Science.gov

Sample records for calcium channels

  1. Calcium Channel Blockers

    MedlinePlus

    ... calcium channel blockers interact with grapefruit products. References Kaplan NM, et al. Treatment of hypertension: Drug therapy. In: Kaplan's Clinical Hypertension. 11th ed. Philadelphia, Pa.: Wolters Kluwer ...

  2. Assay for calcium channels

    SciTech Connect

    Glossmann, H.; Ferry, D.R.

    1985-01-01

    This chapter focuses on biochemical assays for Ca/sup 2 +/-selective channels in electrically excitable membranes which are blocked in electrophysiological and pharmacological experiments by verapamil, 1,4-dihydropyridines, diltiazen (and various other drugs), as well as inorganic di- or trivalent cations. The strategy employed is to use radiolabeled 1,4-dihydropyridine derivatives which block calcium channels with ED/sub 50/ values in the nanomolar range. Although tritiated d-cis-diltiazem and verapamil can be used to label calcium channels, the 1,4-dihydropyridines offer numerous advantages. The various sections cover tissue specificity of channel labeling, the complex interactions of divalent cations with the (/sup 3/H)nimodipine-labeled calcium channels, and the allosteric regulation of (/sup 3/H)nimodipine binding by the optically pure enantiomers of phenylalkylamine and benzothiazepine calcium channel blockers. A comparison of the properties of different tritiated 1,4-dihydropyridine radioligands and the iodinated channel probe (/sup 125/I)iodipine is given.

  3. Voltage-Gated Calcium Channels

    NASA Astrophysics Data System (ADS)

    Zamponi, Gerald Werner

    Voltage Gated Calcium Channels is the first comprehensive book in the calcium channel field, encompassing over thirty years of progress towards our understanding of calcium channel structure, function, regulation, physiology, pharmacology, and genetics. This book balances contributions from many of the leading authorities in the calcium channel field with fresh perspectives from risings stars in the area, taking into account the most recent literature and concepts. This is the only all-encompassing calcium channel book currently available, and is an essential resource for academic researchers at all levels in the areas neuroscience, biophysics, and cardiovascular sciences, as well as to researchers in the drug discovery area.

  4. Calcium channels and migraine.

    PubMed

    Pietrobon, Daniela

    2013-07-01

    Missense mutations in CACNA1A, the gene that encodes the pore-forming α1 subunit of human voltage-gated Ca(V)2.1 (P/Q-type) calcium channels, cause a rare form of migraine with aura (familial hemiplegic migraine type 1: FHM1). Migraine is a common disabling brain disorder whose key manifestations are recurrent attacks of unilateral headache that may be preceded by transient neurological aura symptoms. This review, first, briefly summarizes current understanding of the pathophysiological mechanisms that are believed to underlie migraine headache, migraine aura and the onset of a migraine attack, and briefly describes the localization and function of neuronal Ca(V)2.1 channels in the brain regions that have been implicated in migraine pathogenesis. Then, the review describes and discusses i) the functional consequences of FHM1 mutations on the biophysical properties of recombinant human Ca(V)2.1 channels and native Ca(V)2.1 channels in neurons of knockin mouse models carrying the mild R192Q or severe S218L mutations in the orthologous gene, and ii) the functional consequences of these mutations on neurophysiological processes in the cerebral cortex and trigeminovascular system thought to be involved in the pathophysiology of migraine, and the insights into migraine mechanisms obtained from the functional analysis of these processes in FHM1 knockin mice. This article is part of a Special Issue entitled: Calcium channels.

  5. Calcium Activation of Mougeotia Potassium Channels 1

    PubMed Central

    Lew, Roger R.; Serlin, Bruce S.; Schauf, Charles L.; Stockton, Marsha E.

    1990-01-01

    Phytochrome mediates chloroplast movement in the alga Mougeotia, possibly via changes in cytosolic calcium. It is known to regulate a calcium-activated potassium channel in the algal plasma membrane. As part of a characterization of the potassium channel, we examined the properties of calcium activation. The calcium ionophore A23187 activates the channel at external [Ca2+] as low as 20 micromolar. However, external [Ca2+] is not required for activation of the channel by photoactivated phytochrome. Furthermore, when an inhibitor of calcium release from internal stores, 8-(diethylamino)-octyl-3,4,5-trimethoxybenzoate, hydrochloride (TMB-8), is present, red light no longer stimulates channel activity. We conclude that phytochrome activates the plasma membrane potassium channel by releasing calcium from intracellular calcium vesicles; the elevated cytosolic calcium then stimulates channel activity by an unknown mechanism. In the presence of TMB-8, red light does induce chloroplast rotation; thus, potassium channel activation may not be coupled to chloroplast rotation. PMID:16667356

  6. Store-Operated Calcium Channels

    PubMed Central

    Lewis, Richard S.

    2015-01-01

    Store-operated calcium channels (SOCs) are a major pathway for calcium signaling in virtually all metozoan cells and serve a wide variety of functions ranging from gene expression, motility, and secretion to tissue and organ development and the immune response. SOCs are activated by the depletion of Ca2+ from the endoplasmic reticulum (ER), triggered physiologically through stimulation of a diverse set of surface receptors. Over 15 years after the first characterization of SOCs through electrophysiology, the identification of the STIM proteins as ER Ca2+ sensors and the Orai proteins as store-operated channels has enabled rapid progress in understanding the unique mechanism of store-operate calcium entry (SOCE). Depletion of Ca2+ from the ER causes STIM to accumulate at ER-plasma membrane (PM) junctions where it traps and activates Orai channels diffusing in the closely apposed PM. Mutagenesis studies combined with recent structural insights about STIM and Orai proteins are now beginning to reveal the molecular underpinnings of these choreographic events. This review describes the major experimental advances underlying our current understanding of how ER Ca2+ depletion is coupled to the activation of SOCs. Particular emphasis is placed on the molecular mechanisms of STIM and Orai activation, Orai channel properties, modulation of STIM and Orai function, pharmacological inhibitors of SOCE, and the functions of STIM and Orai in physiology and disease. PMID:26400989

  7. Store-Operated Calcium Channels.

    PubMed

    Prakriya, Murali; Lewis, Richard S

    2015-10-01

    Store-operated calcium channels (SOCs) are a major pathway for calcium signaling in virtually all metozoan cells and serve a wide variety of functions ranging from gene expression, motility, and secretion to tissue and organ development and the immune response. SOCs are activated by the depletion of Ca(2+) from the endoplasmic reticulum (ER), triggered physiologically through stimulation of a diverse set of surface receptors. Over 15 years after the first characterization of SOCs through electrophysiology, the identification of the STIM proteins as ER Ca(2+) sensors and the Orai proteins as store-operated channels has enabled rapid progress in understanding the unique mechanism of store-operate calcium entry (SOCE). Depletion of Ca(2+) from the ER causes STIM to accumulate at ER-plasma membrane (PM) junctions where it traps and activates Orai channels diffusing in the closely apposed PM. Mutagenesis studies combined with recent structural insights about STIM and Orai proteins are now beginning to reveal the molecular underpinnings of these choreographic events. This review describes the major experimental advances underlying our current understanding of how ER Ca(2+) depletion is coupled to the activation of SOCs. Particular emphasis is placed on the molecular mechanisms of STIM and Orai activation, Orai channel properties, modulation of STIM and Orai function, pharmacological inhibitors of SOCE, and the functions of STIM and Orai in physiology and disease.

  8. Calcium channels, external calcium concentration and cell proliferation.

    PubMed

    Borowiec, Anne-Sophie; Bidaux, Gabriel; Pigat, Natascha; Goffin, Vincent; Bernichtein, Sophie; Capiod, Thierry

    2014-09-15

    Evidence for a role for calcium channel proteins in cell proliferation is numerous suggesting that calcium influx is essential in this physiological process. Several studies in the past thirty years have demonstrated that calcium channel expression levels are determinant in cell proliferation. Voltage-gated, store-operated, second messengers and receptor-operated calcium channels have been associated to cell proliferation. However, the relationship between calcium influx and cell proliferation can be uncoupled in transformed and cancer cells, resulting in an external calcium-independent proliferation. Thus, protein expression could be more important than channel function to trigger cell proliferation suggesting that additional channel functions may be responsible to reconcile calcium channel expression and cell proliferation. When needed, external calcium concentration is obviously important for calcium channel function but it also regulates calcium sensing receptor (CaSR) activity. CaSR can up- or down-regulate cell proliferation depending on physiological conditions. CaSR sensitivity to external calcium is within the 0.5 to 5 mM range and therefore, the role of these receptors in cell proliferation must be taken into account. We therefore suggest here that cell proliferation rates could depend on the relative balance between calcium influx and CaSR activation.

  9. Calcium signalling and calcium channels: evolution and general principles.

    PubMed

    Verkhratsky, Alexei; Parpura, Vladimir

    2014-09-15

    Calcium as a divalent cation was selected early in evolution as a signaling molecule to be used by both prokaryotes and eukaryotes. Its low cytosolic concentration likely reflects the initial concentration of this ion in the primordial soup/ocean as unicellular organisms were formed. As the concentration of calcium in the ocean subsequently increased, so did the diversity of homeostatic molecules handling calcium. This includes the plasma membrane channels that allowed the calcium entry, as well as extrusion mechanisms, i.e., exchangers and pumps. Further diversification occurred with the evolution of intracellular organelles, in particular the endoplasmic reticulum and mitochondria, which also contain channels, exchanger(s) and pumps to handle the homeostasis of calcium ions. Calcium signalling system, based around coordinated interactions of the above molecular entities, can be activated by the opening of voltage-gated channels, neurotransmitters, second messengers and/or mechanical stimulation, and as such is all-pervading pathway in physiology and pathophysiology of organisms.

  10. Bacterial sodium channels: models for eukaryotic sodium and calcium channels.

    PubMed

    Scheuer, Todd

    2014-01-01

    Eukaryotic sodium and calcium channels are made up of four linked homologous but different transmembrane domains. Bacteria express sodium channels comprised of four identical subunits, each being analogous to a single homologous domain of their eukaryotic counterparts. Key elements of primary structure are conserved between bacterial and eukaryotic sodium and calcium channels. The simple protein structure of the bacterial channels has allowed extensive structure-function probes of key regions as well as allowing determination of several X-ray crystallographic structures of these channels. The structures have revealed novel features of sodium and calcium channel pores and elucidated the structural importance of many of the conserved features of primary sequence. The structural information has also formed the basis for computational studies probing the basis for sodium and calcium selectivity and gating.

  11. Apical entry channels in calcium-transporting epithelia.

    PubMed

    Peng, Ji-Bin; Brown, Edward M; Hediger, Matthias A

    2003-08-01

    The identification of the apical calcium channels CaT1 and ECaC revealed the key molecular mechanisms underlying apical calcium entry in calcium-transporting epithelia. These channels are regulated directly or indirectly by vitamin D and dietary calcium and undergo feedback control by intracellular calcium, suggesting their rate-limiting roles in transcellular calcium transport.

  12. Voltage-Gated Calcium Channels in Nociception

    NASA Astrophysics Data System (ADS)

    Yasuda, Takahiro; Adams, David J.

    Voltage-gated calcium channels (VGCCs) are a large and functionally diverse group of membrane ion channels ubiquitously expressed throughout the central and peripheral nervous systems. VGCCs contribute to various physiological processes and transduce electrical activity into other cellular functions. This chapter provides an overview of biophysical properties of VGCCs, including regulation by auxiliary subunits, and their physiological role in neuronal functions. Subsequently, then we focus on N-type calcium (Cav2.2) channels, in particular their diversity and specific antagonists. We also discuss the role of N-type calcium channels in nociception and pain transmission through primary sensory dorsal root ganglion neurons (nociceptors). It has been shown that these channels are expressed predominantly in nerve terminals of the nociceptors and that they control neurotransmitter release. To date, important roles of N-type calcium channels in pain sensation have been elucidated genetically and pharmacologically, indicating that specific N-type calcium channel antagonists or modulators are particularly useful as therapeutic drugs targeting chronic and neuropathic pain.

  13. Stretch-activated calcium channels relay fast calcium waves propagated by calcium-induced calcium influx.

    PubMed

    Jaffe, Lionel F

    2007-03-01

    For nearly 30 years, fast calcium waves have been attributed to a regenerative process propagated by CICR (calcium-induced calcium release) from the endoplasmic reticulum. Here, I propose a model containing a new subclass of fast calcium waves which is propagated by CICI (calcium-induced calcium influx) through the plasma membrane. They are called fast CICI waves. These move at the order of 100 to 1000 microm/s (at 20 degrees C), rather than the order of 3 to 30 microm/s found for CICR. Moreover, in this proposed subclass, the calcium influx which drives calcium waves is relayed by stretch-activated calcium channels. This model is based upon reports from approx. 60 various systems. In seven of these reports, calcium waves were imaged, and, in five of these, evidence was presented that these waves were regenerated by CICI. Much of this model involves waves that move along functioning flagella and cilia. In these systems, waves of local calcium influx are thought to cause waves of local contraction by inducing the sliding of dynein or of kinesin past tubulin microtubules. Other cells which are reported to exhibit waves, which move at speeds in the fast CICI range, include ones from a dozen protozoa, three polychaete worms, three molluscs, a bryozoan, two sea urchins, one arthropod, four insects, Amphioxus, frogs, two fish and a vascular plant (Equisetum), together with numerous healthy, as well as cancerous, mammalian cells, including ones from human. In two of these systems, very gentle local mechanical stimulation is reported to initiate waves. In these non-flagellar systems, the calcium influxes are thought to speed the sliding of actinomyosin filaments past each other. Finally, I propose that this mechanochemical model could be tested by seeing if gentle mechanical stimulation induces waves in more of these systems and, more importantly, by imaging the predicted calcium waves in more of them.

  14. Characterization of dihydropyridine-sensitive calcium channels

    SciTech Connect

    Horne, W.A.

    1989-01-01

    The structural and regulatory properties of the dihydropyridine-sensitive calcium channel were studied by isolating protein components of the channel complex from both cardiac and skeletal muscle. Hydrodynamic characterization of the (+)-({sup 3}H)PN200-110-labeled cardiac calcium channel revealed that the protein components of the complex had a total molecular mass of 370,000 daltons, a Stokes radius of 86 {angstrom}, and a frictional ratio of 1.3. A technique is described for the rapid incorporation of the CHAPS solubilized skeletal muscle calcium channel complex into phospholipid vesicles. {sup 45}Ca{sup 2+} uptake into phospholipid vesicles containing calcium channels was inhibited by phenylalkalamine calcium antagonists. Wheat germ lectin followed by DEAE chromatography of the CHAPS solubilized complex resulted in the dissociation of regulatory components of the complex from channel components. The DEAE preparation gave rise to {sup 45}Ca{sup 2+} uptake that was not inhibited by verapamil but was inhibited by GTPgS activated G{sub 0}. The inhibition of {sup 45}Ca{sup 2+} uptake by verapamil was restored by co-reconstitution of wash fractions from wheat germ lectin chromatography. Phosphorylation of polypeptides in this fraction by polypeptide-dependent protein kinase prevented the restoration of verapamil sensitivity. The partial purification of an endogenous skeletal muscle ADP-ribosyltransferase is also described. ADP-ribosylation of the {alpha}{sub 2} subunit of the calcium channel complex is enhanced by polylysine and inhibited by GTP{gamma}S, suggesting that regulation of this enzyme is under the control of GTP binding proteins. These results suggest a complex model, involving a number of different protein components, for calcium channel regulation in skeletal muscle.

  15. Calcium signals and calcium channels in osteoblastic cells

    NASA Technical Reports Server (NTRS)

    Duncan, R. L.; Akanbi, K. A.; Farach-Carson, M. C.

    1998-01-01

    Calcium (Ca2+) channels are present in non-excitable as well as in excitable cells. In bone cells of the osteoblast lineage, Ca2+ channels play fundamental roles in cellular responses to external stimuli including both mechanical forces and hormonal signals. They are also proposed to modulate paracrine signaling between bone-forming osteoblasts and bone-resorbing osteoclasts at local sites of bone remodeling. Calcium signals are characterized by transient increases in intracellular Ca2+ levels that are associated with activation of intracellular signaling pathways that control cell behavior and phenotype, including patterns of gene expression. Development of Ca2+ signals is a tightly regulated cellular process that involves the concerted actions of plasma membrane and intracellular Ca2+ channels, along with Ca2+ pumps and exchangers. This review summarizes the current state of knowledge concerning the structure, function, and role of Ca2+ channels and Ca2+ signals in bone cells, focusing on the osteoblast.

  16. Calcium signals and calcium channels in osteoblastic cells

    NASA Technical Reports Server (NTRS)

    Duncan, R. L.; Akanbi, K. A.; Farach-Carson, M. C.

    1998-01-01

    Calcium (Ca2+) channels are present in non-excitable as well as in excitable cells. In bone cells of the osteoblast lineage, Ca2+ channels play fundamental roles in cellular responses to external stimuli including both mechanical forces and hormonal signals. They are also proposed to modulate paracrine signaling between bone-forming osteoblasts and bone-resorbing osteoclasts at local sites of bone remodeling. Calcium signals are characterized by transient increases in intracellular Ca2+ levels that are associated with activation of intracellular signaling pathways that control cell behavior and phenotype, including patterns of gene expression. Development of Ca2+ signals is a tightly regulated cellular process that involves the concerted actions of plasma membrane and intracellular Ca2+ channels, along with Ca2+ pumps and exchangers. This review summarizes the current state of knowledge concerning the structure, function, and role of Ca2+ channels and Ca2+ signals in bone cells, focusing on the osteoblast.

  17. Calcium signalling and calcium channels: Evolution and general principles

    PubMed Central

    Verkhratsky, Alexei; Parpura, Vladimir

    2014-01-01

    Calcium as a divalent ion was selected early in evolution as a signaling molecule to be used by both prokaryotes and eukaryotes. Its low cytosolic concentration likely reflects the initial concentration of this ion in the primordial soup/ocean as unicellular organisms were formed. As the concentration of calcium in the ocean subsequently increased, so did the diversity of homeostatic molecules. This includes the plasma membrane channels that allowed the calcium entry, as well as extrusion mechanisms, i.e., exchangers and pumps. Further diversification occurred with the evolution of intracellular organelles, in particular the endoplasmic reticulum and mitochondria, which also contain channels, exchanger(s) and pumps to handle the homeostasis of calcium ions. Calcium signalling system, based around coordinated interactions of the above molecular entities, can be activated by the opening of voltage-gated channels, by neurotransmitters, by second messengers and/or mechanical stimulation, and as such is all-pervading pathway in physiology and pathophysiology of organisms. PMID:24291103

  18. Computational study of a calcium release-activated calcium channel

    NASA Astrophysics Data System (ADS)

    Talukdar, Keka; Shantappa, Anil

    2016-05-01

    The naturally occurring proteins that form hole in membrane are commonly known as ion channels. They play multiple roles in many important biological processes. Deletion or alteration of these channels often leads to serious problems in the physiological processes as it controls the flow of ions through it. The proper maintenance of the flow of ions, in turn, is required for normal health. Here we have investigated the behavior of a calcium release-activated calcium ion channel with pdb entry 4HKR in Drosophila Melanogaster. The equilibrium energy as well as molecular dynamics simulation is performed first. The protein is subjected to molecular dynamics simulation to find their energy minimized value. Simulation of the protein in the environment of water and ions has given us important results too. The solvation energy is also found using Charmm potential.

  19. P/Q-type calcium channel modulators

    PubMed Central

    Nimmrich, V; Gross, G

    2012-01-01

    P/Q-type calcium channels are high-voltage-gated calcium channels contributing to vesicle release at synaptic terminals. A number of neurological diseases have been attributed to malfunctioning of P/Q channels, including ataxia, migraine and Alzheimer's disease. To date, only two specific P/Q-type blockers are known: both are peptides deriving from the spider venom of Agelenopsis aperta, ω-agatoxins. Other peptidic calcium channel blockers with activity at P/Q channels are available, albeit with less selectivity. A number of low molecular weight compounds modulate P/Q-type currents with different characteristics, and some exhibit a peculiar bidirectional pattern of modulation. Interestingly, there are a number of therapeutics in clinical use, which also show P/Q channel activity. Because selectivity as well as the exact mode of action is different between all P/Q-type channel modulators, the interpretation of clinical and experimental data is complicated and needs a comprehensive understanding of their target profile. The situation is further complicated by the fact that information on potency varies vastly in the literature, which may be the result of different experimental systems, conditions or the splice variants of the P/Q channel. This review attempts to provide a comprehensive overview of the compounds available that affect the P/Q-type channel and should help with the interpretation of results of in vitro experiments and animal models. It also aims to explain some clinical observations by implementing current knowledge about P/Q channel modulation of therapeutically used non-selective drugs. Chances and challenges of the development of P/Q channel-selective molecules are discussed. PMID:22670568

  20. Calcium channel antagonists in hypertension.

    PubMed

    Ambrosioni, E; Borghi, C

    1989-02-01

    The clinical usefulness of calcium entry-blockers for the treatment of high blood pressure is related to their capacity to act upon the primary hemodynamic derangement in hypertension: the increased peripheral vascular resistance. They can be used alone or in combination with other antihypertensive agents for the treatment of various forms of hypertensive disease. The calcium entry-blockers appear to be the most useful agents for the treatment of hypertension in the elderly and for the treatment of hypertension associated with ischemic heart disease, pulmonary obstructive disease, peripheral vascular disease, and supraventricular arrhythmias. They are effective in reducing blood pressure in pregnancy-associated hypertension and must be considered as first-line therapy for the treatment of hypertensive crisis.

  1. A role for voltage gated T-type calcium channels in mediating "capacitative" calcium entry?

    PubMed

    Gackière, Florian; Bidaux, Gabriel; Lory, Philippe; Prevarskaya, Natalia; Mariot, Pascal

    2006-04-01

    Calcium entry through plasma membrane calcium channels is one of the most important cell signaling mechanism involved in such diverse functions as secretion, contraction and cell growth by regulating gene expression, proliferation and apoptosis. The identity of plasma membrane calcium channels, the main regulators of calcium entry, involved in cell proliferation has been thus extensively sought. Among these, a calcium entry pathway called capacitative calcium entry (CCE), activated by calcium store depletion, is particularly important in non-excitable cells. Though this capacitative calcium entry is generally supposed to occur through TRP channels there is some evidence that voltage-dependent T-type calcium channels may contribute to calcium entry after store depletion. Here we show that though mibefradil, a T-type calcium channel blocker, is able to reduce capacitative calcium entry induced by either thapsigargin or ATP, this was not mimicked by any other T-type calcium channel inhibitors even in cells overexpressing alpha(1H) T-type calcium channels, leading us to conclude that T-type calcium channels are not responsible for the capacitative calcium entry observed in different cancer cell lines. On the contrary, we show that the action of mibefradil on capacitative calcium entry is due to an action on store-operated calcium channels.

  2. Calcium channel blockers in cardiovascular pharmacotherapy.

    PubMed

    Godfraind, Theophile

    2014-11-01

    This paper summarizes the pharmacological properties of calcium channel blockers (CCBs), their established therapeutic uses for cardiovascular disorders and the current improvement of their clinical effects through drug combinations. Their identification resulted from study of small molecules including coronary dilators, which were named calcium antagonists. Further experiments showed that they reduced contraction of arteries by inhibiting calcium entry and by interacting with binding sites identified on voltage-dependent calcium channels. This led to the denomination calcium channel blockers. In short-term studies, by decreasing total peripheral resistance, CCBs lower arterial pressure. By unloading the heart and increasing coronary blood flow, CCBs improve myocardial oxygenation. In long-term treatment, the decrease in blood pressure is more pronounced in hypertensive than in normotensive patients. A controversy on the safety of CCBs ended after a large antihypertensive trial (ALLHAT) sponsored by the National Heart, Lung, and Blood Institute. There are two main types of CCBs: dihydopyridine and non-dihydropyridine; the first type is vascular selective. Dihydropyrines are indicated for hypertension, chronic, stable and vasospastic angina. Non-dihydropyridines have the same indications plus antiarrythmic effects in atrial fibrillation or flutter and paroxysmal supraventricular tachycardia. In addition, CCBs reduced newly formed coronary lesions in atherosclerosis. In order to reach recommended blood pressure goals, there is a recent therapeutic move by combination of CCBs with other antihypertensive agents particularly with inhibitors acting at the level of the renin-angiotensin system. They are also combined with statins. Prevention of dementia has been reported in hypertensive patients treated with nitrendipine, opening a way for further studies on CCBs' beneficial effect in cognitive deterioration associated with aging.

  3. Calcium, channels, intracellular signaling and autoimmunity.

    PubMed

    Izquierdo, Jorge-Hernán; Bonilla-Abadía, Fabio; Cañas, Carlos A; Tobón, Gabriel J

    2014-01-01

    Calcium (Ca²⁺) is an important cation able to function as a second messenger in different cells of the immune system, particularly in B and T lymphocytes, macrophages and mastocytes, among others. Recent discoveries related to the entry of Ca²⁺ through the store-operated calcium entry (SOCE) has opened a new investigation area about the cell destiny regulated by Ca²⁺ especially in B and T lymphocytes. SOCE acts through calcium-release-activated calcium (CRAC) channels. The function of CRAC depends of two recently discovered regulators: the Ca²⁺ sensor in the endoplasmic reticulum or stromal interaction molecule (STIM-1) and one subunit of CRAC channels called Orai1. This review focuses on the role of Ca²⁺ signals in B and T lymphocytes functions, the signalling pathways leading to Ca²⁺ influx, and the relationship between Ca²⁺ signals and autoimmune diseases. Copyright © 2013 Elsevier España, S.L. All rights reserved.

  4. Amiloride Selectively Blocks the Low Threshold (T) Calcium Channel

    NASA Astrophysics Data System (ADS)

    Tang, Cha-Min; Presser, Fernando; Morad, Martin

    1988-04-01

    More than one type of voltage-gated calcium channel has been identified in muscle cells and neurons. Many specific organic and inorganic blockers of the conventional, slowly inactivating high threshold (L) calcium channel have been reported. No specific blockers of the low threshold (T) channel have been as yet identified. Amiloride, a potassium sparing diuretic, has now been shown to selectively block the low threshold calcium channel in mouse neuroblastoma and chick dorsal root ganglion neurons. The selective blockade of the T-type calcium channel will allow identification of this channel in different tissues and characterization of its specific physiological role.

  5. Calcium homeostasis modulator (CALHM) ion channels

    PubMed Central

    Tanis, Jessica E.; Taruno, Akiyuki

    2017-01-01

    Calcium homeostasis modulator 1 (CALHM1), formerly known as FAM26C, was recently identified as a physiologically important plasma membrane ion channel. CALHM1 and its Caenorhabditis elegans homolog, CLHM-1, are regulated by membrane voltage and extracellular Ca2+ concentration ([Ca2+]o). In the presence of physiological [Ca2+]o (~1.5 mM), CALHM1 and CLHM-1 are closed at resting membrane potentials but can be opened by strong de-polarizations. Reducing [Ca2+]o increases channel open probability, enabling channel activation at negative membrane potentials. Together, voltage and Ca2+o allosterically regulate CALHM channel gating. Through convergent evolution, CALHM has structural features that are reminiscent of connexins and pannexins/innexins/LRRC8 (volume-regulated anion channel (VRAC)) gene families, including four trans-membrane helices with cytoplasmic amino and carboxyl termini. A CALHM1 channel is a hexamer of CALHM1 monomers with a functional pore diameter of ~14 Å. CALHM channels discriminate poorly among cations and anions, with signaling molecules including Ca2+ and ATP able to permeate through its pore. CALHM1 is expressed in the brain where it plays an important role in cortical neuron excitability induced by low [Ca2+]o and in type II taste bud cells in the tongue that sense sweet, bitter, and umami tastes where it functions as an essential ATP release channel to mediate nonsynaptic neuro-transmitter release. CLHM-1 is expressed in C. elegans sensory neurons and body wall muscles, and its genetic deletion causes locomotion defects. Thus, CALHM is a voltage- and Ca2+o-gated ion channel, permeable to large cations and anions, that plays important roles in physiology. PMID:26603282

  6. Calcium homeostasis modulator (CALHM) ion channels.

    PubMed

    Ma, Zhongming; Tanis, Jessica E; Taruno, Akiyuki; Foskett, J Kevin

    2016-03-01

    Calcium homeostasis modulator 1 (CALHM1), formerly known as FAM26C, was recently identified as a physiologically important plasma membrane ion channel. CALHM1 and its Caenorhabditis elegans homolog, CLHM-1, are regulated by membrane voltage and extracellular Ca(2+) concentration ([Ca(2+)]o). In the presence of physiological [Ca(2+)]o (∼1.5 mM), CALHM1 and CLHM-1 are closed at resting membrane potentials but can be opened by strong depolarizations. Reducing [Ca(2+)]o increases channel open probability, enabling channel activation at negative membrane potentials. Together, voltage and Ca(2+) o allosterically regulate CALHM channel gating. Through convergent evolution, CALHM has structural features that are reminiscent of connexins and pannexins/innexins/LRRC8 (volume-regulated anion channel (VRAC)) gene families, including four transmembrane helices with cytoplasmic amino and carboxyl termini. A CALHM1 channel is a hexamer of CALHM1 monomers with a functional pore diameter of ∼14 Å. CALHM channels discriminate poorly among cations and anions, with signaling molecules including Ca(2+) and ATP able to permeate through its pore. CALHM1 is expressed in the brain where it plays an important role in cortical neuron excitability induced by low [Ca(2+)]o and in type II taste bud cells in the tongue that sense sweet, bitter, and umami tastes where it functions as an essential ATP release channel to mediate nonsynaptic neurotransmitter release. CLHM-1 is expressed in C. elegans sensory neurons and body wall muscles, and its genetic deletion causes locomotion defects. Thus, CALHM is a voltage- and Ca(2+) o-gated ion channel, permeable to large cations and anions, that plays important roles in physiology.

  7. T-type Calcium Channel Blockers as Neuroprotective Agents

    PubMed Central

    Kopecky, Benjamin J.; Liang, Ruqiang; Bao, Jianxin

    2014-01-01

    T-type calcium channels are expressed in many diverse tissues, including neuronal, cardiovascular, and endocrine. T-type calcium channels are known to play roles in the development, maintenance, and repair of these tissues but have also been implicated in disease when not properly regulated. Calcium channel blockers have been developed to treat various diseases and their use clinically is widespread due to both their efficacy as well as their safety. Aside from their established clinical applications, recent studies have suggested neuroprotective effects of T-type calcium channels blockers. Many of the current T-type calcium channel blockers could act on other molecular targets besides T-type calcium channels making it uncertain whether their neuroprotective effects are solely due to blocking of T-type calcium channels. In this review, we discuss these drugs as well as newly developed chemical compounds that are designed to be more selective for T-type calcium channels. We review in vitro and in vivo evidence of neuroprotective effects by these T-type calcium channel blockers. We conclude by discussing possible molecular mechanisms underlying neuroprotective effects by T-type calcium channel blockers. PMID:24563219

  8. Cadmium and calcium uptake in the mollusc donax rugosus and effect of a calcium channel blocker

    SciTech Connect

    Sidoumou, Z.; Gnassia-Barelli, M.; Romeo, M.

    1997-02-01

    Donax rugosus, a common bivalve mollusc in the coastal waters of Mauritania, has been studied for trace metal concentrations as a function of sampling site (from South of Mauritania to the North of this country) and of season. In this paper, the uptake of cadmium was experimentally studied in the different organs of D. rugosus. Since metals such as cadmium, copper and mercury may alter calcium homeostasis, calcium uptake was also studied in the animals treated with cadmium. Since calcium is taken up through specific channels, it appears that metals inhibit Ca uptake by interacting with these channels in the plasma membrane. Cadmium and calcium have very similar atomic radii, thus cadmium may be taken up through the calcium channels, particularly through voltage-dependent channels. The uptake of cadmium and calcium by D. Rugosus was therefore also studied in the presence of the calcium channel blocker verapamil. 13 refs., 3 figs., 1 tab.

  9. Interactions of organic calcium channel antagonists with calcium channels in single frog atrial cells

    PubMed Central

    1985-01-01

    Inhibition of whole-cell calcium currents in enzymatically dispersed frog atrial myocytes by D-600, diltiazem, and nifedipine was studied using a single-micropipette voltage-clamp technique. The objective of these experiments was to test the applicability of a modulated-receptor hypothesis similar to that proposed for local anesthetic interactions with sodium channels to account for the tonic and frequency-dependent interactions of these organic compounds with myocardial calcium channels. Data consistent with such a hypothesis include: (a) prominent use-dependent block of iCa by D-600 and diltiazem, which are predominantly charged at physiological pH; (b) iCa block by an externally applied, permanently charged dihydropyridine derivative is greatly attenuated; (c) all three antagonists produce large negative shifts in the voltage dependence of iCa availability; (d) block of iCa by these compounds is state-dependent; (e) reactivation of iCa in the presence of all three antagonists is biexponential, which suggests that drug-free channels recover with a normal time course and drug-bound channels recover more slowly; and (f) the kinetics of the drug-induced slow iCa recovery process may be determined largely by factors such as size and molecular weight, in addition to lipid solubility of the compounds. Experiments in which the pH was modified, however, reveal some important differences for the interaction of organic calcium antagonists with myocardial calcium channels. Acidification, in addition to changing the proportion of charged and neutral antagonist in solution, was found to selectively antagonize tonic inhibition of iCa by diltiazem and nifedipine, without changing the kinetics of the drug-induced slow iCa reactivation process. It is concluded that two distinct receptor sites may be involved in block of iCa by some of these compounds: a proton-accessible site and a proton-inaccessible site. PMID:2582076

  10. Voltage-gated Calcium Channels and Autism Spectrum Disorders.

    PubMed

    Breitenkamp, Alexandra F; Matthes, Jan; Herzig, Stefan

    2015-01-01

    Autism spectrum disorder is a complex-genetic disease and its etiology is unknown for the majority of cases. So far, more than one hundred different susceptibility genes were detected. Voltage-gated calcium channels are among the candidates linked to autism spectrum disorder by results of genetic studies. Mutations of nearly all pore-forming and some auxiliary subunits of voltage gated calcium channels have been revealed from investigations of autism spectrum disorder patients and populations. Though there are only few electrophysiological characterizations of voltage-gated calcium channel mutations found in autistic patients these studies suggest their functional relevance. In summary, both genetic and functional data suggest a potential role of voltage-gated calcium channels in autism spectrum disorder. Future studies require refinement of the clinical and systems biological concepts of autism spectrum disorder and an appropriate holistic approach at the molecular level, e.g. regarding all facets of calcium channel functions.

  11. Analytical models of calcium binding in a calcium channel

    SciTech Connect

    Liu, Jinn-Liang; Eisenberg, Bob

    2014-08-21

    The anomalous mole fraction effect of L-type calcium channels is analyzed using a Fermi like distribution with the experimental data of Almers and McCleskey [J. Physiol. 353, 585 (1984)] and the atomic resolution model of Lipkind and Fozzard [Biochemistry 40, 6786 (2001)] of the selectivity filter of the channel. Much of the analysis is algebraic, independent of differential equations. The Fermi distribution is derived from the configuration entropy of ions and water molecules with different sizes, different valences, and interstitial voids between particles. It allows us to calculate potentials and distances (between the binding ion and the oxygen ions of the glutamate side chains) directly from the experimental data using algebraic formulas. The spatial resolution of these results is comparable with those of molecular models, but of course the accuracy is no better than that implied by the experimental data. The glutamate side chains in our model are flexible enough to accommodate different types of binding ions in different bath conditions. The binding curves of Na{sup +} and Ca{sup 2+} for [CaCl{sub 2}] ranging from 10{sup −8} to 10{sup −2} M with a fixed 32 mM background [NaCl] are shown to agree with published Monte Carlo simulations. The Poisson-Fermi differential equation—that includes both steric and correlation effects—is then used to obtain the spatial profiles of energy, concentration, and dielectric coefficient from the solvent region to the filter. The energy profiles of ions are shown to depend sensitively on the steric energy that is not taken into account in the classical rate theory. We improve the rate theory by introducing a steric energy that lumps the effects of excluded volumes of all ions and water molecules and empty spaces between particles created by Lennard-Jones type and electrostatic forces. We show that the energy landscape varies significantly with bath concentrations. The energy landscape is not constant.

  12. Calcium channels, neuromuscular synaptic transmission and neurological diseases.

    PubMed

    Urbano, Francisco J; Pagani, Mario R; Uchitel, Osvaldo D

    2008-09-15

    Voltage-dependent calcium channels are essential in neuronal signaling and synaptic transmission, and their functional alterations underlie numerous human disorders whether monogenic (e.g., ataxia, migraine, etc.) or autoimmune. We review recent work on Ca(V)2.1 or P/Q channelopathies, mostly using neuromuscular junction preparations, and focus specially on the functional hierarchy among the calcium channels recruited to mediate neurotransmitter release when Ca(V)2.1 channels are mutated or depleted. In either case, synaptic transmission is greatly compromised; evidently, none of the reported functional replacements with other calcium channels compensates fully.

  13. STIM and calcium channel complexes in cancer.

    PubMed

    Jardin, Isaac; Rosado, Juan A

    2016-06-01

    The ion Ca(2+) is a ubiquitous second messenger that mediates a variety of cellular functions. Dysfunction of the mechanisms involved in Ca(2+) homeostasis underlies a number of pathological processes, including cancer. Store-operated Ca(2+) entry (SOCE) is a major mechanism for Ca(2+) entry modulated by the intracellular Ca(2+) stores. The Ca(2+)-selective store-operated current (ICRAC) is mediated by the endoplasmic reticulum (ER) Ca(2+) sensor STIM1 and the store-operated Ca(2+) (SOC) channel Orai1, while other non-selective cation currents (ISOC) involves the participation of members of the canonical transient receptor potential (TRPC) channel family, including TRPC1. Distinct isoforms of the key components of SOCE have been described in mammalian cells, STIM1 and 2, Orai1-3 and TRPC1-7. In cancer cells, SOCE has been reported to play an important role in cell cycle progression and proliferation, migration, metastasis and evasion of apoptosis. Changes in the expression of the key elements of SOCE and Ca(2+) homeostasis remodeling have been account to play important roles in the phenotypic changes observed in transformed cells. Despite there are differences in the expression level of the molecular components of SOCE, as well as in the relevance of the STIM, Orai and TRPC isoforms in SOCE and tumorigenesis among cancer cell types, there is a body of evidence supporting an important role for SOCE underlying the phenotypic modifications of cancer cells that propose STIM and the SOC channels as suitable candidate targets for future prognostic or therapeutic strategies. This article is part of a Special Issue entitled: Calcium and Cell Fate. Guest Editors: Jacques Haiech, Claus Heizmann, Joachim Krebs, Thierry Capiod and Olivier Mignen. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Renal vascular effects of calcium channel blockers in hypertension.

