, why was caffeine more effective than forskolin since both drugs elevate cAMP? In our current study, emergence time from anesthesia was measured in adult rats exposed to 3% isoflurane for 60 min. Caffeine dramatically accelerated emergence from anesthesia, even at the high level of anesthetic employed. Caffeine has multiple actions including blockade of adenosine receptors. We show that the selective A 2a adenosine receptor antagonist preladenant or the intracellular cAMP ([cAMP] i )-elevating drug forskolin, accelerated recovery from anesthesia. When preladenant and forskolin were tested together, the effect on anesthesia recovery time was additive indicating that these drugs operate via different pathways. Furthermore, the combination of preladenant and forskolin was about as effective as caffeine suggesting that both A 2A receptor blockade and [cAMP] i elevation play a role in caffeine's ability to accelerate emergence from anesthesia. Because anesthesia in rodents is thought to be similar to that in humans, these results suggest that caffeine might allow for rapid and uniform emergence from general anesthesia in humans at all anesthetic concentrations and that both the elevation of [cAMP] i and adenosine receptor blockade play a role in this response. NEW & NOTEWORTHY Currently, there is no method to accelerate emergence from anesthesia. Patients "wake" when they clear the anesthetic from their systems. Previously, we have shown that caffeine can accelerate emergence from anesthesia. In this study, we show that

  2. Sensitivity of BN nano-cages to caffeine and nicotine molecules

    NASA Astrophysics Data System (ADS)

    Soltani, Alireza; Baei, Mohammad T.; Tazikeh Lemeski, E.; Shahini, Malihe

    2014-12-01

    Adsorption of caffeine and nicotine molecules over B12N12 and B16N16 nano-cages were investigated by using first-principles calculations to define whether BN nano-cages are applicable for filtering or sensing caffeine and nicotine molecules. The chemisorption energy of nicotine molecule on BN nano-cages is very stronger than caffeine molecule. Upon the adsorption of caffeine and nicotine molecules, the electronic properties of the BN nano-cages can be significantly changed, being too much sensitized on the caffeine and nicotine adsorptions.

  3. Caffeine exposure alters cardiac gene expression in embryonic cardiomyocytes

    PubMed Central

    Fang, Xiefan; Mei, Wenbin; Barbazuk, William B.; Rivkees, Scott A.

    2014-01-01

    Previous studies demonstrated that in utero caffeine treatment at embryonic day (E) 8.5 alters DNA methylation patterns, gene expression, and cardiac function in adult mice. To provide insight into the mechanisms, we examined cardiac gene and microRNA (miRNA) expression in cardiomyocytes shortly after exposure to physiologically relevant doses of caffeine. In HL-1 and primary embryonic cardiomyocytes, caffeine treatment for 48 h significantly altered the expression of cardiac structural genes (Myh6, Myh7, Myh7b, Tnni3), hormonal genes (Anp and BnP), cardiac transcription factors (Gata4, Mef2c, Mef2d, Nfatc1), and microRNAs (miRNAs; miR208a, miR208b, miR499). In addition, expressions of these genes were significantly altered in embryonic hearts exposed to in utero caffeine. For in utero experiments, pregnant CD-1 dams were treated with 20–60 mg/kg of caffeine, which resulted in maternal circulation levels of 37.3–65.3 μM 2 h after treatment. RNA sequencing was performed on embryonic ventricles treated with vehicle or 20 mg/kg of caffeine daily from E6.5-9.5. Differential expression (DE) analysis revealed that 124 genes and 849 transcripts were significantly altered, and differential exon usage (DEU) analysis identified 597 exons that were changed in response to prenatal caffeine exposure. Among the DE genes identified by RNA sequencing were several cardiac structural genes and genes that control DNA methylation and histone modification. Pathway analysis revealed that pathways related to cardiovascular development and diseases were significantly affected by caffeine. In addition, global cardiac DNA methylation was reduced in caffeine-treated cardiomyocytes. Collectively, these data demonstrate that caffeine exposure alters gene expression and DNA methylation in embryonic cardiomyocytes. PMID:25354728

  4. Clinical Inquiry: Does caffeine intake during pregnancy affect birth weight?

    PubMed

    Adams, Taralee; Kelsberg, Gary; Safranek, Sarah

    2016-03-01

    No. Reducing caffeinated coffee consumption by 180 mg of caffeine (the equivalent of 2 cups) per day after 16 weeks' gestation doesn't affect birth weight. Consuming more than 300 mg of caffeine per day is associated with a clinically trivial, and statistically insignificant (less than 1 ounce), reduction in birth weight, compared with consuming no caffeine.

  5. Fatal caffeine overdose: a case report and review of literature.

    PubMed

    Jabbar, Seema B; Hanly, Mark G

    2013-12-01

    Caffeine is a central nervous system stimulant that is consumed by large numbers of people on a routine basis, usually in the form of coffee or tea. However, if consumed in high doses, this xanthine alkaloid is profoundly toxic and can result in death. Increasingly being sold as a dietary supplement, many people, particularly those in the health and fitness community, where it is touted as a fitness and muscle building aid, are consuming caffeine anhydrous on a daily basis. We report a case of fatal caffeine overdose in a 39-year-old man resulting from the self-administered ingestion of approximately 12 g of pure caffeine anhydrous. Autopsy blood caffeine levels were 350 mg/L. We recommend mandated labeling of pure caffeine anhydrous, highlighting the toxicity risk of ingesting this chemical; and we recommend ensuring that caffeine levels are included in the comprehensive forensic toxicology panel performed on all cases.

  6. [Effect of caffeine on myocardial blood flow during pharmacological vasodilation].

    PubMed

    Wielepp, J P; Fricke, E; Horstkotte, D; Burchert, W

    2005-02-01

    Pharmacologic stress with adenosine is frequently used for noninvasive detection of coronary artery disease. Dietary intake of caffeinated food, beverages or medications might alter adenosine-induced hyperemic blood flow, thereby compromising the diagnostic sensitivity of adenosine stress testing. In this case we report on a male patient with CAD. Myocardial blood flow at rest and during adenosine-induced hyperemia 2 hours after consumption of decaffeinated coffee and again without caffeine intake were quantified by ammonia PET. After caffeine intake there was a clearly diminished increase of myocardial blood flow during adenosine. The average coronary flow reserve in the myocardium was 1.3 after caffeine. In the baseline study without caffeine the coronary flow reserve has been improved to 2.3. Caffeine intake alters the coronary vasodilatory capacity. These findings emphasize the importance of carefully screening patients for intake of caffeinated food prior to adenosine stress testing.

  7. Maternal Caffeine Consumption and Risk of Congenital Limb Deficiencies

    PubMed Central

    Chen, Lei; Bell, Erin M.; Browne, Marilyn L.; Druschel, Charlotte M.; Romitti, Paul A.; Schmidt, Rebecca J.; Burns, Trudy L.; Moslehi, Roxana; Olney, Richard S.

    2015-01-01

    BACKGROUND Animal studies have shown that high doses of caffeine might cause congenital limb deficiencies (LDs); however, no epidemiologic studies have explored this relation. METHODS This case-control study assessed associations between maternal dietary caffeine and congenital LDs using data from the National Birth Defects Prevention Study (NBDPS), with 844 LD cases and 8069 controls from 1997 to 2007. Caffeine intakes from beverages (coffee, tea, and soda) and chocolate combined and by beverage type were examined. Adjusted odds ratios (aORs) and 95% confidence intervals (CIs) were estimated for subtypes of isolated LDs (no additional major anomalies) and LDs with other major anomalies separately, comparing the odds of 10 to <100, 100 to <200, 200 to <300, and 300+ mg/day total caffeine intake to 0 to <10 mg/day. RESULTS All total dietary caffeine intake categories of 10 mg/day and above were marginally associated with odds of all isolated LDs combined (aOR, 1.4–1.7), isolated longitudinal LDs (aOR, 1.2–1.6), and isolated transverse LDs (aOR, 1.3–1.8) compared to the lowest intake category. A dose-response pattern for total dietary caffeine intake was not observed. CONCLUSIONS A weak increased risk of congenital LDs associated with maternal dietary caffeine consumption was observed in this study; however, risk did not vary by amount of caffeine consumed. PMID:22903936

  8. Human coffee drinking: manipulation of concentration and caffeine dose.

    PubMed Central

    Griffiths, R R; Bigelow, G E; Liebson, I A; O'Keeffe, M; O'Leary, D; Russ, N

    1986-01-01

    In a residential research ward coffee drinking was studied in 9 volunteer human subjects with histories of heavy coffee drinking. A series of five experiments was undertaken to characterize adlibitum coffee consumption and to investigate the effects of manipulating coffee concentration, caffeine dose per cup, and caffeine preloads prior to coffee drinking. Manipulations were double-blind and scheduled in randomized sequences across days. When cups of coffee were freely available, coffee drinking tended to be rather regularly spaced during the day with intercup intervals becoming progressively longer throughout the day; experimental manipulations showed that this lengthening of intercup intervals was not due to accumulating caffeine levels. Number of cups of coffee consumed was an inverted U-shaped function of both coffee concentration and caffeine dose per cup; however, coffee-concentration and dose-per-cup manipulations did not produce similar effects on other measures of coffee drinking (intercup interval, time to drink a cup, within-day distribution of cups). Caffeine preload produced dose-related decreases in number of cups consumed. As a whole, these experiments provide some limited evidence for both the suppressive and the reinforcing effects of caffeine on coffee consumption. Examination of total daily coffee and caffeine intake across experiments, however, provides no evidence for precise regulation (i.e., titration) of coffee or caffeine intake. PMID:3958660

  9. Caffeine intake and abstract reasoning among 1374 unselected men and women from general population. Role of the -163C>A polymorphism of CYP1A2 gene.

    PubMed

    Casiglia, Edoardo; Tikhonoff, Valérie; Albertini, Federica; Favaro, Jacopo; Montagnana, Martina; Danese, Elisa; Finatti, Francesco; Benati, Marco; Mazza, Alberto; Dal Maso, Lucia; Spinella, Paolo; Palatini, Paolo

    2017-08-01

    The possible effect of caffeine as an enhancer of cognitive performance, particularly that on abstract reasoning, has never been studied in an epidemiological setting, especially in relation to -163C>A polymorphism of CYP1A2 gene, largely controlling caffeine metabolism. Aim of this study was to ascertain whether in general population free chronic caffeine intake modifies abstract reasoning, and if this effect is influenced by the above mentioned genotype, by age, schooling, ethanol intake and smoking habits. We studied 1374 unselected men and women aged 51 ± 15 years (range 18-89) from a general population. Daily caffeine intake deriving from coffee, tea, chocolate or cola was calculated from an anamnestic questionnaire and from a 7-day dietary diary. Abstract reasoning was measured in the frame of a neuropsychological assessment as the ability to find a concept linking two words indicating objects or actions and explaining how they were connected. In age-schooling-adjusted linear regression, the higher the caffeine intake, the better the abstraction score. Abstract reasoning depended on caffeine in the -163C>A CC homozygous only (so-called slow metabolizers), where it was higher in the 3rd tertile of caffeine intake. Age and ethanol reduced while smoking and schooling enhanced this association. The interaction term between caffeine and the -163C>A polymorphism was accepted in linear regressions. Caffeine consumption resulted innocuous for the A-carriers (so-called fast metabolizers). In general population, a positive association between caffeine intake and abstract reasoning exists in the CC homozygous of the -163C>A polymorphism of CYP1A2 gene. Copyright © 2017 European Society for Clinical Nutrition and Metabolism. Published by Elsevier Ltd. All rights reserved.

  10. Supraadditive formation of micronuclei in preimplantation mouse embryos in vitro after combined treatment with X-rays and caffeine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, W.U.S.; Streffer, C.; Wurm, R.

    1985-01-01

    The influence of caffeine (0.1 or 2 mM), X-rays (0.24 Gy or 0.94 Gy, or of a combination of both on the formation of micronuclei in early stages of preimplantation mouse embryos in vitro was studied. X-rays as well as caffeine induced micronuclei. The dose-effect curve after irradiation was linear for the dose range measured. Caffeine did not induce micronuclei if the concentration was 1 mM or less; between 1 mM and 7 mM, however, there was a linear increase in the number of micronuclei. A considerable enhancement of the number of radiation-induced micronuclei was observed when irradiation of themore » embryos was followed by a treatment with caffeine. Not only was the sum of the single effects exceeded by the combination effects, but the combination results even lay in the range of supraadditivity of the envelope of additivity.« less

  11. Caffeine and Blood Pressure Response: Sex, Age, and Hormonal Status

    PubMed Central

    Whitsett, Thomas L.; McKey, Barbara S.; Wilson, Michael F.; Vincent, Andrea S.; Everson-Rose, Susan A.; Lovallo, William R.

    2010-01-01

    Abstract Purpose The pressor effect of caffeine has been established in young men and premenopausal women. The effect of caffeine on blood pressure (BP) remains unknown in postmenopausal women and in relation to hormone replacement therapy (HRT) use. Materials and Methods In a randomized, 2-week cross-over design, we studied 165 healthy men and women in 6 groups: men and premenopausal women (35–-49 yrs) vs. men and postmenopausal women (50–-64 yrs), with postmenopausal women divided into those taking no hormone replacements (HR), estrogen alone, or estrogen and progesterone. Testing during one week of the study involved 6 days of caffeine maintenance at home (80 mg, 3x/day) followed by testing of responses to a challenge dose of caffeine (250 mg) in the laboratory. The other week involved ingesting placebos on maintenance and lab days. Resting BP responses to caffeine were measured at baseline and at 45 to 60 min following caffeine vs placebo ingestion, using automated monitors. Results Ingestion of caffeine resulted in a significant increase in systolic BP in all 6 groups (4 ± .6, p < 0.01). Diastolic BP significantly increased in response to caffeine in all (3 ± .4, p < 0.04) but the group of older men (2 ± 1.0, p = 0.1). The observed pressor responses to caffeine did not vary by age. Conclusions Caffeine resulted in an increase in BP in healthy, normotensive, young and older men and women. This finding warrants the consideration of caffeine in the lifestyle interventions recommended for BP control across the age span. PMID:20500126

  12. Beliefs, Behaviors, and Contexts of Adolescent Caffeine Use: A Focus Group Study.

    PubMed

    Ludden, Alison B; O'Brien, Elizabeth M; Pasch, Keryn E

    2017-07-29

    Caffeinated products are widely available to adolescents, and consumption of caffeine products-energy drinks and coffee in particular-is on the rise in this age group (Branum, Rossen, & Schoendorf, 2014). Yet, little is known about the psychosocial context of caffeine use. Previous studies on adolescent caffeine use have focused on caffeine's acute physiological effects, rather than the psychosocial contexts and beliefs regarding different types of caffeinated beverages (e.g., coffee, energy drinks, soda). The current research examines the contexts and beliefs associated with adolescents' use of caffeinated beverages (e.g., coffee, energy drinks, soda) using a focus group approach. Eleven focus group interviews (49 total participants) addressed adolescents' motivations for and patterns of caffeine use; they were transcribed and axial coding was used to identify common themes. Coffee and energy drinks were perceived to be the most popular caffeinated beverages. Reasons for consuming caffeine included the effect of caffeine as a stimulant, the pleasant feelings experienced when drinking it, and the fact that caffeine was available. As for contexts, coffee was consumed in more diverse social contexts than other caffeinated beverages. Friends and sports were the most popular contexts for energy drink use. The present findings inform adolescent health promotion efforts and provide researchers and practitioners alike detailed information in adolescents' own words about how and why they use caffeine. Adolescents' beliefs about caffeinated products are not uniform; the reasons adolescents articulate regarding their use of coffee, soda, and energy drinks are different across contexts and beverage type.

  13. Caffeine accelerates recovery from general anesthesia

    PubMed Central

    Wang, Qiang; Fong, Robert; Mason, Peggy; Fox, Aaron P.

    2013-01-01

    General anesthetics inhibit neurotransmitter release from both neurons and secretory cells. If inhibition of neurotransmitter release is part of an anesthetic mechanism of action, then drugs that facilitate neurotransmitter release may aid in reversing general anesthesia. Drugs that elevate intracellular cAMP levels are known to facilitate neurotransmitter release. Three cAMP elevating drugs (forskolin, theophylline, and caffeine) were tested; all three drugs reversed the inhibition of neurotransmitter release produced by isoflurane in PC12 cells in vitro. The drugs were tested in isoflurane-anesthetized rats. Animals were injected with either saline or saline containing drug. All three drugs dramatically accelerated recovery from isoflurane anesthesia, but caffeine was most effective. None of the drugs, at the concentrations tested, had significant effects on breathing rates, O2 saturation, heart rate, or blood pressure in anesthetized animals. Caffeine alone was tested on propofol-anesthetized rats where it dramatically accelerated recovery from anesthesia. The ability of caffeine to accelerate recovery from anesthesia for different chemical classes of anesthetics, isoflurane and propofol, opens the possibility that it will do so for all commonly used general anesthetics, although additional studies will be required to determine whether this is in fact the case. Because anesthesia in rodents is thought to be similar to that in humans, these results suggest that caffeine might allow for rapid and uniform emergence from general anesthesia in human patients. PMID:24375022

  14. Effects of caffeine on behavioral and inflammatory changes elicited by copper in zebrafish larvae: Role of adenosine receptors.

    PubMed

    Cruz, Fernanda Fernandes; Leite, Carlos Eduardo; Kist, Luiza Wilges; de Oliveira, Giovanna Medeiros; Bogo, Maurício Reis; Bonan, Carla Denise; Campos, Maria Martha; Morrone, Fernanda Bueno

    2017-04-01

    This study investigated the effects of caffeine in the behavioral and inflammatory alterations caused by copper in zebrafish larvae, attempting to correlate these changes with the modulation of adenosine receptors. To perform a survival curve, 7dpf larvae were exposed to 10μM CuSO 4 , combined to different concentrations of caffeine (100μM, 500μM and 1mM) for up to 24h. The treatment with copper showed lower survival rates only when combined with 500μM and 1mM of caffeine. We selected 4 and 24h as treatment time-points. The behavior evaluation was done by analyzing the traveled distance, the number of entries in the center, and the length of permanence in the center and the periphery of the well. The exposure to 10μM CuSO 4 plus 500μM caffeine at 4 and 24h changed the behavioral parameters. To study the inflammatory effects of caffeine, we assessed the PGE 2 levels by using UHPLC-MS/MS, and TNF, COX-2, IL-6 and IL-10 gene expression by RT-qPCR. The expression of adenosine receptors was also evaluated with RT-qPCR. When combined to copper, caffeine altered inflammatory markers depending on the time of exposure. Adenosine receptors expression was significantly increased, especially after 4h exposure to copper and caffeine together or separately. Our results demonstrated that caffeine enhances the inflammation induced by copper by decreasing animal survival, altering inflammatory markers and promoting behavioral changes in zebrafish larvae. We also conclude that alterations in adenosine receptors are related to those effects. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Caffeine dependence in rats: effects of exposure duration and concentration.

    PubMed

    Dingle, Rachel N; Dreumont-Boudreau, Sarah E; Lolordo, Vincent M

    2008-09-03

    Groups of rats were chronically exposed to a 1.0-g/L caffeine solution for 5, 10, 15 or 20 days. Upon removal of caffeine, rats were given brief exposure to a novel flavour CS (withdrawal CS) followed by 12 days of plain water and then brief exposure to a second flavour CS (neutral CS). Only rats exposed to 20 days of caffeine strongly preferred the neutral CS to the withdrawal CS in a 2-bottle test. In Experiment 2, groups of rats were chronically exposed to caffeine at one of four concentrations (1.0, 0.5, 0.25, or 0.125 g/L) for 21 days, after which withdrawal and neutral CSs were established. Only rats that drank the highest caffeine concentration, 1.0 g/L, preferred the neutral CS to the withdrawal CS. This suggests that long exposure to a strong caffeine solution is required in order to induce dependence in rats such that a CS associated with the withdrawal of caffeine becomes avoided.

