Sample records for calcium carbonate mineral

  1. Modification of the N-Terminus of a Calcium Carbonate Precipitating Peptide Affects Calcium Carbonate Mineralization.

    PubMed

    Usui, Kenji; Yokota, Shin-Ichiro; Ozaki, Makoto; Sakashita, Shungo; Imai, Takahito; Tomizaki, Kin-Ya

    2018-01-01

    A core sequence (the 9 C-terminal residues) of calcification-associated peptide (CAP- 1) isolated from the exoskeleton of the red swamp crayfish was previously shown to control calcium carbonate precipitation with chitin. In addition, a modified core sequence in which the phosphorylated serine at the N terminus is replaced with serine exhibits was also previously shown to alter precipitation characteristics with chitin. We focused on calcium carbonate precipitation and attempted to elucidate aspects of the mechanism underlying mineralization. We attempted to evaluate in detail the effects of modifying the N-terminus in the core sequence on calcium carbonate mineralization without chitin. The peptide modifications included phosphorylation, dephosphorylation, and a free or acetylated Nterminus. The peptides were synthesized manually on Wang resin using the DIPCI-DMAP method for the first residue, and Fmoc solid phase peptide synthesis with HBTU-HOBt for the subsequent residues. Prior to calcium carbonate precipitation, calcium carbonate was suspended in MilliQ water. Carbon dioxide gas was bubbled into the stirred suspension, then the remaining solid CaCO3 was removed by filtration. The concentration of calcium ions in the solution was determined by standard titration with ethylenediaminetetraacetate. Calcium carbonate precipitation was conducted in a micro tube for 3 h at 37°C. We used the micro-scale techniques AFM (atomic force microscopy) and TEM (transmission electron microscopy), and the macro-scale techniques chelate titration, HPLC, gel filtration, CD (circular dichroism) and DLS (dynamic light scattering). We determined the morphologies of the calcium carbonate deposits using AFM and TEM. The pS peptide provided the best control of the shape and size of the calcium carbonate round particles. The acetylated peptides (Ac-S and Ac-pS) provided bigger particles with various shapes. S peptide provided a mixture of bigger particles and amorphous particles. We

  2. Enzymatic, urease-mediated mineralization of gellan gum hydrogel with calcium carbonate, magnesium-enriched calcium carbonate and magnesium carbonate for bone regeneration applications.

    PubMed

    Douglas, Timothy E L; Łapa, Agata; Samal, Sangram Keshari; Declercq, Heidi A; Schaubroeck, David; Mendes, Ana C; der Voort, Pascal Van; Dokupil, Agnieszka; Plis, Agnieszka; De Schamphelaere, Karel; Chronakis, Ioannis S; Pamuła, Elżbieta; Skirtach, Andre G

    2017-12-01

    Mineralization of hydrogel biomaterials is considered desirable to improve their suitability as materials for bone regeneration. Calcium carbonate (CaCO 3 ) has been successfully applied as a bone regeneration material, but hydrogel-CaCO 3 composites have received less attention. Magnesium (Mg) has been used as a component of calcium phosphate biomaterials to stimulate bone-forming cell adhesion and proliferation and bone regeneration in vivo, but its effect as a component of carbonate-based biomaterials remains uninvestigated. In the present study, gellan gum (GG) hydrogels were mineralized enzymatically with CaCO 3 , Mg-enriched CaCO 3 and magnesium carbonate to generate composite biomaterials for bone regeneration. Hydrogels loaded with the enzyme urease were mineralized by incubation in mineralization media containing urea and different ratios of calcium and magnesium ions. Increasing the magnesium concentration decreased mineral crystallinity. At low magnesium concentrations calcite was formed, while at higher concentrations magnesian calcite was formed. Hydromagnesite (Mg 5 (CO 3 ) 4 (OH) 2 .4H 2 O) formed at high magnesium concentration in the absence of calcium. The amount of mineral formed and compressive strength decreased with increasing magnesium concentration in the mineralization medium. The calcium:magnesium elemental ratio in the mineral formed was higher than in the respective mineralization media. Mineralization of hydrogels with calcite or magnesian calcite promoted adhesion and growth of osteoblast-like cells. Hydrogels mineralized with hydromagnesite displayed higher cytotoxicity. In conclusion, enzymatic mineralization of GG hydrogels with CaCO 3 in the form of calcite successfully reinforced hydrogels and promoted osteoblast-like cell adhesion and growth, but magnesium enrichment had no definitive positive effect. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  3. Mineralization of gellan gum hydrogels with calcium and magnesium carbonates by alternate soaking in solutions of calcium/magnesium and carbonate ion solutions.

    PubMed

    Lopez-Heredia, Marco A; Łapa, Agata; Reczyńska, Katarzyna; Pietryga, Krzysztof; Balcaen, Lieve; Mendes, Ana C; Schaubroeck, David; Van Der Voort, Pascal; Dokupil, Agnieszka; Plis, Agnieszka; Stevens, Chris V; Parakhonskiy, Bogdan V; Samal, Sangram Keshari; Vanhaecke, Frank; Chai, Feng; Chronakis, Ioannis S; Blanchemain, Nicolas; Pamuła, Elżbieta; Skirtach, Andre G; Douglas, Timothy E L

    2018-04-27

    Mineralization of hydrogels is desirable prior to applications in bone regeneration. CaCO 3 is a widely used bone regeneration material and Mg, when used as a component of calcium phosphate biomaterials, has promoted bone-forming cell adhesion and proliferation and bone regeneration. In this study, gellan gum (GG) hydrogels were mineralized with carbonates containing different amounts of calcium (Ca) and magnesium (Mg) by alternate soaking in, firstly, a calcium and/or magnesium ion solution and, secondly, a carbonate ion solution. This alternate soaking cycle was repeated five times. Five different calcium and/or magnesium ion solutions, containing different molar ratios of Ca to Mg ranging from Mg-free to Ca-free were compared. Carbonate mineral formed in all sample groups subjected to the Ca:Mg elemental ratio in the carbonate mineral formed was higher than in the respective mineralizing solution. Mineral formed in the absence of Mg was predominantly CaCO 3 in the form of a mixture of calcite and vaterite. Increasing the Mg content in the mineral formed led to the formation of magnesian calcite, decreased the total amount of the mineral formed and its crystallinity. Hydrogel mineralization and increasing Mg content in mineral formed did not obviously improve proliferation of MC3T3-E1 osteoblast-like cells or differentiation after 7 days. This article is protected by copyright. All rights reserved.

  4. FT-Raman spectroscopic study of calcium-rich and magnesium-rich carbonate minerals.

    PubMed

    Edwards, Howell G M; Villar, Susana E Jorge; Jehlicka, Jan; Munshi, Tasnim

    2005-08-01

    Calcium and magnesium carbonates are important minerals found in sedimentary environments. Although sandstones are the most common rock colonized by endolith organisms, the production of calcium and magnesium carbonates is important in survival strategies of organisms and as a source for the removal of oxalate ions. Extremophile organisms in some situations may convert or destroy carbonates of calcium and magnesium, which gives important information about the conditions under which these organisms can survive. The identification on the surface of Mars of 'White Rock' formations, in Juventae Chasma or Sabaea Terra, as possibly carbonate rocks makes the study of these minerals a prerequisite of remote Martian exploration. Here, we show the protocol for the identification by Raman spectroscopy of different calcium and magnesium carbonates and we present a database of relevance in the search for life, extinct or extant, on Mars; this will be useful for the assessment of data obtained from remote, miniaturized Raman spectrometers now proposed for Mars exploration.

  5. Amorphous calcium carbonate controls avian eggshell mineralization: A new paradigm for understanding rapid eggshell calcification.

    PubMed

    Rodríguez-Navarro, Alejandro B; Marie, Pauline; Nys, Yves; Hincke, Maxwell T; Gautron, Joel

    2015-06-01

    Avian eggshell mineralization is the fastest biogenic calcification process known in nature. How this is achieved while producing a highly crystalline material composed of large calcite columnar single crystals remains largely unknown. Here we report that eggshell mineral originates from the accumulation of flat disk-shaped amorphous calcium carbonate (ACC) particles on specific organic sites on the eggshell membrane, which are rich in proteins and sulfated proteoglycans. These structures known as mammillary cores promote the nucleation and stabilization of a amorphous calcium carbonate with calcitic short range order which predetermine the calcite composition of the mature eggshell. The amorphous nature of the precursor phase was confirmed by the diffuse scattering of X-rays and electrons. The nascent calcitic short-range order of this transient mineral phase was revealed by infrared spectroscopy and HRTEM. The ACC mineral deposited around the mammillary core sites progressively transforms directly into calcite crystals without the occurrence of any intermediate phase. Ionic speciation data suggest that the uterine fluid is equilibrated with amorphous calcium carbonate, throughout the duration of eggshell mineralization process, supporting that this mineral phase is constantly forming at the shell mineralization front. On the other hand, the transient amorphous calcium carbonate mineral deposits, as well as the calcite crystals into which they are converted, form by the ordered aggregation of nanoparticles that support the rapid mineralization of the eggshell. The results of this study alter our current understanding of avian eggshell calcification and provide new insights into the genesis and formation of calcium carbonate biominerals in vertebrates. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Calcium phosphate mineralization is widely applied in crustacean mandibles.

    PubMed

    Bentov, Shmuel; Aflalo, Eliahu D; Tynyakov, Jenny; Glazer, Lilah; Sagi, Amir

    2016-02-24

    Crustaceans, like most mineralized invertebrates, adopted calcium carbonate mineralization for bulk skeleton reinforcement. Here, we show that a major part of the crustacean class Malacostraca (which includes lobsters, crayfishes, prawns and shrimps) shifted toward the formation of calcium phosphate as the main mineral at specified locations of the mandibular teeth. In these structures, calcium phosphate is not merely co-precipitated with the bulk calcium carbonate but rather creates specialized structures in which a layer of calcium phosphate, frequently in the form of crystalline fluorapatite, is mounted over a calcareous "jaw". From a functional perspective, the co-existence of carbonate and phosphate mineralization demonstrates a biomineralization system that provides a versatile route to control the physico-chemical properties of skeletal elements. This system enables the deposition of amorphous calcium carbonate, amorphous calcium phosphate, calcite and apatite at various skeletal locations, as well as combinations of these minerals, to form graded composites materials. This study demonstrates the widespread occurrence of the dual mineralization strategy in the Malacostraca, suggesting that in terms of evolution, this feature of phosphatic teeth did not evolve independently in the different groups but rather represents an early common trait.

  7. Calcium phosphate mineralization is widely applied in crustacean mandibles

    PubMed Central

    Bentov, Shmuel; Aflalo, Eliahu D.; Tynyakov, Jenny; Glazer, Lilah; Sagi, Amir

    2016-01-01

    Crustaceans, like most mineralized invertebrates, adopted calcium carbonate mineralization for bulk skeleton reinforcement. Here, we show that a major part of the crustacean class Malacostraca (which includes lobsters, crayfishes, prawns and shrimps) shifted toward the formation of calcium phosphate as the main mineral at specified locations of the mandibular teeth. In these structures, calcium phosphate is not merely co-precipitated with the bulk calcium carbonate but rather creates specialized structures in which a layer of calcium phosphate, frequently in the form of crystalline fluorapatite, is mounted over a calcareous “jaw”. From a functional perspective, the co-existence of carbonate and phosphate mineralization demonstrates a biomineralization system that provides a versatile route to control the physico-chemical properties of skeletal elements. This system enables the deposition of amorphous calcium carbonate, amorphous calcium phosphate, calcite and apatite at various skeletal locations, as well as combinations of these minerals, to form graded composites materials. This study demonstrates the widespread occurrence of the dual mineralization strategy in the Malacostraca, suggesting that in terms of evolution, this feature of phosphatic teeth did not evolve independently in the different groups but rather represents an early common trait. PMID:26906263

  8. Oxalate secretion by ectomycorrhizal Paxillus involutus is mineral-specific and controls calcium weathering from minerals

    NASA Astrophysics Data System (ADS)

    Schmalenberger, A.; Duran, A. L.; Bray, A. W.; Bridge, J.; Bonneville, S.; Benning, L. G.; Romero-Gonzalez, M. E.; Leake, J. R.; Banwart, S. A.

    2015-07-01

    Trees and their associated rhizosphere organisms play a major role in mineral weathering driving calcium fluxes from the continents to the oceans that ultimately control long-term atmospheric CO2 and climate through the geochemical carbon cycle. Photosynthate allocation to tree roots and their mycorrhizal fungi is hypothesized to fuel the active secretion of protons and organic chelators that enhance calcium dissolution at fungal-mineral interfaces. This was tested using 14CO2 supplied to shoots of Pinus sylvestris ectomycorrhizal with the widespread fungus Paxillus involutus in monoxenic microcosms, revealing preferential allocation by the fungus of plant photoassimilate to weather grains of limestone and silicates each with a combined calcium and magnesium content of over 10 wt.%. Hyphae had acidic surfaces and linear accumulation of weathered calcium with secreted oxalate, increasing significantly in sequence: quartz, granite < basalt, olivine, limestone < gabbro. These findings confirmed the role of mineral-specific oxalate exudation in ectomycorrhizal weathering to dissolve calcium bearing minerals, thus contributing to the geochemical carbon cycle.

  9. Calcium carbonate mineralization mediated by in vitro cultured mantle cells from Pinctada fucata.

    PubMed

    Kong, Wei; Li, Shiguo; Xiang, Liang; Xie, Liping; Zhang, Rongqing

    2015-08-07

    Formation of the molluscan shell is believed to be an extracellular event mediated by matrix proteins. We report calcium carbonate mineralization mediated by Pinctada fucata mantle cells. Crystals only appeared when mantle cells were present in the crystallization solution. These crystals were piled up in highly ordered units and showed the typical characteristics of biomineralization products. A thin organic framework was observed after dissolving the crystals in EDTA. Some crystals had etched surfaces with a much smoother appearance than other parts. Mantle cells were observed to be attached to some of these smooth surfaces. These results suggest that mantle cells may be directly involved in the nucleation and remodeling process of calcium carbonate mineralization. Our result demonstrate the practicability of studying the mantle cell mechanism of biomineralization and contribute to the overall understanding of the shell formation process. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Oxalate secretion by ectomycorrhizal Paxillus involutus is mineral-specific and controls calcium weathering from minerals

    PubMed Central

    Schmalenberger, A.; Duran, A. L.; Bray, A. W.; Bridge, J.; Bonneville, S.; Benning, L. G.; Romero-Gonzalez, M. E.; Leake, J. R.; Banwart, S. A.

    2015-01-01

    Trees and their associated rhizosphere organisms play a major role in mineral weathering driving calcium fluxes from the continents to the oceans that ultimately control long-term atmospheric CO2 and climate through the geochemical carbon cycle. Photosynthate allocation to tree roots and their mycorrhizal fungi is hypothesized to fuel the active secretion of protons and organic chelators that enhance calcium dissolution at fungal-mineral interfaces. This was tested using 14CO2 supplied to shoots of Pinus sylvestris ectomycorrhizal with the widespread fungus Paxillus involutus in monoxenic microcosms, revealing preferential allocation by the fungus of plant photoassimilate to weather grains of limestone and silicates each with a combined calcium and magnesium content of over 10 wt.%. Hyphae had acidic surfaces and linear accumulation of weathered calcium with secreted oxalate, increasing significantly in sequence: quartz, granite < basalt, olivine, limestone < gabbro. These findings confirmed the role of mineral-specific oxalate exudation in ectomycorrhizal weathering to dissolve calcium bearing minerals, thus contributing to the geochemical carbon cycle. PMID:26197714

  11. Initial stages of calcium uptake and mineral deposition in sea urchin embryos

    PubMed Central

    Vidavsky, Netta; Addadi, Sefi; Mahamid, Julia; Shimoni, Eyal; Ben-Ezra, David; Shpigel, Muki; Weiner, Steve; Addadi, Lia

    2014-01-01

    Sea urchin larvae have an endoskeleton consisting of two calcitic spicules. We reconstructed various stages of the formation pathway of calcium carbonate from calcium ions in sea water to mineral deposition and integration into the forming spicules. Monitoring calcium uptake with the fluorescent dye calcein shows that calcium ions first penetrate the embryo and later are deposited intracellularly. Surprisingly, calcium carbonate deposits are distributed widely all over the embryo, including in the primary mesenchyme cells and in the surface epithelial cells. Using cryo-SEM, we show that the intracellular calcium carbonate deposits are contained in vesicles of diameter 0.5–1.5 μm. Using the newly developed airSEM, which allows direct correlation between fluorescence and energy dispersive spectroscopy, we confirmed the presence of solid calcium carbonate in the vesicles. This mineral phase appears as aggregates of 20–30-nm nanospheres, consistent with amorphous calcium carbonate. The aggregates finally are introduced into the spicule compartment, where they integrate into the growing spicule. PMID:24344263

  12. Initial stages of calcium uptake and mineral deposition in sea urchin embryos.

    PubMed

    Vidavsky, Netta; Addadi, Sefi; Mahamid, Julia; Shimoni, Eyal; Ben-Ezra, David; Shpigel, Muki; Weiner, Steve; Addadi, Lia

    2014-01-07

    Sea urchin larvae have an endoskeleton consisting of two calcitic spicules. We reconstructed various stages of the formation pathway of calcium carbonate from calcium ions in sea water to mineral deposition and integration into the forming spicules. Monitoring calcium uptake with the fluorescent dye calcein shows that calcium ions first penetrate the embryo and later are deposited intracellularly. Surprisingly, calcium carbonate deposits are distributed widely all over the embryo, including in the primary mesenchyme cells and in the surface epithelial cells. Using cryo-SEM, we show that the intracellular calcium carbonate deposits are contained in vesicles of diameter 0.5-1.5 μm. Using the newly developed airSEM, which allows direct correlation between fluorescence and energy dispersive spectroscopy, we confirmed the presence of solid calcium carbonate in the vesicles. This mineral phase appears as aggregates of 20-30-nm nanospheres, consistent with amorphous calcium carbonate. The aggregates finally are introduced into the spicule compartment, where they integrate into the growing spicule.

  13. Testing Urey's carbonate-silicate cycle using the calcium isotopic composition of sedimentary carbonates

    NASA Astrophysics Data System (ADS)

    Blättler, Clara L.; Higgins, John A.

    2017-12-01

    Carbonate minerals constitute a major component of the sedimentary geological record and an archive of a fraction of the carbon and calcium cycled through the Earth's surface reservoirs for over three billion years. For calcium, carbonate minerals constitute the ultimate sink for almost all calcium liberated during continental and submarine weathering of silicate minerals. This study presents >500 stable isotope ratios of calcium in Precambrian carbonate sediments, both limestones and dolomites, in an attempt to characterize the isotope mass balance of the sedimentary carbonate reservoir through time. The mean of the dataset is indistinguishable from estimates of the calcium isotope ratio of bulk silicate Earth, consistent with the Urey cycle being the dominant mechanism exchanging calcium among surface reservoirs. The variability in bulk sediment calcium isotope ratios within each geological unit does not reflect changes in the global calcium cycle, but rather highlights the importance of local mineralogical and/or diagenetic effects in the carbonate record. This dataset demonstrates the potential for calcium isotope ratios to help assess these local effects, such as the former presence of aragonite, even in rocks with a history of neomorphism and recrystallization. Additionally, 29 calcium isotope measurements are presented from ODP (Ocean Drilling Program) Site 801 that contribute to the characterization of altered oceanic crust as an additional sink for calcium, and whose distinct isotopic signature places a limit on the importance of this subduction flux over Earth history.

  14. Peptoid nanosheets as soluble, two-dimensional templates for calcium carbonate mineralization.

    PubMed

    Jun, Joo Myung V; Altoe, M Virginia P; Aloni, Shaul; Zuckermann, Ronald N

    2015-06-25

    Nacre-mimetic materials are of great interest, but difficult to synthesize, because they require the ordering of organic and inorganic materials on several length scales. Here we introduce peptoid nanosheets as a versatile two-dimensional platform to develop nacre mimetic materials. Free-floating zwitterionic nanosheets were mineralized with thin films of amorphous calcium carbonate (of 2-20 nm thickness) on their surface to produce planar nacre synthons. These can serve as tunable building blocks to produce layered brick and mortar nanoarchitectures.

  15. Influence of substrate mineralogy on bacterial mineralization of calcium carbonate: implications for stone conservation.

    PubMed

    Rodriguez-Navarro, Carlos; Jroundi, Fadwa; Schiro, Mara; Ruiz-Agudo, Encarnación; González-Muñoz, María Teresa

    2012-06-01

    The influence of mineral substrate composition and structure on bacterial calcium carbonate productivity and polymorph selection was studied. Bacterial calcium carbonate precipitation occurred on calcitic (Iceland spar single crystals, marble, and porous limestone) and silicate (glass coverslips, porous sintered glass, and quartz sandstone) substrates following culturing in liquid medium (M-3P) inoculated with different types of bacteria (Myxococcus xanthus, Brevundimonas diminuta, and a carbonatogenic bacterial community isolated from porous calcarenite stone in a historical building) and direct application of sterile M-3P medium to limestone and sandstone with their own bacterial communities. Field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), powder X-ray diffraction (XRD), and 2-dimensional XRD (2D-XRD) analyses revealed that abundant highly oriented calcite crystals formed homoepitaxially on the calcitic substrates, irrespective of the bacterial type. Conversely, scattered spheroidal vaterite entombing bacterial cells formed on the silicate substrates. These results show that carbonate phase selection is not strain specific and that under equal culture conditions, the substrate type is the overruling factor for calcium carbonate polymorph selection. Furthermore, carbonate productivity is strongly dependent on the mineralogy of the substrate. Calcitic substrates offer a higher affinity for bacterial attachment than silicate substrates, thereby fostering bacterial growth and metabolic activity, resulting in higher production of calcium carbonate cement. Bacterial calcite grows coherently over the calcitic substrate and is therefore more chemically and mechanically stable than metastable vaterite, which formed incoherently on the silicate substrates. The implications of these results for technological applications of bacterial carbonatogenesis, including building stone conservation, are discussed.

  16. Influence of Substrate Mineralogy on Bacterial Mineralization of Calcium Carbonate: Implications for Stone Conservation

    PubMed Central

    Jroundi, Fadwa; Schiro, Mara; Ruiz-Agudo, Encarnación; González-Muñoz, María Teresa

    2012-01-01

    The influence of mineral substrate composition and structure on bacterial calcium carbonate productivity and polymorph selection was studied. Bacterial calcium carbonate precipitation occurred on calcitic (Iceland spar single crystals, marble, and porous limestone) and silicate (glass coverslips, porous sintered glass, and quartz sandstone) substrates following culturing in liquid medium (M-3P) inoculated with different types of bacteria (Myxococcus xanthus, Brevundimonas diminuta, and a carbonatogenic bacterial community isolated from porous calcarenite stone in a historical building) and direct application of sterile M-3P medium to limestone and sandstone with their own bacterial communities. Field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), powder X-ray diffraction (XRD), and 2-dimensional XRD (2D-XRD) analyses revealed that abundant highly oriented calcite crystals formed homoepitaxially on the calcitic substrates, irrespective of the bacterial type. Conversely, scattered spheroidal vaterite entombing bacterial cells formed on the silicate substrates. These results show that carbonate phase selection is not strain specific and that under equal culture conditions, the substrate type is the overruling factor for calcium carbonate polymorph selection. Furthermore, carbonate productivity is strongly dependent on the mineralogy of the substrate. Calcitic substrates offer a higher affinity for bacterial attachment than silicate substrates, thereby fostering bacterial growth and metabolic activity, resulting in higher production of calcium carbonate cement. Bacterial calcite grows coherently over the calcitic substrate and is therefore more chemically and mechanically stable than metastable vaterite, which formed incoherently on the silicate substrates. The implications of these results for technological applications of bacterial carbonatogenesis, including building stone conservation, are discussed. PMID:22447589

  17. The mineral phase in the cuticles of two species of Crustacea consists of magnesium calcite, amorphous calcium carbonate, and amorphous calcium phosphate.

    PubMed

    Becker, Alexander; Ziegler, Andreas; Epple, Matthias

    2005-05-21

    The cuticules (shells) of the woodlice Porcellio scaber and Armadillidium vulgare were analysed with respect to their content of inorganic material. It was found that the cuticles consist of crystalline magnesium calcite, amorphous calcium carbonate (ACC), and amorphous calcium phosphate (ACP), besides small amounts of water and an organic matrix. It is concluded that the cuticle, which constitutes a mineralized protective organ, is chemically adapted to the biological requirements by this combination of different materials.

  18. Carbon K-edge spectra of carbonate minerals.

    PubMed

    Brandes, Jay A; Wirick, Sue; Jacobsen, Chris

    2010-09-01

    Carbon K-edge X-ray spectroscopy has been applied to the study of a wide range of organic samples, from polymers and coals to interstellar dust particles. Identification of carbonaceous materials within these samples is accomplished by the pattern of resonances in the 280-320 eV energy region. Carbonate minerals are often encountered in the study of natural samples, and have been identified by a distinctive resonance at 290.3 eV. Here C K-edge and Ca L-edge spectra from a range of carbonate minerals are presented. Although all carbonates exhibit a sharp 290 eV resonance, both the precise position of this resonance and the positions of other resonances vary among minerals. The relative strengths of the different carbonate resonances also vary with crystal orientation to the linearly polarized X-ray beam. Intriguingly, several carbonate minerals also exhibit a strong 288.6 eV resonance, consistent with the position of a carbonyl resonance rather than carbonate. Calcite and aragonite, although indistinguishable spectrally at the C K-edge, exhibited significantly different spectra at the Ca L-edge. The distinctive spectral fingerprints of carbonates provide an identification tool, allowing for the examination of such processes as carbon sequestration in minerals, Mn substitution in marine calcium carbonates (dolomitization) and serpentinization of basalts.

  19. Co-precipitation of dissolved organic matter by calcium carbonate in Pyramid Lake, Nevada

    USGS Publications Warehouse

    Leenheer, Jerry A.; Reddy, Michael M.

    2008-01-01

    Our previous research has demonstrated that dissolved organic matter (DOM) influences calcium carbonate mineral formation in surface and ground water. To better understand DOM mediation of carbonate precipitation and DOM co-precipitation and/or incorporation with carbonate minerals, we characterized the content and speciation of DOM in carbonate minerals and in the lake water of Pyramid Lake, Nevada, USA. A 400-gram block of precipitated calcium carbonate from the Pyramid Lake shore was dissolved in 8 liters of 10% acetic acid. Particulate matter not dissolved by acetic acid was removed by centrifugation. DOM from the carbonate rock was fractionated into nine portions using evaporation, dialysis, resin adsorption, and selective precipitations to remove acetic acid and inorganic constituents. The calcium carbonate rock contained 0.23% DOM by weight. This DOM was enriched in polycarboxylic proteinaceous acids and hydroxy-acids in comparison with the present lake water. DOM in lake water was composed of aliphatic, alicyclic polycarboxylic acids. These compound classes were found in previous studies to inhibit calcium carbonate precipitation. DOM fractions from the carbonate rock were 14C-age dated at about 3,100 to 3,500 years before present. The mechanism of DOM co-precipitation and/or physical incorporation in the calcium carbonate is believed to be due to formation of insoluble calcium complexes with polycarboxylic proteinaceous acids and hydroxy-acids that have moderately large stability constants at the alkaline pH of the lake. DOM co-precipitation with calcium carbonate and incorporation in precipitated carbonate minerals removes proteinaceous DOM, but nearly equivalent concentrations of neutral and acidic forms of organic nitrogen in DOM remain in solution. Calcium carbonate precipitation during lime softening pretreatment of drinking water may have practical applications for removal of proteinaceous disinfection by-product precursors.

  20. Phase transitions in biogenic amorphous calcium carbonate.

    PubMed

    Gong, Yutao U T; Killian, Christopher E; Olson, Ian C; Appathurai, Narayana P; Amasino, Audra L; Martin, Michael C; Holt, Liam J; Wilt, Fred H; Gilbert, P U P A

    2012-04-17

    Crystalline biominerals do not resemble faceted crystals. Current explanations for this property involve formation via amorphous phases. Using X-ray absorption near-edge structure (XANES) spectroscopy and photoelectron emission microscopy (PEEM), here we examine forming spicules in embryos of Strongylocentrotus purpuratus sea urchins, and observe a sequence of three mineral phases: hydrated amorphous calcium carbonate (ACC · H(2)O) → dehydrated amorphous calcium carbonate (ACC) → calcite. Unexpectedly, we find ACC · H(2)O-rich nanoparticles that persist after the surrounding mineral has dehydrated and crystallized. Protein matrix components occluded within the mineral must inhibit ACC · H(2)O dehydration. We devised an in vitro, also using XANES-PEEM, assay to identify spicule proteins that may play a role in stabilizing various mineral phases, and found that the most abundant occluded matrix protein in the sea urchin spicules, SM50, stabilizes ACC · H(2)O in vitro.

  1. Phase transitions in biogenic amorphous calcium carbonate

    PubMed Central

    Gong, Yutao U. T.; Killian, Christopher E.; Olson, Ian C.; Appathurai, Narayana P.; Amasino, Audra L.; Martin, Michael C.; Holt, Liam J.; Wilt, Fred H.; Gilbert, P. U. P. A.

    2012-01-01

    Crystalline biominerals do not resemble faceted crystals. Current explanations for this property involve formation via amorphous phases. Using X-ray absorption near-edge structure (XANES) spectroscopy and photoelectron emission microscopy (PEEM), here we examine forming spicules in embryos of Strongylocentrotus purpuratus sea urchins, and observe a sequence of three mineral phases: hydrated amorphous calcium carbonate (ACC·H2O) → dehydrated amorphous calcium carbonate (ACC) → calcite. Unexpectedly, we find ACC·H2O-rich nanoparticles that persist after the surrounding mineral has dehydrated and crystallized. Protein matrix components occluded within the mineral must inhibit ACC·H2O dehydration. We devised an in vitro, also using XANES-PEEM, assay to identify spicule proteins that may play a role in stabilizing various mineral phases, and found that the most abundant occluded matrix protein in the sea urchin spicules, SM50, stabilizes ACC·H2O in vitro. PMID:22492931

  2. Mapping the Mineral Resource Base for Mineral Carbon-Dioxide Sequestration in the Conterminous United States

    USGS Publications Warehouse

    Krevor, S.C.; Graves, C.R.; Van Gosen, B. S.; McCafferty, A.E.

    2009-01-01

    This database provides information on the occurrence of ultramafic rocks in the conterminous United States that are suitable for sequestering captured carbon dioxide in mineral form, also known as mineral carbon-dioxide sequestration. Mineral carbon-dioxide sequestration is a proposed greenhouse gas mitigation technology whereby carbon dioxide (CO2) is disposed of by reacting it with calcium or magnesium silicate minerals to form a solid magnesium or calcium carbonate product. The technology offers a large capacity to permanently store CO2 in an environmentally benign form via a process that takes little effort to verify or monitor after disposal. These characteristics are unique among its peers in greenhouse gas disposal technologies. The 2005 Intergovernmental Panel on Climate Change report on Carbon Dioxide Capture and Storage suggested that a major gap in mineral CO2 sequestration is locating the magnesium-silicate bedrock available to sequester the carbon dioxide. It is generally known that silicate minerals with high concentrations of magnesium are suitable for mineral carbonation. However, no assessment has been made in the United States that details their geographical distribution and extent, nor has anyone evaluated their potential for use in mineral carbonation. Researchers at Columbia University and the U.S. Geological Survey have developed a digital geologic database of ultramafic rocks in the conterminous United States. Data were compiled from varied-scale geologic maps of magnesium-silicate ultramafic rocks. The focus of our national-scale map is entirely on ultramafic rock types, which typically consist primarily of olivine- and serpentine-rich rocks. These rock types are potentially suitable as source material for mineral CO2 sequestration.

  3. Calcium Carbonate

    MedlinePlus

    ... Maalox® (as a combination product containing Calcium Carbonate, Simethicone) ... Relief (as a combination product containing Calcium Carbonate, Simethicone) ... Plus (as a combination product containing Calcium Carbonate, Simethicone)

  4. In-Situ Production of Calcium Carbonate Nanoparticles in Fresh Concrete Using Pre-carbonation Method

    NASA Astrophysics Data System (ADS)

    Qian, Xin

    To reduce the carbon footprint of ordinary Portland cement (OPC)-based concrete, a novel technique, pre-carbonation process, has been developed to produce CaCO3 nanoparticles in fresh concrete. In this technique, gaseous CO2 is first absorbed into a slurry of calcium-rich minerals which is then blended with other ingredients to produce mortar/concrete. The objective of this work is to obtain an in-depth understanding of the underlying scientific mechanisms associated with the enhancement of strength and durability of the concrete induced by the new method. A comprehensive research plan has been carried out to study the carbonated slaked lime slurry and the effect of carbonated slaked lime slurry on the performance of OPC-based concrete, and to evaluate the potentials of the pre-carbonation method. Experimental studies show that carbonating the calcium-rich mineral slurry with CO2 can produce CaCO3 nanoparticles and Ca(HCO 3)2 in the slurry, and these carbonation products were dictated by four parameters of the pre-carbonation method: the duration and temperature of the carbonation, the concentration of the calcium source slurry, and the stirring method of the calcium source slurry during the carbonation. The mechanical properties and durability of the mortar/concrete made with the carbonated slurry were significantly improved, which can be attributed to major mechanisms induced by the pre-carbonation method: promoted hydration of the cement and denser microstructure of the mortar/concrete. Calorimetry testing showed that the hydration of OPC was greatly improved by the pre-carbonation because of the extra heterogenous nucleation sites provided by the CaCO3 nanoparticles. XRD and TGA results revealed that more ettringite was produced in the mortar/concrete with pre-carbonated slaked lime slurry. The overall volume of the hydration products of the cement was increased by the pre-carbonation, leading to denser microstructure of the mortar/concrete. It has been found

  5. Bacterially induced mineralization of calcium carbonate: the role of exopolysaccharides and capsular polysaccharides.

    PubMed

    Ercole, Claudia; Cacchio, Paola; Botta, Anna Lucia; Centi, Valeria; Lepidi, Aldo

    2007-02-01

    Bacterially induced carbonate mineralization has been proposed as a new method for the restoration of limestones in historic buildings and monuments. We describe here the formation of calcite crystals by extracellular polymeric substances isolated from Bacillus firmus and Bacillus sphaericus. We isolated bacterial outer structures (glycocalix and parietal polymers), such as exopolysaccharides (EPS) and capsular polysaccharides (CPS) and checked for their influence on calcite precipitation. CPS and EPS extracted from both B. firmus and B. sphaericus were able to mediate CaCO3 precipitation in vitro. X-ray microanalysis showed that in all cases the formed crystals were calcite. Scanning electron microscopy showed that the shape of the crystals depended on the fractions utilized. These results suggest the possibility that biochemical composition of CPS or EPS influences the resulting morphology of CaCO3. There were no precipitates in the blank samples. CPS and EPS comprised of proteins and glycoproteins. Positive alcian blue staining also reveals acidic polysaccharides in CPS and EPS fractions. Proteins with molecular masses of 25-40 kDa and 70 kDa in the CPS fraction were highly expressed in the presence of calcium oxalate. This high level of synthesis could be related to the binding of calcium ions and carbonate deposition.

  6. The review of recent carbonate minerals processing technology

    NASA Astrophysics Data System (ADS)

    Solihin

    2018-02-01

    Carbonate is one of the groups of minerals that can be found in relatively large amount in the earth crust. The common carbonate minerals are calcium carbonate (calcite, aragonite, depending on its crystal structure), magnesium carbonate (magnesite), calcium-magnesium carbonate (dolomite), and barium carbonate (barite). A large amount of calcite can be found in many places in Indonesia such as Padalarang, Sukabumi, and Tasikmalaya (West Java Provence). Dolomite can be found in a large amount in Gresik, Lamongan, and Tuban (East Java Provence). Magnesite is quite rare in Indonesia, and up to the recent years it can only be found in Padamarang Island (South East Sulawesi Provence). The carbonate has been being exploited through open pit mining activity. Traditionally, calcite can be ground to produce material for brick production, be carved to produce craft product, or be roasted to produce lime for many applications such as raw materials for cement, flux for metal smelting, etc. Meanwhile, dolomite has traditionally been used as a raw material to make brick for local buildings and to make fertilizer for coconut oil plant. Carbonate minerals actually consist of important elements needed by modern application. Calcium is one of the elements needed in artificial bone formation, slow release fertilizer synthesis, dielectric material production, etc. Magnesium is an important material in automotive industry to produce the alloy for vehicle main parts. It is also used as alloying element in the production of special steel for special purpose. Magnesium oxide can be used to produce slow release fertilizer, catalyst and any other modern applications. The aim of this review article is to present in brief the recent technology in processing carbonate minerals. This review covers both the technology that has been industrially proven and the technology that is still in research and development stage. One of the industrially proven technologies to process carbonate mineral is

  7. Mineralized alginate hydrogels using marine carbonates for bone tissue engineering applications.

    PubMed

    Diaz-Rodriguez, P; Garcia-Triñanes, P; Echezarreta López, M M; Santoveña, A; Landin, M

    2018-09-01

    The search for an ideal bone tissue replacement has led to the development of new composite materials designed to simulate the complex inorganic/organic structure of bone. The present work is focused on the development of mineralized calcium alginate hydrogels by the addition of marine derived calcium carbonate biomineral particles. Following a novel approach, we were able to obtain calcium carbonate particles of high purity and complex micro and nanostructure dependent on the source material. Three different types of alginates were selected to develop inorganic/organic scaffolds in order to correlate alginate composition with scaffold properties and cell behavior. The incorporation of calcium carbonates into alginate networks was able to promote extracellular matrix mineralization and osteoblastic differentiation of mesenchymal stem cells when added at 7 mg/ml. We demonstrated that the selection of the alginate type and calcium carbonate origin is crucial to obtain adequate systems for bone tissue engineering as they modulate the mechanical properties and cell differentiation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. The Skeletal Organic Matrix from Mediterranean Coral Balanophyllia europaea Influences Calcium Carbonate Precipitation

    PubMed Central

    Goffredo, Stefano; Vergni, Patrizia; Reggi, Michela; Caroselli, Erik; Sparla, Francesca; Levy, Oren; Dubinsky, Zvy; Falini, Giuseppe

    2011-01-01

    Scleractinian coral skeletons are made mainly of calcium carbonate in the form of aragonite. The mineral deposition occurs in a biological confined environment, but it is still a theme of discussion to what extent the calcification occurs under biological or environmental control. Hence, the shape, size and organization of skeletal crystals from the cellular level through the colony architecture, were attributed to factors as diverse as mineral supersaturation levels and organic mediation of crystal growth. The skeleton contains an intra-skeletal organic matrix (OM) of which only the water soluble component was chemically and physically characterized. In this work that OM from the skeleton of the Balanophyllia europaea, a solitary scleractinian coral endemic to the Mediterranean Sea, is studied in vitro with the aim of understanding its role in the mineralization of calcium carbonate. Mineralization of calcium carbonate was conducted by overgrowth experiments on coral skeleton and in calcium chloride solutions containing different ratios of water soluble and/or insoluble OM and of magnesium ions. The precipitates were characterized by diffractometric, spectroscopic and microscopic techniques. The results showed that both soluble and insoluble OM components influence calcium carbonate precipitation and that the effect is enhanced by their co-presence. The role of magnesium ions is also affected by the presence of the OM components. Thus, in vitro, OM influences calcium carbonate crystal morphology, aggregation and polymorphism as a function of its composition and of the content of magnesium ions in the precipitation media. This research, although does not resolve the controversy between environmental or biological control on the deposition of calcium carbonate in corals, sheds a light on the role of OM, which appears mediated by the presence of magnesium ions. PMID:21799830

  9. Mineral deposition in bacteria-filled and bacteria-free calcium bodies in the crustacean Hyloniscus riparius (Isopoda: Oniscidea).

    PubMed

    Vittori, Miloš; Rozman, Alenka; Grdadolnik, Jože; Novak, Urban; Štrus, Jasna

    2013-01-01

    Crustacean calcium bodies are epithelial sacs which contain a mineralized matrix. The objectives of this study were to describe the microscopic anatomy of calcium bodies in the terrestrial isopod Hyloniscus riparius and to establish whether they undergo molt-related structural changes. We performed 3D reconstruction of the calcium bodies from paraffin sections and analyzed their structure with light and electron microscopy. In addition, we analyzed the chemical composition of their mineralized matrices with micro-Raman spectroscopy. Two pairs of these organs are present in H. riparius. One pair is filled with bacteria while the other pair is not. In non-molting animals, the bacteria-filled calcium bodies contain apatite crystals and the bacteria-free calcium bodies enclose CaCO3-containing concretions with little organic matrix. During preparation for molt, an additional matrix layer is deposited in both pairs of calcium bodies. In the bacteria-filled calcium bodies it contains a mixture of calcium carbonate and calcium phosphate, whereas only calcium carbonate is present in bacteria-free calcium bodies. After ecdysis, all mineral components in bacteria-free calcium bodies and the additional matrix layer in bacteria-filled calcium bodies are completely resorbed. During calcium resorption, the apical surface of the calcium body epithelium is deeply folded and electron dense granules are present in spaces between epithelial cells. Our results indicate that the presence of bacteria might be linked to calcium phosphate mineralization. Calcium bodies likely provide a source of calcium and potentially phosphate for the mineralization of the new cuticle after molt. Unlike other terrestrial isopods, H. riparius does not form sternal CaCO3 deposits and the bacteria-free calcium bodies might functionally replace them in this species.

  10. Mineral Deposition in Bacteria-Filled and Bacteria-Free Calcium Bodies in the Crustacean Hyloniscus riparius (Isopoda: Oniscidea)

    PubMed Central

    Vittori, Miloš; Rozman, Alenka; Grdadolnik, Jože; Novak, Urban; Štrus, Jasna

    2013-01-01

    Crustacean calcium bodies are epithelial sacs which contain a mineralized matrix. The objectives of this study were to describe the microscopic anatomy of calcium bodies in the terrestrial isopod Hyloniscus riparius and to establish whether they undergo molt-related structural changes. We performed 3D reconstruction of the calcium bodies from paraffin sections and analyzed their structure with light and electron microscopy. In addition, we analyzed the chemical composition of their mineralized matrices with micro-Raman spectroscopy. Two pairs of these organs are present in H. riparius. One pair is filled with bacteria while the other pair is not. In non-molting animals, the bacteria-filled calcium bodies contain apatite crystals and the bacteria-free calcium bodies enclose CaCO3-containing concretions with little organic matrix. During preparation for molt, an additional matrix layer is deposited in both pairs of calcium bodies. In the bacteria-filled calcium bodies it contains a mixture of calcium carbonate and calcium phosphate, whereas only calcium carbonate is present in bacteria-free calcium bodies. After ecdysis, all mineral components in bacteria-free calcium bodies and the additional matrix layer in bacteria-filled calcium bodies are completely resorbed. During calcium resorption, the apical surface of the calcium body epithelium is deeply folded and electron dense granules are present in spaces between epithelial cells. Our results indicate that the presence of bacteria might be linked to calcium phosphate mineralization. Calcium bodies likely provide a source of calcium and potentially phosphate for the mineralization of the new cuticle after molt. Unlike other terrestrial isopods, H. riparius does not form sternal CaCO3 deposits and the bacteria-free calcium bodies might functionally replace them in this species. PMID:23554963

  11. Unexpected link between polyketide synthase and calcium carbonate biomineralization.

    PubMed

    Hojo, Motoki; Omi, Ai; Hamanaka, Gen; Shindo, Kazutoshi; Shimada, Atsuko; Kondo, Mariko; Narita, Takanori; Kiyomoto, Masato; Katsuyama, Yohei; Ohnishi, Yasuo; Irie, Naoki; Takeda, Hiroyuki

    2015-01-01

    Calcium carbonate biominerals participate in diverse physiological functions. Despite intensive studies, little is known about how mineralization is initiated in organisms. We analyzed the medaka spontaneous mutant, ha, defective in otolith (calcareous ear stone) formation. ha lacks a trigger for otolith mineralization, and the causative gene was found to encode polyketide synthase (pks), a multifunctional enzyme mainly found in bacteria, fungi, and plant. Subsequent experiments demonstrate that the products of medaka PKS, most likely polyketides or their derivatives, act as nucleation facilitators in otolith mineralization. The generality of this novel PKS function is supported by the essential role of echinoderm PKS in calcareous skeleton formation together with the presence of PKSs in a much wider range of animals from coral to vertebrates. The present study first links PKS to biomineralization and provides a genetic cue for biogeochemistry of carbon and calcium cycles.

  12. Variations in the patterns of soil organic carbon mineralization and microbial communities in response to exogenous application of rice straw and calcium carbonate.

    PubMed

    Feng, Shuzhen; Huang, Yuan; Ge, Yunhui; Su, Yirong; Xu, Xinwen; Wang, Yongdong; He, Xunyang

    2016-11-15

    The addition of exogenous inorganic carbon (CaCO3) and organic carbon has an important influence on soil organic carbon (SOC) mineralization in karst soil, but the microbial mechanisms underlying the SOC priming effect are poorly understood. We conducted a 100-day incubation experiment involving four treatments of the calcareous soil in southwestern China's karst region: control, (14)C-labeled rice straw addition, (14)C-labeled CaCO3 addition, and a combination of (14)C-labeled rice straw and CaCO3. Changes in soil microbial communities were characterized using denaturing gradient gel electrophoresis with polymerase chain reaction (PCR-DGGE) and real-time quantitative PCR (q-PCR). Both (14)C-rice straw and Ca(14)CO3 addition stimulated SOC mineralization, suggesting that organic and inorganic C affected SOC stability. Addition of straw alone had no significant effect on bacterial diversity; however, when the straw was added in combination with calcium carbonate, it had an inhibitory effect on bacterial and fungal diversity. At the beginning of the experimental period, exogenous additives increased bacterial abundance, although at the end of the 100-day incubation bacterial community abundance had gradually declined. Incubation time, exogenous input, and their interaction significantly affected SOC mineralization (in terms of priming and the cumulative amount of mineralization), microbial biomass carbon (MBC), and microbial community abundance and diversity. Moreover, the key factors influencing SOC mineralization were MBC, bacterial diversity, and soil pH. Overall, these findings support the view that inorganic C is involved in soil C turnover with the participation of soil microbial communities, promoting soil C cycling in the karst region. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Phase transitions in biogenic amorphous calcium carbonate

    NASA Astrophysics Data System (ADS)

    Gong, Yutao

    Geological calcium carbonate exists in both crystalline phases and amorphous phases. Compared with crystalline calcium carbonate, such as calcite, aragonite and vaterite, the amorphous calcium carbonate (ACC) is unstable. Unlike geological calcium carbonate crystals, crystalline sea urchin spicules (99.9 wt % calcium carbonate and 0.1 wt % proteins) do not present facets. To explain this property, crystal formation via amorphous precursors was proposed in theory. And previous research reported experimental evidence of ACC on the surface of forming sea urchin spicules. By using X-ray absorption near-edge structure (XANES) spectroscopy and photoelectron emission microscopy (PEEM), we studied cross-sections of fresh sea urchin spicules at different stages (36h, 48h and 72h after fertilization) and observed the transition sequence of three mineral phases: hydrated ACC → dehydrated ACC → biogenic calcite. In addition, we unexpectedly found hydrated ACC nanoparticles that are surrounded by biogenic calcite. This observation indicates the dehydration from hydrated ACC to dehydrated ACC is inhibited, resulting in stabilization of hydrated ACC nanoparticles. We thought that the dehydration was inhibited by protein matrix components occluded within the biomineral, and we designed an in vitro assay to test the hypothesis. By utilizing XANES-PEEM, we found that SM50, the most abundant occluded matrix protein in sea urchin spicules, has the function to stabilize hydrated ACC in vitro.

  14. Amorphous and crystalline calcium carbonate distribution in the tergite cuticle of moulting Porcellio scaber (Isopoda, Crustacea).

    PubMed

    Neues, Frank; Hild, Sabine; Epple, Matthias; Marti, Othmar; Ziegler, Andreas

    2011-07-01

    The main mineral components of the isopod cuticle consists of crystalline magnesium calcite and amorphous calcium carbonate. During moulting isopods moult first the posterior and then the anterior half of the body. In terrestrial species calcium carbonate is subject to resorption, storage and recycling in order to retain significant fractions of the mineral during the moulting cycle. We used synchrotron X-ray powder diffraction, elemental analysis and Raman spectroscopy to quantify the ACC/calcite ratio, the mineral phase distribution and the composition within the anterior and posterior tergite cuticle during eight different stages of the moulting cycle of Porcellio scaber. The results show that most of the amorphous calcium carbonate (ACC) is resorbed from the cuticle, whereas calcite remains in the old cuticle and is shed during moulting. During premoult resorption of ACC from the posterior cuticle is accompanied by an increase within the anterior tergites, and mineralization of the new posterior cuticle by resorption of mineral from the anterior cuticle. This suggests that one reason for using ACC in cuticle mineralization is to facilitate resorption and recycling of cuticular calcium carbonate. Furthermore we show that ACC precedes the formation of calcite in distal layers of the tergite cuticle. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Mineral carbonation of gaseous carbon dioxide using a clay-hosted cation exchange reaction.

    PubMed

    Kang, Il-Mo; Roh, Ki-Min

    2013-01-01

    The mineral carbonation method is still a challenge in practical application owing to: (1) slow reaction kinetics, (2) high reaction temperature, and (3) continuous mineral consumption. These constraints stem from the mode of supplying alkaline earth metals through mineral acidification and dissolution. Here, we attempt to mineralize gaseous carbon dioxide into calcium carbonate, using a cation exchange reaction of vermiculite (a species of expandable clay minerals). The mineralization is operated by draining NaCI solution through vermiculite powders and continuously dropping into the pool of NaOH solution with CO2 gas injected. The mineralization temperature is regulated here at 293 and 333 K for 15 min. As a result of characterization, using an X-ray powder diffractometer and a scanning electron microscopy, two types of pure CaCO3 polymorphs (vaterite and calcite) are identified as main reaction products. Their abundance and morphology are heavily dependent on the mineralization temperature. Noticeably, spindle-shaped vaterite, which is quite different from a typical vaterite morphology (polycrystalline spherulite), forms predominantly at 333 K (approximately 98 wt%).

  16. Electron Transfer Strategies Regulate Carbonate Mineral and Micropore Formation

    NASA Astrophysics Data System (ADS)

    Zeng, Zhirui; Tice, Michael M.

    2018-01-01

    Some microbial carbonates are robust biosignatures due to their distinct morphologies and compositions. However, whether carbonates induced by microbial iron reduction have such features is unknown. Iron-reducing bacteria use various strategies to transfer electrons to iron oxide minerals (e.g., membrane-bound enzymes, soluble electron shuttles, nanowires, as well as different mechanisms for moving over or attaching to mineral surfaces). This diversity has the potential to create mineral biosignatures through manipulating the microenvironments in which carbonate precipitation occurs. We used Shewanella oneidensis MR-1, Geothrix fermentans, and Geobacter metallireducens GS-15, representing three different strategies, to reduce solid ferric hydroxide in order to evaluate their influence on carbonate and micropore formation (micro-size porosity in mineral rocks). Our results indicate that electron transfer strategies determined the morphology (rhombohedral, spherical, or long-chained) of precipitated calcium-rich siderite by controlling the level of carbonate saturation and the location of carbonate formation. Remarkably, electron transfer strategies also produced distinctive cell-shaped micropores in both carbonate and hydroxide minerals, thus producing suites of features that could potentially serve as biosignatures recording information about the sizes, shapes, and physiologies of iron-reducing organisms.

  17. Calcium isotope evidence for suppression of carbonate dissolution in carbonate-bearing organic-rich sediments

    NASA Astrophysics Data System (ADS)

    Turchyn, Alexandra V.; DePaolo, Donald J.

    2011-11-01

    sites (the actual rates could be significantly slower) because other processes that impact the calcium isotope composition of sedimentary pore fluid have not been included. The results provide direct geochemical evidence for the anecdotal observation that the best-preserved carbonate fossils are often found in clay or organic-rich sedimentary horizons. The results also suggest that the presence of clay minerals has a strong passivating effect on the surfaces of biogenic carbonate minerals, slowing dissolution dramatically even in relation to the already-slow rates typical of carbonate-rich sediments.

  18. Roles of larval sea urchin spicule SM50 domains in organic matrix self-assembly and calcium carbonate mineralization.

    PubMed

    Rao, Ashit; Seto, Jong; Berg, John K; Kreft, Stefan G; Scheffner, Martin; Cölfen, Helmut

    2013-08-01

    The larval spicule matrix protein SM50 is the most abundant occluded matrix protein present in the mineralized larval sea urchin spicule. Recent evidence implicates SM50 in the stabilization of amorphous calcium carbonate (ACC). Here, we investigate the molecular interactions of SM50 and CaCO3 by investigating the function of three major domains of SM50 as small ubiquitin-like modifier (SUMO) fusion proteins - a C-type lectin domain (CTL), a glycine rich region (GRR) and a proline rich region (PRR). Under various mineralization conditions, we find that SUMO-CTL is monomeric and influences CaCO3 mineralization, SUMO-GRR aggregates into large protein superstructures and SUMO-PRR modifies the early CaCO3 mineralization stages as well as growth. The combination of these mineralization and self-assembly properties of the major domains synergistically enable the full-length SM50 to fulfill functions of constructing the organic spicule matrix as well as performing necessary mineralization activities such as Ca(2+) ion recruitment and organization to allow for proper growth and development of the mineralized larval sea urchin spicule. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Solubility and bioavailability of stabilized amorphous calcium carbonate.

    PubMed

    Meiron, Oren E; Bar-David, Elad; Aflalo, Eliahu D; Shechter, Assaf; Stepensky, David; Berman, Amir; Sagi, Amir

    2011-02-01

    Since its role in the prevention of osteoporosis in humans was proven some 30 years ago, calcium bioavailability has been the subject of numerous scientific studies. Recent technology allowing the production of a stable amorphous calcium carbonate (ACC) now enables a bioavailability analysis of this unique form of calcium. This study thus compares the solubility and fractional absorption of ACC, ACC with chitosan (ACC-C), and crystalline calcium carbonate (CCC). Solubility was evaluated by dissolving these preparations in dilute phosphoric acid. The results demonstrated that both ACC and ACC-C are more soluble than CCC. Fractional absorption was evaluated by intrinsically labeling calcium carbonate preparations with (45)Ca, orally administrated to rats using gelatin capsules. Fractional absorption was determined by evaluating the percentage of the administrated radioactive dose per milliliter that was measured in the serum, calcium absorption in the femur, and whole-body retention over a 34-hour period. Calcium serum analysis revealed that calcium absorption from ACC and ACC-C preparations was up to 40% higher than from CCC, whereas retention of ACC and ACC-C was up to 26.5% higher than CCC. Absorbed calcium in the femurs of ACC-administrated rats was 30% higher than in CCC-treated animals, whereas 15% more calcium was absorbed following ACC-C treatment than following CCC treatment. This study demonstrates the enhanced solubility and bioavailability of ACC over CCC. The use of stable ACC as a highly bioavailable dietary source for calcium is proposed based on the findings of this study. Copyright © 2011 American Society for Bone and Mineral Research.

  20. Electron Transfer Strategies Regulate Carbonate Mineral and Micropore Formation.

    PubMed

    Zeng, Zhirui; Tice, Michael M

    2018-01-01

    Some microbial carbonates are robust biosignatures due to their distinct morphologies and compositions. However, whether carbonates induced by microbial iron reduction have such features is unknown. Iron-reducing bacteria use various strategies to transfer electrons to iron oxide minerals (e.g., membrane-bound enzymes, soluble electron shuttles, nanowires, as well as different mechanisms for moving over or attaching to mineral surfaces). This diversity has the potential to create mineral biosignatures through manipulating the microenvironments in which carbonate precipitation occurs. We used Shewanella oneidensis MR-1, Geothrix fermentans, and Geobacter metallireducens GS-15, representing three different strategies, to reduce solid ferric hydroxide in order to evaluate their influence on carbonate and micropore formation (micro-size porosity in mineral rocks). Our results indicate that electron transfer strategies determined the morphology (rhombohedral, spherical, or long-chained) of precipitated calcium-rich siderite by controlling the level of carbonate saturation and the location of carbonate formation. Remarkably, electron transfer strategies also produced distinctive cell-shaped micropores in both carbonate and hydroxide minerals, thus producing suites of features that could potentially serve as biosignatures recording information about the sizes, shapes, and physiologies of iron-reducing organisms. Key Words: Microbial iron reduction-Micropore-Electron transfer strategies-Microbial carbonate. Astrobiology 18, 28-36.

  1. Molecular dynamics study of the solvation of calcium carbonate in water.

    PubMed

    Bruneval, Fabien; Donadio, Davide; Parrinello, Michele

    2007-10-25

    We performed molecular dynamics simulations of diluted solutions of calcium carbonate in water. To this end, we combined and tested previous polarizable models. The carbonate anion forms long-living hydrogen bonds with water and shows an amphiphilic character, in which the water molecules are expelled in a region close to its C(3) symmetry axis. The calcium cation forms a strongly bound ion pair with the carbonate. The first hydration shell around the CaCO(3) pair is found to be very similar to the location of the water molecules surrounding CaCO(3) in ikaite, the hydrated mineral.

  2. Calcium Carbonate Mineralized Nanoparticles as an Intracellular Transporter of Cytochrome c for Cancer Therapy.

    PubMed

    Koo, Ahn Na; Min, Kyung Hyun; Lee, Hong Jae; Jegal, Jun Ho; Lee, Jae Won; Lee, Sang Cheon

    2015-11-01

    A new intracellular delivery system based on an apoptotic protein-loaded calcium carbonate (CaCO3 ) mineralized nanoparticle (MNP) is described. Apoptosis-inducing cytochrome c (Cyt c) loaded CaCO3 MNPs (Cyt c MNPs) were prepared by block copolymer mediated in situ CaCO3 mineralization in the presence of Cyt c. The resulting Cyt c MNPs had a vaterite polymorph of CaCO3 with a mean hydrodynamic diameter of 360.5 nm and exhibited 60% efficiency for Cyt c loading. The Cyt c MNPs were stable at physiological pH (pH 7.4) and effectively prohibited the release of Cyt c, whereas, at intracellular endosomal pH (pH 5.0), Cyt c release was facilitated. The MNPs enable the endosomal escape of Cyt c for effective localization of Cyt c in the cytosols of MCF-7 cells. Flow cytometry showed that the Cyt c MNPs effectively induced apoptosis of MCF-7 cells. These findings indicate that the CaCO3 MNPs can meet the prerequisites for delivery of cell-impermeable therapeutic proteins for cancer therapy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Influence of zinc on the calcium carbonate biomineralization of Halomonas halophila

    PubMed Central

    2012-01-01

    Background The salt tolerance of halophilic bacteria make them promising candidates for technical applications, like isolation of salt tolerant enzymes or remediation of contaminated saline soils and waters. Furthermore, some halophilic bacteria synthesize inorganic solids resulting in organic–inorganic hybrids. This process is known as biomineralization, which is induced and/or controlled by the organism. The adaption of the soft and eco-friendly reaction conditions of this formation process to technical syntheses of inorganic nano materials is desirable. In addition, environmental contaminations can be entrapped in biomineralization products which facilitate the subsequent removal from waste waters. The moderately halophilic bacteria Halomonas halophila mineralize calcium carbonate in the calcite polymorph. The biomineralization process was investigated in the presence of zinc ions as a toxic model contaminant. In particular, the time course of the mineralization process and the influence of zinc on the mineralized inorganic materials have been focused in this study. Results H. halophila can adapt to zinc contaminated medium, maintaining the ability for biomineralization of calcium carbonate. Adapted cultures show only a low influence of zinc on the growth rate. In the time course of cultivation, zinc ions accumulated on the bacterial surface while the medium depleted in the zinc contamination. Intracellular zinc concentrations were below the detection limit, suggesting that zinc was mainly bound extracellular. Zinc ions influence the biomineralization process. In the presence of zinc, the polymorphs monohydrocalcite and vaterite were mineralized, instead of calcite which is synthesized in zinc-free medium. Conclusions We have demonstrated that the bacterial mineralization process can be influenced by zinc ions resulting in the modification of the synthesized calcium carbonate polymorph. In addition, the shape of the mineralized inorganic material is chancing

  4. Coexistence of three calcium carbonate polymorphs in the shell of the Antarctic clam Laternula elliptica

    NASA Astrophysics Data System (ADS)

    Nehrke, Gernot; Poigner, Harald; Wilhelms-Dick, Dorothee; Brey, Thomas; Abele, Doris

    2012-05-01

    We analyzed shell cuts of five individuals of the Antarctic bivalve Laternula elliptica from three locations along the Antarctic Peninsula by means of Confocal Raman Microscopy (CRM) as well as Electron Microprobe (EMP). The shell of L. elliptica has been previously described as being composed of aragonite exclusively. Now, CRM mapping reveals that three polymorphs of calcium carbonate - aragonite, calcite, and vaterite - are present in the chondrophore region of the examined individuals. Annual shell growth layers continue through aragonite and vaterite, suggesting simultaneous mineralization of both polymorphs. Spatially congruent EMP scans showed that the calcium carbonate polymorph affects the distribution of magnesium and strontium within the chondrophore. This is, to our knowledge, the first report of the coexistence of these three calcium carbonate polymorphs within the mineralized structures of a marine calcifying organism. Particularly the presence of vaterite is unexpected, but shows striking similarities to some fish otoliths. The strong effect of the calcium carbonate polymorph on trace element incorporation restrict the suitability of magnesium and strontium based proxies for the chondrophore area of L. elliptica.

  5. Carbonate mineralization via an amorphous calcium carbonate (ACC) pathway: Tuning polymorph selection by Mg, pH, and mixing environment

    NASA Astrophysics Data System (ADS)

    Dove, P. M.; Blue, C.; Mergelsberg, S. T.; Giuffre, A. J.; Han, N.; De Yoreo, J. J.

    2017-12-01

    Mineral formation by nonclassical processes is widespread with many pathways that include aggregation of nanoparticles, oriented attachment of fully formed crystals, and sequential nucleation/transformation of amorphous phases (De Yoreo et al., 2015, Science). Field observations indicate amorphous calcium carbonate (ACC) can be the initial precipitate when local conditions promote high supersaturations for short time periods. Examples include microbial mats, marine porewaters that undergo pulses of increased alkalinity, closed basin lakes, and sabkhas. The crystalline products exhibit diverse morphologies and complex elemental and isotopic signatures. This study quantifies relationships between solution composition and the crystalline polymorphs that transform from ACC (Blue et al., GCA, 2017). Our experimental design synthesized ACC under controlled conditions for a suite of compositions by tuning input pH, Mg/Ca, and total carbonate concentration. ACC products were allowed to transform within output suspensions under stirred or quiescent mixing while characterizing the polymorph and composition of evolving solutions and solids. We find that ACC transforms to crystalline polymorphs with a systematic relationship to solution composition to give a quantitative framework based upon solution aMg2+/aCa2+ and aCO32-/aCa2+. We also measure a polymorph-specific evolution of pH and Mg/Ca during the transformation that indicates the initial polymorph to form. Pathway is further modulated by stirring versus quiescent conditions. The findings reconcile discrepancies among previous studies of ACC to crystalline products and supports claims that monohydrocalcite may be an overlooked, transient phase during formation of some aragonite and calcite deposits. Organic additives and extreme pH are not required to tune composition and polymorph. Insights from this study reiterate the need to revisit long-standing dogmas regarding controls on CaCO3 polymorph selection. Classical models

  6. Calcium isotope fractionation between soft and mineralized tissues as a monitor of calcium use in vertebrates.

    PubMed

    Skulan, J; DePaolo, D J

    1999-11-23

    Calcium from bone and shell is isotopically lighter than calcium of soft tissue from the same organism and isotopically lighter than source (dietary) calcium. When measured as the (44)Ca/(40)Ca isotopic ratio, the total range of variation observed is 5.5 per thousand, and as much as 4 per thousand variation is found in a single organism. The observed intraorganismal calcium isotopic variations and the isotopic differences between tissues and diet indicate that isotopic fractionation occurs mainly as a result of mineralization. Soft tissue calcium becomes heavier or lighter than source calcium during periods when there is net gain or loss of mineral mass, respectively. These results suggest that variations of natural calcium isotope ratios in tissues may be useful for assessing the calcium and mineral balance of organisms without introducing isotopic tracers.

  7. Calcium isotope fractionation between soft and mineralized tissues as a monitor of calcium use in vertebrates

    PubMed Central

    Skulan, Joseph; DePaolo, Donald J.

    1999-01-01

    Calcium from bone and shell is isotopically lighter than calcium of soft tissue from the same organism and isotopically lighter than source (dietary) calcium. When measured as the 44Ca/40Ca isotopic ratio, the total range of variation observed is 5.5‰, and as much as 4‰ variation is found in a single organism. The observed intraorganismal calcium isotopic variations and the isotopic differences between tissues and diet indicate that isotopic fractionation occurs mainly as a result of mineralization. Soft tissue calcium becomes heavier or lighter than source calcium during periods when there is net gain or loss of mineral mass, respectively. These results suggest that variations of natural calcium isotope ratios in tissues may be useful for assessing the calcium and mineral balance of organisms without introducing isotopic tracers. PMID:10570137

  8. 21 CFR 184.1191 - Calcium carbonate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium carbonate. 184.1191 Section 184.1191 Food... GRAS § 184.1191 Calcium carbonate. (a) Calcium carbonate (CaCO3, CAS Reg. No. 471-34-1) is prepared by... of calcium carbonate from calcium hydroxide in the “Carbonation process”; or (3) By precipitation of...

  9. A comparative study of calcium absorption following a single serving administration of calcium carbonate powder versus calcium citrate tablets in healthy premenopausal women

    PubMed Central

    Wang, Haiyuan; Bua, Peter; Capodice, Jillian

    2014-01-01

    Background Calcium is an essential mineral often taken as a daily, long-term nutritional supplement. Data suggests that once-daily dosing is important with regard to long-term compliance of both drugs and nutritional supplements. Objective This study was undertaken to compare the bioavailability of a single serving of two calcium supplements in healthy, premenopausal women. Design A two-period, crossover bioavailability study of a single serving of calcium citrate tablets (two tablets=500 mg calcium) versus a single serving of calcium carbonate powder (one packet of powder=1,000 mg calcium) was performed in healthy women aged between 25 and 45. All subjects were on a calcium-restricted diet 7 days prior to testing and fasted for 12 h before being evaluated at 0, 1, 2, and 4 h after oral administration of the test agents. Blood measurements for total and ionized calcium and parathyroid hormone were performed and adverse events were monitored. Results Twenty-three women were evaluable with a mean age of 33.2±8.71. Results showed that administration of a single serving of a calcium carbonate powder resulted in greater absorption in total and ionized calcium versus a single serving of calcium citrate tablets at 4 h (4.25±0.21 vs. 4.16±0.16, p=0.001). There were minimal side effects and no reported serious adverse events. Conclusions This study shows that a single serving of a calcium carbonate powder is more bioavailable than a single serving of calcium citrate tablets. This may be beneficial for long-term compliance. PMID:24772062

  10. Nanoscale analysis of the morphology and surface stability of calcium carbonate polymorphs

    NASA Astrophysics Data System (ADS)

    Sekkal, W.; Zaoui, A.

    2013-04-01

    Under earth surface conditions, in ocean and natural water, calcium carbonate is ubiquitous, forming anhydrous and hydrous minerals. These hydrous phases are of considerable interest for their role as precursors to stable carbonate minerals. Atomistic simulation techniques have been employed here to perform a comprehensive and quantitative study of the structural and energetic stability of dry and hydrous surfaces of calcium carbonate polymorphs using two recently developed forcefields. Results show that the dry forms are prone to ductility; while hydrous phases are found to be brittle. The (001) surface of monohydrocalcite appears to be the most stable (0.99 J/m2) whereas for the ikaite phase, the (001) surface is the most stable. The corresponding value is 0.2 J/m2, i.e. even lower than the surface energy of the Beautiful computed morphology pictures are obtained with Xiao's model and are very similar to the observed SEM images.

  11. Amorphous calcium carbonate transforms into calcite during sea urchin larval spicule growth

    PubMed Central

    Beniash, E.; Aizenberg, J.; Addadi, L.; Weiner, S.

    1997-01-01

    Sea urchin larvae form an endoskeleton composed of a pair of spicules. For more than a century it has been stated that each spicule comprises a single crystal of the CaCO3 mineral, calcite. We show that an additional mineral phase, amorphous calcium carbonate, is present in the sea urchin larval spicule, and that this inherently unstable mineral transforms into calcite with time. This observation significantly changes our concepts of mineral formation in this well-studied organism.

  12. Calcium Bioavailability from Mineral Waters with Different Mineralization in Comparison to Milk and a Supplement.

    PubMed

    Greupner, Theresa; Schneider, Inga; Hahn, Andreas

    2017-07-01

    The aim of the present study was to compare the bioavailability of calcium from 3 mineral waters with different concentrations of minerals with that of milk and a calcium supplement. A single-center, randomized controlled trial with a crossover design with 21 healthy men and women was conducted at the Institute of Food Science and Human Nutrition, Leibniz University Hannover. The participants consumed the 5 test products providing 300 mg of calcium each on 5 examination days with 1-week wash-out phases in between. Primary outcome variables were the area under the curve of serum calcium levels for 10-hour (AUC 0-10h ) and 24-hour urinary calcium excretion. In all groups, no significant differences in the AUC 0-10h of serum calcium levels as well as in the 24-hour urinary calcium excretion were observed. Likewise, mean changes in serum phosphate and urinary phosphate, as well as serum parathormone, showed no differences between the groups. Given an equivalent bioavailability of calcium in all test products, neither a high concentration of SO 4 2- or of HCO 3 influenced the bioavailability of calcium. Accordingly, the use of mineral water with high concentrations of calcium constitutes a calorie-free calcium source that can improve calcium supply.

  13. Effects of copyrolysis of sludge with calcium carbonate and calcium hydrogen phosphate on chemical stability of carbon and release of toxic elements in the resultant biochars.

    PubMed

    Xu, Xuebin; Hu, Xin; Ding, Zhuhong; Chen, Yijun

    2017-12-01

    The potential release of toxic elements and the stability of carbon in sludge-based biochars are important on their application in soil remediation and wastewater treatment. In this study, municipal sludge was co-pyrolyzed with calcium carbonate (CaCO 3 ) and calcium dihydrogen phosphate [Ca(H 2 PO 4 ) 2 ] under 300 and 600 °C, respectively. The basic physicochemical properties of the resultant biochars were characterized and laboratory chemical oxidation and leaching experiments of toxic elements were conducted to evaluate the chemical stability of carbon in biochars and the potential release of toxic elements from biochars. Results show that the exogenous minerals changed the physico-chemical properties of the resultant biochars greatly. Biochars with exogenous minerals, especially Ca(H 2 PO 4 ) 2 , decreased the release of Zn, Cr, Ni, Cu, Pb, and As and the release ratios were less than 1%. Tessier's sequential extraction analysis revealed that labile toxic elements were transferred to residual fraction in the biochars with high pyrolysis temperature (600 °C) and exogenous minerals. Low risks for biochar-bound Pb, Zn, Cd, As, Cr, and Cu were confirmed according to risk assessment code (RAC) while the potential ecological risk index (PERI) revealed that the exogenous Ca(H 2 PO 4 ) 2 significantly decreased the risks from considerable to moderate level. Moreover, the exogenous minerals significantly increased the chemical stability of carbon in 600 °C-pyrolyzed biochars by 10-20%. These results indicated that the copyrolysis of sludge with phosphate and carbonate, especially phosphate, were effective methods to prepare the sludge-based biochars with immobilized toxic elements and enhanced chemical stability of carbon. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Epitaxial Relationships between Calcium Carbonate and Inorganic Substrates

    PubMed Central

    Yang, Taewook; Jho, Jae Young; Kim, Il Won

    2014-01-01

    The polymorph-selective crystallization of calcium carbonate has been studied in terms of epitaxial relationship between the inorganic substrates and the aragonite/calcite polymorphs with implication in bioinspired mineralization. EpiCalc software was employed to assess the previously published experimental results on two different groups of inorganic substrates: aragonitic carbonate crystals (SrCO3, PbCO3, and BaCO3) and a hexagonal crystal family (α-Al2O3, α-SiO2, and LiNbO3). The maximum size of the overlayer (aragonite or calcite) was calculated for each substrate based on a threshold value of the dimensionless potential to estimate the relative nucleation preference of the polymorphs of calcium carbonate. The results were in good agreement with previous experimental observations, although stereochemical effects between the overlayer and substrate should be separately considered when existed. In assessing the polymorph-selective nucleation, the current method appeared to provide a better tool than the oversimplified mismatch parameters without invoking time-consuming molecular simulation\\. PMID:25226539

  15. Calcium carbonate crystals promote calcium oxalate crystallization by heterogeneous or epitaxial nucleation: possible involvement in the control of urinary lithogenesis.

