Science.gov

Sample records for calcium oxalate calcium

  1. Medical therapy, calcium oxalate urolithiasis

    NASA Technical Reports Server (NTRS)

    Ruml, L. A.; Pearle, M. S.; Pak, C. Y.

    1997-01-01

    The development of diagnostic protocols that identify specific risk factors for calcium oxalate nephrolithiasis has led to the formulation of directed medical regimens that are aimed at correcting the underlying metabolic disturbances. Initiation of these treatment programs has reduced markedly the rate of stone formation in the majority of patients who form stones. This article discusses the rationale that underlies the choice of medical therapy for the various pathophysiologic causes of calcium oxalate nephrolithiasis and the appropriate use of available medications.

  2. Plasma oxalic acid and calcium levels in oxalate poisoning

    PubMed Central

    Zarembski, P. M.; Hodgkinson, A.

    1967-01-01

    Observations are reported on five cases of suicide or attempted suicide by poisoning with oxalic acid or ethylene glycol. Elevated oxalic acid levels were observed in the plasma, stomach contents, and a number of tissues. Raised oxalic acid levels in plasma were associated with reduced total and ultrafilterable calcium levels. It is suggested that the reduction in plasma total calcium level is due mainly to the deposition of calcium oxalate in the soft tissues, but inhibition of the parathyroid glands may be a contributory factor. Microscopic examination of various tissues indicated that oxalic acid is deposited in the tissues in two forms: (1) crystalline calcium oxalate dihydrate in the kidney and (2) a non-crystalline complex of calcium oxalate and lipid in liver and other tissues. PMID:5602563

  3. Engineering calcium oxalate crystal formation in Arabidopsis

    USDA-ARS?s Scientific Manuscript database

    Many plants accumulate crystals of calcium oxalate. Just how these crystals form remains unknown. To gain insight into the mechanisms regulating calcium oxalate crystal formation, a crystal engineering approach was initiated utilizing the non-crystal accumulating plant, Arabidopsis. The success of t...

  4. Lowering urinary oxalate excretion to decrease calcium oxalate stone disease

    PubMed Central

    Knight, John; Assimos, Dean G.

    2016-01-01

    Dietary modifications should be considered as a first line approach in the treatment of idiopathic calcium oxalate nephrolithiasis. The amounts of oxalate and calcium consumed in the diet are significant factors in the development of the disease due to their impact on urinary oxalate excretion. There are a number of strategies that can be employed to reduce oxalate excretion. The consumption of oxalate-rich foods should be avoided and calcium intake adjusted to 1000–1200 mg/day. To encourage compliance it should be emphasized to patients that they be vigilant with this diet as a deviation in any meal or snack could potentially result in significant stone growth. The evidence underlying these two modifications is outlined and other strategies to reduce urinary oxalate excretion are reviewed. PMID:26614109

  5. Oxalate and Sucralose Absorption in Idiopathic Calcium Oxalate Stone Formers

    PubMed Central

    Knight, John; Jiang, Juquan; Wood, Kyle D.; Holmes, Ross P.; Assimos, Dean G.

    2011-01-01

    Objectives Oxalate has been hypothesized to undergo absorption in the large and small intestine by both paracellular and transepithelial transport. Sucralose is a chlorinated sugar that is absorbed by paracellular mechanisms. This study's objective was to better understand intestinal oxalate transport by correlating oxalate and sucralose absorption in idiopathic calcium oxalate stone formers. Methods Idiopathic calcium oxalate stone formers were recruited to provide urine specimens on both a self-selected diet and following a meal containing 90 mg of 13C2-oxalate and 5 grams of sucralose, and a stool sample for determination of Oxalobacter formigenes colonization. The 24 hour urine collections were fractionated into the first 6 hours and the subsequent 18 hours. Sucralose and oxalate excretion were measured during these periods and used to estimate absorption. Results A total of 38 subjects were evaluated. The majority of both the 13C2-oxalate and sucralose absorption occurred within the 0-6 hour collection. The 13C2-oxalate and sucralose absorptions were significantly correlated at the 0-6 hour, the 6-24 hour, and the total 24 hour time periods (p<0.04). All five oxalate hyperabsorbers(> 15% absorption) also absorbed significantly more sucralose during the 0-6 hour and whole 24 hour time points (p<0.04). Oxalobacter formigenes colonization did not significantly alter oxalate absorption. Conclusion The results suggest that the majority of oxalate is absorbed in the proximal portion of the gastrointestinal tract and that paracelluar transport is involved. Augmented paracellular transport, as evidenced by increased sucralose absorption, may also influence oxalate absorption. PMID:21676449

  6. Microorganisms and calcium oxalate stone disease.

    PubMed

    Goldfarb, David S

    2004-01-01

    Microorganisms may have a role in the pathogenesis and prevention of kidney stones. The subjects of this review include nanobacteria, Oxalobacter formigenes, and lactic acid bacteria. Not reviewed here is the well-described role of infections of the urinary tract with Proteus species and other urease-producing organisms associated with struvite stone formation. Nanobacteria have been proposed to be very small (0.08-0.5 nm), ubiquitous organisms that could play a role in stone formation. The theory is that nanobacteria can nucleate carbonate apatite on their surfaces and thereby provide the nidus for stone formation. However, their existence remains uncertain and many investigators are openly skeptical. Recent investigations suggest that they are artifacts, and not actually living organisms, but their proponents continue to study them. O. formigenes is an obligate anaerobe which may be important in the prevention of stone formation. Its sole substrate for generation of ATP is oxalate. It may thereby metabolize its human host's dietary oxalate and diminish intestinal absorption and subsequent urinary excretion of oxalate. There is evidence that the organism's absence, perhaps sometimes due to courses of antibiotics, may be a cause of hyperoxaluria and stone formation. In early investigations, patients not colonized with the organism can be recolonized. Urinary oxalate can be diminished by accompanying an oxalate-containing meal with the organism. One study demonstrated that a preparation of lactic acid bacteria successfully reduced urinary oxalate excretion in 6 patients with calcium oxalate stones and hyperoxaluria. The mechanism of this effect is uncertain since these bacteria lacked the gene possessed by O. formigenes which codes for that organism's oxalate uptake mechanism. The author is currently completing a small randomized controlled clinical trial with this preparation in calcium stone-forming patients with idiopathic hyperoxaluria. Copyright (c) 2004 S

  7. Contribution of calcium oxalate to soil-exchangeable calcium

    USGS Publications Warehouse

    Dauer, Jenny M.; Perakis, Steven S.

    2013-01-01

    Acid deposition and repeated biomass harvest have decreased soil calcium (Ca) availability in many temperate forests worldwide, yet existing methods for assessing available soil Ca do not fully characterize soil Ca forms. To account for discrepancies in ecosystem Ca budgets, it has been hypothesized that the highly insoluble biomineral Ca oxalate might represent an additional soil Ca pool that is not detected in standard measures of soil-exchangeable Ca. We asked whether several standard method extractants for soil-exchangeable Ca could also access Ca held in Ca oxalate crystals using spike recovery tests in both pure solutions and soil extractions. In solutions of the extractants ammonium chloride, ammonium acetate, and barium chloride, we observed 2% to 104% dissolution of Ca oxalate crystals, with dissolution increasing with both solution molarity and ionic potential of cation extractant. In spike recovery tests using a low-Ca soil, we estimate that 1 M ammonium acetate extraction dissolved sufficient Ca oxalate to contribute an additional 52% to standard measurements of soil-exchangeable Ca. However, in a high-Ca soil, the amount of Ca oxalate spike that would dissolve in 1 M ammonium acetate extraction was difficult to detect against the large pool of exchangeable Ca. We conclude that Ca oxalate can contribute substantially to standard estimates of soil-exchangeable Ca in acid forest soils with low soil-exchangeable Ca. Consequently, measures of exchangeable Ca are unlikely to fully resolve discrepancies in ecosystem Ca mass balance unless the contribution of Ca oxalate to exchangeable Ca is also assessed.

  8. Characterization of Medicago truncatula reduced calcium oxalate crystal mutant alleles

    USDA-ARS?s Scientific Manuscript database

    Calcium oxalate crystal formation is common in plants. Formation of these crystals has been shown to function in plant defense, calcium regulation, and aluminum tolerance. Although calcium oxalate is common and plays important roles in plant development, our understanding of how these crystals form ...

  9. Influence of calcium oxalate crystal accumulation on the calcium content of seeds from Medicago truncatula

    USDA-ARS?s Scientific Manuscript database

    Crystals of calcium oxalate often form in cells adjacent to the vascular bundles in the tissues along the xylem stream. This spatial crystal pattern suggests a role for calcium oxalate formation in regulating calcium transport and partitioning to edible organs such as seeds. To investigate this pote...

  10. Risk of calcium oxalate nephrolithiasis in postmenopausal women supplemented with calcium or combined calcium and estrogen.

    PubMed

    Domrongkitchaiporn, Somnuek; Ongphiphadhanakul, Boonsong; Stitchantrakul, Wasana; Chansirikarn, Sirinthorn; Puavilai, Gobchai; Rajatanavin, Rajata

    2002-02-26

    Recent studies showed that postmenopausal women lost less bone mass when supplemented with calcium or estrogen therapy. However, the safety of the treatments in terms of the risk of calcium oxalate stone formation is unknown. We therefore conducted this study to determine the alteration in calcium oxalate supersaturation after calcium supplement or after combined calcium and estrogen therapy in postmenopausal osteoporotic women. Fifty-six postmenopausal women were enrolled in this study. All subjects were more than 10 years postmenopausal with vertebral or femoral osteoporosis by bone mineral density criteria. They were randomly allocated to receive either 625 mg of calcium carbonate (250 mg of elemental calcium) at the end of a meal three times a day (group A, n=26) or calcium carbonate in the same manner plus 0.625 mg/day of conjugated equine estrogen and 5 mg medrogestone acetate from day 1-12 each month (group B, n=30). The age (mean +/- S.E.M.) was 66.3 +/- 1.2 and 65.1 +/- 1.1 years, weight 54.1 +/- 1.2 and 55.3 +/- 2.1 kg, in group A and group B, respectively. Urine specimens (24-h) were collected at baseline and 3 months after treatment for the determination of calcium oxalate saturation by using Tiselius's index (AP(CaOx)) and calcium/citrate ratio. After 3 months of treatment, there was no significant alteration from baseline for urinary excretion of calcium, citrate and oxalate. Urinary phosphate excretion was significantly reduced (6.3 +/- 0.7 vs. 5.1 +/- 0.7 mmol/day for group A and 8.2 +/- 0.9 vs. 5.8 +/- 0.7 mmol/day for group B, P<0.05), whereas net alkaline absorption was significantly elevated (10.1 +/- 3.6 vs. 20.1 +/- 4.4 meq/day for group A and 4.8 +/- 3.2 vs. 19.9 +/- 3.6 meq/day for group B, P<0.05). Calcium/citrate ratio and AP(CaOx) determined at baseline were not different from the corresponding values after treatment in both groups; calcium/citrate: 10.1 +/- 3.1 vs. 10.1 +/- 2.5 for group A and 9.3 +/- 1.8 vs. 11.9 +/- 2.5 for group B and

  11. Unusual calcium oxalate crystals in ethylene glycol poisoning.

    PubMed

    Godolphin, W; Meagher, E P; Sanders, H D; Frohlich, J

    1980-06-01

    A patient poisoned with ethylene glycol exhibited the symptoms of (1) hysteria, (2) metabolic acidosis with both a large anion gap and osmolal gap, and (3) crystalluria. However, the shape of the urinary crystals was prismatic and resembled hippurate rather than the expected dipyramidal calcium oxalate dihydrate. X-ray crystallography positively identified them as calcium oxalate monohydrate.

  12. Calcium Oxalate Accumulation in Malpighian Tubules of Silkworm (Bombyx mori)

    NASA Astrophysics Data System (ADS)

    Wyman, Aaron J.; Webb, Mary Alice

    2007-04-01

    Silkworm provides an ideal model system for study of calcium oxalate crystallization in kidney-like organs, called Malpighian tubules. During their growth and development, silkworm larvae accumulate massive amounts of calcium oxalate crystals in their Malpighian tubules with no apparent harm to the organism. This manuscript reports studies of crystal structure in the tubules along with analyses identifying molecular constituents of tubule exudate.

  13. Diet, but not oral probiotics, effectively reduces urinary oxalate excretion and calcium oxalate supersaturation.

    PubMed

    Lieske, John C; Tremaine, William J; De Simone, Claudio; O'Connor, Helen M; Li, Xujian; Bergstralh, Eric J; Goldfarb, David S

    2010-12-01

    We examined the effect of a controlled diet and two probiotic preparations on urinary oxalate excretion, a risk factor for calcium oxalate kidney stone formation, in patients with mild hyperoxaluria. Patients were randomized to a placebo, a probiotic, or a synbiotic preparation. This tested whether these probiotic preparations can increase oxalate metabolism in the intestine and/or decrease oxalate absorption from the gut. Patients were maintained on a controlled diet to remove the confounding variable of differing oxalate intake from food. Urinary oxalate excretion and calcium oxalate supersaturation on the controlled diet were significantly lower compared with baseline on a free-choice diet. Neither study preparation reduced urinary oxalate excretion nor calcium oxalate supersaturation. Fecal lactobacilli colony counts increased on both preparations, whereas enterococcal and yeast colony counts were increased on the synbiotic. Total urine volume and the excretion of oxalate and calcium were all strong independent determinants of urinary calcium oxalate supersaturation. Hence, dietary oxalate restriction reduced urinary oxalate excretion, but the tested probiotics did not influence urinary oxalate levels in patients on a restricted oxalate diet. However, this study suggests that dietary oxalate restriction is useful for kidney stone prevention.

  14. Impact of Dietary Calcium and Oxalate, and Oxalobacter Formigenes Colonization on Urinary Oxalate Excretion

    PubMed Central

    Jiang, Juquan; Knight, John; Easter, Linda H.; Neiberg, Rebecca; Holmes, Ross P.; Assimos, Dean G.

    2011-01-01

    Purpose Enteric colonization with Oxalobacter formigenes, a bacterium whose main energy source is oxalate, has been demonstrated to decrease the risk of recurrent calcium oxalate kidney stone formation. We assessed the impact of diets controlled in calcium and oxalate contents on urinary and fecal analytes in healthy subjects who were naturally colonized with O. formigenes or not colonized with O. formigenes. Materials and Methods A total of 11 O. formigenes colonized and 11 noncolonized subjects were administered diets controlled in calcium and oxalate contents. We assayed 24-hour urine collections and stool samples obtained on the last 4 days of each 1-week diet for stone risk parameters and O. formigenes levels. Mixed model analysis was used to determine the effects of colonization status on these variables. Results Urinary calcium and oxalate excretion were significantly altered by the dietary changes in O. formigenes colonized and noncolonized individuals. Mixed model analysis showed significant interaction between colonization status and oxalate excretion on a low calcium (400 mg daily)/moderate oxalate (250 mg daily) diet (p = 0.026). Urinary oxalate excretion was 19.5% lower in O. formigenes colonized subjects than in noncolonized subjects on the low calcium/moderate oxalate diet (mean ± SE 34.9 ± 2.6 vs 43.6 ± 2.6 mg, p = 0.031). Conclusions Results suggest that O. formigenes colonization decreases oxalate excretion during periods of low calcium and moderate oxalate intake. PMID:21575973

  15. Patterns of calcium oxalate monohydrate crystallization in complex biological systems

    NASA Astrophysics Data System (ADS)

    Golovanova, O. A.; Korol'kov, V. V.; Kuimova, M. V.

    2017-01-01

    The paper presents the features of calcium oxalate crystallization in the presence of additives revealed through experimental modeling. The patterns of phase formation are shown for the Ca2+ - C2O4 2- - H2O and Ca2+ - C2O4 2- - PO4 3- - H2O systems with the components and pH of the saline varying over a wide concentrations range. The effect of additives on crystallization of calcium oxalate monohydrate was investigated. It was found that the ionic strength and magnesium ions are inhibitors, and calcium oxalate and hydroxyapatite crystals are catalysts of calcium oxalate monohydrate crystallization. The basic calcium phosphate (apatite) was found to be most thermodynamically stable, which indicates its special role in kidney stone formation since it is found in virtually all stones.

  16. Calcium fertilization increases the concentration of calcium in sapwood and calcium oxalate in foliage of red spruce

    Treesearch

    Kevin T. Smith; Walter C. Shortle; Jon H. Connolly; Rakesh Minocha; Jody Jellison

    2009-01-01

    Calcium cycling plays a key role in the health and productivity of red spruce forests in the northeastern US. A portion of the flowpath of calcium within forests includes translocation as Ca2+ in sapwood and accumulation as crystals of calcium oxalate in foliage. Concentrations of Ca in these tree tissues have been used as markers of...

  17. Aluminum Citrate Prevents Renal Injury from Calcium Oxalate Crystal Deposition

    PubMed Central

    Besenhofer, Lauren M.; Cain, Marie C.; Dunning, Cody

    2012-01-01

    Calcium oxalate monohydrate crystals are responsible for the kidney injury associated with exposure to ethylene glycol or severe hyperoxaluria. Current treatment strategies target the formation of calcium oxalate but not its interaction with kidney tissue. Because aluminum citrate blocks calcium oxalate binding and toxicity in human kidney cells, it may provide a different therapeutic approach to calcium oxalate-induced injury. Here, we tested the effects of aluminum citrate and sodium citrate in a Wistar rat model of acute high-dose ethylene glycol exposure. Aluminum citrate, but not sodium citrate, attenuated increases in urea nitrogen, creatinine, and the ratio of kidney to body weight in ethylene glycol–treated rats. Compared with ethylene glycol alone, the addition of aluminum citrate significantly increased the urinary excretion of both crystalline calcium and crystalline oxalate and decreased the deposition of crystals in renal tissue. In vitro, aluminum citrate interacted directly with oxalate crystals to inhibit their uptake by proximal tubule cells. These results suggest that treating with aluminum citrate attenuates renal injury in rats with severe ethylene glycol toxicity, apparently by inhibiting calcium oxalate’s interaction with, and retention by, the kidney epithelium. PMID:23138489

  18. Calcium

    MedlinePlus

    ... You'll also find calcium in broccoli and dark green, leafy vegetables (especially collard and turnip greens, ... can enjoy good sources of calcium such as dark green, leafy vegetables, broccoli, chickpeas, and calcium-fortified ...

  19. Calcium extraction from brine water and seawater using oxalic acid

    NASA Astrophysics Data System (ADS)

    Natasha, Nadia Chrisayu; Lalasari, Latifa Hanum

    2017-01-01

    Calcium can be extracted not only from rocks but also from natural liquor such as seawater and brine water. In order to extract the calcium from seawater and brine water, oxalic acid was used in this research. Effect of variations of the volume of the oxalic acid at a constant concentration in seawater and brine water to produce calcium was investigated. The concentration of oxalic acid was 100 g/l and the variations of its volume were 2 ml, 4 ml, 6 ml, 8 ml, 10 ml, 20 ml, 30 ml, 40 ml, and 50 ml. The used seawater and brine water were firstly evaporated from 100 ml into 50 ml and then the oxalic acid was added into them with mixing to produce the calcium precipitates. The precipitates were analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM) and the filtrates were analyzed by inductively coupled plasma-optical emission spectrometry (ICP-OES). The SEM analysis showed that the precipitates from brine water were consisted of only calcium compound while from seawater sodium one was also found along with calcium compound. The XRD analysis showed that the calcium was present in the form of calcium oxalate for both seawater and brine water. The ICP-OES analysis of the filtrate from seawater precipitation showed that the its calcium content was decreased from 826.20 ppm to 0.04 ppm while from brine water, it decreased from 170.06 ppm to 1.96 ppm. These results showed that both seawater and brine water have the potential to be a raw material for calcium production.

  20. Calcium oxalate contribution to calcium cycling in forests of contrasting nutrient status

    USGS Publications Warehouse

    Dauer, Jenny M.; Perakis, Steven S.

    2014-01-01

    Calcium oxalate (Ca oxalate) is an insoluble biomineral that forms in plants and fungi, and occurs in soils across many types of ecosystems. Assessing how Ca oxalate may shape ecosystem Ca cycling requires information on the distribution of Ca oxalate among plant biomass, detritus, and mineral soil, and how it varies with ecosystem Ca status. We compared two Douglas-fir forests of contrasting ecosystem Ca availability, and found that Ca oxalate was partitioned similarly among plant biomass, detritus and mineral soil major ecosystem compartments at both sites, and total pools of Ca oxalate were greater in the high-Ca forest. However, the proportional importance of Ca oxalate was greater in the low-Ca than high-Ca forest (18% versus 4% of actively cycling ecosystem Ca, respectively). And calcium oxalate in mineral soil, which is of particular interest as a potential long-term Ca reservoir, was a larger portion of total available Ca (exchangeable Ca plus Ca oxalate Ca) in the low-Ca site than the high-Ca site (9% versus 1% of available soil Ca, respectively). Calcium oxalate was the dominant form of Ca returned from plants to soil as leaf litterfall at the high-Ca site, yet calcium oxalate disappeared rapidly from decomposing litter (0.28 yr−1 or faster) at both sites. We conclude that accumulation of Ca oxalate in forest ecosystems appears most closely related to overall Ca supply for live biomass pools, and that the accumulation of Ca oxalate in forest floor and mineral soil is limited by rapid microbial degradation of putatively unavailable Ca oxalate.

  1. Modulation of polyepoxysuccinic acid on crystallization of calcium oxalate

    SciTech Connect

    Zhang, Yanqing; Tang, Yongming, E-mail: tangym@njtech.edu.cn; Xu, Jinqiu

    The influence of polyepoxysuccinic acid (PESA) on the phase composition and crystal morphology of calcium oxalate was investigated in this paper. It was found that the presence of PESA inhibited the growth of the monoclinic calcium oxalate monohydrate (COM) crystal and promoted the nucleation of the tetragonal calcium oxalate dihydrate (COD). In addition, with the increase in PESA concentration, the aggregation of COD crystals was reduced but the particle size was increased. Under the conditions of low calcium-to-oxalate ratio and high CaOx concentration, PESA could not effectively stabilize the formation of COD. Based on molecular dynamic simulations, the adsorption ofmore » PESA on CaOx crystal faces was confirmed. - Graphical abstract: Introduction of PESA into crystallization solutions promotes the formation of calcium oxalate dehydrate and modifies the morphology of crystals. - Highlights: • PESA induces the formation of COD at low supersaturation. • Establishment of Ca-rich surface augments the adsorption of PESA. • At Ca/Ox=0.5 PESA cannot induce the formation of COD compared with Ca/Ox=2. • Interaction of PESA with COM faces is stronger than that with COD faces.« less

  2. The influence of scale inhibitors on calcium oxalate

    SciTech Connect

    Gill, J.S.

    1999-11-01

    Precipitation of calcium oxalate is a common occurrence in mammalian urinary tract deposits and in various industrial processes such as paper making, brewery fermentation, sugar evaporation, and tannin concentration. Between pH 3.5 to 4.5 the driving force for calcium oxalate precipitation increases almost by three fold. It is a complicated process to predict both the nature of a deposit and at which stage of a multi-effect evaporator a particular mineral will deposit, as this depends on temperature, pH, total solids, and kinetics of mineralization. It is quite a challenge to inhibit calcium oxalate precipitation in the pH range of 4--6.more » Al{sup 3+} ions provide excellent threshold inhibition in this pH range and can be used to augment traditional inhibitors such as polyphosphates and polycarboxylates.« less

  3. Microelectrophoretic study of calcium oxalate monohydrate in macromolecular solutions

    NASA Technical Reports Server (NTRS)

    Curreri, P. A.; Onoda, G. Y., Jr.; Finlayson, B.

    1987-01-01

    Electrophoretic mobilities were measured for calcium oxalate monohydrate (COM) in solutions containing macromolecules. Two mucopolysaccharides (sodium heparin and chondroitin sulfate) and two proteins (positively charged lysozyme and negatively charged bovine serum albumin) were studied as adsorbates. The effects of pH, calcium oxalate surface charge (varied by calcium or oxalate ion activity), and citrate concentration were investigated. All four macromolecules showed evidence for adsorption. The macromolecule concentrations needed for reversing the surface charge indicated that the mucopolysaccharides have greater affinity for the COM surface than the proteins. Citrate ions at high concentrations appear to compete effectively with the negative protein for surface sites but show no evidence for competing with the positively charged protein.

  4. Oxalate absorption and endogenous oxalate synthesis from ascorbate in calcium oxalate stone formers and non-stone formers.

    PubMed

    Chai, Weiwen; Liebman, Michael; Kynast-Gales, Susan; Massey, Linda

    2004-12-01

    Increased rates of either oxalate absorption or endogenous oxalate synthesis can contribute to hyperoxaluria, a primary risk factor for the formation of calcium oxalate-containing kidney stones. This study involves a comparative assessment of oxalate absorption and endogenous oxalate synthesis in subpopulations of stone formers (SFs) and non-stone formers (NSFs) and an assessment of the effect of ascorbate supplementation on oxalate absorption and endogenous oxalate synthesis. Twenty-nine individuals with a history of calcium oxalate kidney stones (19 men, 10 women) and 19 age-matched NSFs (8 men, 11 women) participated in two 6-day controlled feeding experimental periods: ascorbate-supplement (2 g/d) and no-supplement treatments. An oxalate load consisting of 118 mg of unlabeled oxalate and 18 mg of 13C2 -oxalic acid was administered the morning of day 6 of each experimental period. Mean 13C2 -oxalic acid absorption averaged across the ascorbate and no-supplement treatments was significantly greater in SFs (9.9%) than NSFs (8.0%). SFs also had significantly greater 24-hour post-oxalate load urinary total oxalate and endogenous oxalate levels with both treatments. Twenty-four-hour urinary total oxalate level correlated strongly with both 13C2 -oxalic acid absorption (SFs, r = 0.76; P < 0.01; NSFs, r = 0.62; P < 0.01) and endogenous oxalate synthesis (SFs, r = 0.95; P < 0.01; NSFs, r = 0.92; P < 0.01). SFs are characterized by greater rates of both oxalate absorption and endogenous oxalate synthesis, and both these factors contribute to the hyperoxaluric state. The finding that ascorbate supplementation increased urinary total and endogenous oxalate levels suggested that this practice is a risk factor for individuals predisposed to kidney stones.

  5. Calcium

    MedlinePlus

    ... Guidelines for Americans and the U.S. Department of Agriculture's MyPlate . Where can I find out more about ... on food sources of calcium: U.S. Department of Agriculture's (USDA) National Nutrient Database Nutrient List for calcium ( ...

  6. Characterization of calcium oxalate biominerals in Pereskia species (Cactaceae).

    PubMed

    Monje, Paula V; Baran, Enrique J

    2009-01-01

    Calcium oxalate druses were isolated from the stems and leaves of six Pereskioideae family members and investigated by infrared spectroscopy, showing that in all samples the biomineral was present in the form of whewellite, CaC2O4 x H2O. As Pereskia is thought to represent the "ancestral" condition of the leafless stem-succulent cacti, these results suggest that the biomineralization of calcium oxalate in Cactaceae represents a primitive characteristic of the group and also support a close genetic relationship between Pereskia and Opuntia.

  7. Role of cellular oxalate in oxalate clearance of patients with calcium oxalate monohydrate stone formation and normal controls.

    PubMed

    Oehlschläger, Sven; Fuessel, Susanne; Meye, Axel; Herrmann, Jana; Froehner, Michael; Albrecht, Steffen; Wirth, Manfred P

    2009-03-01

    To examine the cellular, plasma, and urinary oxalate and erythrocyte oxalate flux in patients with calcium oxalate monohydrate (COM) stone formation vs normal controls. Pathologic oxalate clearance in humans is mostly integrated in calcium oxalate stone formation. An underlying cause of deficient oxalate clearance could be defective transmembrane oxalate transport, which, in many tissues, is regulated by an anion exchanger (SLC26). We studied 2 groups: 40 normal controls and 41 patients with COM stone formation. Red blood cells were divided for cellular oxalate measurement and for resuspension in a buffered solution (pH 7.40); 0.1 mmol/L oxalate was added. The supernatant was measured for oxalate immediately and 1 hour after incubation. The plasma and urinary oxalate were analyzed in parallel. The mean cellular oxalate concentrations were significantly greater in the normal controls (5.25 +/- 0.47 micromol/L) than in those with COM stone formation (2.36 +/- 0.28 micromol/L; P < .01). The mean urinary oxalate concentrations were significantly greater in those with COM stone formation (0.31 +/- 0.02 mmol/L) than in the controls (0.24 +/- 0.02 mmol/L; P < .01). The cellular oxalate concentrations correlated significantly with the plasma (r = 0.49-0.63; P < .01) and urinary oxalate (r = -0.29-0.41; P < .03) concentrations in both groups. The plasma oxalate concentrations correlated significantly with the urinary oxalate concentrations (r = -0.30; P < .03) in the controls and with the erythrocyte oxalate flux (r = 0.25; P < .05) in those with COM stone formation. Our data implicate the presence of a cellular oxalate buffer to stabilize plasma and urinary oxalate concentrations in normal controls.

  8. Managing calcium oxalate scale in the bleach plant

    Treesearch

    Alan Rudie; Peter Hart

    2005-01-01

    To comply with the U.S. Environmental Protection Agency's "Cluster Rule," most U.S. mills have switched from the use of chlorine to chlorine dioxide as the oxidant in the first stage of bleaching. This process change has a downside. it increases the formation of mineral scale in bleach plants. Typically, calcium oxalate forms in the chlorine dioxide...

  9. Crystallization of calcium oxalate in minimally diluted urine

    NASA Astrophysics Data System (ADS)

    Bretherton, T.; Rodgers, A.

    1998-09-01

    Crystallization of calcium oxalate was studied in minimally diluted (92%) urine using a mixed suspension mixed product crystallizer in series with a Malvern particle sizer. The crystallization was initiated by constant flow of aqueous sodium oxalate and urine into the reaction vessel via two independent feed lines. Because the Malvern cell was in series with the reaction vessel, noninvasive measurement of particle sizes could be effected. In addition, aliquots of the mixed suspension were withdrawn and transferred to a Coulter counter for crystal counting and sizing. Steady-state particle size distributions were used to determine nucleation and growth kinetics while scanning electron microscopy was used to examine deposited crystals. Two sets of experiments were performed. In the first, the effect of the concentration of the exogenous sodium oxalate was investigated while in the second, the effect of temperature was studied. Calcium oxalate nucleation and growth rates were found to be dependent on supersaturation levels inside the crystallizer. However, while growth rate increased with increasing temperature, nucleation rates decreased. The favored phases were the trihydrate at 18°C, the dihydrate at 38° and the monohydrate at 58°C. The results of both experiments are in agreement with those obtained in other studies that have been conducted in synthetic and in maximally diluted urine and which have employed invasive crystal counting and sizing techniques. As such, the present study lends confidence to the models of urinary calcium oxalate crystallization processes which currently prevail in the literature.

  10. Calcium

    MedlinePlus

    ... and enzymes and to send messages through the nervous system. It is important to get plenty of calcium in the foods you eat. Foods rich in calcium include Dairy products such as milk, cheese, and yogurt Leafy, green vegetables Fish with soft bones that you eat, such as ...

  11. Arthritis associated with calcium oxalate crystals in an anephric patient treated with peritoneal dialysis

    SciTech Connect

    Rosenthal, A.; Ryan, L.M.; McCarty, D.J.

    1988-09-02

    The authors report a case of calcium oxalate arthropathy in a woman undergoing intermittent peritoneal dialysis who was not receiving pharmacologic doses of ascorbic acid. She developed acute arthritis, with calcium oxalate crystals in Heberden's and Bouchard's nodes, a phenomenon previously described in gout. Intermittent peritoneal dialysis may be less efficient than hemodialysis in clearing oxalate, and physicians should now consider calcium oxalate-associated arthritis in patients undergoing peritoneal dialysis who are not receiving large doses of ascorbic acid.

  12. Distribution of organic matrix in calcium oxalate renal calculi.

    PubMed

    Warpehoski, M A; Buscemi, P J; Osborn, D C; Finlayson, B; Goldberg, E P

    1981-01-01

    The quantity of protein and carbohydrate comprising the matrix of calcium oxalate monohydrate (COM) renal stones was found to decrease with distance from the surface of the stone. The average organic concentration of stones 3 to 30 mm in diameter ranged from 5.7% at the surface to 2.7% at the core. This concentration gradient suggests matrix involvement in a "growth front" on stone surfaces with migration of organic material from the "older" interior. The matrix distribution was not readily correlated with density variations or with the presence of hydroxyapatite or calcium oxalate dihydrate. Surface matrix concentrations were greater than amounts predicted by physical adsorption. Electron microscopy confirmed the presence of the organic-rich surface layer and also suggested that increase in stone size occurs predominantly by crystal growth with microcrystal aggregates as growth centers.

  13. The electrokinetic behavior of calcium oxalate monohydrate in macromolecular solutions

    NASA Technical Reports Server (NTRS)

    Curreri, P. A.; Onoda, G. Y., Jr.; Finlayson, B.

    1988-01-01

    Electrophoretic mobilities were measured for calcium oxalate monohydrate (COM) in solutions containing macromolecules. Two mucopolysaccharides (sodium heparin and chrondroitin sulfate) and two proteins (positively charged lysozyme and negatively charged bovine serum albumin) were studied as adsorbates. The effects of pH, calcium oxalate surface charge (varied by calcium or oxalate ion activity), and citrate concentration were investigated. All four macromolecules showed evidence for chemical adsorption. The macromolecule concentrations needed for reversing the surface charge indicated that the mucopopolysacchrides have greater affinity for the COM surface than the proteins. The amount of proteins that can chemically adsorb appears to be limited to approximately one monomolecular layer. When the surface charge is high, an insufficient number of proteins can chemically adsorb to neutralize or reverse the surface charge. The remaining surface charge is balanced by proteins held near the surface by longer range electrostatic forces only. Citrate ions at high concentrations appear to compete effectively with the negative protein for surface sites but show no evidence for competing with the positively charged protein.

  14. Characterization of Calcium Oxalates Generated as Biominerals in Cacti1

    PubMed Central

    Monje, Paula V.; Baran, Enrique J.

    2002-01-01

    The chemical composition and morphology of solid material isolated from various Cactaceae species have been analyzed. All of the tested specimens deposited high-purity calcium oxalate crystals in their succulent modified stems. These deposits occurred most frequently as round-shaped druses that sometimes coexist with abundant crystal sand in the tissue. The biominerals were identified either as CaC2O4.2H2O (weddellite) or as CaC2O4.H2O (whewellite). Seven different species from the Opuntioideae subfamily showed the presence of whewellite, and an equal number of species from the Cereoideae subfamily showed the deposition of weddellite. The chemical nature of these deposits was assessed by infrared spectroscopy. The crystal morphology of the crystals was visualized by both conventional light and scanning electron microscopy. Weddellite druses were made up of tetragonal crystallites, whereas those from whewellite were most often recognized by their acute points and general star-like shape. These studies clearly demonstrated that members from the main traditional subfamilies of the Cactaceae family could synthesize different chemical forms of calcium oxalate, suggesting a definite but different genetic control. The direct relationship established between a given Cactaceae species and a definite calcium oxalate biomineral seems to be a useful tool for plant identification and chemotaxonomy. PMID:11842173

  15. Diversity in Protein Profiles of Individual Calcium Oxalate Kidney Stones

    PubMed Central

    Okumura, Nobuaki; Tsujihata, Masao; Momohara, Chikahiro; Yoshioka, Iwao; Suto, Kouzou; Nonomura, Norio; Okuyama, Akihiko; Takao, Toshifumi

    2013-01-01

    Calcium oxalate kidney stones contain low amounts of proteins, some of which have been implicated in progression or prevention of kidney stone formation. To gain insights into the pathophysiology of urolithiasis, we have characterized protein components of calcium oxalate kidney stones by proteomic approaches. Proteins extracted from kidney stones showed highly heterogeneous migration patterns in gel electrophoresis as reported. This was likely to be mainly due to proteolytic degradation and protein-protein crosslinking of Tamm-Horsfall protein and prothrombin. Protein profiles of calcium oxalate kidney stones were obtained by in-solution protease digestion followed by nanoLC-MALDI-tandem mass spectrometry, which resulted in identification of a total of 92 proteins in stones from 9 urolithiasis patients. Further analysis showed that protein species and their relative amounts were highly variable among individual stones. Although proteins such as prothrombin, osteopontin, calgranulin A and calgranulin B were found in most stones tested, some samples had high contents of prothrombin and osteopontin, while others had high contents of calgranulins. In addition, calgranulin-rich stones had various neutrophil-enriched proteins such as myeloperoxidase and lactotransferrin. These proteomic profiles of individual kidney stones suggest that multiple systems composed of different groups of proteins including leucocyte-derived ones are differently involved in pathogenesis of individual kidney stones depending on situations. PMID:23874695

  16. Plant calcium oxalate crystal formation, function, and its impact on human health

    USDA-ARS?s Scientific Manuscript database

    Crystals of calcium oxalate have been observed among members from most taxonomic groups of photosynthetic organisms ranging from the smallest algae to the largest trees. The biological roles for calcium oxalate crystal formation in plant growth and development include high capacity calcium regulatio...

  17. Calcium carbonate crystals promote calcium oxalate crystallization by heterogeneous or epitaxial nucleation: possible involvement in the control of urinary lithogenesis.

    PubMed

    Geider, S; Dussol, B; Nitsche, S; Veesler, S; Berthézène, P; Dupuy, P; Astier, J P; Boistelle, R; Berland, Y; Dagorn, J C; Verdier, J M

    1996-07-01

    A large proportion of urinary stones have calcium oxalate (CaOx) as the major mineral phase. In these stones, CaOx is generally associated with minor amounts of other calcium salts. Several reports showing the presence of calcium carbonate (CaCO3) and calcium phosphate in renal stones suggested that crystals of those salts might be present in the early steps of stone formation. Such crystals might therefore promote CaOx crystallization from supersaturated urine by providing an appropriate substrate for heterogeneous nucleation. That possibility was investigated by seeding a metastable solution of 45Ca oxalate with vaterite or calcite crystallites. Accretion of CaOx was monitored by 45Ca incorporation. We showed that (1) seeds of vaterite (the hexagonal polymorph of CaCO3) and calcite (the rhomboedric form) could initiate calcium oxalate crystal growth; (2) in the presence of lithostathine, an inhibitor of CaCO3 crystal growth, such accretion was not observed. In addition, scanning electron microscopy demonstrated that growth occurred by epitaxy onto calcite seeds whereas no special orientation was observed onto vaterite. It was concluded that calcium carbonate crystals promote crystallization of calcium oxalate and that inhibitors controlling calcium carbonate crystal formation in Henle's loop might play an important role in the prevention of calcium oxalate stone formation.

  18. Efficacy of Mixtures of Magnesium, Citrate and Phytate as Calcium Oxalate Crystallization Inhibitors in Urine.

    PubMed

    Grases, Felix; Rodriguez, Adrian; Costa-Bauza, Antonia

    2015-09-01

    The main aim of the current study was to evaluate the effectiveness of mixtures of magnesium, citrate and phytate as calcium oxalate crystallization inhibitors. A turbidimetric assay in synthetic urine was performed to obtain induction times for calcium oxalate crystallization in the absence and presence of different mixtures of inhibitors. The morphology of calcium oxalate crystals in the absence or presence of inhibitors and mixtures of the inhibitors was evaluated in 2 crystallization experiments at low and high calcium oxalate supersaturation. The crystals formed were examined using scanning electron microscopy. Examination of crystallization induction times revealed clear inhibitory effects of magnesium, citrate and phytate on calcium oxalate crystallization, supporting usefulness in the treatment and prevention of calcium oxalate nephrolithiasis. Significant synergistic effects between magnesium and phytate were observed. Scanning electron microscopy images revealed that phytate is a powerful crystal growth inhibitor of calcium oxalate, totally preventing the formation of trihydrate and monohydrate. In addition to crystallization inhibition capacity, citrate and magnesium avoided calcium oxalate crystallization by decreasing its supersaturation. The synergistic effect between magnesium and phytate on calcium oxalate crystallization suggests that a combination of these 2 compounds may be highly useful as antilithiasis therapy. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  19. Flow-driven pattern formation in the calcium-oxalate system.

    PubMed

    Bohner, Bíborka; Endrődi, Balázs; Horváth, Dezső; Tóth, Ágota

    2016-04-28

    The precipitation reaction of calcium oxalate is studied experimentally in the presence of spatial gradients by controlled flow of calcium into oxalate solution. The density difference between the reactants leads to strong convection in the form of a gravity current that drives the spatiotemporal pattern formation. The phase diagram of the system is constructed, the evolving precipitate patterns are analyzed and quantitatively characterized by their diameters and the average height of the gravity flow. The compact structures of calcium oxalate monohydrate produced at low flow rates are replaced by the thermodynamically unstable calcium oxalate dihydrate favored in the presence of a strong gravity current.

  20. Effect of animal and vegetable protein intake on oxalate excretion in idiopathic calcium stone disease.

    PubMed

    Marangella, M; Bianco, O; Martini, C; Petrarulo, M; Vitale, C; Linari, F

    1989-04-01

    Oxalate excretion was measured in healthy subjects and idiopathic calcium stone-formers on dietary regimens which differed in the type and amount of protein allowed; 24-h urine collections were obtained from 41 practising vegetarians and 40 normal persons on a free, mixed, "mediterranean" diet. Twenty idiopathic calcium stone-formers were also studied while on two low calcium, low oxalate diets which differed in that animal protein was high in one and restricted in the other. Vegetarians had higher urinary oxalate levels than controls and although the calcium levels were markedly lower, urinary saturation with calcium/oxalate was significantly higher. This mild hypercalciuria was interpreted as being secondary to both a higher intake and increased fractional intestinal absorption of oxalate. Changing calcium stone-formers from a high to a low animal protein intake produced a significant decrease in calcium excretion but there was no variation in urinary oxalate. As a result, the decrease in calcium oxalate saturation was only marginal and not significant. It was concluded that dietary animal protein has a minimal effect on oxalate excretion. Mild hyperoxaluria of idiopathic calcium stone disease is likely to be intestinal in origin. Calcium stone-formers should be advised to avoid an excess of animal protein but the risks of a vegetable-rich diet should also be borne in mind.

  1. Oxalate co-precipitation synthesis of calcium zirconate and calcium titanate powders.

    SciTech Connect

    Hernandez-Sanchez, Bernadette A.; Tuttle, Bruce Andrew

    2009-06-01

    Fine powders of calcium zirconate (CaZrO{sub 3}, CZ) and calcium titanate (CaTiO{sub 3}, CT) were synthesized using a nonaqueous oxalate co-precipitation route from Ca(NO{sub 3}){sub 2}{center_dot}4 H{sub 2}O and group(IV) n-butoxides (Ti(OBu{sup n}){sub 4} or Zr(OBu{sup n}){sub 4}). Several reaction conditions and batch sizes (2-35 g) were explored to determine their influence on final particle size, morphology, and phase. Characterization of the as-prepared oxalate precursors, oven dried oxalate precursors (60-90 C), and calcined powders (635-900 C) were analyzed with TGA/DTA, XRD, TEM, and SEM. Densification and sintering studies on pressed CZ pellets at 1375 and 1400 C were also performed.more » Through the developed oxalate co-precipitation route, densification temperatures for CZ were lowered by 125 C from the 1500 C firing temperature required for conventional mixed oxide powders. Low field electrical tests of the CZ pellets indicated excellent dielectric properties with dielectric constants of {approx}30 and a dissipation factor of 0.0004 were measured at 1 kHz.« less

  2. Calcium oxalate crystal growth modification; investigations with confocal Raman microscopy

    NASA Astrophysics Data System (ADS)

    McMulkin, Calum J.; Massi, Massimiliano; Jones, Franca

    2017-06-01

    Confocal Raman Microscopy (CRM) in combination with a photophysical investigation has been employed to give insight into the interaction between calcium oxalate monohydrate (COM) and a series of tetrazole containing crystal growth modifier's (CGM's), in conjunction with characterisation of morphological changes using scanning electron and optical microscopy. The tetrazole CGM's were found to interact by surface adsorption with minimal morphological changes to the COM crystals however, significant interactions via chemisorption were observed; it was discovered that the chemisorption is sufficiently strong for aggregation of the tetrazole species to occur within the crystal during crystallisation.

  3. Aspects of calcium oxalate crystallization: theory, in vitro studies, and in vivo implementation.

    PubMed

    Rodgers, A

    1999-11-01

    There are three main approaches to urolithiasis research: theory, basic science, and clinical implementation. Although each approach has yielded meaningful results, there does not appear to be complete synergy between them. This article examines these approaches as they pertain to urinary calcium oxalate crystallization processes. Theoretical calculations were performed to examine the role of oxalate concentration on calcium oxalate supersaturation. The effects of magnesium, citrate, and combinations thereof on calcium oxalate crystallization kinetics were examined in a mixed suspension, mixed product removal crystallizer. Finally, male volunteers were given supplements of calcium alone and binary combinations of calcium, magnesium, and citrate to investigate their effects on the urinary supersaturation of calcium oxalate. Calculations showed that oxalate is 23 times more potent than calcium in its effect on the supersaturation of calcium oxalate. In the in vitro experiments, magnesium and citrate reduced the growth and nucleation kinetics as well as the supersaturation. In combination, these two components were more effective than the individual components in reducing the growth rate and the supersaturation. All of the supplements favorably altered the kinetic and thermodynamic risk factors. Calcium was the most effective in reducing the urinary excretion of oxalate. Articulation of these three approaches is essential for the meaningful investigation and understanding of urolithiasis.

  4. Novel porcine model for calcium oxalate stone formation.

    PubMed

    Trojan, Brandon P; Trojan, Sara J; Navetta, Andrew; Staches, Bryce; Sutton, Bryan; Filleur, Stephanie; Nelius, Thomas

    2017-10-01

    Mechanisms for calcium-based stone formation are not clearly delineated. Porcine are the most anatomically and physiologically congruent mammal to humans. Our objectives were to develop a cost-effective and easily reproducible porcine model for the study of calcium-based nephrolithiasis. Crossbred male pigs (n = 16) were assigned randomly to one of the following treatments: (1) control; (2) ethylene glycol (EG) + vitamin D (VD); (3) EG + ammonium chloride (AC); (4) EG + gentamicin (G); (5) EG + Lasix; (6) EG + VD + AC; (7) EG + VD + G. Treatments were administered for 28 days; blood and urine were collected on day 0, 14, and 28. At the endpoint of the study, renal tissue was collected for gross and microscopic analysis of crystal stone formation and inflammation. Stone-forming parameters were observed in serum and urine. For control versus all other treatments, by day 28, serum BUN and creatinine were less (P < 0.01), urinary creatinine, citrate and pH were greater (P < 0.01), and urinary oxalate was less (P < 0.01). Histopathological analysis of H&E staining and stone analysis revealed formation of calcium oxalate stones and crystal formation within the renal cortex and medulla for all animals except control. Nephrotoxicity was observed in one animal from treatment EG + G. The treatments explored in this experiment provided novel examples of cost-effective porcine models for the study of nephrolithiasis. EG + VD had the strongest indicators of nephrolithiasis without nephrotoxicity.

  5. Characterization of calcium oxalate defective (cod) 3 mutant from Medicago truncatula

    USDA-ARS?s Scientific Manuscript database

    Many plants invest a considerable amount of resources and energy into the formation of calcium oxalate crystals. Assigned roles for plant crystal formation include functions in defense, calcium regulation, and aluminum tolerance. From a human health standpoint, oxalate present in edible plant tiss...

  6. Genetically modified Medicago truncatula lacking calcium oxalate has increased calcium bioavailability and partially rescues vitamin D receptor knockout mice phenotypes

    USDA-ARS?s Scientific Manuscript database

    How the distribution and sequestered form of plant macro/micro-nutrients influence their bioavailability, and ultimately impact human health, is poorly understood. The legume Medicago truncatula has a portion of its tissue calcium sequestered in the form of the calcium oxalate crystal, which reduces...

  7. Proteomic analysis of a rare urinary stone composed of calcium carbonate and calcium oxalate dihydrate: a case report.

    PubMed

    Kaneko, Kiyoko; Matsuta, Yosuke; Moriyama, Manabu; Yasuda, Makoto; Chishima, Noriharu; Yamaoka, Noriko; Fukuuchi, Tomoko; Miyazawa, Katsuhito; Suzuki, Koji

    2014-03-01

    The objective of the present study was to investigate the matrix protein of a rare urinary stone that contained calcium carbonate. A urinary stone was extracted from a 34-year-old male patient with metabolic alkalosis. After X-ray diffractometry and infrared analysis of the stone, proteomic analysis was carried out. The resulting mass spectra were evaluated with protein search software, and matrix proteins were identified. X-ray diffraction and infrared analysis confirmed that the stone contained calcium carbonate and calcium oxalate dihydrate. Of the identified 53 proteins, 24 have not been previously reported from calcium oxalate- or calcium phosphate-containing stones. The protease inhibitors and several proteins related to cell adhesion or the cytoskeleton were identified for the first time. We analyzed in detail a rare urinary stone composed of calcium carbonate and calcium oxalate dihydrate. Considering the formation of a calcium carbonate stone, the new identified proteins should play an important role on the urolithiasis process in alkaline condition. © 2013 The Japanese Urological Association.