  16. The effects of ginseng, ephedrine, and caffeine on cognitive performance, mood and energy.

    PubMed

    Lieberman, H R

    2001-04-01

    A variety of claims regarding the purported energy-enhancing properties of nutritional supplements and food constituents have recently been made. It appears that the supplements most frequently associated with such assertions are ginseng, ephedrine, and caffeine. Claims of increased energy are difficult to evaluate objectively because their meaning is not usually defined or specified. Often it is not clear whether the claims refer to physical or mental energy or both. Furthermore, an agreed upon scientific definition of either physical or mental energy enhancement does not exist. In spite of obvious differences in what the term physical energy, as opposed to mental energy implies, there is no clear scientific consensus on whether there is a difference between the two types of energy. Because the substances in question have been anecdotally associated with improvements in both physical and mental performance, their effects on both functions will be discussed, but with an emphasis placed on cognitive function and mood. Of the three substances discussed, caffeine's effects on cognitive and physical function, mood, and energy are best understood. It is clear that this food/drug enhances these functions when administered in moderate doses. Ephedrine may also enhance certain physical and mental functions related to "energy," but the evidence that ginseng has such properties is exceedingly weak.

  17. Neurobehavioral hazard identification and characterization for caffeine.

    PubMed

    Turnbull, Duncan; Rodricks, Joseph V; Mariano, Gregory F

    2016-02-01

    This report evaluates the scientific literature on caffeine with respect to potential central nervous system (CNS) effects, specifically effects on sleep, anxiety, and aggression/risk-taking. Caffeine has been the subject of more scientific safety studies than any other food ingredient. It is important, therefore, to evaluate new studies in the context of this large existing body of knowledge. The safety of caffeine can best be described in a narrative form, and is not usefully expressed in terms of a "bright line" numerical value like an "acceptable daily intake" (ADI). Caffeine intake has been associated with a range of reversible physiological effects, in a few studies at levels of less than 100 mg in sensitive individuals. It is also clear that many people can tolerate much greater levels - perhaps up to 600-800 mg/day or more - without experiencing such effects. The reasons for this type of variability in response are described in this report. Based on all the available evidence, there is no reason to believe that experiencing such effects from caffeine intake has any significant or lasting effect on health. The point at which caffeine intake may cause harm to the CNS is not readily identifiable, in part because data on the effects of daily intakes greater than 600 mg is limited. Effects of caffeine on risk-taking and aggressive behavior in young people have received considerable publicity, yet are the most difficult to study because of ethical concerns and limitations in the ability to design appropriate studies. At present, the weight of available evidence does not support these concerns, yet this should not preclude ongoing careful monitoring of the scientific literature. Copyright © 2015 Ramboll Environ US Corporation. Published by Elsevier Inc. All rights reserved.

  18. Caffeine-induced increase in voluntary activation and strength of the quadriceps muscle during isometric, concentric and eccentric contractions.

    PubMed

    Behrens, Martin; Mau-Moeller, Anett; Weippert, Matthias; Fuhrmann, Josefin; Wegner, Katharina; Skripitz, Ralf; Bader, Rainer; Bruhn, Sven

    2015-05-13

    This study investigated effects of caffeine ingestion (8 mg/kg) on maximum voluntary torque (MVT) and voluntary activation of the quadriceps during isometric, concentric and eccentric contractions. Fourteen subjects ingested caffeine and placebo in a randomized, controlled, counterbalanced, double-blind crossover design. Neuromuscular tests were performed before and 1 h after oral caffeine and placebo intake. MVTs were measured and the interpolated twitch technique was applied during isometric, concentric and eccentric contractions to assess voluntary activation. Furthermore, normalized root mean square of the EMG signal was calculated and evoked spinal reflex responses (H-reflex evoked at rest and during weak isometric voluntary contraction) as well as twitch torques were analyzed. Caffeine increased MVT by 26.4 N m (95%CI: 9.3-43.5 N m, P = 0.004), 22.5 N m (95%CI: 3.1-42.0 N m, P = 0.025) and 22.5 N m (95%CI: 2.2-42.7 N m, P = 0.032) for isometric, concentric and eccentric contractions. Strength enhancements were associated with increases in voluntary activation. Explosive voluntary strength and voluntary activation at the onset of contraction were significantly increased following caffeine ingestion. Changes in spinal reflex responses and at the muscle level were not observed. Data suggest that caffeine ingestion induced an acute increase in voluntary activation that was responsible for the increased strength regardless of the contraction mode.

  19. Caffeine consumption among active duty United States Air Force personnel.

    PubMed

    Knapik, Joseph J; Austin, Krista G; McGraw, Susan M; Leahy, Guy D; Lieberman, Harris R

    2017-07-01

    Data from the National Health and Nutrition Examination Survey (NHANES) indicated that 89% of Americans regularly consumed caffeinated products, but these data did not include military personnel. This cross-sectional study examined caffeine consumption prevalence, amount of daily consumption, and factors associated with caffeine intake in active duty United States (US) Air Force personnel. Service members (N = 1787) stationed in the US and overseas completed a detailed questionnaire describing their intake of caffeine-containing products in addition to their demographic, lifestyle, and military characteristics. Overall, 84% reported consuming caffeinated products ≥1 time/week with caffeine consumers ingesting a mean ± standard error of 212 ± 9 mg/day (224 ± 11 mg/day for men, 180 ± 12 mg/day for women). The most commonly consumed caffeinated products (% users) were sodas (56%), coffee (45%), teas (36%), and energy drinks (27%). Multivariate logistic regression modeling indicated that characteristics independently associated with caffeine consumption (≥1 time/week) included older age, ethnicity other than black, tobacco use, less aerobic training, and less sleep; energy drink use was associated with male gender, younger age, tobacco use, and less sleep. Compared to NHANES data, the prevalence of caffeine consumption in Air Force personnel was similar but daily consumption (mg/day) was higher. Published by Elsevier Ltd.

  20. Coffee and caffeine intake and the risk of ovarian cancer

    PubMed Central

    Lueth, Natalie A.; Anderson, Kristin E.; Harnack, Lisa J.; Fulkerson, Jayne A.; Robien, Kim

    2008-01-01

    Laboratory data suggests that caffeine or some components of coffee may cause DNA mutations and inhibit tumor suppressor mechanisms, leading to neoplastic growth. However, coffee consumption has not been clearly implicated in the etiology of human post-menopausal ovarian cancer. This study evaluated the relationship of coffee and caffeine intake with risk of epithelial ovarian cancer in a prospective cohort study of 29,060 postmenopausal women. The participants completed a mailed questionnaire that assessed diet and health history and were followed for ovarian cancer incidence from 1986 to 2004. Age-adjusted and multivariate-adjusted hazard ratios were calculated for four exposure variables: caffeinated coffee, decaffeinated coffee, total coffee and total caffeine to assess whether or not coffee or caffeine influences the risk of ovarian cancer. An increased risk was observed in the multivariate model for women who reported drinking five or more cups/day of caffeinated coffee compared to women who reported drinking none (HR=1.81, 95% CI: 1.10-2.95). Decaffeinated coffee, total coffee and caffeine were not statistically significantly associated with ovarian cancer incidence. Our results suggest that a component of coffee other than caffeine, or in combination with caffeine, may be associated with increased risk of ovarian cancer in postmenopausal women who drink five or more cups of coffee a day. PMID:18704717

  1. Adolescent caffeine consumption and self-reported violence and conduct disorder.

    PubMed

    Kristjansson, Alfgeir L; Sigfusdottir, Inga Dora; Frost, Stephanie S; James, Jack E

    2013-07-01

    Caffeine is the most widely used psychoactive substance in the world and currently the only one legally available to children and adolescents. The sale and use of caffeinated beverages has increased markedly among adolescents during the last decade. However, research on caffeine use and behaviors among adolescents is scarce. We investigate the relationship between adolescent caffeine use and self-reported violent behaviors and conduct disorders in a population-based cross-sectional sample of 3,747 10th grade students (15-16 years of age, 50.2 % girls) who were enrolled in the Icelandic national education system during February 2012. Through a series of multiple regression models, while controlling for background factors, Attention Deficit Hyperactivity Disorder symptoms and current medication and peer delinquency, and including measures on substance use, our findings show robust additive explanatory power of caffeine for both violent behaviors and conduct disorders. In addition, the association of caffeine to the outcomes is significantly stronger for girls than boys for both violent behaviors and conduct disorders. Future studies are needed to examine to what extent, if at all, these relationships are causal. Indication of causal connections between caffeine consumption and negative outcomes such as those reported here would call into question the acceptability of current policies concerning the availability of caffeine to adolescents and the targeting of adolescence in the marketing of caffeine products.

  2. Evaluation of the Reproductive and Developmental Risks of Caffeine

    PubMed Central

    Brent, Robert L; Christian, Mildred S; Diener, Robert M

    2011-01-01

    A risk analysis of in utero caffeine exposure is presented utilizing epidemiological studies and animal studies dealing with congenital malformation, pregnancy loss, and weight reduction. These effects are of interest to teratologists, because animal studies are useful in their evaluation. Many of the epidemiology studies did not evaluate the impact of the “pregnancy signal,” which identifies healthy pregnancies and permits investigators to identify subjects with low pregnancy risks. The spontaneous abortion epidemiology studies were inconsistent and the majority did not consider the confounding introduced by not considering the pregnancy signal. The animal studies do not support the concept that caffeine is an abortafacient for the wide range of human caffeine exposures. Almost all the congenital malformation epidemiology studies were negative. Animal pharmacokinetic studies indicate that the teratogenic plasma level of caffeine has to reach or exceed 60 µg/ml, which is not attainable from ingesting large amounts of caffeine in foods and beverages. No epidemiological study described the “caffeine teratogenic syndrome.” Six of the 17 recent epidemiology studies dealing with the risk of caffeine and fetal weight reduction were negative. Seven of the positive studies had growth reductions that were clinically insignificant and none of the studies cited the animal literature. Analysis of caffeine's reproductive toxicity considers reproducibility and plausibility of clinical, epidemiological, and animal data. Moderate or even high amounts of beverages and foods containing caffeine do not increase the risks of congenital malformations, miscarriage or growth retardation. Pharmacokinetic studies markedly improve the ability to perform the risk analyses. Birth Defects Res (Part B) 92:152–187, 2011. © 2011 Wiley-Liss, Inc. PMID:21370398

  3. Caffeine Inhibits Fluid Secretion by Interlobular Ducts From Guinea Pig Pancreas.

    PubMed

    Mochimaru, Yuka; Yamamoto, Akiko; Nakakuki, Miyuki; Yamaguchi, Makoto; Taniguchi, Ituka; Ishiguro, Hiroshi

    2017-04-01

    Caffeine is contained in coffee, tea, and numerous beverages and foods. We examined the direct effects of caffeine on the physiological function of pancreatic duct cells by using interlobular duct segments isolated from guinea pig pancreas. The rate of fluid secretion was continuously measured by monitoring the luminal volume of isolated duct segments. Changes in intracellular Ca concentration ([Ca]i) were estimated by microfluorometry in ducts loaded with Fura-2. Both secretin-stimulated and acetylcholine (ACh)-stimulated fluid secretions were substantially and reversibly inhibited by relatively low concentrations of caffeine as low as 0.03 mM relevant to blood levels after ingestion of caffeine-containing beverages. Caffeine inhibited ACh-induced elevation of [Ca]i and secretin-induced fluctuation of [Ca]i. Caffeine abolished thapsigargin-induced intracellular Ca release but did not affect the entry of extracellular Ca. Caffeine (0.05 mM) abolished ethanol (1 mM)-induced fluid hypersecretion in secretin-stimulated pancreatic duct. Low concentrations of caffeine directly inhibit pancreatic ductal fluid secretion stimulated by secretin or ACh and also ethanol-induced fluid hypersecretion. The inhibition by caffeine seems to be mediated by the blockade of intracellular Ca mobilization. Daily intake of caffeine may reduce the volume of pancreatic juice secretion.

  4. Caffeinated alcohol beverages: a public health concern.

    PubMed

    Attwood, Angela S

    2012-01-01

    Consumption of alcohol mixed with caffeinated energy drinks is becoming popular, and the number of pre-mixed caffeinated alcohol products on the worldwide market is increasing. There is public health concern and even occasional legal restriction relating to these drinks, due to associations with increased intoxication and harms. The precise nature and degree of the pharmacological relationship between caffeine and alcohol is not yet elucidated, but it is proposed that caffeine attenuates the sedative effects of alcohol intoxication while leaving motor and cognitive impairment unaffected. This creates a potentially precarious scenario for users who may underestimate their level of intoxication and impairment. While legislation in some countries has restricted production or marketing of pre-mixed products, many individuals mix their own energy drink-alcohol 'cocktails'. Wider dissemination of the risks might help balance marketing strategies that over-emphasize putative positive effects.

  5. Caffeine's influence on gambling behavior and other types of impulsivity.

    PubMed

    Grant, Jon E; Chamberlain, Samuel R

    2018-01-01

    Young adulthood is a developmental period frequently associated with occurrence of impulsive behaviors including gambling. It is estimated that 73% of children and 87% of adults in the United States regularly use caffeine. Questions remain, however, concerning the role of caffeine in the development and maintenance of impulsive behaviors such as gambling. Sixty-one young adults with at least some degree of disordered gambling were recruited from two Mid-Western university communities in the United States using media advertisements. Caffeine intake over the preceding month was quantified using the Caffeine Use Questionnaire. Clinician rating scales, questionnaires, and cognitive tests germane to impulsivity were completed. Relationships between caffeine intake and demographic, gambling symptom, and neurocognitive measures were evaluated using the statistical technique of partial least squares (PLS). Average weekly caffeine intake in the gamblers was 1218.5mg (a figure higher than previously reported in the general population). PLS yielded an optimal model with one latent factor, which explained 14.8% of variation in demographic/clinical/cognitive measures and 32.3% of variation in caffeine intake. In this model, higher caffeine intake was significantly associated with earlier age at first gambling, higher personality-related impulsiveness, more nicotine consumption, older age, and more impulsive decision-making. These data suggest a particularly strong relationship between caffeine intake, earlier age of first gambling, and certain types of impulsivity in gamblers. Providing education about healthy caffeine use may be especially valuable in gamblers. Future work should explore whether the relationship between caffeine use and gambling is due to a common predisposing factor (impulsive tendencies) or, rather, constitutes a form of self-medication in gamblers (or a means of sustaining gambling habits for longer). Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Lack of inhibitory effect of cimetidine on caffeine metabolism in children using the caffeine breath test

    PubMed Central

    Parker, A.C.; Pritchard, P.; Preston, T.; Dalzell, A.M.; Choonara, I.

    1997-01-01

    Aims To study the potential drug interaction between cimetidine and caffeine in a group of children who received cimetidine for gastritis. Methods The caffeine breath test was carried out prior to the administration of cimetidine and after 2–3 weeks therapy. The children (n=1) received 300–800 mg cimetidine daily (11–36 mg kg−1 day−1 ). Results There was no significant change in the 2 h cumulative labelled CO2 following the administration of cimetidine (mean values 5.61% before and 4.87% during cimetidine; Student’s t-test P >0.2). Conclusions Cimetidine did not have an inhibitory effect on the metabolism of caffeine in this group of children studied. PMID:9159560

  7. Coffee, Caffeine, and Risk of Depression Among Women

    PubMed Central

    Lucas, Michel; Mirzaei, Fariba; Pan, An; Okereke, Olivia I.; Willett, Walter C; O’Reilly, Éilis J; Koenen, Karestan; Ascherio, Alberto

    2012-01-01

    Background Caffeine is the world’s most widely used central nervous system stimulant, with about 80% consumed in form of coffee. However, studies that analyzed prospectively the relation of coffee or caffeine consumption and depression risk are scarce. Methods A total of 50,739 U.S. women (mean age=63 years) free from depressive symptoms at baseline (1996) were prospectively followed until 2006. Caffeine and coffee consumption, and other caffeinated and decaffeinated beverages, were obtained from validated questionnaires completed between 1980 through 2002 and computed as cumulative average of consumption with a 2-year latency applied. Clinical depression was defined as reporting both physician-diagnosed depression and antidepressant use. Relative risks of clinical depression were estimate using Cox proportional hazards regression models. Results During 10 years of follow-up (1996–2006), 2,607 incident cases of depression were identified. Compared to women consuming caffeinated coffee less frequently (≤1 cup/wk), multivariate relative risk of depression was 0.85 (95% confidence interval [CI], 0.75 to 0.95) for those consuming 2–3 cups/d and 0.80 (95%CI, 0.64 to 0.99; P trend <0.001) for those consuming ≥4 cups/d. Multivariate relative risk for depression was 0.80 (95%CI, 0.68 to 0.95; P trend=0.02) for women in the highest (≥550 mg/d) vs. lowest (<100 mg/d) of the 5 caffeine consumption categories. Decaffeinated coffee was not associated with depression risk. Conclusions In this large longitudinal study we found that depression risk decreases with increasing caffeinated coffee consumption. Further investigations are needed to confirm this finding and to determine whether usual caffeinated coffee consumption may contribute to depression prevention. PMID:21949167

  8. Caffeine induced changes in cerebral circulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathew, R.J.; Wilson, W.H.

    1985-09-01

    While the caffeine induced cerebral vasoconstriction is well documented, the effects of oral ingestion of the drug in a dose range comparable to the quantities in which it is usually consumed and the intensity and duration of the associated reduction in cerebral circulation are unknown. Cerebral blood flow was measured via the TTXenon inhalation technique before and thirty and ninety minutes after the oral administration of 250 mg of caffeine or a placebo, under double-blind conditions. Caffeine ingestion was found to be associated with significant reductions in cerebral perfusion thirty and ninety minutes later. The placebo group showed no differencesmore » between the three sets of cerebral blood flow values.« less

  9. The interaction of caffeine with substituted cyclodextrins in water

    NASA Astrophysics Data System (ADS)

    Terekhova, I. V.; Kumeev, R. S.; Al'Per, G. A.

    2007-07-01

    The interaction of caffeine with hydroxypropyl-and methylcyclodextrins in water was studied by the calorimetry, spectroscopy, and solubility methods at 298.15 K. The interaction of caffeine with these cyclodextrins did not result in the formation of stable inclusion complexes and was mostly accompanied by predominantly endothermic effects of particle dehydration. The introduction of substituents and changes in the size of cyclodextrin molecular cavity did not influence the ability of cyclodextrins to form complexes with caffeine. The conclusion was drawn that substituted cyclodextrins could not be used for increasing the solubility of caffeine in water.

  10. Role of enhanced multi-detector-row computed tomography before urgent endoscopy in acute upper gastrointestinal bleeding.

    PubMed

    Miyaoka, Youichi; Amano, Yuji; Ueno, Sayaka; Izumi, Daisuke; Mikami, Hironobu; Yazaki, Tomotaka; Okimoto, Eiko; Sonoyama, Takayuki; Ito, Satoko; Fujishiro, Hirofumi; Kohge, Naruaki; Imaoka, Tomonori

    2014-04-01

    Multi-detector-row computed tomography (MDCT) has been reported to be a potentially useful modality for detection of the bleeding origin in patients with acute upper massive gastrointestinal (GI) bleeding. The purpose of this study is to investigate the efficacy of MDCT as a routine method for detecting the origin of acute upper GI bleeding prior to urgent endoscopy. Five hundred seventy-seven patients with acute upper GI bleeding (514 nonvariceal patients, 63 variceal patients) who underwent urgent upper GI endoscopy were retrospectively analyzed. Patients were divided into three groups: enhanced MDCT, unenhanced MDCT, and no MDCT before endoscopy. The diagnostic accuracy of MDCT for detection of the bleeding origin was evaluated, and the average procedure times needed to endoscopically identify the bleeding origin were compared between groups. Diagnostic accuracy among endoscopists was 55.3% and 14.7% for the enhanced MDCT and unenhanced MDCT groups, respectively. Among nonvariceal patients, accuracy was 50.2% in the enhanced MDCT group, which was significantly better than that in the unenhanced MDCT group (16.5%). In variceal patients, accuracy was significantly better in the enhanced MDCT group (96.4%) than in the unenhanced MDCT group (0.0%). These accuracies were similar to those achieved by expert radiologists. The average procedure time to endoscopic detection of the bleeding origin in the enhanced MDCT group was significantly faster than that in the unenhanced MDCT and no-MDCT groups. Enhanced MDCT preceding urgent endoscopy may be an effective modality for the detection of bleeding origin in patients with acute upper GI bleeding. © 2013 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.