    PubMed

    Benstein, J A; Dworkin, L D

    1990-12-01

    Recent evidence suggests that calcium channel blockers have specific effects on renal hemodynamics in patients with hypertension and may also slow the progression of chronic renal failure. When these agents are studied in vitro, their predominant effect is to reverse afferent arteriolar vasoconstriction induced by catecholamines or angiotensin II. Because efferent resistance may remain high, glomerular filtration rate rises while renal blood flow remains low. The effects in vivo are less consistent. In human hypertension, calcium channel blockers lower renal resistance and may raise both renal blood flow and glomerular filtration rate. In experimental models of chronic renal disease, calcium channel blockers slow the progression of renal damage; however, variable effects on renal hemodynamics have been found. Other factors implicated in the progression of renal damage, including compensatory renal hypertrophy, platelet aggregation, and calcium deposition, may also be favorably influenced by these agents. Recent studies suggest that calcium channel blockers may have similar protective effects in patients with hypertension and chronic renal disease.

  15. Drosophila mushroom body Kenyon cells generate spontaneous calcium transients mediated by PLTX-sensitive calcium channels.

    PubMed

    Jiang, Shaojuan Amy; Campusano, Jorge M; Su, Hailing; O'Dowd, Diane K

    2005-07-01

    Spontaneous calcium oscillations in mushroom bodies of late stage pupal and adult Drosophila brains have been implicated in memory consolidation during olfactory associative learning. This study explores the cellular mechanisms regulating calcium dynamics in Kenyon cells, principal neurons in mushroom bodies. Fura-2 imaging shows that Kenyon cells cultured from late stage Drosophila pupae generate spontaneous calcium transients in a cell autonomous fashion, at a frequency similar to calcium oscillations in vivo (10-20/h). The expression of calcium transients is up regulated during pupal development. Although the ability to generate transients is a property intrinsic to Kenyon cells, transients can be modulated by bath application of nicotine and GABA. Calcium transients are blocked, and baseline calcium levels reduced, by removal of external calcium, addition of cobalt, or addition of Plectreurys toxin (PLTX), an insect-specific calcium channel antagonist. Transients do not require calcium release from intracellular stores. Whole cell recordings reveal that the majority of voltage-gated calcium channels in Kenyon cells are PLTX-sensitive. Together these data show that influx of calcium through PLTX-sensitive voltage-gated calcium channels mediates spontaneous calcium transients and regulates basal calcium levels in cultured Kenyon cells. The data also suggest that these calcium transients represent cellular events underlying calcium oscillations in the intact mushroom bodies. However, spontaneous calcium transients are not unique to Kenyon cells as they are present in approximately 60% of all cultured central brain neurons. This suggests the calcium transients play a more general role in maturation or function of adult brain neurons.

  16. A novel calcium-sensing domain in the BK channel.

    PubMed Central

    Schreiber, M; Salkoff, L

    1997-01-01

    The high-conductance Ca2+-activated K+ channel (mSlo) plays a vital role in regulating calcium entry in many cell types. mSlo channels behave like voltage-dependent channels, but their voltage range of activity is set by intracellular free calcium. The mSlo subunit has two parts: a "core" resembling a subunit from a voltage-dependent K+ channel, and an appended "tail" that plays a role in calcium sensing. Here we present evidence for a site on the tail that interacts with calcium. This site, the "calcium bowl," is a novel calcium-binding motif that includes a string of conserved aspartate residues. Mutations of the calcium bowl fall into two categories: 1) those that shift the position of the G-V relation a similar amount at all [Ca2+], and 2) those that shift the position of the G-V relation only at low [Ca2+]. None of these mutants alters the slope of the G-V curve. These mutant phenotypes are apparent in calcium ion, but not in cadmium ion, where mutant and wild type are indistinguishable. This suggests that the calcium bowl is sensitive to calcium ion, but insensitive to cadmium ion. The presence and independence of a second calcium-binding site is inferred because channels still respond to increasing levels of [Ca2+] or [Cd2+], even when the calcium bowl is mutationally deleted. Thus a low level of activation in the absence of divalent cations is identical in mutant and wild-type channels, possibly because of activation of this second Ca2+-binding site. PMID:9284303

  17. Neuroprotective effects of blockers for T-type calcium channels

    PubMed Central

    Wildburger, Norelle C; Lin-Ye, Avary; Baird, Michelle A; Lei, Debin; Bao, Jianxin

    2009-01-01

    Cognitive and functional decline with age is correlated with deregulation of intracellular calcium, which can lead to neuronal death in the brain. Previous studies have found protective effects of various calcium channel blockers in pathological conditions. However, little has been done to explore possible protective effects of blockers for T-type calcium channels, which forms a family of FDA approved anti-epileptic drugs. In this study, we found that neurons showed an increase in viability after treatment with either L-type or T-type calcium channel antagonists. The family of low-voltage activated, or T-type calcium channels, comprise of three members (Cav3.1, Cav3.2, and Cav3.3) based on their respective main pore-forming alpha subunits: α1G, α1H, and α1I. Among these three subunits, α1H is highly expressed in hippocampus and certain cortical regions. However, T-type calcium channel blockers can protect neurons derived from α1H-/- mice, suggesting that neuroprotection demonstrated by these drugs is not through the α1H subunit. In addition, blockers for T-type calcium channels were not able to confer any protection to neurons in long-term cultures, while blockers of L-type calcium channels could protect neurons. These data indicate a new function of blockers for T-type calcium channels, and also suggest different mechanisms to regulate neuronal survival by calcium signaling pathways. Thus, our findings have important implications in the development of new treatment for age-related neurodegenerative disorders. PMID:19863782

  18. Neuroprotective effects of blockers for T-type calcium channels.

    PubMed

    Wildburger, Norelle C; Lin-Ye, Avary; Baird, Michelle A; Lei, Debin; Bao, Jianxin

    2009-10-28

    Cognitive and functional decline with age is correlated with deregulation of intracellular calcium, which can lead to neuronal death in the brain. Previous studies have found protective effects of various calcium channel blockers in pathological conditions. However, little has been done to explore possible protective effects of blockers for T-type calcium channels, which forms a family of FDA approved anti-epileptic drugs. In this study, we found that neurons showed an increase in viability after treatment with either L-type or T-type calcium channel antagonists. The family of low-voltage activated, or T-type calcium channels, comprise of three members (Cav3.1, Cav3.2, and Cav3.3) based on their respective main pore-forming alpha subunits: alpha1G, alpha1H, and alpha1I. Among these three subunits, alpha1H is highly expressed in hippocampus and certain cortical regions. However, T-type calcium channel blockers can protect neurons derived from alpha1H-/- mice, suggesting that neuroprotection demonstrated by these drugs is not through the alpha1H subunit. In addition, blockers for T-type calcium channels were not able to confer any protection to neurons in long-term cultures, while blockers of L-type calcium channels could protect neurons. These data indicate a new function of blockers for T-type calcium channels, and also suggest different mechanisms to regulate neuronal survival by calcium signaling pathways. Thus, our findings have important implications in the development of new treatment for age-related neurodegenerative disorders.

  19. In vivo analysis of voltage-dependent calcium channels.

    PubMed

    Liu, Ling; Zwingman, Theresa A; Fletcher, Colin F

    2003-12-01

    The molecular cloning of calcium channel subunits has identified an unexpectedly large number of genes and splicing variants, many of whichhave complex expression patterns: a central problem of calcium channel biology is to understand the functional significance of this genetic complexity. The genetic analysis of voltage-dependent calcium channels (VDCCs) provides an approach to defining channel function that is complimentary to pharmacological, electrophysiological, and other molecular methods. By discovering or creating alleles of VDCC genes, one can gain an understanding of the VDCC function at the whole animal level. Of particular interest are mutations in the alpha1 genes that encode the pore forming subunits, as they define the specific channel subtypes. In fact, a variety of calcium channelopathies and targeted mutations have been described for these genes in the last 6 years. The mutant alleles described below illustrate how phenotype analysis of these alleles has uncovered very specific functional roles that can be localized to specific synapses or cells.

  20. T-type calcium channels contribute to calcium disturbances in brain during hyponatremia.

    PubMed

    Odackal, John; Sherpa, Ang D; Patel, Nisha; Colbourn, Robert; Hrabetova, Sabina

    2015-11-01

    Disturbance of calcium homeostasis is implicated in the normal process of aging and brain pathology prevalent in the elderly such as Alzheimer's, Parkinson's, and amyotrophic lateral sclerosis. Previous studies demonstrated that applying a hyponatremic iso-osmotic (low-NaCl) artificial cerebrospinal fluid (ACSF) to rodent hippocampus causes extracellular calcium to rapidly decrease. Restoring normonatremia after low-NaCl treatment causes a rapid increase in extracellular calcium that overshoots baseline. This study examined the amplitude, timing, and mechanism of these surprising calcium changes. We also tested whether hyponatremia increased calcium entry into brain cells or calcium binding to chondroitin sulfate (CS), a negatively charged constituent of the extracellular matrix (ECM) that may be occupied by sodium during normonatremia. We report three major findings. First we show that CS does not contribute to extracellular calcium changes during low-NaCl treatments. Second, we show that the time to minimum extracellular calcium during low-NaCl treatment is significantly shorter than the time to maximum extracellular calcium in recovery from low-NaCl treatment. Third, we show that the decrease in extracellular calcium observed during hyponatremia is attenuated by ML 218, a highly selective T-type calcium channel blocker. Together these data suggest that calcium rapidly enters cells at the onset of low-NaCl treatment and is extruded from cells when normonatremia is restored. Calcium binding to CS does not significantly contribute to calcium changes in brain during hyponatremia. Differences in timing suggest that extracellular calcium changes during and in recovery from hyponatremia occur by distinct mechanisms or by a multistep process. Finally, partial block of extracellular calcium influx by ML 218 suggests that T-type channels are involved in calcium entering cells during hyponatremia. Given the high prevalence of hyponatremia among elderly patients and the

  1. Redox Regulation of Neuronal Voltage-Gated Calcium Channels

    PubMed Central

    Jevtovic-Todorovic, Vesna

    2014-01-01

    Abstract Significance: Voltage-gated calcium channels are ubiquitously expressed in neurons and are key regulators of cellular excitability and synaptic transmitter release. There is accumulating evidence that multiple subtypes of voltage-gated calcium channels may be regulated by oxidation and reduction. However, the redox mechanisms involved in the regulation of channel function are not well understood. Recent Advances: Several studies have established that both T-type and high-voltage-activated subtypes of voltage-gated calcium channel can be redox-regulated. This article reviews different mechanisms that can be involved in redox regulation of calcium channel function and their implication in neuronal function, particularly in pain pathways and thalamic oscillation. Critical Issues: A current critical issue in the field is to decipher precise mechanisms of calcium channel modulation via redox reactions. In this review we discuss covalent post-translational modification via oxidation of cysteine molecules and chelation of trace metals, and reactions involving nitric oxide-related molecules and free radicals. Improved understanding of the roles of redox-based reactions in regulation of voltage-gated calcium channels may lead to improved understanding of novel redox mechanisms in physiological and pathological processes. Future Directions: Identification of redox mechanisms and sites on voltage-gated calcium channel may allow development of novel and specific ion channel therapies for unmet medical needs. Thus, it may be possible to regulate the redox state of these channels in treatment of pathological process such as epilepsy and neuropathic pain. Antioxid. Redox Signal. 21, 880–891. PMID:24161125

  2. Activation of purified calcium channels by stoichiometric protein phosphorylation

    SciTech Connect

    Nunoki, K.; Florio, V.; Catterall, W.A. )

    1989-09-01

    Purified dihydropyridine-sensitive calcium channels from rabbit skeletal muscle were reconstituted into phosphatidylcholine vesicles to evaluate the effect of phosphorylation by cyclic AMP-dependent protein kinase (PK-A) on their function. Both the rate and extent of {sup 45}Ca{sup 2+} uptake into vesicles containing reconstituted calcium channels were increased severalfold after incubation with ATP and PK-A. The degree of stimulation of {sup 45}Ca{sup 2+} uptake was linearly proportional to the extent of phosphorylation of the alpha 1 and beta subunits of the calcium channel up to a stoichiometry of approximately 1 mol of phosphate incorporated into each subunit. The calcium channels activated by phosphorylation were determined to be incorporated into the reconstituted vesicles in the inside-out orientation and were completely inhibited by low concentrations of dihydropyridines, phenylalkylamines, Cd{sup 2+}, Ni{sup 2+}, and Mg{sup 2+}. The results demonstrate a direct relationship between PK-A-catalyzed phosphorylation of the alpha 1 and beta subunits of the purified calcium channel and activation of the ion conductance activity of the dihydropyridine-sensitive calcium channels.

  3. Calcium-dependent inactivation of calcium channels in the medial striatum increases at eye opening.

    PubMed

    Evans, R C; Herin, G A; Hawes, S L; Blackwell, K T

    2015-04-01

    Influx of calcium through voltage-gated calcium channels (VGCCs) is essential for striatal function and plasticity. VGCCs expressed in striatal neurons have varying kinetics, voltage dependences, and densities resulting in heterogeneous subcellular calcium dynamics. One factor that determines the calcium dynamics in striatal medium spiny neurons is inactivation of VGCCs. Aside from voltage-dependent inactivation, VGCCs undergo calcium-dependent inactivation (CDI): inactivating in response to an influx of calcium. CDI is a negative feedback control mechanism; however, its contribution to striatal neuron function is unknown. Furthermore, although the density of VGCC expression changes with development, it is unclear whether CDI changes with development. Because calcium influx through L-type calcium channels is required for striatal synaptic depression, a change in CDI could contribute to age-dependent changes in striatal synaptic plasticity. Here we use whole cell voltage clamp to characterize CDI over developmental stages and across striatal regions. We find that CDI increases at the age of eye opening in the medial striatum but not the lateral striatum. The developmental increase in CDI mostly involves L-type channels, although calcium influx through non-L-type channels contributes to the CDI in both age groups. Agents that enhance protein kinase A (PKA) phosphorylation of calcium channels reduce the magnitude of CDI after eye opening, suggesting that the developmental increase in CDI may be related to a reduction in the phosphorylation state of the L-type calcium channel. These results are the first to show that modifications in striatal neuron properties correlate with changes to sensory input.

  4. Aminoalkynyldithianes. A new class of calcium channel blockers.

    PubMed

    Adams, T C; Dupont, A C; Carter, J P; Kachur, J F; Guzewska, M E; Rzeszotarski, W J; Farmer, S G; Noronha-Blob, L; Kaiser, C

    1991-05-01

    Several dithiane derivatives, prepared as intermediates for compounds structurally related to the therapeutically useful antimuscarinic agent oxybutynin, were effective inhibitors of calcium ion induced contraction of guinea pig ileal strips and of KCl-induced calcium entry into neuronal cells. Although the first member of this series, 2-[5-(diethylamino)-3-pentynyl]-1,3-dithiane (2a), was only marginally effective, its condensation product with diphenyl ketone, i.e. 2-[5-(diethylamino)-3-pentynyl]-2-(a,a-diphenyl-a- hydroxymethyl)-1,3-dithiane (3a), demonstrated weak, but significant, calcium channel antagonist activity. As part of a structure-activity relationship (SAR) study, various structural analogues of 2a and 3a were prepared and examined for calcium antagonist properties. In addition to these structural types, ring bridged (tricyclic) congeners of 3, i.e. 4, related bicyclic compounds 5, dehydroxylated derivatives 6, some homologous 2-[[[(N,N-disubstituted-amino)methyl]2- phenyl-1,3-dithianes (7), and a series of 2-[6-[N,N-disubstituted-amino)methyl]-1-hydroxy-1-phenyl- 4-hexynyl]-1,3-dithianes (8) were prepared and studied for calcium channel blocking activity. In general, greatest potency was noted in the tricyclic series 4; however, a definitive SAR could not be established. A structural similarity between several potent calcium antagonists having the structures 7c, 8b, and 8d and the well-known calcium channel blockers verapamil and tiapamil suggests these compounds may act at the same site. Compounds in the other classes (2-6) failed to show clearly defined SAR and their potency differed markedly in two tests for calcium channel antagonist activity. These results may indicate that the dithiane derivatives 2-6 produce their effects in a manner differing from that of the calcium channel antagonists diltiazem, verapamil, and nitrendepine.

  5. Redox regulation of the ryanodine receptor/calcium release channel.

    PubMed

    Zissimopoulos, S; Lai, F A

    2006-11-01

    The RyR (ryanodine receptor)/calcium release channel contains a number of highly reactive thiol groups that endow it with redox sensitivity. In general, oxidizing conditions favour channel opening, while reducing conditions have the opposite effect. Thiol modification affects the channel sensitivity to its principal effectors, Ca2+, Mg2+ and ATP, and alters RyR protein interactions. Here, we give a brief account of the major findings and prevailing views in the field.

  6. Calcium-dependent inactivation of the dihydropyridine-sensitive calcium channels in GH3 cells

    PubMed Central

    1988-01-01

    The inactivation of calcium channels in mammalian pituitary tumor cells (GH3) was studied with patch electrodes under voltage clamp in cell- free membrane patches and in dialyzed cells. The calcium current elicited by depolarization from a holding potential of -40 mV passed predominantly through one class of channels previously shown to be modulated by dihydropyridines and cAMP-dependent phosphorylation (Armstrong and Eckert, 1987). When exogenous calcium buffers were omitted from the pipette solution, the macroscopic calcium current through those channels inactivated with a half time of approximately 10 ms to a steady state level 40-75% smaller than the peak. Inactivation was also measured as the reduction in peak current during a test pulse that closely followed a prepulse. Inactivation was largely reduced or eliminated by (a) buffering free calcium in the pipette solution to less than 10(-8) M; (b) replacing extracellular calcium with barium; (c) increasing the prepulse voltage from +10 to +60 mV; or (d) increasing the intracellular concentration of cAMP, either 'directly' with dibutyryl-cAMP or indirectly by activating adenylate cyclase with forskolin or vasoactive intestinal peptide. Thus, inactivation of the dihydropyridine-sensitive calcium channels in GH3 cells only occurs when membrane depolarization leads to calcium ion entry and intracellular accumulation. PMID:2849631

  7. Bio-inspired voltage-dependent calcium channel blockers.

    PubMed

    Yang, Tingting; He, Lin-Ling; Chen, Ming; Fang, Kun; Colecraft, Henry M

    2013-01-01

    Ca(2+) influx via voltage-dependent CaV1/CaV2 channels couples electrical signals to biological responses in excitable cells. CaV1/CaV2 channel blockers have broad biotechnological and therapeutic applications. Here we report a general method for developing novel genetically encoded calcium channel blockers inspired by Rem, a small G-protein that constitutively inhibits CaV1/CaV2 channels. We show that diverse cytosolic proteins (CaVβ, 14-3-3, calmodulin and CaMKII) that bind pore-forming α1-subunits can be converted into calcium channel blockers with tunable selectivity, kinetics and potency, simply by anchoring them to the plasma membrane. We term this method 'channel inactivation induced by membrane-tethering of an associated protein' (ChIMP). ChIMP is potentially extendable to small-molecule drug discovery, as engineering FK506-binding protein into intracellular sites within CaV1.2-α1C permits heterodimerization-initiated channel inhibition with rapamycin. The results reveal a universal method for developing novel calcium channel blockers that may be extended to develop probes for a broad cohort of unrelated ion channels.

  8. How and why are calcium currents curtailed in the skeletal muscle voltage‐gated calcium channels?

    PubMed Central

    Tuluc, Petronel

    2017-01-01

    Abstract Voltage‐gated calcium channels represent the sole mechanism converting electrical signals of excitable cells into cellular functions such as contraction, secretion and gene regulation. Specific voltage‐sensing domains detect changes in membrane potential and control channel gating. Calcium ions entering through the channel function as second messengers regulating cell functions, with the exception of skeletal muscle, where CaV1.1 essentially does not function as a channel but activates calcium release from intracellular stores. It has long been known that calcium currents are dispensable for skeletal muscle contraction. However, the questions as to how and why the channel function of CaV1.1 is curtailed remained obscure until the recent discovery of a developmental CaV1.1 splice variant with normal channel functions. This discovery provided new means to study the molecular mechanisms regulating the channel gating and led to the understanding that in skeletal muscle, calcium currents need to be restricted to allow proper regulation of fibre type specification and to prevent mitochondrial damage. PMID:27896815

  9. T-Type Calcium Channel: A Privileged Gate for Calcium Entry and Control of Adrenal Steroidogenesis.

    PubMed

    Rossier, Michel F

    2016-01-01

    Intracellular calcium plays a crucial role in modulating a variety of functions such as muscle contraction, hormone secretion, gene expression, or cell growth. Calcium signaling has been however shown to be more complex than initially thought. Indeed, it is confined within cell microdomains, and different calcium channels are associated with different functions, as shown by various channelopathies. Sporadic mutations on voltage-operated L-type calcium channels in adrenal glomerulosa cells have been shown recently to be the second most prevalent genetic abnormalities present in human aldosterone-producing adenoma. The observed modification of the threshold of activation of the mutated channels not only provides an explanation for this gain of function but also reminds us on the importance of maintaining adequate electrophysiological characteristics to make channels able to exert specific cellular functions. Indeed, the contribution to steroid production of the various calcium channels expressed in adrenocortical cells is not equal, and the reason has been investigated for a long time. Given the very negative resting potential of these cells, and the small membrane depolarization induced by their physiological agonists, low threshold T-type calcium channels are particularly well suited for responding under these conditions and conveying calcium into the cell, at the right place for controlling steroidogenesis. In contrast, high threshold L-type channels are normally activated by much stronger cell depolarizations. The fact that dihydropyridine calcium antagonists, specific for L-type channels, are poorly efficient for reducing aldosterone secretion either in vivo or in vitro, strongly supports the view that these two types of channels differently affect steroid biosynthesis. Whether a similar analysis is transposable to fasciculata cells and cortisol secretion is one of the questions addressed in the present review. No similar mutations on L-type or T-type channels

  10. L-type calcium channel: Clarifying the "oxygen sensing hypothesis".

    PubMed

    Cserne Szappanos, Henrietta; Viola, Helena; Hool, Livia C

    2017-03-18

    The heart is able to respond acutely to changes in oxygen tension. Since ion channels can respond rapidly to stimuli, the "ion channel oxygen sensing hypothesis" has been proposed to explain acute adaptation of cells to changes in oxygen demand. However the exact mechanism for oxygen sensing continues to be debated. Mitochondria consume the lion's share of oxygen in the heart, fuelling the production of ATP that drives excitation and contraction. Mitochondria also produce reactive oxygen species that are capable of altering the redox state of proteins. The cardiac L-type calcium channel is responsible for maintaining excitation and contraction. Recently, the reactive cysteine on the cardiac L-type calcium channel was identified. These data clarified that the channel does not respond directly to changes in oxygen tension, but rather responds to cellular redox state. This leads to acute alterations in cell signalling responsible for the development of arrhythmias and pathology.

  11. Interaction of grapefruit juice and calcium channel blockers.

    PubMed

    Sica, Domenic A

    2006-07-01

    Drug-drug interactions are commonly recognized occurrences in the hypertensive population. Drug-nutrient interactions, however, are less well appreciated. The grapefruit juice-calcium channel blocker interaction is one that has been known since 1989. The basis for this interaction has been diligently explored and appears to relate to both flavanoid and nonflavanoid components of grapefruit juice interfering with enterocyte CYP3A4 activity. In the process, presystemic clearance of susceptible drugs decreases and bioavailability increases. A number of calcium channel blockers are prone to this interaction, with the most prominent interaction occurring with felodipine. The calcium channel blocker and grapefruit juice interaction should be incorporated into the knowledge base of rational therapeutics for the prescribing physician.

  12. Low voltage activated calcium channels: from genes to function.

    PubMed

    Lacinová, L; Klugbauer, N; Hofmann, F

    2000-06-01

    Cloning of three members of low-voltage-activated (LVA) calcium channel family, predominantly neuronal alpha1G and alpha1I, and ubiquitous alpha1H, enabled to investigate directly their electrophysiological and pharmacological profile as well as their putative subunit composition. All the three channels are half-activated at membrane potential about -40 mV and half-inactivated at about -70 mV. Kinetics of alpha1G and alpha1H channels activation and inactivation are similar and faster than that of alpha1I channel. All the three channels are blocked with high affinity by the organic blocker mibefradil. Another high affinity blocker is kurtoxin. Cloned LVA channels are relatively insensitive to antiepileptics, dihydropyridines and omega-conotoxins. Ni2+ is high affinity blocker of alpha1H channel only. Amiloride inhibits the alpha1H channel. The subunit composition of LVA channel remains unclear. Out of known high-voltage-activated calcium channel subunits, alpha2delta-2 and gamma-5 subunits significantly and systematically modified activation and/or inactivation of the current. In contrast, alpha2delta-1, alpha2delta-3, gamma-2 and gamma-4 subunits failed to modulate the current or had only minor effects.

  13. T-Type Calcium Channel: A Privileged Gate for Calcium Entry and Control of Adrenal Steroidogenesis

    PubMed Central

    Rossier, Michel F.

    2016-01-01

    Intracellular calcium plays a crucial role in modulating a variety of functions such as muscle contraction, hormone secretion, gene expression, or cell growth. Calcium signaling has been however shown to be more complex than initially thought. Indeed, it is confined within cell microdomains, and different calcium channels are associated with different functions, as shown by various channelopathies. Sporadic mutations on voltage-operated L-type calcium channels in adrenal glomerulosa cells have been shown recently to be the second most prevalent genetic abnormalities present in human aldosterone-producing adenoma. The observed modification of the threshold of activation of the mutated channels not only provides an explanation for this gain of function but also reminds us on the importance of maintaining adequate electrophysiological characteristics to make channels able to exert specific cellular functions. Indeed, the contribution to steroid production of the various calcium channels expressed in adrenocortical cells is not equal, and the reason has been investigated for a long time. Given the very negative resting potential of these cells, and the small membrane depolarization induced by their physiological agonists, low threshold T-type calcium channels are particularly well suited for responding under these conditions and conveying calcium into the cell, at the right place for controlling steroidogenesis. In contrast, high threshold L-type channels are normally activated by much stronger cell depolarizations. The fact that dihydropyridine calcium antagonists, specific for L-type channels, are poorly efficient for reducing aldosterone secretion either in vivo or in vitro, strongly supports the view that these two types of channels differently affect steroid biosynthesis. Whether a similar analysis is transposable to fasciculata cells and cortisol secretion is one of the questions addressed in the present review. No similar mutations on L-type or T-type channels

  14. The molecular choreography of a store-operated calcium channel.

    PubMed

    Lewis, Richard S

    2007-03-15

    Store-operated calcium channels (SOCs) serve essential functions from secretion and motility to gene expression and cell growth. A fundamental mystery is how the depletion of Ca2+ from the endoplasmic reticulum (ER) activates Ca2+ entry through SOCs in the plasma membrane. Recent studies using genetic approaches have identified genes encoding the ER Ca2+ sensor and a prototypic SOC, the Ca2+-release-activated Ca2+ (CRAC) channel. New findings reveal a unique mechanism for channel activation, in which the CRAC channel and its sensor migrate independently to closely apposed sites of interaction in the ER and the plasma membrane.

  15. Verapamil Block of T-Type Calcium ChannelsS⃞

    PubMed Central

    Bergson, Pamela; Lipkind, Gregory; Lee, Steven P.; Duban, Mark-Eugene

    2011-01-01

    Verapamil is a prototypical phenylalkylamine (PAA), and it was the first calcium channel blocker to be used clinically. It tonically blocks L-type channels in the inner pore with micromolar affinity, and its affinity increases at depolarized membrane potentials. In T-type calcium channels, verapamil blocks with micromolar affinity and has modestly increased affinity at depolarized potentials. We found that a related PAA, 4-desmethoxyverapamil (D888), is comparable with verapamil both in affinity and in state-dependence. Permanently charged verapamil was more effective intracellularly than neutral verapamil. Charged PAAs were able to access their binding site from both inside and outside the cell. Furthermore, membrane-impermeant [2-(trimethylammonium)ethyl]methanethiosulfonate was able to access the inner pore from outside of the cell. We examined a homology model of the T-type calcium channel to look for possible routes of drug entry. Mutation of L1825W produced a channel that was blocked significantly more slowly by charged verapamil from the outside, with an increase in apparent affinity when the drug was applied from the inside. Data suggest that T-type channels have a back pathway through which charged drugs can access the inner pore of the channel without passing through the plasma membrane. PMID:21149638

  16. Verapamil block of T-type calcium channels.

    PubMed

    Bergson, Pamela; Lipkind, Gregory; Lee, Steven P; Duban, Mark-Eugene; Hanck, Dorothy A

    2011-03-01

    Verapamil is a prototypical phenylalkylamine (PAA), and it was the first calcium channel blocker to be used clinically. It tonically blocks L-type channels in the inner pore with micromolar affinity, and its affinity increases at depolarized membrane potentials. In T-type calcium channels, verapamil blocks with micromolar affinity and has modestly increased affinity at depolarized potentials. We found that a related PAA, 4-desmethoxyverapamil (D888), is comparable with verapamil both in affinity and in state-dependence. Permanently charged verapamil was more effective intracellularly than neutral verapamil. Charged PAAs were able to access their binding site from both inside and outside the cell. Furthermore, membrane-impermeant [2-(trimethylammonium)ethyl]methanethiosulfonate was able to access the inner pore from outside of the cell. We examined a homology model of the T-type calcium channel to look for possible routes of drug entry. Mutation of L1825W produced a channel that was blocked significantly more slowly by charged verapamil from the outside, with an increase in apparent affinity when the drug was applied from the inside. Data suggest that T-type channels have a back pathway through which charged drugs can access the inner pore of the channel without passing through the plasma membrane.

  17. Beta-Blockers and Calcium Channel Blockers: First Line Agents.

    PubMed

    Pascual, Isaac; Moris, Cesar; Avanzas, Pablo

    2016-08-01

    Beta-blockers and calcium channel blockers (CCB) are milestones in the treatment of stable coronary ischaemic disease. Their main effects are particularly suited for the management of effort-induced angina because of the reduction of oxygen demand they achieve. The clinical benefits of these drugs are highly reproducible and have been shown to improve overall clinical outcomes. Despite the availability of other, and newer antianginal drugs, treatment guidelines continue to recommend the use of beta-blockers and calcium channel blockers as first line therapies.

  18. Regulation of voltage gated calcium channels by GPCRs and post-translational modification.

    PubMed

    Huang, Junting; Zamponi, Gerald W

    2016-10-18

    Calcium entry via voltage gated calcium channels mediates a wide range of physiological functions, whereas calcium channel dysregulation has been associated with numerous pathophysiological conditions. There are myriad cell signaling pathways that act on voltage gated calcium channels to fine tune their activities and to regulate their cell surface expression. These regulatory mechanisms include the activation of G protein-coupled receptors and downstream phosphorylation events, and their control over calcium channel trafficking through direct physical interactions. Calcium channels also undergo post-translational modifications that alter both function and density of the channels in the plasma membrane. Here we focus on select aspects of these regulatory mechanisms and highlight recent developments.

  19. Fast activation of dihydropyridine-sensitive calcium channels of skeletal muscle. Multiple pathways of channel gating

    PubMed Central

    1996-01-01

    Dihydropyridine (DHP) receptors of the transverse tubule membrane play two roles in excitation-contraction coupling in skeletal muscle: (a) they function as the voltage sensor which undergoes fast transition to control release of calcium from sarcoplasmic reticulum, and (b) they provide the conducting unit of a slowly activating L-type calcium channel. To understand this dual function of the DHP receptor, we studied the effect of depolarizing conditioning pulse on the activation kinetics of the skeletal muscle DHP-sensitive calcium channels reconstituted into lipid bilayer membranes. Activation of the incorporated calcium channel was imposed by depolarizing test pulses from a holding potential of -80 mV. The gating kinetics of the channel was studied with ensemble averages of repeated episodes. Based on a first latency analysis, two distinct classes of channel openings occurred after depolarization: most had delayed latencies, distributed with a mode of 70 ms (slow gating); a small number of openings had short first latencies, < 12 ms (fast gating). A depolarizing conditioning pulse to +20 mV placed 200 ms before the test pulse (-10 mV), led to a significant increase in the activation rate of the ensemble averaged-current; the time constant of activation went from tau m = 110 ms (reference) to tau m = 45 ms after conditioning. This enhanced activation by the conditioning pulse was due to the increase in frequency of fast open events, which was a steep function of the intermediate voltage and the interval between the conditioning pulse and the test pulse. Additional analysis demonstrated that fast gating is the property of the same individual channels that normally gate slowly and that the channels adopt this property after a sojourn in the open state. The rapid secondary activation seen after depolarizing prepulses is not compatible with a linear activation model for the calcium channel, but is highly consistent with a cyclical model. A six- state cyclical model is

  20. Inhibition of N-Type Calcium Channels by Fluorophenoxyanilide Derivatives

    PubMed Central

    Gleeson, Ellen C.; Graham, Janease E.; Spiller, Sandro; Vetter, Irina; Lewis, Richard J.; Duggan, Peter J.; Tuck, Kellie L.

    2015-01-01

    A set of fluorophenoxyanilides, designed to be simplified analogues of previously reported ω-conotoxin GVIA mimetics, were prepared and tested for N-type calcium channel inhibition in a SH-SY5Y neuroblastoma FLIPR assay. N-type or Cav2.2 channel is a validated target for the treatment of refractory chronic pain. Despite being significantly less complex than the originally designed mimetics, up to a seven-fold improvement in activity was observed. PMID:25871286

  1. Functional interaction between mouse spermatogenic LVA and thapsigargin-modulated calcium channels.

    PubMed

    Stamboulian, Séverine; De Waard, Michel; Villaz, Michel; Arnoult, Christophe

    2002-12-01

    The acrosome reaction in mouse is triggered by a long-lasting calcium signaling produced by a chain of openings of several calcium channels, a low-voltage-activated (LVA) calcium channel, an inositol trisphosphate receptor (IP(3)R), and the store-operated calcium channel TRP2. Since mature sperm cells are refractory to patch clamp experiments, we study the functional interactions among those sperm calcium channels in spermatogenic cells. We have studied the role of cytosolic calcium in voltage-dependent facilitation of low voltage-activated calcium channels. Calcium concentration was modified through the inclusion of the calcium buffers, EGTA and BAPTA, in the recording pipette solution, and by addition of calcium modulators like thapsigargin and the calcium ionophore A23187. We demonstrate that lowering calcium concentration below resting level allows to evidence a voltage-dependent facilitation. We also show that LVA calcium channels present strong voltage-dependent inhibition by thapsigargin. This effect is independent of cytosolic calcium elevation secondary to calcium store depletion and to the activation of TRP channels. Our data evidence an interesting functional relationship, in this cell type, between LVA channels and proteins whose activity is related to calcium filling state of the endoplasmic reticulum (presumably TRP channels and inositol triphosphate receptor). These relationships may contribute to the regulation of calcium signaling during acrosome reaction of mature sperm cell.

  2. Calcium channel block by cadmium in chicken sensory neurons

    SciTech Connect

    Swandulla, D.; Armstrong, C.M. )

    1989-03-01

    Cadmium block of calcium channels was studied in chicken dorsal root ganglion cells by a whole-cell patch clamp that provides high time resolution. Barium ion was the current carrier, and the channel type studied had a high threshold of activation and fast deactivation (type FD). Block of these channels by 20 {mu}M external Cd{sup 2+} is voltage dependent. Cd{sup 2+} ions can be cleared from blocked channels by stepping the membrane voltage (V{sub m}) to a negative value. Clearing the channels is progressively faster and more complete as V{sub m} is made more negative. Once cleared of Cd{sup 2+}, the channels conduct transiently on reopening but reequilibrate with Cd{sup 2+} and become blocked within a few milliseconds. Cd{sup 2+} equilibrates much more slowly with closed channels, but at a holding potential of {minus}80 mV virtually all channels are blocked at equilibrium. Cd{sup 2+} does not slow closing of the channels, as would be expected if it were necessary for Cd{sup 2+} to leave the channels before closing occurred. Instead, the data show unambiguously that the channel gate can close when the channel is Cd{sup 2+} occupied.

  3. Calcium Channel Block by Cadmium in Chicken Sensory Neurons

    NASA Astrophysics Data System (ADS)

    Swandulla, D.; Armstrong, C. M.

    1989-03-01

    Cadmium block of calcium channels was studied in chicken dorsal root ganglion cells by a whole-cell patch clamp that provides high time resolution. Barium ion was the current carrier, and the channel type studied had a high threshold of activation and fast deactivation (type FD). Block of these channels by 20 μ M external Cd2+ is voltage dependent. Cd2+ ions can be cleared from blocked channels by stepping the membrane voltage (Vm) to a negative value. Clearing the channels is progressively faster and more complete as Vm is made more negative. Once cleared of Cd2+, the channels conduct transiently on reopening but reequilibrate with Cd2+ and become blocked within a few milliseconds. Cd2+ equilibrates much more slowly with closed channels, but at a holding potential of -80 mV virtually all channels are blocked at equilibrium. Cd2+ does not slow closing of the channels, as would be expected if it were necessary for Cd2+ to leave the channels before closing occurred. Instead, the data show unambiguously that the channel gate can close when the channel is Cd2+ occupied.

  4. Diltiazem and verapamil preferentially block inactivated cardiac calcium channels.

    PubMed

    Kanaya, S; Arlock, P; Katzung, B G; Hondeghem, L M

    1983-02-01

    Diltiazem has been proposed to act by blocking calcium channels of cardiac and smooth muscle since it has pharmacological [12-14] and clinical [10] effects that resemble those of verapamil, an agent that has been shown to block these channels [3]. However, block of the slow inward current by diltiazem has not been directly demonstrated. In fact, it has been suggested that diltiazem has an entirely different mechanism of action [7]. We therefore studied the blocking effects of diltiazem and verapamil on cardiac calcium channels by measuring the slow inward current in voltage-clamped ferret myocardium. Both drugs blocked the slow inward current in a use-dependent fashion, i.e. the block was enhanced by increased frequency of activating clamps and by more positive holding potentials. However, we found that short single activating clamps resulted in minimal block, whereas prolonging the clamp step progressively enhanced the blockade. Thus, a single long clamp caused as much blockade as a train of shorter pulses. These results demonstrate that diltiazem and verapamil block the slow inward current by binding to calcium channels in a state-dependent fashion, i.e. inactivated channels have a high affinity for the drugs, while rested and open channels have a lower affinity.

  5. Location of Release Sites and Calcium-Activated Chloride Channels Relative to Calcium Channels at the Photoreceptor Ribbon Synapse

    PubMed Central

    Mercer, A. J.; Rabl, K.; Riccardi, G. E.; Brecha, N. C.; Stella, S. L.