  8. Factors affecting calcium oxalate dihydrate fragmented calculi regrowth

    PubMed Central

    Costa-Bauzá, A; Perelló, J; Isern, B; Sanchis, P; Grases, F

    2006-01-01

    Background The use of extracorporeal shock wave lithotripsy (ESWL) to treat calcium oxalate dihydrate (COD) renal calculi gives excellent fragmentation results. However, the retention of post-ESWL fragments within the kidney remains an important health problem. This study examined the effect of various urinary conditions and crystallization inhibitors on the regrowth of spontaneously-passed post-ESWL COD calculi fragments. Methods Post-ESWL COD calculi fragments were incubated in chambers containing synthetic urine varying in pH and calcium concentration: pH = 5.5 normocalciuria (3.75 mM), pH = 5.5 hypercalciuria (6.25 mM), pH = 6.5 normocalciuria (3.75 mM) or pH = 6.5 hypercalciuria (6.25 mM). Fragment growth was evaluated by measuring increases in weight. Fragment growth was standardized by calculating the relative mass increase. Results Calcium oxalate monohydrate (COM) crystals formed on COD renal calculi fragments under all conditions. Under pH = 5.5 normocalciuria conditions, only COM crystals formed (growth rate = 0.22 ± 0.04 μg/mg·h). Under pH = 5.5 hypercalciuria and under pH = 6.5 normocalciuria conditions, COM crystals and a small number of new COD crystals formed (growth rate = 0.32 ± 0.03 μg/mg·h and 0.35 ± 0.05 μg/mg·h, respectively). Under pH = 6.5 hypercalciuria conditions, large amounts of COD, COM, hydroxyapatite and brushite crystals formed (growth rate = 3.87 ± 0. 34 μg/mg·h). A study of three crystallization inhibitors demonstrated that phytate completely inhibited fragment growth (2.27 μM at pH = 5.5 and 4.55 μM at pH = 6.5, both under hypercalciuria conditions), while 69.0 μM pyrophosphate caused an 87% reduction in mass under pH = 6.5 hypercalciuria conditions. In contrast, 5.29 mM citrate did not inhibit fragment mass increase under pH = 6.5 hypercalciuria conditions. Conclusion The growth rate of COD calculi fragments under pH = 6.5 hypercalciuria conditions was approximately ten times that observed under the other three

  9. Reverse engineering the kidney: modelling calcium oxalate monohydrate crystallization in the nephron.

    PubMed

    Borissova, A; Goltz, G E; Kavanagh, J P; Wilkins, T A

    2010-07-01

    Crystallization of calcium oxalate monohydrate in a section of a single kidney nephron (distal convoluted tubule) is simulated using a model adapted from industrial crystallization. The nephron fluid dynamics is represented as a crystallizer/separator series with changing volume to allow for water removal along the tubule. The model integrates crystallization kinetics and crystal size distribution and allows the prediction of the calcium oxalate concentration profile and the nucleation and growth rates. The critical supersaturation ratio for the nucleation of calcium oxalate crystals has been estimated as 2 and the mean crystal size as 1 mum. The crystal growth order, determined as 2.2, indicates a surface integration mechanism of crystal growth and crystal growth dispersion. The model allows the exploration of the effect of varying the input calcium oxalate concentration and the rate of water extraction, simulating real life stressors for stone formation such as dietary loading and dehydration.

  10. Evidence for net renal tubule oxalate secretion in patients with calcium kidney stones

    PubMed Central

    Zisman, Anna L.; Asplin, John R.; Worcester, Elaine M.; Coe, Fredric L.

    2011-01-01

    Little is known about the renal handling of oxalate in patients with idiopathic hypercalciuria (IH). To explore the role of tubular oxalate handling in IH and to evaluate whether differences exist between IH and normal controls, we studied 19 IH subjects, 8 normal subjects, and 2 bariatric stone formers (BSF) during a 1-day General Clinical Research Center protocol utilizing a low-oxalate diet. Urine and blood samples were collected at 30- to 60-min intervals while subjects were fasting and after they ate three meals providing known amounts of calcium, phosphorus, sodium, protein, oxalate, and calories. Plasma oxalate concentrations and oxalate-filtered loads were similar between patients (includes IH and BSF) and controls in both the fasting and fed states. Urinary oxalate excretion was significantly higher in patients vs. controls regardless of feeding state. Fractional excretion of oxalate (FEOx) was >1, suggesting tubular secretion of oxalate, in 6 of 19 IH and both BSF, compared with none of the controls (P < 0.00001). Adjusted for water extraction along the nephron, urine oxalate rose more rapidly among patients than normal subjects with increases in plasma oxalate. Our findings identify tubular secretion of oxalate as a key mediator of hyperoxaluria in calcium stone formers, potentially as a means of maintaining plasma oxalate in a tight range. PMID:21123489

  11. Effect of calcium oxalate on the photocatalytic degradation of Orange II on ZnO surface

    NASA Astrophysics Data System (ADS)

    Bassaid, S.; Ziane, B.; Badaoui, M.; Chaib, M.; Robert, D.

    2013-06-01

    The photocatalytic degradation of aqueous solution of Orange II, has been investigated in the presence of ZnO catalyst with calcium oxalate as sacrificial agent. This study demonstrated that the performance of ZnO photocatalyst can be improved by addition of calcium oxalate. Results show that adsorption is an important parameter controlling the degradation phenomena. Indeed, the added oxalate causes a drop in the pH medium, what causes a better adsorption of Orange II on the ZnO surface. The effect of calcium oxalate is to increase the concentration of superoxides (O{2/·-}) and hydroperoxides (HO2·) radicals, which are key intermediaries in the mechanism of photodegradation because of their powerful force of oxidation.

  12. Variability of protein content in calcium oxalate monohydrate stones.

    PubMed

    Williams, James C; Zarse, Chad A; Jackson, Molly E; Witzmann, Frank A; McAteer, James A

    2006-08-01

    Urinary stones are heterogeneous in their fragility to lithotripter shockwaves. As a first step in gaining a better understanding of the role of matrix in stone fragility, we measured extractible protein in calcium oxalate monohydrate (COM) stones that were extensively characterized by micro-computed tomography (micro CT). Stones were scanned using micro CT (Scanco mCT20, 34 microm). They were ground, and the protein extracted using four methods: 0.25M EDTA, 2% SDS reducing buffer, 9M urea buffer, and 10% acetic acid. Protein was measured using NanoOrange. The SDS extracts were also examined using polyacrylamide electrophoresis (PAGE). Extracted protein was highest with the SDS or urea methods (0.28% +/- 0.13% and 0.24% +/- 0.11%, respectively) and lower using the EDTA method (0.17% +/- 0.05%; P < 0.02). Acetic acid extracted little protein (0.006 +/- 0.002%; P < 0.001). Individual stones were significantly different in extractability of protein by the different methods, and SDS-PAGE revealed different protein patterns for individual stones. Extracted protein did not correlate with X-ray-lucent void percentage, which ranged from 0.06% to 2.8% of stone volume, or with apatite content. Extractible stone-matrix protein differs for individual COM stones, and yield is dependent on the extraction method. The presence of X-ray-lucent voids or minor amounts of apatite in stones did not correlate with protein content. The amounts of protein recovered were much lower than reported by Boyce, showing that these methods extracted only a fraction of the protein bound up in the stones. The results suggest that none of the methods tested will be useful for helping to answer the question of whether matrix content differs among stones of differing fragility to lithotripter shockwaves.

  13. SaRNA-mediated activation of TRPV5 reduces renal calcium oxalate deposition in rat via decreasing urinary calcium excretion.

    PubMed

    Zeng, Tao; Duan, Xiaolu; Zhu, Wei; Liu, Yang; Wu, Wenqi; Zeng, Guohua

    2018-06-01

    Hypercalciuria is a main risk factor for kidney stone  formation. TRPV5 is the gatekeeper protein for mediating calcium transport and reabsorption in the kidney. In the present study, we tested the effect of TRPV5 activation with small activating RNA (saRNA), which could induce gene expression by targeting the promoter of the gene, on ethylene glycol (EG)-induced calcium oxalate (CaOx) crystals formation in rat kidney. Five pairs of RNA activation sequences targeting the promoter of rat TRPV5 were designed and synthesized. The synthesized saRNA with the strongest activating effect was selected, and transcellular calcium transportation was tested by Fura-2 analysis. Subsequently, Sprague-Dawley rats were equally divided into three groups and fed with water, 1% EG for 28 days after injecting the negative control saRNA, 1% EG for 28 days after injecting the selected TRPV5-saRNA, respectively. The CaOx crystal formation and the 24-h urine components were assessed. In vitro study, saRNA ds-320 could significantly activate the expression of TRPV5 and transcellular calcium transportation. In vivo study, after 28 days treatment of EG, rats pre-infected with saRNA ds-320 had lower urinary calcium excretion and renal CaOx crystals formation as compared to that pre-infected with negative control saRNA. Activation of TRVP5 with saRNA ds-320 could inhibit EG-induced calcium oxalate crystals formation via promoting urine calcium reabsorption and decreasing urine calcium excretion in rats.

  14. A simple method for quantitating the propensity for calcium oxalate crystallization in urine

    NASA Technical Reports Server (NTRS)

    Wabner, C. L.; Pak, C. Y.

    1991-01-01

    To assess the propensity for spontaneous crystallization of calcium oxalate in urine, the permissible increment in oxalate is calculated. The previous method required visual observation of crystallization with the addition of oxalate, this warranted the need for a large volume of urine and a sacrifice in accuracy in defining differences between small incremental changes of added oxalate. Therefore, this method has been miniaturized and spontaneous crystallization is detected from the depletion of radioactive oxalate. The new "micro" method demonstrated a marked decrease (p < 0.001) in the permissible increment in oxalate in urine of stone formers versus normal subjects. Moreover, crystallization inhibitors added to urine, in vitro (heparin or diphosphonate) or in vivo (potassium citrate administration), substantially increased the permissible increment in oxalate. Thus, the "micro" method has proven reliable and accurate in discriminating stone forming from control urine and in distinguishing changes of inhibitory activity.

  15. Nanoscale observations of the effect of citrate on calcium oxalate precipitation on calcite surfaces.

    NASA Astrophysics Data System (ADS)

    Burgos-Cara, Alejandro; Ruiz-Agudo, Encarnacion; Putnis, Christine V.

    2016-04-01

    Calcium oxalate (CaC2O4ṡxH2O) minerals are naturally occurring minerals found in fossils, plants, kidney stones and is a by-product in some processes such as paper, food and beverage production [1,2]. In particular, calcium oxalate monohydrate phase (COM) also known as whewellite (CaC2O4ṡH2O), is the most frequently reported mineral phase found in urinary and kidney stones together with phosphates. Organic additives are well known to play a key role in the formation of minerals in both biotic and abiotic systems, either facilitating their precipitation or hindering it. In this regard, recent studies have provided direct evidence demonstrating that citrate species could enhance dissolution of COM and inhibit their precipitation. [3,4] The present work aims at evauate the influence of pH, citrate and oxalic acid concentrations in calcium oxalate precipitation on calcite surfaces (Island Spar, Chihuahua, Mexico) through in-situ nanoscale observation using in situ atomic force microscopy (AFM, Multimode, Bruker) in flow-through experiments. Changes in calcium oxalate morphologies and precipitated phases were observed, as well as the inhibitory effect of citrate on calcium oxalate precipitation, which also lead to stabilization an the amorphous calcium oxalate phase. [1] K.D. Demadis, M. Öner, Inhibitory effects of "green"additives on the crystal growth of sparingly soluble salts, in: J.T. Pearlman (Ed.), Green Chemistry Research Trends, Nova Science Publishers Inc., New York, 2009, pp. 265-287. [2] M. Masár, M. Zuborová, D. Kaniansky, B. Stanislawski, Determination of oxalate in beer by zone electrophoresis on a chip with conductivity detection, J. Sep. Sci. 26 (2003) 647-652. [3] Chutipongtanate S, Chaiyarit S, Thongboonkerd V. Citrate, not phosphate, can dissolve calcium oxalate monohydrate crystals and detach these crystals from renal tubular cells. Eur J Pharmacol 2012;689:219-25. [4] Weaver ML, Qiu SR, Hoyer JR, Casey WH, Nancollas GH, De Yoreo JJ

  16. The genetic composition of Oxalobacter formigenes and its relationship to colonization and calcium oxalate stone disease

    PubMed Central

    Knight, John; Deora, Rajendar; Assimos, Dean G.; Holmes, Ross P.

    2013-01-01

    Oxalobacter formigenes is a unique intestinal organism that relies on oxalate degradation to meet most of its energy and carbon needs. A lack of colonization is a risk factor for calcium oxalate stone disease. Protection against calcium oxalate stone disease appears to be due to the oxalate degradation that occurs in the gut on low calcium diets with a possible further contribution from intestinal oxalate secretion. Much remains to be learned about how the organism establishes and maintains gut colonization and the precise mechanisms by which it modifies stone risk. The sequencing and annotation of the genomes of a Group 1 and a Group 2 strain of O. formigenes should provide the informatic tools required for the identification of the genes and pathways associated with colonization and survival. In this review we have identified genes that may be involved and where appropriate suggested how they may be important in calcium oxalate stone disease. Elaborating the functional roles of these genes should accelerate our understanding of the organism and clarify its role in preventing stone formation. PMID:23632911

  17. Characterization of calcium oxalate biominerals in some (non-Cactaceae) succulent plant species.

    PubMed

    Monje, Paula V; Baran, Enrique J

    2010-01-01

    The water-accumulating leaves of crassulacean acid metabolism plants belonging to five different families were investigated for the presence of biominerals by infrared spectroscopic and microscopic analyses. Spectroscopic results revealed that the mineral present in succulent species of Agavaceae, Aizoaceae, and Asphodelaceae was calcium oxalate monohydrate (whewellite, CaC2O4 x H2O). Crystals were predominantly found as raphides or solitary crystals of various morphologies. However, representative Crassulaceae members and a succulent species of Asteraceae did not show the presence of biominerals. Overall, these results suggest no correlation between calcium oxalate generation and crassulacean acid metabolism in succulent plants.

  18. Physical characteristics of Medicago truncatula calcium oxalate crystals determine their effectiveness in insect defense

    USDA-ARS?s Scientific Manuscript database

    Plant structural traits can act as defense against herbivorous insects, causing them to avoid feeding on a given plant or tissue. Mineral crystals of calcium oxalate in leaves of Medicago truncatula Gaertn. have previously been shown to be effective deterrents of lepidopteran insect feeding. They ar...

  19. Structural and chemical insect defenses in calcium oxalate defective mutants of Medicago truncatula

    USDA-ARS?s Scientific Manuscript database

    Plant structures can act as defense against herbivorous insects, causing them to avoid feeding on a given plant or tissue. Mineral crystals of calcium oxalate in leaves of Medicago truncatula Gaertn. are effective deterrents of lepidopteran feeding, and they inhibit conversion of leaves into insect ...

  20. Characterization of calcium oxalate defective (cod) 6 mutant from Medicago truncatula

    USDA-ARS?s Scientific Manuscript database

    Many plants invest a considerable amount of resources and energy into the formation of calcium oxalate crystals. A number of roles for crystal formation in plant growth and development have been assigned based on their prevalence, spatial distribution, and variety of crystal shapes. These assigned...

  1. Comparison of the x-ray attenuation properties of breast calcifications, aluminium, hydroxyapatite and calcium oxalate.

    PubMed

    Warren, L M; Mackenzie, A; Dance, D R; Young, K C

    2013-04-07

    Aluminium is often used as a substitute material for calcifications in phantom measurements in mammography. Additionally, calcium oxalate, hydroxyapatite and aluminium are used in simulation studies. This assumes that these materials have similar attenuation properties to calcification, and this assumption is examined in this work. Sliced mastectomy samples containing calcification were imaged at ×5 magnification using a digital specimen cabinet. Images of the individual calcifications were extracted, and the diameter and contrast of each calculated. The thicknesses of aluminium required to achieve the same contrast as each calcification when imaged under the same conditions were calculated using measurements of the contrast of aluminium foils. As hydroxyapatite and calcium oxalate are also used to simulate calcifications, the equivalent aluminium thicknesses of these materials were also calculated using tabulated attenuation coefficients. On average the equivalent aluminium thickness was 0.85 times the calcification diameter. For calcium oxalate and hydroxyapatite, the equivalent aluminium thicknesses were 1.01 and 2.19 times the thickness of these materials respectively. Aluminium and calcium oxalate are suitable substitute materials for calcifications. Hydroxyapatite is much more attenuating than the calcifications and aluminium. Using solid hydroxyapatite as a substitute for calcification of the same size would lead to excessive contrast in the mammographic image.

  2. Fasting urinary calcium-to-creatinine and oxalate-to-creatinine ratios in dogs with calcium oxalate urolithiasis and breed-matched controls.

    PubMed

    Furrow, E; Patterson, E E; Armstrong, P J; Osborne, C A; Lulich, J P

    2015-01-01

    Hypercalciuria and hyperoxaluria are risk factors for calcium oxalate (CaOx) urolithiasis, but breed-specific reports of urinary metabolites and their relationship with stone status are lacking. To compare urinary metabolites (calcium and oxalate) and blood ionized calcium (iCa) concentrations between CaOx stone formers and breed-matched stone-free controls for the Miniature Schnauzer, Bichon Frise, and Shih Tzu breeds. Forty-seven Miniature Schnauzers (23 cases and 24 controls), 27 Bichons Frise (14 cases and 13 controls), and 15 Shih Tzus (7 cases and 8 controls). Prospective study. Fasting spot urinary calcium-to-creatinine and oxalate-to-creatinine ratios (UCa/Cr and UOx/Cr, respectively) and blood iCa concentrations were measured and compared between cases and controls within and across breeds. Regression models were used to test the effect of patient and environmental factors on these variables. UCa/Cr was higher in cases than controls for each of the 3 breeds. In addition to stone status, being on a therapeutic food designed to prevent CaOx stone recurrence was associated with higher UCa/Cr. UOx/Cr did not differ between cases and controls for any of the breeds. Blood iCa was higher in cases than controls in the Miniature Schnauzer and Bichon Frise breeds and had a moderate correlation with UCa/Cr. Hypercalciuria is associated with CaOx stone status in the Miniature Schnauzer, Bichon Frise, and Shih Tzu breeds. UOx/Cr did not correlate with stone status in these 3 breeds. These findings may influence breed-specific stone prevention recommendations. Copyright © 2015 by the American College of Veterinary Internal Medicine.

  3. Crystallization of calcium oxalate dihydrate in a buffered calcium-containing glucose solution by irradiation with non-equilibrium atmospheric pressure plasma

    NASA Astrophysics Data System (ADS)

    Kurake, Naoyuki; Tanaka, Hiromasa; Ishikawa, Kenji; Nakamura, Kae; Kajiyama, Hiroaki; Kikkawa, Fumitaka; Mizuno, Masaaki; Ikehara, Yuzuru; Hori, Masaru

    2017-10-01

    Oxalate was synthesized in the glucose solution by irradiation with non-equilibrium atmospheric pressure plasma (NEAPP), in which the NEAPP plume contacted the solution surface, via the generation of several intermediate organic products such as gluconic acid. A thermodynamically unstable phase of calcium oxalate dihydrate crystallized rapidly during incubation of a NEAPP-irradiated glucose solution that contained calcium ions and was buffered at neutral pH. Longer irradiation times increased the growth rate and the number of seed crystals.

  4. Spectroscopic study of the inhibition of calcium oxalate calculi by Larrea tridentata

    NASA Astrophysics Data System (ADS)

    Pinales, Luis Alonso

    The causes of urolithiasis include such influences as diet, metabolic disorders, and genetic factors which have been documented as sources that aggravate urinary calculi depositions and aggregations, and, implicitly, as causes of urolithiasis. This study endeavors to detail the scientific mechanisms involved in calcium oxalate calculi formation, and, more importantly, their inhibition under growth conditions imposed by the traditional medicinal approach using the herbal extract, Larrea tridentata. The calculi were synthesized without and with Larrea tridentata infusion by employing the single diffusion gel technique. A visible decrease in calcium oxalate crystal growth with increasing amounts of Larrea tridentata herbal infusion was observed in photomicrographs, as well as a color change from white-transparent for pure crystals to light orange-brown for crystals with inhibitor. Analysis of the samples, which includes Raman, infrared absorption, scanning electron microscopy (SEM), and X-ray powder diffraction (XRD) techniques, demonstrate an overall transition in morphology of the crystals from monohydrate without herbal extract to dihydrate with inhibitor. Furthermore, the resulting data from Raman and infrared absorption support the possibilities of the influences, in this complex process, of NDGA and its derivative compounds from Larrea tridentata, and of the bonding of the magnesium of the inhibitor with the oxalate ion on the surface of the calculi crystals. This assumption corroborates well with the micrographs obtained under higher magnification, which show that the separated small crystallites consist of darker brownish cores, which we attribute to the dominance of growth inhibition by NDGA, surrounded by light transparent thin shells, which possibly correspond to passivation of the crystals by magnesium oxalate. The SEM results reveal the transformation from the dominant monoclinic structure of the calcium oxalate crystals grown alone to the tetragonal

  5. Calcium Oxalate Urolithiasis: A Case of Missing Microbes?

    PubMed

    Batagello, Carlos Alfredo; Monga, Manoj; Miller, Aaron W

    2018-05-29

    Urinary stone disease (USD) has known associations with the gut microbiota. Approximately 80% of kidney stones contain oxalate as a primary constituent and diverse oxalate-degrading bacteria exist within the human gut that may protect against USD. While bacteriotherapy represents a promising strategy to eliminate oxalate and reduce the risk of USD, oxalate-degrading probiotics have had limited success. To identify limitations of oxalate-degrading probiotics and refine development of bacteriotherapies to prevent USD, we review the literature associated with the gut microbiota and USD. A literature search was performed to identify publications that examine the role of oxalate-degrading bacteria or the whole gut microbiota in oxalate metabolism and the pathophysiology of USD. We conducted a meta-analysis of studies that examined the association of the whole gut microbiota with USD. In addition, we evaluated the gut microbiota of healthy individuals and those with co-morbidities related to USD using publically available data from the American Gut Project (AGP). Studies on O. formigenes reveal that colonization by this species is not a good predictor of USD risk nor urinary oxalate excretion. The species of oxalate-degrading bacteria used in probiotics and duration of administration does not impact efficacy or persistence. Studies focused on the whole gut microbiota reveal broad shifts in the gut microbiota associated with USD and a diverse microbial network is associated with oxalate metabolism. AGP data analysis demonstrated a strong overlap in microbial genera depleted in diseased individuals among USD and co-morbidities. The associations between the gut microbiota and USD extend beyond individual functional microbial species. Common shifts in the gut microbiota may facilitate the onset of USD and/or co-morbidities. The successful development of bacteriotherapies to inhibit USD will need to incorporate strategies that target a broad diversity of bacteria rather than

  6. Reinjury risk of nano-calcium oxalate monohydrate and calcium oxalate dihydrate crystals on injured renal epithelial cells: aggravation of crystal adhesion and aggregation

    PubMed Central

    Gan, Qiong-Zhi; Sun, Xin-Yuan; Bhadja, Poonam; Yao, Xiu-Qiong; Ouyang, Jian-Ming

    2016-01-01

    Background Renal epithelial cell injury facilitates crystal adhesion to cell surface and serves as a key step in renal stone formation. However, the effects of cell injury on the adhesion of nano-calcium oxalate crystals and the nano-crystal-induced reinjury risk of injured cells remain unclear. Methods African green monkey renal epithelial (Vero) cells were injured with H2O2 to establish a cell injury model. Cell viability, superoxide dismutase (SOD) activity, malonaldehyde (MDA) content, propidium iodide staining, hematoxylin–eosin staining, reactive oxygen species production, and mitochondrial membrane potential (Δψm) were determined to examine cell injury during adhesion. Changes in the surface structure of H2O2-injured cells were assessed through atomic force microscopy. The altered expression of hyaluronan during adhesion was examined through laser scanning confocal microscopy. The adhesion of nano-calcium oxalate monohydrate (COM) and calcium oxalate dihydrate (COD) crystals to Vero cells was observed through scanning electron microscopy. Nano-COM and COD binding was quantitatively determined through inductively coupled plasma emission spectrometry. Results The expression of hyaluronan on the cell surface was increased during wound healing because of Vero cell injury. The structure and function of the cell membrane were also altered by cell injury; thus, nano-crystal adhesion occurred. The ability of nano-COM to adhere to the injured Vero cells was higher than that of nano-COD crystals. The cell viability, SOD activity, and Δψm decreased when nano-crystals attached to the cell surface. By contrast, the MDA content, reactive oxygen species production, and cell death rate increased. Conclusion Cell injury contributes to crystal adhesion to Vero cell surface. The attached nano-COM and COD crystals can aggravate Vero cell injury. As a consequence, crystal adhesion and aggregation are enhanced. These findings provide further insights into kidney stone

  7. Determination of urine oxalate level in rats with renal calcium oxalate calculus by high-performance liquid chromatography.

    PubMed

    Cao, Qiu-shi; Ba, Yuan-ming; Luo, Jun-hua; Dai, Qi

    2015-02-01

    To establish a method of high-performance liquid chromatography (HPLC) for determining the urine oxalate levle in rats with renal calcium oxalate calculus. Totally 24 SPF Wistar healthy male rats were randomly divided into control group(n=12)and ethylene glycol (EG) group (n=12). Rats in EG group were administered intragastrically with 2% ammonium chloride (AC)2 ml/rat per day+1% ethylene glycol (EG), along with free access to drinking water.The control group was fed with deionized water, along with the intragastric administration of normal saline (1 ml per day). Twenty-eight days after modelling, the 24-hour urine samples were collected, and the urine oxalic acid levels were determined using HPLC and the results were compared with those of catalytic spectrophotometry using oxidation of methyl. During the HPLC, the samples were separated on Aglient 5TC-C18 (250×4.6 mm,5 Μm), eluted with mixture of methanol (0.1 mol/L) and ammonium acetate (15:85) at 1.2 ml/min, and detected at 314 nm, with the column temperature being 20 ℃. The standard curves of high and low concentrations of oxalic acid were y=5909.1x+378730, R² =0.9984 and y=7810.5x-16635, R² =0.9967,respectively. The lowest detectable concentration in this method was 5 Μg/ml. The linear high concentration range of oxalate stood at 62.50-2000.00 Μg/ml, and the linear low concentration range of oxalate stood at 6.25-100.00 Μg/ml. Its average recovery was 95.1%, and its within-day and day-to-day precisions were 3.4%-10.8% and 3.8%-9.4%. Both HPLC and catalytic spectrophotometry showed significantly higher urinary oxalic acid concentration and 24 h urine oxalate level in EG group compared with the control group [urinary oxalic acid concentration: (736.35 ± 254.52) Μg/ml vs.(51.56 ± 36.34) Μg/ml,(687.35 ± 234.53) Μg/ml vs.(50.24 ± 42.34) Μg/ml;24 h urine oxalate level: (11.23 ± 4.12)mg vs.(0.87 ± 0.45)mg,(9.89 ± 3.55)mg vs. (0.77 ± 0.65)mg; all P<0.01]. No statistically significant difference

  8. Stone size limits the use of Hounsfield units for prediction of calcium oxalate stone composition.

    PubMed

    Stewart, Gregory; Johnson, Lewis; Ganesh, Halemane; Davenport, Daniel; Smelser, Woodson; Crispen, Paul; Venkatesh, Ramakrishna

    2015-02-01

    To evaluate the role of stone size in predicting urinary calculus composition using Hounsfield units on noncontrasted computed tomography (CT) scan. A retrospective review was performed for all patients who underwent ureteroscopy or percutaneous nephrolithotomy during a 1-year period, had a stone analysis performed, and had CT imaging available for review. All CT scans were reviewed by a board-certified radiologist. Variables evaluated included age, sex, body mass index, stone size, stone location, Hounsfield units (HUs), and stone composition. We identified a total of 91 patients (41 men and 50 women) with CT imaging and stone analysis available for review. Stone analysis showed 41 calcium oxalate monohydrate (CaOxMH), 13 calcium oxalate dihydrate, 29 calcium phosphate, 5 uric acid, 2 struvite, and 1 cystine stone. Average age was 46 years, and average body mass index was 32 kg/m2. Measured HUs varied significantly with size for CaOxMH and calcium oxalate dihydrate stones (P values <.05), but not for calcium phosphate stones (P = .126). Using a CaOxMH identification value of 700-1000 HUs, 28 of 41 stone compositions (68%) would not have been correctly identified, including all 10 (100%) small (<5 mm) stones, 13 of 22 (59%) medium (5-10 mm) stones, and 5 of 9 large (>10 mm) stones (55%). For calcium stones, the ability of CT HUs to predict stone composition was limited, likely due to the mixed stone composition. Within a cohort of CaOxMH stone formers, measured HUs varied linearly with stone size. All stones <5 mm were below thresholds for CaOxMH composition. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Oxalate secretion by ectomycorrhizal Paxillus involutus is mineral-specific and controls calcium weathering from minerals

    PubMed Central

    Schmalenberger, A.; Duran, A. L.; Bray, A. W.; Bridge, J.; Bonneville, S.; Benning, L. G.; Romero-Gonzalez, M. E.; Leake, J. R.; Banwart, S. A.

    2015-01-01

    Trees and their associated rhizosphere organisms play a major role in mineral weathering driving calcium fluxes from the continents to the oceans that ultimately control long-term atmospheric CO2 and climate through the geochemical carbon cycle. Photosynthate allocation to tree roots and their mycorrhizal fungi is hypothesized to fuel the active secretion of protons and organic chelators that enhance calcium dissolution at fungal-mineral interfaces. This was tested using 14CO2 supplied to shoots of Pinus sylvestris ectomycorrhizal with the widespread fungus Paxillus involutus in monoxenic microcosms, revealing preferential allocation by the fungus of plant photoassimilate to weather grains of limestone and silicates each with a combined calcium and magnesium content of over 10 wt.%. Hyphae had acidic surfaces and linear accumulation of weathered calcium with secreted oxalate, increasing significantly in sequence: quartz, granite < basalt, olivine, limestone < gabbro. These findings confirmed the role of mineral-specific oxalate exudation in ectomycorrhizal weathering to dissolve calcium bearing minerals, thus contributing to the geochemical carbon cycle. PMID:26197714

  10. Oxalate secretion by ectomycorrhizal Paxillus involutus is mineral-specific and controls calcium weathering from minerals

    NASA Astrophysics Data System (ADS)

    Schmalenberger, A.; Duran, A. L.; Bray, A. W.; Bridge, J.; Bonneville, S.; Benning, L. G.; Romero-Gonzalez, M. E.; Leake, J. R.; Banwart, S. A.

    2015-07-01

    Trees and their associated rhizosphere organisms play a major role in mineral weathering driving calcium fluxes from the continents to the oceans that ultimately control long-term atmospheric CO2 and climate through the geochemical carbon cycle. Photosynthate allocation to tree roots and their mycorrhizal fungi is hypothesized to fuel the active secretion of protons and organic chelators that enhance calcium dissolution at fungal-mineral interfaces. This was tested using 14CO2 supplied to shoots of Pinus sylvestris ectomycorrhizal with the widespread fungus Paxillus involutus in monoxenic microcosms, revealing preferential allocation by the fungus of plant photoassimilate to weather grains of limestone and silicates each with a combined calcium and magnesium content of over 10 wt.%. Hyphae had acidic surfaces and linear accumulation of weathered calcium with secreted oxalate, increasing significantly in sequence: quartz, granite < basalt, olivine, limestone < gabbro. These findings confirmed the role of mineral-specific oxalate exudation in ectomycorrhizal weathering to dissolve calcium bearing minerals, thus contributing to the geochemical carbon cycle.

  11. [Quantitative mineralogical analyzes of kidney stones and diagnosing metabolic disorders in female patients with calcium oxalate urolithiasis].

    PubMed

    Kustov, A V; Moryganov, M A; Strel'nikov, A I; Zhuravleva, N I; Airapetyan, A O

    2016-02-01

    To conduct a complex examination of female patients with calcium oxalate urolithiasis to detect metabolic disorders, leading to stone formation. The study was carried out using complex physical and chemical methods, including quantitative X-ray phase analysis of urinary stones, pH measurement, volumetry, urine and blood spectrophotometry. Quantitative mineralogical composition of stones, daily urine pH profile, daily urinary excretion of ions of calcium, magnesium, oxalate, phosphate, citrate and uric acid were determined in 20 female patients with calcium oxalate stones. We have shown that most of the stones comprised calcium oxalate monohydrate or mixtures of calcium oxalate dihydrate and hydroxyapatite. Among the identified abnormalities, the most frequent were hypocitraturia and hypercalciuria - 90 and 45%, respectively. Our findings revealed that the daily secretion of citrate and oxalate in patients older than 50 years was significantly lower than in younger patients. In conclusion, daily urinary citrate excretion should be measured in female patients with calcium oxalate stones. This is necessary both to determine the causes of stone formation, and to monitor the effectiveness of citrate therapy.

  12. Calcium oxalate syntheses in a solution containing glucose by the atmospheric pressure plasma irradiation

    NASA Astrophysics Data System (ADS)

    Kurake, Naoyuki; Tanaka, Hiromasa; Ishikawa, Kenji; Nakamura, Kae; Kajiyama, Hiroaki; Kikkawa, Fumitaka; Mizuno, Masaaki; Yamanishi, Yoko; Hori, Masaru

    2016-09-01

    The non-equilibrium atmospheric pressure plasma (NEAPP) has been attracted attention because of its characteristic high reactivity even in a low temperature so that various phenomena by the NEAPP such as a sterilization, growth promotion and so forth have been reported around the world. Previously, we reported the NEAPP irradiation generated the calcium oxalate crystals in the medium, which contains 31 kinds of organics and inorganics. The Dulbecco's Modified Eagle Medium (DMEM) which was used in previous study is composed of no oxalate. Interestingly, not only crystallization but also synthesis of the oxalate was occurred by the NEAPP irradiation. Also the crystallization details were analyzed with the X-ray diffraction (XRD). In this study, we have clarified the mechanism on the crystallization due that D-glucose, calcium ion and bicarbonate ions are minimum essential components. The oxalate synthesis was proved by the gas chromatography and mass spectrometer (GC-MS). Finally, we conclude that a supersaturation of oxalic acid synthesized in those 3 species by the NEAPP.

  13. Reevaluation of the plant "gemstones": Calcium oxalate crystals sustain photosynthesis under drought conditions.

    PubMed

    Tooulakou, Georgia; Giannopoulos, Andreas; Nikolopoulos, Dimosthenis; Bresta, Panagiota; Dotsika, Elissavet; Orkoula, Malvina G; Kontoyannis, Christos G; Fasseas, Costas; Liakopoulos, Georgios; Klapa, Maria I; Karabourniotis, George

    2016-09-01

    Land plants face the perpetual dilemma of using atmospheric carbon dioxide for photosynthesis and losing water vapors, or saving water and reducing photosynthesis and thus growth. The reason behind this dilemma is that this simultaneous exchange of gases is accomplished through the same minute pores on leaf surfaces, called stomata. In a recent study we provided evidence that pigweed, an aggressive weed, attenuates this problem exploiting large crystals of calcium oxalate as dynamic carbon pools. This plant is able to photosynthesize even under drought conditions, when stomata are closed and water losses are limited, using carbon dioxide from crystal decomposition instead from the atmosphere. Abscisic acid, an alarm signal that causes stomatal closure seems to be implicated in this function and for this reason we named this path "alarm photosynthesis." The so-far "enigmatic," but highly conserved and widespread among plant species calcium oxalate crystals seem to play a crucial role in the survival of plants.

  14. Determinants of calcium and oxalate excretion in subjects with calcium nephrolithiasis: the role of metabolic syndrome traits.

    PubMed

    Ticinesi, Andrea; Guerra, Angela; Allegri, Franca; Nouvenne, Antonio; Cervellin, Gianfranco; Maggio, Marcello; Lauretani, Fulvio; Borghi, Loris; Meschi, Tiziana

    2018-06-01

    The association of metabolic syndrome (MetS) traits with urinary calcium (UCE) or oxalate excretion (UOE) is uncertain in calcium stone formers (CSFs). Our aim was to investigate this association in a large group of Caucasian CSFs. We retrospectively reviewed data of CSFs evaluated at our Kidney Stone Clinic from 1984 to 2015. Data on body mass index (BMI), MetS traits defined according to international consensus, family history of urolithiasis, anti-hypertensive treatments, calcemia, renal function, and 24-h urinary profile of lithogenic risk were collected. The association between MetS traits and UCE or UOE was tested with multivariate linear regression models accounting for a long list of potential confounders. We included 3003 CSFs, aged 44 ± 14 years. The prevalence of hypertension, diabetes, overweight (BMI ≥ 25 kg/m 2 ) and dyslipidemia was 17, 2, 42 and 38%, respectively. Median values of UCE and UOE were 211 mg/24 h (IQR 143-296) and 28 mg/24 h (IQR 22-34), respectively. At a multivariate model, including age, sex, date of examination, drug treatments, family history, renal function, blood calcium and urinary factors as covariates, hypertension was a significant positive determinant of UCE (β ± SE 0.23 ± 0.07, p = 0.003), but overweight, dyslipidemia and diabetes were not. No MetS trait was significantly associated with UOE in multivariate models. In a large group of Caucasian CSFs, hypertension was the only MetS trait significantly associated with UCE, while no MetS trait was associated with oxalate excretion.

  15. Calcium oxalate druses affect leaf optical properties in selenium-treated Fagopyrum tataricum.

    PubMed

    Golob, Aleksandra; Stibilj, Vekoslava; Nečemer, Marijan; Kump, Peter; Kreft, Ivan; Hočevar, Anja; Gaberščik, Alenka; Germ, Mateja

    2018-03-01

    Plants of the genus Fagopyrum contain high levels of crystalline calcium oxalate (CaOx) deposits, or druses, that can affect the leaf optical properties. As selenium has been shown to modify the uptake and accumulation of metabolically important elements such as calcium, we hypothesised that the numbers of druses can be altered by selenium treatment, and this would affect the leaf optical properties. Tartary buckwheat (Fagopyrum tataricum Gaertn.) was grown outdoors in an experimental field. At the beginning of flowering, plants were foliarly sprayed with sodium selenate solution at 10 mg selenium L -1 or only with water. Plant morphological, biochemical, physiological and optical properties were examined, along with leaf elemental composition and content. Se spraying did not affect leaf biochemical and functional properties. However, it increased leaf thickness and the contents of Se in the leaves, and decreased the density of calcium oxalate druses in the leaves. Except Se content, Se spraying did not affect contents of other elements in leaves, including total calcium per dry mass of leaf tissue. Redundancy analysis showed that of all parameters tested, only the calcium oxalate druses parameters were significant in explaining the variability of the leaf reflectance and transmittance spectra. The density of CaOx druses positively correlated with the reflectance in the blue, green, yellow and UV-B regions of the spectrum, while the area of CaOx druses per mm 2 of leaf transection area positively correlated with the transmittance in the green and yellow regions of the spectrum. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Substituting milk for apple juice does not increase kidney stone risk in most normocalciuric adults who form calcium oxalate stones.

    PubMed

    Massey, L K; Kynast-Gales, S A

    1998-03-01

    Increasing intake of dietary calcium from less than 400 mg to 800 mg daily may decrease the absorption of dietary oxalate, which in turn would decrease urinary oxalate excretion. The effect of substituting milk for apple juice on urine composition and risk of calcium oxalate precipitability was studied. Twenty-one normocalciuric adults with a history of at least 1 calcium oxalate stone and urinary oxalate excretion exceeding 275 micromol/day on their self-selected diet. Randomized crossover trial. Each participant consumed two moderate-oxalate (2,011 micromol/day) study diets, which were identical except that one contained 360 mL milk and the other contained 540 mL apple juice as the beverage with meals. Four days free-living then 2 days in the metabolic unit of a university nutrition department. Tiselius risk index for calcium oxalate precipitability calculated from urine composition. Paired t tests. Twenty-four hour urinary oxalate excretion was 18% lower (P<.0001) on the milk diet vs the juice diet: 423 vs 514 micromol, respectively. Calcium excretion was 17% higher (P<.05) on the milk vs juice diet: 4.7 vs 3.9 mmol, respectively. Urinary magnesium and citrate excretion, volume, and Tiselius risk index did not differ between diets. Substituting 360 mL milk daily for apple juice with meals in a diet containing moderate amounts of dietary oxalate from whole grains, legumes, fruits, and vegetables does not increase the risk index of calcium oxalate precipitability in most normocalciuric adults who form stones.

  17. Using MRI to detect and differentiate calcium oxalate and calcium hydroxyapatite crystals in air-bubble-free phantom

    PubMed Central

    Mustafi, Devkumar; Fan, Xiaobing; Peng, Bo; Foxley, Sean; Palgen, Jeremy; Newstead, Gillian M.

    2015-01-01

    Calcium oxalate (CaOX) crystals and calcium hydroxyapatite (CaHA) crystals were commonly associated with breast benign and malignant lesions, respectively. In this research, CaOX (n = 6) and CaHA (n = 6) crystals in air-bubble-free agarose phantom were studied and characterized by using MRI at 9.4 Tesla scanner. Calcium micro-crystals sizes ranged from 200 – 500 microns were made with either 99% pure CaOX or CaHA powder and embedded in agar to mimic the dimensions and calcium content of breast microcalcifications in vivo. MRI data were acquired with high spatial resolution T2-weighted (T2W) images and gradient echo images with five different echo times (TEs). The crystals areas were determined by setting the threshold relative to agarose signal. The ratio of crystals areas were calculated by the measurements from gradient echo images divided by T2W images. Then the ratios as a function of TE were fitted with the radical function. The results showed that the blooming artifacts due to magnetic susceptibility between agar and CaHA crystals were more than twice as large as the susceptibility in CaOX crystals (p < 0.05). In addition, larger bright rings were observed on gradient echo images around CaHA crystals compared to CaOX crystals. Our results suggest that MRI may provide useful information regarding breast microcalcifications by evaluating the apparent area of crystals ratios obtained between gradient echo and T2W images. PMID:26392170

  18. Preventive treatment of calcium oxalate crystal deposition with immortal flowers.

    PubMed

    Orhan, Nilüfer; Onaran, Metin; Şen, İlker; Işık Gönül, İpek; Aslan, Mustafa

    2015-04-02

    A number of medicinal plants are used for their diuretic, urolithiatic and anti-inflammatory effects on urinary system problems in Turkey and the most common traditional remedy for kidney stones is the tea of immortal flowers. The aim of this study is to evaluate the preventive effect of infusions prepared from capitulums of Helichrysum graveolens (M.Bieb.) Sweet (HG) and Helichrysum stoechas ssp. barellieri (Ten.) Nyman (HS) on formation of kidney stones. Sodium oxalate (Ox-70mg/kg intraperitoneally) was used to induce kidney stones on Wistar albino rats. At the same time, two different doses of the plant extracts (HG: 62.5 and 125mg/kg; HS: 78 and 156mg/kg) were dissolved in the drinking water and administered to animals for 5 days. Potassium citrate was used as positive control in the experiments. During the experiment, water intake, urine volume and body weights of the animals were recorded. At the end of the experiments, liver, kidney and body weights of the animals were determined; biochemical analysis were conducted on urine, blood and plasma samples. Histopathological changes in kidney tissues were examined and statistical analysis were evaluated. HS extract showed the highest preventive effect at 156mg/kg dose (stone formation score: 1.16), whereas a number of kidney stones were maximum in sodium oxalate group (stone formation score: 2.66). Helichrysum extracts decreased urine oxalate and uric acid levels and increased citrate levels significantly. In addition, Helichrysum extracts regulated the negative changes in biochemical and hematological parameters occurred after Ox injection. We conclude that Helichrysum extracts could reduce the formation and growth of kidney stones in Ox-induced urolithiasis and can be beneficial for patients with recurrent stones. In addition, this is the first study on the preventive effect of immortal flowers. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Antilithiatic Activity of phlorotannin rich extract of Sarghassum Wightii on Calcium Oxalate Urolithiais – In Vitro and In Vivo Evaluation

    PubMed Central

    Sujatha, D.; Singh, Kiranpal; Vohra, Mursalin; Kumar, K. Vijay; Sunitha, S.

    2015-01-01

    ABSTRACT Purpose: Urolithiasis is a common urological disorder responsible for serious human affliction and cost to the society with a high recurrence rate. The aim of the present study was to systematically evaluate the phlorotannin rich extract of Sargassum wightii using suitable in vitro and in vivo models to provide scientific evidence for its antilithiatic activity. Materials and Methods: To explore the effect of Sargassum wightii on calcium oxalate crystallization, in vitro assays like crystal nucleation, aggregation and crystal growth were performed. Calcium oxalate urolithiasis was induced in male Sprague dawley rats using a combination of gentamicin and calculi producing diet (5% ammonium oxalate and rat pellet feed). The biochemical parameters like calcium, oxalate, magnesium, phosphate, sodium and potassium were evaluated in urine, serum and kidney homogenates. Histopathological studies were also done to confirm the biochemical findings. Results: The yield of Sargassum wightii extract was found to be 74.5 gm/kg and confirmed by quantitative analysis. In vitro experiments with Sargassum wightii showed concentration dependent inhibition of calcium oxalate nucleation, aggregation and growth supported by SEM analysis. In the in vivo model, Sargassum wightii reduced both calcium and oxalate supersaturation in urine, serum and deposition in the kidney. The biochemical results were supported by histopathological studies. Conclusion: The findings of the present study suggest that Sargassum wightii has the ability to prevent nucleation, aggregation and growth of calcium oxalate crystals. Sargassum wightii has better preventive effect on calcium oxalate stone formation indicating its strong potential to develop as a therapeutic option to prevent recurrence of urolithiasis. PMID:26200544

  20. Kinetics of calcium oxalate crystal formation in urine.

    PubMed

    Laube, Norbert; Klein, Florian; Bernsmann, Falk

    2017-04-01

    It is routinely observed that persons with increased urinary stone risk factors do not necessarily form uroliths. Furthermore, stone formers can present with urinalyses that do not reflect the clinical picture. We explain this discrepancy by differences in crystallization kinetics. In 1162 urines, crystallization of Ca-oxalate was induced according to the BONN-Risk-Index (BRI) method. The urine's relative light transmissivity (RLT) was recorded from 100 % at start of titration to 95 % due to nuclei formation and crystal growth. From the RLT changes, a measure of the thermodynamic inhibition threshold of crystal formation (BRI) and of crystal growth kinetics is derived ("turbidity slope" after crystallization onset). On average, subjects presenting with a low inhibition threshold, i.e., high BRI, also present significantly higher crystal growth rates compared with subjects in lower BRI classes. Only subjects in the highest BRI class show a lower growth rate than expected, probably due to a depletion of supersaturation by massive initial nucleation. With increasing thermodynamic risk of crystal formation (i.e., increasing BRI) due to an imbalance between inhibitors and promoters of crystal formation, an increase in the imbalance between inhibitors and promoters of crystal growth (i.e., increasing growth rate) is observed. Both lead to an increased urolith formation risk. Healthy subjects with increased BRI are an exception to this trend: their urine is thermodynamically prone to form stones, but they show a kinetic inhibition preventing nuclei from significant growth.

  1. The influence of freezer storage of urine samples on the BONN-Risk-Index for calcium oxalate crystallization.

    PubMed

    Laube, Norbert; Zimmermann, Diana J

    2004-01-01

    This study was performed to quantify the effect of a 1-week freezer storage of urine on its calcium oxalate crystallization risk. Calcium oxalate is the most common urinary stone material observed in urolithiasis patients in western and affluent countries. The BONN-Risk-Index of calcium oxalate crystallization risk in human urine is determined from a crystallization experiment performed on untreated native urine samples. We tested the influence of a 1-week freezing on the BONN-Risk-Index value as well as the effect of the sample freezing on the urinary osmolality. In vitro crystallization experiments in 49 native urine samples from stone-forming and non-stone forming individuals were performed in order to determine their calcium oxalate crystallization risk according to the BONN-Risk-Index approach. Comparison of the results derived from original sample investigations with those obtained from the thawed aliquots by statistical evaluation shows that i) no significant deviation from linearity between both results exists and ii) both results are identical by statistical means. This is valid for both, the BONN-Risk-Index and the osmolality data. The differences in the BONN-Risk-Index results of both procedures of BONN-Risk-Index determination, however, exceed the clinically acceptable difference. Thus, determination of the urinary calcium oxalate crystallization risk from thawed urine samples cannot be recommended.