  11. Caffeine Augments Anesthesia Neurotoxicity in the Fetal Macaque Brain.

    PubMed

    Noguchi, Kevin K; Johnson, Stephen A; Manzella, Francesca M; Masuoka, Kobe L; Williams, Sasha L; Martin, Lauren D; Dissen, Gregory A; Ikonomidou, Chrysanthy; Schenning, Katie J; Olney, John W; Brambrink, Ansgar M

    2018-03-28

    Caffeine is the most frequently used medication in premature infants. It is the respiratory stimulant of choice for apnea associated with prematurity and has been called the silver bullet in neonatology because of many proven benefits and few known risks. Research has revealed that sedative/anesthetic drugs trigger apoptotic death of neurons and oligodendrocytes in developing mammalian brains. Here we evaluated the influence of caffeine on the neurotoxicity of anesthesia in developing nonhuman primate brains. Fetal macaques (n = 7-8/group), at a neurodevelopmental age comparable to premature human infants, were exposed in utero for 5 hours to no drug (control), isoflurane, or isoflurane + caffeine and examined for evidence of apoptosis. Isoflurane exposure increased apoptosis 3.3 fold for neurons and 3.4 fold for oligodendrocytes compared to control brains. Isoflurane + caffeine caused neuronal apoptosis to increase 8.0 fold compared to control levels but did not augment oligoapoptosis. Neuronal death was particularly pronounced in the basal ganglia and cerebellum. Higher blood levels of caffeine within the range considered therapeutic and safe for human infants correlated with increased neuroapoptosis. Caffeine markedly augments neurotoxicity of isoflurane in the fetal macaque brain and challenges the assumption that caffeine is safe for premature infants.

  12. Effects of theobromine and caffeine on mood and vigilance.

    PubMed

    Judelson, Daniel A; Preston, Amy G; Miller, Debra L; Muñoz, Colleen X; Kellogg, Mark D; Lieberman, Harris R

    2013-08-01

    Like caffeine, theobromine crosses the blood-brain barrier and binds to adenosine receptors, suggesting it might share caffeine's beneficial effects on mood and vigilance. Therefore, the purpose of this study was to assess the effect of theobromine doses commonly found in foods on mood and vigilance parameters sensitive to caffeine. Caffeine was tested as a positive control. Twenty-four men (age, 23 [3] years) completed 6 double-blind trials during which they consumed experimental beverages, assessed their mood using standardized self-report questionnaires, and completed a 2-hour visual vigilance task. Three experimental doses (100, 200, and 400 mg theobromine) were delivered in a cocoa-based beverage; 3 matched control treatments (0 mg theobromine, 400 mg theobromine, and 100 mg caffeine) were delivered in a non-cocoa beverage. Mean salivary concentrations of theobromine exhibited significant dose-dependent differences (400 mg trials > 200 mg trial > 100 mg trial > 0 mg trials; P < 0.005). At every dose tested, theobromine failed to consistently affect mood state or vigilance (P > 0.05), but 100-mg caffeine significantly decreased lethargy/fatigue and increased vigor (P = 0.006 and 0.011, respectively). These findings indicate theobromine does not influence mood and vigilance when administered in nutritionally relevant doses, despite sharing many of caffeine's structural characteristics.

  13. Caffeine intake and its sources: A review of national representative studies.

    PubMed

    Verster, Joris C; Koenig, Juergen

    2018-05-24

    Aim of this review is to summarize current daily caffeine intake of children, adolescents, and adults, and trends in caffeine intake over the past decade. A literature search was conducted (1997-2015) which yielded 18 reports on nationally representative studies, describing caffeine consumption of over 275,000 children, adolescents and adults. The data revealed that mean total daily caffeine intake in children, adolescents, and adults is below caffeine intake recommendations such as those stated by Health Canada (2.5 mg/kg bw/day for children and adolescents, and 400 mg/day for adults) and the European Food Safety Authority, EFSA (3 mg/kg bw/day for children and adolescents, and 400 mg/day for adults). Total daily caffeine intake has remained stable in the last 10-15 years, and coffee, tea and soft drinks are the most important caffeine sources. Across all age groups, energy drinks contribute little to total caffeine intake. The highest potential for reducing daily caffeine intake is by limiting coffee consumption, and in some countries and age groups, by reducing tea and soft drink consumption.

  14. Capillary electrophoresis for caffeine and pyroglutamate determination in coffees study of the in vivo effect on learning and locomotor activity in mice.

    PubMed

    Maeso, N; del Castillo, C; Cornejo, L; García-Acicollar, M; Alguacil, L F; Barbas, C

    2006-06-16

    In a preliminary study pyroglutamate showed to be over 10 times increased in some lyophilised coffees with respect to brewed or filtered coffees, and probably that increase is related to some stage of the industrial process. Pyroglutamate is known to have a number of remarkable cognitive enhancing effects, which could be also related to the properties of coffee traditionally associated to caffeine. Pyroglutamate improves memory and learning and has anti-anxiety effects in rats. Therefore, a method has been developed and validated for the simultaneous determination of caffeine and pyroglutamate in coffee by capillary electrophoresis. Separation conditions employed MECK conditions with 50 mM borate buffer at pH 9.5 with 130 mM SDS. The applied potential was 10 kV and detection was performed at 200 nm. Afterwards, 10 soluble coffees from the market were measured and caffeine and pyroglutamate levels were compared. Those coffees with higher pyroglutamate with or without caffeine were preliminarily tested for sedative/stimulant properties and cognition enhancing effects in mice. The most relevant finding was a partial reversal of scopolamine-induced amnesia in the passive avoidance paradigm after oral administration of one coffee.

  15. Coffee and caffeine consumption and the risk of hypertension in postmenopausal women.

    PubMed

    Rhee, Jinnie J; Qin, FeiFei; Hedlin, Haley K; Chang, Tara I; Bird, Chloe E; Zaslavsky, Oleg; Manson, JoAnn E; Stefanick, Marcia L; Winkelmayer, Wolfgang C

    2016-01-01

    The associations of coffee and caffeine intakes with the risk of incident hypertension remain controversial. We sought to assess longitudinal relations of caffeinated coffee, decaffeinated coffee, and total caffeine intakes with mean blood pressure and incident hypertension in postmenopausal women in the Women's Health Initiative Observational Study. In a large prospective study, type and amount of coffee and total caffeine intakes were assessed by using self-reported questionnaires. Hypertension status was ascertained by using measured blood pressure and self-reported drug-treated hypertension. The mean intakes of caffeinated coffee, decaffeinated coffee, and caffeine were 2-3 cups/d, 1 cup/d, and 196 mg/d, respectively. Using multivariable linear regression, we examined the associations of baseline intakes of caffeinated coffee, decaffeinated coffee, and caffeine with measured systolic and diastolic blood pressures at annual visit 3 in 29,985 postmenopausal women who were not hypertensive at baseline. We used Cox proportional hazards models to estimate HRs and their 95% CIs for time to incident hypertension. During 112,935 person-years of follow-up, 5566 cases of incident hypertension were reported. Neither caffeinated coffee nor caffeine intake was associated with mean systolic or diastolic blood pressure, but decaffeinated coffee intake was associated with a small but clinically irrelevant decrease in mean diastolic blood pressure. Decaffeinated coffee intake was not associated with mean systolic blood pressure. Intakes of caffeinated coffee, decaffeinated coffee, and caffeine were not associated with the risk of incident hypertension (P-trend > 0.05 for all). In summary, these findings suggest that caffeinated coffee, decaffeinated coffee, and caffeine are not risk factors for hypertension in postmenopausal women. © 2016 American Society for Nutrition.

  16. Effects of Caffeine Supplementation on Performance in Ball Games.

    PubMed

    Chia, Jingyi Shannon; Barrett, Laura Ann; Chow, Jia Yi; Burns, Stephen Francis

    2017-12-01

    Although a large body of evidence exists documenting the ergogenic properties of caffeine, most studies have focused on endurance performance. However, findings from endurance sports cannot be generalized to performance in ball games where, apart from having a high level of endurance, successful athletic performances require a combination of physiological, technical and cognitive capabilities. The purpose of this review was to critically evaluate studies that have examined the effect of a single dose of caffeine in isolation on one or more of the following performance measures: total distance, sprint performance, agility, vertical jump performance and accuracy in ball games. Searches of three major databases resulted in 19 studies (invasion games: 13; net-barrier games: 6) that evaluated the acute effects of caffeine on human participants, provided the caffeine dose administered, and included a ball games specific task or simulated match. Improvements in sprint performance were observed in 8 of 10 studies (80%), and vertical jump in 7 of 8 studies (88%). Equivocal results were reported for distance covered, agility and accuracy. Minor side effects were reported in 4 of 19 studies reviewed. Pre-exercise caffeine ingestion between 3.0 and 6.0 mg/kg of body mass appears to be a safe ergogenic aid for athletes in ball games. However, the efficacy of caffeine varies depending on various factors, including, but not limited to, the nature of the game, physical status and caffeine habituation. More research is warranted to clarify the effects of caffeine on performance measures unique to ball games, such as agility and accuracy. It is essential that athletes, coaches and practitioners evaluate the risk-benefit ratio of caffeine ingestion strategies on an individual case-by-case basis.

  17. Caffeine Use among Active Duty Navy and Marine Corps Personnel

    PubMed Central

    Knapik, Joseph J.; Trone, Daniel W.; McGraw, Susan; Steelman, Ryan A.; Austin, Krista G.; Lieberman, Harris R.

    2016-01-01

    Data from the National Health and Nutrition Examination Survey (NHANES) indicate 89% of Americans regularly consume caffeine, but these data do not include military personnel. This cross-sectional study examined caffeine use in Navy and Marine Corps personnel, including prevalence, amount of daily consumption, and factors associated with use. A random sample of Navy and Marine Corps personnel was contacted and asked to complete a detailed questionnaire describing their use of caffeine-containing substances, in addition to their demographic, military, and lifestyle characteristics. A total of 1708 service members (SMs) completed the questionnaire. Overall, 87% reported using caffeinated beverages ≥1 time/week, with caffeine users consuming a mean ± standard error of 226 ± 5 mg/day (242 ± 7 mg/day for men, 183 ± 8 mg/day for women). The most commonly consumed caffeinated beverages (% users) were coffee (65%), colas (54%), teas (40%), and energy drinks (28%). Multivariable logistic regression modeling indicated that characteristics independently associated with caffeine use (≥1 time/week) included older age, white race/ethnicity, higher alcohol consumption, and participating in less resistance training. Prevalence of caffeine use in these SMs was similar to that reported in civilian investigations, but daily consumption (mg/day) was higher. PMID:27735834

  18. Caffeine Use among Active Duty Navy and Marine Corps Personnel.

    PubMed

    Knapik, Joseph J; Trone, Daniel W; McGraw, Susan; Steelman, Ryan A; Austin, Krista G; Lieberman, Harris R

    2016-10-09

    Data from the National Health and Nutrition Examination Survey (NHANES) indicate 89% of Americans regularly consume caffeine, but these data do not include military personnel. This cross-sectional study examined caffeine use in Navy and Marine Corps personnel, including prevalence, amount of daily consumption, and factors associated with use. A random sample of Navy and Marine Corps personnel was contacted and asked to complete a detailed questionnaire describing their use of caffeine-containing substances, in addition to their demographic, military, and lifestyle characteristics. A total of 1708 service members (SMs) completed the questionnaire. Overall, 87% reported using caffeinated beverages ≥1 time/week, with caffeine users consuming a mean ± standard error of 226 ± 5 mg/day (242 ± 7 mg/day for men, 183 ± 8 mg/day for women). The most commonly consumed caffeinated beverages (% users) were coffee (65%), colas (54%), teas (40%), and energy drinks (28%). Multivariable logistic regression modeling indicated that characteristics independently associated with caffeine use (≥1 time/week) included older age, white race/ethnicity, higher alcohol consumption, and participating in less resistance training. Prevalence of caffeine use in these SMs was similar to that reported in civilian investigations, but daily consumption (mg/day) was higher.

  19. Subjective and objective effects of coffee consumption - caffeine or expectations?

    PubMed

    Dömötör, Zs; Szemerszky, R; Köteles, F

    2015-03-01

    Impact of 5 mg/kg caffeine, chance of receiving caffeine (stimulus expectancies), and expectations of effects of caffeine (response expectancies) on objective (heart rate (HR), systolic/diastolic blood pressure (SBP/DBP), measures of heart rate variability (HRV), and reaction time (RT)) and subjective variables were investigated in a double-blind, placebo-controlled experiment with a no-treatment group. Participants were 107 undergraduate university students (mean age 22.3 ± 3.96 years). Consumption of 5 mg/kg caffeine had an impact on participants' SBP, standard deviation of normal heartbeat intervals, HR (decrease), and subjective experience 40 minutes later even after controlling for respective baseline values, stimulus and response expectancies, and habitual caffeine consumption. No effects on DBP, high frequency component of HRV, the ratio of low- and high-frequency, and RT were found. Beyond actual caffeine intake, response expectancy score was also a determinant of subjective experience which refers to a placebo component in the total effect. Actual autonomic (SBP, HR) changes and somatosensory amplification tendency, however, had no significant impact on subjective experience. Placebo reaction plays a role in the subjective changes caused by caffeine consumption but it has no impact on objective variables. Conditional vs deceptive administration of caffeine (i.e. stimulus expectancies) had no impact on any assessed variable.

  20. The influence of caffeine on sustained attention: an ERP study.

    PubMed

    Ruijter, J; Lorist, M M; Snel, J; De Ruiter, M B

    2000-05-01

    The present study investigated the effects of caffeine on sustained attention by measuring concentration and fatigue. Event-related potentials (ERPs) and behavioral measures were recorded from 12 participants who worked continuously for approximately 10 min in a self-paced reaction task under conditions of both caffeine (250 mg) and placebo. The ERP data revealed more positive frontal P2 and parietal P3 components in the caffeine condition. However, a combination of different indices of the behavioral data did not reveal any effects of caffeine intake. These results suggest that caffeine increases arousal, thereby reducing fatigue, as was observed in the ERP results. A probable explanation for the absence of any effects of caffeine in the behavioral data can be found in the demanding properties of the task that was used, thereby supporting evidence for more pronounced effects of caffeine in suboptimal conditions. In addition, these results appeal for an increase in the use of ERPs in drug research, in order to discover possible effects on the brain which do not necessarily result in behavioral changes.

  1. Caffeine adsorption of montmorillonite in coffee extracts.

    PubMed

    Shiono, Takashi; Yamamoto, Kenichiro; Yotsumoto, Yuko; Yoshida, Aruto

    2017-08-01

    The growth in health-conscious consumers continues to drive the demand for a wide variety of decaffeinated beverages. We previously developed a new technology using montmorillonite (MMT) in selective decaffeination of tea extract. This study evaluated and compared decaffeination of coffee extract using MMT and activated carbon (AC). MMT adsorbed caffeine without significant adsorption of caffeoylquinic acids (CQAs), feruloylquinic acids (FQAs), dicaffeoylquinic acids (di-CQAs), or caffeoylquinic lactones (CQLs). AC adsorbed caffeine, chlorogenic acids (CGAs) and CQLs simultaneously. The results suggested that the adsorption selectivity for caffeine in coffee extract is higher in MMT than AC. The caffeine adsorption isotherms of MMT in coffee extract fitted well to the Langmuir adsorption model. The adsorption properties in coffee extracts from the same species were comparable, regardless of roasting level and locality of growth. Our findings suggest that MMT is a useful adsorbent in the decaffeination of a wide range of coffee extracts.

  2. A hypothalamic-pituitary-adrenal axis-associated neuroendocrine metabolic programmed alteration in offspring rats of IUGR induced by prenatal caffeine ingestion.

    PubMed

    Xu, D; Wu, Y; Liu, F; Liu, Y S; Shen, L; Lei, Y Y; Liu, J; Ping, J; Qin, J; Zhang, C; Chen, L B; Magdalou, J; Wang, H

    2012-11-01

    Caffeine is a definite factor of intrauterine growth retardation (IUGR). Previously, we have confirmed that prenatal caffeine ingestion inhibits the development of hypothalamic-pituitary-adrenal (HPA) axis, and alters the glucose and lipid metabolism in IUGR fetal rats. In this study, we aimed to verify a programmed alteration of neuroendocrine metabolism in prenatal caffeine ingested-offspring rats. The results showed that prenatal caffeine (120 mg/kg.day) ingestion caused low body weight and high IUGR rate of pups; the concentrations of blood adrenocorticotropic hormone (ACTH) and corticosterone in caffeine group were significantly increased in the early postnatal period followed by falling in late stage; the level of blood glucose was unchanged, while blood total cholesterol (TCH) and triglyceride (TG) were markedly enhanced in adult. After chronic stress, the concentrations and the gain rates of blood ACTH and corticosterone were obviously increased, meanwhile, the blood glucose increased while the TCH and TG decreased in caffeine group. Further, the hippocampal mineralocorticoid receptor (MR) expression in caffeine group was initially decreased and subsequently increased after birth. After chronic stress, the 11β-hydroxysteroid dehydrogenase-1, glucocorticoid receptor (GR), MR as well as the MR/GR ratio were all significantly decreased. These results suggested that prenatal caffeine ingestion induced the dysfunction of HPA axis and associated neuroendocrine metabolic programmed alteration in IUGR offspring rats, which might be related with the functional injury of hippocampus. These observations provide a valuable experimental basis for explaining the susceptibility of IUGR offspring to metabolic syndrome and associated diseases. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Effect of caffeine ingestion on anaerobic capacity quantified by different methods

    PubMed Central

    Arcoverde, Lucyana; Silveira, Rodrigo; Tomazini, Fabiano; Sansonio, André; Bertuzzi, Romulo; Andrade-Souza, Victor Amorim

    2017-01-01

    We investigated whether caffeine ingestion before submaximal exercise bouts would affect supramaximal oxygen demand and maximal accumulated oxygen deficit (MAOD), and if caffeine-induced improvement on the anaerobic capacity (AC) could be detected by different methods. Nine men took part in several submaximal and supramaximal exercise bouts one hour after ingesting caffeine (5 mg·kg-1) or placebo. The AC was estimated by MAOD, alternative MAOD, critical power, and gross efficiency methods. Caffeine had no effect on exercise endurance during the supramaximal bout (caffeine: 131.3 ± 21.9 and placebo: 130.8 ± 20.8 s, P = 0.80). Caffeine ingestion before submaximal trials did not affect supramaximal oxygen demand and MAOD compared to placebo (7.88 ± 1.56 L and 65.80 ± 16.06 kJ vs. 7.89 ± 1.30 L and 62.85 ± 13.67 kJ, P = 0.99). Additionally, MAOD was similar between caffeine and placebo when supramaximal oxygen demand was estimated without caffeine effects during submaximal bouts (67.02 ± 16.36 and 62.85 ± 13.67 kJ, P = 0.41) or when estimated by alternative MAOD (56.61 ± 8.49 and 56.87 ± 9.76 kJ, P = 0.91). The AC estimated by gross efficiency was also similar between caffeine and placebo (21.80 ± 3.09 and 20.94 ± 2.67 kJ, P = 0.15), but was lower in caffeine when estimated by critical power method (16.2 ± 2.6 vs. 19.3 ± 3.5 kJ, P = 0.03). In conclusion, caffeine ingestion before submaximal bouts did not affect supramaximal oxygen demand and consequently MAOD. Otherwise, caffeine seems to have no clear positive effect on AC. PMID:28617848

  4. Association of caffeine intake and histological features of chronic hepatitis C.

    PubMed

    Costentin, Charlotte E; Roudot-Thoraval, Françoise; Zafrani, Elie-Serge; Medkour, Fatiha; Pawlotsky, Jean-Michel; Mallat, Ariane; Hézode, Christophe

    2011-06-01

    The severity of chronic hepatitis C (CHC) is modulated by host and environmental factors. Several reports suggest that caffeine intake exerts hepatoprotective effects in patients with chronic liver disease. The aim of this study was to evaluate the impact of caffeine consumption on activity grade and fibrosis stage in patients with CHC. A total of 238 treatment-naïve patients with histologically-proven CHC were included in the study. Demographic, epidemiological, environmental, virological, and metabolic data were collected, including daily consumption of alcohol, cannabis, tobacco, and caffeine during the six months preceding liver biopsy. Daily caffeine consumption was estimated as the sum of mean intakes of caffeinated coffee, tea, and caffeine-containing sodas. Histological activity grade and fibrosis stage were scored according to Metavir. Patients (154 men, 84 women, mean age: 45±11 years) were categorized according to caffeine consumption quartiles: group 1 (<225 mg/day, n=59), group 2 (225-407 mg/day, n=57), group 3 (408-678 mg/day, n=62), and group 4 (>678 mg/day, n=60). There was a significant inverse relationship between activity grade and daily caffeine consumption: activity grade>A2 was present in 78%, 61%, 52%, and 48% of patients in group 1, 2, 3, and 4, respectively (p<0.001). By multivariate analysis, daily caffeine consumption greater than 408 mg/day was associated with a lesser risk of activity grade>A2 (OR=0.32 (0.12-0.85). Caffeine intake showed no relation with fibrosis stage. Caffeine consumption greater than 408 mg/day (3 cups or more) is associated with reduced histological activity in patients with CHC. These findings support potential hepatoprotective properties of caffeine in chronic liver diseases. Copyright © 2010 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  5. Caffeine and human cerebral blood flow: A positron emission tomography study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cameron, O.G.; Modell, J.G.; Hariharan, M.