    PubMed

    Geider, S; Dussol, B; Nitsche, S; Veesler, S; Berthézène, P; Dupuy, P; Astier, J P; Boistelle, R; Berland, Y; Dagorn, J C; Verdier, J M

    1996-07-01

    A large proportion of urinary stones have calcium oxalate (CaOx) as the major mineral phase. In these stones, CaOx is generally associated with minor amounts of other calcium salts. Several reports showing the presence of calcium carbonate (CaCO3) and calcium phosphate in renal stones suggested that crystals of those salts might be present in the early steps of stone formation. Such crystals might therefore promote CaOx crystallization from supersaturated urine by providing an appropriate substrate for heterogeneous nucleation. That possibility was investigated by seeding a metastable solution of 45Ca oxalate with vaterite or calcite crystallites. Accretion of CaOx was monitored by 45Ca incorporation. We showed that (1) seeds of vaterite (the hexagonal polymorph of CaCO3) and calcite (the rhomboedric form) could initiate calcium oxalate crystal growth; (2) in the presence of lithostathine, an inhibitor of CaCO3 crystal growth, such accretion was not observed. In addition, scanning electron microscopy demonstrated that growth occurred by epitaxy onto calcite seeds whereas no special orientation was observed onto vaterite. It was concluded that calcium carbonate crystals promote crystallization of calcium oxalate and that inhibitors controlling calcium carbonate crystal formation in Henle's loop might play an important role in the prevention of calcium oxalate stone formation.

  16. Nanoscale analysis of the morphology and surface stability of calcium carbonate polymorphs

    PubMed Central

    Sekkal, W.; Zaoui, A.

    2013-01-01

    Under earth surface conditions, in ocean and natural water, calcium carbonate is ubiquitous, forming anhydrous and hydrous minerals. These hydrous phases are of considerable interest for their role as precursors to stable carbonate minerals. Atomistic simulation techniques have been employed here to perform a comprehensive and quantitative study of the structural and energetic stability of dry and hydrous surfaces of calcium carbonate polymorphs using two recently developed forcefields. Results show that the dry forms are prone to ductility; while hydrous phases are found to be brittle. The (001) surface of monohydrocalcite appears to be the most stable (0.99 J/m2) whereas for the ikaite phase, the (001) surface is the most stable. The corresponding value is 0.2 J/m2, i.e. even lower than the surface energy of the Beautiful computed morphology pictures are obtained with Xiao's model and are very similar to the observed SEM images. PMID:23545842

  17. Nanoscale analysis of the morphology and surface stability of calcium carbonate polymorphs.

    PubMed

    Sekkal, W; Zaoui, A

    2013-01-01

    Under earth surface conditions, in ocean and natural water, calcium carbonate is ubiquitous, forming anhydrous and hydrous minerals. These hydrous phases are of considerable interest for their role as precursors to stable carbonate minerals. Atomistic simulation techniques have been employed here to perform a comprehensive and quantitative study of the structural and energetic stability of dry and hydrous surfaces of calcium carbonate polymorphs using two recently developed forcefields. Results show that the dry forms are prone to ductility; while hydrous phases are found to be brittle. The (001) surface of monohydrocalcite appears to be the most stable (0.99 J/m(2)) whereas for the ikaite phase, the (001) surface is the most stable. The corresponding value is 0.2 J/m(2), i.e. even lower than the surface energy of the Beautiful computed morphology pictures are obtained with Xiao's model and are very similar to the observed SEM images.

  18. Calcium carbonate nucleation in an alkaline lake surface water, Pyramid Lake, Nevada, USA

    USGS Publications Warehouse

    Reddy, Michael M.; Hoch, Anthony

    2012-01-01

    Calcium concentration and calcite supersaturation (Ω) needed for calcium carbonate nucleation and crystal growth in Pyramid Lake (PL) surface water were determined during August of 1997, 2000, and 2001. PL surface water has Ω values of 10-16. Notwithstanding high Ω, calcium carbonate growth did not occur on aragonite single crystals suspended PL surface water for several months. However, calcium solution addition to PL surface-water samples caused reproducible calcium carbonate mineral nucleation and crystal growth. Mean PL surface-water calcium concentration at nucleation was 2.33 mM (n = 10), a value about nine times higher than the ambient PL surface-water calcium concentration (0.26 mM); mean Ω at nucleation (109 with a standard deviation of 8) is about eight times the PL surface-water Ω. Calcium concentration and Ω regulated the calcium carbonate formation in PL nucleation experiments and surface water. Unfiltered samples nucleated at lower Ω than filtered samples. Calcium concentration and Ω at nucleation for experiments in the presence of added particles were within one standard deviation of the mean for all samples. Calcium carbonate formation rates followed a simple rate expression of the form, rate (mM/min) = A (Ω) + B. The best fit rate equation "Rate (Δ mM/Δ min) = -0.0026 Ω + 0.0175 (r = 0.904, n = 10)" was statistically significant at greater than the 0.01 confidence level and gives, after rearrangement, Ω at zero rate of 6.7. Nucleation in PL surface water and morphology of calcium carbonate particles formed in PL nucleation experiments and in PL surface-water samples suggest crystal growth inhibition by multiple substances present in PL surface water mediates PL calcium carbonate formation, but there is insufficient information to determine the chemical nature of all inhibitors.

  19. Calcium Carbonate Nucleation in an Alkaline Lake Surface Water, Pyramid Lake, Nevada, USA

    USGS Publications Warehouse

    Reddy, M.M.; Hoch, A.

    2012-01-01

    Calcium concentration and calcite supersaturation (??) needed for calcium carbonate nucleation and crystal growth in Pyramid Lake (PL) surface water were determined during August of 1997, 2000, and 2001. PL surface water has ?? values of 10-16. Notwithstanding high ??, calcium carbonate growth did not occur on aragonite single crystals suspended PL surface water for several months. However, calcium solution addition to PL surface-water samples caused reproducible calcium carbonate mineral nucleation and crystal growth. Mean PL surface-water calcium concentration at nucleation was 2.33 mM (n = 10), a value about nine times higher than the ambient PL surface-water calcium concentration (0.26 mM); mean ?? at nucleation (109 with a standard deviation of 8) is about eight times the PL surface-water ??. Calcium concentration and ?? regulated the calcium carbonate formation in PL nucleation experiments and surface water. Unfiltered samples nucleated at lower ?? than filtered samples. Calcium concentration and ?? at nucleation for experiments in the presence of added particles were within one standard deviation of the mean for all samples. Calcium carbonate formation rates followed a simple rate expression of the form, rate (mM/min) = A (??) + B. The best fit rate equation "Rate (?? mM/?? min) = -0.0026 ?? + 0.0175 (r = 0.904, n = 10)" was statistically significant at greater than the 0.01 confidence level and gives, after rearrangement, ?? at zero rate of 6.7. Nucleation in PL surface water and morphology of calcium carbonate particles formed in PL nucleation experiments and in PL surface-water samples suggest crystal growth inhibition by multiple substances present in PL surface water mediates PL calcium carbonate formation, but there is insufficient information to determine the chemical nature of all inhibitors. ?? 2011 U.S. Government.

  20. Calcium Carbonate.

    PubMed

    Al Omari, M M H; Rashid, I S; Qinna, N A; Jaber, A M; Badwan, A A

    2016-01-01

    Calcium carbonate is a chemical compound with the formula CaCO3 formed by three main elements: carbon, oxygen, and calcium. It is a common substance found in rocks in all parts of the world (most notably as limestone), and is the main component of shells of marine organisms, snails, coal balls, pearls, and eggshells. CaCO3 exists in different polymorphs, each with specific stability that depends on a diversity of variables. © 2016 Elsevier Inc. All rights reserved.

  1. Construction of two ureolytic model organisms for the study of microbially induced calcium carbonate precipitation.

    PubMed

    Connolly, James; Kaufman, Megan; Rothman, Adam; Gupta, Rashmi; Redden, George; Schuster, Martin; Colwell, Frederick; Gerlach, Robin

    2013-09-01

    Two bacterial strains, Pseudomonas aeruginosa MJK1 and Escherichia coli MJK2, were constructed that both express green fluorescent protein (GFP) and carry out ureolysis. These two novel model organisms are useful for studying bacterial carbonate mineral precipitation processes and specifically ureolysis-driven microbially induced calcium carbonate precipitation (MICP). The strains were constructed by adding plasmid-borne urease genes (ureABC, ureD and ureFG) to the strains P. aeruginosa AH298 and E. coli AF504gfp, both of which already carried unstable GFP derivatives. The ureolytic activities of the two new strains were compared to the common, non-GFP expressing, model organism Sporosarcina pasteurii in planktonic culture under standard laboratory growth conditions. It was found that the engineered strains exhibited a lower ureolysis rate per cell but were able to grow faster and to a higher population density under the conditions of this study. Both engineered strains were successfully grown as biofilms in capillary flow cell reactors and ureolysis-induced calcium carbonate mineral precipitation was observed microscopically. The undisturbed spatiotemporal distribution of biomass and calcium carbonate minerals were successfully resolved in 3D using confocal laser scanning microscopy. Observations of this nature were not possible previously because no obligate urease producer that expresses GFP had been available. Future observations using these organisms will allow researchers to further improve engineered application of MICP as well as study natural mineralization processes in model systems. © 2013.

  2. [INDICES OF THE OXIDATIVE STATUS IN CHRONIC ADMINISTRATION OF COLLOID CARBONATE CALCIUM PRAPARATION WITH FAUCET AND LOW-MINERALIZED DRINKING WATER IN RATS].

    PubMed

    Khripach, L V; Mikhaylova, R I; Koganova, Z I; Knyazeva, T D; Alekseeva, A V; Savostikova, O N; Ryzhova, I N; Kruglova, E V; Revzova, T L

    2015-01-01

    There are discussed the changes of an array of indices of the oxidative status in chronic administration of colloidal calcium carbonate preparation with faucet and low-mineralized drinking water to rats. Slight differences between significant effects of administration of 3 and 30 mg/L of preparation permit to suggest that the process of its incoming delivery into organism of rats has a bottleneck in the nature of total capacity of macrophages of intestinal lymphoid tissue to absorption of particles.

  3. Increased calcium absorption from synthetic stable amorphous calcium carbonate: double-blind randomized crossover clinical trial in postmenopausal women.

    PubMed

    Vaisman, Nachum; Shaltiel, Galit; Daniely, Michal; Meiron, Oren E; Shechter, Assaf; Abrams, Steven A; Niv, Eva; Shapira, Yami; Sagi, Amir

    2014-10-01

    Calcium supplementation is a widely recognized strategy for achieving adequate calcium intake. We designed this blinded, randomized, crossover interventional trial to compare the bioavailability of a new stable synthetic amorphous calcium carbonate (ACC) with that of crystalline calcium carbonate (CCC) using the dual stable isotope technique. The study was conducted in the Unit of Clinical Nutrition, Tel Aviv Sourasky Medical Center, Israel. The study population included 15 early postmenopausal women aged 54.9 ± 2.8 (mean ± SD) years with no history of major medical illness or metabolic bone disorder, excess calcium intake, or vitamin D deficiency. Standardized breakfast was followed by randomly provided CCC or ACC capsules containing 192 mg elemental calcium labeled with 44Ca at intervals of at least 3 weeks. After swallowing the capsules, intravenous CaCl2 labeled with 42Ca on was administered on each occasion. Fractional calcium absorption (FCA) of ACC and CCC was calculated from the 24-hour urine collection following calcium administration. The results indicated that FCA of ACC was doubled (± 0.96 SD) on average compared to that of CCC (p < 0.02). The higher absorption of the synthetic stable ACC may serve as a more efficacious way of calcium supplementation. © 2014 American Society for Bone and Mineral Research.

  4. Microorganisms in the deposits of cold carbon mineral waters of the Russian Far East and their habitats

    NASA Astrophysics Data System (ADS)

    Kalitina, E. G.; Kharitonova, N. A.; Kuzmina, T. V.; Chelnokov, G. A.

    2018-01-01

    Study of the chemical composition of carbon mineral waters has shown the prevalence of calcium, magnesium and sodium among the cations, sulfate, nitrate and chloride ions among the anions, and ferric iron, strontium and manganese in the microelement composition. Results of the microbiological studies have revealed that carbon mineral waters contain various microorganisms that can transform the physical and chemical composition of mineral waters by interfering with geochemical cycles. The sanitary and microbiological properties of carbon mineral waters have been evaluated thus proving that the waters of Medvezhii (Shmakovskoe deposit) are microbiologically clean.

  5. Calcium carbonate gallstones in children.

    PubMed

    Stringer, Mark D; Soloway, Roger D; Taylor, Donald R; Riyad, Kallingal; Toogood, Giles

    2007-10-01

    In the United States, cholesterol stones account for 70% to 95% of adult gallstones and black pigment stones for most of the remainder. Calcium carbonate stones are exceptionally rare. A previous analysis of a small number of pediatric gallstones from the north of England showed a remarkably high prevalence of calcium carbonate stones. The aims of this study were to analyze a much larger series of pediatric gallstones from our region and to compare their chemical composition with a series of adult gallstones from the same geographic area. A consecutive series of gallbladder stones from 63 children and 50 adults from the north of England were analyzed in detail using Fourier transform infrared microspectroscopy. Demographic and clinical data were collected on all patients. The relative proportions of each major stone component were assessed: cholesterol, protein and calcium salts of bilirubin, fatty acids, calcium carbonate, and hydroxyapatite. Thirty-nine (78%) adults had typical cholesterol stones, 7 (14%) had black pigment bilirubinate stones, and only 2 (4%) had calcium carbonate stones. In contrast, 30 (48%) children had black pigment stones, 13 (21%) had cholesterol stones, 15 (24%) had calcium carbonate stones, 3 (5%) had protein dominant stones, and 2 (3%) had brown pigment stones. In children, cholesterol stones were more likely in overweight adolescent girls with a family history of gallstones, whereas black pigment stones were equally common in boys and girls and associated with hemolysis, parenteral nutrition, and neonatal abdominal surgery. Calcium carbonate stones were more common in boys, and almost half had undergone neonatal abdominal surgery and/or required neonatal intensive care. The composition of pediatric gallstones differs significantly from that found in adults. In particular, one quarter of the children in this series had calcium carbonate stones, previously considered rare. Geographic differences are not the major reason for the high

  6. Calcium carbonates: induced biomineralization with controlled macromorphology

    NASA Astrophysics Data System (ADS)

    Meier, Aileen; Kastner, Anne; Harries, Dennis; Wierzbicka-Wieczorek, Maria; Majzlan, Juraj; Büchel, Georg; Kothe, Erika

    2017-11-01

    Biomineralization of (magnesium) calcite and vaterite by bacterial isolates has been known for quite some time. However, the extracellular precipitation has hardly ever been linked to different morphologies of the minerals that are observed. Here, isolates from limestone-associated groundwater, rock and soil were shown to form calcite, magnesium calcite or vaterite. More than 92 % of isolates were indeed able to form carbonates, while abiotic controls failed to form minerals. The crystal morphologies varied, including rhombohedra, prisms and pyramid-like macromorphologies. Different conditions like varying temperature, pH or media components, but also cocultivation to test for collaborative effects of sympatric bacteria, were used to differentiate between mechanisms of calcium carbonate formation. Single crystallites were cemented with bacterial cells; these may have served as nucleation sites by providing a basic pH at short distance from the cells. A calculation of potential calcite formation of up to 2 g L-1 of solution made it possible to link the microbial activity to geological processes.

  7. Ubiquitylation Functions in the Calcium Carbonate Biomineralization in the Extracellular Matrix

    PubMed Central

    Fang, Dong; Pan, Cong; Lin, Huijuan; Lin, Ya; Xu, Guangrui; Zhang, Guiyou; Wang, Hongzhong; Xie, Liping; Zhang, Rongqing

    2012-01-01

    Mollusks shell formation is mediated by matrix proteins and many of these proteins have been identified and characterized. However, the mechanisms of protein control remain unknown. Here, we report the ubiquitylation of matrix proteins in the prismatic layer of the pearl oyster, Pinctada fucata. The presence of ubiquitylated proteins in the prismatic layer of the shell was detected with a combination of western blot and immunogold assays. The coupled ubiquitins were separated and identified by Edman degradation and liquid chromatography/mass spectrometry (LC/MS). Antibody injection in vivo resulted in large amounts of calcium carbonate randomly accumulating on the surface of the nacreous layer. These ubiquitylated proteins could bind to specific faces of calcite and aragonite, which are the two main mineral components of the shell. In the in vitro calcium carbonate crystallization assay, they could reduce the rate of calcium carbonate precipitation and induce the calcite formation. Furthermore, when the attached ubiquitins were removed, the functions of the EDTA-soluble matrix of the prismatic layer were changed. Their potency to inhibit precipitation of calcium carbonate was decreased and their influence on the morphology of calcium carbonate crystals was changed. Taken together, ubiquitylation is involved in shell formation. Although the ubiquitylation is supposed to be involved in every aspect of biophysical processes, our work connected the biomineralization-related proteins and the ubiquitylation mechanism in the extracellular matrix for the first time. This would promote our understanding of the shell biomineralization and the ubiquitylation processes. PMID:22558208

  8. Elemental calcium intake associated with calcium acetate/calcium carbonate in the treatment of hyperphosphatemia

    PubMed Central

    Wilson, Rosamund J; Copley, J Brian

    2017-01-01

    Background Calcium-based and non-calcium-based phosphate binders have similar efficacy in the treatment of hyperphosphatemia; however, calcium-based binders may be associated with hypercalcemia, vascular calcification, and adynamic bone disease. Scope A post hoc analysis was carried out of data from a 16-week, Phase IV study of patients with end-stage renal disease (ESRD) who switched to lanthanum carbonate monotherapy from baseline calcium acetate/calcium carbonate monotherapy. Of the intent-to-treat population (N=2520), 752 patients with recorded dose data for calcium acetate (n=551)/calcium carbonate (n=201) at baseline and lanthanum carbonate at week 16 were studied. Elemental calcium intake, serum phosphate, corrected serum calcium, and serum intact parathyroid hormone levels were analyzed. Findings Of the 551 patients with calcium acetate dose data, 271 (49.2%) had an elemental calcium intake of at least 1.5 g/day at baseline, and 142 (25.8%) had an intake of at least 2.0 g/day. Mean (95% confidence interval [CI]) serum phosphate levels were 6.1 (5.89, 6.21) mg/dL at baseline and 6.2 (6.04, 6.38) mg/dL at 16 weeks; mean (95% CI) corrected serum calcium levels were 9.3 (9.16, 9.44) mg/dL and 9.2 (9.06, 9.34) mg/dL, respectively. Of the 201 patients with calcium carbonate dose data, 117 (58.2%) had an elemental calcium intake of at least 1.5 g/day, and 76 (37.8%) had an intake of at least 2.0 g/day. Mean (95% CI) serum phosphate levels were 5.8 (5.52, 6.06) mg/dL at baseline and 5.8 (5.53, 6.05) mg/dL at week 16; mean (95% CI) corrected serum calcium levels were 9.7 (9.15, 10.25) mg/dL and 9.2 (9.06, 9.34) mg/dL, respectively. Conclusion Calcium acetate/calcium carbonate phosphate binders, taken to control serum phosphate levels, may result in high levels of elemental calcium intake. This may lead to complications related to calcium balance. PMID:28182142

  9. Calcium carbonate with magnesium overdose

    MedlinePlus

    The combination of calcium carbonate and magnesium is commonly found in antacids. These medicines provide heartburn relief. Calcium carbonate with magnesium overdose occurs when someone takes more than the ...

  10. 21 CFR 582.1191 - Calcium carbonate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium carbonate. 582.1191 Section 582.1191 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1191 Calcium carbonate. (a) Product. Calcium carbonate. (b) Conditions of use. This...

  11. Conversion of calcium sulphide to calcium carbonate during the process of recovery of elemental sulphur from gypsum waste.

    PubMed

    de Beer, M; Maree, J P; Liebenberg, L; Doucet, F J

    2014-11-01

    The production of elemental sulphur and calcium carbonate (CaCO3) from gypsum waste can be achieved by thermally reducing the waste into calcium sulphide (CaS), which is then subjected to a direct aqueous carbonation step for the generation of hydrogen sulphide (H2S) and CaCO3. H2S can subsequently be converted to elemental sulphur via the commercially available chemical catalytic Claus process. This study investigated the carbonation of CaS by examining both the solution chemistry of the process and the properties of the formed carbonated product. CaS was successfully converted into CaCO3; however, the reaction yielded low-grade carbonate products (i.e. <90 mass% as CaCO3) which comprised a mixture of two CaCO3 polymorphs (calcite and vaterite), as well as trace minerals originating from the starting material. These products could replace the Sappi Enstra CaCO3 (69 mass% CaCO3), a by-product from the paper industry which is used in many full-scale AMD neutralisation plants but is becoming insufficient. The insight gained is now also being used to develop and optimize an indirect aqueous CaS carbonation process for the production of high-grade CaCO3 (i.e. >99 mass% as CaCO3) or precipitated calcium carbonate (PCC). Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Calcium content of different compositions of gallstones and pathogenesis of calcium carbonate gallstones.

    PubMed

    Yu, Ji-Kuen; Pan, Huichin; Huang, Shing-Moo; Huang, Nan-Lan; Yao, Chung-Chin; Hsiao, Kuang-Ming; Wu, Chew-Wun

    2013-01-01

    Our aim was to investigate the calcium content of different gallstone compositions and the pathogenic mechanisms of calcium carbonate gallstones. Between August 2001 and July 2007, gallstones from 481 patients, including 68 calcium carbonate gallstones, were analyzed for total calcium content. Gallbladder bile samples from 33 cases and six controls were analyzed for pH, carbonate anion level, free-ionized calcium concentration and saturation index for calcium carbonate. Total calcium content averaged 75.6 %, 11.8 %, and 4.2 % for calcium carbonate, calcium bilirubinate and cholesterol gallstones. In 29.4 % of patients, chronic and/or intermittent cystic duct obstructions were caused by polypoid lesions in the neck region and 70.6 % were caused by stones. A total of 82 % of patients had chronic low-grade inflammation of the gallbladder wall and 18.0 % had acute inflammatory exacerbations. In the bile, we found the mean pH, mean carbonate anion, free-ionized calcium concentrations, and mean saturation index for calcium carbonate to be elevated in comparison to controls. From our study, we found chronic and/or intermittent cystic duct obstructions and low-grade GB wall inflammation lead to GB epithelium hydrogen secretion dysfunction. Increased calcium ion efflux into the GB lumen combined with increased carbonate anion presence increases SI_CaCO(3) from 1 to 22.4. Thus, in an alkaline milieu with pH 7.8, calcium carbonate begins to aggregate and precipitate. Copyright © 2012. Published by Elsevier B.V.

  13. Crystallinity of chitin and carbonate mineral components independently record crustacean biomineralization

    NASA Astrophysics Data System (ADS)

    Mergelsberg, S. T.; Michel, F. M.; Mukhopadhyay, B.; Dove, P. M.

    2016-02-01

    Some of the earliest evidence for crustacean organisms is attributed to the discovery of Peytoia nathorsti, a predatory arthropod from 500 Ma (Cong, P. et al., 2014). These animals presumably began with a soft exoskeleton and evolved to fill diverse ecological niches while adopting a mineralized skeleton that is rarely preserved in its entirety (Klompmaker, A.A. et al., 2015). That is, one or more of the primary skeleton components (calcium carbonate minerals, the polysaccharide chitin, and minor proteins) were subject to decomposition during fossilization and preservation. These missing pieces present a significant obstacle to reconstructing ecosystem variability over long time periods. Our recent study of the exoskeletons from ten Malacostraca species suggests the physical and chemical structure of chitin holds promise as a secondary proxy for reconstructing skeleton reinforcement. Using high-energy X-ray diffraction and a novel Raman spectroscopy technique to enhance resolution, we determined the detailed nanostructures of chitin and the associated calcium carbonate minerals that comprise the cuticles of multiple body parts. Crab cuticles from the order Brachyura (Dungeness and Rock crabs) exhibit elevated crystallinities of the chitin and calcite in the more reinforced structures (such as the claw). In contrast, the cuticle of lobster body parts show a much greater variability of calcium carbonate crystallinity and a very consistent crystallinity of chitin. Calcite and chitin crystallinity exhibit a dependency within a species (body part to body part), but these dependencies can be different between taxa. Insights from this study suggest high resolution structural analyses hold promise for developing new proxies for the paleo-environment and paleo-ecology of specific Malacostraca animals, regardless of how well the specimen is preserved.

  14. Presence and dehydration of ikaite, calcium carbonate hexahydrate, in frozen shrimp shell.

    PubMed

    Mikkelsen, A; Andersen, A B; Engelsen, S B; Hansen, H C; Larsen, O; Skibsted, L H

    1999-03-01

    Ikaite, calcium carbonate hexahydrate, has by means of X-ray diffraction analyses of frozen samples been identified as the mineral component of the white spots formed in the shell of frozen shrimp during storage. When the shrimp thaw and the shell material is dried and kept at room temperature, ikaite rapidly transforms into a mixture of anhydrous calcium carbonate forms. X-ray diffraction analyses and Raman spectra of synthetic ikaite as well as the dehydration product confirm the assignments, and the rate constant for dehydration is approximately 7 x 10(-)(4) s(-)(1) at ambient temperature. Differential scanning calorimetry showed that dehydration of synthetic ikaite is an entropy-driven, athermal process and confirms that a single first-order reaction is rate-determining. Ikaite is found to be stable in aqueous solution at temperatures below 5 degrees C and in the shell of frozen shrimps but decomposes on thawing to form anhydrous calcium carbonates.

  15. The Effect of Prepubertal Calcium Carbonate Supplementation on Skeletal Development in Gambian Boys—A 12-Year Follow-Up Study

    PubMed Central

    Cole, T. J.; Laskey, M. A.; Ceesay, M.; Mendy, M. B.; Sawo, Y.; Prentice, A.

    2014-01-01

    Context: Calcium intake during growth is essential for future bone health but varies widely between individuals and populations. The impact on bone of increasing calcium intake is unknown in a population where low calcium intake, stunting, and delayed puberty are common. Objective: To determine the effect of prepubertal calcium supplementation on mean age at peak velocity for bone growth and mineral accrual. Design and Setting: Prospective follow-up of boys in rural Gambia, West Africa, who had participated in a double-blind, randomized, placebo-controlled trial of calcium supplementation. Participants: Eighty boys, initially aged 8.0–11.9 years, were followed up for 12 years. Interventions: Subjects received 1 year of calcium carbonate supplementation (1000 mg daily, 5 d/wk). Main Outcome Measures: Dual-energy x-ray absorptiometry measurements were carried out for whole body (WB), lumbar spine, and total hip bone mineral content, bone area (BA), and WB lean mass. Super imposition by translation and rotation models was made to assess bone growth. Results: Age at peak velocity was consistently earlier in the calcium group compared to the placebo group, for WB bone mineral content (mean, −6.2 [SE, 3.1]; P = .05), WB BA (mean, −7.0 [SE, 3.2] mo; P = .03), lumbar spine and total hip BA. By young adulthood, supplementation did not change the amount of bone accrued (mineral or size) or the rate of bone growth. Conclusions: Twelve months of prepubertal calcium carbonate supplementation in boys with a low calcium diet advanced the adolescent growth spurt but had no lasting effect on bone mineral or bone size. There is a need for caution when applying international recommendations to different populations. PMID:24762110

  16. Protein-Mediated Precipitation of Calcium Carbonate

    PubMed Central

    Polowczyk, Izabela; Bastrzyk, Anna; Fiedot, Marta

    2016-01-01

    Calcium carbonate is an important component in exoskeletons of many organisms. The synthesis of calcium carbonate was performed by mixing dimethyl carbonate and an aqueous solution of calcium chloride dihydrate. The precipitation product was characterized by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) measurements. In addition, the turbidity of the reaction solution was acquired to monitor the kinetics of the calcium carbonate structure’s growth in the investigated system. In this study, samples of CaCO3 particles obtained with individual proteins, such as ovalbumin, lysozyme, and a mixture of the proteins, were characterized and compared with a control sample, i.e., synthesized without proteins. The obtained data indicated that the addition of ovalbumin to the reaction changed the morphology of crystals from rhombohedral to ‘stack-like’ structures. Lysozyme, however, did not affect the morphology of calcium carbonate, yet the presence of the protein mixture led to the creation of more complex composites in which the calcium carbonate crystals were constructed in protein matrices formed by the ovalbumin-lysozyme interaction. It was also observed that in the protein mixture, ovalbumin has a major influence on the CaCO3 formation through a strong interaction with calcium ions, which leads to the coalescence and creation of a steric barrier reducing particle growth. The authors proposed a mechanism of calcium carbonate grain growth in the presence of both proteins, taking into account the interaction of calcium ions with the protein. PMID:28774065

  17. Induced calcium carbonate precipitation using Bacillus species.

    PubMed

    Seifan, Mostafa; Samani, Ali Khajeh; Berenjian, Aydin

    2016-12-01

    Microbially induced calcium carbonate precipitation is an emerging process for the production of self-healing concrete. This study was aimed to investigate the effects and optimum conditions on calcium carbonate biosynthesis. Bacillus licheniformis, Bacillus sphaericus, yeast extract, urea, calcium chloride and aeration were found to be the most significant factors affecting the biomineralization of calcium carbonate. It was noticed that the morphology of microbial calcium carbonate was mainly affected by the genera of bacteria (cell surface properties), the viscosity of the media and the type of electron acceptors (Ca 2+ ). The maximum calcium carbonate concentration of 33.78 g/L was achieved at the optimum conditions This value is the highest concentration reported in the literature.

  18. Impregnating Coal With Calcium Carbonate

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K.; Voecks, Gerald E.; Gavalas, George R.

    1991-01-01

    Relatively inexpensive process proposed for impregnating coal with calcium carbonate to increase rates of gasification and combustion of coal and to reduce emission of sulfur by trapping sulfur in calcium sulfide. Process involves aqueous-phase reactions between carbon dioxide (contained within pore network of coal) and calcium acetate. Coal impregnated with CO2 by exposing it to CO2 at high pressure.

  19. The effect of brushing with nano calcium carbonate and calcium carbonate toothpaste on the surface roughness of nano-ionomer

    NASA Astrophysics Data System (ADS)

    Anisja, D. H.; Indrani, D. J.; Herda, E.

    2017-08-01

    Nanotechnology developments in dentistry have resulted in the development of nano-ionomer, a new restorative material. The surface roughness of restorative materials can increase bacteria adhesion and lead to poor oral hygiene. Abrasive agents in toothpaste can alter tooth and restorative material surfaces. The aim of this study is to identify the effect of brushing with nano calcium carbonate, and calcium carbonate toothpaste on surface roughness of nano-ionomer. Eighteen nano-ionomer specimens were brushed with Aquabidest (doubledistilled water), nano calcium carbonate and calcium carbonate toothpaste. Brushing lasted 30 minutes, and the roughness value (Ra) was measured after each 10 minute segment using a surface roughness tester. The data was analyzed using repeated ANOVA and one-way ANOVA test. The value of nano-ionomer surface roughness increased significantly (p<0.05) after 20 minutes of brushing with the nano calcium carbonate toothpaste. Brushing with calcium carbonate toothpaste leaves nano-ionomer surfaces more rugged than brushing with nano calcium carbonate toothpaste.

  20. Bioprecipitation of Calcium Carbonate Crystals by Bacteria Isolated from Saline Environments Grown in Culture Media Amended with Seawater and Real Brine

    PubMed Central

    Silva-Castro, G. A.; Uad, I.; Gonzalez-Martinez, A.; Rivadeneyra, A.; Gonzalez-Lopez, J.; Rivadeneyra, M. A.

    2015-01-01

    The precipitation of calcium carbonate and calcium sulphate by isolated bacteria from seawater and real brine obtained in a desalination plant growth in culture media containing seawater and brine as mineral sources has been studied. However, only bioprecipitation was detected when the bacteria were grown in media with added organic matter. Biomineralization process started rapidly, crystal formation taking place in the beginning a few days after inoculation of media; roughly 90% of total cultivated bacteria showed. Six major colonies with carbonate precipitation capacity dominated bacterial community structure cultivated in heterotrophic platable bacteria medium. Taxonomic identification of these six strains through partial 16S rRNA gene sequences showed their affiliation with Gram-positive Bacillus and Virgibacillus genera. These strains were able to form calcium carbonate minerals, which precipitated as calcite and aragonite crystals and showed bacterial fingerprints or bacteria calcification. Also, carbonic anhydrase activity was observed in three of these isolated bacteria. The results of this research suggest that microbiota isolated from sea water and brine is capable of precipitation of carbonate biominerals, which can occur in situ with mediation of organic matter concentrations. Moreover, calcium carbonate precipitation ability of this microbiota could be of importance in bioremediation of CO2 and calcium in certain environments. PMID:26273646

  1. Bioprecipitation of Calcium Carbonate Crystals by Bacteria Isolated from Saline Environments Grown in Culture Media Amended with Seawater and Real Brine.

    PubMed

    Silva-Castro, G A; Uad, I; Gonzalez-Martinez, A; Rivadeneyra, A; Gonzalez-Lopez, J; Rivadeneyra, M A

    2015-01-01

    The precipitation of calcium carbonate and calcium sulphate by isolated bacteria from seawater and real brine obtained in a desalination plant growth in culture media containing seawater and brine as mineral sources has been studied. However, only bioprecipitation was detected when the bacteria were grown in media with added organic matter. Biomineralization process started rapidly, crystal formation taking place in the beginning a few days after inoculation of media; roughly 90% of total cultivated bacteria showed. Six major colonies with carbonate precipitation capacity dominated bacterial community structure cultivated in heterotrophic platable bacteria medium. Taxonomic identification of these six strains through partial 16S rRNA gene sequences showed their affiliation with Gram-positive Bacillus and Virgibacillus genera. These strains were able to form calcium carbonate minerals, which precipitated as calcite and aragonite crystals and showed bacterial fingerprints or bacteria calcification. Also, carbonic anhydrase activity was observed in three of these isolated bacteria. The results of this research suggest that microbiota isolated from sea water and brine is capable of precipitation of carbonate biominerals, which can occur in situ with mediation of organic matter concentrations. Moreover, calcium carbonate precipitation ability of this microbiota could be of importance in bioremediation of CO2 and calcium in certain environments.

  2. Magnesium carbonate-containing phosphate binder prevents connective tissue mineralization in Abcc6(-/-) mice-potential for treatment of pseudoxanthoma elasticum.

    PubMed

    Li, Qiaoli; Larusso, Jennifer; Grand-Pierre, Alix E; Uitto, Jouni

    2009-12-01

    Pseudoxanthoma elasticum (PXE) is a heritable disorder characterized by ectopic mineralization of connective tissues primarily in the skin, eyes, and the cardiovascular system. PXE is caused by mutations in the ABCC6 gene. While PXE is associated with considerable morbidity and mortality, there is currently no effective or specific treatment. In this study, we tested oral phosphate binders for treatment of a mouse model of PXE which we have developed by targeted ablation of the corresponding mouse gene (Abcc6(-/-)). This "knock-out" (KO) mouse model recapitulates features of PXE and demonstrates mineralization of a number of tissues, including the connective tissue capsule surrounding vibrissae in the muzzle skin which serves as an early biomarker of the mineralization process. Treatment of these mice with a magnesium carbonate-enriched diet (magnesium concentration being 5-fold higher than in the control diet) completely prevented mineralization of the vibrissae up to 6 months of age, as demonstrated by computerized morphometric analysis of histopathology as well as by calcium and phosphate chemical assays. The magnesium carbonate-enriched diet also prevented the progression of mineralization when the mice were placed on that experimental diet at 3 months of age and followed up to 6 months of age. Treatment with magnesium carbonate was associated with a slight increase in the serum concentration of magnesium, with no effect on serum calcium and phosphorus levels. In contrast, concentration of calcium in the urine was increased over 10-fold while the concentration of phosphorus was markedly decreased, being essentially undetectable after long-term (> 4 month) treatment. No significant changes were noted in the serum parathyroid hormone levels. Computerized axial tomography scan of bones in mice placed on magnesium carbonate-enriched diet showed no differences in the bone density compared to mice on the control diet, and chemical assays showed a small increase in

  3. Hake fish bone as a calcium source for efficient bone mineralization.

    PubMed

    Flammini, Lisa; Martuzzi, Francesca; Vivo, Valentina; Ghirri, Alessia; Salomi, Enrico; Bignetti, Enrico; Barocelli, Elisabetta

    2016-01-01

    Calcium is recognized as an essential nutritional factor for bone health. An adequate intake is important to achieve or maintain optimal bone mass in particular during growth and old age. The aim of the present study was to evaluate the efficiency of hake fish bone (HBF) as a calcium source for bone mineralization: in vitro on osteosarcoma SaOS-2 cells, cultured in Ca-free osteogenic medium (OM) and in vivo on young growing rats fed a low-calcium diet. Lithotame (L), a Ca supplement derived from Lithothamnium calcareum, was used as control. In vitro experiments showed that HBF supplementation provided bone mineralization similar to standard OM, whereas L supplementation showed lower activity. In vivo low-Ca HBF-added and L-added diet similarly affected bone deposition. Physico-chemical parameters concerning bone mineralization, such as femur breaking force, tibia density and calcium/phosphorus mineral content, had beneficial effects from both Ca supplementations, in the absence of any evident adverse effect. We conclude HBF derived from by-product from the fish industry is a good calcium supplier with comparable efficacy to L.

  4. Aluminum hydroxide, calcium carbonate and calcium acetate in chronic intermittent hemodialysis patients.

    PubMed

    Janssen, M J; van der Kuy, A; ter Wee, P M; van Boven, W P

    1996-02-01

    Prevention of secondary hyperparathyroidism in uremia necessitates correction of hyperphosphatemia and hypocalcemia. In order to avoid aluminum toxicity, calcium containing phosphate binders are used increasingly, instead of aluminium hydroxide. Recent studies have shown that calcium acetate has many characteristics of an ideal phosphate binder. It is, for instance, a more readily soluble salt compared with calcium carbonate. This advantage might, however, disappear if calcium carbonate is taken on an empty stomach, a few minutes before meals. We examined the efficacy of three different phosphate binding agents in a randomized prospective study of 53 patients on regular hemodialysis. Bicarbonate dialyses were performed with a dialysate calcium concentration of 1.75 mmol/l. After a three-week wash-out period, patients received either aluminum hydroxide (control group), calcium acetate, or calcium carbonate as their phosphate binder. Patients were instructed to take the calcium salts a few minutes before meals on an empty stomach, and aluminum hydroxide during meals. Serum calcium, phosphate, intact parathormone, and alkaline phosphatase levels were determined every month. Patient compliance was estimated every month by asking the patients which phosphate binder and what daily dose they had used. Aluminum hydroxide tended to be the most effective phosphate binder. The mean +/- SEM required daily dose of calcium acetate at 12 months was 5.04 +/- 0.60 g, corresponding to 10.1 +/- 1.20 tablets of 500 mg. Co-medication with aluminum hydroxide, however, was needed (1.29 +/- 0.54 g per day, corresponding to 2.6 +/- 1.08 tablets of 500 mg). The required daily calcium carbonate dose appeared to be 2.71 +/- 0.48 g, corresponding to 5.4 +/- 0.95 capsules of 500 mg, with an adjuvant daily aluminum hydroxide dose of 0.69 +/- 0.27 g, corresponding to 1.4 +/- 0.55 tablets of 500 mg (p = 0.0055). Thus, the mean daily doses of elemental calcium were comparable between the calcium

  5. Gravimetric Determination of Calcium as Calcium Carbonate Hydrate.

    ERIC Educational Resources Information Center

    Henrickson, Charles H.; Robinson, Paul R.

    1979-01-01

    The gravimetric determination of calcium as calcium carbonate is described. This experiment is suitable for undergraduate quantitative analysis laboratories. It is less expensive than determination of chloride as silver chloride. (BB)

  6. Perlwapin, an Abalone Nacre Protein with Three Four-Disulfide Core (Whey Acidic Protein) Domains, Inhibits the Growth of Calcium Carbonate Crystals

    PubMed Central

    Treccani, Laura; Mann, Karlheinz; Heinemann, Fabian; Fritz, Monika

    2006-01-01

    We have isolated a new protein from the nacreous layer of the shell of the sea snail Haliotis laevigata (abalone). Amino acid sequence analysis showed the protein to consist of 134 amino acids and to contain three sequence repeats of ∼40 amino acids which were very similar to the well-known whey acidic protein domains of other proteins. The new protein was therefore named perlwapin. In addition to the major sequence, we identified several minor variants. Atomic force microscopy was used to explore the interaction of perlwapin with calcite crystals. Monomolecular layers of calcite crystals dissolve very slowly in deionized water and recrystallize in supersaturated calcium carbonate solution. When perlwapin was dissolved in the supersaturated calcium carbonate solution, growth of the crystal was inhibited immediately. Perlwapin molecules bound tightly to distinct step edges, preventing the crystal layers from growing. Using lower concentrations of perlwapin in a saturated calcium carbonate solution, we could distinguish native, active perlwapin molecules from denaturated ones. These observations showed that perlwapin can act as a growth inhibitor for calcium carbonate crystals in saturated calcium carbonate solution. The function of perlwapin in nacre growth may be to inhibit the growth of certain crystallographic planes in the mineral phase of the polymer/mineral composite nacre. PMID:16861275

  7. Natural mineral bottled waters available on the Polish market as a source of minerals for the consumers. Part 1. Calcium and magnesium.

    PubMed

    Gątarska, Anna; Tońska, Elżbieta; Ciborska, Joanna

    2016-01-01

    Natural mineral waters may be an essential source of calcium, magnesium and other minerals. In bottled waters, minerals occur in an ionized form which is very well digestible. However, the concentration of minerals in underground waters (which constitute the material for the production of bottled waters) varies. In view of the above, the type of water consumed is essential. The aim of the study was to estimate the calcium and magnesium contents in products available on the market and to evaluate calcium and magnesium consumption with natural mineral water by different consumer groups with an assumed volume of the consumed product. These represented forty different brands of natural mineral available waters on Polish market. These waters were produced in Poland or other European countries. Among the studied products, about 30% of the waters were imported from Lithuania, Latvia, Czech Republic, France, Italy and Germany. The content of calcium and magnesium in mineral waters was determined using flame atomic absorption spectrometry in an acetylene-air flame. Further determinations were carried out using atomic absorption spectrometer--ICE 3000 SERIES-THERMO-England, equipped with a GLITE data station, background correction (a deuterium lamp) as well as other cathode lamps. Over half of the analysed natural mineral waters were medium-mineralized. The natural mineral waters available on the market can be characterized by a varied content of calcium and magnesium and a high degree of product mineralization does not guarantee significant amounts of these components. Among the natural mineral waters available on the market, only a few feature the optimum calcium-magnesium proportion (2:1). Considering the mineralization degree of the studied products, it can be stated that the largest percentage of products with significant calcium and magnesium contents can be found in the high-mineralized water group. For some natural mineral waters, the consumption of 1 litre daily may

  8. Non-ureolytic calcium carbonate precipitation by Lysinibacillus sp. YS11 isolated from the rhizosphere of Miscanthus sacchariflorus.

    PubMed

    Lee, Yun Suk; Kim, Hyun Jung; Park, Woojun

    2017-06-01

    Although microbially induced calcium carbonate precipitation (MICP) through ureolysis has been widely studied in environmental engineering fields, urea utilization might cause environmental problems as a result of ammonia and nitrate production. In this study, many non-ureolytic calcium carbonate-precipitating bacteria that induced an alkaline environment were isolated from the rhizosphere of Miscanthus sacchariflorus near an artificial stream and their ability to precipitate calcium carbonate minerals with the absence of urea was investigated. MICP was observed using a phase-contrast microscope and ion-selective electrode. Only Lysinibacillus sp. YS11 showed MICP in aerobic conditions. Energy dispersive X-ray spectrometry and X-ray diffraction confirmed the presence of calcium carbonate. Field emission scanning electron microscopy analysis indicated the formation of morphologically distinct minerals around cells under these conditions. Monitoring of bacterial growth, pH changes, and Ca 2+ concentrations under aerobic, hypoxia, and anaerobic conditions suggested that strain YS11 could induce alkaline conditions up to a pH of 8.9 and utilize 95% of free Ca 2+ only under aerobic conditions. Unusual Ca 2+ binding and its release from cells were observed under hypoxia conditions. Biofilm and extracellular polymeric substances (EPS) formation were enhanced during MICP. Strain YS11 has resistance at high pH and in high salt concentrations, as well as its spore-forming ability, which supports its potential application for self-healing concrete.

  9. Bacillus megaterium mediated mineralization of calcium carbonate as biogenic surface treatment of green building materials.

    PubMed

    Dhami, Navdeep Kaur; Reddy, M Sudhakara; Mukherjee, Abhijit

    2013-12-01

    Microbially induced calcium carbonate precipitation is a biomineralization process that has various applications in remediation and restoration of range of building materials. In the present study, calcifying bacteria, Bacillus megaterium SS3 isolated from calcareous soil was applied as biosealant to enhance the durability of low energy, green building materials (soil-cement blocks). This bacterial isolate produced high amounts of urease, carbonic anhydrase, extra polymeric substances and biofilm. The calcium carbonate polymorphs produced by B. megaterium SS3 were analyzed by scanning electron microscopy, confocal laser scanning microscopy, X-ray diffraction and Fourier transmission infra red spectroscopy. These results suggested that calcite is the most predominant carbonate formed by this bacteria followed by vaterite. Application of B. megaterium SS3 as biogenic surface treatment led to 40 % decrease in water absorption, 31 % decrease in porosity and 18 % increase in compressive strength of low energy building materials. From the present investigation, it is clear that surface treatment of building materials by B. megaterium SS3 is very effective and eco friendly way of biodeposition of coherent carbonates that enhances the durability of building materials.

  10. Magnesium supplementation through seaweed calcium extract rather than synthetic magnesium oxide improves femur bone mineral density and strength in ovariectomized rats.

    PubMed

    Bae, Yun Jung; Bu, So Young; Kim, Jae Young; Yeon, Jee-Young; Sohn, Eun-Wha; Jang, Ki-Hyo; Lee, Jae-Cheol; Kim, Mi-Hyun

    2011-12-01

    Commercially available seaweed calcium extract can supply high amounts of calcium as well as significant amounts of magnesium and other microminerals. The purpose of this study was to investigate the degree to which the high levels of magnesium in seaweed calcium extract affects the calcium balance and the bone status in ovariectomized rats in comparison to rats supplemented with calcium carbonate and magnesium oxide. A total of 40 Sprague-Dawley female rats (7 weeks) were divided into four groups and bred for 12 weeks: sham-operated group (Sham), ovariectomized group (OVX), ovariectomized with inorganic calcium and magnesium supplementation group (OVX-Mg), and ovariectomized with seaweed calcium and magnesium supplementation group (OVX-SCa). All experimental diets contained 0.5% calcium. The magnesium content in the experimental diet was 0.05% of the diet in the Sham and OVX groups and 0.1% of the diet in the OVX-Mg and OVX-SCa groups. In the calcium balance study, the OVX-Mg and OVX-SCa groups were not significantly different in calcium absorption compared to the OVX group. However, the femoral bone mineral density and strength of the OVX-SCa group were higher than those of the OVX-Mg and OVX groups. Seaweed calcium with magnesium supplementation or magnesium supplementation alone did not affect the serum ALP and CTx levels in ovariectomized rats. In summary, consumption of seaweed calcium extract or inorganic calcium carbonate with magnesium oxide demonstrated the same degree of intestinal calcium absorption, but only the consumption of seaweed calcium extract resulted in increased femoral bone mineral density and strength in ovariectomized rats. Our results suggest that seaweed calcium extract is an effective calcium and magnesium source for improving bone health compared to synthetic calcium and magnesium supplementation.

  11. 21 CFR 582.5191 - Calcium carbonate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5191 Calcium carbonate. (a) Product. Calcium carbonate. (b) Conditions of use. This...

  12. 21 CFR 582.5191 - Calcium carbonate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5191 Calcium carbonate. (a) Product. Calcium carbonate. (b) Conditions of use. This...

  13. 21 CFR 582.5191 - Calcium carbonate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5191 Calcium carbonate. (a) Product. Calcium carbonate. (b) Conditions of use. This...

  14. 21 CFR 582.5191 - Calcium carbonate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5191 Calcium carbonate. (a) Product. Calcium carbonate. (b) Conditions of use. This...

  15. 21 CFR 582.1191 - Calcium carbonate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Additives § 582.1191 Calcium carbonate. (a) Product. Calcium carbonate. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding...

  16. 21 CFR 582.5191 - Calcium carbonate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5191 Calcium carbonate. (a) Product. Calcium carbonate. (b) Conditions of use. This...

  17. 21 CFR 582.1191 - Calcium carbonate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Additives § 582.1191 Calcium carbonate. (a) Product. Calcium carbonate. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding...

  18. 21 CFR 582.1191 - Calcium carbonate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Additives § 582.1191 Calcium carbonate. (a) Product. Calcium carbonate. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding...

  19. 21 CFR 582.1191 - Calcium carbonate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Additives § 582.1191 Calcium carbonate. (a) Product. Calcium carbonate. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding...

  20. Variations in Urine Calcium Isotope: Composition Reflect Changes in Bone Mineral Balance in Humans

    NASA Technical Reports Server (NTRS)

    Skulan, Joseph; Anbar, Ariel; Bullen, Thomas; Puzas, J. Edward; Shackelford, Linda; Smith, Scott M.

    2004-01-01

    Changes in bone mineral balance cause rapid and systematic changes in the calcium isotope composition of human urine. Urine from subjects in a 17 week bed rest study was analyzed for calcium isotopic composition. Comparison of isotopic data with measurements of bone mineral density and metabolic markers of bone metabolism indicates the calcium isotope composition of urine reflects changes in bone mineral balance. Urine calcium isotope composition probably is affected by both bone metabolism and renal processes. Calcium isotope. analysis of urine and other tissues may provide information on bone mineral balance that is in important respects better than that available from other techniques, and illustrates the usefulness of applying geochemical techniques to biomedical problems.

  1. Microbially mediated carbon mineralization: Geoengineering a carbon-neutral mine

    NASA Astrophysics Data System (ADS)

    Power, I. M.; McCutcheon, J.; Harrison, A. L.; Wilson, S. A.; Dipple, G. M.; Southam, G.

    2013-12-01

    Ultramafic and mafic mine tailings are a potentially valuable feedstock for carbon mineralization, affording the mining industry an opportunity to completely offset their carbon emissions. Passive carbon mineralization has previously been documented at the abandoned Clinton Creek asbestos mine, and the active Diavik diamond mine and Mount Keith nickel mine, yet the majority of tailings remain unreacted. Examples of microbe-carbonate interactions at each mine suggest that biological pathways could be harnessed to promote carbon mineralization. In suitable environmental conditions, microbes can mediate geochemical processes to accelerate mineral dissolution, increase the supply of carbon dioxide (CO2), and induce carbonate precipitation, all of which may accelerate carbon mineralization. Tailings mineralogy and the availability of a CO2 point source are key considerations in designing tailings storage facilities (TSF) for optimizing carbon mineralization. We evaluate the efficacy of acceleration strategies including bioleaching, biologically induced carbonate precipitation, and heterotrophic oxidation of waste organics, as well as abiotic strategies including enhancing passive carbonation through modifying tailings management practices and use of CO2 point sources (Fig. 1). With the aim of developing carbon-neutral mines, implementation of carbon mineralization strategies into TSF design will be driven by economic incentives and public pressure for environmental sustainability in the mining industry. Figure 1. Schematic illustrating geoengineered scenarios for carbon mineralization of ultramafic mine tailings. Scenarios A and B are based on non-point and point sources of CO2, respectively.

  2. Multi-Functions of Carbonated Calcium Deficient Hydroxyapatite (CDHA)

    NASA Astrophysics Data System (ADS)

    Zhou, Huan

    Natural bone is a complex composite mainly constituted of inorganic minerals and organic collagen molecules. Calcium phosphate (CaP) based materials have been proposed as the predominant bone substitute for bone tissue engineering applications due to their chemical similarity to bone mineral. Amorphous carbonated calcium deficient hydroxyapatite (CDHA) is an important compound among CaP materials because of the amorphous crystallite structure. The presence of extra ions in its lattice structure not only influences cell attachment and proliferation of osteoblasts, but also helps in bone metabolism. Biomimetic coating approach is the most widely used approach to produce CDHA coatings to implant. It is a process using simulated body fluid (SBF) to deposit bone-like CDHA coating to various material surfaces. The CDHA formation mechanism, SBF compositions and reacting conditions of biomimetic coating have already been sufficiently studied and compared in the past 20 years. It is an attempt in this thesis to explore new applications of SBF in biomedical research, focusing on different biomaterial applications: 1) based on the low temperature reaction condition of SBF, bisphosphonate incorporated CDHA coatings were deposited onto Ti6Al4V surface for the treatment of osteoporosis; 2) amorphous calcium phosphate nanospheres with extra elements in the lattice structure were prepared by a novel microwave assisted approach, providing a new potential of CaP materials production; 3) CDHA particles formed in SBF can be used as great fillers with biopolymers for preparing biocomposites for biomedical applications; 4) based on the high activity of CDHA amorphous structure and the stabilization ability of ethanol, yttrium and europium doped calcium phosphates were prepared using CDHA as a sacrificing template. In the end, future work based on these observations in the thesis is addressed, including areas of drug delivery, biocomposite fabrication and preparation of functionalized

  3. Numerically Simulating Carbonate Mineralization of Basalt with Injection of Carbon Dioxide into Deep Saline Formations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Mark D.; McGrail, B. Peter; Schaef, Herbert T.

    2006-07-08

    The principal mechanisms for the geologic sequestration of carbon dioxide in deep saline formations include geological structural trapping, hydrological entrapment of nonwetting fluids, aqueous phase dissolution and ionization, and geochemical sorption and mineralization. In sedimentary saline formations the dominant mechanisms are structural and dissolution trapping, with moderate to weak contributions from hydrological and geochemical trapping; where, hydrological trapping occurs during the imbibition of aqueous solution into pore spaces occupied by gaseous carbon dioxide, and geochemical trapping is controlled by generally slow reaction kinetics. In addition to being globally abundant and vast, deep basaltic lava formations offer mineralization kinetics that makemore » geochemical trapping a dominate mechanism for trapping carbon dioxide in these formations. For several decades the United States Department of Energy has been investigating Columbia River basalt in the Pacific Northwest as part of its environmental programs and options for natural gas storage. Recently this nonpotable and extensively characterized basalt formation is being reconsidered as a potential reservoir for geologic sequestration of carbon dioxide. The reservoir has an estimated storage capacity of 100 giga tonnes of carbon dioxide and comprises layered basalt flows with sublayering that generally alternates between low permeability massive and high permeability breccia. Chemical analysis of the formation shows 10 wt% Fe, primarily in the +2 valence. The mineralization reaction that makes basalt formations attractive for carbon dioxide sequestration is that of calcium, magnesium, and iron silicates reacting with dissolved carbon dioxide, producing carbonate minerals and amorphous quartz. Preliminary estimates of the kinetics of the silicate-to-carbonate reactions have been determined experimentally and this research is continuing to determine effects of temperature, pressure, rock

  4. Amorphous Calcium Carbonate in Biomineralization: Stable and Precursor Phases

    NASA Astrophysics Data System (ADS)

    Weiner, S.

    2003-12-01

    The biological formation of the crystalline polymorphs of calcium carbonate, aragonite and calcite, is widespread. The less stable polymorphs, vaterite and monohydrocalcite are also formed by some organisms. Surprisingly, the highly unstable phase, amorphous calcium carbonate (ACC), is formed by a variety of organisms from different phyla. Most of these are stable at least within the lifetime of the organism. The stable forms all have a stoichiometry of CaCO3.H2O. Despite the fact that they do not diffract X-rays. Studies of their short range order by EXAFS, reveal species specific variations in the number and distances of atoms that surround the calcium ion. Proteins extracted from stable biogenic ACC are able to stabilize the phase in vitro. ACC has also been identified as a transient precursor phase during the formation of the calcitic larval spicule of the sea urchin and the formation of the larval shell of a bivalve. The transient form has little or no water associated with the CaCO3. Preliminary EXAFS data suggest that the short range order of the sea urchin spicule transient ACC resembles calcite. Proteins extracted from these spicules are able to stabilize ACC provided Mg is present in the solution. As the mollusks and the echinoderms are on two different branches of the animal phylogenetic tree, it is conceivable that the strategy of using ACC as a precursor phase at least for larval mineralization may be widespread. It has yet to be shown that it is used by adults of either phylum. The manner in which organisms precipitate, stabilize and destabilize if necessary, this highly metastable phase of calcium carbonate presents many fascinating and enigmatic questions, whose solutions could well contribute to a better understanding of basic processes in biomineralization. For more details and references, see Addadi, L., Raz, S. and Weiner, S. (2003). Taking advantage of disorder: Amorphous calcium carbonate and its roles in biomineralization. Adv. Mat.15, 959-970.

  5. Effects of mineral additives on biochar formation: carbon retention, stability, and properties.

    PubMed

    Li, Feiyue; Cao, Xinde; Zhao, Ling; Wang, Jianfei; Ding, Zhenliang

    2014-10-07

    Biochar is being recognized as a promising tool for long-term carbon sequestration, and biochar with high carbon retention and strong stability is supposed to be explored for that purpose. In this study, three minerals, including kaolin, calcite (CaCO3), and calcium dihydrogen phosphate [Ca(H2PO4)2], were added to rice straw feedstock at the ratio of 20% (w/w) for biochar formation through pyrolysis treatment, aiming to improve carbon retention and stabilization in biochar. Kaolin and CaCO3 had little effect on the carbon retention, whereas Ca(H2PO4)2 increased the carbon retention by up to 29% compared to untreated biochar. Although the carbon loss from the kaolin-modified biochar with hydrogen peroxide oxidation was enhanced, CaCO3 and Ca(H2PO4)2 modification reduced the carbon loss by 18.6 and 58.5%, respectively. Moreover, all three minerals reduced carbon loss of biochar with potassium dichromate oxidation from 0.3 to 38.8%. The microbial mineralization as CO2 emission in all three modified biochars was reduced by 22.2-88.7% under aerobic incubation and 5-61% under anaerobic incubation. Enhanced carbon retention and stability of biochar with mineral treatment might be caused by the enhanced formation of aromatic C, which was evidenced by cross-polarization magic angle spinning (13)C nuclear magnetic resonance spectra and Fourier transform infrared spectroscopy analysis. Our results indicated that the three minerals, especially Ca(H2PO4)2, were effective in increasing carbon retention and strengthening biochar stabilization, which provided a novel idea that people could explore and produce the designated biochar with high carbon sequestration capacity and stability.

  6. [Does carbonate originate from carbonate-calcium crystal component of the human urinary calculus?].

    PubMed

    Yuzawa, Masayuki; Nakano, Kazuhiko; Kumamaru, Takatoshi; Nukui, Akinori; Ikeda, Hitoshi; Suzuki, Kazumi; Kobayashi, Minoru; Sugaya, Yasuhiro; Morita, Tatsuo

    2008-09-01

    It gives important information in selecting the appropriate treatment for urolithiasis to confirm the component of urinary calculus. Presently component analysis of the urinary calculus is generally performed by infrared spectroscopy which is employed by companies providing laboratory testing services in Japan. The infrared spectroscopy determines the molecular components from the absorption spectra in consequence of atomic vibrations. It has the drawback that an accurate crystal structure cannot be analyzed compared with the X-ray diffraction method which analyzes the crystal constituent based on the diffraction of X-rays on crystal lattice. The components of the urinary calculus including carbonate are carbonate apatite and calcium carbonate such as calcite. Although the latter is reported to be very rare component in human urinary calculus, the results by infrared spectroscopy often show that calcium carbonate is included in calculus. The infrared spectroscopy can confirm the existence of carbonate but cannot determine whether carbonate is originated from carbonate apatite or calcium carbonate. Thus, it is not clear whether calcium carbonate is included in human urinary calculus component in Japan. In this study, we examined human urinary calculus including carbonate by use of X-ray structural analysis in order to elucidate the origin of carbonate in human urinary calculus. We examined 17 human calculi which were reported to contain calcium carbonate by infrared spectroscopy performed in the clinical laboratory. Fifteen calculi were obtained from urinary tract, and two were from gall bladder. The stones were analyzed by X-ray powder method after crushed finely. The reports from the clinical laboratory showed that all urinary culculi consisted of calcium carbonate and calcium phosphate, while the gallstones consisted of calcium carbonate. But the components of all urinary calculi were revealed to be carbonate apatite by X-ray diffraction. The components of

  7. Stable prenucleation mineral clusters are liquid-like ionic polymers

    PubMed Central

    Demichelis, Raffaella; Raiteri, Paolo; Gale, Julian D.; Quigley, David; Gebauer, Denis

    2011-01-01

    Calcium carbonate is an abundant substance that can be created in several mineral forms by the reaction of dissolved carbon dioxide in water with calcium ions. Through biomineralization, organisms can harness and control this process to form various functional materials that can act as anything from shells through to lenses. The early stages of calcium carbonate formation have recently attracted attention as stable prenucleation clusters have been observed, contrary to classical models. Here we show, using computer simulations combined with the analysis of experimental data, that these mineral clusters are made of an ionic polymer, composed of alternating calcium and carbonate ions, with a dynamic topology consisting of chains, branches and rings. The existence of a disordered, flexible and strongly hydrated precursor provides a basis for explaining the formation of other liquid-like amorphous states of calcium carbonate, in addition to the non-classical behaviour during growth of amorphous calcium carbonate. PMID:22186886

  8. The effect of pigeon yolk sac fluid on the growth behavior of calcium carbonate crystals.

    PubMed

    Song, Juan; Cheng, Haixia; Shen, Xinyu; Tong, Hua

    2015-03-01

    Previous experiments have proved that thermodynamically unstable calcium carbonate vaterite can exist for long periods in the yolk sac of a pigeon embryo. The aim of this article was to demonstrate the effect of in vitro mineralization of yolk sac fluid on calcium carbonate by direct precipitation. Experiments were conducted using pigeon yolk sac fluid and using lecithin extracted from pigeon yolk sac fluid as a control to investigate the regulating effects of the organic components in the embryo on the formation of the calcium carbonate precipitate. Multiple characterization methods were employed to study the various morphological patterns, sizes, crystal growth, and crystal phase transformations of the calcium carbonate precipitates as regulated by the yolk sac fluid extracted at different stages of incubation. The experimental results demonstrate that as the incubation proceeds towards the later stages, the composition and environmental features of the yolk sac fluid become more favorable for the formation of relatively unstable calcium carbonate phases with high energies of the vaterite state. The experiments conducted with extracted lecithin as the template for crystal growth yielded similar results. A large amount of organic molecules with polar functional groups carried by the yolk sac fluid have strong effects and can both initially induce the crystallization and regulate the aggregation of calcium carbonate. Furthermore, this regulation process is found to be closely related to the lecithin contained in yolk sac fluid. These observations confirm the changes in yolk sac fluid composition during incubation have significant effects on the production of vaterite, which implicates the calcium transport during embryo growth. © 2015 Poultry Science Association Inc.

  9. Image-based Modeling of Biofilm-induced Calcium Carbonate Precipitation

    NASA Astrophysics Data System (ADS)

    Connolly, J. M.; Rothman, A.; Jackson, B.; Klapper, I.; Cunningham, A. B.; Gerlach, R.

    2013-12-01

    Pore scale biological processes in the subsurface environment are important to understand in relation to many engineering applications including environmental contaminant remediation, geologic carbon sequestration, and petroleum production. Specifically, biofilm induced calcium carbonate precipitation has been identified as an attractive option to reduce permeability in a lasting way in the subsurface. This technology may be able to replace typical cement-based grouting in some circumstances; however, pore-scale processes must be better understood for it to be applied in a controlled manor. The work presented will focus on efforts to observe biofilm growth and ureolysis-induced mineral precipitation in micro-fabricated flow cells combined with finite element modelling as a tool to predict local chemical gradients of interest (see figure). We have been able to observe this phenomenon over time using a novel model organism that is able to hydrolyse urea and express a fluorescent protein allowing for non-invasive observation over time with confocal microscopy. The results of this study show the likely existence of a wide range of local saturation indices even in a small (1 cm length scale) experimental system. Interestingly, the locations of high predicted index do not correspond to the locations of higher precipitation density, highlighting the need for further understanding. Figure 1 - A micro-fabricated flow cell containing biofilm-induced calcium carbonate precipitation. (A) Experimental results: Active biofilm is in green and dark circles are calcium carbonate crystals. Note the channeling behavior in the top of the image, leaving a large hydraulically inactive area in the biofilm mass. (B) Finite element model: The prediction of relative saturation of calcium carbonate (as calcite). Fluid enters the system at a low saturation state (blue) but areas of high supersaturation (red) are predicted within the hydraulically inactive area in the biofilm. If only effluent

  10. Geophysical monitoring and reactive transport modeling of ureolytically-driven calcium carbonate precipitation

    PubMed Central

    2011-01-01

    Ureolytically-driven calcium carbonate precipitation is the basis for a promising in-situ remediation method for sequestration of divalent radionuclide and trace metal ions. It has also been proposed for use in geotechnical engineering for soil strengthening applications. Monitoring the occurrence, spatial distribution, and temporal evolution of calcium carbonate precipitation in the subsurface is critical for evaluating the performance of this technology and for developing the predictive models needed for engineering application. In this study, we conducted laboratory column experiments using natural sediment and groundwater to evaluate the utility of geophysical (complex resistivity and seismic) sensing methods, dynamic synchrotron x-ray computed tomography (micro-CT), and reactive transport modeling for tracking ureolytically-driven calcium carbonate precipitation processes under site relevant conditions. Reactive transport modeling with TOUGHREACT successfully simulated the changes of the major chemical components during urea hydrolysis. Even at the relatively low level of urea hydrolysis observed in the experiments, the simulations predicted an enhanced calcium carbonate precipitation rate that was 3-4 times greater than the baseline level. Reactive transport modeling results, geophysical monitoring data and micro-CT imaging correlated well with reaction processes validated by geochemical data. In particular, increases in ionic strength of the pore fluid during urea hydrolysis predicted by geochemical modeling were successfully captured by electrical conductivity measurements and confirmed by geochemical data. The low level of urea hydrolysis and calcium carbonate precipitation suggested by the model and geochemical data was corroborated by minor changes in seismic P-wave velocity measurements and micro-CT imaging; the latter provided direct evidence of sparsely distributed calcium carbonate precipitation. Ion exchange processes promoted through NH4

  11. Microbially mediated mineral carbonation

    NASA Astrophysics Data System (ADS)

    Power, I. M.; Wilson, S. A.; Dipple, G. M.; Southam, G.

    2010-12-01

    Mineral carbonation involves silicate dissolution and carbonate precipitation, which are both natural processes that microorganisms are able to mediate in near surface environments (Ferris et al., 1994; Eq. 1). (Ca,Mg)SiO3 + 2H2CO3 + H2O → (Ca,Mg)CO3 + H2O + H4SiO4 + O2 (1) Cyanobacteria are photoautotrophs with cell surface characteristics and metabolic processes involving inorganic carbon that can induce carbonate precipitation. This occurs partly by concentrating cations within their net-negative cell envelope and through the alkalinization of their microenvironment (Thompson & Ferris, 1990). Regions with mafic and ultramafic bedrock, such as near Atlin, British Columbia, Canada, represent the best potential sources of feedstocks for mineral carbonation. The hydromagnesite playas near Atlin are a natural biogeochemical model for the carbonation of magnesium silicate minerals (Power et al., 2009). Field-based studies at Atlin and corroborating laboratory experiments demonstrate the ability of a microbial consortium dominated by filamentous cyanobacteria to induce the precipitation of carbonate minerals. Phototrophic microbes, such as cyanobacteria, have been proposed as a means for producing biodiesel and other value added products because of their efficiency as solar collectors and low requirement for valuable, cultivable land in comparison to crops (Dismukes et al., 2008). Carbonate precipitation and biomass production could be facilitated using specifically designed ponds to collect waters rich in dissolved cations (e.g., Mg2+ and Ca2+), which would allow for evapoconcentration and provide an appropriate environment for growth of cyanobacteria. Microbially mediated carbonate precipitation does not require large quantities of energy or chemicals needed for industrial systems that have been proposed for rapid carbon capture and storage via mineral carbonation (e.g., Lackner et al., 1995). Therefore, this biogeochemical approach may represent a readily

  12. Enamel-like apatite crown covering amorphous mineral in a crayfish mandible

    PubMed Central

    Bentov, Shmuel; Zaslansky, Paul; Al-Sawalmih, Ali; Masic, Admir; Fratzl, Peter; Sagi, Amir; Berman, Amir; Aichmayer, Barbara

    2012-01-01

    Carbonated hydroxyapatite is the mineral found in vertebrate bones and teeth, whereas invertebrates utilize calcium carbonate in their mineralized organs. In particular, stable amorphous calcium carbonate is found in many crustaceans. Here we report on an unusual, crystalline enamel-like apatite layer found in the mandibles of the arthropod Cherax quadricarinatus (freshwater crayfish). Despite their very different thermodynamic stabilities, amorphous calcium carbonate, amorphous calcium phosphate, calcite and fluorapatite coexist in well-defined functional layers in close proximity within the mandible. The softer amorphous minerals are found primarily in the bulk of the mandible whereas apatite, the harder and less soluble mineral, forms a wear-resistant, enamel-like coating of the molar tooth. Our findings suggest a unique case of convergent evolution, where similar functional challenges of mastication led to independent developments of structurally and mechanically similar, apatite-based layers in the teeth of genetically remote phyla: vertebrates and crustaceans. PMID:22588301

  13. Risk factors for calcium carbonate urolithiasis in goats.

    PubMed

    Nwaokorie, Eugene E; Osborne, Carl A; Lulich, Jody P; Fletcher, Thomas F; Ulrich, Lisa K; Koehler, Lori A; Buettner, Michelle T

    2015-08-01

    To identify demographic or signalment factors associated with calcium carbonate urolith formation in goats. Retrospective case series and case-control study. 354 goats with calcium carbonate uroliths (case animals) and 16,366 goats without urinary tract disease (control animals). Medical records of the Minnesota Urolith Center were reviewed to identify case goats for which samples were submitted between January 1, 1984, and December 31, 2012. Control goats evaluated at US veterinary teaching hospitals in the same time period were identified by searching Veterinary Medical Database records. Age, breed, sex, reproductive status, geographic location, season, and anatomic location of collected uroliths were analyzed to identify risk or protective factors associated with calcium carbonate urolithiasis. Nigerian dwarf goats had higher odds of developing calcium carbonate uroliths than did Pygmy goats (reference group). Several breeds had lower odds of this finding, compared with Pygmy goats; odds were lowest for mixed, Anglo-Nubian, and Toggenburg breeds. Breeds of African origin (Pygmy, Nigerian Dwarf, and Boer) comprised 146 of 275 (53%) case goats with data available. Goats of African descent had a higher risk of developing calcium carbonate uroliths than did goats of non-African descent (reference group). Males and neutered goats had higher odds of calcium carbonate urolithiasis, compared with females and sexually intact goats, respectively. Age category, geographic location, and season were associated with detection of calcium carbonate uroliths. Goats with calcium carbonate uroliths were typically neutered males, > 1 year of age, and of African descent. This study identified factors associated with calcium carbonate urolithiasis in goats; however, these associations do not allow conclusions regarding cause-and-effect relationships.