  2. Synthesis of calcium oxalate crystals in culture medium irradiated with non-equilibrium atmospheric-pressure plasma

    NASA Astrophysics Data System (ADS)

    Kurake, Naoyuki; Tanaka, Hiromasa; Ishikawa, Kenji; Nakamura, Kae; Kajiyama, Hiroaki; Kikkawa, Fumitaka; Mizuno, Masaaki; Yamanishi, Yoko; Hori, Masaru

    2016-09-01

    Octahedral particulates several tens of microns in size were synthesized in a culture medium irradiated through contact with a plume of non-equilibrium atmospheric-pressure plasma (NEAPP). The particulates were identified in the crystalline phase as calcium oxalate dihydrate (COD). The original medium contained constituents such as NaCl, d-glucose, CaCl2, and NaHCO3 but not oxalate or oxalic acid. The oxalate was clearly synthesized and crystallized in the medium as thermodynamically unstable COD crystals after the NEAPP irradiation.

  3. Quantitative Mineralogical Composition of Calculi and Urine Abnormalities for Calcium Oxalate Stone Formers: A Single-Center Results.

    PubMed

    Kustov, Andrey V; Strelnikov, Alexander I

    2018-05-03

    The paper focuses on the relationship of risk factors and metabolic disorders with mineralogical composition of calculi, age and gender of calcium oxalate stone formers. Stone mineralogical composition, 24 hour biochemistry and pH-profile of urine were examined for sixty four stone formers using powder X-ray diffraction, spectrophotometric and potentiometric techniques. The analysis indicated that 44 % of calculi were composed of pure calcium oxalate monohydrate, whereas other 56 % contained both monohydrate and dihydrate or usually their mixtures with hydroxyl apatite. Hypocitraturia, hypercalciuria and hyperuricosuria were identified as the most frequent disorders. Patients with pure calcium oxalate stones and calcium oxalate mixed with apatite revealed different patterns including age, acid-base balance of urine, calcium, citrate excretion etc.Conclusions: Our results demonstrate that most patients simultaneously reveal several risk factors. The special attention should be paid to normalize the daily citrate, calcium and urate excretion. High risk patients, such as postmenopausal females or stone formers with a high apatite content require a specific metabolic evaluation towards in highlighting abnormalities associated with stone formation.

  4. Distinguishing characteristics of idiopathic calcium oxalate kidney stone formers with low amounts of Randall's plaque.

    PubMed

    Wang, Xiangling; Krambeck, Amy E; Williams, James C; Tang, Xiaojing; Rule, Andrew D; Zhao, Fang; Bergstralh, Eric; Haskic, Zejfa; Edeh, Samuel; Holmes, David R; Herrera Hernandez, Loren P; Lieske, John C

    2014-10-07

    Overgrowth of calcium oxalate on Randall's plaque is a mechanism of stone formation among idiopathic calcium oxalate stone-formers (ICSFs). It is less clear how stones form when there is little or no plaque. Participants were a consecutive cohort of ICSFs who underwent percutaneous nephroscopic papillary mapping in the kidney or kidneys containing symptomatic stones and a papillary tip biopsy from a representative calyx during a stone removal procedure between 2009 and 2013. The distribution of Randall's plaque coverage was analyzed and used to divide ICSFs into those with a high (≥5%; mean, 10.5%; n=10) versus low (<5%; mean, 1.5%; n=32) amount of plaque coverage per papilla. Demographic and laboratory features were compared between these two groups. Low-plaque stone formers tended to be obese (50% versus 10%; P=0.03) and have a history of urinary tract infection (34% versus 0%; P=0.04). They were less likely to have multiple prior stone events (22% versus 80%; P=0.002) and had a lower mean 24-hour urine calcium excretion (187±86 mg versus 291±99 mg; P<0.01). Morphologically, stones from patients with low amounts of plaque lacked a calcium phosphate core by microcomputed tomography. Papillary biopsies from low plaque stone-formers revealed less interstitial and basement membrane punctate crystallization. These findings suggest that other pathways independent of Randall's plaque may contribute to stone pathogenesis among a subgroup of ICSFs who harbor low amounts of plaque. Copyright © 2014 by the American Society of Nephrology.

  5. Effect of vitamin C supplements on urinary oxalate and pH in calcium stone-forming patients.

    PubMed

    Baxmann, Alessandra Calábria; De O G Mendonça, Claudia; Heilberg, Ita Pfeferman

    2003-03-01

    The contribution of ascorbate to urinary oxalate is controversial. The present study aimed to determine whether urinary oxalate and pH may be affected by vitamin C supplementation in calcium stone-forming patients. Forty-seven adult calcium stone-forming patients received either 1 g (N=23) or 2 g (N=24) of vitamin C supplement for 3 days and 20 healthy subjects received 1 g. A 24-hour urine sample was obtained both before and after vitamin C for calcium, oxalate, magnesium, citrate, sodium, potassium, and creatinine determination. The Tiselius index was used as a calcium oxalate crystallization index. A spot fasting morning urine sample was also obtained to determine the urinary pH before and after vitamin C. Fasting urinary pH did not change after 1 g (5.8 +/- 0.6 vs. 5.8 +/- 0.7) or 2 g vitamin C (5.8 +/- 0.8 vs. 5.8 +/- 0.7). A significant increase in mean urinary oxalate was observed in calcium stone-forming patients receiving either 1 g (50 +/- 16 vs. 31 +/- 12 mg/24 hours) or 2 g (48 +/- 21 vs. 34 +/- 12 mg/24 hours) of vitamin C and in healthy subjects (25 +/- 12 vs. 39 +/- 13 mg/24 hours). A significant increase in mean Tiselius index was observed in calcium stone-forming patients after 1 g (1.43 +/- 0.70 vs. 0.92 +/- 0.65) or 2 g vitamin C (1.61 +/- 1.05 vs. 0.99 +/- 0.55) and in healthy subjects (1.50 +/- 0.69 vs. 0.91 +/- 0.46). Ancillary analyses of spot urine obtained after vitamin C were performed in 15 control subjects in vessels with or without ethylenediaminetetraacetic acid (EDTA) with no difference in urinary oxalate between them (28 +/- 23 vs. 26 +/- 21 mg/L), suggesting that the in vitro conversion of ascorbate to oxalate did not occur. These data suggest that vitamin C supplementation may increase urinary oxalate excretion and the risk of calcium oxalate crystallization in calcium stone-forming patients.

  6. The effect of ascorbic acid ingestion on the biochemical and physicochemical risk factors associated with calcium oxalate kidney stone formation.

    PubMed

    Auer, B L; Auer, D; Rodgers, A L

    1998-03-01

    The present study was undertaken to determine the effect of ingestion of large doses of vitamin C on urinary oxalate excretion and on a number of other biochemical and physicochemical risk factors associated with calcium oxalate urolithiasis. A further objective was to determine urinary ascorbate excretion and to relate it qualitatively to ingested levels of the vitamin and oxalate excretion. Ten healthy males participated in a protocol in which 4 g ascorbic acid was ingested for 5 days. Urines (24 h) were collected prior to, during and after the protocol. The urine collection procedure was designed to allow for the analysis of oxalate in the presence and absence of an EDTA preservative and for the analysis of ascorbic acid by manual titration using 2,6 dichlorophenolindophenol. Physicochemical risk factors such as the calcium oxalate relative supersaturation and Tiselius risk index were calculated from urine composition. The results showed that erroneously high analytical oxalate levels occur in the asence of preservative. In the preserved samples there was no significant increase in oxalate excretion at any stage of the protocol. Ascorbate excretion increased when vitamin C ingestion commenced but levelled out after 24 hours suggesting that saturation of the metabolic pool is reached within 24 hours after which ingested ascorbic acid is excreted unmetabolized in the urine. While transient statistically significant changes occurred in some of the biochemical risk factors, they were not regarded as being clinically significant. There were no changes in either the calcium oxalate relative supersaturation or Tiselius risk index. It is concluded that ingestion of large doses of ascorbic acid does not affect the principal risk factors associated with calcium oxalate kidney stone formation.

  7. Reevaluation of the plant “gemstones”: Calcium oxalate crystals sustain photosynthesis under drought conditions

    PubMed Central

    Tooulakou, Georgia; Giannopoulos, Andreas; Nikolopoulos, Dimosthenis; Bresta, Panagiota; Dotsika, Elissavet; Orkoula, Malvina G.; Kontoyannis, Christos G.; Fasseas, Costas; Liakopoulos, Georgios; Klapa, Maria I.; Karabourniotis, George

    2016-01-01

    ABSTRACT Land plants face the perpetual dilemma of using atmospheric carbon dioxide for photosynthesis and losing water vapors, or saving water and reducing photosynthesis and thus growth. The reason behind this dilemma is that this simultaneous exchange of gases is accomplished through the same minute pores on leaf surfaces, called stomata. In a recent study we provided evidence that pigweed, an aggressive weed, attenuates this problem exploiting large crystals of calcium oxalate as dynamic carbon pools. This plant is able to photosynthesize even under drought conditions, when stomata are closed and water losses are limited, using carbon dioxide from crystal decomposition instead from the atmosphere. Abscisic acid, an alarm signal that causes stomatal closure seems to be implicated in this function and for this reason we named this path “alarm photosynthesis.” The so-far “enigmatic,” but highly conserved and widespread among plant species calcium oxalate crystals seem to play a crucial role in the survival of plants. PMID:27471886

  8. Phase transformation of calcium oxalate dihydrate-monohydrate: Effects of relative humidity and new spectroscopic data

    NASA Astrophysics Data System (ADS)

    Conti, Claudia; Casati, Marco; Colombo, Chiara; Realini, Marco; Brambilla, Luigi; Zerbi, Giuseppe

    2014-07-01

    New data on vibrational properties of calcium oxalates and their controversial transformation mechanism are presented. We have focused on whewellite (CaC2O4·H2O) and weddellite [CaC2O4·(2 + x) H2O], the most common phases of calcium oxalate; these compounds occur in many organisms, in kidney stones and in particular kinds of films found on the surface of many works of art. Low temperature experiments carried out by Fourier transform infrared spectroscopy have highlighted both the high structural order in the crystalline state of whewellite and the disordered distribution of the zeolitic water molecules in weddellite. The synthesised nanocrystals of weddellite have been kept under different hygrometric conditions in order to study, by X-ray powder diffraction, the role of “external” water molecules on their stability. Moreover, in order to identify the different kinds of water molecules, a re-investigation, supported by quantum chemical calculations, of the observed vibrational spectra (IR and Raman) of whewellite has been conducted.

  9. Size-dependent cellular uptake mechanism and cytotoxicity toward calcium oxalate on Vero cells

    NASA Astrophysics Data System (ADS)

    Sun, Xin-Yuan; Gan, Qiong-Zhi; Ouyang, Jian-Ming

    2017-02-01

    Urinary crystals with various sizes are present in healthy individuals and patients with kidney stone; however, the cellular uptake mechanism of calcium oxalate of various sizes has not been elucidated. This study aims to compare the internalization of nano-/micron-sized (50 nm, 100 nm, and 1 μm) calcium oxalate monohydrate (COM) and dihydrate (COD) crystals in African green monkey renal epithelial (Vero) cells. The internalization and adhesion of COM and COD crystals to Vero cells were enhanced with decreasing crystal size. Cell death rate was positively related to the amount of adhered and internalized crystals and exhibited higher correlation with internalization than that with adhesion. Vero cells mainly internalized nano-sized COM and COD crystals through clathrin-mediated pathways as well as micron-sized crystals through macropinocytosis. The internalized COM and COD crystals were distributed in the lysosomes and destroyed lysosomal integrity to some extent. The results of this study indicated that the size of crystal affected cellular uptake mechanism, and may provide an enlightenment for finding potential inhibitors of crystal uptake, thereby decreasing cell injury and the occurrence of kidney stones.

  10. Calcium oxalate crystal related kidney injury in a patient receiving Roux-en Y hepaticojejunostomy due to gall bladder cancer.

    PubMed

    Tsai, Jun-Li; Tsai, Shang-Feng

    2017-03-29

    Calcium oxalate nephropathy is rare in current practice. It was a common complication during jejunoileal bypass, but much less seen in modern gastric bypass surgery for morbid obesity. The major cause of it is enteric hyperoxaluria. We report on a patient here with acute kidney disease due to calcium oxalate nephropathy, rather than the conditions mentioned above. The male patient received a Roux-en Y hepaticojejunostomy and common bile duct drainage. In addition to enteric hyperoxaluria, chronic kidney disease related metabolic acidosis, chronic diarrhea related volume depletion, a high oxalate and low potassium diet, long term ascorbic acid intake and long term exposure to antibiotics, all predisposed him to having oxalate nephropathy. This is the first case with such conditions and we recommend that similarly diagnosed patients avoid all these predisposing factors, in order to avoid this rare disease and its undesired outcome.

  11. Inhibition of calcium oxalate crystal deposition on kidneys of urolithiatic rats by Hibiscus sabdariffa L. extract.

    PubMed

    Laikangbam, Reena; Damayanti Devi, M

    2012-06-01

    The present study aims at systematic evaluation of the calyces of Hibiscus sabdariffa to establish its scientific validity for anti-urolithiatic property using ethylene glycol-induced hyperoxaluria model in male albino rats. Administration of a mixture of 0.75% ethylene glycol and 2% ammonium chloride resulted in hyperoxaluria as well as increased renal excretion of calcium and phosphate. The decrease in the serum calcium concentration indicates an increased calcium oxalate formation. Supplementation of aqueous extract of H. sabdariffa at different doses (250, 500 and 750 mg/kg body weight) significantly lowered the deposition of stone-forming constituents in the kidneys and serum of urolithiatic rats. These findings have been confirmed through histological investigations. Results of in vivo genotoxicity testing showed no significant chromosomal aberrations in the bone marrow cells of ethylene glycol-induced rats. The plant extracts at the doses investigated induced neither toxic nor lethal effects and are safe. It can be concluded that the calyces of H. sabdariffa are endowed with anti-urolithiatic activity and do not have genotoxic effects. Thus, it can be introduced in clinical practices and medicine in the form of orally administered syrup after further investigations and clinical trials.

  12. An Assessment of Engineered Calcium Oxalate Crystal Formation on Plant Growth and Development as a Step toward Evaluating Its Use to Enhance Plant Defense.

    PubMed

    Nakata, Paul A

    2015-01-01

    The establishment of new approaches to control chewing insects has been sought not only for direct use in reducing crop loss but also in managing resistance to the pesticides already in use. Engineered formation of calcium oxalate crystals is a potential strategy that could be developed to fulfill both these needs. As a step toward this development, this study investigates the effects of transforming a non-calcium oxalate crystal accumulating plant, Arabidopsis thaliana, into a crystal accumulating plant. Calcium oxalate crystal accumulating A. thaliana lines were generated by ectopic expression of a single bacterial gene encoding an oxalic acid biosynthetic enzyme. Biochemical and cellular studies suggested that the engineered A. thaliana lines formed crystals of calcium oxalate in a manner similar to naturally occurring crystal accumulating plants. The amount of calcium oxalate accumulated in leaves also reached levels similar to those measured in the leaves of Medicago truncatula in which the crystals are known to play a defensive role. Visual inspection of the different engineered lines, however, suggested a phenotypic consequence on plant growth and development with higher calcium oxalate concentrations. The restoration of a near wild-type plant phenotype through an enzymatic reduction of tissue oxalate supported this observation. Overall, this study is a first to provide initial insight into the potential consequences of engineering calcium oxalate crystal formation in non-crystal accumulating plants.

  13. Influence of gamma-irradiation on the non-isothermal decomposition of calcium-gadolinium oxalate

    NASA Astrophysics Data System (ADS)

    Moharana, S. C.; Praharaj, J.; Bhatta, D.

    Thermal decomposition of co-precipitated unirradiated and irradiated Ca-Gd oxalate has been studied by adopting differential thermal analysis (DTA) and thermogravimetric (TG) techniques. The reaction occurs through two stages corresponding to the decomposition of gadolinium oxalate (Gd-Ox) followed by that of calcium oxalate (Ca-Ox). The kinetic parameters for both the stages are calculated by using solid state reaction models and Coats-Redfern's equation. The co-precipitation as well as irradiation alter the DTA peak temperatures and the kinetic parameters of Ca-Ox. The decomposition of Gd-Ox follows the two dimensional Contracting area (R-2) mechanism, while that of Ca-Ox follows the Avrami-Erofeev (A(2)) mechanism (n =2), which are also exhibited by the co-precipitated and irradiated samples. Co-precipitation decreases the energy of activation and the pre-exponential factor of the individual components but the reverse phenomenon takes place upon irradiation of the co-precipitate. The mechanisms underlying the phenomena are explored.

  14. Medicago truncatula-derived calcium oxalate crystals have a negative impact on chewing insect performance via their physical properties

    USDA-ARS?s Scientific Manuscript database

    Plant structural traits often act as defenses against herbivorous insects, causing them to avoid feeding on a given plant or tissue. Mineral crystals of calcium oxalate in Medicago truncatula Gaertn. (Fabaceae) leaves have previously been shown to be effective deterrents of lepidopteran insect feedi...

  15. Physical characteristics of calcium oxalate crystals as determinants in structural defense against chewing insects in Medicago truncatula

    USDA-ARS?s Scientific Manuscript database

    In addition to the numerous chemical defenses that plants employ to fend off insect herbivores, simple structural components can also play important roles in effective protection. Our investigations have shown that plant crystals of calcium oxalate can function in insect defense. The isolation of ca...

  16. Extraction and estimation of the quantity of calcium oxalate crystals in the foliage of conifer and hardwood trees

    Treesearch

    Rakesh Minocha; Bradley Chamberlain; Stephanie Long; Swathi A. Turlapati; Gloria Quigley

    2015-01-01

    The main goal of this study was to develop a method for the extraction and indirect estimation of the quantity of calcium oxalate (CaOx) in the foliage of trees. Foliar tissue was collected from a single tree of each species (five conifers and five hardwoods) for comparison of extractions in different solvents using 10 replicates per species from the same pool of...

  17. Calcium oxalate stone formation in the inner ear as a result of an Slc26a4 mutation.

    PubMed

    Dror, Amiel A; Politi, Yael; Shahin, Hashem; Lenz, Danielle R; Dossena, Silvia; Nofziger, Charity; Fuchs, Helmut; Hrabé de Angelis, Martin; Paulmichl, Markus; Weiner, Steve; Avraham, Karen B

    2010-07-09

    Calcium oxalate stone formation occurs under pathological conditions and accounts for more than 80% of all types of kidney stones. In the current study, we show for the first time that calcium oxalate stones are formed in the mouse inner ear of a genetic model for hearing loss and vestibular dysfunction in humans. The vestibular system within the inner ear is dependent on extracellular tiny calcium carbonate minerals for proper function. Thousands of these biominerals, known as otoconia, are associated with the utricle and saccule sensory maculae and are vital for mechanical stimulation of the sensory hair cells. We show that a missense mutation within the Slc26a4 gene abolishes the transport activity of its encoded protein, pendrin. As a consequence, dramatic changes in mineral composition, size, and shape occur within the utricle and saccule in a differential manner. Although abnormal giant carbonate minerals reside in the utricle at all ages, in the saccule, a gradual change in mineral composition leads to a formation of calcium oxalate in adult mice. By combining imaging and spectroscopy tools, we determined the profile of mineral composition and morphology at different time points. We propose a novel mechanism for the accumulation and aggregation of oxalate crystals in the inner ear.

  18. Antioxidant properties of polysaccharide from the brown seaweed Sargassum graminifolium (Turn.), and its effects on calcium oxalate crystallization.

    PubMed

    Zhang, Chao-Yan; Wu, Wen-Hui; Wang, Jue; Lan, Min-Bo

    2012-01-01

    We investigated the effects of polysaccharides from the brown seaweed Sargassum graminifolium (Turn.) (SGP) on calcium oxalate crystallization, and determined its antioxidant activities. To examine the effects of SGP on calcium oxalate crystallization, we monitored nucleation and aggregation of calcium oxalate monohydrate crystals, using trisodium citrate as a positive control. We assessed antioxidant activities of SGP by determining its reducing power, its ability to scavenge superoxide radicals, and its activity in the 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay. The nucleation inhibition ratio of trisodium citrate and SGP was 58.5 and 69.2%, respectively, and crystal aggregation was inhibited by 71.4 and 76.8%, respectively. Increasing concentrations of SGP resulted in increased scavenging of superoxide anions and DPPH radicals (IC₅₀ = 1.9 and 0.6 mg/mL, respectively). These results suggest that SGP could be a candidate for treating urinary stones because of its ability to inhibit calcium oxalate crystallization and its antioxidant properties.

  19. Antioxidant Properties of Polysaccharide from the Brown Seaweed Sargassum graminifolium (Turn.), and Its Effects on Calcium Oxalate Crystallization

    PubMed Central

    Zhang, Chao-Yan; Wu, Wen-Hui; Wang, Jue; Lan, Min-Bo

    2012-01-01

    We investigated the effects of polysaccharides from the brown seaweed Sargassum graminifolium (Turn.) (SGP) on calcium oxalate crystallization, and determined its antioxidant activities. To examine the effects of SGP on calcium oxalate crystallization, we monitored nucleation and aggregation of calcium oxalate monohydrate crystals, using trisodium citrate as a positive control. We assessed antioxidant activities of SGP by determining its reducing power, its ability to scavenge superoxide radicals, and its activity in the 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay. The nucleation inhibition ratio of trisodium citrate and SGP was 58.5 and 69.2%, respectively, and crystal aggregation was inhibited by 71.4 and 76.8%, respectively. Increasing concentrations of SGP resulted in increased scavenging of superoxide anions and DPPH radicals (IC50 = 1.9 and 0.6 mg/mL, respectively). These results suggest that SGP could be a candidate for treating urinary stones because of its ability to inhibit calcium oxalate crystallization and its antioxidant properties. PMID:22363225

  20. Effects of diet on urine composition of cats with calcium oxalate urolithiasis.

    PubMed

    Lulich, Jody P; Osborne, Carl A; Lekcharoensuk, Chalermpol; Kirk, Claudia A; Bartges, Joseph W

    2004-01-01

    Ten client-owned cats with calcium oxalate (CaOx) urolithiasis were evaluated to determine the effect of diet on urine CaOx saturation. Two dietary treatments were evaluated in each cat: the diet consumed just prior to urolith detection and a canned diet formulated to prevent CaOx uroliths. This study revealed that hypercalciuria is a consistent abnormality in cats with CaOx urolith formation. When urolith-forming cats consumed a diet formulated to prevent urolith formation, activity product ratios for CaOx (which estimate the degree to which urine is saturated with CaOx) were significantly lower. These results suggest that consumption of an appropriately formulated urolith-prevention diet will reduce recurrence of CaOx urolithiasis.

  1. Crystallization of calcium oxalates is controlled by molecular hydrophilicity and specific polyanion-crystal interactions.

    PubMed

    Grohe, Bernd; Taller, Adam; Vincent, Peter L; Tieu, Long D; Rogers, Kem A; Heiss, Alexander; Sørensen, Esben S; Mittler, Silvia; Goldberg, Harvey A; Hunter, Graeme K

    2009-10-06

    To gain more insight into protein structure-function relationships that govern ectopic biomineralization processes in kidney stone formation, we have studied the ability of urinary proteins (Tamm-Horsfall protein, osteopontin (OPN), prothrombin fragment 1 (PTF1), bikunin, lysozyme, albumin, fetuin-A), and model compounds (a bikunin fragment, recombinant-, milk-, bone osteopontin, poly-L-aspartic acid (poly asp), poly-L-glutamic acid (poly glu)) in modulating precipitation reactions of kidney stone-related calcium oxalate mono- and dihydrates (COM, COD). Combining scanning confocal microscopy and fluorescence imaging, we determined the crystal faces of COM with which these polypeptides interact; using scanning electron microscopy, we characterized their effects on crystal habits and precipitated volumes. Our findings demonstrate that polypeptide adsorption to COM crystals is dictated first by the polypeptide's affinity for the crystal followed by its preference for a crystal face: basic and relatively hydrophobic macromolecules show no adsorption, while acidic and more hydrophilic polypeptides adsorb either nonspecifically to all faces of COM or preferentially to {100}/{121} edges and {100} faces. However, investigating calcium oxalates grown in the presence of these polypeptides showed that some acidic proteins that adsorb to crystals do not affect crystallization, even if present in excess of physiological concentrations. These proteins (albumin, bikunin, PTF1, recombinant OPN) have estimated total hydrophilicities from 200 to 850 kJ/mol and net negative charges from -9 to -35, perhaps representing a "window" in which proteins adsorb and coat urinary crystals (support of excretion) without affecting crystallization. Strongest effects on crystallization were observed for polypeptides that are either highly hydrophilic (>950 kJ/mol) and highly carboxylated (poly asp, poly glu), or else highly hydrophilic and highly phosphorylated (native OPN isoforms), suggesting

  2. Kidney stone matrix proteins ameliorate calcium oxalate monohydrate induced apoptotic injury to renal epithelial cells.

    PubMed

    Narula, Shifa; Tandon, Simran; Singh, Shrawan Kumar; Tandon, Chanderdeep

    2016-11-01

    Kidney stone formation is a highly prevalent disease, affecting 8-10% of the human population worldwide. Proteins are the major constituents of human kidney stone's organic matrix and considered to play critical role in the pathogenesis of disease but their mechanism of modulation still needs to be explicated. Therefore, in this study we investigated the effect of human kidney stone matrix proteins on the calcium oxalate monohydrate (COM) mediated cellular injury. The renal epithelial cells (MDCK) were exposed to 200μg/ml COM crystals to induce injury. The effect of proteins isolated from human kidney stone was studied on COM injured cells. The alterations in cell-crystal interactions were examined by phase contrast, polarizing, fluorescence and scanning electron microscopy. Moreover, its effect on the extent of COM induced cell injury, was quantified by flow cytometric analysis. Our study indicated the antilithiatic potential of human kidney stone proteins on COM injured MDCK cells. Flow cytometric analysis and fluorescence imaging ascertained that matrix proteins decreased the extent of apoptotic injury caused by COM crystals on MDCK cells. Moreover, the electron microscopic studies of MDCK cells revealed that matrix proteins caused significant dissolution of COM crystals, indicating cytoprotection against the impact of calcium oxalate injury. The present study gives insights into the mechanism implied by urinary proteins to restrain the pathogenesis of kidney stone disease. This will provide a better understanding of the formation of kidney stones which can be useful for the proper management of the disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Cooperation of phosphates and carboxylates controls calcium oxalate crystallization in ultrafiltered urine.

    PubMed

    Grohe, Bernd; Chan, Brian P H; Sørensen, Esben S; Lajoie, Gilles; Goldberg, Harvey A; Hunter, Graeme K

    2011-10-01

    Osteopontin (OPN) is one of a group of proteins found in urine that are believed to limit the formation of kidney stones. In the present study, we investigate the roles of phosphate and carboxylate groups in the OPN-mediated modulation of calcium oxalate (CaOx), the principal mineral phase found in kidney stones. To this end, crystallization was induced by addition of CaOx solution to ultrafiltered human urine containing either human kidney OPN (kOPN; 7 consecutive carboxylates, 8 phosphates) or synthesized peptides corresponding to residues 65-80 (pSHDHMDDDDDDDDDGD; pOPAR) or 220-235 (pSHEpSTEQSDAIDpSAEK; P3) of rat bone OPN. Sequence 65-80 was also synthesized without the phosphate group (OPAR). Effects on calcium oxalate monohydrate (COM) and dihydrate (COD) formation were studied by scanning electron microscopy. We found that controls form large, partly intergrown COM platelets; COD was never observed. Adding any of the polyelectrolytes was sufficient to prevent intergrowth of COM platelets entirely, inhibiting formation of these platelets strongly, and inducing formation of the COD phase. Strongest effects on COM formation were found for pOPAR and OPAR followed by kOPN and then P3, showing that acidity and hydrophilicity are crucial in polyelectrolyte-affected COM crystallization. At higher concentrations, OPAR also inhibited COD formation, while P3, kOPN and, in particular, pOPAR promoted COD, a difference explainable by the variations of carboxylate and phosphate groups present in the molecules. Thus, we conclude that carboxylate groups play a primary role in inhibiting COM formation, but phosphate and carboxylate groups are both important in initiating and promoting COD formation.

  4. Osteopontin regulates adhesion of calcium oxalate crystals to renal epithelial cells.

    PubMed

    Yasui, Takahiro; Fujita, Keiji; Asai, Kiyofumi; Kohri, Kenjiro

    2002-02-01

    The association of calcium crystals with renal tubular cells is an important factor during the formation of urinary stones. We previously reported the strong expression of osteopontin (OPN) on renal tubular cells in the stone-forming kidney, suggesting that OPN plays a role in the crystal-cell interaction. In the present study, we examined the biological consequences of inhibiting OPN expression at the translational level on the formation and adhesion of crystals. We synthesized antisense OPN expression vector (pTet-OPNas) using the tetracycline-regulated expression system. The pTet-OPNas was constructed using a mouse OPN cDNA sequence in an inverted (antisense) orientation. Two clones (NRK-52E/ASs) were identified by transfection of pTet-OPNas into NRK-52E cells and they showed a marked reduction of OPN synthesis in the absence of tetracycline. Calcium oxalate (CaOx) crystal suspension was spread homogeneously on top of the NRK-52E cells. After incubation, the association of CaOx crystals and cells was visualized by scanning electron microscopy. Intact NRK-52E cells, NRK-52E cells transfected with empty vector and tetracycline-treated antisense clones (NRK-52E/ASs), under identical conditions, were associated with CaOx crystals. In contrast, the expression of antisense OPN prevented the association of CaOx crystals with NRK-52E cells. Osteopontin plays a crucial role in the adhesion process of CaOx crystals to renal tubular cells in stone formation.

  5. Mimicking the biomolecular control of calcium oxalate monohydrate crystal growth: effect of contiguous glutamic acids.

    PubMed

    Grohe, Bernd; Hug, Susanna; Langdon, Aaron; Jalkanen, Jari; Rogers, Kem A; Goldberg, Harvey A; Karttunen, Mikko; Hunter, Graeme K

    2012-08-21

    Scanning confocal interference microscopy (SCIM) and molecular dynamics (MD) simulations were used to investigate the adsorption of the synthetic polypeptide poly(l-glutamic acid) (poly-glu) to calcium oxalate monohydrate (COM) crystals and its effect on COM formation. At low concentrations (1 μg/mL), poly-glu inhibits growth most effectively in ⟨001⟩ directions, indicating strong interactions of the polypeptide with {121} crystal faces. Growth in <010> directions was inhibited only marginally by 1 μg/mL poly-glu, while growth in <100> directions did not appear to be affected. This suggests that, at low concentrations, poly-glu inhibits lattice-ion addition to the faces of COM in the order {121} > {010} ≥ {100}. At high concentrations (6 μg/mL), poly-glu resulted in the formation of dumbbell-shaped crystals featuring concave troughs on the {100} faces. The effects on crystal growth indicate that, at high concentrations, poly-glu interacts with the faces of COM in the order {100} > {121} > {010}. This mirrors MD simulations, which predicted that poly-glu will adsorb to a {100} terrace plane (most calcium-rich) in preference to a {121} (oblique) riser plane but will adsorb to {121} riser plane in preference to an {010} terrace plane (least calcium-rich). The effects of different poly-glu concentration on COM growth (1-6 μg/mL) may be due to variations between the faces in terms of growth mechanism and/or (nano)roughness, which can affect surface energy. In addition, 1 μg/mL might not be adequate to reach the critical concentration for poly-glu to significantly pin step movement on {100} and {010} faces. Understanding the mechanisms involved in these processes is essential for the development of agents to reduce recurrence of kidney stone disease.

  6. Effects of Orthosiphon grandiflorus, Hibiscus sabdariffa and Phyllanthus amarus extracts on risk factors for urinary calcium oxalate stones in rats.

    PubMed

    Woottisin, Surachet; Hossain, Rayhan Zubair; Yachantha, Chatchai; Sriboonlue, Pote; Ogawa, Yoshihide; Saito, Seiichi

    2011-01-01

    We evaluated the antilithic effect of Orthosiphon grandiflorus, Hibiscus sabdariffa and Phyllanthus amarus extracts on known risk factors for calcium oxalate stones in rats. We divided 30 male Wistar rats into 5 equal groups. Controls were fed a standard diet and the remaining groups received a 3% glycolate diet for 4 weeks to induce hyperoxaluria. One glycolate fed group served as the untreated group and the others were given oral extracts of Orthosiphon grandiflorus, Hibiscus sabdariffa or Phyllanthus amarus at a dose of 3.5 mg daily. We collected 24-hour urine and blood samples. Kidneys were harvested for histological examination. We measured the renal tissue content of calcium and oxalate. The Hibiscus sabdariffa group showed significantly decreased serum oxalate and glycolate, and higher oxalate urinary excretion. The Phyllanthus amarus group showed significantly increased urinary citrate vs the untreated group. Histological examination revealed less CaOx crystal deposition in the kidneys of Hibiscus sabdariffa and Phyllanthus amarus treated rats than in untreated rats. Those rats also had significantly lower renal tissue calcium content than untreated rats. All parameters in the Orthosiphon grandiflorus treated group were comparable to those in the untreated group. Hibiscus sabdariffa and Phyllanthus amarus decreased calcium crystal deposition in the kidneys. The antilithic effect of Hibiscus sabdariffa may be related to decreased oxalate retention in the kidney and more excretion into urine while that of Phyllanthus amarus may depend on increased urinary citrate. In contrast, administering Orthosiphon grandiflorus had no antilithic effect. Copyright © 2011 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  7. MRP-1 and BCRP Promote the Externalization of Phosphatidylserine in Oxalate-treated Renal Epithelial Cells: Implications for Calcium Oxalate Urolithiasis.

    PubMed

    Li, YiFu; Yu, ShiLiang; Gan, XiuGuo; Zhang, Ze; Wang, Yan; Wang, YingWei; An, RuiHua

    2017-09-01

    To investigate the possible involvement of multidrug resistance-associated protein 1 (MRP-1) and breast cancer resistance protein (BCRP) in the oxalate-induced redistribution of phosphatidylserine (PS) in renal epithelial cell membranes. A western blot analysis was used to examine the MRP-1 and BCRP expression levels. Surface-expressed PS was detected by the annexin V-binding assay. The cell-permeable fluorogenic probe 2,7-dichlorofluorescein diacetate was used to measure the intracellular reactive oxygen species (ROS) level. A rat model of hyperoxaluria was obtained using 0.5% ethylene glycol and 1.0% ammonium chloride. In addition, certain animals received verapamil (50 mg/kg body weight), which is a common inhibitor of MRP-1 and BCRP. The degree of nephrolithiasis was assessed histomorphometrically using sections stained by Pizzolato method and by measuring the calcium oxalate crystal content in the renal tissue. Oxalate produced a concentration-dependent increase in the synthesis of MRP-1 and BCRP. Treatment with MK571 and Ko143 (MRP-1- and BCRP-specific inhibitors, respectively) significantly attenuated the oxalate-induced PS externalization. Adding the antioxidant N-acetyl-l-cysteine significantly reduced MRP-1 and BCRP expression. In vivo, markedly decreased nephrocalcinosis was observed compared with that in the rat model of hyperoxaluria without verapamil treatment. Oxalate induces the upregulation of MRP-1 and BCRP, which act as phospholipid floppases causing PS externalization in the renal epithelial cell membrane. The process is mediated by intracellular ROS production. The ROS-mediated increase in the synthesis of MRP-1 and BCRP can play an important role in hyperoxaluria-promoted calcium oxalate urolithiasis by facilitating phosphatidylserine redistribution in renal epithelial cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Distribution of calcium oxalate crystals in floral organs of Araceae in relation to pollination strategy.

    PubMed

    Coté, Gary G; Gibernau, Marc

    2012-07-01

    Many flowers are pollinated by potentially hungry insects, yet flowers also contain gametes and embryos which must be protected from predation. Microscopic calcium oxalate crystals in plant tissues have been proposed to protect against herbivory. Aroids, which have an unusual diversity of such crystals, also exhibit diverse pollination strategies. Many species have pollinators that do not feed while visiting the flowers, while other species, especially those pollinated by beetles, offer sterile staminodia as food rewards. We examined flowers of 21 aroid species with various pollination strategies to test the hypothesis that crystals protect vital gametes and embryos while allowing consumption of food bribes. Aroid inflorescences collected from the field or from greenhouse material were sectioned, cleared, and examined by bright field and polarization microscopy. All species examined, regardless of pollination strategy, arrayed crystals around unshed pollen and ovules. Less vital tissues, such as odoriferous appendages, had few crystals. Staminodia offered as food to beetle pollinators, however, differed greatly between species in their crystal contents. Some had minimal crystals; some had crystals in patterns suggesting they limit beetle feeding; still others had abundant crystals in no obvious pattern. The results are consistent with crystals protecting against insect predation of gametes and embryos. However, the role of crystals in food-bribe staminodia is unclear. They may limit and direct feeding by beetles in some species, while in others they might have no protective role.

  9. Calciphytoliths (calcium oxalate crystals) analysis for the identification of decayed tea plants (Camellia sinensis L.).

    PubMed

    Zhang, Jianping; Lu, Houyuan; Huang, Linpei

    2014-10-24

    The history of tea is poorly known, mainly due to the questionable identification of decayed tea plants in archaeological samples. This paper attempts to test the utility of calciphytoliths (calcium oxalate crystals) for the identification of tea in archaeological samples. It provides the first survey of the macropatterns of calciphytoliths in several species of Theaceae and common non-Theaceae plants. Crystals were extracted from 45 samples of tea, Theaceae and common non-Theaceae plants, and detected microscopically between crossed polarizers. In tea plants, druse and trichome base are the most distinctive crystals. Druses have the smallest diameter (11.65 ± 3.64 μm), and trichome bases have four distinctive straight and regular cracks, similar to a regular extinction cross. The results provide morphological criteria for distinguishing tea from other plants, specifically the presence of identifiable druses together with calcified trichome bases. The implications are significant for understanding the history of tea and plant exploitation, especially for plants for which the preservation of macrofossils is poor.

  10. Calciphytoliths (calcium oxalate crystals) analysis for the identification of decayed tea plants (Camellia sinensis L.)

    PubMed Central

    Zhang, Jianping; Lu, Houyuan; Huang, Linpei

    2014-01-01

    The history of tea is poorly known, mainly due to the questionable identification of decayed tea plants in archaeological samples. This paper attempts to test the utility of calciphytoliths (calcium oxalate crystals) for the identification of tea in archaeological samples. It provides the first survey of the macropatterns of calciphytoliths in several species of Theaceae and common non-Theaceae plants. Crystals were extracted from 45 samples of tea, Theaceae and common non-Theaceae plants, and detected microscopically between crossed polarizers. In tea plants, druse and trichome base are the most distinctive crystals. Druses have the smallest diameter (11.65 ± 3.64 μm), and trichome bases have four distinctive straight and regular cracks, similar to a regular extinction cross. The results provide morphological criteria for distinguishing tea from other plants, specifically the presence of identifiable druses together with calcified trichome bases. The implications are significant for understanding the history of tea and plant exploitation, especially for plants for which the preservation of macrofossils is poor. PMID:25342006

  11. Calcium oxalate monohydrate aggregation induced by aggregation of desialylated Tamm-Horsfall protein

    PubMed Central

    Viswanathan, Pragasam; Rimer, Jeffrey D.; Kolbach, Ann M.; Kleinman, Jack G.

    2011-01-01

    Tamm-Horsfall protein (THP) is thought to protect against calcium oxalate monohydrate (COM) stone formation by inhibiting COM aggregation. Several studies reported that stone formers produce THP with reduced levels of glycosylation, particularly sialic acid levels, which leads to reduced negative charge. In this study, normal THP was treated with neuraminidase to remove sialic acid residues, confirmed by an isoelectric point shift to higher pH. COM aggregation assays revealed that desialylated THP (ds-THP) promoted COM aggregation, while normal THP inhibited aggregation. The appearance of protein aggregates in solutions at ds-THP concentrations ≥1 µg/mL in 150 mM NaCl correlated with COM aggregation promotion, implying that ds-THP aggregation induced COM aggregation. The aggregation-promoting effect of the ds-THP was independent of pH above its isoelectric point, but was substantially reduced at low ionic strength, where protein aggregation was much reduced. COM aggregation promotion was maximized at a ds-THP to COM mass ratio of ~0.025, which can be explained by a model wherein partial COM surface coverage by ds-THP aggregates promotes crystal aggregation by bridging opposing COM surfaces, whereas higher surface coverage leads to repulsion between adsorbed ds-THP aggregates. Thus, desialylation of THP apparently abrogates a normal defensive action of THP by inducing protein aggregation, and subsequently COM aggregation, a condition that favors kidney stone formation. PMID:21229239

  12. Crystallization of calcium oxalate monohydrate at dipalmitoylphosphatidylcholine monolayers in the presence of chondroitin sulfate A

    NASA Astrophysics Data System (ADS)

    Ouyang, Jian-Ming; Deng, Sui-Ping; Zhong, Jiu-Ping; Tieke, Bernd; Yu, Shu-Hong

    2004-10-01

    The growth and aggregation of calcium oxalate monohydrate (COM) crystals beneath dipalmitoylphosphatidylcholine (DPPC) monolayers in the presence of chondroitin sulfate A (C4S) was systematically examined under different surface pressure. The results indicated that the addition of C4S can inhibit the crystal growth and prevent the aggregation of COM crystals. Under a DPPC monolayer, well-defined three-dimensional hexagonal prisms and three-dimensional rhombus prisms with sharply angled tips were obtained. The DPPC monolayer at a surface pressure of 10 mN/m can match the Ca2+ distance of the (1 bar 0 1) face of COM better than at 20 mN/m. The addition of C4S could cooperatively modulate the interaction strength between the monolayer (or itself) with the specific morphology determining faces such as (1 bar 0 1) and (0 2 0), and thus results in remarkable stabilization of the (1 bar 0 1) faces. The dramatic changes in morphological details were due to the strong electrostatic interactions between the Ca2+-rich (1 bar 0 1) crystal faces of COM and the polyanionic polysaccharide C4S together with the negatively charged sites of the zwitterionic DPPC monolayers. The increase of the concentration of C4S can further enhance the stabilization of the (1 bar 0 1) face.

  13. Specific Adsorption of Osteopontin and Synthetic Polypeptides to Calcium Oxalate Monohydrate Crystals

    PubMed Central

    Taller, Adam; Grohe, Bernd; Rogers, Kem A.; Goldberg, Harvey A.; Hunter, Graeme K.

    2007-01-01

    Protein-crystal interactions are known to be important in biomineralization. To study the physicochemical basis of such interactions, we have developed a technique that combines confocal microscopy of crystals with fluorescence imaging of proteins. In this study, osteopontin (OPN), a protein abundant in urine, was labeled with the fluorescent dye AlexaFluor-488 and added to crystals of calcium oxalate monohydrate (COM), the major constituent of kidney stones. In five to seven optical sections along the z axis, scanning confocal microscopy was used to visualize COM crystals and fluorescence imaging to map OPN adsorbed to the crystals. To quantify the relative adsorption to different crystal faces, fluorescence intensity was measured around the perimeter of the crystal in several sections. Using this method, it was shown that OPN adsorbs with high specificity to the edges between {100} and {121} faces of COM and much less so to {100}, {121}, or {010} faces. By contrast, poly-L-aspartic acid adsorbs preferentially to {121} faces, whereas poly-L-glutamic acid adsorbs to all faces approximately equally. Growth of COM in the presence of rat bone OPN results in dumbbell-shaped crystals. We hypothesize that the edge-specific adsorption of OPN may be responsible for the dumbbell morphology of COM crystals found in human urine. PMID:17496021

  14. Concave Urinary Crystallines: Direct Evidence of Calcium Oxalate Crystals Dissolution by Citrate In Vivo

    PubMed Central

    Shang, Yun-Feng; Xu, Meng; Zhang, Guang-Na; Ouyang, Jian-Ming

    2013-01-01

    The changes in urinary crystal properties in patients with calcium oxalate (CaOx) calculi after oral administration of potassium citrate (K3cit) were investigated via atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray powder diffractometry (XRD), and zeta potential analyzer. The AFM and SEM results showed that the surface of urinary crystals became concave, the edges and corners of crystals became blunt, the average size of urinary crystallines decreased significantly, and aggregation of urinary crystals was reduced. These changes were attributed to the significant increase in concentration of excreted citrate to 492 ± 118 mg/L after K3cit intake from 289 ± 83 mg/L before K3cit intake. After the amount of urinary citrate was increased, it complexed with Ca2+ ions on urinary crystals, which dissolved these crystals. Thus, the appearance of concave urinary crystals was a direct evidence of CaOx dissolution by citrate in vivo. The XRD results showed that the quantities and species of urinary crystals decreased after K3cit intake. The mechanism of inhibition of formation of CaOx stones by K3cit was possibly due to the complexation of Ca2+ with citrate, increase in urine pH, concentration of urinary inhibitor glycosaminoglycans (GAGs), and the absolute value of zeta potential after K3cit intake. PMID:24363634

  15. Defining and systematic analyses of aggregation indices to evaluate degree of calcium oxalate crystal aggregation

    NASA Astrophysics Data System (ADS)

    Chaiyarit, Sakdithep; Thongboonkerd, Visith

    2017-12-01

    Crystal aggregation is one of the most crucial steps in kidney stone pathogenesis. However, previous studies of crystal aggregation were rarely done and quantitative analysis of aggregation degree was handicapped by a lack of the standard measurement. We thus performed an in vitro assay to generate aggregation of calcium oxalate monohydrate (COM) crystals with various concentrations (25-800 µg/ml) in saturated aggregation buffer. The crystal aggregates were analyzed by microscopic examination, UV-visible spectrophotometry, and GraphPad Prism6 software to define a total of 12 aggregation indices (including number of aggregates, aggregated mass index, optical density, aggregation coefficient, span, number of aggregates at plateau time-point, aggregated area index, aggregated diameter index, aggregated symmetry index, time constant, half-life, and rate constant). The data showed linear correlation between crystal concentration and almost all of these indices, except only for rate constant. Among these, number of aggregates provided the greatest regression coefficient (r=0.997; p<0.001), whereas the equally second rank included aggregated mass index and optical density (r=0.993; p<0.001 and r=‑0.993; p<0.001, respectively) and the equally forth were aggregation coefficient and span (r=0.991; p<0.001 for both). These five indices are thus recommended as the most appropriate indices for quantitative analysis of COM crystal aggregation in vitro.

  16. The Association of Household Food Insecurity and the Risk of Calcium Oxalate Stones.

    PubMed

    Shafi, Hamid; Dorosty Motlagh, Ahmad-Reza; Bagherniya, Mohammad; Daeezadeh, Atefeh; Safarian, Mohammad

    2017-08-29

    Food insecurity has been defined as 'limited or uncertain availability of nutritionally adequate and safe foods', which associated with adverse health consequences in human. Another alarming condition, which is related to several comorbidities is kidney stone. This study aimed to determine the association of household food insecurity and developing kidney stones (calcium oxalate) in adults referred to medical centers of Babol. This case-control study included 200 participants 18-65 years of ages (100 cases, 100 controls). An 18-items food insecurity questionnaire (USDA), a valid and reliable 147-item food frequency questionnaire (FFQ) and demographic characteristics were obtained via interviewing. Sixty eight percent of cases and 40% of controls were food insecure, respectively. Food insecurity was significantly associated with the risk of kidney stone (P < .05). Furthermore, body mass index (BMI) and family history of kidney stone were significantly associated with the risk of kidney stones (P < .05). Food insecurity and BMI were significantly associated with the kidney stone, which shows the importance of availability of nutritionally adequate and safe foods in prevention of the kidney stone.

  17. Characterization of metabolic network of oxalic acid biosynthesis through RNA seq data analysis of developing spikes of finger millet (Eleusine coracana): Deciphering the role of key genes involved in oxalate formation in relation to grain calcium accumulation.

    PubMed

    Akbar, Naved; Gupta, Supriya; Tiwari, Apoorv; Singh, K P; Kumar, Anil

    2018-04-05

    In the present study, we identified seven major genes of oxalic acid biosynthesis pathway (SGAT, GGAT, ICL, GLO, MHAR, APO and OXO) from developing spike transcriptome of finger millet using rice as a reference. Sequence alignment of identified genes showed high similarity with their respective homolog in rice except for OXO and GLO. Transcript abundance (FPKM) reflects the higher accumulation of identified genes in GP-1 (low calcium genotype) as compared to GP-45 (high calcium genotype) which was further confirmed by qRT-PCR analysis, indicating differential oxalate formation in both genotypes. Determination of oxalic acid and tartaric acid content in developing spikes explain that higher oxalic acid content in GP-1 however, tartaric acid content was more in GP-45. Higher calcium content in GP-45 and lower oxalate accumulation may be due to the diversion of more ascorbic acid into tartaric acid and may correspond to less formation of calcium oxalate. Our results suggest that more than one pathway for oxalic acid biosynthesis might be present in finger millet with probable predominance of ascorbate-tartarate pathway rather than glyoxalate-oxalate conversion. Thus, finger millet can be use as an excellent model system for understanding more specific role of nutrients-antinutrients interactions, as evident from the present study. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Phenotypic and functional analysis of human SLC26A6 variants in patients with familial hyperoxaluria and calcium oxalate nephrolithiasis.