    1990-01-01

    Positron emission tomography (PET) was used to quantify the effect of caffeine on whole brain and regional cerebral blood flow (CBF) in humans. A mean dose of 250 mg of caffeine produced approximately a 30% decrease in whole brain CBF; regional differences in caffeine effect were not observed. Pre-caffeine CBF strongly influenced the magnitude of the caffeine-induced decrease. Caffeine decreased p{sub a}CO{sub 2} and increased systolic blood pressure significantly; the change in p{sub a}CO{sub 2} did not account for the change in CBF. Smaller increases in diastolic blood pressure, heart rate, plasma epinephrine and norepinephrine, and subjectively reported anxiety weremore » also observed.« less

  6. Focus on Communications: Communicating the Message: Clarifying the Controversies About Caffeine.

    PubMed

    Hogan, Edith Howard; Hornick, Betsy A.; Bouchoux, Ann

    2002-01-01

    Today's "coffee culture" and the widespread availability of caffeine-containing foods and beverages fuel the ongoing study of caffeine and its subsequent coverage by the media. Although the media has become influential in communicating health and nutrition information to the public, coverage of emerging science, such as the study of caffeine, does not necessarily bring clarity or improved understanding for consumers. This article highlights the current knowledge of caffeine's effects on health, with emphasis on the most common areas of interest and confusion. To address persistent misperceptions about caffeine, this article also accentuates the need for nutrition professionals to help put the findings of caffeine research into perspective and suggests practical ways to do this.

  7. Psychostimulant and Other Effects of Caffeine in 9- to 11-Year-Old Children

    ERIC Educational Resources Information Center

    Heatherley, Susan V.; Hancock, Katie M. F.; Rogers, Peter J.

    2006-01-01

    Background: Recent research on adults suggests that "beneficial" psychostimulant effects of caffeine are found only in the context of caffeine deprivation; that is, caffeine improves psychomotor and cognitive performance in habitual caffeine consumers following caffeine withdrawal. Furthermore, no net benefit is gained because…

  8. Exploring maternal patterns of dietary caffeine consumption before conception and during pregnancy.

    PubMed

    Chen, Lei; Bell, Erin M; Browne, Marilyn L; Druschel, Charlotte M; Romitti, Paul A

    2014-12-01

    We describe patterns of dietary caffeine consumption before and after pregnancy recognition in a cohort of women who recently gave birth. This study included 8,347 mothers of non-malformed liveborn control infants who participated in the National Birth Defects Prevention Study during 1997-2007. Maternal self-reported consumption of beverages (caffeinated coffee, tea, and soda) and chocolate the year before pregnancy was used to estimate caffeine intake. The proportions of prepregnancy caffeine consumption stratified by maternal characteristics are reported. In addition, patterns of reported change in consumption before and after pregnancy were examined by maternal and pregnancy characteristics. Adjusted prevalence ratios were estimated to assess factors most associated with change in consumption. About 97 % of mothers reported any caffeine consumption (average intake of 129.9 mg/day the year before pregnancy) and soda was the primary source of caffeine. The proportion of mothers reporting dietary caffeine intake of more than 300 mg/day was significantly increased among those who smoked cigarettes or drank alcohol. Most mothers stopped or decreased their caffeinated beverage consumption during pregnancy. Young maternal age and unintended pregnancy were associated with increases in consumption during pregnancy. Dietary caffeine consumption during pregnancy is still common in the US. A high level of caffeine intake was associated with known risk factors for adverse reproductive outcomes. Future studies may improve the maternal caffeine exposure assessment by acquiring additional information regarding the timing and amount of change in caffeine consumption after pregnancy recognition.

  9. The buzz on caffeine in invertebrates: effects on behavior and molecular mechanisms.

    PubMed

    Mustard, Julie A

    2014-04-01

    A number of recent studies from as diverse fields as plant-pollinator interactions, analyses of caffeine as an environmental pollutant, and the ability of caffeine to provide protection against neurodegenerative diseases have generated interest in understanding the actions of caffeine in invertebrates. This review summarizes what is currently known about the effects of caffeine on behavior and its molecular mechanisms in invertebrates. Caffeine appears to have similar effects on locomotion and sleep in both invertebrates and mammals. Furthermore, as in mammals, caffeine appears to have complex effects on learning and memory. However, the underlying mechanisms for these effects may differ between invertebrates and vertebrates. While caffeine's ability to cause release of intracellular calcium stores via ryanodine receptors and its actions as a phosphodiesterase inhibitor have been clearly established in invertebrates, its ability to interact with invertebrate adenosine receptors remains an important open question. Initial studies in insects and mollusks suggest an interaction between caffeine and the dopamine signaling pathway; more work needs to be done to understand the mechanisms by which caffeine influences signaling via biogenic amines. As of yet, little is known about whether other actions of caffeine in vertebrates, such as its effects on GABAA and glycine receptors, are conserved. Furthermore, the pharmacokinetics of caffeine remains to be elucidated. Overall behavioral responses to caffeine appear to be conserved amongst organisms; however, we are just beginning to understand the mechanisms underlying its effects across animal phyla.

  10. Exploring Maternal Patterns of Dietary Caffeine Consumption Before Conception and During Pregnancy

    PubMed Central

    Chen, Lei; Bell, Erin M.; Browne, Marilyn L.; Druschel, Charlotte M.; Romitti, Paul A.

    2018-01-01

    We describe patterns of dietary caffeine consumption before and after pregnancy recognition in a cohort of women who recently gave birth. This study included 8,347 mothers of non-malformed liveborn control infants who participated in the National Birth Defects Prevention Study during 1997–2007. Maternal self-reported consumption of beverages (caffeinated coffee, tea, and soda) and chocolate the year before pregnancy was used to estimate caffeine intake. The proportions of prepregnancy caffeine consumption stratified by maternal characteristics are reported. In addition, patterns of reported change in consumption before and after pregnancy were examined by maternal and pregnancy characteristics. Adjusted prevalence ratios were estimated to assess factors most associated with change in consumption. About 97 % of mothers reported any caffeine consumption (average intake of 129.9 mg/day the year before pregnancy) and soda was the primary source of caffeine. The proportion of mothers reporting dietary caffeine intake of more than 300 mg/day was significantly increased among those who smoked cigarettes or drank alcohol. Most mothers stopped or decreased their caffeinated beverage consumption during pregnancy. Young maternal age and unintended pregnancy were associated with increases in consumption during pregnancy. Dietary caffeine consumption during pregnancy is still common in the US. A high level of caffeine intake was associated with known risk factors for adverse reproductive outcomes. Future studies may improve the maternal caffeine exposure assessment by acquiring additional information regarding the timing and amount of change in caffeine consumption after pregnancy recognition. PMID:24791972

  11. Behavioural effects of compounds co-consumed in dietary forms of caffeinated plants.

    PubMed

    Haskell, C F; Dodd, F L; Wightman, E L; Kennedy, D O

    2013-06-01

    Research into the cognitive and mood effects of caffeine in human subjects has highlighted some fairly robust and well-accepted effects. However, the majority of these studies have focused on caffeine in isolation; whilst caffeine is normally consumed in the form of plant-derived products and extracts that invariably contain other potentially bioactive phytochemicals. The aim of the present review is to consider the possible mechanisms of action of co-occurring phytochemicals, and any epidemiological evidence suggesting that they contribute to potential health benefits ascribed to caffeine. Intervention studies to date that have been conducted to explore the effects on brain function of the non-caffeine components in caffeine-bearing plants (coffee, tea, cocoa, guaraná), either alone or in combination with caffeine, will also be summarised. Research is beginning to accumulate showing independent effects for several of the phytochemicals that co-occur with caffeine, and/or a modulation of the effects of caffeine when it is co-consumed with these naturally concomitant phytochemicals. The present review highlights that more research aimed at understanding the effects of these compounds is needed and, more importantly, the synergistic relationship that they may have with caffeine.

  12. Caffeine and theobromine levels in chocolate couverture and coating products.

    PubMed

    Ramli, N; Rahman, S; Hassan, O; Mohd Yatim, A; Said, M; Lim, L; Ng, W

    2000-03-01

    Thirty-two samples of chocolate products were analysed by HPLC for caffeine and theobromine contents. Defatted residues of samples were extracted with 80% aqueous acetone. After extraction into boiling water, the methylxanthines were identified and quantified with the use of μ-Bondapak column and mobile phase of methanol:water:acetic acid (20:79:1). Levels of caffein and theobromine in 32 samples of chocolate products averaged 0.62-1.14 mg/g and 0.026-0.153 mg/g respectively. Mean values for theobromine and caffeine content for chocolate coating were 0.82 and 0.07 mg/g respectively. The chocolate coating made from fat substitute had theobromine and caffeine levels ranging from 0.36-0.70 mg/g and 0.027-0.061 mg/g respectively, with mean values of 0.49 mg theobromine/g and 0.039 mg caffeine/g. In local chocolate, the mean theobromine and caffeine levels respectively were 0.72 mg/g and 0.04 mg/g in milk chocolate, and 0.85 mg/g and 0.06 mg/g in dark chocolate. Meanwhile, for imported chocolate, the mean theobromine and caffeine levels respectively were 1.05 mg/g and 0.12 mg/g in dark chocolate; 0.76 mg/g and 0.04 mg/g in milk chocolate; and 0.74 mg/g and 0.03 mg/g in white chocolate. Compared with the local chocolates, imported chocolates had higher levels of theobromine and caffeine at 1.141 mg/g and 0.1533mg/g. The average theobromine and caffeine concentrations in local chocolate were 0.082mg/g and 0.066mg/g. Theobromine concentration in chocolate samples is within the range of 0.62mg/g-1.141mg/g and the range of caffeine concentration is 0.026mg/g-0.153mg/g respectively. Bittersweet chocolates were found to have higher theobromine and caffeine concentrations than normal sweet chocolates and milk chocolates.

  13. Differential effects of caffeine on hair shaft elongation, matrix and outer root sheath keratinocyte proliferation, and transforming growth factor-β2/insulin-like growth factor-1-mediated regulation of the hair cycle in male and female human hair follicles in vitro.

    PubMed

    Fischer, T W; Herczeg-Lisztes, E; Funk, W; Zillikens, D; Bíró, T; Paus, R

    2014-11-01

    Caffeine reportedly counteracts the suppression of hair shaft production by testosterone in organ-cultured male human hair follicles (HFs). We aimed to investigate the impact of caffeine (i) on additional key hair growth parameters, (ii) on major hair growth regulatory factors and (iii) on male vs. female HFs in the presence of testosterone. Microdissected male and female human scalp HFs were treated in serum-free organ culture for 120 h with testosterone alone (0·5 μg mL(-1)) or in combination with caffeine (0·005-0·0005%). The following effects on hair shaft elongation were evaluated by quantitative (immuno)histomorphometry: HF cycling (anagen-catagen transition); hair matrix keratinocyte proliferation; expression of a key catagen inducer, transforming growth factor (TGF)-β2; and expression of the anagen-prolonging insulin-like growth factor (IGF)-1. Caffeine effects were further investigated in human outer root sheath keratinocytes (ORSKs). Caffeine enhanced hair shaft elongation, prolonged anagen duration and stimulated hair matrix keratinocyte proliferation. Female HFs showed higher sensitivity to caffeine than male HFs. Caffeine counteracted testosterone-enhanced TGF-β2 protein expression in male HFs. In female HFs, testosterone failed to induce TGF-β2 expression, while caffeine reduced it. In male and female HFs, caffeine enhanced IGF-1 protein expression. In ORSKs, caffeine stimulated cell proliferation, inhibited apoptosis/necrosis, and upregulated IGF-1 gene expression and protein secretion, while TGF-β2 protein secretion was downregulated. This study reveals new growth-promoting effects of caffeine on human hair follicles in subjects of both sexes at different levels (molecular, cellular and organ). © 2014 British Association of Dermatologists.

  14. Psychostimulant and other effects of caffeine in 9- to 11-year-old children.

    PubMed

    Heatherley, Susan V; Hancock, Katie M F; Rogers, Peter J

    2006-02-01

    Recent research on adults suggests that "beneficial" psychostimulant effects of caffeine are found only in the context of caffeine deprivation; that is, caffeine improves psychomotor and cognitive performance in habitual caffeine consumers following caffeine withdrawal. Furthermore, no net benefit is gained because performance is merely restored to "baseline" levels. The effects of caffeine in children is an under-researched area, with only a handful of studies being carried out in the US where children's consumption of caffeine appears to be lower on average than in the UK. Twenty-six children aged between 9 and 11 years completed a double-blind, placebo-controlled study. Habitual caffeine consumers (mean daily caffeine intake = 109 mg) and non/low-consumers (12 mg) were tested on two separate days following overnight caffeine abstinence. On each day measures of cognitive performance (a number search task), and self-rated mood and physical symptoms, including alertness and headache, were taken before and after administration of 50 mg of caffeine, or placebo. At baseline (before treatment), the habitual consumers showed poorer performance on the cognitive test than did the non/low-consumers, although no significant differences in mood or physical symptoms were found between the two groups. There were significant habit by treatment (caffeine vs. placebo) interactions for accuracy of performance and headache, and a significant main effect of treatment for alertness. Post hoc comparisons showed that caffeine administration improved the consumers' accuracy on the cognitive test (to near the level displayed by the non/low-consumers at baseline), but that it had no significant effect on the non/low-consumers' performance. In the consumers, caffeine prevented an increase in headache that occurred after placebo, and it increased alertness relative to placebo. Again, however, caffeine did not significantly affect levels of headache or alertness in the non

  15. Development and initial validation of a caffeine craving questionnaire.

    PubMed

    West, Oliver; Roderique-Davies, Gareth

    2008-01-01

    Craving for caffeine has received little empirical attention, despite considerable research into the potential for caffeine dependence. The main aim of this study was to develop, and initially validate, a multi-item, multidimensional instrument to measure cravings for caffeine. Participants were 189 caffeine consumers who completed the Questionnaire of Caffeine Cravings, which was based on the Questionnaire of Smoking Urges (QSU), in one of five naturally occurring periods of abstinence; 1-15 min; 16-120 mins; 3-7 h; 12-48 h and +48 h. Exploratory factor analysis suggested a three-factor solution best described the data; Factor 1 reflected strong desires, intentions and positive reinforcement; Factor 2 reflected mild/general positive and negative reinforcement and Factor 3 reflected functional/mood-based negative reinforcement. Significantly higher Factor 1 and Factor 2 scores were recorded for high frequency users; significantly higher Factor 1 and Factor 3 scores were recorded as a function of increased levels of dependence. Duration of abstinence did not significantly effect cravings across all three factors. Regression analyses suggested level of dependence best predicted both current cravings and frequency of daily use. These findings suggest caffeine cravings may be conceptualized multidimensionally and further validates the use of multidimensional, multi-item instruments. Cravings for caffeine may manifest and be detected across varying levels of dependence and, frequency of use and independently of duration of abstinence.

  16. A Survey of Caffeine Use and Associated Side Effects in a College Population.

    ERIC Educational Resources Information Center

    Johnson-Greene, Douglas; And Others

    1988-01-01

    Surveyed 270 college students concerning their caffeine consumption. Results suggest there is identifiable group using excessive amounts of caffeine. Identified several deleterious effects possibly related to caffeine use. Approximately 75 percent of caffeine users surveyed rarely sought information on caffeine content of products or avoided…

  17. Caffeine use in the neonatal intensive care unit.

    PubMed

    Abu-Shaweesh, Jalal M; Martin, Richard J

    2017-10-01

    Caffeine is the most frequently used medication in the neonatal intensive care unit. It is used for the prevention and treatment of apnea, although this has been associated with lower incidence of bronchopulmonary dysplasia (BPD) and patent ductus arteriosus as well as intact survival at 18-21 months of life. Although neurodevelopmental advantage was no longer statistically significant at age 5 years, caffeine was associated with sustained improvement in co-ordination and less gross motor impairment than placebo. The mechanism of action of caffeine on prevention of apnea and activation of breathing seems to be through central inhibition of adenosine receptors. However, its impact on BPD and neurodevelopmental outcomes might be induced through its effects as anti-inflammatory mediator, protection of white matter, and induction of surfactant protein B. Whereas long-term studies have documented the safety of caffeine as used in current practice, further studies are clearly needed to identify optimum dosing, and time of starting and discontinuing caffeine. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Coffee and caffeine intake and male infertility: a systematic review.

    PubMed

    Ricci, Elena; Viganò, Paola; Cipriani, Sonia; Somigliana, Edgardo; Chiaffarino, Francesca; Bulfoni, Alessandro; Parazzini, Fabio

    2017-06-24

    Semen quality, a predictor of male fertility, has been suggested declining worldwide. Among other life style factors, male coffee/caffeine consumption was hypothesized to influence semen parameters, but also sperm DNA integrity. To summarize available evidence, we performed a systematic review of observational studies on the relation between coffee/caffeine intake and parameters of male fertility including sperm ploidy, sperm DNA integrity, semen quality and time to pregnancy. A systematic literature search was performed up to November 2016 (MEDLINE and EMBASE). We included all observational papers that reported the relation between male coffee/caffeine intake and reproductive outcomes: 1. semen parameters, 2. sperm DNA characteristics, 3. fecundability. All pertinent reports were retrieved and the relative reference lists were systematically searched in order to identify any potential additional studies that could be included. We retrieved 28 papers reporting observational information on coffee/caffeine intake and reproductive outcomes. Overall, they included 19,967 men. 1. Semen parameters did not seem affected by caffeine intake, at least caffeine from coffee, tea and cocoa drinks, in most studies. Conversely, other contributions suggested a negative effect of cola-containing beverages and caffeine-containing soft drinks on semen volume, count and concentration. 2. As regards sperm DNA defects, caffeine intake seemed associated with aneuploidy and DNA breaks, but not with other markers of DNA damage. 3. Finally, male coffee drinking was associated to prolonged time to pregnancy in some, but not all, studies. The literature suggests that caffeine intake, possibly through sperm DNA damage, may negatively affect male reproductive function. Evidence from epidemiological studies on semen parameters and fertility is however inconsistent and inconclusive. Well-designed studies with predefined criteria for semen analysis, subject selection, and life style habits

  19. Caffeine affects cardiovascular and neuroendocrine activation at work and home.

    PubMed

    Lane, James D; Pieper, Carl F; Phillips-Bute, Barbara G; Bryant, John E; Kuhn, Cynthia M

    2002-01-01

    This study investigated the effects of moderate doses of caffeine on ambulatory blood pressure and heart rate, urinary excretion of epinephrine, norepinephrine, and cortisol, and subjective measures of stress during normal activities at work and at home in the evening. Healthy, nonsmoking, habitual coffee drinkers (N = 47) participated in 3 days of ambulatory study. After a day of ad lib caffeine consumption, caffeine (500 mg) and placebo were administered double-blind in counter-balanced order on separate workdays. Ambulatory blood pressure and heart rate were monitored from the start of the workday until bedtime. Urinary excretion of catecholamines and cortisol was assessed during the workday and evening. Caffeine administration significantly raised average ambulatory blood pressure during the workday and evening by 4/3 mm Hg and reduced average heart rate by 2 bpm. Caffeine also increased by 32% the levels of free epinephrine excreted during the workday and the evening. In addition, caffeine amplified the increases in blood pressure and heart rate associated with higher levels of self-reported stress during the activities of the day. Effects were undiminished through the evening until bedtime. Caffeine has significant hemodynamic and humoral effects in habitual coffee drinkers that persist for many hours during the activities of everyday life. Furthermore, caffeine may exaggerate sympathetic adrenal-medullary responses to the stressful events of normal daily life. Repeated daily blood pressure elevations and increases in stress reactivity caused by caffeine consumption could contribute to an increased risk of coronary heart disease in the adult population.