  14. Carbon Mineralization by Aqueous Precipitation for Beneficial Use of CO 2 from Flue Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devenney, Martin; Gilliam, Ryan; Seeker, Randy

    The objective of this project was to demonstrate an innovative process to mineralize CO 2 from flue gas directly to reactive carbonates and maximize the value and versatility of its beneficial use products. The program scope includes the design, construction, and testing of a CO 2 Conversion to Material Products (CCMP) Pilot Demonstration Plant utilizing CO 2 from the flue gas of a power production facility in Moss Landing, CA as well as flue gas from coal combustion. This final report details all development, analysis, design and testing of the project. Also included in the final report are an updatedmore » Techno-Economic Analysis and CO 2 Lifecycle Analysis. The subsystems included in the pilot demonstration plant are the mineralization subsystem, the Alkalinity Based on Low Energy (ABLE) subsystem, the waste calcium oxide processing subsystem, and the fiber cement board production subsystem. The fully integrated plant was proven to be capable of capturing CO 2 from various sources (gas and coal) and mineralizing it into a reactive calcium carbonate binder and subsequently producing commercial size (4ftx8ft) fiber cement boards. The final report provides a description of the “as built” design of these subsystems and the results of the commissioning activities that have taken place to confirm operability. The report also discusses the results of the fully integrated operation of the facility. Fiber cement boards have been produced in this facility exclusively using reactive calcium carbonate from captured CO 2 from flue gas. These boards meet all US and China appropriate acceptance standards. Use demonstrations for these boards are now underway.« less

  15. Two-way Valorization of Blast Furnace Slag: Synthesis of Precipitated Calcium Carbonate and Zeolitic Heavy Metal Adsorbent.

    PubMed

    Georgakopoulos, Evangelos; Santos, Rafael M; Chiang, Yi Wai; Manovic, Vasilije

    2017-02-21

    The aim of this work is to present a zero-waste process for storing CO2 in a stable and benign mineral form while producing zeolitic minerals with sufficient heavy metal adsorption capacity. To this end, blast furnace slag, a residue from iron-making, is utilized as the starting material. Calcium is selectively extracted from the slag by leaching with acetic acid (2 M CH3COOH) as the extraction agent. The filtered leachate is subsequently physico-chemically purified and then carbonated to form precipitated calcium carbonate (PCC) of high purity (<2 wt% non-calcium impurities, according to ICP-MS analysis). Sodium hydroxide is added to neutralize the regenerated acetate. The morphological properties of the resulting calcitic PCC are tuned for its potential application as a filler in papermaking. In parallel, the residual solids from the extraction stage are subjected to hydrothermal conversion in a caustic solution (2 M NaOH) that leads to the predominant formation of a particular zeolitic mineral phase (detected by XRD), namely analcime (NaAlSi2O6∙H2O). Based on its ability to adsorb Ni 2+ , as reported from batch adsorption experiments and ICP-OES analysis, this product can potentially be used in wastewater treatment or for environmental remediation applications.

  16. Two-way Valorization of Blast Furnace Slag: Synthesis of Precipitated Calcium Carbonate and Zeolitic Heavy Metal Adsorbent

    PubMed Central

    Georgakopoulos, Evangelos; Santos, Rafael M.; Chiang, Yi Wai; Manovic, Vasilije

    2017-01-01

    The aim of this work is to present a zero-waste process for storing CO2 in a stable and benign mineral form while producing zeolitic minerals with sufficient heavy metal adsorption capacity. To this end, blast furnace slag, a residue from iron-making, is utilized as the starting material. Calcium is selectively extracted from the slag by leaching with acetic acid (2 M CH3COOH) as the extraction agent. The filtered leachate is subsequently physico-chemically purified and then carbonated to form precipitated calcium carbonate (PCC) of high purity (<2 wt% non-calcium impurities, according to ICP-MS analysis). Sodium hydroxide is added to neutralize the regenerated acetate. The morphological properties of the resulting calcitic PCC are tuned for its potential application as a filler in papermaking. In parallel, the residual solids from the extraction stage are subjected to hydrothermal conversion in a caustic solution (2 M NaOH) that leads to the predominant formation of a particular zeolitic mineral phase (detected by XRD), namely analcime (NaAlSi2O6∙H2O). Based on its ability to adsorb Ni2+, as reported from batch adsorption experiments and ICP-OES analysis, this product can potentially be used in wastewater treatment or for environmental remediation applications. PMID:28287605

  17. 21 CFR 73.1070 - Calcium carbonate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Calcium carbonate. 73.1070 Section 73.1070 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF... mixtures for coloring drugs. (b) Specifications. Calcium carbonate shall meet the specifications for...

  18. 21 CFR 73.1070 - Calcium carbonate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Calcium carbonate. 73.1070 Section 73.1070 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF... mixtures for coloring drugs. (b) Specifications. Calcium carbonate shall meet the specifications for...

  19. Sorption of Groundwater Dissolved Organic Carbon onto Minerals

    NASA Astrophysics Data System (ADS)

    Rutlidge, H.; Oudone, P.; McDonough, L.; Meredith, K.; Andersen, M. S.; O'Carrol, D. M.; Baker, A.

    2017-12-01

    Our understanding of groundwater organic matter (OM) as a carbon source or sink in the environmental carbon cycle is limited. The dynamics of groundwater OM is mainly governed by biological processing and its sorption to minerals. In saturated groundwaters, dissolved OM (DOM) represents one part of the groundwater organic carbon pool. Without consideration of the DOM sorption, it is not possible to quantify governing groundwater OM processes. This research explores the rate and extent of DOM sorption on different minerals. Groundwater DOM samples, and International Humic Substances Society (IHSS) standard solutions, were analysed. Each was mixed with a range of masses of iron coated quartz, clean quartz, and calcium carbonate, and shaken for 2 hours to reach equilibrium before being filtered through 0.2 μm for total dissolved organic carbon (DOC) and composition analysis by size-exclusion chromatography-organic carbon detection (LC-OCD). Sorption isotherms were constructed and groundwater DOM sorption were compared to the sorption of IHSS standards. Initial results suggest that for the IHSS standards, the operationally-defined humic substances fraction had the strongest sorption compared to the other LC-OCD fractions and total DOC. Some samples exhibited a small increase in the low molecular weight neutral (LMW-N) aqueous concentration with increasing humic substances sorption. This gradual increase observed could be the result of humic substances desorbing or their breakdown during the experiment. Further results comparing these IHSS standards with groundwater samples will be presented. In conjunction with complementary studies, these results can help provide more accurate prediction of whether groundwater OM is a carbon source or sink, which will enable the management of the groundwater resources as part of the carbon economy.

  20. 21 CFR 73.1070 - Calcium carbonate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Calcium carbonate. 73.1070 Section 73.1070 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1070 Calcium carbonate. (a) Identity. (1) The color...

  1. 21 CFR 73.1070 - Calcium carbonate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Calcium carbonate. 73.1070 Section 73.1070 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1070 Calcium carbonate. (a) Identity. (1) The color...

  2. 21 CFR 73.1070 - Calcium carbonate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Calcium carbonate. 73.1070 Section 73.1070 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1070 Calcium carbonate. (a) Identity. (1) The color...

  3. Evidence for the involvement of carbonic anhydrase and urease in calcium carbonate formation in the gravity-sensing organ of Aplysia californica

    NASA Technical Reports Server (NTRS)

    Pedrozo, H. A.; Schwartz, Z.; Dean, D. D.; Harrison, J. L.; Campbell, J. W.; Wiederhold, M. L.; Boyan, B. D.

    1997-01-01

    To better understand the mechanisms that could modulate the formation of otoconia, calcium carbonate granules in the inner ear of vertebrate species, we examined statoconia formation in the gravity-sensing organ, the statocyst, of the gastropod mollusk Aplysia californica using an in vitro organ culture model. We determined the type of calcium carbonate present in the statoconia and investigated the role of carbonic anhydrase (CA) and urease in regulating statocyst pH as well as the role of protein synthesis and urease in statoconia production and homeostasis in vitro. The type of mineral present in statoconia was found to be aragonitic calcium carbonate. When the CA inhibitor, acetazolamide (AZ), was added to cultures of statocysts, the pH initially (30 min) increased and then decreased. The urease inhibitor, acetohydroxamic acid (AHA), decreased statocyst pH. Simultaneous addition of AZ and AHA caused a decrease in pH. Inhibition of urease activity also reduced total statoconia number, but had no effect on statoconia volume. Inhibition of protein synthesis reduced statoconia production and increased statoconia volume. In a previous study, inhibition of CA was shown to decrease statoconia production. Taken together, these data show that urease and CA play a role in regulating statocyst pH and the formation and maintenance of statoconia. CA produces carbonate ion for calcium carbonate formation and urease neutralizes the acid formed due to CA action, by production of ammonia.

  4. Oral calcium carbonate affects calcium but not phosphorus balance in stage 3–4 chronic kidney disease

    PubMed Central

    Hill, Kathleen M.; Martin, Berdine R.; Wastney, Meryl; McCabe, George P.; Moe, Sharon M.; Weaver, Connie M.; Peacock, Munro

    2014-01-01

    Chronic kidney disease (CKD) patients are given calcium carbonate to bind dietary phosphorus and reduce phosphorus retention, and to prevent negative calcium balance. Data are limited on calcium and phosphorus balance in CKD to support this. The aim of this study was to determine calcium and phosphorus balance and calcium kinetics with and without calcium carbonate in CKD patients. Eight stage 3/4 CKD patients, eGFR 36 mL/min, participated in two 3-week balances in a randomized placebo-controlled cross-over study of calcium carbonate (1500 mg/d calcium). Calcium and phosphorus balance were determined on a controlled diet. Oral and intravenous 45calcium with blood sampling and urine and fecal collections were used for calcium kinetics. Fasting blood and urine were collected at baseline and end of each week of each balance period for biochemical analyses. Results showed that patients were in neutral calcium and phosphorus balance while on placebo. Calcium carbonate produced positive calcium balance, did not affect phosphorus balance, and produced only a modest reduction in urine phosphorus excretion compared with placebo. Calcium kinetics demonstrated positive net bone balance but less than overall calcium balance suggesting tissue deposition. Fasting biochemistries of calcium and phosphate homeostasis were unaffected by calcium carbonate. If they can be extrapolated to effects of chronic therapy, these data caution against the use of calcium carbonate as a phosphate binder. PMID:23254903

  5. Precipitation Rate Investigation on synthesis of precipitated calcium carbonate

    NASA Astrophysics Data System (ADS)

    Sulistiyono, E.; Handayani, M.; Firdiyono, F.; Fajariani, E. N.

    2018-03-01

    Study on the formation of precipitated calcium carbonate from natural limestone Sukabumi with the influenced of various parameters such as precipitation rate, concentration of CaCl2 and amplitudes were investigated. We also investigated the result with the precipitated calcium carbonate from Merck (p.a) for comparison. The higher concentration of CaCl2 would give effect to the lower of the precipitation rate. It was observed that precipitation rate of calcium carbonate from limestone Sukabumi at concentration of 0.08 molar was 3.66 cm/minutes and showing the optimum condition, while the precipitation rate of calcium carbonate Merck at the concentration 0.08 molar was 3.53 cm/minutes. The characterization of precipitated calcium carbonate was done using X-ray fluorescence (XRF) and scanning electron microscope (SEM). The characterization using XRF showed that CaO content of precipitated calcium carbonate from natural limestone Sukabumi had high purity of 99.16%. The particle distribution using scanning electron microscope (SEM) showed that precipitated calcium carbonate from natural limestone Sukabumi revealed 1.79 µm – 11.46 µm, meanwhile the particle distribution of precipitated calcium carbonate Merck showed larger particles with the size of 3.22 µm – 10.68 µm.

  6. Development of poly(aspartic acid-co-malic acid) composites for calcium carbonate and sulphate scale inhibition.

    PubMed

    Mithil Kumar, N; Gupta, Sanjay Kumar; Jagadeesh, Dani; Kanny, K; Bux, F

    2015-01-01

    Polyaspartic acid (PSI) is suitable for the inhibition of inorganic scale deposition. To enhance its scale inhibition efficiency, PSI was modified by reacting aspartic acid with malic acid (MA) using thermal polycondensation polymerization. This reaction resulted in poly(aspartic acid-co-malic acid) (PSI-co-MA) dual polymer. The structural, chemical and thermal properties of the dual polymers were analysed by using scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, differential scanning calorimetry and gel permeation chromatography. The effectiveness of six different molar ratios of PSI-co-MA dual polymer for calcium carbonate and calcium sulphate scale inhibition at laboratory scale batch experiments was evaluated with synthetic brine solution at selected doses of polymer at 65-70°C by the static scale test method. The performance of PSI-co-MA dual polymer for the inhibition of calcium carbonate and calcium sulphate precipitation was compared with that of a PSI single polymer. The PSI-co-MA exhibited excellent ability to control inorganic minerals, with approximately 85.36% calcium carbonate inhibition and 100% calcium sulphate inhibition at a level of 10 mg/L PSI-co-MA, respectively. Therefore, it may be reasonably concluded that PSI-co-MA is a highly effective scale inhibitor for cooling water treatment applications.

  7. SECONDARY HYPERPARATHYROIDISM AFTER BARIATRIC SURGERY: TREATMENT IS WITH CALCIUM CARBONATE OR CALCIUM CITRATE?

    PubMed Central

    BARETTA, Giorgio Alfredo Pedroso; CAMBI, Maria Paula Carlini; RODRIGUES, Arieli Luz; MENDES, Silvana Aparecida

    2015-01-01

    Background : Bariatric surgery, especially Roux-en-Y gastric bypass, can cause serious nutritional complications arising from poor absorption of essential nutrients. Secondary hyperparathyroidism is one such complications that leads to increased parathyroid hormone levels due to a decrease in calcium and vitamin D, which may compromise bone health. Aim : To compare calcium carbonate and calcium citrate in the treatment of secondary hyperparathyroidism. Method : Patients were selected on the basis of their abnormal biochemical test and treatment was randomly done with citrate or calcium carbonate. Results : After 60 days of supplementation, biochemical tests were repeated, showing improvement in both groups. Conclusion : Supplementation with calcium (citrate or carbonate) and vitamin D is recommended after surgery for prevention of secondary hyperparathyroidism. PMID:26537273

  8. Mineralization of Carbon Dioxide: Literature Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romanov, V; Soong, Y; Carney, C

    2015-01-01

    CCS research has been focused on CO2 storage in geologic formations, with many potential risks. An alternative to conventional geologic storage is carbon mineralization, where CO2 is reacted with metal cations to form carbonate minerals. Mineralization methods can be broadly divided into two categories: in situ and ex situ. In situ mineralization, or mineral trapping, is a component of underground geologic sequestration, in which a portion of the injected CO2 reacts with alkaline rock present in the target formation to form solid carbonate species. In ex situ mineralization, the carbonation reaction occurs above ground, within a separate reactor or industrialmore » process. This literature review is meant to provide an update on the current status of research on CO2 mineralization. 2« less

  9. Calcium carbonate overdose

    MedlinePlus

    Calcium carbonate is not very poisonous. Recovery is quite likely. But, long-term overuse is more serious than a single overdose, because it can cause kidney damage. Few people die from an antacid overdose. Keep ...

  10. Microalgal bacterial flocs treating paper mill effluent: A sunlight-based approach for removing carbon, nitrogen, phosphorus, and calcium.

    PubMed

    Van Den Hende, Sofie; Rodrigues, André; Hamaekers, Helen; Sonnenholzner, Stanislaus; Vervaeren, Han; Boon, Nico

    2017-10-25

    Treatment of upflow anaerobic sludge blanket (UASB) effluent from a paper mill in aerated activated sludge reactors involves high aeration costs. Moreover, this calcium-rich effluent leads to problematic scale formation. Therefore, a novel strategy for the aerobic treatment of paper mill UASB effluent in microalgal bacterial floc sequencing batch reactors (MaB-floc SBRs) is proposed, in which oxygen is provided via photosynthesis, and calcium is removed via bio-mineralization. Based on the results of batch experiments in the course of this study, a MaB-floc SBR was operated at an initial neutral pH. This SBR removed 58±21% organic carbon, 27±8% inorganic carbon, 77±5% nitrogen, 73±2% phosphorus, and 27±11% calcium. MaB-flocs contained 10±3% calcium, including biologically-influenced calcite crystals. The removal of calcium and inorganic carbon by MaB-flocs significantly decreased when inhibiting extracellular carbonic anhydrase (CA), an enzyme that catalyses the hydration and dehydration of CO 2 . This study demonstrates the potential of MaB-floc SBRs for the alternative treatment of calcium-rich paper mill effluent, and highlights the importance of extracellular CA in this treatment process. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Oral calcium carbonate affects calcium but not phosphorus balance in stage 3-4 chronic kidney disease.

    PubMed

    Hill, Kathleen M; Martin, Berdine R; Wastney, Meryl E; McCabe, George P; Moe, Sharon M; Weaver, Connie M; Peacock, Munro

    2013-05-01

    Patients with chronic kidney disease (CKD) are given calcium carbonate to bind dietary phosphorus, reduce phosphorus retention, and prevent negative calcium balance; however, data are limited on calcium and phosphorus balance during CKD to support this. Here, we studied eight patients with stage 3 or 4 CKD (mean estimated glomerular filtration rate 36 ml/min) who received a controlled diet with or without a calcium carbonate supplement (1500 mg/day calcium) during two 3-week balance periods in a randomized placebo-controlled cross-over design. All feces and urine were collected during weeks 2 and 3 of each balance period and fasting blood, and urine was collected at baseline and at the end of each week. Calcium kinetics were determined using oral and intravenous (45)calcium. Patients were found to be in neutral calcium and phosphorus balance while on the placebo. Calcium carbonate supplementation produced positive calcium balance, did not affect phosphorus balance, and produced only a modest reduction in urine phosphorus excretion compared with placebo. Calcium kinetics demonstrated positive net bone balance but less than overall calcium balance, suggesting soft-tissue deposition. Fasting blood and urine biochemistries of calcium and phosphate homeostasis were unaffected by calcium carbonate. Thus, the positive calcium balance produced by calcium carbonate treatment within 3 weeks cautions against its use as a phosphate binder in patients with stage 3 or 4 CKD, if these findings can be extrapolated to long-term therapy.

  12. Novel morphology of calcium carbonate controlled by poly(L-lysine).

    PubMed

    Yao, Yuan; Dong, Wenyong; Zhu, Shenmin; Yu, Xinhai; Yan, Deyue

    2009-11-17

    The novel calcium carbonate (CaCO(3)) morphology, twin-sphere with an equatorial girdle, has been obtained under the control of poly(L-lysine) (PLys) through gas-diffusion method. The effect of the concentration of calcium cation and PLys, the reaction time, and the initial pH value are investigated, and various interesting morphologies, including twin-sphere, discus-like, hexagonal plate, and hallow structure are observed by using scanning electronic microscopy. Laser microscopic Raman spectroscopy studies indicated that all these CaCO(3) are vaterite. A possible mechanism is suggested to explain the formation of the twin-sphere based morphologies according to the results. It is proven that alkaline polypeptides can control the mineralization of CaCO(3) precisely as the reported acidic polypeptides and double hydrophilic block copolymers.

  13. Using Calcium Isotopic Composition of Calcium Carbonate Veins to Assess the Roles of Vein Formation and Seafloor Alteration in Regulation of the Carbon Cycle

    NASA Astrophysics Data System (ADS)

    Chen, F.; Coggon, R. M.; Teagle, D. A. H.; Turchyn, A. V.

    2016-12-01

    Calcium carbonate vein formation in the oceanic crust has been proposed as a climate-sensitive feedback mechanism that regulates the carbon cycle on million-year timescales. The suggestion has been that higher pCO2 levels may drive changes in ocean temperature and pH that increase seafloor alteration, releasing more calcium from oceanic basalt. This results in more removal of carbon from Earth's surface through calcium carbonate formation, which includes calcium carbonate vein formation in oceanic crust. The importance of this feedback mechanism remains enigmatic. Measurements of the δ44Ca of calcium carbonate veins in the oceanic crust may constrain the sources of calcium and timing of vein formation. Seawater and basalt are the only sources present shortly after crustal formation, whereas other sources, such as anhydrite dissolution and sedimentary carbonates become available when the crust ages, at which point carbonate veins may form far from the ridge axis. We report the calcium isotopic composition of 65 calcium carbonate veins, ranging from 108 to 1.2 million years old, in hydrothermally altered basalt from the Mid-Atlantic and Juan de Fuca ridges. We also present 43 δ44Ca measurements of 5.9 million year old basalts and dikes from the Costa Rica Rift that have undergone hydrothermal alteration over a range of conditions in upper crust. The δ44Ca of the calcium carbonate veins ranges from -1.59 to 1.01‰ (versus Bulk Silicate Earth), whereas the δ44Ca of altered basalts ranges from -0.18 to 0.28‰. Depth and temperature of formation seem to be major influences on calcium carbonate vein δ44Ca, with veins formed at cool, shallower depths having higher δ44Ca, closer to seawater. In contrast, we note no temporal variation in δ44Ca of calcium carbonate veins when comparing samples from older and younger crust. The majority of veins (54 out of 65) have δ44Ca between that of seawater and basalt, which implies that they may have formed quite soon after

  14. Transglutaminase-induced crosslinking of gelatin-calcium carbonate composite films.

    PubMed

    Wang, Yuemeng; Liu, Anjun; Ye, Ran; Wang, Wenhang; Li, Xin

    2015-01-01

    The effects of transglutaminase (TGase) on the rheological profiles and interactions of gelatin-calcium carbonate solutions were studied. In addition, mechanical properties, water vapour permeability and microstructures of gelatin-calcium carbonate films were also investigated and compared. Fluorescence data suggested that the interaction of TGase and gelation-calcium carbonate belonged to a static quenching mechanism, and merely one binding site between TGase and gelatin-calcium carbonate was identified. Moreover, differential scanning calorimetry (DSC), the mechanical properties and the water vapour permeability studies revealed that TGase favoured the strong intramolecular polymerisation of the peptides in gelatin. The microstructures of the surfaces and cross sections in gelatin-calcium carbonate films were shown by scanning electron microscope (SEM) micrographs. The results of the fourier transform infrared spectroscopy (FTIR) indicated that TGase caused conformational changes in the proteins films. Therefore, TGase successfully facilitated the formation of gelatin-calcium carbonate composite films. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Evidence of calcium carbonates in coastal (Talos Dome and Ross Sea area) East Antarctica snow and firn: Environmental and climatic implications

    NASA Astrophysics Data System (ADS)

    Sala, M.; Delmonte, B.; Frezzotti, M.; Proposito, M.; Scarchilli, C.; Maggi, V.; Artioli, G.; Dapiaggi, M.; Marino, F.; Ricci, P. C.; De Giudici, G.

    2008-07-01

    Micrometre-sized aeolian dust particles stored in Antarctic firn and ice layers are a useful tool for reconstructing climate and environmental changes in the past. The mineral content, particle concentration and chemical composition of modern dust in firn cores from the peripherycal dome (Talos Dome) and coastal area of East Antarctica (Ross Sea sector) were investigated. During analyses there was a considerable decrease in microparticle concentrations within a few hours of ice sample melting, accompanied by a systematic increase in the concentration of calcium ions (Ca 2+) in solution. Based on mineralogical phase analyses, which reveal the presence of anhydrous and hydrous calcium carbonates such as calcite (CaCO 3), monohydrocalcite (CaCO 3·H 2O) and ikaite (CaCO 3·6H 2O, hexahydrate calcium carbonate), the observed variations in concentrations are ascribed to the partial dissolution of the carbonate content of samples. Soluble carbonate compounds are thus primary aerosols included into the samples along with insoluble aluminosilicate minerals. We hypothesize hydrous carbonates may derive from the sea ice surface, where ikaite typically forms at the early stages of sea ice formation. Back trajectory calculations show that favourable events for air mass advection from the sea ice surface to Talos Dome are rare but likely to occur.

  16. Investigating the Basis of Biogenic Calcium Carbonate Formation from an Amorphous Precursor: Nature of the Transformation to Calcite on Hydroxyl Functionalized Surfaces

    NASA Astrophysics Data System (ADS)

    Wang, D.; Lee, J. R.; Talley, C. E.; Murphy, K. E.; Han, T. Y.; Deyoreo, J. J.; Dove, P. M.

    2006-12-01

    Calcium carbonate biominerals are particularly significant because of their direct role in regulating the global carbon cycle, as well as their ubiquitous occurrence across earth environments. Biogenic carbonates are further distinguished by their broad phlyogenetic distribution; hence it has been suggested that unrelated eukaryotes must have used similar biochemical strategies to control mineralization. Recent studies have shown that an amorphous calcium carbonate (ACC) phase potentially plays a key role in the initial formation of carbonate minerals and in "shaping" them into complex morphologies widely seen in biominerals. Echinoderms, mollusks, and possibly many other organisms use ACC as a precursor phase that is first nucleated in cellularly controlled environments such as vesicles and subsequently transforms into a fully crystalline material. Recent studies on sea urchin embryos have shown that during transformation ACC develops short range that resembles calcite before fully crystallizing and serve as inspiration for our studies in synthetic systems. Self-assembled monolayers (SAM) on gold and silver have been used as simple model systems that approximate biological surfaces. Many studies have shown that thiol monolayers with hydroxyl termination stabilize a transitory ACC film that with prolonged exposure to aqueous solution transforms into calcite nucleated on {104} faces. Using Near Edge X-ray Absorption Fine Structure (NEXAFS) we studied SAM/mineral interactions with well ordered mercaptophenol monolayers showed that when these films are first exposed to calcium carbonate solutions, they become disordered and remain so after subsequent deposition of an ACC over-layer. Yet calcite nucleates and grows from the surface bound ACC with predominantly {104} orientation, which suggests a dynamic structural relationship between the SAMs and the mineral phase. While the monolayer/mineral phase interaction has been characterized, the mechanism for nucleating

  17. Gallbladder mucin production and calcium carbonate gallstones in children.

    PubMed

    Sayers, Craig; Wyatt, Judy; Soloway, Roger D; Taylor, Donald R; Stringer, Mark D

    2007-03-01

    In contrast to adults, calcium carbonate gallstones are relatively common in children. Their pathogenesis is poorly understood. Cystic duct obstruction promotes calcium carbonate formation in bile and increases gallbladder mucin production. We tested the hypothesis that mucin producing epithelial cells would be increased in gallbladders of children with calcium carbonate gallstones. Archival gallbladder specimens from 20 consecutive children who had undergone elective cholecystectomy for cholelithiasis were examined. In each case, gallstone composition was determined by Fourier transform infrared microspectroscopy. Gallbladder specimens from six children who had undergone cholecystectomy for conditions other than cholelithiasis during the same period were used as controls. Multiple sections were examined in a blinded fashion and scored semiquantitatively for mucin production using two stains (alcian blue and periodic acid-Schiff). Increased mucin staining was observed in 50% or more epithelial cells in five gallbladder specimens from seven children with calcium carbonate stones, compared to 5 of 13 with other stone types (P = 0.17) and none of the control gallbladders (P = 0.02). Gallbladders containing calcium carbonate stones were significantly more likely than those containing other stone types or controls to contain epithelial cells with the greatest mucin content (P = 0.03). Gallbladders containing calcium carbonate stones were also more likely to show the ulcer-associated cell lineage. These results demonstrate an increase in mucin producing epithelial cells in gallbladders from children containing calcium carbonate stones. This supports the hypothesis that cystic duct obstruction leading to increased gallbladder mucin production may play a role in the development of calcium carbonate gallstones in children.

  18. Clonorcis sinensis eggs are associated with calcium carbonate gallbladder stones.

    PubMed

    Qiao, Tie; Ma, Rui-hong; Luo, Zhen-liang; Yang, Liu-qing; Luo, Xiao-bing; Zheng, Pei-ming

    2014-10-01

    Calcium carbonate gallbladder stones were easily neglected because they were previously reported as a rare stone type in adults. The aim of this study was to investigate the relationship between calcium carbonate stones and Clonorchis sinensis infection. A total of 598 gallbladder stones were studied. The stone types were identified by FTIR spectroscopy. The C. sinensis eggs and DNA were detected by microscopic examination and real-time fluorescent PCR respectively. And then, some egg-positive stones were randomly selected for further SEM examination. Corresponding clinical characteristics of patients with different types of stones were also statistically analyzed. The detection rate of C. sinensis eggs in calcium carbonate stone, pigment stone, mixed stone and cholesterol stone types, as well as other stone types was 60%, 44%, 36%, 6% and 30%, respectively, which was highest in calcium carbonate stone yet lowest in cholesterol stone. A total of 182 stones were egg-positive, 67 (37%) of which were calcium carbonate stones. The C. sinensis eggs were found adherent to calcium carbonate crystals by both light microscopy and scanning electron microscopy. Patients with calcium carbonate stones were mainly male between the ages of 30 and 60, the CO2 combining power of patients with calcium carbonate stones were higher than those with cholesterol stones. Calcium carbonate gallbladder stones are not rare, the formation of which may be associated with C. sinensis infection. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Calcium acetate or calcium carbonate for hyperphosphatemia of hemodialysis patients: a meta-analysis.

    PubMed

    Wang, Yong; Xie, Guoqiang; Huang, Yuanhang; Zhang, Han; Yang, Bo; Mao, Zhiguo

    2015-01-01

    High levels of serum phosphorus both at baseline and during follow-up are associated with increased mortality in dialysis patients, and administration of phosphate binders was independently associated with improved survival among hemodialysis population. Calcium-based phosphate binders are the most commonly used phosphate binders in developing countries for their relatively low costs. To compare the efficacy and safety between calcium carbonate and calcium acetate in the treatment of hyperphosphatemia in hemodialysis patients. PubMed, EMBASE, Cochrane Library, Google scholar and Chinese databases (Wanfang, Weipu, National Knowledge Infrastructure of China) were searched for relevant studies published before March 2014. Reference lists of nephrology textbooks and review articles were checked. A meta-analysis of randomized controlled trials (RCTs) and quasi-RCTs that assessed the effects and adverse events of calcium acetate and calcium carbonate in adult patients with MHD was performed using Review Manager 5.0. A total of ten studies (625 participants) were included in this meta-analysis. There was insufficient data in all-cause mortality and cardiovascular events for meta-analysis. Compared with calcium carbonate group, the serum phosphorus was significantly lower in calcium acetate group after4 weeks' administration (MD -0.15 mmol/L, 95% CI -0.28 to -0.01) and after 8 weeks' administration (MD -0.25 mmol/L, 95% CI -0.40 to -0.11). There was no difference in serum calcium levels or the incidence of hypercalcemia between two groups at 4 weeks and 8 weeks. No statistical difference was found in parathyroid hormone (PTH) levels or serum calcium by phosphorus (Ca x P) product. There was significantly higher risk of intolerance with calcium acetate treatment (RR 3.46, 95% CI 1.48 to 8.26). For hyperphosphatemia treatment, calcium acetate showed better efficacy and with a higher incidence of intolerance compared with calcium carbonate. There are insufficient data to

  20. Calcium Acetate or Calcium Carbonate for Hyperphosphatemia of Hemodialysis Patients: A Meta-Analysis

    PubMed Central

    Zhang, Han; Yang, Bo; Mao, Zhiguo

    2015-01-01

    Background High levels of serum phosphorus both at baseline and during follow-up are associated with increased mortality in dialysis patients, and administration of phosphate binders was independently associated with improved survival among hemodialysis population. Calcium-based phosphate binders are the most commonly used phosphate binders in developing countries for their relatively low costs. Objectives To compare the efficacy and safety between calcium carbonate and calcium acetate in the treatment of hyperphosphatemia in hemodialysis patients. Methods PubMed, EMBASE, Cochrane Library, Google scholar and Chinese databases (Wanfang, Weipu, National Knowledge Infrastructure of China) were searched for relevant studies published before March 2014. Reference lists of nephrology textbooks and review articles were checked. A meta-analysis of randomized controlled trials (RCTs) and quasi-RCTs that assessed the effects and adverse events of calcium acetate and calcium carbonate in adult patients with MHD was performed using Review Manager 5.0. Results A total of ten studies (625 participants) were included in this meta-analysis. There was insufficient data in all-cause mortality and cardiovascular events for meta-analysis. Compared with calcium carbonate group, the serum phosphorus was significantly lower in calcium acetate group after4 weeks’ administration (MD -0.15 mmol/L, 95% CI -0.28 to -0.01) and after 8 weeks’ administration (MD -0.25 mmol/L, 95% CI -0.40 to -0.11). There was no difference in serum calcium levels or the incidence of hypercalcemia between two groups at 4 weeks and 8 weeks. No statistical difference was found in parathyroid hormone (PTH) levels or serum calcium by phosphorus (Ca x P) product. There was significantly higher risk of intolerance with calcium acetate treatment (RR 3.46, 95% CI 1.48 to 8.26). Conclusions For hyperphosphatemia treatment, calcium acetate showed better efficacy and with a higher incidence of intolerance compared with

  1. Pseudomonas, Pantoea and Cupriavidus isolates induce calcium carbonate precipitation for biorestoration of ornamental stone.

    PubMed

    Daskalakis, M I; Magoulas, A; Kotoulas, G; Catsikis, I; Bakolas, A; Karageorgis, A P; Mavridou, A; Doulia, D; Rigas, F

    2013-08-01

    Bacterially induced calcium carbonate precipitation from various isolates was investigated aiming at developing an environmentally friendly technique for ornamental stone protection and restoration. Micro-organisms isolated from stone samples and identified using 16S rDNA and biochemical tests promoted calcium carbonate precipitation in solid and novel liquid growth media. Biomineral morphology was studied on marble samples with scanning electron microscopy. Most isolates demonstrated specimen weight increase, covering partially or even completely the marble surfaces mainly with vaterite. The conditions under which vaterite precipitated and its stability throughout the experimental runs are presented. A growth medium that facilitated bacterial growth of different species and promoted biomineralization was formulated. Most isolates induced biomineralization of CaCO3 . Micro-organisms may actually be a milestone in the investigation of vaterite formation facilitating our understanding of geomicrobiological interactions. Pseudomonas, Pantoea and Cupriavidus strains could be candidates for bioconsolidation of ornamental stone protection. Characterization of biomineralization capacity of different bacterial species improves understanding of the bacterially induced mineralization processes and enriches the list of candidates for biorestoration applications. Knowledge of biomineral morphology assists in differentiating mineral from biologically induced precipitates. © 2013 The Society for Applied Microbiology.

  2. Effect of silk sericin on morphology and structure of calcium carbonate crystal

    NASA Astrophysics Data System (ADS)

    Zhao, Rui-Bo; Han, Hua-Feng; Ding, Shao; Li, Ze-Hao; Kong, Xiang-Dong

    2013-06-01

    In this paper, silk sericin was employed to regulate the mineralization of calcium carbonate (CaCO3). CaCO3 composite particles were prepared by the precipitation reaction of sodium carbonate with calcium chloride solution in the presence of silk sericin. The as-prepared samples were collected at different reaction time to study the crystallization process of CaCO3 by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and X-ray diffraction (XRD). The results showed that silk sericin significantly affected the morphology and crystallographic polymorph of CaCO3. With increasing the reaction time, the crystal phase of CaCO3 transferred from calcite dominated to vaterite dominated mixtures, while the morphology of CaCO3 changed from disk-like calcite crystal to spherical vaterite crystal. These studies showed the potential of silk sericin used as a template molecule to control the growth of inorganic crystal.

  3. Electrospinning of calcium carbonate fibers and their conversion to nanocrystalline hydroxyapatite.

    PubMed

    Holopainen, Jani; Santala, Eero; Heikkilä, Mikko; Ritala, Mikko

    2014-12-01

    Calcium carbonate (CaCO3) fibers were prepared by electrospinning followed by annealing. Solutions consisting of calcium nitrate tetrahydrate (Ca(NO3)2·4H2O) and polyvinylpyrrolidone (PVP) dissolved in ethanol or 2-methoxyethanol were used for the fiber preparation. By varying the precursor concentrations in the electrospinning solutions CaCO3 fibers with average diameters from 140 to 290 nm were obtained. After calcination the fibers were identified as calcite by X-ray diffraction (XRD). The calcination process was studied in detail with high temperature X-ray diffraction (HTXRD) and thermogravimetric analysis (TGA). The initially weak fiber-to-substrate adhesion was improved by adding a strengthening CaCO3 layer by spin or dip coating Ca(NO3)2/PVP precursor solution on the CaCO3 fibers followed by annealing of the gel formed inside the fiber layer. The CaCO3 fibers were converted to nanocrystalline hydroxyapatite (HA) fibers by treatment in a dilute phosphate solution. The resulting hydroxyapatite had a plate-like crystal structure with resemblance to bone mineral. The calcium carbonate and hydroxyapatite fibers are interesting materials for bone scaffolds and bioactive coatings. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. A review of mineral carbonation technologies to sequester CO2.

    PubMed

    Sanna, A; Uibu, M; Caramanna, G; Kuusik, R; Maroto-Valer, M M

    2014-12-07

    Carbon dioxide (CO2) capture and sequestration includes a portfolio of technologies that can potentially sequester billions of tonnes of CO2 per year. Mineral carbonation (MC) is emerging as a potential CCS technology solution to sequester CO2 from smaller/medium emitters, where geological sequestration is not a viable option. In MC processes, CO2 is chemically reacted with calcium- and/or magnesium-containing materials to form stable carbonates. This work investigates the current advancement in the proposed MC technologies and the role they can play in decreasing the overall cost of this CO2 sequestration route. In situ mineral carbonation is a very promising option in terms of resources available and enhanced security, but the technology is still in its infancy and transport and storage costs are still higher than geological storage in sedimentary basins ($17 instead of $8 per tCO2). Ex situ mineral carbonation has been demonstrated on pilot and demonstration scales. However, its application is currently limited by its high costs, which range from $50 to $300 per tCO2 sequestered. Energy use, the reaction rate and material handling are the key factors hindering the success of this technology. The value of the products seems central to render MC economically viable in the same way as conventional CCS seems profitable only when combined with EOR. Large scale projects such as the Skyonic process can help in reducing the knowledge gaps on MC fundamentals and provide accurate costing and data on processes integration and comparison. The literature to date indicates that in the coming decades MC can play an important role in decarbonising the power and industrial sector.

  5. Calcium carbonate does not affect imatinib pharmacokinetics in healthy volunteers.

    PubMed

    Tawbi, Hussein; Christner, Susan M; Lin, Yan; Johnson, Matthew; Mowrey, Emily T; Cherrin, Craig; Chu, Edward; Lee, James J; Puhalla, Shannon; Stoller, Ronald; Appleman, Leonard R; Miller, Brian M; Beumer, Jan H

    2014-01-01

    Imatinib mesylate (Gleevec(®)/Glivec(®)) has revolutionized the treatment of chronic myeloid leukemias and gastrointestinal stromal tumors, and there is evidence for an exposure response relationship. Calcium carbonate is increasingly used as a calcium supplement and in the setting of gastric upset associated with imatinib therapy. Calcium carbonate could conceivably elevate gastric pH and complex imatinib, thereby influencing imatinib absorption and exposure. We aimed to evaluate whether use of calcium carbonate has a significant effect on imatinib pharmacokinetics. Eleven healthy subjects were enrolled in a 2-period, open-label, single-institution, randomized crossover, fixed-schedule study. In one period, each subject received 400 mg of imatinib p.o. In the other period, 4,000 mg calcium carbonate (Tums Ultra(®)) was administered p.o. 15 min before 400 mg of imatinib. Plasma concentrations of imatinib and its active N-desmethyl metabolite CGP74588 were assayed by LC-MS; data were analyzed non-compartmentally and compared after log transformation. Calcium carbonate administration did not significantly affect the imatinib area under the plasma concentration versus time curve (AUC) (41.2 μg/mL h alone vs. 40.8 μg/mL h with calcium carbonate, P = 0.99), maximum plasma concentration (C(max)) (2.35 μg/mL alone vs. 2.39 μg/mL with calcium carbonate, P = 0.89). Our results indicate that the use of calcium carbonate does not significantly affect imatinib pharmacokinetics.

  6. Methotrexate intercalated calcium carbonate nanostructures: Synthesis, phase transformation and bioassay study.

    PubMed

    Dai, Chao-Fan; Wang, Wei-Yuan; Wang, Lin; Zhou, Lei; Li, Shu-Ping; Li, Xiao-Dong

    2016-12-01

    The formation and stabilization of amorphous calcium carbonate (ACC) is an active area of research owing to the presence of stable ACC in various biogenic minerals. In this paper, the synthesis of calcium carbonate (CaCO3) under the participation of methotrexate (MTX) via a facile gas diffusion route was reported. The results indicated that the addition of MTX can result in the phase transformation of CaCO3, and then two kinds of hybrids, i.e., MTX-vaterite and stable MTX-ACC came into being. Interestingly, the functional agent MTX served as both the target anticancer drug loaded and effective complexation agents to modify and control the morphology of final samples. The examination of MTX-ACC biodegradation process revealed that the collapse of MTX-ACC nanoparticles was due to the synergistic effect of drug release and the phase transformation. Finally, our study also proved that MTX-ACC exhibited the most excellent suppressing function on the viability of cancer cells, especially after long-time duration. Copyright © 2016. Published by Elsevier B.V.

  7. [Organic carbon and carbon mineralization characteristics in nature forestry soil].

    PubMed

    Yang, Tian; Dai, Wei; An, Xiao-Juan; Pang, Huan; Zou, Jian-Mei; Zhang, Rui

    2014-03-01

    Through field investigation and indoor analysis, the organic carbon content and organic carbon mineralization characteristics of six kinds of natural forest soil were studied, including the pine forests, evergreen broad-leaved forest, deciduous broad-leaved forest, mixed needle leaf and Korean pine and Chinese pine forest. The results showed that the organic carbon content in the forest soil showed trends of gradual decrease with the increase of soil depth; Double exponential equation fitted well with the organic carbon mineralization process in natural forest soil, accurately reflecting the mineralization reaction characteristics of the natural forest soil. Natural forest soil in each layer had the same mineralization reaction trend, but different intensity. Among them, the reaction intensity in the 0-10 cm soil of the Korean pine forest was the highest, and the intensities of mineralization reaction in its lower layers were also significantly higher than those in the same layers of other natural forest soil; comparison of soil mineralization characteristics of the deciduous broad-leaved forest and coniferous and broad-leaved mixed forest found that the differences of litter species had a relatively strong impact on the active organic carbon content in soil, leading to different characteristics of mineralization reaction.

  8. Pseudowollastonite Carbonation Could Enable New Frontiers in Carbon Storage

    NASA Astrophysics Data System (ADS)

    Plattenberger, D.; Tao, Z.; Ling, F. T.; Peters, C. A.; Clarens, A. F.

    2017-12-01

    One of the primary challenges of CO2 mineral trapping is that precipitation reactions are reversible. A wide range of solid magnesium, iron, or calcium carbonates (such as magnesite, MgCO3) can be synthesized by reacting mineral silicates (such as olivine, Mg2SiO4) with CO2 to produce mineral carbonates. However, if CO2 remains present at high concentrations, as would be the case in many subsurface environments, the carbonate minerals could re-dissolve, making the precipitated carbonates impermanent forms of storage. In this work, we study pseudowollastonite (CaSiO3), a crystalline form of calcium silicate that is common in slags, cement, and calcium-rich volcanic formations, for its potential to produce other secondary mineral phases that may be resistant to dissolution under low pH conditions. These secondary mineral precipitation phases have morphologies and X-ray diffraction patterns that resemble both calcium silicate hydrate gels as well as crystalline calcium silicate carbonate hydrates. The combination of these phases forms a complex system that may resist acid attack while providing strength and limiting flow in the subsurface environment. High pressure and temperature column experiments carried out in our lab show that pseudowollastonite carbonation effectively lowers permeability in columns of sintered glass beads. Many of the pore throats are clogged by precipitates, as seen using micro X-ray tomography of intact columns and electron microscopy of thin sections. The spatial distribution of the products suggests that calcite forms toward the inlet of the columns where the pCO2 is highest. This forms a barrier that reduces, but does not eliminate, the availability of CO2 deeper in the porous media where the secondary phases precipitate. The existence of the calcite zone drives the reduction in permeability and the depth of this zone is self-limiting, which could have important implications for limiting leakage and unwanted migration of CO2 in some

  9. Magnetically responsive calcium carbonate microcrystals.

    PubMed

    Fakhrullin, Rawil F; Bikmullin, Aidar G; Nurgaliev, Danis K

    2009-09-01

    Here we report the fabrication of magnetically responsive calcium carbonate microcrystals produced by coprecipitation of calcium carbonate in the presence of citrate-stabilized iron oxide nanoparticles. We demonstrate that the calcite microcrystals obtained possess superparamagnetic properties due to incorporated magnetite nanoparticles and can be manipulated by an external magnetic field. The microcrystals doped with magnetic nanoparticles were utilized as templates for the fabrication of hollow polyelectrolyte microcapsules, which retain the magnetic properties of the sacrificial cores and might be spatially manipulated using a permanent magnet, thus providing the magnetic-field-facilitated delivery and separation of materials templated on magnetically responsive calcite microcrystals.

  10. Natural calcium isotopic composition of urine as a marker of bone mineral balance.

    PubMed

    Skulan, Joseph; Bullen, Thomas; Anbar, Ariel D; Puzas, J Edward; Shackelford, Linda; LeBlanc, Adrian; Smith, Scott M

    2007-06-01

    We investigated whether changes in the natural isotopic composition of calcium in human urine track changes in net bone mineral balance, as predicted by a model of calcium isotopic behavior in vertebrates. If so, isotopic analysis of natural urine or blood calcium could be used to monitor short-term changes in bone mineral balance that cannot be detected with other techniques. Calcium isotopic compositions are expressed as delta(44)Ca, or the difference in parts per thousand between the (44)Ca/(40)Ca of a sample and the (44)Ca/(40)Ca of a standard reference material. delta(44)Ca was measured in urine samples from 10 persons who participated in a study of the effectiveness of countermeasures to bone loss in spaceflight, in which 17 weeks of bed rest was used to induce bone loss. Study participants were assigned to 1 of 3 treatment groups: controls received no treatment, one treatment group received alendronate, and another group performed resistive exercise. Measurements were made on urine samples collected before, at 2 or 3 points during, and after bed rest. Urine delta(44)Ca values during bed rest were lower in controls than in individuals treated with alendronate (P <0.05, ANOVA) or exercise (P <0.05), and lower than the control group baseline (P <0.05, t-test). Results were consistent with the model and with biochemical and bone mineral density data. Results confirm the predicted relationship between bone mineral balance and calcium isotopes, suggesting that calcium isotopic analysis of urine might be refined into a clinical and research tool.

  11. Seeded Growth Route to Noble Calcium Carbonate Nanocrystal.

    PubMed

    Islam, Aminul; Teo, Siow Hwa; Rahman, M Aminur; Taufiq-Yap, Yun Hin

    2015-01-01

    A solution-phase route has been considered as the most promising route to synthesize noble nanostructures. A majority of their synthesis approaches of calcium carbonate (CaCO3) are based on either using fungi or the CO2 bubbling methods. Here, we approached the preparation of nano-precipitated calcium carbonate single crystal from salmacis sphaeroides in the presence of zwitterionic or cationic biosurfactants without external source of CO2. The calcium carbonate crystals were rhombohedron structure and regularly shaped with side dimension ranging from 33-41 nm. The high degree of morphological control of CaCO3 nanocrystals suggested that surfactants are capable of strongly interacting with the CaCO3 surface and control the nucleation and growth direction of calcium carbonate nanocrystals. Finally, the mechanism of formation of nanocrystals in light of proposed routes was also discussed.

  12. Seeded Growth Route to Noble Calcium Carbonate Nanocrystal

    PubMed Central

    Islam, Aminul; Teo, Siow Hwa; Rahman, M. Aminur; Taufiq-Yap, Yun Hin

    2015-01-01

    A solution-phase route has been considered as the most promising route to synthesize noble nanostructures. A majority of their synthesis approaches of calcium carbonate (CaCO3) are based on either using fungi or the CO2 bubbling methods. Here, we approached the preparation of nano-precipitated calcium carbonate single crystal from salmacis sphaeroides in the presence of zwitterionic or cationic biosurfactants without external source of CO2. The calcium carbonate crystals were rhombohedron structure and regularly shaped with side dimension ranging from 33–41 nm. The high degree of morphological control of CaCO3 nanocrystals suggested that surfactants are capable of strongly interacting with the CaCO3 surface and control the nucleation and growth direction of calcium carbonate nanocrystals. Finally, the mechanism of formation of nanocrystals in light of proposed routes was also discussed. PMID:26700479

  13. Structure and reactivity of ferrihydrite-soil organic carbon-calcium ternary complexes

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Adhikari, D.; Sowers, T.; Stuckey, J.; Poulson, S.; Sparks, D. L.

    2017-12-01

    Complete understanding about the interactions between soil organic carbon (SOC) and minerals is important for predicting the stability of SOC and its response to climate change. Recent studies have shown the importance of calcium (Ca)-bearing minerals and iron (Fe) oxide in associating with and stabilizing SOC. In this study, we have investigated the formation and reactivity of ferrihydrite-SOC-Ca ternary complexes. During the co-precipitation of ferrihydrite with SOC in the presence of Ca2+, 60% of SOC can be co-precipitated with ferrihydrite at a C/Fe (molar ratio) of up to 10, whereas the Ca/Fe ratio was saturated at 0.2. Increasing amount of Ca2+ did not affect the co-precipitation of SOC with ferrihydrite or the lability of ferrihydrite-bound SOC. In addition, microbial reduction of ferrihydrite and reductive release of ferrihydrite-bound SOC were not influenced by the presence of Ca, but the pathway for Fe mineral transformation during the reduction was affected by Ca. In the meantime, Fe reduction selectively released carboxylic-enriched SOC. As a comparison, the presence of SOC increased the incorporation of Ca into the structure of ferrihydrite. Our results indicate the formation of ferrihydrite-SOC-Ca complexes, with organic carbon bridging the ferrihydrite and Ca. Such ternary complexes potentially play an important role in regulating the interactions between SOC and mineral phases in soil.

  14. Biogenic Fish-gut Calcium Carbonate is a Stable Amorphous Phase in the Gilt-head Seabream, Sparus aurata

    PubMed Central

    Foran, Elizabeth; Weiner, Steve; Fine, Maoz

    2013-01-01

    The main source of calcium carbonate (CaCO3) in the ocean comes from the shells of calcifying planktonic organisms, but substantial amounts of CaCO3 are also produced in fish intestines. The precipitation of CaCO3 assists fish in intestinal water absorption and aids in whole body Ca2+ homeostasis. Here we report that the product formed in the intestinal lumen of the gilt-head seabream, Sparus aurata, is an amorphous calcium carbonate (ACC) phase. With FTIR spectroscopy and SEM imaging, our study shows that the fish-derived carbonates from S. aurata are maintained as a stable amorphous phase throughout the intestinal tract. Moreover, intestinal deposits contained up to 54 mol% Mg2+, the highest concentration yet reported in biogenic ACC. Mg is most likely responsible for stabilizing this inherently unstable mineral. The fish carbonates also displayed initial rapid dissolution when exposed to seawater, exhibiting a significant increase in carbonate concentration. PMID:23609008

  15. Template-assisted mineral formation via an amorphous liquid phase precursor route

    NASA Astrophysics Data System (ADS)

    Amos, Fairland F.

    The search for alternative routes to synthesize inorganic materials has led to the biomimetic route of producing ceramics. In this method, materials are manufactured at ambient temperatures and in aqueous solutions with soluble additives and insoluble matrix, similar to the biological strategy for the formation of minerals by living organisms. Using this approach, an anionic polypeptide additive was used to induce an amorphous liquid-phase precursor to either calcium carbonate or calcium phosphate. This precursor was then templated on either organic or inorganic substrates. Non-equilibrium morphologies, such as two-dimensional calcium carbonate films, one-dimensional calcium carbonate mesostructures and "molten" calcium phosphate spherulites were produced, which are not typical of the traditional (additive-free) solution grown crystals in the laboratory. In the study of calcium carbonate, the amorphous calcium carbonate mineral formed via the liquid-phase precursor, either underwent a dissolution-recrystallization event or a pseudo-solid-state transformation to produce different morphologies and polymorphs of the mineral. Discrete or aggregate calcite crystals were formed via the dissolution of the amorphous phase to allow the reprecipitation of the stable crystal. Non-equilibrium morphologies, e.g., films, mesotubules and mesowires were templated using organic and inorganic substrates and compartments. These structures were generated via an amorphous solid to crystalline solid transformation. Single crystalline tablets and mesowires of aragonite, which are reported to be found only in nature as skeletal structures of marine organisms, such as mollusk nacre and echinoderm teeth, were successfully synthesized. These biomimetic structures were grown via the polymer-induced liquid-phase precursor route in the presence of magnesium. Only low magnesium-bearing calcite was formed in the absence of the polymer. A similar approach of using a polymeric additive was

  16. Isolation and metagenomic characterization of bacteria associated with calcium carbonate and struvite precipitation in a pure moving bed biofilm reactor-membrane bioreactor.

    PubMed

    Gonzalez-Martinez, A; Leyva-Díaz, J C; Rodriguez-Sanchez, A; Muñoz-Palazon, B; Rivadeneyra, A; Poyatos, J M; Rivadeneyra, M A; Martinez-Toledo, M V

    2015-01-01

    A bench-scale pure moving bed bioreactor-membrane bioreactor (MBBR-MBR) used for the treatment of urban wastewater was analyzed for the identification of bacterial strains with the potential capacity for calcium carbonate and struvite biomineral formation. Isolation of mineral-forming strains on calcium carbonate and struvite media revealed six major colonies with a carbonate or struvite precipitation capacity in the biofouling on the membrane surface and showed that heterotrophic bacteria with the ability to precipitate calcium carbonate and struvite constituted ~7.5% of the total platable bacteria. These belonged to the genera Lysinibacillus, Trichococcus, Comamomas and Bacillus. Pyrosequencing analysis of the microbial communities in the suspended cells and membrane biofouling showed a high degree of similarity in all the samples collected with respect to bacterial assemblage. The study of operational taxonomic units (OTUs) identified through pyrosequencing suggested that ~21% of the total bacterial community identified in the biofouling could potentially form calcium carbonate or struvite crystals in the pure MBBR-MBR system used for the treatment of urban wastewater.

  17. Calcination of calcium carbonate and blend therefor

    DOEpatents

    Mallow, William A.; Dziuk, Jr., Jerome J.

    1989-01-01

    A method for calcination of a calcium carbonate material comprising heating the calcium carbonate material to a temperature and for a time sufficient to calcine the material to the degree desired while in the presence of a catalyst; said catalyst comprising at least one fused salt having the formula MCO.sub.3.CaCO.sub.3.CaO.H.sub.2 O.sub.x, wherein M is an alkali metal and x is 0 to 1 and formed by fusing MCO.sub.3 and CaCO.sub.3 in a molar ratio of about 1:2 to 2:1, and a blend adapted to be heated to CaO comprising a calcium carbonate material and at least one such fused salt.

  18. Calcium carbonate does not affect nilotinib pharmacokinetics in healthy volunteers.

    PubMed

    Tawbi, Hussein A; Tran, An L; Christner, Susan M; Lin, Yan; Johnson, Matthew; Mowrey, Emily; Appleman, Leonard R; Stoller, Ronald; Miller, Brian M; Egorin, Merrill J; Beumer, Jan H

    2013-11-01

    Gastric upset is a common side effect of nilotinib therapy, and calcium carbonate is frequently used concomitantly, either as antacid or as calcium supplementation. With the increasing number of oral agents in cancer therapy, oral drug-drug interactions are becoming more relevant. Nilotinib has already been shown to be absorbed to a much lesser extent when co-administered with proton pump inhibitors. Because exposure to sub-therapeutic concentrations of anticancer drugs such as nilotinib may result in selection of resistant clones and ultimately relapse, we studied the effect of a calcium carbonate supplement (Tums Ultra 1000®) on nilotinib pharmacokinetics. Calcium carbonate may be co-administered with nilotinib without significantly affecting the pharmacokinetics of nilotinib and potentially impacting efficacy. Nilotinib is a second-generation oral tyrosine kinase inhibitor with superior efficacy compared with imatinib mesylate in the treatment for chronic phase chronic myelogenous leukemia. Calcium carbonate is commonly used as a source of calcium supplementation or as antacid to ameliorate the gastrointestinal side effects associated with nilotinib, which could have unknown effects on nilotinib absorption. The purpose of this study was to provide information on the effect of calcium carbonate on the PK of nilotinib in healthy volunteers. Healthy subjects were enrolled in a two-period, open-label, single-institution, randomized, cross-over, fixed-schedule study. In one period, each subject received 400 mg of nilotinib p.o. In the other period, 4,000 mg of calcium carbonate (4 X Tums Ultra 1000®) was administered p.o. 15 min prior to the nilotinib dose. Plasma samples were collected at specified timepoints, concentrations of nilotinib were quantitated by LC-MS, and data were analyzed non-compartmentally. Eleven subjects were evaluable. Calcium supplementation did not significantly affect nilotinib pharmacokinetic parameters including area under the plasma

  19. Natural calcium isotonic composition of urine as a marker of bone mineral balance

    USGS Publications Warehouse

    Skulan, J.; Bullen, T.; Anbar, A.D.; Puzas, J.E.; Shackelford, L.; LeBlanc, A.; Smith, S.M.

    2007-01-01

    Background: We investigated whether changes in the natural isotopic composition of calcium in human urine track changes in net bone mineral balance, as predicted by a model of calcium isotopic behavior in vertebrates. If so, isotopic analysis of natural urine or blood calcium could be used to monitor short-term changes in bone mineral balance that cannot be detected with other techniques. Methods: Calcium isotopic compositions are expressed as ??44Ca, or the difference in parts per thousand between the 44Ca/40Ca of a sample and the 44Ca/ 40Ca of a standard reference material. ??44Ca was measured in urine samples from 10 persons who participated in a study of the effectiveness of countermeasures to bone loss in spaceflight, in which 17 weeks of bed rest was used to induce bone loss. Study participants were assigned to 1 of 3 treatment groups: controls received no treatment, one treatment group received alendronate, and another group performed resistive exercise. Measurements were made on urine samples collected before, at 2 or 3 points during, and after bed rest. Results: Urine ??44Ca values during bed rest were lower in controls than in individuals treated with alendronate (P <0.05, ANOVA) or exercise (P <0.05), and lower than the control group baseline (P <0.05, Mest). Results were consistent with the model and with biochemical and bone mineral density data. Conclusion: Results confirm the predicted relationship between bone mineral balance and calcium isotopes, suggesting that calcium isotopic analysis of urine might be refined into a clinical and research tool. ?? 2007 American Association for Clinical Chemistry.

  20. Mineral protection of soil carbon counteracted by root exudates [Root exudates counteract mineral control on soil carbon turnover

    DOE PAGES

    Keiluweit, Marco; Bougoure, Jeremy J.; Nico, Peter S.; ...

    2015-03-30

    Multiple lines of existing evidence suggest that climate change enhances root exudation of organic compounds into soils. Recent experimental studies show that increased exudate inputs may cause a net loss of soil carbon. This stimulation of microbial carbon mineralization (‘priming’) is commonly rationalized by the assumption that exudates provide a readily bioavailable supply of energy for the decomposition of native soil carbon (co-metabolism). Here we show that an alternate mechanism can cause carbon loss of equal or greater magnitude. We find that a common root exudate, oxalic acid, promotes carbon loss by liberating organic compounds from protective associations with minerals.more » By enhancing microbial access to previously mineral-protected compounds, this indirect mechanism accelerated carbon loss more than simply increasing the supply of energetically more favourable substrates. Lastly, our results provide insights into the coupled biotic–abiotic mechanisms underlying the ‘priming’ phenomenon and challenge the assumption that mineral-associated carbon is protected from microbial cycling over millennial timescales.« less

  1. Biomineralization of calcium carbonate in the cell wall of Lithothamnion crispatum (Hapalidiales, Rhodophyta): correlation between the organic matrix and the mineral phase.

    PubMed

    de Carvalho, Rodrigo Tomazetto; Salgado, Leonardo Tavares; Amado Filho, Gilberto Menezes; Leal, Rachel Nunes; Werckmann, Jacques; Rossi, André Linhares; Campos, Andrea Porto Carreiro; Karez, Cláudia Santiago; Farina, Marcos

    2017-06-01

    Over the past few decades, progress has been made toward understanding the mechanisms of coralline algae mineralization. However, the relationship between the mineral phase and the organic matrix in coralline algae has not yet been thoroughly examined. The aim of this study was to describe the cell wall ultrastructure of Lithothamnion crispatum, a cosmopolitan rhodolith-forming coralline algal species collected near Salvador (Brazil), and examine the relationship between the organic matrix and the nucleation and growth/shape modulation of calcium carbonate crystals. A nanostructured pattern was observed in L. crispatum along the cell walls. At the nanoscale, the crystals from L. crispatum consisted of several single crystallites assembled and associated with organic material. The crystallites in the bulk of the cell wall had a high level of spatial organization. However, the crystals displayed cleavages in the (104) faces after ultrathin sectioning with a microtome. This organism is an important model for biomineralization studies as the crystallographic data do not fit in any of the general biomineralization processes described for other organisms. Biomineralization in L. crispatum is dependent on both the soluble and the insoluble organic matrix, which are involved in the control of mineral formation and organizational patterns through an organic matrix-mediated process. This knowledge concerning the mineral composition and organizational patterns of crystals within the cell walls should be taken into account in future studies of changing ocean conditions as they represent important factors influencing the physico-chemical interactions between rhodoliths and the environment in coralline reefs. © 2017 Phycological Society of America.

  2. [The functions of calcium-sensing receptor in regulating mineral metabolism.

    PubMed

    Kinoshita, Yuka

    Calcium-sensing receptor(CaSR)which belongs to a G protein-coupled receptor family is one of the key elements in regulating calcium homeostasis. CaSR has been identified as a receptor to control parathyroid hormone(PTH)secretion in parathyroid glands according to serum calcium ion(Ca2+)levels. It has also been shown that CaSR controls reabsorption of water and several cations including Ca2+and magnesium ion(Mg2+)in renal tubular cells. This review summarizes the functions and roles of CaSR in mineral metabolism that are exerted in parathyroid glands, kidney, and intestine.

  3. Calcium carbonate precipitation rate as a function of ion ratio in the presence & absence of Sr2+

    NASA Astrophysics Data System (ADS)

    Gebrehiwet, T.; Beig, M. S.; Fujita, Y.; Redden, G. D.; Smith, R. W.

    2010-12-01

    Tsigabu Gebrehiwet 1*, Mikala Beig 2, Yoshiko Fujita 3, George Redden 3 and Robert W. Smith 1 1University of Idaho, 1776 Science Center Dr, Idaho Falls,ID, 83402 (*tgebrehiwet@uidaho.edu; smithbob@uidaho.edu ) 27963 Grasmere Dr.Boulder, CO 80301(mbeig@alumni.rice.edu) 3Idaho National Laboratory, MS 2208, Idaho Falls, ID 83415 (Yoshiko.Fujita@inl.gov; George.Redden@inl.gov) Engineered in situ precipitation of calcium carbonate is a proposed strategy for remediating toxic or radioactive metals (e.g., Sr2+)in subsurface environments as well as for modifying the physical properties (e.g., stiffness, permeability) of geomedia. Inducing the precipitation reaction will likely involve manipulating the geochemical conditions by adding calcium, (bi)carbonate, or both, and relying on mixing of the two reactants. Under these conditions, the ratio of Ca2+ to CO32- will vary with distance from the mixing interface, and for most or all of the porous medium, a 1:1 stoichiometry between calcium and carbonate is unlikely to be achieved. Indeed, in engineered systems where rapid treatment is an important objective, very steep ion concentration gradients may be generated, which would result in local reactant ratios varying from very small to very large over short distances, depending on the mixing geometry and particular chemical composition of the mixing fluids. This in turn has an impact on the rate of mineral precipitation. Typically, the rate of calcium carbonate precipitation is expressed with an affinity-based rate law of the type: Rate = k(Ω-1)n, where k is a rate constant, Ω is the saturation state for the mineral (e.g., calcite), and n is an empirical reaction order. The saturation state Ω is defined as the ratio of the ion activity product to the mineral solubility product. In this expression, the rate is simply dependent on the value of Ω; the actual activities of the individual ions (Ca2+ and CO32-) do not appear in the expression. In support of the development of

  4. Proteomic analysis of a rare urinary stone composed of calcium carbonate and calcium oxalate dihydrate: a case report.

    PubMed

    Kaneko, Kiyoko; Matsuta, Yosuke; Moriyama, Manabu; Yasuda, Makoto; Chishima, Noriharu; Yamaoka, Noriko; Fukuuchi, Tomoko; Miyazawa, Katsuhito; Suzuki, Koji

    2014-03-01

    The objective of the present study was to investigate the matrix protein of a rare urinary stone that contained calcium carbonate. A urinary stone was extracted from a 34-year-old male patient with metabolic alkalosis. After X-ray diffractometry and infrared analysis of the stone, proteomic analysis was carried out. The resulting mass spectra were evaluated with protein search software, and matrix proteins were identified. X-ray diffraction and infrared analysis confirmed that the stone contained calcium carbonate and calcium oxalate dihydrate. Of the identified 53 proteins, 24 have not been previously reported from calcium oxalate- or calcium phosphate-containing stones. The protease inhibitors and several proteins related to cell adhesion or the cytoskeleton were identified for the first time. We analyzed in detail a rare urinary stone composed of calcium carbonate and calcium oxalate dihydrate. Considering the formation of a calcium carbonate stone, the new identified proteins should play an important role on the urolithiasis process in alkaline condition. © 2013 The Japanese Urological Association.

  5. Granule fraction inhomogeneity of calcium carbonate/sorbitol in roller compacted granules.

    PubMed

    Bacher, C; Olsen, P M; Bertelsen, P; Sonnergaard, J M

    2008-02-12

    The granule fraction inhomogeneity of roller compacted granules was examined on mixtures of three different morphologic forms of calcium carbonate and three particle sizes of sorbitol. The granule fraction inhomogeneity was determined by the distribution of the calcium carbonate in each of the 10 size fractions between 0 and 2000 microm and by calculating the demixing potential. Significant inhomogeneous occurrence of calcium carbonate in the size fractions was demonstrated, depending mostly on the particles sizes of sorbitol but also on the morphological forms of calcium carbonate. The heterogeneous distribution of calcium carbonate was related to the decrease in compactibility of roller compacted granules in comparison to the ungranulated materials. This phenomenon was explained by a mechanism where fracturing of the ribbon during granulation occurred at the weakest interparticulate bonds (the calcium carbonate: calcium carbonate bonds) and consequently exposed the weakest areas of bond formation on the surface of the granules. Accordingly, the non-uniform allocation of the interparticulate attractive forces in a tablet would cause a lowering of the compactibility. Furthermore, the ability of the powder to agglomerate in the roller compactor was demonstrated to be related to the ability of the powder to be compacted into a tablet, thus the most compactable calcium carbonate and the smallest sized sorbitol improved the homogeneity by decreasing the demixing potential.

  6. SM50 Repeat-Polypeptides Self-Assemble into Discrete Matrix Subunits and Promote Appositional Calcium Carbonate Crystal Growth during Sea Urchin Tooth Biomineralization

    PubMed Central

    Mao, Yelin; Satchell, Paul G.; Luan, Xianghong; Diekwisch, Thomas G.H.

    2015-01-01

    The two major proteins involved in vertebrate enamel formation and echinoderm sea urchin tooth biomineralization, amelogenin and SM50, are both characterized by elongated polyproline repeat domains in the center of the macromolecule. To determine the role of polyproline repeat polypeptides in basal deuterostome biomineralization, we have mapped the localization of SM50 as it relates to crystal growth, conducted self-assembly studies of SM50 repeat polypeptides, and examined their effect on calcium carbonate and apatite crystal growth. Electron micrographs of the growth zone of Strongylocentrotus purpuratus sea urchin teeth documented a series of successive events from intravesicular mineral nucleation to mineral deposition at the interface between tooth surface and odontoblast syncytium. Using immunohistochemistry, SM50 was detected within the cytoplasm of cells associated with the developing tooth mineral, at the mineral secreting front, and adjacent to initial mineral deposits, but not in muscles and ligaments. Polypeptides derived from the SM50 polyproline alternating hexa- and hepta-peptide repeat region (SM50P6P7) formed highly discrete, donut-shaped self-assembly patterns. In calcium carbonate crystal growth studies, SM50P6P7 repeat peptides triggered the growth of expansive networks of fused calcium carbonate crystals while in apatite growth studies, SM50P6P7 peptides facilitated the growth of needle-shaped and parallel arranged crystals resembling those found in developing vertebrate enamel. In comparison, SM50P6P7 surpassed the PXX24 polypeptide repeat region derived from the vertebrate enamel protein amelogenin in its ability to promote crystal nucleation and appositional crystal growth. Together, these studies establish the SM50P6P7 polyproline repeat region as a potent regulator in the protein-guided appositional crystal growth that occurs during continuous tooth mineralization and eruption. In addition, our studies highlight the role of species

  7. SM50 repeat-polypeptides self-assemble into discrete matrix subunits and promote appositional calcium carbonate crystal growth during sea urchin tooth biomineralization.

    PubMed

    Mao, Yelin; Satchell, Paul G; Luan, Xianghong; Diekwisch, Thomas G H

    2016-01-01

    The two major proteins involved in vertebrate enamel formation and echinoderm sea urchin tooth biomineralization, amelogenin and SM50, are both characterized by elongated polyproline repeat domains in the center of the macromolecule. To determine the role of polyproline repeat polypeptides in basal deuterostome biomineralization, we have mapped the localization of SM50 as it relates to crystal growth, conducted self-assembly studies of SM50 repeat polypeptides, and examined their effect on calcium carbonate and apatite crystal growth. Electron micrographs of the growth zone of Strongylocentrotus purpuratus sea urchin teeth documented a series of successive events from intravesicular mineral nucleation to mineral deposition at the interface between tooth surface and odontoblast syncytium. Using immunohistochemistry, SM50 was detected within the cytoplasm of cells associated with the developing tooth mineral, at the mineral secreting front, and adjacent to initial mineral deposits, but not in muscles and ligaments. Polypeptides derived from the SM50 polyproline alternating hexa- and hepta-peptide repeat region (SM50P6P7) formed highly discrete, donut-shaped self-assembly patterns. In calcium carbonate crystal growth studies, SM50P6P7 repeat peptides triggered the growth of expansive networks of fused calcium carbonate crystals while in apatite growth studies, SM50P6P7 peptides facilitated the growth of needle-shaped and parallel arranged crystals resembling those found in developing vertebrate enamel. In comparison, SM50P6P7 surpassed the PXX24 polypeptide repeat region derived from the vertebrate enamel protein amelogenin in its ability to promote crystal nucleation and appositional crystal growth. Together, these studies establish the SM50P6P7 polyproline repeat region as a potent regulator in the protein-guided appositional crystal growth that occurs during continuous tooth mineralization and eruption. In addition, our studies highlight the role of species

  8. Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions

    NASA Astrophysics Data System (ADS)

    Matter, Juerg M.; Stute, Martin; Snæbjörnsdottir, Sandra Ó.; Oelkers, Eric H.; Gislason, Sigurdur R.; Aradottir, Edda S.; Sigfusson, Bergur; Gunnarsson, Ingvi; Sigurdardottir, Holmfridur; Gunnlaugsson, Einar; Axelsson, Gudni; Alfredsson, Helgi A.; Wolff-Boenisch, Domenik; Mesfin, Kiflom; Taya, Diana Fernandez de la Reguera; Hall, Jennifer; Dideriksen, Knud; Broecker, Wallace S.

    2016-06-01

    Carbon capture and storage (CCS) provides a solution toward decarbonization of the global economy. The success of this solution depends on the ability to safely and permanently store CO2. This study demonstrates for the first time the permanent disposal of CO2 as environmentally benign carbonate minerals in basaltic rocks. We find that over 95% of the CO2 injected into the CarbFix site in Iceland was mineralized to carbonate minerals in less than 2 years. This result contrasts with the common view that the immobilization of CO2 as carbonate minerals within geologic reservoirs takes several hundreds to thousands of years. Our results, therefore, demonstrate that the safe long-term storage of anthropogenic CO2 emissions through mineralization can be far faster than previously postulated.

  9. New agent to treat elevated phosphate levels: magnesium carbonate/calcium carbonate tablets.

    PubMed

    Meyer, Caitlin; Cameron, Karen; Battistella, Marisa

    2012-01-01

    In summary, Binaphos CM, a magnesium carbonate/calcium carbonate combination phosphate binder, is marketed for treating elevated phosphate levels in dialysis patients. Although studies using magnesium/calcium carbonate as a phosphate binder are short term with small numbers of patients, this phosphate binder has shown some promising results and may provide clinicians with an alternative for phosphate binding. Using a combination phosphate binder may reduce pill burden and encourage patient compliance. In addition to calcium and phosphate, it is imperative to diligently monitor magnesium levels in patients started on this medication, as magnesium levels may increase with longer duration of use. Additional randomized controlled trials are necessary to evaluate long-term efficacy and safety of this combination phosphate binder.