    PubMed

    Monico, Carla G; Weinstein, Adam; Jiang, Zhirong; Rohlinger, Audrey L; Cogal, Andrea G; Bjornson, Beth B; Olson, Julie B; Bergstralh, Eric J; Milliner, Dawn S; Aronson, Peter S

    2008-12-01

    Urinary oxalate is a major risk factor for calcium oxalate stones. Marked hyperoxaluria arises from mutations in 2 separate loci, AGXT and GRHPR, the causes of primary hyperoxaluria (PH) types 1 (PH1) and 2 (PH2), respectively. Studies of null Slc26a6(-/-) mice have shown a phenotype of hyperoxaluria, hyperoxalemia, and calcium oxalate urolithiasis, leading to the hypothesis that SLC26A6 mutations may cause or modify hyperoxaluria in humans. Cross-sectional case-control. Cases were recruited from the International Primary Hyperoxaluria Registry. Control DNA samples were from a pool of adult subjects who identified themselves as being in good health. PH1, PH2, and non-PH1/PH2 genotypes in cases. Homozygosity or compound heterozygosity for SLC26A6 variants. Functional expression of oxalate transport in Xenopus laevis oocytes. 80 PH1, 6 PH2, 8 non-PH1/PH2, and 96 control samples were available for SLC26A6 screening. A rare variant, c.487C-->T (p.Pro163Ser), was detected solely in 1 non-PH1/PH2 pedigree, but this variant failed to segregate with hyperoxaluria, and functional studies of oxalate transport in Xenopus oocytes showed no transport defect. No other rare variant was identified specifically in non-PH1/PH2. Six additional missense variants were detected in controls and cases. Of these, c.616G-->A (p.Val206Met) was most common (11%) and showed a 30% reduction in oxalate transport. To test p.Val206Met as a potential modifier of hyperoxaluria, we extended screening to PH1 and PH2. Heterozygosity for this variant did not affect plasma or urine oxalate levels in this population. We did not have a sufficient number of cases to determine whether homozygosity for p.Val206Met might significantly affect urine oxalate. SLC26A6 was effectively ruled out as the disease gene in this non-PH1/PH2 cohort. Taken together, our studies are the first to identify and characterize SLC26A6 variants in patients with hyperoxaluria. Phenotypic and functional analysis excluded a

  19. Phenotypic and Functional Analysis of Human SLC26A6 Variants in Patients With Familial Hyperoxaluria and Calcium Oxalate Nephrolithiasis

    PubMed Central

    Monico, Carla G.; Weinstein, Adam; Jiang, Zhirong; Rohlinger, Audrey L.; Cogal, Andrea G.; Bjornson, Beth B.; Olson, Julie B.; Bergstralh, Eric J.; Milliner, Dawn S.; Aronson, Peter S.

    2008-01-01

    Background Urinary oxalate is a major risk factor for calcium oxalate stones. Marked hyperoxaluria arises from mutations in two separate loci, AGXT and GRHPR, the causes of primary hyperoxaluria (PH) types 1 and 2, respectively. Studies of null Slc26a6 (−/−) mice have revealed a phenotype of hyperoxaluria, hyperoxalemia and calcium oxalate urolithiasis, leading to the hypothesis that SLC26A6 mutations may cause or modify hyperoxaluria in humans. Study Design Cross-sectional, case-control. Setting & Participants Cases were recruited from the International Primary Hyperoxaluria Registry. Control DNA samples were from a pool of adult subjects who identified themselves as being in good health. Predictor PH1, PH2, non-PH1/PH2 genotypes in cases. Outcomes & Measures Homozygosity or compound heterozygosity for SLC26A6 variants. Functional expression of oxalate transport in Xenopus oocytes. Results A total of 80 PH1, 6 PH2, 8 non-PH1/PH2 and 96 control samples were available for SLC26A6 screening. A rare variant, c.487C>T (p.Pro163Ser) was detected solely in one non-PH1/PH2 pedigree but this variant failed to segregate with hyperoxaluria, and functional studies of oxalate transport in Xenopus oocytes revealed no transport defect. No other rare variant was identified specifically in non-PH1/PH2. Six additional missense variants were detected in controls and in cases. Of these, c.616G>A (p.Val206Met) was most common (11%), and showed a 30% reduction in oxalate transport. To test p.Val206Met as a potential modifier of hyperoxaluria, we extended screening to PH1 and PH2. Heterozygosity for this variant did not affect plasma or urine oxalate in this population. Limitations We did not have a sufficient number of cases to determine whether homozygosity for p.Val206Met might significantly affect urine oxalate. Conclusions SLC26A6 was effectively ruled out as the disease gene in this non-PH1/PH2 cohort. Taken together, our studies are the first to identify and characterize SLC

  20. Inhibition of calcium oxalate monohydrate growth by citrate and the effect of the background electrolyte

    NASA Astrophysics Data System (ADS)

    Weaver, Matthew L.; Qiu, S. Roger; Hoyer, John R.; Casey, William H.; Nancollas, George H.; De Yoreo, James J.

    2007-08-01

    Pathological mineralization is a common phenomenon in broad range of plants and animals. In humans, kidney stone formation is a well-known example that afflicts approximately 10% of the population. Of the various calcium salt phases that comprise human kidney stones, the primary component is calcium oxalate monohydrate (COM). Citrate, a naturally occurring molecule in the urinary system and a common therapeutic agent for treating stone disease, is a known inhibitor of COM. Understanding the physical mechanisms of citrate inhibition requires quantification of the effects of both background electrolytes and citrate on COM step kinetics. Here we report the results of an in situ AFM study of these effects, in which we measure the effect of the electrolytes LiCl, NaCl, KCl, RbCl, and CsCl, and the dependence of step speed on citrate concentration for a range of COM supersaturations. We find that varying the background electrolyte results in significant differences in the measured step speeds and in step morphology, with KCl clearly producing the smallest impact and NaCl the largest. The kinetic coefficient for the former is nearly three times larger than for the latter, while the steps change from smooth to highly serrated when KCl is changed to NaCl. The results on the dependence of step speed on citrate concentration show that citrate produces a dead zone whose width increases with citrate concentration as well as a continual reduction in kinetic coefficient with increasing citrate level. We relate these results to a molecular-scale view of inhibition that invokes a combination of kink blocking and step pinning. Furthermore, we demonstrate that the classic step-pinning model of Cabrera and Vermilyea (C-V model) does an excellent job of predicting the effect of citrate on COM step kinetics provided the model is reformulated to more realistically account for impurity adsorption, include an expression for the Gibbs-Thomson effect that is correct for all supersaturations

  1. Sulfate and thiosulfate inhibit oxalate transport via a dPrestin (Slc26a6)-dependent mechanism in an insect model of calcium oxalate nephrolithiasis.

    PubMed

    Landry, Greg M; Hirata, Taku; Anderson, Jacob B; Cabrero, Pablo; Gallo, Christopher J R; Dow, Julian A T; Romero, Michael F

    2016-01-15

    Nephrolithiasis is one of the most common urinary tract disorders, with the majority of kidney stones composed of calcium oxalate (CaOx). Given its prevalence (US occurrence 10%), it is still poorly understood, lacking progress in identifying new therapies because of its complex etiology. Drosophila melanogaster (fruitfly) is a recently developed model of CaOx nephrolithiasis. Effects of sulfate and thiosulfate on crystal formation were investigated using the Drosophila model, as well as electrophysiological effects on both Drosophila (Slc26a5/6; dPrestin) and mouse (mSlc26a6) oxalate transporters utilizing the Xenopus laevis oocyte heterologous expression system. Results indicate that both transport thiosulfate with a much higher affinity than sulfate Additionally, both compounds were effective at decreasing CaOx crystallization when added to the diet. However, these results were not observed when compounds were applied to Malpighian tubules ex vivo. Neither compound affected CaOx crystallization in dPrestin knockdown animals, indicating a role for principal cell-specific dPrestin in luminal oxalate transport. Furthermore, thiosulfate has a higher affinity for dPrestin and mSlc26a6 compared with oxalate These data indicate that thiosulfate's ability to act as a competitive inhibitor of oxalate via dPrestin, can explain the decrease in CaOx crystallization seen in the presence of thiosulfate, but not sulfate. Overall, our findings predict that thiosulfate or oxalate-mimics may be effective as therapeutic competitive inhibitors of CaOx crystallization. Copyright © 2016 the American Physiological Society.

  2. Externalization of phosphatidylserine via multidrug resistance 1 (MDR1)/P-glycoprotein in oxalate-treated renal epithelial cells: implications for calcium oxalate urolithiasis.

    PubMed

    Li, Yu-Hang; Yu, Shi-Liang; Gan, Xiu-Guo; Pan, Shang-Ha; Teng, Yue-Qiu; An, Rui-Hua

    2016-02-01

    We investigated the possible involvement of multidrug resistance protein 1 P-glycoprotein (MDR1 P-gp) in the oxalate-induced redistribution of phosphatidylserine in renal epithelial cell membranes. Real-time PCR and western blotting were used to examine MDR1 expression in Madin-Darby canine kidney cells at the mRNA and protein levels, respectively, whereas surface-expressed phosphatidylserine was detected by the annexin V-binding assay. Oxalate treatment resulted in increased synthesis of MDR1, which resulted in phosphatidylserine (PS) externalization in the renal epithelial cell membrane. Treatment with the MDR1 inhibitor PSC833 significantly attenuated phosphatidylserine externalization. Transfection of the human MDR1 gene into renal epithelial cells significantly increased PS externalization. To our knowledge, this study is the first to show that oxalate increases the synthesis of MDR1 P-gp, which plays a key role in hyperoxaluria-promoted calcium oxalate urolithiasis by facilitating phosphatidylserine redistribution in renal epithelial cells.

  3. Chronic stress and calcium oxalate stone disease: influence on blood cortisol and urine composition.

    PubMed

    Arzoz-Fàbregas, Montserrat; Ibarz-Servio, Luis; Fernández-Castro, Jordi; Valiente-Malmagro, Manuel; Roca-Antonio, Josep; Edo-Izquierdo, Sílvia; Buisan-Rueda, Oscar

    2013-12-01

    To evaluate the influence of chronic stress (CS) on urine composition of calcium oxalate (CaOx) stone patients and controls. This case-control study enrolled 128 patients during a period of 20 months. The cases were CaOx stone formers with a recent stone episode. Controls were matched by sex and age. Dimensions of CS were evaluated in cases and controls by validated self-report questionnaires measuring stressful life events, perceived stress, anxiety, depression, burnout, and satisfaction with life. Blood and urine samples were collected to determine cortisol levels and urinary composition. More relations between CS dimensions and blood and urine parameters were observed in cases than in controls. In cases, the blood cortisol level was related positively with the number of stressful life events (P = .03), intensity of these events (P = .04), and anxiety (P = .04). In addition, urinary magnesium (P = .03) and pyrophosphate (P = .05) levels were positively related with satisfaction with life and burnout, respectively. In contrast, urinary magnesium levels were negatively related with perceived stress (P = .01), anxiety (P = .016), and depression (P = .03). In controls, the number of stressful life events and the intensity of stressful life events was related positively with magnesium (P = .06, P = .02) levels and negatively with blood cortisol levels (P = .03, P = .004). Based on the variation between cases and controls in relations between CS dimensions and biochemical parameters, we hypothesize that CS may trigger a differential biological response in CaOx stone formers and controls, which in turn may promote or protect against CaOx stone formation. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. A Study of Biomolecules as Growth Modifiers of Calcium Oxalate Crystals

    NASA Astrophysics Data System (ADS)

    Kwak, Junha John

    Crystallization processes are ubiquitous in nature, science, and technology. Controlling crystal growth is pivotal in many industries as material properties and functions can be tailored by tuning crystal habits (e.g. size, shape, phase). In biomineralization, organisms exert excellent control over bottom-up synthesis and assembly of inorganic-organic structures (e.g. bones, teeth, exoskeletons). This is made possible by growth modifiers that range from small molecules to macromolecules, such as proteins. Molecular recognition of the mineral phase allows proteins to function as nucleation templates, matrices, and growth inhibitors or promoters. We are interested in taking a biomimetic approach to control crystallization via biomolecular growth modifiers. We investigated calcium oxalate monohydrate (COM), found in plants and kidney stones, as a model system of crystallization. We studied the effects of four common proteins on COM crystallization: bovine serum albumin (BSA), transferrin, lactoferrin, and lysozyme. Through kinetic studies of COM crystallization, we classified BSA and lysozyme as COM growth inhibitor and promoter respectively. Their inhibition and promotion effects were also evident in the macroscopic crystal habit. Through adsorption and microscopy experiments, we showed that BSA exhibits binding specificity for the apical surfaces of macroscopic COM crystals. Lysozyme, on the other, functions via a non-binding mechanism at the surface to accelerate the growth of the apical surfaces. We also synthesized and studied peptides derived from the protein primary sequences to identify putative domains responsible for these inhibition and promotion effects. Collectively, our study of physiologically relevant biomolecules suggests potential roles of COM modifiers in pathological crystallization and helps to develop guidelines for rational design of biomolecular growth modifiers for applications in crystal engineering.

  5. Protective Effects of Pistacia lentiscus L. fruit extract against calcium oxalate monohydrate induced proximal tubular injury.

    PubMed

    Cheraft-Bahloul, Nassima; Husson, Cécile; Ourtioualous, Meriam; Sinaeve, Sébastien; Atmani, Djebbar; Stévigny, Caroline; Nortier, Joëlle L; Antoine, Marie-Hélène

    2017-09-14

    The world prevalence of kidney stones is increasing and plants are frequently used to treat urolithiasis. Pistacia lentiscus L, a plant which freely grows around the Mediterranean basin areas, is widely used for various pathologies. P. lentiscus has an important impact as it has economical value on top of its pharmacological interest. Decoctions of its aerial parts and/or resin are used to treat kidney stones. To in vitro assess the potential nephroprotective effect of Pistacia lentiscus ethanolic fruit extract (PLEF) on proximal tubular cells in response to the adhesion of calcium oxalate monohydrate (COM) crystals. Human Kidney [HK]-2 cells were incubated with and without COM in the presence or absence of PLEF. Cell viability was measured by the resazurin assay. The expression of E-cadherin was analyzed by PCR. The extracellular production of H 2 O 2 was measured by Amplex® Red H 2 O 2 Assay. The numbers of detached or non-adherent COM crystals in the presence of PLEF were microscopically captured and counted using ImageJ software. The interaction of PLEF with COM and the effect of PLEF on crystal size were analyzed by flow cytometry. The spectrophotometric measurement of turbidity was performed for assessing the COM concentration. PLEF incubated with COM was able to increase the cell viability. The decrease of E-cadherin expression after incubation with COM was counteracted by PLEF. Overproduction of H 2 O 2 induced by COM was also inhibited by PLEF. Observations using flow cytometry showed that interactions between PLEF and the COM crystals occurred. PLEF was also effective in reducing the particles size and in lowering COM concentration. Our data show that COM tubulotoxicity can be significantly reversed by PLEF -at least in part- via an inhibition of COM crystals adhesion onto the apical membrane. This early beneficial effect of PLEF needs to be further investigated as a useful strategy in nephrolithiasis prevention. Copyright © 2017 Elsevier Ireland Ltd

  6. Calcium Carbonate

    MedlinePlus

    ... Maalox® (as a combination product containing Calcium Carbonate, Simethicone) ... Relief (as a combination product containing Calcium Carbonate, Simethicone) ... Plus (as a combination product containing Calcium Carbonate, Simethicone)

  7. The effect of hydrodynamic and thermodynamic factors and the addition of citric acid on the precipitation of calcium oxalate dihydrate.

    PubMed

    Šter, Anamarija; Šafranko, Silvija; Bilić, Katarina; Marković, Berislav; Kralj, Damir

    2018-06-01

    This paper reports on the investigation of experimental conditions relevant for spontaneous precipitation of significant amount of pure calcium oxalate dihydrate (COD). For this purpose, the hydrodynamic and thermodynamic parameters, such as mode of agitation, temperature, supersaturation and concentration of additives (citrate ions), have been studied. The results show that in the model systems, without the citrate addition and applied mechanical stirring, calcium oxalate monohydrate (COM) was observed as dominant modification after 20 min of aging, while the magnetic stirring resulted in a formation of a mixture of COM and calcium oxalate trihydrate (COT), regardless of the temperature applied. In the mechanically stirred systems, the addition of citrate ions in the range of concentrations, 0.001 mol dm -3  < c i (Na 3 C 6 H 5 O 7 ) < 0.012 mol dm -3 , caused the formation of COM and COD mixture at all temperatures. At the same conditions and in the magnetically stirred systems formation of COD, in a mixture with COT or COM, has been observed. The highest COD content in the mechanically stirred system was obtained at 45 °C and c i (Na 3 C 6 H 5 O 7 ) = 0.001 mol dm -3 (w = 89.5%), while in the magnetically stirred system almost pure COD was obtained at 37 °C and c i (Na 3 C 6 H 5 O 7 ) = 0.008 mol dm -3 (w = 96.5%).

  8. Autophagy inhibition attenuates hyperoxaluria-induced renal tubular oxidative injury and calcium oxalate crystal depositions in the rat kidney.

    PubMed

    Duan, Xiaolu; Kong, Zhenzhen; Mai, Xin; Lan, Yu; Liu, Yang; Yang, Zhou; Zhao, Zhijian; Deng, Tuo; Zeng, Tao; Cai, Chao; Li, Shujue; Zhong, Wen; Wu, Wenqi; Zeng, Guohua

    2018-06-01

    Hyperoxaluria-induced oxidative injury of renal tubular epithelial cell is a casual and essential factor in kidney calcium oxalate (CaOx) stone formation. Autophagy has been shown to be critical for the regulation of oxidative stress-induced renal tubular injury; however, little is known about its role in kidney CaOx stone formation. In the present study, we found that the autophagy antagonist chloroquine could significantly attenuate oxalate-induced autophagy activation, oxidative injury and mitochondrial damage of renal tubular cells in vitro and in vivo, as well as hyperoxaluria-induced CaOx crystals depositions in rat kidney, whereas the autophagy agonist rapamycin exerted contrasting effects. In addition, oxalate-induced p38 phosphorylation was significantly attenuated by chloroquine pretreatment but was markedly enhanced by rapamycin pretreatment, whereas the protective effect of chloroquine on rat renal tubular cell oxidative injury was partly reversed by a p38 protein kinase activator anisomycin. Furthermore, the knockdown of Beclin1 represented similar effects to chloroquine on oxalate-induced cell oxidative injury and p38 phosphorylation in vitro. Taken together, our results revealed that autophagy inhibition could attenuate oxalate-induced oxidative injury of renal tubular cell and CaOx crystal depositions in the rat kidney via, at least in part, inhibiting the activation of p38 signaling pathway, thus representing a novel role of autophagy in the regulation of oxalate-induced renal oxidative injury and CaOx crystal depositions for the first time. Copyright © 2018. Published by Elsevier B.V.

  9. Antiurolithiatic Potential of Neeri against Calcium-Oxalate Stones by Crystallization Inhibition, Free Radicals Scavenging, and NRK-52E Cell Protection from Oxalate Injury.

    PubMed

    Goyal, Parveen Kumar; Verma, Santosh Kumar; Sharma, Anil Kumar

    2017-10-01

    Neeri is a well-established polyherbal formulation prescribed for renal stones by the physicians but has not been experimentally evaluated for its antiurolithiatic potential using cell-lines. This study is aimed to scientifically substantiate the antiurolithiatic effect of Neeri extract (NRE) through calcium oxalate (CaOx) crystallization inhibition, scavenging of free radicals, and protection of renal tubular epithelial NRK-52E cells from oxalate-induced injury. The crystallization inhibition was studied by turbidimetric assay while the free radical scavenging potential was determined for superoxide and nitric oxide (NO) radicals. The cytoprotective effect against oxalate-induced injury was assessed by estimating lactate dehydrogenase (LDH) leakage and determining cell viability using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. NRE significantly inhibited the CaOx crystallization in a concentration-dependent manner and also scavenged superoxide (IC 50 302.88 μg/ml) and NO (IC 50 300.45 μg/ml) free radicals. It did not show any significant cytotoxicity for NRK-52E cells till the highest dose (500 μg/ml) and found to be safe. When NRK-52E cells, injured by exposing to oxalate crystals for 24 h, were treated with NRE, it appreciably prevented the cell injury in a dose-dependent manner. It significantly decreased the elevated LDH leakage toward normal range and improved renal cell viability (82.37% ± 0.87%), hence, prevented growth and retention of crystals. The experimental findings concluded that Neeri is a potent antiurolithiatic formulation that inhibited CaOx crystallization and prevented tubular retention of crystals by protecting the renal cells against oxalate-induced injury as well as reducing the oxidative stress by scavenging free radicals. Neeri extract significantly ( P < 0.001) inhibited the in vitro crystallization (88.11% ± 7.70%) of calcium oxalateIt reduced oxidative stress by scavenging superoxide and nitric oxide free

  10. Diminution of oxalate induced renal tubular epithelial cell injury and inhibition of calcium oxalate crystallization in vitro by aqueous extract of Tribulus terrestris.

    PubMed

    Aggarwal, A; Tandon, S; Singla, S K; Tandon, C

    2010-01-01

    Recurrence and persistent side effects of present day treatment for urolithiasis restrict their use, so an alternate solution, using phytotherapy is being sought. The present study attempted to evaluate the antilithiatic properties of Tribulus terrestris commonly called as "gokhru" which is often used in ayurveda to treat various urinary diseases including urolithiasis. The activity of Tribulus terrestris was investigated on nucleation and the growth of the calcium oxalate (CaOx) crystals as well as on oxalate induced cell injury of NRK 52E renal epithelial cells. Tribulus terrestris extract exhibited a concentration dependent inhibition of nucleation and the growth of CaOx crystals. When NRK-52E cells were injured by exposure to oxalate for 72 h, Tribulus terrestris extract prevented the injury in a dose-dependent manner. On treatment with the different concentrations of the plant, the cell viability increased and lactate dehydrogenase release decreased in a concentration dependent manner. The current data suggests that Tribulus terrestris extract not only has a potential to inhibit nucleation and the growth of the CaOx crystals but also has a cytoprotective role. Our results indicate that it could be a potential candidate for phytotherapy against urolithiasis.

  11. Effect of urine pH and magnesium on calcium oxalate saturation.

    PubMed

    Ferrè, Silvia; Grange, Jacob S; Adams-Huet Ms, Beverley; Moe, Orson W; Maalouf, Naim M

    2017-11-01

    Hypomagnesiuria is a common biochemical finding in patients with calcium oxalate (CaOx) nephrolithiasis. Clinical trials using Mg supplements as therapy against CaOx stones have shown mixed results. We tested the effect of Mg administration in healthy subjects under conditions of controlled urine pH (UpH) on urinary Ca excretion rate (UCaV) and CaOx saturation. This is a 4-phase, double blind, placebo-controlled, metabolic crossover study performed in healthy volunteers. Mg lactate (MgLact 2 ) was used as Mg supplement. High UpH and low UpH were achieved by administration of potassium citrate (K 3 Citrate) and ammonium chloride (NH 4 Cl), respectively, with potassium balance maintained by KCl. Eight participants completed 4 phases of study. The interventions successfully modulated 24-h UpH (7.0 ± 0.4 vs. 5.7 ± 0.6 in high vs low pH phases; P<0.001). Administration of MgLact 2 increased UMgV [175.8 ± 40.2 vs 93.4 ± 39.7 mg/day (7.2 ± 1.7 vs 3.8 ± 1.6 mmol/day), high vs low Mg phase; P<0.001], and increased pH both at low (5.6 ± 0.5 to 5.8 ± 0.7; P = 0.02) and high UpH (6.9 ± 0.4 to 7.0 ± 0.3; P = 0.01). At a given urine pH, Mg supplementation marginally increased UCaV, but did not alter UOxV or CaOx saturation. Provision of an alkali load significantly lowered UCaV and saturation of CaOx at any level of UMgV. Compared to changes in UMgV, changes in UpH play a more significant role in determining urine CaOx saturation in healthy subjects. Mg supplements are likely to reduce CaOx saturation if they also raise urine pH.

  12. Herbal extracts of Tribulus terrestris and Bergenia ligulata inhibit growth of calcium oxalate monohydrate crystals in vitro

    NASA Astrophysics Data System (ADS)

    Joshi, V. S.; Parekh, B. B.; Joshi, M. J.; Vaidya, A. B.

    2005-02-01

    A large number of people in this world are suffering from urinary stone problem. Calcium oxalate monohydrate (COM) and calcium oxalate dihydrate (COD) containing stones (calculi) are commonly found. In the present study, COM crystals were grown by a double diffusion gel growth technique using U-tubes. The gel was prepared from hydrated sodium metasilicate solution. The gel framework acts like a three-dimensional crucible in which the crystal nuclei are delicately held in the position of their formation, and nutrients are supplied for the growth. This technique can be utilized as a simplified screening static model to study the growth, inhibition and dissolution of urinary stones in vitro. The action of putative litholytic medicinal plants, Tribulus terrestris Linn. ( T.t) and Bergenia ligulata Linn. ( B.l.), has been studied in the growth of COM crystals. Tribulus terrestris and Bergenia ligulata are commonly used as herbal medicines for urinary calculi in India. To verify the inhibitive effect, aqueous extracts of Tribulus terrestris and Bergenia ligulata were added along with the supernatant solutions. The growth was measured and compared, with and without the aqueous extracts. Inhibition of COM crystal growth was observed in the herbal extracts. Maximum inhibition was observed in Bergenia ligulata followed by Tribulus terrestris. The results are discussed.

  13. Peeping into Human Renal Calcium Oxalate Stone Matrix: Characterization of Novel Proteins Involved in the Intricate Mechanism of Urolithiasis

    PubMed Central

    Tandon, Chanderdeep

    2013-01-01

    Background The increasing number of patients suffering from urolithiasis represents one of the major challenges which nephrologists face worldwide today. For enhancing therapeutic outcomes of this disease, the pathogenic basis for the formation of renal stones is the need of hour. Proteins are found as major component in human renal stone matrix and are considered to have a potential role in crystal–membrane interaction, crystal growth and stone formation but their role in urolithiasis still remains obscure. Methods Proteins were isolated from the matrix of human CaOx containing kidney stones. Proteins having MW>3 kDa were subjected to anion exchange chromatography followed by molecular-sieve chromatography. The effect of these purified proteins was tested against CaOx nucleation and growth and on oxalate injured Madin–Darby Canine Kidney (MDCK) renal epithelial cells for their activity. Proteins were identified by Matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF MS) followed by database search with MASCOT server. In silico molecular interaction studies with CaOx crystals were also investigated. Results Five proteins were identified from the matrix of calcium oxalate kidney stones by MALDI-TOF MS followed by database search with MASCOT server with the competence to control the stone formation process. Out of which two proteins were promoters, two were inhibitors and one protein had a dual activity of both inhibition and promotion towards CaOx nucleation and growth. Further molecular modelling calculations revealed the mode of interaction of these proteins with CaOx at the molecular level. Conclusions We identified and characterized Ethanolamine-phosphate cytidylyltransferase, Ras GTPase-activating-like protein, UDP-glucose:glycoprotein glucosyltransferase 2, RIMS-binding protein 3A, Macrophage-capping protein as novel proteins from the matrix of human calcium oxalate stone which play a critical role in kidney stone formation. Thus, these

  14. Synthesis of glycoside derivatives of hydroxyanthraquinone with ability to dissolve and inhibit formation of crystals of calcium oxalate. Potential compounds in kidney stone therapy.

    PubMed

    Frackowiak, Anna; Skibiński, Przemysław; Gaweł, Wiesław; Zaczyńska, Ewa; Czarny, Anna; Gancarz, Roman

    2010-03-01

    Synthesis of glycosyl derivatives of hydroxyanthraquinones (6-10) potentially useful for kidney stone therapy is presented. These compounds were analyzed as inhibitors of calcium oxalate crystals formation as well as substances with the ability of dissolving crystalline calcium oxalate. In addition, the effect of the compounds obtained on real kidney stones was analyzed by ex vivo tests. The tests on L929 and A545 cell lines have shown that the compounds obtained were not cytotoxic. Copyright (c) 2009 Elsevier Masson SAS. All rights reserved.

  15. Organic Selenium Alleviated the Formation of Ethylene Glycol-Induced Calcium Oxalate Renal Calculi by Improving Osteopontin Expression and Antioxidant Capability in Dogs.

    PubMed

    Liu, Yongwang; Xu, Haibin; Zhong, Wenting; Shen, Qingpeng; Zhuang, Tenghan; Huang, Kehe

    2015-12-01

    Twenty one-year-old local male dogs were randomly assigned into four groups (five dogs per group). The control and the ethylene glycol (EG) groups were fed basal diets without and with EG, and the EG+sodium selenite (EG+SS) and EG+selenium yeast (EG+SY) groups were fed basal diets with EG containing SS and SY, respectively. Blood, urine, and renal samples were taken after 18 weeks of feeding. The results showed that compared with the control group, the serum calcium levels and antioxidase activities significantly decreased in the EG group. Serum creatinine, urea nitrogen, and malondialdehyde (MDA) levels and urine calcium and oxalate levels significantly increased. Calcium oxalate crystal deposition and osteopontin (OPN) messenger RNA and protein expression in the renal tissues significantly increased. These changes above in the EG group were reversed within limits by adding selenium in the diets (both EG+SS and EG+SY groups). Further, compared with the EG+SS group, the EG+SY group showed better effects in decreasing the formation of EG-induced calcium oxalate renal calculi and OPN expression and improving antioxidant capability in dogs. It indicates that organic selenium has the potential value to alleviate the formation of EG-induced calcium oxalate renal calculi.

  16. Association Study of Klotho Gene Polymorphism With Calcium Oxalate Stones in The Uyghur Population of Xinjiang, China.

    PubMed

    Ali, Abdusamat; Tursun, Halmurat; Talat, Alim; Abla, Akpar; Muhtar, Erpan; Zhang, Tao; Mahmut, Murat

    2017-01-18

    The aim of the present study was to investigate the correlation between Klotho gene polymorphisms andcalcium oxalate stones in Xinjiang Uyghur people. We compared 128 patients with calcium oxalate stones (case group) and 94 healthypeople (control group), detected the genotype and allele distributions of single-nucleotide polymorphisms (SNPs)of the Klotho gene (rs3752472, rs650439, and rs1207568) by reverse transcription polymerase chain reaction. The distributions of the genotype and allele frequencies of the SNPs were consistent with the Hardy-Weinberg equilibrium in the two groups. There were statistically significant differences between the genotype andallele distributions of rs3752472 between the case and control groups; the allele frequencies in the case/controlgroups were C = 240 (93.7%)/151 (80.3%) and T = 16 (6.3%)/37 (19.7%). There was no statistically significantdifference in the genotype distribution of rs650439 between the case and control groups, but there was a differencein the allele distribution; the allele frequencies in the case/control groups were A = 202 (78.9%)/143 (57.2%) andT = 54 (21.1%)/107 (42.8%). There were no statistically significant differences in genotype and allele distributionsbetween the case and control groups of rs1207568; the allele frequencies in the case/control groups were C = 194(71.3%)/145 (77.1%) and T = 78 (28.7%)/43 (22.9%). In rs3752472, the risk for patients with the C and A allelesincreased by 3.675 and 2.799 times, respectively. The rs3752472 and rs650439 SNPs are related to the risk of calcium oxalate stones in Xinjiang Uyghurpeople, and might be one of the risk factors.

  17. Citrate, not phosphate, can dissolve calcium oxalate monohydrate crystals and detach these crystals from renal tubular cells.

    PubMed

    Chutipongtanate, Somchai; Chaiyarit, Sakdithep; Thongboonkerd, Visith

    2012-08-15

    Dissolution therapy of calcium oxalate monohydrate (COM) kidney stone disease has not yet been implemented due to a lack of well characterized COM dissolution agents. The present study therefore aimed to identify potential COM crystal dissolution compounds. COM crystals were treated with deionized water (negative control), 5 mM EDTA (positive control), 5 mM sodium citrate, or 5mM sodium phosphate. COM crystal dissolution activities of these compounds were evaluated by phase-contrast and video-assisted microscopic examinations, semi-quantitative analysis of crystal size, number and total mass, and spectrophotometric oxalate-dissolution assay. In addition, effects of these compounds on detachment of COM crystals, which adhered tightly onto renal tubular cell surface, were also investigated. The results showed that citrate, not phosphate, had a significant dissolution effect on COM crystals as demonstrated by significant reduction of crystal size (approximately 37% decrease), crystal number (approximately 53% decrease) and total crystal mass (approximately 72% decrease) compared to blank and negative controls. Spectrophotometric oxalate-dissolution assay successfully confirmed the COM crystal dissolution property of citrate. Moreover, citrate could detach up to 85% of the adherent COM crystals from renal tubular cell surface. These data indicate that citrate is better than phosphate for dissolution and detachment of COM crystals. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. In vitro inhibition of calcium oxalate crystallization and crystal adherence to renal tubular epithelial cells by Terminalia arjuna.

    PubMed

    Mittal, A; Tandon, S; Singla, S K; Tandon, C

    2016-04-01

    Urolithiasis is a multifactorial disease and remains a public health problem around the world. Of all types of renal stones, calcium oxalate (CaOx) is the most common composition formed in the urinary system of the patients with urolithiasis. The present study is aimed at evaluating the antiurolithiatic properties of the Tris-Cl extract (TE) of Terminalia arjuna (T. arjuna). The antilithiatic activity of TE of T. arjuna was investigated on nucleation, aggregation, and growth of the CaOx crystals, as well as its protective potency was tested on oxalate-induced cell injury of NRK-52E renal epithelial cells. Also, in vitro antioxidant activity of TE T. arjuna bark was also determined. The TE of T. arjuna exhibited a concentration-dependent inhibition of nucleation and growth of CaOx crystals. Inhibition of aggregation of CaOx crystals remains constant. When NRK-52E cells were injured by exposure to oxalate for 48 h, the TE prevented the cells from injury and CaOx crystal adherence resulting in increased cell viability in a dose-dependent manner. The TE also scavenged the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals with an IC50 at 51.72 µg/mL. The results indicated that T. arjuna is a potential candidate for phytotherapy against urolithiasis as it attains the ability to inhibit CaOx crystallization and scavenge DPPH free radicals in vitro along with a cytoprotective role.

  19. Long-term, low-dose, intravenous vitamin C leads to plasma calcium oxalate supersaturation in hemodialysis patients.

    PubMed

    Canavese, Caterina; Petrarulo, Michele; Massarenti, Paola; Berutti, Silvia; Fenoglio, Roberta; Pauletto, Daniela; Lanfranco, Giacomo; Bergamo, Daniela; Sandri, Luisa; Marangella, Martino

    2005-03-01

    Ascorbate supplementation for patients on regular dialysis treatment (RDT) is advised to obviate deficiency and improve epoetin response in those with functional iron deficiency. However, clear-cut safety concerns regarding hyperoxalemia are still poorly understood. This study tries to establish safety/efficacy profiles of ascorbate and oxalate during long-term intravenous ascorbate supplementation. A prospective study was performed in 30 patients on RDT showing ascorbate deficiency (plasma ascorbate < 2.6 mg/L [<15 micromol/L]): 18 patients were administered intravenous ascorbate during 18 months (250 mg/wk, subsequently increased to 500 mg), and 12 patients were taken as reference untreated cases. Plasma ascorbate and oxalate assays and dialytic balance determinations were performed (ion chromatography and reverse-phase high-performance liquid chromatography, respectively) at baseline, during treatment, and 12 months after withdrawal. Plasma ascorbate levels increased dose dependently with supplementation (1.6 +/- 0.8 mg/L [9.1 +/- 4.6 mumol/L] at baseline, 2.8 +/- 1.8 mg/L [15.9 +/- 10.1 micromol/L]) with 250 mg of ascorbate, and 6.6 +/- 2.8 mg/L [37.5 +/- 16.0 micromol/L] with 500 mg/wk of ascorbate), but only normalized with greater dosages for several months in 94% of patients. Baseline plasma oxalate levels increased from 3.2 +/- 0.8 mg/L (35.8 +/- 8.8 micromol/L) to 3.6 +/- 0.8 mg/L (39.5 +/- 9.1 micromol/L) and 4.5 +/- 0.9 mg/L (50.3 +/- 10.4 micromol/L) with 250 and 500 mg, respectively ( P < 0.001). The calcium oxalate saturation threshold was exceeded by 7 of 18 patients (40%) during 6 months therapy with 500 mg/wk. Ascorbate dialysis removal increased from 37.8 +/- 23.2 mg (215 +/- 132 micromol) to 99.6 +/- 51.7 mg (566 +/- 294 micromol) during supplementation (P < 0.001), with corresponding increases in oxalate removal from 82.5 +/- 33.2 mg (917 +/- 369 micromol) to 111.2 +/- 32.6 mg/L (1,236 +/- 362 micromol; P < 0.01). Withdrawal reverted plasma

  20. Serum Estradiol and Testosterone Levels in Kidney Stones Disease with and without Calcium Oxalate Components in Naturally Postmenopausal Women

    PubMed Central

    Ou, Lili; Duan, Xiaolu; Zeng, Guohua

    2013-01-01

    Objective Epidemiological data reveal that the overall risk for kidney stones disease is lower for women compared to age-matched men. However, the beneficial effect for the female sex is lost upon menopause, a time corresponding to the onset of fall in estrogen levels. The aim of this study was to describe the serum estradiol (E2) and testosterone (T) characteristics of naturally postmenopausal women with kidney stones. Methods 113 naturally postmenopausal women with newly diagnosed kidney stones (aged 57.4±4.98 years) and 84 age frequency matched stone-free controls (56.9±4.56 years) were validly recruited in the case-control study. The odds ratios (ORs) for the associations between sex hormones and kidney stones were estimated with logistic regression models, adjusting for demographic data and medical history. Patients were also stratified analyzed according to stone components (calcium oxalate stones [COS]; non-calcium oxalate stones [NCOS]). Results Serum E2 (21.1 vs. 31.1 pg/ml) was significantly lower in kidney stones patients compared to controls. Post-hoc analysis demonstrated that this effect was driven by COS patients (p<0.001). According to tertiles of the E2 levels, a significant higher frequency of COS was seen in the lowest E2 group (p <0.001). Multiple logistic regression analysis identified E2 level as a strong factor that was independently associated with the risk for COS (per 1 SD increase, OR=0.951, 95% confidence interval [CI] = 0.919-0.985; highest: lowest tertile, OR=0.214, 95%CI = 0.069-0.665). However, serum T levels did not significantly differ among the groups. Conclusions Naturally postmenopausal women with higher remaining estradiol levels appear less likely to suffer from kidney calcium oxalate stones. However, no correlation was found between serum T level and kidney stones. These findings support the hypothesis that higher postmenopausal endogenous estrogens may protect against kidney stones with ageing. PMID:24086550

  1. Serum estradiol and testosterone levels in kidney stones disease with and without calcium oxalate components in naturally postmenopausal women.

    PubMed

    Zhao, Zhijian; Mai, Zanlin; Ou, Lili; Duan, Xiaolu; Zeng, Guohua

    2013-01-01

    Epidemiological data reveal that the overall risk for kidney stones disease is lower for women compared to age-matched men. However, the beneficial effect for the female sex is lost upon menopause, a time corresponding to the onset of fall in estrogen levels. The aim of this study was to describe the serum estradiol (E2) and testosterone (T) characteristics of naturally postmenopausal women with kidney stones. 113 naturally postmenopausal women with newly diagnosed kidney stones (aged 57.4±4.98 years) and 84 age frequency matched stone-free controls (56.9±4.56 years) were validly recruited in the case-control study. The odds ratios (ORs) for the associations between sex hormones and kidney stones were estimated with logistic regression models, adjusting for demographic data and medical history. Patients were also stratified analyzed according to stone components (calcium oxalate stones [COS]; non-calcium oxalate stones [NCOS]). Serum E2 (21.1 vs. 31.1 pg/ml) was significantly lower in kidney stones patients compared to controls. Post-hoc analysis demonstrated that this effect was driven by COS patients (p<0.001). According to tertiles of the E2 levels, a significant higher frequency of COS was seen in the lowest E2 group (p <0.001). Multiple logistic regression analysis identified E2 level as a strong factor that was independently associated with the risk for COS (per 1 SD increase, OR=0.951, 95% confidence interval [CI] = 0.919-0.985; highest: lowest tertile, OR=0.214, 95%CI = 0.069-0.665). However, serum T levels did not significantly differ among the groups. Naturally postmenopausal women with higher remaining estradiol levels appear less likely to suffer from kidney calcium oxalate stones. However, no correlation was found between serum T level and kidney stones. These findings support the hypothesis that higher postmenopausal endogenous estrogens may protect against kidney stones with ageing.

  2. An assessment of engineered calcium oxalate crystal formation on plant growth and development as a step toward evaluating its use to enhance plant defense

    USDA-ARS?s Scientific Manuscript database

    The establishment of new approaches to control chewing insects has been sought not only for direct use in reducing crop loss but also in managing resistance to the pesticides already in use. Engineered formation of calcium oxalate crystals is a potential strategy that could be developed to fulfill ...

  3. Influence of acidifying or alkalinizing diets on bone mineral density and urine relative supersaturation with calcium oxalate and struvite in healthy cats.

    PubMed

    Bartges, Joseph W; Kirk, Claudia A; Cox, Sherry K; Moyers, Tamberlyn D

    2013-10-01

    To evaluate the influence of acidifying or alkalinizing diets on bone mineral density and urine relative supersaturation (URSS) with calcium oxalate and struvite in healthy cats. 6 castrated male and 6 spayed female cats. 3 groups of 4 cats each were fed diets for 12 months that differed only in acidifying or alkalinizing properties (alkalinizing, neutral, and acidifying). Body composition was estimated by use of dual energy x-ray absorptiometry, and 48-hour urine samples were collected for URSS determination. Urine pH differed significantly among diet groups, with the lowest urine pH values in the acidifying diet group and the highest values in the alkalinizing diet group. Differences were not observed in other variables except urinary ammonia excretion, which was significantly higher in the neutral diet group. Calcium oxalate URSS was highest in the acidifying diet group and lowest in the alkalinizing diet group; struvite URSS was not different among groups. Diet was not significantly associated with bone mineral content or density. Urinary undersaturation with calcium oxalate was achieved by inducing alkaluria. Feeding an alkalinizing diet was not associated with URSS with struvite. Bone mineral density and calcium content were not adversely affected by diet; therefore, release of calcium from bone caused by feeding an acidifying diet may not occur in healthy cats.

  4. Calcium - ionized

    MedlinePlus

    ... diuretics Thrombocytosis (high platelet count) Tumors Vitamin A excess Vitamin D excess Lower-than-normal levels may be due to: Hypoparathyroidism Malabsorption Osteomalacia Pancreatitis Renal failure Rickets Vitamin D deficiency Alternative Names Free calcium; Ionized calcium ...

  5. Correlation between the development of calcium oxalate stones and polymorphisms in the fibronectin gene in the Uighur population of the Xinjiang region of China.

    PubMed

    Murat, M; Aekeper, A; Yuan, L Y; Alim, T; Du, G J; Abdusamat, A; Wu, G W; Aniwer, Y

    2015-10-29

    Here, we have investigated the correlation between calcium oxalate stone formation and Fn gene polymorphisms in urinary calculi patients among the Uighur population (Xinjiang region). In this case control study, genomic DNA extracted from the peripheral blood of 129 patients with calcium oxalate stones (patient group) and 94 normal people (control group) was used to genotype polymorphisms in the rs6725958, rs10202709, and rs35343655 sites of the Fn gene by polymerase chain reaction-restriction fragment length polymorphism. Subsequently, the association between different genotypes and susceptibility to calcium oxalate stone formation was compared among the patient and control groups. Single nucleotide polymorphisms (SNPs) were detected in the rs6725958, rs10202709, and rs35343655 sites of the Fn gene among the patient and control groups. The genotype distributions of the three loci complied with the Hardy-Weinberg equilibrium. The results of allele frequencies of the patient/control group for polymorphisms in the rs6725958 site of the Fn gene were C = 179 (69.92%)/119 (63.30%) and A = 77 (30.08%)/69 (36.70%), in the rs10202709 site were C = 245 (95.70%)/176 (93.63%) and T = 11 (4.30%)/12 (6.38%), and in the rs35343655 site of the Fn gene were A = 139 (54.30%)/87 (46.28%) and G = 117 (45.70%)/101 (53.72%). We observed no significant differences between the three SNPs and development of calcium oxalate stones. Polymorphisms in rs6725958, rs10202709, and rs35343655 of the Fn gene had no obvious effect on the susceptibility to the development of calcium oxalate stones in the Uighur population, residing in the Xinjiang region of China.

  6. Calcium - urine

    MedlinePlus

    Urinary Ca+2; Kidney stones - calcium in urine; Renal calculi - calcium in your urine; Parathyroid - calcium in urine ... A 24-hour urine sample is most often needed: On day 1, urinate into the toilet when you wake up in the morning. ...

  7. Microstructures of Randall's plaques and their interfaces with calcium oxalate monohydrate kidney stones reflect underlying mineral precipitation mechanisms.

    PubMed

    Sethmann, Ingo; Wendt-Nordahl, Gunnar; Knoll, Thomas; Enzmann, Frieder; Simon, Ludwig; Kleebe, Hans-Joachim

    2017-06-01

    Randall's plaques (RP) are preferred sites for the formation of calcium oxalate monohydrate (COM) kidney stones. However, although processes of interstitial calcium phosphate (CaP) plaque formation are not well understood, the potential of plaque microstructures as indicators of CaP precipitation conditions received only limited attention. We investigated RP-associated COM stones for structural details of the calcified tissues and microstructural features of plaque-stone interfaces as indicators of the initial processes of stone formation. Significantly increased CaP supersaturation can be expected for interstitial fluid, if reabsorbed ions from the tubular system continuously diffuse into the collagenous connective tissue. Densely packed, fine-grained CaP particles were found in dense textures of basement membranes while larger, laminated particles were scattered in coarse-meshed interstitial tissue, which we propose to be due to differential spatial confinements and restrictions of ion diffusion. Particle morphologies suggest an initial precipitation as metastable amorphous calcium phosphate (ACP). Morphologies and arrangements of first COM crystals at the RP-stone interface ranged from stacked euhedral platelets to skeletal morphologies and even porous, dendritic structures, indicating, in this order, increasing levels of COM supersaturation. Furthermore, these first COM crystals were often coated with CaP. On this basis, we propose that ions from CaP-supersaturated interstitial fluid may diffuse through porous RP into the urine, where a resulting local increase in COM supersaturation could trigger crystal nucleation and, hence, initiate stone formation. Ion-depleted fluid in persistent pores of initial COM layers may get replenished from interstitial fluid, leading to CaP precipitation in porous COM.

  8. Nanouric acid or nanocalcium phosphate as central nidus to induce calcium oxalate stone formation: a high-resolution transmission electron microscopy study on urinary nanocrystallites

    PubMed Central

    Gao, Jie; Xue, Jun-Fa; Xu, Meng; Gui, Bao-Song; Wang, Feng-Xin; Ouyang, Jian-Ming

    2014-01-01

    Purpose This study aimed to accurately analyze the relationship between calcium oxalate (CaOx) stone formation and the components of urinary nanocrystallites. Method High-resolution transmission electron microscopy (HRTEM), selected area electron diffraction, fast Fourier transformation of HRTEM, and energy dispersive X-ray spectroscopy were performed to analyze the components of these nanocrystallites. Results The main components of CaOx stones are calcium oxalate monohydrate and a small amount of dehydrate, while those of urinary nanocrystallites are calcium oxalate monohydrate, uric acid, and calcium phosphate. The mechanism of formation of CaOx stones was discussed based on the components of urinary nanocrystallites. Conclusion The formation of CaOx stones is closely related both to the properties of urinary nanocrystallites and to the urinary components. The combination of HRTEM, fast Fourier transformation, selected area electron diffraction, and energy dispersive X-ray spectroscopy could be accurately performed to analyze the components of single urinary nanocrystallites. This result provides evidence for nanouric acid and/or nanocalcium phosphate crystallites as the central nidus to induce CaOx stone formation. PMID:25258530

  9. Relevance of dietary protein concentration and quality as risk factors for the formation of calcium oxalate stones in cats.