  20. A risk-benefit assessment of paracetamol (acetaminophen) combined with caffeine.

    PubMed

    Palmer, Hazel; Graham, Garry; Williams, Kenneth; Day, Richard

    2010-06-01

    To determine the risk: benefit of paracetamol combined with caffeine in the short-term management of acute pain conditions. Database searches were conducted to identify double-blind trials comparing paracetamol/caffeine with paracetamol alone (benefit analysis) and any data pertaining to hepatotoxicity of paracetamol when combined with caffeine (risk analysis). Paracetamol/caffeine (1,000 mg/130 mg) vs paracetamol (1,000 mg) alone. Assessment of benefit has been derived by meta-analysis. Information on the pain condition and number of patients studied, dosing regimen, study design and analgesic outcome measures (total pain relief scores) was extracted and dichotomous outcomes were obtained by calculating the number of patients in each treatment group who achieved at least 50% of the maximum total pain relief score. Assessment of risk has been made by appraisal of the literature. Eight studies from four papers provided sufficient quantitative data for satisfactory meta-analysis. The relative benefit (of achieving at least 50% pain relief) of paracetamol/caffeine vs paracetamol alone was 1.12 (95% Confidence Interval 1.05-1.19) across a number of acute pain states (dysmenorrhoea, headache, post-partum pain, and dental pain). Review of the effects of the combination of paracetamol and caffeine on the liver revealed no compelling data to suggest a clinically meaningful increase in hepatotoxicity with use of paracetamol/caffeine combinations. Paracetamol/caffeine (1,000 mg/130 mg) is effective and safe for use in acute management of pain. The hepatotoxicity of overdoses of paracetamol results from its oxidative metabolism, caffeine does not produce any increase in oxidative metabolism of therapeutic concentrations of paracetamol.

  1. Patterns of caffeine consumption in psychiatric patients. An Italian study.

    PubMed

    Ciapparelli, A; Paggini, R; Carmassi, C; Taponecco, C; Consoli, G; Ciampa, G; Ramacciotti, C E; Marazziti, D; Dell'Osso, L

    2010-05-01

    The aim of the present study was to explore and compare the caffeine intake, intoxication, withdrawal and dependence prevalence in Italian psychiatric patients and healthy subjects. Three hundred and sixty-nine out- and inpatients, suffering from different psychiatric disorders, and 104 healthy subjects were included in the study. They were assessed by the SCID and by a structured interview for caffeine intoxication and withdrawal and for substance dependence applied to caffeine use. Patients and healthy subjects did not differ in terms of current caffeine intake (mg/day, mean+/-SD: 281+/-325 vs. 288+/-148, respectively), while the maximum lifetime intake of caffeine was significantly higher in the first group (mg/day, mean SD: 630+/-549 vs. 504+/-344, respectively; F=4.897, p=.03) where it was significantly related to the CGI severity item scores (rho=.107; p=.04). In both patients and healthy subjects, a lower age was related to a higher current caffeine intake, while both current and maximum lifetime caffeine intake in the healthy subjects were significantly higher in men than in women. The patients suffering from eating disorders reported higher current caffeine intake than those with anxiety or mood disorders. The prevalence of dependence and intoxication was significantly higher in the patients than in the healthy subjects, without inter-group differences. Healthy subjects showed a trend towards a higher prevalence of withdrawal. Our study highlights the need that a more accurate attention should be paid to the caffeine use which seems to be strongly, although generically, related to different psychiatric disorders. (c) 2009 Elsevier Masson SAS. All rights reserved.

  2. Ergotamine and Caffeine

    MedlinePlus

    ... and caffeine is used to prevent and treat migraine headaches. Ergotamine is in a class of medications ... usually taken at the first sign of a migraine headache. Follow the directions on your prescription label ...

  3. Caffeine-induced increase in voluntary activation and strength of the quadriceps muscle during isometric, concentric and eccentric contractions

    PubMed Central

    Behrens, Martin; Mau-Moeller, Anett; Weippert, Matthias; Fuhrmann, Josefin; Wegner, Katharina; Skripitz, Ralf; Bader, Rainer; Bruhn, Sven

    2015-01-01

    This study investigated effects of caffeine ingestion (8 mg/kg) on maximum voluntary torque (MVT) and voluntary activation of the quadriceps during isometric, concentric and eccentric contractions. Fourteen subjects ingested caffeine and placebo in a randomized, controlled, counterbalanced, double-blind crossover design. Neuromuscular tests were performed before and 1 h after oral caffeine and placebo intake. MVTs were measured and the interpolated twitch technique was applied during isometric, concentric and eccentric contractions to assess voluntary activation. Furthermore, normalized root mean square of the EMG signal was calculated and evoked spinal reflex responses (H-reflex evoked at rest and during weak isometric voluntary contraction) as well as twitch torques were analyzed. Caffeine increased MVT by 26.4 N m (95%CI: 9.3-43.5 N m, P = 0.004), 22.5 N m (95%CI: 3.1-42.0 N m, P = 0.025) and 22.5 N m (95%CI: 2.2-42.7 N m, P = 0.032) for isometric, concentric and eccentric contractions. Strength enhancements were associated with increases in voluntary activation. Explosive voluntary strength and voluntary activation at the onset of contraction were significantly increased following caffeine ingestion. Changes in spinal reflex responses and at the muscle level were not observed. Data suggest that caffeine ingestion induced an acute increase in voluntary activation that was responsible for the increased strength regardless of the contraction mode. PMID:25969895

  4. Coffee, caffeine, and risk of depression among women.

    PubMed

    Lucas, Michel; Mirzaei, Fariba; Pan, An; Okereke, Olivia I; Willett, Walter C; O'Reilly, Éilis J; Koenen, Karestan; Ascherio, Alberto

    2011-09-26

    Caffeine is the world's most widely used central nervous system stimulant, with approximately 80% consumed in the form of coffee. However, studies that analyze prospectively the relationship between coffee or caffeine consumption and depression risk are scarce. A total of 50,739 US women (mean age, 63 years) free of depressive symptoms at baseline (in 1996) were prospectively followed up through June 1, 2006. Consumption of caffeine was measured from validated questionnaires completed from May 1, 1980, through April 1, 2004, and computed as cumulative mean consumption with a 2-year latency period applied. Clinical depression was defined as self-reported physician-diagnosed depression and antidepressant use. Relative risks of clinical depression were estimated using Cox proportional hazards regression models. During 10 years of follow-up (1996-2006), 2607 incident cases of depression were identified. Compared with women consuming 1 or less cup of caffeinated coffee per week, the multivariate relative risk of depression was 0.85 (95% confidence interval, 0.75-0.95) for those consuming 2 to 3 cups per day and 0.80 (0.64-0.99; P for trend<.001) for those consuming 4 cups per day or more. Multivariate relative risk of depression was 0.80 (95% confidence interval, 0.68-0.95; P for trend=.02) for women in the highest (≥550 mg/d) vs lowest (<100 mg/d) of the 5 caffeine consumption categories. Decaffeinated coffee was not associated with depression risk. In this large longitudinal study, we found that depression risk decreases with increasing caffeinated coffee consumption. Further investigations are needed to confirm this finding and to determine whether usual caffeinated coffee consumption can contribute to depression prevention.

  5. Caffeine inhibits STAT1 signaling and downregulates inflammatory pathways involved in autoimmunity.

    PubMed

    Iris, Merve; Tsou, Pei-Suen; Sawalha, Amr H

    2018-04-18

    Caffeine is a widely consumed pharmacologically active product. We focused on characterizing immunomodulatory effects of caffeine on peripheral blood mononuclear cells. Caffeine at high doses showed a robust downregulatory effect on cytokine activity and genes related to several autoimmune diseases including lupus and rheumatoid arthritis. Dose-dependent validation experiments showed downregulation at the mRNA levels of key inflammation-related genes including STAT1, TNF, IFNG, and PPARG. TNF and PPARG were suppressed even with the lowest caffeine dose tested, which corresponds to the serum concentration of caffeine after administration of one cup of coffee. Cytokine levels of IL-8, MIP-1β, IL-6, IFN-γ, GM-CSF, TNF, IL-2, IL-4, MCP-1, and IL-10 were decreased significantly with caffeine treatment. Upstream regulator analysis suggests that caffeine inhibits STAT1 signaling, which was confirmed by showing reduced phosphorylated STAT1 after caffeine treatment. Further studies exploring disease-modulating potential of caffeine in autoimmune diseases and further exploring the mechanisms involved are warranted. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Non-ionic surfactant based vesicular drug delivery system for topical delivery of caffeine for treatment of cellulite: design, formulation, characterization, histological anti-cellulite activity, and pharmacokinetic evaluation.

    PubMed

    Teaima, Mahmoud H; Abdelhalim, Sally A; El-Nabarawi, Mohamed A; Attia, Dalia A; Helal, Doaa A

    2018-01-01

    Cellulite is a common topographical alteration where skin acquires an orange peel or mattress appearance with alterations in adipose tissue and microcirculation. This work aims to develop and evaluate a topical niosomal gel formulae with good permeation to reach the subcutaneous fat layer. Several caffeine niosomal dispersions were prepared and incorporated into gel formulae using Carbopol 940 polymer, chemical penetration enhancers, and iontophoresis, then the prepared gels were applied onto the skin of rats and anticellulite activity of caffeine from the prepared gels compared to that of the commercial product Cellu Destock ® was evaluated by histological study of the skin and measurement of plasma level of caffeine passing through the skin using liquid chromatography (LC/MS-MS). Results of histology revealed reduction of size and thickness of fatty layer of rat skin in the following order: FVII > FXIV > Cellu Destock ®  > FVII + Iontophoresis > FXIV + Iontophoresis. Pharmacokinetic results of caffeine in plasma revealed that C max , T max , and AUC 0-12h decreased in the following order: FXIV > FVII > Cellu Destock ® . These results conclude that incorporation of caffeine niosomal dispersion into gel matrix with penetration enhancers and iontophoresis resulted in improvement in penetration of caffeine through the skin into the underlying fatty layer in treatment of cellulite.

  7. The Cumulative Neurobehavioral and Physiological Effects of Chronic Caffeine Intake: Individual Differences and Implications for the Use of Caffeinated Energy Products

    PubMed Central

    Spaeth, Andrea M; Goel, Namni; Dinges, David F

    2014-01-01

    The use of caffeine-containing energy products (CCEP) has increased worldwide in recent years and research shows that CCEP can improve cognitive and physical performance. All of the top-selling energy drinks contain caffeine, which is likely to be the primary psychoactive ingredient in CCEP. Presumably, individuals consume CCEP to counteract feelings of ‘low-energy’ in situations causing tiredness, fatigue, and/or reduced alertness. This review discusses the scientific evidence for sleep loss, circadian phase, sleep inertia and the time-on-task effect as causes of ‘low energy’ and summarizes research assessing the efficacy of caffeine to counteract decreased alertness and increased fatigue in such situations. The results of a placebo-controlled experiment on healthy adults undergoing three nights of total sleep deprivation (with or without 2 hour naps every 12 hours) are presented to illustrate the physiological and neurobehavioral effects of sustained low-dose caffeine. Individual differences, including genetic factors, in the response to caffeine and to sleep loss are discussed. We conclude with future directions for research on this important and evolving topic. PMID:25293542

  8. Relationship between dietary caffeine intake and blood pressure in adults.

    PubMed

    Köksal, Eda; Yardımcı, Hülya; Kocaadam, Betül; Deniz Güneş, Burcu; Yılmaz, Birsen; Karabudak, Efsun

    2017-03-01

    The aim of this study was to determine the consumption frequency of caffeinated foods and beverages and daily caffeine consumption amounts, and examine relation between caffeine and blood pressure (BP). A cross sectional door-to-door interview was conducted with 1329 volunteers between the ages of 20 and 60 (mean ages 29.9 ± 10.8 years) and based in Ankara/Turkey. The rate of individuals whose BPs were above 140/90 mmHg was 13.5%. The median caffeine consumption was 150.0 ± 122.06 mg. Although no significant correlation was found between total caffeine intake and diastolic blood pressure (DBP) of individuals, a positive correlation was observed between daily total caffeine and systolic blood pressure (SBP) (p < .05). Also, when analyzed factors that could be associated with DBP and SBP, BMI had effect in the model formed for both types of BP (p < .05). While smoking status associated with SBP (p = .002), gender and waist circumference related to DBP (p < .05) As a result relationship between caffeine intake and BP was affected other factors.

  9. Molecular Dynamics Simulation Studies of Caffeine Aggregation in Aqueous Solution

    PubMed Central

    Tavagnacco, Letizia; Schnupf, Udo; Mason, Philip E.; Saboungi, Marie-Louise; Cesàro, Attilio; Brady, John W.

    2011-01-01

    Molecular dynamics simulations were carried out on a system of eight independent caffeine molecules in a periodic box of water at 300 K, representing a solution near the solubility limit for caffeine at room temperature, using a newly-developed CHARMM-type force field for caffeine in water. Simulations were also conducted for single caffeine molecules in water using two different water models (TIP3P and TIP4P). Water was found to structure in a complex fashion around the planar caffeine molecules, which was not sensitive to the water model used. As expected, extensive aggregation of the caffeine molecules was observed, with the molecules stacking their flat faces against one another like coins, with their methylene groups staggered to avoid steric clashes. A dynamic equilibrum was observed between large n-mers, including stacks with all eight solute molecules, and smaller clusters, with the calculated osmotic coefficient being in acceptable agreement with the experimental value. The insensitivity of the results to water model and the congruence with experimental thermodynamic data suggest that the observed stacking interactions are a realistic representation of the actual association mechanism in aqueous caffeine solutions. PMID:21812485

  10. Molecular dynamics simulation studies of caffeine aggregation in aqueous solution.

    PubMed

    Tavagnacco, Letizia; Schnupf, Udo; Mason, Philip E; Saboungi, Marie-Louise; Cesàro, Attilio; Brady, John W

    2011-09-22

    Molecular dynamics simulations were carried out on a system of eight independent caffeine molecules in a periodic box of water at 300 K, representing a solution near the solubility limit for caffeine at room temperature, using a newly developed CHARMM-type force field for caffeine in water. Simulations were also conducted for single caffeine molecules in water using two different water models (TIP3P and TIP4P). Water was found to structure in a complex fashion around the planar caffeine molecules, which was not sensitive to the water model used. As expected, extensive aggregation of the caffeine molecules was observed, with the molecules stacking their flat faces against one another like coins, with their methylene groups staggered to avoid steric clashes. A dynamic equilibrum was observed between large n-mers, including stacks with all eight solute molecules, and smaller clusters, with the calculated osmotic coefficient being in acceptable agreement with the experimental value. The insensitivity of the results to water model and the congruence with experimental thermodynamic data suggest that the observed stacking interactions are a realistic representation of the actual association mechanism in aqueous caffeine solutions.

  11. The effect of pregnancy on the pharmacokinetics of caffeine.

    PubMed

    Knutti, R; Rothweiler, H; Schlatter, C

    1982-01-01

    Caffeine is eliminated mainly by metabolism to demethylated and oxidised derivatives. High individual variability is therefore expected from variations and changes in the capability of the organism to metabolize xenobiotics. An increase of the half-life of elimination of caffeine has been reported during the final weeks of pregnancy. In this study, the half-lifes of caffeine were determined by HPLC-analysis of samples of saliva in male and non-pregnant females and in women during pregnancy and after parturition. The half-life of caffeine increases from an average of 3 h for non-pregnant women to 10.5 h during the last 4 weeks of pregnancy. This increase is already occurring during the first part of pregnancy. The individual values could not be correlated with age, weight, consumption of coffee or smoking habits. An increase of the apparent volume of distribution can also be ruled out as an explanation for the marked increase of the half-life. The main effect of a prolonged half-life is the accumulation of caffeine in the body, unless the consumption is reduced appropriately. Thus, the greatly increased half-life of caffeine during pregnancy could produce adverse effects at a consumption which although considered as high is not excessive under normal conditions. This possibly explains the observation that heavy coffee drinking during pregnancy is linked to a low birthweight in the neonate. Due to the non-specificity of some of the symptoms of caffeine toxicity, pregnant women with such symptoms might be unable to trace the reason for their discomfort if they are not instructed by their physician about the higher susceptibility to caffeine during pregnancy.

  12. Mechanisms of the psychostimulant effects of caffeine: Implications for substance use disorders

    PubMed Central

    Ferré, Sergi

    2016-01-01

    Background The psychostimulant properties of caffeine are reviewed and compared with those of prototypical psychostimulants, able to cause substance use disorders (SUD). Caffeine produces psychomotor activating, reinforcing and arousing effects, which depend on its ability to disinhibit the brake that endogenous adenosine imposes on the ascending dopamine and arousal systems. Objectives A model that considers the striatal adenosine A2A-dopamine D2 receptor heteromer as a key modulator of dopamine-dependent striatal functions (reward-oriented behavior and learning of stimulus-reward and reward-response associations) is introduced, which should explain most of the psychomotor and reinforcing effects of caffeine. Highlights The model can explain the caffeine-induced rotational behavior in rats with unilateral striatal dopamine denervation and the ability of caffeine to reverse the adipsic-aphagic syndrome in dopamine-deficient rodents. The model can also explain the weaker reinforcing effects and low abuse liability of caffeine, compared with prototypical psychostimulants. Finally the model can explain the actual major societal dangers of caffeine: the ability of caffeine to potentiate the addictive and toxic effects of drugs of abuse, with the particularly alarming associations of caffeine (as adulterant) with cocaine, amphetamine derivatives and synthetic cathinones and energy drinks with alcohol; and the higher sensitivity of children and adolescents to the psychostimulants effects of caffeine and its possible increase in the vulnerability to develop SUD. Conclusions The striatal A2A-D2 receptor heteromer constitutes an unequivocal main pharmacological target of caffeine and provides the main mechanisms by which caffeine potentiates the acute and long-term effects of prototypical psychostimulants. PMID:26786412

  13. DARPP chocolate: a caffeinated morsel of striatal signaling.

    PubMed

    Bastia, Elena; Schwarzschild, Michael A

    2003-01-14

    The psychomotor stimulant effects of caffeine, the most widely consumed psychoactive substance, are mediated through its antagonism of extracellular adenosine receptors in the basal ganglia. In the absence of caffeine, adenosine stimulates inhibitory striatopallidal neurons that suppress motor activity by binding to A2A receptors, thereby activating a cyclic adenosine 3',5'-monophosphate (cAMP) and protein kinase A signaling pathway. Bastia and Schwarzschild discuss recent research implicating DARRP-32 (dopamine- and cAMP-regulated phosphoprotein of 32 kilodaltons) as an attractive mediator of the sustained psychomotor stimulant effect seen with low doses of caffeine. They highlight the role of postsynaptic A2A receptor blockade, but leave open the possibility that antagonism of presynaptic or postsynaptic A1 receptors also contributes to DARPP-32-dependent psychomotor stimulation by caffeine.

  14. Protonation of caffeine: A theoretical and experimental study

    NASA Astrophysics Data System (ADS)

    Bahrami, Hamed; Tabrizchi, Mahmoud; Farrokhpour, Hossein

    2013-03-01

    Protonation of caffeine was examined by ion mobility spectrometry equipped with two ionization sources, corona discharge (CD) and UV photoionization. Three peaks were observed in ion mobility spectrum by simultaneously running the two ionization sources. Experimental and theoretical evidence was collected to link the observed peaks to caffeine related ionic species. One peak was attributed to the M+ ion while the other two were assigned to different protonated isomers of caffeine. In the case of CD ionization source, it was observed that different sites of caffeine compete for protonation and their relative intensities, depends on the sample concentration as well as the nature of the reactant ions. The new concept of "internal proton affinity" (IPA) was defined to express the tendency of holding the added proton for each atom in a molecule.