  10. Spectral features of biogenic calcium carbonates and implications for astrobiology

    NASA Astrophysics Data System (ADS)

    Berg, B. L.; Ronholm, J.; Applin, D. M.; Mann, P.; Izawa, M.; Cloutis, E. A.; Whyte, L. G.

    2014-09-01

    The ability to discriminate biogenic from abiogenic calcium carbonate (CaCO3) would be useful in the search for extant or extinct life, since CaCO3 can be produced by both biotic and abiotic processes on Earth. Bioprecipitated CaCO3 material was produced during the growth of heterotrophic microbial isolates on medium enriched with calcium acetate or calcium citrate. These biologically produced CaCO3, along with natural and synthetic non-biologically produced CaCO3 samples, were analysed by reflectance spectroscopy (0.35-2.5 μm), Raman spectroscopy (532 and 785 nm), and laser-induced fluorescence spectroscopy (365 and 405 nm excitation). Optimal instruments for the discrimination of biogenic from abiogenic CaCO3 were determined to be reflectance spectroscopy, and laser-induced fluorescence spectroscopy. Multiple absorption features in the visible light region occurred in reflectance spectra for most biogenic CaCO3 samples, which are likely due to organic pigments. Multiple fluorescence peaks occurred in emission spectra (405 nm excitation) of biogenic CaCO3 samples, which also are best attributed to the presence of organic compounds; however, further analyses must be performed in order to better determine the cause of these features to establish criteria for confirming the origin of a given CaCO3 sample. Raman spectroscopy was not useful for discrimination since any potential Raman peaks in spectra of biogenic carbonates collected by both the 532 and 785 nm lasers were overwhelmed by fluorescence. However, this also suggests that biogenic carbonates may be identified by the presence of this organic-associated fluorescence. No reliable spectroscopic differences in terms of parameters such as positions or widths of carbonate-associated absorption bands were found between the biogenic and abiogenic carbonate samples. These results indicate that the presence or absence of organic matter intimately associated with carbonate minerals is the only potentially useful

  11. Increased calcium absorption from synthetic stable amorphous calcium carbonate: Double-blind randomized crossover clinical trial in post-menopausal women

    USDA-ARS?s Scientific Manuscript database

    Calcium supplementation is a widely recognized strategy for achieving adequate calcium intake. We designed this blinded, randomized, crossover interventional trial to compare the bioavailability of a new stable synthetic amorphous calcium carbonate (ACC) with that of crystalline calcium carbonate (C...

  12. Increasing Soil Calcium Availability Alters Forest Soil Carbon Stocks

    NASA Astrophysics Data System (ADS)

    Melvin, A.; Goodale, C. L.

    2011-12-01

    Acid deposition in the Northeastern U.S. has been linked to a loss of soil base cations, especially calcium (Ca). While much research has addressed the effects of Ca depletion on soil and stream acidification, few studies have investigated its effects on ecosystem carbon (C) balance. We studied the long-term effects of increased Ca availability on C cycling in a northern hardwood forest in the Adirondack Park, NY. In 1989, calcium carbonate (lime) was added to ~ 100 ha of the Woods Lake Watershed to ameliorate the effects of soil Ca depletion. An additional 100 ha were maintained as controls. We hypothesized that the lime addition would improve forest health and that this improvement would be evident in increased tree biomass, leaf litter, and fine root production. Within the forest floor, we anticipated that the increased pH associated with liming would stimulate microbial activity resulting in increased decomposition and basal soil respiration, and reduced C stocks. Additionally, we hypothesized that increased Ca availability could enhance Ca-OM complexation in the upper mineral soils, leading to increased C stocks in these horizons. Eighteen years after liming, soil pH and exchangeable Ca pools remained elevated in the forest floor and upper mineral soil of the limed plots. Forest floor C stocks were significantly larger in limed plots (68 vs. 31 t C ha-1), and were driven primarily by greater C accumulation in the forest floor Oa horizon. Mineral soil C stocks did not differ between limed and control soils. Liming did not affect tree growth, however a net decline in biomass was observed across the entire watershed. There was a trend for larger fine root and foliar litter inputs in limed plots relative to controls, but the observed forest floor accumulation appears to be driven primarily by a suppression of decomposition. Liming reduced basal soil respiration rates by 17 and 43 % in the Oe and Oa horizons, respectively. This research suggests that Ca may

  13. Formate oxidation-driven calcium carbonate precipitation by Methylocystis parvus OBBP.

    PubMed

    Ganendra, Giovanni; De Muynck, Willem; Ho, Adrian; Arvaniti, Eleni Charalampous; Hosseinkhani, Baharak; Ramos, Jose Angel; Rahier, Hubert; Boon, Nico

    2014-08-01

    Microbially induced carbonate precipitation (MICP) applied in the construction industry poses several disadvantages such asammonia release to the air and nitric acid production. An alternative MICP from calcium formate by Methylocystis parvus OBBP is presented here to overcome these disadvantages. To induce calcium carbonate precipitation, M. parvus was incubated at different calcium formate concentrations and starting culture densities. Up to 91.4% ± 1.6% of the initial calcium was precipitated in the methane-amended cultures compared to 35.1% ± 11.9% when methane was not added. Because the bacteria could only utilize methane for growth, higher culture densities and subsequently calcium removals were exhibited in the cultures when methane was added. A higher calcium carbonate precipitate yield was obtained when higher culture densities were used but not necessarily when more calcium formate was added. This was mainly due to salt inhibition of the bacterial activity at a high calcium formate concentration. A maximum 0.67 ± 0.03 g of CaCO3 g of Ca(CHOOH)2(-1) calcium carbonate precipitate yield was obtained when a culture of 10(9) cells ml(-1) and 5 g of calcium formate liter(-)1 were used. Compared to the current strategy employing biogenic urea degradation as the basis for MICP, our approach presents significant improvements in the environmental sustainability of the application in the construction industry.

  14. Formate Oxidation-Driven Calcium Carbonate Precipitation by Methylocystis parvus OBBP

    PubMed Central

    Ganendra, Giovanni; De Muynck, Willem; Ho, Adrian; Arvaniti, Eleni Charalampous; Hosseinkhani, Baharak; Ramos, Jose Angel; Rahier, Hubert

    2014-01-01

    Microbially induced carbonate precipitation (MICP) applied in the construction industry poses several disadvantages such as ammonia release to the air and nitric acid production. An alternative MICP from calcium formate by Methylocystis parvus OBBP is presented here to overcome these disadvantages. To induce calcium carbonate precipitation, M. parvus was incubated at different calcium formate concentrations and starting culture densities. Up to 91.4% ± 1.6% of the initial calcium was precipitated in the methane-amended cultures compared to 35.1% ± 11.9% when methane was not added. Because the bacteria could only utilize methane for growth, higher culture densities and subsequently calcium removals were exhibited in the cultures when methane was added. A higher calcium carbonate precipitate yield was obtained when higher culture densities were used but not necessarily when more calcium formate was added. This was mainly due to salt inhibition of the bacterial activity at a high calcium formate concentration. A maximum 0.67 ± 0.03 g of CaCO3 g of Ca(CHOOH)2−1 calcium carbonate precipitate yield was obtained when a culture of 109 cells ml−1 and 5 g of calcium formate liter−1 were used. Compared to the current strategy employing biogenic urea degradation as the basis for MICP, our approach presents significant improvements in the environmental sustainability of the application in the construction industry. PMID:24837386

  15. Calcium Isotope Fractionation during Carbonate Weathering in the Northern Guangdong, South China

    NASA Astrophysics Data System (ADS)

    Liu, F.; Mao, G.; Wei, G.; Zhang, Z.

    2017-12-01

    CO2 is consumed during the weathering of carbonates, whereas carbonates are precipitated rapidly in the oceans, which are pivotal to modulate atmospheric CO2, oceanic pH and climate. Calcium carbonate in limestone is one of the largest reservoirs of carbon at the Earth's surface, so calcium is an important element that links the lithosphere, hydrosphere, biosphere, and the atmosphere. Compared with silicate rocks, carbonate rocks have more rapid rates of physical and chemical erosions, so the carbonate weathering will respond more quickly to the climatic changes. In the southeast of China, enormous of carbonate rocks are widely distributed. Due to the influence of the subtropical monsoon climate, the rocks experienced strong chemical weathering and pedogenic process, resulting in red weathering crust of carbonate rocks. This type of weathering crust is geochemistry-sensitive and ecology-vulnerable, which can provide important insights into the recycle of supergene geochemistry in the karst areas. In this study, we report calcium isotopic compositions of saprolites from a weathering profile developed on argillaceous carbonate rocks in northern Guangdong, South China. The acid-leachable fraction, which was extracted by 1N hydrochloride acid, showed limited variation of δ44/40Ca(NIST 915a) spanning from 0.55 ± 0.06‰ (2SD) to 0.72 ± 0.05‰ (2SD) despite CaO content ranging from 0.01 wt.% to 45.7 wt.%, implying that Ca isotope didn't fractionate much which may due to the congruent dissolution of limestone minerals. In contrast, radiogenic 87Sr/86Sr ratios of the whole rocks changed with depth from 0.710086 ± 6 (2SE) at the base rock to 0.722164± 8 (2SE) at the top-soil, which are possibly attributed to the mixing effect between carbonate and silicate fractions. Sr is an analogue for Ca due to its similar ionic size and charge; however, these two systems can differ in certain respects. The coupled study of Ca and Sr will be helpful to verify sources of Ca and the

  16. Mars Life? - Orange-colored Carbonate Mineral Globules

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This photograph shows orange-colored carbonate mineral globules found in a meteorite, called ALH84001, believed to have once been a part of Mars. These carbonate minerals in the meteorite are believed to have been formed on Mars more than 3.6 billion years ago. Their structure and chemistry suggest that they may have been formed with the assistance of primitive, bacteria-like living organisms. A two-year investigation by a NASA research team found organic molecules, mineral features characteristic of biological activity and possible microscopic fossils inside of carbonate minerals such as these in the meteorite.

  17. Synthesis of calcium vanadate minerals and related compounds

    USGS Publications Warehouse

    Marvin, Richard F.

    1956-01-01

    Synthesis of natural vanadates shows that most of them are stable in an acid environment. Phase studies of a portion of the system CaO-V2O5-H2O indicate that calcium vanadates are an indicator of environmental pH conditions. Some minerals, such as pascoute, indicate rapid evaporation of vanadite solutions; other minerals, such as hewettite, show that slow evaporation took place. Cursory examination of systems K2O-UO2-(NO3)2-V2O5 and CaO-UO2(NO3)2-V2O5, both in aqueous solution, has yielded information on the relationships among carnotite, tyuyamunite, and rauvite.

  18. Hypoparathyroidism: what is the best calcium carbonate supplementation intake form?

    PubMed

    Gollino, Loraine; Biagioni, Maria Fernanda Giovanetti; Sabatini, Nathalia Regina; Tagliarini, José Vicente; Corrente, José Eduardo; Paiva, Sérgio Alberto Rupp de; Mazeto, Gláucia Maria Ferreira da Silva

    2017-11-15

    In hypoparathyroidism, calcium supplementation using calcium carbonate is necessary for the hypocalcemia control. The best calcium carbonate intake form is unknown, be it associated with feeding, juice or in fasting. The objective was to evaluate the calcium, phosphorus and Calcium×Phosphorus product serum levels of hypoparathyroidism women after total thyroidectomy, following calcium carbonate intake in three different forms. A crossover study was carried out with patients presenting definitive hypoparathyroidism, assessed in different situations (fasting, with water, orange juice, breakfast with a one-week washout). Through the review of clinical data records of tertiary hospital patients from 1994 to 2010, 12 adult women (18 50 years old) were identified and diagnosed with definitive post-thyroidectomy hypoparathyroidism. The laboratory results of calcium and phosphorus serum levels dosed before and every 30min were assessed, for 5h, after calcium carbonate intake (elementary calcium 500mg). The maximum peak average values for calcium, phosphorus and Calcium×Phosphorus product were 8.63mg/dL (water), 8.77mg/dL (orange juice) and 8.95mg/dL (breakfast); 4.04mg/dL (water), 4.03mg/dL (orange juice) and 4.12mg/dL (breakfast); 34.3mg 2 /dL 2 (water), 35.8mg 2 /dL 2 (orange juice) and 34.5mg 2 /dL 2 (breakfast), respectively, and the area under the curve 2433mg/dLmin (water), 2577mg/dLmin (orange juice) and 2506mg/dLmin (breakfast), 1203mg/dLmin (water), 1052mg/dLmin (orange juice) and 1128mg/dLmin (breakfast), respectively. There was no significant difference among the three different tests (p>0.05). The calcium, phosphorus and Calcium×Phosphorus product serum levels evolved in a similar fashion in the three calcium carbonate intake forms. Copyright © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  19. Dissolution and secondary mineral precipitation in basalts due to reactions with carbonic acid

    NASA Astrophysics Data System (ADS)

    Kanakiya, Shreya; Adam, Ludmila; Esteban, Lionel; Rowe, Michael C.; Shane, Phil

    2017-06-01

    One of the leading hydrothermal alteration processes in volcanic environments is when rock-forming minerals with high concentrations of iron, magnesium, and calcium react with CO2 and water to form carbonate minerals. This is used to the advantage of geologic sequestration of anthropogenic CO2. Here we experimentally investigate how mineral carbonation processes alter the rock microstructure due to CO2-water-rock interactions. In order to characterize these changes, CO2-water-rock alteration in Auckland Volcanic Field young basalts (less than 0.3 Ma) is studied before and after a 140 day reaction period. We investigate how whole core basalts with similar geochemistry but different porosity, permeability, pore geometry, and volcanic glass content alter due to CO2-water-rock reactions. Ankerite and aluminosilicate minerals precipitate as secondary phases in the pore space. However, rock dissolution mechanisms are found to dominate this secondary mineral precipitation resulting in an increase in porosity and decrease in rigidity of all samples. The basalt with the highest initial porosity and volcanic glass volume shows the most secondary mineral precipitation. At the same time, this sample exhibits the greatest increase in porosity and permeability, and a decrease in rock rigidity post reaction. For the measured samples, we observe a correlation between volcanic glass volume and rock porosity increase due to rock-fluid reactions. We believe this study can help understand the dynamic rock-fluid interactions when monitoring field scale CO2 sequestration projects in basalts.

  20. 40 CFR 415.300 - Applicability; description of the calcium carbonate production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... calcium carbonate production subcategory. 415.300 Section 415.300 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Calcium Carbonate Production Subcategory § 415.300 Applicability; description of the calcium carbonate production subcategory. The provisions of this subpart are applicable to discharges...

  1. 40 CFR 415.300 - Applicability; description of the calcium carbonate production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... calcium carbonate production subcategory. 415.300 Section 415.300 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Calcium Carbonate Production Subcategory § 415.300 Applicability; description of the calcium carbonate production subcategory. The provisions of this subpart are applicable to discharges...

  2. 40 CFR 415.300 - Applicability; description of the calcium carbonate production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... calcium carbonate production subcategory. 415.300 Section 415.300 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Calcium Carbonate Production Subcategory § 415.300 Applicability; description of the calcium carbonate production subcategory. The provisions of this subpart are applicable to discharges...

  3. 40 CFR 415.300 - Applicability; description of the calcium carbonate production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... calcium carbonate production subcategory. 415.300 Section 415.300 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Calcium Carbonate Production Subcategory § 415.300 Applicability; description of the calcium carbonate production subcategory. The provisions of this subpart are applicable to discharges...

  4. 40 CFR 415.300 - Applicability; description of the calcium carbonate production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... calcium carbonate production subcategory. 415.300 Section 415.300 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Calcium Carbonate Production Subcategory § 415.300 Applicability; description of the calcium carbonate production subcategory. The provisions of this subpart are applicable to discharges...

  5. CALCIUM CARBONATE DISSOLUTION RATE IN LIMESTONE CONTACTORS

    EPA Science Inventory

    The rate of carbonate mineral dissolution from limestone was studied using a rotating disk apparatus and samples of limestone of varied composition. The purpose of this study was to determine the effect of limestone composition on the kinetics of carbonate mineral dissolution. Th...

  6. Nacre-like calcium carbonate controlled by ionic liquid/graphene oxide composite template.

    PubMed

    Yao, Chengli; Xie, Anjian; Shen, Yuhua; Zhu, Jinmiao; Li, Hongying

    2015-06-01

    Nacre-like calcium carbonate nanostructures have been mediated by an ionic liquid (IL)-graphene oxide (GO) composite template. The resultant crystals were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, and X-ray powder diffractometry (XRD). The results showed that either 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]BF4) or graphene oxide can act as a soft template for calcium carbonate formation with unusual morphologies. Based on the time-dependent morphology changes of calcium carbonate particles, it is concluded that nacre-like calcium carbonate nanostructures can be formed gradually utilizing [BMIM]BF4/GO composite template. During the process of calcium carbonate formation, [BMIM]BF4 acted not only as solvents but also as morphology templates for the fabrication of calcium carbonate materials with nacre-like morphology. Based on the observations, the possible mechanisms were also discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Analysis of mineral matrices of planetary soil analogues from the Utah Desert

    NASA Astrophysics Data System (ADS)

    Kotler, J. M.; Quinn, R. C.; Foing, B. H.; Martins, Z.; Ehrenfreund, P.

    2011-07-01

    Phyllosilicate minerals and hydrated sulphate minerals have been positively identified on the surface of Mars. Studies conducted on Earth indicate that micro-organisms influence various geochemical and mineralogical transitions for the sulphate and phyllosilicate minerals. These minerals in turn provide key nutrients to micro-organisms and influence microbial ecology. Therefore, the presence of these minerals in astrobiology studies of Earth-Mars analogue environments could help scientists better understand the types and potential abundance of micro-organisms and/or biosignatures that may be encountered on Mars. Bulk X-ray diffraction of samples collected during the EuroGeoMars 2009 campaign from the Mancos Shale, the Morrison and the Dakota formations near the Mars Desert Research Station in Utah show variable but common sedimentary mineralogy with all samples containing quantities of hydrated sulphate minerals and/or phyllosilicates. Analysis of the clay fractions indicate that the phyllosilicates are interstratified illite-smectites with all samples showing marked changes in the diffraction pattern after ethylene glycol treatment and the characteristic appearance of a solvated peak at ˜17 Å. The smectite phases were identified as montmorillonite and nontronite using a combination of the X-ray diffraction data and Fourier-Transform Infrared Spectroscopy. The most common sulphate mineral in the samples is hydrated calcium sulphate (gypsum), although one sample contained detectable amounts of strontium sulphate (celestine). Carbonates detected in the samples are variable in composition and include pure calcium carbonate (calcite), magnesium-bearing calcium carbonate (dolomite), magnesium, iron and manganese-bearing calcium carbonate (ankerite) and iron carbonate (siderite). The results of these analyses when combined with organic extractions and biological analysis should help astrobiologists and planetary geologists better understand the potential relationships

  8. Supplementation with bio-calcium from shells Pinctada maxima in postmenopausal women with decreased mineral bone density--pilot study.

    PubMed

    Vujasinović-Stupar, Nada; Novković, Snezana; Jezdić, Ivana

    2009-01-01

    Treatment of osteoporosis, in addition to a specific antiresorptive or anabolic treatment, requires supplementation with calcium and vitamin D. Widespread cultivation of pearl shells has made pearls available for commercial use for a very reasonable price. The main chemical compound of pearls from shells Pinctada maxima is calcium-carbonate (CaCO3). Recently developed technologies applied in a micronisation process have provided increased gastrointestinal resorption of calcium, estimated at over 90% of calcium intake. The paper is aimed at monitoring of efficacy and tolerance of six-month bio-calcium supplementation in postmenopausal women with reduced bone mineral density. Group 1 (30 patients) received, three times a day, capsules of pearl powder from shells Pinctada maxima (it is equal to 260 mg of elementary calcium); group II (20 patients) received a daily dose of 500 mg inorganic CaCO3. Both groups received 666 IU of cholecalciferol per day. In all patients, bone mineral density (BMD) of the spine or hip, serum blood and urine levels of Ca, phosphates and alkaline phosphatase, were measured before and after six months of the treatment. Group I/Group II: average age 61.7/61.7 years; beginning of menopause: 48.32 /48 years; menopause duration 13.4/13.7 years; average body mass index 27.2/27 kg/m2. These two groups did not different significantly before supplementation. Six-month supplementation with CaCO3 of the biological origin led to the increase of BMD from 0.901 g/cm2 to 0.948 g/cm2 (p = 0.067), while BMD remained the same in the group supplemented with inorganic CaCO3 Gastrointestinal tolerability of bio-calcium was excellent, without any adverse events. These data could not strongly support the hypothesis of better efficacy of bio-calcium taking into account a small number of patients and a short follow-up period in this pilot study. Tolerance of CaCO3 of the biological origin was excellent and free of any adverse events. The results of laboratory values

  9. A flow-system comparison of the reactivities of calcium superoxide and potassium superoxide with carbon dioxide and water vapor

    NASA Technical Reports Server (NTRS)

    Wood, P. C.; Ballou, E. V.; Spitze, L. A.; Wydeven, T.

    1982-01-01

    A single pass flow system was used to test the reactivity of calcium superoxide with respiratory gases and the performance was compared to that of potassium superoxide. The KO2 system is used by coal miners as a self-contained unit in rescue operations. Particular attention was given to the reactivity with carbon dioxide and water vapor at different temperatures and partial pressures of oxygen, carbon dioxide, and water vapor. The calcium superoxide beds were found to absorb CO2 and H2O vapor, releasing O2. The KO2 bed, however, released O2 at twice the rate of CO2 absorption at 37 C. It is concluded that the calcium superoxide material is not a suitable replacement for the KO2 bed, although Ca(O2)2 may be added to the KO2 bed to enhance the CO2 absorption.

  10. Biomimetic nanoparticles with polynucleotide and PEG mixed-monolayers enhance calcium phosphate mineralization

    NASA Astrophysics Data System (ADS)

    Vasconcellos, Kayla B.; McHugh, Sean M.; Dapsis, Katherine J.; Petty, Alexander R.; Gerdon, Aren E.

    2013-09-01

    Biomineralization of hydroxyapatite (Ca10(PO4)6(OH)2) is of significant importance in biomedical applications such as bone and dental repair, and biomimetic control of mineral formation may lead to more effective restorative procedures. Gold nanoparticles are functional scaffolds on which to assemble multi-component monolayers capable of mimicking protein activity in the templated synthesis of calcium phosphate. The goal of this research was to explore nanoparticle templates with mixed-monolayers of uncharged polar polyethylene glycol (PEG) molecules and highly charged polynucleotide and amino acid molecules in their ability to influence mineralization rates and mineral particle size and morphology. This research demonstrates through time-resolved optical density and dynamic light scattering measurements that the combination of tiopronin, PEG, and DNA presented on a nanoparticle surface decreases nanoparticle aggregation from 59 to 21 nm solvated radius, increases mineralization kinetics from 1.5 × 10-3 to 3.1 × 10-3 OD/min, and decreases mineral particle size from 685 to 442 nm average radius. FT-IR and TEM data demonstrate that mineralized material, while initially amorphous, transforms to a semi-crystalline material when guided by template interactions. This demonstrates that surface-tailored monolayer protected cluster scaffolds are successful and controllable mineralization templates with further potential for biomedical applications involving calcium phosphate and other biomaterials.

  11. Bone Mineral Density, Mechanical, Microstructural Properties and Mineral Content of the Femur in Growing Rats Fed with Cactus Opuntia ficus indica (L.) Mill. (Cactaceae) Cladodes as Calcium Source in Diet.

    PubMed

    Hernández-Becerra, Ezequiel; Gutiérrez-Cortez, Elsa; Del Real, Alicia; Rojas-Molina, Alejandra; Rodríguez-García, Mario; Rubio, Efraín; Quintero-García, Michelle; Rojas-Molina, Isela

    2017-02-04

    Mechanical, microstructural properties, mineral content and bone mineral density (BMD) of the femur were evaluated in growing rats fed with Opuntia ficus indica (L.) Mill. (Cactaceae) cladodes at different maturity stages as calcium source. Male weanling rats were fed with cladodes at early maturity stage (25 and 60 days of age, belonging to groups N-60 and N-200, respectively) and cladodes at late maturity stage (100 and 135 days of age, belonging to groups N-400 and N-600, respectively) for 6 weeks. Additionally, a control group fed with calcium carbonate as calcium source was included for comparative purposes. All diets were fitted to the same calcium content (5 g/kg diet). The failure load of femurs was significantly lower ( p ≤ 0.05) in groups N-60 and N-200 in comparison to N-400, N-600 and control groups. The cortical width (Ct.Wi) and trabecular thickness (Tb.Th) of the femurs in control and N-600 groups were significantly higher ( p ≤ 0.05) than Ct.Wi and Tb.Th of femurs in groups N-60 and N-200. Trabecular separation of the femurs in N-60 and N-200 groups showed the highest values compared with all experimental groups. The highest calcium content in the femurs were observed in control, N-600 and N-400 groups; whereas the lowest phosphorus content in the bones were detected in N-200, N-600 and N-400 groups. Finally, the BMD in all experimental groups increased with age; nevertheless, the highest values were observed in N-600 and control groups during pubertal and adolescence stages. The results derived from this research demonstrate, for the first time, that the calcium found in Opuntia ficus indica cladodes is actually bioavailable and capable of improving mineral density and mechanical and microstructural properties of the bones. These findings suggest that the consumption of cladodes at late maturity stage within the diet might have a beneficial impact on bone health.

  12. Bone Mineral Density, Mechanical, Microstructural Properties and Mineral Content of the Femur in Growing Rats Fed with Cactus Opuntia ficus indica (L.) Mill. (Cactaceae) Cladodes as Calcium Source in Diet

    PubMed Central

    Hernández-Becerra, Ezequiel; Gutiérrez-Cortez, Elsa; Del Real, Alicia; Rojas-Molina, Alejandra; Rodríguez-García, Mario; Rubio, Efraín; Quintero-García, Michelle; Rojas-Molina, Isela

    2017-01-01

    Mechanical, microstructural properties, mineral content and bone mineral density (BMD) of the femur were evaluated in growing rats fed with Opuntia ficus indica (L.) Mill. (Cactaceae) cladodes at different maturity stages as calcium source. Male weanling rats were fed with cladodes at early maturity stage (25 and 60 days of age, belonging to groups N-60 and N-200, respectively) and cladodes at late maturity stage (100 and 135 days of age, belonging to groups N-400 and N-600, respectively) for 6 weeks. Additionally, a control group fed with calcium carbonate as calcium source was included for comparative purposes. All diets were fitted to the same calcium content (5 g/kg diet). The failure load of femurs was significantly lower (p ≤ 0.05) in groups N-60 and N-200 in comparison to N-400, N-600 and control groups. The cortical width (Ct.Wi) and trabecular thickness (Tb.Th) of the femurs in control and N-600 groups were significantly higher (p ≤ 0.05) than Ct.Wi and Tb.Th of femurs in groups N-60 and N-200. Trabecular separation of the femurs in N-60 and N-200 groups showed the highest values compared with all experimental groups. The highest calcium content in the femurs were observed in control, N-600 and N-400 groups; whereas the lowest phosphorus content in the bones were detected in N-200, N-600 and N-400 groups. Finally, the BMD in all experimental groups increased with age; nevertheless, the highest values were observed in N-600 and control groups during pubertal and adolescence stages. The results derived from this research demonstrate, for the first time, that the calcium found in Opuntia ficus indica cladodes is actually bioavailable and capable of improving mineral density and mechanical and microstructural properties of the bones. These findings suggest that the consumption of cladodes at late maturity stage within the diet might have a beneficial impact on bone health. PMID:28165410

  13. Effect of Strength Enhancement of Soil Treated with Environment-Friendly Calcium Carbonate Powder

    PubMed Central

    Park, Kyungho; Jun, Sangju; Kim, Daehyeon

    2014-01-01

    This study aims to investigate the effects of the strength improvement of soft ground (sand) by producing calcium carbonate powder through microbial reactions. To analyze the cementation effect of calcium carbonate produced through microbial reaction for different weight ratios, four different types of specimens (untreated, calcium carbonate, cement, and calcium carbonate + cement) with different weight ratios (2%, 4%, 6%, and 8%) were produced and cured for a period of 3 days, 7 days, 14 days, 21 days, and 28 days to test them. The uniaxial compression strength of specimens was measured, and the components in the specimen depending on the curing period were analyzed by means of XRD analysis. The result revealed that higher weight ratios and longer curing period contributed to increased strength of calcium carbonate, cement, and calcium carbonate + cement specimens. The calcium carbonate and the calcium carbonate + cement specimens in the same condition showed the tendency of decreased strength approximately 3 times and two times in comparison with the 8% cement specimens cured for 28 days, but the tendency of increased strength was approximately 4 times and 6 times in comparison with the untreated specimen. PMID:24688401

  14. Effect of strength enhancement of soil treated with environment-friendly calcium carbonate powder.

    PubMed

    Park, Kyungho; Jun, Sangju; Kim, Daehyeon

    2014-01-01

    This study aims to investigate the effects of the strength improvement of soft ground (sand) by producing calcium carbonate powder through microbial reactions. To analyze the cementation effect of calcium carbonate produced through microbial reaction for different weight ratios, four different types of specimens (untreated, calcium carbonate, cement, and calcium carbonate + cement) with different weight ratios (2%, 4%, 6%, and 8%) were produced and cured for a period of 3 days, 7 days, 14 days, 21 days, and 28 days to test them. The uniaxial compression strength of specimens was measured, and the components in the specimen depending on the curing period were analyzed by means of XRD analysis. The result revealed that higher weight ratios and longer curing period contributed to increased strength of calcium carbonate, cement, and calcium carbonate + cement specimens. The calcium carbonate and the calcium carbonate + cement specimens in the same condition showed the tendency of decreased strength approximately 3 times and two times in comparison with the 8% cement specimens cured for 28 days, but the tendency of increased strength was approximately 4 times and 6 times in comparison with the untreated specimen.

  15. Chapter 7:Mineral Scale Management

    Treesearch

    Alan W. Rudie; Peter W. Hart

    2012-01-01

    Mineral scale problems are not new to pulp mills and bleach plants. The liquor recovery system ensures that white liquor is saturated in calcium carbonate, and this mineral will precipitate when heated to cooking temperatures in the digester [1,2]. The original single-vessel continuous digesters sold by Kamyr had an extra liquor heater as standard equipment to enable...

  16. Carbonation of Rock Minerals by Supercritical Carbon Dioxide at 250 degrees C.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugama, T.; Ecker, L.; Butcher, T.

    2010-06-01

    Wet powder-samples of five rock minerals, granite, albite, hornblende, diorite, and biotite mica, were exposed in supercritical carbon dioxide (scCO2) for 3 days at 250 C under 17.23 MPa pressure, and then the susceptibility of the various crystalline phases present in these mineral structures to reactions with hot scCO2 was investigated by XRD and FT-IR. The anorthite present in diorite was identified as the most vulnerable phase to carbonation. In contrast, biotite displayed a great resistance, although its phase was transformed hydrothermally to sanidine and quartz. Granite comprised of two phases, anorthoclase-type albite and quartz. The carbonation of former phasemore » led to the formation of amorphous sodium and potassium carbonates coexisting with the clay-like by-products of the carbonation reaction. The reactivity of quartz to scCO2 was minimal, if any. Among these rock minerals, only hornblende formed crystalline carbonation products, such as calcite and magnesite after exposure, reflecting the likelihood of an increase in its volume. Based upon the feldspar ternary diagram, the carbonation rate of various different minerals in the plagioclase feldspar family depended primarily on the amount of anorthite. On the other hand, alkali feldspar minerals involving anorthoclase-type albite and sanidine had a lower reactivity with scCO2, compared with that of plagioclase feldspar minerals.« less

  17. The cationic composition and pH in the moulting fluid of Porcellio scaber (Crustacea, Isopoda) during calcium carbonate deposit formation and resorption.

    PubMed

    Ziegler, Andreas

    2008-01-01

    Before moulting, terrestrial isopods resorb calcium carbonate (CaCO(3)) from the posterior cuticle and store it in sternal deposits. These consist mainly of amorphous calcium carbonate (ACC) spherules that develop within the ecdysial space between the anterior sternal epithelium and the old cuticle. Ions that occur in the moulting fluid, including those required for mineral deposition, are transported from the hemolymph into the ecdysial space by the anterior sternal epithelial cells. The cationic composition of the moulting fluid probably affects mineral deposition and may provide information on the ion-transport activity of the sternal epithelial cells. This study presents the concentrations of inorganic cations within the moulting fluid of the anterior sternites during the late premoult and intramoult stages. The most abundant cation is Na(+) followed by Mg(2+), Ca(2+) and K(+). The concentrations of these ions do not change significantly between the stages whereas the mean pH changed from 8.2 to 6.9 units between mineral deposition in late premoult, and resorption in intramoult, respectively. Measurements of the transepithelial potential show that there is little driving force for passive movements of calcium across the anterior sternal epithelium. The results suggest a possible role of magnesium ions in ACC formation, and a contribution of pH changes to CaCO(3) precipitation and dissolution.

  18. Restoration of parathyroid function after change of phosphate binder from calcium carbonate to lanthanum carbonate in hemodialysis patients with suppressed serum parathyroid hormone.

    PubMed

    Inaba, Masaaki; Okuno, Senji; Nagayama, Harumi; Yamada, Shinsuke; Ishimura, Eiji; Imanishi, Yasuo; Shoji, Shigeichi

    2015-03-01

    Control of phosphate is the most critical in the treatment of chronic kidney disease with mineral and bone disorder (CKD-MBD). Because calcium-containing phosphate binder to CKD patients is known to induce adynamic bone disease with ectopic calcification by increasing calcium load, we examined the effect of lanthanum carbonate (LaC), a non-calcium containing phosphate binder, to restore bone turnover in 27 hemodialysis patients with suppressed parathyroid function (serum intact parathyroid hormone [iPTH] ≦ 150 pg/mL). At the initiation of LaC administration, the dose of calcium-containing phosphate binder calcium carbonate (CaC) was withdrawn or reduced based on serum phosphate. After initiation of LaC administration, serum calcium and phosphate decreased significantly by 4 weeks, whereas whole PTH and iPTH increased. A significant and positive correlation between decreases of serum calcium, but not phosphate, with increases of whole PTH and iPTH, suggested that the decline in serum calcium with reduction of calcium load by LaC might increase parathyroid function. Serum bone resorption markers, such as serum tartrate-resistant acid phosphatase 5b, and N-telopeptide of type I collagen increased significantly by 4 weeks after LaC administration, which was followed by increases of serum bone formation markers including serum bone alkaline phosphatase, intact procollagen N-propeptide, and osteocalcin. Therefore, it was suggested that LaC attenuated CaC-induced suppression of parathyroid function and bone turnover by decreasing calcium load. In conclusion, replacement of CaC with LaC, either partially or totally, could increase parathyroid function and resultant bone turnover in hemodialysis patients with serum iPTH ≦ 150 pg/mL. Copyright © 2015 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  19. Shock vaporization of carbonate and sulfate minerals

    NASA Astrophysics Data System (ADS)

    Shen, A. H.; Ahrens, T. J.; O'Keefe, J. D.

    2001-12-01

    Strong shock waves induced by impacts can cause vaporization of rocks and minerals. The products of such process play important roles in planetary differentiation (Yakovlev et al., Geochem. International, 38, 1027, 2000) and in effecting the planetary climate. Many experiments and computer simulations have been performed to simulate the Chicxulub impact at Cretaceous/Tertiary boundary (see, for example, Pierazzo et al., J. Geophys. Res., 103, 28607, 1998 and Pope et al., J. Geophys. Res., 102, 21645, 1997). However, the pressure range for incipient and complete vaporization of carbonates and sulfates are not well constrained, especially, for minerals with various initial porosities. Furthermore, evidence for chemical species in the products of vaporized carbonate and sulfate minerals is almost non-existing. In this study, we employed published Hugoniot data for carbonate and sulfate minerals. By using the methods described in Ahrens (J. Appl. Phys., 43, 2443, 1972) and Ahrens and O'Keefe (The Moon, 4, 214, 1972), we calculated the entropy associated with the thermodynamic states produced by hypervelocity impacts at various velocities for carbonate and sulfate minerals with different initial porosities. The results were compared with the entropy of incipient vaporization and complete vaporization of these minerals to determine the degree of vaporization due to impacts. Moreover, these results are utilized to guide our experimental study in speciation reactions in shock-induced vaporization of carbonates and sulfates.

  20. Interplay between black carbon and minerals contributes to long term carbon stabilization and mineral transformation

    NASA Astrophysics Data System (ADS)

    Liang, B.; Weng, Y. T.; Wang, C. C.; Chiang, C. C.; Liu, C. C.; Lehmann, J.

    2017-12-01

    Black carbon receives increasing global wide research attention due to its role in carbon sequestration, soil fertility enhancement and remediation application. Generally considered chemically stable in bulk, the reactive surface of BC can interplays with minerals and form strong chemical bondage, which renders physical protection of BC and contributes to its long term stabilization. Using historical BC-rich Amazonian Dark Earth (ADE), we probe the in-situ organo-mineral association and transformation of BC and minerals over a millennium scale using various synchrotron-based spectroscopic (XANES, FTIR) and microscopic (TXM) methods. Higher content of SRO minerals was found in BC-rich ADE compare to adjacent tropical soils. The iron signature found in BC-rich ADE was mainly ferrihydrite/lepidocrocite, a more reactive form of Fe compared to goethite, which was dominant in adjacent soil. Abundant nano minerals particles were observed in-situ associated with BC surface, in clusters and layers. The organo-mineral interaction lowers BC bioavailability and enhances its long-term stabilization in environment, while at the same time, transforms associated minerals into more reactive forms under rapid redox/weathering environment. The results suggest that mineral physical protection for BC sequestration may be more important than previous understanding. The scale up application of BC/biochar into agricultural systems and natural environments have long lasting impact on the in-situ transformation of associated minerals.

  1. Biofilm-induced calcium carbonate precipitation: application in the subsurface

    NASA Astrophysics Data System (ADS)

    Phillips, A. J.; Eldring, J.; Lauchnor, E.; Hiebert, R.; Gerlach, R.; Mitchell, A. C.; Esposito, R.; Cunningham, A. B.; Spangler, L.

    2012-12-01

    We have investigated mitigation strategies for sealing high permeability regions, like fractures, in the subsurface. This technology has the potential to, for example, improve the long-term security of geologically-stored carbon dioxide (CO2) by sealing fractures in cap rocks or to mitigate leakage pathways to prevent contamination of overlying aquifers from hydraulic fracturing fluids. Sealing technologies using low-viscosity fluids are advantageous since they potentially reduce the necessary injection pressures and increase the radius of influence around injection wells. In this technology, aqueous solutions and suspensions are used to promote microbially-induced mineral precipitation which can be applied in subsurface environments. To this end, a strategy was developed to twice seal a hydraulically fractured, 74 cm (2.4') diameter Boyles Sandstone core, collected in North-Central Alabama, with biofilm-induced calcium carbonate (CaCO3) precipitates under ambient pressures. Sporosarcina pasteurii biofilms were established and calcium and urea containing reagents were injected to promote saturation conditions favorable for CaCO3 precipitation followed by growth reagents to resuscitate the biofilm's ureolytic activity. Then, in order to evaluate this process at relevant deep subsurface pressures, a novel high pressure test vessel was developed to house the 74 cm diameter core under pressures as high as 96 bar (1,400 psi). After determining that no impact to the fracture permeability occurred due to increasing overburden pressure, the fractured core was sealed under subsurface relevant pressures relating to 457 meters (1,500 feet) below ground surface (44 bar (650 psi) overburden pressure). After fracture sealing under both ambient and subsurface relevant pressure conditions, the sandstone core withstood three times higher well bore pressure than during the initial fracturing event, which occurred prior to biofilm-induced CaCO3 mineralization. These studies suggest

  2. Relationship between carbon and nitrogen mineralization in a subtropical soil

    NASA Astrophysics Data System (ADS)

    Li, Qianru; Sun, Yue; Zhang, Xinyu; Xu, Xingliang; Kuzyakov, Yakov

    2014-05-01

    In most soils, more than 90% nitrogen is bonded with carbon in organic forms. This indicates that carbon mineralization should be closely coupled with nitrogen mineralization, showing a positive correlation between carbon and nitrogen mineralization. To test this hypothesis above, we conducted an incubation using a subtropical soil for 10 days at 15 °C and 25 °C. 13C-labeled glucose and 15N-labeled ammonium or nitrate was used to separate CO2 and mineral N released from mineralization of soil organic matter and added glucose or inorganic nitrogen. Phospholipid fatty acid (PLFA) and four exoenzymes (i.e. β-1,4- Glucosaminidase, chitinase, acid phosphatase, β-1,4-N- acetyl glucosamine glycosidase) were also analyzed to detect change in microbial activities during the incubation. Our results showed that CO2 release decreased with increasing nitrogen mineralization rates. Temperature did not change this relationship between carbon and nitrogen mineralization. Although some changes in PLFA and the four exoenzymes were observed, these changes did not contribute to changes in carbon and nitrogen mineralization. These findings indicates that carbon and nitrogen mineralization in soil are more complicated than as previously expected. Future investigation should focus on why carbon and nitrogen mineralization are coupled in a negative correlation not in a positive correlation in many soils for a better understanding of carbon and nitrogen transformation during their mineralization.

  3. [Effects of nandrolone decanoate on bone mineral content and intestinal absorption of calcium].

    PubMed

    Nuti, R; Righi, G A; Turchetti, V; Vattimo, A

    1984-01-28

    To evaluate the effects of a long-term treatment with nandrolone decanoate on metabolism of the skeleton, a double-blind randomized study was carried out in women with joint diseases without metabolic bone derangement. Ten patients were treated with 50 mg of nandrolone decanoate every three weeks for two years; in six subjects a treatment with placebo was performed. As it concerns plasma calcium and phosphate, serum alkaline phosphatase, urinary excretion of calcium, phosphate, hydroxyproline and cAMP, as parathyroid index, it was not observed significant differences in the two examined groups. While in placebo group at the end of the study the intestinal radiocalcium remained unchanged and bone mineral content showed a slight decrease, on the contrary nandrolone decanoate treatment promoted a significant improvement in intestinal calcium absorption and an increase in bone mineral content.

  4. Mineral Carbonation Feasibility, an Economic Approach.

    NASA Astrophysics Data System (ADS)

    Pasquier, L. C.; Kemache, N.; Cecchi, E.; Mercier, G.; Blais, J. F.; Kentish, S.

    2016-12-01

    Mineral Carbonation (MC) is one of the ways proposed to mitigate Carbon dioxide (CO2) emissions. Although it intends to transform CO2 into a stable and inert carbonate by reacting it with any divalent containing material, MC is still globally seen as an unrealistic methodology to reduce CO2, mostly because carbonation was seen as a sequestration technique only (after CO2 capture). Nevertheless, recent studies considered and showed the feasibility of an integrated capture/storage approach. Thus, MC can be adapted to flue gas or other industrial gas streams more or less concentrated in CO2. Furthermore, carbonation can be applied to various problematics and offers the advantage to be feasible with a broad range of feedstock such as alkaline industrial or mining residues. Using an economic approach where by-product valorization is favored, interesting approaches were identified. More specifically, the particular case of the Québec province shows that different synergies between wastes and industries can be elaborated. The results indicate that MC can be seen as a practical approach to both reduce CO2 emissions and enhance waste remediation. For instance, the feasibility to export significant amounts of serpentinite mining residue to distant industrial sites using the St Lawrence maritime route was demonstrated. Here the applicability stands on the high value of the generated by-products. On the other hand, steel slags or waste concrete need more local applications due to their limited reaction efficiencies and the lower price of calcium carbonates. While transportation is a major factor for the OPEX cost, the profitability relies on the by-products potential sale. Indeed, the production of low carbon footprint materials from the reaction product will also expand the offer of CO2 utilization avenues. The presentation highlights the results of research made in the lab and using economic modeling to draw a portrait of the opportunities and challenges identified with

  5. Regulation of Cellular Calcium in Vestibular Supporting Cells by Otopetrin 1

    PubMed Central

    Kim, Euysoo; Hyrc, Krzysztof L.; Speck, Judith; Lundberg, Yunxia W.; Salles, Felipe T.; Kachar, Bechara; Goldberg, Mark P.; Warchol, Mark E.

    2010-01-01

    Otopetrin 1 (OTOP1) is a multitransmembrane domain protein, which is essential for mineralization of otoconia, the calcium carbonate biominerals required for vestibular function, and the normal sensation of gravity. The mechanism driving mineralization of otoconia is poorly understood, but it has been proposed that supporting cells and a mechanism to maintain high concentrations of calcium are critical. Using Otop1 knockout mice and a utricular epithelial organ culture system, we show that OTOP1 is expressed at the apex of supporting cells and functions to increase cytosolic calcium in response to purinergic agonists, such as adenosine 5′-triphosphate (ATP). This is achieved by blocking mobilization of calcium from intracellular stores in an extracellular calcium-dependent manner and by mediating influx of extracellular calcium. These data support a model in which OTOP1 acts as a sensor of the extracellular calcium concentration near supporting cells and responds to ATP in the endolymph to increase intracellular calcium levels during otoconia mineralization. PMID:20554841

  6. Effect of calcium supplementation in pregnancy on maternal bone outcomes in women with a low calcium intake123

    PubMed Central

    Jarjou, Landing MA; Laskey, M Ann; Sawo, Yankuba; Goldberg, Gail R; Cole, Timothy J

    2010-01-01

    Background: Mobilization of maternal bone mineral partly supplies calcium for fetal and neonatal bone growth and development. Objective: We investigated whether pregnant women with low calcium intakes may have a more extensive skeletal response postpartum that may compromise their short- or long-term bone health. Design: In a subset of participants (n = 125) in a double-blind, randomized, placebo-controlled trial (International Trial Registry: ISRCTN96502494) in pregnant women in The Gambia, West Africa, with low calcium intakes (≈350 mg Ca/d), we measured bone mineral status of the whole body, lumbar spine, and hip by using dual-energy X-ray absorptiometry and measured bone mineral status of the forearm by using single-photon absorptiometry at 2, 13, and 52 wk lactation. We collected blood and urine from the subjects at 20 wk gestation and at 13 wk postpartum. Participants received calcium carbonate (1500 mg Ca/d) or a matching placebo from 20 wk gestation to parturition; participants did not consume supplements during lactation. Results: Women who received the calcium supplement in pregnancy had significantly lower bone mineral content (BMC), bone area (BA), and bone mineral density (BMD) at the hip throughout 12 mo lactation (mean ± SE difference: BMC = −10.7 ± 3.7%, P = 0.005; BA = −3.8 ± 1.9%, P = 0.05; BMD = −6.9 ± 2.6%, P = 0.01). The women also experienced greater decreases in bone mineral during lactation at the lumbar spine and distal radius and had biochemical changes consistent with greater bone mineral mobilization. Conclusions: Calcium supplementation in pregnant women with low calcium intakes may disrupt metabolic adaptation and may not benefit maternal bone health. Further study is required to determine if such effects persist long term or elicit compensatory changes in bone structure. PMID:20554790

  7. Mineral scale management. Part 1, Case studies

    Treesearch

    Peter W. Hart; Alan W. Rudie

    2006-01-01

    Mineral scale increases operating costs, extends downtime, and increases maintenance requirements. This paper presents several successful case studies detailing how mills have eliminated scale. Cases presented include calcium carbonate scale in a white liquor strainer, calcium oxalate scale in the D0 stage of the bleach plant, enzymatic treatment of brown stock to...

  8. A facile magnesium-containing calcium carbonate biomaterial as potential bone graft.

    PubMed

    He, Fupo; Zhang, Jing; Tian, Xiumei; Wu, Shanghua; Chen, Xiaoming

    2015-12-01

    The calcium carbonate is the main composition of coral which has been widely used as bone graft in clinic. Herein, we readily prepared novel magnesium-containing calcium carbonate biomaterials (MCCs) under the low-temperature conditions based on the dissolution-recrystallization reaction between unstable amorphous calcium carbonate (ACC) and metastable vaterite-type calcium carbonate with water involved. The content of magnesium in MCCs was tailored by adjusting the proportion of ACC starting material that was prepared using magnesium as stabilizer. The phase composition of MCCs with various amounts of magnesium was composed of one, two or three kinds of calcium carbonates (calcite, aragonite, and/or magnesian calcite). The different MCCs differed in topography. The in vitro degradation of MCCs accelerated with increasing amount of introduced magnesium. The MCCs with a certain amount of magnesium not only acquired higher compressive strength, but also promoted in vitro cell proliferation and osteogenic differentiation. Taken together, the facile MCCs shed light on their potential as bone graft. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Randomized crossover study comparing the phosphate-binding efficacy of calcium ketoglutarate versus calcium carbonate in patients on chronic hemodialysis.

    PubMed

    Bro, S; Rasmussen, R A; Handberg, J; Olgaard, K; Feldt-Rasmussen, B

    1998-02-01

    The objective of the study was to evaluate the phosphate-binding efficacy, side effects, and cost of therapy of calcium ketoglutarate granulate as compared with calcium carbonate tablets in patients on chronic hemodialysis. The study design used was a randomized, crossover open trial, and the main outcome measurements were plasma ionized calcium levels, plasma phosphate levels, plasma intact parathyroid hormone (PTH) levels, requirements for supplemental aluminum-aminoacetate therapy, patient tolerance, and cost of therapy. Nineteen patients on chronic hemodialysis were treated with a dialysate calcium concentration of 1.25 mmol/L and a fixed alfacalcidol dose for at least 2 months. All had previously tolerated therapy with calcium carbonate. Of the 19 patients included, 10 completed both treatment arms. After 12 weeks of therapy, the mean (+/-SEM) plasma ionized calcium level was significantly lower in the ketoglutarate arm compared with the calcium carbonate arm (4.8+/-0.1 mg/dL v 5.2+/-0.1 mg/dL; P = 0.004), whereas the mean plasma phosphate (4.5+/-0.3 mg/dL v 5.1+/-0.1 mg/dL) and PTH levels (266+/-125 pg/mL v 301+/-148 pg/mL) did not differ significantly between the two treatment arms. Supplemental aluminum-aminoacetate was not required during calcium ketoglutarate treatment, while two patients needed this supplement when treated with calcium carbonate. Five of 17 (29%) patients were withdrawn from calcium ketoglutarate therapy within 1 to 2 weeks due to intolerance (anorexia, vomiting, diarrhea, general uneasiness), whereas the remaining 12 patients did not experience any side effects at all. The five patients with calcium ketoglutarate intolerance all had pre-existing gastrointestinal symptoms; four of them had received treatment with cimetidine or omeprazol before inclusion into the study. Calculations based on median doses after 12 weeks showed that the cost of the therapy in Denmark was 10 times higher for calcium ketoglutarate compared with calcium

  10. Normocalcemia is maintained in mice under conditions of calcium malabsorption by vitamin D–induced inhibition of bone mineralization

    PubMed Central

    Lieben, Liesbet; Masuyama, Ritsuko; Torrekens, Sophie; Van Looveren, Riet; Schrooten, Jan; Baatsen, Pieter; Lafage-Proust, Marie-Hélène; Dresselaers, Tom; Feng, Jian Q.; Bonewald, Lynda F.; Meyer, Mark B.; Pike, J. Wesley; Bouillon, Roger; Carmeliet, Geert

    2012-01-01

    Serum calcium levels are tightly controlled by an integrated hormone-controlled system that involves active vitamin D [1,25(OH)2D], which can elicit calcium mobilization from bone when intestinal calcium absorption is decreased. The skeletal adaptations, however, are still poorly characterized. To gain insight into these issues, we analyzed the consequences of specific vitamin D receptor (Vdr) inactivation in the intestine and in mature osteoblasts on calcium and bone homeostasis. We report here that decreased intestinal calcium absorption in intestine-specific Vdr knockout mice resulted in severely reduced skeletal calcium levels so as to ensure normal levels of calcium in the serum. Furthermore, increased 1,25(OH)2D levels not only stimulated bone turnover, leading to osteopenia, but also suppressed bone matrix mineralization. This resulted in extensive hyperosteoidosis, also surrounding the osteocytes, and hypomineralization of the entire bone cortex, which may have contributed to the increase in bone fractures. Mechanistically, osteoblastic VDR signaling suppressed calcium incorporation in bone by directly stimulating the transcription of genes encoding mineralization inhibitors. Ablation of skeletal Vdr signaling precluded this calcium transfer from bone to serum, leading to better preservation of bone mass and mineralization. These findings indicate that in mice, maintaining normocalcemia has priority over skeletal integrity, and that to minimize skeletal calcium storage, 1,25(OH)2D not only increases calcium release from bone, but also inhibits calcium incorporation in bone. PMID:22523068

  11. The calcium concentration of public drinking waters and bottled mineral waters in Spain and its contribution to satisfying nutritional needs.

    PubMed

    Vitoria, Isidro; Maraver, Francisco; Ferreira-Pêgo, Cíntia; Armijo, Francisco; Moreno Aznar, Luis; Salas-Salvadó, Jordi

    2014-07-01

    A sufficient intake of calcium enables correct bone mineralization. The bioavailability of calcium in water is similar to that in milk. To determine the concentration of calcium in public drinking water and bottled mineral water. We used ion chromatography to analyse the calcium concentrations of public drinking waters in a representative sample of 108 Spanish municipalities (21,290,707 people) and of 109 natural mineral waters sold in Spain, 97 of which were produced in Spain and 12 of which were imported. The average calcium concentration of public drinking waters was 38.96 ± 32.44 mg/L (range: 0.40- 159.68 mg/L). In 27 municipalities, the water contained 50-100 mg/L of calcium and in six municipalities it contained over 100 mg/L. The average calcium concentration of the 97 Spanish natural mineral water brands was 39.6 mg/L (range: 0.6-610.1 mg/L). Of these, 34 contained 50-100 mg/L of calcium and six contained over 100 mg/L. Of the 12 imported brands, 10 contained over 50 mg/L. Assuming water consumption is as recommended, water containing 50-100 mg/L of calcium provides 5.4-12.8% of the recommended intake of calcium for children aged one to thirteen, up to 13.6% for adolescents, 5.8-17.6% for adults, and up to 20.8% for lactating mothers. Water with 100-150 mg/L of calcium provides 10-31% of the recommended dietary allowance, depending on the age of the individual. Public drinking water and natural mineral water consumption in a third of Spanish cities can be considered an important complementary source of calcium. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  12. Altered steady state pharmacokinetics of levofloxacin in adult cystic fibrosis patients receiving calcium carbonate.

    PubMed

    Pai, Manjunath P; Allen, Sarah E; Amsden, Guy W

    2006-08-01

    Levofloxacin is used in adult patients with cystic fibrosis but its pharmacokinetics is not well characterized in this population. Patients with cystic fibrosis use calcium routinely to prevent osteoporosis. A slower intestinal transit time is common in cystic fibrosis implying that the standard 2-h spacing of minerals and levofloxacin to prevent a chelation interaction may be insufficient. The objectives of this study were to characterize the steady state pharmacokinetics of oral levofloxacin 750 mg with and without 2-h spaced calcium carbonate in patients with cystic fibrosis compared to matched healthy volunteers. In an open-label, randomized, cross-over study of five patients with cystic fibrosis and five age, sex, race, and serum creatinine matched healthy volunteers received 750 mg of oral levofloxacin alone daily for 5 days and the same dose of levofloxacin with 2-h spaced calcium carbonate supplementation 500 mg po thrice daily with meals in random sequence. Blood was collected for plasma assay of levofloxacin pre-dose, 0.5, 1, 1.5, 2, 4, 8, 12, and 24h after the fifth levofloxacin dose. There was no significant interaction in healthy volunteers, however, when cystic fibrosis patients were given levofloxacin with 2-h spaced calcium, the maximum plasma concentration (Cmax) decreased by 19% and time to Cmax increased by 37% (p<0.05). This difference in peak concentrations resulted in a lack of bioequivalence (Cmax geometric mean ratio 81.6%, 90% confidence intervals: 71.8%, 91.4%) even when levofloxacin and calcium supplements were spaced by the standard 2h administration instruction in patients with cystic fibrosis. These results indicate that multivalent cations such as calcium should be maximally separated from oral levofloxacin administration in adult patients with cystic fibrosis to prevent this drug interaction, thereby better optimizing antibiotic efficacy and decreasing the potential for resistance development.

  13. On the structure of amorphous calcium carbonate--a detailed study by solid-state NMR spectroscopy.

    PubMed

    Nebel, Holger; Neumann, Markus; Mayer, Christian; Epple, Matthias

    2008-09-01

    The calcium carbonate phases calcite, aragonite, vaterite, monohydrocalcite (calcium carbonate monohydrate), and ikaite (calcium carbonate hexahydrate) were studied by solid-state NMR spectroscopy ( (1)H and (13)C). Further model compounds were sodium hydrogencarbonate, potassium hydrogencarbonate, and calcium hydroxide. With the help of these data, the structure of synthetically prepared additive-free amorphous calcium carbonate (ACC) was analyzed. ACC contains molecular water (as H 2O), a small amount of mobile hydroxide, and no hydrogencarbonate. This supports the concept of ACC as a transient precursor in the formation of calcium carbonate biominerals.

  14. GFP Facilitates Native Purification of Recombinant Perlucin Derivatives and Delays the Precipitation of Calcium Carbonate

    PubMed Central

    Weber, Eva; Guth, Christina; Weiss, Ingrid M.

    2012-01-01

    Insolubility is one of the possible functions of proteins involved in biomineralization, which often limits their native purification. This becomes a major problem especially when recombinant expression systems are required to obtain larger amounts. For example, the mollusc shell provides a rich source of unconventional proteins, which can interfere in manifold ways with different mineral phases and interfaces. Therefore, the relevance of such proteins for biotechnological processes is still in its infancy. Here we report a simple and reproducible purification procedure for a GFP-tagged lectin involved in biomineralization, originally isolated from mother-of-pearl in abalone shells. An optimization of E. coli host cell culture conditions was the key to obtain reasonable yields and high degrees of purity by using simple one-step affinity chromatography. We identified a dual functional role for the GFP domain when it became part of a mineralizing system in vitro. First, the GFP domain improved the solubility of an otherwise insoluble protein, in this case recombinant perlucin derivatives. Second, GFP inhibited calcium carbonate precipitation in a concentration dependent manner. This was demonstrated here using a simple bulk assay over a time period of 400 seconds. At concentrations of 2 µg/ml and higher, the inhibitory effect was observed predominantly for HCO3 − as the first ionic interaction partner, but not necessarily for Ca2+ . The interference of GFP-tagged perlucin derivatives with the precipitation of calcium carbonate generated different types of GFP-fluorescent composite calcite crystals. GFP-tagging offers therefore a genetically tunable tool to gently modify mechanical and optical properties of synthetic biocomposite minerals. PMID:23056388

  15. Capping a Pulpotomy with Calcium Aluminosilicate Cement: Comparison to Mineral Trioxide Aggregates

    PubMed Central

    Kramer, Phillip R.; Woodmansey, Karl F.; White, Robert; Primus, Carolyn M.; Opperman, Lynne A.

    2014-01-01

    Introduction Calcium aluminate cements have shown little affinity for bacterial growth, low toxicity, and immunogenicity when used as a restoration material, but calcium aluminate cements have not been tested in vivo in pulpotomy procedures. Methods To address this question, a calcium aluminate cement (Quick-Set) was tested along with 2 mineral trioxide aggregates, ProRoot MTA and MTA Plus. These cements were used as a capping agent after pulpotomy. Control rats had no pulpotomy, or the pulpotomy was not capped. Proinflammatory cytokines interleukin (IL)-1β and IL-1α were measured, and histology was performed at 30 and 60 days after capping. The nociceptive response was determined by measuring the lengthening of the rat's meal duration. Results and Conclusions: IL-1β and IL-1α concentrations were reduced in the capped teeth, but no differences were observed among the 3 cements. Dentinal bridging could be detected at both 30 and 60 days with each of the 3 cements, and the pulps were still vital 60 days after capping. Meal duration significantly shortened after placement of the 3 different cements, indicating a nociceptive response, but there were no differences among the materials. Calcium aluminate cements had similar properties to mineral trioxide aggregates and is a viable option for pulpotomy procedures. PMID:25146026

  16. Particle size of calcium carbonate does not affect apparent and standardized total tract digestibility of calcium, retention of calcium, or growth performance of growing pigs.

    PubMed

    Merriman, L A; Stein, H H

    2016-09-01

    Two experiments were conducted to evaluate particle size of calcium carbonate used in diets fed to growing pigs. Experiment 1 was conducted to determine apparent total tract digestibility (ATTD), standardized total tract digestibility (STTD), and retention of Ca among diets containing calcium carbonate produced to different particle sizes, and Exp. 2 was conducted to determine if growth performance of weanling pigs is affected by particle size of calcium carbonate. In Exp. 1, 4 diets based on corn and potato protein isolate were formulated to contain 0.70% Ca and 0.33% standardized total tract digestible P, but the calcium carbonate used in the diets was ground to 4 different particle sizes (200, 500, 700, or 1,125 μm). A Ca-free diet was formulated to determine basal endogenous losses of Ca. In Exp. 2, 4 diets were based on corn and soybean meal and the only difference among diets was that each diet contained calcium carbonate ground to the 4 particle sizes used in Exp. 1. In Exp. 1, 40 barrows (15.42 ± 0.70 kg initial BW) were allotted to the 5 diets with 8 replicate pigs per diet using a randomized complete block design, and in Exp. 2, 128 pigs with an initial BW of 9.61 ± 0.09 kg were randomly allotted to 4 experimental diets. Results of Exp. 1 indicated that basal endogenous losses of Ca were 0.329 g/kg DMI. The ATTD of Ca was 70.0 ± 3.2, 74.3 ± 2.7, 70.0 ± 2.9, and 72.1 ± 2.7 and the STTD of Ca was 74.2 ± 3.2, 78.5 ± 2.7, 74.1 ± 2.9, and 76.2 ± 2.7 for calcium carbonate ground to 200, 500, 700, or 1,125 μm, respectively. Retention of Ca was 67.4 ± 3.1, 70.4 ± 2.6, 63.9 ± 2.8, and 67.2 ± 2.2 for diets containing calcium carbonate ground to 200, 500, 700, or 1,125 μm, respectively. There were no differences among diets for ATTD of Ca, STTD of Ca, or retention of Ca. The ATTD of P was 64.5 ± 1.7, 66.8 ± 2.6, 64.2 ± 3.0, and 63.2 ± 1.7% and retention of P was 61.4 ± 1.4, 63.8 ± 2.8, 61.9 ± 2.8, and 60.9 ± 1.5 for diets containing calcium

  17. Influence of Calcium Carbonate on Cobalt Phytoavailability in Fluvo-aquic Soil

    NASA Astrophysics Data System (ADS)

    Wang, Mengyuan; Liu, Borui; Ma, Yufei; Xue, Qianhui; Huang, Qing

    2017-12-01

    In order to study the efficacy of calcium carbonate for cobalt (Co) fixation, as well as its influence on chemical speciation of Co in fluvo-aquic soil, pakchoies were planted in the soil with different quantities of exogenous Co and calcium carbonate. Co concentrations in the mature plant shoots were analyzed, and the chemical speciation of Co were detected with the Tessier five-step sequential extraction. The results showed that the Co concentration in plants tended to decrease first and then get higher with the concentration of calcium carbonate increasing (0-12g/kg) in soil (P < 0.05). The proportion of Co in the exchangeable form in the soil followed the similar tendency (P < 0.05), which might transform from the exchangeable form into the carbonate-associated and organic-associated forms. A regression analysis showed that when the concentrations of calcium carbonate were in the range of 5.0 to 7.5 g/kg, Co concentration in the plant reached to the lowest point, while the proportion of Co in the exchangeable form reached the minimum. In conclusion, to get the optimum effect, the dosage of calcium carbonate should be kept in the range of 5.0 to 7.5 g/kg when it is applied to Co fixation.

  18. Determination of Sodium, Potassium, Magnesium, and Calcium Minerals Level in Fresh and Boiled Broccoli and Cauliflower by Atomic Absorption Spectrometry

    NASA Astrophysics Data System (ADS)

    Nerdy

    2018-01-01

    Vegetables from the cabbage family vegetables consumed by many people, which is known healthful, by eaten raw, boiled, or cooked (stir fry or soup). Vegetables like broccoli and cauliflower contain vitamins, minerals, and fiber. This study aims to determine the decrease percentage of sodium, potassium, magnesium, and calcium minerals level caused by boiled broccoli and cauliflower by atomic absorption spectrometry. Boiled broccoli and cauliflower prepared by given boiled treatment in boiling water for 3 minutes. Fresh and boiled broccoli and cauliflower carried out dry destruction, followed by quantitative analysis of sodium, potassium, magnesium, and calcium minerals respectively at a wavelength of 589.0 nm; 766.5 nm; 285.2 nm; and 422.7 nm, using atomic absorption spectrometry methods. After the determination of the sodium, potassium, magnesium, and calcium minerals level followed by validation of analytical methods with accuracy, precision, linearity, range, limit of detection (LOD), and limit of quantitation (LOQ) parameters. Research results show a decrease in the sodium, potassium, magnesium, and calcium minerals level in boiled broccoli and cauliflower compared with fresh broccoli and cauliflower. Validation of analytical methods gives results that spectrometry methods used for determining sodium, potassium, magnesium, and calcium minerals level are valid. It concluded that the boiled gives the effect of decreasing the minerals level significantly in broccoli and cauliflower.

  19. Exaggerated levothyroxine malabsorption due to calcium carbonate supplementation in gastrointestinal disorders.

    PubMed

    Csako, G; McGriff, N J; Rotman-Pikielny, P; Sarlis, N J; Pucino, F

    2001-12-01

    To describe a patient with primary hypothyroidism in whom ingestion of levothyroxine with calcium carbonate led to markedly elevated serum thyrotropin concentrations. A 61-year-old white woman with primary hypothyroidism, systemic lupus erythematosus, celiac disease, and history of Whipple resection for pancreatic cancer was euthyroid with levothyroxine 175-188 micrograms/d. After taking a high dose of calcium carbonate (1250 mg three times daily) with levothyroxine, she developed biochemical evidence of hypothyroidism (thyrotropin up to 41.4 mU/L) while remaining clinically euthyroid. Delaying calcium carbonate administration by four hours returned her serum thyrotropin to a borderline high concentration (5.7 mU/L) within a month. Serum concentrations of unbound and total thyroxine and triiodothyronine tended to decrease, but remained borderline low to normal while the patient concomitantly received levothyroxine and calcium carbonate. Concomitant administration of levothyroxine and calcium carbonate often results in levothyroxine malabsorption. While in most patients the clinical consequences of this interaction, even with prolonged exposure, are relatively small, overt hypothyrodism may develop in patients with preexisting malabsorption disorders. However, as the current case illustrates, the clinical manifestations of the initial levothyroxine deficit may not always be apparent and, of all usual laboratory thyroid function tests, only thyrotropin measurement will reliably uncover the exaggerated levothyroxine malabsorption. Decreased absorption of levothyroxine when given with calcium carbonate may be particularly pronounced in patients with preexisting malabsorption disorders. Once recognized, a change in drug administration schedule usually minimizes or eliminates this interaction.

  20. Impaired calcium sensing distinguishes primary hyperparathyroidism (PHPT) patients with low bone mineral density.

    PubMed

    Weber, Thomas J; Koh, James; Thomas, Samantha M; Hogue, Joyce A; Scheri, Randall P; Roman, Sanziana A; Sosa, Julie A

    2017-09-01

    A subset of PHPT patients exhibit a more severe disease phenotype characterized by bone loss, fractures, recurrent nephrolithiasis, and other dysfunctions, but the underlying reasons for this disparity in clinical presentation remain unknown. We sought to identify new mechanistic indices that could inform more personalized management of PHPT. Pre-, peri-, and postoperative data and demographic, clinical, and pathological information from patients undergoing parathyroidectomy for PHPT were collected. Univariate and partial Spearman correlation was used to estimate the association of parathyroid tumor calcium sensing capacity with select variables. An unselected series of 237 patients aged >18years and undergoing parathyroidectomy for PHPT were enrolled. Calcium sensing capacity, expressed as the concentration required for half-maximal biochemical response (EC50), was evaluated in parathyroid tumors from an unselected series of 74 patients and assessed for association with clinical parameters. The hypothesis was that greater disease severity would be associated with attenuated calcium sensitivity and biochemically autonomous parathyroid tumor behavior. Parathyroid tumors segregated into two distinct groups of calcium responsiveness (EC50<3.0 and ≥3.0mM). The low EC50 group (n=27) demonstrated a mean calcium EC50 value of 2.49mM [95% confidence interval (CI): 2.43-2.54mM], consistent with reference normal activity. In contrast, the high EC50 group (n=47) displayed attenuated calcium sensitivity with a mean EC50 value of 3.48mM [95% CI: 3.41-3.55mM]. Retrospective analysis of the clinical registry data suggested that high calcium EC50 patients presented with a more significant preoperative bone mineral density (BMD) deficit with a t-score of -2.7, (95% CI: -3.4 to -1.9) versus 0.9, (95% CI: -2.1 to -0.4) in low EC50 patients (p<0.001). After adjusting for gender, age, BMI, 25 OH vitamin D level and preoperative iPTH, lowest t-score and calcium EC50 were inversely

  1. A review on the kinetics of microbially induced calcium carbonate precipitation by urea hydrolysis

    NASA Astrophysics Data System (ADS)

    van Paassen, L. A.

    2017-12-01

    In this study the kinetics of calcium carbonate precipitation induced by the ureolytic bacteria are reviewed based on experiments and mathematical modelling. The study shows how urea hydrolysis rate depends on the amount of bacteria and the conditions during growth, storage, hydrolysis and precipitation. The dynamics of Microbially Induced Carbonate Precipitation has been monitored in non-seeded liquid batch experiments. Results show that particulary for a fast hydrolysis of urea (>1 M-urea day-1) in a highly concentrated equimolar solution with calcium chloride (>0.25 M) the solubility product of CaCO3 is exceeded within a short period (less than 30 minutes), the supersaturation remains high for an exended period, resulting in prolonged periods of nucleation and crystal growth and extended growth of metastable precursor mineral phases. The pH, being a result of the speciation, quickly rises until critical supersaturation is reached and precipitation is initiated. Then pH drops (sometimes showing oscillating behaviour) to about neutral where it stays until all substrates are depleted. Higher hydrolysis rates lead to higher supersaturation and pH and relatively many small crystals, whereas higher concentrations of urea and calcium chloride mainly lead to lower pH values. The conversion can be reasonably monitored by electrical conductivity and reasonably predicted, using a simplified model based on a single reaction as long as the urea hydrolysis rate is known. Complex geochemical models, which include chemical speciciation through acid-base equilibria and kinetic equations to describe mineral precipitation, do not show significant difference from the simplified model regarding the bulk chemistry and the total amount of precipitates. However, experiments show that ureolytic MICP can result in a highly variable crystal morphologies with large variation in the affected hydraulic properties when applied in a porous medium. In order to calculate the number, size and

  2. Mineral Carbonation Employing Ultramafic Mine Waste

    NASA Astrophysics Data System (ADS)

    Southam, G.; McCutcheon, J.; Power, I. M.; Harrison, A. L.; Wilson, S. A.; Dipple, G. M.

    2014-12-01

    Carbonate minerals are an important, stable carbon sink being investigated as a strategy to sequester CO2 produced by human activity. A natural playa (Atlin, BC, CAN) that has demonstrated the ability to microbially-accelerate hydromagnesite formation was used as an experimental model. Growth of microbial mats from Atlin, in a 10 m long flow-through bioreactor catalysed hydromagnesite precipitation under 'natural' conditions. To enhance mineral carbonation, chrysotile from the Clinton Creek Asbestos Mine (YT, CAN) was used as a target substrate for sulphuric acid leaching, releasing as much as 94% of the magnesium into solution via chemical weathering. This magnesium-rich 'feedstock' was used to examine the ability of the microbialites to enhance carbonate mineral precipitation using only atmospheric CO2 as the carbon source. The phototrophic consortium catalysed the precipitation of platy hydromagnesite [Mg5(CO3)4(OH)2·4H2O] accompanied by magnesite [MgCO3], aragonite [CaCO3], and minor dypingite [Mg5(CO3)4(OH)2·5H2O]. Scanning Electron Microscopy-Energy Dispersive Spectroscopy indicated that cell exteriors and extracellular polymeric substances (EPS) served as nucleation sites for carbonate precipitation. In many cases, entire cyanobacteria filaments were entombed in magnesium carbonate coatings, which appeared to contain a framework of EPS. Cell coatings were composed of small crystals, which intuitively resulted from rapid crystal nucleation. Excess nutrient addition generated eutrophic conditions in the bioreactor, resulting in the growth of a pellicle that sealed the bioreactor contents from the atmosphere. The resulting anaerobic conditions induced fermentation and subsequent acid generation, which in turn caused a drop in pH to circumneutral values and a reduction in carbonate precipitation. Monitoring of the water chemistry conditions indicated that a high pH (> 9.4), and relatively high concentrations of magnesium (> 3000 ppm), compared with the natural

  3. Calcium-silicate mesoporous nanoparticles loaded with chlorhexidine for both anti- Enterococcus faecalis and mineralization properties.