    PubMed

    Paßlack, Nadine; Burmeier, Hannes; Brenten, Thomas; Neumann, Konrad; Zentek, Jürgen

    2014-01-01

    The role of dietary protein for the development of feline calcium oxalate (CaOx) uroliths has not been conclusively clarified. The present study evaluated the effects of a varying dietary protein concentration and quality on critical indices for the formation of CaOx uroliths. Three diets with a high protein quality (10-11 % greaves meal/diet) and a varying crude protein (CP) concentration (35, 44 and 57 % in DM) were compared. Additionally, the 57 % CP diet was compared with a fourth diet that had a similar CP concentration (55 % in DM), but a lower protein quality (34 % greaves meal/diet). The Ca and oxalate (Ox) concentrations were similar in all diets. A group of eight cats received the same diet at the same time. Each feeding period was divided into a 21 d adaptation period and a 7 d sampling period to collect urine. There were increases in urinary volume, urinary Ca concentrations, renal Ca and Ox excretion and urinary relative supersaturation (RSS) with CaOx with increasing dietary protein concentrations. Urinary pH ranged between 6·34 and 6·66 among all groups, with no unidirectional effect of dietary protein. Lower renal Ca excretion was observed when feeding the diet with the lower protein quality, however, the underlying mechanism needs further evaluation. In conclusion, although the observed higher urinary volume is beneficial, the increase in urinary Ca concentrations, renal Ca and Ox excretion and urinary RSS CaOx associated with a high-protein diet may be critical for the development of CaOx uroliths in cats.

  10. Calcium waves.

    PubMed

    Jaffe, Lionel F

    2008-04-12

    Waves through living systems are best characterized by their speeds at 20 degrees C. These speeds vary from those of calcium action potentials to those of ultraslow ones which move at 1-10 and/or 10-20 nm s(-1). All such waves are known or inferred to be calcium waves. The two classes of calcium waves which include ones with important morphogenetic effects are slow waves that move at 0.2-2 microm s(-1) and ultraslow ones. Both may be propagated by cycles in which the entry of calcium through the plasma membrane induces subsurface contraction. This contraction opens nearby stretch-sensitive calcium channels. Calcium entry through these channels propagates the calcium wave. Many slow waves are seen as waves of indentation. Some are considered to act via cellular peristalsis; for example, those which seem to drive the germ plasm to the vegetal pole of the Xenopus egg. Other good examples of morphogenetic slow waves are ones through fertilizing maize eggs, through developing barnacle eggs and through axolotl embryos during neural induction. Good examples of ultraslow morphogenetic waves are ones during inversion in developing Volvox embryos and across developing Drosophila eye discs. Morphogenetic waves may be best pursued by imaging their calcium with aequorins.

  11. Occurrence and characterisation of calcium oxalate crystals in stems and fruits of Hylocereus costaricensis and Selenicereus megalanthus (Cactaceae: Hylocereeae).

    PubMed

    Viñas, María; Jiménez, Víctor M

    2016-10-01

    Detailed description about occurrence of calcium oxalate (CaOx) crystals in the edible vine cactus species Hylocereus costaricensis and Selenicereus megalanthus is scarce. Therefore, we evaluated and characterized the presence, morphology and composition of CaOx crystals in both species. Crystals were isolated from greenhouse and in vitro vegetative stems, and from ripe fruit peels and pulp by enzymatic digestion and density centrifugation and quantified with a haemocytometer. Morphologies were studied using scanning electron microscopy, elemental composition with energy-dispersive X-ray spectroscopy and salt composition with X-ray powder diffraction. Analyses conducted confirmed that isolated crystals were exclusively composed by CaOx, both mono- and dihydrated. Highest crystal contents were measured in greenhouse stems, followed by the fruit peels. While very few crystals were quantified in in vitro plants, they were not detected in the fruit pulp at all, which is of advantage for its human consumption and could be linked to mechanisms of seed dispersal through animals. Different crystal morphologies were observed, sometimes varying between genotypes and tissues analysed. This is the first work known to the authors with a detailed characterization of CaOx crystals in vine cacti. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Renal papillary calcification and the development of calcium oxalate monohydrate papillary renal calculi: a case series study

    PubMed Central

    2013-01-01

    Background The objective of this study is to determine in a case series (four patients) how calcified deposits in renal papillae are associated with the development of calcium oxalate monohydrate (COM) papillary calculi. Methods From the recently collected papillary calculi, we evaluated retrospectively patients, subjected to retrograde ureteroscopy, with COM papillary lithiasis. Results The COM papillary calculi were found to result from subepithelial injury. Many of these lesions underwent calcification by hydroxyapatite (HAP), with calculus morphology and the amount of HAP in the concave zone dependent on the location of the calcified injury. Most of these HAP deposits grew, eroding the epithelium covering the renal papillae, coming into contact with urine and starting the development of COM calculi. Subepithelial HAP plaques may alter the epithelium covering the papillae, resulting in the deposit of COM crystals directly onto the epithelium. Tissue calcification depends on a pre-existing injury, the continuation of this process is due to modulators and/or crystallization inhibitors deficiency. Conclusions Since calculus morphology and the amount of detected HAP are dependent on the location and widespread of calcified injury, all types of papillary COM calculi can be found in the same patient. All patients had subepithelial calcifications, with fewer papillary calculi, demonstrating that some subepithelial calcifications did not further evolve and were reabsorbed. A high number of subepithelial calcifications increases the likelihood that some will be transformed into COM papillary calculi. PMID:23497010

  13. Renal papillary calcification and the development of calcium oxalate monohydrate papillary renal calculi: a case series study.

    PubMed

    Grases, Fèlix; Costa-Bauzá, Antonia; Prieto, Rafel M; Conte, Antonio; Servera, Antonio

    2013-03-11

    The objective of this study is to determine in a case series (four patients) how calcified deposits in renal papillae are associated with the development of calcium oxalate monohydrate (COM) papillary calculi. From the recently collected papillary calculi, we evaluated retrospectively patients, subjected to retrograde ureteroscopy, with COM papillary lithiasis. The COM papillary calculi were found to result from subepithelial injury. Many of these lesions underwent calcification by hydroxyapatite (HAP), with calculus morphology and the amount of HAP in the concave zone dependent on the location of the calcified injury. Most of these HAP deposits grew, eroding the epithelium covering the renal papillae, coming into contact with urine and starting the development of COM calculi. Subepithelial HAP plaques may alter the epithelium covering the papillae, resulting in the deposit of COM crystals directly onto the epithelium. Tissue calcification depends on a pre-existing injury, the continuation of this process is due to modulators and/or crystallization inhibitors deficiency. Since calculus morphology and the amount of detected HAP are dependent on the location and widespread of calcified injury, all types of papillary COM calculi can be found in the same patient. All patients had subepithelial calcifications, with fewer papillary calculi, demonstrating that some subepithelial calcifications did not further evolve and were reabsorbed. A high number of subepithelial calcifications increases the likelihood that some will be transformed into COM papillary calculi.

  14. Alpha-enolase on apical surface of renal tubular epithelial cells serves as a calcium oxalate crystal receptor

    NASA Astrophysics Data System (ADS)

    Fong-Ngern, Kedsarin; Thongboonkerd, Visith

    2016-10-01

    To search for a strategy to prevent kidney stone formation/recurrence, this study addressed the role of α-enolase on apical membrane of renal tubular cells in mediating calcium oxalate monohydrate (COM) crystal adhesion. Its presence on apical membrane and in COM crystal-bound fraction was confirmed by Western blotting and immunofluorescence staining. Pretreating MDCK cells with anti-α-enolase antibody, not isotype-controlled IgG, dramatically reduced cell-crystal adhesion. Immunofluorescence staining also confirmed the direct binding of purified α-enolase to COM crystals at {121} > {100} > {010} crystal faces. Coating COM crystals with urinary proteins diminished the crystal binding capacity to cells and purified α-enolase. Moreover, α-enolase selectively bound to COM, not other crystals. Chemico-protein interactions analysis revealed that α-enolase interacted directly with Ca2+ and Mg2+. Incubating the cells with Mg2+ prior to cell-crystal adhesion assay significantly reduced crystal binding on the cell surface, whereas preincubation with EDTA, a divalent cation chelator, completely abolished Mg2+ effect, indicating that COM and Mg2+ competitively bind to α-enolase. Taken together, we successfully confirmed the role of α-enolase as a COM crystal receptor to mediate COM crystal adhesion at apical membrane of renal tubular cells. It may also serve as a target for stone prevention by blocking cell-crystal adhesion and stone nidus formation.

  15. Total flavonoids of Desmodium styracifolium attenuates the formation of hydroxy-L-proline-induced calcium oxalate urolithiasis in rats.

    PubMed

    Zhou, Jianfu; Jin, Jing; Li, Xiong; Zhao, Zhongxiang; Zhang, Lei; Wang, Qian; Li, Jing; Zhang, Qiuhong; Xiang, Songtao

    2018-06-01

    Desmosium styracifolium (D. styracifolium), which is considered as a Chinese herbal medicine, has been reported to treat the kidney stone diseases. However, the potential phytochemically active components and the underlying mechanisms associated with its efficacy in targeting urolithiasis remain to be elucidated. This study aims to investigate the anti-urolithiatic effect of total flavonoids of D. styracifolium (TFDS) on calcium oxalate (CaOx) renal stones in Sprague-Dawley rats. Animal models of CaOx urolithiasis were established in male Sprague-Dawley rats by adding 5% w/w hydroxy-L-proline (HLP) in regular rat chow. The TFDS orally at 100, 400 mg/kg, respectively, were administered along with HLP for 28 days. At the end of 28 days of treatment, urine and serum samples were collected for crystalluria determination and various biochemical analysis. Kidney tissues were isolated and processed for antioxidant parameters measurement and histopathological examinations. HLP-induced hyperoxaluria alone reliably caused CaOx nephrolithiasis in rats. We showed that TFDS significantly reduced crystalluria and CaOx crystal deposits in the kidney sections as compared to untreated HLP group. Also, TFDS was observed to decrease urinary oxalate excretion, alleviate the pro-acidosis condition, improve the impaired renal functions and renal epithelial cell injury. Moreover, TFDS protected against the oxidative stress changes via reducing MDA content, increasing CAT and GSH-Px activities in renal homogenate, as well as attenuating the expression of MCP-1, OPN and TGF-β proteins. These results indicated that TFDS had beneficial effect on inhibition of CaOx formation in the rat kidney probably through a combination of antioxidant, anti-inflammatory, urine alkalinizing activities, and lowering the concentration of urinary stone-forming constituents. Thus, TFDS might have clinical implications in preventing oxidative renal cell injury and, ultimately, kidney stone formation. The

  16. Biosynthesis of l-Ascorbic Acid and Conversion of Carbons 1 and 2 of l-Ascorbic Acid to Oxalic Acid Occurs within Individual Calcium Oxalate Crystal Idioblasts1

    PubMed Central

    Kostman, Todd A.; Tarlyn, Nathan M.; Loewus, Frank A.; Franceschi, Vincent R.

    2001-01-01

    l-Ascorbic acid (AsA) and its metabolic precursors give rise to oxalic acid (OxA) found in calcium oxalate crystals in specialized crystal idioblast cells in plants; however, it is not known if AsA and OxA are synthesized within the crystal idioblast cell or transported in from surrounding mesophyll cells. Isolated developing crystal idioblasts from Pistia stratiotes were used to study the pathway of OxA biosynthesis and to determine if idioblasts contain the entire path and are essentially independent in OxA synthesis. Idioblasts were supplied with various 14C-labeled compounds and examined by micro-autoradiography for incorporation of 14C into calcium oxalate crystals. [14C]OxA gave heavy labeling of crystals, indicating the isolated idioblasts are functional in crystal formation. Incubation with [1-14C]AsA also gave heavy labeling of crystals, whereas [6-14C]AsA gave no labeling. Labeled precursors of AsA (l-[1-14C]galactose; d-[1-14C]mannose) also resulted in crystal labeling, as did the ascorbic acid analog, d-[1-14C]erythorbic acid. Intensity of labeling of isolated idioblasts followed the pattern OxA > AsA (erythorbic acid) > l-galactose > d-mannose. Our results demonstrate that P. stratiotes crystal idioblasts synthesize the OxA used for crystal formation, the OxA is derived from the number 1 and 2 carbons of AsA, and the proposed pathway of ascorbic acid synthesis via d-mannose and l-galactose is operational in individual P. stratiotes crystal idioblasts. These results are discussed with respect to fine control of calcium oxalate precipitation and the concept of crystal idioblasts as independent physiological compartments. PMID:11161021

  17. Calcium Carbonate.

    PubMed

    Al Omari, M M H; Rashid, I S; Qinna, N A; Jaber, A M; Badwan, A A

    2016-01-01

    Calcium carbonate is a chemical compound with the formula CaCO3 formed by three main elements: carbon, oxygen, and calcium. It is a common substance found in rocks in all parts of the world (most notably as limestone), and is the main component of shells of marine organisms, snails, coal balls, pearls, and eggshells. CaCO3 exists in different polymorphs, each with specific stability that depends on a diversity of variables. © 2016 Elsevier Inc. All rights reserved.

  18. Inhibition of Glycolate Oxidase With Dicer-substrate siRNA Reduces Calcium Oxalate Deposition in a Mouse Model of Primary Hyperoxaluria Type 1

    PubMed Central

    Dutta, Chaitali; Avitahl-Curtis, Nicole; Pursell, Natalie; Larsson Cohen, Marita; Holmes, Benjamin; Diwanji, Rohan; Zhou, Wei; Apponi, Luciano; Koser, Martin; Ying, Bo; Chen, Dongyu; Shui, Xue; Saxena, Utsav; Cyr, Wendy A; Shah, Anee; Nazef, Naim; Wang, Weimin; Abrams, Marc; Dudek, Henryk; Salido, Eduardo; Brown, Bob D; Lai, Chengjung

    2016-01-01

    Primary hyperoxaluria type 1 (PH1) is an autosomal recessive, metabolic disorder caused by mutations of alanine-glyoxylate aminotransferase (AGT), a key hepatic enzyme in the detoxification of glyoxylate arising from multiple normal metabolic pathways to glycine. Accumulation of glyoxylate, a precursor of oxalate, leads to the overproduction of oxalate in the liver, which accumulates to high levels in kidneys and urine. Crystalization of calcium oxalate (CaOx) in the kidney ultimately results in renal failure. Currently, the only treatment effective in reduction of oxalate production in patients who do not respond to high-dose vitamin B6 therapy is a combined liver/kidney transplant. We explored an alternative approach to prevent glyoxylate production using Dicer-substrate small interfering RNAs (DsiRNAs) targeting hydroxyacid oxidase 1 (HAO1) mRNA which encodes glycolate oxidase (GO), to reduce the hepatic conversion of glycolate to glyoxylate. This approach efficiently reduces GO mRNA and protein in the livers of mice and nonhuman primates. Reduction of hepatic GO leads to normalization of urine oxalate levels and reduces CaOx deposition in a preclinical mouse model of PH1. Our results support the use of DsiRNA to reduce liver GO levels as a potential therapeutic approach to treat PH1. PMID:26758691

  19. Calcium orthophosphates

    PubMed Central

    Dorozhkin, Sergey V.

    2011-01-01

    The present overview is intended to point the readers’ attention to the important subject of calcium orthophosphates. This type of materials is of special significance for human beings, because they represent the inorganic part of major normal (bones, teeth and antlers) and pathological (i.e., those appearing due to various diseases) calcified tissues of mammals. For example, atherosclerosis results in blood vessel blockage caused by a solid composite of cholesterol with calcium orthophosphates, while dental caries and osteoporosis mean a partial decalcification of teeth and bones, respectively, that results in replacement of a less soluble and harder biological apatite by more soluble and softer calcium hydrogenphosphates. Therefore, the processes of both normal and pathological calcifications are just an in vivo crystallization of calcium orthophosphates. Similarly, dental caries and osteoporosis might be considered an in vivo dissolution of calcium orthophosphates. Thus, calcium orthophosphates hold a great significance for humankind, and in this paper, an overview on the current knowledge on this subject is provided. PMID:23507744

  20. In Idiopathic Calcium Oxalate Stone Formers, Unattached Stones Show Evidence of Having Originated as Attached Stones on Randall’s Plaque

    PubMed Central

    Miller, Nicole L.; Williams, James C.; Evan, Andrew P.; Bledsoe, Sharon B.; Coe, Fredric L.; Worcester, Elaine M.; Munch, Larry C.; Handa, Shelly E.; Lingeman, James E.

    2009-01-01

    Objective To analyze the structure and composition of unattached stones in idiopathic calcium oxalate stone formers (ICSF) and compare them to attached stones from the same cohort in order to investigate whether more than one pathogenic mechanism exists for stone formation in ICSF. Patients and methods ICSF undergoing percutaneous nephrolithotomy or ureteroscopy for treatment of nephrolithiasis were consented for this study. All accessible renal papillae were endoscopically imaged using a digital endoscope. All stones were removed and determined by the operating surgeon to be attached or unattached to the underlying papilla. Micro-computed tomography (micro-CT), which provides three-dimensional analysis of entire stones, was used to compare the structure and composition of attached versus unattached stones. Results Of 115 stones collected from 9 patients (12 renal units), only 25 stones were found not to be attached to renal papillae. Of these 25 stones, 4 were lost and 12 showed definite morphological evidence of having been attached to tissue, probably having been knocked off of papillae during access. For the remaining 9 stones, micro-CT analysis revealed at least one internal region of calcium phosphate within each of these unattached calcium oxalate (CaOx) stones. That is, the internal structure of the unattached stones is consistent with their having originated attached to RP, and then having become detached but retained in the kidney, with new layers of CaOx eventually covering the original attachment site. Conclusions Micro CT analysis supports the hypothesis that in ICSF, both attached and unattached stones occur as a result of a common pathogenic mechanism. That is, in this type of stone former, CaOx stones—even those not showing morphology that betrays attachment—all originate attached to interstitial plaque on the renal papilla. PMID:19549258

  1. Response surface methodology based extraction of Tribulus terrestris leads to an upsurge of antilithiatic potential by inhibition of calcium oxalate crystallization processes.

    PubMed

    Kaushik, Jyoti; Tandon, Simran; Gupta, Varun; Nayyar, Jasamrit; Singla, Surinder Kumar; Tandon, Chanderdeep

    2017-01-01

    Tribulus terrestris has significant antilithiatic efficacy established via both in vitro as well as in vivo studies and is used in numerous anti-urolithiatic herbal formulations viz. Cystone, Uriflow, Uritone and Neeri. However, to fully utilize its antilithiatic potential, the influence of different extraction parameters on antilithiatic ability of T. terrestris aqueous extract needs elucidation. Thus, the current study was undertaken using statistically optimized extraction conditions for aqueous extract preparation. Response surface methodology was employed to observe the influence of three variables i.e. temperature (°C), time (h) and solid: liquid ratio (S: L) on the extraction yield (%) and protein content (mg/g) of T. terrestris aqueous extract. RSM results revealed that the high S:L ratio, low temperature and reduced incubation time were optimal conditions for aqueous extraction. Under such extraction conditions the protein content reached the value of 26.6±1.22 mg/g and the obtained extraction yield was 27.32±1.62%. The assessment of antilithiatic activity of 4 selected extracts (AE1-4), revealed enhanced nucleation and aggregation inhibition of calcium oxalate crystals with AE1 and AE2, which in addition significantly altered the size and morphology of calcium oxalate monohydrate (COM) crystals compared to AE3 and AE4. In vitro cell culture based studies on renal epithelial cells (MDCK, NRK-52E and PK 15) proved that the AE1 showed higher cytoprotective potency by increasing cell viability as compared to the oxalate treated group. The free radical scavenging activity of aqueous extract lowered the reactive oxygen specie's induced damage and potentially reduced the signals of programmed cell death due to oxalate injury. In addition, modulation of the COM crystal morphology was enhanced by AE1 as compared to AE2. The FTIR and GC-MS analysis of AE1, showed the presence of biomolecules which could aid in the attenuation of lithiatic process. In the light

  2. Response surface methodology based extraction of Tribulus terrestris leads to an upsurge of antilithiatic potential by inhibition of calcium oxalate crystallization processes

    PubMed Central

    Kaushik, Jyoti; Tandon, Simran; Gupta, Varun; Nayyar, Jasamrit; Singla, Surinder Kumar; Tandon, Chanderdeep

    2017-01-01

    Tribulus terrestris has significant antilithiatic efficacy established via both in vitro as well as in vivo studies and is used in numerous anti-urolithiatic herbal formulations viz. Cystone, Uriflow, Uritone and Neeri. However, to fully utilize its antilithiatic potential, the influence of different extraction parameters on antilithiatic ability of T. terrestris aqueous extract needs elucidation. Thus, the current study was undertaken using statistically optimized extraction conditions for aqueous extract preparation. Response surface methodology was employed to observe the influence of three variables i.e. temperature (°C), time (h) and solid: liquid ratio (S: L) on the extraction yield (%) and protein content (mg/g) of T. terrestris aqueous extract. RSM results revealed that the high S:L ratio, low temperature and reduced incubation time were optimal conditions for aqueous extraction. Under such extraction conditions the protein content reached the value of 26.6±1.22 mg/g and the obtained extraction yield was 27.32±1.62%. The assessment of antilithiatic activity of 4 selected extracts (AE1-4), revealed enhanced nucleation and aggregation inhibition of calcium oxalate crystals with AE1 and AE2, which in addition significantly altered the size and morphology of calcium oxalate monohydrate (COM) crystals compared to AE3 and AE4. In vitro cell culture based studies on renal epithelial cells (MDCK, NRK-52E and PK 15) proved that the AE1 showed higher cytoprotective potency by increasing cell viability as compared to the oxalate treated group. The free radical scavenging activity of aqueous extract lowered the reactive oxygen specie’s induced damage and potentially reduced the signals of programmed cell death due to oxalate injury. In addition, modulation of the COM crystal morphology was enhanced by AE1 as compared to AE2. The FTIR and GC-MS analysis of AE1, showed the presence of biomolecules which could aid in the attenuation of lithiatic process. In the light

  3. Irritant contact dermatitis caused by needle-like calcium oxalate crystals, raphides, in Agave tequilana among workers in tequila distilleries and agave plantations.

    PubMed

    Salinas, M L; Ogura, T; Soffchi, L

    2001-02-01

    It was found that needle-like calcium oxalate crystals, raphides, are found abundantly in all tissues of Agave tequilana plants; thus, 1 droplet (0.03 ml) of juice pressed from leaves contains 100-150 crystals, 30-500 microm in length, sharpened at both ends. In tequila distilleries, 5/6 of the workers who handle the agave stems have experienced the characteristic irritation. In contrast, only 1/3 of workers in agave plantations who harvest agave plants, complain of the irritation. It is confirmed that all the irritation suffered in both distilleries and plantations takes place at bodily locations where the plants come into contact with the worker's skin in the course of their work.

  4. Urinary Calcium and Oxalate Excretion in Healthy Adult Cats Are Not Affected by Increasing Dietary Levels of Bone Meal in a Canned Diet

    PubMed Central

    Passlack, Nadine; Zentek, Jürgen

    2013-01-01

    This study aimed to investigate the impact of dietary calcium (Ca) and phosphorus (P), derived from bone meal, on the feline urine composition and the urinary pH, allowing a risk assessment for the formation of calcium oxalate (CaOx) uroliths in cats. Eight healthy adult cats received 3 canned diets, containing 12.2 (A), 18.5 (B) and 27.0 g Ca/kg dry matter (C) and 16.1 (A), 17.6 (B) and 21.1 g P/kg dry matter (C). Each diet was fed over 17 days. After a 7 dayś adaptation period, urine and faeces were collected over 2×4 days (with a two-day rest between), and blood samples were taken. Urinary and faecal minerals, urinary oxalate (Ox), the urinary pH and the concentrations of serum Ca, phosphate and parathyroid hormone (PTH) were analyzed. Moreover, the urine was microscopically examined for CaOx uroliths. The results demonstrated that increasing levels of dietary Ca led to decreased serum PTH and Ca and increased faecal Ca and P concentrations, but did not affect the urinary Ca or Ox concentrations or the urinary fasting pH. The urinary postprandial pH slightly increased when the diet C was compared to the diet B. No CaOx crystals were detected in the urine of the cats. In conclusion, urinary Ca excretion in cats seems to be widely independent of the dietary Ca levels when Ca is added as bone meal to a typical canned diet, implicating that raw materials with higher contents of bones are of subordinate importance as risk factors for the formation of urinary CaOx crystals. PMID:23940588

  5. Biomimetic Mineralization of the Alginate/Gelatin/Calcium Oxalate Matrix for Immobilization of Pectinase: Influence of Matrix on the Pectinolytic Activity.

    PubMed

    Bustamante-Vargas, Cindy Elena; de Oliveira, Débora; Valduga, Eunice; Venquiaruto, Luciana Dornelles; Paroul, Natalia; Backes, Geciane Toniazzo; Dallago, Rogério Marcos

    2016-07-01

    Pectinases catalyze the degradation of pectic substances and are used in several processes, mainly in food and textile industries. In this study, a biomimetic matrix of alginate/gelatin/calcium oxalate (AGOCa) was synthesized for the in situ immobilization via encapsulation of crude pectinase from Aspergillus niger ATCC 9642, obtaining an immobilization efficiency of about 61.7 %. To determine the performance of AGOCa matrix, this was compared to control matrices of alginate/calcium oxalate (AOxal) and alginate/water (ACa). By the evaluation of pH and temperature effects on the enzyme activity, it was observed an increase on pectinolytic activity for both three tested matrices with an increase on pH and temperature. The kinetic parameters for pectinase immobilized in the three matrices were determined using citric pectin as substrate. Values of K m of 0.003, 0.0013, and 0.0022 g mL(-1) and V max of 3.85, 4.32, and 3.17 μmol min(-1) g(-1) for AGOCa, AOxal, and ACa matrices were obtained, respectively. After 33 days of storage, the pectinase immobilized in the three different matrices kept its initial activity, but that immobilized in AGOCa presented high stability to the storage with a relative activity of about 160 %. The enzyme immobilized in AGOCa, AOxal, and ACa could be used in 10, 8, and 7 cycles, respectively, keeping 40 % of its initial activity.

  6. Preparation of calcium oxalate-bromopyrogallol red inclusion sorbent and application to treatment of cationic dye and heavy metal wastewaters.

    PubMed

    Wang, Hong-Yan; Gao, Hong-Wen

    2009-05-01

    Dye pollutants are a major class of environmental contaminants. Over 100,000 dyes have been synthesized worldwide and more than 700,000 tons are produced annually and over 5% are discharged into aquatic environments. The adsorption or sorption is one of the most efficient methods to remove dye and heavy metal pollutants from wastewater. However, most of the present sorbents often bear some disadvantages, e.g. low sorption capacity, difficult separation of spoil, complex reproduction, or secondary pollution. Development of novel sorbents that can overcome these limitations is desirable. On the basis of the chemical coprecipitation of calcium oxalate (CaC(2)O(4)), bromopyrogallol red (BPR) was embedded during the growing of CaC(2)O(4) particles. The ternary C(2)O(4) (2-)-BPR-Ca(2+) sorbent was yielded by the centrifugation. Its composition was determined by spectrophotometry and AAS, and its structure and morphology were characterized by powder X-ray diffraction (XRD), laser particle-size analysis, and scanning electron microscopy (SEM). The adsorption of ethyl violet (EV) and heavy metals, e.g. Cu(II), Cd(II), Ni(II), Zn(II), and Pb(II) were carried out and their removal rate determined by spectrophotometry and ICP-OES. The adsorption performance of the sorbent was compared with powder activated carbon. The Langmuir isothermal model was applied to fit the embedment of BPR and adsorption of EV. The saturation number of BPR binding to CaC(2)O(4) reached 0.0105 mol/mol and the adsorption constant of the complex was 4.70 x 10(5) M(-1). Over 80% of the sorbent particles are between 0.7 and 1.02 microm, formed by the aggregation of the global CaC(2)O(4)/BPR inclusion grains of 30-50 nm size. Such a material was found to adsorb cationic dyes selectively and sensitively. Ethyl violet (EV) was used to investigate the adsorption mechanism of the material. One BPR molecule may just bind with one EV molecule. The CaC(2)O(4)/BPR inclusion material adsorbed EV over two times more

  7. Calcium source (image)

    MedlinePlus

    Getting enough calcium to keep bones from thinning throughout a person's life may be made more difficult if that person has ... as a tendency toward kidney stones, for avoiding calcium-rich food sources. Calcium deficiency also effects the ...

  8. Calcium and bones (image)

    MedlinePlus

    Calcium is one of the most important minerals for the growth, maintenance, and reproduction of the human ... body, are continually being re-formed and incorporate calcium into their structure. Calcium is essential for the ...

  9. Calcium and Vitamin D

    MedlinePlus

    ... A calcium-rich diet (including dairy, nuts, leafy greens and fish) helps to build and protect your bones. Calcium is a mineral that is necessary for life. In addition to building bones and keeping them healthy, calcium enables our ...

  10. Ozone-Induced Responses in Croton floribundus Spreng. (Euphorbiaceae): Metabolic Cross-Talk between Volatile Organic Compounds and Calcium Oxalate Crystal Formation

    PubMed Central

    Cardoso-Gustavson, Poliana; Bolsoni, Vanessa Palermo; de Oliveira, Debora Pinheiro; Guaratini, Maria Tereza Gromboni; Aidar, Marcos Pereira Marinho; Marabesi, Mauro Alexandre; Alves, Edenise Segala; de Souza, Silvia Ribeiro

    2014-01-01

    Here, we proposed that volatile organic compounds (VOC), specifically methyl salicylate (MeSA), mediate the formation of calcium oxalate crystals (COC) in the defence against ozone (O3) oxidative damage. We performed experiments using Croton floribundus, a pioneer tree species that is tolerant to O3 and widely distributed in the Brazilian forest. This species constitutively produces COC. We exposed plants to a controlled fumigation experiment and assessed biochemical, physiological, and morphological parameters. O3 induced a significant increase in the concentrations of constitutive oxygenated compounds, MeSA and terpenoids as well as in COC number. Our analysis supported the hypothesis that ozone-induced VOC (mainly MeSA) regulate ROS formation in a way that promotes the opening of calcium channels and the subsequent formation of COC in a fast and stable manner to stop the consequences of the reactive oxygen species in the tissue, indeed immobilising the excess calcium (caused by acute exposition to O3) that can be dangerous to the plant. To test this hypothesis, we performed an independent experiment spraying MeSA over C. floribundus plants and observed an increase in the number of COC, indicating that this compound has a potential to directly induce their formation. Thus, the tolerance of C. floribundus to O3 oxidative stress could be a consequence of a higher capacity for the production of VOC and COC rather than the modulation of antioxidant balance. We also present some insights into constitutive morphological features that may be related to the tolerance that this species exhibits to O3. PMID:25165889

  11. Contrasting calcium localization and speciation in leaves of Medicago trunculata mutant COD5 analyzed via synchrotron X-ray techniques

    USDA-ARS?s Scientific Manuscript database

    Oxalate-producing plants accumulate calcium oxalate crystals (CaOx(C)) in the range of 3-80%(w/w) of their dry weight, reducing calcium (Ca) bioavailability. The calcium oxalate deficient 5 (cod5) mutant of Medicago truncatula has been previously shown to contain similar Ca, but lower oxalate and Ca...

  12. An oxalyl-CoA dependent pathway of oxalate catabolism plays a role in regulating calcium oxalate crystal accumulation and defending against oxalate-secreting phytopathogens in Medicago truncatula

    USDA-ARS?s Scientific Manuscript database

    Considering the widespread occurrence of oxalate in nature and its broad impact on a host of organisms, it is surprising that so little is known about the turnover of this important acid. In plants, oxalate oxidase is the most well studied enzyme capable of degrading oxalate, but not all plants pos...

  13. The effects of intracrystalline and surface-bound proteins on the attachment of calcium oxalate monohydrate crystals to renal cells in undiluted human urine

    PubMed Central

    Grover, Phulwinder K.; Thurgood, Lauren A.; Wang, Tingting; Ryall, Rosemary L.

    2010-01-01

    Objective To compare the binding to Madin-Darby canine kidney (MDCK)-II cells of: (i) inorganic calcium oxalate monohydrate (iCOM) crystals and COM crystals precipitated from urine containing different concentrations of protein; and (ii) urinary COM crystals containing intracrystalline and intracrystalline + surface-bound protein. Materials and methods Urinary COM crystals were generated in sieved (sCOM), centrifuged and filtered (cfCOM), and ultrafiltered (ufCOM) portions of a pooled human urine and their adhesion to MDCK-II cells was compared using six different ultrafiltered urine samples as the binding medium. Crystal matrix extract (CME) was prepared by demineralizing calcium oxalate crystals precipitated from human urine and used to prepare COM crystals with intracrystalline, and intracrystalline + surface-bound CME at protein concentrations of 0, 0.05, 0.1, 0.5 and 5.0 mg/L. The amount of protein associated with the crystals was qualitatively assessed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and Western blotting, using prothrombin fragment 1 (PTF1) as a marker. Protein concentration was determined in sieved, centrifuged and filtered, and ultrafiltered fractions of 10 additional urine samples. Results The median crystal attachment in the six urine types decreased in the order iCOM > ufCOM > cfCOM = sCOM, in inverse proportion to the concentration of protein in the solution or urine from which they were precipitated. sCOM and cfCOM crystals bound ≈□ 23% less than iCOM crystals. The attachment of COM crystals generated in the presence of increasing concentrations of CME proteins was unaffected up to a concentration of 5 mg/L, but binding of crystals containing the same concentrations of intracrystalline + surface-bound proteins decreased proportionally at protein concentrations from 0 to 5.0 mg/L. Conclusion Inorganic COM crystals bind significantly more strongly to MDCK-II cells than urinary crystals precipitated from sieved

  14. Conservation of Monuments by a Three-Layered Compatible Treatment of TEOS-Nano-Calcium Oxalate Consolidant and TEOS-PDMS-TiO₂ Hydrophobic/Photoactive Hybrid Nanomaterials.

    PubMed

    Kapridaki, Chrysi; Verganelaki, Anastasia; Dimitriadou, Pipina; Maravelaki-Kalaitzaki, Pagona

    2018-04-27

    In the conservation of monuments, research on innovative nanocomposites with strengthening, hydrophobic and self-cleaning properties have attracted the interest of the scientific community and promising results have been obtained as a result. In this study, stemming from the need for the compatibility of treatments in terms of nanocomposite/substrate, a three-layered compatible treatment providing strengthening, hydrophobic, and self-cleaning properties is proposed. This conservation approach was implemented treating lithotypes and mortars of different porosity and petrographic characteristics with a three-layered treatment comprising: (a) a consolidant, tetraethoxysilane (TEOS)-nano-Calcium Oxalate; (b) a hydrophobic layer of TEOS-polydimethylsiloxane (PDMS); and (c) a self-cleaning layer of TiO₂ nanoparticles from titanium tetra-isopropoxide with oxalic acid as hole-scavenger. After the three-layered treatment, the surface hydrophobicity was improved due to PDMS and nano-TiO₂ in the interface substrate/atmosphere, as proven by the homogeneity and the Si⁻O⁻Ti hetero-linkages of the blend protective/self-cleaning layers observed by Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM) and Fourier-Transform Infrared Spectroscopy (FTIR). The aesthetic, microstructural, mechanical and permeabile compatibility of the majority of treated substrates ranged within acceptability limits. The improved photocatalytic activity, as proven by the total discoloration of methylene blue in the majority of cases, was attributed to the anchorage of TiO₂, through the Si⁻O⁻Ti bonds to SiO₂, in the interface with the atmosphere, thus enhancing photoactivation.

  15. Anti-Transforming Growth Factor β IgG Elicits a Dual Effect on Calcium Oxalate Crystallization and Progressive Nephrocalcinosis-Related Chronic Kidney Disease

    PubMed Central

    Steiger, Stefanie; Grill, Julia Felicitas; Ma, Qiuyue; Bäuerle, Tobias; Jordan, Jutta; Smolle, Michaela; Böhland, Claudia; Lech, Maciej; Anders, Hans-Joachim

    2018-01-01

    Crystallopathies are a heterogeneous group of diseases caused by intrinsic or environmental microparticles or crystals, promoting tissue inflammation and scarring. Certain proteins interfere with crystal formation and growth, e.g., with intrarenal calcium oxalate (CaOx) crystal formation, a common cause of kidney stone disease or nephrocalcinosis-related chronic kidney disease (CKD). We hypothesized that immunoglobulins can modulate CaOx microcrystal formation and crystal growth and that therefore, biological IgG-based drugs designed to specifically target disease modifying proteins would elicit a dual effect on the outcome of CaOx-related crystallopathies. Indeed, both the anti-transforming growth factor (TGF)β IgG and control IgG1 antibody impaired CaOx crystallization in vitro, and decreased intrarenal CaOx crystal deposition and subsequent CKD in mice on an oxalate-rich diet compared to oxalate-fed control mice. However, the TGFβ-specific IgG antibody showed nephroprotective effects beyond those of control IgG1 and substantially reduced interstitial fibrosis as indicated by magnetic resonance imaging, silver and α-smooth muscle actin staining, RT-qPCR, and flow cytometry for pro-fibrotic macrophages. Suppressing interstitial fibrosis slowed the decline of glomerular filtration rate (GFR) compared to treatment with control IgG1 [slope of m = −8.9 vs. m = −14.5 μl/min/100 g body weight (BW)/day, Δ = 38.3%], an increased GFR at the end of the study (120.4 vs. 42.6 μl/min/100 g BW, Δ = 64.6%), and prolonged end stage renal disease (ESRD)-free renal survival by 10 days (Δ = 38.5%). Delayed onset of anti-TGFβ IgG from day 7 was no longer effective. Our results suggest that biological drugs can elicit dual therapeutic effects on intrinsic crystallopathies, such as anti-TGFβ IgG antibody treatment inhibits CaOx crystallization as well as interstitial fibrosis in nephrocalcinosis-related CKD. PMID:29651290

  16. Anti-Transforming Growth Factor β IgG Elicits a Dual Effect on Calcium Oxalate Crystallization and Progressive Nephrocalcinosis-Related Chronic Kidney Disease.

    PubMed

    Steiger, Stefanie; Grill, Julia Felicitas; Ma, Qiuyue; Bäuerle, Tobias; Jordan, Jutta; Smolle, Michaela; Böhland, Claudia; Lech, Maciej; Anders, Hans-Joachim

    2018-01-01

    Crystallopathies are a heterogeneous group of diseases caused by intrinsic or environmental microparticles or crystals, promoting tissue inflammation and scarring. Certain proteins interfere with crystal formation and growth, e.g., with intrarenal calcium oxalate (CaOx) crystal formation, a common cause of kidney stone disease or nephrocalcinosis-related chronic kidney disease (CKD). We hypothesized that immunoglobulins can modulate CaOx microcrystal formation and crystal growth and that therefore, biological IgG-based drugs designed to specifically target disease modifying proteins would elicit a dual effect on the outcome of CaOx-related crystallopathies. Indeed, both the anti-transforming growth factor (TGF)β IgG and control IgG1 antibody impaired CaOx crystallization in vitro , and decreased intrarenal CaOx crystal deposition and subsequent CKD in mice on an oxalate-rich diet compared to oxalate-fed control mice. However, the TGFβ-specific IgG antibody showed nephroprotective effects beyond those of control IgG1 and substantially reduced interstitial fibrosis as indicated by magnetic resonance imaging, silver and α-smooth muscle actin staining, RT-qPCR, and flow cytometry for pro-fibrotic macrophages. Suppressing interstitial fibrosis slowed the decline of glomerular filtration rate (GFR) compared to treatment with control IgG1 [slope of m  = -8.9 vs. m  = -14.5 μl/min/100 g body weight (BW)/day, Δ = 38.3%], an increased GFR at the end of the study (120.4 vs. 42.6 μl/min/100 g BW, Δ = 64.6%), and prolonged end stage renal disease (ESRD)-free renal survival by 10 days (Δ = 38.5%). Delayed onset of anti-TGFβ IgG from day 7 was no longer effective. Our results suggest that biological drugs can elicit dual therapeutic effects on intrinsic crystallopathies, such as anti-TGFβ IgG antibody treatment inhibits CaOx crystallization as well as interstitial fibrosis in nephrocalcinosis-related CKD.

  17. Calcium oxalate crystals increased enolase-1 secretion from renal tubular cells that subsequently enhanced crystal and monocyte invasion through renal interstitium.

    PubMed

    Chiangjong, Wararat; Thongboonkerd, Visith

    2016-04-05

    Calcium oxalate monohydrate (COM) crystals cause kidney stone disease by still unclear mechanisms. The present study aimed to characterize changes in secretion of proteins from basolateral compartment of renal tubular epithelial cells after exposure to COM crystals and then correlated them with the stone pathogenesis. Polarized MDCK cells were cultivated in serum-free medium with or without 100 μg/ml COM crystals for 20 h. Secreted proteins collected from the lower chamber (basolateral compartment) were then resolved in 2-D gels and visualized by Deep Purple stain (n = 5 gels/group). Spot matching and intensity analysis revealed six protein spots with significantly altered levels in COM-treated samples. These proteins were then identified by tandem mass spectrometry (Q-TOF MS/MS), including enolase-1, phosphoglycerate mutase-1, actinin, 14-3-3 protein epsilon, alpha-tubulin 2, and ubiquitin-activating enzyme E1. The increased enolase-1 level was confirmed by Western blot analysis. Functional analysis revealed that enolase-1 dramatically induced COM crystal invasion through ECM migrating chamber in a dose-dependent manner. Moreover, enolase-1 bound onto U937 monocytic cell surface markedly enhanced cell migration through the ECM migrating chamber. In summary, our data indicated that the increased secretory enolase-1 induced by COM crystals played an important role in crystal invasion and inflammatory process in renal interstitium.

  18. Trichoderma koningii as a biomineralizing fungous agent of calcium oxalate crystals in typical Argiudolls of the Los Padres Lake natural reserve (Buenos Aires, Argentina).

    PubMed

    Oyarbide, F; Osterrieth, M L; Cabello, M

    2001-01-01

    The aim of the present study, performed on typical Argiudolls in a natural reserve with little or no anthropic impact, was to characterize the fungous biomineralizing process of calcium oxalate crystals in organic horizons of the soil. The chosen sites possessed different plant cover, identified as acacia woods and grassy meadows with particular micro environmental conditions that have differing effects in the process of biomineralization. The contribution of the plant material in the soil is a key factor since 1) it generates the particular composition of the organic horizons, 2) it determines the nature of decomposing organisms, and 3) it affects the presence, composition and development of biominerals. According to the results obtained, the acacia woods prove to be a site comparatively more favorable to the fungous biomineralizing process. This makes itself manifest in the greater abundance and development of crystals in the organic horizons of the soil, resulting in whewellite (CaC2O4.H2O) and weddellite (CaC2O4.(2+x) H2O) regarding biomineral species developed, the latter being the major component. The observation of both species of biominerals is noteworthy since it represents the first cited in the country. The isolated fungous organisms were Trichoderma koningii, and Absidia corymbifera. T. koningii was identified as the most active biomineralizing organism thus constituting the first reference to indicate this species as a biomineral producing agent.

  19. CALCIUM CHLORIDE PLANT LOOKING EAST. CALCIUM CHLORIDE BUILDING IN CENTER, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CALCIUM CHLORIDE PLANT LOOKING EAST. CALCIUM CHLORIDE BUILDING IN CENTER, CALCIUM CHLORIDE STORAGE BUILDING ON RIGHT WITH SA (SODA ASH) BUILDING IN RIGHT BACKGROUND. - Solvay Process Company, Calcium Chloride Plant, Between Willis & Milton Avenues, Solvay, Onondaga County, NY

  20. Fenoprofen calcium overdose

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/002649.htm Fenoprofen calcium overdose To use the sharing features on this page, please enable JavaScript. Fenoprofen calcium is a type of medicine called a nonsteroidal ...

  1. Calcium in diet

    MedlinePlus

    ... best source. Milk and dairy products such as yogurt, cheeses, and buttermilk contain a form of calcium ... the amount of calcium in a dairy product. Yogurt, most cheeses, and buttermilk are excellent sources of ...

  2. Calcium and Mitosis

    NASA Technical Reports Server (NTRS)

    Hepler, P.

    1983-01-01

    Although the mechanism of calcium regulation is not understood, there is evidence that calcium plays a role in mitosis. Experiments conducted show that: (1) the spindle apparatus contains a highly developed membrane system that has many characteristics of sarcoplasmic reticulum of muscle; (2) this membrane system contains calcium; and (3) there are ionic fluxes occurring during mitosis which can be seen by a variety of fluorescence probes. Whether the process of mitosis can be modulated by experimentally modulating calcium is discussed.

  3. Calcium Blood Test

    MedlinePlus

    ... Your health care provider may order a calcium test if you have a pre-existing condition that may affect your calcium levels. These include: Kidney disease Thyroid disease Malnutrition Certain types of cancer What happens during a calcium blood test? A health care professional will take a blood ...

  4. Discrimination of clinically significant calcium salts using MARS spectral CT

    NASA Astrophysics Data System (ADS)

    Kirkbride, T. E.; Raja, A.; Mueller, K.; Bateman, C. J.; Becce, F.; Anderson, N.

    2017-03-01

    Calcium compounds within tissues are usually a sign of pathology, and calcium crystal type is often a pointer to the diagnosis. There are clinical advantages in being able to determine the quantity and type of calcifications non-invasively in cardiovascular, genitourinary and musculoskeletal disorders, and treatment differs depending on the crystal type and quantity. The problem arises when trying to distinguish between different calcium compounds within the same image due to their similar attenuation properties. There are spectroscopic differences between calcium salts at very low energies. As calcium oxalate and calcium hydroxyapatite can co-exist in breast and musculoskeletal pathologies of the breast, we wished to determine whether Spectral CT could distinguish between them in the same image at clinical X-ray energy ranges. Energy thresholds of 15, 22, 29 and 36keV and tube voltages of 50, 80 and 110kVp were chosen, and images were analysed to determine the percentage difference in the attenuation coefficients of calcium hydroxyapatite samples at concentrations of 54.3, 211.7, 808.5 and 1169.3mg/ml, and calcium oxalate at a concentration of 2000 mg/ml. The two lower concentrations of calcium hydroxyapatite were distinguishable from calcium oxalate at all energies and all tube voltages, whereas the ability to discriminate oxalate from hydroxyapatite at higher concentrations was dependent on the threshold energy but only mildly dependent on the tube voltage used. Spectral CT shows promise for distinguishing clinically important calcium salts.

  5. Modulation of calcium oxalate dihydrate growth by selective crystal-face binding of phosphorylated osteopontin and polyaspartate peptide showing occlusion by sectoral (compositional) zoning.

    PubMed

    Chien, Yung-Ching; Masica, David L; Gray, Jeffrey J; Nguyen, Sarah; Vali, Hojatollah; McKee, Marc D

    2009-08-28

    Calcium oxalate dihydrate (COD) mineral and the urinary protein osteopontin/uropontin (OPN) are commonly found in kidney stones. To investigate the effects of OPN on COD growth, COD crystals were grown with phosphorylated OPN or a polyaspartic acid-rich peptide of OPN (DDLDDDDD, poly-Asp(86-93)). Crystals grown with OPN showed increased dimensions of the {110} prismatic faces attributable to selective inhibition at this crystallographic face. At high concentrations of OPN, elongated crystals with dominant {110} faces were produced, often with intergrown, interpenetrating twin crystals. Poly-Asp(86-93) dose-dependently elongated crystal morphology along the {110} faces in a manner similar to OPN. In crystal growth studies using fluorescently tagged poly-Asp(86-93) followed by imaging of crystal interiors using confocal microscopy, sectoral (compositional) zoning in COD was observed resulting from selective binding and incorporation (occlusion) of peptide exclusively into {110} crystal sectors. Computational modeling of poly-Asp(86-93) adsorption to COD {110} and {101} surfaces also suggests increased stabilization of the COD {110} surface and negligible change to the natively stable {101} surface. Ultrastructural, colloidal-gold immunolocalization of OPN by transmission electron microscopy in human stones confirmed an intracrystalline distribution of OPN. In summary, OPN and its poly-Asp(86-93) sequence similarly affect COD mineral growth; the {110} crystallographic faces become enhanced and dominant attributable to {110} face inhibition by the protein/peptide, and peptides can incorporate into the mineral phase. We, thus, conclude that the poly-Asp(86-93) domain is central to the OPN ability to interact with the {110} faces of COD, where it binds to inhibit crystal growth with subsequent intracrystalline incorporation (occlusion).

  6. Calcium oxalate crystals induces tight junction disruption in distal renal tubular epithelial cells by activating ROS/Akt/p38 MAPK signaling pathway.