  15. The effects of caffeine abstinence on sleep: a pilot study.

    PubMed

    Ho, Shuk Ching; Chung, Joanne Wai Yee

    2013-05-01

    The aim of this study was to examine whether caffeine abstinence in the evening could improve the sleep quality of those who habitually consume coffee. A double-blind control group design (caffeine and caffeine-free groups). A university. A convenience sampling of 10 students (mean age 21.4 years). It was a 14-day experiment. For the first 7 days, all participants consumed caffeinated coffee. In the following 7 days, subjects consumed caffeinated or decaffeinated coffee according to their assigned group. Sleep-wake parameters, self-reported sleep quality and level of refreshment. There were no significant differences (p>.05) among the data of the two groups identified. No significant changes (p>.05) were found in the sleep quality of either group during the study. This study confirms that caffeine abstinence in the evening might not be helpful in sleep promotion. It highlights the need to implement evidence-based practice in health promotion. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Metabolic Engineering of Saccharomyces cerevisiae for Caffeine and Theobromine Production

    PubMed Central

    Jin, Lu; Bhuiya, Mohammad Wadud; Li, Mengmeng; Liu, XiangQi; Han, Jixiang; Deng, WeiWei; Wang, Min; Yu, Oliver; Zhang, Zhengzhu

    2014-01-01

    Caffeine (1, 3, 7-trimethylxanthine) and theobromine (3, 7-dimethylxanthine) are the major purine alkaloids in plants, e.g. tea (Camellia sinensis) and coffee (Coffea arabica). Caffeine is a major component of coffee and is used widely in food and beverage industries. Most of the enzymes involved in the caffeine biosynthetic pathway have been reported previously. Here, we demonstrated the biosynthesis of caffeine (0.38 mg/L) by co-expression of Coffea arabica xanthosine methyltransferase (CaXMT) and Camellia sinensis caffeine synthase (TCS) in Saccharomyces cerevisiae. Furthermore, we endeavored to develop this production platform for making other purine-based alkaloids. To increase the catalytic activity of TCS in an effort to increase theobromine production, we identified four amino acid residues based on structural analyses of 3D-model of TCS. Two TCS1 mutants (Val317Met and Phe217Trp) slightly increased in theobromine accumulation and simultaneously decreased in caffeine production. The application and further optimization of this biosynthetic platform are discussed. PMID:25133732

  17. Effects of caffeine on alcohol reinforcement: beverage choice, self-administration, and subjective ratings.

    PubMed

    Sweeney, Mary M; Meredith, Steven E; Evatt, Daniel P; Griffiths, Roland R

    2017-03-01

    Combining alcohol and caffeine is associated with increased alcohol consumption, but no prospective experimental studies have examined whether added caffeine increases alcohol consumption. This study examined how caffeine alters alcohol self-administration and subjective reinforcing effects in healthy adults. Thirty-one participants completed six double-blind alcohol self-administration sessions: three sessions with alcohol only (e.g., beverage A) and three sessions with alcohol and caffeine (e.g., beverage B). Participants chose which beverage to consume on a subsequent session (e.g., beverage A or B). The effects of caffeine on overall beverage choice, number of self-administered drinks, subjective ratings (e.g., Biphasic Alcohol Effects Scale), and psychomotor performance were examined. A majority of participants (65%) chose to drink the alcohol beverage containing caffeine on their final self-administration session. Caffeine did not increase the number of self-administered drinks. Caffeine significantly increased stimulant effects, decreased sedative effects, and attenuated decreases in psychomotor performance attributable to alcohol. Relative to nonchoosers, caffeine choosers reported overall lower stimulant ratings and reported greater drinking behavior prior to the study. Although caffeine did not increase the number of self-administered drinks, most participants chose the alcohol beverage containing caffeine. Given the differences in subjective ratings and pre-existing differences in self-reported alcohol consumption for caffeine choosers and nonchoosers, these data suggest that decreased stimulant effects of alcohol and heavier self-reported drinking may predict subsequent choice of combined caffeine and alcohol beverages. These predictors may identify individuals who would benefit from efforts to reduce risk behaviors associated with combining alcohol and caffeine.

  18. Caffeine increases the velocity of rapid eye movements in unfatigued humans.

    PubMed

    Connell, Charlotte J W; Thompson, Benjamin; Turuwhenua, Jason; Hess, Robert F; Gant, Nicholas

    2017-08-01

    Caffeine is a widely used dietary stimulant that can reverse the effects of fatigue on cognitive, motor and oculomotor function. However, few studies have examined the effect of caffeine on the oculomotor system when homeostasis has not been disrupted by physical fatigue. This study examined the influence of a moderate dose of caffeine on oculomotor control and visual perception in participants who were not fatigued. Within a placebo-controlled crossover design, 13 healthy adults ingested caffeine (5 mg·kg -1 body mass) and were tested over 3 h. Eye movements, including saccades, smooth pursuit and optokinetic nystagmus, were measured using infrared oculography. Caffeine was associated with higher peak saccade velocities (472 ± 60° s -1 ) compared to placebo (455 ± 62° s -1 ). Quick phases of optokinetic nystagmus were also significantly faster with caffeine, whereas pursuit eye movements were unchanged. Non-oculomotor perceptual tasks (global motion and global orientation processing) were unaffected by caffeine. These results show that oculomotor control is modulated by a moderate dose of caffeine in unfatigued humans. These effects are detectable in the kinematics of rapid eye movements, whereas pursuit eye movements and visual perception are unaffected. Oculomotor functions may be sensitive to changes in central catecholamines mediated via caffeine's action as an adenosine antagonist, even when participants are not fatigued.

  19. Caffeine: use and effects in long-stay psychiatric patients.

    PubMed

    Mayo, K M; Falkowski, W; Jones, C A

    1993-04-01

    In a double-blind crossover study of 26 long-stay schizophrenic patients, no correlation was found between caffeine consumption and levels of anxiety and depression. No significant changes in patients' behaviour or levels of anxiety and depression occurred when the wards changed to decaffeinated products. Serum caffeine levels confirmed compliance. No evidence was found to support a removal of caffeinated products from this group of patients.

  20. Supraventricular tachycardia in a patient receiving ECT, clozapine, and caffeine.

    PubMed

    Beale, M D; Pritchett, J T; Kellner, C H

    1994-09-01

    A patient receiving electroconvulsive therapy (ECT), clozapine, and intravenous caffeine sodium benzoate developed supraventricular tachycardia. This was rapidly treated with intravenous verapamil. Subsequent maintenance ECT given without caffeine was well tolerated. We believe the combination of clozapine and caffeine at the time of ECT was responsible for the arrhythmia.

  1. Coffee versus Caffeine: Effects on Subjective and Behavioral Measures of Alertness

    DTIC Science & Technology

    1991-04-12

    Mountain Dew and Sunkist Orange, simply add caffeine that is sold as a by-product of the decaffeination process by coffee companies (Gilbert, 1984...roasting process ) regardless of caffeine content, and both caffeinated and decaffeinated coffee stimulate a much stronger gastric acid response than...with beverage ( decaffeinated coffee versus non- caf feinated herbal tea), thus exposing subjects to caffeine with and without coffee, and coffee with

  2. Dimer excision in Escherichia coli in the presence of caffeine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rothman, R.H.

    1980-07-01

    The observation that polA1 and recL152 mutations result in both slow pyrimidine dimer excision and large repair patch size leads to the hypothesis that patch size is directly related to the rate of excision. In this study caffeine, a known inhibitor of excision repair, was used to examine the extent of correlation between excision rate and patch size by measuring patch size in the presence of several concentrations of caffeine. Both the rate of excision and the resistance to ultraviolet radiation were reduced with increasing concentrations of caffeine after irradiation. Caffeine also inhibited the rate at which incisions were mademore » and prolonged the time required to rejoin the discontinuities. Patch size, however, was unaffected by caffeine treatment.« less

  3. Caffeine challenge test and panic disorder: a systematic literature review.

    PubMed

    Vilarim, Marina Machado; Rocha Araujo, Daniele Marano; Nardi, Antonio Egidio

    2011-08-01

    This systematic review aimed to examine the results of studies that have investigated the induction of panic attacks and/or the anxiogenic effect of the caffeine challenge test in patients with panic disorder. The literature search was performed in PubMed, Biblioteca Virtual em Saúde and the ISI Web of Knowledge. The words used for the search were caffeine, caffeine challenge test, panic disorder, panic attacks and anxiety disorder. In total, we selected eight randomized, double-blind studies where caffeine was administered orally, and none of them controlled for confounding factors in the analysis. The percentage of loss during follow-up ranged between 14.3% and 73.1%. The eight studies all showed a positive association between caffeine and anxiogenic effects and/or panic disorder.

  4. A Brief Manualized Treatment for Problematic Caffeine Use: A Randomized Control Trial

    PubMed Central

    Evatt, Daniel P.; Juliano, Laura M.; Griffiths, Roland R.

    2015-01-01

    Objective The goal of the present investigation was to develop and test a brief therapist-guided manualized treatment for problematic caffeine use including cognitive-behavioral strategies and 5-weeks of progressively decreased consumption. Methods Individuals seeking treatment for problematic caffeine use (mean daily caffeine consumption of 666.0 mg at baseline) were randomized using a waitlist-control design to receive immediate (N = 33) treatment or delayed (N = 34) treatment (∼6 weeks later). A one-hour long treatment session designed to help individuals quit or reduce caffeine consumption was provided by a trained counselor along with a take-home booklet. After the treatment session, participants completed daily diaries of caffeine consumption for 5 weeks. They returned for follow-up assessments at 6, 12, and 26 weeks and had a telephone interview at 52-weeks post-treatment. Results Treatment resulted in a significant reduction in self reported caffeine use and salivary caffeine levels. No significant post-treatment increases in caffeine use were observed for up to one year follow-up. Comparisons to the waitlist control condition revealed that reductions in caffeine consumption were due to treatment and not the passing of time, with a treatment effect size of R2 = .35 for the model. Conclusions A brief one-session manualized intervention with follow-up was efficacious at reducing caffeine consumption. Future research should replicate and extend these findings, as well as consider factors affecting dissemination of treatment for problematic caffeine use to those in need. PMID:26501499

  5. The buzz on caffeine in invertebrates: effects on behavior and molecular mechanisms

    PubMed Central

    Mustard, Julie A.

    2014-01-01

    A number of recent studies from as diverse fields as plant-pollinator interactions, analyses of caffeine as an environmental pollutant, and the ability of caffeine to provide protection against neurodegenerative diseases have generated interest in understanding the actions of caffeine in invertebrates. This review summarizes what is currently known about the effects of caffeine on behavior and its molecular mechanisms in invertebrates. Caffeine appears to have similar effects on locomotion and sleep in both invertebrates and mammals. Furthermore, as in mammals, caffeine appears to have complex effects on learning and memory. However, the underlying mechanisms for these effects may differ between invertebrates and vertebrates. While caffeine’s ability to cause release of intracellular calcium stores via ryanodine receptors and its actions as a phosphodiesterase inhibitor have been clearly established in invertebrates, its ability to interact with invertebrate adenosine receptors remains an important open question. Initial studies in insects and mollusks suggest an interaction between caffeine and the dopamine signaling pathway; more work needs to be done to understand the mechanisms by which caffeine influences signaling via biogenic amines. As of yet, little is known about whether other actions of caffeine in vertebrates, such as its effects on GABAA and glycine receptors, are conserved. Furthermore, the pharmacokinetics of caffeine remains to be elucidated. Overall behavioral responses to caffeine appear to be conserved amongst organisms; however, we are just beginning to understand the mechanisms underlying its effects across animal phyla. PMID:24162934

  6. Effects of caffeine in chewing gum on mood and attention.

    PubMed

    Smith, Andrew

    2009-04-01

    Recent research has shown that even small doses (<40mg) of caffeine can improve alertness and increase performance efficiency on attention tasks. Previous studies have given the caffeine in a variety of beverages or in capsules and it was of interest to see whether similar effects could be observed when the caffeine was given in gum. In addition, chewing gum has been shown to have behavioural effects and the present study extended our knowledge of this topic. To compare the effects of caffeinated gum (40 mg), placebo gum and no gum conditions on mood and attention. A double blind placebo controlled study was conducted with volunteers being randomly assigned to one of the three conditions. Baseline measures of mood and attention were taken prior to chewing and a test session was then conducted. One hundred and eighteen young adults participated in the study. Caffeinated gum was associated with a more positive mood and better performance on tasks requiring sustained attention. The caffeine improved the speed of encoding of new information which is consistent with previous findings. Chewing placebo gum was also found to be associated with more positive mood, both shortly after chewing and at the end of the study. The implications of the present study are that chewing caffeinated gum has been shown to improve performance efficiency and mood by its alerting and energising effects. The profile of caffeine effects is what one would predict from the existing caffeine literature and such effects may be extremely beneficial in real-life situations. Prior chewing of placebo gum was associated with a more positive mood and this also confirms previous findings.

  7. [Caffeine as adjuvant analgeticum for treating acute pain].

    PubMed

    Nikolajsen, Lone; Haroutiunian, Simon

    2013-10-14

    Based on 19 studies (7,238 participants) a Cochrane review concludes that the addition of caffeine to an analgesic drug provides superior analgesia compared with the analgesic drug alone. The benefit is small, with a number needed to treat of approx. 16. The use of analgesics containing caffeine is associated with an increased risk of the development of physical dependence, overuse headache, and withdrawal symptoms upon abrupt discontinuation. Combination analgesics with caffeine should only be used temporarily and exclusively for the treatment of acute pain conditions.

  8. Caffeine in an Urbanized Estuary: Past and Present Influence ...

    EPA Pesticide Factsheets

    Caffeine has been identified by previous research as a potential tracer of sanitary wastewater. To further assess the utility of caffeine as a tracer of wastewater sources, samples from 25 sites throughout Boston Harbor were collected and analyzed for caffeine by LC-MS/MS. Caffeine concentrations in Boston Harbor ranged from 15 ng/L in the outer harbor to a high of 185 ng/L in the inner harbor; mean concentrations and median concentrations were 51 ng/L were 33 ng/L respectively. These data were visualized by a simple inverse distance weighting model to improve the understanding of transport and fate dynamics of wastewater derived contaminants. Elevated concentrations of caffeine in the inner harbor during the sampling period were determined to be the result of a combined sewage overflow (CSO) event as well as illicit discharge of sanitary sewage into municipal storm drains. A comparison of contemporary results to data from 1998 to 1999 shows significant reductions in caffeine levels within the harbor. For instance, concentrations were reduced by a factor of approximately 20 at the site of the former wastewater effluent discharge outfall in Boston Harbor. Lower present-day concentrations throughout the harbor were attributed to the relocation of effluent discharge from within the harbor to Massachusetts Bay, and a reduction in the number and discharge volume of CSOs. Spatial distributions of caffeine identified CSOs as the major contemporary source of con

  9. Increased sensitivity to caffeine in patients with panic disorders. Preliminary evidence.

    PubMed

    Boulenger, J P; Uhde, T W; Wolff, E A; Post, R M

    1984-11-01

    The results of a caffeine consumption inventory indicated that patients with panic anxiety disorder, but not affectively ill patients or normal controls, had levels of self-rated anxiety and depression that correlated with their degree of caffeine consumption. In addition, this self-report survey suggested that patients with panic disorder had an increased sensitivity to the effects of one cup of coffee. This apparent sensitivity to caffeine was also documented by the observation that more patients with panic disorder reported the discontinuation of coffee intake due to untoward side effects than controls. These results, based on self-reports, suggest that the hypothesis that patients with panic disorder are more reactive to caffeine should be directly tested using caffeine challenges and that the mechanisms underlying caffeine's effects on anxiety should be further explored.

  10. Do caffeine-containing analgesics promote dependence? A review and evaluation.

    PubMed

    Feinstein, A R; Heinemann, L A; Dalessio, D; Fox, J M; Goldstein, J; Haag, G; Ladewig, D; O'Brien, C P

    2000-11-01

    Debates about the suspected association between kidney disease and use of analgesics have led to concern about whether caffeine could stimulate an undesirable overuse of phenacetin-free combined analgesics. A committee was asked to critically review the pertinent literature and to suggest guides for clinical practice and for consideration of international regulatory authorities. A group of international scientists, jointly selected by the regulatory authorities of Germany, Switzerland, and Austria and the pharmaceutical industry. All invited experts evaluated relevant literature and reports and added further information and comments. Caffeine has a synergistic effectiveness with analgesics. Although caffeine has a dependence potential, the potential is low. Experimental data regarding dependence potential for caffeine alone may not correspond to the conditions in patients with pain. Withdrawal is not likely to cause stimulation or sustainment of analgesic intake. For drug-induced headache, no single or combined analgesic was consistently identified as causative, and no evidence exists for a special role of caffeine. Strong dependence behavior was observed only in patients using phenacetin-containing preparations, coformulated with antipyretics/analgesics and caffeine. This finding may have led to the impression that caffeine stimulates overuse of analgesics. Although more experimental and long-term data would be desirable to show possible mechanisms of dependence and to offer unequivocal proof of safety, the committee concluded that the available evidence does not support the claim that analgesics coformulated with caffeine, in the absence of phenacetin, stimulate or sustain overuse.

  11. Improvements in Concentration, Working Memory, and Sustained Attention Following Consumption of a Natural Citicoline-Caffeine Beverage

    PubMed Central

    Bruce, Steven E.; Werner, Kimberly B.; Preston, Brittany F.; Baker, Laurie M.

    2015-01-01

    The present study examined the neurocognitive and electrophysiological effects of a citicoline-caffeine-based beverage in 60 healthy adult participants enrolled in a randomized, double-blind, placebo-controlled trial. Measures of electrical brain activity using electroencephalogram (EEG) and neuropsychological measures examining attention, concentration, and reaction time were administered. Compared to placebo, participants receiving the citicoline-caffeine beverage exhibited significantly faster maze learning times and reaction times on a continuous performance test, fewer errors in a Go No-Go task, and better accuracy on a measure of information processing speed. EEG results examining P450 event related potentials (ERP) revealed that participants receiving the citicoline-caffeine beverage exhibited higher P450 amplitudes than controls, suggesting an increase in sustained attention. Overall, these findings suggest that the beverage significantly improved sustained attention, cognitive effort, and reaction times in healthy adults. Evidence of improved P450 amplitude indicates a general improvement in the ability to accommodate new and relevant information within working memory and overall enhanced brain activation. PMID:25046515

  12. Effects of caffeine on alcohol reinforcement: Beverage choice, self-administration, and subjective ratings

    PubMed Central

    Sweeney, Mary M.; Meredith, Steven E.; Evatt, Daniel P.; Griffiths, Roland R.

    2017-01-01

    Rationale Combining alcohol and caffeine is associated with increased alcohol consumption, but no prospective experimental studies have examined whether added caffeine increases alcohol consumption. Objectives This study examined how caffeine alters alcohol self-administration and subjective reinforcing effects in healthy adults. Methods Thirty-one participants completed six double-blind alcohol self-administration sessions: three sessions with alcohol only (e.g., Beverage A) and three sessions with alcohol and caffeine (e.g., Beverage B). Participants chose which beverage to consume on a subsequent session (e.g., Beverage A or B). Effects of caffeine on overall beverage choice, number of self-administered drinks, subjective ratings (e.g., Biphasic Alcohol Effects Scale), and psychomotor performance were examined. Results A majority of participants (65%) chose to drink the alcohol beverage containing caffeine on their final self-administration session. Caffeine did not increase the number of self-administered drinks. Caffeine significantly increased stimulant effects, decreased sedative effects, and attenuated decreases in psychomotor performance attributable to alcohol. Relative to nonchoosers, caffeine choosers reported overall lower stimulant ratings, and reported greater drinking behavior prior to the study. Conclusions Although caffeine did not increase the number of self-administered drinks, most participants chose the alcohol beverage containing caffeine. Given the differences in subjective ratings and pre-existing differences in self-reported alcohol consumption for caffeine choosers and nonchoosers, these data suggest decreased stimulant effects of alcohol and heavier self-reported drinking may predict subsequent choice of combined caffeine and alcohol beverages. These predictors may identify individuals who would benefit from efforts to reduce risk behaviors associated with combining alcohol and caffeine. PMID:28108773

  13. Coffee and caffeine consumption and the risk of hypertension in postmenopausal women12

    PubMed Central

    Rhee, Jinnie J; Qin, FeiFei; Hedlin, Haley K; Chang, Tara I; Bird, Chloe E; Zaslavsky, Oleg; Manson, JoAnn E; Stefanick, Marcia L; Winkelmayer, Wolfgang C

    2016-01-01

    Background: The associations of coffee and caffeine intakes with the risk of incident hypertension remain controversial. Objective: We sought to assess longitudinal relations of caffeinated coffee, decaffeinated coffee, and total caffeine intakes with mean blood pressure and incident hypertension in postmenopausal women in the Women’s Health Initiative Observational Study. Design: In a large prospective study, type and amount of coffee and total caffeine intakes were assessed by using self-reported questionnaires. Hypertension status was ascertained by using measured blood pressure and self-reported drug-treated hypertension. The mean intakes of caffeinated coffee, decaffeinated coffee, and caffeine were 2–3 cups/d, 1 cup/d, and 196 mg/d, respectively. Using multivariable linear regression, we examined the associations of baseline intakes of caffeinated coffee, decaffeinated coffee, and caffeine with measured systolic and diastolic blood pressures at annual visit 3 in 29,985 postmenopausal women who were not hypertensive at baseline. We used Cox proportional hazards models to estimate HRs and their 95% CIs for time to incident hypertension. Results: During 112,935 person-years of follow-up, 5566 cases of incident hypertension were reported. Neither caffeinated coffee nor caffeine intake was associated with mean systolic or diastolic blood pressure, but decaffeinated coffee intake was associated with a small but clinically irrelevant decrease in mean diastolic blood pressure. Decaffeinated coffee intake was not associated with mean systolic blood pressure. Intakes of caffeinated coffee, decaffeinated coffee, and caffeine were not associated with the risk of incident hypertension (P-trend > 0.05 for all). Conclusion: In summary, these findings suggest that caffeinated coffee, decaffeinated coffee, and caffeine are not risk factors for hypertension in postmenopausal women. PMID:26657046

  14. [Combination of hemodialysis and hemofiltration in severe caffeine intoxication].