    2011-01-01

    Vesicle release from photoreceptor ribbon synapses is regulated by L-type Ca2+ channels, which are in turn regulated by Cl− moving through calcium-activated chloride [Cl(Ca)] channels. We assessed the proximity of Ca2+ channels to release sites and Cl(Ca) channels in synaptic terminals of salamander photoreceptors by comparing fast (BAPTA) and slow (EGTA) intracellular Ca2+ buffers. BAPTA did not fully block synaptic release, indicating some release sites are <100 nm from Ca2+ channels. Comparing Cl(Ca) currents with predicted Ca2+ diffusion profiles suggested that Cl(Ca) and Ca2+ channels average a few hundred nanometers apart, but the inability of BAPTA to block Cl(Ca) currents completely suggested some channels are much closer together. Diffuse immunolabeling of terminals with an antibody to the putative Cl(Ca) channel TMEM16A supports the idea that Cl(Ca) channels are dispersed throughout the presynaptic terminal, in contrast with clustering of Ca2+ channels near ribbons. Cl(Ca) currents evoked by intracellular calcium ion concentration ([Ca2+]i) elevation through flash photolysis of DM-nitrophen exhibited EC50 values of 556 and 377 nM with Hill slopes of 1.8 and 2.4 in rods and cones, respectively. These relationships were used to estimate average submembrane [Ca2+]i in photoreceptor terminals. Consistent with control of exocytosis by [Ca2+] nanodomains near Ca2+ channels, average submembrane [Ca2+]i remained below the vesicle release threshold (∼400 nM) over much of the physiological voltage range for cones. Positioning Ca2+ channels near release sites may improve fidelity in converting voltage changes to synaptic release. A diffuse distribution of Cl(Ca) channels may allow Ca2+ influx at one site to influence relatively distant Ca2+ channels. PMID:21084687

  6. Oxidative Stress and Maxi Calcium-Activated Potassium (BK) Channels

    PubMed Central

    Hermann, Anton; Sitdikova, Guzel F.; Weiger, Thomas M.

    2015-01-01

    All cells contain ion channels in their outer (plasma) and inner (organelle) membranes. Ion channels, similar to other proteins, are targets of oxidative impact, which modulates ion fluxes across membranes. Subsequently, these ion currents affect electrical excitability, such as action potential discharge (in neurons, muscle, and receptor cells), alteration of the membrane resting potential, synaptic transmission, hormone secretion, muscle contraction or coordination of the cell cycle. In this chapter we summarize effects of oxidative stress and redox mechanisms on some ion channels, in particular on maxi calcium-activated potassium (BK) channels which play an outstanding role in a plethora of physiological and pathophysiological functions in almost all cells and tissues. We first elaborate on some general features of ion channel structure and function and then summarize effects of oxidative alterations of ion channels and their functional consequences. PMID:26287261

  7. Mibefradil block of cloned T-type calcium channels.

    PubMed

    Martin, R L; Lee, J H; Cribbs, L L; Perez-Reyes, E; Hanck, D A

    2000-10-01

    Mibefradil is a tetralol derivative chemically distinct from other calcium channel antagonists. It is a very effective antihypertensive agent that is thought to achieve its action via a higher affinity block for low-voltage-activated (T) than for high-voltage-activated (L) calcium channels. Estimates of affinity using Ba(2+) as the charge carrier have predicted a 10- to 15-fold preference of mibefradil for T channels over L channels. However, T channel IC(50) values are reported to be approximately 1 microM, which is much higher than expected for clinical efficacy because relevant blood levels of this drug are approximately 50 nM. We compared the affinity for mibefradil of the newly cloned T channel isoforms, alpha1G, alpha1H, and alpha1I with an L channel, alpha1C. In 10 mM Ba(2+), mibefradil blocked in the micromolar range and with 12- to 13-fold greater affinity for T channels than for L channels (approximately 1 microM versus 13 microM). When 2 mM Ca(2+) was used as the charge carrier, the drug was more efficacious; the IC(50) for alpha1G shifted to 270 nM and for alpha1H shifted to 140 nM, 4.5- and 9-fold higher affinity than in 10 mM Ba. The data are consistent with the idea that mibefradil competes for its binding site on the channel with the permeant species and that Ba(2+) is a more effective competitor than Ca(2+). Raising temperature to 35 degrees C reduced affinity (IC(50) 792 nM). Reducing channel availability to half increased affinity ( approximately 70 nM). This profile of mibefradil affinity makes these channels good candidates for the physiological target of this antihypertensive agent.

  8. [Obtaining antibodies to 1,4-dihydropyridine calcium channel blockers].

    PubMed

    Burkin, A A; Murkin, M A

    2008-01-01

    Immunization of rabbits with amlodipine conjugated with horseradish peroxidase resulted in raising polyclonal antibodies that allowed group determination of 1,4-dihydropyridine calcium channel blockers in aqueous solutions by ELISA with a sensitivity of 0.1 to 1.0 ng/ml for amlodipine, felodipine, nifedipine, and isradipine.

  9. Release of calcium from endolysosomes increases calcium influx through N-type calcium channels: Evidence for acidic store-operated calcium entry in neurons.

    PubMed

    Hui, Liang; Geiger, Nicholas H; Bloor-Young, Duncan; Churchill, Grant C; Geiger, Jonathan D; Chen, Xuesong

    2015-12-01

    Neurons possess an elaborate system of endolysosomes. Recently, endolysosomes were found to have readily releasable stores of intracellular calcium; however, relatively little is known about how such 'acidic calcium stores' affect calcium signaling in neurons. Here we demonstrated in primary cultured neurons that calcium released from acidic calcium stores triggered calcium influx across the plasma membrane, a phenomenon we have termed "acidic store-operated calcium entry (aSOCE)". aSOCE was functionally distinct from store-operated calcium release and calcium entry involving endoplasmic reticulum. aSOCE appeared to be governed by N-type calcium channels (NTCCs) because aSOCE was attenuated significantly by selectively blocking NTCCs or by siRNA knockdown of NTCCs. Furthermore, we demonstrated that NTCCs co-immunoprecipitated with the lysosome associated membrane protein 1 (LAMP1), and that aSOCE is accompanied by increased cell-surface expression levels of NTCC and LAMP1 proteins. Moreover, we demonstrated that siRNA knockdown of LAMP1 or Rab27a, both of which are key proteins involved in lysosome exocytosis, attenuated significantly aSOCE. Taken together our data suggest that aSOCE occurs in neurons, that aSOCE plays an important role in regulating the levels and actions of intraneuronal calcium, and that aSOCE is regulated at least in part by exocytotic insertion of N-type calcium channels into plasma membranes through LAMP1-dependent lysosome exocytosis.

  10. Models of calcium permeation through T-type channels.

    PubMed

    Shuba, Yaroslav M

    2014-04-01

    Ca(2+) entry is indispensable part of intracellular Ca(2+) signaling, which is vital for most of cellular functions. Low voltage-activated (LVA or T-type) calcium channels belong to the family of voltage-gated calcium channels (VGCCs) which provide Ca(2+) entry in response to membrane depolarization. VGCCs are generally characterized by exceptional Ca(2+) selectivity combined with high permeation rate, thought to be determined by the presence in their selectivity filter of a versatile Ca(2+) binding site formed by four glutamate residues (EEEE motif). The subfamily of LVA channels includes three members, Cav3.1, Cav3.2 and Cav3.3. They all possess two aspartates instead of glutamates (i.e., EEDD motif) in their selectivity filter and are the least Ca(2+)-selective of all VGCCs. They also have the lowest conductance, weakly discriminate Ca(2+), Sr(2+) and Ba(2+) and demonstrate channel-specific sensitivity to divalent metal blockers, such as Ni(2+). The available data suggest that EEDD binding site of LVA channels is more rigid compared to EEEE one, and their selectivity permeation and block are determined by two supplementary low-affinity intrapore Ca(2+) binding sites located above and below EEDD locus. In addition, LVA channels have extracellular metal binding site that allosterically regulates channel's gating, permeation and block depending on trace metals concentration.

  11. Treatment for calcium channel blocker poisoning: A systematic review

    PubMed Central

    Dubé, P.-A.; Gosselin, S.; Guimont, C.; Godwin, J.; Archambault, P. M.; Chauny, J.-M.; Frenette, A. J.; Darveau, M.; Le sage, N.; Poitras, J.; Provencher, J.; Juurlink, D. N.; Blais, R.

    2014-01-01

    Context Calcium channel blocker poisoning is a common and sometimes life-threatening ingestion. Objective To evaluate the reported effects of treatments for calcium channel blocker poisoning. The primary outcomes of interest were mortality and hemodynamic parameters. The secondary outcomes included length of stay in hospital, length of stay in intensive care unit, duration of vasopressor use, functional outcomes, and serum calcium channel blocker concentrations. Methods Medline/Ovid, PubMed, EMBASE, Cochrane Library, TOXLINE, International pharmaceutical abstracts, Google Scholar, and the gray literature up to December 31, 2013 were searched without time restriction to identify all types of studies that examined effects of various treatments for calcium channel blocker poisoning for the outcomes of interest. The search strategy included the following Keywords: [calcium channel blockers OR calcium channel antagonist OR calcium channel blocking agent OR (amlodipine or bencyclane or bepridil or cinnarizine or felodipine or fendiline or flunarizine or gallopamil or isradipine or lidoflazine or mibefradil or nicardipine or nifedipine or nimodipine or nisoldipine or nitrendipine or prenylamine or verapamil or diltiazem)] AND [overdose OR medication errors OR poisoning OR intoxication OR toxicity OR adverse effect]. Two reviewers independently selected studies and a group of reviewers abstracted all relevant data using a pilot-tested form. A second group analyzed the risk of bias and overall quality using the STROBE (STrengthening the Reporting of OBservational studies in Epidemiology) checklist and the Thomas tool for observational studies, the Institute of Health Economics tool for Quality of Case Series, the ARRIVE (Animal Research: Reporting In Vivo Experiments) guidelines, and the modified NRCNA (National Research Council for the National Academies) list for animal studies. Qualitative synthesis was used to summarize the evidence. Of 15,577 citations identified in

  12. Ion channels and calcium signaling in motile cilia

    PubMed Central

    Doerner, Julia F; Delling, Markus; Clapham, David E

    2015-01-01

    The beating of motile cilia generates fluid flow over epithelia in brain ventricles, airways, and Fallopian tubes. Here, we patch clamp single motile cilia of mammalian ependymal cells and examine their potential function as a calcium signaling compartment. Resting motile cilia calcium concentration ([Ca2+] ~170 nM) is only slightly elevated over cytoplasmic [Ca2+] (~100 nM) at steady state. Ca2+ changes that arise in the cytoplasm rapidly equilibrate in motile cilia. We measured CaV1 voltage-gated calcium channels in ependymal cells, but these channels are not specifically enriched in motile cilia. Membrane depolarization increases ciliary [Ca2+], but only marginally alters cilia beating and cilia-driven fluid velocity within short (~1 min) time frames. We conclude that beating of ependymal motile cilia is not tightly regulated by voltage-gated calcium channels, unlike that of well-studied motile cilia and flagella in protists, such as Paramecia and Chlamydomonas. DOI: http://dx.doi.org/10.7554/eLife.11066.001 PMID:26650848

  13. Calcium channel blockers for acute traumatic brain injury.

    PubMed

    Langham, J; Goldfrad, C; Teasdale, G; Shaw, D; Rowan, K

    2003-01-01

    Acute traumatic brain injury is a major cause of death and disability. Calcium channel blockers (calcium antagonists) have been used in an attempt to prevent cerebral vasospasm after injury, maintain blood flow to the brain, and so prevent further damage. To estimate the effects of calcium channel blockers in patients with acute traumatic brain injury, and in a subgroup of brain injury patients with traumatic subarachnoid haemorrhage. Handsearching and electronic searching for randomised controlled trials. Randomised controlled trials in patients with all levels of severity of clinically diagnosed acute traumatic brain injury. Two reviewers independently assessed the identified studies for eligibility and extracted data from each study. Summary odds ratios were calculated using the Mantel-Haenszel method. Six RCTs were identified as eligible for inclusion in the systematic review. The effect of calcium channel blockers on the risk of death was reported in five of the RCTs. The pooled odds ratio (OR) for the five studies was 0.91 (95% confidence interval [95%CI] 0.70-1.17). For the four RCTs that reported death and severe disability (unfavourable outcome), the pooled odds ratio was 0.85 (95%CI 0.68-1.07). In the two RCTs which reported the risk of death in a subgroup of traumatic subarachnoid haemorrhage patients, the pooled odds ratio was 0.59 (95%CI 0.37-0.94). Three RCTs reported death and severe disability as an outcome in this subgroup, and the pooled odds ratio was 0.67 (95%CI 0.46-0.98). This systematic review of randomised controlled trials of calcium channel blockers in acute traumatic head injury patients shows that considerable uncertainty remains over their effects. The effect of nimodipine in a subgroup of brain injury patients with subarachnoid haemorrhage shows a beneficial effect, though the increase in adverse reactions suffered by the intervention group may mean that the drug is harmful for some patients.

  14. G protein-induced trafficking of voltage-dependent calcium channels.

    PubMed

    Tombler, Eugene; Cabanilla, Nory Jun; Carman, Paul; Permaul, Natasha; Hall, John J; Richman, Ryan W; Lee, Jessica; Rodriguez, Jennifer; Felsenfeld, Dan P; Hennigan, Robert F; Diversé-Pierluissi, María A

    2006-01-20

    Calcium channels are well known targets for inhibition by G protein-coupled receptors, and multiple forms of inhibition have been described. Here we report a novel mechanism for G protein-mediated modulation of neuronal voltage-dependent calcium channels that involves the destabilization and subsequent removal of calcium channels from the plasma membrane. Imaging experiments in living sensory neurons show that, within seconds of receptor activation, calcium channels are cleared from the membrane and sequestered in clathrin-coated vesicles. Disruption of the L1-CAM-ankyrin B complex with the calcium channel mimics transmitter-induced trafficking of the channels, reduces calcium influx, and decreases exocytosis. Our results suggest that G protein-induced removal of plasma membrane calcium channels is a consequence of disrupting channel-cytoskeleton interactions and might represent a novel mechanism of presynaptic inhibition.

  15. Intracellular Calcium Mobilization in Response to Ion Channel Regulators via a Calcium-Induced Calcium Release Mechanism

    PubMed Central

    Petrou, Terry; Olsen, Hervør L.; Thrasivoulou, Christopher; Masters, John R.; Ashmore, Jonathan F.

    2017-01-01

    Free intracellular calcium ([Ca2+]i), in addition to being an important second messenger, is a key regulator of many cellular processes including cell membrane potential, proliferation, and apoptosis. In many cases, the mobilization of [Ca2+]i is controlled by intracellular store activation and calcium influx. We have investigated the effect of several ion channel modulators, which have been used to treat a range of human diseases, on [Ca2+]i release, by ratiometric calcium imaging. We show that six such modulators [amiodarone (Ami), dofetilide, furosemide (Fur), minoxidil (Min), loxapine (Lox), and Nicorandil] initiate release of [Ca2+]i in prostate and breast cancer cell lines, PC3 and MCF7, respectively. Whole-cell currents in PC3 cells were inhibited by the compounds tested in patch-clamp experiments in a concentration-dependent manner. In all cases [Ca2+]i was increased by modulator concentrations comparable to those used clinically. The increase in [Ca2+]i in response to Ami, Fur, Lox, and Min was reduced significantly (P < 0.01) when the external calcium was reduced to nM concentration by chelation with EGTA. The data suggest that many ion channel regulators mobilize [Ca2+]i. We suggest a mechanism whereby calcium-induced calcium release is implicated; such a mechanism may be important for understanding the action of these compounds. PMID:27980039

  16. Localization of calcium channels in Paramecium caudatum.

    PubMed Central

    Dunlap, K

    1977-01-01

    1. Electrical recordings from Paramecium caudatum were made after removal of the cilia with chloral hydrate and during ciliary regrowth to study the electrical properties of that portion of the surface membrane enclosing the ciliary axoneme. 2. Removal of the somatic cilia (a 50% reduction in membrane surface area) results in an almost complete elimination of the regenerative Ca response, all-or-none Ba2+ spike, and delayed rectification. 3. A twofold increase in input resistance resulted from the 50% reduction in membrane surface area. 4. The electrical properties remained unchanged, despite prolonged exposure to the chloral hydrate, until the cilia were mechanically removed. 5. Restoration of the Ca response accompanied ciliary regrowth, so that complete excitability returns when the cilia regain their original lengths. 6. It is concluded that the voltage-sensitive Ca channels are localized to that portion of surface membrane surrounding the cilia. 7. Measurements of membrane constants before and after deciliation and estimations of the cable constants of a single cilium suggest that the cilia of Paramecium may be fully isopotential along their length and with the major cell compartment. Images Plate 1 Plate 2 PMID:915829

  17. Erk1/2 inhibit synaptic vesicle exocytosis through L type calcium channels

    PubMed Central

    Subramanian, Jaichandar; Morozov, Alexei

    2011-01-01

    L type calcium channels play only a minor role in basal neurotransmitter release in brain neurons, but contribute significantly after induction of plasticity. Very little is known about mechanisms that enable L type calcium channel participation in neurotransmitter release. Here, using mouse primary cortical neurons, we found that inhibition of Erk1/2 enhanced synaptic vesicle exocytosis by increasing calcium influx through L type calcium channels. Furthermore, inhibition of Erk1/2 increased the surface fraction of these channels. These findings indicate a novel inhibitory effect of Erk1/2 on synaptic transmission through L type calcium channels. PMID:21430174

  18. Interneuronal calcium channel abnormalities in posttraumatic epileptogenic neocortex

    PubMed Central

    Faria, Leonardo C.; Parada, Isabel; Prince, David A.

    2012-01-01

    Decreased release probability (Pr) and increased failure rate for monosynaptic inhibitory postsynaptic currents (IPSCs) indicate abnormalities in presynaptic inhibitory terminals on pyramidal (Pyr) neurons of the undercut (UC) model of posttraumatic epileptogenesis. These indices of inhibition are normalized in high [Ca++] ACSF, suggesting dysfunction of Ca2+ channels in GABAergic terminals. We tested this hypothesis using selective blockers of P/Q and N-type Ca2+ channels whose activation underlies transmitter release in cortical inhibitory terminals. Pharmacologically isolated monosynaptic IPSCs were evoked in layer V Pyr cells by extracellular stimuli in adult rat sensorimotor cortical slices. Local perfusion of 0.2/1 μM ω-agatoxin IVa and/or 1 μM ω-conotoxin GVIA was used to block P/Q and N-type calcium channels, respectively. In control layer V Pyr cells, peak amplitude of eIPSCs was decreased by ~50% after treatment with either 1 μM ω-conotoxin GVIA or 1 μM ω-agatoxin IVa. In contrast, there was a lack of sensitivity to 1 μM ω-conotoxin GVIA in UCs. Immunocytochemical results confirmed decreased perisomatic density of N-channels on Pyr cells in UCs. We suggest that decreased calcium influx via N-type channels in presynaptic GABAergic terminals is a mechanism contributing to decreased inhibitory input onto layer V Pyr cells in this model of cortical posttraumatic epileptogenesis. PMID:22172650

  19. Self-organized models of selectivity in calcium channels

    NASA Astrophysics Data System (ADS)

    Giri, Janhavi; Fonseca, James E.; Boda, Dezső; Henderson, Douglas; Eisenberg, Bob

    2011-04-01

    The role of flexibility in the selectivity of calcium channels is studied using a simple model with two parameters that accounts for the selectivity of calcium (and sodium) channels in many ionic solutions of different compositions and concentrations using two parameters with unchanging values. We compare the distribution of side chains (oxygens) and cations (Na+ and Ca2+) and integrated quantities. We compare the occupancies of cations Ca2+/Na+ and linearized conductance of Na+. The distributions show a strong dependence on the locations of fixed side chains and the flexibility of the side chains. Holding the side chains fixed at certain predetermined locations in the selectivity filter distorts the distribution of Ca2+ and Na+ in the selectivity filter. However, integrated quantities—occupancy and normalized conductance—are much less sensitive. Our results show that some flexibility of side chains is necessary to avoid obstruction of the ionic pathway by oxygen ions in 'unfortunate' fixed positions. When oxygen ions are mobile, they adjust 'automatically' and move 'out of the way', so they can accommodate the permeable cations in the selectivity filter. Structure is the computed consequence of the forces in this model. The structures are self-organized, at their free energy minimum. The relationship of ions and side chains varies with an ionic solution. Monte Carlo simulations are particularly well suited to compute induced-fit, self-organized structures because the simulations yield an ensemble of structures near their free energy minimum. The exact location and mobility of oxygen ions has little effect on the selectivity behavior of calcium channels. Seemingly, nature has chosen a robust mechanism to control selectivity in calcium channels: the first-order determinant of selectivity is the density of charge in the selectivity filter. The density is determined by filter volume along with the charge and excluded volume of structural ions confined within it

  20. Calcium channel gamma subunits: a functionally diverse protein family.

    PubMed

    Chen, Ren-Shiang; Deng, Tzyy-Chyn; Garcia, Thomas; Sellers, Zachary M; Best, Philip M

    2007-01-01

    The calcium channel gamma subunits comprise an eight-member protein family that share a common topology consisting of four transmembrane domains and intracellular N- and C-termini. Although the first gamma subunit was identified as an auxiliary subunit of a voltage-dependent calcium channel, a review of phylogenetic, bioinformatic, and functional studies indicates that they are a functionally diverse protein family. A cluster containing gamma1 and gamma6 conforms to the original description of the protein family as they seem to act primarily as subunits of calcium channels expressed in muscle. Members of a second cluster (gamma2, gamma3, gamma4, gamma8) function as regulators of AMPA receptor localization and function in the brain and are collectively known as TARPs. The function of members of the third cluster (gamma5, gamma7) remains unclear. Our analysis shows that the members of each cluster contain conserved regulatory motifs that help to differentiate the groups. However, the physiological significance of these motifs in many cases remains to be demonstrated.

  1. Single calcium channel behavior in native skeletal muscle

    PubMed Central

    1995-01-01

    The purpose of this study was to use whole-cell and cell-attached patches of cultured skeletal muscle myotubes to study the macroscopic and unitary behavior of voltage-dependent calcium channels under similar conditions. With 110 mM BaCl2 as the charge carrier, two types of calcium channels with markedly different single-channel and macroscopic properties were found. One class was DHP-insensitive, had a single-channel conductance of approximately 9 pS, yielded ensembles that displayed an activation threshold near -40 mV, and activated and inactivated rapidly in a voltage-dependent manner (T current). The second class could only be well resolved in the presence of the DHP agonist Bay K 8644 (5 microM) and had a single-channel conductance of approximately 14 pS (L current). The 14-pS channel produced ensembles exhibiting a threshold of approximately -10 mV that activated slowly (tau act approximately 20 ms) and displayed little inactivation. Moreover, the DHP antagonist, (+)-PN 200-110 (10 microM), greatly increased the percentage of null sweeps seen with the 14-pS channel. The open probability versus voltage relationship of the 14-pS channel was fitted by a Boltzmann distribution with a VP0.5 = 6.2 mV and kp = 5.3 mV. L current recorded from whole-cell experiments in the presence of 110 mM BaCl2 + 5 microM Bay K 8644 displayed similar time- and voltage-dependent properties as ensembles of the 14-pS channel. Thus, these data are the first comparison under similar conditions of the single-channel and macroscopic properties of T current and L current in native skeletal muscle, and identify the 9- and 14-pS channels as the single-channel correlates of T current and L current, respectively. PMID:7539048

  2. Different calcium channels are coupled to potassium channels with distinct physiological roles in vagal neurons.

    PubMed

    Sah, P

    1995-04-22

    Whole-cell and sharp microelectrode recordings were obtained from neurons of rat dorsal motor nucleus of the vagus (DMV) in transverse slices of the rat medulla maintained in vitro. Calcium currents were studied with sodium currents blocked with tetrodotoxin, potassium currents blocked by perfusing the cell with caesium as the main cation and using barium as the charge carrier. From a holding potential of -60 mV, inward currents activated at potentials positive of -50 mV and peaked around 0 mV. Voltage clamping the neuron at more hyperpolarised potentials did not reveal any low-threshold inward current. The inward current was effectively blocked by cadmium (100 microM) and nicked (1 mM), suggesting that it is carried by voltage-dependent calcium channels. The inward current could be separated into three pharmacologically distinct components: 40% of the whole cell current was omega-conotoxin sensitive; 20% of the current was nifedipine sensitive; and the rest was blocked by high concentrations of cadmium and nickel. This remaining current cannot be due to P-type calcium channels as omega-agatoxin had no effect on the inward current. Nifedipine had no significant effect on the action potential. Application of omega-conotoxin reduced the calcium component of the action potential and significantly reduced the potassium current underlying the afterhyperpolarization. Application of charybdotoxin slowed action potential repolarization. When N-type calcium channels were blocked with omega-conotoxin, charybdotoxin was still effective in slowing repolarization. In contrast, charybdotoxin was ineffective ineffective when calcium influx was blocked with the non-specific calcium channel blocker cadmium.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. PRESENILIN-NULL CELLS HAVE ALTERED TWO-PORE CALCIUM CHANNEL EXPRESSION AND LYSOSOMAL CALCIUM; IMPLICATIONS FOR LYSOSOMAL FUNCTION

    PubMed Central

    Kayala, Kara M Neely; Dickinson, George D; Minassian, Anet; Walls, Ken C; Green, Kim N; LaFerla, Frank M

    2012-01-01

    Presenilins are necessary for calcium homeostasis and also for efficient proteolysis through the autophagy/lysosome system. Presenilin regulates both endoplasmic reticulum calcium stores and autophagic proteolysis in a γ-secretase independent fashion. The endo-lysosome system can also act as a calcium store, with calcium efflux channels being recently identified as two-pore channels 1 and 2. Here we investigated lysosomal calcium content and the channels that mediate calcium release from these acidic stores in presenilin knockout cells. We report that presenilin loss leads to a lower total lysosomal calcium store despite the buildup of lysosomes found in these cells. Additionally, we find alterations in two-pore calcium channel protein expression, with loss of presenilin preventing the formation of a high molecular weight species of TPC1 and TPC2. Finally, we find that treatments that disturb lysosomal calcium release lead to a reduction in autophagy function yet lysosomal inhibitors do not alter two-pore calcium channel expression. These data indicate that alterations in lysosomal calcium in the absence of presenilins might be leading to disruptions in autophagy. PMID:23103503

  4. Role of TRPC Channels in Store-Operated Calcium Entry.

    PubMed

    Ong, Hwei Ling; de Souza, Lorena Brito; Ambudkar, Indu S

    2016-01-01

    Store-operated calcium entry (SOCE) is a ubiquitous Ca(2+) entry pathway that is activated in response to depletion of Ca(2+) stores within the endoplasmic reticulum (ER) and contributes to the control of various physiological functions in a wide variety of cell types. The transient receptor potential canonical (TRPC) channels (TRPCs 1-7), that are activated by stimuli leading to PIP2 hydrolysis, were first identified as molecular components of SOCE channels. TRPC channels show a miscellany of tissue expression, physiological functions and channel properties. However, none of the TRPC members display currents that resemble I CRAC. Intensive search for the CRAC channel component led to identification of Orai1 and STIM1, now established as being the primary constituents of the CRAC channel. There is now considerable evidence that STIM1 activates both Orai1 and TRPC1 via distinct domains in its C-terminus. Intriguingly, TRPC1 function is not only dependent on STIM1 but also requires Orai1. The critical functional interaction between TRPC1 and Orai1, which determines the activation of TRPC1, has also been identified. In this review, we will discuss current concepts regarding the role of TRPC channels in SOCE, the physiological functions regulated by TRPC-mediated SOCE, and the complex mechanisms underlying the regulation of TRPCs, including the functional interactions with Orai1 and STIM1.

  5. Differential inhibition of T-type calcium channels by neuroleptics.

    PubMed

    Santi, Celia M; Cayabyab, Francisco S; Sutton, Kathy G; McRory, John E; Mezeyova, Janette; Hamming, Kevin S; Parker, David; Stea, Anthony; Snutch, Terrance P

    2002-01-15

    T-type calcium channels play critical roles in cellular excitability and have been implicated in the pathogenesis of a variety of neurological disorders including epilepsy. Although there have been reports that certain neuroleptics that primarily target D2 dopamine receptors and are used to treat psychoses may also interact with T-type Ca channels, there has been no systematic examination of this phenomenon. In the present paper we provide a detailed analysis of the effects of several widely used neuroleptic agents on a family of exogenously expressed neuronal T-type Ca channels (alpha1G, alpha1H, and alpha1I subtypes). Among the neuroleptics tested, the diphenylbutylpiperidines pimozide and penfluridol were the most potent T-type channel blockers with Kd values (approximately 30-50 nm and approximately 70-100 nm, respectively), in the range of their antagonism of the D2 dopamine receptor. In contrast, the butyrophenone haloperidol was approximately 12- to 20-fold less potent at blocking the various T-type Ca channels. The diphenyldiperazine flunarizine was also less potent compared with the diphenylbutylpiperadines and preferentially blocked alpha1G and alpha1I T-type channels compared with alpha1H. The various neuroleptics did not significantly affect T-type channel activation or kinetic properties, although they shifted steady-state inactivation profiles to more negative values, indicating that these agents preferentially bind to channel inactivated states. Overall, our findings indicate that T-type Ca channels are potently blocked by a subset of neuroleptic agents and suggest that the action of these drugs on T-type Ca channels may significantly contribute to their therapeutic efficacy.

  6. Heterogeneity of conductance states in calcium channels of skeletal muscle.

    PubMed Central

    Ma, J; Coronado, R

    1988-01-01

    The single channel conductance of the dihydropyridine (DHP)-sensitive calcium channel from rabbit skeletal muscle transverse tubules was analyzed in detail using the planar bilayer recording technique. With 0.1 M BaCl2 on both sides of the channel (symmetrical solutions), the most frequent conductance is 12 pS, which is independent of holding potential in the range of -80 to +80 mV. This conductance accounts for approximately 80% of all openings analyzed close to 0 mV. Two additional channels of conductance 9 and 3 pS are also present at all positive potentials, but their relative occurrence close to 0 mV is low. All channels depend on the presence of agonist Bay K 8644 and are inhibited by the antagonist nitrendipine. The relative occurrence of 9 and 3 pS can be increased, and that of 12 pS decreased, by several interventions such as external addition of cholesterol, lectin (wheat germ agglutinin), or calmodulin inhibitor R24571 (calmidazolium). The 9- and 3-pS channels are also conspicuous at positive potentials larger than +40 mV. We suggest that 9- and 3-pS channels are two elementary conductances of the same DHP-sensitive Ca channel. Under most circumstances, these two conductances are gated in a coupled way to generate a channel with a unitary conductance of 12 pS. Interventions tested, including large depolarizations, probably decompose or uncouple the 12-pS channel into 9 and 3 pS. PMID:2450596

  7. Crystal Structure of the Epithelial Calcium Channel TRPV6

    PubMed Central

    Saotome, Kei; Singh, Appu K.; Yelshanskaya, Maria V.; Sobolevsky, Alexander I.

    2016-01-01

    Summary Precise regulation of calcium homeostasis is essential for many physiological functions. The Ca2+-selective TRP channels TRPV5 and TRPV6 play vital roles in calcium homeostasis as Ca2+ uptake channels in epithelial tissues. Detailed structural bases for their assembly and Ca2+ permeation remain obscure. Here, we report the crystal structure of rat TRPV6 at 3.25 Å resolution. The overall architecture of TRPV6 reveals shared and unique features compared to other TRP channels. Intracellular domains engage in extensive interactions to form an intracellular “skirt” involved in allosteric modulation. In the K+ channel-like transmembrane domain, Ca2+ selectivity is determined by direct coordination of Ca2+ by a ring of aspartate side chains in the selectivity filter. Based on crystallographically identified cation binding sites at the pore axis and extracellular vestibule, we propose a Ca2+ permeation mechanism. Our results provide a structural foundation to understand the regulation of epithelial Ca2+ uptake and its role in pathophysiology. PMID:27296226

  8. Voltage sensitive calcium channels (VSCC) in cultured neuronal hybrid cells

    SciTech Connect

    Richard, C.L.; U'Prichard, D.C.; Noronha-Blob, L.

    1986-03-01

    Calcium entry via VSCC has been identified in selected, neuronal clonal cell lines using /sup 45/Ca uptake and the fluorescent calcium indicator, quin 2. VSCC in NG108-15 hybrid cells, differentiated with dibutyryl cyclic AMP (1 mM, 4 days) have been further characterized. Depolarization (50 mM K/sup +/, dp) resulted in a rapid (15 sec) influx of Ca/sup 2 +/. Intracellular calcium concentrations were elevated approx. 3 fold from 223 +- 68 nM to 666 +- 74 nM. Dp-sensitive calcium entry was voltage dependent, independent of Na/sup +/, stimulated (40%) by the agonist Bay K 8644 (1..mu..M) and blocked by divalent cations (..mu..M range) and organic calcium channel antagonists (nM range) Bay K 8644, in the absence of KCl, failed to stimulate Ca/sup 2 +/ influx. Tetrodotoxin (TTX) and tetraethylammonium had no effect on VSCC activity. Blockage of VSCC by nimodipine was reversed by increasing Ca/sup 2 +/ ions. IC/sub 50/ values were right shifted from 6.5 nM (1mM/sup 0/Ca/sup 2 +/) to 840 nM (10 mM Ca/sup 2 +/). Ca/sup 2 +/ entry was also stimulated by veratridine (VE), in a Na/sup +//sub 0/-sensitive manner. VE-induced Ca/sup 2 +/ entry was voltage-independent, TTX-sensitive, and was only 25% of dp-sensitive Ca/sup 2 +/ entry. These results together indicate that VSCC in neuronal cells offer a useful system for studying ion channel regulation.

  9. Physiology and Regulation of Calcium Channels in Stomatal Guard Cells

    SciTech Connect

    Schroeder, Julian I.

    2007-05-02

    Stomatal pores in the epidermis of leaves regulate the diffusion of CO2 into leaves for photosynthetic carbon fixation and control water loss of plants during drought periods. Guard cells sense CO2, water status, light and other environmental conditions to regulate stomatal apertures for optimization of CO2 intake and plant growth under drought stress. The cytosolic second messenger calcium contributes to stomatal movements by transducing signals and regulating ion channels in guard cells. Studies suggest that both plasma membrane Ca2+ influx channels and vacuolar/organellar Ca2+ release channels contribute to ABA-induced Ca2+ elevations in guard cells. Recent research in the P.I.'s laboratory has led to identification of a novel major cation-selective Ca2+-permeable influx channel (Ica) in the plasma membrane of Arabidopsis guard cells. These advances will allow detailed characterization of Ica plasma membrane Ca2+ influx channels in guard cells. The long term goal of this research project is to gain a first detailed characterization of these novel plasma membrane Ca2+-permeable channel currents in Arabidopsis guard cells. The proposed research will investigate the hypothesis that Ica represents an important Ca2+ influx pathway for ABA and CO2 signal transduction in Arabidopsis guard cells. These studies will lead to elucidation of key signal transduction mechanisms by which plants balance CO2 influx into leaves and transpirational water loss and may contribute to future strategies for manipulating gas exchange for improved growth of crop plants and for biomass production.

  10. Intracellular calcium strongly potentiates agonist-activated TRPC5 channels

    PubMed Central

    Blair, Nathaniel T.; Kaczmarek, J. Stefan

    2009-01-01

    TRPC5 is a calcium (Ca2+)-permeable nonselective cation channel expressed in several brain regions, including the hippocampus, cerebellum, and amygdala. Although TRPC5 is activated by receptors coupled to phospholipase C, the precise signaling pathway and modulatory signals remain poorly defined. We find that during continuous agonist activation, heterologously expressed TRPC5 currents are potentiated in a voltage-dependent manner (∼5-fold at positive potentials and ∼25-fold at negative potentials). The reversal potential, doubly rectifying current–voltage relation, and permeability to large cations such as N-methyl-d-glucamine remain unchanged during this potentiation. The TRPC5 current potentiation depends on extracellular Ca2+: replacement by Ba2+ or Mg2+ abolishes it, whereas the addition of 10 mM Ca2+ accelerates it. The site of action for Ca2+ is intracellular, as simultaneous fura-2 imaging and patch clamp recordings indicate that potentiation is triggered at ∼1 µM [Ca2+]. This potentiation is prevented when intracellular Ca2+ is tightly buffered, but it is promoted when recording with internal solutions containing elevated [Ca2+]. In cell-attached and excised inside-out single-channel recordings, increases in internal [Ca2+] led to an ∼10–20-fold increase in channel open probability, whereas single-channel conductance was unchanged. Ca2+-dependent potentiation should result in TRPC5 channel activation preferentially during periods of repetitive firing or coincident neurotransmitter receptor activation. PMID:19398778

  11. Calcium channel blockers enhance sac shrinkage after endovascular aneurysm repair.

    PubMed

    Bailey, Marc A; Sohrabi, Soroush; Flood, Karen; Griffin, Kathryn J; Rashid, S Tawqeer; Johnson, Anne B; Baxter, Paul D; Patel, Jai V; Scott, D Julian A

    2012-06-01

    Sac shrinkage is a surrogate marker of success after endovascular aneurysm repair (EVAR). We set out to determine if any common cardioprotective medications had a beneficial effect on sac shrinkage. This retrospective observational study took place at Leeds Vascular Institute, a tertiary vascular unit in the Northern United Kingdom. The cohort comprised 149 patients undergoing EVAR between January 1, 2005, and December 31, 2008. Medication use was recorded at intervention (verified at study completion in 33 patients), and patients were monitored for 2 years. The main outcome measures were the effect of medication on sac shrinkage as determined by percentage change in maximal idealized cross-sectional area of the aneurysm at 1 month, 6 months, 1 year, and 2 years by linear regression model, in addition to 2-year endoleak and death rates determined by a binary logistic regression model. After exclusions, 112 patients, who were a median age of 78 years (interquartile range, 78-83 years), remained for analysis. The median Glasgow Aneurysm Score was 85 (interquartile range, 79-92). At 2 years, mortality was 13.4%, endoleak developed in 37.5%, and significant endoleak developed in 14.3%. Patients taking a calcium channel blocker had enhanced sac shrinkage, compared with those not taking a calcium channel blocker, by 6.6% at 6 months (-3.0% to 16.3%, P = .09), 12.3% at 1 year (2.9% to 21.7%, P = .008), and 13.1% at 2 years (0.005% to 26.2%, P = .007) independent of other medication use, graft type, endoleak development, or death. Enhanced sac shrinkage occurred after EVAR in patients taking calcium channel blockers. This warrants further study in other centers and at the molecular level. Copyright © 2012 Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.