    PubMed

    Fan, Wei; Li, Yanyun; Sun, Qing; Ma, Tengjiao; Fan, Bing

    2016-10-21

    In infected periapical tissues, Enterococcus faecalis is one of the most common dominant bacteria. Chlorhexidine has been proved to show strong antibacterial ability against E. faecalis but is ineffective in promoting mineralization for tissues around root apex. Mesoporous calcium-silicate nanoparticles are newly synthesized biomaterials with excellent ability to promote mineralization and carry-release bioactive molecules in a controlled manner. In this study, mesoporous calcium-silicate nanoparticles were functionalized with chlorhexidine and their releasing profile, antibacterial ability, effect on cell proliferation and in vitro mineralization property were evaluated. The chlorhexidine was successfully incorporated into mesoporous calcium-silicate nanoparticles by a mixing-coupling method. The new material could release chlorhexidine as well as Ca 2+ and SiO 3 2- in a sustained manner with an alkaline pH value under different conditions. The antimicrobial ability against planktonic E. faecalis was dramatically improved after chlorhexidine incorporation. The nanoparticles with chlorhexidine showed no negative effect on cell proliferation with low concentrations. On dentin slices, the new synthesized material demonstrated a similar inhibitory effect on E. faecalis as the chlorhexidine. After being immersed in SBF for 9 days, numerous apatite crystals could be observed on surfaces of the material tablets. Mesoporous calcium-silicate nanoparticles loaded with chlorhexidine exhibited release of ions and chlorhexidine, low cytotoxicity, excellent antibacterial ability and in vitro mineralization. This material could be developed into a new effective intra-canal medication in dentistry or a new bone defect filling material for infected bone defects.

  4. [Calcium carbonate for the treatment of hyperphosphatemia in chronic hemodialysis patients].

    PubMed

    Kiss, D; Battegay, M; Meier, C; Lyrer, A

    1990-03-03

    Hyperphosphatemia in chronic hemodialysis patients is usually treated with aluminium containing phosphate binders. In recent years there has been increasing evidence of serious complications due to aluminium accumulation. We have investigated a new calcium carbonate preparation with an HCl-resistant capsule designed to prevent gastrointestinal side effects. Its phosphate binding capacity in comparison to aluminium chloride hydroxide was investigated in 17 chronic hemodialysis patients. The dose of the phosphate binder was adjusted regularly so that the serum phosphorus levels were below 1.8 mmol/l. The mean dose of aluminium chloride hydroxide was 3.36 g/day and of calcium carbonate 4.96 g/day. The mean (+/- SD) serum calcium level was 2.58 +/- 0.11 mmol/l under aluminium chloride hydroxide and 2.50 +/- 0.25 mmol/l under calcium carbonate. The mean phosphorus level was 1.69 +/- 0.31 mmol/l under aluminium chloride hydroxide and 1.71 +/- 0.33 under calcium carbonate. Serum aluminium fell from 64.5 +/- 14.4 micrograms/l to 28.5 +/- 17.5 micrograms/l after 3 months.

  5. Meeting calcium recommendations during middle childhood reflects mother-daughter beverage choices and predicts bone mineral status2

    PubMed Central

    Fisher, Jennifer O; Mitchell, Diane C; Smiciklas-Wright, Helen; Mannino, Michelle L; Birch, Leann L

    2008-01-01

    Background Longitudinal data regarding the influence of beverage intakes on calcium adequacy are lacking. Objective This study evaluated calcium intake from ages 5 to 9 y as a function of mother-daughter beverage choices and as a predictor of bone mineral status. Design Intakes of energy, calcium, milk, sweetened beverages, fruit juices, and non-energy-containing beverages were measured with the use of three 24-h dietary recalls in 192 non-Hispanic white girls aged 5, 7, and 9 y and their mothers. Calcium intakes from ages 5 to 9 y were categorized as either meeting or falling below recommended adequate intakes (AIs). The girls’ bone mineral status was assessed with dual-energy X-ray absorptiometry at age 9 y. Results The mean 5-y calcium intake was related to bone mineral density at age 9 y (β = 0.27, P < 0.001). The girls who met the AI for calcium were not heavier (P = 0.83) but had higher energy intakes (P < 0.0001) than did the girls who consumed less than the AI. Compared with the girls who consumed less than the AI, the girls who met the AI consumed, on average, almost twice as much milk (P < 0.0001), had smaller decreases in milk intake (P < 0.01), and consumed 18% less sweetened beverages (P < 0.01) from ages 5 to 9 y; the 2 groups did not differ significantly in juice and non-energy-containing beverage intakes. The girls who met the AI were also served milk more frequently than were the girls who consumed less than the AI (P < 0.0001) and had mothers who drank milk more frequently (P < 0.01) than did the mothers of the girls who consumed less than the AI. Conclusions These findings provide new longitudinal evidence that calcium intake predicts bone mineral status during middle childhood and reflects mother-daughter beverage choice patterns that are established well before the rapid growth and bone mineralization observed in adolescence. PMID:15051617

  6. Comparison of the Absorption of Calcium Carbonate and Calcium Citrate after Roux-en-Y Gastric Bypass

    PubMed Central

    Tondapu, P.; Provost, D.; Adams-Huet, B.; Sims, T.; Chang, C.; Sakhaee, K.

    2015-01-01

    Introduction Roux-en-Y gastric bypass (RYGB) restricts food intake. Consequently, patients consume less calcium. In addition, food no longer passes through the duodenum, the main site of calcium absorption. Therefore, calcium absorption is significantly impaired. The goal of this study is to compare two common calcium supplements in gastric bypass patients. Method Nineteen patients were enrolled in a randomized, double-blinded, crossover study comparing the absorption of calcium from calcium carbonate and calcium citrate salts. Serum and urine calcium levels were assessed for peak values (Cmax) and cumulative calcium increment (area under the curve [AUC]). Serum PTH was assessed for minimum values (PTHmin) and cumulative PTH decrement (AUC). Statistical analysis was performed using a repeated analysis of variance model. Results Eighteen subjects completed the study. Calcium citrate resulted in a significantly higher serum Cmax (9.4+0.4 mg/dl vs. 9.2+0.3 mg/dl, p=0.02) and serum AUC (55+2 mg/dl vs. 54+2 mg/dl, p=0.02). Calcium citrate resulted in a significantly lower PTHmin (24+11 pg/ml vs. 30+13 pg/ml, p=0.01) and a higher AUC (−32+51 pg/ml vs. −3+56 pg/ml, p=0.04). There was a non-significant trend for higher urinary AUC in the calcium citrate group (76.13+36.39 mg/6 h vs. 66.04+40.82, p=0.17). Conclusion Calcium citrate has superior bioavailability than calcium carbonate in RYGB patients. PMID:19437082

  7. Amorphous Calcium Carbonate Based-Microparticles for Peptide Pulmonary Delivery.

    PubMed

    Tewes, Frederic; Gobbo, Oliviero L; Ehrhardt, Carsten; Healy, Anne Marie

    2016-01-20

    Amorphous calcium carbonate (ACC) is known to interact with proteins, for example, in biogenic ACC, to form stable amorphous phases. The control of amorphous/crystalline and inorganic/organic ratios in inhalable calcium carbonate microparticles may enable particle properties to be adapted to suit the requirements of dry powders for pulmonary delivery by oral inhalation. For example, an amorphous phase can immobilize and stabilize polypeptides in their native structure and amorphous and crystalline phases have different mechanical properties. Therefore, inhalable composite microparticles made of inorganic (i.e., calcium carbonate and calcium formate) and organic (i.e., hyaluronan (HA)) amorphous and crystalline phases were investigated for peptide and protein pulmonary aerosol delivery. The crystalline/amorphous ratio and polymorphic form of the inorganic component was altered by changing the microparticle drying rate and by changing the ammonium carbonate and HA initial concentration. The bioactivity of the model peptide, salmon calcitonin (sCT), coprocessed with alpha-1-antitrypsin (AAT), a model protein with peptidase inhibitor activity, was maintained during processing and the microparticles had excellent aerodynamic properties, making them suitable for pulmonary aerosol delivery. The bioavailability of sCT after aerosol delivery as sCT and AAT-loaded composite microparticles to rats was 4-times higher than that of sCT solution.

  8. Defining reactive sites on hydrated mineral surfaces: Rhombohedral carbonate minerals

    NASA Astrophysics Data System (ADS)

    Villegas-Jiménez, Adrián; Mucci, Alfonso; Pokrovsky, Oleg S.; Schott, Jacques

    2009-08-01

    Despite the success of surface complexation models (SCMs) to interpret the adsorptive properties of mineral surfaces, their construct is sometimes incompatible with fundamental chemical and/or physical constraints, and thus, casts doubts on the physical-chemical significance of the derived model parameters. In this paper, we address the definition of primary surface sites (i.e., adsorption units) at hydrated carbonate mineral surfaces and discuss its implications to the formulation and calibration of surface equilibria for these minerals. Given the abundance of experimental and theoretical information on the structural properties of the hydrated (10.4) cleavage calcite surface, this mineral was chosen for a detailed theoretical analysis of critical issues relevant to the definition of primary surface sites. Accordingly, a single, generic charge-neutral surface site ( tbnd CaCO 3·H 2O 0) is defined for this mineral whereupon mass-action expressions describing adsorption equilibria were formulated. The one-site scheme, analogous to previously postulated descriptions of metal oxide surfaces, allows for a simple, yet realistic, molecular representation of surface reactions and provides a generalized reference state suitable for the calculation of sorption equilibria for rhombohedral carbonate minerals via Law of Mass Action (LMA) and Gibbs Energy Minimization (GEM) approaches. The one-site scheme is extended to other rhombohedral carbonate minerals and tested against published experimental data for magnesite and dolomite in aqueous solutions. A simplified SCM based on this scheme can successfully reproduce surface charge, reasonably simulate the electrokinetic behavior of these minerals, and predict surface speciation agreeing with available spectroscopic data. According to this model, a truly amphoteric behavior is displayed by these surfaces across the pH scale but at circum-neutral pH (5.8-8.2) and relatively high ΣCO 2 (⩾1 mM), proton/bicarbonate co

  9. Relative influences of solution composition and presence of intracrystalline proteins on magnesium incorporation in calcium carbonate minerals: Insight into vital effects

    NASA Astrophysics Data System (ADS)

    Hermans, Julie; André, Luc; Navez, Jacques; Pernet, Philippe; Dubois, Philippe

    2011-03-01

    Biogenic calcites may contain considerable magnesium concentrations, significantly higher than those observed in inorganic calcites. Control of ion concentrations in the calcifying space by transport systems and properties of the organic matrix of mineralization are probably involved in the incorporation of high magnesium quantities in biogenic calcites, but their relative effects have never been quantified. In vitro precipitation experiments performed at different Mg/Ca ratios in the solution and in the presence of soluble organic matrix macromolecules (SOM) extracted from sea urchin tests and spines showed that, at a constant temperature, magnesium incorporation in the precipitated minerals was mainly dependent on the Mg/Ca ratio of the solution. However, a significant increase in magnesium incorporation was observed in the presence of SOM compared with control experiments. Furthermore, this effect was more pronounced with SOM extracted from the test, which was richer in magnesium than the spines. According to SEM observations, amorphous calcium carbonate was precipitated at high Mg/Casolution. The observed predominant effect of Mg/Casolution, probably mediated in vivo by ion transport to and from the calcifying space, was suggested to induce and stabilize a transient magnesium-rich amorphous phase essential to the formation of high magnesium calcites. Aspartic acid rich proteins, shown to be more abundant in the test than in the spine matrix, further stabilize this amorphous phase. The involvement of the organic matrix in this process can explain the observation that sympatric organisms or even different skeletal elements of the same individual present different skeletal magnesium concentrations.

  10. Colorimetric determination of selenium in mineral premixes .

    PubMed

    Hurlbut, J A; Burkepile, R G; Geisler, C A; Kijak, P J; Rummel, N G

    1997-01-01

    A method is described for determination of sodium selenite or sodium selenate in mineral-based premixes. It is based on the formation of intense-yellow piazselenol by Se(IV) and 3,3'-diaminobenzidine. Mineral premixes typically contain calcium carbonate as a base material and magnesium carbonate, silicon dioxide, and iron(III) oxide as minor components or additives. In this method, the premix is digested briefly in nitric acid, diluted with water, and filtered to remove any Iron(III) oxide. Ethylenediaminetetraacetic acid and HCl are added to the filtrate, which is heated to near boiling for 1 h to convert any selenate to selenite. After heating, the solution is buffered between pH 2 and 3 with NaOH and formic acid and treated with NH2OH and EDTA; any Se present forms a complex with 3,3'-diaminobenzidine at 60 degrees C. The solution is made basic with NH4OH, and the piazselenol is extracted into toluene. The absorbance of the complex in dried toluene is measured at 420 nm. The method was validated independently by 2 laboratories. Samples analyzed included calcium carbonate fortified with 100, 200, and 300 micrograms Se in the form of sodium selenite or sodium selenate, a calcium carbonate premix containing sodium selenite, a calcium carbonate premix containing sodium selenate, and a commercial premix; 5 replicates of each sample type were analyzed by each laboratory. Average recoveries ranged from 89 to 109% with coefficients of variation from 1.2 to 13.6%.

  11. Synthesis of three-dimensional calcium carbonate nanofibrous structure from eggshell using femtosecond laser ablation

    PubMed Central

    2011-01-01

    Background Natural biomaterials from bone-like minerals derived from avian eggshells have been considered as promising bone substitutes owing to their biodegradability, abundance, and lower price in comparison with synthetic biomaterials. However, cell adhesion to bulk biomaterials is poor and surface modifications are required to improve biomaterial-cell interaction. Three-dimensional (3D) nanostructures are preferred to act as growth support platforms for bone and stem cells. Although there have been several studies on generating nanoparticles from eggshells, no research has been reported on synthesizing 3D nanofibrous structures. Results In this study, we propose a novel technique to synthesize 3D calcium carbonate interwoven nanofibrous platforms from eggshells using high repetition femtosecond laser irradiation. The eggshell waste is value engineered to calcium carbonate nanofibrous layer in a single step under ambient conditions. Our striking results demonstrate that by controlling the laser pulse repetition, nanostructures with different nanofiber density can be achieved. This approach presents an important step towards synthesizing 3D interwoven nanofibrous platforms from natural biomaterials. Conclusion The synthesized 3D nanofibrous structures can promote biomaterial interfacial properties to improve cell-platform surface interaction and develop new functional biomaterials for a variety of biomedical applications. PMID:21251288

  12. Effect of calcium carbonate combined with calcitonin on hypercalcemia in hemodialysis patients.

    PubMed

    Wei, Yong; Kong, Xiang Lei; Li, Wen Bin; Wang, Zun Song

    2014-12-01

    This short-term study assessed the efficacy and safety of calcium carbonate combined with calcitonin in the treatment of hypercalcemia in hemodialysis patients. Patients (n=64) on hemodialysis for chronic kidney disease for more than 6 months were included based on total serum calcium more than 10.5 mg/dL. All patients were randomized (1:1) to receive calcium carbonate combined with calcitonin (Group I) or lanthanum carbonate (Group II) for 12 weeks. Blood levels of calcium, phosphorus and intact parathyroid hormone (iPTH) were measured every month, bone mass density (BMD) and coronary artery calcium scores (CACS) were measured at 3 months. During the study period, serum calcium decreased from 10.72 ± 0.39 to 10.09 ± 0.28 mg/dL (P < 0.05), serum phosphorus decreased from 6.79 ± 1.05 to 5.46 ± 1.18 mg/dL (P < 0.05), and serum iPTH levels in the Group I and Group II were not significantly different from the baseline. There were no significant differences in CACS in either group. There were no significant differences in the BMD values between Group I and baseline. In Group II, the BMD values at the lumbar spine and femoral neck were significantly lower than those before the trial and significantly lower than the corresponding values of Group I (P<0.05). Calcium carbonate combined with calcitonin and lanthanum carbonate were equally effective in the suppression of hypercalcemia in hemodialysis patients. There were no serious treatment-related adverse events in treatment with calcium carbonate combined with calcitonin. © 2014 The Authors. Therapeutic Apheresis and Dialysis © 2014 International Society for Apheresis.

  13. Estimation of palaeohydrochemical conditions using carbonate minerals

    NASA Astrophysics Data System (ADS)

    Amamiya, H.; Mizuno, T.; Iwatsuki, T.; Yuguchi, T.; Murakami, H.; Saito-Kokubu, Y.

    2014-12-01

    The long-term evolution of geochemical environment in deep underground is indispensable research subject for geological disposal of high-level radioactive waste, because the evolution of geochemical environment would impact migration behavior of radionuclides in deep underground. Many researchers have made efforts previously to elucidate the geochemical environment within the groundwater residence time based on the analysis of the actual groundwater. However, it is impossible to estimate the geochemical environment for the longer time scale than the groundwater residence time in this method. In this case, analysis of the chemical properties of secondary minerals are one of useful method to estimate the paleohydrochemical conditions (temperature, salinity, pH and redox potential). In particular, carbonate minerals would be available to infer the long-term evolution of hydrochemical for the following reasons; -it easily reaches chemical equilibrium with groundwater and precipitates in open space of water flowing path -it reflects the chemical and isotopic composition of groundwater at the time of crystallization We reviewed the previous studies on carbonate minerals and geochemical conditions in deep underground and estimated the hydrochemical characteristics of past groundwater by using carbonate minerals. As a result, it was found that temperature and salinity of the groundwater during crystallization of carbonate minerals were evaluated quantitatively. On the other hand, pH and redox potential can only be understood qualitatively. However, it is suggested that the content of heavy metal elements such as manganese, iron and uranium, and rare earth elements in the carbonate minerals are useful indicators for estimating redox potential. This study was carried out under a contract with METI (Ministry of Economy, Trade and Industry) as part of its R&D supporting program for developing geological disposal technology.

  14. [Effect on calcium carbonate morphology by a strain of rock actinomycete].

    PubMed

    Chu, Yue; Cao, Chengliang; Lian, Bin

    2016-07-04

    Microbes-induced mineralization is one of the hottest issues in the field of geomicrobiology. Strain DHS C013T isolated from the surfaces of rocks in the Karst region was used to investigate microbial influence on the formation of carbonate and its morphology in the metallogenic system consisting NaHCO3 and Ca(NO3)2·4H2O. Strain DHS C013T was inoculated into malt extract-glucose-yeast extract peptone (MGYP) liquid medium. After cultivation we put the fermented solution, supernatant, hypha pellets, sterile MGYP liquid medium and ultrapure water into the metallogenic system separately. Scanning electronic microscope was applied to observe the crystals at the bottom of the petri dishes. In the metallogenic system with ultrapure water, only standard calcite of rhombohedron was found. However, special morphology of CaCO3, such as dumbbelllike, spherulite and scaly cylindrical shapes, were found in the metallogenic system with actinomycetes, hyphae fragment and their cell metabolism products. These calcium carbonates of special morphology might be resulted from their nucleation on smaller hypha pellets, hyphae fragment or extracellular secretion. Actinomycetes can induce the formation of CaCO3, and the mycelium and metabolites have important effects on regulating and influencing CaCO3 morphology. Our data provide new evidence for further understanding of the biological mineralization mediated by actinomycete and its metabolic products.

  15. Efficacy and Safety of Sucroferric Oxyhydroxide and Calcium Carbonate in Hemodialysis Patients.

    PubMed

    Koiwa, Fumihiko; Yokoyama, Keitaro; Fukagawa, Masafumi; Akizawa, Tadao

    2018-01-01

    In this phase III, open-label, single-arm, multi-center 12-week study, we evaluated the efficacy and safety of combination therapy with sucroferric oxyhydroxide (PA21) and calcium carbonate for hemodialysis patients with hyperphosphatemia. We enrolled 35 subjects aged ≥ 20 years with end-stage kidney disease and serum phosphorus 3.5-6.0 mg/dl who were undergoing hemodialysis 3 times weekly and taking calcium carbonate and sevelamer hydrochloride. Patients switched from sevelamer hydrochloride and calcium carbonate to sucroferric oxyhydroxide and calcium carbonate. Sucroferric oxyhydroxide was orally administered 3 times daily within 750 mg/d (250 mg per dose) to 3000 mg/d (1000 mg per dose), immediately before every meal, for 12 weeks. Calcium carbonate was orally administered 3 times daily after every meal. Outcomes were serum phosphorus concentration, safety, and satisfaction with bowel movements. Mean (SD) serum phosphorus concentrations were 5.01 (0.63) mg/dl at week 0 and 4.89 (1.14) mg/dl at the end of treatment, after patients switched from sevelamer hydrochloride to sucroferric oxyhydroxide. The incidence of adverse drug reactions was 31.4% (11/35), with diarrhea being the most frequent (31.4%). More sucroferric oxyhydroxide-treated patients were satisfied with their bowel movements. More patients with constipation, as well as those who experienced diarrhea, were satisfied with their bowel movements at the end of the study. Combined administration of sucroferric oxyhydroxide and calcium carbonate at low doses was effective in maintaining serum phosphorus concentrations within the target range, and patients' gastrointestinal status improved. Sucroferric oxyhydroxide maintained its serum phosphorus-lowering effect with a decreased pill burden, and its concomitant administration with calcium carbonate was well tolerated.

  16. Growth of aragonite calcium carbonate nanorods in the biomimetic anodic aluminum oxide template

    NASA Astrophysics Data System (ADS)

    Lee, Inho; Han, Haksoo; Lee, Sang-Yup

    2010-04-01

    In this study, a biomimetic template was prepared and applied for growing calcium carbonate (CaCO 3) nanorods whose shape and polymorphism were controlled. A biomimetic template was prepared by adsorbing catalytic dipeptides into the pores of an anodic aluminum oxide (AAO) membrane. Using this peptide-adsorbed template, mineralization and aggregation of CaCO 3 was carried out to form large nanorods in the pores. The nanorods were aragonite and had a structure similar to nanoneedle assembly. This aragonite nanorod formation was driven by both the AAO template and catalytic function of dipeptides. The AAO membrane pores promoted generation of aragonite polymorph and guided nanorod formation by guiding the nanorod growth. The catalytic dipeptides promoted the aggregation and further dehydration of calcium species to form large nanorods. Functions of the AAO template and catalytic dipeptides were verified through several control experiments. This biomimetic approach makes possible the production of functional inorganic materials with controlled shapes and crystalline structures.

  17. [Study on solid dispersion of precipitated calcium carbonate-based oleanolic acid].

    PubMed

    Yan, Hong-mei; Zhang, Zhen-hai; Jia, Xiao-bin; Jiang, Yan-rong; Sun, E

    2015-05-01

    Oleanolic acid-precipitated calcium carbonate solid dispersion was prepared by using solvent evaporation method. The microscopic structure and physicochemical properties of solid dispersion were analyzed using differential scanning calorimetry and scanning electron microscopy (SEM). And its in vitro release also was investigated. The properties of the precipitated calcium carbonate was studied which was as a carrier of oleanolic acid solid dispersion. Differential scanning calorimetry analysis suggested that oleanolic acid may be present in solid dispersion as amorphous substance. The in vitro release determination results of oleanolic acid-precipitated calcium carbonate (1: 5) solid dispersion showed accumulated dissolution rate of.oleanolic acid was up to 90% at 45 min. Accelerating experiment showed that content and in vitro dissolution of oleanolic acid solid dispersion did not change after storing over 6 months. The results indicated that in vitro dissolution of oleanolic acid was improved greatly by the solid dispersion with precipitated calcium carbonate as a carrier. The solid dispersion is a stabilizing system which has actual applied value.

  18. Glycolytic intermediates induce amorphous calcium carbonate formation in crustaceans.

    PubMed

    Sato, Ai; Nagasaka, Seiji; Furihata, Kazuo; Nagata, Shinji; Arai, Isao; Saruwatari, Kazuko; Kogure, Toshihiro; Sakuda, Shohei; Nagasawa, Hiromichi

    2011-04-01

    It has been thought that phosphorus in biominerals made of amorphous calcium carbonate (ACC) might be related to ACC formation, but no such phosphorus-containing compounds have ever been identified. Crustaceans use ACC biominerals in exoskeleton and gastroliths so that they will have easy access to calcium carbonate inside the body before and after molting. We have identified phosphoenolpyruvate and 3-phosphoglycerate, intermediates of the glycolytic pathway, in exoskeleton and gastroliths and found them important for stabilizing ACC.

  19. Rates of CO2 Mineralization in Geological Carbon Storage.

    PubMed

    Zhang, Shuo; DePaolo, Donald J

    2017-09-19

    Geologic carbon storage (GCS) involves capture and purification of CO 2 at industrial emission sources, compression into a supercritical state, and subsequent injection into geologic formations. This process reverses the flow of carbon to the atmosphere with the intention of returning the carbon to long-term geologic storage. Models suggest that most of the injected CO 2 will be "trapped" in the subsurface by physical means, but the most risk-free and permanent form of carbon storage is as carbonate minerals (Ca,Mg,Fe)CO 3 . The transformation of CO 2 to carbonate minerals requires supply of the necessary divalent cations by dissolution of silicate minerals. Available data suggest that rates of transformation are highly uncertain and difficult to predict by standard approaches. Here we show that the chemical kinetic observations and experimental results, when they can be reduced to a single cation-release time scale that describes the fractional rate at which cations are released to solution by mineral dissolution, show sufficiently systematic behavior as a function of pH, fluid flow rate, and time that the rates of mineralization can be estimated with reasonable certainty. The rate of mineralization depends on both the abundance (determined by the reservoir rock mineralogy) and the rate at which cations are released from silicate minerals by dissolution into pore fluid that has been acidified with dissolved CO 2 . Laboratory-measured rates and field observations give values spanning 8 to 10 orders of magnitude, but when they are evaluated in the context of a reservoir-scale reactive transport simulation, this range becomes much smaller. The reservoir scale simulations provide limits on the applicable conditions under which silicate mineral dissolution and subsequent carbonate mineral precipitation are likely to occur (pH 4.5 to 6, fluid flow velocity less than 5 m/year, and 50-100 years or more after the start of injection). These constraints lead to estimates of

  20. The investigations of changes in mineral-organic and carbon-phosphate ratios in the mixed saliva by synchrotron infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Seredin, Pavel; Goloshchapov, Dmitry; Kashkarov, Vladimir; Ippolitov, Yuri; Bambery, Keith

    The objective of this study was to investigate the efficiency of the saturation of mixed saliva by mineral complexes and groups necessary for the remineralisation of tooth enamel using exogenous and endogenous methods of caries prevention. Using IR spectroscopy and high-intensity synchrotron radiation, changes in the composition of the human mixed saliva were identified when exogenous and endogenous methods of caries prevention are employed. Based on the calculations of mineral/organic and carbon/phosphate ratios, changes in the composition of the human mixed saliva depending on a certain type of prevention were identified. It is shown that the use of a toothpaste (exogenous prevention) alone based on a multi-mineral complex including calcium glycerophosphate provides only a short-term effect of saturating the oral cavity with mineral complexes and groups. Rinsing of the oral cavity with water following the preventive use of a toothpaste completely removes the effect of the saturation of the mixed saliva with mineral groups and complexes. The use of tablets of a multi-mineral complex with calcium glycerophosphate (endogenous prevention) in combination with exogenous prevention causes an average increase of ∼10% in the content of mineral groups and complexes in the mixed saliva and allows long-term saturation of the oral fluid by them. This method outperforms the exogenous one owing to a long-term effect of optimal concentrations of endogenous and biologically available derivatives of phosphates on the enamel surface.

  1. Biomineralization of calcium carbonates and their engineered applications: a review

    PubMed Central

    Dhami, Navdeep K.; Reddy, M. Sudhakara; Mukherjee, Abhijit

    2013-01-01

    Microbially induced calcium carbonate precipitation (MICCP) is a naturally occurring biological process in which microbes produce inorganic materials as part of their basic metabolic activities. This technology has been widely explored and promising with potential in various technical applications. In the present review, the detailed mechanism of production of calcium carbonate biominerals by ureolytic bacteria has been discussed along with role of bacteria and the sectors where these biominerals are being used. The applications of bacterially produced carbonate biominerals for improving the durability of buildings, remediation of environment (water and soil), sequestration of atmospheric CO2 filler material in rubbers and plastics etc. are discussed. The study also sheds light on benefits of bacterial biominerals over traditional agents and also the issues that lie in the path of successful commercialization of the technology of microbially induced calcium carbonate precipitation from lab to field scale. PMID:24194735

  2. Salt-enhanced chemical weathering of building materials and bacterial mineralization of calcium carbonate as a treatment

    NASA Astrophysics Data System (ADS)

    Schiro, M.; Ruiz-Agudo, E.; Jroundi, F.; Gonzalez-Muñoz, M. T.; Rodriguez-Navarro, C.

    2012-04-01

    Salt weathering is an important mechanism contributing to the degradation and loss of stone building materials. In addition to the physical weathering resulting from crystallization pressure, the presence of salts in solution greatly enhances the chemical weathering potential of pore waters. Flow through experiments quantify the dissolution rates of calcite and quartz grains (63-125 micrometer diameter) when subjected to 1.0 ionic strength solutions of MgSO4, MgCl, Na2SO4 or NaCl. Results indicate that the identity of the cation is the primary control over the dissolution rate of both calcite and quartz substrates, with salt-enhanced dissolution occurring most rapidly in Mg2+ bearing solutions. It has been observed that weathering rates of rocks in nature, as well as building stones, are slowed down by naturally occurring or artificially produced patinas. These tend to be bacterially produced, durable mineralized coatings that lend some degree of protection to the underlying stone surface [1]. Our research shows that bacterially produced carbonate coatings can be quite effective at reducing chemical weathering of stone by soluble salts. The calcite-producing-bacteria used in this study were isolated from stone monuments in Granada, Spain [2] and cultivated in an organic-rich culture medium on a variety of artificial and natural substrates (including limestone, marble, sandstone, quartz, calcite single crystals, glass cover-slips, and sintered porous glass). Scanning electron microscopy (FESEM) was used to image bacterial calcite growth and biofilm formation. In-situ atomic force microscopy (AFM) enabled calculation of dissolution rates of untreated and bacterially treated surfaces. 2D-XRD showed the mineralogy and crystallographic orientation of bacterial calcium carbonate. Results indicate that bacterially produced calcite crystals form a coherent, mechanically resistant surface layer in perfect crystallographic continuity with the calcite substrate (self

  3. Hygroscopicity of mineral dust particles: Roles of chemical mixing state and hygroscopic conversion timescale

    NASA Astrophysics Data System (ADS)

    Sullivan, R. C.; Moore, M. J.; Petters, M. D.; Laskin, A.; Roberts, G. C.; Kreidenweis, S. M.; Prather, K. A.

    2009-05-01

    Our laboratory investigations of mineral dust particle hygroscopicity are motivated by field observations of the atmospheric processing of dust. During ACE-Asia we observed sulphate and nitrate to be strongly segregated from each other in individual aged Asian dust particles. CCN activation curves of pure calcium minerals as proxies for fresh (calcium carbonate) and aged (calcium sulphate, nitrate, chloride) dust indicate that this mixing state would cause a large fraction of aged dust particles to remain poor warm cloud nucleation potential, contrary to previous assumptions. The enrichment of oxalic acid in calcium-rich dust particles could have similar effects due to the formation of insoluble calcium oxalate. Soluble calcium nitrate and chloride reaction products are hygroscopic and will transform mineral dust into excellent CCN. Generating insoluble mineral particles wet by atomization produced particles with much higher hygroscopicity then when resuspended dry. The atomized particles are likely composed of dissolved residuals and do not properly reflect the chemistry of dry mineral powders. Aerosol flow tube experiments were employed to study the conversion of calcium carbonate into calcium nitrate via heterogeneous reaction with nitric acid, with simultaneous measurements of the reacted particles' chemistry and hygroscopicity. The timescale for this hygroscopic conversion was found to occur on the order of a few hours under tropospheric conditions. This implies that the conversion of non-hygroscopic calcite- containing dust into hygroscopic particles will be controlled by the availability of nitric acid, and not by the atmospheric residence time. Results from recent investigations of the effect of secondary coatings on the ice nucleation properties of dust particles will also be presented. The cloud formation potential of aged dust particles depends on both the quantity and form of the secondary species that have reacted or mixed with the dust. These results

  4. Human colon tissue in organ culture: calcium and multi-mineral-induced mucosal differentiation

    PubMed Central

    Dame, Michael K.; Veerapaneni, Indiradevi; Bhagavathula, Narasimharao; Naik, Madhav; Varani, James

    2011-01-01

    We have recently shown that a multi-mineral extract from the marine red algae, Lithothamnion calcareum, suppresses colon polyp formation and inflammation in mice. In the present study, we used intact human colon tissue in organ culture to compare responses initiated by Ca2+ supplementation versus the multi-mineral extract. Normal human colon tissue was treated for 2 d in culture with various concentrations of calcium or the mineral-rich extract. The tissue was then prepared for histology/immunohistochemistry, and the culture supernatants were assayed for levels of type I procollagen and type I collagen. At higher Ca2+ concentrations or with the mineral-rich extract, proliferation of epithelial cells at the base and walls of the mucosal crypts was suppressed, as visualized by reduced Ki67 staining. E-cadherin, a marker of differentiation, was more strongly expressed at the upper third of the crypt and at the luminal surface. Treatment with Ca2+ or with the multi-mineral extract influenced collagen turnover, with decreased procollagen and increased type I collagen. These data suggest that calcium or mineral-rich extract has the capacity to (1) promote differentiation in human colon tissue in organ culture and (2) modulate stromal function as assessed by increased levels of type I collagen. Taken together, these data suggest that human colon tissue in organ culture (supporting in vivo finding in mice) will provide a valuable model for the preclinical assessment of agents that regulate growth and differentiation in the colonic mucosa. PMID:21104039

  5. Mineral Dissolution and Precipitation due to Carbon Dioxide-Water-Rock Interactions: The Significance of Accessory Minerals in Carbonate Reservoirs (Invited)

    NASA Astrophysics Data System (ADS)

    Kaszuba, J. P.; Marcon, V.; Chopping, C.

    2013-12-01

    Accessory minerals in carbonate reservoirs, and in the caprocks that seal these reservoirs, can provide insight into multiphase fluid (CO2 + H2O)-rock interactions and the behavior of CO2 that resides in these water-rock systems. Our program integrates field data, hydrothermal experiments, and geochemical modeling to evaluate CO2-water-rock reactions and processes in a variety of carbonate reservoirs in the Rocky Mountain region of the US. These studies provide insights into a wide range of geologic environments, including natural CO2 reservoirs, geologic carbon sequestration, engineered geothermal systems, enhanced oil and gas recovery, and unconventional hydrocarbon resources. One suite of experiments evaluates the Madison Limestone on the Moxa Arch, Southwest Wyoming, a sulfur-rich natural CO2 reservoir. Mineral textures and geochemical features developed in the experiments suggest that carbonate minerals which constitute the natural reservoir will initially dissolve in response to emplacement of CO2. Euhedral, bladed anhydrite concomitantly precipitates in response to injected CO2. Analogous anhydrite is observed in drill core, suggesting that secondary anhydrite in the natural reservoir may be related to emplacement of CO2 into the Madison Limestone. Carbonate minerals ultimately re-precipitate, and anhydrite dissolves, as the rock buffers the acidity and reasserts geochemical control. Another suite of experiments emulates injection of CO2 for enhanced oil recovery in the Desert Creek Limestone (Paradox Formation), Paradox Basin, Southeast Utah. Euhedral iron oxyhydroxides (hematite) precipitate at pH 4.5 to 5 and low Eh (approximately -0.1 V) as a consequence of water-rock reaction. Injection of CO2 decreases pH to approximately 3.5 and increases Eh by approximately 0.1 V, yielding secondary mineralization of euhedral pyrite instead of iron oxyhydroxides. Carbonate minerals also dissolve and ultimately re-precipitate, as determined by experiments in the

  6. Calcium carbonate precipitation by strain Bacillus licheniformis AK01, newly isolated from loamy soil: a promising alternative for sealing cement-based materials.

    PubMed

    Vahabi, Ali; Ramezanianpour, Ali Akbar; Sharafi, Hakimeh; Zahiri, Hossein Shahbani; Vali, Hojatollah; Noghabi, Kambiz Akbari

    2015-01-01

    The relevant experiments were designed to determine the ability of indigenous bacterial strains isolated from limestone caves, mineral springs, and loamy soils to induce calcium carbonate precipitation. Among all isolates examined in this study, an efficient carbonate-precipitating soil bacterium was selected from among the isolates and identified by 16S rRNA gene sequences as Bacillus licheniformis AK01. The ureolytic isolate was able to grow well on alkaline carbonate-precipitation medium and precipitate calcium carbonate more than 1 g L(-1). Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) analyses, and scanning electron microscopy (SEM)/energy-dispersive X-ray spectroscopy (EDX) examinations were performed in order to confirm the presence of calcium carbonate in the precipitate and to determine which polymorphs were present. The selected isolate was determined to be an appropriate candidate for application in a surface treatment of cement-based material to improve the properties of the mortar. Biodeposition of a layer of calcite on the surface of cement specimens resulted in filling in pore spaces. This could be an alternative method to improve the durability of the mortar. The kind of bacterial culture and medium composition had a profound impact on the resultant CaCO(3) crystal morphology. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Modeling CO2-Water-Mineral Wettability and Mineralization for Carbon Geosequestration.

    PubMed

    Liang, Yunfeng; Tsuji, Shinya; Jia, Jihui; Tsuji, Takeshi; Matsuoka, Toshifumi

    2017-07-18

    Carbon dioxide (CO 2 ) capture and storage (CCS) is an important climate change mitigation option along with improved energy efficiency, renewable energy, and nuclear energy. CO 2 geosequestration, that is, to store CO 2 under the subsurface of Earth, is feasible because the world's sedimentary basins have high capacity and are often located in the same region of the world as emission sources. How CO 2 interacts with the connate water and minerals is the focus of this Account. There are four trapping mechanisms that keep CO 2 in the pores of subsurface rocks: (1) structural trapping, (2) residual trapping, (3) dissolution trapping, and (4) mineral trapping. The first two are dominated by capillary action, where wettability controls CO 2 and water two-phase flow in porous media. We review state-of-the-art studies on CO 2 /water/mineral wettability, which was found to depend on pressure and temperature conditions, salt concentration in aqueous solutions, mineral surface chemistry, and geometry. We then review some recent advances in mineral trapping. First, we show that it is possible to reproduce the CO 2 /water/mineral wettability at a wide range of pressures using molecular dynamics (MD) simulations. As the pressure increases, CO 2 gas transforms into a supercritical fluid or liquid at ∼7.4 MPa depending on the environmental temperature. This transition leads to a substantial decrease of the interfacial tension between CO 2 and reservoir brine (or pure water). However, the wettability of CO 2 /water/rock systems depends on the type of rock surface. Recently, we investigated the contact angle of CO 2 /water/silica systems with two different silica surfaces using MD simulations. We found that contact angle increased with pressure for the hydrophobic (siloxane) surface while it was almost constant for the hydrophilic (silanol) surface, in excellent agreement with experimental observations. Furthermore, we found that the CO 2 thin films at the CO 2 -hydrophilic

  8. Immobilization of Pseudomonas sp. DG17 onto sodium alginate–attapulgite–calcium carbonate

    PubMed Central

    Wang, Hong Qi; Hua, Fei; Zhao, Yi Cun; Li, Yi; Wang, Xuan

    2014-01-01

    A strain of Pseudomonas sp. DG17, capable of degrading crude oil, was immobilized in sodium alginate–attapulgite–calcium carbonate for biodegradation of crude oil contaminated soil. In this work, proportion of independent variables, the laboratory immobilization parameters, the micromorphology and internal structure of the immobilized granule, as well as the crude oil biodegradation by sodium alginate–attapulgite–calcium carbonate immobilized cells and sodium alginate–attapulgite immobilized cells were studied to build the optimal immobilization carrier and granule-forming method. The results showed that the optimal concentrations of sodium alginate–attapulgite–calcium carbonate and calcium chloride were 2.5%–3.5%, 0.5%–1%, 3%–7% and 2%–4%, respectively. Meanwhile, the optimal bath temperature, embedding cell amount, reaction time and multiplication time were 50–60 °C, 2%, 18 h and 48 h, respectively. Moreover, biodegradation was enhanced by immobilized cells with a total petroleum hydrocarbon removal ranging from 33.56% ± 3.84% to 56.82% ± 3.26% after 20 days. The SEM results indicated that adding calcium carbonate was helpful to form internal honeycomb-like pores in the immobilized granules. PMID:26019567

  9. Dehydration-induced amorphous phases of calcium carbonate.

    PubMed

    Saharay, Moumita; Yazaydin, A Ozgur; Kirkpatrick, R James

    2013-03-28

    Amorphous calcium carbonate (ACC) is a critical transient phase in the inorganic precipitation of CaCO3 and in biomineralization. The calcium carbonate crystallization pathway is thought to involve dehydration of more hydrated ACC to less hydrated ACC followed by the formation of anhydrous ACC. We present here computational studies of the transition of a hydrated ACC with a H2O/CaCO3 ratio of 1.0 to anhydrous ACC. During dehydration, ACC undergoes reorganization to a more ordered structure with a significant increase in density. The computed density of anhydrous ACC is similar to that of calcite, the stable crystalline phase. Compared to the crystalline CaCO3 phases, calcite, vaterite, and aragonite, the computed local structure of anhydrous ACC is most-similar to those of calcite and vaterite, but the overall structure is not well described by either. The strong hydrogen bond interaction between the carbonate ions and water molecules plays a crucial role in stabilizing the less hydrated ACC compositions compared to the more hydrated ones, leading to a progressively increasing hydration energy with decreasing water content.

  10. Effects of Physical Training and Calcium Intake on Bone Mineral Density of Students with Mental Retardation

    ERIC Educational Resources Information Center

    Hemayattalab, Rasool

    2010-01-01

    The purpose of this study was to investigate the effects of physical training and calcium intake on bone mineral density (BMD) of students with mental retardation. Forty mentally retarded boys (age 7-10 years old) were randomly assigned to four groups (no differences in age, BMD, calcium intake and physical activity): training groups with or…

  11. Design of a continuous process setup for precipitated calcium carbonate production from steel converter slag.

    PubMed

    Mattila, Hannu-Petteri; Zevenhoven, Ron

    2014-03-01

    A mineral carbonation process "slag2PCC" for carbon capture, utilization, and storage is discussed. Ca is extracted from steel slag by an ammonium salt solvent and carbonated with gaseous CO2 after the separation of the residual slag. The solvent is reused after regeneration. The effects of slag properties such as the content of free lime, fractions of Ca, Si, Fe, and V, particle size, and slag storage on the Ca extraction efficiency are studied. Small particles with a high free-lime content and minor fractions of Si and V are the most suitable. To limit the amount of impurities in the process, the slag-to-liquid ratio should remain below a certain value, which depends on the slag composition. Also, the design of a continuous test setup (total volume ∼75 L) is described, which enables quick process variations needed to adapt the system to the varying slag quality. Different precipitated calcium carbonate crystals (calcite and vaterite) are generated in different parts of the setup. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Enhanced production of mineralized nodules and collagenous proteins in vitro by calcium ascorbate supplemented with vitamin C metabolites.

    PubMed

    Rowe, D J; Ko, S; Tom, X M; Silverstein, S J; Richards, D W

    1999-09-01

    Vitamin C or ascorbate is important in wound healing due to its essential role in collagen synthesis. To study wound healing in the periodontium, cells adherent to expanded polytetrafluoroethylene (ePTFE) augmentation membranes, recovered from edentulous ridge augmentation procedures, have been established in culture in our laboratories. The objective of this study was to determine whether treatment of these cells with a calcium ascorbate, which contains vitamin C metabolites (metabolite-supplemented ascorbate), would increase the production of collagenous protein and mineralized tissue in vitro, as compared to unsupplemented calcium ascorbate (ascorbate). Cells derived from ePTFE membranes were cultured with beta-glycerophosphate and the test agents for 2 to 5 weeks, and the surface areas of the cell cultures occupied by mineralized nodules were measured using computerized image analysis. One experiment tested the effects of calcium threonate, one of the vitamin C metabolites in metabolite-supplemented ascorbate. Incorporation of radioactive proline and glycine was used as a measure of total protein (radioactivity precipitated by trichloracetic acid) and collagenase-digestible protein (radioactivity released by collagenase digestion.) Co-localization of collagen and fibronectin was examined by immunofluorescence. In vitro treatment of these cells with metabolite-supplemented ascorbate increased the area of the cell cultures occupied by mineralized nodules after 5 weeks. Cell cultures treated with metabolite-supplemented ascorbate also exhibited significant increases in total protein. The increase in collagenous proteins in these cultures accounted for 85% of the increase in total protein. The greatest difference between treatment groups was observed in the cell-associated fraction containing the extracellular matrix. The additional collagen exhibited normal co-distribution with fibronectin. In cultures treated with ascorbate spiked with calcium threonate, the area

  13. Reequilibration of fluid inclusions in low-temperature calcium-carbonate cement

    NASA Astrophysics Data System (ADS)

    Goldstein, Robert H.

    1986-09-01

    Calcium-carbonate cements precipitated in low-temperature, near-surface, vadose environments contain fluid inclusions of variable vapor-to-liquid ratios that yield variable homogenization temperatures. Cements precipitated in low-temperature, phreatic environments contain one-phase, all-liquid fluid inclusions. Neomorphism of unstable calcium-carbonate phases may cause reequilibration of fluid inclusions. Stable calcium-carbonate cements of low-temperature origin, which have been deeply buried, contain fluid inclusions of variable homogenization temperature and variable salt composition. Most inclusion fluids are not representative of the fluids present during cement growth and are more indicative of burial pore fluids. Therefore, low-temperature fluid inclusions probably reequilibrate with burial fluids during progressive burial. Reequilibration is likely caused by high internal pressures in inclusions which result in hydrofracturing. The resulting fluid-inclusion population could contain a nearly complete record of burial fluids in which a particular rock has been bathed. *Present address: Department of Geology, University of Kansas, Lawrence, Kansas 66045

  14. Calcium Hydroxide-induced Proliferation, Migration, Osteogenic Differentiation, and Mineralization via the Mitogen-activated Protein Kinase Pathway in Human Dental Pulp Stem Cells.

    PubMed

    Chen, Luoping; Zheng, Lisha; Jiang, Jingyi; Gui, Jinpeng; Zhang, Lingyu; Huang, Yan; Chen, Xiaofang; Ji, Jing; Fan, Yubo

    2016-09-01

    Calcium hydroxide has been extensively used as the gold standard for direct pulp capping in clinical dentistry. It induces proliferation, migration, and mineralization in dental pulp stem cells (DPSCs), but the underlying mechanisms are still unclear. The aim of this study was to investigate the role of the mitogen-activated protein (MAP) kinase pathway in calcium hydroxide-induced proliferation, migration, osteogenic differentiation, and mineralization in human DPSCs. Human DPSCs between passages 3 and 6 were used. DPSCs were preincubated with inhibitors of MAP kinases and cultured with calcium hydroxide. The phosphorylated MAP kinases were detected by Western blot analysis. Cell viability was analyzed via the methylthiazol tetrazolium assay. Cell migration was estimated using the wound healing assay. Alkaline phosphatase (ALP) expression was analyzed using the ALP staining assay. Mineralization was studied by alizarin red staining analysis. Calcium hydroxide significantly promoted the phosphorylation of the c-Jun N-terminal kinase (JNK), p38, and extracellular signal-regulated kinase. The inhibition of JNK and p38 signaling abolished calcium hydroxide-induced proliferation of DPSCs. The inhibition of JNK, p38, and extracellular signal-regulated kinase signaling suppressed the migration, ALP expression, and mineralization of DPSCs. Our study showed that the MAP kinase pathway was involved in calcium hydroxide-induced proliferation, migration, osteogenic differentiation, and mineralization in human DPSCs. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  15. Layer-by-Layer Assembled Nanotubes as Biomimetic Nanoreactors for Calcium Carbonate Deposition.

    PubMed

    He, Qiang; Möhwald, Helmuth; Li, Junbai

    2009-09-17

    Enzyme-loaded magnetic polyelectrolyte multilayer nanotubes prepared by layer-by-layer assembly combined with the porous template could be used as biomimetic nanoreactors. It is demonstrated that calcium carbonate can be biomimetically synthesized inside the cavities of the polyelectrolyte nanotubes by the catalysis of urease, and the size of the calcium carbonate precipitates was controlled by the cavity dimensions. The metastable structure of the calcium carbonate precipitates inside the nanotubes was protected by the outer shell of the polyelectrolyte multilayers. These features may allow polyelectrolyte nanotubes to be applied in the fields of nanomaterials synthesis, controlled release, and drug delivery. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Red mud carbonation using carbon dioxide: Effects of carbonate and calcium ions on goethite surface properties and settling.

    PubMed

    Liang, Gaojie; Chen, Wenmi; Nguyen, Anh V; Nguyen, Tuan A H

    2018-05-01

    Carbonation using CO 2 appears as an attractive solution for disposing of red mud suspensions, an aluminum industry hazardous waste since it also offers an option for CO 2 sequestration. Here we report the novel findings that CO 3 2- together with Ca 2+ can significantly affect the surface properties and settling of goethite, a major component of red mud. Specifically, their effects on the goethite surface chemistry, colloidal interaction forces and settling in alkaline solutions are investigated. The surface potential becomes more negative by the formation of carbonate inner-sphere complexes on goethite surface. It is consistent with the strong repulsion, decreased particle size and settling velocity with increased carbonate concentrations as measured by atomic force microscopy, particle size analysis, and particle settling. Adding Ca 2+ that forms outer-sphere complexes with pre-adsorbed carbonate changes goethite surface charge negligibly. Changing repulsion to the attraction between goethite surfaces by increasing calcium dosage indicates the surface bridging, in accordance with the increased settling velocity. The adverse effect of carbonate on goethite flocculation is probably due to its specific chemisorption and competition with flocculants. By forming outer-sphere complexes together with the flocculant-calcium bridging effect, calcium ions can eliminate the negative influence of carbonate and improve the flocculation of goethite particles. These findings contribute to a better understanding of goethite particle interaction with salt ions and flocculants in controlling the particle behavior in the handling processes, including the red mud carbonation. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Calcium oxalate stone formation in the inner ear as a result of an Slc26a4 mutation.

    PubMed

    Dror, Amiel A; Politi, Yael; Shahin, Hashem; Lenz, Danielle R; Dossena, Silvia; Nofziger, Charity; Fuchs, Helmut; Hrabé de Angelis, Martin; Paulmichl, Markus; Weiner, Steve; Avraham, Karen B

    2010-07-09

    Calcium oxalate stone formation occurs under pathological conditions and accounts for more than 80% of all types of kidney stones. In the current study, we show for the first time that calcium oxalate stones are formed in the mouse inner ear of a genetic model for hearing loss and vestibular dysfunction in humans. The vestibular system within the inner ear is dependent on extracellular tiny calcium carbonate minerals for proper function. Thousands of these biominerals, known as otoconia, are associated with the utricle and saccule sensory maculae and are vital for mechanical stimulation of the sensory hair cells. We show that a missense mutation within the Slc26a4 gene abolishes the transport activity of its encoded protein, pendrin. As a consequence, dramatic changes in mineral composition, size, and shape occur within the utricle and saccule in a differential manner. Although abnormal giant carbonate minerals reside in the utricle at all ages, in the saccule, a gradual change in mineral composition leads to a formation of calcium oxalate in adult mice. By combining imaging and spectroscopy tools, we determined the profile of mineral composition and morphology at different time points. We propose a novel mechanism for the accumulation and aggregation of oxalate crystals in the inner ear.

  18. Controlling the strontium-doping in calcium phosphate microcapsules through yeast-regulated biomimetic mineralization.

    PubMed

    Huang, Miaojun; Li, Tianjie; Pan, Ting; Zhao, Naru; Yao, Yongchang; Zhai, Zhichen; Zhou, Jiaan; Du, Chang; Wang, Yingjun

    2016-10-01

    Yeast cells have controllable biosorption on metallic ions during metabolism. However, few studies were dedicated to using yeast-regulated biomimetic mineralization process to control the strontium-doped positions in calcium phosphate microcapsules. In this study, the yeast cells were allowed to pre-adsorb strontium ions metabolically and then served as sacrificing template for the precipitation and calcination of mineral shell. The pre-adsorption enabled the microorganism to enrich of strontium ions into the inner part of the microcapsules, which ensured a slow-release profile of the trace element from the microcapsule. The co-culture with human marrow stromal cells showed that gene expressions of alkaline phosphatase and Collagen-I were promoted. The promotion of osteogenic differentiation was further confirmed in the 3D culture of cell-material complexes. The strategy using living microorganism as 'smart doping apparatus' to control incorporation of trace element into calcium phosphate paved a pathway to new functional materials for hard tissue regeneration.

  19. Carbonate substitution in the mineral component of bone: Discriminating the structural changes, simultaneously imposed by carbonate in A and B sites of apatite

    NASA Astrophysics Data System (ADS)

    Madupalli, Honey; Pavan, Barbara; Tecklenburg, Mary M. J.

    2017-11-01

    The mineral component of bone and other biological calcifications is primarily a carbonate substituted calcium apatite. Integration of carbonate into two sites, substitution for phosphate (B-type carbonate) and substitution for hydroxide (A-type carbonate), influences the crystal properties which relate to the functional properties of bone. In the present work, a series of AB-type carbonated apatites (AB-CAp) having varying A-type and B-type carbonate weight fractions were prepared and analyzed by Fourier transform infrared spectroscopy (FTIR), powder X-ray diffraction (XRD), and carbonate analysis. A detailed characterization of A-site and B-site carbonate assignment in the FTIR ν3 region is proposed. The mass fractions of carbonate in A-site and B-site of AB-CAp correlate differently with crystal axis length and crystallite domain size. In this series of samples reduction in crystal domain size correlates only with A-type carbonate which indicates that carbonate in the A-site is more disruptive to the apatite structure than carbonate in the B-site. High temperature methods were required to produce significant A-type carbonation of apatite, indicating a higher energy barrier for the formation of A-type carbonate than for B-type carbonate. This is consistent with the dominance of B-type carbonate substitution in low temperature synthetic and biological apatites.

  20. Effects of Leaching Behavior of Calcium Ions on Compression and Durability of Cement-Based Materials with Mineral Admixtures

    PubMed Central

    Cheng, An; Chao, Sao-Jeng; Lin, Wei-Ting

    2013-01-01

    Leaching of calcium ions increases the porosity of cement-based materials, consequently resulting in a negative effect on durability since it provides an entry for aggressive harmful ions, causing reinforcing steel corrosion. This study investigates the effects of leaching behavior of calcium ions on the compression and durability of cement-based materials. Since the parameters influencing the leaching behavior of cement-based materials are unclear and diverse, this paper focuses on the influence of added mineral admixtures (fly ash, slag and silica fume) on the leaching behavior of calcium ions regarding compression and durability of cemented-based materials. Ammonium nitrate solution was used to accelerate the leaching process in this study. Scanning electron microscopy, X-ray diffraction analysis, and thermogravimetric analysis were employed to analyze and compare the cement-based material compositions prior to and after calcium ion leaching. The experimental results show that the mineral admixtures reduce calcium hydroxide quantity and refine pore structure through pozzolanic reaction, thus enhancing the compressive strength and durability of cement-based materials. PMID:28809247

  1. Improvement of calcium mineral separation contrast using anionic reagents: electrokinetics properties and flotation

    NASA Astrophysics Data System (ADS)

    Lafhaj, Z.; Filippov, L. O.; Filippova, I. V.

    2017-07-01

    The flotation separation of salt type calcium minerals is problematic, due to the similarities in their same active Ca2+ related site for interaction with anionic collectors and similar physicochemical characteristics such as solubility, zero-point charge, surface speciation and Ca-site density. The work was performed to achieve effective and selective separation of the calcium-minerals using pure minerals samples: orange calcite with Mg impurities, optic calcite with impurities level and an apatite. The pure samples surface was examined using techniques sensitive near-surface like infrared spectroscopy (FTIR) and chemical composition was obtained by ICPMS. The isoelectric point (IEP) and point of zero charge (PZC) in electrolyte were recorded using electrophoresis method at different ionic strengths of the solution. Mechanisms of charge development at the mineral-water interface are discussed. The time of contact as important parameter for the charge equilibrium was deduced from kinetics study and fixed to 30 minutes. The difference in the values obtained between IEP and PZSE can be explained by the presence of a specific adsorption of cations and anions on the surface. The effect of pure anionic collectors such as oleic and linoleic acid were studied. At low pH, both collectors lead to a good recovery for the calcites. The flotation recovery of optic calcite at pH 9 with sodium oleate is higher than with sodium linoleate. At alkaline pH, apatite showed a better recovery with sodium linoleate.

  2. Reaction mechanisms for enhancing carbon dioxide mineral sequestration

    NASA Astrophysics Data System (ADS)

    Jarvis, Karalee Ann

    Increasing global temperature resulting from the increased release of carbon dioxide into the atmosphere is one of the greatest problems facing society. Nevertheless, coal plants remain the largest source of electrical energy and carbon dioxide gas. For this reason, researchers are searching for methods to reduce carbon dioxide emissions into the atmosphere from the combustion of coal. Mineral sequestration of carbon dioxide reacted in electrolyte solutions at 185°C and 2200 psi with olivine (magnesium silicate) has been shown to produce environmentally benign carbonates. However, to make this method feasible for industrial applications, the reaction rate needs to be increased. Two methods were employed to increase the rate of mineral sequestration: reactant composition and concentration were altered independently in various runs. The products were analyzed with complete combustion for total carbon content. Crystalline phases in the product were analyzed with Debye-Scherrer X-ray powder diffraction. To understand the reaction mechanism, single crystals of San Carlos Olivine were reacted in two solutions: (0.64 M NaHCO3/1 M NaCl) and (5.5 M KHCO3) and analyzed with scanning electron microscopy (SEM), transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS), and fluctuation electron microscopy (FEM) to study the surface morphology, atomic crystalline structure, composition and amorphous structure. From solution chemistry studies, it was found that increasing the activity of the bicarbonate ion increased the conversion rate of carbon dioxide to magnesite. The fastest conversion, 60% conversion in one hour, occurred in a solution of 5.5 M KHCO3. The reaction product particles, magnesium carbonate, significantly increased in both number density and size on the coupon when the bicarbonate ion activity was increased. During some experiments reaction vessel corrosion also altered the mineral sequestration mechanism. Nickel ions from vessel

  3. The influence of mineral particles on fibroblast behaviour: A comparative study.

    PubMed

    Soto Veliz, Diosangeles; Luoto, Jens C; Pulli, Ilari; Toivakka, Martti

    2018-07-01

    Minerals are versatile tools utilised to modify and control the physical-chemical and functional properties of substrates. Those properties include ones directing cell fate; thus, minerals can potentially provide a direct and inexpensive method to manipulate cell behaviour. This paper shows how different minerals influence human dermal fibroblast behaviour depending on their properties. Different calcium carbonates, calcium sulphates, silica, silicates, and titanium dioxide were characterised using TEM, ATR-FTIR, and zeta potential measurements. Mineral-cell interactions were analysed through MTT assay, LDH assay, calcein AM staining, live cell imaging, immunofluorescence staining, western blot, and extra/intracellular calcium measurements. Results show that the interaction of the fibroblasts with the minerals was governed by a shared period of adaptation, followed by increased proliferation, growth inhibition, or increased toxicity. Properties such as size, ion release and chemical composition had a direct influence on the cells leading to cell agglomeration, morphological changes, and the possible formation of protein-mineral complexes. In addition, zeta potential and FTIR measurements of the minerals showed adsorption of the cell culture media onto the particles. This article provides fundamental insight into the mineral-fibroblast interactions, and makes it possible to arrange the minerals according to the time-dependent cellular response. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Liquid infused porous surfaces for mineral fouling mitigation.

    PubMed

    Charpentier, Thibaut V J; Neville, Anne; Baudin, Sophie; Smith, Margaret J; Euvrard, Myriam; Bell, Ashley; Wang, Chun; Barker, Richard

    2015-04-15

    Prevention of mineral fouling, known as scale, is a long-standing problem in a wide variety of industrial applications, such as oil production, water treatment, and many others. The build-up of inorganic scale such as calcium carbonate on surfaces and facilities is undesirable as it can result in safety risks and associated flow assurance issues. To date the overwhelming amount of research has mainly focused on chemical inhibition of scale bulk precipitation and little attention has been paid to deposition onto surfaces. The development of novel more environmentally-friendly strategies to control mineral fouling will most probably necessitate a multifunctional approach including surface engineering. In this study, we demonstrate that liquid infused porous surfaces provide an appealing strategy for surface modification to reduce mineral scale deposition. Microporous polypyrrole (PPy) coatings were fabricated onto stainless steel substrates by electrodeposition in potentiostatic mode. Subsequent infusion of low surface energy lubricants (fluorinated oil Fluorinert FC-70 and ionic liquid 1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BMIm)) into the porous coatings results in liquid-repellent slippery surfaces. To assess their ability to reduce surface scaling the coatings were subjected to a calcium carbonate scaling environment and the scale on the surface was quantified using Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES). PPy surfaces infused with BMIm (and Fluorinert to a lesser extent) exhibit remarkable antifouling properties with the calcium carbonate deposition reduced by 18 times in comparison to untreated stainless steel. These scaling tests suggest a correlation between the stability of the liquid infused surfaces in artificial brines and fouling reduction efficiency. The current work shows the great potential of such novel coatings for the management of mineral scale fouling. Copyright © 2014 Elsevier Inc. All rights

  5. Electrodeposition on nanofibrous polymer scaffolds: Rapid mineralization, tunable calcium phosphate composition and topography

    PubMed Central

    He, Chuanglong; Xiao, Guiyong; Jin, Xiaobing; Sun, Chenghui; Ma, Peter X.

    2011-01-01

    We developed a straightforward, fast, and versatile technique to fabricate mineralized nanofibrous polymer scaffolds for bone regeneration in this work. Nanofibrous poly(l-lactic acid) scaffolds were fabricated using both electrospinning and phase separation techniques. An electrodeposition process was designed to deposit calcium phosphate on the nanofibrous scaffolds. Such scaffolds contain a high quality mineral coating on the fiber surface with tunable surface topography and chemical composition by varying the processing parameters, which can mimic the composition and structure of natural bone extracellular matrix and provide a more biocompatible interface for bone regeneration. PMID:21673827

  6. Vitamin D and calcium supplementation for three years in postmenopausal osteoporosis significantly alters bone mineral and organic matrix quality.

    PubMed

    Paschalis, E P; Gamsjaeger, S; Hassler, N; Fahrleitner-Pammer, A; Dobnig, H; Stepan, J J; Pavo, I; Eriksen, E F; Klaushofer, K

    2017-02-01

    Prospective, controlled clinical trials in postmenopausal osteoporosis typically compare effects of an active drug with placebo in addition to vitamin D and calcium supplementation in both treatment arms. While clinical benefits are documented, the effect of this supplementation in the placebo arm and in clinical practice on bone material composition properties is unknown. The purpose of the present study was to evaluate these bone quality indices (specifically mineral/matrix, nanoporosity, glycosaminoglycan content, mineral maturity/crystallinity, and pyridinoline content) in patients that either received long-term vitamin D (400-1200IU) and calcium (1.0-1.5g) supplementation, or did not. We have analyzed by Raman microspectroscopy the bone forming trabecular surfaces of iliac crest in pre-treatment samples of a teriparatide study and the endpoint biopsies of the control arm obtained from the HORIZON trial. In general, the mineral/matrix ratio and the glycosaminoglycan (GAG) content was higher while nanoporosity, (a surrogate for tissue water content), the mineral maturity/crystallinity (MMC) and the pyridinoline (Pyd) content was lower in patients without long-term supplementation. Moreover, all indices were significantly dependent on tissue age. In conclusion, vitamin D and calcium supplementation is associated with altered mineral and organic matrix properties. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Characterization of Biogenic Gas and Mineral Formation Process by Denitrification in Porous Media

    NASA Astrophysics Data System (ADS)

    Hall, C. A.; Kim, D.; Mahabadi, N.; van Paassen, L. A.

    2017-12-01

    Biologically mediated processes have been regarded and developed as an alternative approach to traditional ground improvement techniques. Denitrification has been investigated as a potential ground improvement process towards liquefaction hazard mitigation. During denitrification, microorganisms reduce nitrate to dinitrogen gas and facilitate calcium carbonate precipitation as a by-product under adequate environmental conditions. The formation of dinitrogen gas desaturates soils and allows for potential pore pressure dampening during earthquake events. While, precipitation of calcium carbonate can improve the mechanical properties by filling the voids and cementing soil particles. As a result of small changes in gas and mineral phases, the mechanical properties of soils can be significantly affected. Prior research has primarily focused on quantitative analysis of overall residual calcium carbonate mineral and biogenic gas products in lab-scale porous media. However, the distribution of these products at the pore-scale has not been well-investigated. In this research, denitrification is activated in a microfluidic chip simulating a homogenous pore structure. The denitrification process is monitored by sequential image capture, where gas and mineral phase changes are evaluated by image processing. Analysis of these images correspond with previous findings, which demonstrate that biogenic gas behaviour at the pore scale is affected by the balance between reaction, diffusion, and convection rates.

  8. Fractional absorption of active absorbable algal calcium (AAACa) and calcium carbonate measured by a dual stable-isotope method

    USDA-ARS?s Scientific Manuscript database

    With the use of stable isotopes, this study aimed to compare the bioavailability of active absorbable algal calcium (AAACa), obtained from oyster shell powder heated to a high temperature, with an additional heated seaweed component (Heated Algal Ingredient, HAI), with that of calcium carbonate. In ...

  9. Biomimetic mineral self-organization from silica-rich spring waters.

    PubMed

    García-Ruiz, Juan Manuel; Nakouzi, Elias; Kotopoulou, Electra; Tamborrino, Leonardo; Steinbock, Oliver

    2017-03-01

    Purely inorganic reactions of silica, metal carbonates, and metal hydroxides can produce self-organized complex structures that mimic the texture of biominerals, the morphology of primitive organisms, and that catalyze prebiotic reactions. To date, these fascinating structures have only been synthesized using model solutions. We report that mineral self-assembly can be also obtained from natural alkaline silica-rich water deriving from serpentinization. Specifically, we demonstrate three main types of mineral self-assembly: (i) nanocrystalline biomorphs of barium carbonate and silica, (ii) mesocrystals and crystal aggregates of calcium carbonate with complex biomimetic textures, and (iii) osmosis-driven metal silicate hydrate membranes that form compartmentalized, hollow structures. Our results suggest that silica-induced mineral self-assembly could have been a common phenomenon in alkaline environments of early Earth and Earth-like planets.

  10. Sequestration of Martian CO2 by mineral carbonation

    PubMed Central

    Tomkinson, Tim; Lee, Martin R.; Mark, Darren F.; Smith, Caroline L.

    2013-01-01

    Carbonation is the water-mediated replacement of silicate minerals, such as olivine, by carbonate, and is commonplace in the Earth’s crust. This reaction can remove significant quantities of CO2 from the atmosphere and store it over geological timescales. Here we present the first direct evidence for CO2 sequestration and storage on Mars by mineral carbonation. Electron beam imaging and analysis show that olivine and a plagioclase feldspar-rich mesostasis in the Lafayette meteorite have been replaced by carbonate. The susceptibility of olivine to replacement was enhanced by the presence of smectite veins along which CO2-rich fluids gained access to grain interiors. Lafayette was partially carbonated during the Amazonian, when liquid water was available intermittently and atmospheric CO2 concentrations were close to their present-day values. Earlier in Mars’ history, when the planet had a much thicker atmosphere and an active hydrosphere, carbonation is likely to have been an effective mechanism for sequestration of CO2. PMID:24149494

  11. Effects of exercise on bone mineral density in calcium-replete postmenopausal women with and without hormone replacement therapy.

    PubMed

    Going, Scott; Lohman, Timothy; Houtkooper, Linda; Metcalfe, Lauve; Flint-Wagner, Hilary; Blew, Robert; Stanford, Vanessa; Cussler, Ellen; Martin, Jane; Teixeira, Pedro; Harris, Margaret; Milliken, Laura; Figueroa-Galvez, Arturo; Weber, Judith

    2003-08-01

    Osteoporosis is a major public health concern. The combination of exercise, hormone replacement therapy, and calcium supplementation may have added benefits for improving bone mineral density compared to a single intervention. To test this notion, 320 healthy, non-smoking postmenopausal women, who did or did not use hormone replacement therapy (HRT), were randomized within groups to exercise or no exercise and followed for 12 months. All women received 800 mg calcium citrate supplements daily. Women who exercised performed supervised aerobic, weight-bearing and weight-lifting exercise, three times per week in community-based exercise facilities. Regional bone mineral density (BMD) was assessed by dual energy X-ray absorptiometry. Women who used HRT, calcium, and exercised increased femoral neck, trochanteric and lumbar spine bone mineral density by approximately 1-2%. Trochanteric BMD was also significantly increased by approximately 1.0% in women who exercised and used calcium without HRT compared to a negligible change in women who used HRT and did not exercise. The results demonstrate that regional BMD can be improved with aerobic, weight-bearing activity combined with weight lifting at clinically relevant sites in postmenopausal women. The response was significant at more sites in women who used HRT, suggesting a greater benefit with hormone replacement and exercise compared to HRT alone.

  12. Women with Fibromyalgia Have Lower Levels of Calcium, Magnesium, Iron and Manganese in Hair Mineral Analysis

    PubMed Central

    Kim, Young-Sang; Kim, Kwang-Min; Lee, Duck-Joo; Kim, Bom-Taeck; Park, Sat-Byul; Cho, Doo-Yeoun; Suh, Chang-Hee; Kim, Hyoun-Ah; Park, Rae-Woong

    2011-01-01

    Little is known about hair mineral status in fibromyalgia patients. This study evaluated the characteristics of hair minerals in female patients with fibromyalgia compared with a healthy reference group. Forty-four female patients diagnosed with fibromyalgia according to the American College of Rheumatology criteria were enrolled as the case group. Ageand body mass index-matched data were obtained from 122 control subjects enrolled during visit for a regular health check-up. Hair minerals were analyzed and compared between the two groups. The mean age was 43.7 yr. General characteristics were not different between the two groups. Fibromyalgia patients showed a significantly lower level of calcium (775 µg/g vs 1,093 µg/g), magnesium (52 µg/g vs 72 µg/g), iron (5.9 µg/g vs 7.1 µg/g), copper (28.3 µg/g vs 40.2 µg/g) and manganese (140 ng/g vs 190 ng/g). Calcium, magnesium, iron, and manganese were loaded in the same factor using factor analysis; the mean of this factor was significantly lower in fibromyalgia group in multivariate analysis with adjustment for potential confounders. In conclusion, the concentrations of calcium, magnesium, iron, and manganese in the hair of female patients with fibromyalgia are lower than of controls, even after adjustment of potential confounders. PMID:22022174

  13. Investigating Interactions between the Silica and Carbon Cycles during Precipitation and Early Diagenesis of Authigenic Clay/Carbonate-Mineral Associations in the Carbonate Rock Record

    NASA Astrophysics Data System (ADS)

    McKenzie, J. A.; Francisca Martinez Ruiz, F.; Sanchez-Roman, M.; Anjos, S.; Bontognali, T. R. R.; Nascimento, G. S.; Vasconcelos, C.