    PubMed

    Colin-Benoit, Eugénie; Friolet, Raymond; Rusca, Marco; Teta, Daniel; Gobin, Niels

    2017-05-01

    A 21-year-old man ingested 75g of pure caffeine, in an attempt to commit suicide. This represents 7.5 times the minimal lethal dose. Caffeine, 1,3,7-trimethylxanthine, is the most widely consumed psychoactive compound worldwide. It is mostly found in coffee, tea, energizing drinks and in some drugs. However, it has become really easy to obtain pure caffeine (powder or tablets) on the Internet. Mechanisms of action are dose-dependent. When caffeine overdosing occurs, neurologic, cardiovascular and renal systems are mainly affected. Severe intoxication can be fatal. No antidote is available and treatment is purely symptomatic. Hemoperfusion has previously been carried out in the 1990's to treat patients with caffeine intoxication. Since 2009, hemodialysis and hemofiltration have proposed as well. Our patient was successfully treated with a combination of hemodiafiltration, intermittent and then continuous. Copyright © 2017 Société francophone de néphrologie, dialyse et transplantation. Published by Elsevier Masson SAS. All rights reserved.

  15. Cardiovascular impact of intravenous caffeine in preterm infants.

    PubMed

    Huvanandana, Jacqueline; Thamrin, Cindy; McEwan, Alistair L; Hinder, Murray; Tracy, Mark B

    2018-05-03

    To evaluate the acute effect of intravenous caffeine on heart rate and blood pressure variability in preterm infants. We extracted and compared linear and non-linear features of heart rate and blood pressure variability at two timepoints: prior to and in the two hours following a loading dose of 10 mg/kg caffeine base. We studied 31 preterm infants with arterial blood pressure data and 25 with electrocardiogram data, and compared extracted features prior to and following caffeine administration. We observed a reduction in both scaling exponents (α 1 , α 2 ) of mean arterial pressure from detrended fluctuation analysis and an increase in the ratio of short- (SD1) and long-term (SD2) variability from Poincare analysis (SD1/SD2). Heart rate variability analyses showed a reduction in α 1 (mean (SD) of 0.92 (0.21) to 0.86 (0.21), p < 0.01), consistent with increased vagal tone. Following caffeine, beat-to-beat pulse pressure variability (SD) also increased (2.1 (0.64) to 2.5 (0.65) mmHg, p < 0.01). This study highlights potential elevation in autonomic nervous system responsiveness following caffeine administration reflected in both heart rate and blood pressure systems. The observed increase in pulse pressure variability may have implications for caffeine administration to infants with potentially impaired cerebral autoregulation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  16. Caffeine Improves Basketball Performance in Experienced Basketball Players

    PubMed Central

    Puente, Carlos; Areces, Francisco

    2017-01-01

    The aim of this study was to determine the effect of caffeine intake on overall basketball performance in experienced players. A double-blind, placebo-controlled, randomized experimental design was used for this investigation. In two different sessions separated by one week, 20 experienced basketball players ingested 3 mg of caffeine/kg of body mass or a placebo. After 60 min, participants performed 10 repetitions of the following sequence: Abalakov jump, Change-of-Direction and Acceleration Test (CODAT) and two free throws. Later, heart rate, body impacts and game statistics were recorded during a 20-min simulated basketball game. In comparison to the placebo, the ingestion of caffeine increased mean jump height (37.3 ± 6.8 vs. 38.2 ± 7.4 cm; p = 0.012), but did not change mean time in the CODAT test or accuracy in free throws. During the simulated game, caffeine increased the number of body impacts (396 ± 43 vs. 410 ± 41 impacts/min; p < 0.001) without modifying mean or peak heart rate. Caffeine also increased the performance index rating (7.2 ± 8.6 vs. 10.6 ± 7.1; p = 0.037) during the game. Nevertheless, players showed a higher prevalence of insomnia (19.0 vs. 54.4%; p = 0.041) after the game. Three mg of caffeine per kg of body mass could be an effective ergogenic substance to increase physical performance and overall success in experienced basketball players. PMID:28925969

  17. Acute impact of caffeinated alcoholic beverages on cognition: A systematic review.

    PubMed

    Lalanne, Laurence; Lutz, Pierre-Eric; Paille, François

    2017-06-02

    Energy drinks are popular beverages that are supposed to counteract sleepiness, increase energy, maintain alertness and reduce symptoms of hangover. Cognitive enhancing seems to be related to many compounds such as caffeine, taurine and vitamins. Currently, users mostly combine psychostimulant effects of energy drinks to counteract sedative effects of alcohol. However, recent literature suggests that this combination conducts to feel less intoxicated but still impaired. The goal of the present article is to review cognitive impact and subjective awareness in case of caffeinated alcoholic beverage (CAB) intoxication. PubMed (January 1960 to March 2016) database was searched using the following terms: cognitive impairments, alcohol, energy drinks; cognition, alcohol, caffeine. 99 papers were found but only 12 randomized controlled studies which explored cognitive disorders and subjective awareness associated with acute CAB or AED (alcohol associated with energy drinks) intoxication were included. The present literature review confirmed that energy drinks might counteract some cognitive deficits and adverse effects of alcohol i.e. dry mouth, fatigue, headache, weakness, and perception of intoxication due to alcohol alone. This effect depends on alcohol limb but disappears when the complexity of the task increases, when driving for example. Moreover, studies clearly showed that CAB/AEDs increase impulsivity which conducts to an overconsumption of alcohol and enhanced motivation to drink compared to alcohol alone, potentiating the risk of developing addictive behaviors. This is a huge problem in adolescents with high impulsivity and immature decision making processes. Although energy drinks counteract some cognitive deficits due to alcohol alone, their association promotes the risk of developing alcohol addiction. As a consequence, it is necessary to better understand the neurobiological mechanisms underlying these interactions in order to better prevent the development

  18. False-negative dipyridamole-thallium-201 myocardial imaging after caffeine infusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smits, P.; Corstens, F.H.; Aengevaeren, W.R.

    1991-08-01

    The vasodilator effect of intravenously administered dipyridamole may be caused by an increase in endogenous plasma adenosine levels. The authors evaluated the effect of caffeine, an adenosine receptor antagonist, on the diagnostic results of dipyridamole-201Tl myocardial imaging in eight patients with coronary artery disease. Caffeine infusion significantly attenuated the dipyridamole-induced fall in blood pressure and the accompanied increase in heart rate. The infusion of dipyridamole alone resulted in chest pain and ST-segment depressions on the electrocardiogram in four patients, whereas none of these problems occurred when the tests were repeated after caffeine. In six of eight patients, caffeine was responsiblemore » for false-negative dipyridamole-201Tl tests. Semiquantitive scores of the dipyridamole-induced 201Tl perfusion defects were decreased by caffeine from 9.0 {plus minus} 0.9 to 2.0 {plus minus} 1.1 points (p less than 0.05). Computerized analysis revealed a caffeine-mediated reduction in the percent reversibility of the images from 46% {plus minus} 16% to 6% {plus minus} 10% (p less than 0.05). They conclude that the use of caffeinated products prior to dipyridamole-201Tl testing may be responsible for false-negative findings.« less

  19. Modeling the effects of caffeine on the sleep/ wake cycle.

    PubMed

    Daniello, Allison; Fievisohn, Elizabeth; Gregory, T Stan

    2012-01-01

    Caffeine is present in many products consumed daily, including coffee, soda, and chocolate, and is known to delay the onset of sleepiness and cause sleep disturbances. It is an adenosine antagonist, inhibiting some hormones that promote sleep, and therefore promoting wakefulness. This paper proposes a model to incorporate the effects of caffeine on the sleep/wake cycle. The “flip-flop” model was used to model the sleep cycle, where switching between a sleep state and a wake state was nearly instantaneous. Sleep patterns were modeled based on the circadian rhythm and homeostatic drive, as was done by Rempe et al. (2010). The model demonstrated how the homeostatic drive and circadian rhythm interact to cause sleep and wakefulness. The effects of caffeine were incorporated to have a masking effect on the homeostatic drive, promoting wakefulness. Preliminary results showed that caffeine intake late in the evening caused the switch from wake to sleep to occur later than if no caffeine was present in the system. Additionally, the switch from wake to sleep was increasingly delayed with increased caffeine intake at the same time. This model is not yet validated, though potential studies for validation are proposed. This model presents an interesting method for incorporating the effects of caffeine on the sleep/wake cycle.

  20. Caffeine Consuming Children and Adolescents Show Altered Sleep Behavior and Deep Sleep

    PubMed Central

    Aepli, Andrina; Kurth, Salome; Tesler, Noemi; Jenni, Oskar G.; Huber, Reto

    2015-01-01

    Caffeine is the most commonly ingested psychoactive drug worldwide with increasing consumption rates among young individuals. While caffeine leads to decreased sleep quality in adults, studies investigating how caffeine consumption affects children’s and adolescents’ sleep remain scarce. We explored the effects of regular caffeine consumption on sleep behavior and the sleep electroencephalogram (EEG) in children and adolescents (10–16 years). While later habitual bedtimes (Caffeine 23:14 ± 11.4, Controls 22:17 ± 15.4) and less time in bed were found in caffeine consumers compared to the control group (Caffeine 08:10 ± 13.3, Controls 09:03 ± 16.1), morning tiredness was unaffected. Furthermore, caffeine consumers exhibited reduced sleep EEG slow-wave activity (SWA, 1–4.5 Hz) at the beginning of the night compared to controls (20% ± 9% average reduction across all electrodes and subjects). Comparable reductions were found for alpha activity (8.25–9.75 Hz). These effects, however, disappeared in the morning hours. Our findings suggest that caffeine consumption in adolescents may lead to later bedtimes and reduced SWA, a well-established marker of sleep depth. Because deep sleep is involved in recovery processes during sleep, further research is needed to understand whether a caffeine-induced loss of sleep depth interacts with neuronal network refinement processes that occur during the sensitive period of adolescent development. PMID:26501326

  1. Caffeine intake antagonizes salt sensitive hypertension through improvement of renal sodium handling

    PubMed Central

    Yu, Hao; Yang, Tao; Gao, Peng; Wei, Xing; Zhang, Hexuan; Xiong, Shiqiang; Lu, Zongshi; Li, Li; Wei, Xiao; Chen, Jing; Zhao, Yu; Arendshorst, William J.; Shang, Qianhui; Liu, Daoyan; Zhu, Zhiming

    2016-01-01

    High salt intake is a major risk factor for hypertension. Although acute caffeine intake produces moderate diuresis and natriuresis, caffeine increases the blood pressure (BP) through activating sympathetic activity. However, the long-term effects of caffeine on urinary sodium excretion and blood pressure are rarely investigated. Here, we investigated whether chronic caffeine administration antagonizes salt sensitive hypertension by promoting urinary sodium excretion. Dahl salt-sensitive (Dahl-S) rats were fed with high salt diet with or without 0.1% caffeine in drinking water for 15 days. The BP, heart rate and locomotor activity of rats was analyzed and urinary sodium excretion was determined. The renal epithelial Na+ channel (ENaC) expression and function were measured by in vivo and in vitro experiments. Chronic consumption of caffeine attenuates hypertension induced by high salt without affecting sympathetic nerve activity in Dahl-S rats. The renal α-ENaC expression and ENaC activity of rats decreased after chronic caffeine administration. Caffeine increased phosphorylation of AMPK and decrease α-ENaC expression in cortical collecting duct cells. Inhibiting AMPK abolished the effect of caffeine on α-ENaC. Chronic caffeine intake prevented the development of salt-sensitive hypertension through promoting urinary sodium excretion, which was associated with activation of renal AMPK and inhibition of renal tubular ENaC. PMID:27173481

  2. Adolescent Caffeine Consumption and Self-Reported Violence and Conduct Disorder

    ERIC Educational Resources Information Center

    Kristjansson, Alfgeir L.; Sigfusdottir, Inga Dora; Frost, Stephanie S.; James, Jack E.

    2013-01-01

    Caffeine is the most widely used psychoactive substance in the world and currently the only one legally available to children and adolescents. The sale and use of caffeinated beverages has increased markedly among adolescents during the last decade. However, research on caffeine use and behaviors among adolescents is scarce. We investigate the…

  3. Acute effects of bright light and caffeine on nighttime melatonin and temperature levels in women taking and not taking oral contraceptives

    NASA Technical Reports Server (NTRS)

    Wright, K. P. Jr; Myers, B. L.; Plenzler, S. C.; Drake, C. L.; Badia, P.; Czeisler, C. A. (Principal Investigator)

    2000-01-01

    Caffeine and bright light effects on nighttime melatonin and temperature levels in women were tested during the luteal phase of the menstrual cycle (n=30) or the pseudo luteal phase for oral contraceptive users (n=32). Participants were randomly assigned to receive either bright (5000 lux) or dim room light (<88 lux) between 20:00 and 08:00 h under a modified constant routine protocol. Half the subjects in each lighting condition were administered either caffeine (100 mg) or placebo in a double-blind manner at 20:00, 23:00, 02:00 and 05:00 h. Results showed that the combination of bright light and caffeine enhanced nighttime temperature levels to a greater extent than did either caffeine or bright light alone. Both of the latter groups had higher temperature levels relative to the dim light placebo condition and the two groups did not differ. Temperature levels in the bright light caffeine condition were maintained at near peak circadian levels the entire night in the luteal and pseudo luteal phase. Melatonin levels were reduced throughout the duration of bright light exposure for all women. Caffeine reduced the onset of melatonin levels for women in the luteal phase, but it had little effect on melatonin levels for oral contraceptive users. The results for women in the luteal phase of the menstrual cycle are consistent with our previous findings in men. The results also suggest that oral contraceptives may alter the effects of caffeine on nighttime melatonin levels.

  4. A Unified Model of Performance for Predicting the Effects of Sleep and Caffeine.

    PubMed

    Ramakrishnan, Sridhar; Wesensten, Nancy J; Kamimori, Gary H; Moon, James E; Balkin, Thomas J; Reifman, Jaques

    2016-10-01

    Existing mathematical models of neurobehavioral performance cannot predict the beneficial effects of caffeine across the spectrum of sleep loss conditions, limiting their practical utility. Here, we closed this research gap by integrating a model of caffeine effects with the recently validated unified model of performance (UMP) into a single, unified modeling framework. We then assessed the accuracy of this new UMP in predicting performance across multiple studies. We hypothesized that the pharmacodynamics of caffeine vary similarly during both wakefulness and sleep, and that caffeine has a multiplicative effect on performance. Accordingly, to represent the effects of caffeine in the UMP, we multiplied a dose-dependent caffeine factor (which accounts for the pharmacokinetics and pharmacodynamics of caffeine) to the performance estimated in the absence of caffeine. We assessed the UMP predictions in 14 distinct laboratory- and field-study conditions, including 7 different sleep-loss schedules (from 5 h of sleep per night to continuous sleep loss for 85 h) and 6 different caffeine doses (from placebo to repeated 200 mg doses to a single dose of 600 mg). The UMP accurately predicted group-average psychomotor vigilance task performance data across the different sleep loss and caffeine conditions (6% < error < 27%), yielding greater accuracy for mild and moderate sleep loss conditions than for more severe cases. Overall, accounting for the effects of caffeine resulted in improved predictions (after caffeine consumption) by up to 70%. The UMP provides the first comprehensive tool for accurate selection of combinations of sleep schedules and caffeine countermeasure strategies to optimize neurobehavioral performance. © 2016 Associated Professional Sleep Societies, LLC.

  5. Understanding Adolescent Caffeine Use: Connecting Use Patterns with Expectancies, Reasons, and Sleep

    ERIC Educational Resources Information Center

    Ludden, Alison Bryant; Wolfson, Amy R.

    2010-01-01

    Little is known about adolescents' caffeine use, yet caffeinated soda, and more recently coffee and energy drinks, are part of youth culture. This study examines adolescents' caffeine use and, using cluster analysis, identifies three groups of caffeine users who differed in their reasons for use, expectancies, and sleep behaviors. In this high…

  6. Load dependence of left ventricular contraction and relaxation. Effects of caffeine.

    PubMed

    Leite-Moreira, A F; Correia-Pinto, J; Gillebert, T C

    1999-08-01

    Load dependence of left ventricular (LV) contraction and relaxation was investigated at baseline and after alteration of intracellular calcium handling by caffeine. Afterload was increased by aortic clamp occlusions (n = 281) in anesthetized open-chest dogs (n = 7). Control and first heartbeat after the intervention were considered for analysis. Caffeine (50 mg/kg, iv) had no inotropic effect. The systolic LV pressure (LVP), developed in response to aortic occlusion, decreased as ejection proceeded and this pressure generating capacity was not affected by caffeine. Late-systolic aortic occlusions induced premature onset and accelerated rate of initial LVP fall at baseline and similarly after caffeine. Graded diastolic aortic occlusions induced systolic LVP elevations of various magnitudes. Smaller LVP elevations prolonged ejection and accelerated LVP fall, while larger elevations had opposite effects. The transition from acceleration to deceleration was observed at 83.1 +/- 1.1% of peak isovolumetric LVP at baseline and at lower loads, at 77.6 +/- 1.2%, after caffeine (p < 0.01). Isovolumetric heartbeats prolonged the time constant tau by 238 +/- 70% at baseline and only by 155 +/- 44% after caffeine (p < 0.01). The relaxation-systolic pressure relation, which describes afterload dependence of relaxation, was also modified by caffeine. Caffeine affected LV relaxation without altering contractility. As a consequence contraction-relaxation coupling was modified by caffeine. These results might help to understand load dependence of relaxation in conditions where intracellular calcium handling is altered.

  7. Combined effects of radiation and caffeine on embryonic development in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kusama, T.; Sugiura, N.; Kai, M.