  12. Support for calcium channel gene defects in autism spectrum disorders

    PubMed Central

    2012-01-01

    Background Alternation of synaptic homeostasis is a biological process whose disruption might predispose children to autism spectrum disorders (ASD). Calcium channel genes (CCG) contribute to modulating neuronal function and evidence implicating CCG in ASD has been accumulating. We conducted a targeted association analysis of CCG using existing genome-wide association study (GWAS) data and imputation methods in a combined sample of parent/affected child trios from two ASD family collections to explore this hypothesis. Methods A total of 2,176 single-nucleotide polymorphisms (SNP) (703 genotyped and 1,473 imputed) covering the genes that encode the α1 subunit proteins of 10 calcium channels were tested for association with ASD in a combined sample of 2,781 parent/affected child trios from 543 multiplex Caucasian ASD families from the Autism Genetics Resource Exchange (AGRE) and 1,651 multiplex and simplex Caucasian ASD families from the Autism Genome Project (AGP). SNP imputation using IMPUTE2 and a combined reference panel from the HapMap3 and the 1,000 Genomes Project increased coverage density of the CCG. Family-based association was tested using the FBAT software which controls for population stratification and accounts for the non-independence of siblings within multiplex families. The level of significance for association was set at 2.3E-05, providing a Bonferroni correction for this targeted 10-gene panel. Results Four SNPs in three CCGs were associated with ASD. One, rs10848653, is located in CACNA1C, a gene in which rare de novo mutations are responsible for Timothy syndrome, a Mendelian disorder that features ASD. Two others, rs198538 and rs198545, located in CACN1G, and a fourth, rs5750860, located in CACNA1I, are in CCGs that encode T-type calcium channels, genes with previous ASD associations. Conclusions These associations support a role for common CCG SNPs in ASD. PMID:23241247

  13. Calcium Channels are Involved in Calcium Oxalate Crystal Formation in Specialized Cells of Pistia stratiotes L.

    PubMed Central

    VOLK, GAYLE M.; GOSS, LENORA J.; FRANCESCHI, VINCENT R.

    2004-01-01

    • Background and Aims Pistia stratiotes produces large amounts of calcium (Ca) oxalate crystals in specialized cells called crystal idioblasts. The potential involvement of Ca2+ channels in Ca oxalate crystal formation by crystal idioblasts was investigated. • Methods Anatomical, ultrastructural and physiological analyses were used on plants, fresh or fixed tissues, or protoplasts. Ca2+ uptake by protoplasts was measured with 45Ca2+, and the effect of Ca2+ channel blockers studied in intact plants. Labelled Ca2+ channel blockers and a channel protein antibody were used to determine if Ca2+ channels were associated with crystal idioblasts. • Key Results 45Ca2+ uptake was more than two orders of magnitude greater for crystal idioblast protoplasts than mesophyll protoplasts, and idioblast number increased when medium Ca was increased. Plants grown on media containing 1–50 µm of the Ca2+ channel blockers, isradipine, nifedipine or fluspirilene, showed almost complete inhibition of crystal formation. When fresh tissue sections were treated with the fluorescent dihydropyridine‐type Ca2+ channel blocker, DM‐Bodipy‐DHP, crystal idioblasts were intensely labelled compared with surrounding mesophyll, and the label appeared to be associated with the plasma membrane and the endoplasmic reticulum, which is shown to be abundant in idioblasts. An antibody to a mammalian Ca2+ channel α1 subunit recognized a single band in a microsomal protein fraction but not soluble protein fraction on western blots, and it selectively and heavily labelled developing crystal idioblasts in tissue sections. • Conclusions The results demonstrate that Ca oxalate crystal idioblasts are enriched, relative to mesophyll cells, in dihydropyridine‐type Ca2+ channels and that the activity of these channels is important to transport and accumulation of Ca2+ required for crystal formation. PMID:15087302

  14. Calcium channel modulation as a target in chronic pain control.

    PubMed

    Patel, Ryan; Montagut-Bordas, Carlota; Dickenson, Anthony H

    2017-03-20

    Neuropathic pain remains poorly treated for large numbers of patients, and little progress has been made in developing novel classes of analgesics. To redress this issue, ziconotide (Prialt™) was developed and approved as a first-in-class synthetic version of ω-conotoxin MVIIA, a peptide blocker of Cav 2.2 channels. Unfortunately, the impracticalities of intrathecal delivery, low therapeutic index and severe neurological side effects associated with ziconotide have restricted its use to exceptional circumstances. Ziconotide exhibits no state or use-dependent block of Cav 2.2 channels; activation state-dependent blockers were hypothesized to circumvent the side effects of state-independent blockers by selectively targeting high-frequency firing of nociceptive neurones in chronic pain states, thus alleviating aberrant pain but not affecting normal sensory transduction. Unfortunately, numerous drugs, including state-dependent calcium channel blockers, have displayed efficacy in preclinical models but have subsequently been disappointing in clinical trials. In recent years, it has become more widely acknowledged that trans-aetiological sensory profiles exist amongst chronic pain patients and may indicate similar underlying mechanisms and drug sensitivities. Heterogeneity amongst patients, a reliance on stimulus-evoked endpoints in preclinical studies and a failure to utilize translatable endpoints, all are likely to have contributed to negative clinical trial results. We provide an overview of how electrophysiological and operant-based assays provide insight into sensory and affective aspects of pain in animal models and how these may relate to chronic pain patients in order to improve the bench-to-bedside translation of calcium channel modulators. © 2017 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.

  15. Location matters: somatic and dendritic SK channels answer to distinct calcium signals.

    PubMed

    Rudolph, Stephanie; Thanawala, Monica S

    2015-07-01

    Voltage-dependent calcium channels (VDCCs) couple neuronal activity to diverse intracellular signals with exquisite spatiotemporal specificity. Using calcium imaging and electrophysiology, Jones and Stuart (J Neurosci 33: 19396-19405, 2013) examined the intimate relationship between distinct types of VDCCs and small-conductance calcium-activated potassium (SK) channels that contribute to the compartmentalized control of excitability in the soma and dendrites of cortical pyramidal neurons. Here we discuss the importance of calcium domains for signal specificity, explore the possible functions and mechanisms for local control of SK channels, and highlight technical considerations for the optical detection of calcium signals.

  16. The developing relationship between receptor-operated and store-operated calcium channels in smooth muscle

    PubMed Central

    McFadzean, Ian; Gibson, Alan

    2002-01-01

    Contraction of smooth muscle is initiated, and to a lesser extent maintained, by a rise in the concentration of free calcium in the cell cytoplasm ([Ca2+]i). This activator calcium can originate from two intimately linked sources – the extracellular space and intracellular stores, most notably the sarcoplasmic reticulum. Smooth muscle contraction activated by excitatory neurotransmitters or hormones usually involves a combination of calcium release and calcium entry. The latter occurs through a variety of calcium permeable ion channels in the sarcolemma membrane. The best-characterized calcium entry pathway utilizes voltage-operated calcium channels (VOCCs). However, also present are several types of calcium-permeable channels which are non-voltage-gated, including the so-called receptor-operated calcium channels (ROCCs), activated by agonists acting on a range of G-protein-coupled receptors, and store-operated calcium channels (SOCCs), activated by depletion of the calcium stores within the sarcoplasmic reticulum. In this article we will review the electrophysiological, functional and pharmacological properties of ROCCs and SOCCs in smooth muscle and highlight emerging evidence that suggests that the two channel types may be closely related, being formed from proteins of the Transient Receptor Potential Channel (TRPC) family. PMID:11786473

  17. The developing relationship between receptor-operated and store-operated calcium channels in smooth muscle.

    PubMed

    McFadzean, Ian; Gibson, Alan

    2002-01-01

    Contraction of smooth muscle is initiated, and to a lesser extent maintained, by a rise in the concentration of free calcium in the cell cytoplasm ([Ca(2+)](i)). This activator calcium can originate from two intimately linked sources--the extracellular space and intracellular stores, most notably the sarcoplasmic reticulum. Smooth muscle contraction activated by excitatory neurotransmitters or hormones usually involves a combination of calcium release and calcium entry. The latter occurs through a variety of calcium permeable ion channels in the sarcolemma membrane. The best-characterized calcium entry pathway utilizes voltage-operated calcium channels (VOCCs). However, also present are several types of calcium-permeable channels which are non-voltage-gated, including the so-called receptor-operated calcium channels (ROCCs), activated by agonists acting on a range of G-protein-coupled receptors, and store-operated calcium channels (SOCCs), activated by depletion of the calcium stores within the sarcoplasmic reticulum. In this article we will review the electrophysiological, functional and pharmacological properties of ROCCs and SOCCs in smooth muscle and highlight emerging evidence that suggests that the two channel types may be closely related, being formed from proteins of the Transient Receptor Potential Channel (TRPC) family.

  18. A toxin from the spider Phoneutria nigriventer that blocks calcium channels coupled to exocytosis

    PubMed Central

    Guatimosim, C; Romano-Silva, M A; Cruz, J S; Beirão, P S L; Kalapothakis, E; Moraes-Santos, T; Cordeiro, M N; Diniz, C R; Gomez, M V; Prado, M A M

    1997-01-01

    The aim of the present experiments was to investigate the pharmacological action of a toxin from the spider Phoneutria nigriventer, Tx3-3, on the function of calcium channels that control exocytosis of synaptic vesicles. Tx3-3, in confirmation of previous work, diminished the intracellular calcium increase induced by membrane depolarization with KCl (25 mM) in rat cerebrocortical synaptosomes. The toxin was very potent (IC50 0.9 nM) at inhibiting calcium channels that regulate calcium entry in synaptosomes. In addition, Tx3-3 blocked the exocytosis of synaptic vesicles, as measured with the fluorescent dye FM1-43. Using ω-toxins that interact selectively with distinct neuronal calcium channels, we investigated whether the target of Tx3-3 overlaps with known channels that mediate exocytosis. The results indicate that the main population of voltage-sensitive calcium channels altered by Tx3-3 can also be inhibited by ω-agatoxin IVA, an antagonist of P/Q calcium channels. ω-conotoxin GVIA, which inhibits N type calcium channels did not decrease significantly the entry of calcium or exocytosis of synaptic vesicles in depolarized synaptosomes. It is concluded that Tx3-3 potently inhibits ω-agatoxin IVA-sensitive calcium channels, which are involved in controlling exocytosis in rat brain cortical synaptosomes. PMID:9351520

  19. Calcium-activated potassium channels and endothelial dysfunction: therapeutic options?

    PubMed Central

    Félétou, Michel

    2009-01-01

    The three subtypes of calcium-activated potassium channels (KCa) of large, intermediate and small conductance (BKCa, IKCa and SKCa) are present in the vascular wall. In healthy arteries, BKCa channels are preferentially expressed in vascular smooth muscle cells, while IKCa and SKCa are preferentially located in endothelial cells. The activation of endothelial IKCa and SKCa contributes to nitric oxide (NO) generation and is required to elicit endothelium-dependent hyperpolarizations. In the latter responses, the hyperpolarization of the smooth muscle cells is evoked either via electrical coupling through myo-endothelial gap junctions or by potassium ions, which by accumulating in the intercellular space activate the inwardly rectifying potassium channel Kir2.1 and/or the Na+/K+-ATPase. Additionally, endothelium-derived factors such as cytochrome P450-derived epoxyeicosatrienoic acids and under some circumstances NO, prostacyclin, lipoxygenase products and hydrogen peroxide (H2O2) hyperpolarize and relax the underlying smooth muscle cells by activating BKCa. In contrast, cytochrome P450-derived 20-hydroxyeicosatetraenoic acid and various endothelium-derived contracting factors inhibit BKCa. Aging and cardiovascular diseases are associated with endothelial dysfunctions that can involve a decrease in NO bioavailability, alterations of EDHF-mediated responses and/or enhanced production of endothelium-derived contracting factors. Because potassium channels are involved in these endothelium-dependent responses, activation of endothelial and/or smooth muscle KCa could prevent the occurrence of endothelial dysfunction. Therefore, direct activators of these potassium channels or compounds that regulate their activity or their expression may be of some therapeutic interest. Conversely, blockers of IKCa may prevent restenosis and that of BKCa channels sepsis-dependent hypotension. PMID:19187341

  20. Newer calcium channel antagonists and the treatment of hypertension.

    PubMed

    Cummins, D F

    1999-07-01

    Calcium channel antagonists have become popular medications for the management of hypertension. These agents belong to the diphenylalkylamine, benzothiazepine, dihydropyridine, or tetralol chemical classes. Although the medications share a common pharmacological mechanism in reducing peripheral vascular resistance, clinical differences between the sub-classes can be linked to structural profiles. This heterogeneity is manifested by differences in vascular selectivity, effects on cardiac conduction and adverse events. The lack of differentiation between calcium channel antagonists in clinical trials has contributed to uncertainty associated with their impact on morbidity and mortality. Data from more recent studies in specific patient populations underscores the importance of investigating these antihypertensives as individual agents. A proposed therapeutic classification system suggests that newer agents should share the slow onset and long-acting antihypertensive effect of amlodipine. Additionally, a favourable trough-to-peak ratio has been recommended as an objective measurement of efficacy. The newer drugs, barnidipine and lacidipine, have a therapeutic profile similar to amlodipine, but trough-to-peak ratios are not substantially greater than the recommended minimum of 0.50. Aranidipine, cilnidipine and efonidipine have unique pharmacological properties that distinguish them from traditional dihydropyridines. Although clinical significance is unconfirmed, these newer options may be beneficial for patients with co-morbid conditions that preclude use of older antagonists.

  1. N-bromoacetamide removes a calcium-dependent component of channel opening from calcium-activated potassium channels in rat skeletal muscle

    PubMed Central

    1985-01-01

    Calcium-activated potassium channels from cultured rat skeletal muscle were treated with the protein-modifying reagent N-bromoacetamide (NBA) (0.3-1 mM) and studied in excised patches using patch-clamp techniques. After NBA treatment, channels opened only occasionally, and, in contrast to untreated channels, the open probability was no longer sensitive to intracellular surface calcium ions (1 nM to 100 microM). Channel activity did, however, exhibit a voltage dependence similar in direction and magnitude to that shown before NBA treatment (increasing e-fold with 19 mV depolarization). Distributions of open channel lifetimes revealed that NBA treatment virtually abolished openings of long duration, which suggests that this class of openings requires calcium sensitivity. These effects were not reversed by subsequent washing. Quantitatively similar open probability, voltage dependence, and open-interval distributions were observed in untreated channels in calcium-free medium. These results suggest that NBA removed a calcium- dependent component of channel opening, and that normal channels are able to open in the absence of significant intracellular calcium concentrations. PMID:2415669

  2. Impact of calcium-activated potassium channels on NMDA spikes in cortical layer 5 pyramidal neurons

    PubMed Central

    Bock, Tobias

    2016-01-01

    Active electrical events play an important role in shaping signal processing in dendrites. As these events are usually associated with an increase in intracellular calcium, they are likely to be under the control of calcium-activated potassium channels. Here, we investigate the impact of calcium-activated potassium channels on N-methyl-d-aspartate (NMDA) receptor-dependent spikes, or NMDA spikes, evoked by glutamate iontophoresis onto basal dendrites of cortical layer 5 pyramidal neurons. We found that small-conductance calcium-activated potassium channels (SK channels) act to reduce NMDA spike amplitude but at the same time, also decrease the iontophoretic current required for their generation. This SK-mediated decrease in NMDA spike threshold was dependent on R-type voltage-gated calcium channels and indicates a counterintuitive, excitatory effect of SK channels on NMDA spike generation, whereas the capacity of SK channels to suppress NMDA spike amplitude is in line with the expected inhibitory action of potassium channels on dendritic excitability. Large-conductance calcium-activated potassium channels had no significant impact on NMDA spikes, indicating that these channels are either absent from basal dendrites or not activated by NMDA spikes. These experiments reveal complex and opposing interactions among NMDA receptors, SK channels, and voltage-gated calcium channels in basal dendrites of cortical layer 5 pyramidal neurons during NMDA spike generation, which are likely to play an important role in regulating the way these neurons integrate the thousands of synaptic inputs they receive. PMID:26936985

  3. Evaluation of the open time of calcium channels at variation potential generation in wheat leaf cells.

    PubMed

    Katicheva, Lyubov; Sukhov, Vladimir; Bushueva; Bushueva, Albina; Vodeneev, Vladimir

    2015-01-01

    The role of ions in the generation and mechanism of propagation of variation potential (VP) has been widely investigated. It is likely that Ca(2+) influx via calcium channels is an initial stage of VP; however, development of long-term membrane depolarization requires prolonged open times of calcium channels. We investigated depolarization time in the present study. It was shown that local burning induced VP in wheat seedling and the electrical response was suppressed under EGTA presence. Depolarization formation, which may indicate open time of calcium channels at VP generation, was observed up to 30 s after reaction induction when calcium ions were added to initially calcium-free medium. Long-term calcium channel open time may be the reason for long membrane depolarization at VP and may also be connected with the type of channels participating in wound reaction propagation.

  4. Regulation of Arterial Tone by Activation of Calcium-Dependent Potassium Channels

    NASA Astrophysics Data System (ADS)

    Brayden, Joseph E.; Nelson, Mark T.

    1992-04-01

    Blood pressure and tissue perfusion are controlled in part by the level of intrinsic (myogenic) vascular tone. However, many of the molecular determinants of this response are unknown. Evidence is now presented that the degree of myogenic tone is regulated in part by the activation of large-conductance calcium-activated potassium channels in arterial smooth muscle. Tetraethylammonium ion (TEA^+) and charybdotoxin (CTX), at concentrations that block calcium-activated potassium channels in smooth muscle cells isolated from cerebral arteries, depolarized and constricted pressurized cerebral arteries with myogenic tone. Both TEA^+ and CTX had little effect on arteries when intracellular calcium was reduced by lowering intravascular pressure or by blocking calcium channels. Elevation of intravascular pressure through membrane depolarization and an increase in intracellular calcium may activate calcium-activated potassium channels. Thus, these channels may serve as a negative feedback pathway to control the degree of membrane depolarization and vasoconstriction.

  5. Surface charge and calcium channel saturation in bullfrog sympathetic neurons

    PubMed Central

    1995-01-01

    Currents carried by Ba2+ through calcium channels were recorded in the whole-cell configuration in isolated frog sympathetic neurons. The effect of surface charge on the apparent saturation of the channel with Ba2+ was examined by varying [Ba2+]o and ionic strength. The current increased with [Ba2+]o, and the I-V relation and the activation curve shifted to more positive voltages. The shift of activation could be described by Gouy-Chapman theory, with a surface charge density of 1 e- /140 A2, calculated from the Grahame equation. Changes in ionic strength (replacing N-methyl-D-glucamine with sucrose) shifted the activation curve as expected for a surface charge density of 1 e-/85 A2, in reasonable agreement with the value from changing [Ba2+]o. The instantaneous I-V for fully activated channels also changed with ionic strength, which could be described either by a low surface charge density (less than 1 e-/1,500 A2), or by block by NMG with Kd approximately 300 mM (assuming no surface charge). We conclude that the channel permeation mechanism sees much less surface charge than the gating mechanism. The peak inward current saturated with an apparent Kd = 11.6 mM for Ba2+, while the instantaneous I-V saturated with an apparent Kd = 23.5 mM at 0 mV. This discrepancy can be explained by a lower surface charge near the pore, compared to the voltage sensor. After correction for a surface charge near the pore of 1 e-/1,500 A2, the instantaneous I-V saturated as a function of local [Ba2+]o, with Kd = 65 mM. These results suggest that the channel pore does bind Ba2+ in a saturable manner, but the current-[Ba2+]o relationship may be significantly affected by surface charge. PMID:7608653

  6. Defective cyclic guanosine monophosphate-gated calcium channels and the pathogenesis of psoriasis.

    PubMed

    McKenzie, Roddie C; Oda, Yuko; Szepietowski, Jacek C; Behne, Martin J; Mauro, Theodora

    2003-01-01

    A positive association between intake of calcium channel blockers and psoriasis has been observed recently. Intake of blockers of voltage-gated calcium ion channels is associated with outbreaks of psoriasis after a latent period in patients with and without a previous family history of psoriasis. This suggests that interfering with calcium influx may trigger psoriasis. Calcium influx also occurs via cyclic guanosine monophosphate-gated channels; human keratinocytes contain functional and non-functional (splice variants) versions of these channels. We show here that keratinocytes and skin from psoriatic individuals express higher levels of mRNA encoding a non-functional cyclic guanosine monophosphate-gated calcium channel and that high expression of the splice variant by transfection of cells in culture leads to loss of protein expression for the functional cyclic guanosine monophosphate-gated Ca2+ channels.

  7. Calcium Channels in Planar Lipid Bilayers: Insights into Mechanisms of Ion Permeation and Gating

    NASA Astrophysics Data System (ADS)

    Rosenberg, Robert L.; Hess, Peter; Reeves, John P.; Smilowitz, Henry; Tsien, Richard W.

    1986-03-01

    Electrophysiological recordings were used to analyze single calcium channels in planar lipid bilayers after membranes from bovine cardiac sarcolemmal vesicles had been incorporated into the bilayer. In these cell-free conditions, channels in the bilayer showed unitary barium or calcium conductances, gating kinetics, and pharmacological responses that were similar to dihydropyridine-sensitive calcium channels in intact cells. The open channel current varied in a nonlinear manner with voltage under asymmetric (that is, physiological) ionic conditions. However, with identical solutions on both sides of the bilayer, the current-voltage relation was linear. In matched experiments, calcium channels from skeletal muscle T-tubules differed significantly from cardiac calcium channels in their conductance properties and gating kinetics.

  8. Differential distribution of voltage-gated calcium channels in dopaminergic neurons of the rat retina.

    PubMed

    Witkovsky, Paul; Shen, Changpeng; McRory, John

    2006-07-20

    We studied by immunocytochemistry and Western blots the identity and cellular distribution of voltage-gated calcium channels within dopaminergic neurons of the rat retina. The aim was to associate particular calcium channel subtypes with known activities of the neuron (e.g., transmitter release from axon terminals). Five voltage-gated calcium channels were identified: alpha1A, alpha1B, alpha1E, alpha1F, and alpha1H. All of these, except the alpha1B subtype, were found within dopaminergic perikarya. The alpha1B channels were concentrated at axon terminal rings, together with alpha1A calcium channels. In contrast, alpha1H calcium channels were most abundant in the dendrites, and alpha1F calcium channels were restricted to the perikaryon. The alpha1E calcium channel was present at such a low density that its cellular distribution beyond the perikaryon could not be determined. Our findings are consistent with the available pharmacological data indicating that alpha1A and alpha1B calcium channels control the major fraction of dopamine release in the rat retina. (c) 2006 Wiley-Liss, Inc.

  9. Cholesterol Influences Voltage-Gated Calcium Channels and BK-Type Potassium Channels in Auditory Hair Cells

    PubMed Central

    Purcell, Erin K.; Liu, Liqian; Thomas, Paul V.; Duncan, R. Keith

    2011-01-01

    The influence of membrane cholesterol content on a variety of ion channel conductances in numerous cell models has been shown, but studies exploring its role in auditory hair cell physiology are scarce. Recent evidence shows that cholesterol depletion affects outer hair cell electromotility and the voltage-gated potassium currents underlying tall hair cell development, but the effects of cholesterol on the major ionic currents governing auditory hair cell excitabilityare unknown. We investigated the effects of a cholesterol-depleting agent (methyl beta cyclodextrin, MβCD) on ion channels necessary for the early stages of sound processing. Large-conductance BK-type potassium channels underlie temporal processing and open in a voltage- and calcium-dependent manner. Voltage-gated calcium channels (VGCCs) are responsible for calcium-dependent exocytosis and synaptic transmission to the auditory nerve. Our results demonstrate that cholesterol depletion reduced peak steady-state calcium-sensitive (BK-type) potassiumcurrent by 50% in chick cochlear hair cells. In contrast, MβCD treatment increased peak inward calcium current (∼30%), ruling out loss of calcium channel expression or function as a cause of reduced calcium-sensitive outward current. Changes in maximal conductance indicated a direct impact of cholesterol on channel number or unitary conductance. Immunoblotting following sucrose-gradient ultracentrifugation revealed BK expression in cholesterol-enriched microdomains. Both direct impacts of cholesterol on channel biophysics, as well as channel localization in the membrane, may contribute to the influence of cholesterol on hair cell physiology. Our results reveal a new role for cholesterol in the regulation of auditory calcium and calcium-activated potassium channels and add to the growing evidence that cholesterol is a key determinant in auditory physiology. PMID:22046269

  10. Neuronal T-type alpha 1H calcium channels induce neuritogenesis and expression of high-voltage-activated calcium channels in the NG108-15 cell line.

    PubMed

    Chemin, Jean; Nargeot, Joël; Lory, Philippe

    2002-08-15

    Neuronal differentiation involves both morphological and electrophysiological changes, which depend on calcium influx. Voltage-gated calcium channels (VGCCs) represent a major route for calcium entry into neurons. The recently cloned low-voltage-activated T-type calcium channels (T-channels) are the first class of VGCCs functionally expressed in most developing neurons, as well as in neuroblastoma cell lines, but their roles in neuronal development are yet unknown. Here, we document the part played by T-channels in neuronal differentiation. Using NG108-15, a cell line that recapitulates early steps of neuronal differentiation, we demonstrate that blocking T-currents by nickel, mibefradil, or the endogenous cannabinoid anandamide prevents neuritogenesis without affecting neurite outgrowth. Similar results were obtained using antisense oligodeoxynucleotides directed against the alpha1H T-channel subunit. Furthermore, we describe that inhibition of alpha1H T-channel activity impairs concomitantly, but independently, both high-voltage-activated calcium channel expression and neuritogenesis, providing strong evidence for a dual role of T-channels in both morphological and electrical changes at early stages of neuronal differentiation.

  11. Lipopolysaccharides upregulate calcium concentration in mouse uterine smooth muscle cells through the T-type calcium channels.

    PubMed

    Zhang, Lijuan; Wang, Lin; Jiang, Jingyi; Zheng, Dongming; Liu, Sishi; Liu, Caixia

    2015-03-01

    Infection is a significant cause of preterm birth. Abnormal changes in intracellular calcium signals are the ultimate triggers of early uterine contractions that result in preterm birth. T‑type calcium channels play an important role in the pathogenesis of cancer, as well as endocrine and cardiovascular diseases. However, there are limited studies on their role in uterine contractions and parturition. In the present study, mouse uterine smooth muscle cells were isolated and treated with lipopolysaccharides (LPS) to mimic the microenvironment of uterine infection in vitro to investigate the role of T‑type calcium channels in the process of infection‑induced preterm birth. The results from quantitative polymerase chain reaction and western blot analysis showed that LPS significantly induced the expression of the Cav3.1 and Cav3.2 subtypes of T‑type calcium channels. Measurements of intracellular calcium concentration showed a significant increase in response to LPS. However, these effects can be reversed by T‑type calcium channel blockers. Western blot analysis further indicated that LPS induced the activation of the nuclear factor (NF)‑κB signaling pathway, and endothelin‑1 (ET‑1) was significantly upregulated, whereas NF‑κB inhibitors significantly inhibited the LPS‑induced upregulation of Cav3.1, Cav3.2 and ET‑1 expression. In addition, ET‑1 directly induced Cav3.1 and Cav3.2 expression, whereas ET‑1 antagonists inhibited the LPS‑induced upregulation of Cav3.1 and Cav3.2 expression. In conclusion, the present study demonstrates that infection triggers the upregulation of T‑type calcium channels and promotes calcium influx. This process relies on the activation of the NF‑κB/ET‑1 signaling pathway. The T‑type calcium channel is expected to become an effective target for the prevention of infection‑induced preterm birth.

  12. The vanilloid receptor family of calcium-permeable channels: molecular integrators of microenvironmental stimuli.

    PubMed

    O'Neil, Roger G; Brown, Rachel C

    2003-12-01

    The TRPV subfamily of calcium-permeable channels is widely distributed in sensory and nonsensory cells from nematodes to mammals. These channels can be variably activated by a diverse range of stimuli (osmotic/mechanical stress, noxious chemicals and heat, endogenous mediators) that often converge on the same channel. Evidence is presented that TRPV channels function as novel "molecular integrators" of diverse microenvironmental stimuli.

  13. Synaptotagmin restores kinetic properties of a syntaxin-associated N-type voltage sensitive calcium channel.

    PubMed

    Wiser, O; Tobi, D; Trus, M; Atlas, D

    1997-03-10

    The voltage sensitive N-type calcium channel interacts functionally and biochemically with synaptotagmin (p65). N-type channel interaction with p65 is demonstrated in the Xenopus oocyte expression system, where p65 alters the steady state voltage inactivation of the N-channel, and fully restores the syntaxin-modified current amplitude and inactivation kinetics in a calcium dependent manner. In agreement with the functional results, GST-p65 fusion protein binds to a cytosolic region, amino acids 710-1090 of the N-type channel (N-loop(710-1090)). The results of the combined approach provide a functional and biochemical basis for proposing that p65 interaction with the N-type channel brings p65 into a close association with a syntaxin-coupled channel. In turn, calcium entry through the liberated channel initiates fusion of the primed vesicles with the cell membrane at a short distance from the site of calcium entry.

  14. Plasma membrane calcium channels in cancer: Alterations and consequences for cell proliferation and migration.

    PubMed

    Déliot, Nadine; Constantin, Bruno

    2015-10-01

    The study of calcium channels in molecular mechanisms of cancer transformation is still a novel area of research. Several studies, mostly conducted on cancer cell lines, however support the idea that a diversity of plasma membrane channels participates in the remodeling of Ca2+ homeostasis, which regulates various cancer hallmarks such as uncontrolled multiplication and increase in migration and invasion abilities. However few is still understood concerning the intracellular signaling cascades mobilized by calcium influx participating to cancer cell behavior. This review intends to gather some of these pathways dependent on plasma membrane calcium channels and described in prostate, breast and lung cancer cell lines. In these cancer cell types, the calcium channels involved in calcium signaling pathways promoting cancer behaviors are mostly non-voltage activated calcium channels and belong to the TRP superfamily (TRPC, TPRPV and TRPM families) and the Orai family. TRP and Orai channels are part of many signaling cascades involving the activation of transmembrane receptors by extracellular ligand from the tumor environment. TRPV can sense changes in the physical and chemical environment of cancer cells and TRPM7 are stretch activated and sensitive to cholesterol. Changes in activation and or expression of plasma-membrane calcium channels affect calcium-dependent signaling processes relevant to tumorigenesis. The studies cited in this review suggest that an increase in plasma membrane calcium channel expression and/or activity sustain an elevated calcium entry (constitutive or under the control of extracellular signals) promoting higher cell proliferation and migration in most cases. A variety of non-voltage-operated calcium channels display change expression and/or activity in a same cancer type and cooperate to the same process relevant to cancer cell behavior, or can be involved in a different sequence of events during the tumorigenesis. This article is part of a

  15. Permeation through the calcium release channel of cardiac muscle.

    PubMed Central

    Chen, D; Xu, L; Tripathy, A; Meissner, G; Eisenberg, B

    1997-01-01

    Current voltage (I-V) relations were measured from the calcium release channel (CRC) of the sarcoplasmic reticulum of cardiac muscle in 12 KCl solutions, symmetrical and asymmetrical, from 25 mM to 2 M. I-V curves are nearly linear, in the voltage range +/- 150 mV approximately 12kT/e, even in asymmetrical solutions, e.g., 2 M // 100 mM. It is awkward to describe straight lines as sums of exponentials in a wide range of solutions and potentials, and so traditional barrier models have difficulty fitting this data. Diffusion theories with constant fields predict curvilinear I-V relations, and so they are also unsatisfactory. The Poisson and Nernst-Planck equations (PNP) form a diffusion theory with variable fields. They fit the data by using adjustable parameters for the diffusion constant of each ion and for the effective density of fixed (i.e., permanent) charge P(x) along the channel's "filter" (7-A diameter, 10 A long). If P(x) is described by just one parameter, independent of x (i.e., P(x) = P0 = -4.2 M), the fits are satisfactory (RMS error/RMS current = 6.4/67), and the estimates of diffusion coefficients are reasonable D(K) = 1.3 x 10(-6) cm2/s, D(Cl) = 3.9 x 10(-6) cm2/s. The CRC seems to have a small selectivity filter with a very high density of permanent charge. This may be a design principle of channels specialized for large flux. The Appendix derives barrier models, and their prefactor, from diffusion theories (with variable fields) and argues that barrier models are poor descriptions of CRCs in particular and open channels in general. PMID:9284302

  16. Markov chain models of coupled intracellular calcium channels: Kronecker structured representations and benchmark stationary distribution calculations.

    PubMed

    Deremigio, Hilary; Kemper, Peter; Lamar, M Drew; Smith, Gregory D

    2008-01-01

    Mathematical models of calcium release sites derived from Markov chain models of intracellular calcium channels exhibit collective gating reminiscent of the experimentally observed phenomenon of stochastic calcium excitability (i.e., calcium puffs and sparks). We present a Kronecker structured representation for calcium release site models and perform benchmark stationary distribution calculations using numerical iterative solution techniques that leverage this structure. In this context we find multi-level methods and certain preconditioned projection methods superior to simple Gauss-Seidel type iterations. Response measures such as the number of channels in a particular state converge more quickly using these numerical iterative methods than occupation measures calculated via Monte Carlo simulation.

  17. Ziconotide: neuronal calcium channel blocker for treating severe chronic pain.

    PubMed

    Miljanich, G P

    2004-12-01

    Ziconotide (PRIALT) is a neuroactive peptide in the final stages of clinical development as a novel non-opioid treatment for severe chronic pain. It is the synthetic equivalent of omega-MVIIA, a component of the venom of the marine snail, Conus magus. The mechanism of action underlying ziconotide's therapeutic profile derives from its potent and selective blockade of neuronal N-type voltage-sensitive calcium channels (N-VSCCs). Direct blockade of N-VSCCs inhibits the activity of a subset of neurons, including pain-sensing primary nociceptors. This mechanism of action distinguishes ziconotide from all other analgesics, including opioid analgesics. In fact, ziconotide is potently anti-nociceptive in animal models of pain in which morphine exhibits poor anti-nociceptive activity. Moreover, in contrast to opiates, tolerance to ziconotide is not observed. Clinical studies of ziconotide in more than 2,000 patients reveal important correlations to ziconotide's non-clinical pharmacology. For example, ziconotide provides significant pain relief to severe chronic pain sufferers who have failed to obtain relief from opiate therapy and no evidence of tolerance to ziconotide is seen in these patients. Contingent on regulatory approval, ziconotide will be the first in a new class of neurological drugs: the N-type calcium channel blockers, or NCCBs. Its novel mechanism of action as a non-opioid analgesic suggests ziconotide has the potential to play a valuable role in treatment regimens for severe chronic pain. If approved for clinical use, ziconotide will further validate the neuroactive venom peptides as a source of new and useful medicines.

  18. Effect of calcium channel noise in astrocytes on neuronal transmission

    NASA Astrophysics Data System (ADS)

    Tang, Jun; Liu, Tong-Bo; Ma, Jun; Luo, Jin-Ming; Yang, Xian-Qing

    2016-03-01

    In this study, a Langevin model is constructed by modifying a neuron-astrocyte coupled model that comprises a pyramidal neuron, an interneuron, and an astrocyte. This Langevin model considers random open-close transitions of calcium ion channels in the endoplasmic reticulum membrane of astrocytes. The effect of noise in the astrocytes on neuronal transmission is investigated numerically based on a random model under both normal and overexpression conditions of metabotropic glutamate receptors on astrocyte membranes. This study suggests that noise could change the firing patterns of two neurons during neuronal information transmission. Noise facilitates the occurrence of episodic spikes (ESs) in both neurons. However, the noise-induced ESs occur irregularly, compared with ESs in a deterministic model, and the change in regularity with noise exhibits the coherence- resonance phenomenon. Furthermore, synchronicity between noisy ESs in two neurons depends significantly on various parameters. ESs completely occur synchronously but irregularly in certain parameter regions, whereas ESs in other parameter values are antiphase synchronous. This study implies not only that the calcium dynamics in astrocytes could participate in neuronal transmission, but also that noise in astrocytes may be transferred to neurons and may affect synaptic transmission significantly.

  19. Differential Calcium Signaling Mediated by Voltage-Gated Calcium Channels in Rat Retinal Ganglion Cells and Their Unmyelinated Axons

    PubMed Central

    Sargoy, Allison; Sun, Xiaoping

    2014-01-01

    Aberrant calcium regulation has been implicated as a causative factor in the degeneration of retinal ganglion cells (RGCs) in numerous injury models of optic neuropathy. Since calcium has dual roles in maintaining homeostasis and triggering apoptotic pathways in healthy and injured cells, respectively, investigation of voltage-gated Ca channel (VGCC) regulation as a potential strategy to reduce the loss of RGCs is warranted. The accessibility and structure of the retina provide advantages for the investigation of the mechanisms of calcium signalling in both the somata of ganglion cells as well as their unmyelinated axons. The goal of the present study was to determine the distribution of VGCC subtypes in the cell bodies and axons of ganglion cells in the normal retina and to define their contribution to calcium signals in these cellular compartments. We report L-type Ca channel α1C and α1D subunit immunoreactivity in rat RGC somata and axons. The N-type Ca channel α1B subunit was in RGC somata and axons, while the P/Q-type Ca channel α1A subunit was only in the RGC somata. We patch clamped isolated ganglion cells and biophysically identified T-type Ca channels. Calcium imaging studies of RGCs in wholemounted retinas showed that selective Ca channel antagonists reduced depolarization-evoked calcium signals mediated by L-, N-, P/Q- and T-type Ca channels in the cell bodies but only by L-type Ca channels in the axons. This differential contribution of VGCC subtypes to calcium signals in RGC somata and their axons may provide insight into the development of target-specific strategies to spare the loss of RGCs and their axons following injury. PMID:24416240

  20. Calfacilitin is a calcium channel modulator essential for initiation of neural plate development.

    PubMed

    Papanayotou, Costis; De Almeida, Irene; Liao, Ping; Oliveira, Nidia M M; Lu, Song-Qing; Kougioumtzidou, Eleni; Zhu, Lei; Shaw, Alex; Sheng, Guojun; Streit, Andrea; Yu, Dejie; Wah Soong, Tuck; Stern, Claudio D

    2013-01-01

    Calcium fluxes have been implicated in the specification of the vertebrate embryonic nervous system for some time, but how these fluxes are regulated and how they relate to the rest of the neural induction cascade is unknown. Here we describe Calfacilitin, a transmembrane calcium channel facilitator that increases calcium flux by generating a larger window current and slowing inactivation of the L-type CaV1.2 channel. Calfacilitin binds to this channel and is co-expressed with it in the embryo. Regulation of intracellular calcium by Calfacilitin is required for expression of the neural plate specifiers Geminin and Sox2 and for neural plate formation. Loss-of-function of Calfacilitin can be rescued by ionomycin, which increases intracellular calcium. Our results elucidate the role of calcium fluxes in early neural development and uncover a new factor in the modulation of calcium signalling.

  1. Hypotonic medium increases calcium permeant channels activity in human normal and dystrophic myotubes.

    PubMed

    Vandebrouck, Clarisse; Duport, Gérard; Raymond, Guy; Cognard, Christian

    2002-05-03

    Duchenne muscular dystrophy (DMD) is characterized by the absence of dystrophin and an elevated intracellular calcium level. Single-channel recordings were performed with the cell-attached configuration of the patch-clamp technique. The present study shows, on human co-cultured normal and dystrophic muscle cells, the evidence for an increased activity of calcium permeant cationic mechano-sensitive channels under hypotonic medium stimulation. This activity was particularly enhanced in DMD cells. The hypotonic medium induced drastic changes in the single-channel activity characteristics, which are: a large increase of the calcium over potassium permeability ratio; and a great enhancement of the quantity of current crossing through these channels. These channels could contribute to a significant calcium entry, which could participate in the abnormal calcium homeostasis observed in DMD muscle.