    2017-12-01

    The study of authigenic clay/carbonate-mineral associations within carbonate sequences has important implications for the interpretation of scientific problems related with rock reservoir properties, such as alteration of potential porosity and permeability. More specifically, when clay minerals are randomly distributed within the carbonate matrix, it becomes difficult to predict reservoir characteristics. In order to understand this mineral association in the geological record, we have undertaken a comparative study of specially designed laboratory experiments with modern environments, where clay minerals have been shown to precipitate together with a range of carbonate minerals, including calcite, Mg-calcite and dolomite. Two modern dolomite-forming environments, the Coorong lakes, South Australia and Brejo do Espinho Rio de Janeiro, Brazil, were selected for this investigation. For comparative evaluation, enrichment microbial culture experiments, using natural pore water from Brejo do Espinho as the growth medium to promote mineral precipitation, were performed under both aerobic and anaerobic conditions. To establish the environmental parameters and biological processes facilitating the dual mineral association, the experimental samples have been compared with the natural minerals using HRTEM measurements. The results demonstrate that the clay and carbonate minerals apparently do not co-precipitate, but the precipitation of the different minerals in the same sample has probably occurred under different environmental conditions with variable chemistries, e.g., hypersalinity versus normal salinity resulting from the changing ratio of evaporation versus precipitation. Thus, the investigated mineral association is not a product of diagenetic processes but of sequential in situ precipitation processes related to changes in the silica and carbon availability. Implications for ancient carbonate formations will be presented and discussed in the context of a specific

  14. Low-intensity pulsed ultrasound (LIPUS) stimulates mineralization of MC3T3-E1 cells through calcium and phosphate uptake.

    PubMed

    Tassinary, João Alberto Fioravante; Lunardelli, Adroaldo; Basso, Bruno de Souza; Dias, Henrique Bregolin; Catarina, Anderson Velasque; Stülp, Simone; Haute, Gabriela Viegas; Martha, Bianca Andrade; Melo, Denizar Alberto da Silva; Nunes, Fernanda Bordignon; Donadio, Márcio Vinícius Fagundes; Oliveira, Jarbas Rodrigues de

    2018-03-01

    The present study aimed to evaluate the effect of low-intensity pulsed ultrasound (LIPUS) on pre-osteoblast mineralization using in vitro bioassays. Pre-osteoblastic MC3T3-E1 cells were exposed to LIPUS at 1 MHz frequency, 0.2 W/cm 2 intensity and 20% duty cycle for 30 min. The analyses were carried out up to 336 h (14 days) after exposure. The concentration of collagen, phosphate, alkaline phosphatase, calcium and transforming growth factor beta 1 (TGF-β1) in cell supernatant and the presence of calcium deposits in the cells were analyzed. Our results showed that LIPUS promotes mineralized nodules formation. Collagen, phosphate, and calcium levels were decreased in cell supernatant at 192 h after LIPUS exposure. However, alkaline phosphatase and TGF-β1 concentrations remained unchanged. Therapeutic pulsed ultrasound is capable of stimulating differentiation and mineralization of pre-osteoblastic MC3T3-E1 cells by calcium and phosphate uptake with consequent hydroxyapatite formation. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Fungal degradation of calcium-, lead- and silicon-bearing minerals.

    PubMed

    Adeyemi, Ademola O; Gadd, Geoffrey M

    2005-06-01

    The aim of this study was to examine nutritional influence on the ability of selected filamentous fungi to mediate biogenic weathering of the minerals, apatite, galena and obsidian in order to provide further understanding of the roles of fungi as biogeochemical agents, particularly in relation to the cycling of metals and associated elements found in minerals. The impact of three organic acid producing fungi (Aspergillus niger, Serpula himantioides and Trametes versicolor) on apatite, galena and obsidian was examined in the absence and presence of a carbon and energy source (glucose). Manifestation of fungal weathering included corrosion of mineral surfaces, modification of the mineral substrate through transformation into secondary minerals (i.e. crystal formation) and hyphal penetration of the mineral substrate. Physicochemical interactions of fungal metabolites, e.g. H+ and organic acids, with the minerals are thought to be the primary driving forces responsible. All experimental fungi were capable of mineral surface colonization in the absence and presence of glucose but corrosion of the mineral surface and secondary mineral formation were affected by glucose availability. Only S. himantioides and T. versicolor were able to corrode apatite in the absence of glucose but none of the fungi were capable of doing so with the other minerals. In addition, crystal formation with galena was entirely dependent on the availability of glucose. Penetration of the mineral substrates by fungal hyphae occurred but this did not follow any particular pattern. Although the presence of glucose in the media appeared to influence positively the mineral penetrating abilities of the fungi, the results obtained also showed that some geochemical change(s) might occur under nutrient-limited conditions. It was, however, unclear whether the hyphae actively penetrated the minerals or were growing into pre-existing pores or cracks.

  16. Mineral contents and their solubility on calcium carbonat calcite nanocrystals from cockle shell powder (Anadara granosa Linn)

    NASA Astrophysics Data System (ADS)

    Widyastuti, S.; Pramushinta, I. A.

    2018-03-01

    Prepared and characterized calcium carbonat calcite nanocrystals improves solubility. Calcium carbonat calcite nanocrystals were synthesized using precipitation method from the waste of blood clam cockle shells (Anadara granosa Linn). This study was conducted to analyze mineral composition of nanocrystals calcium carbonat calcite cockle (Anadara granosa) shell for calcium fortification of food applications and to evaluate the solubilities of Calsium and Phospor. The sample of nanocrystals from cockle shells was evaluated to determine the content of 11 macro-and micro-elements. These elements are Calcium (Ca), Magnesium (Mg), Sodium (Na), Phosphorus (P), Potassium (K), Ferrum (Fe), Copper (Cu), Nickel (Ni), Zink (Zn), Boron (B) and Silica (Si)). Cockleshell powders were found to contain toxic elements below detectable levels. The solubilities of Calcium and Phospor were p<0.05.

  17. Simplified models of rates of CO2 mineralization in Geologic Carbon Storage

    NASA Astrophysics Data System (ADS)

    DePaolo, D. J.; Zhang, S.

    2017-12-01

    Geologic carbon storage (GCS) reverses the flow of carbon to the atmosphere, returning the carbon to long-term geologic storage. Models suggest that most of the injected CO2 will be "trapped" in the subsurface by physical means, but the most risk-free and permanent form of carbon storage is as carbonate minerals (Ca,Mg,Fe)CO3. The transformation of CO2 to carbonate minerals requires supply of divalent cations by dissolution of silicate minerals. Available data suggest that rates of transformation are difficult to predict. We show that the chemical kinetic observations and experimental results, when reduced to a single timescale that describes the fractional rate at which cations are released to solution by mineral dissolution, show sufficiently systematic behavior that the rates of mineralization can be estimated with reasonable certainty. Rate of mineralization depends on both the abundance (determined by the reservoir rock mineralogy) and the rate at which cations are released by dissolution into pore fluid that has been acidified with dissolved CO2. Laboratory-measured rates and field observations give values spanning 8 to 10 orders of magnitude, but when evaluated in the context of reservoir-scale reactive transport simulations, this range becomes much smaller. Reservoir scale simulations indicate that silicate mineral dissolution and subsequent carbonate mineral precipitation occur at pH 4.5 to 6, fluid flow velocity less than 5m/yr, and 50-100 years or more after the start of injection. These constraints lead to estimates of 200 to 2000 years for conversion of 60-90% of injected CO2 when the reservoir rock has a sufficient volume fraction of divalent cation-bearing silicate minerals (ca. 20%), and confirms that when reservoir rock mineralogy is not favorable the fraction of CO2 converted to carbonate minerals is minimal over 104 years. A sufficient amount of reactive minerals represents the condition by which the available cations per volume of rock plus pore

  18. Bone Mineral Density Accrual in Students with Autism Spectrum Disorders: Effects of Calcium Intake and Physical Training

    ERIC Educational Resources Information Center

    Goodarzi, Mahmood; Hemayattalab, Rasool

    2012-01-01

    The purpose of this study was to investigate the effects of weight bearing exercise and calcium intake on bone mineral density (BMD) of students with autism spectrum disorders. For this reason 60 boy students with autism disorder (age 8-10 years old) were assigned to four groups with no differences in age, BMD, calcium intake, and physical…

  19. Carbon dioxide released from subduction zones by fluid-mediated reactions

    NASA Astrophysics Data System (ADS)

    Ague, Jay J.; Nicolescu, Stefan

    2014-05-01

    The balance between the subduction of carbonate mineral-bearing rocks into Earth's mantle and the return of CO2 to the atmosphere by volcanic and metamorphic degassing is critical to the carbon cycle. Carbon is thought to be released from subducted rocks mostly by simple devolatilization reactions. However, these reactions will also retain large amounts of carbon within the subducting slab and have difficulty in accounting for the mass of CO2 emitted from volcanic arcs. Carbon release may therefore occur via fluid-induced dissolution of calcium carbonate. Here we use carbonate δ18O and δ13C systematics, combined with analyses of rock and fluid inclusion mineralogy and geochemistry, to investigate the alteration of the exhumed Eocene Cycladic subduction complex on the Syros and Tinos islands, Greece. We find that in marble rocks adjacent to two fluid conduits that were active during subduction, the abundance of calcium carbonate drastically decreases approaching the conduits, whereas silicate minerals increase. Up to 60-90% of the CO2 was released from the rocks--far greater than expected via simple devolatilization reactions. The δ18O of the carbonate minerals is 5-10 lighter than is typical for metamorphosed carbonate rocks, implying that isotopically light oxygen was transported by fluid infiltration from the surroundings. We suggest that fluid-mediated carbonate mineral removal, accompanied by silicate mineral precipitation, provides a mechanism for the release of enormous amounts of CO2 from subduction zones.

  20. Calcium carbonate scale control, effect of material and inhibitors.

    PubMed

    Macadam, J; Parsons, S A

    2004-01-01

    This paper focuses on developing a reproducible method for reducing calcium carbonate scale formation on heated surfaces where scaling can cause serious problems. It is known that calcium carbonate precipitation is sensitive to impurity ions, such as iron and zinc, even at trace concentration levels. In this paper two sets of experiments are reported. The first experiments were undertaken to investigate the effect of zinc, copper and iron dosing on CaCO3 nucleation and precipitation. Results from the experiments showed that the most effective inhibitor of CaCO3 precipitation was zinc and the effect was linked to dose levels and temperature. Copper and iron had little effect on precipitation in the dose range investigated. The second trial was undertaken to translate the precipitation data to scale formation. These tests were undertaken at 70 degrees C. 5 mg x L(-1) zinc dose reduced the scale formation by 35%. The effect of iron on calcium carbonate scaling rate was not significant. The physical nature of the material on which the scale is formed also influences the scaling. The scaling experiment was also used to investigate the effect of different surface material (stainless steel, copper and aluminium) on CaCO3 scale formation. Copper surface scaled the most.

  1. Short-Range-Order Mineral Physical Protection On Black Carbon Stabilization

    NASA Astrophysics Data System (ADS)

    Liang, B.; Weng, Y. T.; Wang, C. C.; Song, Y. F.; Lehmann, J.; Wang, C. H.

    2015-12-01

    Soil organic matter is one of the largest reservoirs in global carbon cycle, and black carbon (BC) represents a chemical resistant component. Black C plays an important role in global climate change. Generally considered recalcitrant due to high aromaticity, the reactive surface and functional groups of BC are crucial for carbon sequestration in soils. Mineral sorption and physical protection is an important mechanism for BC long term stabilization and sequestration in environments. Previous studies on mineral protection of BC were limited to analysis techniques in two-dimensions, for example, by SEM, TEM, and NanoSIMS. Little is known about the scope of organo-mineral association, the in-situ distribution and forms of minerals, and the ultimate interplay of BC and minerals. The aim of this study is to investigate the three-dimensional interaction of organic C and minerals in submicron scale using synchrotron-based Transmission X-ray Microcopy (TXM) and Fourier-Transform Infrared Spectroscopy (FTIR). Abundant poorly-crystallined nano-minerals particles were observed. These short-range-order (SRO) minerals also aggregate into clusters and sheets, and form envelops-like structures on the surface of BC. On top of large surface contact area, the intimate interplay between BC and minerals reinforces the stability of both organic C and minerals, resulting from chemical bonding through cation bridging and ligand exchange. The mineral protection enhances BC stabilization and sequestration and lowers its bioavailability in environment. The results suggest that mineral physical protection for BC sequestration may be more important than previous understanding.

  2. Comparison of sevelamer and calcium carbonate on endothelial function and inflammation in patients on peritoneal dialysis.

    PubMed

    Chennasamudram, Sudha P; Noor, Tanjila; Vasylyeva, Tetyana L

    2013-06-01

    Hyperphosphataemia is a known independent risk factor for cardiovascular mortality. The objective of the study was to compare the effects of two phosphate binders, sevelamer carbonate and calcium carbonate on endothelial function (EF) and inflammation in patients on peritoneal dialysis (PD) with Type 2 diabetes mellitus (T2DM). Fifteen subjects with hyperphosphataemia discontinued all phosphate binders to undergo a two-week washout and were assigned to sevelamer carbonate or calcium carbonate treatments for eight weeks. After a second two-week washout period, subjects crossed over to either of the alternate treatments for another eight weeks. At the beginning and end of each treatment, biomarkers of EF, pro-inflammatory cytokines, serum albumin, calcium, phosphate and lipids were measured. Sevelamer carbonate significantly improved lipid profile compared with calcium carbonate. Amongst the EF and pro-inflammatory biomarkers, sevelamer carbonate decreased serum endothelin-1, plasminogen activator inhibitor-1, C-reactive protein and interleukin-6. Both phosphate binders were effective in decreasing serum phosphate but sevelamer had a positive effect on EF. Treatment with sevelamer carbonate has beneficial effects compared with calcium carbonate in decreasing inflammation and improving EF in patients with T2DM on PD. © 2013 European Dialysis and Transplant Nurses Association/European Renal Care Association.

  3. Transformation mechanism of amorphous calcium carbonate into calcite in the sea urchin larval spicule

    PubMed Central

    Politi, Yael; Metzler, Rebecca A.; Abrecht, Mike; Gilbert, Benjamin; Wilt, Fred H.; Sagi, Irit; Addadi, Lia; Weiner, Steve; Gilbert, P. U. P. A.

    2008-01-01

    Sea urchin larval spicules transform amorphous calcium carbonate (ACC) into calcite single crystals. The mechanism of transformation is enigmatic: the transforming spicule displays both amorphous and crystalline properties, with no defined crystallization front. Here, we use X-ray photoelectron emission spectromicroscopy with probing size of 40–200 nm. We resolve 3 distinct mineral phases: An initial short-lived, presumably hydrated ACC phase, followed by an intermediate transient form of ACC, and finally the biogenic crystalline calcite phase. The amorphous and crystalline phases are juxtaposed, often appearing in adjacent sites at a scale of tens of nanometers. We propose that the amorphous-crystal transformation propagates in a tortuous path through preexisting 40- to 100-nm amorphous units, via a secondary nucleation mechanism. PMID:18987314

  4. Transformation mechanism of amorphous calcium carbonate into calcite in the sea urchin larval spicule.

    PubMed

    Politi, Yael; Metzler, Rebecca A; Abrecht, Mike; Gilbert, Benjamin; Wilt, Fred H; Sagi, Irit; Addadi, Lia; Weiner, Steve; Gilbert, P U P A; Gilbert, Pupa

    2008-11-11

    Sea urchin larval spicules transform amorphous calcium carbonate (ACC) into calcite single crystals. The mechanism of transformation is enigmatic: the transforming spicule displays both amorphous and crystalline properties, with no defined crystallization front. Here, we use X-ray photoelectron emission spectromicroscopy with probing size of 40-200 nm. We resolve 3 distinct mineral phases: An initial short-lived, presumably hydrated ACC phase, followed by an intermediate transient form of ACC, and finally the biogenic crystalline calcite phase. The amorphous and crystalline phases are juxtaposed, often appearing in adjacent sites at a scale of tens of nanometers. We propose that the amorphous-crystal transformation propagates in a tortuous path through preexisting 40- to 100-nm amorphous units, via a secondary nucleation mechanism.

  5. Enzyme-accelerated and structure-guided crystallization of calcium carbonate: role of the carbonic anhydrase in the homologous system.

    PubMed

    Müller, Werner E G; Schlossmacher, Ute; Schröder, Heinz C; Lieberwirth, Ingo; Glasser, Gunnar; Korzhev, Michael; Neufurth, Meik; Wang, Xiaohong

    2014-01-01

    The calcareous spicules from sponges, e.g. from Sycon raphanus, are composed of almost pure calcium carbonate. In order to elucidate the formation of those structural skeletal elements, the function of the enzyme carbonic anhydrase (CA), isolated from this species, during the in vitro calcium carbonate-based spicule formation, was investigated. It is shown that the recombinant sponge CA substantially accelerates calcium carbonate formation in the in vitro diffusion assay. A stoichiometric calculation revealed that the turnover rate of the sponge CA during the calcification process amounts to 25 CO2s(-1) × molecule CA(-1). During this enzymatically driven process, initially pat-like particles are formed that are subsequently transformed to rhomboid/rhombohedroid crystals with a dimension of ~50 μm. The CA-catalyzed particles are smaller than those which are formed in the absence of the enzyme. The Martens hardness of the particles formed is ~4 GPa, a value which had been determined for other biogenic calcites. This conclusion is corroborated by energy-dispersive X-ray spectroscopy, which revealed that the particles synthesized are composed predominantly of the elements calcium, oxygen and carbon. Surprising was the finding, obtained by light and scanning electron microscopy, that the newly formed calcitic crystals associate with the calcareous spicules from S. raphanus in a highly ordered manner; the calcitic crystals almost perfectly arrange in an array orientation along the two opposing planes of the spicules, leaving the other two plane arrays uncovered. It is concluded that the CA is a key enzyme controlling the calcium carbonate biomineralization process, which directs the newly formed particles to existing calcareous spicular structures. It is expected that with the given tools new bioinspired materials can be fabricated. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. 43 CFR 3511.11 - If I am mining calcium chloride, may I obtain a noncompetitive mineral lease to produce the...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false If I am mining calcium chloride, may I... Lease Terms and Conditions § 3511.11 If I am mining calcium chloride, may I obtain a noncompetitive mineral lease to produce the commingled sodium chloride? Yes. If you are producing calcium chloride in...

  7. 43 CFR 3511.11 - If I am mining calcium chloride, may I obtain a noncompetitive mineral lease to produce the...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false If I am mining calcium chloride, may I... Lease Terms and Conditions § 3511.11 If I am mining calcium chloride, may I obtain a noncompetitive mineral lease to produce the commingled sodium chloride? Yes. If you are producing calcium chloride in...

  8. 43 CFR 3511.11 - If I am mining calcium chloride, may I obtain a noncompetitive mineral lease to produce the...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false If I am mining calcium chloride, may I... Lease Terms and Conditions § 3511.11 If I am mining calcium chloride, may I obtain a noncompetitive mineral lease to produce the commingled sodium chloride? Yes. If you are producing calcium chloride in...

  9. 43 CFR 3511.11 - If I am mining calcium chloride, may I obtain a noncompetitive mineral lease to produce the...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false If I am mining calcium chloride, may I... Lease Terms and Conditions § 3511.11 If I am mining calcium chloride, may I obtain a noncompetitive mineral lease to produce the commingled sodium chloride? Yes. If you are producing calcium chloride in...

  10. Effects of iron and calcium carbonate on the variation and cycling of carbon source in integrated wastewater treatments.

    PubMed

    Zhimiao, Zhao; Xinshan, Song; Yufeng, Zhao; Yanping, Xiao; Yuhui, Wang; Junfeng, Wang; Denghua, Yan

    2017-02-01

    Iron and calcium carbonate were added in wastewater treatments as the adjusting agents to improve the contaminant removal performance and regulate the variation of carbon source in integrated treatments. At different temperatures, the addition of the adjusting agents obviously improved the nitrogen and phosphorous removals. TN and TP removals were respectively increased by 29.41% and 23.83% in AC-100 treatment under 1-day HRT. Carbon source from dead algae was supplied as green microbial carbon source and Fe 2+ was supplied as carbon source surrogate. COD concentration was increased to 30mg/L and above, so the problem of the shortage of carbon source was solved. Dead algae and Fe 2+ as carbon source supplement or surrogate played significant role, which was proved by microbial community analysis. According to the denitrification performance in the treatments, dead algae as green microbial carbon source combined with iron and calcium carbonate was the optimal supplement carbon source in wastewater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Automatic photometric titrations of calcium and magnesium in carbonate rocks

    USGS Publications Warehouse

    Shapiro, L.; Brannock, W.W.

    1955-01-01

    Rapid nonsubjective methods have been developed for the determination of calcium and magnesium in carbonate rocks. From a single solution of the sample, calcium is titrated directly, and magnesium is titrated after a rapid removal of R2O3 and precipitation of calcium as the tungstate. A concentrated and a dilute solution of disodium ethylenediamine tetraacetate are used as titrants. The concentrated solution is added almost to the end point, then the weak solution is added in an automatic titrator to determine the end point precisely.

  12. Obtaining and Characterization of Polyolefin-Filled Calcium Carbonate Composites Modified with Stearic Acid

    NASA Astrophysics Data System (ADS)

    Croitoru, C.; Pascu, A.; Roata, I. C.; Stanciu, E. M.

    2017-06-01

    In order to obtain high performance calcium carbonate-reinforced HDPE and PP composites, the dispersibility and compatibility of the inorganic phase in the polymer has been achieved through surface treatment of the amorphous calcium carbonate filler with stearic acid. The surface coating of the inorganic phase has been proved by XRD and FTIR spectroscopy, through forming of an intermediate layer of calcium stearate which acts as a surfactant, efficient in providing an optimum compatibility with the dominatingly hydrophobic polymer matrix, as determined from the structural information obtained through samples cross-sections analysing.

  13. Integrated Experimental and Modeling Studies of Mineral Carbonation as a Mechanism for Permanent Carbon Sequestration in Mafic/Ultramafic Rocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhengrong; Qiu, Lin; Zhang, Shuang

    2014-09-30

    A program of laboratory experiments, modeling and fieldwork was carried out at Yale University, University of Maryland, and University of Hawai‘i, under a DOE Award (DE-FE0004375) to study mineral carbonation as a practical method of geologic carbon sequestration. Mineral carbonation, also called carbon mineralization, is the conversion of (fluid) carbon dioxide into (solid) carbonate minerals in rocks, by way of naturally occurring chemical reactions. Mafic and ultramafic rocks, such as volcanic basalt, are natural candidates for carbonation, because the magnesium and iron silicate minerals in these rocks react with brines of dissolved carbon dioxide to form carbonate minerals. By trappingmore » carbon dioxide (CO 2) underground as a constituent of solid rock, carbonation of natural basalt formations would be a secure method of sequestering CO 2 captured at power plants in efforts to mitigate climate change. Geochemical laboratory experiments at Yale, carried out in a batch reactor at 200°C and 150 bar (15 MPa), studied carbonation of the olivine mineral forsterite (Mg 2SiO 4) reacting with CO 2 brines in the form of sodium bicarbonate (NaHCO 3) solutions. The main carbonation product in these reactions is the carbonate mineral magnesite (MgCO 3). A series of 32 runs varied the reaction time, the reactive surface area of olivine grains and powders, the concentration of the reacting fluid, and the starting ratio of fluid to olivine mass. These experiments were the first to study the rate of olivine carbonation under passive conditions approaching equilibrium. The results show that, in a simple batch reaction, olivine carbonation is fastest during the first 24 hours and then slows significantly and even reverses. A natural measure of the extent of carbonation is a quantity called the carbonation fraction, which compares the amount of carbon removed from solution, during a run, to the maximum amount that could have been removed if the olivine initially present

  14. A systematic study of multiple minerals precipitation modelling in wastewater treatment.

    PubMed

    Kazadi Mbamba, Christian; Tait, Stephan; Flores-Alsina, Xavier; Batstone, Damien J

    2015-11-15

    Mineral solids precipitation is important in wastewater treatment. However approaches to minerals precipitation modelling are varied, often empirical, and mostly focused on single precipitate classes. A common approach, applicable to multi-species precipitates, is needed to integrate into existing wastewater treatment models. The present study systematically tested a semi-mechanistic modelling approach, using various experimental platforms with multiple minerals precipitation. Experiments included dynamic titration with addition of sodium hydroxide to synthetic wastewater, and aeration to progressively increase pH and induce precipitation in real piggery digestate and sewage sludge digestate. The model approach consisted of an equilibrium part for aqueous phase reactions and a kinetic part for minerals precipitation. The model was fitted to dissolved calcium, magnesium, total inorganic carbon and phosphate. Results indicated that precipitation was dominated by the mineral struvite, forming together with varied and minor amounts of calcium phosphate and calcium carbonate. The model approach was noted to have the advantage of requiring a minimal number of fitted parameters, so the model was readily identifiable. Kinetic rate coefficients, which were statistically fitted, were generally in the range 0.35-11.6 h(-1) with confidence intervals of 10-80% relative. Confidence regions for the kinetic rate coefficients were often asymmetric with model-data residuals increasing more gradually with larger coefficient values. This suggests that a large kinetic coefficient could be used when actual measured data is lacking for a particular precipitate-matrix combination. Correlation between the kinetic rate coefficients of different minerals was low, indicating that parameter values for individual minerals could be independently fitted (keeping all other model parameters constant). Implementation was therefore relatively flexible, and would be readily expandable to include other

  15. Chiral acidic amino acids induce chiral hierarchical structure in calcium carbonate

    PubMed Central

    Jiang, Wenge; Pacella, Michael S.; Athanasiadou, Dimitra; Nelea, Valentin; Vali, Hojatollah; Hazen, Robert M.; Gray, Jeffrey J.; McKee, Marc D.

    2017-01-01

    Chirality is ubiquitous in biology, including in biomineralization, where it is found in many hardened structures of invertebrate marine and terrestrial organisms (for example, spiralling gastropod shells). Here we show that chiral, hierarchically organized architectures for calcium carbonate (vaterite) can be controlled simply by adding chiral acidic amino acids (Asp and Glu). Chiral, vaterite toroidal suprastructure having a ‘right-handed' (counterclockwise) spiralling morphology is induced by L-enantiomers of Asp and Glu, whereas ‘left-handed' (clockwise) morphology is induced by D-enantiomers, and sequentially switching between amino-acid enantiomers causes a switch in chirality. Nanoparticle tilting after binding of chiral amino acids is proposed as a chiral growth mechanism, where a ‘mother' subunit nanoparticle spawns a slightly tilted, consequential ‘daughter' nanoparticle, which by amplification over various length scales creates oriented mineral platelets and chiral vaterite suprastructures. These findings suggest a molecular mechanism for how biomineralization-related enantiomers might exert hierarchical control to form extended chiral suprastructures. PMID:28406143

  16. Soil Organic Carbon Loss: An Overlooked Factor in the Carbon Sequestration Potential of Enhanced Mineral Weathering

    NASA Astrophysics Data System (ADS)

    Dietzen, Christiana; Harrison, Robert

    2016-04-01

    Weathering of silicate minerals regulates the global carbon cycle on geologic timescales. Several authors have proposed that applying finely ground silicate minerals to soils, where organic acids would enhance the rate of weathering, could increase carbon uptake and mitigate anthropogenic CO2 emissions. Silicate minerals such as olivine could replace lime, which is commonly used to remediate soil acidification, thereby sequestering CO2 while achieving the same increase in soil pH. However, the effect of adding this material on soil organic matter, the largest terrestrial pool of carbon, has yet to be considered. Microbial biomass and respiration have been observed to increase with decreasing acidity, but it is unclear how long the effect lasts. If the addition of silicate minerals promotes the loss of soil organic carbon through decomposition, it could significantly reduce the efficiency of this process or even create a net carbon source. However, it is possible that this initial flush of microbial activity may be compensated for by additional organic matter inputs to soil pools due to increases in plant productivity under less acidic conditions. This study aimed to examine the effects of olivine amendments on soil CO2 flux. A liming treatment representative of typical agricultural practices was also included for comparison. Samples from two highly acidic soils were split into groups amended with olivine or lime and a control group. These samples were incubated at 22°C and constant soil moisture in jars with airtight septa lids. Gas samples were extracted periodically over the course of 2 months and change in headspace CO2 concentration was determined. The effects of enhanced mineral weathering on soil organic matter have yet to be addressed by those promoting this method of carbon sequestration. This project provides the first data on the potential effects of enhanced mineral weathering in the soil environment on soil organic carbon pools.

  17. Carbon Mineralization by Aqueous Precipitation for Beneficial Use of CO2 from Flue Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brent Constantz; Randy Seeker; Martin Devenney

    2010-06-30

    Calera's innovative Mineralization via Aqueous Precipitation (MAP) technology for the capture and conversion of CO{sub 2} to useful materials for use in the built environment was further developed and proven in the Phase 1 Department of Energy Grant. The process was scaled to 300 gallon batch reactors and subsequently to Pilot Plant scale for the continuous production of product with the production of reactive calcium carbonate material that was evaluated as a supplementary cementitious material (SCM). The Calera SCM{trademark} was evaluated as a 20% replacement for ordinary portland cement and demonstrated to meet the industry specification ASTM 1157 which ismore » a standard performance specification for hydraulic cement. The performance of the 20% replacement material was comparable to the 100% ordinary portland cement control in terms of compressive strength and workability as measured by a variety of ASTM standard tests. In addition to the performance metrics, detailed characterization of the Calera SCM was performed using advanced analytical techniques to better understand the material interaction with the phases of ordinary portland cement. X-ray synchrotron diffraction studies at the Advanced Photon Source in Argonne National Lab confirmed the presence of an amorphous phase(s) in addition to the crystalline calcium carbonate phases in the reactive carbonate material. The presence of carboaluminate phases as a result of the interaction of the reactive carbonate materials with ordinary portland cement was also confirmed. A Life Cycle Assessment was completed for several cases based on different Calera process configurations and compared against the life cycle of ordinary portland cement. In addition to the materials development efforts, the Calera technology for the production of product using an innovative building materials demonstration plant was developed beyond conceptual engineering to a detailed design with a construction schedule and cost estimate.« less

  18. Gas-solid carbonation as a possible source of carbonates in cold planetary environments

    NASA Astrophysics Data System (ADS)

    Garenne, A.; Montes-Hernandez, G.; Beck, P.; Schmitt, B.; Brissaud, O.; Pommerol, A.

    2013-02-01

    Carbonates are abundant sedimentary minerals at the surface and sub-surface of the Earth and they have been proposed as tracers of liquid water in extraterrestrial environments. Their formation mechanism is since generally associated with aqueous alteration processes. Recently, carbonate minerals have been discovered on Mars' surface by different orbitals or rover missions. In particular, the phoenix mission has measured from 1% to 5% of calcium carbonate (calcite type) within the soil (Smith et al., 2009). These occurrences have been reported in area where the relative humidity is significantly high (Boynton et al., 2009). The small concentration of carbonates suggests an alternative process on mineral grain surfaces (as suggested by Shaheen et al., 2010) than carbonation in aqueous conditions. Such an observation could rather point toward a possible formation mechanism by dust-gas reaction under current Martian conditions. To understand the mechanism of carbonate formation under conditions relevant to current Martian atmosphere and surface, we designed an experimental setup consisting of an infrared microscope coupled to a cryogenic reaction cell (IR-CryoCell setup). Three different mineral precursors of carbonates (Ca and Mg hydroxides, and a hydrated Ca silicate formed from Ca2SiO4), low temperature (from -10 to +30 °C), and reduced CO2 pressure (from 100 to 2000 mbar) were utilized to investigate the mechanism of gas-solid carbonation at mineral surfaces. These mineral materials are crucial precursors to form Ca and Mg carbonates in humid environments (0%carbonation process for Ca hydroxide and hydrated Ca silicate. Conversely, only a moderate carbonation is observed for the Mg hydroxide. These results suggest that gas-solid carbonation process or carbonate formation at the dust-water ice-CO2 interfaces could be a currently active Mars' surface

  19. Radiological study of the effect of low calcium diet on the mineral metabolism of bone tissue. With reference to mineralization in callus (in Japanese)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, K.

    1972-01-01

    Deficiency of available food material due either to poor diet or to malabsorption may adversely affect the skeleton. To study the affection, DDN mice were fed low calcium diet to induce low calcium state corresponding to malabsorption of calcium from the intestine. The femur was fractured manually. Then, calcium deposition in the callus was observed by microradiography and tracer technics with /sup 47/Ca. Increase of the body weight in mice fed low calcium diet was much slower than in the control. The affection of the low calcium diet on bone tissue appeared as a decrease of precipitation of calcium salt.more » This tendency was also observed in callus, Tracer study with /sup 47/Ca was performed in mice fed the low calcium diet for 24 days. Incorporation activity of calcium was generally high in each organ except the kidney. Callus in the site of the fracture in mice fed a low calcium diet was formed to the same degree as the control, although the amount of precipitated calcium in it was significantly poorer. In summary, insufficient mineralization in relation to osteogenesis occurred when the supply of the requisite electrolytes was insufficient or inappropriate. On the other hand, the uptake rate of calcinm in the callus was elevated even in the calcium deficient state. (auth)« less

  20. Inhibition of calcium carbonate crystal growth by organic additives using the constant composition method in conditions of recirculating cooling circuits

    NASA Astrophysics Data System (ADS)

    Chhim, Norinda; Kharbachi, Chams; Neveux, Thibaut; Bouteleux, Céline; Teychené, Sébastien; Biscans, Béatrice

    2017-08-01

    The cooling circuits used in power plants are subject to mineral crystallization which can cause scaling on the surfaces of equipment and construction materials reducing their heat exchange efficiency. Precipitated calcium carbonate is the predominant mineral scale commonly observed in cooling systems. Supersaturation is the key parameter controlling the nucleation and growth of calcite in these systems. The present work focuses on the precipitation of calcite using the constant composition method at constant supersaturation, through controlled addition of reactants to a semi-batch crystallizer, in order to maintain constant solution pH. The determination of the thermodynamic driving force (supersaturation) was based on the relevant chemical equilibria, total alkalinity and calculation of the activity coefficients. Calcite crystallization rates were derived from the experiments performed at supersaturation levels similar to those found in industrial station cooling circuits. Several types of seeds particles were added into the aqueous solution to mimic natural river water conditions in terms of suspended particulate matters content, typically: calcite, silica or illite particles. The effect of citric and copolycarboxylic additive inhibitors added to the aqueous solution was studied. The calcium carbonate growth rate was reduced by 38.6% in the presence of the citric additive and a reduction of 92.7% was observed when the copolycarboxylic additive was used under identical experimental conditions. These results are explained by the location of the adsorbed inhibitor at the crystal surface and by the degree of chemical bonding to the surface.

  1. Amorphous calcium carbonate particles form coral skeletons

    DOE PAGES

    Mass, Tali; Giuffre, Anthony J.; Sun, Chang -Yu; ...

    2017-08-28

    Do corals form their skeletons by precipitation from solution or by attachment of amorphous precursor particles as observed in other minerals and biominerals? The classical model assumes precipitation in contrast with observed “vital effects,” that is, deviations from elemental and isotopic compositions at thermodynamic equilibrium. Here, we show direct spectromicroscopy evidence in Stylophora pistillata corals that two amorphous precursors exist, one hydrated and one anhydrous amorphous calcium carbonate (ACC); that these are formed in the tissue as 400-nm particles; and that they attach to the surface of coral skeletons, remain amorphous for hours, and finally, crystallize into aragonite (CaCO 3).more » We show in both coral and synthetic aragonite spherulites that crystal growth by attachment of ACC particles is more than 100 times faster than ion-by-ion growth from solution. Fast growth provides a distinct physiological advantage to corals in the rigors of the reef, a crowded and fiercely competitive ecosystem. Corals are affected by warming-induced bleaching and postmortem dissolution, but the finding here that ACC particles are formed inside tissue may make coral skeleton formation less susceptible to ocean acidification than previously assumed. If this is how other corals form their skeletons, perhaps this is how a few corals survived past CO 2 increases, such as the Paleocene–Eocene Thermal Maximum that occurred 56 Mya.« less

  2. Amorphous calcium carbonate particles form coral skeletons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mass, Tali; Giuffre, Anthony J.; Sun, Chang -Yu

    Do corals form their skeletons by precipitation from solution or by attachment of amorphous precursor particles as observed in other minerals and biominerals? The classical model assumes precipitation in contrast with observed “vital effects,” that is, deviations from elemental and isotopic compositions at thermodynamic equilibrium. Here, we show direct spectromicroscopy evidence in Stylophora pistillata corals that two amorphous precursors exist, one hydrated and one anhydrous amorphous calcium carbonate (ACC); that these are formed in the tissue as 400-nm particles; and that they attach to the surface of coral skeletons, remain amorphous for hours, and finally, crystallize into aragonite (CaCO 3).more » We show in both coral and synthetic aragonite spherulites that crystal growth by attachment of ACC particles is more than 100 times faster than ion-by-ion growth from solution. Fast growth provides a distinct physiological advantage to corals in the rigors of the reef, a crowded and fiercely competitive ecosystem. Corals are affected by warming-induced bleaching and postmortem dissolution, but the finding here that ACC particles are formed inside tissue may make coral skeleton formation less susceptible to ocean acidification than previously assumed. If this is how other corals form their skeletons, perhaps this is how a few corals survived past CO 2 increases, such as the Paleocene–Eocene Thermal Maximum that occurred 56 Mya.« less

  3. Amorphous calcium carbonate particles form coral skeletons

    NASA Astrophysics Data System (ADS)

    Mass, Tali; Giuffre, Anthony J.; Sun, Chang-Yu; Stifler, Cayla A.; Frazier, Matthew J.; Neder, Maayan; Tamura, Nobumichi; Stan, Camelia V.; Marcus, Matthew A.; Gilbert, Pupa U. P. A.

    2017-09-01

    Do corals form their skeletons by precipitation from solution or by attachment of amorphous precursor particles as observed in other minerals and biominerals? The classical model assumes precipitation in contrast with observed “vital effects,” that is, deviations from elemental and isotopic compositions at thermodynamic equilibrium. Here, we show direct spectromicroscopy evidence in Stylophora pistillata corals that two amorphous precursors exist, one hydrated and one anhydrous amorphous calcium carbonate (ACC); that these are formed in the tissue as 400-nm particles; and that they attach to the surface of coral skeletons, remain amorphous for hours, and finally, crystallize into aragonite (CaCO3). We show in both coral and synthetic aragonite spherulites that crystal growth by attachment of ACC particles is more than 100 times faster than ion-by-ion growth from solution. Fast growth provides a distinct physiological advantage to corals in the rigors of the reef, a crowded and fiercely competitive ecosystem. Corals are affected by warming-induced bleaching and postmortem dissolution, but the finding here that ACC particles are formed inside tissue may make coral skeleton formation less susceptible to ocean acidification than previously assumed. If this is how other corals form their skeletons, perhaps this is how a few corals survived past CO2 increases, such as the Paleocene-Eocene Thermal Maximum that occurred 56 Mya.

  4. Amorphous calcium carbonate particles form coral skeletons.

    PubMed

    Mass, Tali; Giuffre, Anthony J; Sun, Chang-Yu; Stifler, Cayla A; Frazier, Matthew J; Neder, Maayan; Tamura, Nobumichi; Stan, Camelia V; Marcus, Matthew A; Gilbert, Pupa U P A

    2017-09-12

    Do corals form their skeletons by precipitation from solution or by attachment of amorphous precursor particles as observed in other minerals and biominerals? The classical model assumes precipitation in contrast with observed "vital effects," that is, deviations from elemental and isotopic compositions at thermodynamic equilibrium. Here, we show direct spectromicroscopy evidence in Stylophora pistillata corals that two amorphous precursors exist, one hydrated and one anhydrous amorphous calcium carbonate (ACC); that these are formed in the tissue as 400-nm particles; and that they attach to the surface of coral skeletons, remain amorphous for hours, and finally, crystallize into aragonite (CaCO 3 ). We show in both coral and synthetic aragonite spherulites that crystal growth by attachment of ACC particles is more than 100 times faster than ion-by-ion growth from solution. Fast growth provides a distinct physiological advantage to corals in the rigors of the reef, a crowded and fiercely competitive ecosystem. Corals are affected by warming-induced bleaching and postmortem dissolution, but the finding here that ACC particles are formed inside tissue may make coral skeleton formation less susceptible to ocean acidification than previously assumed. If this is how other corals form their skeletons, perhaps this is how a few corals survived past CO 2 increases, such as the Paleocene-Eocene Thermal Maximum that occurred 56 Mya.

  5. Amorphous calcium carbonate particles form coral skeletons

    PubMed Central

    Mass, Tali; Giuffre, Anthony J.; Sun, Chang-Yu; Stifler, Cayla A.; Frazier, Matthew J.; Neder, Maayan; Tamura, Nobumichi; Stan, Camelia V.; Marcus, Matthew A.

    2017-01-01

    Do corals form their skeletons by precipitation from solution or by attachment of amorphous precursor particles as observed in other minerals and biominerals? The classical model assumes precipitation in contrast with observed “vital effects,” that is, deviations from elemental and isotopic compositions at thermodynamic equilibrium. Here, we show direct spectromicroscopy evidence in Stylophora pistillata corals that two amorphous precursors exist, one hydrated and one anhydrous amorphous calcium carbonate (ACC); that these are formed in the tissue as 400-nm particles; and that they attach to the surface of coral skeletons, remain amorphous for hours, and finally, crystallize into aragonite (CaCO3). We show in both coral and synthetic aragonite spherulites that crystal growth by attachment of ACC particles is more than 100 times faster than ion-by-ion growth from solution. Fast growth provides a distinct physiological advantage to corals in the rigors of the reef, a crowded and fiercely competitive ecosystem. Corals are affected by warming-induced bleaching and postmortem dissolution, but the finding here that ACC particles are formed inside tissue may make coral skeleton formation less susceptible to ocean acidification than previously assumed. If this is how other corals form their skeletons, perhaps this is how a few corals survived past CO2 increases, such as the Paleocene–Eocene Thermal Maximum that occurred 56 Mya. PMID:28847944

  6. Evidence for Calcium Carbonate at the Phoenix Landing Site

    NASA Technical Reports Server (NTRS)

    Boynton, W. V.; Ming, D. W.; Sutter, B.; Arvidson, R. E.; Hoffman, J.; Niles, P. B.; Smith, P.

    2009-01-01

    The Phoenix mission has recently finished its study of the north polar environment of Mars with the aim to help understand both the current climate and to put constraints on past climate. An important part of understanding the past climate is the study of secondary minerals, those formed by reaction with volatile compounds such as H2O and CO2. This work describes observations made by the Thermal and Evolved-Gas Analyzer (TEGA) on the Phoenix Lander related to carbonate minerals. Carbonates are generally considered to be products of aqueous processes. A wet and warmer climate during the early history of Mars coupled with a much denser CO2 atmosphere are ideal conditions for the aqueous alteration of basaltic materials and the subsequent formation of carbonates. Carbonates (Mg- and Ca-rich) are predicted to be thermodynamically stable minerals in the present martian environment, however, there have been only a few indications of carbonates on the surface by a host of orbiting and landed missions to Mars. Carbonates (Mg-rich) have been suggested to be a component (2-5 wt %) of the martian global dust based upon orbital thermal emission spectroscopy. The identifications, based on the presence of a 1480 cm-1 absorption feature, are consistent with Mgcarbonates. A similar feature is observed in brighter, undisturbed soils by Mini-TES on the Gusev plains. Recently, Mg-rich carbonates have been identified in the Nili Fossae region by the CRISM instrument onboard the Mars Reconnaissance Orbiter. Carbonates have also been confirmed as aqueous alteration phases in martian meteorites so it is puzzling why there have not been more discoveries of carbonates by landers, rovers, and orbiters. Carbonates may hold important clues about the history of liquid water and aqueous processes on the surface of Mars.

  7. Sea urchin tooth mineralization: Calcite present early in the aboral plumula

    PubMed Central

    Stock, Stuart R.; Veis, Arthur; Xiao, Xianghui; Almer, Jonathan D.; Dorvee, Jason R.

    2012-01-01

    In both vertebrate bone, containing carbonated hydroxyapatite as the mineral phase, and in invertebrate hard tissue comprised of calcium carbonate, a popular view is that the mineral phase develops from a long-lived amorphous precursor which later transforms into crystal form. Important questions linked to this popular view are: When and where is the crystallized material formed, and is amorphous solid added subsequently to the crystalline substrate? Sea urchin teeth, in which the earliest mineral forms within isolated compartments, in a time and position dependent manner, allow direct investigation of the timing of crystallization of the calcite primary plates. Living teeth of the sea urchin Lytechinus variegatus, in their native coelomic fluid, were examined by high-energy synchrotron x-ray diffraction. The diffraction data show that calcite is present in the most aboral portions of the plumula, representing the very earliest stages of mineralization, and that this calcite has the same crystal orientation as in the more mature adoral portions of the same tooth. Raman spectroscopy of the aboral plumula confirms the initial primary plate mineral material is calcite and does not detect amorphous calcium carbonate; in the more mature adoral incisal flange, it does detect a broader calcite peak, consistent with two or more magnesium compositions. We hypothesize that some portion of each syncytial membrane in the plumula provides the information for nucleation of identically oriented calcite crystals that subsequently develop to form the complex geometry of the single crystal sea urchin tooth. PMID:22940703

  8. Experimental evidence for chemo-mechanical coupling during carbon mineralization in ultramafic rocks

    NASA Astrophysics Data System (ADS)

    Lisabeth, H. P.; Zhu, W.; Kelemen, P. B.; Ilgen, A.

    2017-09-01

    Storing carbon dioxide in the subsurface as carbonate minerals has the benefit of long-term stability and immobility. Ultramafic rock formations have been suggested as a potential reservoir for this type of storage due to the availability of cations to react with dissolved carbon dioxide and the fast reaction rates associated with minerals common in ultramafic formations; however, the rapid reactions have the potential to couple with the mechanical and hydraulic behavior of the rocks and little is known about the extent and mechanisms of this coupling. In this study, we argue that the dissolution of primary minerals and the precipitation of secondary minerals along pre-existing fractures in samples lead to reductions in both the apparent Young's modulus and shear strength of aggregates, accompanied by reduction in permeability. Hydrostatic and triaxial deformation experiments were run on dunite samples saturated with de-ionized water and carbon dioxide-rich solutions while stress, strain, permeability and pore fluid chemistry were monitored. Sample microstructures were examined after reaction and deformation using scanning electron microscopy (SEM). The results show that channelized dissolution and carbonate mineral precipitation in the samples saturated with carbon dioxide-rich solutions modify the structure of grain boundaries, leading to the observed reductions in stiffness, strength and permeability. A geochemical model was run to help interpret fluid chemical data, and we find that the apparent reaction rates in our experiments are faster than rates calculated from powder reactors, suggesting mechanically enhanced reaction rates. In conclusion, we find that chemo-mechanical coupling during carbon mineralization in dunites leads to substantial modification of mechanical and hydraulic behavior that needs to be accounted for in future modeling efforts of in situ carbon mineralization projects.

  9. Microwave hydrothermal transformation of amorphous calcium carbonate nanospheres and application in protein adsorption.

    PubMed

    Qi, Chao; Zhu, Ying-Jie; Chen, Feng

    2014-03-26

    Calcium carbonate and calcium phosphate are the main components of biominerals. Among all of the forms of biominerals, amorphous calcium carbonate (ACC) and amorphous calcium phosphate (ACP) are the most important forms because they play a pivotal role in the process of biomineralization and are the precursors to the crystalline polymorphs. In this work, we first synthesized ACC in vitro using adenosine 5'-triphosphate disodium salt (ATP) as the stabilizer and investigated the transformation of the ACC under microwave hydrothermal conditions, and ACC/ACP composite nanospheres and carbonated hydroxyapatite (CHA) nanospheres were successfully prepared. In this novel strategy, ATP has two main functions: it serves as the stabilizer for ACC and the phosphorus source for ACP and CHA. Most importantly, the morphology and the size of the ACC precursor can be well-preserved after microwave heating, so it provides a new method for the preparation of calcium phosphate nanostructured materials using phosphorus-containing biomolecule-stabilized ACC as the precursor. Furthermore, the as-prepared ACC/ACP composite nanospheres have excellent biocompatibility and high protein adsorption capacity, indicating that they are promising for applications in biomedical fields such as drug delivery and protein adsorption.

  10. The expanded amelogenin polyproline region preferentially binds to apatite versus carbonate and promotes apatite crystal elongation

    PubMed Central

    Gopinathan, Gokul; Jin, Tianquan; Liu, Min; Li, Steve; Atsawasuwan, Phimon; Galang, Maria-Therese; Allen, Michael; Luan, Xianghong; Diekwisch, Thomas G. H.

    2014-01-01

    The transition from invertebrate calcium carbonate-based calcite and aragonite exo- and endoskeletons to the calcium phosphate-based vertebrate backbones and jaws composed of microscopic hydroxyapatite crystals is one of the great revolutions in the evolution of terrestrial organisms. To identify potential factors that might have played a role in such a transition, three key domains of the vertebrate tooth enamel protein amelogenin were probed for calcium mineral/protein interactions and their ability to promote calcium phosphate and calcium carbonate crystal growth. Under calcium phosphate crystal growth conditions, only the carboxy-terminus augmented polyproline repeat peptide, but not the N-terminal peptide nor the polyproline repeat peptide alone, promoted the formation of thin and parallel crystallites resembling those of bone and initial enamel. In contrast, under calcium carbonate crystal growth conditions, all three amelogenin-derived polypeptides caused calcium carbonate to form fused crystalline conglomerates. When examined for long-term crystal growth, polyproline repeat peptides of increasing length promoted the growth of shorter calcium carbonate crystals with broader basis, contrary to the positive correlation between polyproline repeat element length and apatite mineralization published earlier. To determine whether the positive correlation between polyproline repeat element length and apatite crystal growth versus the inverse correlation between polyproline repeat length and calcium carbonate crystal growth were related to the binding affinity of the polyproline domain to either apatite or carbonate, a parallel series of calcium carbonate and calcium phosphate/apatite protein binding studies was conducted. These studies demonstrated a remarkable binding affinity between the augmented amelogenin polyproline repeat region and calcium phosphates, and almost no binding to calcium carbonates. In contrast, the amelogenin N-terminus bound to both carbonate

  11. A probabilistic assessment of calcium carbonate export and dissolution in the modern ocean

    NASA Astrophysics Data System (ADS)

    Battaglia, Gianna; Steinacher, Marco; Joos, Fortunat

    2016-05-01

    The marine cycle of calcium carbonate (CaCO3) is an important element of the carbon cycle and co-governs the distribution of carbon and alkalinity within the ocean. However, CaCO3 export fluxes and mechanisms governing CaCO3 dissolution are highly uncertain. We present an observationally constrained, probabilistic assessment of the global and regional CaCO3 budgets. Parameters governing pelagic CaCO3 export fluxes and dissolution rates are sampled using a Monte Carlo scheme to construct a 1000-member ensemble with the Bern3D ocean model. Ensemble results are constrained by comparing simulated and observation-based fields of excess dissolved calcium carbonate (TA*). The minerals calcite and aragonite are modelled explicitly and ocean-sediment fluxes are considered. For local dissolution rates, either a strong or a weak dependency on CaCO3 saturation is assumed. In addition, there is the option to have saturation-independent dissolution above the saturation horizon. The median (and 68 % confidence interval) of the constrained model ensemble for global biogenic CaCO3 export is 0.90 (0.72-1.05) Gt C yr-1, that is within the lower half of previously published estimates (0.4-1.8 Gt C yr-1). The spatial pattern of CaCO3 export is broadly consistent with earlier assessments. Export is large in the Southern Ocean, the tropical Indo-Pacific, the northern Pacific and relatively small in the Atlantic. The constrained results are robust across a range of diapycnal mixing coefficients and, thus, ocean circulation strengths. Modelled ocean circulation and transport timescales for the different set-ups were further evaluated with CFC11 and radiocarbon observations. Parameters and mechanisms governing dissolution are hardly constrained by either the TA* data or the current compilation of CaCO3 flux measurements such that model realisations with and without saturation-dependent dissolution achieve skill. We suggest applying saturation-independent dissolution rates in Earth system

  12. Amorphous calcium carbonate: A precursor phase for aragonite in shell disease of the pearl oyster.

    PubMed

    Huang, Jingliang; Liu, Chuang; Xie, Liping; Zhang, Rongqing

    2018-02-26

    Amorphous calcium carbonate (ACC) has long been shown to act as an important constituent or precursor phase for crystalline material in mollusks. However, the presence and the role of ACC in bivalve shell formation are not fully studied. In this study, we found that brown deposits containing heterogeneous calcium carbonates were precipitated when a shell disease occurred in the pearl oyster Pinctada fucata. Calcein-staining of the brown deposits indicated that numerous amorphous calcium deposits were present, which was further confirmed by Fourier-transform infrared spectroscopy (FTIR), Raman spectrum and X-ray difraction (XRD) analyses. So we speculate that ACC plays an important role in rapid calcium carbonate precipitation during shell repair process in diseased oysters. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Carbon mineralization in acidic, xeric forest soils: induction of new activities.

    PubMed

    Tate, R L

    1985-08-01

    Carbon mineralization was examined in Lakehurst and Atsion sands collected from the New Jersey Pinelands and in Pahokee muck from the Everglades Agricultural Area. Objectives were (i) to estimate the carbon mineralization capacities of acidic, xeric Pinelands soils in the absence of exogenously supplied carbon substrate (nonamended carbon mineralization rate) and to compare these activities with those of agriculturally developed pahokee muck, and (ii) to measure the capacity for increased carbon mineralization in the soils after carbon amendment. In most cases, nonamended carbon mineralization rates were greater in samples of the acid- and moisture-stressed Pinelands soils than in Pahokee muck collected from a fallow (bare) field. Carbon amendment resulted in augmented catabolic activity in Pahokee muck samples, suggesting that the microbial community was carbon limited in this soil. With many of the substrates, no stimulation of the catabolic rate was detected after amendment of Pinelands soils. This was documented by the observation that amendment of Pahokee muck with an amino acid mixture, glucose, or acetate resulted in a 3.0-, 3.9-, or 10.5-fold stimulation of catabolic activity, respectively, for the added substrate. In contrast, amendment of the Pinelands soils resulted in increased amino acid and acetate catabolic rates in Lakehurst sand and increased acetate metabolism only in Atsion sand. Other activities were unchanged. The increased glucose respiration rates resulted from stimulation of existing microbial activity rather than from microbial proliferation since no change in the microbial growth rate, as estimated by the rate of incorporation of C-labeled acetate into cell membranes, occurred after glucose amendment of the soils. A stimulation of microbial growth rate was recorded with glucose-amended Lakehurst sand collected from the B horizon.

  14. Mineral Carbonation Potential of CO2 from Natural and Industrial-based Alkalinity Sources

    NASA Astrophysics Data System (ADS)

    Wilcox, J.; Kirchofer, A.

    2014-12-01

    Mineral carbonation is a Carbon Capture and Storage (CSS) technology where gaseous CO2 is reacted with alkaline materials (such as silicate minerals and alkaline industrial wastes) and converted into stable and environmentally benign carbonate minerals (Metz et al., 2005). Here, we present a holistic, transparent life cycle assessment model of aqueous mineral carbonation built using a hybrid process model and economic input-output life cycle assessment approach. We compared the energy efficiency and the net CO2 storage potential of various mineral carbonation processes based on different feedstock material and process schemes on a consistent basis by determining the energy and material balance of each implementation (Kirchofer et al., 2011). In particular, we evaluated the net CO2 storage potential of aqueous mineral carbonation for serpentine, olivine, cement kiln dust, fly ash, and steel slag across a range of reaction conditions and process parameters. A preliminary systematic investigation of the tradeoffs inherent in mineral carbonation processes was conducted and guidelines for the optimization of the life-cycle energy efficiency are provided. The life-cycle assessment of aqueous mineral carbonation suggests that a variety of alkalinity sources and process configurations are capable of net CO2 reductions. The maximum carbonation efficiency, defined as mass percent of CO2 mitigated per CO2 input, was 83% for CKD at ambient temperature and pressure conditions. In order of decreasing efficiency, the maximum carbonation efficiencies for the other alkalinity sources investigated were: olivine, 66%; SS, 64%; FA, 36%; and serpentine, 13%. For natural alkalinity sources, availability is estimated based on U.S. production rates of a) lime (18 Mt/yr) or b) sand and gravel (760 Mt/yr) (USGS, 2011). The low estimate assumes the maximum sequestration efficiency of the alkalinity source obtained in the current work and the high estimate assumes a sequestration efficiency

  15. Preparation and characterization of carbonic anhydrase-conjugated liposomes for catalytic synthesis of calcium carbonate particles.

    PubMed

    Maeshima, Keisuke; Yoshimoto, Makoto

    2017-10-01

    The biomimetic approach using immobilized enzymes is useful for the synthesis of structurally defined inorganic materials. In this work, carbonic anhydrase (CA) from bovine erythrocytes was covalently conjugated at 25°C to the liposomes composed of 15mol% 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine-N-(glutaryl) (NG-POPE), and the zwitterionic and anionic phospholipids with the same acyl chains as NG-POPE. For the conjugation, the carboxyl groups of liposomal NG-POPE were activated with 11mM 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and 4.6mM N-hydroxysulfosuccinimide (sulfo-NHS). The carbonic anhydrase-conjugated liposomes (CALs) with the mean hydrodynamic diameter of 149nm showed the esterase activity corresponding to on average 5.5×10 2 free CA molecules per liposome. On the other hand, the intrinsic fluorescence and absorbance measurements consistently revealed that on average 1.4×10 3 CA molecules were conjugated to a liposome, suggesting that the molecular orientation of enzyme affected its activity. The formation of calcium carbonate particles was significantly accelerated by the CALs ([lipid]=50μ M) in the 0.3M Tris solution at 10-40°C with dissolved CO 2 (≈17mM) and CaCl 2 (46mM). The anionic CALs were adsorbed with calcium as revealed with the ζ-potential measurements. The CAL system offered the calcium-rich colloidal interface where the bicarbonate ions were catalytically produced by the liposome-conjugated CA molecules. The CALs also functioned in the external loop airlift bubble column operated with a model flue gas (10vol/vo% CO 2 ), yielding partly agglomerated calcium carbonate particles as observed with the scanning electron microscopy (SEM). Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Clay mineral continental amplifier for marine carbon sequestration in a greenhouse ocean.

    PubMed

    Kennedy, Martin J; Wagner, Thomas

    2011-06-14

    The majority of carbon sequestration at the Earth's surface occurs in marine continental margin settings within fine-grained sediments whose mineral properties are a function of continental climatic conditions. We report very high mineral surface area (MSA) values of 300 and 570 m(2) g in Late Cretaceous black shales from Ocean Drilling Program site 959 of the Deep Ivorian Basin that vary on subcentennial time scales corresponding with abrupt increases from approximately 3 to approximately 18% total organic carbon (TOC). The observed MSA changes with TOC across multiple scales of variability and on a sample-by-sample basis (centimeter scale), provides a rigorous test of a hypothesized influence on organic carbon burial by detrital clay mineral controlled MSA. Changes in TOC also correspond with geochemical and sedimentological evidence for water column anoxia. Bioturbated intervals show a lower organic carbon loading on mineral surface area of 0.1 mg-OC m(-2) when compared to 0.4 mg-OC m(-2) for laminated and sulfidic sediments. Although either anoxia or mineral surface protection may be capable of producing TOC of < 5%, when brought together they produced the very high TOC (10-18%) apparent in these sediments. This nonlinear response in carbon burial resulted from minor precession-driven changes of continental climate influencing clay mineral properties and runoff from the African continent. This study identifies a previously unrecognized land-sea connection among continental weathering, clay mineral production, and anoxia and a nonlinear effect on marine carbon sequestration during the Coniacian-Santonian Oceanic Anoxic Event 3 in the tropical eastern Atlantic.

  17. Calcium silicates synthesised from industrial residues with the ability for CO2 sequestration.

    PubMed

    Morales-Flórez, Victor; Santos, Alberto; López, Antonio; Moriña, Isabel; Esquivias, Luis

    2014-12-01

    This work explored several synthesis routes to obtain calcium silicates from different calcium-rich and silica-rich industrial residues. Larnite, wollastonite and calcium silicate chloride were successfully synthesised with moderate heat treatments below standard temperatures. These procedures help to not only conserve natural resources, but also to reduce the energy requirements and CO2 emissions. In addition, these silicates have been successfully tested as carbon dioxide sequesters, to enhance the viability of CO2 mineral sequestration technologies using calcium-rich industrial by-products as sequestration agents. Two different carbon sequestration experiments were performed under ambient conditions. Static experiments revealed carbonation efficiencies close to 100% and real-time resolved experiments characterised the dynamic behaviour and ability of these samples to reduce the CO2 concentration within a mixture of gases. The CO2 concentration was reduced up to 70%, with a carbon fixation dynamic ratio of 3.2 mg CO2 per g of sequestration agent and minute. Our results confirm the suitability of the proposed synthesis routes to synthesise different calcium silicates recycling industrial residues, being therefore energetically more efficient and environmentally friendly procedures for the cement industry. © The Author(s) 2014.

  18. Sequestering CO(2) by mineral carbonation: stability against acid rain exposure.

    PubMed

    Allen, Daniel J; Brent, Geoff F

    2010-04-01

    Mineral carbonation is a potentially attractive alternative to storage of compressed CO(2) in underground repositories, known as geosequestration. Processes for the conversion of basic ores, such as magnesium silicates, to carbonates have been proposed by various researchers, with storage of the carbonate as backfill in the original mine representing a solid carbon sink. The stability of such carbon sinks against acid rain and other sources of strong acids is examined here. It is acknowledged that in the presence of strong acid, carbonates will dissolve and release carbon dioxide. A sensitivity analysis covering annual average rainfall and pH that may be encountered in industrialized areas of the United States, China, Europe, and Australia was conducted to determine maximum CO(2) rerelease rates from mineral carbonation carbon sinks. This analysis is based on a worst-case premise that is equivalent to assuming infinitely rapid kinetics of dissolution of the carbonate. The analysis shows that under any likely conditions of pH and rainfall, leakage rates of stored CO(2) are negligible. This is illustrated in a hypothetical case study under Australian conditions. It is thus proposed that sequestration by mineral carbonation can be considered to be permanent on practical human time scales. Other possible sources of acid have also been considered.

  19. Hyper-localized carbon mineralization in diffusion-limited basalt fractures

    NASA Astrophysics Data System (ADS)

    Menefee, A. H.; Giammar, D.; Ellis, B. R.

    2017-12-01

    Basalt formations could enable secure carbon sequestration through mineral trapping. CO2 injection acidifies formation brines and drives dissolution of the host rock, which releases divalent metal cations that combine with dissolved carbonate ions to form stable carbonate minerals. Here, a series of high-pressure flow-through experiments was conducted to evaluate how transport limitations and geochemical gradients drive microscale carbonation reactions in fractured basalts. To isolate advection- and diffusion-controlled zones, surfaces of saw-cut basalt cores were milled to create one primary flow channel adjoined by four dead-end fracture pathways. In the first experiment, a representative basalt brine (6.3 mM NaHCO3) equilibrated with CO2 (100ºC, 10 MPa) was injected at 1 mL/h under 20 MPa confining stress. The second experiment was conducted under the same physical conditions but [NaHCO3] was elevated to 640 mM, and in the third, temperature was also raised to 150ºC. Effluent chemistry was monitored via ICP-MS to infer dissolution trends and calibrate reactive transport models. Reacted cores were characterized using x-ray computed tomography (xCT), optical microscopy, scanning electron microscopy, and Raman spectroscopy. Carbonation occurred in all experiments but increased in experiments with higher alkalinity and higher temperature. At low [NaHCO3], secondary precipitate coatings formed distinct reaction fronts that varied with distance into dead-end fractures. Reactive transport modeling demonstrated that these reactions fronts were due to sharp gradients in pH and dissolved inorganic carbon. Carbonation was restricted to transport-limited vugs and pores between the confined core surfaces and was highly localized on reactive primary mineral grains (e.g. pyroxene) that contributed major divalent cations. Increasing [NaHCO3] by two orders of magnitude significantly enhanced carbonation and promoted Mg and Fe uptake into carbonates. While xCT scans revealed

  20. An experimental model for calcium carbonate urolithiasis in goats

    PubMed Central

    Dominguez, Brandon J.; Deveau, Michael A.

    2018-01-01

    Background Calcium carbonate is a common urolith type in small ruminants with no high‐yield experimental model to evaluate animal susceptibility or preventative measure response. Hypothesis That novel plastic winged implants would allow accumulation and quantification of calcium carbonate calculus formation in goats on a high‐calcium diet and identify individual variation between goats in the mass of calculi produced. Animals Eight nonpregnant 3‐ and 4‐year‐old Boer‐cross does, weighing 22.3–39.5 kg, determined to be healthy based on physical examination, were used in these experiments. Methods Prospective cohort study for in vivo experimental model development. Implants were placed into the urinary bladder lumen in 8 goats over 2 evaluation periods. The alfalfa‐based ration had a total ration Ca : P of 3.29 and 3.84 : 1, respectively. Urine was collected at 0, 28, 56, and 84 days in the 1st experiment; blood and urine at those timepoints in the 2nd experiment. For each evaluation period, the implants were removed 84 days after implantation and weighed. Accumulated calculi mass was calculated and compared between goats and was analyzed for composition. Results Implant retention was 100% and 86% in the 2 studies. All goats with retained implants accumulated calcium carbonate at a mean implant gain per day across studies ranging from 0.44 to 57.45 mg. Two goats accumulated (0.44–7.65 mg/day and 33.64 & 57.45 mg/day) significantly more urolith material than the cohort across both studies (P = .047). No routine analytes on blood or urine were found to be explanatory for the difference observed. Conclusions and Clinical Importance These findings form a basis for implant and diet selection for use in future studies of urolithiasis development and for studies regarding individual susceptibility to urolithiasis. PMID:29524246

  1. Effect of temperature on the reaction pathway of calcium carbonate formation via precursor phases

    NASA Astrophysics Data System (ADS)

    Purgstaller, Bettina; Mavromatis, Vasileios; Konrad, Florian; Dietzel, Martin

    2016-04-01

    It has been earlier postulated that some biogenic and sedimentary calcium carbonate (CaCO3) minerals (e.g. calcite and aragonite) are secondary in origin and have originally formed via a metastable calcium carbonate precursor phase (e.g. amorphous CaCO3, [1-2]). Such formation pathways are likely affected by various physicochemical parameters including aqueous Mg and temperature. In an effort to improve our understanding on the formation mechanism of CaCO3 minerals, precipitation experiments were carried out by the addition of a 0.6 M (Ca,Mg)Cl2 solution at distinct Mg/Ca ratios (1/4 and 1/8) into a 1 M NaHCO3 solution under constant pH conditions(8.3 ±0.1). The formation of CaCO3 was systematically examined as a function of temperature (6, 12, 18 and 25 ±0.3° C). During the experimental runs mineral precipitation was monitored by in situ Raman spectroscopy as well as by continuous sampling and analyzing of precipitates and reactive solutions. The results revealed two pathways of CaCO3 formation depending on the initial Mg/Ca ratio and temperature: (i) In experiments with a Mg/Ca ratio of 1/4 at ≤ 12° C as well as in experiments with a Mg/Ca ratio of 1/8 at ≤ 18° C, ikaite (CaCO3 6H2O) acts as a precursor phase for aragonite formation. (ii) In contrast higher temperatures induced the formation of Mg-rich amorphous CaCO3 (Mg-ACC) which was subsequently transformed to Mg-rich calcite. In situ Raman spectra showed that the transformation of Mg-ACC to Mg-calcite occurs at a higher rate (˜ 8 min) compared to that of ikaite to aragonite (> 2 h). Thus, the formation of aragonite rather than of Mg-calcite occurs due to the slower release of Ca2+and CO32- ions into the Mg-rich reactive solution during retarded ikaite dissolution. This behavior is generally consistent with the observation that calcite precipitation is inhibited at elevated aqueous Mg/Ca ratios. [1] Addadi L., Raz S. and Weiner S. (2003) Advanced Materials 15, 959-970. [2] Rodriguez-Blanco J. D

  2. Fabrication of porous low crystalline calcite block by carbonation of calcium hydroxide compact.

    PubMed

    Matsuya, Shigeki; Lin, Xin; Udoh, Koh-ichi; Nakagawa, Masaharu; Shimogoryo, Ryoji; Terada, Yoshihiro; Ishikawa, Kunio

    2007-07-01

    Calcium carbonate (CaCO(3)) has been widely used as a bone substitute material because of its excellent tissue response and good resorbability. In this experimental study, we propose a new method obtaining porous CaCO(3) monolith for an artificial bone substitute. In the method, calcium hydroxide compacts were exposed to carbon dioxide saturated with water vapor at room temperature. Carbonation completed within 3 days and calcite was the only product. The mechanical strength of CaCO(3) monolith increased with carbonation period and molding pressure. Development of mechanical strength proceeded through two steps; the first rapid increase by bonding with calcite layer formed at the surface of calcium hydroxide particles and the latter increase by the full conversion of calcium hydroxide to calcite. The latter process was thought to be controlled by the diffusion of CO(2) through micropores in the surface calcite layer. Porosity of calcite blocks thus prepared had 36.8-48.1% depending on molding pressure between 1 MPa and 5 MPa. We concluded that the present method may be useful for the preparation of bone substitutes or the preparation of source material for bone substitutes since this method succeeded in fabricating a low-crystalline, and thus a highly reactive, porous calcite block.

  3. Carbonate and sulfate minerals in the Chassigny meteorite

    NASA Technical Reports Server (NTRS)

    Wentworth, Susan J.; Gooding, James L.

    1991-01-01

    SO2 and CO2 from pyrolysis and combustion of bulk Chassigny and infrared traces of sulfate and carbonate minerals have been previously reported. Using scanning electron microscopy (SEM) and energy-dispersive x ray spectrometry (EDS), portions of these samples are searched, and a Ca-sulfate/carbonate association is confirmed.

  4. Calcium supplementation does not augment bone gain in young women consuming diets moderately low in calcium.

    PubMed

    Barger-Lux, M Janet; Davies, K Michael; Heaney, Robert P

    2005-10-01

    In earlier observational work, the dietary calcium:protein ratio was directly related to bone accrual in healthy postadolescent women. In this study, we sought to test the hypothesis that augmented calcium intake would increase postadolescent skeletal consolidation, using a double-blind, randomized, placebo-controlled design. We recruited 152 healthy young women (age 23.1 +/- 2.7 y, BMI 22.5 +/- 3.0 kg/m2); their usual diets, as assessed by 7-d food diaries, were low in calcium (605 +/- 181 mg/d; 15.1 +/- 4.5 mmol/d) and in the calcium:protein ratio (10.1 +/- 2.0 mg/g). The subjects were randomly assigned to supplemental calcium [500 mg calcium (12.5 mmol) as the carbonate, 3 times/d, with meals] or placebo capsules identical in appearance; all participants also took a daily multivitamin, and they were followed for up to 36 mo with bone densitometry (dual energy X-ray absorptiometry; DXA) at 6-mo intervals. A total of 121 subjects remained in the study for at least 12 mo (median time in the study, 35 mo), with a mean compliance level (observed/expected tablet consumption) of 87.7%. DXA data for these 121 subjects indicated modest but significant mean rates of increase (i.e., 0.24 to 1.10%/y) in bone mineral content (BMC; total body, total hip, and lumbar spine) and in lumbar spine bone mineral density (BMD) but no change in total hip BMD. None of these rates of change differed by group, i.e., calcium supplementation did not have any measurable effect on bone mass accrual. By midstudy, the calcium content of the subjects' usual diets for both groups had risen by approximately 15%. The combined effect of improved intakes of dietary calcium and the small amount of calcium added by the multivitamin tablets resulted in a mean calcium intake for the control group > 800 mg (20 mmol)/d, possibly at or near the threshold beyond which additional calcium has no further effect on bone accrual.

  5. Tibial bone mineral distribution as influenced by calcium, phosphorus, and vitamin D feeding levels in the growing turkey

    NASA Technical Reports Server (NTRS)

    Spurrell, F. A.; Brenes, J.; Waibel, P.

    1974-01-01

    Roentgen signs, subperiosteal, endosteal, and trabecular bone growth are evaluated in turkeys fed phosphorus at the 0.5, 0.56, 0.68, 0.90, and 2.70 percent levels. Calcium levels of 0.30, 0.40, 0.60, 1.2, and 3.60 percent were also tested. Vitamin D levels of 0, 100, 300, 900 and 27,000 I.U. per day were likewise evaluated. Roentgen signs, bone mineral as measured by T-125 gamma ray absorption, and bone mineral growth patterns as shown by radiograph area projection are correlated with calcium, phosphorus, and vitamin D feeding levels. Differences in bone growth at the various feeding levels were observed which were not reflected by differences in other studied parameters.