    PubMed

    Yu, Lei; Gan, Xiuguo; Liu, Xukun; An, Ruihua

    2017-11-01

    Tight junction plays important roles in regulating paracellular transports and maintaining cell polarity. Calcium oxalate monohydrate (COM) crystals, the major crystalline composition of kidney stones, have been demonstrated to be able to cause tight junction disruption to accelerate renal cell injury. However, the cellular signaling involved in COM crystal-induced tight junction disruption remains largely to be investigated. In the present study, we proved that COM crystals induced tight junction disruption by activating ROS/Akt/p38 MAPK pathway. Treating Madin-Darby canine kidney (MDCK) cells with COM crystals induced a substantial increasing of ROS generation and activation of Akt that triggered subsequential activation of ASK1 and p38 mitogen-activated protein kinase (MAPK). Western blot revealed a significantly decreased expression of ZO-1 and occludin, two important structural proteins of tight junction. Besides, redistribution and dissociation of ZO-1 were observed by COM crystals treatment. Inhibition of ROS by N-acetyl-l-cysteine (NAC) attenuated the activation of Akt, ASK1, p38 MAPK, and down-regulation of ZO-1 and occludin. The redistribution and dissociation of ZO-1 were also alleviated by NAC treatment. These results indicated that ROS were involved in the regulation of tight junction disruption induced by COM crystals. In addition, the down-regulation of ZO-1 and occludin, the phosphorylation of ASK1 and p38 MAPK were also attenuated by MK-2206, an inhibitor of Akt kinase, implying Akt was involved in the disruption of tight junction upstream of p38 MAPK. Thus, these results suggested that ROS-Akt-p38 MAPK signaling pathway was activated in COM crystal-induced disruption of tight junction in MDCK cells.

  7. Weathering of gilding decorations investigated by SR: development and distribution of calcium oxalates in the case of Sant Benet de Bages (Barcelona, Spain)

    NASA Astrophysics Data System (ADS)

    Lluveras, A.; Boularand, S.; Roqué, J.; Cotte, M.; Giráldez, P.; Vendrell-Saz, M.

    2008-01-01

    In this paper seventeenth century gilded paintings from the crypt of Sant Benet de Bages, a medieval monastery in the Catalonia region of Spain, near Barcelona, have been studied. Cross sections from two different gilded decorations were studied by means of optical microscopy and electron microscopy and EDS to determine the statigraphy and elemental composition, and by means of FTIR coupled to a microscope to determine the binding media associated to each layer. These preliminary results demonstrated that gilded decorations were made by the application of a gold foil on a mordant substrate on a gypsum base, while the mouldings of the vaults seem to be gilded on a bol with a glaze on top of the gold leaf. It is interesting to notice that the first remained unaltered, while the gilded vault mouldings look almost black, due to the darkening of the organic material. To elucidate the causes involved in the darkening of the sample from the vaults a set of synchrotron μXRD and μFTIR experiments have been carried out on these samples at the ESRF (ID18F and ID21, respectively). High brightness and small spot working conditions revealed the development and distribution of calcium oxalates in the binding media, which seem to be responsible for the darkening. Results point out the fact that weddellite (CaC2O4·2H2O) is the phase formed in those layers where organic material has also been identified or at least it would be supposed to be by bibliographic sources and not necessarily those superficial as it would have been suggested due to the similarities with patinas formation.

  8. Surface heat shock protein 90 serves as a potential receptor for calcium oxalate crystal on apical membrane of renal tubular epithelial cells.

    PubMed

    Fong-Ngern, Kedsarin; Sueksakit, Kanyarat; Thongboonkerd, Visith

    2016-07-01

    Adhesion of calcium oxalate monohydrate (COM) crystals on renal tubular epithelial cells is a crucial step in kidney stone formation. Finding potential crystal receptors on the apical membrane of the cells may lead to a novel approach to prevent kidney stone disease. Our previous study identified a large number of crystal-binding proteins on the apical membrane of MDCK cells. However, their functional role as potential crystal receptors had not been validated. The present study aimed to address the potential role of heat shock protein 90 (HSP90) as a COM crystal receptor. The apical membrane was isolated from polarized MDCK cells by the peeling method and recovered proteins were incubated with COM crystals. Western blot analysis confirmed the presence of HSP90 in the apical membrane and the crystal-bound fraction. Immunofluorescence staining without permeabilization and laser-scanning confocal microscopy confirmed the surface HSP90 expression on the apical membrane of the intact cells. Crystal adhesion assay showed that blocking surface HSP90 by specific anti-HSP90 antibody and knockdown of HSP90 by small interfering RNA (siRNA) dramatically reduced crystal binding on the apical surface of MDCK cells (by approximately 1/2 and 2/3, respectively). Additionally, crystal internalization assay revealed the presence of HSP90 on the membrane of endocytic vesicle containing the internalized COM crystal. Moreover, pretreatment of MDCK cells with anti-HSP90 antibody significantly reduced crystal internalization (by approximately 1/3). Taken together, our data indicate that HSP90 serves as a potential receptor for COM crystals on the apical membrane of renal tubular epithelial cells and is involved in endocytosis/internalization of the crystals into the cells.

  9. CT visible internal stone structure, but not Hounsfield unit value, of calcium oxalate monohydrate (COM) calculi predicts lithotripsy fragility in vitro.

    PubMed

    Zarse, Chad A; Hameed, Tariq A; Jackson, Molly E; Pishchalnikov, Yuri A; Lingeman, James E; McAteer, James A; Williams, James C

    2007-08-01

    Calcium oxalate monohydrate (COM) stones are often resistant to breakage using shock wave (SW) lithotripsy. It would be useful to identify by computed tomography (CT) those COM stones that are susceptible to SW's. For this study, 47 COM stones (4-10 mm in diameter) were scanned with micro CT to verify composition and also for assessment of heterogeneity (presence of pronounced lobulation, voids, or apatite inclusions) by blinded observers. Stones were then placed in water and scanned using 64-channel helical CT. As with micro CT, heterogeneity was assessed by blinded observers, using high-bone viewing windows. Then stones were broken in a lithotripter (Dornier Doli-50) over 2 mm mesh, and SW's counted. Results showed that classification of stones using micro CT was highly repeatable among observers (kappa = 0.81), and also predictive of stone fragility. Stones graded as homogeneous required 1,874 +/- 821 SW/g for comminution, while stones with visible structure required half as many SW/g, 912 +/- 678. Similarly, when stones were graded by appearance on helical CT, classification was repeatable (kappa = 0.40), and homogeneous stones required more SW's for comminution than did heterogeneous stones (1,702 +/- 993 SW/g, compared to 907 +/- 773). Stone fragility normalized to stone size did not correlate with Hounsfield units (P = 0.85). In conclusion, COM stones of homogeneous structure require almost twice as many SW's to comminute than stones of similar mineral composition that exhibit internal structural features that are visible by CT. This suggests that stone fragility in patients could be predicted using pre-treatment CT imaging. The findings also show that Hounsfield unit values of COM stones did not correlate with stone fragility. Thus, it is stone morphology, rather than X-ray attenuation, which correlates with fragility to SW's in this common stone type.

  10. The osteopontin-controlled switching of calcium oxalate monohydrate morphologies in artificial urine provides insights into the formation of papillary kidney stones.

    PubMed

    Langdon, Aaron; Grohe, Bernd

    2016-10-01

    The protein osteopontin (OPN) plays an important role in preventing the formation of calcium oxalate monohydrate (COM) kidney stones. To gain insight into these mechanisms, crystallization was induced by addition of human kidney OPN to artificial urine (ionic strength comparable to urine; without citrate), and the OPN-COM interaction studied using a combination of scanning electron (SEM) and confocal microscopy. By SEM, we found that increasing OPN concentrations formed large monoclinic penetration twins (no protein added) and, at higher concentrations (1-, 2μg/ml OPN), super and hyper twins with crystal habits not found in previous studies. For instance, the hyper twins indicate well-facetted gearwheel-like habits with "teeth" developed in all crystallographic directions. At OPN concentrations ≥2μg/ml, a switching to small dumbbell-shaped COM habits with fine-textured surfaces occurred. Confocal microscopy of these dumbbells indicates protein incorporation in almost the entire crystal structure (in contrast to facetted COM), proposing a threshold concentration of ∼2μg/ml OPN for the facetted to the non-facetted habit transformation. Both the gearwheel-like and the dumbbell-shaped habit are again found side-by-side (presumably triggered by OPN concentration gradients within the sample) in in-vitro formed conglomerates, which resemble cross-sections of papillary kidney stones. The abrupt transformation from facetted to non-facetted habits and the unique compliance of the two in-vitro formed habits with the two main morphologies found in papillary kidney stones propose that OPN is a main effector in direct stone-forming processes. Moreover, stone structures which exhibit these two morphologies side-by-side might serve as a novel indicator for OPN concentrations surrounding those structures. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Calcium Channel Blockers

    MedlinePlus

    ... Certain calcium channel blockers interact with grapefruit products. Kaplan NM, et al. Treatment of hypertension: Drug therapy. In: Kaplan's Clinical Hypertension. 11th ed. Philadelphia, Pa.: Wolters Kluwer ...

  12. Calcium hydroxide poisoning

    MedlinePlus

    These products contain calcium hydroxide: Cement Limewater Many industrial solvents and cleaners (hundreds to thousands of construction products, flooring strippers, brick cleaners, cement thickening products, and many ...

  13. Differentiating Calcium Oxalate and Hydroxyapatite Stones In Vivo Using Dual-Energy CT and Urine Supersaturation and pH Values

    PubMed Central

    Liu, Yu; Qu, Mingliang; Carter, Rickey E.; Leng, Shuai; Ramirez-Giraldo, Juan Carlos; Jaramillo, Giselle; Krambeck, Amy E.; Lieske, John C.; Vrtiska, Terri J.; McCollough, Cynthia H.

    2014-01-01

    Rationale and Objectives Knowledge of urinary stone composition can guide therapeutic intervention for patients with calcium oxalate (CaOx) or hydroxyapatite (HA) stones. In this study, we determined the accuracy of noninvasive differentiation of these two stone types using dual-energy CT (DECT) and urine supersaturation (SS) and pH values. Materials and Methods Patients who underwent clinically indicated DECT scanning for stone disease and subsequent surgical intervention were enrolled. Stone composition was determined using infrared spectroscopy. DECT images were processed using custom-developed software that evaluated the ratio of CT numbers between low- and high-energy images. Clinical information, including patient age, gender, and urine pH and supersaturation profile, was obtained from electronic medical records. Simple and multiple logistic regressions were used to determine if the ratio of CT numbers could discriminate CaOx from HA stones alone or in conjunction with urine supersaturation and pH. Results Urinary stones (CaOx n = 43, HA n = 18) from 61 patients were included in this study. In a univariate model, DECT data, urine SS-HA, and urine pH had an area under the receiver operating characteristic curve of 0.78 (95% confidence interval [CI] 0.66–0.91, P = .016), 0.76 (95%CI 0.61–0.91, P = .003), and 0.60 (95% CI 0.44–0.75, P = .20), respectively, for predicting stone composition. The combination of CT data and the urinary SS-HA had an area under the receiver operating characteristic curve of 0.79 (95%CI 0.66–0.92, P = .007) for correctly differentiating these two stone types. Conclusions DECT differentiated between CaOx and HA stones similarly to SS-HA, whereas pH was a poor discriminator. The combination of DECT and urine SS or pH data did not improve this performance. PMID:24200478

  14. Lead in calcium supplements.

    PubMed Central

    Scelfo, G M; Flegal, A R

    2000-01-01

    Intercalibrated measurements of lead in calcium supplements indicate the importance of rigorous analytical techniques to accurately quantify contaminant exposures in complex matrices. Without such techniques, measurements of lead concentrations in calcium supplements may be either erroneously low, by as much as 50%, or below the detection limit needed for new public health criteria. In this study, we determined the lead content of 136 brands of supplements that were purchased in 1996. The calcium in the products was derived from natural sources (bonemeal, dolomite, or oyster shell) or was synthesized and/or refined (chelated and nonchelated calcium). The dried products were acid digested and analyzed for lead by high resolution-inductively coupled plasma-mass spectrometry. The method's limit of quantitation averaged 0.06 microg/g, with a coefficient of variation of 1.7% and a 90-100% lead recovery of a bonemeal standard reference material. Two-thirds of those calcium supplements failed to meet the 1999 California criteria for acceptable lead levels (1.5 microg/daily dose of calcium) in consumer products. The nonchelated synthesized and/or refined calcium products, specifically antacids and infant formulas, had the lowest lead concentrations, ranging from nondetectable to 2.9 microg Pb/g calcium, and had the largest proportion of brands meeting the new criteria (85% of the antacids and 100% of the infant formulas). Images Figure 1 Figure 2 PMID:10753088

  15. Calcium and bones

    MedlinePlus

    ... as you get older. This can result in brittle, fragile bones that can break easily, even without a fall or other injury. The digestive system is normally very bad at absorbing calcium. Most people absorb only 15% to 20% of the calcium ...

  16. Calcium metabolism in birds.

    PubMed

    de Matos, Ricardo

    2008-01-01

    Calcium is one of the most important plasma constituents in mammals and birds. It provides structural strength and support (bones and eggshell) and plays vital roles in many of the biochemical reactions in the body. The control of calcium metabolism in birds is highly efficient and closely regulated in a number of tissues, primarily parathyroid gland, intestine, kidney, and bone. The hormones with the greatest involvement in calcium regulation in birds are parathyroid hormone, 1,25-dihydroxyvitamin D(3) (calcitriol), and estrogen, with calcitonin playing a minor and uncertain role. The special characteristics of calcium metabolism in birds, mainly associated with egg production, are discussed, along with common clinical disorders secondary to derangements in calcium homeostasis.

  17. Skin Barrier and Calcium.

    PubMed

    Lee, Sang Eun; Lee, Seung Hun

    2018-06-01

    Epidermal barrier formation and the maintenance of barrier homeostasis are essential to protect us from the external environments and organisms. Moreover, impaired keratinocytes differentiation and dysfunctional skin barrier can be the primary causes or aggravating factors for many inflammatory skin diseases including atopic dermatitis and psoriasis. Therefore, understanding the regulation mechanisms of keratinocytes differentiation and skin barrier homeostasis is important to understand many skin diseases and establish an effective treatment strategy. Calcium ions (Ca 2+ ) and their concentration gradient in the epidermis are essential in regulating many skin functions, including keratinocyte differentiation, skin barrier formation, and permeability barrier homeostasis. Recent studies have suggested that the intracellular Ca 2+ stores such as the endoplasmic reticulum (ER) are the major components that form the epidermal calcium gradient and the ER calcium homeostasis is crucial for regulating keratinocytes differentiation, intercellular junction formation, antimicrobial barrier, and permeability barrier homeostasis. Thus, both Ca 2+ release from intracellular stores, such as the ER and Ca 2+ influx mechanisms are important in skin barrier. In addition, growing evidences identified the functional existence and the role of many types of calcium channels which mediate calcium flux in keratinocytes. In this review, the origin of epidermal calcium gradient and their role in the formation and regulation of skin barrier are focused. We also focus on the role of ER calcium homeostasis in skin barrier. Furthermore, the distribution and role of epidermal calcium channels, including transient receptor potential channels, store-operated calcium entry channel Orai1, and voltage-gated calcium channels in skin barrier are discussed.

  18. Mucin 4 Gene Silencing Reduces Oxidative Stress and Calcium Oxalate Crystal Formation in Renal Tubular Epithelial Cells Through the Extracellular Signal-Regulated Kinase Signaling Pathway in Nephrolithiasis Rat Model.

    PubMed

    Sun, Ling; Zou, Lu-Xi; Wang, Jie; Chen, Ting; Han, Yu-Chen; Zhu, Dong-Dong; Zhuo, Shi-Chao

    2018-05-25

    Nephrolithiasis plagues a great number of patients all over the world. Increasing evidence shows that the extracellular signal-regulated kinase (ERK) signaling pathway and renal tubular epithelial cell (RTEC) dysfunction and attrition are central to the pathogenesis of kidney diseases. Mucin 4 (MUC4) is reported as an activator of ERK signaling pathway in epithelial cells. In this study, using rat models of calcium oxalate (CaOx) nephrolithiasis, the present study aims to define the roles of MUC4 and ERK signaling pathway as contributors to oxidative stress and CaOx crystal formation in RTEC. Data sets of nephrolithiasis were searched using GEO database and a heat flow map was drawn. Then MUC4 function was predicted. Wistar rats were prepared for the purpose of model establishment of ethylene glycol and ammonium chloride induced CaOx nephrolithiasis. In order to assess the detailed regulatory mechanism of MUC4 silencing on the ERK signaling pathway and RTEC, we used recombinant plasmid to downregulate MUC4 expression in Wistar rat-based models. Samples from rat urine, serum and kidney tissues were reviewed to identify oxalic acid and calcium contents, BUN, Cr, Ca2+ and P3+ levels, calcium crystal formation in renal tubules and MUC4 positive expression rate. Finally, RT-qPCR, Western blot analysis, and ELISA were employed to access oxidative stress state and CaOx crystal formation in RTEC. Initially, MUC4 was found to have an influence on the process of nephrolithiasis. MUC4 was upregulated in the CaOx nephrolithiasis model rats. We proved that the silencing of MUC4 triggered the inactivation of ERK signaling pathway. Following the silencing of MUC4 or the inhibition of ERK signaling pathway, the oxalic acid and calcium contents in rat urine, BUN, Cr, Ca2+ and P3+ levels in rat serum, p-ERK1/2, MCP-1 and OPN expressions in RTEC and H2O2 and MDA levels in the cultured supernatant were downregulated, but the GSH-Px, CAT and SOD levels in the cultured supernatant were

  19. [Calcium kidney stones. Diagnostic and preventive prospects].

    PubMed

    Arcidiacono, T; Terranegra, A; Biasion, R; Soldati, L; Vezzoli, G

    2007-01-01

    Kidney stone disease is one of the main causes of hospitalization in Italy. Its prevalence increased in the last century and is probably still increasing. The pathogenesis of the disease is not known, although two main theories have been elaborated. The first hypothesizes that hydroxyapatite deposition in the interstitium of the renal papillae (Randall's plaque) precedes urinary calcium oxalate precipitation on the ulcered surface of the papilla to form a stone. The second presumes the tubular lumen of Bellini's duct to be the site where calcium-oxalate salts precipitate to form the nucleus for stone formation within the urinary tract. These pathogenetic processes may be favored by different dietary and genetic factors. The genes involved are not known, although many studies have been performed. Polymorphisms of genes coding for the vitamin D receptor, calcium-sensing receptor, interleukin-1 receptor antagonist, and urokinase were found to be associated with kidney stones, but these results have not been replicated. Different nutrients are suspected to predispose patients to calcium kidney stone disease. A high intake of animal proteins, sodium, vitamin C and oxalate has been implicated in stone formation, whereas calcium, alkalis and phytate may have a protective effect. The prevention of calcium stone formation is based on the recognition of risk factors like those already mentioned here. Furthermore, a family history of kidney stones may be useful in identifying subjects predisposed to become calcium stone formers. However, the expectations of the scientific community are turned to the advances in genetics and to the findings of genetic studies, which may provide diagnostic tools and criteria to define the risk profile of the single individual.

  20. CALCIUM CHLORIDE PLANT LOOKING EAST. CALCIUM CHLORIDE BUILDING ON LEFT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CALCIUM CHLORIDE PLANT LOOKING EAST. CALCIUM CHLORIDE BUILDING ON LEFT, CALCIUM CHLORIDE STORAGE BUILDING ON RIGHT OF CENTER WITH TOP OF SA (SODA ASH) BUILDING IN RIGHT BACKGROUND. - Solvay Process Company, Calcium Chloride Plant, Between Willis & Milton Avenues, Solvay, Onondaga County, NY

  1. Calcium activation of frog slow muscle fibres

    PubMed Central

    Costantin, L. L.; Podolsky, R. J.; Tice, Lois W.

    1967-01-01

    1. Skinned muscle fibres were prepared from the tonus bundle of the frog iliofibularis muscle and the contractile response elicited by applied calcium ions was studied. The fibre type was determined by electron microscopy. 2. Fast fibres shortened many times more rapidly than slow fibres, indicating that the slow contraction of slow fibres is an inherent property of the contractile mechanism. 3. The extent of spread of contraction following local calcium application was much greater in slow than in fast fibres, a difference which is consistent with the relative sparsity of the sarcoplasmic reticulum in slow fibres. 4. The ability of the sarcoplasmic reticulum of slow fibres to accumulate calcium was demonstrated by the in situ immobilization of calcium when oxalate solutions were added to the skinned fibre. ImagesPlate 1Plate 2Plate 3Plate 4Plate 5AB PMID:6030519

  2. Sequestration of Sr(II) By Calcium Oxalate - a Batch Uptake Study And EXAFS Analysis of Model Compounds And Reaction Products

    SciTech Connect

    Singer, D.M.; Johnson, S.B.; Catalano, J.G.

    Calcium oxalate monohydrate (CaC{sub 2}O{sub 4}{center_dot}H{sub 2}O -- abbreviated as CaOx) is produced by two-thirds of all plant families, comprising up to 80 wt.% of the plant tissue and found in many surface environments. It is unclear, however, how CaOx in plants and soils interacts with metal ions and possibly sequesters them. This study examines the speciation of Sr(II){sub aq} following its reaction with CaOx. Batch uptake experiments were conducted over the pH range 4--10, with initial Sr solution concentrations, [Sr]{sub aq}, ranging from 1 x 10{sup -4} to 1 x 10{sup -3} M and ionic strengths ranging of 0.001--0.1more » M, using NaCl as the background electrolyte. Experimental results indicate that Sr uptake is independent of pH and ionic strength over these ranges. After exposure of CaOx to Sr{sub aq} for two days, the solution Ca concentration, [Ca]{sup aq}, increased for all samples relative to the control CaOx suspension (with no Sr added). The amount of Sr{sub aq} removed from solution was nearly equal to the total [Ca]{sup aq} after exposure of CaOx to Sr. These results suggest that nearly 90% of the Sr is removed from solution to a solid phase as Ca is released into solution. We suggest that the other 10% is sequestered through surface adsorption on a solid phase, although we have no direct evidence for this. Extended X-ray absorption fine structure (EXAFS) spectroscopy was used to determine the molecular-level speciation of Sr in the reaction products. Deconvolutions of the Sr K-edge EXAFS spectra were performed to identify multi-electron excitation (MEE) features. MEE effects were found to give rise to low-frequency peaks in the Fourier transform before the first shell of oxygen atoms and do not affect EXAFS fitting results. Because of potential problems caused by asymmetric distributions of Sr-O distances when fitting Sr K-edge EXAFS data using the standard harmonic model, we also employed a cumulant expansion model and an asymmetric

  3. Calcium and Your Child

    MedlinePlus

    ... foods, such as: calcium-set tofu edamame (soybeans) broccoli, collard greens, kale, chard, Chinese cabbage, and other ... Serve more dark green, leafy vegetables (such as broccoli, kale, collard greens, or Chinese cabbage) with meals. ...

  4. Stoichiometry of Calcium Medicines

    ERIC Educational Resources Information Center

    Pinto, Gabriel

    2005-01-01

    The topic of calcium supplement and its effects on human lives is presented in the way of questions to the students. It enables the students to realize the relevance of chemistry outside the classroom surrounding.

  5. Calcium carbonate overdose

    MedlinePlus

    Calcium carbonate is not very poisonous. Recovery is quite likely. But, long-term overuse is more serious than a single overdose, because it can cause kidney damage. Few people die from an antacid overdose. Keep ...

  6. Get Enough Calcium

    MedlinePlus

    ... Vitamins 3 of 4 sections Take Action: Vitamin D Get enough vitamin D. Vitamin D helps your body absorb (take in) calcium. Find out how much vitamin D you need each day . Your body makes vitamin ...

  7. Idiopathic hypercalciuria and formation of calcium renal stones

    PubMed Central

    Coe, Fredric L.; Worcester, Elaine M.; Evan, Andrew P.

    2018-01-01

    The most common presentation of nephrolithiasis is idiopathic calcium stones in patients without systemic disease. Most stones are primarily composed of calcium oxalate and form on a base of interstitial apatite deposits, known as Randall’s plaque. By contrast some stones are composed largely of calcium phosphate, as either hydroxyapatite or brushite (calcium monohydrogen phosphate), and are usually accompanied by deposits of calcium phosphate in the Bellini ducts. These deposits result in local tissue damage and might serve as a site of mineral overgrowth. Stone formation is driven by supersaturation of urine with calcium oxalate and brushite. The level of supersaturation is related to fluid intake as well as to the levels of urinary citrate and calcium. Risk of stone formation is increased when urine citrate excretion is <400 mg per day, and treatment with potassium citrate has been used to prevent stones. Urine calcium levels >200 mg per day also increase stone risk and often result in negative calcium balance. Reduced renal calcium reabsorption has a role in idiopathic hypercalciuria. Low sodium diets and thiazide-type diuretics lower urine calcium levels and potentially reduce the risk of stone recurrence and bone diseas PMID:27452364

  8. Effect of Potassium Citrate on Calcium Phosphate Stones in a Model of Hypercalciuria

    PubMed Central

    Asplin, John R.; Frick, Kevin K.; Granja, Ignacio; Culbertson, Christopher D.; Ng, Adeline; Grynpas, Marc D.; Bushinsky, David A.

    2015-01-01

    Potassium citrate is prescribed to decrease stone recurrence in patients with calcium nephrolithiasis. Citrate binds intestinal and urine calcium and increases urine pH. Citrate, metabolized to bicarbonate, should decrease calcium excretion by reducing bone resorption and increasing renal calcium reabsorption. However, citrate binding to intestinal calcium may increase absorption and renal excretion of both phosphate and oxalate. Thus, the effect of potassium citrate on urine calcium oxalate and calcium phosphate supersaturation and stone formation is complex and difficult to predict. To study the effects of potassium citrate on urine supersaturation and stone formation, we utilized 95th-generation inbred genetic hypercalciuric stone-forming rats. Rats were fed a fixed amount of a normal calcium (1.2%) diet supplemented with potassium citrate or potassium chloride (each 4 mmol/d) for 18 weeks. Urine was collected at 6, 12, and 18 weeks. At 18 weeks, stone formation was visualized by radiography. Urine citrate, phosphate, oxalate, and pH levels were higher and urine calcium level was lower in rats fed potassium citrate. Furthermore, calcium oxalate and calcium phosphate supersaturation were higher with potassium citrate; however, uric acid supersaturation was lower. Both groups had similar numbers of exclusively calcium phosphate stones. Thus, potassium citrate effectively raises urine citrate levels and lowers urine calcium levels; however, the increases in urine pH, oxalate, and phosphate levels lead to increased calcium oxalate and calcium phosphate supersaturation. Potassium citrate induces complex changes in urine chemistries and resultant supersaturation, which may not be beneficial in preventing calcium phosphate stone formation. PMID:25855777

  9. Stone clearance after extracorporeal shockwave lithotripsy in patients with solitary pure calcium oxalate stones smaller than 1.0 cm in the proximal ureter, with special reference to monohydrate and dihydrate content.

    PubMed

    Ichiyanagi, Osamu; Nagaoka, Akira; Izumi, Takuji; Kawamura, Yuko; Tsukigi, Masaaki; Ishii, Tatsuya; Ohji, Hiroshi; Kato, Tomoyuki; Tomita, Yoshihiko

    2013-04-01

    The aim of this study was to assess stone-free rates following extracorporeal shockwave lithotripsy (ESWL) of pure calcium oxalate (CaOx) stones in the proximal ureter. The investigators retrospectively examined 53 patients with 5-10 mm pure CaOx stones in the proximal ureter from the medical archives of 593 consecutive patients treated with ESWL. The compositions of calcium oxalate monohydrate (COM) and dihydrate (COD) in a given stone were determined by infrared spectrometry. Stone size, attenuation number and stone-to-skin distance (SSD) were measured using plain radiography and computed tomography (CT). ESWL success was evaluated by stone-free status after the first single session. On average, calculi were 8.0 × 5.3 mm in size, with an SSD of 11.0 cm. The mean CT attenuation value was 740.1 HU. Attenuation numbers correlated significantly with stone diameter (r = 0.49), but had no correlation with the stone content of COM or COD. A negative correlation was observed between COM and COD content (r = -0.925). With regard to patients' physical characteristics and COM and COD content, no differences were found between study subgroups with stone-free and residual status (n = 38 and 15, respectively). There were also no differences in clinical features between patient subgroups with COM- or COD-predominant stones (n = 22 and 31, respectively). The findings indicated that the differences in COM and COD content of CaOx stones had no impact on stone clearance after ESWL and that a favorable stone-free rate of the stones treated with ESWL may be achieved independently of CaOx hydration.

  10. Multiphoton Intravital Calcium Imaging.

    PubMed

    Cheetham, Claire E J

    2018-06-26

    Multiphoton intravital calcium imaging is a powerful technique that enables high-resolution longitudinal monitoring of cellular and subcellular activity hundreds of microns deep in the living organism. This unit addresses the application of 2-photon microscopy to imaging of genetically encoded calcium indicators (GECIs) in the mouse brain. The protocols in this unit enable real-time intravital imaging of intracellular calcium concentration simultaneously in hundreds of neurons, or at the resolution of single synapses, as mice respond to sensory stimuli or perform behavioral tasks. Protocols are presented for implantation of a cranial imaging window to provide optical access to the brain and for 2-photon image acquisition. Protocols for implantation of both open skull and thinned skull windows for single or multi-session imaging are described. © 2018 by John Wiley & Sons, Inc. © 2018 John Wiley & Sons, Inc.

  11. Gravimetric Determination of Calcium as Calcium Carbonate Hydrate.

    ERIC Educational Resources Information Center

    Henrickson, Charles H.; Robinson, Paul R.

    1979-01-01

    The gravimetric determination of calcium as calcium carbonate is described. This experiment is suitable for undergraduate quantitative analysis laboratories. It is less expensive than determination of chloride as silver chloride. (BB)

  12. Calcium and Calcium Supplements: Achieving the Right Balance

    MedlinePlus

    ... soy products, cereal and fruit juices, and milk substitutes To absorb calcium, your body also needs vitamin ... Nutrition/default.asp. Accessed June 25, 2015. Calcium. Natural Medicines Comprehensive Database. http://www.naturaldatabase.com. Accessed ...

  13. Calcium deprivation increases the palatability of calcium solutions in rats.

    PubMed

    McCaughey, Stuart A; Forestell, Catherine A; Tordoff, Michael G

    2005-02-15

    Calcium-deprived rats have elevated intakes of CaCl2, other calcium salts, and some non-calcium compounds. We used taste reactivity to examine the effects of calcium deprivation on the palatability of CaCl2 and other solutions. Nine male Sprague-Dawley rats were calcium-deprived by maintenance on a low-calcium diet, and eight replete rats were used as controls. All rats were videotaped during intraoral infusion of the following solutions: 30 and 300 mM CaCl2, 30 mM calcium lactate, 100 and 600 mM NaCl, 30 mM MgCl2, 1 mM quinine.HCl, 2.5 mM sodium saccharin, and deionized water. We counted individual orofacial and somatic movements elicited by the infusions and used them to calculate total ingestive and aversive scores. Relative to controls, calcium-deprived rats gave a significantly larger number of tongue protrusions and had higher total ingestive scores for CaCl2, calcium lactate, NaCl, and MgCl2. Our results suggest that CaCl2, calcium lactate, NaCl, and MgCl2 taste more palatable to rats when they are calcium-deprived than replete, and this may be responsible for the increased intake of these solutions following calcium deprivation.

  14. Calcium carbonate with magnesium overdose

    MedlinePlus

    The combination of calcium carbonate and magnesium is commonly found in antacids. These medicines provide heartburn relief. Calcium carbonate with magnesium overdose occurs when someone takes more than the ...

  15. A sensor for calcium uptake

    PubMed Central

    Collins, Sean; Meyer, Tobias

    2011-01-01

    Mitochondria — the cell’s power plants — increase their energy production in response to calcium signals in the cytoplasm. A regulator of the elusive mitochondrial calcium channel has now been identified. PMID:20844529

  16. Calcium silicate insulation structure

    DOEpatents

    Kollie, Thomas G.; Lauf, Robert J.

    1995-01-01

    An insulative structure including a powder-filled evacuated casing utilizes a quantity of finely divided synthetic calcium silicate having a relatively high surface area. The resultant structure-provides superior thermal insulating characteristics over a broad temperature range and is particularly well-suited as a panel for a refrigerator or freezer or the insulative barrier for a cooler or a insulated bottle.

  17. Calcium biofortification of crops

    USDA-ARS?s Scientific Manuscript database

    More than half of the world's population is deficient in calcium (Ca), iron (Fe), iodine (I), magnesium (Mg), selenium (Se), or zinc (Zn). The consumption of plants, directly or via livestock, containing inadequate concentrations of particular minerals causes these deficiencies. Agronomic and geneti...

  18. High Blood Calcium (Hypercalcemia)

    MedlinePlus

    ... as sarcoidosis • Hormone disorders, such as overactive thyroid (hyperthyroidism) • A genetic condition called familial hypocalciuric hypercalcemia • Kidney ... topics: www.hormone.org (search for PHPT, calcium, hyperthyroidism, or osteoporosis) • MedlinePlus (National Institutes of Health-NIH): ...

  19. Calcium - Multiple Languages

    MedlinePlus

    ... XYZ List of All Topics All Calcium - Multiple Languages To use the sharing features on this page, please enable JavaScript. Chinese, Traditional ( ... Bethesda, MD 20894 U.S. Department of Health and Human Services National Institutes of Health Page last updated on 31 May 2018

  20. Calcium aluminate in alumina

    NASA Astrophysics Data System (ADS)

    Altay, Arzu

    The properties of ceramic materials are determined not only by the composition and structure of the phases present, but also by the distribution of impurities, intergranular films and second phases. The phase distribution and microstructure both depend on the fabrication techniques, the raw materials used, the phase-equilibrium relations, grain growth and sintering processes. In this dissertation research, various approaches have been employed to understand fundamental phenomena such as grain growth, impurity segregation, second-phase formation and crystallization. The materials system chosen was alumina intentionally doped with calcium. Atomic-scale structural analyses of grain boundaries in alumina were carried on the processed samples. It was found that above certain calcium concentrations, CA6 precipitated as a second phase at all sintering temperatures. The results also showed that abnormal grain growth can occur after precipitation and it is not only related to the calcium level, but it is also temperature dependent. In order to understand the formation mechanism of CA6 precipitates in calcium doped alumina samples, several studies have been carried out using either bulk materials or thin films The crystallization of CA2 and CA6 powders has been studied. Chemical processing techniques were used to synthesize the powders. It was observed that CA2 powders crystallized directly, however CA6 powders crystallized through gamma-Al 2O3 solid solution. The results of energy-loss near-edge spectrometry confirmed that gamma-Al2O3 can dissolve calcium. Calcium aluminate/alumina reaction couples have also been investigated. All reaction couples were heat treated following deposition. It was found that gamma-Al2O3 was formed at the interface as a result of the interfacial reaction between the film and the substrate. gamma-Al 2O3 at the interface was stable at much higher temperatures compared to the bulk gamma-Al2O3 formed prior to the CA6 crystallization. In order to

  1. The Plasma Membrane Calcium Pump

    NASA Technical Reports Server (NTRS)

    Rasmussen, H.

    1983-01-01

    Three aspect of cellular calcium metabolism in animal cells was discussed including the importance of the plasma membrane in calcium homeostasis, experiments dealing with the actual mechanism of the calcium pump, and the function of the pump in relationship to the mitochondria and to the function of calmodulin in the intact cell.

  2. Antenatal calcium intake in Malaysia.

    PubMed

    Mahdy, Zaleha Abdullah; Basri, Hashimah; Md Isa, Zaleha; Ahmad, Shuhaila; Shamsuddin, Khadijah; Mohd Amin, Rahmah

    2014-04-01

    To determine the adequacy of antenatal calcium intake in Malaysia, and the influencing factors. A cross-sectional study was conducted among postnatal women who delivered in two tertiary hospitals. Data were collected from antenatal cards, hospital documents and diet recall on daily milk and calcium intake during pregnancy. SPSS version 19.0 was used for statistical analyses. A total of 150 women were studied. The total daily calcium intake was 834 ± 43 mg (mean ± standard error of the mean), but the calcium intake distribution curve was skewed to the right with a median intake of 725 mg daily. When calcium intake from milk and calcium supplements was excluded, the daily dietary calcium intake was only 478 ± 25 mg. Even with inclusion of milk and calcium supplements, more than a third (n=55 or 36.7%) of the women consumed less than 600 mg calcium in their daily diet. The adequacy of daily calcium intake was not influenced by maternal age, ethnicity, income or maternal job or educational status as well as parity. The daily dietary calcium intake of the Malaysian antenatal population is far from adequate without the addition of calcium supplements and milk. © 2013 The Authors. Journal of Obstetrics and Gynaecology Research © 2013 Japan Society of Obstetrics and Gynecology.

  3. Impregnating Coal With Calcium Carbonate

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K.; Voecks, Gerald E.; Gavalas, George R.

    1991-01-01

    Relatively inexpensive process proposed for impregnating coal with calcium carbonate to increase rates of gasification and combustion of coal and to reduce emission of sulfur by trapping sulfur in calcium sulfide. Process involves aqueous-phase reactions between carbon dioxide (contained within pore network of coal) and calcium acetate. Coal impregnated with CO2 by exposing it to CO2 at high pressure.

  4. Voltage-Gated Calcium Channels

    NASA Astrophysics Data System (ADS)

    Zamponi, Gerald Werner

    Voltage Gated Calcium Channels is the first comprehensive book in the calcium channel field, encompassing over thirty years of progress towards our understanding of calcium channel structure, function, regulation, physiology, pharmacology, and genetics. This book balances contributions from many of the leading authorities in the calcium channel field with fresh perspectives from risings stars in the area, taking into account the most recent literature and concepts. This is the only all-encompassing calcium channel book currently available, and is an essential resource for academic researchers at all levels in the areas neuroscience, biophysics, and cardiovascular sciences, as well as to researchers in the drug discovery area.

  5. Lattice model for calcium dynamics

    NASA Astrophysics Data System (ADS)

    Guisoni, Nara; de Oliveira, Mario José

    2005-06-01

    We present a simplified lattice model to study calcium dynamics in the endoplasmic reticulum membrane. Calcium channels and calcium ions are placed in two interpenetrating square lattices which are connected in two ways: (i) via calcium release and (ii) because transitions between channel states are calcium dependent. The opening or closing of a channel is a stochastic process controlled by two functions which depend on the calcium density on the channel neighborhood. The model is studied through mean field calculations and simulations. We show that the critical behavior of the model changes drastically depending on the opening/closing functions. For certain choices of these functions, all channels are closed at very low and high calcium densities and the model presents one absorbing state.

  6. Fruit Calcium: Transport and Physiology

    PubMed Central

    Hocking, Bradleigh; Tyerman, Stephen D.; Burton, Rachel A.; Gilliham, Matthew

    2016-01-01

    Calcium has well-documented roles in plant signaling, water relations and cell wall interactions. Significant research into how calcium impacts these individual processes in various tissues has been carried out; however, the influence of calcium on fruit ripening has not been thoroughly explored. Here, we review the current state of knowledge on how calcium may impact the development, physical traits and disease susceptibility of fruit through facilitating developmental and stress response signaling, stabilizing membranes, influencing water relations and modifying cell wall properties through cross-linking of de-esterified pectins. We explore the involvement of calcium in hormone signaling integral to the physiological mechanisms behind common disorders that have been associated with fruit calcium deficiency (e.g., blossom end rot in tomatoes or bitter pit in apples). This review works toward an improved understanding of how the many roles of calcium interact to influence fruit ripening, and proposes future research directions to fill knowledge gaps. Specifically, we focus mostly on grapes and present a model that integrates existing knowledge around these various functions of calcium in fruit, which provides a basis for understanding the physiological impacts of sub-optimal calcium nutrition in grapes. Calcium accumulation and distribution in fruit is shown to be highly dependent on water delivery and cell wall interactions in the apoplasm. Localized calcium deficiencies observed in particular species or varieties can result from differences in xylem morphology, fruit water relations and pectin composition, and can cause leaky membranes, irregular cell wall softening, impaired hormonal signaling and aberrant fruit development. We propose that the role of apoplasmic calcium-pectin crosslinking, particularly in the xylem, is an understudied area that may have a key influence on fruit water relations. Furthermore, we believe that improved knowledge of the calcium

  7. Review of calcium methodologies.

    PubMed

    Zak, B; Epstein, E; Baginski, E S

    1975-01-01

    A review of calcium methodologies for serum has been described. The analytical systems developed over the past century have been classified as to type beginning with gravimetry and extending to isotope dilution-mass spectrometry by covering all of the commonly used technics which have evolved during that period. Screening and referee procedures are discussed along with comparative sensitivities encountered between atomic absorption spectrophotometry and molecular absorption spectrophotometry. A procedure involving a simple direct reaction for serum calcium using cresolphthalein complexone is recommended in which high blanks are minimized by repressing the ionization of the color reagent on lowering the dielectric constant characteristics of the mixture with dimethylsulfoxide. Reaction characteristics, errors which can be encountered, normal ranges and an interpretative resume are included in its discussion.

  8. Synthesis of calcium superoxide

    NASA Technical Reports Server (NTRS)

    Rewick, R. T.; Blucher, W. G.; Estacio, P. L.

    1972-01-01

    Efforts to prepare Ca(O2) sub 2 from reactions of calcium compounds with 100% O3 and with O(D-1) atoms generated by photolysis of O3 at 2537 A are described. Samples of Ca(OH) sub 2, CaO, CaO2, Ca metal, and mixtures containing suspected impurities to promote reaction have been treated with excess O3 under static and flow conditions in the presence and absence of UV irradiation. Studies with KO2 suggest that the superoxide anion is stable to radiation at 2537 A but reacts with oxygen atoms generated by the photolysis of O3 to form KO3. Calcium superoxide is expected to behave in an analogous.

  9. DISTILLATION OF CALCIUM

    DOEpatents

    Barton, J.

    1954-07-27

    This invention relates to an improvement in the process for the purification of caicium or magnesium containing an alkali metal as impurity, which comprises distiiling a batch of the mixture in two stages, the first stage distillation being carried out in the presence of an inert gas at an absolute pressure substantially greater than the vapor pressure of calcium or maguesium at the temperature of distillation, but less than the vaper pressure at that temperature of the alkali metal impurity so that only the alkali metal is vaporized and condensed on a condensing surface. A second stage distilso that substantially only the calcium or magnesium distills under its own vapor pressure only and condenses in solid form on a lower condensing surface.

  10. Calcium pyrophosphate dihydrate gout and other crystal deposition diseases.

    PubMed

    Reginato, A J

    1991-08-01

    The number of crystal or birefringent particles associated with arthritis is increasing, and a uniform taxonomy is needed. The term gout has been proposed as a generic term for these diseases based on historical, clinical, and crystallographic reasons. Calcium pyrophosphate dihydrate gout follows monosodium urate gout in frequency, and its spectrum of clinical manifestations continues to grow. Familial calcium pyrophosphate dihydrate gout was described for the first time in kindreds studied in England and Tunisia; new Jewish and Spanish kindreds were also reported. Type I collagen was shown to nucleate nativelike calcium pyrophosphate dihydrate crystals, and pyrophosphate elaboration was explored in cartilage explants in an attempt to reproduce the in vivo metabolic or endocrine disorders associated with calcium pyrophosphate dihydrate gout. The effect of pyrophosphatase and different cofactors such as magnesium in dissolving calcium pyrophosphate dihydrate crystals was investigated. High-resolution electron microscopy was used to study the interrelation between apatite and other basic calcium phosphate crystals in apatite gout. Raman microscopy was applied for the first time to identify crystals in biologic specimens. A simple and specific technique for basic calcium phosphate crystal identification is necessary to understand the relationship between different calcium phosphate crystals and osteoarthritis. Several reports about children and young patients with primary oxalate gout described the effect of oxalate on eyes, periodontal tissues, and bone. Multicenter studies showed poor results of renal transplantation, but favored combined liver and renal transplantation.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Calcium, essential for health

    PubMed

    Martínez de Victoria, Emilio

    2016-07-12

    Calcium (Ca) is the most abundant mineral element in our body. It accounts for about 2% of body weight. The functions of calcium are: a) functions skeletal and b) regulatory functions. Bone consists of a protein matrix that mineralizes mainly with calcium (the most abundant), phosphate and magnesium, for it is essential an adequate dietary intake of Ca, phosphorus and vitamin D. The ionic Ca (Ca2+) is essential to maintain and / or perform different specialized functions of, virtually, all body cells cellular. Because of its important functions Ca2+ must be closely regulated, keeping plasma concentrations within narrow ranges. For this reason there is an accurate response against hypocalcemia or hypercalcemia in which the parathormone, calcitriol, calcitonin and vitamin K are involved. Ca intakes in the Spanish population are low in a significant percentage of the older adult’s population, especially in women. The main source of Ca in the diet is milk and milk derivatives. Green leafy vegetables, fruits and legumes can be important sources of Ca in a Mediterranean dietary pattern. The bioavailability of dietary Ca depends on physiological and dietary factors. Physiological include age, physiological status (gestation and lactation) Ca and vitamin D status and disease. Several studies relate Ca intake in the diet and various diseases, such as osteoporosis, cancer, cardiovascular disease and obesity.

  12. Effects of vitamin E ingestion on plasma and urinary risk factors for calcium oxalate urolithiasis in two population groups having different stone-risk profiles: evidence of different physiological handling mechanisms.

    PubMed

    Theka, Takalani; Rodgers, Allen; Lewandowski, Sonja; Webber, Dawn; Allie-Hamdulay, Shameez

    2012-04-01

    It has been demonstrated that vitamin E supplementation reduces calciuria and oxaluria and that it may also prevent oxalate-mediated peroxidative injury, all of which reduce the risk of calcium oxalate urolithiasis. In view of the significant difference in stone occurrence in black (B) and white (W) South Africans, we undertook to investigate the effects of vitamin E supplementation in subjects from these two groups. Five healthy males from each group ingested one capsule (400 IU) of vitamin E daily for 60 days. Blood and 24 h urine samples were collected at baseline and on day 60; 24 h dietary questionnaires were simultaneously completed. Urine composition was determined by routine analyses. Urinary and plasma TBARS were determined using a commercially available assay kit while plasma vitamin E was determined by reverse phase HPLC. Plasma vitamin E increased significantly in W but not in B. Urinary and plasma TBARS did not increase in either group. Urinary citrate increased significantly in both groups but the percentage increase in W (169%) was greater than that in B (82%). No other urinary parameter changed significantly. The increase in plasma vitamin E in W but not in B suggests either that the mechanism by which it is packaged into chylomicrons, which are secreted into the systemic circulation, is suppressed in the latter group or that it is differentially absorbed in the two groups. Similarly, to explain the greater increase in citraturia in W compared to B, we speculate that inhibition of lipogenesis of arachidonic acid by vitamin E, ultimately leading to an increase in citraturia, occurs to a lesser extent in B than in W.

  13. Antibacterial action of calcium hydroxide vehicles and calcium hydroxide pastes.

    PubMed

    Pacios, María Gabriela; Silva, Clara; López, María Elena; Cecilia, Marta

    2012-11-01

    To evaluate the in vitro action of vehicles alone and with calcium hydroxide against different bacterial species. Agar plates were inoculated with the microbial suspensions, and wells were made and filled with the calcium hydroxide pastes and the vehicles used to prepare the pastes. The zones of inhibited bacterial growth were recorded, and the resulting measurements were statistically analyzed. Enterococcus faecalis was the most resistant microorganism to all medicaments. Calcium hydroxide + p-monochlorophenol; calcium hydroxide + p-monochlorophenol-propylene glycol pastes; and p-monochlorophenol, p-monochlorophenol-propylene glycol, and chlorhexidine gluconate gel alone showed the largest zones of inhibition against all the tested microorganisms. The vehicle used to prepare the calcium hydroxide paste might contribute to its antibacterial action. Chlorhexidine gluconate gel used alone, and camphorated p-monochlorophenol and camphorated p-monochlorophenol-propylene glycol as vehicles of calcium hydroxide, could be recommended, in an antimicrobial sense. © 2012 Wiley Publishing Asia Pty Ltd.