  2. Inhibition of parathyroid hormone release by maitotoxin, a calcium channel activator

    SciTech Connect

    Fitzpatrick, L.A.; Yasumoto, T.; Aurbach, G.D.

    1989-01-01

    Maitotoxin, a toxin derived from a marine dinoflagellate, is a potent activator of voltage-sensitive calcium channels. To further test the hypothesis that inhibition of PTH secretion by calcium is mediated via a calcium channel we studied the effect of maitotoxin on dispersed bovine parathyroid cells. Maitotoxin inhibited PTH release in a dose-dependent fashion, and inhibition was maximal at 1 ng/ml. Chelation of extracellular calcium by EGTA blocked the inhibition of PTH by maitotoxin. Maitotoxin enhanced the effects of the dihydropyridine calcium channel agonist (+)202-791 and increased the rate of radiocalcium uptake in parathyroid cells. Pertussis toxin, which ADP-ribosylates and inactivates a guanine nucleotide regulatory protein that interacts with calcium channels in the parathyroid cell, did not affect the inhibition of PTH secretion by maitotoxin. Maitotoxin, by its action on calcium channels allows entry of extracellular calcium and inhibits PTH release. Our results suggest that calcium channels are involved in the release of PTH. Inhibition of PTH release by maitotoxin is not sensitive to pertussis toxin, suggesting that maitotoxin may act distal to the site interacting with a guanine nucleotide regulatory protein, or maitotoxin could interact with other ions or second messengers to inhibit PTH release.

  3. The influence of environmental calcium concentrations on calcium flux, compensatory drinking and epithelial calcium channel expression in a freshwater cartilaginous fish.

    PubMed

    Allen, Peter J; Weihrauch, Dirk; Grandmaison, Vanessa; Dasiewicz, Patricia; Peake, Stephan J; Anderson, W Gary

    2011-03-15

    Calcium metabolism and mRNA levels of the epithelial calcium channel (ECaC) were examined in a freshwater cartilaginous fish, the lake sturgeon Acipenser fulvescens. Lake sturgeon were acclimated for ≥2 weeks to 0.1 (low), 0.4 (normal) or 3.3 (high) mmol l(-1) environmental calcium. Whole-body calcium flux was examined using (45)Ca as a radioactive marker. Net calcium flux was inward in all treatment groups; however, calcium influx was greatest in the low calcium environment and lowest in the high calcium environment, whereas efflux had the opposite relationship. A significant difference in the concentration of (45)Ca in the gastrointestinal tract (GIT) of fish in the low calcium environment led to the examination of drinking rate and calcium flux across the anterior-middle (mid) intestine. Drinking rate was not different between treatments; however, calcium influx across the mid-intestine in the low calcium treatment was significantly greater than that in both the normal and high calcium treatments. The lake sturgeon ECaC was 2831 bp in length, with a predicted protein sequence of 683 amino acids that shared a 66% identity with the closest sequenced ECaCs from the vertebrate phyla. ECaC mRNA levels were examined in the gills, kidney, pyloric caeca, mid-intestine and spiral intestine. Expression levels were highest in the gills, then the kidneys, and were orders of magnitude lower in the GIT. Contrary to existing models for calcium uptake in the teleost gill, ECaC expression was greatest in high calcium conditions and kidney ECaC expression was lowest in low calcium conditions, suggesting that cellular transport mechanisms for calcium may be distinctly different in these freshwater cartilaginous fishes.

  4. SLO BK Potassium Channels Couple Gap Junctions to Inhibition of Calcium Signaling in Olfactory Neuron Diversification

    PubMed Central

    Schumacher, Jennifer A.; Wang, Xiaohong; Merrill, Sean A.; Millington, Grethel; Bayne, Brittany; Jorgensen, Erik M.; Chuang, Chiou-Fen

    2016-01-01

    The C. elegans AWC olfactory neuron pair communicates to specify asymmetric subtypes AWCOFF and AWCON in a stochastic manner. Intercellular communication between AWC and other neurons in a transient NSY-5 gap junction network antagonizes voltage-activated calcium channels, UNC-2 (CaV2) and EGL-19 (CaV1), in the AWCON cell, but how calcium signaling is downregulated by NSY-5 is only partly understood. Here, we show that voltage- and calcium-activated SLO BK potassium channels mediate gap junction signaling to inhibit calcium pathways for asymmetric AWC differentiation. Activation of vertebrate SLO-1 channels causes transient membrane hyperpolarization, which makes it an important negative feedback system for calcium entry through voltage-activated calcium channels. Consistent with the physiological roles of SLO-1, our genetic results suggest that slo-1 BK channels act downstream of NSY-5 gap junctions to inhibit calcium channel-mediated signaling in the specification of AWCON. We also show for the first time that slo-2 BK channels are important for AWC asymmetry and act redundantly with slo-1 to inhibit calcium signaling. In addition, nsy-5-dependent asymmetric expression of slo-1 and slo-2 in the AWCON neuron is necessary and sufficient for AWC asymmetry. SLO-1 and SLO-2 localize close to UNC-2 and EGL-19 in AWC, suggesting a role of possible functional coupling between SLO BK channels and voltage-activated calcium channels in AWC asymmetry. Furthermore, slo-1 and slo-2 regulate the localization of synaptic markers, UNC-2 and RAB-3, in AWC neurons to control AWC asymmetry. We also identify the requirement of bkip-1, which encodes a previously identified auxiliary subunit of SLO-1, for slo-1 and slo-2 function in AWC asymmetry. Together, these results provide an unprecedented molecular link between gap junctions and calcium pathways for terminal differentiation of olfactory neurons. PMID:26771544

  5. Voltage-dependent calcium channels from brain incorporated into planar lipid bilayers.

    PubMed

    Nelson, M T; French, R J; Krueger, B K

    Many important physiological processes, including neurotransmitter release and muscle contraction, are regulated by the concentration of Ca2+ ions in the cell. Levels of cytoplasmic Ca2+ can be elevated by the entry of Ca2+ ions through voltage-dependent channels which are selective for Ca2+, Ba2+ and Sr2+ ions. We have measured currents through single, voltage-dependent calcium channels from rat brain that have been incorporated into planar lipid bilayers. Channel gating was voltage-dependent: membrane depolarization increased the channel open times and decreased the closed times. The channels were selective for divalent cations over monovalent ions. The well-known calcium channel blockers, lanthanum and cadmium, produced a concentration-dependent reduction of the apparent single-channel conductance. Contrary to expectations, the nature of the divalent cation carrying current through the channel affected not only the single-channel conductance, but also the channel open times, with mean open times being shortest for barium.

  6. Aging Reduces L-Type Calcium Channel Current and the Vasodilatory Response of Small Mesenteric Arteries to Calcium Channel Blockers

    PubMed Central

    Albarwani, Sulayma A.; Mansour, Fathi; Khan, Abdul Aleem; Al-Lawati, Intisar; Al-Kaabi, Abdulla; Al-Busaidi, Al-Manar; Al-Hadhrami, Safa; Al-Husseini, Isehaq; Al-Siyabi, Sultan; Tanira, Musbah O.

    2016-01-01

    Calcium channel blockers (CCBs) are widely used to treat cardiovascular disease (CVD) including hypertension. As aging is an independent risk factor for CVD, the use of CCBs increases with increasing age. Hence, this study was designed to evaluate the effect of aging on the sensitivity of small mesenteric arteries to L-type voltage-gated calcium channel (LTCC) blockers and also to investigate whether there was a concomitant change in calcium current density. Third order mesenteric arteries from male F344 rats, aged 2.5–3 months (young) and 22–26 months (old) were mounted on wire myograph to measure the tension during isometric contraction. Arteries were contracted with 100 mM KCl and were then relaxed in a cumulative concentration-response dependent manner with nifedipine (0.1 nM–1 μM), verapamil (0.1 nM–10 μM), or diltiazem (0.1 nM–10 μM). Relaxation-concentration response curves produced by cumulative concentrations of three different CCBs in arteries of old rats were shifted to the right with statistically significant IC50s. pIC50 ± s.e.m: (8.37 ± 0.06 vs. 8.04 ± 0.05, 7.40 ± 0.07 vs. 6.81 ± 0.04, and 6.58 ± 0.07 vs. 6.34 ± 0.06) in young vs. old. It was observed that the maximal contractions induced by phenylephrine and reversed by sodium nitroprusside were not different between young and old groups. However, Bay K 8644 (1 μM) increased resting tension by 23 ± 4.8% in young arteries and 4.7 ± 1.6% in old arteries. LTCC current density were also significantly lower in old arteries (−2.77 ± 0.45 pA/pF) compared to young arteries (−4.5 ± 0.40 pA/pF); with similar steady-state activation and inactivation curves. Parallel to this reduction, the expression of Cav1.2 protein was reduced by 57 ± 5% in arteries from old rats compared to those from young rats. In conclusion, our results suggest that aging reduces the response of small mesenteric arteries to the vasodilatory effect of the CCBs and this may be due to, at least in part, reduced

  7. Reversible block of the calcium release channel/ryanodine receptor by protamine, a heparin antidote.

    PubMed

    Koulen, P; Ehrlich, B E

    2000-07-01

    Channel activity of the calcium release channel from skeletal muscle, ryanodine receptor type 1, was measured in the presence and absence of protamine sulfate on the cytoplasmic side of the channel. Single-channel activity was measured after incorporating channels into planar lipid bilayers. Optimally and suboptimally calcium-activated calcium release channels were inactivated by the application of protamine to the cytoplasmic side of the channel. Recovery of channel activity was not observed while protamine was present. The addition of protamine bound to agarose beads did not change channel activity, implying that the mechanism of action involves an interaction with the ryanodine receptor rather than changes in the bulk calcium concentration of the medium. The block of channel activity by protamine could be reversed either by removal by perfusion with buffer or by the addition of heparin to the cytoplasmic side of the channel. Microinjection of protamine into differentiated C(2)C(12) mouse muscle cells prevented caffeine-induced intracellular calcium release. The results suggest that protamine acts on the ryanodine receptor in a similar but opposite manner from heparin and that protamine can be used as a potent, reversible inhibitor of ryanodine receptor activity.

  8. Calcium channel beta subunits differentially modulate recovery of the channel from inactivation.

    PubMed

    Jeziorski, M C; Greenberg, R M; Anderson, P A

    2000-10-20

    We examined the effects of calcium channel beta subunits upon the recovery from inactivation of alpha(1) subunits expressed in Xenopus oocytes. Recovery of the current carried by the L-type alpha(1) subunit (cyCa(v)1) from the jellyfish Cyanea capillata was accelerated by coexpression of any beta subunit, but the degree of potentiation differed according to which beta isoform was coexpressed. The Cyanea beta subunit was most effective, followed by the mammalian b(3), b(4), and beta(2a) subtypes. Recovery of the human Ca(v)2.3 subunit was also modulated by beta subunits, but was slowed instead. beta(3) was the most potent subunit tested, followed by beta(4), then beta(2a), which had virtually no effect. These results demonstrate that different beta subunit isoforms can affect recovery of the channel to varying degrees, and provide an additional mechanism by which beta subunits can differentially regulate alpha(1) subunits.

  9. A comprehensive search for calcium binding sites critical for TMEM16A calcium-activated chloride channel activity

    PubMed Central

    Tien, Jason; Peters, Christian J; Wong, Xiu Ming; Cheng, Tong; Jan, Yuh Nung; Jan, Lily Yeh; Yang, Huanghe

    2014-01-01

    TMEM16A forms calcium-activated chloride channels (CaCCs) that regulate physiological processes such as the secretions of airway epithelia and exocrine glands, the contraction of smooth muscles, and the excitability of neurons. Notwithstanding intense interest in the mechanism behind TMEM16A-CaCC calcium-dependent gating, comprehensive surveys to identify and characterize potential calcium sensors of this channel are still lacking. By aligning distantly related calcium-activated ion channels in the TMEM16 family and conducting systematic mutagenesis of all conserved acidic residues thought to be exposed to the cytoplasm, we identify four acidic amino acids as putative calcium-binding residues. Alterations of the charge, polarity, and size of amino acid side chains at these sites alter the ability of different divalent cations to activate the channel. Furthermore, TMEM16A mutant channels containing double cysteine substitutions at these residues are sensitive to the redox potential of the internal solution, providing evidence for their physical proximity and solvent accessibility. DOI: http://dx.doi.org/10.7554/eLife.02772.001 PMID:24980701

  10. Sodium entry through endothelial store-operated calcium entry channels: regulation by Orai1.

    PubMed

    Xu, Ningyong; Cioffi, Donna L; Alexeyev, Mikhail; Rich, Thomas C; Stevens, Troy

    2015-02-15

    Orai1 interacts with transient receptor potential protein of the canonical subfamily (TRPC4) and contributes to calcium selectivity of the endothelial cell store-operated calcium entry current (ISOC). Orai1 silencing increases sodium permeability and decreases membrane-associated calcium, although it is not known whether Orai1 is an important determinant of cytosolic sodium transitions. We test the hypothesis that, upon activation of store-operated calcium entry channels, Orai1 is a critical determinant of cytosolic sodium transitions. Activation of store-operated calcium entry channels transiently increased cytosolic calcium and sodium, characteristic of release from an intracellular store. The sodium response occurred more abruptly and returned to baseline more rapidly than did the transient calcium rise. Extracellular choline substitution for sodium did not inhibit the response, although 2-aminoethoxydiphenyl borate and YM-58483 reduced it by ∼50%. After this transient response, cytosolic sodium continued to increase due to influx through activated store-operated calcium entry channels. The magnitude of this sustained increase in cytosolic sodium was greater when experiments were conducted in low extracellular calcium and when Orai1 expression was silenced; these two interventions were not additive, suggesting a common mechanism. 2-Aminoethoxydiphenyl borate and YM-58483 inhibited the sustained increase in cytosolic sodium, only in the presence of Orai1. These studies demonstrate that sodium permeates activated store-operated calcium entry channels, resulting in an increase in cytosolic sodium; the magnitude of this response is determined by Orai1.

  11. The α2δ subunits of voltage-gated calcium channels.

    PubMed

    Dolphin, Annette C

    2013-07-01

    Voltage-gated calcium channels consist of the main pore-forming α1 subunit, together, except in the case of the T-type channels, with β and α2δ and sometimes γ subunits, which are collectively termed auxiliary or accessory subunits. This review will concentrate on the properties and role of the α2δ subunits of these channels. These proteins are largely extracellular, membrane-associated proteins which influence the trafficking, localization, and biophysical properties of the channels. This article is part of a Special Issue entitled: Calcium channels.

  12. Signal processing by T-type calcium channel interactions in the cerebellum

    PubMed Central

    Engbers, Jordan D. T.; Anderson, Dustin; Zamponi, Gerald W.; Turner, Ray W.

    2013-01-01

    T-type calcium channels of the Cav3 family are unique among voltage-gated calcium channels due to their low activation voltage, rapid inactivation, and small single channel conductance. These special properties allow Cav3 calcium channels to regulate neuronal processing in the subthreshold voltage range. Here, we review two different subthreshold ion channel interactions involving Cav3 channels and explore the ability of these interactions to expand the functional roles of Cav3 channels. In cerebellar Purkinje cells, Cav3 and intermediate conductance calcium-activated potassium (IKCa) channels form a novel complex which creates a low voltage-activated, transient outward current capable of suppressing temporal summation of excitatory postsynaptic potentials (EPSPs). In large diameter neurons of the deep cerebellar nuclei, Cav3-mediated calcium current (IT) and hyperpolarization-activated cation current (IH) are activated during trains of inhibitory postsynaptic potentials. These currents have distinct, and yet synergistic, roles in the subthreshold domain with IT generating a rebound burst and IH controlling first spike latency and rebound spike precision. However, by shortening the membrane time constant the membrane returns towards resting value at a faster rate, allowing IH to increase the efficacy of IT and increase the range of burst frequencies that can be generated. The net effect of Cav3 channels thus depends on the channels with which they are paired. When expressed in a complex with a KCa channel, Cav3 channels reduce excitability when processing excitatory inputs. If functionally coupled with an HCN channel, the depolarizing effect of Cav3 channels is accentuated, allowing for efficient inversion of inhibitory inputs to generate a rebound burst output. Therefore, signal processing relies not only on the activity of individual subtypes of channels but also on complex interactions between ion channels whether based on a physical complex or by indirect

  13. Mn ions pass through calcium channels. A possible explanation

    PubMed Central

    1983-01-01

    The divalent transition-metal cations Fe, Co, and Ni were used to test the hypothesis that Mn ions pass through calcium channels because Mn ions have a relatively low energy of hydration. The test ions were applied to the bath and comparisons were made of their effects on Ca or Mn spikes elicited from myoepithelial cells of the proventriculus of the polychaete worm Syllis spongiphila. Control experiments showed that (a) results obtained using deoxygenated solutions (required to stabilize Fe2+ ions) could be compared with those using solutions containing oxygen, and (b) the test cations did not measurably affect the electrical coupling between cells. Ca spikes were reversibly abolished by the test cations in the order of effectiveness: Fe (16.1 mM +/- 1.0, SE; n = 15) = Co (14.6 mM +/- 0.8; n = 27) less than Ni (8.3 mM +/- 0.7; n = 16). The test cations diminished Mn spikes by decreasing maximum rates of rise (Fe = Co less than Ni) and overshoot amplitudes (Fe less than Co less than Ni). The test cations also increased the current intensity required for Ca (Fe = Co less than Ni) or Mn spike initiation (Fe less than Co less than Ni). Since the energies of hydration of Fe, Co, and Ni increase stepwise from that of Mn, and the effectiveness of these ions in diminishing Ca and Mn spikes increased in the order Fe less than or equal to Co less than Ni, these data support the hypothesis that Mn ions pass through Ca channels because they shed waters of hydration relatively easily. An additional observation was that, at below-blocking concentrations, the test cations caused decreased duration of Mn spikes and increased duration of Ca spikes. PMID:6308126

  14. Control of anterior pituitary cell excitability by calcium-activated potassium channels.

    PubMed

    Shipston, Michael J

    2017-06-05

    In anterior pituitary endocrine cells, large (BK), small (SK) and intermediate (IK) conductance calcium activated potassium channels are key determinants in shaping cellular excitability in a cell type- and context-specific manner. Indeed, these channels are targeted by multiple signaling pathways that stimulate or inhibit cellular excitability. BK channels can, paradoxically, both promote electrical bursting as well as terminate bursting and spiking dependent upon intrinsic BK channel properties and proximity to voltage gated calcium channels in somatotrophs, lactotrophs and corticotrophs. In contrast, SK channels are predominantly activated by calcium released from intracellular IP3-sensitive calcium stores and mediate membrane hyperpolarization in cells including gonadotrophs and corticotrophs. IK channels are predominantly expressed in corticotrophs where they limit membrane excitability. A major challenge for the future is to determine the cell-type specific molecular composition of calcium-activated potassium channels and how they control anterior pituitary hormone secretion as well as other calcium-dependent processes. Copyright © 2017. Published by Elsevier B.V.

  15. Synthesis and biological evaluation of oxazole derivatives as T-type calcium channel blockers.

    PubMed

    Lee, Jie Eun; Koh, Hun Yeong; Seo, Seon Hee; Baek, Yi Yeon; Rhim, Hyewhon; Cho, Yong Seo; Choo, Hyunah; Pae, Ae Nim

    2010-07-15

    T-type calcium channel is one of therapeutic targets for the treatment of cardiovascular diseases and neuropathic pain. In this study, as a part of our ongoing efforts to develop potent T-type calcium channel blockers, we designed oxazole derivatives substituted with arylpiperazinylalkylamines. The oxazoles were synthesized in a convenient convergent synthetic method, and biologically evaluated against alpha(1G) (Ca(V)3.1) T-type calcium channel. Among total 41 oxazole compounds synthesized, the most active one was the compound 10-35 with an IC(50) value of 0.65 microM, which is comparable with that of mibefradil.

  16. Emerging data on calcium-channel blockers: the COHORT study.

    PubMed

    Zanchetti, Alberto

    2003-02-01

    Multiple studies have demonstrated dihydropyridine calcium-channel blocker (CCB) therapy to be appropriate for the treatment of hypertension, as is reflected in treatment guidelines such as the Sixth Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure in the United States and the 1999 World Health Organization-International Society of Hypertension report. As with any drug class, successful treatment with CCBs depends on good patient compliance, which often hinges on drug tolerability. The differing characteristics among the various generations of CCBs may contribute to some compounds demonstrating superior tolerability. To test this hypothesis, the COHORT trial (named for the large group of participants) was undertaken in 828 elderly hypertensive patients aged > or = 60 years. This trial investigated the possible differences in patient tolerability between the third-generation agent amlodipine and the latest-generation agents lercanidipine and lacidipine. The primary endpoint of the study was the percentage of patients reporting edema, the most common side effect associated with CCB therapy. The study results indicated that while all three treatments were similarly efficacious in lowering blood pressure, lercanidipine and lacidipine were much better tolerated than amlodipine whether they were used as single agents or as initial therapy combined with other antihypertensive drugs. These newest-generation dihydropyridine CCBs offer the potential to reduce side effects, improve patient compliance, and ultimately help patients reach target blood pressures as recommended by the aforementioned guidelines.

  17. Voltage-gated calcium channel autoimmune cerebellar degeneration

    PubMed Central

    McKasson, Marilyn; Clawson, Susan A.; Hill, Kenneth E.; Wood, Blair; Carlson, Noel; Bromberg, Mark; Greenlee, John E.

    2016-01-01

    Objectives: To describe response to treatment in a patient with autoantibodies against voltage-gated calcium channels (VGCCs) who presented with autoimmune cerebellar degeneration and subsequently developed Lambert-Eaton myasthenic syndrome (LEMS), and to study the effect of the patient's autoantibodies on Purkinje cells in rat cerebellar slice cultures. Methods: Case report and study of rat cerebellar slice cultures incubated with patient VGCC autoantibodies. Results: A 53-year-old man developed progressive incoordination with ataxic speech. Laboratory evaluation revealed VGCC autoantibodies without other antineuronal autoantibodies. Whole-body PET scans 6 and 12 months after presentation detected no malignancy. The patient improved significantly with IV immunoglobulin G (IgG), prednisone, and mycophenolate mofetil, but worsened after IV IgG was halted secondary to aseptic meningitis. He subsequently developed weakness with electrodiagnostic evidence of LEMS. The patient's IgG bound to Purkinje cells in rat cerebellar slice cultures, followed by neuronal death. Reactivity of the patient's autoantibodies with VGCCs was confirmed by blocking studies with defined VGCC antibodies. Conclusions: Autoimmune cerebellar degeneration associated with VGCC autoantibodies may precede onset of LEMS and may improve with immunosuppressive treatment. Binding of anti-VGCC antibodies to Purkinje cells in cerebellar slice cultures may be followed by cell death. Patients with anti-VGCC autoantibodies may be at risk of irreversible neurologic injury over time, and treatment should be initiated early. PMID:27088118

  18. Calcium dependence and distribution of calcium-activated chloride channels in Xenopus oocytes.

    PubMed Central

    Gomez-Hernandez, J M; Stühmer, W; Parekh, A B

    1997-01-01

    1. The Ca(2+)-dependent Cl- current (ICl,Ca), expressed in the plasma membrane of Xenopus oocytes, was examined in excised inside-out macropatches using a rapid perfusion system. 2. Application of Ca(2+)-containing Ringer solution resulted in the activation of a current whose reversal potential shifted to the right by 51 +/- 5.2 mV when Cl- in the pipette solution was lowered from 119.3 to 10 mM. No currents were generated when Ca2+ was omitted from the solution. The current is therefore a Ca(2+)-activated Cl- one. 3. Following exposure to Ca2+, the half-time for activation of ICl,Ca was not voltage dependent, whereas deactivation was strongly so. 4. ICl,Ca was stable in the continuous presence of Ca2+ and showed no sign of inactivation or adaptation. 5. Comparison of the size of the currents (normalized to pipette resistance) from the animal and vegetal poles revealed that ICl,Ca had a highly polarized distribution. The current density was almost 10 times higher in the animal pole. 6. The results suggest that Cl- channels provide a continuous and reliable indication of submembranous Ca2+, at least in an excised patch, and the clustering of the Cl- channels renders it necessary to exert caution in interpreting results involving the kinetics of Ca2+ signalling, when ICl,Ca is used as the sole monitor of calcium. PMID:9279809

  19. Local calcium signalling is mediated by mechanosensitive ion channels in mesenchymal stem cells.

    PubMed

    Chubinskiy-Nadezhdin, Vladislav I; Vasileva, Valeria Y; Pugovkina, Natalia A; Vassilieva, Irina O; Morachevskaya, Elena A; Nikolsky, Nikolay N; Negulyaev, Yuri A

    2017-01-22

    Mechanical forces are implicated in key physiological processes in stem cells, including proliferation, differentiation and lineage switching. To date, there is an evident lack of understanding of how external mechanical cues are coupled with calcium signalling in stem cells. Mechanical reactions are of particular interest in adult mesenchymal stem cells because of their promising potential for use in tissue remodelling and clinical therapy. Here, single channel patch-clamp technique was employed to search for cation channels involved in mechanosensitivity in mesenchymal endometrial-derived stem cells (hMESCs). Functional expression of native mechanosensitive stretch-activated channels (SACs) and calcium-sensitive potassium channels of different conductances in hMESCs was shown. Single current analysis of stretch-induced channel activity revealed functional coupling of SACs and BK channels in plasma membrane. The combination of cell-attached and inside-out experiments have indicated that highly localized Ca(2+) entry via SACs triggers BK channel activity. At the same time, SK channels are not coupled with SACs despite of high calcium sensitivity as compared to BK. Our data demonstrate novel mechanism controlling BK channel activity in native cells. We conclude that SACs and BK channels are clusterized in functional mechanosensitive domains in the plasma membrane of hMESCs. Co-clustering of ion channels may significantly contribute to mechano-dependent calcium signalling in stem cells.

  20. Calcium channel blockers for inhibiting preterm labour and birth.

    PubMed

    Flenady, Vicki; Wojcieszek, Aleena M; Papatsonis, Dimitri N M; Stock, Owen M; Murray, Linda; Jardine, Luke A; Carbonne, Bruno

    2014-06-05

    Preterm birth is a major contributor to perinatal mortality and morbidity, affecting around 9% of births in high-income countries and an estimated 13% of births in low- and middle-income countries. Tocolytics are drugs used to suppress uterine contractions for women in preterm labour. The most widely used tocolytic are the betamimetics, however, these are associated with a high frequency of unpleasant and sometimes severe maternal side effects. Calcium channel blockers (CCBs) (such as nifedipine) may have similar tocolytic efficacy with less side effects than betamimetics. Oxytocin receptor antagonists (ORAs) (e.g. atosiban) also have a low side-effect profile. To assess the effects on maternal, fetal and neonatal outcomes of CCBs, administered as a tocolytic agent, to women in preterm labour. We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (12 November 2013). All published and unpublished randomised trials in which CCBs were used for tocolysis for women in labour between 20 and 36 completed weeks' gestation. Two review authors independently assessed trial eligibility, undertook quality assessment and data extraction. Results are presented using risk ratio (RR) for categorical data and mean difference (MD) for data measured on a continuous scale with the 95% confidence interval (CI). The number needed to treat to benefit (NNTB) and the number needed to treat to harm (NNTH) were calculated for categorical outcomes that were statistically significantly different. This update includes 26 additional trials involving 2511 women, giving a total of 38 included trials (3550 women). Thirty-five trials used nifedipine as the CCB and three trials used nicardipine. Blinding of intervention and outcome assessment was undertaken in only one of the trials (a placebo controlled trial). However, objective outcomes defined according to timing of birth and perinatal mortality were considered to have low risk of detection bias.Two small trials comparing CCBs

  1. Induction of T-type calcium channel gene expression by chronic hypoxia.

    PubMed

    Del Toro, Raquel; Levitsky, Konstantin L; López-Barneo, José; Chiara, María D

    2003-06-20

    Cellular responses to hypoxia can be acute or chronic. Acute responses mainly depend on oxygen-sensitive ion channels, whereas chronic responses rely on the hypoxia-inducible transcription factors (HIFs), which up-regulate the expression of enzymes, transporters, and growth factors. It is unknown whether the expression of genes coding for ion channels is also influenced by hypoxia. We report here that the alpha1H gene of T-type voltage-gated calcium channels is highly induced by lowering oxygen tension in PC12 cells. Accumulation of alpha1H mRNA in response to hypoxia is time- and dose-dependent and paralleled by an increase in the density of T-type calcium channel current recorded in patch clamped cells. HIF appears to be involved in the response to hypoxia, since cobalt chloride, desferrioxamine, and dimethyloxalylglycine, compounds that mimic HIF-regulated gene expression, replicate the hypoxic effect. Moreover, functional inhibition of HIF-2alpha protein accumulation using antisense HIF-2alpha oligonucleotides reverses the effect of hypoxia on T-type Ca2+ channel expression. Importantly, regulation by oxygen tension is specific for T-type calcium channels, since it is not observed with the L-, N-, and P/Q-channel types. These findings show for the first time that hypoxia induces an ion channel gene via a HIF-dependent mechanism and define a new role for the T-type calcium channels as regulators of cellular excitability and calcium influx under chronic hypoxia.

  2. Structure-activity relationship study of 1,4-dihydropyridine derivatives blocking N-type calcium channels.

    PubMed

    Yamamoto, Takashi; Niwa, Seiji; Ohno, Seiji; Onishi, Tomoyuki; Matsueda, Hiroyuki; Koganei, Hajime; Uneyama, Hisayuki; Fujita, Shin-ichi; Takeda, Tomoko; Kito, Morikazu; Ono, Yukitsugu; Saitou, Yuki; Takahara, Akira; Iwata, Seinosuke; Shoji, Masataka

    2006-02-15

    Cilnidipine is a 1,4-dihydropyridine derived L/N-type calcium channel dual blocker possessing neuroprotective and analgesic effects which are related to its N-type calcium channel inhibitory activity. In order to find specific N-type calcium channel blockers with the least effects on cardiovascular system, we performed structure-activity relationship study on APJ2708, which is a derivative of cilnidipine, and found a promising N-type calcium channel blocker 21b possessing analgesic effect in vivo with a 1600-fold lower activity against L-type calcium channels than that of cilnidipine.

  3. Effects of calcium channel blockers on cloned cardiac K+ channels IKr and IKs.

    PubMed

    Chouabe, C; Drici, M D; Romey, G; Barhanin, J

    2000-01-01

    Cloned HERG and KvLQT1-IsK K+ channels have been expressed in mammalian cells and assayed as a target for calcium channel blockers. These channels generate the rapid and slow components of the cardiac delayed rectifier K+ current, and mutations can affect them that lead to long QT syndromes. HERG is blocked by bepridil (EC50 = 0.55 microM), verapamil (EC50 = 0.83 microM) and mibefradil (EC50 = 1.43 microM), whereas nitrendipine and diltiazem have negligible effects. Steady-state activation and inactivation parameters are shifted to more negative values in the presence of the blockers. Similarly, KvLQT1-IsK is inhibited by bepridil (EC50 = 10.0 microM) and mibefradil (EC50 = 11.8 microM), whilst being insensitive to nitrendipine, diltiazem or verapamil. This work may help to understand the mechanisms of action of verapamil in certain ventricular tachycardias as well as some of the deleterious adverse cardiac events associated with bepridil and mibefradil.

  4. The coupling of acetylcholine-induced BK channel and calcium channel in guinea pig saccular type II vestibular hair cells.

    PubMed

    Kong, Wei-Jia; Guo, Chang-Kai; Zhang, Xiao-Wen; Chen, Xiong; Zhang, Song; Li, Guan-Qiao; Li, Zhi-Wang; Van Cauwenberge, Paul

    2007-01-19

    Molecular biological studies and electrophysiological data have demonstrated that acetylcholine (ACh) is the principal cochlear and vestibular efferent neurotransmitter among mammalians. However, the functional roles of ACh in type II vestibular hair cells (VHCs II) among mammalians are still unclear, with the exception of the well-known alpha9-containing nicotinic ACh receptor (alpha9-containing nAChR)-activated small conductance, calcium-dependent potassium current (SK) in cochlear hair cells and frog saccular hair cells. The activation of SK current was necessary for the calcium influx through the alpha9-containing nAChR. Recently, we have demonstrated that ACh-induced big conductance, calcium-dependent potassium current (BK) was present in VHCs II of the vestibular end-organ of guinea pig. In this study, the nature of calcium influx for the activation of ACh-induced BK current in saccular VHCs II of guinea pig was investigated. Following extracellular perfusion of ACh, saccular VHCs II displayed a sustained outward current, which was sensitive to iberiotoxin (IBTX). High concentration of apamin failed to inhibit the current amplitude of ACh-induced outward current. Intracellular application of Cs(+) completely abolished the current evoked by ACh. ACh-induced current was potently inhibited by nifedipine, nimodipine, Cd(2+) and Ni(2+), respectively. The inhibition potency of these four calcium channel antagonists was nimodipine>nifedipine>cadmium>nickel. The L-type Ca(2+) channels agonist, (-)-Bay-K 8644 mimicked the effect of ACh and activated an IBTX-sensitive current. In addition, partial VHCs II displayed a biphasic waveform. In conclusion, the present data showed that in the guinea pig saccular VHCs II, ACh-induced BK channel was coupled with the calcium channel, but not the receptor. The perfusion of ACh will drive the opening of calcium channels; the influx of calcium ions will then activate the BK current.

  5. Single-channel properties of BK-type calcium-activated potassium channels at a cholinergic presynaptic nerve terminal

    PubMed Central

    Sun, Xiao-Ping; Schlichter, Lyanne C; Stanley, Elis F

    1999-01-01

    A high-conductance calcium-activated potassium channel (BK KCa) was characterized at a cholinergic presynaptic nerve terminal using the calyx synapse isolated from the chick ciliary ganglion.The channel had a conductance of 210 pS in a 150 mM:150 mM K+ gradient, was highly selective for K+ over Na+, and was sensitive to block by external charybdotoxin or tetraethylammonium (TEA) and by internal Ba2+. At +60 mV it was activated by cytoplasmic calcium [Ca2+]i with a Kd of ≈0.5 μM and a Hill coefficient of ≈2.0. At 10 μM [Ca2+]i the channel was 50 % activated (V½) at -8.0 mV with a voltage dependence (Boltzmann slope-factor) of 32.7 mV. The V½ values hyperpolarized with an increase in [Ca2+]i while the slope factors decreased. There were no overt differences in conductance or [Ca2+]i sensitivity between BK channels from the transmitter release face and the non-release face.Open and closed times were fitted by two and three exponentials, respectively. The slow time constants were strongly affected by both [Ca2+]i and membrane potential changes.In cell-attached patch recordings BK channel opening was enhanced by a prepulse permissive for calcium influx through the patch, suggesting that the channel can be activated by calcium ion influx through neighbouring calcium channels.The properties of the presynaptic BK channel are well suited for rapid activation during the presynaptic depolarization and Ca2+ influx that are associated with transmitter release. This channel may play an important role in terminating release by rapid repolarization of the action potential. PMID:10420003

  6. Neuropharmacological characterization of voltage-sensitive calcium channels: possible existence of neomycin-sensitive, omega-conotoxin GVIA- and dihydropyridines-resistant calcium channels in the rat brain.

    PubMed

    Yamada, K; Teraoka, T; Morita, S; Hasegawa, T; Nabeshima, T

    1993-12-01

    We attempted to characterize the functional roles of subtypes of voltage-sensitive calcium channels in the brain. The maximal number of [125I]omega-conotoxin GVIA (omega-CTX) binding sites in rat brain associated with N-type calcium channels (N-channels) was approximately 10 times more than that of [3H]-PN200-110 associated with L-type calcium channels (L-channels). [125I]omega-CTX binding was inhibited by aminoglycoside antibiotics, neomycin and dynorphin A(1-13), but not by various classes of L-channel antagonists. A 6-hydroxydopamine-induced lesion of the striatum resulted in a marked reduction of both [125I]-omega-CTX and [3H]PN200-110 binding. Kainic acid-induced lesion of the striatum reduced [3H]PN200-110 binding by 57%, but did not reduce [125I]omega-CTX binding. Omega-CTX produced a small (18%) but significant reduction of potassium-stimulated Ca2+ influx into rat brain synaptosomes, although it produced a concentration-dependent inhibition in chick brain synaptosomes. Neomycin inhibited Ca2+ influx in both preparations in a concentration-dependent manner. Both omega-CTX and neomycin inhibited potassium-stimulated [3H]dopamine (DA) release from rat striatal slices. The L-channel antagonists had no effect on either Ca2+ influx or [3H]DA release. These results suggest that DA release in the striatum is regulated by Ca2+ influx through N-channels located in presynaptic nerve terminals, and that the most of the Ca2+ influx in rat brain appears to be governed by neomycin-sensitive, omega-CTX- and DHP-resistant calcium channels.

  7. Spontaneous and CRH-Induced Excitability and Calcium Signaling in Mice Corticotrophs Involves Sodium, Calcium, and Cation-Conducting Channels.

    PubMed

    Zemkova, Hana; Tomić, Melanija; Kucka, Marek; Aguilera, Greti; Stojilkovic, Stanko S

    2016-04-01

    Transgenic mice expressing the tdimer2(12) form of Discosoma red fluorescent protein under control of the proopiomelanocortin gene's regulatory elements are a useful model for studying corticotrophs. Using these mice, we studied the ion channels and mechanisms controlling corticotroph excitability. Corticotrophs were either quiescent or electrically active, with a 22-mV difference in the resting membrane potential (RMP) between the 2 groups. In quiescent cells, CRH depolarized the membrane, leading to initial single spiking and sustained bursting; in active cells, CRH further facilitated or inhibited electrical activity and calcium spiking, depending on the initial activity pattern and CRH concentration. The stimulatory but not inhibitory action of CRH on electrical activity was mimicked by cAMP independently of the presence or absence of arachidonic acid. Removal of bath sodium silenced spiking and hyperpolarized the majority of cells; in contrast, the removal of bath calcium did not affect RMP but reduced CRH-induced depolarization, which abolished bursting electrical activity and decreased the spiking frequency but not the amplitude of single spikes. Corticotrophs with inhibited voltage-gated sodium channels fired calcium-dependent action potentials, whereas cells with inhibited L-type calcium channels fired sodium-dependent spikes; blockade of both channels abolished spiking without affecting the RMP. These results indicate that the background voltage-insensitive sodium conductance influences RMP, the CRH-depolarization current is driven by a cationic conductance, and the interplay between voltage-gated sodium and calcium channels plays a critical role in determining the status and pattern of electrical activity and calcium signaling.