  6. Clay mineral continental amplifier for marine carbon sequestration in a greenhouse ocean

    PubMed Central

    Kennedy, Martin J.; Wagner, Thomas

    2011-01-01

    The majority of carbon sequestration at the Earth’s surface occurs in marine continental margin settings within fine-grained sediments whose mineral properties are a function of continental climatic conditions. We report very high mineral surface area (MSA) values of 300 and 570 m2 g in Late Cretaceous black shales from Ocean Drilling Program site 959 of the Deep Ivorian Basin that vary on subcentennial time scales corresponding with abrupt increases from approximately 3 to approximately 18% total organic carbon (TOC). The observed MSA changes with TOC across multiple scales of variability and on a sample-by-sample basis (centimeter scale), provides a rigorous test of a hypothesized influence on organic carbon burial by detrital clay mineral controlled MSA. Changes in TOC also correspond with geochemical and sedimentological evidence for water column anoxia. Bioturbated intervals show a lower organic carbon loading on mineral surface area of 0.1 mg-OC m-2 when compared to 0.4 mg-OC m-2 for laminated and sulfidic sediments. Although either anoxia or mineral surface protection may be capable of producing TOC of < 5%, when brought together they produced the very high TOC (10–18%) apparent in these sediments. This nonlinear response in carbon burial resulted from minor precession-driven changes of continental climate influencing clay mineral properties and runoff from the African continent. This study identifies a previously unrecognized land–sea connection among continental weathering, clay mineral production, and anoxia and a nonlinear effect on marine carbon sequestration during the Coniacian-Santonian Oceanic Anoxic Event 3 in the tropical eastern Atlantic. PMID:21576498

  7. Response of Microbial Soil Carbon Mineralization Rates to Oxygen Limitations

    NASA Astrophysics Data System (ADS)

    Keiluweit, M.; Denney, A.; Nico, P. S.; Fendorf, S. E.

    2014-12-01

    The rate of soil organic matter (SOM) mineralization is known to be controlled by climatic factors as well as molecular structure, mineral-organic associations, and physical protection. What remains elusive is to what extent oxygen (O2) limitations impact overall rates of microbial SOM mineralization (oxidation) in soils. Even within upland soils that are aerobic in bulk, factors limiting O2 diffusion such as texture and soil moisture can result in an abundance of anaerobic microsites in the interior of soil aggregates. Variation in ensuing anaerobic respiration pathways can further impact SOM mineralization rates. Using a combination of (first) aggregate model systems and (second) manipulations of intact field samples, we show how limitations on diffusion and carbon bioavailability interact to impose anaerobic conditions and associated respiration constraints on SOM mineralization rates. In model aggregates, we examined how particle size (soil texture) and amount of dissolved organic carbon (bioavailable carbon) affect O2 availability and distribution. Monitoring electron acceptor profiles (O2, NO3-, Mn and Fe) and SOM transformations (dissolved, particulate, mineral-associated pools) across the resulting redox gradients, we then determined the distribution of operative microbial metabolisms and their cumulative impact on SOM mineralization rates. Our results show that anaerobic conditions decrease SOM mineralization rates overall, but those are partially offset by the concurrent increases in SOM bioavailability due to transformations of protective mineral phases. In intact soil aggregates collected from soils varying in texture and SOM content, we mapped the spatial distribution of anaerobic microsites. Optode imaging, microsensor profiling and 3D tomography revealed that soil texture regulates overall O2 availability in aggregate interiors, while particulate SOM in biopores appears to control the fine-scale distribution of anaerobic microsites. Collectively, our

  8. Influence of acidifying or alkalinizing diets on bone mineral density and urine relative supersaturation with calcium oxalate and struvite in healthy cats.

    PubMed

    Bartges, Joseph W; Kirk, Claudia A; Cox, Sherry K; Moyers, Tamberlyn D

    2013-10-01

    To evaluate the influence of acidifying or alkalinizing diets on bone mineral density and urine relative supersaturation (URSS) with calcium oxalate and struvite in healthy cats. 6 castrated male and 6 spayed female cats. 3 groups of 4 cats each were fed diets for 12 months that differed only in acidifying or alkalinizing properties (alkalinizing, neutral, and acidifying). Body composition was estimated by use of dual energy x-ray absorptiometry, and 48-hour urine samples were collected for URSS determination. Urine pH differed significantly among diet groups, with the lowest urine pH values in the acidifying diet group and the highest values in the alkalinizing diet group. Differences were not observed in other variables except urinary ammonia excretion, which was significantly higher in the neutral diet group. Calcium oxalate URSS was highest in the acidifying diet group and lowest in the alkalinizing diet group; struvite URSS was not different among groups. Diet was not significantly associated with bone mineral content or density. Urinary undersaturation with calcium oxalate was achieved by inducing alkaluria. Feeding an alkalinizing diet was not associated with URSS with struvite. Bone mineral density and calcium content were not adversely affected by diet; therefore, release of calcium from bone caused by feeding an acidifying diet may not occur in healthy cats.

  9. A disconnect between O horizon and mineral soil carbon - Implications for soil C sequestration

    NASA Astrophysics Data System (ADS)

    Garten, Charles T., Jr.

    2009-03-01

    Changing inputs of carbon to soil is one means of potentially increasing carbon sequestration in soils for the purpose of mitigating projected increases in atmospheric CO 2 concentrations. The effect of manipulations of aboveground carbon input on soil carbon storage was tested in a temperate, deciduous forest in east Tennessee, USA. A 4.5-year experiment included exclusion of aboveground litterfall and supplemental litter additions (three times ambient) in an upland and a valley that differed in soil nitrogen availability. The estimated decomposition rate of the carbon stock in the O horizon was greater in the valley than in the upland due to higher litter quality (i.e., lower C/N ratios). Short-term litter exclusion or addition had no effect on carbon stock in the mineral soil, measured to a depth of 30 cm, or the partitioning of carbon in the mineral soil between particulate- and mineral-associated organic matter. A two-compartment model was used to interpret results from the field experiments. Field data and a sensitivity analysis of the model were consistent with little carbon transfer between the O horizon and the mineral soil. Increasing aboveground carbon input does not appear to be an effective means of promoting carbon sequestration in forest soil at the location of the present study because a disconnect exists in carbon dynamics between O horizon and mineral soil. Factors that directly increase inputs to belowground soil carbon, via roots, or reduce decomposition rates of organic matter are more likely to benefit efforts to increase carbon sequestration in forests where carbon dynamics in the O horizon are uncoupled from the mineral soil.

  10. Risk of calcium oxalate nephrolithiasis in postmenopausal women supplemented with calcium or combined calcium and estrogen.

    PubMed

    Domrongkitchaiporn, Somnuek; Ongphiphadhanakul, Boonsong; Stitchantrakul, Wasana; Chansirikarn, Sirinthorn; Puavilai, Gobchai; Rajatanavin, Rajata

    2002-02-26

    Recent studies showed that postmenopausal women lost less bone mass when supplemented with calcium or estrogen therapy. However, the safety of the treatments in terms of the risk of calcium oxalate stone formation is unknown. We therefore conducted this study to determine the alteration in calcium oxalate supersaturation after calcium supplement or after combined calcium and estrogen therapy in postmenopausal osteoporotic women. Fifty-six postmenopausal women were enrolled in this study. All subjects were more than 10 years postmenopausal with vertebral or femoral osteoporosis by bone mineral density criteria. They were randomly allocated to receive either 625 mg of calcium carbonate (250 mg of elemental calcium) at the end of a meal three times a day (group A, n=26) or calcium carbonate in the same manner plus 0.625 mg/day of conjugated equine estrogen and 5 mg medrogestone acetate from day 1-12 each month (group B, n=30). The age (mean +/- S.E.M.) was 66.3 +/- 1.2 and 65.1 +/- 1.1 years, weight 54.1 +/- 1.2 and 55.3 +/- 2.1 kg, in group A and group B, respectively. Urine specimens (24-h) were collected at baseline and 3 months after treatment for the determination of calcium oxalate saturation by using Tiselius's index (AP(CaOx)) and calcium/citrate ratio. After 3 months of treatment, there was no significant alteration from baseline for urinary excretion of calcium, citrate and oxalate. Urinary phosphate excretion was significantly reduced (6.3 +/- 0.7 vs. 5.1 +/- 0.7 mmol/day for group A and 8.2 +/- 0.9 vs. 5.8 +/- 0.7 mmol/day for group B, P<0.05), whereas net alkaline absorption was significantly elevated (10.1 +/- 3.6 vs. 20.1 +/- 4.4 meq/day for group A and 4.8 +/- 3.2 vs. 19.9 +/- 3.6 meq/day for group B, P<0.05). Calcium/citrate ratio and AP(CaOx) determined at baseline were not different from the corresponding values after treatment in both groups; calcium/citrate: 10.1 +/- 3.1 vs. 10.1 +/- 2.5 for group A and 9.3 +/- 1.8 vs. 11.9 +/- 2.5 for group B and

  11. Bone Mineral Density Changes after Physical Training and Calcium Intake in Students with Attention Deficit and Hyper Activity Disorders

    ERIC Educational Resources Information Center

    Arab ameri, Elahe; Dehkhoda, Mohammad Reza; Hemayattalab, Rasool

    2012-01-01

    In this study we investigate the effects of weight bearing exercise and calcium intake on bone mineral density (BMD) of students with attention deficit and hyper activity (ADHD) disorder. For this reason 54 male students with ADHD (age 8-12 years old) were assigned to four groups with no differences in age, BMD, calcium intake, and physical…

  12. ATP-stabilized amorphous calcium carbonate nanospheres and their application in protein adsorption.

    PubMed

    Qi, Chao; Zhu, Ying-Jie; Lu, Bing-Qiang; Zhao, Xin-Yu; Zhao, Jing; Chen, Feng; Wu, Jin

    2014-05-28

    Calcium carbonate is a common substance found in rocks worldwide, and is the main biomineral formed in shells of marine organisms and snails, pearls and eggshells. Amorphous calcium carbonate (ACC) is the least stable polymorph of calcium carbonate, which is so unstable under normal conditions that it is difficult to be prepared in vitro because it rapidly crystallizes to form one of the more stable polymorphs in aqueous solution. Herein, we report the successful synthesis of highly stable ACC nanospheres in vitro using adenosine 5'-triphosphate disodium salt (ATP) as a stabilizer. The effect of ATP on the stability of ACC nanospheres is investigated. Our experiments show that ATP plays an unique role in the stabilization of ACC nanospheres in aqueous solution. Moreover, the as-prepared ACC nanospheres are highly stable in phosphate buffered saline for a relatively long period of time (12 days) even under relatively high concentrations of calcium and phosphate ions. The cytotoxicity tests show that the as-prepared highly stable ACC nanospheres have excellent biocompatibility. The highly stable ACC nanospheres have high protein adsorption capacity, implying that they are promising for applications in biomedical fields such as drug delivery and protein adsorption. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Sea urchin tooth mineralization: calcite present early in the aboral plumula.

    PubMed

    Stock, Stuart R; Veis, Arthur; Xiao, Xianghui; Almer, Jonathan D; Dorvee, Jason R

    2012-11-01

    In both vertebrate bone, containing carbonated hydroxyapatite as the mineral phase, and in invertebrate hard tissue comprised of calcium carbonate, a popular view is that the mineral phase develops from a long-lived amorphous precursor which later transforms into crystal form. Important questions linked to this popular view are: when and where is the crystallized material formed, and is amorphous solid added subsequently to the crystalline substrate? Sea urchin teeth, in which the earliest mineral forms within isolated compartments, in a time and position dependent manner, allow direct investigation of the timing of crystallization of the calcite primary plates. Living teeth of the sea urchin Lytechinus variegatus, in their native coelomic fluid, were examined by high-energy synchrotron X-ray diffraction. The diffraction data show that calcite is present in the most aboral portions of the plumula, representing the very earliest stages of mineralization, and that this calcite has the same crystal orientation as in the more mature adoral portions of the same tooth. Raman spectroscopy of the aboral plumula confirms the initial primary plate mineral material is calcite and does not detect amorphous calcium carbonate; in the more mature adoral incisal flange, it does detect a broader calcite peak, consistent with two or more magnesium compositions. We hypothesize that some portion of each syncytial membrane in the plumula provides the information for nucleation of identically oriented calcite crystals that subsequently develop to form the complex geometry of the single crystal sea urchin tooth. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Influence of Magnesium Content on the Local Structure of Amorphous Calcium Carbonate (ACC): Real Time Determination by In Situ PDF Analysis

    NASA Astrophysics Data System (ADS)

    Mergelsberg, S. T.; Ulrich, R. N.; Michel, F. M.; Dove, P. M.

    2016-12-01

    Calcium carbonate minerals are an essential component in the exoskeletons of crustaceans and mollusks. The onset of exoskeleton mineralization includes the precipitation of amorphous calcium carbonate (ACC) as a reactive intermediate that later transforms to produce diverse structures. Despite the importance of ACC as a critical phase during skeleton formation, the chemical and physical properties are not well characterized at conditions that approximate biological environments. Of particular interest are the solubility of ACC, the short-range structure at the time of formation, and the evolution of ACC structure to final products. Recent advances showing the widespread occurrence of multistep pathways to mineralization in biological and geological settings (De Yoreo et al., 2015) underline the importance of understanding amorphous intermediates. Using quantitative laboratory techniques developed by our research group (Blue et al., 2013; Blue and Dove, 2015; Blue et al., in press), this experimental study quantifies the solubility of ACC in parallel with the physical characterization of the corresponding structure. We measured ACC solubility at specific time points during the precipitation and during its subsequent evolution under the mild pH conditions that approximate biological and environmental conditions. In parallel experiments, structural data were collected from in situ pair distribution function (PDF) analyses were conducted to follow the evolution of individual samples from initial precipitation to final product. The measurements are leading to a quantitative solubility function for ACC with variable Mg contents and an x-ray based understanding of ACC structure in the same particles. We are also finding temporal changes in the short-range order of ACC after precipitation and this order is dependent upon Mg content. Moreover, the data show Mg distribution through the ACC particles is dependent upon total alkalinity. Insights from this study hold promise

  15. Bioleaching of serpentine group mineral by fungus Talaromyces flavus: application for mineral carbonation

    NASA Astrophysics Data System (ADS)

    Li, Z.; Lianwen, L.; Zhao, L.; Teng, H.

    2011-12-01

    Many studies of serpentine group mineral dissolution for mineral carbonation have been published in recent years. However, most of them focus mainly on either physical and chemical processes or on bacterial function, rather than fungal involvement in the bioleaching of serpentine group mineral. Due to the excessive costs of the magnesium dissolution process, finding a lower energy consumption method will be meaningful. A fungal strain Talaromyces flavus was isolated from serpentinic rock of Donghai (China). No study of its bioleaching ability is currently available. It is thus of great significance to explore the impact of T. flavus on the dissolution of serpentine group mineral. Serpentine rock-inhabiting fungi belonging to Acremonium, Alternaria, Aspergillus, Botryotinia, Cladosporium, Clavicipitaceae, Cosmospora, Fusarium, Monascus, Paecilomyces, Penicillium, Talaromyces, Trichoderma were isolated. These strains were chosen on the basis of resistance to magnesium and nickel characterized in terms of minimum inhibiting concentration (MIC). Specifically, the strain Talaromyces flavus has a high tolerance to both magnesium (1 mol/L) and nickel (10 mM/L), and we examine its bioleaching ability on serpentine group mineral. Contact and separation experiments (cut-off 8 000-14 000 Da), as well as three control experiments, were set up for 30 days. At least three repeated tests were performed for each individual experiment. The results of our experiments demonstrate that the bioleaching ability of T. flavus towards serpentine group mineral is evident. 39.39 wt% of magnesium was extracted from lizardite during the bioleaching period in the contact experiment, which showed a dissolution rate at about a constant 0.126 mM/d before reaching equilibrium in 13 days. The amount of solubilized Mg from chrysotile and antigorite were respectively 37.79 wt% and 29.78 wt% in the contact experiment. These results make clear the influence of mineral structure on mineral bioleaching

  16. Atmospheric carbon mineralization in an industrial-scale chrysotile mining waste pile.

    PubMed

    Nowamooz, Ali; Dupuis, J Christian; Beaudoin, Georges; Molson, John; Lemieux, Jean-Michel; Horswill, Micha; Fortier, Richard; Larachi, Faïçal; Maldague, Xavier; Constantin, Marc; Duchesne, Josee; Therrien, René

    2018-06-12

    Magnesium rich minerals that are abundant in ultramafic mining waste have the potential to be used as a safe and permanent sequestration solution for carbon dioxide (CO2). Our understanding of thermo-hydro-chemical regimes that govern this reaction at an industrial scale, however, has remained an important challenge to its widespread implementation. Through a year-long monitoring experiment performed at a 110Mt chrysotile waste pile, we have documented the existence of two distinct thermo-hydro-chemical regimes that control the ingress of CO2 and the subsequent mineral carbonation of the waste. The experimental results are supported by coupled free-air/porous media numerical flow and transport model that provides insights into optimization strategies to increase the efficiency of mineral sequestration at an industrial-scale. Although functioning passively under less than optimal conditions compared to lab-scale experiments, the 110Mt Thetford Mines pile is nevertheless estimated to be sequestering up to 100 tonnes of CO2 per year, with a potential total carbon capture capacity under optimal conditions of 3 Mt. Yearly, over 100 Mt of ultramafic mine waste suitable for mineral carbonation are generated by the global mining industry. Our results show that this waste material could become a safe and permanent carbon sink for diffuse sources of CO2.

  17. The flame photometric determination of calcium in phosphate, carbonate, and silicate rocks

    USGS Publications Warehouse

    Kramer, H.

    1957-01-01

    A flame photometric method of determining calcium in phosphate, carbonate, and silicate locks has been developed Aluminum and phosphate interference was overcome by the addition of a large excess of magnesium. The method is rapid and suitable for routine analysis Results obtained are within ?? 2% of the calcium oxide content. ?? 1957.

  18. Evaluation of calcium hydrogen carbonate mesoscopic crystals as a disinfectant for influenza A viruses

    PubMed Central

    NAKASHIMA, Ryuji; KAWAMOTO, Masaomi; MIYAZAKI, Shigeru; ONISHI, Rumiko; FURUSAKI, Koichi; OSAKI, Maho; KIRISAWA, Rikio; SAKUDO, Akikazu; ONODERA, Takashi

    2017-01-01

    In this study, the virucidal effect of a novel electrically charged disinfectant CAC-717 was investigated. CAC-717 is produced by applying an electric field to mineral water containing calcium hydrogen carbonate to generate mesoscopic crystals. Virus titration analysis showed a >3 log reduction of influenza A viruses after treatment with CAC-717 for 1 min in room temperature, while infectivity was undetectable after 15 min treatment. Adding bovine serum albumin to CAC-717 solution did not affect the disinfectant effect. Although CAC-717 is an alkaline solution (pH=12.39), upon contact with human tissue, its pH becomes almost physiological (pH 8.84) after accelerated electric discharge, which enables its use against influenza viruses. Therefore, CAC-717 may be used as a preventative measure against influenza A viruses and for biosecurity in the environment. PMID:28392537

  19. Precipitation of calcium carbonate in aqueous solutions in presence of ethylene glycol and dodecane.

    NASA Astrophysics Data System (ADS)

    Natsi, Panagiota D.; Rokidi, Stamatia; Koutsoukos, Petros G.

    2015-04-01

    The formation of calcium carbonate (CaCO3) in aqueous supersaturated solutions has been intensively studied over the past decades, because of its significance for a number of processes of industrial and environmental interest. In the oil and gas production industry the deposition of calcium carbonate affects adversely the productivity of the wells. Calcium carbonate scale deposits formation causes serious problems in water desalination, CO2 sequestration in subsoil wells, in geothermal systems and in heat exchangers because of the low thermal coefficient of the salt. Amelioration of the operational conditions is possible only when the mechanisms underlying nucleation and crystal growth of calcium carbonate in the aqueous fluids is clarified. Given the fact that in oil production processes water miscible and immiscible hydrocarbons are present the changes of the dielectric constant of the fluid phase has serious impact in the kinetics of calcium carbonate precipitation, which remains largely unknown. The problem becomes even more complicated if polymorphism exhibited by calcium carbonate is also taken into consideration. In the present work, the stability of aqueous solutions supersaturated with respect to all calcium carbonate polymorphs and the subsequent kinetics of calcium carbonate precipitation were measured. The measurements included aqueous solutions and solutions in the presence of water miscible (ethylene glycol, MEG) and water immiscible organics (n-dodecane). All measurements were done at conditions of sustained supersaturation using the glass/ Ag/AgCl combination electrode as a probe of the precipitation and pH as the master variable for the addition of titrant solutions with appropriate concentration needed to maintenance the solution supersaturation. Initially, the metastable zone width was determined from measurements of the effect of the solution supersaturation on the induction time preceding the onset of precipitation at free-drift conditions. The

  20. Co-effects of amines molecules and chitosan films on in vitro calcium carbonate mineralization.

    PubMed

    Cui, Jifei; Kennedy, John F; Nie, Jun; Ma, Guiping

    2015-11-20

    Amines monomers, N,N-dimethylaminoethyl methacrylate (DMAEMA), N,N-dimethylethanolamine (DMEA), 2-dimethylaminoethylamine (DMEDA) and N-methiyldiethanolamine (MDEA) were used to induce the formation of calcium carbonate (CaCO3) crystals on chitosan films, by using (NH4)2CO3 diffusion method at ambient temperature. The obtained CaCO3 particles were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and Energy dispersive spectroscopy (EDS). The influence of reaction variables, such as the additive concentration and their types were also investigated on the products. The morphologies of CaCO3 crystals, inter-grown in cube-shape, were controlled by DMAEMA and DMEA. It was observed that the morphologies of CaCO3 changed from the cube grown arms to massive calcite with a hole on the face by increasing the concentrations of DMEDA and MDEA. While the precipitation grew on chitosan film without any organic additive, only single cube-shaped crystals were obtained. By these results the possible mechanisms can be proposed that electronic movement of the groups on the monomer effected ions configuration and molecules absorbed on the exposed surface, resulted the change of the surface energy, which caused the change in the morphology of CaCO3. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Carbon Mineralization in Acidic, Xeric Forest Soils: Induction of New Activities †

    PubMed Central

    Tate, Robert L.

    1985-01-01

    Carbon mineralization was examined in Lakehurst and Atsion sands collected from the New Jersey Pinelands and in Pahokee muck from the Everglades Agricultural Area. Objectives were (i) to estimate the carbon mineralization capacities of acidic, xeric Pinelands soils in the absence of exogenously supplied carbon substrate (nonamended carbon mineralization rate) and to compare these activities with those of agriculturally developed pahokee muck, and (ii) to measure the capacity for increased carbon mineralization in the soils after carbon amendment. In most cases, nonamended carbon mineralization rates were greater in samples of the acid- and moisture-stressed Pinelands soils than in Pahokee muck collected from a fallow (bare) field. Carbon amendment resulted in augmented catabolic activity in Pahokee muck samples, suggesting that the microbial community was carbon limited in this soil. With many of the substrates, no stimulation of the catabolic rate was detected after amendment of Pinelands soils. This was documented by the observation that amendment of Pahokee muck with an amino acid mixture, glucose, or acetate resulted in a 3.0-, 3.9-, or 10.5-fold stimulation of catabolic activity, respectively, for the added substrate. In contrast, amendment of the Pinelands soils resulted in increased amino acid and acetate catabolic rates in Lakehurst sand and increased acetate metabolism only in Atsion sand. Other activities were unchanged. The increased glucose respiration rates resulted from stimulation of existing microbial activity rather than from microbial proliferation since no change in the microbial growth rate, as estimated by the rate of incorporation of 14C-labeled acetate into cell membranes, occurred after glucose amendment of the soils. A stimulation of microbial growth rate was recorded with glucose-amended Lakehurst sand collected from the B horizon. PMID:16346862

  2. Viral lysis of photosynthesizing microbes as a mechanism for calcium carbonate nucleation in seawater

    USGS Publications Warehouse

    Lisle, John T.; Robbins, Lisa L.

    2016-01-01

    Removal of carbon through the precipitation and burial of calcium carbonate in marine sediments constitutes over 70% of the total carbon on Earth and is partitioned between coastal and pelagic zones. The precipitation of authigenic calcium carbonate in seawater, however, has been hotly debated because despite being in a supersaturated state, there is an absence of persistent precipitation. One of the explanations for this paradox is the geochemical conditions in seawater cannot overcome the activation energy barrier for the first step in any precipitation reaction; nucleation. Here we show that virally induced rupturing of photosynthetic cyanobacterial cells releases cytoplasmic-associated bicarbonate at concentrations ~23-fold greater than in the surrounding seawater, thereby shifting the carbonate chemistry toward the homogenous nucleation of one or more of the calcium carbonate polymorphs. Using geochemical reaction energetics, we show the saturation states (Ω) in typical seawater for calcite (Ω = 4.3), aragonite (Ω = 3.1), and vaterite (Ω = 1.2) are significantly elevated following the release and diffusion of the cytoplasmic bicarbonate (Ωcalcite = 95.7; Ωaragonite = 68.5; Ωvaterite = 25.9). These increases in Ω significantly reduce the activation energy for nuclei formation thresholds for all three polymorphs, but only vaterite nucleation is energetically favored. In the post-lysis seawater, vaterite's nuclei formation activation energy is significantly reduced from 1.85 × 10−17 J to 3.85 × 10−20 J, which increases the nuclei formation rate from highly improbable (<<1.0 nuclei cm−3 s−1) to instantaneous (8.60 × 1025 nuclei cm−3 s−1). The proposed model for homogenous nucleation of calcium carbonate in seawater describes a mechanism through which the initial step in the production of carbonate sediments may proceed. It also presents an additional role of photosynthesizing microbes and their viruses in marine carbon cycles and

  3. Thermal breakdown of calcium carbonate and constraints on its use as a biomarker

    NASA Astrophysics Data System (ADS)

    Thompson, Stephen P.; Parker, Julia E.; Tang, Chiu C.

    2014-02-01

    Observed differences in the thermal behaviour of calcium carbonates of biogenic and abiogenic origin (phase transformation and breakdown temperatures) are widely cited as potential biomarkers for whether life once existed on Mars. Although seemingly compelling, there has been no systematic investigation into the physical mechanism behind these apparent differences and therefore no direct proof that they are uniquely diagnostic of a biogenic versus abiogenic formation. In this paper we present a laboratory investigation into the thermal behaviour of two high purity calcium carbonates, one of which was produced in the presence of an amino acid as a biomimetic carbonate. In situ synchrotron X-ray powder diffraction measurements show the aragonite-to-calcite phase transition and calcite-to-oxide breakdown temperatures are significantly lower in the biomimetic carbonate. The observed thermal differences closely match reported differences between biogenic and geological abiogenic carbonates. The biomimetic carbonate exhibits a modified crystal morphology, with a highly strained internal crystal lattice, similar to biogenic carbonate structures. Since biogenic carbonates are formed in the presence of organic macromolecules such as amino acids, the induced microstrain appears to be the defining common factor as it adds an additional energy term to the carbonate lattice energy, which lowers the activation energy required for structural transformation or decomposition. Although produced via biomimetic means, the carbonate investigated here is nevertheless abiogenic in origin and we propose that given suitable localised conditions such as pooled water and a supply of organic molecules, naturally occurring biomimetic carbonates could have similarly formed on the martian surface and could therefore exhibit the same thermal characteristics as biogenic carbonate. Thus as a limiting case - without other supporting observations - the thermal behaviour of martian calcium carbonate

  4. Catalysis of carbon monoxide methanation by deep sea manganate minerals

    NASA Technical Reports Server (NTRS)

    Cabrera, A. L.; Maple, M. B.; Arrhenius, G.

    1990-01-01

    The catalytic activity of deep sea manganese nodule minerals for the methanation of carbon monoxide was measured with a microcatalytic technique between 200 and 460 degrees C. The manganate minerals were activated at 248 degrees C by immersion into a stream of hydrogen in which pulses of carbon monoxide were injected. Activation energies for the methanation reaction and hydrogen desorption from the manganate minerals were obtained and compared with those of pure nickel. Similar energy values indicate that the activity of the nodule materials for the reaction appears to be related to the amount of reducible transition metals present in the samples (ca. 11 wt.-%). Since the activity of the nodule minerals per gram is comparable to that of pure nickel, most of the transition metal ions located between manganese oxide layers appear to be exposed and available to catalyze the reaction.

  5. Biocalcite, a multifunctional inorganic polymer: Building block for calcareous sponge spicules and bioseed for the synthesis of calcium phosphate-based bone

    PubMed Central

    Schröder, Heinz C; Müller, Werner E G

    2014-01-01

    Summary Calcium carbonate is the material that builds up the spicules of the calcareous sponges. Recent results revealed that the calcium carbonate/biocalcite-based spicular skeleton of these animals is formed through an enzymatic mechanism, such as the skeleton of the siliceous sponges, evolutionarily the oldest animals that consist of biosilica. The enzyme that mediates the calcium carbonate deposition has been identified as a carbonic anhydrase (CA) and has been cloned from the calcareous sponge species Sycon raphanus. Calcium carbonate deposits are also found in vertebrate bones besides the main constituent, calcium phosphate/hydroxyapatite (HA). Evidence has been presented that during the initial phase of HA synthesis poorly crystalline carbonated apatite is deposited. Recent data summarized here indicate that during early bone formation calcium carbonate deposits enzymatically formed by CA, act as potential bioseeds for the precipitation of calcium phosphate mineral onto bone-forming osteoblasts. Two different calcium carbonate phases have been found during CA-driven enzymatic calcium carbonate deposition in in vitro assays: calcite crystals and round-shaped vaterite deposits. The CA provides a new target of potential anabolic agents for treatment of bone diseases; a first CA activator stimulating the CA-driven calcium carbonate deposition has been identified. In addition, the CA-driven calcium carbonate crystal formation can be frozen at the vaterite state in the presence of silintaphin-2, an aspartic acid/glutamic acid-rich sponge-specific protein. The discovery that calcium carbonate crystals act as bioseeds in human bone formation may allow the development of novel biomimetic scaffolds for bone tissue engineering. Na-alginate hydrogels, enriched with biosilica, have recently been demonstrated as a suitable matrix to embed bone forming cells for rapid prototyping bioprinting/3D cell printing applications. PMID:24991497

  6. Biocalcite, a multifunctional inorganic polymer: Building block for calcareous sponge spicules and bioseed for the synthesis of calcium phosphate-based bone.

    PubMed

    Wang, Xiaohong; Schröder, Heinz C; Müller, Werner E G

    2014-01-01

    Calcium carbonate is the material that builds up the spicules of the calcareous sponges. Recent results revealed that the calcium carbonate/biocalcite-based spicular skeleton of these animals is formed through an enzymatic mechanism, such as the skeleton of the siliceous sponges, evolutionarily the oldest animals that consist of biosilica. The enzyme that mediates the calcium carbonate deposition has been identified as a carbonic anhydrase (CA) and has been cloned from the calcareous sponge species Sycon raphanus. Calcium carbonate deposits are also found in vertebrate bones besides the main constituent, calcium phosphate/hydroxyapatite (HA). Evidence has been presented that during the initial phase of HA synthesis poorly crystalline carbonated apatite is deposited. Recent data summarized here indicate that during early bone formation calcium carbonate deposits enzymatically formed by CA, act as potential bioseeds for the precipitation of calcium phosphate mineral onto bone-forming osteoblasts. Two different calcium carbonate phases have been found during CA-driven enzymatic calcium carbonate deposition in in vitro assays: calcite crystals and round-shaped vaterite deposits. The CA provides a new target of potential anabolic agents for treatment of bone diseases; a first CA activator stimulating the CA-driven calcium carbonate deposition has been identified. In addition, the CA-driven calcium carbonate crystal formation can be frozen at the vaterite state in the presence of silintaphin-2, an aspartic acid/glutamic acid-rich sponge-specific protein. The discovery that calcium carbonate crystals act as bioseeds in human bone formation may allow the development of novel biomimetic scaffolds for bone tissue engineering. Na-alginate hydrogels, enriched with biosilica, have recently been demonstrated as a suitable matrix to embed bone forming cells for rapid prototyping bioprinting/3D cell printing applications.

  7. Carbon mineralization in Laptev and East Siberian sea shelf and slope sediment

    NASA Astrophysics Data System (ADS)

    Brüchert, Volker; Bröder, Lisa; Sawicka, Joanna E.; Tesi, Tommaso; Joye, Samantha P.; Sun, Xiaole; Semiletov, Igor P.; Samarkin, Vladimir A.

    2018-01-01

    The Siberian Arctic Sea shelf and slope is a key region for the degradation of terrestrial organic material transported from the organic-carbon-rich permafrost regions of Siberia. We report on sediment carbon mineralization rates based on O2 microelectrode profiling; intact sediment core incubations; 35S-sulfate tracer experiments; pore-water dissolved inorganic carbon (DIC); δ13CDIC; and iron, manganese, and ammonium concentrations from 20 shelf and slope stations. This data set provides a spatial overview of sediment carbon mineralization rates and pathways over large parts of the outer Laptev and East Siberian Arctic shelf and slope and allows us to assess degradation rates and efficiency of carbon burial in these sediments. Rates of oxygen uptake and iron and manganese reduction were comparable to temperate shelf and slope environments, but bacterial sulfate reduction rates were comparatively low. In the topmost 50 cm of sediment, aerobic carbon mineralization dominated degradation and comprised on average 84 % of the depth-integrated carbon mineralization. Oxygen uptake rates and anaerobic carbon mineralization rates were higher in the eastern East Siberian Sea shelf compared to the Laptev Sea shelf. DIC / NH4+ ratios in pore waters and the stable carbon isotope composition of remineralized DIC indicated that the degraded organic matter on the Siberian shelf and slope was a mixture of marine and terrestrial organic matter. Based on dual end-member calculations, the terrestrial organic carbon contribution varied between 32 and 36 %, with a higher contribution in the Laptev Sea than in the East Siberian Sea. Extrapolation of the measured degradation rates using isotope end-member apportionment over the outer shelf of the Laptev and East Siberian seas suggests that about 16 Tg C yr-1 is respired in the outer shelf seafloor sediment. Of the organic matter buried below the oxygen penetration depth, between 0.6 and 1.3 Tg C yr-1 is degraded by anaerobic processes

  8. Development of Bio-Based Foams Prepared from Pbat/Pla Reinforced with Bio-Calcium Carbonate Compatibilized by Electron-Beam Radiation

    NASA Astrophysics Data System (ADS)

    Cardoso, Elizabeth Carvalho L.; Seixas, Marcus Vinicius S.; Wiebeck, Helio; Oliveira, René R.; Machado, Glauson Aparecido F.; Moura, Esperidiana A. B.

    In Brazil, the food industry generates every year huge amounts of avian eggshell waste, an industrial byproduct containing 95% of calcium carbonate, and its disposal constitutes a serious environmental hazard. This study aims to the development of bio-foams from PBAT/PLA blends reinforced with bio-calcium carbonate from eggshells. Composites were obtained by melting extrusion process, blending PBAT/PLA (50/50) with 25% of bio-calcium carbonate, PBAT/PLA (50/45) with 25% of bio-calcium carbonate and 5 % of pre-irradiated PLA and PBAT/PLA (50/40) with 25% of bio-calcium carbonate and 10 % of pre-irradiated PLA. PLA was previously e-beam irradiated at 150kGy in air and used as compatibilizer agent. The composites were then extruded in a Rheomex 332p single special screw for foaming. Samples were submitted to Tensile and Compression tests, MFI, DSC, TGA, XRD and FEG/SEM, analyses.

  9. An experimental model for calcium carbonate urolithiasis in goats.

    PubMed

    Jones, Meredyth L; Dominguez, Brandon J; Deveau, Michael A

    2018-05-01

    Calcium carbonate is a common urolith type in small ruminants with no high-yield experimental model to evaluate animal susceptibility or preventative measure response. That novel plastic winged implants would allow accumulation and quantification of calcium carbonate calculus formation in goats on a high-calcium diet and identify individual variation between goats in the mass of calculi produced. Eight nonpregnant 3- and 4-year-old Boer-cross does, weighing 22.3-39.5 kg, determined to be healthy based on physical examination, were used in these experiments. Prospective cohort study for in vivo experimental model development. Implants were placed into the urinary bladder lumen in 8 goats over 2 evaluation periods. The alfalfa-based ration had a total ration Ca : P of 3.29 and 3.84 : 1, respectively. Urine was collected at 0, 28, 56, and 84 days in the 1st experiment; blood and urine at those timepoints in the 2nd experiment. For each evaluation period, the implants were removed 84 days after implantation and weighed. Accumulated calculi mass was calculated and compared between goats and was analyzed for composition. Implant retention was 100% and 86% in the 2 studies. All goats with retained implants accumulated calcium carbonate at a mean implant gain per day across studies ranging from 0.44 to 57.45 mg. Two goats accumulated (0.44-7.65 mg/day and 33.64 & 57.45 mg/day) significantly more urolith material than the cohort across both studies (P = .047). No routine analytes on blood or urine were found to be explanatory for the difference observed. These findings form a basis for implant and diet selection for use in future studies of urolithiasis development and for studies regarding individual susceptibility to urolithiasis. Copyright © 2018 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  10. Spatial variation in microbial processes controlling carbon mineralization within soils and sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fendorf, Scott; Kleber, Markus; Nico, Peter

    Soils have a defining role in global carbon cycling, having one of the largest dynamic stocks of C on earth—3300 Pg of C are stored in soils, which is three-times the amount stored in the atmosphere and more than the terrestrial land plants. An important control on soil organic matter (SOM) quantities is the mineralization rate. It is well recognized that the rate and extent of SOM mineralization is affected by climatic factors and mineral-organic matter associations. What remained elusive is to what extent constraints on microbial metabolism induced by the respiratory pathway, and specifically the electron acceptor in respiration,more » control overall rates of carbon mineralization in soils. Therefore, physical factors limiting oxygen diffusion such as soil texture and aggregate size (soil structure) may therefore be central controls on C mineralization rates. The goal of our research was therefore to determine if variations in microbial metabolic rates induced by anaerobic microsites in soils are a major control on SOM mineralization rates and thus storage. We performed a combination of laboratory experiments and field investigations will be performed to fulfill our research objectives. We used laboratory studies to examine fundamental factors of respiratory constraints (i.e., electron acceptor) on organic matter mineralization rates. We ground our laboratory studies with both manipulation of field samples and in-field measurements. Selection of the field sites is guided by variation in soil texture and structure while having (other environmental/soil factors constant. Our laboratory studies defined redox gradients and variations in microbial metabolism operating at the aggregate-scale (cm-scale) within soils using a novel constructed diffusion reactor. We further examined micro-scale variation in terminal electron accepting processes and resulting C mineralization rates within re-packed soils. A major outcome of our research is the ability to quantitatively

  11. The formation of web-like connection among electrospun chitosan/PVA fiber network by the reinforcement of ellipsoidal calcium carbonate.

    PubMed

    Sambudi, Nonni Soraya; Kim, Minjeong G; Park, Seung Bin

    2016-03-01

    The electrospun fibers consist of backbone fibers and nano-branch network are synthesized by loading of ellipsoidal calcium carbonate in the mixture of chitosan/poly(vinyl alcohol) (PVA) followed by electrospinning. The synthesized ellipsoidal calcium carbonate is in submicron size (730.7±152.4 nm for long axis and 212.6±51.3 nm for short axis). The electrospun backbone fibers experience an increasing in diameter by loading of calcium carbonate from 71.5±23.4 nm to 281.9±51.2 nm. The diameters of branch fibers in the web-network range from 15 nm to 65 nm with most distributions of fibers are in 30-35 nm. Calcium carbonate acts as reinforcing agent to improve the mechanical properties of fibers. The optimum value of Young's modulus is found at the incorporation of 3 wt.% of calcium carbonate in chitosan/PVA fibers, which is enhanced from 15.7±3 MPa to 432.4±94.3 MPa. On the other hand, the ultimate stress of fibers experiences a decrease. This result shows that the fiber network undergoes changes from flexible to more stiff by the inclusion of calcium carbonate. The thermal analysis results show that the crystallinity of polymer is changed by the existence of calcium carbonate in the fiber network. The immersion of fibers in simulated body fluid (SBF) results in the formation of apatite on the surface of fibers. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Organic carbon mineralization in the Santa Catalina Basin: benthic boundary layer metabolism

    NASA Astrophysics Data System (ADS)

    Smith, K. L.; Carlucci, A. F.; Jahnke, R. A.; Craven, D. B.

    1987-02-01

    Organic carbon mineralization rates in the benthic boundary layer (BBL) of the Santa Catalina Basin (1300 m depth) were estimated to identify the primary sites and organisms involved in the turnover of carbon and to compare these rates with the supply of particulate organic matter entering the system from above. Concurrent in situ measurements of macrozooplankton, epibenthic megafauna, and sediment community oxygen consumption, and bacterioplankton and total microbial (microplankton) metabolism were made on 12 dives with DSRV Alvin in November 1984. Pore water and solid phase chemistries, and sediment microbial activity were measured on samples from box cores. Macrozooplankton oxygen consumption, integrated over the 100 m BBL, was 25.8 μmol O 2 m -2 d -1 (0.3 mg C m -2 d -1). Microplankton carbon mineralization rates were 13-29 mg C m -2 d -1 for the BBL with an assimilation efficiency of 80-90%. The estimated oxygen consumption of the dominant population of epibenthic megafauna, Ophiophthalmus normani, at observed densities was 237.8 μmol O 2 m -2 d -1 (2.4 mg C m -2 d -1). Sediment community oxygen consumption was 2776.8 μmol O 2 m -2 d -1 (28.6 mg C m -2 d -1) which is similar to the estimated microbial carbon mineralization estimate for the sediments of 32 mg C m -2 d -1 assuming a 90% assimilation efficiency. These rates were corroborated further by the observed total inorganic carbon pore water gradients from which a mineralization rate of 10-31 mg C m -2 d -1 was estimated. The combined carbon mineralization by the three consumer groups ranged from 25.7 to 63.7 mg C m -2 d -1. For comparison, the oxygen consumption in the BBL based on hydrographic data from the center and sills of the basin was 3.1-20.0 mg C m -2 d -1. Given the large uncertainties in all of the calculations, there was reasonable agreement between these diverse methods of estimating carbon mineralization. The concurrently measured flux of small particulate organic carbon into the BBL

  13. A probabilistic assessment of calcium carbonate export and dissolution in the modern ocean

    NASA Astrophysics Data System (ADS)

    Battaglia, G.; Steinacher, M.; Joos, F.

    2015-12-01

    The marine cycle of calcium carbonate (CaCO3) is an important element of the carbon cycle and co-governs the distribution of carbon and alkalinity within the ocean. However, CaCO3 fluxes and mechanisms governing CaCO3 dissolution are highly uncertain. We present an observationally-constrained, probabilistic assessment of the global and regional CaCO3 budgets. Parameters governing pelagic CaCO3 export fluxes and dissolution rates are sampled using a Latin-Hypercube scheme to construct a 1000 member ensemble with the Bern3D ocean model. Ensemble results are constrained by comparing simulated and observation-based fields of excess dissolved calcium carbonate (TA*). The minerals calcite and aragonite are modelled explicitly and ocean-sediment fluxes are considered. For local dissolution rates either a strong, a weak or no dependency on CaCO3 saturation is assumed. Median (68 % confidence interval) global CaCO3 export is 0.82 (0.67-0.98) Gt PIC yr-1, within the lower half of previously published estimates (0.4-1.8 Gt PIC yr-1). The spatial pattern of CaCO3 export is broadly consistent with earlier assessments. Export is large in the Southern Ocean, the tropical Indo-Pacific, the northern Pacific and relatively small in the Atlantic. Dissolution within the 200 to 1500 m depth range (0.33; 0.26-0.40 Gt PIC yr-1) is substantially lower than inferred from the TA*-CFC age method (1 ± 0.5 Gt PIC yr-1). The latter estimate is likely biased high as the TA*-CFC method neglects transport. The constrained results are robust across a range of diapycnal mixing coefficients and, thus, ocean circulation strengths. Modelled ocean circulation and transport time scales for the different setups were further evaluated with CFC11 and radiocarbon observations. Parameters and mechanisms governing dissolution are hardly constrained by either the TA* data or the current compilation of CaCO3 flux measurements such that model realisations with and without saturation-dependent dissolution achieve

  14. The calcium isotope evolution of Lake Lisan, the Dead Sea glacial precursor

    NASA Astrophysics Data System (ADS)

    Bradbury, H. J.; Turchyn, A. V.; Wong, K.; Torfstein, A.

    2016-12-01

    Calcium is a stoichiometric component of carbonate minerals whose calcium isotopic composition reflects changes in the calcium isotope composition of the water from which it precipitates as well as the calcium isotope fractionation factor during precipitation. The lacustrine deposits of the last glacial Dead Sea (Lisan Formation) are dominated by carbonate minerals (aragonite) that record the geochemical history of the lake. The sediment sequence comprises alternating laminae of aragonite and clay-rich marls, interspersed with primary gypsum beds and disseminated secondary gypsum crystals. The aragonite precipitated annually during high lake stands associated with wet periods, while the primary gypsum precipitated during low lake conditions (arid periods). We report the calcium isotopic composition (δ44Ca in ‰ relative to bulk silicate earth) of primary aragonite laminae, primary gypsum and secondary gypsum at 1-5kyr resolution throughout the Lisan Formation sampled at the Masada section (70 - 14.5 ka). The δ44Ca of the primary gypsum averages +0.29‰, and displays smaller temporal variations than the aragonite, which averages -0.35‰ but ranges between +0.18‰ and -0.68‰. The aragonite δ44Ca changes temporally in sync with the previously reconstructed lake level suggesting the aragonite δ44Ca reflects changes in the lake calcium balance during lake level changes. The secondary gypsum composition (-0.3‰) corresponds to coeval aragonite samples. For the secondary gypsum to have a similar δ44Ca to the aragonite it is likely that the calcium derived from the aragonite in a near quantitative fashion through recrystallization of the aragonite to gypsum. A numerical box model is used to explore the effect of changing lake water levels on the calcium isotope composition of the aragonite and gypsum over the time interval studied.

  15. Calcium and organic matter removal by carbonation process with waste incineration flue gas towards improvement of leachate biotreatment performance.

    PubMed

    Zhang, Cheng; Zhu, Xuedong; Wu, Liang; Li, Qingtao; Liu, Jianyong; Qian, Guangren

    2017-09-01

    Municipal solid wastes incineration (MSWI) flue gas was employed as the carbon source for in-situ calcium removal from MSWI leachate. Calcium removal efficiency was 95-97% with pH of 10.0-11.0 over 100min of flue gas aeration, with both bound Ca and free Ca being removed effectively. The fluorescence intensity of tryptophan, protein-like and humic acid-like compounds increased after carbonation process. The decrease of bound Ca with the increase of precipitate indicated that calcium was mainly converted to calcium carbonate precipitate. It suggested that the interaction between dissolved organic matter and Ca 2+ was weakened. Moreover, 10-16% of chemical oxygen demand removal and the decrease of ultraviolet absorption at 254nm indicated that some organics, especially aromatic compound decreased via adsorption onto the surface of calcium carbonate. The results indicate that introduce of waste incineration flue gas could be a feasible way for calcium removal from leachate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Climatically driven loss of calcium in steppe soil as a sink for atmospheric carbon

    USGS Publications Warehouse

    Lapenis, A.G.; Lawrence, G.B.; Bailey, S.W.; Aparin, B.F.; Shiklomanov, A.I.; Speranskaya, N.A.; Torn, M.S.; Calef, M.

    2008-01-01

    During the last several thousand years the semi-arid, cold climate of the Russian steppe formed highly fertile soils rich in organic carbon and calcium (classified as Chernozems in the Russian system). Analysis of archived soil samples collected in Kemannaya Steppe Preserve in 1920, 1947, 1970, and fresh samples collected in 1998 indicated that the native steppe Chernozems, however, lost 17-28 kg m-2 of calcium in the form of carbonates in 1970-1998. Here we demonstrate that the loss of calcium was caused by fundamental shift in the steppe hydrologic balance. Previously unleached soils where precipitation was less than potential evapotranspiration are now being leached due to increased precipitation and, possibly, due to decreased actual evapotranspiration. Because this region receives low levels of acidic deposition, the dissolution of carbonates involves the consumption of atmospheric CO2. Our estimates indicate that this climatically driven terrestrial sink of atmospheric CO2 is ???2.1-7.4 g C m-2 a-1. In addition to the net sink of atmospheric carbon, leaching of pedogenic carbonates significantly amplified seasonal amplitude of CO2 exchange between atmosphere and steppe soil. Copyright 2008 by the American Geophysical Union.

  17. Atom probe tomography (APT) of carbonate minerals.

    PubMed

    Pérez-Huerta, Alberto; Laiginhas, Fernando; Reinhard, David A; Prosa, Ty J; Martens, Rich L

    2016-01-01

    Atom probe tomography (APT) combines the highest spatial resolution with chemical data at atomic scale for the analysis of materials. For geological specimens, the process of field evaporation and molecular ion formation and interpretation is not yet entirely understood. The objective of this study is to determine the best conditions for the preparation and analysis by APT of carbonate minerals, of great importance in the interpretation of geological processes, focusing on the bulk chemical composition. Results show that the complexity of the mass spectrum is different for calcite and dolomite and relates to dissimilarities in crystalochemical parameters. In addition, APT bulk chemistry of calcite closely matches the expected stoichiometry but fails to provide accurate atomic percentages for elements in dolomite under the experimental conditions evaluated in this work. For both calcite and dolomite, APT underestimates the amount of oxygen based on their chemical formula, whereas it is able to detect small percentages of elemental substitutions in crystal lattices. Overall, our results demonstrate that APT of carbonate minerals is possible, but further optimization of the experimental parameters are required to improve the use of atom probe tomography for the correct interpretation of mineral geochemistry. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Mineral-Based Coating of Plasma-Treated Carbon Fibre Rovings for Carbon Concrete Composites with Enhanced Mechanical Performance.

    PubMed

    Schneider, Kai; Lieboldt, Matthias; Liebscher, Marco; Fröhlich, Maik; Hempel, Simone; Butler, Marko; Schröfl, Christof; Mechtcherine, Viktor

    2017-03-29

    Surfaces of carbon fibre roving were modified by means of a low temperature plasma treatment to improve their bonding with mineral fines; the latter serving as an inorganic fibre coating for the improved mechanical performance of carbon reinforcement in concrete matrices. Variation of the plasma conditions, such as gas composition and treatment time, was accomplished to establish polar groups on the carbon fibres prior to contact with the suspension of mineral particles in water. Subsequently, the rovings were implemented in a fine concrete matrix and their pull-out performance was assessed. Every plasma treatment resulted in increased pull-out forces in comparison to the reference samples without plasma treatment, indicating a better bonding between the mineral coating material and the carbon fibres. Significant differences were found, depending on gas composition and treatment time. Microscopic investigations showed that the samples with the highest pull-out force exhibited carbon fibre surfaces with the largest areas of hydration products grown on them. Additionally, the coating material ingresses into the multifilament roving in these specimens, leading to better force transfer between individual carbon filaments and between the entire roving and surrounding matrix, thus explaining the superior mechanical performance of the specimens containing appropriately plasma-treated carbon roving.

  19. Mineral-Based Coating of Plasma-Treated Carbon Fibre Rovings for Carbon Concrete Composites with Enhanced Mechanical Performance

    PubMed Central

    Schneider, Kai; Lieboldt, Matthias; Liebscher, Marco; Fröhlich, Maik; Hempel, Simone; Butler, Marko; Schröfl, Christof; Mechtcherine, Viktor

    2017-01-01

    Surfaces of carbon fibre roving were modified by means of a low temperature plasma treatment to improve their bonding with mineral fines; the latter serving as an inorganic fibre coating for the improved mechanical performance of carbon reinforcement in concrete matrices. Variation of the plasma conditions, such as gas composition and treatment time, was accomplished to establish polar groups on the carbon fibres prior to contact with the suspension of mineral particles in water. Subsequently, the rovings were implemented in a fine concrete matrix and their pull-out performance was assessed. Every plasma treatment resulted in increased pull-out forces in comparison to the reference samples without plasma treatment, indicating a better bonding between the mineral coating material and the carbon fibres. Significant differences were found, depending on gas composition and treatment time. Microscopic investigations showed that the samples with the highest pull-out force exhibited carbon fibre surfaces with the largest areas of hydration products grown on them. Additionally, the coating material ingresses into the multifilament roving in these specimens, leading to better force transfer between individual carbon filaments and between the entire roving and surrounding matrix, thus explaining the superior mechanical performance of the specimens containing appropriately plasma-treated carbon roving. PMID:28772719

  20. Protein encapsulation and release from PEO-b-polyphosphoester templated calcium carbonate particles.

    PubMed

    Ergul Yilmaz, Zeynep; Cordonnier, Thomas; Debuigne, Antoine; Calvignac, Brice; Jerome, Christine; Boury, Frank

    2016-11-20

    Calcium carbonate particles are promising candidates as proteins carriers for their controlled delivery in the body. The present paper aims at investigating the protein encapsulation by in situ precipitation of calcium carbonate particles prepared by a process based on supercritical CO 2 and using a new type of degradable well-defined double hydrophilic block copolymers composed of poly(ethylene oxide) and polyphosphoester blocks acting as templating agent for the calcium carbonate. For this study, lysozyme was chosen as a model for therapeutic protein for its availability and ease of detection. It was found that by this green process, loading into the CaCO 3 microparticles with a diameter about 2μm can be obtained as determined by scanning electron microscopy. A protein loading up to 6.5% active lysozyme was measured by a specific bioassay (Micrococcus lysodeikticus). By encapsulating fluorescent-labelled lysozyme (lysozyme-FITC), the confocal microscopy images confirmed its encapsulation and suggested a core-shell distribution of lysozyme into CaCO 3 , leading to a release profile reaching a steady state at 59% of release after 90min. Copyright © 2016. Published by Elsevier B.V.

  1. Amorphous Calcium Carbonate Precipitation by Cellular Biomineralization in Mantle Cell Cultures of Pinctada fucata

    PubMed Central

    Xiang, Liang; Kong, Wei; Su, Jingtan; Liang, Jian; Zhang, Guiyou; Xie, Liping; Zhang, Rongqing

    2014-01-01

    The growth of molluscan shell crystals is generally thought to be initiated from the extrapallial fluid by matrix proteins, however, the cellular mechanisms of shell formation pathway remain unknown. Here, we first report amorphous calcium carbonate (ACC) precipitation by cellular biomineralization in primary mantle cell cultures of Pinctada fucata. Through real-time PCR and western blot analyses, we demonstrate that mantle cells retain the ability to synthesize and secrete ACCBP, Pif80 and nacrein in vitro. In addition, the cells also maintained high levels of alkaline phosphatase and carbonic anhydrase activity, enzymes responsible for shell formation. On the basis of polarized light microscopy and scanning electron microscopy, we observed intracellular crystals production by mantle cells in vitro. Fourier transform infrared spectroscopy and X-ray diffraction analyses revealed the crystals to be ACC, and de novo biomineralization was confirmed by following the incorporation of Sr into calcium carbonate. Our results demonstrate the ability of mantle cells to perform fundamental biomineralization processes via amorphous calcium carbonate, and these cells may be directly involved in pearl oyster shell formation. PMID:25405357

  2. Biological Origin of Micro-laminated Calcium Carbonate Deposits on Antarctic Rock Surfaces

    NASA Astrophysics Data System (ADS)

    Farmer, M.; Stone, J. O.

    2001-12-01

    We have observed and sampled patchy encrustations of calcium carbonate on rock surfaces in East and West Antarctica. Individual disk-like deposits are up to 1 cm across and a few mm thick, but in places coalesce to form more extensive, colloform coatings. We have observed these deposits on substrates of granite, sandstone, and schist. Their distribution appears similar to that of Antarctic lichens and endolithic algae, extending up to ca. 1000m elevation, but has no consistent relationship to snow drifts, solar radiation, or prevailing winds. The morphology and position of the deposits are distinct from sub-glacial carbonate precipitates. In Marie Byrd Land, the encrustations occur on the surfaces exposed by deglaciation within the past 5000 yrs, and the sample from East Antarctica contains live C-14 (M. Mabin, pers. comm.), suggesting a possible biological origin Electron microprobe and SEM examination of cross-sectioned specimens reveals micron-scale layering of predominantly calcium carbonate, but with a number of bright laminae in SEM images, believed to be calcium fluoride. Sections closely resemble desert varnish in micro-morphology, though not in mineralogy. Isotopic analysis of an organic carbon extract (as opposed to C from the CaCO3 itself) gave a delta C-13 PDB value of -23.3 per mil, similar to values expected in carbon of biological origin. However, we have no proof yet that the carbon analyzed was produced by organisms within the encrustation, rather than being entrapped during an inorganic precipitation process. To investigate the possible biological origin of this material, we attempted to sequence the 16S segment of rRNA in the organic extract, but have not yet completed successful PCR replication. We are continuing attempts to isolate and analyze the pertinent genetic material. The micro-morphology, strongly negative delta C-13 and presence of live C-14 suggest a biological process for precipitation of these calcium carbonate deposits. We hope to

  3. Removal of Soluble Strontium via Incorporation into Biogenic Carbonate Minerals by Halophilic Bacterium Bacillus sp. Strain TK2d in a Highly Saline Solution

    PubMed Central

    Dotsuta, Yuma; Nakano, Yuriko; Ochiai, Asumi; Utsunomiya, Satoshi; Ohnuki, Toshihiko

    2017-01-01

    ABSTRACT Radioactive strontium (90Sr) leaked into saline environments, including the ocean, from the Fukushima Daiichi Nuclear Power Plant after a nuclear accident. Since the removal of 90Sr using general adsorbents (e.g., zeolite) is not efficient at high salinity, a suitable alternative immobilization method is necessary. Therefore, we incorporated soluble Sr into biogenic carbonate minerals generated by urease-producing microorganisms from a saline solution. An isolate, Bacillus sp. strain TK2d, from marine sediment removed >99% of Sr after contact for 4 days in a saline solution (1.0 × 10−3 mol liter−1 of Sr, 10% marine broth, and 3% [wt/vol] NaCl). Transmission electron microscopy and energy-dispersive X-ray spectroscopy showed that Sr and Ca accumulated as phosphate minerals inside the cells and adsorbed at the cell surface at 2 days of cultivation, and then carbonate minerals containing Sr and Ca developed outside the cells after 2 days. Energy-dispersive spectroscopy revealed that Sr, but not Mg, was present in the carbonate minerals even after 8 days. X-ray absorption fine-structure analyses showed that a portion of the soluble Sr changed its chemical state to strontianite (SrCO3) in biogenic carbonate minerals. These results indicated that soluble Sr was selectively solidified into biogenic carbonate minerals by the TK2d strain in highly saline environments. IMPORTANCE Radioactive nuclides (134Cs, 137Cs, and 90Sr) leaked into saline environments, including the ocean, from the Fukushima Daiichi Nuclear Power Plant accident. Since the removal of 90Sr using general adsorbents, such as zeolite, is not efficient at high salinity, a suitable alternative immobilization method is necessary. Utilizing the known concept that radioactive 90Sr is incorporated into bones by biomineralization, we got the idea of removing 90Sr via incorporation into biominerals. In this study, we revealed the ability of the isolated ureolytic bacterium to remove Sr under high

  4. The influence of electron discharge and magnetic field on calcium carbonate (CaCO{sub 3}) precipitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Putro, Triswantoro, E-mail: tris@physics.its.ac.id; Endarko, E-mail: endarko@physics.its.ac.id

    The influences of electron discharge and magnetic field on calcium carbonate (CaCO{sub 3}) precipitation in water have been successfully investigated. The study used three pairs of magnetic field 0.1 T whilst the electron discharge was generated from television flyback transformer type BW00607 and stainless steel SUS 304 as an electrode. The water sample with an initial condition of 230 mg/L placed in the reactor with flow rate 375 mL/minutes, result showed that the electron discharge can be reduced contain of calcium carbonate the water sample around 17.39% within 2 hours. Meanwhile for the same long period of treatment and flow rate, aroundmore » 56.69% from initial condition of 520 mg/L of calcium carbonate in the water sample can be achieved by three pairs of magnetic field 0.1 T. When the combination of three pairs of magnetic field 0.1 T and the electron discharge used for treatment, the result showed that the combination of electron discharge and magnetic field methods can be used to precipitate calcium carbonate in the water sample 300 mg/L around 76.66% for 2 hours of treatment. The study then investigated the influence of the polar position of the magnetic field on calcium carbonate precipitation. Two positions of magnetic field were tested namely the system with alternated polar magnetics and the system without inversion of the polar magnetics. The influence of the polar position showed that the percentage reduction in levels of calcium carbonate in the water sample (360 mg/L) is significant different. Result showed that the system without inversion of the polar magnetics is generally lower than the system with alternated polar magnetics, with reduction level at 30.55 and 57.69%, respectively.« less

  5. Delineation of Magnesium-rich Ultramafic Rocks Available for Mineral Carbon Sequestration in the United States

    USGS Publications Warehouse

    Krevor, S.C.; Graves, C.R.; Van Gosen, B. S.; McCafferty, A.E.

    2009-01-01

    The 2005 Intergovernmental Panel on Climate Change report on Carbon Dioxide Capture and Storage suggested that a major gap in mineral carbon sequestration is locating the magnesium-silicate bedrock available to sequester CO2. It is generally known that silicate minerals with high concentrations of magnesium are suitable for mineral carbonation. However, no assessment has been made covering the entire United States detailing their geographical distribution and extent, or evaluating their potential for use in mineral carbonation. Researchers at Columbia University and the U.S. Geological Survey have developed a digital geologic database of ultramafic rocks in the continental United States. Data were compiled from varied-scale geologic maps of magnesium-silicate ultramafic rocks. These rock types are potentially suitable as source material for mineral carbon-dioxide sequestration. The focus of the national-scale map is entirely on suitable ultramafic rock types, which typically consist primarily of olivine and serpentine minerals. By combining the map with digital datasets that show non-mineable lands (such as urban areas and National Parks), estimates on potential depth of a surface mine, and the predicted reactivities of the mineral deposits, one can begin to estimate the capacity for CO2 mineral sequestration within the United States. ?? 2009 Elsevier Ltd. All rights reserved.

  6. Dietary acid load is associated with lower bone mineral density in men with low intake of dietary calcium.

    PubMed

    Mangano, Kelsey M; Walsh, Stephen J; Kenny, Anne M; Insogna, Karl L; Kerstetter, Jane E

    2014-02-01

    High dietary acid load (DAL) may be detrimental to bone mineral density (BMD). The objectives of the study were to: (1) evaluate the cross-sectional relation between DAL and BMD; and (2) determine whether calcium intake modifies this association. Men (n = 1218) and women (n = 907) aged ≥60 years were included from the National Health and Nutrition Examination Survey 2005-2008. Nutrient intake from 2, 24-hour recalls was used to calculate net endogenous acid production (NEAP) and potential renal acid load (PRAL) (mEq/d). PRAL was calculated from dietary calcium (PRALdiet ) and diet + supplemental calcium (PRALtotal ). Tests for linear trend in adjusted mean BMD of the hip and lumbar spine were performed across energy-adjusted NEAP and PRAL quartiles. Modification by calcium intake (dietary or total) above or below 800 mg/d was assessed by interaction terms. Overall, mean age was 69 ± 0.3 years. Among women, there was no association between NEAP and BMD. PRALdiet was positively associated with proximal femur BMD (p trend = 0.04). No associations were observed with PRALtotal at any BMD site (p range, 0.38-0.82). Among men, no significant associations were observed between BMD and NEAP or PRAL. However, an interaction between PRALdiet and calcium intake was observed with proximal femur BMD (p = 0.08). An inverse association between PRALdiet and proximal femur BMD was detected among men with <800 mg/d dietary calcium (p = 0.02); no associations were found among men with ≥800 mg/d (p = 0.98). A significant interaction with PRALtotal was not observed. In conclusion, when supplemental calcium is considered, there is no association between DAL and BMD among adults. Men with low dietary calcium showed an inverse relation with PRAL at the proximal femur; in women no interaction was observed. This study highlights the importance of calcium intake in counteracting the adverse effect of DAL on bone health. Further research should

  7. Rapid hydrothermal flow synthesis and characterisation of carbonate- and silicate-substituted calcium phosphates

    PubMed Central

    Knowles, Jonathan C; Rehman, Ihtesham; Darr, Jawwad A

    2013-01-01

    A range of crystalline and nano-sized carbonate- and silicate-substituted hydroxyapatite has been successfully produced by using continuous hydrothermal flow synthesis technology. Ion-substituted calcium phosphates are better candidates for bone replacement applications (due to improved bioactivity) as compared to phase-pure hydroxyapatite. Urea was used as a carbonate source for synthesising phase pure carbonated hydroxyapatite (CO3-HA) with ≈5 wt% substituted carbonate content (sample 7.5CO3-HA) and it was found that a further increase in urea concentration in solution resulted in biphasic mixtures of carbonate-substituted hydroxyapatite and calcium carbonate. Transmission electron microscopy images revealed that the particle size of hydroxyapatite decreased with increasing urea concentration. Energy-dispersive X-ray spectroscopy result revealed a calcium deficient apatite with Ca:P molar ratio of 1.45 (±0.04) in sample 7.5CO3-HA. For silicate-substituted hydroxyapatite (SiO4-HA) silicon acetate was used as a silicate ion source. It was observed that a substitution threshold of ∼1.1 wt% exists for synthesis of SiO4-HA in the continuous hydrothermal flow synthesis system, which could be due to the decreasing yields with progressive increase in silicon acetate concentration. All the as-precipitated powders (without any additional heat treatments) were analysed using techniques including Transmission electron microscopy, X-ray powder diffraction, Differential scanning calorimetry, Thermogravimetric analysis, Raman spectroscopy and Fourier transform infrared spectroscopy. PMID:22983020

  8. Effect of ceramic calcium-phosphorus ratio on chondrocyte-mediated biosynthesis and mineralization.

    PubMed

    Boushell, Margaret K; Khanarian, Nora T; LeGeros, Raquel Z; Lu, Helen H

    2017-10-01

    The osteochondral interface functions as a structural barrier between cartilage and bone, maintaining tissue integrity postinjury and during homeostasis. Regeneration of this calcified cartilage region is thus essential for integrative cartilage healing, and hydrogel-ceramic composite scaffolds have been explored for calcified cartilage formation. The objective of this study is to test the hypothesis that Ca/P ratio of the ceramic phase of the composite scaffold regulates chondrocyte biosynthesis and mineralization potential. Specifically, the response of deep zone chondrocytes to two bioactive ceramics with different calcium-phosphorus ratios (1.35 ± 0.01 and 1.41 ± 0.02) was evaluated in agarose hydrogel scaffolds over two weeks in vitro. It was observed that the ceramic with higher calcium-phosphorus ratio enhanced chondrocyte proliferation, glycosaminoglycan production, and induced an early onset of alkaline phosphorus activity, while the ceramic with lower calcium-phosphorus ratio performed similarly to the ceramic-free control. These results underscore the importance of ceramic bioactivity in directing chondrocyte response, and demonstrate that Ca/P ratio is a key parameter to be considered in osteochondral scaffold design. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2694-2702, 2017. © 2017 Wiley Periodicals, Inc.

  9. Charged Nanowire-Directed Growth of Amorphous Calcium Carbonate Nanosheets in a Mixed Solvent for Biomimetic Composite Films.

    PubMed

    Liu, Yang-Yi; Liu, Lei; Chen, Si-Ming; Chang, Fu-Jia; Mao, Li-Bo; Gao, Huai-Ling; Ma, Tao; Yu, Shu-Hong

    2018-05-22

    Bio-inspired mineralization is an effective way for fabricating complex inorganic materials, which inspires us to develop new methods to synthesize materials with fascinating properties. In this article, we report that the charged tellurium nanowires (TeNWs) can be used as biomacromolecule analogues to direct the formation of amorphous calcium carbonate (ACC) nanosheets (ACCNs) in a mixed solvent. The effects of surface charges and the concentration of the TeNWs on the formation of ACCNs have been investigated. Particularly, the produced ACCNs can be functionalized by Fe 3 O 4 nanoparticles to produce magnetic ACC/Fe 3 O 4 hybrid nanosheets that can be used to construct ACC/Fe 3 O 4 composite films through a self-evaporation process. Moreover, sodium alginate-ACC nanocomposite films with remarkable toughness and good transmittance can also be fabricated by using such ACCNs as nanoscale building blocks. This mineralization approach in a mixed solvent using charged TeNWs as biomacromolecule analogues provides a new way for the synthesis of ACCNs, which can be used as nanoscale building blocks for the fabrication of biomimetic composite films.

  10. Results of the TTF-TCNQ and the calcium carbonate crystallization on the Long Duration Exposure Facility

    NASA Technical Reports Server (NTRS)

    Nielsen, Kjeld Flemming; Lind, M. David

    1992-01-01

    Experiment A0139A on the Long Duration Exposure Facility (LDEF) carried four large containers into orbit five years with crystal growth solutions for lead sulfide, calcium carbonate, and TTF-TCNQ. Although temperature data was lost, the experimental program had been working since the valves in all containers had been opened. All four experiments produced crystals of varying quality. The calcium carbonate crystals had the best appearance. The TTF-TCNQ crystals were packed together near the valve openings of the container. When taken apart, the single crystals showed some unusual morphological properties. X ray investigations as well as conductivity measurements on long duration space grown TTF-TCNQ crystals will be presented. Comparisons will be made with our previous space solution growth experiments. The TTF-TCNQ crystals are no longer of the highest interest, so this activity has been terminated in favor of calcium carbonate and calcium phosphate crystallizations.

  11. Numerical investigation of the influence of electromagnetic treatment on calcium carbonate scaling rate in non-isothermal pipe flow

    NASA Astrophysics Data System (ADS)

    Kireev, Victor; Kovaleva, Liana; Isakov, Andrey; Alimbekova, Sofya

    2017-11-01

    In the present paper, an attempt to explain the mechanisms of the electromagnetic field influence on the process of formation and deposition of calcium carbonate from supersaturated brine solution has been made using numerical modeling. The one-dimensional mathematical model of the brine laminar flow through a cylindrical tube with non-uniform temperature field is written in the form of the system of transient convection-diffusion-reaction partial differential equations describing temperature field and chemical components concentrations (Ca2+, HCO3-, CaCO3). The influence of the temperature on the kinetics of formation of calcium carbonate is taken into account and it is described in accordance with the Arrhenius equation. The kinetics of the calcium carbonate precipitation on the wall of the pipe is given on the basis of the Henry isotherm. It has been established that the electromagnetic treatment of brine solution leads to a decrease of the adsorption rate constant and Henry's constant but it does not significantly influence on the chemical reaction rate of calcium carbonate formation. It also has been shown that treatment with electromagnetic field significantly reduces the amount of calcium carbonate deposits on the wall of the pipe.

  12. (Ca,Mg)-Carbonate and Mg-Carbonate at the Phoenix Landing Site: Evaluation of the Phoenix Lander's Thermal Evolved Gas Analyzer (TEGA) Data Using Laboratory Simulations

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Ming, D. W.; Boynton, W. V.; Niles, P. B.; Morris, R. V.

    2011-01-01

    Calcium carbonate (4.5 wt. %) was detected in the soil at the Phoenix Landing site by the Phoenix Lander s The Thermal and Evolved Gas Analyzer [1]. TEGA operated at 12 mbar pressure, yet the detection of calcium carbonate is based on interpretations derived from thermal analysis literature of carbonates measured under ambient (1000 mbar) and vacuum (10(exp -3) mbar) conditions [2,3] as well as at 100 and 30 mbar [4,5] and one analysis at 12 mbar by the TEGA engineering qualification model (TEGA-EQM). Thermodynamics (Te = H/ S) dictate that pressure affects entropy ( S) which causes the temperature (Te) of mineral decomposition at one pressure to differ from Te obtained at another pressure. Thermal decomposition analyses of Fe-, Mg-, and Ca-bearing carbonates at 12 mbar is required to enhance the understanding of the TEGA results at TEGA operating pressures. The objectives of this work are to (1) evaluate the thermal and evolved gas behavior of a suite of Fe-, Mg-, Ca-carbonate minerals at 1000 and 12 mbar and (2) discuss possible emplacement mechanisms for the Phoenix carbonate.

  13. Evaluation of calcium, phosphorus, and selected trace mineral status in commercially available dry foods formulated for dogs

    USDA-ARS?s Scientific Manuscript database

    Objective – To evaluate the mineral content including calcium, phosphorus, zinc, iron, copper, manganese, and selenium of canine commercial pet foods and compare them to current AAFCO recommendations for adult maintenance. Design - Descriptive study. Sample – Forty-five over the counter dry canine p...