  14. Calcium bioavailability and kinetics of calcium ascorbate and calcium acetate in rats.

    PubMed

    Cai, Jianwei; Zhang, Qinmin; Wastney, Meryl E; Weaver, Connie M

    2004-01-01

    The objective was to investigate the bioavailability and mechanism of calcium absorption of calcium ascorbate (ASC) and calcium acetate (AC). A series of studies was performed in adult Sprague-Dawley male rats. In the first study, each group of rats (n = 10/group) was assigned to one of the five test meals labeled with (45)Ca: (i) 25 mg calcium as heated ASC or (ii) unheated ASC, (iii) 25 mg calcium as unheated AC, (iv) 3.6 mg Ca as unheated ASC, or (v) unheated AC. Femur uptake indicated better calcium bioavailability from ASC than AC at both calcium loads. A 5-min heat treatment partly reduced bioavailability of ASC. Kinetic studies were performed to further investigate the mechanism of superior calcium bioavailability from ASC. Two groups of rats (n = 10/group) received oral doses of 25 mg Ca as ASC or AC. Each dose contained 20 micro Ci (45)Ca. Two additional groups of rats (n = 10/group) received an intravenous injection (iv) of 10 micro Ci (45)Ca after receiving an unlabeled oral dose of 25 mg calcium as ASC or AC. Sequential blood samples were collected over 48 hrs. Urine and fecal samples were collected every 12 hrs for 48 hrs and were analyzed for total calcium and (45)Ca content. Total calcium and (45)Ca from serum, urine, and feces were fitted by a compartment kinetics model with saturable and nonsaturable absorption pathways by WinSAAM (Windows-based Simulation Analysis and Modeling). The difference in calcium bioavailability between the two salts was due to differences in saturable rather than passive intestinal absorption and not to endogenous secretion or calcium deposition rate. The higher bioavailability of calcium ascorbate was due to a longer transit time in the small intestine compared with ASC.

  15. Calcium Signaling in Taste Cells

    PubMed Central

    Medler, Kathryn F.

    2014-01-01

    The sense of taste is a common ability shared by all organisms and is used to detect nutrients as well as potentially harmful compounds. Thus taste is critical to survival. Despite its importance, surprisingly little is known about the mechanisms generating and regulating responses to taste stimuli. All taste responses depend on calcium signals to generate appropriate responses which are relayed to the brain. Some taste cells have conventional synapses and rely on calcium influx through voltage-gated calcium channels. Other taste cells lack these synapses and depend on calcium release to formulate an output signal through a hemichannel. Beyond establishing these characteristics, few studies have focused on understanding how these calcium signals are formed. We identified multiple calcium clearance mechanisms that regulate calcium levels in taste cells as well as a calcium influx that contributes to maintaining appropriate calcium homeostasis in these cells. Multiple factors regulate the evoked taste signals with varying roles in different cell populations. Clearly, calcium signaling is a dynamic process in taste cells and is more complex than has previously been appreciated. PMID:25450977

  16. Imaging extracellular calcium in endolymph

    NASA Astrophysics Data System (ADS)

    Strimbu, C. Elliott; Fridberger, Anders

    2018-05-01

    Hair cell mechanoelectrical transduction and adaptation are believed to be regulated by extracellular calcium. However, the majority of experiments addressing calcium's role have been performed on reduced preparations in conditions that do not mimic those present in vivo. We used confocal microscopy and a low affinity (kd ˜11 µM) ratiometric fluorescent indicator to measure the extracellular calcium concentration in scala media in an in vitro preparation of the guinea pig cochlea. Microelectrodes were used to measure the cochlear microphonic potential during acoustic stimulation. The mean calcium concentration is significantly higher in the tectorial membrane (TM) than the surrounding endolymph, suggesting that the membrane acts as a calcium sink. We also observe calcium hot spots along the underside of the TM, near the outer hair cell bundles and near Hensens stripe close to the inner hair cell bundle. This suggests that the local calcium concentration near the hair bundles exceeds 100 µM, significantly higher than the bulk endolymph. These results were corroborated with fluorescence correlation spectroscopy using a second calcium sensitive dye, Oregon Green 488-BAPTA. Following a brief exposure to loud sound, TM calcium drops dramatically and shows recovery on a similar timescale as the microphonic potential. Our results suggest that the extracellular calcium concentration near the hair bundles is much higher than previously believed and may also serve as a partial control parameter for temporary threshold shifts.

  17. Elemental calcium intake associated with calcium acetate/calcium carbonate in the treatment of hyperphosphatemia

    PubMed Central

    Wilson, Rosamund J; Copley, J Brian

    2017-01-01

    Background Calcium-based and non-calcium-based phosphate binders have similar efficacy in the treatment of hyperphosphatemia; however, calcium-based binders may be associated with hypercalcemia, vascular calcification, and adynamic bone disease. Scope A post hoc analysis was carried out of data from a 16-week, Phase IV study of patients with end-stage renal disease (ESRD) who switched to lanthanum carbonate monotherapy from baseline calcium acetate/calcium carbonate monotherapy. Of the intent-to-treat population (N=2520), 752 patients with recorded dose data for calcium acetate (n=551)/calcium carbonate (n=201) at baseline and lanthanum carbonate at week 16 were studied. Elemental calcium intake, serum phosphate, corrected serum calcium, and serum intact parathyroid hormone levels were analyzed. Findings Of the 551 patients with calcium acetate dose data, 271 (49.2%) had an elemental calcium intake of at least 1.5 g/day at baseline, and 142 (25.8%) had an intake of at least 2.0 g/day. Mean (95% confidence interval [CI]) serum phosphate levels were 6.1 (5.89, 6.21) mg/dL at baseline and 6.2 (6.04, 6.38) mg/dL at 16 weeks; mean (95% CI) corrected serum calcium levels were 9.3 (9.16, 9.44) mg/dL and 9.2 (9.06, 9.34) mg/dL, respectively. Of the 201 patients with calcium carbonate dose data, 117 (58.2%) had an elemental calcium intake of at least 1.5 g/day, and 76 (37.8%) had an intake of at least 2.0 g/day. Mean (95% CI) serum phosphate levels were 5.8 (5.52, 6.06) mg/dL at baseline and 5.8 (5.53, 6.05) mg/dL at week 16; mean (95% CI) corrected serum calcium levels were 9.7 (9.15, 10.25) mg/dL and 9.2 (9.06, 9.34) mg/dL, respectively. Conclusion Calcium acetate/calcium carbonate phosphate binders, taken to control serum phosphate levels, may result in high levels of elemental calcium intake. This may lead to complications related to calcium balance. PMID:28182142

  18. Analytical precision of the Urolizer for the determination of the BONN-Risk-Index (BRI) for calcium oxalate urolithiasis and evaluation of the influence of 24-h urine storage at moderate temperatures on BRI.

    PubMed

    Berg, Wolfgang; Bechler, Robin; Laube, Norbert

    2009-01-01

    Since its first publication in 2000, the BONN-Risk-Index (BRI) has been successfully used to determine the calcium oxalate (CaOx) crystallization risk from urine samples. To date, a BRI-measuring device, the "Urolizer", has been developed, operating automatically and requiring only a minimum of preparation. Two major objectives were pursued: determination of Urolizer precision, and determination of the influence of 24-h urine storage at moderate temperatures on BRI. 24-h urine samples from 52 CaOx stone-formers were collected. A total of 37 urine samples were used for the investigation of Urolizer precision by performing six independent BRI determinations in series. In total, 30 samples were taken for additional investigation of urine storability. Each sample was measured thrice: directly after collection, after 24-h storage at T=21 degrees C, and after 24-h cooling at T=4 degrees C. Outcomes were statistically tested for identity with regard to the immediately obtained results. Repeat measurements for evaluation of Urolizer precision revealed statistical identity of data (p-0.05). 24-h storage of urine at both tested temperatures did not significantly affect BRI (p-0.05). The pilot-run Urolizer shows high analytical reliability. The innovative analysis device may be especially suited for urologists specializing in urolithiasis treatment. The possibility for urine storage at moderate temperatures without loss of analysis quality further demonstrates the applicability of the BRI method.

  19. Calcium Kinetics During Space Flight

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; Wastney, Meryl E.; OBrien, Kimberly O.; Lane, Helen W.

    1999-01-01

    Bone loss is one of the most detrimental effects of space flight, threatening to limit the duration of human space missions. The ability to understand and counteract this loss will be critical for crew health and safety during and after extended-duration missions. The hypotheses to be tested in this project are that space flight alters calcium homeostasis and bone mineral metabolism, and that calcium homeostasis and bone mineral metabolism will return to baseline within days to weeks of return to Earth. These hypotheses will be evidenced by elevated rates of bone mineral resorption and decreased bone mineral deposition, decreased absorption of dietary calcium, altered calcitropic endocrine profiles, elevated excretion of calcium in urine and feces, and elevated excretion of markers of bone resorption. The second hypothesis will be evidenced by return of indices of calcium homeostasis and bone metabolism to preflight levels within days to weeks of return to Earth. Studies will be conducted on International Space Station astronauts before, during, and after extended-duration flights. Measurements of calcium kinetics, bone mass, and endocrine/biochemical markers of bone and calcium homeostasis will be conducted. Kinetic studies utilizing dual isotope tracer kinetic studies and mathematical modeling techniques will allow for determination of bone calcium deposition, bone calcium resorption, dietary calcium absorption and calcium excretion (both urinary and endogenous fecal excretion). These studies will build upon preliminary work conducted on the Russian Mir space station. The results from this project will be critical for clarifying how microgravity affects bone and calcium homeostasis, and will provide an important control point for assessment of countermeasure efficacy. These results are expected to aid in developing countermeasures for bone loss, both for space crews and for individuals on Earth who have metabolic bone diseases.

  20. Calcium distribution in Amoeba proteus

    PubMed Central

    1979-01-01

    A preliminary investigation of the distribution of cellular calcium in Amoeba proteus was undertaken. Total cellular calcium under control conditions was found to be 4.59 mmol/kg of cells. When the external Ca++ concentration is increased from the control level of 0.03 to 20 mM, a net Ca++ influx results with a new steady-state cellular calcium level being achieved in integral of 3 h. At steady state the amount of calcium per unit weight of cells is higher than the amount of calcium per unit weight of external solution when the external concentration of Ca++ is below 10 mM. At external Ca++ concentrations above this level, total cellular calcium approaches the medium level of Ca++. Steady- state calcium exchange in Amoeba proteus was determined with 45Ca. There is an immediate and rapid exchange of integral of 0.84 mmol/kg of cells or 18% of the total cellular calcium with the labelled Ca++. Following this initial exchange, there was very little if any further exchange observed. Most of this exchanged calcium could be eliminated from the cell with 1 mM La+++, suggesting that the exchanged calcium is associated with the surface of the cell. Increase in either the external Ca++ concentration of pH raise the amount of exchangeable calcium associated with the cell. Calcium may be associated with the cell surface as a co-ion in the diffuse double layer or bound to fixed negative sites on the surface of the cell. If Ca++-binding sites do exist on the cell surface, there may be more than one type and they may have different dissociation constants. The cytoplasmic Ca++ ion activity is probably maintained at very low levels. PMID:512628

  1. CALCIUM BINDING TO INTESTINAL MEMBRANES

    PubMed Central

    Oschman, James L.; Wall, Betty J.

    1972-01-01

    Flame photometry reveals that glutaraldehyde and buffer solutions in routine use for electron microscopy contain varying amounts of calcium. The presence of electron-opaque deposits adjacent to membranes in a variety of tissues can be correlated with the presence of calcium in the fixative. In insect intestine (midgut), deposits occur adjacent to apical and lateral plasma membranes. The deposits are particularly evident in tissues fixed in glutaraldehyde without postosmication. They are also observed in osmicated tissue if calcium is added to wash and osmium solutions. Deposits are absent when calcium-free fixatives are used, but are present when traces of CaCl2 (as low as 5 x 10-5 M) are added. The deposits occur at regular intervals along junctional membranes, providing images strikingly similar to those obtained by other workers who have used pyroantimonate in an effort to localize sodium. Other divalent cations (Mg++, Sr++, Ba++, Mn++, Fe++) appear to substitute for calcium, while sodium, potassium, lanthanum, and mercury do not. After postfixing with osmium with calcium added, the deposits can be resolved as patches along the inner leaflet of apical and lateral plasma membranes. The dense regions may thus localize membrane constituents that bind calcium. The results are discussed in relation to the role of calcium in control of cell-to-cell communication, intestinal calcium uptake, and the pyroantimonate technique for ion localization. PMID:4569411

  2. Photoionization of calcium

    NASA Astrophysics Data System (ADS)

    Deshmukh, Pranawa C.; Johnson, W. R.

    1983-01-01

    A study of the photoionization of calcium in the relativistic random-phase approximation is reported. Predictions of photoionization cross sections, angular distribution asymmetry parameters, and spin-polarization parameters for the 4s, 3p, and 3s subshells are made with emphasis on the energy region above the 3p32 threshold where multiconfigurational effects are not expected to be very important. Autoionization resonances below the 3s threshold and between the 3p32 and 3p12 thresholds are analyzed using the relativistic multichannel quantum-defect theory.

  3. Extracellular calcium sensing and extracellular calcium signaling

    NASA Technical Reports Server (NTRS)

    Brown, E. M.; MacLeod, R. J.; O'Malley, B. W. (Principal Investigator)

    2001-01-01

    , localized changes in Ca(o)(2+) within the ECF can originate from several mechanisms, including fluxes of calcium ions into or out of cellular or extracellular stores or across epithelium that absorb or secrete Ca(2+). In any event, the CaR and other receptors/sensors for Ca(o)(2+) and probably for other extracellular ions represent versatile regulators of numerous cellular functions and may serve as important therapeutic targets.

  4. 21 CFR 184.1212 - Calcium pantothenate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium pantothenate. 184.1212 Section 184.1212... Listing of Specific Substances Affirmed as GRAS § 184.1212 Calcium pantothenate. (a) Calcium pantothenate... and the DL-racemic mixture of calcium pantothenate are used in food. Commercial calcium pantothenate...

  5. 21 CFR 184.1187 - Calcium alginate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium alginate. 184.1187 Section 184.1187 Food... GRAS § 184.1187 Calcium alginate. (a) Calcium alginate (CAS Reg. No. 9005-35-0) is the calcium salt of alginic acid, a natural polyuronide constituent of certain brown algae. Calcium alginate is prepared by...

  6. [Calcium and magnesium concentrations in "Healthy" and lithiasic human kidney (author's transl)].

    PubMed

    Terhorst, B; Stoeppler, M

    1976-07-01

    Calcium and magnesium levels in the cortex, medulla, and papilla of human kidney from 32 so-called healthy patients and from eleven patients with calcium-oxalate lithiasis were determined by atom-absorption spectralphotometry. A positive calcium gradient with the highest calcium concentration in the papilla was found in all kidneys. Compared to the control group, that calcium concentration in the lithiasic kidneys was reduced by 50% in the papilla, but in the cortex and medulla, the levels were the same. A relative depletion of calcium in the papilla in hypercalciuria goes against the theory that the papilla is the main center of development of calcium-containing stones. The magnesium concentration was practically the same in cortex, medulla, and papilla, and no significant difference was found between lithiasic and healthy kidneys. These findings underline the central role of calcium in the genesis of calcium-containing stones.

  7. 21 CFR 172.330 - Calcium pantothenate, calcium chloride double salt.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium pantothenate, calcium chloride double salt... FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.330 Calcium pantothenate, calcium chloride double salt. The food additive calcium chloride double salt of calcium pantothenate may...

  8. Contribution of dietary oxalate to urinary oxalate excretion

    NASA Technical Reports Server (NTRS)

    Holmes, R. P.; Goodman, H. O.; Assimos, D. G.

    2001-01-01

    BACKGROUND: The amount of oxalate excreted in urine has a significant impact on calcium oxalate supersaturation and stone formation. Dietary oxalate is believed to make only a minor (10 to 20%) contribution to the amount of oxalate excreted in urine, but the validity of the experimental observations that support this conclusion can be questioned. An understanding of the actual contribution of dietary oxalate to urinary oxalate excretion is important, as it is potentially modifiable. METHODS: We varied the amount of dietary oxalate consumed by a group of adult individuals using formula diets and controlled, solid-food diets with a known oxalate content, determined by a recently developed analytical procedure. Controlled solid-food diets were consumed containing 10, 50, and 250 mg of oxalate/2500 kcal, as well as formula diets containing 0 and 180 mg oxalate/2500 kcal. Changes in the content of oxalate and other ions were assessed in 24-hour urine collections. RESULTS: Urinary oxalate excretion increased as dietary oxalate intake increased. With oxalate-containing diets, the mean contribution of dietary oxalate to urinary oxalate excretion ranged from 24.4 +/- 15.5% on the 10 mg/2500 kcal/day diet to 41.5 +/- 9.1% on the 250 mg/2500 kcal/day diet, much higher than previously estimated. When the calcium content of a diet containing 250 mg of oxalate was reduced from 1002 mg to 391 mg, urinary oxalate excretion increased by a mean of 28.2 +/- 4.8%, and the mean dietary contribution increased to 52.6 +/- 8.6%. CONCLUSIONS: These results suggest that dietary oxalate makes a much greater contribution to urinary oxalate excretion than previously recognized, that dietary calcium influences the bioavailability of ingested oxalate, and that the absorption of dietary oxalate may be an important factor in calcium oxalate stone formation.

  9. 21 CFR 184.1195 - Calcium citrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., CAS Reg. No. 813-0994-095) is the calcium salt of citric acid. It is prepared by neutralizing citric acid with calcium hydroxide or calcium carbonate. It occurs as a fine white, odorless powder and...

  10. 21 CFR 184.1195 - Calcium citrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., CAS Reg. No. 813-0994-095) is the calcium salt of citric acid. It is prepared by neutralizing citric acid with calcium hydroxide or calcium carbonate. It occurs as a fine white, odorless powder and...

  11. Electrochemical cell with calcium anode

    DOEpatents

    Cooper, John F.; Hosmer, Pamela K.; Kelly, Benjamin E.

    1979-01-01

    An electrochemical cell comprising a calcium anode and a suitable cathode in an alkaline electrolyte consisting essentially of an aqueous solution of an hydroxide and a chloride. Specifically disclosed is a mechanically rechargeable calcium/air fuel cell with an aqueous NaOH/NaCl electrolyte.

  12. Calcium Intake: A Lifelong Proposition.

    ERIC Educational Resources Information Center

    Amschler, Denise H.

    1985-01-01

    This article reviews the current problem of low calcium intake in the United States among all age groups, the role of calcium in the formation and maintenance of bone mass, and major factors influencing absorption. Osteoporosis is discussed, and current recommendations for Recommended Dietary allowance are provided. (Author/MT)

  13. The activity of calcium in calcium-metal-fluoride fluxes

    NASA Astrophysics Data System (ADS)

    Ochifuji, Yuichiro; Tsukihashi, Fumitaka; Sano, Nobuo

    1995-08-01

    The standard Gibbs energy of reaction Ca (1) + O (mass pct, in Zr) = CaO (s) has been determined as follows by equilibrating molten calcium with solid zirconium in a CaO crucible: Δ G° = -64,300(±700) + 19.8(±3.5) T J/mol (1373 to 1623 K) The activities of calcium in the CaOsatd-Ca- MF2 ( M: Ca, Ba, Mg) and CaOsatd-Ca-NaF systems were measured as a function of calcium composition at high calcium contents at 1473 K on the basis of the standard Gibbs energy. The activities of calcium increase in the order of CaF2, BaF2, and MgF2 at the same calcium fraction of these fluxes. The observed activities are compared with those estimated by using the Temkin model for ionic solutions. Furthermore, the possibility of the removal of tramp elements such as tin, arsenic, antimony, bismuth, and lead from carbon-saturated iron by using calcium-metal-fluoride fluxes is discussed.

  14. Calcium carbonate gallstones in children.

    PubMed

    Stringer, Mark D; Soloway, Roger D; Taylor, Donald R; Riyad, Kallingal; Toogood, Giles

    2007-10-01

    In the United States, cholesterol stones account for 70% to 95% of adult gallstones and black pigment stones for most of the remainder. Calcium carbonate stones are exceptionally rare. A previous analysis of a small number of pediatric gallstones from the north of England showed a remarkably high prevalence of calcium carbonate stones. The aims of this study were to analyze a much larger series of pediatric gallstones from our region and to compare their chemical composition with a series of adult gallstones from the same geographic area. A consecutive series of gallbladder stones from 63 children and 50 adults from the north of England were analyzed in detail using Fourier transform infrared microspectroscopy. Demographic and clinical data were collected on all patients. The relative proportions of each major stone component were assessed: cholesterol, protein and calcium salts of bilirubin, fatty acids, calcium carbonate, and hydroxyapatite. Thirty-nine (78%) adults had typical cholesterol stones, 7 (14%) had black pigment bilirubinate stones, and only 2 (4%) had calcium carbonate stones. In contrast, 30 (48%) children had black pigment stones, 13 (21%) had cholesterol stones, 15 (24%) had calcium carbonate stones, 3 (5%) had protein dominant stones, and 2 (3%) had brown pigment stones. In children, cholesterol stones were more likely in overweight adolescent girls with a family history of gallstones, whereas black pigment stones were equally common in boys and girls and associated with hemolysis, parenteral nutrition, and neonatal abdominal surgery. Calcium carbonate stones were more common in boys, and almost half had undergone neonatal abdominal surgery and/or required neonatal intensive care. The composition of pediatric gallstones differs significantly from that found in adults. In particular, one quarter of the children in this series had calcium carbonate stones, previously considered rare. Geographic differences are not the major reason for the high

  15. Calcium metabolism in health and disease.

    PubMed

    Peacock, Munro

    2010-01-01

    This brief review focuses on calcium balance and homeostasis and their relationship to dietary calcium intake and calcium supplementation in healthy subjects and patients with chronic kidney disease and mineral bone disorders (CKD-MBD). Calcium balance refers to the state of the calcium body stores, primarily in bone, which are largely a function of dietary intake, intestinal absorption, renal excretion, and bone remodeling. Bone calcium balance can be positive, neutral, or negative, depending on a number of factors, including growth, aging, and acquired or inherited disorders. Calcium homeostasis refers to the hormonal regulation of serum ionized calcium by parathyroid hormone, 1,25-dihydroxyvitamin D, and serum ionized calcium itself, which together regulate calcium transport at the gut, kidney, and bone. Hypercalcemia and hypocalcemia indicate serious disruption of calcium homeostasis but do not reflect calcium balance on their own. Calcium balance studies have determined the dietary and supplemental calcium requirements needed to optimize bone mass in healthy subjects. However, similar studies are needed in CKD-MBD, which disrupts both calcium balance and homeostasis, because these data in healthy subjects may not be generalizable to this patient group. Importantly, increasing evidence suggests that calcium supplementation may enhance soft tissue calcification and cardiovascular disease in CKD-MBD. Further research is needed to elucidate the risks and mechanisms of soft tissue calcification with calcium supplementation in both healthy subjects and CKD-MBD patients.

  16. Calcium signals in olfactory neurons.

    PubMed

    Tareilus, E; Noé, J; Breer, H

    1995-11-09

    Laser scanning confocal microscopy in combination with the fluorescent calcium indicators Fluo-3 and Fura-Red was employed to estimate the intracellular concentration of free calcium ions in individual olfactory receptor neurons and to monitor temporal and spatial changes in the Ca(2+)-level upon stimulation. The chemosensory cells responded to odorants with a significant increase in the calcium concentration, preferentially in the dendritic knob. Applying various stimulation paradigma, it was found that in a population of isolated cells, subsets of receptor neurons display distinct patterns of responsiveness.

  17. Novel Peptide with Specific Calcium-Binding Capacity from Schizochytrium sp. Protein Hydrolysates and Calcium Bioavailability in Caco-2 Cells

    PubMed Central

    Cai, Xixi; Lin, Jiaping; Wang, Shaoyun

    2016-01-01

    Peptide-calcium can probably be a suitable supplement to improve calcium absorption in the human body. In this study, a specific peptide Phe-Tyr (FY) with calcium-binding capacity was purified from Schizochytrium sp. protein hydrolysates through gel filtration chromatography and reversed phase HPLC. The calcium-binding capacity of FY reached 128.77 ± 2.57 μg/mg. Results of ultraviolet spectroscopy, fluorescence spectroscopy, and infrared spectroscopy showed that carboxyl groups, amino groups, and amido groups were the major chelating sites. FY-Ca exhibited excellent thermal stability and solubility, which were beneficial to be absorbed and transported in the basic intestinal tract of the human body. Moreover, the calcium bioavailability in Caco-2 cells showed that FY-Ca could enhance calcium uptake efficiency by more than three times when compared with CaCl2, and protect calcium ions against dietary inhibitors, such as tannic acid, oxalate, phytate, and Zn2+. Our findings further the progress of algae-based peptide-calcium, suggesting that FY-Ca has the potential to be developed as functionally nutraceutical additives. PMID:28036002

  18. Calcium carbonate and calcium sulfate in Martian meteorite EETA79001

    NASA Technical Reports Server (NTRS)

    Gooding, J. L.; Wentworth, S. J.

    1987-01-01

    Chips of glassy Lithology C of EETA79001 were studied by scanning electron microscopy and energy dispersive X-ray spectroscopy to determine the mineralogy and petrogenesis of the glass that was shown by others to contain trapped Mars-like gases. Calcium carbonite was identified as massive to acicular crystals for which Ca, C, and O were the major elements. Calcium sulfate was identified as prismatic-acicular crystals with Ca and S as the major elements.

  19. A Crash Course in Calcium Channels.

    PubMed

    Zamponi, Gerald W

    2017-12-20

    Much progress has been made in understanding the molecular physiology and pharmacology of calcium channels. Recently, there have been tremendous advances in learning about calcium channel structure and function through crystallography and cryo-electron microscopy studies. Here, I will give an overview of our knowledge about calcium channels, and highlight two recent studies that give important insights into calcium channel structure.

  20. 21 CFR 172.720 - Calcium lactobionate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium lactobionate. 172.720 Section 172.720 Food... Other Specific Usage Additives § 172.720 Calcium lactobionate. The food additive calcium lactobionate... additive is the calcium salt of lactobionic acid (4-(β,D-galactosido)-D-gluconic acid) produced by the...

  1. 21 CFR 172.720 - Calcium lactobionate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium lactobionate. 172.720 Section 172.720 Food... Other Specific Usage Additives § 172.720 Calcium lactobionate. The food additive calcium lactobionate... additive is the calcium salt of lactobionic acid (4-(β,D-galactosido)-D-gluconic acid) produced by the...

  2. 21 CFR 172.410 - Calcium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium silicate. 172.410 Section 172.410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Agents § 172.410 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be safely...

  3. 21 CFR 172.410 - Calcium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium silicate. 172.410 Section 172.410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Agents § 172.410 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be safely...

  4. 21 CFR 172.410 - Calcium silicate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Calcium silicate. 172.410 Section 172.410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Agents § 172.410 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be safely...

  5. 21 CFR 184.1210 - Calcium oxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium oxide. 184.1210 Section 184.1210 Food and....1210 Calcium oxide. (a) Calcium oxide (CaO, CAS Reg. No. 1305-78-8) is also known as lime, quick lime, burnt lime, or calx. It is produced from calcium carbonate, limestone, or oyster shells by calcination...

  6. 21 CFR 172.410 - Calcium silicate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Calcium silicate. 172.410 Section 172.410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Agents § 172.410 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be safely...

  7. 21 CFR 172.410 - Calcium silicate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium silicate. 172.410 Section 172.410 Food and... PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Anticaking Agents § 172.410 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be safely used in food in accordance with the...

  8. 21 CFR 184.1187 - Calcium alginate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Calcium alginate. 184.1187 Section 184.1187 Food... Specific Substances Affirmed as GRAS § 184.1187 Calcium alginate. (a) Calcium alginate (CAS Reg. No. 9005-35-0) is the calcium salt of alginic acid, a natural polyuronide constituent of certain brown algae...

  9. 21 CFR 184.1187 - Calcium alginate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Calcium alginate. 184.1187 Section 184.1187 Food... Specific Substances Affirmed as GRAS § 184.1187 Calcium alginate. (a) Calcium alginate (CAS Reg. No. 9005-35-0) is the calcium salt of alginic acid, a natural polyuronide constituent of certain brown algae...

  10. 21 CFR 184.1201 - Calcium glycerophosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium glycerophosphate. 184.1201 Section 184... as GRAS § 184.1201 Calcium glycerophosphate. (a) Calcium glycerophosphate (C3H7CaO6P, CAS Reg. No... mixture of calcium β-, and D-, and L-α-glycerophosphate. (b) The ingredient meets the specifications of...

  11. Calcium homeostasis in diabetes mellitus.

    PubMed

    Ahn, Changhwan; Kang, Ji-Houn; Jeung, Eui-Bae

    2017-09-30

    Diabetes mellitus (DM) is becoming a lifestyle-related pandemic disease. Diabetic patients frequently develop electrolyte disorders, especially diabetic ketoacidosis or nonketotic hyperglycemic hyperosmolar syndrome. Such patients show characteristic potassium, magnesium, phosphate, and calcium depletion. In this review, we discuss a homeostatic mechanism that links calcium and DM. We also provide a synthesis of the evidence in favor or against this linking mechanism by presenting recent clinical indications, mainly from veterinary research. There are consistent results supporting the use of calcium and vitamin D supplementation to reduce the risk of DM. Clinical trials support a marginal reduction in circulating lipids, and some meta-analyses support an increase in insulin sensitivity, following vitamin D supplementation. This review provides an overview of the calcium and vitamin D disturbances occurring in DM and describes the underlying mechanisms. Such elucidation will help indicate potential pathophysiology-based precautionary and therapeutic approaches and contribute to lowering the incidence of DM.

  12. Children's Bone Health and Calcium

    MedlinePlus

    ... 2005–2006: Usual nutrient intakes from food and water compared to 1997 dietary reference intakes for vitamin D, calcium, phosphorus, and magnesium . U.S. Department of Agriculture, Agricultural Research Service. Retrieved April 21, 2012, from http://www. ...

  13. Calcium signaling in immune cells

    PubMed Central

    Vig, Monika; Kinet, Jean-Pierre

    2010-01-01

    Calcium acts as a second messenger in many cell types, including lymphocytes. Resting lymphocytes maintain a low concentration of Ca2+. However, engagement of antigen receptors induces calcium influx from the extracellular space by several routes. A chief mechanism of Ca2+ entry in lymphocytes is through store-operated calcium (SOC) channels. The identification of two important molecular components of SOC channels, CRACM1 (the pore-forming subunit) and STIM1 (the sensor of stored calcium), has allowed genetic and molecular manipulation of the SOC entry pathway. In this review, we highlight advances in the understanding of Ca2+ signaling in lymphocytes with special emphasis on SOC entry. We also discuss outstanding questions and probable future directions of the field. PMID:19088738

  14. Calcium signals in planetary embryos

    NASA Astrophysics Data System (ADS)

    Morbidelli, Alessandro

    2018-03-01

    The calcium-isotope composition of planetary bodies in the inner Solar System correlates with the masses of such objects. This finding could have implications for our understanding of how the Solar System formed.

  15. Calcium signaling in liver.

    PubMed

    Gaspers, Lawrence D; Thomas, Andrew P

    2005-01-01

    In hepatocytes, hormones linked to the formation of the second messenger inositol 1,4,5-trisphosphate (InsP3) evoke transient increases or spikes in cytosolic free calcium ([Ca2+]i), that increase in frequency with the agonist concentration. These oscillatory Ca2+ signals are thought to transmit the information encoded in the extracellular stimulus to down-stream Ca2+-sensitive metabolic processes. We have utilized both confocal and wide field fluorescence microscopy techniques to study the InsP3-dependent signaling pathway at the cellular and subcellular levels in the intact perfused liver. Typically InsP3-dependent [Ca2+]i spikes manifest as Ca2+ waves that propagate throughout the entire cytoplasm and nucleus, and in the intact liver these [Ca2+]i increases are conveyed through gap junctions to encompass entire lobular units. The translobular movement of Ca2+ provides a means to coordinate the function of metabolic zones of the lobule and thus, liver function. In this article, we describe the characteristics of agonist-evoked [Ca2+]i signals in the liver and discuss possible mechanisms to explain the propagation of intercellular Ca2+ waves in the intact organ.

  16. Calcium transport in turtle bladder

    SciTech Connect

    Sabatini, S.; Kurtzman, N.A.

    1987-12-01

    Unidirectional {sup 45}Ca fluxes were measured in the turtle bladder under open-circuit and short-circuit conditions. In the open-circuited state net calcium flux (J{sup net}{sub Ca}) was secretory (serosa to mucosa). Ouabain reversed J{sup net}{sub Ca} to an absorptive flux. Amiloride reduced both fluxes such that J{sup net}{sub Ca} was not significantly different from zero. Removal of mucosal sodium caused net calcium absorption; removal of serosal sodium caused calcium secretion. When bladders were short circuited, J{sup net}{sub Ca} decreased to approximately one-third of control value but remained secretory. When ouabain was added under short-circuit conditions, J{sup net}{sub Ca} was similar inmore » magnitude and direction to ouabain under open-circuited conditions (i.e., absorptive). Tissue {sup 45}Ca content was {approx equal}30-fold lower when the isotope was placed in the mucosal bath, suggesting that the apical membrane is the resistance barrier to calcium transport. The results obtained in this study are best explained by postulating a Ca{sup 2+}-ATPase on the serosa of the turtle bladder epithelium and a sodium-calcium antiporter on the mucosa. In this model, the energy for calcium movement would be supplied, in large part, by the Na{sup +}-K{sup +}-ATPase. By increasing cell sodium, ouabain would decrease the activity of the mucosal sodium-calcium exchanger (or reverse it), uncovering active calcium transport across the serosa.« less

  17. Calcium homeostasis in intraerythrocytic malaria parasites.

    PubMed

    Garcia, C R; Dluzewski, A R; Catalani, L H; Burting, R; Hoyland, J; Mason, W T

    1996-12-01

    The fluorescent indicator, fura-2, AM, was used to measure free calcium concentrations in the intraerythrocytic malaria parasites of Plasmodium chabaudi and Plasmodium falciparum. In both species the free cytosolic calcium concentration was maintained at low levels (between 40 and 100 nM throughout the maturation process. Digital image analysis of the indicator fluorescence was performed on parasites and evaluated with the aid of a calibration of the calcium response, based on permeabilized parasites, exposed to calcium buffers. This again revealed that free calcium concentrations in the intact parasite are maintained at a predetermined level, regardless of the free calcium in the surrounding milieu. Both species of parasites are thus capable of regulating their internal free calcium levels with high precision, presumably by means of calcium pump ATPases. A small but significant elevation of the cytosolic free calcium concentration by the tumor promoter, thapsigargin, may be taken to reflect the presence of calcium stores in the endoplasmic reticulum in P. falciparum.

  18. Calcium Orthophosphate Cements and Concretes

    PubMed Central

    Dorozhkin, Sergey V.

    2009-01-01

    In early 1980s, researchers discovered self-setting calcium orthophosphate cements, which are a bioactive and biodegradable grafting material in the form of a powder and a liquid. Both phases form after mixing a viscous paste that after being implanted, sets and hardens within the body as either a non-stoichiometric calcium deficient hydroxyapatite (CDHA) or brushite, sometimes blended with unreacted particles and other phases. As both CDHA and brushite are remarkably biocompartible and bioresorbable (therefore, in vivo they can be replaced with newly forming bone), calcium orthophosphate cements represent a good correction technique for non-weight-bearing bone fractures or defects and appear to be very promising materials for bone grafting applications. Besides, these cements possess an excellent osteoconductivity, molding capabilities and easy manipulation. Furthermore, reinforced cement formulations are available, which in a certain sense might be described as calcium orthophosphate concretes. The concepts established by calcium orthophosphate cement pioneers in the early 1980s were used as a platform to initiate a new generation of bone substitute materials for commercialization. Since then, advances have been made in the composition, performance and manufacturing; several beneficial formulations have already been introduced as a result. Many other compositions are in experimental stages. In this review, an insight into calcium orthophosphate cements and concretes, as excellent biomaterials suitable for both dental and bone grafting application, has been provided.

  19. 21 CFR 184.1195 - Calcium citrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium citrate. 184.1195 Section 184.1195 Food... GRAS § 184.1195 Calcium citrate. (a) Calcium citrate (Ca3(C6H5O7)2·4H2O, CAS Reg. No. 813-0994-095) is the calcium salt of citric acid. It is prepared by neutralizing citric acid with calcium hydroxide or...

  20. 21 CFR 184.1191 - Calcium carbonate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium carbonate. 184.1191 Section 184.1191 Food... GRAS § 184.1191 Calcium carbonate. (a) Calcium carbonate (CaCO3, CAS Reg. No. 471-34-1) is prepared by... of calcium carbonate from calcium hydroxide in the “Carbonation process”; or (3) By precipitation of...

  1. Calcium metabolism and cardiovascular function after spaceflight

    NASA Technical Reports Server (NTRS)

    Hatton, Daniel C.; Yue, Qi; Dierickx, Jacqueline; Roullet, Chantal; Otsuka, Keiichi; Watanabe, Mitsuaki; Coste, Sarah; Roullet, Jean Baptiste; Phanouvang, Thongchan; Orwoll, Eric; hide

    2002-01-01

    To determine the influence of dietary calcium on spaceflight-induced alterations in calcium metabolism and blood pressure (BP), 9-wk-old spontaneously hypertensive rats, fed either high- (2%) or low-calcium (0.02%) diets, were flown on an 18-day shuttle flight. On landing, flight animals had increased ionized calcium (P < 0.001), elevated parathyroid hormone levels (P < 0.001), reduced calcitonin levels (P < 0.05), unchanged 1,25(OH)(2)D(3) levels, and elevated skull (P < 0.01) and reduced femur bone mineral density. Basal and thrombin-stimulated platelet free calcium (intracellular calcium concentration) were also reduced (P < 0.05). There was a tendency for indirect systolic BP to be reduced in conscious flight animals (P = 0.057). However, mean arterial pressure was elevated (P < 0.001) after anesthesia. Dietary calcium altered all aspects of calcium metabolism (P < 0.001), as well as BP (P < 0.001), but the only interaction with flight was a relatively greater increase in ionized calcium in flight animals fed low- compared with high-calcium diets (P < 0.05). The results indicate that 1) flight-induced disruptions of calcium metabolism are relatively impervious to dietary calcium in the short term, 2) increased ionized calcium did not normalize low-calcium-induced elevations of BP, and 3) parathyroid hormone was paradoxically increased in the high-calcium-fed flight animals after landing.

  2. Why Calcium? How Calcium Became the Best Communicator.

    PubMed

    Carafoli, Ernesto; Krebs, Joachim

    2016-09-30

    Calcium carries messages to virtually all important functions of cells. Although it was already active in unicellular organisms, its role became universally important after the transition to multicellular life. In this Minireview, we explore how calcium ended up in this privileged position. Most likely its unique coordination chemistry was a decisive factor as it makes its binding by complex molecules particularly easy even in the presence of large excesses of other cations, e.g. magnesium. Its free concentration within cells can thus be maintained at the very low levels demanded by the signaling function. A large cadre of proteins has evolved to bind or transport calcium. They all contribute to buffer it within cells, but a number of them also decode its message for the benefit of the target. The most important of these "calcium sensors" are the EF-hand proteins. Calcium is an ambivalent messenger. Although essential to the correct functioning of cell processes, if not carefully controlled spatially and temporally within cells, it generates variously severe cell dysfunctions, and even cell death. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Why Calcium? How Calcium Became the Best Communicator*

    PubMed Central

    Carafoli, Ernesto; Krebs, Joachim

    2016-01-01

    Calcium carries messages to virtually all important functions of cells. Although it was already active in unicellular organisms, its role became universally important after the transition to multicellular life. In this Minireview, we explore how calcium ended up in this privileged position. Most likely its unique coordination chemistry was a decisive factor as it makes its binding by complex molecules particularly easy even in the presence of large excesses of other cations, e.g. magnesium. Its free concentration within cells can thus be maintained at the very low levels demanded by the signaling function. A large cadre of proteins has evolved to bind or transport calcium. They all contribute to buffer it within cells, but a number of them also decode its message for the benefit of the target. The most important of these “calcium sensors” are the EF-hand proteins. Calcium is an ambivalent messenger. Although essential to the correct functioning of cell processes, if not carefully controlled spatially and temporally within cells, it generates variously severe cell dysfunctions, and even cell death. PMID:27462077

  4. Mechanism regulating nuclear calcium signaling.

    PubMed

    Malviya, Anant N; Klein, Christian

    2006-01-01

    Although the outer nuclear membrane is continuous with the endoplasmic reticulum, it is possible to isolate nuclei both intact and free from endoplasmic reticulum contaminants. The outer and the inner nuclear membranes can be purified free from cross-contamination. Evidence in support of autonomous regulation of nuclear calcium signaling relies upon the investigations with isolated nuclei. Mechanisms for generating calcium signaling in the nucleus have been identified. Two calcium transporting systems, an ATP-dependant nuclear Ca(2+)-ATPase and an IP4-mediated inositol 1,3,4,5-tetrakisphosphate receptor, are located on the outer nuclear membrane. Thus, ATP and IP4, depending on external free calcium concentrations, are responsible for filling the nuclear envelope calcium pool. The inositol 1,4,5-trisphosphate receptor is located on the inner nuclear membrane with its ligand binding domain facing toward the nucleoplasm. Likewise, the ryanodine receptor is located on the inner nuclear membrane and its ligand cADP-ribose is generated within the nucleus. A 120 kDa protein fragment of nuclear PLC-gamma1 is stimulated in vivo by epidermal growth factor nuclear signaling coincident with the time course of nuclear membrane epidermal growth factor receptor activation. Stimulated 120 kDa protein fragment interacts with PIKE, a nuclear GTPase, and together they form a complex with PI[3]kinase serving as a module for nuclear PI[3]K stimulation. Thus, the nucleus has its own IP(3) generating system.

  5. Milk of calcium in abdomen.

    PubMed

    Huang, Yu-Sen; Huang, Kuo-How; Chang, Chin-Chen; Liu, Kao-Lang

    2011-03-01

    A 45-year-old woman had an asymptomatic abnormality on a screening abdominal radiograph. The radiopaque mass in her right upper abdomen was surrounded by numerous "pearls" and resembled an abalone on the supine abdominal radiograph. We advised an additional upright abdominal radiograph, which showed a calcium fluid level. We also clarified the location of the cystic lesion at the right floating kidney, which changed its location between the supine and upright positions. Computed tomography of the abdomen revealed a right renal cyst with a calcium-fluid interface owing to the milk of calcium. The patient was then followed up without additional investigation or the need for intervention. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Calcium signaling and cell proliferation.

    PubMed

    Pinto, Mauro Cunha Xavier; Kihara, Alexandre Hiroaki; Goulart, Vânia A M; Tonelli, Fernanda M P; Gomes, Katia N; Ulrich, Henning; Resende, Rodrigo R

    2015-11-01

    Cell proliferation is orchestrated through diverse proteins related to calcium (Ca(2+)) signaling inside the cell. Cellular Ca(2+) influx that occurs first by various mechanisms at the plasma membrane, is then followed by absorption of Ca(2+) ions by mitochondria and endoplasmic reticulum, and, finally, there is a connection of calcium stores to the nucleus. Experimental evidence indicates that the fluctuation of Ca(2+) from the endoplasmic reticulum provides a pivotal and physiological role for cell proliferation. Ca(2+) depletion in the endoplasmatic reticulum triggers Ca(2+) influx across the plasma membrane in an phenomenon called store-operated calcium entries (SOCEs). SOCE is activated through a complex interplay between a Ca(2+) sensor, denominated STIM, localized in the endoplasmic reticulum and a Ca(2+) channel at the cell membrane, denominated Orai. The interplay between STIM and Orai proteins with cell membrane receptors and their role in cell proliferation is discussed in this review. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. The effect of habitat geology on calcium intake and calcium status of wild rodents.

    PubMed

    Shore, R F; Balment, R J; Yalden, D W

    1991-12-01

    Calcium is essential for normal physiological function, reproduction and growth in mammals but its distribution in the natural environment is heterogeneous. Spatial variation in calcium soil content is especially marked in the Peak District, United Kingdom, where both calcium-rich limestone and calcium-poor gritstone rock types occur. Wood mice Apodemus sylvaticus (L) and bank voles Clethrionomys glareolus (Schreber 1780) from limestone areas had significantly higher calcium concentrations in stomach contents and in faeces compared with their counterparts from gritstone areas. Calcium status was assessed from serum calcium concentration, femur weight, ash content of the body, calcium concentration in the femur and body ash. There was no significant difference in serum calcium concentration, femur calcium concentration and body ash calcium concentration between animals from the limestone and the gritstone. However, on the limestone, bank voles, but not wood mice, had significantly heavier femora and a greater proportion of ash in the body compared with their gritstone counterparts.

  8. The effect of variable calcium and very low calcium diets on human calcium metabolism. Ph.D. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Chu, J.

    1971-01-01

    The effects of a very low calcium diet, with variable high and low protein intake, on the dynamics of calcium metabolism and the mechanism of calciuretics, are examined. The experiment, using male subjects, was designed to study the role of intestinal calcium absorption on urinary calcium excretion, and the rate of production of endogeneously secreted calcium in the gastrointestinal tract. The study showed an average of 70% fractional absorption rate during very low calcium intake, and that a decrease in renal tubular reabsorption of calcium is responsible for calciuretic effects of high protein intake. The study also indicates that there is a tendency to develop osteoporosis after long periods of low calcium intake, especially with a concurrent high protein intake.

  9. Calcium and Bone Metabolism Indices.

    PubMed

    Song, Lu

    2017-01-01

    Calcium and inorganic phosphate are of critical importance for many body functions, thus the regulations of their plasma concentrations are tightly controlled by the concerted actions of reabsorption/excretion in the kidney, absorption in the intestines, and exchange from bone, the major reservoir for calcium and phosphate in the body. Parathyroid hormone (PTH) and 1,25-dihydroxyvitamin D (1,25(OH) 2 D) control calcium homeostasis, whereas PTH, 1,25(OH) 2 D, and bone-derived fibroblast growth factor 23 (FGF 23) control phosphate homeostasis. Hypoparathyroidism can cause hypocalcemia and hyperphosphatemia, whereas deficient vitamin D actions can cause osteomalacia in adults and rickets in children. Hyperparathyroidism, alternatively, can cause hypercalcemia and hypophosphatemia. Laboratory tests of calcium, phosphate, PTH, and 25-hydroxyvitamin D are very useful in the diagnosis of abnormalities associated with calcium and/or phosphate metabolisms. Bone is constantly remodeled throughout life in response to mechanical stress and a need for calcium in extracellular fluids. Metabolic bone diseases such as osteoporosis, osteomalacia in adults or rickets in children, and renal osteodystrophy develop when bone resorption exceeds bone formation. Bone turnover markers (BTM) such as serum N-terminal propeptide of type I procollagen (P1NP) and C-terminal collagen cross-link (CTX) may be useful in predicting future fracture risk or monitoring the response to anti-resorptive therapy. There is a need to standardize sample collection protocols because certain BTMs exhibit large circadian variations and tend to be influenced by food intakes. In the United States, a project to standardize BTM sample collection protocols and to establish the reference intervals for serum P1NP and serum CTX is ongoing. We anticipate the outcome of this project to shine lights on the standardization of BTM assays, sample collection protocols, reference intervals in relation to age, sex, and ethnic

  10. Magnetically responsive calcium carbonate microcrystals.

    PubMed

    Fakhrullin, Rawil F; Bikmullin, Aidar G; Nurgaliev, Danis K

    2009-09-01

    Here we report the fabrication of magnetically responsive calcium carbonate microcrystals produced by coprecipitation of calcium carbonate in the presence of citrate-stabilized iron oxide nanoparticles. We demonstrate that the calcite microcrystals obtained possess superparamagnetic properties due to incorporated magnetite nanoparticles and can be manipulated by an external magnetic field. The microcrystals doped with magnetic nanoparticles were utilized as templates for the fabrication of hollow polyelectrolyte microcapsules, which retain the magnetic properties of the sacrificial cores and might be spatially manipulated using a permanent magnet, thus providing the magnetic-field-facilitated delivery and separation of materials templated on magnetically responsive calcite microcrystals.

  11. Calcium, vitamin D, and your bones

    MedlinePlus

    Osteoporosis - calcium; Osteoporosis - low bone density ... Your body needs calcium to keep your bones dense and strong. Low bone density can cause your bones to become brittle and fragile. These weak bones can break easily, even without ...

  12. Magnesium/Calcium Competition at Excitable Membranes.

    ERIC Educational Resources Information Center

    Belzer, Bill; Fry, Panni

    1998-01-01

    Considers some consequences of altering intracellular calcium supply by magnesium concentration changes. Focuses on using this procedure as an exercise with allied health students as they witness therapeutic uses of magnesium and other calcium entry inhibitors. (DDR)

  13. 21 CFR 582.1199 - Calcium gluconate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Additives § 582.1199 Calcium gluconate. (a) Product. Calcium gluconate. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding...

  14. 21 CFR 582.1191 - Calcium carbonate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Additives § 582.1191 Calcium carbonate. (a) Product. Calcium carbonate. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding...