  8. Calcium Occupancy of N-terminal Sites within Calmodulin Induces Inhibition of the Ryanodine Receptor Calcium Release Channel

    SciTech Connect

    Boschek, Curt B; Jones, Terry E; Squier, Thomas C; Bigelow, Diana J

    2007-08-01

    Calmodulin (CaM) regulates calcium release from intracellular stores in skeletal muscle through its association with the ryanodine receptor (RyR1) calcium release channel, where CaM association enhances channel opening at resting calcium levels and its closing at micromolar calcium levels associated with muscle contraction. A high-affinity CaM-binding sequence (RyRp) has been identified in RyR1, which corresponds to a 30-residue sequence (i.e., K3614 – N3643) located within the central portion of the primary sequence. However, it is currently unclear whether the identified CaM-binding sequence a) senses calcium over the physiological range of calcium-concentrations associated with RyR1 regulation or b) plays a structural role unrelated to the calcium-dependent modulation of RyR1 function. Therefore, we have measured the calcium-dependent activation of the individual domains of CaM in association with RyRp and their relationship to the CaM-dependent regulation of RyR1. These measurements utilize an engineered CaM, permitting the site-specific incorporation of N-(1-pyrene) maleimide at either T34C (PyN-CaM) or T110C (PyC-CaM) in the N- and C-domains, respectively. Consistent with prior measurements, we observe a high-affinity association between both apo- and calcium-activated CaM and RyRp. Upon association with RyRp, fluorescence changes in PyN-CaM or PyC-CaM permit the measurement of the calcium-activation of these individual domains. Fluorescence changes upon calcium-activation of PyC-CaM in association with RyRp are indicative of high-affinity calcium-dependent activation of the C-terminal domain of CaM bound to RyRp at resting calcium levels and the activation of the N-terminal domain at levels of calcium associated cellular activation. In comparison, occupancy of calcium-binding sites in the N-domain of CaM mirrors the calcium-dependence of RyR1 inhibition observed at activating calcium levels, where [Ca]1/2 = 4.3 0.4 μM, suggesting a direct regulation of Ry

  9. Calcium occupancy of N-terminal sites within calmodulin induces inhibition of the ryanodine receptor calcium release channel.

    PubMed

    Boschek, Curt B; Jones, Terry E; Squier, Thomas C; Bigelow, Diana J

    2007-09-18

    Calmodulin (CaM) regulates calcium release from intracellular stores in skeletal muscle through its association with the ryanodine receptor (RyR1) calcium release channel, where CaM association enhances channel opening at resting calcium levels and its closing at micromolar calcium levels associated with muscle contraction. A high-affinity CaM-binding sequence (RyRp) has been identified in RyR1, which corresponds to a 30-residue sequence (i.e., K3614-N3643) located within the central portion of the primary sequence. However, it is presently unclear whether the identified CaM-binding sequence in association with CaM (a) senses calcium over the physiological range of calcium concentrations associated with RyR1 regulation or alternatively, (b) plays a structural role unrelated to the calcium-dependent modulation of RyR1 function. Therefore, we have measured the calcium-dependent activation of the individual domains of CaM in association with RyRp and their relationship to the CaM-dependent regulation of RyR1. These measurements utilize an engineered CaM, permitting the site-specific incorporation of N-(1-pyrene)maleimide at either T34C (PyN-CaM) or T110C (PyC-CaM) in the N- and C-domains, respectively. Consistent with prior measurements, we observe a high-affinity association of both apo-CaM and calcium-activated CaM with RyRp. Upon association with RyRp, fluorescence changes in PyN-CaM or PyC-CaM permit the measurement of the calcium-dependent activation of these individual domains. Fluorescence changes upon calcium activation of PyC-CaM in association with RyRp are indicative of high-affinity calcium-dependent activation of the C-terminal domain of CaM at resting calcium levels; at calcium levels associated with muscle contraction, activation of the N-terminal domain occurs with concomitant increases in the fluorescence intensity of PyC-CaM that is associated with structural changes within the CaM-binding sequence of RyR1. Occupancy of calcium-binding sites in the N

  10. Pharmacology of L-type Calcium Channels: Novel Drugs for Old Targets?

    PubMed Central

    Striessnig, Jörg; Ortner, Nadine J.; Pinggera, Alexandra

    2015-01-01

    Inhibition of voltage-gated L-type calcium channels by organic calcium channel blockers is a well-established pharmacodynamic concept for the treatment of hypertension and cardiac ischemia. Since decades these antihypertensives (such as the dihydropyridines amlodipine, felodipine or nifedipine) belong to the most widely prescribed drugs 
world-wide. Their tolerability is excellent because at therapeutic doses their pharmacological effects in humans are limited to the cardiovascular system. During the last years substantial progress has been made to reveal the physiological role of different L-type calcium channel isoforms in many other tissues, including the brain, endocrine and sensory cells. 
Moreover, there is accumulating evidence about their involvement in various human diseases, such as Parkinson's disease, neuropsychiatric disorders and hyperaldosteronism. In this review we discuss the pathogenetic role of L-type calcium channels, potential new indications for existing or isoform-selective compounds and strategies to minimize potential side effects. PMID:25966690

  11. Temporal expression of calcium channel subunits in satellite cells and bone marrow mesenchymal cells.

    PubMed

    Grajales, Liliana; Lach, Lawrence E; Janisch, Patrick; Geenen, David L; García, Jesús

    2015-06-01

    Bone marrow-derived mesenchymal stem cells (MSC) can be differentiated into myocytes, as well as adipocytes, chondrocytes, and osteocytes in culture. Calcium channels mediate excitation-contraction coupling and are essential for the function of muscle. However, little is known about the expression of calcium channel subunits and calcium handling in stem cells. We examined whether the expression of calcium channel subunits in MSC is similar to that of skeletal muscle satellite cells and if their levels of expression are modified after treatment with bone morphogenetic protein-4 (BMP4). We found that during myogenic differentiation, MSC first express the α2δ1 subunit and the cardiac channel subunit Cav1.2. In contrast to the α2δ1 subunit levels, the Cav1.2 subunit decreases rapidly with time. The skeletal channel subunit Cav1.1 is detected at day 3 but its expression increases considerably, resembling more closely the expression of the subunits in satellite cells. Treatment of MSC with BMP4 caused a significant increase in expression of Cav1.2, a delay in expression of Cav1.1, and a reduction in the duration of calcium transients when extracellular calcium was removed. Calcium currents and transients followed a pattern related to the expression of the cardiac (Cav1.2) or skeletal (Cav1.1) α1subunits. These results indicate that differentiation of untreated MSC resembles differentiation of skeletal muscle and that BMP4 reduces skeletal muscle calcium channel expression and promotes the expression of cardiac calcium channels during myogenic differentiation.

  12. The Physiology, Pathology, and Pharmacology of Voltage-Gated Calcium Channels and Their Future Therapeutic Potential

    PubMed Central

    Zamponi, Gerald W.; Striessnig, Joerg; Koschak, Alexandra

    2015-01-01

    Voltage-gated calcium channels are required for many key functions in the body. In this review, the different subtypes of voltage-gated calcium channels are described and their physiologic roles and pharmacology are outlined. We describe the current uses of drugs interacting with the different calcium channel subtypes and subunits, as well as specific areas in which there is strong potential for future drug development. Current therapeutic agents include drugs targeting L-type CaV1.2 calcium channels, particularly 1,4-dihydropyridines, which are widely used in the treatment of hypertension. T-type (CaV3) channels are a target of ethosuximide, widely used in absence epilepsy. The auxiliary subunit α2δ-1 is the therapeutic target of the gabapentinoid drugs, which are of value in certain epilepsies and chronic neuropathic pain. The limited use of intrathecal ziconotide, a peptide blocker of N-type (CaV2.2) calcium channels, as a treatment of intractable pain, gives an indication that these channels represent excellent drug targets for various pain conditions. We describe how selectivity for different subtypes of calcium channels (e.g., CaV1.2 and CaV1.3 L-type channels) may be achieved in the future by exploiting differences between channel isoforms in terms of sequence and biophysical properties, variation in splicing in different target tissues, and differences in the properties of the target tissues themselves in terms of membrane potential or firing frequency. Thus, use-dependent blockers of the different isoforms could selectively block calcium channels in particular pathologies, such as nociceptive neurons in pain states or in epileptic brain circuits. Of important future potential are selective CaV1.3 blockers for neuropsychiatric diseases, neuroprotection in Parkinson’s disease, and resistant hypertension. In addition, selective or nonselective T-type channel blockers are considered potential therapeutic targets in epilepsy, pain, obesity, sleep, and

  13. Dihydropyridine type calcium channel blocker-induced turbid dialysate in patients undergoing peritoneal dialysis.

    PubMed

    Yoshimoto, K; Saima, S; Nakamura, Y; Nakayama, M; Kubo, H; Kawaguchi, Y; Nishitani, H; Nakamura, Y; Yasui, A; Yokoyama, K; Kuriyama, S; Shirai, D; Kugiyama, A; Hayano, K; Fukui, H; Horigome, I; Amagasaki, Y; Tsubakihara, Y; Kamekawa, T; Ando, R; Tomura, S; Okamoto, R; Miwa, S; Koyama, T; Echizen, H

    1998-08-01

    We previously reported that manidipine, a new dihydropyridine type calcium channel blocker, produced chylous peritoneal dialysate being visually indistinguishable from infective peritonitis in 5 patients undergoing continuous ambulatory peritoneal dialysis (CAPD) [Yoshimoto et al. 1993]. To study whether such an adverse drug reaction would also be elicited by other commonly prescribed calcium channel blockers in CAPD patients, we have conducted postal inquiry to 15 collaborating hospitals and an institutional survey in International Medical Center of Japan as to the possible occurrence of calcium channel blocker-associated non-infective, turbid peritoneal dialysate in CAPD patients. Our diagnostic criteria for drug-induced turbidity of dialysate as a) it developed within 48 h after the administration of a newly introduced calcium channel blocker to the therapeutic regimen, b) absence of clinical symptoms of peritoneal inflammation (i.e., pyrexia, abdominal pain, nausea or vomiting), c) the fluid containing normal leukocyte counts and being negative for bacterial and fungal culture of the fluid, and d) it disappeared shortly after the withdrawal of the assumed causative agent. Results showed that 19 out of 251 CAPD patients given one of the calcium channel blockers developed non-infective turbid peritoneal dialysis that fulfilled all the above criteria. Four calcium channel blockers were suspected to be associated with the events: benidipine [2 out of 2 (100%) patients given the drug], manidipine [15 out of 36 (42%) patients], nisoldipine [1 out of 11 (9%) patients] and nifedipine [1 out of 159 (0.6%)] in descending order of frequency. None of the patients who received nicardipine, nilvadipine, nitrendipine, barnidipine and diltiazem (25, 7, 2, 1 and 8 patients, respectively) exhibited turbid dialysate. In conclusion, we consider that certain dihydropyridine type calcium channel blockers would cause turbid peritoneal dialysate being similar to that observed in

  14. Tryptophan hydroxylase is modulated by L-type calcium channels in the rat pineal gland.

    PubMed

    Barbosa, Roseli; Scialfa, Julieta Helena; Terra, Ilza Mingarini; Cipolla-Neto, José; Simonneaux, Valérie; Afeche, Solange Castro

    2008-02-27

    Calcium is an important second messenger in the rat pineal gland, as well as cAMP. They both contribute to melatonin synthesis mediated by the three main enzymes of the melatonin synthesis pathway: tryptophan hydroxylase, arylalkylamine N-acetyltransferase and hydroxyindole-O-methyltransferase. The cytosolic calcium is elevated in pinealocytes following alpha(1)-adrenergic stimulation, through IP(3)-and membrane calcium channels activation. Nifedipine, an L-type calcium channel blocker, reduces melatonin synthesis in rat pineal glands in vitro. With the purpose of investigating the mechanisms involved in melatonin synthesis regulation by the L-type calcium channel, we studied the effects of nifedipine on noradrenergic stimulated cultured rat pineal glands. Tryptophan hydroxylase, arylalkylamine N-acetyltransferase and hydroxyindole-O-methyltransferase activities were quantified by radiometric assays and 5-hydroxytryptophan, serotonin, N-acetylserotonin and melatonin contents were quantified by HPLC with electrochemical detection. The data showed that calcium influx blockaded by nifedipine caused a decrease in tryptophan hydroxylase activity, but did not change either arylalkylamine N-acetyltransferase or hydroxyindole-O-methyltransferase activities. Moreover, there was a reduction of 5-hydroxytryptophan, serotonin, N-acetylserotonin and melatonin intracellular content, as well as a reduction of serotonin and melatonin secretion. Thus, it seems that the calcium influx through L-type high voltage-activated calcium channels is essential for the full activation of tryptophan hydroxylase leading to melatonin synthesis in the pineal gland.

  15. The roles of calcium-sensing receptor and calcium channel in osteogenic differentiation of undifferentiated periodontal ligament cells.

    PubMed

    Koori, Katsuaki; Maeda, Hidefumi; Fujii, Shinsuke; Tomokiyo, Atsushi; Kawachi, Giichiro; Hasegawa, Daigaku; Hamano, Sayuri; Sugii, Hideki; Wada, Naohisa; Akamine, Akifumi

    2014-09-01

    Elevated extracellular calcium has been shown to promote the differentiation of osteoblasts. However, the way that calcium affects the osteogenic differentiation of human periodontal ligament stem/progenitor cells (PDLSCs) remains unclear. Our aim has been to investigate the proliferation and osteogenic differentiation of a calcium-exposed human PDLSC line (cell line 1-17) that we have recently established and to elucidate the roles of the calcium-sensing receptor (CaSR) and L-type voltage-dependent calcium channel (L-VDCC) in this process. Proliferation activity was investigated by WST-1 assay, and gene and protein expression was examined by quantitative reverse transcriptase plus the polymerase chain reaction and immunostaining, respectively. Calcification assay was performed by von Kossa and Alizarin red staining. Treatment with 5 mM CaCl2 significantly induced proliferation, bone-related gene expression, and calcification in cell line 1-17. During culture with 5 mM CaCl2, this cell line up-regulated the gene expression of CaSR, which was reduced after 7 days. Simultaneous treatment with NPS2143, a CaSR inhibitor, and calcium significantly further increased bone-related gene expression and calcification as compared with CaCl2 exposure alone. The L-VDCC inhibitor, nifedipine, significantly suppressed osteogenic differentiation of cell line 1-17 treated with 5 mM CaCl2 and promoted the expression of CaSR, as compared with calcium treatment alone. Thus, elevated extracellular calcium promotes the proliferation and osteogenic differentiation of a PDLSC line. Antagonizing CaSR further enhances the effect of calcium on osteogenic differentiation, with CaSR expression being regulated by L-VDCC under extracellular calcium. Extracellular calcium might therefore modulate the osteogenic differentiation of PDLSCs through reciprocal adjustments of CaSR and L-VDCC.

  16. Evaluation of Mutagenicity of Mebudipine, a New Calcium Channel Blocker

    PubMed Central

    Gholami, Saeid; Soleimani, Fatemeh; Hoseini Shirazi, Farshad; Touhidpour, Maryam; Mahmoudian, Massoud

    2010-01-01

    Mebudipine is a new dihydropyridine calcium channel blocker, synthesized in our laboratory, for treatment of hypertension. It has shown a better efficacy than other drugs in this group. For assessing the risks of this drug, certain safety tests in the preclinical stage have been performed. In this study mutagenic effect of mebudipine was evaluated using Ames assay that could assess the mutagenicity of drugs and their metabolites using liver enzymes (S-9 mix). This procedure is approved as a predictive test, with a high predictive value. Salmonella TA102 (Ames assay) was used with and without S-9 in this study. For preparing S-9 mix, rat liver enzymes induced by phenobarbital were separated in KCl 0.154 M (0.154 M), as the solvent. Mebudipine was dissolved in polyethylenglycol 400. Mutagenicity test was performed in 6 doses from 39 μg to 1250 μg per every plate, in the presence and absence of the S-9 mix. The positive control sodium azide was dissolved in a dose of 5 μg/plate dissolved in polyethylenglycol 400 and negative control was polyethylenglycol 400 with no added agent. The colony counts of all doses in plates with S-9 were between 200-400 and in plates without S9 was between100-300. The colony counts in both states (with and without S-9) of all doses were in the range suggested by Ames assay for the safe drugs and were different from the positive control groups and equal to the negative controls. Mebudipine and its metabolites were not found to be mutagen on Salmonella TA102, based on Ames assay. PMID:24363706

  17. Evaluation of mutagenicity of mebudipine, a new calcium channel blocker.

    PubMed

    Gholami, Saeid; Soleimani, Fatemeh; Hoseini Shirazi, Farshad; Touhidpour, Maryam; Mahmoudian, Massoud

    2010-01-01

    Mebudipine is a new dihydropyridine calcium channel blocker, synthesized in our laboratory, for treatment of hypertension. It has shown a better efficacy than other drugs in this group. For assessing the risks of this drug, certain safety tests in the preclinical stage have been performed. In this study mutagenic effect of mebudipine was evaluated using Ames assay that could assess the mutagenicity of drugs and their metabolites using liver enzymes (S-9 mix). This procedure is approved as a predictive test, with a high predictive value. Salmonella TA102 (Ames assay) was used with and without S-9 in this study. For preparing S-9 mix, rat liver enzymes induced by phenobarbital were separated in KCl 0.154 M (0.154 M), as the solvent. Mebudipine was dissolved in polyethylenglycol 400. Mutagenicity test was performed in 6 doses from 39 μg to 1250 μg per every plate, in the presence and absence of the S-9 mix. The positive control sodium azide was dissolved in a dose of 5 μg/plate dissolved in polyethylenglycol 400 and negative control was polyethylenglycol 400 with no added agent. The colony counts of all doses in plates with S-9 were between 200-400 and in plates without S9 was between100-300. The colony counts in both states (with and without S-9) of all doses were in the range suggested by Ames assay for the safe drugs and were different from the positive control groups and equal to the negative controls. Mebudipine and its metabolites were not found to be mutagen on Salmonella TA102, based on Ames assay.

  18. Myoscape controls cardiac calcium cycling and contractility via regulation of L-type calcium channel surface expression.

    PubMed

    Eden, Matthias; Meder, Benjamin; Völkers, Mirko; Poomvanicha, Montatip; Domes, Katrin; Branchereau, M; Marck, P; Will, Rainer; Bernt, Alexander; Rangrez, Ashraf; Busch, Matthias; Hrabě de Angelis, Martin; Heymes, Christophe; Rottbauer, Wolfgang; Most, Patrick; Hofmann, Franz; Frey, Norbert

    2016-04-28

    Calcium signalling plays a critical role in the pathogenesis of heart failure. Here we describe a cardiac protein named Myoscape/FAM40B/STRIP2, which directly interacts with the L-type calcium channel. Knockdown of Myoscape in cardiomyocytes decreases calcium transients associated with smaller Ca(2+) amplitudes and a lower diastolic Ca(2+) content. Likewise, L-type calcium channel currents are significantly diminished on Myoscape ablation, and downregulation of Myoscape significantly reduces contractility of cardiomyocytes. Conversely, overexpression of Myoscape increases global Ca(2+) transients and enhances L-type Ca(2+) channel currents, and is sufficient to restore decreased currents in failing cardiomyocytes. In vivo, both Myoscape-depleted morphant zebrafish and Myoscape knockout (KO) mice display impairment of cardiac function progressing to advanced heart failure. Mechanistically, Myoscape-deficient mice show reduced L-type Ca(2+)currents, cell capacity and calcium current densities as a result of diminished LTCC surface expression. Finally, Myoscape expression is reduced in hearts from patients suffering of terminal heart failure, implying a role in human disease.

  19. Activation of L-type calcium channels is required for gap junction-mediated intercellular calcium signaling in osteoblastic cells

    NASA Technical Reports Server (NTRS)

    Jorgensen, Niklas Rye; Teilmann, Stefan Cuoni; Henriksen, Zanne; Civitelli, Roberto; Sorensen, Ole Helmer; Steinberg, Thomas H.

    2003-01-01

    The propagation of mechanically induced intercellular calcium waves (ICW) among osteoblastic cells occurs both by activation of P2Y (purinergic) receptors by extracellular nucleotides, resulting in "fast" ICW, and by gap junctional communication in cells that express connexin43 (Cx43), resulting in "slow" ICW. Human osteoblastic cells transmit intercellular calcium signals by both of these mechanisms. In the current studies we have examined the mechanism of slow gap junction-dependent ICW in osteoblastic cells. In ROS rat osteoblastic cells, gap junction-dependent ICW were inhibited by removal of extracellular calcium, plasma membrane depolarization by high extracellular potassium, and the L-type voltage-operated calcium channel inhibitor, nifedipine. In contrast, all these treatments enhanced the spread of P2 receptor-mediated ICW in UMR rat osteoblastic cells. Using UMR cells transfected to express Cx43 (UMR/Cx43) we confirmed that nifedipine sensitivity of ICW required Cx43 expression. In human osteoblastic cells, gap junction-dependent ICW also required activation of L-type calcium channels and influx of extracellular calcium.

  20. Activation of L-type calcium channels is required for gap junction-mediated intercellular calcium signaling in osteoblastic cells

    NASA Technical Reports Server (NTRS)

    Jorgensen, Niklas Rye; Teilmann, Stefan Cuoni; Henriksen, Zanne; Civitelli, Roberto; Sorensen, Ole Helmer; Steinberg, Thomas H.

    2003-01-01

    The propagation of mechanically induced intercellular calcium waves (ICW) among osteoblastic cells occurs both by activation of P2Y (purinergic) receptors by extracellular nucleotides, resulting in "fast" ICW, and by gap junctional communication in cells that express connexin43 (Cx43), resulting in "slow" ICW. Human osteoblastic cells transmit intercellular calcium signals by both of these mechanisms. In the current studies we have examined the mechanism of slow gap junction-dependent ICW in osteoblastic cells. In ROS rat osteoblastic cells, gap junction-dependent ICW were inhibited by removal of extracellular calcium, plasma membrane depolarization by high extracellular potassium, and the L-type voltage-operated calcium channel inhibitor, nifedipine. In contrast, all these treatments enhanced the spread of P2 receptor-mediated ICW in UMR rat osteoblastic cells. Using UMR cells transfected to express Cx43 (UMR/Cx43) we confirmed that nifedipine sensitivity of ICW required Cx43 expression. In human osteoblastic cells, gap junction-dependent ICW also required activation of L-type calcium channels and influx of extracellular calcium.

  1. Phylogeny Unites Animal Sodium Leak Channels with Fungal Calcium Channels in an Ancient, Voltage-Insensitive Clade

    PubMed Central

    Liebeskind, Benjamin J.; Hillis, David M.; Zakon, Harold H.

    2012-01-01

    Proteins in the superfamily of voltage-gated ion channels mediate behavior across the tree of life. These proteins regulate the movement of ions across cell membranes by opening and closing a central pore that controls ion flow. The best-known members of this superfamily are the voltage-gated potassium, calcium (Cav), and sodium (Nav) channels, which underlie impulse conduction in nerve and muscle. Not all members of this family are opened by changes in voltage, however. NALCN (NA+ leak channel nonselective) channels, which encode a voltage-insensitive “sodium leak” channel, have garnered a growing interest. This study examines the phylogenetic relationship among Nav/Cav voltage-gated and voltage-insensitive channels in the eukaryotic group Opisthokonta, which includes animals, fungi, and their unicellular relatives. We show that NALCN channels diverged from voltage-gated channels before the divergence of fungi and animals and that the closest relatives of NALCN channels are fungal calcium channels, which they functionally resemble. PMID:22821012

  2. Calcium and Potassium Channels in Experimental Subarachnoid Hemorrhage and Transient Global Ischemia

    PubMed Central

    Kamp, Marcel A.; Dibué, Maxine; Schneider, Toni; Steiger, Hans-Jakob; Hänggi, Daniel

    2012-01-01

    Healthy cerebrovascular myocytes express members of several different ion channel families which regulate resting membrane potential, vascular diameter, and vascular tone and are involved in cerebral autoregulation. In animal models, in response to subarachnoid blood, a dynamic transition of ion channel expression and function is initiated, with acute and long-term effects differing from each other. Initial hypoperfusion after exposure of cerebral vessels to oxyhemoglobin correlates with a suppression of voltage-gated potassium channel activity, whereas delayed cerebral vasospasm involves changes in other potassium channel and voltage-gated calcium channels expression and function. Furthermore, expression patterns and function of ion channels appear to differ between main and small peripheral vessels, which may be key in understanding mechanisms behind subarachnoid hemorrhage-induced vasospasm. Here, changes in calcium and potassium channel expression and function in animal models of subarachnoid hemorrhage and transient global ischemia are systematically reviewed and their clinical significance discussed. PMID:23251831

  3. Calcium-activated chloride channels in the apical region of mouse vomeronasal sensory neurons

    PubMed Central

    Dibattista, Michele; Amjad, Asma; Maurya, Devendra Kumar; Sagheddu, Claudia; Montani, Giorgia; Tirindelli, Roberto

    2012-01-01

    The rodent vomeronasal organ plays a crucial role in several social behaviors. Detection of pheromones or other emitted signaling molecules occurs in the dendritic microvilli of vomeronasal sensory neurons, where the binding of molecules to vomeronasal receptors leads to the influx of sodium and calcium ions mainly through the transient receptor potential canonical 2 (TRPC2) channel. To investigate the physiological role played by the increase in intracellular calcium concentration in the apical region of these neurons, we produced localized, rapid, and reproducible increases in calcium concentration with flash photolysis of caged calcium and measured calcium-activated currents with the whole cell voltage-clamp technique. On average, a large inward calcium-activated current of −261 pA was measured at −50 mV, rising with a time constant of 13 ms. Ion substitution experiments showed that this current is anion selective. Moreover, the chloride channel blockers niflumic acid and 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid partially inhibited the calcium-activated current. These results directly demonstrate that a large chloride current can be activated by calcium in the apical region of mouse vomeronasal sensory neurons. Furthermore, we showed by immunohistochemistry that the calcium-activated chloride channels TMEM16A/anoctamin1 and TMEM16B/anoctamin2 are present in the apical layer of the vomeronasal epithelium, where they largely colocalize with the TRPC2 transduction channel. Immunocytochemistry on isolated vomeronasal sensory neurons showed that TMEM16A and TMEM16B coexpress in the neuronal microvilli. Therefore, we conclude that microvilli of mouse vomeronasal sensory neurons have a high density of calcium-activated chloride channels that may play an important role in vomeronasal transduction. PMID:22732308

  4. Calcium-activated chloride channels in the apical region of mouse vomeronasal sensory neurons.

    PubMed

    Dibattista, Michele; Amjad, Asma; Maurya, Devendra Kumar; Sagheddu, Claudia; Montani, Giorgia; Tirindelli, Roberto; Menini, Anna

    2012-07-01

    The rodent vomeronasal organ plays a crucial role in several social behaviors. Detection of pheromones or other emitted signaling molecules occurs in the dendritic microvilli of vomeronasal sensory neurons, where the binding of molecules to vomeronasal receptors leads to the influx of sodium and calcium ions mainly through the transient receptor potential canonical 2 (TRPC2) channel. To investigate the physiological role played by the increase in intracellular calcium concentration in the apical region of these neurons, we produced localized, rapid, and reproducible increases in calcium concentration with flash photolysis of caged calcium and measured calcium-activated currents with the whole cell voltage-clamp technique. On average, a large inward calcium-activated current of -261 pA was measured at -50 mV, rising with a time constant of 13 ms. Ion substitution experiments showed that this current is anion selective. Moreover, the chloride channel blockers niflumic acid and 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid partially inhibited the calcium-activated current. These results directly demonstrate that a large chloride current can be activated by calcium in the apical region of mouse vomeronasal sensory neurons. Furthermore, we showed by immunohistochemistry that the calcium-activated chloride channels TMEM16A/anoctamin1 and TMEM16B/anoctamin2 are present in the apical layer of the vomeronasal epithelium, where they largely colocalize with the TRPC2 transduction channel. Immunocytochemistry on isolated vomeronasal sensory neurons showed that TMEM16A and TMEM16B coexpress in the neuronal microvilli. Therefore, we conclude that microvilli of mouse vomeronasal sensory neurons have a high density of calcium-activated chloride channels that may play an important role in vomeronasal transduction.

  5. Osteoclast cytosolic calcium, regulated by voltage-gated calcium channels and extracellular calcium, controls podosome assembly and bone resorption

    NASA Technical Reports Server (NTRS)

    Miyauchi, A.; Hruska, K. A.; Greenfield, E. M.; Duncan, R.; Alvarez, J.; Barattolo, R.; Colucci, S.; Zambonin-Zallone, A.; Teitelbaum, S. L.; Teti, A.

    1990-01-01

    The mechanisms of Ca2+ entry and their effects on cell function were investigated in cultured chicken osteoclasts and putative osteoclasts produced by fusion of mononuclear cell precursors. Voltage-gated Ca2+ channels (VGCC) were detected by the effects of membrane depolarization with K+, BAY K 8644, and dihydropyridine antagonists. K+ produced dose-dependent increases of cytosolic calcium ([Ca2+]i) in osteoclasts on glass coverslips. Half-maximal effects were achieved at 70 mM K+. The effects of K+ were completely inhibited by dihydropyridine derivative Ca2+ channel blocking agents. BAY K 8644 (5 X 10(-6) M), a VGCC agonist, stimulated Ca2+ entry which was inhibited by nicardipine. VGCCs were inactivated by the attachment of osteoclasts to bone, indicating a rapid phenotypic change in Ca2+ entry mechanisms associated with adhesion of osteoclasts to their resorption substrate. Increasing extracellular Ca2+ ([Ca2+]e) induced Ca2+ release from intracellular stores and Ca2+ influx. The Ca2+ release was blocked by dantrolene (10(-5) M), and the influx by La3+. The effects of [Ca2+]e on [Ca2+]i suggests the presence of a Ca2+ receptor on the osteoclast cell membrane that could be coupled to mechanisms regulating cell function. Expression of the [Ca2+]e effect on [Ca2+]i was similar in the presence or absence of bone matrix substrate. Each of the mechanisms producing increases in [Ca2+]i, (membrane depolarization, BAY K 8644, and [Ca2+]e) reduced expression of the osteoclast-specific adhesion structure, the podosome. The decrease in podosome expression was mirrored by a 50% decrease in bone resorptive activity. Thus, stimulated increases of osteoclast [Ca2+]i lead to cytoskeletal changes affecting cell adhesion and decreasing bone resorptive activity.

  6. Characterization of Novel Cannabinoid Based T-Type Calcium Channel Blockers with Analgesic Effects

    PubMed Central

    2015-01-01

    Low-voltage-activated (T-type) calcium channels are important regulators of the transmission of nociceptive information in the primary afferent pathway and finding ligands that modulate these channels is a key focus of the drug discovery field. Recently, we characterized a set of novel compounds with mixed cannabinoid receptor/T-type channel blocking activity and examined their analgesic effects in animal models of pain. Here, we have built on these previous findings and synthesized a new series of small organic compounds. We then screened them using whole-cell voltage clamp techniques to identify the most potent T-type calcium channel inhibitors. The two most potent blockers (compounds 9 and 10) were then characterized using radioligand binding assays to determine their affinity for CB1 and CB2 receptors. The structure–activity relationship and optimization studies have led to the discovery of a new T-type calcium channel blocker, compound 9. Compound 9 was efficacious in mediating analgesia in mouse models of acute inflammatory pain and in reducing tactile allodynia in the partial nerve ligation model. This compound was shown to be ineffective in Cav3.2 T-type calcium channel null mice at therapeutically relevant concentrations, and it caused no significant motor deficits in open field tests. Taken together, our data reveal a novel class of compounds whose physiological and therapeutic actions are mediated through block of Cav3.2 calcium channels. PMID:25314588

  7. Voltage‐gated calcium channels and their auxiliary subunits: physiology and pathophysiology and pharmacology

    PubMed Central

    2016-01-01

    Abstract Voltage‐gated calcium channels are essential players in many physiological processes in excitable cells. There are three main subdivisions of calcium channel, defined by the pore‐forming α1 subunit, the CaV1, CaV2 and CaV3 channels. For all the subtypes of voltage‐gated calcium channel, their gating properties are key for the precise control of neurotransmitter release, muscle contraction and cell excitability, among many other processes. For the CaV1 and CaV2 channels, their ability to reach their required destinations in the cell membrane, their activation and the fine tuning of their biophysical properties are all dramatically influenced by the auxiliary subunits that associate with them. Furthermore, there are many diseases, both genetic and acquired, involving voltage‐gated calcium channels. This review will provide a general introduction and then concentrate particularly on the role of auxiliary α2δ subunits in both physiological and pathological processes involving calcium channels, and as a therapeutic target. PMID:27273705

  8. Differential CaMKII regulation by voltage-gated calcium channels in the striatum.

    PubMed

    Pasek, Johanna G; Wang, Xiaohan; Colbran, Roger J

    2015-09-01

    Calcium signaling regulates synaptic plasticity and many other functions in striatal medium spiny neurons to modulate basal ganglia function. Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is a major calcium-dependent signaling protein that couples calcium entry to diverse cellular changes. CaMKII activation results in autophosphorylation at Thr286 and sustained calcium-independent CaMKII activity after calcium signals dissipate. However, little is known about the mechanisms regulating striatal CaMKII. To address this, mouse brain slices were treated with pharmacological modulators of calcium channels and punches of dorsal striatum were immunoblotted for CaMKII Thr286 autophosphorylation as an index of CaMKII activation. KCl depolarization increased levels of CaMKII autophosphorylation ~2-fold; this increase was blocked by an LTCC antagonist and was mimicked by treatment with pharmacological LTCC activators. The chelation of extracellular calcium robustly decreased basal CaMKII autophosphorylation within 5min and increased levels of total CaMKII in cytosolic fractions, in addition to decreasing the phosphorylation of CaMKII sites in the GluN2B subunit of NMDA receptors and the GluA1 subunit of AMPA receptors. We also found that the maintenance of basal levels of CaMKII autophosphorylation requires low-voltage gated T-type calcium channels, but not LTCCs or R-type calcium channels. Our findings indicate that CaMKII activity is dynamically regulated by multiple calcium channels in the striatum thus coupling calcium entry to key downstream substrates.

  9. Calcium dynamics during NMDA-induced membrane potential oscillations in lamprey spinal neurons--contribution of L-type calcium channels (CaV1.3).

    PubMed

    Wang, Di; Grillner, Sten; Wallén, Peter

    2013-05-15

      NMDA receptor-dependent, intrinsic membrane potential oscillations are an important element in the operation of the lamprey locomotor network. They involve a cyclic influx of calcium, leading to an activation of calcium-activated potassium (KCa) channels that in turn contributes to the termination of the depolarized plateau and membrane repolarization. In this study, we have investigated the calcium dynamics in different regions of lamprey spinal neurons during membrane potential oscillations, using confocal calcium imaging in combination with intracellular recordings. Calcium fluctuations were observed in both soma and dendrites, timed to the oscillations. The calcium level increased sharply at the onset of membrane depolarization, to reach its maximum by the end of the plateau. The calcium peak in distal dendrites typically occurred earlier than in the soma during the oscillatory cycle. The L-type calcium channel blocker nimodipine increased the duration of the depolarized plateau phase in most cells tested, whereas the agonist Bay K 8644 decreased plateau duration. Bay K 8644 increased the amplitude of calcium fluctuations, particularly in distal dendrites, whereas nimodipine caused a decrease, suggesting that L-type low-voltage-activated calcium channels are mainly localized in these regions. Our results thus indicate that dendritic CaV1.3-like calcium channels are activated during NMDA-mediated membrane potential oscillations. This calcium influx activates KCa channels involved in plateau termination.

  10. Role of N-type calcium channels in autonomic neurotransmission in guineapig isolated left atria

    PubMed Central

    Serone, Adrian P; Angus, James A

    1999-01-01

    Calcium entry via neuronal calcium channels is essential for the process of neurotransmission. We investigated the calcium channel subtypes involved in the operation of cardiac autonomic neurotransmission by examining the effects of selective calcium channel blockers on the inotropic responses to electrical field stimulation (EFS) of driven (4 Hz) guineapig isolated left atria. In this tissue, a previous report (Hong & Chang, 1995) found no evidence for N-type channels involved in the vagal negative inotropic response and only weak involvement in sympathetic responses. The effects of cumulative concentrations of the selective N-type calcium channel blocker, ω-conotoxin GVIA (GVIA; 0.1–10 nM) and the nonselective N-, P/Q-type calcium channel blocker, ω-conotoxin MVIIC (MVIIC; 0.01–10 nM) were examined on the positive (with atropine, 1 μM present) and negative (with propranolol, 1 μM and clonidine, 1 μM present) inotropic responses to EFS (eight trains, each train four pulses per punctate stimulus). GVIA caused complete inhibition of both cardiac vagal and sympathetic inotropic responses to EFS. GVIA was equipotent at inhibiting positive (pIC50 9.29±0.08) and negative (pIC50 9.13±0.17) inotropic responses. MVIIC also mediated complete inhibition of inotropic responses to EFS and was 160 and 85 fold less potent than GVIA at inhibiting positive (pIC50 7.08±0.10) and negative (pIC50 7.20±0.14) inotropic responses, respectively. MVIIC was also equipotent at inhibiting both sympathetic and vagal responses. Our data demonstrates that N-type calcium channels account for all the calcium current required for cardiac autonomic neurotransmission in the guinea-pig isolated left atrium. PMID:10433500

  11. New Role of P/Q-type Voltage-gated Calcium Channels: From Transmitter Release to Contraction of Renal Vasculature.

    PubMed

    Hansen, Pernille B L

    2015-05-01

    Voltage-gated calcium channels are important for the depolarization-evoked contraction of vascular smooth muscle cells (SMCs), with L-type channels being the classical channel involved in this mechanism. However, it has been demonstrated that the CaV2.1 subunit, which encodes a neuronal isoform of the voltage-gated calcium channels (P/Q-type), is also expressed and contributes functionally to contraction of renal blood vessels in both mice and humans. Furthermore, preglomerular vascular SMCs and aortic SMCs coexpress L-, P-, and Q-type calcium channels within the same cell. Calcium channel blockers are widely used as pharmacological treatments. However, calcium channel antagonists vary in their selectivity for the various calcium channel subtypes, and the functional contribution from P/Q-type channels as compared with L-type should be considered. Confirming the presence of P/Q-type voltage-gated calcium channels in other types of vascular SMCs could be important when investigating phenomena such as hypertension, migraine, and other diseases known to involve SMCs and voltage-gated calcium channels. The purpose of this review was to give a short overview of the possible roles of P/Q-type calcium channels within the vascular system with special focus on the renal vasculature.

  12. Binding of ( sup 125 I)iodipine to parathyroid cell membranes: Evidence of a dihydropyridine-sensitive calcium channel

    SciTech Connect

    Jones, J.I.; Fitzpatrick, L.A. )

    1990-04-01

    The parathyroid cell is unusual, in that an increase in extracellular calcium concentrations inhibits PTH release. Calcium channels are glycoproteins that span cell membranes and allow entry of extracellular calcium into cells. We have demonstrated that the calcium channel agonist (+)202-791, which opens calcium channels, inhibits PTH release and that the antagonist (-)202-791, which closes calcium channels, stimulates PTH release. To identify the calcium channels responsible for these effects, we used a radioligand that specifically binds to calcium channels. Bovine parathyroid cell membranes were prepared and incubated under reduced lighting with (125I) iodipine (SA, 2000 Ci/mmol), which recognizes 1,4-dihydropyridine-sensitive calcium channels. Bound ligand was separated from free ligand by rapid filtration through Whatman GF/B filters. Nonspecific binding was measured by the inclusion of nifedipine at 10 microM. Specific binding represented approximately 40% of the total binding. The optimal temperature for (125I) iodipine binding was 4 C, and binding reached equilibrium by 30 min. The equilibrium dissociation constant (Kd) was approximately 550 pM, and the maximum number of binding sites was 780 fmol/mg protein. Both the calcium channel agonist (+)202-791 and antagonist (-)202-791 competitively inhibited (125I) iodipine binding, with 50% inhibition concentrations of 20 and 300 nM, respectively. These data indicate the presence of dihydropyridine-sensitive calcium channels on parathyroid cell membranes.