  14. Modification of nanostructured calcium carbonate for efficient gene delivery.

    PubMed

    Zhao, Dong; Wang, Chao-Qun; Zhuo, Ren-Xi; Cheng, Si-Xue

    2014-06-01

    In this study, a facile method to modify nanostructured calcium carbonate (CaCO3) gene delivery systems by adding calcium phosphate (CaP) component was developed. CaCO3/CaP/DNA nanoparticles were prepared by the co-precipitation of Ca(2+) ions with plasmid DNA in the presence of carbonate and phosphate ions. For comparison, CaCO3/DNA nanoparticles and CaP/DNA co-precipitates were also prepared. The effects of carbonate ion/phosphate ion (CO3(2-)/PO4(3-)) ratio on the particle size and gene delivery efficiency were investigated. With an appropriate CO3(2-)/PO4(3-) ratio, the co-existence of carbonate and phosphate ions could control the size of co-precipitates effectively, and CaCO3/CaP/DNA nanoparticles with a decreased size and improved stability could be obtained. The in vitro gene transfections mediated by different nanoparticles in 293T cells and HeLa cells were carried out, using pGL3-Luc as a reporter plasmid. The gene transfection efficiency of CaCO3/CaP/DNA nanoparticles could be significantly improved as compared with CaCO3/DNA nanoparticles and CaP/DNA co-precipitates. The confocal microscopy study indicated that the cellular uptake and nuclear localization of CaCO3/CaP/DNA nanoparticles were significantly enhanced as compared with unmodified CaCO3/DNA nanoparticles. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Fractionated-combustion analysis of carbonate-containing phases in composite materials of the hydroxyapatite-calcium carbonate system

    NASA Astrophysics Data System (ADS)

    Goldberg, M. A.; Shibaeva, T. V.; Smirnov, V. V.; Kutsev, S. V.; Barinov, S. M.; Grigorovich, K. V.

    2012-12-01

    Materials in the hydroxyapatite (HA)-calcium carbonate (CC) system were synthesized by a precipitation method from aqueous solutions. According to the data of X-ray phase analysis and IR spectroscopy, the powders consisted of CC and AB-type carbonate-substituted HA (CHA). In order to determine the content of carbonate-containing phases in materials, the temperature-temporal mode of fractionated-combustion analysis of carbon was developed. The quantitative phase ratios and the degree of substitution of carbonate groups in CHA were determined. It was shown that the degree of substitution of carbonate groups in CHA increased from 2.47 to 5.31 wt % as the CC content increased from 13.50 to 88.33 wt %.

  16. Calcium and bones (image)

    MedlinePlus

    Calcium is one of the most important minerals for the growth, maintenance, and reproduction of the human ... body, are continually being re-formed and incorporate calcium into their structure. Calcium is essential for the ...

  17. Aerobic microbial mineralization of dichloroethene as sole carbon substrate

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.

    2000-01-01

    Microorganisms indigenous to the bed sediments of a black- water stream utilized 1,2-dichloroethene (1,2-DCE) as a sole carbon substrate for aerobic metabolism. Although no evidence of growth was observed in the minimal salts culture media used in this study, efficient aerobic microbial mineralization of 1,2-DCE as sole carbon substrate was maintained through three sequential transfers (107 final dilution) of the original environmental innoculum. These results indicate that 1,2-DCE can be utilized as a primary substrate to support microbial metabolism under aerobic conditions.Microorganisms indigenous to the bed sediments of a black-water stream utilized 1,2-dichloroethene (1,2-DCE) as a sole carbon substrate for aerobic metabolism. Although no evidence of growth was observed in the minimal salts culture media used in this study, efficient aerobic microbial mineralization of 1,2-DCE as sole carbon substrate was maintained through three sequential transfers (107 final dilution) of the original environmental innoculum. These results indicate that 1,2-DCE can be utilized as a primary substrate to support microbial metabolism under aerobic conditions.

  18. Regulatory inhibition of biological tissue mineralization by calcium phosphate through post-nucleation shielding by fetuin-A

    NASA Astrophysics Data System (ADS)

    Chang, Joshua C.; Miura, Robert M.

    2016-04-01

    In vertebrates, insufficient availability of calcium and inorganic phosphate ions in extracellular fluids leads to loss of bone density and neuronal hyper-excitability. To counteract this problem, calcium ions are usually present at high concentrations throughout bodily fluids—at concentrations exceeding the saturation point. This condition leads to the opposite situation where unwanted mineral sedimentation may occur. Remarkably, ectopic or out-of-place sedimentation into soft tissues is rare, in spite of the thermodynamic driving factors. This fortunate fact is due to the presence of auto-regulatory proteins that are found in abundance in bodily fluids. Yet, many important inflammatory disorders such as atherosclerosis and osteoarthritis are associated with this undesired calcification. Hence, it is important to gain an understanding of the regulatory process and the conditions under which it can go awry. In this manuscript, we extend mean-field continuum classical nucleation theory of the growth of clusters to encompass surface shielding. We use this formulation to study the regulation of sedimentation of calcium phosphate salts in biological tissues through the mechanism of post-nuclear shielding of nascent mineral particles by binding proteins. We develop a mathematical description of this phenomenon using a countable system of hyperbolic partial differential equations. A critical concentration of regulatory protein is identified as a function of the physical parameters that describe the system.

  19. Regulatory inhibition of biological tissue mineralization by calcium phosphate through post-nucleation shielding by fetuin-A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Joshua C., E-mail: joshchang@ucla.edu; Miura, Robert M., E-mail: miura@njit.edu

    In vertebrates, insufficient availability of calcium and inorganic phosphate ions in extracellular fluids leads to loss of bone density and neuronal hyper-excitability. To counteract this problem, calcium ions are usually present at high concentrations throughout bodily fluids—at concentrations exceeding the saturation point. This condition leads to the opposite situation where unwanted mineral sedimentation may occur. Remarkably, ectopic or out-of-place sedimentation into soft tissues is rare, in spite of the thermodynamic driving factors. This fortunate fact is due to the presence of auto-regulatory proteins that are found in abundance in bodily fluids. Yet, many important inflammatory disorders such as atherosclerosis andmore » osteoarthritis are associated with this undesired calcification. Hence, it is important to gain an understanding of the regulatory process and the conditions under which it can go awry. In this manuscript, we extend mean-field continuum classical nucleation theory of the growth of clusters to encompass surface shielding. We use this formulation to study the regulation of sedimentation of calcium phosphate salts in biological tissues through the mechanism of post-nuclear shielding of nascent mineral particles by binding proteins. We develop a mathematical description of this phenomenon using a countable system of hyperbolic partial differential equations. A critical concentration of regulatory protein is identified as a function of the physical parameters that describe the system.« less

  20. Carbonate mineral solubility at low temperatures in the Na-K-Mg-Ca-H-Cl-SO 4-OH-HCO 3-CO 3-CO 2-H 2O system

    NASA Astrophysics Data System (ADS)

    Marion, Giles M.

    2001-06-01

    Carbonate minerals have played an important role in the geochemical evolution of Earth, and may have also played an important role in the geochemical evolution of Mars and Europa. Several models have been published in recent years that describe chloride and sulfate mineral solubilities in concentrated brines using the Pitzer equations. Few of these models are parameterized for subzero temperatures, and those that are do not include carbonate chemistry. The objectives of this work are to estimate Pitzer-equation bicarbonate-carbonate parameters and carbonate mineral solubility products and to incorporate them into the FREZCHEM model to predict carbonate mineral solubilities in the Na-K-Mg-Ca-H-Cl-SO 4-OH-HCO 3-CO 3-CO 2-H 2O system at low temperatures (≤25°C) with a special focus on subzero temperatures. Most of the Pitzer-equation parameters and equilibrium constants are taken from the literature and extrapolated into the subzero temperature range. Solubility products for 14 sodium, potassium, magnesium, and calcium bicarbonate and carbonate minerals are included in the model. Most of the experimental data are at temperatures ≥ -8°C; only for the NaHCO 3-NaCl-H 2O and Na 2CO 3-NaCl-H 2O systems are there bicarbonate and carbonate data to temperatures as low as -21.6°C. In general, the fit of the model to the experimental data is good. For example, calculated eutectic temperatures and compositions for NaHCO 3, Na 2CO 3, and their mixtures with NaCl and Na 2SO 4 salts are in good agreement with experimental data to temperatures as low as -21.6°C. Application of the model to eight saline, alkaline carbonate waters give predicted pHs ranging from 9.2 to 10.2, in comparison with measured pHs that range from 8.7 to 10.2. The model suggests that the CaCO 3 mineral that precipitates during seawater freezing is probably calcite and not ikaite. The model demonstrates that a proposed salt assemblage for the icy surface of Europa consisting of highly hydrated MgSO 4

  1. Organo-mineral complexation alters carbon and nitrogen cycling in stream microbial assemblages

    NASA Astrophysics Data System (ADS)

    Hunter, William Ross; Wanek, Wolfgang; Prommer, Judith; Mooshammer, Maria; Battin, Tom

    2014-05-01

    Inland waters are of global biogeochemical importance receiving carbon inputs of ~ 4.8 Pg C y-1. Of this 12 % is buried, 18 % transported to the oceans, and 70 % supports aquatic secondary production. However, the mechanisms that determine the fate of organic matter (OM) in these systems are poorly defined. One important aspect is the formation of organo-mineral complexes in aquatic systems and their potential as a route for OM transport and burial vs. microbial utilization as organic carbon (C) and nitrogen (N) sources. Organo-mineral particles form by sorption of dissolved OM to freshly eroded mineral surfaces and may contribute to ecosystem-scale particulate OM fluxes. We tested the availability of mineral-sorbed OM as a C & N source for streamwater microbial assemblages and streambed biofilms. Organo-mineral particles were constructed in vitro by sorption of 13C:15N-labelled amino acids to hydrated kaolin particles, and microbial degradation of these particles compared with equivalent doses of 13C:15N-labelled free amino acids. Experiments were conducted in 120 ml mesocosms over 7 days using biofilms and streamwater sampled from the Oberer Seebach stream (Austria), tracing assimilation and mineralization of 13C and 15N labels from mineral-sorbed and dissolved amino acids. Here we present data on the effects of organo-mineral sorption upon amino acid mineralization and its C:N stoichiometry. Organo-mineral sorption had a significant effect upon microbial activity, restricting C and N mineralization by both the biofilm and streamwater treatments. Distinct differences in community response were observed, with both dissolved and mineral-stabilized amino acids playing an enhanced role in the metabolism of the streamwater microbial community. Mineral-sorption of amino acids differentially affected C & N mineralization and reduced the C:N ratio of the dissolved amino acid pool. The present study demonstrates that organo-mineral complexes restrict microbial degradation

  2. Surface-functionalized cockle shell–based calcium carbonate aragonite polymorph as a drug nanocarrier

    PubMed Central

    Mohd Abd Ghafar, Syairah Liyana; Hussein, Mohd Zobir; Rukayadi, Yaya; Abu Bakar Zakaria, Md Zuki

    2017-01-01

    Calcium carbonate aragonite polymorph nanoparticles derived from cockle shells were prepared using surface functionalization method followed by purification steps. Size, morphology, and surface properties of the nanoparticles were characterized using transmission electron microscopy, field emission scanning electron microscopy, dynamic light scattering, zetasizer, X-ray powder diffraction, and Fourier transform infrared spectrometry techniques. The potential of surface-functionalized calcium carbonate aragonite polymorph nanoparticle as a drug-delivery agent were assessed through in vitro drug-loading test and drug-release test. Transmission electron microscopy, field emission scanning electron microscopy, and particle size distribution analyses revealed that size, morphology, and surface characterization had been improved after surface functionalization process. Zeta potential of the nanoparticles was found to be increased, thereby demonstrating better dispersion among the nanoparticles. Purification techniques showed a further improvement in the overall distribution of nanoparticles toward more refined size ranges <100 nm, which specifically favored drug-delivery applications. The purity of the aragonite phase and their chemical analyses were verified by X-ray powder diffraction and Fourier transform infrared spectrometry studies. In vitro biological response of hFOB 1.19 osteoblast cells showed that surface functionalization could improve the cytotoxicity of cockle shell–based calcium carbonate aragonite nanocarrier. The sample was also sensitive to pH changes and demonstrated good abilities to load and sustain in vitro drug. This study thus indicates that calcium carbonate aragonite polymorph nanoparticles derived from cockle shells, a natural biomaterial, with modified surface characteristics are promising and can be applied as efficient carriers for drug delivery. PMID:28572724

  3. Effect of carbonate and phosphate ratios on the transformation of calcium orthophosphates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eliassi, Mohammad Daoud, E-mail: eliassi2007@gmail.com; Zhao, Wei; Tan, Wen Feng, E-mail: wenfeng.tan@hotmail.com

    2014-07-01

    Graphical abstract: Complexes among phosphate, carbonate and calcium have been prepared via a facile hydrothermal route. The synthesized product at the low (0.15) and the high (1.8) molar ratio of PO{sub 4}{sup 3−}/CO{sub 3}{sup 2−} is calcium phosphate hydrate and hydroxylapatite (HAp), respectively. Molar ratios of PO{sub 4}{sup 3−}/CO{sub 3}{sup 2−} are effective on the reduction of carbonate activity during the crystallization of HAp. - Highlights: • Formation of different complexes from CO{sub 3}{sup 2−}, PO{sub 4}{sup 3−} and Ca{sup 2+} solutions at 60 °C. • Molar ratios of PO{sub 4}{sup 3−}/CO{sub 3}{sup 2} cause changes in phase and sizemore » of synthesized products. • Addition of PO{sub 4}{sup 3} inhibited the activity of CO{sub 3}{sup 2−} during bound with Ca{sup 2+}. • The phase transformation was completed, when CO{sub 3}{sup 2−} peaks disappeared in FTIR. • PO{sub 4}{sup 3−}, CO{sub 3}{sup 2−} and Ca{sup 2+} distributed heterogeneously on the surface of precipitation. - Abstract: Complexes among phosphate, carbonate and calcium have been synthesized by a designed hydrothermal method. Effects of carbonate and phosphate ratios on the transformation of calcium-orthophosphates were investigated. With X-ray diffraction measurement the synthesized product at the low (0.15) and the high (1.8) molar ratio of PO{sub 4}{sup 3−}/CO{sub 3}{sup 2−} is calcium phosphate hydrate at pH 9.0, and hydroxylapatite (HAp) at pH 8.0, respectively. Fourier transform infrared spectroscopy of product at the high ratio (1.8) of PO{sub 4}{sup 3−}/CO{sub 3}{sup 2−} shows that the CO{sub 3}{sup 2−} peaks disappear, and the strong peaks at 1412 and 1460 cm{sup −1} are assigned to the vibrations of PO{sub 4}{sup 3−} in HAp. {sup 31}P nuclear magnetic resonance spectra of products at the low (0.15–0.6) to the high (1.2–1.8) ratios of PO{sub 4}{sup 3−}/CO{sub 3}{sup 2−} are obtained at 2.9 and 2.7 ppm, respectively. Molar ratios

  4. Regulation of bone mineral loss during lactation

    NASA Technical Reports Server (NTRS)

    Brommage, R.; Deluca, H. F.

    1985-01-01

    The effects of varyng dietary calcium and phosphorous levels, vitamin D deficiency, oophorectomy, adrenalectomy, and simultaneous pregnancy on bone mineral loss during lactation in rats are studied. The experimental procedures and evaluations are described. The femur ash weight of lactating and nonlactating rats are calculated. The data reveals that a decrease in dietary calcium of 0.02 percent results in an increased loss of bone mineral, an increase in calcium to 1.4 percent does not lessen bone mineral loss, and bone mineral loss in vitamin D deficient rats is independent of calcium levels. It is observed that changes in dietary phosphorous level, oophorectomy, adrenalectomy, and simultaneous pragnancy do not reduce bone mineral loss during lactation. The analysis of various hormones to determine the mechanism that triggers bone mineral loss during lactation is presented.

  5. Calcium Kinetics During Space Flight

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; Wastney, Meryl E.; OBrien, Kimberly O.; Lane, Helen W.

    1999-01-01

    Bone loss is one of the most detrimental effects of space flight, threatening to limit the duration of human space missions. The ability to understand and counteract this loss will be critical for crew health and safety during and after extended-duration missions. The hypotheses to be tested in this project are that space flight alters calcium homeostasis and bone mineral metabolism, and that calcium homeostasis and bone mineral metabolism will return to baseline within days to weeks of return to Earth. These hypotheses will be evidenced by elevated rates of bone mineral resorption and decreased bone mineral deposition, decreased absorption of dietary calcium, altered calcitropic endocrine profiles, elevated excretion of calcium in urine and feces, and elevated excretion of markers of bone resorption. The second hypothesis will be evidenced by return of indices of calcium homeostasis and bone metabolism to preflight levels within days to weeks of return to Earth. Studies will be conducted on International Space Station astronauts before, during, and after extended-duration flights. Measurements of calcium kinetics, bone mass, and endocrine/biochemical markers of bone and calcium homeostasis will be conducted. Kinetic studies utilizing dual isotope tracer kinetic studies and mathematical modeling techniques will allow for determination of bone calcium deposition, bone calcium resorption, dietary calcium absorption and calcium excretion (both urinary and endogenous fecal excretion). These studies will build upon preliminary work conducted on the Russian Mir space station. The results from this project will be critical for clarifying how microgravity affects bone and calcium homeostasis, and will provide an important control point for assessment of countermeasure efficacy. These results are expected to aid in developing countermeasures for bone loss, both for space crews and for individuals on Earth who have metabolic bone diseases.

  6. Incremental cost-utility of sevelamer relative to calcium carbonate for treatment of hyperphosphatemia among pre-dialysis chronic kidney disease patients.

    PubMed

    Nguyen, Hai V; Bose, Saideep; Finkelstein, Eric

    2016-04-28

    Sevelamer is an alternative to calcium carbonate for the treatment of hyperphosphatemia among non-dialysis dependent patients with chronic kidney disease (CKD). Although some studies show that it may reduce mortality and delay the onset of dialysis when compared to calcium carbonate, it is also significantly more expensive. Prior studies looking at the incremental cost-effectiveness of sevelamer versus calcium carbonate in pre-dialysis patients are based on data from a single clinical trial. The goal of our study is to use a wider range of clinical data to achieve a more contemporary and robust cost-effectiveness analysis. We used a Markov model to estimate the lifetime costs and quality-adjusted life years (QALYs) gained for treatment with sevelamer versus calcium carbonate. The model simulated transitions among three health states (CKD not requiring dialysis, end-stage renal disease, and death). Data on transition probabilities and utilities were obtained from the published literature. Costs were calculated from a third party payer perspective and included medication, hospitalization, and dialysis. Sensitivity analyses were also run to encompass a wide range of assumptions about the dose, costs, and effectiveness of sevelamer. Over a lifetime, the average cost per patient treated with sevelamer is S$180,724. The estimated cost for patients treated with calcium carbonate is S$152,988. A patient treated with sevelamer gains, on average, 6.34 QALYs relative to no treatment, whereas a patient taking calcium carbonate gains 5.81 QALYs. Therefore, sevelamer produces an incremental cost-effectiveness ratio (ICER) of S$51,756 per QALY gained relative to calcium carbonate. Based on established benchmarks for cost-effectiveness, sevelamer is cost effective relative to calcium carbonate for the treatment of hyperphosphatemia among patients with chronic kidney disease initially not on dialysis.

  7. Biological Apatite Formed from Polyphosphate and Alkaline Phosphatase May Exchange Oxygen Isotopes from Water through Carbonate

    NASA Astrophysics Data System (ADS)

    Omelon, S. J.; Stanley, S. Y.; Gorelikov, I.; Matsuura, N.

    2011-12-01

    The oxygen isotopic composition in bone mineral phosphate is known to reflect the local water composition, environmental humidity, and diet1. Once ingested, biochemical processes presumably equilibrate PO43- with "body water" by the many biochemical reactions involving PO43- 2. Blake et al. demonstrated that enzymatic release of PO43- from organophosphorus compounds, and microbial metabolism of dissolved orthophosphate, significantly exchange the oxygen in precipitated apatite within environmental water3,4, which otherwise does not exchange with water at low temperatures. One of the enzymes that can cleave phosphates from organic substrates is alkaline phosphastase5, the enzyme also associated with bone mineralization. The literature often states that the mineral in bone in hydroxylapatite, however the mineral in bone is carbonated apatite that also contains some fluoride6. Deprotonation of HPO32- occurs at pH 12, which is impossibly high for biological system, and the predominate carbonate species in solution at neutral pH is HCO3-. To produce an apatite mineral without a significant hydroxyl content, it is possible that apatite biomineralization occurs through a polyphosphate pathway, where the oxygen atom required to transform polyphosphate into individual phosphate ions is from carbonate: [PO3-]n + CO32- -> [PO3-]n-1 + PO43- + CO2. Alkaline phosphatase can depolymerise polyphosphate into orthophosphate5. If alkaline phosphatase cleaves an oxygen atom from a calcium-carbonate complex, then there is no requirement for removing a hydrogen atom from the HCO3- or HPO43- ions of body water to form bioapatite. A mix of 1 mL of 1 M calcium polyphosphate hydogel, or nano-particles of calcium polyphosphate, and amorphous calcium carbonate were reacted with alkaline phosphatase, and maintained at neutral to basic pH. After two weeks, carbonated apatite and other calcium phosphate minerals were identified by powder x-ray diffraction. Orthophosphate and unreacted

  8. Ultrasonically assisted extraction of calcium and ash from char

    NASA Astrophysics Data System (ADS)

    Mathumba, E. E.; Mbaya, R. K. K.; Kolesnikov, A.

    2018-03-01

    This study characterized and removed calcium and ash content from char to improve the chemical quality of char as reductant for titanium smelting application. Calcium in char can be classified in two parts: mineral matter and cationic metals associated with organic matrix. Virgin and chemically treated char was characterized by using ISO 1171, wet chemistry methods, ISO 19579, XRF, and B.E.T. methods. In this present work, demineralization of char with mild chemical leachants such as acetic acid, citric acid, gluconic acid and Ethylene Diamine Tetra Acetic acid with three different ultrasonic power input (150 W, 270 W and 300 W) and semi-dual frequency of 40 kHz tank was investigated. Actual power dissipated into the system was calculated from the calorimetric measurement. An optimum set of process parameters are identified and validated. The ultrasound technology was compared with soaking technology to determine the efficiency of ultrasound system for the removal of calcium. The removal of calcium was exponentially higher with ultrasonic treatment than without it. Results revealed that mild chemical reagents do not harm the carbon content of char. It is evident from the results that amongst the leachants used; acetic and citric acid has caused significant removal of mineral phases.

  9. Mineralization and biocompatibility of Antheraea pernyi (A. pernyi) silk sericin film for potential bone tissue engineering.

    PubMed

    Yang, Mingying; Mandal, Namita; Shuai, Yajun; Zhou, Guanshan; Min, Sijia; Zhu, Liangjun

    2014-01-01

    This study aimed to investigate the mineralization of Antheraea pernyi (A. pernyi) silk sericin. Mineralization of A. pernyi sericin was performed by alternative soaking in calcium and phosphate. The inhibition of precipitation of calcium carbonate and von Kossa staining on A. pernyi sericin were tested, and the corresponding results prove that A. pernyi sericin has Ca binding activity. Scanning electron microscope (SEM) observation shows that spherical crystals could be nucleated on the A. pernyi sericin film. These crystals were confirmed to be hydroxyapatite according to FT-IR and XRD spectra, indicating that A. pernyi sericin is capable of mineralization. In addition, cell adhesion and growth activity assay demonstrate that A. pernyi sericin shows excellent biocompatibility for the growth of MG-63 cells.

  10. Phosphate toxicity and vascular mineralization.

    PubMed

    Razzaque, Mohammed S

    2013-01-01

    Vascular calcification or mineralization is a major complication seen in patients with advanced stages of chronic kidney disease (CKD), and it is associated with markedly increased morbidity and mortality. Most of the CKD-related vascular mineralization is attributable to abnormal mineral ion metabolism. Elevated serum calcium and phosphate levels, along with increased calcium-phosphorus byproduct, and the use of active vitamin D metabolites are thought to be the predisposing factors for developing vascular mineralization in patients with CKD. Recent experimental studies have shown that vascular mineralization can be suppressed by reducing serum phosphate levels, even in the presence of extremely high serum calcium and 1,25-dihydroxyvitamin D levels, indicating that reducing 'phosphate toxicity' should be the important therapeutic priority in CKD patients for minimizing the risk of developing vascular mineralization and the disease progression. Copyright © 2013 S. Karger AG, Basel.

  11. Population data on calcium in drinking water and hip fracture: An association may depend on other minerals in water. A NOREPOS study.

    PubMed

    Dahl, Cecilie; Søgaard, Anne Johanne; Tell, Grethe S; Forsén, Lisa; Flaten, Trond Peder; Hongve, Dag; Omsland, Tone Kristin; Holvik, Kristin; Meyer, Haakon E; Aamodt, Geir

    2015-12-01

    The Norwegian population has among the highest hip fracture rates in the world. The incidence varies geographically, also within Norway. Calcium in drinking water has been found to be beneficially associated with bone health in some studies, but not in all. In most previous studies, other minerals in water have not been taken into account. Trace minerals, for which drinking water can be an important source and even fulfill the daily nutritional requirement, could act as effect-modifiers in the association between calcium and hip fracture risk. The aim of the present study was to investigate the association between calcium in drinking water and hip fracture, and whether other water minerals modified this association. A survey of trace metals in 429 waterworks, supplying 64% of the population in Norway, was linked geographically to the home addresses of patients with incident hip fractures (1994-2000). Drinking water mineral concentrations were divided into "low" (below and equal waterworks average) and "high" (above waterworks average). Poisson regression models were fitted, and all incidence rate ratios (IRRs) were adjusted for age, geographic region, urbanization degree, type of water source, and pH of the water. Effect modifications were examined by stratification, and interactions between calcium and magnesium, copper, zinc, iron and manganese were tested both on the multiplicative and the additive scale. Analyses were stratified on gender. Among those supplied from the 429 waterworks (2,110,916 person-years in men and 2,397,217 person-years in women), 5433 men and 13,493 women aged 50-85 years suffered a hip fracture during 1994-2000. Compared to low calcium in drinking water, a high level was associated with a 15% lower hip fracture risk in men (IRR=0.85, 95% CI: 0.78, 0.91) but no significant difference was found in women (IRR=0.98, 95%CI: 0.93-1.02). There was interaction between calcium and copper on hip fracture risk in men (p=0.051); the association

  12. Mineralogy and Geochemical Processes of Carbonate Mineral-rich Sulfide Mine Tailings, Zimapan, Mexico

    NASA Astrophysics Data System (ADS)

    McClure, R. J.; Deng, Y.; Loeppert, R.; Herbert, B. E.; Carrillo, R.; Gonzalez, C.

    2009-12-01

    Mining for silver, lead, zinc, and copper in Zimapan, Hidalgo State, Mexico has been ongoing since 1576. High concentrations of heavy metals have been found in several mine tailing heaps in the Zimapan area, with concentrations of arsenic observed as high as 28,690 mg/kg and levels of Pb as high as 2772 mg/kg. Unsecured tailings heaps and associated acid mine drainage has presented tremendous problems to revegetation, water quality, and dust emission control in the Zimapan area. Although acid mine drainage problems related to weathering of sulfide minerals have been extensively studied and are well known, the weathering products of sulfides in areas with a significant presence of carbonate minerals and their effect on the mobility of heavy metals warrant further study. Carbonate minerals are expected to neutralize sulfuric acid produced from weathering of sulfide minerals, however, in the Zimapan area localized areas of pH as low as 1.8 were observed within carbonate mineral-rich tailing heaps. The objectives of this study are to characterize (1) the heavy metal-containing sulfide minerals in the initial tailing materials, (2) the intermediate oxidation products of sulfide minerals within the carbonate-rich tailings, (3) chemical species of heavy metals within pH gradients between 1.8 and 8.2, the approximate natural pH of limestone, and (4) the mobility of soluble and colloidal heavy metals and arsenic within the carbonate-rich tailings. Representative mine tailings and their intermediate oxidation products have been sampled from the Zimapan area. Mineralogical characterization will be conducted with X-ray diffraction, infrared spectroscopy, electron microscopes and microprobes, and chemical methods. Chemical species will be extracted by selective dissolution methods. Preliminary results have identified calcite as the dominant mineral in the tailing heaps with a pH of 7, suggesting non-equilibrium with the acidic weathering products. Other minerals identified in

  13. Evolution of trees and mycorrhizal fungi intensifies silicate mineral weathering

    PubMed Central

    Quirk, Joe; Beerling, David J.; Banwart, Steve A.; Kakonyi, Gabriella; Romero-Gonzalez, Maria E.; Leake, Jonathan R.

    2012-01-01

    Forested ecosystems diversified more than 350 Ma to become major engines of continental silicate weathering, regulating the Earth's atmospheric carbon dioxide concentration by driving calcium export into ocean carbonates. Our field experiments with mature trees demonstrate intensification of this weathering engine as tree lineages diversified in concert with their symbiotic mycorrhizal fungi. Preferential hyphal colonization of the calcium silicate-bearing rock, basalt, progressively increased with advancement from arbuscular mycorrhizal (AM) to later, independently evolved ectomycorrhizal (EM) fungi, and from gymnosperm to angiosperm hosts with both fungal groups. This led to ‘trenching’ of silicate mineral surfaces by AM and EM fungi, with EM gymnosperms and angiosperms releasing calcium from basalt at twice the rate of AM gymnosperms. Our findings indicate mycorrhiza-driven weathering may have originated hundreds of millions of years earlier than previously recognized and subsequently intensified with the evolution of trees and mycorrhizas to affect the Earth's long-term CO2 and climate history. PMID:22859556

  14. Evolution of trees and mycorrhizal fungi intensifies silicate mineral weathering.

    PubMed

    Quirk, Joe; Beerling, David J; Banwart, Steve A; Kakonyi, Gabriella; Romero-Gonzalez, Maria E; Leake, Jonathan R

    2012-12-23

    Forested ecosystems diversified more than 350 Ma to become major engines of continental silicate weathering, regulating the Earth's atmospheric carbon dioxide concentration by driving calcium export into ocean carbonates. Our field experiments with mature trees demonstrate intensification of this weathering engine as tree lineages diversified in concert with their symbiotic mycorrhizal fungi. Preferential hyphal colonization of the calcium silicate-bearing rock, basalt, progressively increased with advancement from arbuscular mycorrhizal (AM) to later, independently evolved ectomycorrhizal (EM) fungi, and from gymnosperm to angiosperm hosts with both fungal groups. This led to 'trenching' of silicate mineral surfaces by AM and EM fungi, with EM gymnosperms and angiosperms releasing calcium from basalt at twice the rate of AM gymnosperms. Our findings indicate mycorrhiza-driven weathering may have originated hundreds of millions of years earlier than previously recognized and subsequently intensified with the evolution of trees and mycorrhizas to affect the Earth's long-term CO(2) and climate history.

  15. Micro and colloidal stickie pacification with precipitated calcium carbonate

    Treesearch

    John H. Klungness; Roland L. Gleisner; Marguerite Sykes

    2004-01-01

    The colloidal stickies which build up in mill process water during pulping are problematic and difficult to remove. The USDA Forestry Service examined precipitated calcium carbonate (PCC) as a means to ameliorate process water stickies, comparing: i) the effectiveness of PCC added directly into a slurry of deinked pulp with ii) in situ precipitation of PCC by the fibre...

  16. Micro and colloidal stickie pacification with precipitated calcium carbonate

    Treesearch

    John H. Klungness; Roland L. Gleisner; Marguerite S. Sykes

    2002-01-01

    Colloidal stickies that build up in mill process water during pulping are problematic and difficult to remove. We examined precipitated calcium carbonate (PCC) as a means to ameliorate process water stickies. The effectiveness of PCC added directly into a slurry of deinked pulp was compared with in situ precipitation of PCC by the fiber loading method. We found that...

  17. Regulation of statoconia mineralization in Aplysia californica in vitro

    NASA Technical Reports Server (NTRS)

    Pedrozo, H. A.; Schwartz, Z.; Dean, D. D.; Wiederhold, M. L.; Boyan, B. D.

    1996-01-01

    Statoconia are calcium carbonate inclusions in the lumen of the gravity-sensing organ, the statocyst, of Aplysia californica. The aim of the present study was to examine the role of carbonic anhydrase and urease in statoconia mineralization in vitro. The experiments were performed using a previously described culture system (Pedrozo et al., J. Comp. Physiol. (A) 177:415-425). Inhibition of carbonic anhydrase by acetazolamide decreased statoconia production and volume, while inhibition of urease by acetohydroxamic acid reduced total statoconia number, but had no affect on statoconia volume. Inhibition of carbonic anhydrase initially increased and then decreased the statocyst pH, whereas inhibition of urease decreased statocyst pH at all times examined; simultaneous addition of both inhibitors also decreased pH. These effects were dose and time dependent. The results show that carbonic anhydrase and urease are required for statoconia formation and homeostasis, and for regulation of statocyst pH. This suggests that these two enzymes regulate mineralization at least partially through regulation of statocyst pH.

  18. The fate of calcium carbonate nanoparticles administered by oral route: absorption and their interaction with biological matrices.

    PubMed

    Lee, Jeong-A; Kim, Mi-Kyung; Kim, Hyoung-Mi; Lee, Jong Kwon; Jeong, Jayoung; Kim, Young-Rok; Oh, Jae-Min; Choi, Soo-Jin

    2015-01-01

    Orally administered particles rapidly interact with biological fluids containing proteins, enzymes, electrolytes, and other biomolecules to eventually form particles covered by a corona, and this corona potentially affects particle uptake, fate, absorption, distribution, and elimination in vivo. This study explored relationships between the biological interactions of calcium carbonate particles and their biokinetics. We examined the effects of food grade calcium carbonates of different particle size (nano [N-Cal] and bulk [B-Cal]: specific surface areas of 15.8 and 0.83 m(2)/g, respectively) on biological interactions in in vitro simulated physiological fluids, ex vivo biofluids, and in vivo in gastrointestinal fluid. Moreover, absorption and tissue distribution of calcium carbonates were evaluated following a single dose oral administration to rats. N-Cal interacted more with biomatrices than bulk materials in vitro and ex vivo, as evidenced by high fluorescence quenching ratios, but it did not interact more actively with biomatrices in vivo. Analysis of coronas revealed that immunoglobulin, apolipoprotein, thrombin, and fibrinogen, were the major corona proteins, regardless of particle size. A biokinetic study revealed that orally delivered N-Cal was more rapidly absorbed into the blood stream than B-Cal, but no significant differences were observed between the two in terms of absorption efficiencies or tissue distributions. Both calcium carbonates were primarily present as particulate forms in gastrointestinal fluids but enter the circulatory system in dissolved Ca(2+), although both types showed partial phase transformation to dicalcium phosphate dihydrate. Relatively low dissolution (about 4%), no remarkable protein-particle interaction, and the major particulate fate of calcium carbonate in vivo gastrointestinal fluids can explain its low oral absorption (about 4%) regardless of particle size. We conclude that calcium carbonate nanoparticles can act more

  19. Effects of Astragalus membranaceus with supplemental calcium on bone mineral density and bone metabolism in calcium-deficient ovariectomized rats.

    PubMed

    Kang, Se-Chan; Kim, Hee Jung; Kim, Mi-Hyun

    2013-01-01

    It has been reported that Astragalus membranaceus, an Asian traditional herb, has an estrogenic effect in vitro. To examine the possible role of A. membranaceus extract with supplemental calcium (Ca) on bone status in calcium-deficient (LCa) ovariectomized (OVX) rats, a total of 48 female rats were divided into six groups: (1) normal control, (2) sham operation with LCa (sham-LCa), (3) OVX with LCa (OVX-LCa), (4) A. membranaceus supplementation with OVX-LCa (OVX-MLCa), (5) Ca supplementation with OVX (OVX-Ca), and (6) A. membranaceus and Ca supplementation with OVX (OVX-MCa). A. membranaceus ethanol extract (500 mg/kg BW) and/or Ca (800 mg/kg BW) were administered orally for 8 weeks along with a Ca-deficient diet. Results revealed that Ca supplementation with or without A. membranaceus extract significantly improved bone mineral density, biomechanical strength, and ash weight of the femur and tibia in OVX rats. High Ca with A. membranaceus combination supplementation significantly increased the ash weight of the femur and tibia and decreased urinary Ca excretion compared with supplementation of Ca alone. Uterine weight was not changed by A. membranaceus administration in OVX rats. These results suggest that A. membranaceus extract combined with supplemental Ca may be more protective against the Ca loss of bone than A. membranaceus or supplementation of Ca alone in calcium-insufficient postmenopausal women.

  20. Calcium and Vitamin D

    MedlinePlus

    ... A calcium-rich diet (including dairy, nuts, leafy greens and fish) helps to build and protect your bones. Calcium is a mineral that is necessary for life. In addition to building bones and keeping them healthy, calcium enables our ...

  1. Reduction of iron-bearing lunar minerals for the production of oxygen

    NASA Technical Reports Server (NTRS)

    Massieon, Charles; Cutler, Andrew; Shadman, Farhang

    1992-01-01

    The kinetics and mechanism of the reduction of simulants of the iron-bearing lunar minerals olivine ((Fe,Mg)2SiO4), pyroxene ((Fe,Mg,Ca)SiO3), and ilmenite (FeTiO3) are investigated, extending previous work with ilmenite. Fayalite is reduced by H2 at 1070 K to 1480 K. A layer of mixed silica glass and iron forms around an unreacted core. Reaction kinetics are influenced by permeation of hydrogen through this layer and a reaction step involving dissociated hydrogen. Reaction mechanisms are independent of Mg content. Augite, hypersthene, and hedenbergite are reduced in H2 at the same temperatures. The products are iron metal and lower iron silicates mixed throughout the mineral. Activation energy rises with calcium content. Ilmenite and fayalite are reduced with carbon deposited on partially reduced minerals via the CO disproportionation reaction. Reduction with carbon is rapid, showing the carbothermal reduction of lunar minerals is possible.

  2. Transforming growth factor-beta1 accelerates resorption of a calcium carbonate biomaterial in periodontal defects.

    PubMed

    Koo, Ki-Tae; Susin, Cristiano; Wikesjö, Ulf M E; Choi, Seong-Ho; Kim, Chong-Kwan

    2007-04-01

    In a previous study, recombinant human transforming growth factor-beta1 (rhTGF-beta(1)) in a calcium carbonate carrier was implanted into critical-size, supraalveolar periodontal defects under conditions for guided tissue regeneration (GTR) to study whether rhTGF-beta(1) would enhance or accelerate periodontal regeneration. The results showed minimal benefits of rhTGF-beta(1), and a clear account for this could not be offered. One potential cause may be that the rhTGF-beta(1) formulation was biologically inactive. Several growth or differentiation factors have been suggested to accelerate degradation of biomaterials used as carriers. The objective of this study was to evaluate possible activity of rhTGF-beta(1) on biodegradation of the calcium carbonate carrier. rhTGF-beta(1) in a putty-formulated particulate calcium carbonate carrier was implanted into critical-size, supraalveolar periodontal defects under conditions for GTR in five beagle dogs. Contralateral defects received the calcium carbonate carrier combined with GTR without rhTGF-beta(1) (control). The animals were euthanized at week 4 post-surgery and block biopsies of the defect sites were collected for histologic and histometric analysis. Radiographs were obtained at defect creation and weeks 2 and 4 after defect creation. No statistically significant differences were observed in new bone formation (bone height and area) among the treatments. However, total residual carrier was significantly reduced in sites receiving rhTGF-beta(1) compared to control (P = 0.04). Similarly, carrier density was considerably reduced in sites receiving rhTGF-beta(1) compared to control; the difference was borderline statistically significant (P = 0.06). Within the limitations of the study, it may be concluded that rhTGF-beta(1) accelerates biodegradation of a particulate calcium carbonate biomaterial, indicating a biologic activity of the rhTGF-beta(1) formulation apparently not encompassing enhanced or accelerated

  3. Intestinal Calcium Absorption among Hypercalciuric Patients with or without Calcium Kidney Stones.

    PubMed

    Vezzoli, Giuseppe; Macrina, Lorenza; Rubinacci, Alessandro; Spotti, Donatella; Arcidiacono, Teresa

    2016-08-08

    Idiopathic hypercalciuria is a frequent defect in calcium kidney stone formers that is associated with high intestinal calcium absorption and osteopenia. Characteristics distinguishing hypercalciuric stone formers from hypercalciuric patients without kidney stone history (HNSFs) are unknown and were explored in our study. We compared 172 hypercalciuric stone formers with 36 HNSFs retrospectively selected from patients referred to outpatient clinics of the San Raffaele Hospital in Milan from 1998 to 2003. Calcium metabolism and lumbar bone mineral density were analyzed in these patients. A strontium oral load test was performed: strontium was measured in 240-minute urine and serum 30, 60, and 240 minutes after strontium ingestion; serum strontium concentration-time curve and renal strontium clearance were evaluated to estimate absorption and excretion of divalent cations. Serum strontium concentration-time curve (P<0.001) and strontium clearance (4.9±1.3 versus 3.5±2.7 ml/min; P<0.001) were higher in hypercalciuric stone formers than HNSFs, respectively. The serum strontium-time curve was also higher in hypercalciuric stone formers with low bone mineral density (n=42) than in hypercalciuric stone formers with normal bone mineral density (n=130; P=0.03) and HNSFs with low (n=22; P=0.01) or normal bone mineral density (n=14; P=0.02). Strontium clearance was greater in hypercalciuric stone formers with normal bone mineral density (5.3±3.4 ml/min) than in hypercalciuric stone formers and HNSFs with low bone mineral density (3.6±2.5 and 3.1±2.5 ml/min, respectively; P=0.03). Multivariate regression analyses displayed that strontium absorption at 30 minutes was positively associated calcium excretion (P=0.03) and negatively associated with lumbar bone mineral density z score (P=0.001) in hypercalciuric stone formers; furthermore, hypercalciuric patients in the highest quartile of strontium absorption had increased stone production risk (odds ratio, 5.06; 95

  4. Fluid-flow-templated self-assembly of calcium carbonate tubes in the laboratory and in biomineralization: The tubules of the watering-pot shells, Clavagelloidea.

    PubMed

    Cardoso, Silvana S S; Cartwright, Julyan H E; Checa, Antonio G; Sainz-Díaz, C Ignacio

    2016-10-01

    We show with laboratory experiments that self-assembled mineral tube formation involving precipitation around a templating jet of fluid - a mechanism well-known in the physical sciences from the tubular growth of so-called chemical gardens - functions with carbonates, and we analyse the microstructures and compositions of the precipitates. We propose that there should exist biological examples of fluid-flow-templated tubes formed from carbonates. We present observational and theoretical modelling evidence that the complex structure of biomineral calcium carbonate tubules that forms the 'rose' of the watering-pot shells, Clavagelloidea, may be an instance of this mechanism in biomineralization. We suggest that this is an example of self-organization and self-assembly processes in biomineralization, and that such a mechanism is of interest for the production of tubes as a synthetic biomaterial. The work discussed in the manuscript concerns the self-assembly of calcium carbonate micro-tubes and nano-tubes under conditions of fluid flow together with chemical reaction. We present the results of laboratory experiments on tube self-assembly together with theoretical calculations. We show how nature may already be making use of this process in molluscan biomineralization of the so-called watering-pot shells, and we propose that we may be able to take advantage of the formation mechanism to produce synthetic biocompatible micro- and nano-tubes. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. Constraints on Biogenic Emplacement of Crystalline Calcium Carbonate and Dolomite

    NASA Astrophysics Data System (ADS)

    Colas, B.; Clark, S. M.; Jacob, D. E.

    2015-12-01

    Amorphous calcium carbonate (ACC) is a biogenic precursor of calcium carbonates forming shells and skeletons of marine organisms, which are key components of the whole marine environment. Understanding carbonate formation is an essential prerequisite to quantify the effect climate change and pollution have on marine population. Water is a critical component of the structure of ACC and the key component controlling the stability of the amorphous state. Addition of small amounts of magnesium (1-5% of the calcium content) is known to promote the stability of ACC presumably through stabilization of the hydrogen bonding network. Understanding the hydrogen bonding network in ACC is fundamental to understand the stability of ACC. Our approach is to use Monte-Carlo simulations constrained by X-ray and neutron scattering data to determine hydrogen bonding networks in ACC as a function of magnesium doping. We have already successfully developed a synthesis protocol to make ACC, and have collected X-ray data, which is suitable for determining Ca, Mg and O correlations, and have collected neutron data, which gives information on the hydrogen/deuterium (as the interaction of X-rays with hydrogen is too low for us to be able to constrain hydrogen atom positions with only X-rays). The X-ray and neutron data are used to constrain reverse Monte-Carlo modelling of the ACC structure using the Empirical Potential Structure Refinement program, in order to yield a complete structural model for ACC including water molecule positions. We will present details of our sample synthesis and characterization methods, X-ray and neutron scattering data, and reverse Monte-Carlo simulations results, together with a discussion of the role of hydrogen bonding in ACC stability.

  6. Characterization of calcium carbonate crystals in pigeon yolk sacs with different incubation times.

    PubMed

    Song, Juan; Cheng, Haixia; Shen, Xinyu; Hu, Jingxiao; Tong, Hua

    2014-05-01

    Calcium carbonate crystals are known to form in the yolk sacs of fertile pigeon eggs at late stages of incubation. The composition and structure of these crystals were investigated, the crystallization environment was inspected, and the physical chemistry constants of the yolk fluid were determined through the incubation period. Polarized light microscopy was used to observe the generation and distribution of calcium carbonate crystals in the yolk sac. In addition, X-ray diffraction was employed to analyze the composition and crystal phase of the yolk sac. A decalcification and deproteination method was established to analyze the ultrastructure and composition of the crystals, as well as the internal relationship between inorganic and organic phases of the crystals. Additionally, scanning electron microscopy, transmission electron microscopy, X-ray energy dispersive spectroscopy, and Fourier transform infrared spectroscopy were used to evaluate the characteristics of the crystals. Our results demonstrated that the calcium carbonate crystals were mainly composed of vaterite and calcite, with vaterite being the major component. Vaterite, a type of biomaterial generated by an organic template control, presented as a concentric hierarchical spherical structure. The organic nature of the biomaterial prevented vaterite from transforming into calcite, which is more thermodynamically stable than vaterite. Additionally, the configuration, size, and aggregation of vaterite were also mediated by the organic template. This bio-vaterite was found during the incubation period and is valuable in calcium transport during embryonic development. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Nutrient transport in the mammary gland: calcium, trace minerals and water soluble vitamins.

    PubMed

    Montalbetti, Nicolas; Dalghi, Marianela G; Albrecht, Christiane; Hediger, Matthias A

    2014-03-01

    Milk nutrients are secreted by epithelial cells in the alveoli of the mammary gland by several complex and highly coordinated systems. Many of these nutrients are transported from the blood to the milk via transcellular pathways that involve the concerted activity of transport proteins on the apical and basolateral membranes of mammary epithelial cells. In this review, we focus on transport mechanisms that contribute to the secretion of calcium, trace minerals and water soluble vitamins into milk with particular focus on the role of transporters of the SLC series as well as calcium transport proteins (ion channels and pumps). Numerous members of the SLC family are involved in the regulation of essential nutrients in the milk, such as the divalent metal transporter-1 (SLC11A2), ferroportin-1 (SLC40A1) and the copper transporter CTR1 (SLC31A1). A deeper understanding of the physiology and pathophysiology of these transporters will be of great value for drug discovery and treatment of breast diseases.

  8. Carbon mineralization in surface and subsurface soils in a subtropical mixed forest in central China

    NASA Astrophysics Data System (ADS)

    Liu, F.; Tian, Q.

    2014-12-01

    About a half of soil carbon is stored in subsurface soil horizons, their dynamics have the potential to significantly affect carbon balancing in terrestrial ecosystems. However, the main factors regulating subsurface soil carbon mineralization are poorly understood. As affected by mountain humid monsoon, the subtropical mountains in central China has an annual precipitation of about 2000 mm, which causes strong leaching of ions and nutrition. The objectives of this study were to monitor subsurface soil carbon mineralization and to determine if it is affected by nutrient limitation. We collected soil samples (up to 1 m deep) at three locations in a small watershed with three soil layers (0-10 cm, 10-30 cm, below 30 cm). For the three layers, soil organic carbon (SOC) ranged from 35.8 to 94.4 mg g-1, total nitrogen ranged from 3.51 to 8.03 mg g-1, microbial biomass carbon (MBC) ranged from 170.6 to 718.4 μg g-1 soil. We measured carbon mineralization with the addition of N (100 μg N/g soil), P (50 μg P/g soil), and liable carbon (glucose labeled by 5 atom% 13C, at five levels: control, 10% MBC, 50% MBC, 100% MBC, 200% MBC). The addition of N and P had negligible effects on CO2 production in surface soil layers; in the deepest soil layer, the addition of N and P decreased CO2 production from 4.32 to 3.20 μg C g-1 soil carbon h-1. Glucose addition stimulated both surface and subsurface microbial mineralization of SOC, causing priming effects. With the increase of glucose addition rate from 10% to 200% MBC, the primed mineralization rate increased from 0.19 to 3.20 μg C g-1 soil carbon h-1 (fifth day of glucose addition). The magnitude of priming effect increased from 28% to 120% as soil layers go deep compare to the basal CO2 production (fifth day of 200% MBC glucose addition, basal CO2 production rate for the surface and the deepest soil was 11.17 and 2.88 μg C g-1 soil carbon h-1). These results suggested that the mineralization of subsurface carbon is more

  9. Characterization of calcium deposition induced by Synechocystis sp. PCC6803 in BG11 culture medium

    NASA Astrophysics Data System (ADS)

    Yan, Huaxiao; Han, Zuozhen; Zhao, Hui; Zhou, Shixue; Chi, Naijie; Han, Mei; Kou, Xiaoyan; Zhang, Yan; Xu, Linlin; Tian, Chenchen; Qin, Song

    2014-05-01

    Calcium carbonate (CaCO3) crystals in their preferred orientation were obtained in BG11 culture media inoculated with Synechocystis sp. PCC6803 (inoculated BG11). In this study, the features of calcium carbonate deposition were investigated. Inoculated BG11 in different calcium ion concentrations was used for the experimental group, while the BG11 culture medium was used for the control group. The surface morphologies of the calcium carbonate deposits in the experimental and control groups were determined by scanning and transmission electron microscopy. The deposits were analyzed by electronic probe micro-analysis, Fourier transform infrared spectrum, X-ray diffraction, thermal gravimetric analysis and differential scanning calorimetry. The results show that the surfaces of the crystals in the experimental group were hexahedral in a scaly pattern. The particle sizes were micrometer-sized and larger than those in the control group. The deposits of the control group contained calcium (Ca), carbon (C), oxygen (O), phosphorus (P), iron (Fe), copper (Cu), zinc (Zn), and other elements. The deposits in the experimental group contained Ca, C, and O only. The deposits of both groups contained calcite. The thermal decomposition temperature of the deposits in the control group was lower than those in the experimental group. It showed that the CaCO3 deposits of the experimental group had higher thermal stability than those of the control group. This may be due to the secondary metabolites produced by the algae cells, which affect the carbonate crystal structure and result in a close-packed structure. The algae cells that remained after thermal weight loss were heavier in higher calcium concentrations in BG11 culture media. There may be more calcium-containing crystals inside and outside of these cells. These results shall be beneficial for understanding the formation mechanism of carbonate minerals.

  10. Adsorption and release of amino acids mixture onto apatitic calcium phosphates analogous to bone mineral

    NASA Astrophysics Data System (ADS)

    El Rhilassi, A.; Mourabet, M.; El Boujaady, H.; Bennani-Ziatni, M.; Hamri, R. El; Taitai, A.

    2012-10-01

    Study focused on the interaction of adsorbate with poorly crystalline apatitic calcium phosphates analogous to bone mineral. Calcium phosphates prepared in water-ethanol medium at physiological temperature (37 °C) and neutral pH, their Ca/P ratio was between 1.33 and 1.67. Adsorbate used in this paper takes the mixture form of two essential amino acids L-lysine and DL-leucine which have respectively a character hydrophilic and hydrophobic. Adsorption and release are investigated experimentally; they are dependent on the phosphate type and on the nature of adsorbate L-lysine, DL-leucine and their mixture. Adsorption of mixture of amino acids on the apatitic calcium phosphates is influenced by the competition between the two amino acids: L-lysine and DL-leucine which exist in the medium reaction. The adsorption kinetics is very fast while the release kinetics is slow. The chemical composition of apatite has an influence on both adsorption and release. The interactions adsorbate-adsorbent are electrostatic type. Adsorption and release reactions of the amino acid mixture are explained by the existence of the hydrated surface layer of calcium phosphate apatite. The charged sbnd COOsbnd and sbnd NH3+ of adsorbates are the strongest groups that interact with the surface of apatites, the adsorption is mainly due to the electrostatic interaction between the groups sbnd COOsbnd of amino acids and calcium Ca2+ ions of the apatite. Comparative study of interactions between adsorbates (L-lysine, DL-leucine and their mixture) and apatitic calcium phosphates is carried out in vitro by using UV-vis and infrared spectroscopy IR techniques.

  11. Calcium and Dairy Products Consumption and Association with Total Hip Bone Mineral Density in Women from Kosovo

    PubMed Central

    Bahtiri, Elton; Islami, Hilmi; Hoxha, Rexhep; Bytyqi, Hasime Qorraj-; Sermaxhaj, Faton; Halimi, Enis

    2014-01-01

    Background and objective: There is paucity of evidence in southeastern Europe and Kosovo regarding dairy products consumption and association with bone mineral density (BMD). Therefore, the objective of present study was to assess calcium intake and dairy products consumption and to investigate relationship with total hip BMD in a Kosovo women sample. Methods: This cross-sectional study included a sample of 185 women divided into respective groups according to total hip BMD. All the study participants completed a food frequency questionnaire and underwent dual-energy X-ray absorptiometry (DEXA) to estimate BMD. Nonparametric tests were performed to compare characteristics of the groups. Results: The average dietary calcium intake was 818.41 mg/day. Only 16.75% of the subjects met calcium recommended dietary reference intakes (DRIs). There were no significant differences between low BMD group and normal BMD group regarding average dietary calcium intake, but it was significantly higher in BMDT3 subgroup than in BMDT2 and BMDT1 subgroups. Conclusions: The results of this study demonstrate significant relationship of daily dietary calcium intake with upper BMD tertile. Further initiatives are warranted from this study to highlight the importance of nutrition education. PMID:25568548

  12. Impact of calcium and vitamin D insufficiencies on serum parathyroid hormone and bone mineral density: analysis of the 4th & 5th Korean National Health and Nutrition Examination Survey

    USDA-ARS?s Scientific Manuscript database

    The relative contributions of calcium and vitamin D to calcium metabolism and bone mineral density (BMD) have been examined previously, but not in a population with very low calcium intake. To determine the relative importance of dietary calcium intake and serum 25-hydroxyvitamin D [25(OH)D] concent...

  13. Graphene oxide/oxidized carbon nanofiber/mineralized hydroxyapatite based hybrid composite for biomedical applications

    NASA Astrophysics Data System (ADS)

    Murugan, N.; Sundaramurthy, Anandhakumar; Chen, Shen-Ming; Sundramoorthy, Ashok K.

    2017-12-01

    Hydroxyapatite (Ca10(PO4)6(OH)2, HAP), a multi-mineral substituted calcium phosphate is the main mineral component of tooth enamel and bone, has become an important biomaterial for biomedical applications. However, as-synthesized HAP has poor mechanical properties and inferior wear resistance, so it is not suitable to use in bone tissue engineering applications. We report the successful incorporation of oxidized carbon nanofibers (O-CNF) and graphene oxide (GO) into the mineralized hydroxyapatite (M-HAP) which showed excellent mechanical and biological properties. GO improved the high mechanical strength and corrosion protection of the substrate in simulated body fluid (SBF) solution and promoted the viability of osteoblasts MG63 cells. As-prepared M-HAP/O-CNF/GO composite showed materials characteristics that similar to natural bone (M-HAP) with high mechanical strength. The resultant M-HAP/O-CNF/GO composite was characterized out by x-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), and Fourier-transform infrared spectroscopy (FT-IR), respectively. The mechanical strength of the material was determined by Vicker’s micro-hardness method and it was found that M-HAP/O-CNF/GO (468  ±  4 Hv) composite has superior mechanical properties than M-HAP (330  ±  3 Hv) and M-HAP/GO (425  ±  5 Hv) samples. In addition, antibacterial activity of the composite was studied against Staphylococcus aureus and Escherichia coli. Furthermore, the cell viability of the composite was observed in vitro against osteoblast cells. All these studies confirmed that the M-HAP/O-CNF/GO composite can be considered as potential candidate for dental and orthopedic applications.

  14. Tuning calcium carbonate growth through physical confinement and templating with amyloid-like polypeptide aggregates

    NASA Astrophysics Data System (ADS)

    Colaco, Martin Francis

    The creation of useful composite materials requires precise control of the interface between the components in order to tune the overall shape and material properties. Despite the current research into nanotechnology, our ability to create materials with nanoscale precision is nascent. However, nature has a paradigm for the creation of finely structured composites under mild conditions called biomineralization. Through control of protein template assembly, solution conditions, and physical confinement, organisms are able to create useful optical and structural materials, such as bones, teeth, and mollusk shells. The objective of this thesis is to elucidate the importance of these various controls in synthetic systems to further our ability to create nanostructured materials. We begin by examining the formation of self-assembled monolayers (SAMs) of organosilanes on silica oxides. The formation of functionalized surfaces can help control the mineralization of amorphous or crystalline calcium carbonate. Long-chained organosilanes organize on surfaces to form dense, solid-like films, with the terminal groups determining the hydrophobicity and stereochemistry of the film. Our work has shown that uniform hydrophobic and hydrophilic films can be formed by using cleaned silica over glass or mica and through a vapor phase reaction over a liquid one. Additionally, we showed that mixed SAMs with phase-separated domains could be created through the selection of organosilanes and reaction conditions. We have built on these functionalized surfaces through the use of microfabrication and a gas permeable polymer to create three-dimensionally confined microcrystallizers. Other researchers have shown that one-dimensional confinement with a multi-functional surface (patterned with a small nucleating ordered region in a disordered SAM) can stabilize the creation of an amorphous calcium carbonate film before a single, large, micropatterned crystal is grown. Our work has determined

  15. Synthesis of sodium caseinate-calcium carbonate microspheres and their mineralization to bone-like apatite

    NASA Astrophysics Data System (ADS)

    Xu, Zhewu; Liang, Guobin; Jin, Lin; Wang, Zhenling; Xing, Chao; Jiange, Qing; Zhang, Zhiguang

    2014-06-01

    Phosphoproteins can induce and stabilize calcium carbonate (CaCO3) vaterite, which has desirable features for high reactivity. The purpose of this study was to synthesize bioactive CaCO3 microspheres for bone regeneration. Sodium caseinate (NaCas)-containing CaCO3 microspheres, with the crystal phase of vaterite, were synthesized by fast precipitation in an aqueous solution of CaCl2, Na2CO3, and 2 mg/mL of NaCas. The uniform microspheres exhibited rougher surfaces and lower negative charges than CaCO3 particles without NaCas addition. Fourier-transform infrared spectroscopy (FT-IR) of the microspheres showed characteristic peaks or bands corresponding to phosphate and hydroxyl groups. Thermogravimetric analysis (TGA) curves exhibited approximately 5% weight loss below 600 °C due to the decomposition of NaCas. Scanning electron microscope (SEM) images showed lath-like hydroxyapatite (HAp) on the surface after soaking in simulated body fluid (SBF) at 37 °C for 5 and 10 days. Energy dispersive X-ray spectrometry (EDS) revealed that the agglomerates were composed of Ca, C, O, P, Na, and Mg elements, and the Ca/P ratios ranged from 1.53 to 1.56. X-ray diffraction (XRD) patterns exhibited peaks characteristic of hydroxyapatite. The results of this study demonstrated that the addition of NaCas induced the formation of vaterite microspheres which possesses an enhanced apatite formation after soaking in SBF at 37 °C for 5 and 10 days. These NaCas-CaCO3 microspheres may be a potential biomaterial for bone regeneration.

  16. Synthesis of calcium carbonate using extract components of croaker gill as morphology and polymorph adjust control agent.

    PubMed

    Chen, Hao; Qing, Chengsong; Zheng, Jiaoling; Liu, Yuxi; Wu, Gang

    2016-06-01

    Biomimetic synthesis of calcium carbonate with various polymorphs, sizes and morphologies by using organic substrates has become an interesting topic for the last years. Calcium carbonate has been synthesized by the reaction of Na2CO3 and CaCl2 in the presence of extract components of croaker gill. The products were characterized by powder X-ray diffraction (PXRD) and Fourier transform infrared (FT-IR) spectrum, and particle morphologies were observed by scanning electron microscope (SEM). The results show that at lower concentration yellow croaker gill extract has no effect on calcium carbonate crystal polymorph. Calcite was obtained only. But the morphologies of calcite particle change with the increase of the concentration. The corners of the particle change from angular to curved. However, with the further increase of the concentration of yellow croaker gill extract, the calcium carbonate obtained is a mixture of calcite and vaterite. The vaterite component in the mixture rises with increasing concentration of extract solution, indicating that the proteins from the yellow croaker gill during growth play a crucial role in stabilizing and directing the crystal growth. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Mechanisms of the inhibition of enzymatic hydrolysis of waste pulp fibers by calcium carbonate and the influence of nonionic surfactant for mitigation.

    PubMed

    Min, Byeong Cheol; Ramarao, Bandaru V

    2017-06-01

    Recycled paper mills produce large quantities of fibrous rejects and fines which are usually sent to landfills as solid waste. These cellulosic materials can be enzymatically hydrolyzed into sugars for the production of biofuels and biomaterials. Paper mill wastes also contain large amounts of calcium carbonate which inhibits cellulase activity. The calcium carbonate (30%, w/w) decreased 40-60% of sugar yield of unbleached softwood kraft pulp. The prime mechanisms for this are by pH variation, competitive and non-productive binding, and aggregation effect. Addition of acetic acid (pH adjustment) increased the sugar production from 19 to 22 g/L of paper mill waste fibers. Strong affinity of enzyme-calcium carbonate decreased free enzyme in solution and hindered sugar production. Electrostatic and hydrogen bond interactions are mainly possible mechanism of enzyme-calcium carbonate adsorption. The application of the nonionic surfactant Tween 80 alleviated the non-productive binding of enzyme with the higher affinity on calcium carbonate. Dissociated calcium ion also inhibited the hydrolysis by aggregation of enzyme.

  18. On the mineral characteristics and geochemistry of the Florida phosphate of Four Corners and Hardee County mines

    NASA Astrophysics Data System (ADS)

    Baghdady, Ashraf R.; Howari, Fares M.; Al-Wakeel, Mohamed I.

    2016-08-01

    The Florida phosphate deposits in Four Corners and Hardee County mines are composed mainly of phosphate minerals and quartz in addition to subordinate proportions of feldspars, dolomite, calcite, gypsum, kaolinite, attapulgite and montmorillonite. These phosphorites contain three structurally different types of mudclasts: massive mudclasts, mudclasts with concentric structure and mudclasts consisting of agglomerates of apatite microparticles. The latter are represented by particles resembling phosphatized fossil bacteria associated with microbial filaments, and hollow apatite particles having surfacial coatings and connected to microbial filaments. The Florida phosphate particles are reworked and vary in mineral composition, color and shape. They are composed of a mixture of well-crystalline species including carbonate fluorapatite (francolite), carbonate apatite and fluorapatite. The color variation of the phosphate particles is related to difference in mineral composition, extent of diagenetic effects and reworking. The light-colored mudclasts are characterized by the presence of carbonate apatite and aluminum hydroxide phosphate minerals, whereas the dark mudclasts are rich in iron aluminum hydroxide phosphate minerals. The Florida phosphorites are suggested to be formed partially by authigenetic precipitation, replacement of the sea floor carbonate and diatomite, and microbial processes. With respect to elemental geochemistry, the analyzed particles contain small percentages of sulfur and iron which are related to the occurrence of pyrite. Traces of silica and alumina are recorded which may be attributed to the diagenetic. Some of the tested particles are relatively rich in phosphorous, fluorine, calcium, and magnesium, while poor in silicon, potassium and sulfur. Whereas, the bioclasts (especially teeth) are relatively rich in calcium, phosphorous and fluorine while poor in silicon, aluminum, magnesium and potassium. Hence, the microchemical analyses revealed

  19. Ocean acidification accelerates net calcium carbonate loss in a coral rubble community

    NASA Astrophysics Data System (ADS)

    Stubler, Amber D.; Peterson, Bradley J.

    2016-09-01

    Coral rubble communities are an important yet often overlooked component of a healthy reef ecosystem. The organisms inhabiting reef rubble are primarily bioeroders that contribute to the breakdown and dissolution of carbonate material. While the effects of ocean acidification on calcifying communities have been well studied, there are few studies investigating the response of bioeroding communities to future changes in pH and calcium carbonate saturation state. Using a flow-through pH-stat system, coral rubble pieces with a naturally occurring suite of organisms, along with bleached control rubble pieces, were subjected to three different levels of acidification over an 8-week period. Rates of net carbonate loss in bleached control rubble doubled in the acidification treatments (0.02 vs. 0.04% CaCO3 d-1 in ambient vs. moderate and high acidification), and living rubble communities experienced significantly increased rates of net carbonate loss from ambient to high acidification conditions (0.06 vs. 0.10% CaCO3 d-1, respectively). Although more experimentation is necessary to understand the long-term response and succession of coral rubble communities under projected conditions, these results suggest that rates of carbonate loss will increase in coral rubble as pH and calcium carbonate saturation states are reduced. This study demonstrates a need to thoroughly investigate the contribution of coral rubble to the overall carbonate budget, reef resilience, recovery, and function under future conditions.

  20. Generation of composites for bone tissue-engineering applications consisting of gellan gum hydrogels mineralized with calcium and magnesium phosphate phases by enzymatic means.

    PubMed

    Douglas, Timothy E L; Krawczyk, Grzegorz; Pamula, Elzbieta; Declercq, Heidi A; Schaubroeck, David; Bucko, Miroslaw M; Balcaen, Lieve; Van Der Voort, Pascal; Bliznuk, Vitaliy; van den Vreken, Natasja M F; Dash, Mamoni; Detsch, Rainer; Boccaccini, Aldo R; Vanhaecke, Frank; Cornelissen, Maria; Dubruel, Peter

    2016-11-01

    Mineralization of hydrogels, desirable for bone regeneration applications, may be achieved enzymatically by incorporation of alkaline phosphatase (ALP). ALP-loaded gellan gum (GG) hydrogels were mineralized by incubation in mineralization media containing calcium and/or magnesium glycerophosphate (CaGP, MgGP). Mineralization media with CaGP:MgGP concentrations 0.1:0, 0.075:0.025, 0.05:0.05, 0.025:0.075 and 0:0.1 (all values mol/dm 3 , denoted A, B, C, D and E, respectively) were compared. Mineral formation was confirmed by IR and Raman, SEM, ICP-OES, XRD, TEM, SAED, TGA and increases in the the mass fraction of the hydrogel not consisting of water. Ca was incorporated into mineral to a greater extent than Mg in samples mineralized in media A-D. Mg content and amorphicity of mineral formed increased in the order A < B < C < D. Mineral formed in media A and B was calcium-deficient hydroxyapatite (CDHA). Mineral formed in medium C was a combination of CDHA and an amorphous phase. Mineral formed in medium D was an amorphous phase. Mineral formed in medium E was a combination of crystalline and amorphous MgP. Young's moduli and storage moduli decreased in dependence of mineralization medium in the order A > B > C > D, but were significantly higher for samples mineralized in medium E. The attachment and vitality of osteoblastic MC3T3-E1 cells were higher on samples mineralized in media B-E (containing Mg) than in those mineralized in medium A (not containing Mg). All samples underwent degradation and supported the adhesion of RAW 264.7 monocytic cells, and samples mineralized in media A and B supported osteoclast-like cell formation. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  1. Astronaut Bones: Stable Calcium Isotopes in Urine as a Biomarker of Bone Mineral Balance

    NASA Astrophysics Data System (ADS)

    Skulan, J.; Gordon, G. W.; Romaniello, S. J.; Anbar, A. D.; Smith, S. M.; Zwart, S.

    2016-12-01

    Bone loss is a common health concern, in conditions ranging from osteoporosis to cancer. Bone loss due to unloading is also an important health issue for astronauts. We demonstrate stable calcium isotopes, a tool developed in geochemistry, are capable of detecting real-time quantitative changes in net bone mineral balance (BMB) using serum and urine [1]. We validated this technique by comparing with DEXA and biomarker data in subjects during bed rest, a ground-based analog of space flight effects [2-4]. We now apply this tool to assess changes in astronauts' BMB before, during and after 4-6 month space missions. There is stable isotope fractionation asymmetry between bone formation and resorption. During bone formation there is a mass-dependent preference for "lighter" calcium isotopes to be removed from serum and incorporated into bone mineral. During bone resorption, there is no measurable isotopic discrimination between serum and bone. Hence, when bone formation rates exceed that of resorption, serum and urine become isotopically "heavy" due to the sequestration of "light" calcium in bone. Conversely, when bone resorption exceeds bone formation, serum and urine become isotopically "light" due to the release of the sequestered light calcium from bone. We measured Ca isotopes in urine of thirty International Space Station astronauts. Average Ca isotope values in astronauts' urine shift isotopically lighter during microgravity, consistent with negative net BMB. Within a month of return to Earth, astronauts returned to within error of their δ44Ca value prior to departure. Urine samples from astronauts testing bone loss countermeasures showed bisphosphonates provide a viable pharmacological countermeasure. Some, but not all, individuals appear able to resist bone loss through diet and intensive resistive exercise alone. This is a promising new technique for monitoring BMB in astronauts, and hopefully someday on the way to/from Mars, this also has important clinical

  2. The fate of calcium carbonate nanoparticles administered by oral route: absorption and their interaction with biological matrices

    PubMed Central

    Lee, Jeong-A; Kim, Mi-Kyung; Kim, Hyoung-Mi; Lee, Jong Kwon; Jeong, Jayoung; Kim, Young-Rok; Oh, Jae-Min; Choi, Soo-Jin

    2015-01-01

    Background Orally administered particles rapidly interact with biological fluids containing proteins, enzymes, electrolytes, and other biomolecules to eventually form particles covered by a corona, and this corona potentially affects particle uptake, fate, absorption, distribution, and elimination in vivo. This study explored relationships between the biological interactions of calcium carbonate particles and their biokinetics. Methods We examined the effects of food grade calcium carbonates of different particle size (nano [N-Cal] and bulk [B-Cal]: specific surface areas of 15.8 and 0.83 m2/g, respectively) on biological interactions in in vitro simulated physiological fluids, ex vivo biofluids, and in vivo in gastrointestinal fluid. Moreover, absorption and tissue distribution of calcium carbonates were evaluated following a single dose oral administration to rats. Results N-Cal interacted more with biomatrices than bulk materials in vitro and ex vivo, as evidenced by high fluorescence quenching ratios, but it did not interact more actively with biomatrices in vivo. Analysis of coronas revealed that immunoglobulin, apolipoprotein, thrombin, and fibrinogen, were the major corona proteins, regardless of particle size. A biokinetic study revealed that orally delivered N-Cal was more rapidly absorbed into the blood stream than B-Cal, but no significant differences were observed between the two in terms of absorption efficiencies or tissue distributions. Both calcium carbonates were primarily present as particulate forms in gastrointestinal fluids but enter the circulatory system in dissolved Ca2+, although both types showed partial phase transformation to dicalcium phosphate dihydrate. Relatively low dissolution (about 4%), no remarkable protein–particle interaction, and the major particulate fate of calcium carbonate in vivo gastrointestinal fluids can explain its low oral absorption (about 4%) regardless of particle size. Conclusion We conclude that calcium

  3. Raman microspectroscopy for in situ examination of carbon-microbe-mineral interactions

    NASA Astrophysics Data System (ADS)

    Creamer, C.; Foster, A. L.; Lawrence, C. R.; Mcfarland, J. W.; Waldrop, M. P.

    2016-12-01

    The changing paradigm of soil organic matter formation and turnover is focused at the nexus of microbe-carbon-mineral interactions. However, visualizing biotic and abiotic stabilization of C on mineral surfaces is difficult given our current techniques. Therefore we investigated Raman microspectroscopy as a potential tool to examine microbially mediated o