  15. 21 CFR 582.1195 - Calcium citrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Additives § 582.1195 Calcium citrate. (a) Product. Calcium citrate. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding practice. ...

  16. 21 CFR 582.1205 - Calcium hydroxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Additives § 582.1205 Calcium hydroxide. (a) Product. Calcium hydroxide. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding...

  17. 21 CFR 582.1193 - Calcium chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Additives § 582.1193 Calcium chloride. (a) Product. Calcium chloride. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding practice. ...

  18. 21 CFR 582.5223 - Calcium pyrophosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5223 Calcium pyrophosphate. (a) Product. Calcium pyrophosphate. (b) Conditions of use...

  19. 21 CFR 582.5230 - Calcium sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5230 Calcium sulfate. (a) Product. Calcium sulfate. (b) Conditions of use. This substance...

  20. 21 CFR 582.5191 - Calcium carbonate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5191 Calcium carbonate. (a) Product. Calcium carbonate. (b) Conditions of use. This...

  1. 21 CFR 582.5195 - Calcium citrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5195 Calcium citrate. (a) Product. Calcium citrate. (b) Conditions of use. This substance...

  2. 21 CFR 582.5191 - Calcium carbonate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5191 Calcium carbonate. (a) Product. Calcium carbonate. (b) Conditions of use. This...

  3. 21 CFR 582.5230 - Calcium sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5230 Calcium sulfate. (a) Product. Calcium sulfate. (b) Conditions of use. This substance...

  4. 21 CFR 582.5217 - Calcium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  5. 21 CFR 582.5217 - Calcium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  6. 21 CFR 582.5230 - Calcium sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5230 Calcium sulfate. (a) Product. Calcium sulfate. (b) Conditions of use. This substance...

  7. 21 CFR 582.5223 - Calcium pyrophosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5223 Calcium pyrophosphate. (a) Product. Calcium pyrophosphate. (b) Conditions of use...

  8. 21 CFR 582.5212 - Calcium pantothenate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5212 Calcium pantothenate. (a) Product. Calcium pantothenate. (b) Conditions of use. This...

  9. 21 CFR 582.5223 - Calcium pyrophosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5223 Calcium pyrophosphate. (a) Product. Calcium pyrophosphate. (b) Conditions of use...

  10. 21 CFR 582.5191 - Calcium carbonate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5191 Calcium carbonate. (a) Product. Calcium carbonate. (b) Conditions of use. This...

  11. 21 CFR 582.5191 - Calcium carbonate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5191 Calcium carbonate. (a) Product. Calcium carbonate. (b) Conditions of use. This...

  12. 21 CFR 582.5212 - Calcium pantothenate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5212 Calcium pantothenate. (a) Product. Calcium pantothenate. (b) Conditions of use. This...

  13. 21 CFR 582.5195 - Calcium citrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5195 Calcium citrate. (a) Product. Calcium citrate. (b) Conditions of use. This substance...

  14. 21 CFR 582.5230 - Calcium sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5230 Calcium sulfate. (a) Product. Calcium sulfate. (b) Conditions of use. This substance...

  15. 21 CFR 582.5217 - Calcium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  16. 21 CFR 582.5212 - Calcium pantothenate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5212 Calcium pantothenate. (a) Product. Calcium pantothenate. (b) Conditions of use. This...

  17. 21 CFR 582.5195 - Calcium citrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5195 Calcium citrate. (a) Product. Calcium citrate. (b) Conditions of use. This substance...

  18. 21 CFR 582.5217 - Calcium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  19. 21 CFR 582.5195 - Calcium citrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5195 Calcium citrate. (a) Product. Calcium citrate. (b) Conditions of use. This substance...

  20. 21 CFR 582.5223 - Calcium pyrophosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5223 Calcium pyrophosphate. (a) Product. Calcium pyrophosphate. (b) Conditions of use...

  1. 21 CFR 582.5212 - Calcium pantothenate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5212 Calcium pantothenate. (a) Product. Calcium pantothenate. (b) Conditions of use. This...

  2. 21 CFR 582.5212 - Calcium pantothenate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5212 Calcium pantothenate. (a) Product. Calcium pantothenate. (b) Conditions of use. This...

  3. 21 CFR 582.5217 - Calcium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  4. 21 CFR 582.5230 - Calcium sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5230 Calcium sulfate. (a) Product. Calcium sulfate. (b) Conditions of use. This substance...

  5. 21 CFR 582.5223 - Calcium pyrophosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5223 Calcium pyrophosphate. (a) Product. Calcium pyrophosphate. (b) Conditions of use...

  6. 21 CFR 582.5195 - Calcium citrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5195 Calcium citrate. (a) Product. Calcium citrate. (b) Conditions of use. This substance...

  7. 21 CFR 582.5191 - Calcium carbonate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5191 Calcium carbonate. (a) Product. Calcium carbonate. (b) Conditions of use. This...

  8. 21 CFR 184.1207 - Calcium lactate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... lactic acid with calcium carbonate or calcium hydroxide. (b) The ingredient meets the specifications of... manufacturing practice. (d) Prior sanctions for this ingredient different from the uses established in this...

  9. 21 CFR 184.1207 - Calcium lactate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... lactic acid with calcium carbonate or calcium hydroxide. (b) The ingredient meets the specifications of... manufacturing practice. (d) Prior sanctions for this ingredient different from the uses established in this...

  10. 21 CFR 184.1207 - Calcium lactate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... lactic acid with calcium carbonate or calcium hydroxide. (b) The ingredient meets the specifications of... manufacturing practice. (d) Prior sanctions for this ingredient different from the uses established in this...

  11. 21 CFR 582.1191 - Calcium carbonate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Additives § 582.1191 Calcium carbonate. (a) Product. Calcium carbonate. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding...

  12. 21 CFR 582.1205 - Calcium hydroxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Additives § 582.1205 Calcium hydroxide. (a) Product. Calcium hydroxide. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding...

  13. 21 CFR 582.1193 - Calcium chloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Additives § 582.1193 Calcium chloride. (a) Product. Calcium chloride. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding practice. ...

  14. 21 CFR 582.1193 - Calcium chloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Additives § 582.1193 Calcium chloride. (a) Product. Calcium chloride. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding practice. ...

  15. 21 CFR 582.1205 - Calcium hydroxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Additives § 582.1205 Calcium hydroxide. (a) Product. Calcium hydroxide. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding...

  16. 21 CFR 582.1207 - Calcium lactate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Additives § 582.1207 Calcium lactate. (a) Product. Calcium lactate. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding practice. ...

  17. 21 CFR 582.1195 - Calcium citrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Additives § 582.1195 Calcium citrate. (a) Product. Calcium citrate. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding practice. ...

  18. 21 CFR 582.1195 - Calcium citrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Additives § 582.1195 Calcium citrate. (a) Product. Calcium citrate. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding practice. ...

  19. 21 CFR 582.1199 - Calcium gluconate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Additives § 582.1199 Calcium gluconate. (a) Product. Calcium gluconate. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding...

  20. 21 CFR 582.1193 - Calcium chloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Additives § 582.1193 Calcium chloride. (a) Product. Calcium chloride. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding practice. ...

  1. 21 CFR 582.1191 - Calcium carbonate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Additives § 582.1191 Calcium carbonate. (a) Product. Calcium carbonate. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding...

  2. 21 CFR 582.1207 - Calcium lactate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Additives § 582.1207 Calcium lactate. (a) Product. Calcium lactate. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding practice. ...

  3. 21 CFR 582.1195 - Calcium citrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Additives § 582.1195 Calcium citrate. (a) Product. Calcium citrate. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding practice. ...

  4. 21 CFR 582.1207 - Calcium lactate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Additives § 582.1207 Calcium lactate. (a) Product. Calcium lactate. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding practice. ...

  5. 21 CFR 582.1191 - Calcium carbonate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Additives § 582.1191 Calcium carbonate. (a) Product. Calcium carbonate. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding...

  6. 21 CFR 582.1199 - Calcium gluconate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Additives § 582.1199 Calcium gluconate. (a) Product. Calcium gluconate. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding...

  7. 21 CFR 582.1199 - Calcium gluconate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Additives § 582.1199 Calcium gluconate. (a) Product. Calcium gluconate. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding...

  8. 21 CFR 582.1205 - Calcium hydroxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Additives § 582.1205 Calcium hydroxide. (a) Product. Calcium hydroxide. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding...

  9. Calcium Balance in Chronic Kidney Disease.

    PubMed

    Hill Gallant, Kathleen M; Spiegel, David M

    2017-06-01

    The kidneys play a critical role in the balance between the internal milieu and external environment. Kidney failure is known to disrupt a number of homeostatic mechanisms that control serum calcium and normal bone metabolism. However, our understanding of calcium balance throughout the stages of chronic kidney disease is limited and the concept of balance itself, especially with a cation as complex as calcium, is often misunderstood. Both negative and positive calcium balance have important implications in patients with chronic kidney disease, where negative balance may increase risk of osteoporosis and fracture and positive balance may increase risk of vascular calcification and cardiovascular events. Here, we examine the state of current knowledge about calcium balance in adults throughout the stages of chronic kidney disease and discuss recommendations for clinical strategies to maintain balance as well as future research needs in this area. Recent calcium balance studies in adult patients with chronic kidney disease show that neutral calcium balance is achieved with calcium intake near the recommended daily allowance. Increases in calcium through diet or supplements cause high positive calcium balance, which may put patients at risk for vascular calcification. However, heterogeneity in calcium balance exists among these patients. Given the available calcium balance data in this population, it appears clinically prudent to aim for recommended calcium intakes around 1000 mg/day to achieve neutral calcium balance and avoid adverse effects of either negative or positive calcium balance. Assessment of patients' dietary calcium intake could further equip clinicians to make individualized recommendations for meeting recommended intakes.

  10. 21 CFR 184.1195 - Calcium citrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium citrate. 184.1195 Section 184.1195 Food... Specific Substances Affirmed as GRAS § 184.1195 Calcium citrate. (a) Calcium citrate (Ca3(C6H5O7)2·4H2O, CAS Reg. No. 813-0994-095) is the calcium salt of citric acid. It is prepared by neutralizing citric...

  11. 21 CFR 184.1221 - Calcium propionate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium propionate. 184.1221 Section 184.1221 Food... Specific Substances Affirmed as GRAS § 184.1221 Calcium propionate. (a) Calcium propionate (C6H10CaO4, CAS Reg. No. 4075-81-4) is the calcium salt of propionic acid. It occurs as white crystals or a...

  12. 21 CFR 184.1221 - Calcium propionate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium propionate. 184.1221 Section 184.1221 Food... Specific Substances Affirmed as GRAS § 184.1221 Calcium propionate. (a) Calcium propionate (C6H10CaO4, CAS Reg. No. 4075-81-4) is the calcium salt of propionic acid. It occurs as white crystals or a...

  13. 21 CFR 184.1210 - Calcium oxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium oxide. 184.1210 Section 184.1210 Food and... Substances Affirmed as GRAS § 184.1210 Calcium oxide. (a) Calcium oxide (CaO, CAS Reg. No. 1305-78-8) is also known as lime, quick lime, burnt lime, or calx. It is produced from calcium carbonate, limestone, or...

  14. 21 CFR 184.1195 - Calcium citrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium citrate. 184.1195 Section 184.1195 Food and... Substances Affirmed as GRAS § 184.1195 Calcium citrate. (a) Calcium citrate (Ca3(C6H5O7)2·4H2O, CAS Reg. No. 813-0994-095) is the calcium salt of citric acid. It is prepared by neutralizing citric acid with...

  15. 21 CFR 184.1205 - Calcium hydroxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium hydroxide. 184.1205 Section 184.1205 Food... Specific Substances Affirmed as GRAS § 184.1205 Calcium hydroxide. (a) Calcium hydroxide (Ca(OH)2, CAS Reg. No. 1305-62-0) is also known as slaked lime or calcium hydrate. It is produced by the hydration of...

  16. 21 CFR 184.1210 - Calcium oxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium oxide. 184.1210 Section 184.1210 Food and... Substances Affirmed as GRAS § 184.1210 Calcium oxide. (a) Calcium oxide (CaO, CAS Reg. No. 1305-78-8) is also known as lime, quick lime, burnt lime, or calx. It is produced from calcium carbonate, limestone, or...

  17. Calcium-binding proteins and development

    NASA Technical Reports Server (NTRS)

    Beckingham, K.; Lu, A. Q.; Andruss, B. F.; McIntire, L. V. (Principal Investigator)

    1998-01-01

    The known roles for calcium-binding proteins in developmental signaling pathways are reviewed. Current information on the calcium-binding characteristics of three classes of cell-surface developmental signaling proteins (EGF-domain proteins, cadherins and integrins) is presented together with an overview of the intracellular pathways downstream of these surface receptors. The developmental roles delineated to date for the universal intracellular calcium sensor, calmodulin, and its targets, and for calcium-binding regulators of the cytoskeleton are also reviewed.

  18. 21 CFR 184.1221 - Calcium propionate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium propionate. 184.1221 Section 184.1221 Food... GRAS § 184.1221 Calcium propionate. (a) Calcium propionate (C6H10CaO4, CAS Reg. No. 4075-81-4) is the calcium salt of propionic acid. It occurs as white crystals or a crystalline solid, possessing not more...

  19. 21 CFR 184.1229 - Calcium stearate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium stearate. 184.1229 Section 184.1229 Food... GRAS § 184.1229 Calcium stearate. (a) Calcium stearate (Ca(C17H35COO)2, CAS Reg. No. 1529-23-0) is the calcium salt of stearic acid derived from edible sources. It is prepared as a white precipitate by mixing...

  20. 21 CFR 184.1221 - Calcium propionate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Calcium propionate. 184.1221 Section 184.1221 Food... Specific Substances Affirmed as GRAS § 184.1221 Calcium propionate. (a) Calcium propionate (C6H10CaO4, CAS Reg. No. 4075-81-4) is the calcium salt of propionic acid. It occurs as white crystals or a...

  1. 21 CFR 184.1221 - Calcium propionate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Calcium propionate. 184.1221 Section 184.1221 Food... Specific Substances Affirmed as GRAS § 184.1221 Calcium propionate. (a) Calcium propionate (C6H10CaO4, CAS Reg. No. 4075-81-4) is the calcium salt of propionic acid. It occurs as white crystals or a...

  2. 21 CFR 184.1229 - Calcium stearate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Calcium stearate. 184.1229 Section 184.1229 Food... Specific Substances Affirmed as GRAS § 184.1229 Calcium stearate. (a) Calcium stearate (Ca(C17H35COO)2, CAS Reg. No. 1529-23-0) is the calcium salt of stearic acid derived from edible sources. It is prepared as...

  3. 21 CFR 184.1193 - Calcium chloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Calcium chloride. 184.1193 Section 184.1193 Food... Specific Substances Affirmed as GRAS § 184.1193 Calcium chloride. (a) Calcium chloride (CaCl2·2H2O, CAS Reg. No. 10035-04-8) or anhydrous calcium chloride (CaCl2, CAS Reg. No. 10043-52-4) may be commercially...

  4. 21 CFR 184.1229 - Calcium stearate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Calcium stearate. 184.1229 Section 184.1229 Food... Specific Substances Affirmed as GRAS § 184.1229 Calcium stearate. (a) Calcium stearate (Ca(C17H35COO)2, CAS Reg. No. 1529-23-0) is the calcium salt of stearic acid derived from edible sources. It is prepared as...

  5. 21 CFR 184.1199 - Calcium gluconate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium gluconate. 184.1199 Section 184.1199 Food... GRAS § 184.1199 Calcium gluconate. (a) Calcium gluconate ([CH2OH(CHOH)4COO]2Ca, CAS Reg. No. 299-28-5) is the calcium salt of gluconic acid which may be produced by neutralization of gluconic acid with...

  6. 21 CFR 184.1193 - Calcium chloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Calcium chloride. 184.1193 Section 184.1193 Food... Specific Substances Affirmed as GRAS § 184.1193 Calcium chloride. (a) Calcium chloride (CaCl2·2H2O, CAS Reg. No. 10035-04-8) or anhydrous calcium chloride (CaCl2, CAS Reg. No. 10043-52-4) may be commercially...

  7. 21 CFR 184.1185 - Calcium acetate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Calcium acetate. 184.1185 Section 184.1185 Food... Specific Substances Affirmed as GRAS § 184.1185 Calcium acetate. (a) Calcium acetate (Ca (C2H3O2)2, CAS Reg. No. 62-54-4), also known as acetate of lime or vinegar salts, is the calcium salt of acetic acid. It...

  8. 21 CFR 184.1199 - Calcium gluconate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Calcium gluconate. 184.1199 Section 184.1199 Food... Specific Substances Affirmed as GRAS § 184.1199 Calcium gluconate. (a) Calcium gluconate ([CH2OH(CHOH)4COO]2Ca, CAS Reg. No. 299-28-5) is the calcium salt of gluconic acid which may be produced by...

  9. 21 CFR 184.1193 - Calcium chloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium chloride. 184.1193 Section 184.1193 Food... GRAS § 184.1193 Calcium chloride. (a) Calcium chloride (CaCl2·2H2O, CAS Reg. No. 10035-04-8) or anhydrous calcium chloride (CaCl2, CAS Reg. No. 10043-52-4) may be commercially obtained as a byproduct in...

  10. 21 CFR 184.1199 - Calcium gluconate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Calcium gluconate. 184.1199 Section 184.1199 Food... Specific Substances Affirmed as GRAS § 184.1199 Calcium gluconate. (a) Calcium gluconate ([CH2OH(CHOH)4COO]2Ca, CAS Reg. No. 299-28-5) is the calcium salt of gluconic acid which may be produced by...

  11. 21 CFR 184.1185 - Calcium acetate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium acetate. 184.1185 Section 184.1185 Food... GRAS § 184.1185 Calcium acetate. (a) Calcium acetate (Ca (C2H3O2)2, CAS Reg. No. 62-54-4), also known as acetate of lime or vinegar salts, is the calcium salt of acetic acid. It may be produced by the...

  12. 21 CFR 184.1185 - Calcium acetate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Calcium acetate. 184.1185 Section 184.1185 Food... Specific Substances Affirmed as GRAS § 184.1185 Calcium acetate. (a) Calcium acetate (Ca (C2H3O2)2, CAS Reg. No. 62-54-4), also known as acetate of lime or vinegar salts, is the calcium salt of acetic acid. It...

  13. 21 CFR 184.1205 - Calcium hydroxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium hydroxide. 184.1205 Section 184.1205 Food... GRAS § 184.1205 Calcium hydroxide. (a) Calcium hydroxide (Ca(OH)2, CAS Reg. No. 1305-62-0) is also known as slaked lime or calcium hydrate. It is produced by the hydration of lime. (b) The ingredient...

  14. Calcium orthophosphates and human beings

    PubMed Central

    Dorozhkin, Sergey V.

    2012-01-01

    The historical development of a scientific knowledge on calcium orthophosphates from the 1770s until 1940 is described. Many forgotten and poorly known historical facts and approaches have been extracted from old publications and then they have been analyzed, systematized and reconsidered from the modern point of view. The chosen time scale starts with the earliest available studies of 1770s (to the best of my findings, calcium orthophosphates had been unknown before), passes through the entire 19th century and finishes in 1940, because since then the amount of publications on calcium orthophosphates rapidly increases and the subject becomes too broad. Furthermore, since publications of the second half of the 20th century are easily accessible, a substantial amount of them have already been reviewed by other researchers. The reported historical findings clearly demonstrate that the substantial amount of the scientific facts and experimental approaches have been known for very many decades and, in fact, the considerable quantity of relatively recent investigations on calcium orthophosphates is just either a further development of the earlier studies or a rediscovery of the already forgotten knowledge. PMID:23507803

  15. 21 CFR 172.330 - Calcium pantothenate, calcium chloride double salt.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.330 Calcium pantothenate, calcium chloride double salt. The food additive calcium chloride double salt of calcium pantothenate may...

  16. 21 CFR 172.330 - Calcium pantothenate, calcium chloride double salt.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.330 Calcium pantothenate, calcium chloride double salt. The food additive calcium chloride double salt of calcium pantothenate may...

  17. 21 CFR 172.330 - Calcium pantothenate, calcium chloride double salt.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... SERVICES (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.330 Calcium pantothenate, calcium chloride double salt. The food additive calcium chloride double salt of calcium pantothenate may be safely used in foods for special...

  18. 21 CFR 172.330 - Calcium pantothenate, calcium chloride double salt.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.330 Calcium pantothenate, calcium chloride double salt. The food additive calcium chloride double salt of calcium pantothenate may...

  19. Teaching Calcium-Induced Calcium Release in Cardiomyocytes Using a Classic Paper by Fabiato

    ERIC Educational Resources Information Center

    Liang, Willmann

    2008-01-01

    This teaching paper utilizes the materials presented by Dr. Fabiato in his review article entitled "Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum." In the review, supporting evidence of calcium-induced calcium release (CICR) is presented. Data concerning potential objections to the CICR theory are discussed as well. In…

  20. Calcium Kinetics During Space Flight

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; OBrien, K. O.; Abrams, S. A.; Wastney, M. E.

    2005-01-01

    Bone loss during space flight is one of the most critical challenges to astronaut health on space exploration missions. Defining the time course and mechanism of these changes will aid in developing means to counteract bone loss during space flight, and will have relevance for other clinical situations that impair weight-bearing activity. Bone health is a product of the balance between bone formation and bone resorption. Early space research could not clearly identify which of these was the main process altered in bone loss, but identification of the collagen crosslinks in the 1990s made possible a clear understanding that the impact of space flight was greater on bone resorption, with bone formation being unchanged or only slightly decreased. Calcium kinetics data showed that bone resorption was greater during flight than before flight (668 plus or minus 130 vs. 427 plus or minus 153 mg/d, p less than 0.001), and clearly documented that true intestinal calcium absorption was lower during flight than before flight (233 plus or minus 87 vs. 460 plus or minus 47 mg/d, p less than 0.01). Weightlessness had a detrimental effect on the balance in bone turnover: the difference between daily calcium balance during flight (-234 plus or minus 102 mg/d) and calcium balance before flight (63 plus or minus 75 mg/d) approached 300 mg/d (p less than 0.01). These data demonstrate that the bone loss that occurs during space flight is a consequence of increased bone resorption and decreased intestinal calcium absorption. Examining the changes in bone and calcium homeostasis in the initial days and weeks of space flight, as well as at later times on missions longer than 6 months, is critical to understanding the nature of bone adaptation to weightlessness. To increase knowledge of these changes, we studied bone adaptation to space flight on the 16-day Space Shuttle Columbia (STS-107) mission. When the brave and talented crew of Columbia were lost during reentry on the tragic morning

  1. 21 CFR 182.3189 - Calcium ascorbate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium ascorbate. 182.3189 Section 182.3189 Food... GENERALLY RECOGNIZED AS SAFE Chemical Preservatives § 182.3189 Calcium ascorbate. (a) Product. Calcium ascorbate. (b) Conditions of use. This substance is generally recognized as safe when used in accordance...

  2. 21 CFR 582.3189 - Calcium ascorbate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Calcium ascorbate. 582.3189 Section 582.3189 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3189 Calcium ascorbate. (a) Product. Calcium ascorbate. (b) Conditions of use. This substance is...

  3. 21 CFR 582.3189 - Calcium ascorbate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Calcium ascorbate. 582.3189 Section 582.3189 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3189 Calcium ascorbate. (a) Product. Calcium ascorbate. (b) Conditions of use. This substance is...

  4. 21 CFR 182.3189 - Calcium ascorbate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Calcium ascorbate. 182.3189 Section 182.3189 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Calcium ascorbate. (a) Product. Calcium ascorbate. (b) Conditions of use. This substance is generally...

  5. 21 CFR 182.3189 - Calcium ascorbate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Calcium ascorbate. 182.3189 Section 182.3189 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Calcium ascorbate. (a) Product. Calcium ascorbate. (b) Conditions of use. This substance is generally...

  6. 21 CFR 582.3189 - Calcium ascorbate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Calcium ascorbate. 582.3189 Section 582.3189 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3189 Calcium ascorbate. (a) Product. Calcium ascorbate. (b) Conditions of use. This substance is...

  7. 21 CFR 172.720 - Calcium lactobionate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Other Specific Usage Additives § 172.720 Calcium lactobionate. The food additive calcium lactobionate... additive is the calcium salt of lactobionic acid (4-(β,D-galactosido)-D-gluconic acid) produced by the...

  8. 21 CFR 172.720 - Calcium lactobionate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Other Specific Usage Additives § 172.720 Calcium lactobionate. The food additive calcium lactobionate... additive is the calcium salt of lactobionic acid (4-(β,D-galactosido)-D-gluconic acid) produced by the...

  9. 21 CFR 172.720 - Calcium lactobionate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Other Specific Usage Additives § 172.720 Calcium lactobionate. The food additive calcium lactobionate may be safely used in food in accordance with the following prescribed conditions: (a) The food additive is the calcium salt of lactobionic...

  10. Calcium signaling in taste cells: regulation required.

    PubMed

    Medler, Kathryn F

    2010-11-01

    Peripheral taste receptor cells depend on distinct calcium signals to generate appropriate cellular responses that relay taste information to the central nervous system. Some taste cells have conventional chemical synapses and rely on calcium influx through voltage-gated calcium channels. Other taste cells lack these synapses and depend on calcium release from stores to formulate an output signal through a hemichannel. Despite the importance of calcium signaling in taste cells, little is known about how these signals are regulated. This review summarizes recent studies that have identified 2 calcium clearance mechanisms expressed in taste cells, including mitochondrial calcium uptake and sodium/calcium exchangers (NCXs). These studies identified a unique constitutive calcium influx that contributes to maintaining appropriate calcium homeostasis in taste cells and the role of the mitochondria and exchangers in this process. The additional role of NCXs in the regulation of evoked calcium responses is also discussed. Clearly, calcium signaling is a dynamic process in taste cells and appears to be more complex than has previously been appreciated.

  11. 21 CFR 184.1230 - Calcium sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Calcium sulfate. 184.1230 Section 184.1230 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Specific Substances Affirmed as GRAS § 184.1230 Calcium sulfate. (a) Calcium sulfate (CaSO4, CAS Reg. No...

  12. 21 CFR 184.1230 - Calcium sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Calcium sulfate. 184.1230 Section 184.1230 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Specific Substances Affirmed as GRAS § 184.1230 Calcium sulfate. (a) Calcium sulfate (CaSO4, CAS Reg. No...

  13. 21 CFR 182.2227 - Calcium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium silicate. 182.2227 Section 182.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c) Limitations...

  14. 21 CFR 182.3225 - Calcium sorbate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium sorbate. 182.3225 Section 182.3225 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Calcium sorbate. (a) Product. Calcium sorbate. (b) Conditions of use. This substance is generally...

  15. 21 CFR 582.3225 - Calcium sorbate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium sorbate. 582.3225 Section 582.3225 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3225 Calcium sorbate. (a) Product. Calcium sorbate. (b) Conditions of use. This substance is generally...

  16. 21 CFR 582.6219 - Calcium phytate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium phytate. 582.6219 Section 582.6219 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium phytate. (a) Product. Calcium phytate. (b) Conditions of use. This substance is generally...

  17. 21 CFR 582.1207 - Calcium lactate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium lactate. 582.1207 Section 582.1207 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1207 Calcium lactate. (a) Product. Calcium lactate. (b) Conditions of use. This substance is...

  18. 21 CFR 582.6203 - Calcium hexametaphosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium hexametaphosphate. 582.6203 Section 582.6203 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....6203 Calcium hexametaphosphate. (a) Product. Calcium hexametaphosphate. (b) Conditions of use. This...

  19. 21 CFR 582.1207 - Calcium lactate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium lactate. 582.1207 Section 582.1207 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1207 Calcium lactate. (a) Product. Calcium lactate. (b) Conditions of use. This substance is...

  20. 21 CFR 582.1193 - Calcium chloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium chloride. 582.1193 Section 582.1193 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1193 Calcium chloride. (a) Product. Calcium chloride. (b) Conditions of use. This substance...

  1. 21 CFR 182.8223 - Calcium pyrophosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium pyrophosphate. 182.8223 Section 182.8223... FOR HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8223 Calcium pyrophosphate. (a) Product. Calcium pyrophosphate. (b) Conditions of use. This substance is generally recognized...

  2. 21 CFR 582.6197 - Calcium diacetate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium diacetate. 582.6197 Section 582.6197 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium diacetate. (a) Product. Calcium diacetate. (b) Conditions of use. This substance is generally...

  3. 21 CFR 182.3225 - Calcium sorbate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium sorbate. 182.3225 Section 182.3225 Food and... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Chemical Preservatives § 182.3225 Calcium sorbate. (a) Product. Calcium sorbate. (b) Conditions of use. This substance is generally recognized as...

  4. 21 CFR 582.3189 - Calcium ascorbate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium ascorbate. 582.3189 Section 582.3189 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3189 Calcium ascorbate. (a) Product. Calcium ascorbate. (b) Conditions of use. This substance is...

  5. 21 CFR 582.6185 - Calcium acetate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium acetate. 582.6185 Section 582.6185 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium acetate. (a) Product. Calcium acetate. (b) Conditions of use. This substance is generally...

  6. 21 CFR 582.6219 - Calcium phytate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium phytate. 582.6219 Section 582.6219 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium phytate. (a) Product. Calcium phytate. (b) Conditions of use. This substance is generally...

  7. 21 CFR 582.3221 - Calcium propionate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium propionate. 582.3221 Section 582.3221 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3221 Calcium propionate. (a) Product. Calcium propionate. (b) Conditions of use. This substance is...

  8. 7 CFR 58.434 - Calcium chloride.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Calcium chloride. 58.434 Section 58.434 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Material § 58.434 Calcium chloride. Calcium chloride, when used, shall meet the requirements of the Food...

  9. 21 CFR 582.6197 - Calcium diacetate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium diacetate. 582.6197 Section 582.6197 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium diacetate. (a) Product. Calcium diacetate. (b) Conditions of use. This substance is generally...

  10. 21 CFR 182.1217 - Calcium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium phosphate. 182.1217 Section 182.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  11. 21 CFR 582.1205 - Calcium hydroxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium hydroxide. 582.1205 Section 582.1205 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1205 Calcium hydroxide. (a) Product. Calcium hydroxide. (b) Conditions of use. This...

  12. 21 CFR 582.6185 - Calcium acetate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium acetate. 582.6185 Section 582.6185 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium acetate. (a) Product. Calcium acetate. (b) Conditions of use. This substance is generally...

  13. 21 CFR 582.1199 - Calcium gluconate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium gluconate. 582.1199 Section 582.1199 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1199 Calcium gluconate. (a) Product. Calcium gluconate. (b) Conditions of use. This...

  14. 21 CFR 582.1210 - Calcium oxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium oxide. 582.1210 Section 582.1210 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1210 Calcium oxide. (a) Product. Calcium oxide. (b) Conditions of use. This substance is generally...

  15. 21 CFR 182.8217 - Calcium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium phosphate. 182.8217 Section 182.8217 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This substance...

  16. 21 CFR 582.3189 - Calcium ascorbate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium ascorbate. 582.3189 Section 582.3189 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3189 Calcium ascorbate. (a) Product. Calcium ascorbate. (b) Conditions of use. This substance is...

  17. 21 CFR 582.1217 - Calcium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium phosphate. 582.1217 Section 582.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  18. 21 CFR 582.6199 - Calcium gluconate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium gluconate. 582.6199 Section 582.6199 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium gluconate. (a) Product. Calcium gluconate. (b) Conditions of use. This substance is generally...

  19. 21 CFR 582.6199 - Calcium gluconate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium gluconate. 582.6199 Section 582.6199 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium gluconate. (a) Product. Calcium gluconate. (b) Conditions of use. This substance is generally...

  20. 21 CFR 182.3189 - Calcium ascorbate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium ascorbate. 182.3189 Section 182.3189 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Calcium ascorbate. (a) Product. Calcium ascorbate. (b) Conditions of use. This substance is generally...

  1. 21 CFR 182.2227 - Calcium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium silicate. 182.2227 Section 182.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c) Limitations...

  2. 21 CFR 582.2227 - Calcium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium silicate. 582.2227 Section 582.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c) Limitations...

  3. 21 CFR 182.6203 - Calcium hexametaphosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium hexametaphosphate. 182.6203 Section 182.6203 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....6203 Calcium hexametaphosphate. (a) Product. Calcium hexametaphosphate. (b) Conditions of use. This...

  4. 21 CFR 582.1191 - Calcium carbonate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium carbonate. 582.1191 Section 582.1191 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1191 Calcium carbonate. (a) Product. Calcium carbonate. (b) Conditions of use. This...

  5. 21 CFR 182.8223 - Calcium pyrophosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium pyrophosphate. 182.8223 Section 182.8223... FOR HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8223 Calcium pyrophosphate. (a) Product. Calcium pyrophosphate. (b) Conditions of use. This substance is generally recognized...

  6. 21 CFR 582.1210 - Calcium oxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium oxide. 582.1210 Section 582.1210 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1210 Calcium oxide. (a) Product. Calcium oxide. (b) Conditions of use. This substance is generally...

  7. 21 CFR 582.3225 - Calcium sorbate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium sorbate. 582.3225 Section 582.3225 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3225 Calcium sorbate. (a) Product. Calcium sorbate. (b) Conditions of use. This substance is generally...

  8. 21 CFR 182.3189 - Calcium ascorbate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium ascorbate. 182.3189 Section 182.3189 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Calcium ascorbate. (a) Product. Calcium ascorbate. (b) Conditions of use. This substance is generally...

  9. 21 CFR 182.1217 - Calcium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium phosphate. 182.1217 Section 182.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  10. 21 CFR 582.6195 - Calcium citrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium citrate. 582.6195 Section 582.6195 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium citrate. (a) Product. Calcium citrate. (b) Conditions of use. This substance is generally...

  11. 21 CFR 182.6197 - Calcium diacetate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium diacetate. 182.6197 Section 182.6197 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 1 § 182.6197 Calcium diacetate. (a) Product. Calcium diacetate. (b) Conditions of use. This substance is generally recognized as...

  12. 21 CFR 582.1217 - Calcium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium phosphate. 582.1217 Section 582.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  13. 21 CFR 182.8217 - Calcium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium phosphate. 182.8217 Section 182.8217 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This substance...

  14. 21 CFR 582.6193 - Calcium chloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium chloride. 582.6193 Section 582.6193 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium chloride. (a) Product. Calcium chloride. (b) Conditions of use. This substance is generally...

  15. 21 CFR 582.3221 - Calcium propionate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium propionate. 582.3221 Section 582.3221 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3221 Calcium propionate. (a) Product. Calcium propionate. (b) Conditions of use. This substance is...

  16. 21 CFR 182.6203 - Calcium hexametaphosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium hexametaphosphate. 182.6203 Section 182.6203 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....6203 Calcium hexametaphosphate. (a) Product. Calcium hexametaphosphate. (b) Conditions of use. This...

  17. 21 CFR 582.6195 - Calcium citrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium citrate. 582.6195 Section 582.6195 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium citrate. (a) Product. Calcium citrate. (b) Conditions of use. This substance is generally...

  18. 21 CFR 582.1195 - Calcium citrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium citrate. 582.1195 Section 582.1195 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1195 Calcium citrate. (a) Product. Calcium citrate. (b) Conditions of use. This substance is...

  19. 21 CFR 582.2227 - Calcium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium silicate. 582.2227 Section 582.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c) Limitations...

  20. 21 CFR 582.6203 - Calcium hexametaphosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium hexametaphosphate. 582.6203 Section 582.6203 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....6203 Calcium hexametaphosphate. (a) Product. Calcium hexametaphosphate. (b) Conditions of use. This...

  1. 21 CFR 182.6197 - Calcium diacetate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium diacetate. 182.6197 Section 182.6197 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 1 § 182.6197 Calcium diacetate. (a) Product. Calcium diacetate. (b) Conditions of use. This substance is generally recognized as...

  2. 21 CFR 182.8217 - Calcium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium phosphate. 182.8217 Section 182.8217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8217 Calcium phosphate. (a) Product. Calcium phosphate (mono...

  3. 21 CFR 182.8223 - Calcium pyrophosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium pyrophosphate. 182.8223 Section 182.8223 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8223 Calcium pyrophosphate. (a) Product. Calcium...

  4. Calcium requirements for Asian children and adolescents.

    PubMed

    Lee, Warren Tak Keung; Jiang, Ji

    2008-01-01

    Calcium is important for bone health. Over the last 15 years, reference calcium intakes in Western countries have been revised upwards for maximizing bone mass at skeletal maturity and for prevention of osteoporotic fractures. Some of these reference figures have also been adopted for use in Asian countries. However, the scientific data based on for revising reference calcium intakes in the West was largely based on Caucasians. Limited human studies relating to calcium requirements and bone mineralization have been conducted in Asians in Asia. In children and adolescents, a trial has confirmed no effects of calcium supplementation on bone gains in adolescent girls after 7 years. A meta-analysis has also revealed that calcium supplementation has little beneficial effects on bone gain. Given that genetic factors, hormonal status, body size, bone structure, diets, physical activity, vitamin D status and adaptation could modify calcium retention and bone integrity, these factors need to be considered collectively to promote bone health in Asian populations. Furthermore, studies to identify indigenous foods rich in calcium and high in bioavailability are needed to widen sources of dietary calcium. Ethnic differences in calcium retention, hormonal status, bone structure, bone mineral accretion and peak bone mass are evident among Asians, Caucasians and Blacks in USA. Hence, reference calcium intakes for Asians are likely to be unique and different from those of Caucasians. More research has to be conducted in Asian populations in order to develop appropriate reference calcium intakes for the region.

  5. 21 CFR 582.6199 - Calcium gluconate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Calcium gluconate. 582.6199 Section 582.6199 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium gluconate. (a) Product. Calcium gluconate. (b) Conditions of use. This substance is generally...

  6. 21 CFR 582.6193 - Calcium chloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Calcium chloride. 582.6193 Section 582.6193 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium chloride. (a) Product. Calcium chloride. (b) Conditions of use. This substance is generally...

  7. 21 CFR 582.6197 - Calcium diacetate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Calcium diacetate. 582.6197 Section 582.6197 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium diacetate. (a) Product. Calcium diacetate. (b) Conditions of use. This substance is generally...

  8. 21 CFR 582.3225 - Calcium sorbate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Calcium sorbate. 582.3225 Section 582.3225 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3225 Calcium sorbate. (a) Product. Calcium sorbate. (b) Conditions of use. This substance is generally...

  9. 21 CFR 582.3221 - Calcium propionate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Calcium propionate. 582.3221 Section 582.3221 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3221 Calcium propionate. (a) Product. Calcium propionate. (b) Conditions of use. This substance is...

  10. 21 CFR 582.3225 - Calcium sorbate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Calcium sorbate. 582.3225 Section 582.3225 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3225 Calcium sorbate. (a) Product. Calcium sorbate. (b) Conditions of use. This substance is generally...

  11. 21 CFR 582.6219 - Calcium phytate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Calcium phytate. 582.6219 Section 582.6219 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium phytate. (a) Product. Calcium phytate. (b) Conditions of use. This substance is generally...

  12. 21 CFR 182.6197 - Calcium diacetate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Calcium diacetate. 182.6197 Section 182.6197 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 1 § 182.6197 Calcium diacetate. (a) Product. Calcium diacetate. (b) Conditions of use. This substance is generally recognized as...

  13. 21 CFR 582.3225 - Calcium sorbate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Calcium sorbate. 582.3225 Section 582.3225 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3225 Calcium sorbate. (a) Product. Calcium sorbate. (b) Conditions of use. This substance is generally...

  14. 21 CFR 582.6199 - Calcium gluconate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Calcium gluconate. 582.6199 Section 582.6199 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium gluconate. (a) Product. Calcium gluconate. (b) Conditions of use. This substance is generally...

  15. 21 CFR 582.1217 - Calcium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Calcium phosphate. 582.1217 Section 582.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  16. 21 CFR 182.2227 - Calcium silicate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Calcium silicate. 182.2227 Section 182.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c) Limitations...

  17. 21 CFR 582.2227 - Calcium silicate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Calcium silicate. 582.2227 Section 582.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c) Limitations...

  18. 21 CFR 182.6203 - Calcium hexametaphosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium hexametaphosphate. 182.6203 Section 182...) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 1 § 182.6203 Calcium hexametaphosphate. (a) Product. Calcium hexametaphosphate. (b) Conditions of use. This substance is generally recognized as safe when used...

  19. 21 CFR 582.7187 - Calcium alginate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Calcium alginate. 582.7187 Section 582.7187 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium alginate. (a) Product. Calcium alginate. (b) Conditions of use. This substance is generally...

  20. 21 CFR 582.6185 - Calcium acetate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Calcium acetate. 582.6185 Section 582.6185 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium acetate. (a) Product. Calcium acetate. (b) Conditions of use. This substance is generally...

  1. 21 CFR 582.1210 - Calcium oxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Calcium oxide. 582.1210 Section 582.1210 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1210 Calcium oxide. (a) Product. Calcium oxide. (b) Conditions of use. This substance is generally...

  2. 21 CFR 582.6195 - Calcium citrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Calcium citrate. 582.6195 Section 582.6195 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium citrate. (a) Product. Calcium citrate. (b) Conditions of use. This substance is generally...

  3. 21 CFR 182.1217 - Calcium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Calcium phosphate. 182.1217 Section 182.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  4. 21 CFR 582.6199 - Calcium gluconate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Calcium gluconate. 582.6199 Section 582.6199 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium gluconate. (a) Product. Calcium gluconate. (b) Conditions of use. This substance is generally...

  5. 21 CFR 582.7187 - Calcium alginate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Calcium alginate. 582.7187 Section 582.7187 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium alginate. (a) Product. Calcium alginate. (b) Conditions of use. This substance is generally...

  6. 21 CFR 182.1217 - Calcium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium phosphate. 182.1217 Section 182.1217 Food... GENERALLY RECOGNIZED AS SAFE Multiple Purpose GRAS Food Substances § 182.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This substance is generally...

  7. 21 CFR 582.2227 - Calcium silicate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Calcium silicate. 582.2227 Section 582.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c) Limitations...

  8. 21 CFR 582.6219 - Calcium phytate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Calcium phytate. 582.6219 Section 582.6219 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium phytate. (a) Product. Calcium phytate. (b) Conditions of use. This substance is generally...

  9. 21 CFR 582.6195 - Calcium citrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Calcium citrate. 582.6195 Section 582.6195 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium citrate. (a) Product. Calcium citrate. (b) Conditions of use. This substance is generally...

  10. 21 CFR 582.6195 - Calcium citrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Calcium citrate. 582.6195 Section 582.6195 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium citrate. (a) Product. Calcium citrate. (b) Conditions of use. This substance is generally...

  11. 21 CFR 182.3225 - Calcium sorbate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium sorbate. 182.3225 Section 182.3225 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Chemical Preservatives § 182.3225 Calcium sorbate. (a) Product. Calcium sorbate...

  12. 21 CFR 182.2227 - Calcium silicate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium silicate. 182.2227 Section 182.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Anticaking Agents § 182.2227 Calcium silicate. (a) Product. Calcium silicate...

  13. 21 CFR 582.1217 - Calcium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Calcium phosphate. 582.1217 Section 582.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  14. 21 CFR 582.6193 - Calcium chloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Calcium chloride. 582.6193 Section 582.6193 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium chloride. (a) Product. Calcium chloride. (b) Conditions of use. This substance is generally...

  15. 21 CFR 182.1217 - Calcium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Calcium phosphate. 182.1217 Section 182.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  16. 21 CFR 582.2227 - Calcium silicate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Calcium silicate. 582.2227 Section 582.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c) Limitations...

  17. 21 CFR 582.3221 - Calcium propionate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Calcium propionate. 582.3221 Section 582.3221 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3221 Calcium propionate. (a) Product. Calcium propionate. (b) Conditions of use. This substance is...

  18. 21 CFR 582.3221 - Calcium propionate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Calcium propionate. 582.3221 Section 582.3221 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3221 Calcium propionate. (a) Product. Calcium propionate. (b) Conditions of use. This substance is...

  19. 21 CFR 582.1210 - Calcium oxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Calcium oxide. 582.1210 Section 582.1210 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1210 Calcium oxide. (a) Product. Calcium oxide. (b) Conditions of use. This substance is generally...

  20. 21 CFR 582.6203 - Calcium hexametaphosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Calcium hexametaphosphate. 582.6203 Section 582.6203 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....6203 Calcium hexametaphosphate. (a) Product. Calcium hexametaphosphate. (b) Conditions of use. This...

  1. 21 CFR 182.6197 - Calcium diacetate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium diacetate. 182.6197 Section 182.6197 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 1 § 182.6197 Calcium diacetate. (a) Product. Calcium diacetate. (b...

  2. 21 CFR 582.7187 - Calcium alginate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Calcium alginate. 582.7187 Section 582.7187 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium alginate. (a) Product. Calcium alginate. (b) Conditions of use. This substance is generally...

  3. 21 CFR 582.1210 - Calcium oxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Calcium oxide. 582.1210 Section 582.1210 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1210 Calcium oxide. (a) Product. Calcium oxide. (b) Conditions of use. This substance is generally...

  4. 21 CFR 582.6193 - Calcium chloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Calcium chloride. 582.6193 Section 582.6193 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium chloride. (a) Product. Calcium chloride. (b) Conditions of use. This substance is generally...

  5. 21 CFR 182.6203 - Calcium hexametaphosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Calcium hexametaphosphate. 182.6203 Section 182.6203 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....6203 Calcium hexametaphosphate. (a) Product. Calcium hexametaphosphate. (b) Conditions of use. This...

  6. 21 CFR 582.6197 - Calcium diacetate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Calcium diacetate. 582.6197 Section 582.6197 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium diacetate. (a) Product. Calcium diacetate. (b) Conditions of use. This substance is generally...

  7. 21 CFR 582.6203 - Calcium hexametaphosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Calcium hexametaphosphate. 582.6203 Section 582.6203 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....6203 Calcium hexametaphosphate. (a) Product. Calcium hexametaphosphate. (b) Conditions of use. This...

  8. 21 CFR 582.6185 - Calcium acetate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Calcium acetate. 582.6185 Section 582.6185 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium acetate. (a) Product. Calcium acetate. (b) Conditions of use. This substance is generally...

  9. 21 CFR 582.1217 - Calcium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Calcium phosphate. 582.1217 Section 582.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  10. 21 CFR 182.6197 - Calcium diacetate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Calcium diacetate. 182.6197 Section 182.6197 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 1 § 182.6197 Calcium diacetate. (a) Product. Calcium diacetate. (b) Conditions of use. This substance is generally recognized as...

  11. 21 CFR 182.3225 - Calcium sorbate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Calcium sorbate. 182.3225 Section 182.3225 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Calcium sorbate. (a) Product. Calcium sorbate. (b) Conditions of use. This substance is generally...

  12. 21 CFR 182.3225 - Calcium sorbate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Calcium sorbate. 182.3225 Section 182.3225 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Calcium sorbate. (a) Product. Calcium sorbate. (b) Conditions of use. This substance is generally...

  13. 21 CFR 182.2227 - Calcium silicate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Calcium silicate. 182.2227 Section 182.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c) Limitations...

  14. 21 CFR 582.6185 - Calcium acetate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Calcium acetate. 582.6185 Section 582.6185 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium acetate. (a) Product. Calcium acetate. (b) Conditions of use. This substance is generally...

  15. 21 CFR 582.6219 - Calcium phytate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Calcium phytate. 582.6219 Section 582.6219 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium phytate. (a) Product. Calcium phytate. (b) Conditions of use. This substance is generally...

  16. 21 CFR 582.6203 - Calcium hexametaphosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Calcium hexametaphosphate. 582.6203 Section 582.6203 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....6203 Calcium hexametaphosphate. (a) Product. Calcium hexametaphosphate. (b) Conditions of use. This...

  17. 21 CFR 582.6197 - Calcium diacetate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Calcium diacetate. 582.6197 Section 582.6197 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium diacetate. (a) Product. Calcium diacetate. (b) Conditions of use. This substance is generally...

  18. 21 CFR 573.240 - Calcium periodate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.240 Calcium periodate. The food additive calcium periodate may be safely used in... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Calcium periodate. 573.240 Section 573.240 Food...

  19. 21 CFR 573.240 - Calcium periodate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.240 Calcium periodate. The food additive calcium periodate may be safely used in... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Calcium periodate. 573.240 Section 573.240 Food...

  20. 21 CFR 573.240 - Calcium periodate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.240 Calcium periodate. The food additive calcium periodate may be safely used in... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium periodate. 573.240 Section 573.240 Food...