  13. Effect of platelet-derived growth factor on voltage-operated calcium channels in rabbit isolated ear artery cells.

    PubMed Central

    Wijetunge, S.; Hughes, A. D.

    1995-01-01

    1. Platelet derived growth factor (PDGF), AB and BB isoforms (100 pM) increased calcium channel currents measured by whole cell voltage clamp technique in single vascular smooth muscle cells isolated from rabbit ear arteries. 2. Tyrphostin-23 (100 microM) a selective inhibitor of protein tyrosine kinases, reduced calcium channel currents. Pre-incubation with tyrphostin-23 prevented PDGF-AB induced increase in calcium channel currents. However, in these same cells 10 nM (+)-202791, a dihydropyridine calcium channel agonist, did increase calcium channel currents. 3. Bistyrphostin (10 microM), a selective inhibitor of epidermal growth factor (EGF)-kinase also reduced calcium channel currents and inhibited PDGF-AB-induced increases in calcium channel currents. 4. Genistein (100 microM) a selective inhibitor of tyrosine kinases, structurally unrelated to the tryphostins, also inhibited calcium channel currents and pre-incubation with genistein prevented the PDGF-AB-induced rise in calcium channel currents. 5. These results indicate that PDGF increases calcium channel currents in vascular smooth muscle. This action of PDGF probably involves a tyrosine kinase. PMID:7582469

  14. Indoleamines and calcium channels influence morphogenesis in in vitro cultures of Mimosa pudica L.

    PubMed

    Ramakrishna, Akula; Giridhar, Parvatam; Ravishankar, G A

    2009-12-01

    The present article reports the interplay of indoleamine neurohormones viz. serotonin, melatonin and calcium channels on shoot organogenesis in Mimosa pudica L. In vitro grown nodal segments were cultured on MS medium with B5 vitamins containing Serotonin (SER) and Melatonin (MEL) at 100 microM and indoleamine inhibitors viz. serotonin to melatonin conversion inhibitor p-chlorophenylalanine (p-CPA) at 40 microM, serotonin reuptake inhibitor (Prozac) 20 microM. In another set of experiment, calcium at 5 mM, calcium ionophore (A23187) 100 microM, and calcium channel blocker varapamil hydrochloride (1 mM) a calcium chelator EGTA (100 microM) were administered to the culture medium. The percentage of shoot multiplication, endogenous MEL and SER were monitored during shoot organogenesis. At 100 microM SER and MEL treatment 60% and 70% explants responded for shoot multiplication respectively. Medium supplemented with either SER or MEL along with calcium (5 mM) 75%-80% explants responded for organogenesis. SER or MEL along with calcium ionophore (A23187) at 100 microM 70% explants responded for shoot multiplication. p-CPA, prozac, verapamil and EGTA, shoot multiplication was reduced and endogenous pools of SER, MEL decreased by 40-70%. The results clearly demonstrated that indoleamines and calcium channels positively influenced shoot organogenesis in M. pudica L.

  15. Indoleamines and calcium channels influence morphogenesis in in vitro cultures of Mimosa pudica L.

    PubMed Central

    Ramakrishna, Akula; Giridhar, Parvatam

    2009-01-01

    The present article reports the interplay of indoleamine neurohormones viz. serotonin, melatonin and calcium channels on shoot organogenesis in Mimosa pudica L. In vitro grown nodal segments were cultured on MS medium with B5 vitamins containing Serotonin (SER) and Melatonin (MEL) at 100 µM and indoleamine inhibitors viz. serotonin to melatonin conversion inhibitor p-chlorophenylalanine (p-CPA) at 40 µM, serotonin reuptake inhibitor (Prozac) 20 µM. In another set of experiment, calcium at 5 mM, calcium ionophore (A23187) 100 µM, and calcium channel blocker varapamil hydrochloride (1 mM) a calcium chelator EGTA (100 µM) were administered to the culture medium. The percentage of shoot multiplication, endogenous MEL and SER were monitored during shoot organogenesis. At 100 µM SER and MEL treatment 60% and 70% explants responded for shoot multiplication respectively. Medium supplemented with either SER or MEL along with calcium (5 mM) 75%–80% explants responded for organogenesis. SER or MEL along with calcium ionophore (A23187) at 100 µM 70% explants responded for shoot multiplication. p-CPA, prozac, verapamil and EGTA, shoot multiplication was reduced and endogenous pools of SER, MEL decreased by 40–70%. The results clearly demonstrated that indoleamines and calcium channels positively influenced shoot organogenesis in M. pudica L. PMID:20514228

  16. The role of auxiliary subunits for the functional diversity of voltage-gated calcium channels.

    PubMed

    Campiglio, Marta; Flucher, Bernhard E

    2015-09-01

    Voltage-gated calcium channels (VGCCs) represent the sole mechanism to convert membrane depolarization into cellular functions like secretion, contraction, or gene regulation. VGCCs consist of a pore-forming α(1) subunit and several auxiliary channel subunits. These subunits come in multiple isoforms and splice-variants giving rise to a stunning molecular diversity of possible subunit combinations. It is generally believed that specific auxiliary subunits differentially regulate the channels and thereby contribute to the great functional diversity of VGCCs. If auxiliary subunits can associate and dissociate from pre-existing channel complexes, this would allow dynamic regulation of channel properties. However, most auxiliary subunits modulate current properties very similarly, and proof that any cellular calcium channel function is indeed modulated by the physiological exchange of auxiliary subunits is still lacking. In this review we summarize available information supporting a differential modulation of calcium channel functions by exchange of auxiliary subunits, as well as experimental evidence in support of alternative functions of the auxiliary subunits. At the heart of the discussion is the concept that, in their native environment, VGCCs function in the context of macromolecular signaling complexes and that the auxiliary subunits help to orchestrate the diverse protein-protein interactions found in these calcium channel signalosomes. Thus, in addition to a putative differential modulation of current properties, differential subcellular targeting properties and differential protein-protein interactions of the auxiliary subunits may explain the need for their vast molecular diversity.

  17. Domain III regulates N-type (CaV2.2) calcium channel closing kinetics

    PubMed Central

    Yarotskyy, Viktor; Gao, Guofeng; Peterson, Blaise Z.

    2012-01-01

    CaV2.2 (N-type) and CaV1.2 (L-type) calcium channels gate differently in response to membrane depolarization, which is critical to the unique physiological functions mediated by these channels. We wondered if the source for these differences could be identified. As a first step, we examined the effect of domain exchange between N-type and L-type channels on activation-deactivation kinetics, which were significantly different between these channels. Kinetic analysis of chimeric channels revealed N-channel-like deactivation for all chimeric channels containing N-channel domain III, while activation appeared to be a more distributed function across domains. This led us to hypothesize that domain III was an important regulator of N-channel closing. This idea was further examined with R-roscovitine, which is a trisubstituted purine that slows N-channel deactivation by exclusively binding to activated N-channels. L-channels lack this response to roscovitine, which allowed us to use N-L chimeras to test the role of domain III in roscovitine modulation of N-channel deactivation. In support of our hypothesis, all chimeric channels containing the N-channel domain III responded to roscovitine with slowed deactivation, while those chimeric channels with L-channel domain III did not. Thus a combination of kinetic and pharmacological evidence supports the hypothesis that domain III is an important regulator of N-channel closing. Our results support specialization of gating functions among calcium channel domains. PMID:22205645

  18. Privileged crosstalk between TRPV1 channels and mitochondrial calcium shuttling machinery controls nociception.

    PubMed

    Nita, Iulia I; Caspi, Yaki; Gudes, Sagi; Fishman, Dimitri; Lev, Shaya; Hersfinkel, Michal; Sekler, Israel; Binshtok, Alexander M

    2016-12-01

    The nociceptive noxious heat-activated receptor - TRPV1, conducts calcium and sodium, thus producing a depolarizing receptor potential, leading to activation of nociceptive neurons. TRPV1-mediated calcium and sodium influx is negatively modulated by calcium, via calcium-dependent desensitization of TRPV1 channels. A mitochondrial Ca(2+) uniporter - MCU, controls mitochondrial Ca(2+) entry while a sodium/calcium transporter - NCLX shapes calcium and sodium transients by mediating sodium entry into and removing calcium from the mitochondria. The functional interplay between TRPV1, MCU and NCLX, in controlling the cytosolic and mitochondrial calcium and sodium transients and subsequently the nociceptive excitability, is poorly understood. Here, we used cytosolic and mitochondrial fluorescent calcium and sodium imaging together with electrophysiological recordings of TRPV1-induced currents in HEK293T cells and nociceptor-like dissociated rat dorsal root ganglion neurons, while modulating NCLX or MCU expression using specific small interfering RNA (siNCLX). We show that the propagation of the TRPV1-induced cytosolic calcium and sodium fluxes into mitochondria is dependent on coordinated activity of NCLX and MCU. Thus, knocking-down of NCLX triggers down regulation of MCU dependent mitochondrial Ca(2+) uptake. This in turn decreases rate and amplitude of TRPV1-mediated cytosolic calcium, which inhibits capsaicin-induced inward current and neuronal firing. TRPV1-mediated currents were fully rescued by intracellular inclusion of the fast calcium chelator BAPTA. Finally, NCLX controls capsaicin-induced cell death, by supporting massive mitochondrial Ca(2+) shuttling. Altogether, our results suggest that NCLX, by regulating cytosolic and mitochondrial ionic transients, modulates calcium-dependent desensitization of TRPV1 channels, thereby, controlling nociceptive signaling.

  19. Identification of T-type calcium channels in the interstitial cells of Cajal in rat bladder.

    PubMed

    Deng, Jianping; He, Peng; Zhong, Xiao; Wang, Qingqing; Li, Longkun; Song, Bo

    2012-12-01

    To investigate the expression and function of T-type calcium channels in the interstitial cells of Cajal in rat bladders. Bladders were harvested from Sprague-Dawley rats. The expression of T-type calcium channels subtypes (α1G, α1H, and α1I) in interstitial cells of Cajal were identified by double-labeled immunofluorescence analysis and reverse transcription-polymerase chain reaction analysis in whole mount preparations of rat bladders. The function of T-type calcium channels in freshly isolated interstitial cells of Cajal was assessed by detecting the changes of intracellular calcium ([Ca(2+)](i)) with preloading fluo-3 AM, and by evaluating the changes of the phasic contractions of rat bladder strips after treating with mibefradil and glivec. Three T-type calcium channels subtypes, α1G, α1H, and α1I, colocalized with c-kit in bladder interstitial cells of Cajal by double-labeled immunofluorescence analysis, and this was confirmed using reverse transcription-polymerase chain reaction. The T-type calcium channels selective blocker, mibefradil (1 μM), significantly decreased the intracellular calcium concentration ([Ca(2+)](i)) in isolated interstitial cells of Cajal (P < .01) and inhibited the spontaneous phasic contraction of bladder strips (P < .01). Moreover, the c-kit receptor blocker, glivec, significantly decreased the [Ca(2+)](i) of interstitial cells of Cajal further (P < .01) and the spontaneous phasic contraction of bladder strips. T-type calcium channel subtypes were confirmed to colocalize in interstitial cells of Cajal in rats bladders, which might participate in the spontaneous activity of interstitial cells of Cajal and phasic contractions of bladder strips by modulating [Ca(2+)](i) in interstitial cells of Cajal. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. The effects of inorganic lead on voltage-sensitive calcium channels differ among cell types and among channel subtypes.

    PubMed

    Audesirk, G; Audesirk, T

    1993-01-01

    The whole-cell version of patch clamping was used to compare the effects of acute in vitro exposure to inorganic lead (Pb2+) on voltage-sensitive calcium channels in cultured N1E-115 mouse neuroblastoma cells and E18 rat hippocampal neurons. Free Pb2+ concentrations in salines with a high lead-buffering capacity were measured with a calibrated Pb(2+)-selective electrode. Previously, we found that N1E-115 neurons contain low voltage activated, rapidly inactivating (T) channels and high voltage activated, slowly inactivating (L) channels. Pb2+ inhibits both channel subtypes in N1E-115 cells, with some selectivity against L-type channels (IC50 approximately 700 nM free Pb2+ for L-type channels, 1300 nM free Pb2+ for T-type channels; Audesirk and Audesirk, 1991). In addition to T-type and L-type channels, cultured E18 rat hippocampal neurons have been reported to contain high voltage-activated, rapidly inactivating (N) channels. In our experiments with 5 to 20 day old cultures, almost all neurons showed substantial L-type current, approximately half showed significant N-type current, and fewer than 5% showed significant T-type current. We found that Pb2+ is somewhat selective against L-type channels (IC50 approximately 30 nM free Pb2+ in 10 mM Ba2+ as the charge carrier, 55 nM in 50 mM Ba2+) compared to N-channels (IC50 approximately 80 nM free Pb2+ in 10 mM Ba2+, 200 nM in 50 mM Ba2+). These results suggest that the effects of Pb2+ on calcium channels of vertebrate neurons vary both among cell types and among channel subtypes.

  1. Voltage-dependent calcium channels in skeletal muscle transverse tubules. Measurements of calcium efflux in membrane vesicles

    SciTech Connect

    Dunn, S.M. )

    1989-07-05

    Transverse tubule membranes isolated from rabbit skeletal muscle consist mainly of sealed vesicles that are oriented primarily inside out. These membranes contain a high density of binding sites for 1,4-dihydropyridine calcium channel antagonists. The presence of functional voltage-dependent calcium channels in these membranes has been demonstrated by their ability to mediate {sup 45}Ca2+ efflux in response to changes in membrane potential. Fluorescence changes of the voltage-sensitive dye, 3,3'-dipropyl-2,2'-thiadicarbocyanine, have shown that transverse tubule vesicles may generate and maintain membrane potentials in response to establishing potassium gradients across the membrane in the presence of valinomycin. A two-step procedure has been developed to measure voltage-dependent calcium fluxes. Vesicles loaded with {sup 45}Ca2+ are first diluted into a buffer designed to generate a membrane potential mimicking the resting state of the cell and to reduce the extravesicular Ca2+ to sub-micromolar levels. {sup 45}Ca2+ efflux is then measured upon subsequent depolarization. Flux responses are modulated with appropriate pharmacological specificity by 1,4-dihydropyridines and are inhibited by other calcium channel antagonists such as lanthanum and verapamil.

  2. Differential effects of organic calcium-channel blockers on diastolic SR calcium-handling in the frog heart.

    PubMed

    Subramani, Sathya; Vijayanand, Caroline; Tharion, Elizabeth

    2002-11-01

    1. Gradual loss of sarcoplasmic reticular (SR) calcium during a rest-period is responsible for the rest-induced decay (RID) of force in mammalian myocardium. Effect of verapamil and diltiazem on a similar RID in the frog myocardium suggests a new mechanism of action of these drugs. 2. Strips of frog-ventricle were paced at 0.2 Hz and the rhythm was interrupted by varying rest-periods ranging from 10 to 180 s. In control conditions, the amplitude of the post-rest beat was significantly lower than that of the pre-rest beat for rest-periods more than 40 s (RID). 3. Verapamil and diltiazem (which are organic calcium-channel blockers (OCCB)) changed the pattern of RID in the control solution to a 'rest-induced potentiation' (RIP) in the same preparation while another OCCB nifedipine and the inorganic calcium-channel blocker cadmium did not alter the post-rest phenomenon. 4. We propose that verapamil and diltiazem produce an RIP due to either blockade of SR calcium-leak during rest or enhancement of SR calcium-uptake during rest.

  3. Saturation of calcium channels in single isolated smooth muscle cells of guinea-pig taenia caeci.

    PubMed Central

    Ganitkevich VYa; Shuba, M F; Smirnov, S V

    1988-01-01

    1. Calcium channel currents were recorded in Cs+-dialysed voltage-clamped single smooth muscle cells isolated from the guinea-pig taenia caeci to evaluate the current-carrying ability of Ca2+, Ba2+, Sr2+ and Mg2+ ions. 2. Ba2+ and Sr2+ ions, as well as Ca2+ ions, were able to carry an inward current through calcium channels. Calcium channel current was not observed when Mg2+ was the only divalent cation in the external solution. 3. Concentration dependences of calcium (ICa), barium (IBa) and strontium (ISr) currents were studied. It was found that currents through calcium channels saturated with increasing the extracellular concentration of a current carrier. Saturation of each current can be fitted with a Langmuir curve with apparent dissociation constants of 1.2 mM for Ca2+, 1.8 mM for Sr2+ and 9.6 mM for Ba2+ ions. 4. External Mg2+ ions reduced both ICa and IBa.IBa was depressed to a greater extent than ICa by Mg2+ ions. Reduction of ICa by Mg2+ ions seems to agree with competitive antagonism between Ca2+ and Mg2+ ions (Hagiwara & Takahashi, 1967). 5. When the external divalent cation concentration [( C2+]o) was changed, the current-voltage relationship of currents through calcium channels was shifted along the potential axis suggesting that activation gating of calcium channels was affected by [C2+]o. These voltage shifts can be fitted with the Gouy-Chapman theory supposing the density of surface charges near calcium channels to be 0.5 e nm-2 and including more potent binding of Ca2+ ions to surface charges than of Ba2+, Sr2+ and Mg2+ ions. 6. The changes in the Ca2+, Ba2+ and Sr2+ concentrations at the surface of the membrane were calculated. It was found that saturation of IBa can be explained by saturation of Ba2+ surface concentration while saturation of ICa and ISr cannot. 7. It was suggested that barium ions were able to carry the larger current through calcium channels in smooth muscle cells due to their much weaker binding within the calcium channel

  4. Demonstration of Binding of Neuronal Calcium Sensor-1 to the Cav2.1 P/Q-Type Calcium Channel

    PubMed Central

    2014-01-01

    In neurons, entry of extracellular calcium (Ca2+) into synaptic terminals through Cav2.1 (P/Q-type) Ca2+ channels is the driving force for exocytosis of neurotransmitter-containing synaptic vesicles. This class of Ca2+ channel is, therefore, pivotal during normal neurotransmission in higher organisms. In response to channel opening and Ca2+ influx, specific Ca2+-binding proteins associate with cytoplasmic regulatory domains of the P/Q channel to modulate subsequent channel opening. Channel modulation in this way influences synaptic plasticity with consequences for higher-level processes such as learning and memory acquisition. The ubiquitous Ca2+-sensing protein calmodulin (CaM) regulates the activity of all types of mammalian voltage-gated Ca2+ channels, including the P/Q class, by direct binding to specific regulatory motifs. More recently, experimental evidence has highlighted a role for additional Ca2+-binding proteins, particularly of the CaBP and NCS families in the regulation of P/Q channels. NCS-1 is a protein found from yeast to humans and that regulates a diverse number of cellular functions. Physiological and genetic evidence indicates that NCS-1 regulates P/Q channel activity, including calcium-dependent facilitation, although a direct physical association between the proteins has yet to be demonstrated. In this study, we aimed to determine if there is a direct interaction between NCS-1 and the C-terminal cytoplasmic tail of the Cav2.1 α-subunit. Using distinct but complementary approaches, including in vitro binding of bacterially expressed recombinant proteins, fluorescence spectrophotometry, isothermal titration calorimetry, nuclear magnetic resonance, and expression of fluorescently tagged proteins in mammalian cells, we show direct binding and demonstrate that CaM can compete for it. We speculate about how NCS-1/Cav2.1 association might add to the complexity of calcium channel regulation mediated by other known calcium-sensing proteins and how

  5. Demonstration of binding of neuronal calcium sensor-1 to the cav2.1 p/q-type calcium channel.

    PubMed

    Lian, Lu-Yun; Pandalaneni, Sravan R; Todd, Paul A C; Martin, Victoria M; Burgoyne, Robert D; Haynes, Lee P

    2014-09-30

    In neurons, entry of extracellular calcium (Ca(2+)) into synaptic terminals through Cav2.1 (P/Q-type) Ca(2+) channels is the driving force for exocytosis of neurotransmitter-containing synaptic vesicles. This class of Ca(2+) channel is, therefore, pivotal during normal neurotransmission in higher organisms. In response to channel opening and Ca(2+) influx, specific Ca(2+)-binding proteins associate with cytoplasmic regulatory domains of the P/Q channel to modulate subsequent channel opening. Channel modulation in this way influences synaptic plasticity with consequences for higher-level processes such as learning and memory acquisition. The ubiquitous Ca(2+)-sensing protein calmodulin (CaM) regulates the activity of all types of mammalian voltage-gated Ca(2+) channels, including the P/Q class, by direct binding to specific regulatory motifs. More recently, experimental evidence has highlighted a role for additional Ca(2+)-binding proteins, particularly of the CaBP and NCS families in the regulation of P/Q channels. NCS-1 is a protein found from yeast to humans and that regulates a diverse number of cellular functions. Physiological and genetic evidence indicates that NCS-1 regulates P/Q channel activity, including calcium-dependent facilitation, although a direct physical association between the proteins has yet to be demonstrated. In this study, we aimed to determine if there is a direct interaction between NCS-1 and the C-terminal cytoplasmic tail of the Cav2.1 α-subunit. Using distinct but complementary approaches, including in vitro binding of bacterially expressed recombinant proteins, fluorescence spectrophotometry, isothermal titration calorimetry, nuclear magnetic resonance, and expression of fluorescently tagged proteins in mammalian cells, we show direct binding and demonstrate that CaM can compete for it. We speculate about how NCS-1/Cav2.1 association might add to the complexity of calcium channel regulation mediated by other known calcium

  6. Calcium channel currents and their inhibition by (-)-baclofen in rat sensory neurones: modulation by guanine nucleotides.

    PubMed Central

    Dolphin, A C; Scott, R H

    1987-01-01

    1. The effect of intracellular application of the hydrolysis-resistant GTP and GDP analogues, guanosine 5'-O-3-thiotriphosphate (GTP-gamma-S), and guanosine 5'-O-2-thiodiphosphate (GDP-beta-S) has been examined on voltage-activated calcium-channel currents and the ability of the gamma-aminobutyric acid B agonist baclofen to inhibit them, in cultured rat dorsal root ganglion (d.r.g.) neurones. 2. Under control conditions, the calcium-channel current, recorded using the whole-cell patch technique with Ba2+ rather than Ca2+ as the permeant divalent cation, consists of an inactivating and a sustained current. In the presence of 500 microM-GTP-gamma-S included in the patch pipette, the calcium-channel current was activated more slowly and was largely non-inactivating during the 100 ms depolarization voltage step. The effects of GTP-gamma-S were abolished by pre-treatment of cells with pertussis toxin. 3. The calcium-channel current recorded in the presence of 500 microM-GDP-beta-S had a more marked transient component than the control calcium-channel current. The proportion of transient calcium-channel current in the presence of GDP-beta-S was not reduced in Na+-free medium. 4. No statistically significant effects of GTP-gamma-S and GDP-beta-S were observed on the calcium-activated potassium current IK(Ca), the transient outward potassium current activated in Ca2+-free medium, or on the inwardly rectifying current (Ih) activated by hyperpolarization. 5. GTP-gamma-S increased the ability of baclofen to inhibit calcium-channel currents, whereas this was decreased by GDP-beta-S and by pre-treatment of cells with pertussis toxin. The half-maximal effective dose (EC50) for baclofen was 2 microM in the presence of GTP-gamma-S, 15 microM for control and 50 microM in the presence of GDP-beta-S. Comparable results were obtained using a single concentration of the adenosine agonist 2-chloroadenosine (2-CA, 0.05 microM) to inhibit calcium-channel currents; its effect was

  7. A Calcium-Dependent Plasticity Rule for HCN Channels Maintains Activity Homeostasis and Stable Synaptic Learning

    PubMed Central

    Honnuraiah, Suraj; Narayanan, Rishikesh

    2013-01-01

    Theoretical and computational frameworks for synaptic plasticity and learning have a long and cherished history, with few parallels within the well-established literature for plasticity of voltage-gated ion channels. In this study, we derive rules for plasticity in the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, and assess the synergy between synaptic and HCN channel plasticity in establishing stability during synaptic learning. To do this, we employ a conductance-based model for the hippocampal pyramidal neuron, and incorporate synaptic plasticity through the well-established Bienenstock-Cooper-Munro (BCM)-like rule for synaptic plasticity, wherein the direction and strength of the plasticity is dependent on the concentration of calcium influx. Under this framework, we derive a rule for HCN channel plasticity to establish homeostasis in synaptically-driven firing rate, and incorporate such plasticity into our model. In demonstrating that this rule for HCN channel plasticity helps maintain firing rate homeostasis after bidirectional synaptic plasticity, we observe a linear relationship between synaptic plasticity and HCN channel plasticity for maintaining firing rate homeostasis. Motivated by this linear relationship, we derive a calcium-dependent rule for HCN-channel plasticity, and demonstrate that firing rate homeostasis is maintained in the face of synaptic plasticity when moderate and high levels of cytosolic calcium influx induced depression and potentiation of the HCN-channel conductance, respectively. Additionally, we show that such synergy between synaptic and HCN-channel plasticity enhances the stability of synaptic learning through metaplasticity in the BCM-like synaptic plasticity profile. Finally, we demonstrate that the synergistic interaction between synaptic and HCN-channel plasticity preserves robustness of information transfer across the neuron under a rate-coding schema. Our results establish specific physiological roles

  8. Resveratrol attenuates cortical neuron activity: roles of large conductance calcium-activated potassium channels and voltage-gated sodium channels.

    PubMed

    Wang, Ya-Jean; Chan, Ming-Huan; Chen, Linyi; Wu, Sheng-Nan; Chen, Hwei-Hisen

    2016-05-21

    Resveratrol, a phytoalexin found in grapes and red wine, exhibits diverse pharmacological activities. However, relatively little is known about whether resveratrol modulates the ion channels in cortical neurons. The large-conductance calcium-activated potassium channels (BKCa) and voltage-gated sodium channels were expressed in cortical neurons and play important roles in regulation of neuronal excitability. The present study aimed to determine the effects of resveratrol on BKCa currents and voltage-gated sodium currents in cortical neurons. Resveratrol concentration-dependently increased the current amplitude and the opening activity of BKCa channels, but suppressed the amplitude of voltage-gated sodium currents. Similar to the BKCa channel opener NS1619, resveratrol decreased the firing rate of action potentials. In addition, the enhancing effects of BKCa channel blockers tetraethylammonium (TEA) and paxilline on action potential firing were sensitive to resveratrol. Our results indicated that the attenuation of action potential firing rate by resveratrol might be mediated through opening the BKCa channels and closing the voltage-gated sodium channels. As BKCa channels and sodium channels are critical molecular determinants for seizure generation, our findings suggest that regulation of these two channels in cortical neurons probably makes a considerable contribution to the antiseizure activity of resveratrol.

  9. NCS-1 differentially regulates growth cone and somata calcium channels in Lymnaea neurons.

    PubMed

    Hui, Kwokyin; Feng, Zhong-Ping

    2008-02-01

    Local voltage-gated calcium channels, which regulate intracellular Ca2+ levels by allowing Ca2+ influx, play an important role in guiding and shaping growth cones, and in regulating the outgrowth and branching of neurites. Therefore, elucidating the mechanisms that regulate the biophysical properties of whole-cell calcium currents in the growth cones and somata of growing neurons is important to improving our understanding of neuronal development and regeneration. In this study, taking advantage of the large size of the pedal A (PeA) neurons in Lymnaea stagnalis, we compared the biophysical properties of somata and growth cone whole-cell calcium channel currents using Ba2+ and Ca2+ as current carriers. We found that somata and growth cone currents exhibit similar high-voltage activation properties. However, Ba2+ and Ca2+ currents in growth cones and somata are differentially affected by a dominant-negative peptide containing the C-terminal amino acid sequence of neuronal calcium sensor-1 (NCS-1). The peptide selectively reduces the peak and sustained components of current densities and the slope conductance in growth cones, and shifts the reversal potential of the growth cone currents to more hyperpolarized voltages. In contrast, the peptide had no significant effect on the somata calcium channels. Thus, we conclude that NCS-1 differentially modulates Ca2+ currents in the somata and growth cones of regenerating neurons, and may serve as a key regulator to facilitate the growth cone calcium channel activity.

  10. Presynaptic calcium diffusion from various arrays of single channels. Implications for transmitter release and synaptic facilitation.

    PubMed Central

    Fogelson, A L; Zucker, R S

    1985-01-01

    A one-dimensional model of presynaptic calcium diffusion away from the membrane, with cytoplasmic binding, extrusion by a surface pump, and influx during action potentials, can account for the rapid decay of phasic transmitter release and the slower decay of synaptic facilitation following one spike, as well as the very slow decline in total free calcium observed experimentally. However, simulations using this model, and alternative versions in which calcium uptake into organelles and saturable binding are included, fail to preserve phasic transmitter release to spikes in a long tetanus. A three-dimensional diffusion model was developed, in which calcium enters through discrete membrane channels and acts to release transmitter within 50 nm of entry points. Analytic solutions of the equations of this model, in which calcium channels were distributed in active zone patches based on ultrastructural observations, were successful in predicting synaptic facilitation, phasic release to tetanic spikes, and the accumulation of total free calcium. The effects of varying calcium buffering, pump rate, and channel number and distribution were explored. Versions appropriate to squid giant synapses and frog neuromuscular junctions were simulated. Limitations of key assumptions, particularly rapid nonsaturable binding, are discussed. PMID:2418887

  11. Effect of subcutaneous administration of calcium channel blockers on nerve injury-induced hyperalgesia.

    PubMed

    White, D M; Cousins, M J

    1998-08-10

    Recent studies suggest that calcium contributes to peripheral neural mechanisms of hyperalgesia associated with nerve damage. In this animal behavioural study, we examined further the contribution of calcium in neuropathic pain by testing whether subcutaneous administration of either a calcium chelating agent or voltage-dependent calcium channel blockers attenuate nerve injury-induced hyperalgesia to mechanical stimulation. Studies were carried out in animals with partially ligated sciatic nerves, an established animal model of neuropathic pain. The nociceptive flexion reflex was quantified using an Ugo Basile Analgesymeter. Partial nerve injury induced a significant decrease in mechanical threshold compared to the sham operated controls. Daily subcutaneous injections of the calcium chelating agent, Quin 2 (20 microgram/2.5 microliter), significantly attenuated the nerve injury-induced hyperalgesia. Similarly, SNX-111, a N-type channel blocker, also significantly attenuated the nerve injury-induced hyperalgesia. SNX-230, a P and/or Q-type channel blocker, and nifedipine, a L-type channel blocker, had no effect on the hyperalgesia to mechanical stimulation. In control experiments, SNX-111 had no effect on mechanical thresholds when administered subcutaneously in either the hindpaw of normal animals or the back of the neck in nerve injury animals. This study shows that neuropathic pain involves a local calcium-dependent mechanism in the receptive field of intact neurons of an injured nerve, since it can be alleviated by subcutaneous injections of either a calcium chelating agent or SNX-111, a N-type calcium channel blocker. These agents may be effective, peripherally acting therapeutic agents for neuropathic pain.

  12. Synthetic Aβ oligomers (Aβ(1-42) globulomer) modulate presynaptic calcium currents: prevention of Aβ-induced synaptic deficits by calcium channel blockers.

    PubMed

    Hermann, David; Mezler, Mario; Müller, Michaela K; Wicke, Karsten; Gross, Gerhard; Draguhn, Andreas; Bruehl, Claus; Nimmrich, Volker

    2013-02-28

    Alzheimer's disease is accompanied by increased brain levels of soluble amyloid-β (Aβ) oligomers. It has been suggested that oligomers directly impair synaptic function, thereby causing cognitive deficits in Alzheimer's disease patients. Recently, it has been shown that synthetic Aβ oligomers directly modulate P/Q-type calcium channels, possibly leading to excitotoxic cascades and subsequent synaptic decline. Using whole-cell recordings we studied the modulation of recombinant presynaptic calcium channels in HEK293 cells after application of a stable Aβ oligomer preparation (Aβ1-42 globulomer). Aβ globulomer shifted the half-activation voltage of P/Q-type and N-type calcium channels to more hyperpolarized values (by 11.5 and 7.5 mV). Application of non-aggregated Aβ peptides had no effect. We then analyzed the potential of calcium channel blockers to prevent Aβ globulomer-induced synaptic decline in hippocampal slice cultures. Specific block of P/Q-type or N-type calcium channels with peptide toxins completely reversed Aβ globulomer-induced deficits in glutamatergic neurotransmission. Two state-dependent low molecular weight P/Q-type and N-type calcium channel blockers also protected neurons from Aβ-induced alterations. On the contrary, inhibition of L-type calcium channels failed to reverse the deficit. Our data show that Aβ globulomer directly modulates recombinant P/Q-type and N-type calcium channels in HEK293 cells. Block of presynaptic calcium channels with both state-dependent and state-independent modulators can reverse Aβ-induced functional deficits in synaptic transmission. These findings indicate that presynaptic calcium channel blockers may be a therapeutic strategy for the treatment of Alzheimer's disease.

  13. L-type calcium channels regulate filopodia stability and cancer cell invasion downstream of integrin signalling

    PubMed Central

    Jacquemet, Guillaume; Baghirov, Habib; Georgiadou, Maria; Sihto, Harri; Peuhu, Emilia; Cettour-Janet, Pierre; He, Tao; Perälä, Merja; Kronqvist, Pauliina; Joensuu, Heikki; Ivaska, Johanna

    2016-01-01

    Mounting in vitro, in vivo and clinical evidence suggest an important role for filopodia in driving cancer cell invasion. Using a high-throughput microscopic-based drug screen, we identify FDA-approved calcium channel blockers (CCBs) as potent inhibitors of filopodia formation in cancer cells. Unexpectedly, we discover that L-type calcium channels are functional and frequently expressed in cancer cells suggesting a previously unappreciated role for these channels during tumorigenesis. We further demonstrate that, at filopodia, L-type calcium channels are activated by integrin inside-out signalling, integrin activation and Src. Moreover, L-type calcium channels promote filopodia stability and maturation into talin-rich adhesions through the spatially restricted regulation of calcium entry and subsequent activation of the protease calpain-1. Altogether we uncover a novel and clinically relevant signalling pathway that regulates filopodia formation in cancer cells and propose that cycles of filopodia stabilization, followed by maturation into focal adhesions, directs cancer cell migration and invasion. PMID:27910855

  14. Hypotension induced by the concomitant use of a calcium-channel blocker and clarithromycin

    PubMed Central

    Takeuchi, Sayako; Tsujimoto, Toshihide

    2017-01-01

    In the elderly, calcium-channel blockers are the first-line treatment for hypertension, and macrolides are commonly prescribed antibiotics. Here we report a 78-year-old man taking nifedipine, diltiazem and carvedilol who presented with persistent hypotension and bradycardia after clarithromycin was prescribed. He was diagnosed with drug-induced hypotension and treated with fluid resuscitation and vasoactive agents. His symptoms gradually improved. He was transferred out of the intensive care unit 3 days after hospitalisation. Combining calcium-channel blockers and clarithromycin can cause vasodilatory hypotension. The concomitant use of calcium-channel blockers and macrolide antibiotics increases the levels of calcium-channel blockers in the blood as they are metabolised by cytochrome P450 3A4 (CYP3A4), which is inhibited by macrolide antibiotics. Moreover, the addition of another calcium-channel blocker and a β blocker can lower cardiac output due to bradycardia and worsen hypotension. Therefore, it is important to consider drug interactions when the cause of hypotension is unknown. PMID:28069789

  15. Activation of PAC1 Receptors in Rat Cerebellar Granule Cells Stimulates Both Calcium Mobilization from Intracellular Stores and Calcium Influx through N-Type Calcium Channels

    PubMed Central

    Basille-Dugay, Magali; Vaudry, Hubert; Fournier, Alain; Gonzalez, Bruno; Vaudry, David

    2013-01-01

    High concentrations of pituitary adenylate cyclase-activating polypeptide (PACAP) and a high density of PACAP binding sites have been detected in the developing rat cerebellum. In particular, PACAP receptors are actively expressed in immature granule cells, where they activate both adenylyl cyclase and phospholipase C. The aim of the present study was to investigate the ability of PACAP to induce calcium mobilization in cerebellar granule neurons. Administration of PACAP-induced a transient, rapid, and monophasic rise of the cytosolic calcium concentration ([Ca2+]i), while vasoactive intestinal peptide was devoid of effect, indicating the involvement of the PAC1 receptor in the Ca2+ response. Preincubation of granule cells with the Ca2+ ATPase inhibitor, thapsigargin, or the d-myo-inositol 1,4,5-trisphosphate (IP3) receptor antagonist, 2-aminoethoxydiphenyl borate, markedly reduced the stimulatory effect of PACAP on [Ca2+]i. Furthermore, addition of the calcium chelator, EGTA, or exposure of cells to the non-selective Ca2+ channel blocker, NiCl2, significantly attenuated the PACAP-evoked [Ca2+]i increase. Preincubation of granule neurons with the N-type Ca2+ channel blocker, ω-conotoxin GVIA, decreased the PACAP-induced [Ca2+]i response, whereas the L-type Ca2+ channel blocker, nifedipine, and the P- and Q-type Ca2+ channel blocker, ω-conotoxin MVIIC, had no effect. Altogether, these findings indicate that PACAP, acting through PAC1 receptors, provokes an increase in [Ca2+]i in granule neurons, which is mediated by both mobilization of calcium from IP3-sensitive intracellular stores and activation of N-type Ca2+ channel. Some of the activities of PACAP on proliferation, survival, migration, and differentiation of cerebellar granule cells could thus be mediated, at least in part, through these intracellular and/or extracellular calcium fluxes. PMID:23675369

  16. Arterial Smooth Muscle Mitochondria Amplify Hydrogen Peroxide Microdomains Functionally Coupled to L-Type Calcium Channels

    PubMed Central

    Chaplin, Nathan L.; Nieves-Cintrón, Madeline; Fresquez, Adriana M.; Navedo, Manuel F.; Amberg, Gregory C.