    1989-02-01

    The combined effect of radiation and caffeine has been studied in mouse embryos. Radiation and/or caffeine were administered to ICR mice on Day 11 of gestation. Intrauterine death, gross malformation, and fetal body weight were selected as indicators of effects. Doses of whole-body gamma irradiation were 0.5 to 2.5 Gy and those of caffeine were 100 and 250 mg/kg maternal body wt. Intrauterine mortality increased with increasing radiation dose; this trend was more remarkable in combination with caffeine. Gross malformations such as cleft palate and defects of forelegs and hindlegs appeared frequently in the fetuses treated with both radiation andmore » caffeine. Decreased fetal weight was observed even in mice treated with 0.5 Gy of radiation or 100 mg/kg caffeine. There was a linear relationship between dose and reduction of fetal weight. The fetal weight was a sensitive, precise, and easy-to-handle indicator for the effects of growth retardation. Intrauterine mortality and frequencies of cleft palate and defects of forelegs and hindlegs were higher than the sum of those induced by radiation and by caffeine separately. The results indicated that the combined action of radiation and caffeine on intrauterine death and malformations was synergistic.« less

  8. Prevention of rat liver fibrosis and carcinogenesis by coffee and caffeine.

    PubMed

    Furtado, Kelly S; Polletini, Jossimara; Dias, Marcos C; Rodrigues, Maria A M; Barbisan, Luis F

    2014-02-01

    Coffee has been inversely related to the incidence of human liver disease; however, whether caffeine is the component responsible for the beneficial effects of coffee remains controversial. This study evaluated the beneficial effects of coffee or caffeine in a medium-term bioassay for rat liver fibrosis/carcinogenesis induced by diethylnitrosamine (DEN) and carbon tetrachloride (CCl4). One week after the DEN injection, the groups started to receive conventional coffee, instant coffee or 0.1% caffeine ad libitum for 24 weeks. The groups receiving conventional coffee or caffeine presented a significant reduction in collagen content and mRNA expression of collagen I. The groups receiving instant coffee or caffeine had a significant reduction in the size and area of pre-neoplastic lesions and in the mean number of neoplastic lesions. A significant increase in liver bax protein levels was observed in the groups receiving instant coffee or caffeine as compared to the control group. These data indicate that the most pronounced hepatoprotective effect against fibrosis was observed in the groups receiving conventional coffee and 0.1% caffeine, and the greatest effects against liver carcinogenesis were detected in the groups receiving instant coffee and 0.1% caffeine. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Effect of caffeine on motility and vitality of sperm and in vitro fertilization of outbreed mouse in T6 and M16 media.

    PubMed

    Nabavi, Narges; Todehdehghan, Fatemeh; Shiravi, Abdollhossein

    2013-09-01

    Caffeine increases the CAMP production that stimulates spermatozoa movement. Caffeine is also used for induction of in vitro acrosome reaction in mammalian spermatozoa, an important step in achieving fertilization. The aim of this study was to assess the effect of caffeine on sperm's motility, vitality and laboratory fertilization rates in mouse in two T6 and M16 media. Epididymal mouse sperms were collected and treated by caffine in T6 and M16 media and their motility and vitality rates were evaluated. The pretreated sperms were added to oocytes in T6 and M16 media with and without caffeine and fertilization rates were recorded after 24 hours incubation. Sperm's motility (81.7±1.67%) and vitality (88.7±1.33%) rates and percentage of fertilized oocytes (67.52±8.16%) in T6 medium plus caffeine compare to control group have increased and shown significant differences at p≤0.01. While the percentages of these parameters in M16 medium supplemented with caffeine were 68.3±6.01%, 78±6.11%, and 42.6±12.96 respectively and in comparison to control group (M16 without caffeine) have not shown significant differences. Addition of caffeine to T6 medium promotes the sperm's motility and vitality and enhances fertilization and early in vitro development of mouse embryos. This article extracted from M.Sc. thesis. (Narges Navabi).

  10. Effect of caffeine on motility and vitality of sperm and in vitro fertilization of outbreed mouse in T6 and M16 media

    PubMed Central

    Nabavi, Narges; Todehdehghan, Fatemeh; Shiravi, Abdollhossein

    2013-01-01

    Background: Caffeine increases the CAMP production that stimulates spermatozoa movement. Caffeine is also used for induction of in vitro acrosome reaction in mammalian spermatozoa, an important step in achieving fertilization. Objective: The aim of this study was to assess the effect of caffeine on sperm's motility, vitality and laboratory fertilization rates in mouse in two T6 and M16 media. Materials and Methods: Epididymal mouse sperms were collected and treated by caffine in T6 and M16 media and their motility and vitality rates were evaluated. The pretreated sperms were added to oocytes in T6 and M16 media with and without caffeine and fertilization rates were recorded after 24 hours incubation. Results: Sperm's motility (81.7±1.67%) and vitality (88.7±1.33%) rates and percentage of fertilized oocytes (67.52±8.16%) in T6 medium plus caffeine compare to control group have increased and shown significant differences at p≤0.01. While the percentages of these parameters in M16 medium supplemented with caffeine were 68.3±6.01%, 78±6.11%, and 42.6±12.96 respectively and in comparison to control group (M16 without caffeine) have not shown significant differences. Conclusion: Addition of caffeine to T6 medium promotes the sperm's motility and vitality and enhances fertilization and early in vitro development of mouse embryos. This article extracted from M.Sc. thesis. (Narges Navabi) PMID:24639814

  11. Effects of caffeine on the preterm brain: An observational study.

    PubMed

    Dix, Laura M L; van Bel, Frank; Baerts, Willem; Lemmers, Petra M A

    2018-05-01

    Caffeine improves neurodevelopmental outcome of preterm infants. This study analyses the effects of caffeine on the neonatal brain. We hypothesized that caffeine has a neuroprotective effect through an increase in oxygen metabolism; reflected by increased cerebral oxygen extraction, electrical function, and perfusion. Preterm infants <32 weeks gestation (GA) receiving their primary dose caffeine-base (10 mg/kg) were included. Ten minutes of stable monitoring were selected before, during, and every hour up to 6 h after caffeine. Near-infrared spectroscopy monitored regional cerebral oxygenation (rScO 2 ) and extraction (FTOE). Amplitude-integrated electroencephalogram (aEEG) monitored minimum, mean and maximum amplitudes. Spontaneous activity transients (SAT) rate and the interval between SATs (ISI) were calculated. Mean arterial blood pressure (MABP), heart rate (HR) and arterial oxygen saturation (SaO 2 ) were monitored. Arterial pCO 2 's were collected before and 4 h after caffeine. Brain perfusion was assessed 1 h before and 3 h after caffeine by Doppler-measured resistance-index (RI), peak systolic velocity (PSV) and end-diastolic velocity (EDV), in the anterior cerebral artery (ACA) and internal carotid artery (ICA). Results were presented in mean ± SD. 34 infants, mean GA 28.8 ± 2.1 wk, were included. rScO 2 significantly decreased from 69 ± 11 to 63 ± 12 1 h after caffeine, and recovered at 6 h (66 ± 10). FTOE increased correspondingly. MABP and HR increased significantly. PSV in the ACA decreased slightly. Other Doppler variables, aEEG parameters, and SaO 2 were unaffected. Caffeine increases oxygen extraction, suggesting a (transient) stimulating effect on brain metabolism. However, no substantial changes were found in brain perfusion and in electrical brain activity. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. The Combined Effects of Alcohol, Caffeine and Expectancies on Subjective Experience, Impulsivity and Risk-Taking

    PubMed Central

    Heinz, Adrienne J.; de Wit, Harriet; Lilje, Todd C.; Kassel, Jon D.

    2013-01-01

    Caffeinated alcoholic beverage (CAB) consumption is a rapidly growing phenomenon among young adults and is associated with a variety of health-risk behaviors. The current study examined whether either caffeinated alcohol or the expectation of receiving caffeinated alcohol altered affective, cognitive and behavioral outcomes hypothesized to contribute to risk behavior. Young adult social drinkers (N=146) participated in a single session where they received alcohol (peak Breath Alcohol Content = .088 g/dL, SD = .019; equivalent to about 4 standard drinks) and were randomly assigned to one of four further conditions 1) no caffeine, no caffeine expectancy, 2) caffeine and caffeine expectancy, 3) no caffeine but caffeine expectancy, 4) caffeine but no caffeine expectancy. Participants’ habitual CAB consumption was positively correlated with measures of impulsivity and risky behavior, independently of study drugs. Administration of caffeine (mean dose = 220 mg, SD = 38; equivalent to about 2.75 Red Bulls) in the study reduced subjective ratings of intoxication and reversed the decrease in desire to continue drinking, regardless of expectancy. Caffeine also reduced the effect of alcohol on inhibitory reaction time (faster incorrect responses). Participants not expecting caffeine were less attentive after alcohol, whereas participants expecting caffeine were not, regardless of caffeine administration. Alcohol decreased response accuracy in all participants except those who both expected and received caffeine. Findings suggest that CABs may elevate risk for continued drinking by reducing perceived intoxication, and by maintaining the desire to continue drinking. Simply expecting to consume caffeine may reduce the effects of alcohol on inattention, and either expecting or consuming caffeine may protect against other alcohol-related performance decrements. Caffeine, when combined with alcohol, has both beneficial and detrimental effects on mechanisms known to contribute to

  13. Effects of caffeine on alcohol consumption and nicotine self-administration in rats.

    PubMed

    Rezvani, Amir H; Sexton, Hannah G; Johnson, Joshua; Wells, Cori; Gordon, Karen; Levin, Edward D

    2013-09-01

    Caffeine, alcohol, and nicotine are 3 of the most widespread self-administered psychoactive substances, which are known to be extensively co-administered. However, little is known about the degree to which they may mutually potentiate each other's consumption. In the current set of studies, we examined in rats the effect of caffeine administration on alcohol drinking and intravenous (i.v.) self-administration of nicotine. In male alcohol-preferring (P) rats, caffeine (5, 10, and 20 mg/kg) or the saline vehicle was administered acutely either by subcutaneous (S.C.) injection or orally (PO) by gavage. In a chronic study, the effect of PO caffeine (5 and 20 mg/kg) on alcohol intake over a 10-day period was tested. In another experiment, the effect of acute PO administration of caffeine (20 mg/kg) or saline on saccharin intake (0.2% solution) was determined in P rats. Effects of 20 mg/kg caffeine on motor activity were also determined in P rats. Finally, the effects of acute PO caffeine administration on nicotine self-administration in Sprague-Dawley rats were also determined. Both routes of administration of caffeine, S.C. and PO, caused a significant dose-related decrease in alcohol intake and preference during free access to alcohol and after 4-day deprivation of alcohol. However, the low dose of 5 mg/kg caffeine increased alcohol intake. Acute PO caffeine also reduced saccharin intake. Acute systemic administration of 20 mg/kg caffeine did not exert a significant effect on motor activity. In Sprague-Dawley rats trained to self-administer i.v. nicotine, acute PO administration of caffeine significantly increased self-administration of nicotine in a dose-related manner. These results suggest that adenosine receptor systems may play a role in both alcohol and nicotine intake and deserve further study regarding these addictions. Copyright © 2013 by the Research Society on Alcoholism.

  14. A Unified Model of Performance for Predicting the Effects of Sleep and Caffeine

    PubMed Central

    Ramakrishnan, Sridhar; Wesensten, Nancy J.; Kamimori, Gary H.; Moon, James E.; Balkin, Thomas J.; Reifman, Jaques

    2016-01-01

    Study Objectives: Existing mathematical models of neurobehavioral performance cannot predict the beneficial effects of caffeine across the spectrum of sleep loss conditions, limiting their practical utility. Here, we closed this research gap by integrating a model of caffeine effects with the recently validated unified model of performance (UMP) into a single, unified modeling framework. We then assessed the accuracy of this new UMP in predicting performance across multiple studies. Methods: We hypothesized that the pharmacodynamics of caffeine vary similarly during both wakefulness and sleep, and that caffeine has a multiplicative effect on performance. Accordingly, to represent the effects of caffeine in the UMP, we multiplied a dose-dependent caffeine factor (which accounts for the pharmacokinetics and pharmacodynamics of caffeine) to the performance estimated in the absence of caffeine. We assessed the UMP predictions in 14 distinct laboratory- and field-study conditions, including 7 different sleep-loss schedules (from 5 h of sleep per night to continuous sleep loss for 85 h) and 6 different caffeine doses (from placebo to repeated 200 mg doses to a single dose of 600 mg). Results: The UMP accurately predicted group-average psychomotor vigilance task performance data across the different sleep loss and caffeine conditions (6% < error < 27%), yielding greater accuracy for mild and moderate sleep loss conditions than for more severe cases. Overall, accounting for the effects of caffeine resulted in improved predictions (after caffeine consumption) by up to 70%. Conclusions: The UMP provides the first comprehensive tool for accurate selection of combinations of sleep schedules and caffeine countermeasure strategies to optimize neurobehavioral performance. Citation: Ramakrishnan S, Wesensten NJ, Kamimori GH, Moon JE, Balkin TJ, Reifman J. A unified model of performance for predicting the effects of sleep and caffeine. SLEEP 2016;39(10):1827–1841. PMID:27397562

  15. The Combined Effect of Caffeine and Ornithine on the Mood of Healthy Office Workers

    PubMed Central

    Misaizu, Akane; Kokubo, Takeshi; Tazumi, Kyoko; Kanayama, Masaya; Miura, Yutaka

    2014-01-01

    Caffeine is widely consumed and well known for stimulating the central nervous system. When developing new foods and beverages that contain caffeine, it is important to explore the potential synergistic effects of consuming amino acids and other food ingredients with caffeine on humans. Given the physiological pathways affected by the amino acid ornithine, consumption of ornithine with caffeine may have synergistic effects. The purpose of the present study was to examine the effect of consuming caffeine with ornithine in humans. The study used a randomized, placebo-controlled, double-blinded crossover design. The subjects were all healthy office workers who ingested the placebo, 100 mg caffeine, or 100 mg caffeine plus 200 mg ornithine in the morning and completed questionnaires about their mood. Office workers who consumed the combination of caffeine and ornithine had higher mood ratings 8 h after consumption than office workers who consumed caffeine alone. The results of the present study suggest that there is a unique synergistic effect between caffeine and ornithine on the mood of healthy office workers and that ornithine may potentiate the effects of caffeine. PMID:25580405

  16. Dose-Dependent Model of Caffeine Effects on Human Vigilance during Total Sleep Deprivation

    DTIC Science & Technology

    2014-05-20

    does not consider the absorption of caffeine . This is a reasonable approximation for caffeine when ingested via coffee , tea, energy drinks, and most...Dose-dependent model of caffeine effects on human vigilance during total sleep deprivation Sridhar Ramakrishnan a, Srinivas Laxminarayan a, Nancy J...We modeled the dose-dependent effects of caffeine on human vigilance. The model predicted the effects of both single and repeated caffeine doses

  17. Caffeine and diuresis during rest and exercise: A meta-analysis

    PubMed Central

    Coca, Aitor; Casa, Douglas J.; Antonio, Jose; Green, James M.; Bishop, Phillip A.

    2016-01-01

    Objectives Although ergogenic, acute caffeine ingestion may increase urine volume, prompting concerns about fluid balance during exercise and sport events. This meta-analysis evaluated caffeine induced diuresis in adults during rest and exercise. Design Meta-analysis. Methods A search of three databases was completed on November 1, 2013. Only studies that involved healthy adults and provided sufficient information concerning the effect size (ES) of caffeine ingestion on urine volume were included. Sixteen studies met the inclusion criteria, providing a total of 28 ESs for the meta-analysis. Heterogeneity was assessed using a random-effects model. Results The median caffeine dosage was 300 mg. The overall ES of 0.29 (95% confidence interval (CI) = 0.11-0.48, p = 0.001) corresponds to an increase in urine volume of 109 ± 195 mL or 16.0 ± 19.2% for caffeine ingestion vs. non-caffeine conditions. Subgroup meta-analysis confirmed exercise as a strong moderator: active ES = 0.10, 95% CI = −0.07 to 0.27, p = 0.248 vs. resting ES = 0.54, 95% CI = 0.22–0.85, p = 0.001 (Cochran's Q, p = 0.019). Females (ES = 0.75,95% CI = 0.38–1.13, p< 0.001) were more susceptible to diuretic effects than males (ES = 0.13,95% CI = −0.05 to 0.31, p = 0.158) (Cochran's Q, p = 0.003). Conclusions Caffeine exerted a minor diuretic effect which was negated by exercise. Concerns regarding unwanted fluid loss associated with caffeine consumption are unwarranted particularly when ingestion precedes exercise. PMID:25154702

  18. Effects of 2 adenosine antagonists, quercetin and caffeine, on vigilance and mood.

    PubMed

    Olson, Craig A; Thornton, Jennifer A; Adam, Gina E; Lieberman, Harris R

    2010-10-01

    Quercetin, a phenolic flavonoid found in small quantities in some fruits and vegetables, is an adenosine receptor antagonist in vitro marketed as a dietary supplement for purported caffeine-like effects. A double-blind, placebo-controlled, between-subjects study was conducted to compare the behavioral effects of quercetin to a central adenosine receptor antagonist, caffeine. Fifty-seven volunteers received either 2000 mg of quercetin dihydrate (a dose estimated based on in vitro receptor binding to be equivalent in potency to 200 mg of caffeine), placebo, or 200 mg of caffeine. One hour later, a 45-minute visual vigilance task was administered. The Profile of Mood States questionnaire was completed before treatment and immediately after vigilance testing. On the vigilance task, caffeine increased the number of stimuli detected (P < 0.02) and decreased the reaction time (P = 0.001). Caffeine increased self-reported vigor and reduced fatigue and total mood disturbance Profile of Mood States scores compared with placebo. Quercetin did not significantly alter any parameter, but values were typically intermediate between caffeine and placebo on those tests affected by caffeine. Quercetin is unlikely to have any effects when consumed by humans in quantities present in the diet or in dietary supplements. Caffeine (200 mg) administration resulted in the expected effects on vigilance and mood.

  19. Molecular Dynamics and Neutron Scattering Studies of Mixed Solutions of Caffeine and Pyridine in Water.

    PubMed

    Tavagnacco, Letizia; Mason, Philip E; Neilson, George W; Saboungi, Marie-Louise; Cesàro, Attilio; Brady, John W

    2018-05-31

    Insight into the molecular interactions of homotactic and heterotactic association of caffeine and pyridine in aqueous solution is given on the basis of both experimental and simulation studies. Caffeine is about 5 times more soluble in a 3 m aqueous pyridine solution than it is in pure water (an increase from ∼0.1 m to 0.5 m). At this elevated concentration the system becomes suitable for neutron scattering study. Caffeine-pyridine interactions were studied by neutron scattering and molecular dynamics simulations, allowing a detailed characterization of the spatial and orientational structure of the solution. It was found that while pyridine-caffeine interactions are not as strong as caffeine-caffeine interactions, the pyridine-caffeine interactions still significantly disrupted caffeine-caffeine stacking. The alteration of the caffeine-caffeine stacking, occasioned by the presence of pyridine molecules in solution and the consequent formation of heterotactic interactions, leads to the experimentally detected increase in caffeine solubility.

  20. Intake of Caffeinated Soft Drinks before and during Pregnancy, but Not Total Caffeine Intake, Is Associated with Increased Cerebral Palsy Risk in the Norwegian Mother and Child Cohort Study.

    PubMed

    Tollånes, Mette C; Strandberg-Larsen, Katrine; Eichelberger, Kacey Y; Moster, Dag; Lie, Rolv Terje; Brantsæter, Anne Lise; Meltzer, Helle Margrete; Stoltenberg, Camilla; Wilcox, Allen J

    2016-09-01

    Postnatal administration of caffeine may reduce the risk of cerebral palsy (CP) in vulnerable low-birth-weight neonates. The effect of antenatal caffeine exposure remains unknown. We investigated the association of intake of caffeine by pregnant women and risk of CP in their children. The study was based on The Norwegian Mother and Child Cohort Study, comprising >100,000 live-born children, of whom 222 were subsequently diagnosed with CP. Mothers reported their caffeine consumption in questionnaires completed around pregnancy week 17 (102,986 mother-child pairs), week 22 (87,987 mother-child pairs), and week 30 (94,372 mother-child pairs). At week 17, participants were asked about present and prepregnancy consumption. We used Cox regression models to estimate associations between exposure [daily servings (1 serving = 125 mL) of caffeinated coffee, tea, and soft drinks and total caffeine consumption] and CP in children, with nonconsumers as the reference group. Models included adjustment for maternal age and education, medically assisted reproduction, and smoking, and for each source of caffeine, adjustments were made for the other sources. Total daily caffeine intake before and during pregnancy was not associated with CP risk. High consumption (≥6 servings/d) of caffeinated soft drinks before pregnancy was associated with an increased CP risk (HR: 1.9; 95% CI: 1.2, 3.1), and children of women consuming 3-5 daily servings of caffeinated soft drinks during pregnancy weeks 13-30 also had an increased CP risk (HR: 1.7; 95% CI: 1.1, 2.8). A mean daily consumption of 51-100 mg caffeine from soft drinks during the first half of pregnancy was associated with a 1.9-fold increased risk of CP in children (HR: 1.9; 95% CI: 1.1, 3.6). Maternal total daily caffeine consumption before and during pregnancy was not associated with CP risk in children. The observed increased risk with caffeinated soft drinks warrants further investigation. © 2016 American Society for Nutrition.