    2015-01-01

    Rationale Mitochondria are key integrators of convergent intracellular signaling pathways. Two important second messengers modulated by mitochondria are calcium and reactive oxygen species. To date, coherent mechanisms describing mitochondrial integration of calcium and oxidative signaling in arterial smooth muscle are incomplete. Objective To address and add clarity to this issue we tested the hypothesis that mitochondria regulate subplasmalemmal calcium and hydrogen peroxide microdomain signaling in cerebral arterial smooth muscle. Methods and Results Using an image-based approach we investigated the impact of mitochondrial regulation of L-type calcium channels on subcellular calcium and ROS signaling microdomains in isolated arterial smooth muscle cells. Our single cell observations were then related experimentally to intact arterial segments and to living animals. We found that subplasmalemmal mitochondrial amplification of hydrogen peroxide microdomain signaling stimulates L-type calcium channels and that this mechanism strongly impacts the functional capacity of the vasoconstrictor angiotensin II. Importantly, we also found that disrupting this mitochondrial amplification mechanism in vivo normalized arterial function and attenuated the hypertensive response to systemic endothelial dysfunction. Conclusions From these observations we conclude that mitochondrial amplification of subplasmalemmal calcium and hydrogen peroxide microdomain signaling is a fundamental mechanism regulating arterial smooth muscle function. As the principle components involved are fairly ubiquitous and positioning of mitochondria near the plasma membrane is not restricted to arterial smooth muscle, this mechanism could occur in many cell types and contribute to pathological elevations of intracellular calcium and increased oxidative stress associated with many diseases. PMID:26390880

  17. Regulation of N-type voltage-gated calcium channels and presynaptic function by cyclin-dependent kinase 5

    PubMed Central

    Su, Susan C.; Seo, Jinsoo; Pan, Jen Q.; Samuels, Benjamin Adam; Rudenko, Andrii; Ericsson, Maria; Neve, Rachael L.; Yue, David T.; Tsai, Li-Huei

    2012-01-01

    SUMMARY N-type voltage-gated calcium channels (CaV2.2) localize to presynaptic nerve terminals and mediate key events including synaptogenesis and neurotransmission. While several kinases have been implicated in the modulation of calcium channels, their impact on presynaptic functions remains unclear. Here we report that the N-type calcium channel is a substrate for cyclin-dependent kinase 5 (Cdk5). The pore-forming α1 subunit of the N-type calcium channel is phosphorylated in the C-terminal domain, and phosphorylation results in enhanced calcium influx due to increased channel open probability. Phosphorylation of the N-type calcium channel by Cdk5 facilitates neurotransmitter release and alters presynaptic plasticity by increasing the number of docked vesicles at the synaptic cleft. These effects are mediated by an altered interaction between N-type calcium channels and RIM1, which tethers presynaptic calcium channels to the active zone. Collectively, our results highlight a molecular mechanism by which N-type calcium channels are regulated by Cdk5 to affect presynaptic functions. PMID:22920258

  18. The mechanosensory calcium-selective ion channel: key component of a plasmalemmal control centre?

    NASA Technical Reports Server (NTRS)

    Pickard, B. G.; Ding, J. P.

    1993-01-01

    Mechanosensory calcium-selective ion channels probably serve to detect not only mechanical stress but also electrical, thermal, and diverse chemical stimuli. Because all stimuli result in a common output, most notably a shift in second messenger calcium concentration, the channels are presumed to serve as signal integrators. Further, insofar as second messenger calcium in turn gives rise to mechanical, electrical, and diverse chemical changes, the channels are postulated to initiate regulatory feedbacks. It is proposed that the channels and the feedback loops play a wide range of roles in regulating normal plant function, as well as in mediating disturbance of normal function by environmental stressors and various pathogens. In developing evidence for the physiological performance of the channel, a model for a cluster of regulatory plasmalemmal proteins and cytoskeletal elements grouped around a set of wall-to-membrane and transmembrane linkers has proved useful. An illustration of how the model might operate is presented. It is founded on the demonstration that several xenobiotics interfere both with normal channel behaviour and with gravitropic reception. Accordingly, the first part of the illustration deals with how the channels and the control system within which they putatively operate might initiate gravitropism. Assuming that gravitropism is an asymmetric expression of growth, the activities of the channels and the plasmalemmal control system are extrapolated to account for regulation of both rate and allometry of cell expansion. Finally, it is discussed how light, hormones, redox agents and herbicides could in principle affect growth via the putative plasmalemmal control cluster or centre.

  19. The mechanosensory calcium-selective ion channel: key component of a plasmalemmal control centre?

    NASA Technical Reports Server (NTRS)

    Pickard, B. G.; Ding, J. P.

    1993-01-01

    Mechanosensory calcium-selective ion channels probably serve to detect not only mechanical stress but also electrical, thermal, and diverse chemical stimuli. Because all stimuli result in a common output, most notably a shift in second messenger calcium concentration, the channels are presumed to serve as signal integrators. Further, insofar as second messenger calcium in turn gives rise to mechanical, electrical, and diverse chemical changes, the channels are postulated to initiate regulatory feedbacks. It is proposed that the channels and the feedback loops play a wide range of roles in regulating normal plant function, as well as in mediating disturbance of normal function by environmental stressors and various pathogens. In developing evidence for the physiological performance of the channel, a model for a cluster of regulatory plasmalemmal proteins and cytoskeletal elements grouped around a set of wall-to-membrane and transmembrane linkers has proved useful. An illustration of how the model might operate is presented. It is founded on the demonstration that several xenobiotics interfere both with normal channel behaviour and with gravitropic reception. Accordingly, the first part of the illustration deals with how the channels and the control system within which they putatively operate might initiate gravitropism. Assuming that gravitropism is an asymmetric expression of growth, the activities of the channels and the plasmalemmal control system are extrapolated to account for regulation of both rate and allometry of cell expansion. Finally, it is discussed how light, hormones, redox agents and herbicides could in principle affect growth via the putative plasmalemmal control cluster or centre.

  20. Regulation of Cardiac Calcium Channels in the Fight-or-Flight Response.

    PubMed

    Catterall, William A

    2015-01-01

    Intracellular calcium transients generated by activation of voltage-gated calcium (CaV) channels generate local signals, which initiate physiological processes such as secretion, synaptic transmission, and excitation-contraction coupling. Regulation of calcium entry through CaV channels is crucial for control of these physiological processes. In this article, I review experimental results that have emerged over several years showing that cardiac CaV1.2 channels form a local signaling complex, in which their proteolytically processed distal C-terminal domain, an A-Kinase Anchoring Protein, and cyclic AMP-dependent protein kinase (PKA) interact directly with the transmembrane core of the ion channel through the proximal C-terminal domain. This signaling complex is the substrate for β-adrenergic up-regulation of the CaV1.2 channel in the heart during the fight-or-flight response. Protein phosphorylation of two sites at the interface between the distal and proximal C-terminal domains contributes importantly to control of basal CaV1.2 channel activity, and phosphorylation of Ser1700 by PKA at that interface up-regulates CaV1.2 activity in response to β-adrenergic signaling. Thus, the intracellular C-terminal domain of CaV1.2 channels serves as a signaling platform, mediating beat-to-beat physiological regulation of channel activity and up-regulation by β-adrenergic signaling in the fight-or-flight response.

  1. Regulation of Cardiac Calcium Channels in the Fight-or-Flight Response

    PubMed Central

    Catterall, William A.

    2015-01-01

    Intracellular calcium transients generated by activation of voltage-gated calcium (CaV) channels generate local signals, which initiate physiological processes such as secretion, synaptic transmission, and excitation-contraction coupling. Regulation of calcium entry through CaV channels is crucial for control of these physiological processes. In this article, I review experimental results that have emerged over several years showing that cardiac CaV1.2 channels form a local signaling complex, in which their proteolytically processed distal C-terminal domain, an A-Kinase Anchoring Protein, and cyclic AMP-dependent protein kinase (PKA) interact directly with the transmembrane core of the ion channel through the proximal C-terminal domain. This signaling complex is the substrate for β-adrenergic up-regulation of the CaV1.2 channel in the heart during the fight-or-flight response. Protein phosphorylation of two sites at the interface between the distal and proximal C-terminal domains contributes importantly to control of basal CaV1.2 channel activity, and phosphorylation of Ser1700 by PKA at that interface up-regulates CaV1.2 activity in response to β-adrenergic signaling. Thus, the intracellular C-terminal domain of CaV1.2 channels serves as a signaling platform, mediating beat-to-beat physiological regulation of channel activity and up-regulation by β-adrenergic signaling in the fight-or-flight response. PMID:25966697

  2. Zebrafish calls for reinterpretation for the roles of P/Q calcium channels in neuromuscular transmission.

    PubMed

    Wen, Hua; Linhoff, Michael W; Hubbard, Jeffrey M; Nelson, Nathan R; Stensland, Donald; Dallman, Julia; Mandel, Gail; Brehm, Paul

    2013-04-24

    A long-held tenet of neuromuscular transmission is that calcium-dependent neurotransmitter release is mediated by N-type calcium channels in frog but P/Q-type channels in mammals. The N-type assignment in frog is based principally on pharmacological sensitivity to ω-conotoxin GVIA. Our studies show that zebrafish neuromuscular transmission is also sensitive to ω-conotoxin GVIA. However, positional cloning of a mutant line with compromised neuromuscular function identified a mutation in a P/Q- rather than N-type channel. Cloning and heterologous expression of this P/Q-type channel confirmed a block by ω-conotoxin GVIA raising the likelihood that all vertebrates, including frog, use the P/Q-type calcium channel for neuromuscular transmission. In addition, our P/Q defective mutant line offered a means of testing the ability of roscovitine, known to potentiate frog neuromuscular transmission, to mediate behavioral and functional rescue. Acute treatment led to rapid improvement of both, pointing to potential therapeutic benefit for myasthenic disorders involving calcium channel dysfunction.

  3. The inhibition of neuronal calcium ion channels by trace levels of yttrium released from carbon nanotubes

    PubMed Central

    Jakubek, Lorin; Marangoudakis, Spiro; Raingo, Jessica; Liu, Xinyuan; Lipscombe, Diane; Hurt, Robert

    2009-01-01

    Carbon nanotubes (CNTs) are used with increasing frequency in neuroengineering applications. CNT scaffolds are used to transmit electrical stimulation to cultured neurons and to control outgrowth and branching patterns of neurites. CNTs have been reported to disrupt normal neuronal function including alterations in endocytotic capability and inhibition of ion channels. Calcium ion channels regulate numerous neuronal and cellular functions including endo and exocytosis, neurite outgrowth, and gene expression. Strong CNT interactions with neuronal calcium ion channels would have profound biological implications. Here we show that physiological solutions containing CNTs inhibit neuronal voltage-gated calcium-ion channels in a dose dependent and CNT-sample-dependent manner with IC50 as low as 1.2 ug/ml. Importantly, we demonstrate that the inhibitory activity does not involve tubular graphene as previously reported, but rather very low concentrations of soluble yttrium released from the nanotube growth catalyst. Cationic yttrium potently inhibits calcium ion channel function with an inhibitory efficacy, IC50, of 0.07 ppm w/w. Because of this potency, unpurified and even some reportedly “purified” CNT samples contain sufficient bioavailable yttrium to inhibit channel function. Our results have important implications for emerging nano-neurotechnology and highlight the critical role that trace components can play in the biological response to complex nanomaterials. PMID:19698989

  4. T Cell Receptor Mediated Calcium Entry Requires Alternatively Spliced Cav1.1 Channels.

    PubMed

    Matza, Didi; Badou, Abdallah; Klemic, Kathryn G; Stein, Judith; Govindarajulu, Usha; Nadler, Monica J; Kinet, Jean-Pierre; Peled, Amnon; Shapira, Oz M; Kaczmarek, Leonard K; Flavell, Richard A

    2016-01-01

    The process of calcium entry in T cells is a multichannel and multi-step process. We have studied the requirement for L-type calcium channels (Cav1.1) α1S subunits during calcium entry after TCR stimulation. High expression levels of Cav1.1 channels were detected in activated T cells. Sequencing and cloning of Cav1.1 channel cDNA from T cells revealed that a single splice variant is expressed. This variant lacks exon 29, which encodes the linker region adjacent to the voltage sensor, but contains five new N-terminal exons that substitute for exons 1 and 2, which are found in the Cav1.1 muscle counterpart. Overexpression studies using cloned T cell Cav1.1 in 293HEK cells (that lack TCR) suggest that the gating of these channels was altered. Knockdown of Cav1.1 channels in T cells abrogated calcium entry after TCR stimulation, suggesting that Cav1.1 channels are controlled by TCR signaling.

  5. T Cell Receptor Mediated Calcium Entry Requires Alternatively Spliced Cav1.1 Channels

    PubMed Central

    Matza, Didi; Badou, Abdallah; Klemic, Kathryn G.; Stein, Judith; Govindarajulu, Usha; Nadler, Monica J.; Kinet, Jean-Pierre; Peled, Amnon; Shapira, Oz M.; Kaczmarek, Leonard K.; Flavell, Richard A.

    2016-01-01

    The process of calcium entry in T cells is a multichannel and multi-step process. We have studied the requirement for L-type calcium channels (Cav1.1) α1S subunits during calcium entry after TCR stimulation. High expression levels of Cav1.1 channels were detected in activated T cells. Sequencing and cloning of Cav1.1 channel cDNA from T cells revealed that a single splice variant is expressed. This variant lacks exon 29, which encodes the linker region adjacent to the voltage sensor, but contains five new N-terminal exons that substitute for exons 1 and 2, which are found in the Cav1.1 muscle counterpart. Overexpression studies using cloned T cell Cav1.1 in 293HEK cells (that lack TCR) suggest that the gating of these channels was altered. Knockdown of Cav1.1 channels in T cells abrogated calcium entry after TCR stimulation, suggesting that Cav1.1 channels are controlled by TCR signaling. PMID:26815481

  6. Synthesis and evaluation of 1,4-dihydropyridine derivatives with calcium channel blocking activity.

    PubMed

    Bladen, Chris; Gündüz, Miyase Gözde; Şimşek, Rahime; Şafak, Cihat; Zamponi, Gerald W

    2014-07-01

    1,4-Dihydropyridines (DHPs) are an important class of L-type calcium channel blockers that are used to treat conditions such as hypertension and angina. Their primary target in the cardiovascular system is the Cav1.2 L-type calcium channel isoform, however, a number of DHPs also block low-voltage-activated T-type calcium channels. Here, we describe the synthesis of a series of novel DHP derivatives that have a condensed 1,4-DHP ring system (hexahydroquinoline) and report on their abilities to block both L- and T-type calcium channels. Within this series of compounds, modification of a key ester moiety not only regulates the blocking affinity for both L- and T-type channels, but also allows for the development of DHPs with 30-fold selectivity for T-type channels over the L-type. Our data suggest that a condensed dihydropyridine-based scaffold may serve as a pharmacophore for a new class of T-type selective inhibitors.

  7. Analgesic effect of a broad-spectrum dihydropyridine inhibitor of voltage-gated calcium channels.

    PubMed

    Gadotti, Vinicius M; Bladen, Chris; Zhang, Fang Xiong; Chen, Lina; Gündüz, Miyase Gözde; Şimşek, Rahime; Şafak, Cihat; Zamponi, Gerald W

    2015-12-01

    Voltage-activated calcium channels are important facilitators of nociceptive transmission in the primary afferent pathway. Consequently, molecules that block these channels are of potential use as pain therapeutics. Our group has recently reported on the identification of a novel class of dihydropyridines (DHPs) that included compounds with preferential selectivity for T-type over L-type channels. Among those compounds, M4 was found to be an equipotent inhibitor of both Cav1.2 L- and Cav3.2 T-type calcium channels. Here, we have further characterized the effects of this compound on other types of calcium channels and examined its analgesic effect when delivered either spinally (i.t.) or systemically (i.p.) to mice. Both delivery routes resulted in antinociception in a model of acute pain. Furthermore, M4 was able to reverse mechanical hyperalgesia produced by nerve injury when delivered intrathecally. M4 retained partial activity when delivered to Cav3.2 null mice, indicating that this compound acts on multiple targets. Additional whole-cell patch clamp experiments in transfected tsA-201 cells revealed that M4 also effectively blocks Cav3.3 (T-type) and Cav2.2 (N-type) currents. Altogether, our data indicate that broad-spectrum inhibition of multiple calcium channel subtypes can lead to potent analgesia in rodents.

  8. Pharmacological correction of obesity-induced autophagy arrest using calcium channel blockers

    PubMed Central

    Park, Hwan-Woo; Park, Haeli; Semple, Ian A.; Jang, Insook; Ro, Seung-Hyun; Kim, Myungjin; Cazares, Victor A.; Stuenkel, Edward L.; Kim, Jung-Jae; Kim, Jeong Sig; Lee, Jun Hee

    2014-01-01

    Autophagy deregulation during obesity contributes to the pathogenesis of diverse metabolic disorders. However, without understanding the molecular mechanism of obesity interference in autophagy, development of therapeutic strategies for correcting such defects in obese individuals is challenging. Here we show that chronic increase of cytosolic calcium concentration in hepatocytes upon obesity and lipotoxicity attenuates autophagic flux by preventing the fusion between autophagosomes and lysosomes. As a pharmacological approach to restore cytosolic calcium homeostasis in vivo, we administered the clinically approved calcium channel blocker verapamil to obese mice. Such treatment successfully increases autophagosome-lysosome fusion in liver, preventing accumulation of protein inclusions and lipid droplets and suppressing inflammation and insulin resistance. As calcium channel blockers have been safely used in clinics for the treatment of hypertension for more than thirty years, our results suggest they may be a safe therapeutic option for restoring autophagic flux and treating metabolic pathologies in obese patients. PMID:25189398

  9. Calmodulin-dependent activation and inactivation of anoctamin calcium-gated chloride channels.

    PubMed

    Vocke, Kerstin; Dauner, Kristin; Hahn, Anne; Ulbrich, Anne; Broecker, Jana; Keller, Sandro; Frings, Stephan; Möhrlen, Frank

    2013-10-01

    Calcium-dependent chloride channels serve critical functions in diverse biological systems. Driven by cellular calcium signals, the channels codetermine excitatory processes and promote solute transport. The anoctamin (ANO) family of membrane proteins encodes three calcium-activated chloride channels, named ANO 1 (also TMEM16A), ANO 2 (also TMEM16B), and ANO 6 (also TMEM16F). Here we examined how ANO 1 and ANO 2 interact with Ca(2+)/calmodulin using nonstationary current analysis during channel activation. We identified a putative calmodulin-binding domain in the N-terminal region of the channel proteins that is involved in channel activation. Binding studies with peptides indicated that this domain, a regulatory calmodulin-binding motif (RCBM), provides two distinct modes of interaction with Ca(2+)/calmodulin, one at submicromolar Ca(2+) concentrations and one in the micromolar Ca(2+) range. Functional, structural, and pharmacological data support the concept that calmodulin serves as a calcium sensor that is stably associated with the RCBM domain and regulates the activation of ANO 1 and ANO 2 channels. Moreover, the predominant splice variant of ANO 2 in the brain exhibits Ca(2+)/calmodulin-dependent inactivation, a loss of channel activity within 30 s. This property may curtail ANO 2 activity during persistent Ca(2+) signals in neurons. Mutagenesis data indicated that the RCBM domain is also involved in ANO 2 inactivation, and that inactivation is suppressed in the retinal ANO 2 splice variant. These results advance the understanding of Ca(2+) regulation in anoctamin Cl(-) channels and its significance for the physiological function that anoctamin channels subserve in neurons and other cell types.

  10. Calmodulin-dependent activation and inactivation of anoctamin calcium-gated chloride channels

    PubMed Central

    Vocke, Kerstin; Dauner, Kristin; Hahn, Anne; Ulbrich, Anne; Broecker, Jana; Keller, Sandro; Frings, Stephan

    2013-01-01

    Calcium-dependent chloride channels serve critical functions in diverse biological systems. Driven by cellular calcium signals, the channels codetermine excitatory processes and promote solute transport. The anoctamin (ANO) family of membrane proteins encodes three calcium-activated chloride channels, named ANO 1 (also TMEM16A), ANO 2 (also TMEM16B), and ANO 6 (also TMEM16F). Here we examined how ANO 1 and ANO 2 interact with Ca2+/calmodulin using nonstationary current analysis during channel activation. We identified a putative calmodulin-binding domain in the N-terminal region of the channel proteins that is involved in channel activation. Binding studies with peptides indicated that this domain, a regulatory calmodulin-binding motif (RCBM), provides two distinct modes of interaction with Ca2+/calmodulin, one at submicromolar Ca2+ concentrations and one in the micromolar Ca2+ range. Functional, structural, and pharmacological data support the concept that calmodulin serves as a calcium sensor that is stably associated with the RCBM domain and regulates the activation of ANO 1 and ANO 2 channels. Moreover, the predominant splice variant of ANO 2 in the brain exhibits Ca2+/calmodulin-dependent inactivation, a loss of channel activity within 30 s. This property may curtail ANO 2 activity during persistent Ca2+ signals in neurons. Mutagenesis data indicated that the RCBM domain is also involved in ANO 2 inactivation, and that inactivation is suppressed in the retinal ANO 2 splice variant. These results advance the understanding of Ca2+ regulation in anoctamin Cl− channels and its significance for the physiological function that anoctamin channels subserve in neurons and other cell types. PMID:24081981

  11. Voltage-gated calcium channels of Paramecium cilia.

    PubMed

    Lodh, Sukanya; Yano, Junji; Valentine, Megan S; Van Houten, Judith L

    2016-10-01

    Paramecium cells swim by beating their cilia, and make turns by transiently reversing their power stroke. Reversal is caused by Ca(2+) entering the cilium through voltage-gated Ca(2+) (CaV) channels that are found exclusively in the cilia. As ciliary Ca(2+) levels return to normal, the cell pivots and swims forward in a new direction. Thus, the activation of the CaV channels causes cells to make a turn in their swimming paths. For 45 years, the physiological characteristics of the Paramecium ciliary CaV channels have been known, but the proteins were not identified until recently, when the P. tetraurelia ciliary membrane proteome was determined. Three CaVα1 subunits that were identified among the proteins were cloned and confirmed to be expressed in the cilia. We demonstrate using RNA interference that these channels function as the ciliary CaV channels that are responsible for the reversal of ciliary beating. Furthermore, we show that Pawn (pw) mutants of Paramecium that cannot swim backward for lack of CaV channel activity do not express any of the three CaV1 channels in their ciliary membrane, until they are rescued from the mutant phenotype by expression of the wild-type PW gene. These results reinforce the correlation of the three CaV channels with backward swimming through ciliary reversal. The PwB protein, found in endoplasmic reticulum fractions, co-immunoprecipitates with the CaV1c channel and perhaps functions in trafficking. The PwA protein does not appear to have an interaction with the channel proteins but affects their appearance in the cilia. © 2016. Published by The Company of Biologists Ltd.

  12. Voltage-gated calcium channels of Paramecium cilia

    PubMed Central

    Lodh, Sukanya; Valentine, Megan S.; Van Houten, Judith L.

    2016-01-01

    ABSTRACT Paramecium cells swim by beating their cilia, and make turns by transiently reversing their power stroke. Reversal is caused by Ca2+ entering the cilium through voltage-gated Ca2+ (CaV) channels that are found exclusively in the cilia. As ciliary Ca2+ levels return to normal, the cell pivots and swims forward in a new direction. Thus, the activation of the CaV channels causes cells to make a turn in their swimming paths. For 45 years, the physiological characteristics of the Paramecium ciliary CaV channels have been known, but the proteins were not identified until recently, when the P. tetraurelia ciliary membrane proteome was determined. Three CaVα1 subunits that were identified among the proteins were cloned and confirmed to be expressed in the cilia. We demonstrate using RNA interference that these channels function as the ciliary CaV channels that are responsible for the reversal of ciliary beating. Furthermore, we show that Pawn (pw) mutants of Paramecium that cannot swim backward for lack of CaV channel activity do not express any of the three CaV1 channels in their ciliary membrane, until they are rescued from the mutant phenotype by expression of the wild-type PW gene. These results reinforce the correlation of the three CaV channels with backward swimming through ciliary reversal. The PwB protein, found in endoplasmic reticulum fractions, co-immunoprecipitates with the CaV1c channel and perhaps functions in trafficking. The PwA protein does not appear to have an interaction with the channel proteins but affects their appearance in the cilia. PMID:27707864

  13. The dihydropyridine-sensitive calcium channel subtype in cone photoreceptors

    PubMed Central

    1996-01-01

    High-voltage activated Ca channels in tiger salamander cone photoreceptors were studied with nystatin-permeabilized patch recordings in 3 mM Ca2+ and 10 mM Ba2+. The majority of Ca channel current was dihydropyridine sensitive, suggesting a preponderance of L- type Ca channels. However, voltage-dependent, incomplete block (maximum 60%) by nifedipine (0.1-100 microM) was evident in recordings of cones in tissue slice. In isolated cones, where the block was more potent, nifedipine (0.1-10 microM) or nisoldipine (0.5-5 microM) still failed to eliminate completely the Ca channel current. Nisoldipine was equally effective in blocking Ca channel current elicited in the presence of 10 mM Ba2+ (76% block) or 3 mM Ca2+ (88% block). 15% of the Ba2+ current was reversibly blocked by omega-conotoxin GVIA (1 microM). After enhancement with 1 microM Bay K 8644, omega-conotoxin GVIA blocked a greater proportion (22%) of Ba2+ current than in control. After achieving partial block of the Ba2+ current with nifedipine, concomitant application of omega-conotoxin GVIA produced no further block. The P-type Ca channel blocker, omega-agatoxin IVA (200 nM), had variable and insignificant effects. The current persisting in the presence of these blockers could be eliminated with Cd2+ (100 microM). These results indicate that photoreceptors express an L-type Ca channel having a distinguishing pharmacological profile similar to the alpha 1D Ca channel subtype. The presence of additional Ca channel subtypes, resistant to the widely used L-, N-, and P-type Ca channel blockers, cannot, however, be ruled out. PMID:8740375

  14. The medieval physician Avicenna used an herbal calcium channel blocker, Taxus baccata L.

    PubMed

    Tekol, Yalcin

    2007-07-01

    Calcium channel blockers are drugs which are important for current medical therapy. The first examples of synthetic congeners of this class of drugs appear around at the beginning of the 1960s. Review of the current and historical literature shows that Avicenna (Ibn Sina) (980-1037) had used the herbal drug 'Zarnab' (Taxus baccata L.) as a cardiac remedy. The leaves of T. baccata contain an alkaloid mixture (taxines). It was recently demonstrated that this drug possessed calcium channel blocking activity. So, it is evident that Avicenna used a drug with calcium channel blocking activity much earlier than the arrival of synthetic drugs belonging to the same pharmacological group. Copyright 2007 John Wiley & Sons, Ltd.

  15. Comparative pharmacodynamics of eight calcium channel blocking agents in Japanese essential hypertensive patients.

    PubMed

    Shimada, S; Nakajima, Y; Yamamoto, K; Sawada, Y; Iga, T

    1996-03-01

    The relationships between plasma drug concentration and antihypertensive effect of eight calcium channel antagonists (nicardipine, nifedipine, nilvadipine, benidipine, manidipine, barnidipine, nitrendipine and efonidipine) in Japanese essential hypertensive patients were analyzed. Based on the effect compartment model, we could explain the long duration of the pharmacological effect, and there was significant correlation (r = 0.876, p < 0.05) between estimated EC50 values and the dissociation constants (Kd) obtained from in vitro binding studies. We also developed the ion-channel binding model to understand the pharmacodynamics of long acting calcium antagonists. The model was also well fitted to antihypertensive effect data. A significant correlation between the apparent in vivo dissociation constants and in vitro Kd values was observed with a slope of 1.45 (r = 0.913), suggesting that the mechanism of long-lasting antihypertensive effect of newer developed calcium antagonists is due to their high binding affinity at ion-channel sites.

  16. Genetic disruption of voltage-gated calcium channels in psychiatric and neurological disorders

    PubMed Central

    Heyes, Samuel; Pratt, Wendy S.; Rees, Elliott; Dahimene, Shehrazade; Ferron, Laurent; Owen, Michael J.; Dolphin, Annette C.

    2015-01-01

    This review summarises genetic studies in which calcium channel genes have been connected to the spectrum of neuropsychiatric syndromes, from bipolar disorder and schizophrenia to autism spectrum disorders and intellectual impairment. Among many other genes, striking numbers of the calcium channel gene superfamily have been implicated in the aetiology of these diseases by various DNA analysis techniques. We will discuss how these relate to the known monogenic disorders associated with point mutations in calcium channels. We will then examine the functional evidence for a causative link between these mutations or single nucleotide polymorphisms and the disease processes. A major challenge for the future will be to translate the expanding psychiatric genetic findings into altered physiological function, involvement in the wider pathology of the diseases, and what potential that provides for personalised and stratified treatment options for patients. PMID:26386135

  17. Interactions of cryptosin with mammalian cardiac dihydropyridine-specific calcium channels

    SciTech Connect

    Rao, V.R.; Banning, J.W. )

    1990-01-01

    Cryptosin, a new cardenolide, was found to be a potent inhibitor of cardiac Na{sup +} and K{sup +} dependent Adenosinetri-phosphatase. In experiments with dog heart ex vivo, development of inotropic and toxic effect correlated with changes in the cardiac dihydropyridine-specific calcium channels as measured by the binding of {sup 3}(H)PN 200-110. A significant change in the PN 200-110 binding was observed when guinea pig and dog heart sarcolemmal membranes were pre-incubated with cryptosin in vitro. Binding analysis of {sup 3}(H)PN 200-110 (Isradipine), a 1,4-dihydropyridine analog with very specific calcium channel binding properties, in both in vitro and ex vivo studies were consistent and indicated a non-specific type of interaction of cryptosin with mammalian cardiac 1,4-dihydropyridine-specific calcium channels.

  18. The use of vasopressin in the setting of recalcitrant hypotension due to calcium channel blocker overdose.

    PubMed

    Kanagarajan, Karthikeyan; Marraffa, Jeanna M; Bouchard, Nicole C; Krishnan, Padmanabhan; Hoffman, Robert S; Stork, Christine M

    2007-01-01

    Treatment of hypotension caused by calcium channel blocker overdose (CCB) remains a challenge. We describe the successful use of vasopressin in two patients with massive CCB overdoses in whom hypotension was unresponsive to calcium, glucagon, insulin, and conventional vasopressor therapies. While various modes of treatments have been used to treat the hypotension of CCB overdose, this is the first report to our knowledge of the successful use of vasopressin in this clinical setting.

  19. How voltage-gated calcium channels gate forms of homeostatic synaptic plasticity

    PubMed Central

    Frank, C. Andrew

    2014-01-01

    Throughout life, animals face a variety of challenges such as developmental growth, the presence of toxins, or changes in temperature. Neuronal circuits and synapses respond to challenges by executing an array of neuroplasticity paradigms. Some paradigms allow neurons to up- or downregulate activity outputs, while countervailing ones ensure that outputs remain within appropriate physiological ranges. A growing body of evidence suggests that homeostatic synaptic plasticity (HSP) is critical in the latter case. Voltage-gated calcium channels gate forms of HSP. Presynaptically, the aggregate data show that when synapse activity is weakened, homeostatic signaling systems can act to correct impairments, in part by increasing calcium influx through presynaptic CaV2-type channels. Increased calcium influx is often accompanied by parallel increases in the size of active zones and the size of the readily releasable pool of presynaptic vesicles. These changes coincide with homeostatic enhancements of neurotransmitter release. Postsynaptically, there is a great deal of evidence that reduced network activity and loss of calcium influx through CaV1-type calcium channels also results in adaptive homeostatic signaling. Some adaptations drive presynaptic enhancements of vesicle pool size and turnover rate via retrograde signaling, as well as de novo insertion of postsynaptic neurotransmitter receptors. Enhanced calcium influx through CaV1 after network activation or single cell stimulation can elicit the opposite response—homeostatic depression via removal of excitatory receptors. There exist intriguing links between HSP and calcium channelopathies—such as forms of epilepsy, migraine, ataxia, and myasthenia. The episodic nature of some of these disorders suggests alternating periods of stable and unstable function. Uncovering information about how calcium channels are regulated in the context of HSP could be relevant toward understanding these and other disorders. PMID

  20. A large-conductance calcium-activated potassium channel in potato (Solanum tuberosum) tuber mitochondria.

    PubMed

    Koszela-Piotrowska, Izabela; Matkovic, Karolina; Szewczyk, Adam; Jarmuszkiewicz, Wieslawa

    2009-11-11

    In the present study, we describe the existence of a novel potassium channel in the plant [potato (Solanum tuberosum) tuber] mitochondrial inner membrane. We found that substances known to modulate large-conductance calcium-activated potassium channel activity influenced the bioenergetics of potato tuber mitochondria. In isolated mitochondria, Ca2+ and NS1619 {1,3-dihydro-1-[2-hydroxy-5-(trifluoromethyl)phenyl]-5-(trifluoromethyl)-2H-ben-zimidazole-2-one; a potassium channel opener} were found to depolarize the mitochondrial membrane potential and to stimulate resting respiration. These effects were blocked by iberiotoxin (a potassium channel inhibitor) in a potassium-dependent manner. Additionally, the electrophysiological properties of the large-conductance potassium channel present in the potato tuber inner mitochondrial membrane are described in a reconstituted system, using planar lipid bilayers. After incorporation in 50/450 mM KCl gradient solutions, we recorded large-conductance potassium channel activity with conductance from 502+/-15 to 615+/-12 pS. The probability of channel opening was increased by Ca2+ and reduced by iberiotoxin. Immunological analysis with antibodies raised against the mammalian plasma-membrane large-conductance Ca2+-dependent K+ channel identified a pore-forming alpha subunit and an auxiliary beta2 subunit of the channel in potato tuber mitochondrial inner membrane. These results suggest that a large-conductance calcium-activated potassium channel similar to that of mammalian mitochondria is present in potato tuber mitochondria.

  1. Voltage-dependent calcium channels from brain incorporated into planar lipid bilayers

    NASA Astrophysics Data System (ADS)

    Nelson, Mark T.; French, Robert J.; Krueger, Bruce K.

    1984-03-01

    Many important physiological processes, including neurotransmitter release and muscle contraction1-3, are regulated by the concentration of Ca2+ ions in the cell. Levels of cytoplasmic Ca2+ can be elevated by the entry of Ca2+ ions through voltage-dependent channels which are selective for Ca2+, Ba2+ and Sr2+ ions4-14. We have measured currents through single, voltage-dependent calcium channels from rat brain that have been incorporated into planar lipid bilayers. Channel gating was voltage-dependent: membrane depolarization increased the channel open times and decreased the closed times. The channels were selective for divalent cations over monovalent ions. The well-known calcium channel blockers, lanthanum and cadmium, produced a concentration-dependent reduction of the apparent single-channel conductance. Contrary to expectations14, the nature of the divalent cation carrying current through the channel affected not only the single-channel conductance, but also the channel open times, with mean open times being shortest for barium.

  2. Spatial Distribution of Calcium-Gated Chloride Channels in Olfactory Cilia

    PubMed Central

    French, Donald A.; Badamdorj, Dorjsuren; Kleene, Steven J.

    2010-01-01

    Background In vertebrate olfactory receptor neurons, sensory cilia transduce odor stimuli into changes in neuronal membrane potential. The voltage changes are primarily caused by the sequential openings of two types of channel: a cyclic-nucleotide-gated (CNG) cationic channel and a calcium-gated chloride channel. In frog, the cilia are 25 to 200 µm in length, so the spatial distributions of the channels may be an important determinant of odor sensitivity. Principal Findings To determine the spatial distribution of the chloride channels, we recorded from single cilia as calcium was allowed to diffuse down the length of the cilium and activate the channels. A computational model of this experiment allowed an estimate of the spatial distribution of the chloride channels. On average, the channels were concentrated in a narrow band centered at a distance of 29% of the ciliary length, measured from the base of the cilium. This matches the location of the CNG channels determined previously. This non-uniform distribution of transduction proteins is consistent with similar findings in other cilia. Conclusions On average, the two types of olfactory transduction channel are concentrated in the same region of the cilium. This may contribute to the efficient detection of weak stimuli. PMID:21209888

  3. Pineal perfusion with calcium channel blockers inhibits differently daytime and nighttime melatonin production in rat.

    PubMed

    Zhao, Z Y; Touitou, Y

    1994-05-01

    In a previous study we have shown that the response of perifused pineal glands to calcium was different according to the circadian stage at which the glands were removed. This difference may be explained by circadian changes in calcium channel function. Therefore in the present study we documented the effects of calcium channel blockers in perifused rat pineal glands removed in the middle of the light and dark spans (7 and 19 HALO (hours after light onset), in a L/D 12:12 regimen). Moreover, we have studied the effect of calcium channel blockers on adrenergically stimulated pineal glands removed 7 HALO. Inorganic (Co2+ and Cd2+) and organic (nifedipine and diltiazem) calcium channel blockers at 10(-4) mol/l all significantly reduced melatonin production and this inhibition was more effective with the glands removed 7 HALO. In a concentration of 10(-)5 mol/l, only Cd2+ and diltiazem reduced melatonin production significantly in pineal glands removed 7 HALO. Verapamil at 10(-4) and 10(-5) mol/l showed no significant effect on melatonin production in glands removed both during the light and dark spans. Mn2+ at 10(-4) mol/l (but not at 10[-5] mol/l) appeared to stimulate melatonin production in glands removed both during the light and the dark (significant increase only with glands removed during the dark). Cobalt showed an immediate short inhibitory effect on both isoproterenol and norepinephrine-stimulated melatonin release, whereas nifedipine showed a significant inhibition only on isoproterenol-stimulated melatonin release. These results strongly suggest a circadian stage dependence of the pineal gland response to some calcium channel blockers and the involvement of calcium in the release of melatonin from pinealocytes.

  4. N-type and L-type calcium channels mediate glycinergic synaptic inputs to retinal ganglion cells of tiger salamanders.

    PubMed

    Bieda, Mark C; Copenhagen, David R

    2004-01-01

    Synaptically localized calcium channels shape the timecourse of synaptic release, are a prominent site for neuromodulation, and have been implicated in genetic disease. In retina, it is well established that L-type calcium channels play a major role in mediating release of glutamate from the photoreceptors and bipolar cells. However, little is known about which calcium channels are coupled to synaptic exocytosis of glycine, which is primarily released by amacrine cells. A recent report indicates that glycine release from spiking AII amacrine cells relies exclusively upon L-type calcium channels. To identify calcium channel types controlling neurotransmitter release from the population of glycinergic neurons that drive retinal ganglion cells, we recorded electrical and potassium evoked inhibitory synaptic currents (IPSCs) from these postsynaptic neurons in retinal slices from tiger salamanders. The L-channel antagonist nifedipine strongly inhibited release and FPL64176, an L-channel agonist, greatly enhanced it, indicating a significant role for L-channels. omega-Conotoxin MVIIC, an N/P/Q-channel antagonist, strongly inhibited release, indicating an important role for non-L channels. While the P/Q-channel blocker omega-Aga IVA produced only small effects, the N-channel blocker omega-conotoxin GVIA strongly inhibited release. Hence, N-type and L-type calcium channels appear to play major roles, overall, in mediating synaptic release of glycine onto retinal ganglion cells.

  5. Oxidative Regulation of Large Conductance Calcium-Activated Potassium Channels

    PubMed Central

    Tang, Xiang D.; Daggett, Heather; Hanner, Markus; Garcia, Maria L.; McManus, Owen B.; Brot, Nathan; Weissbach, Herbert; Heinemann, Stefan H.; Hoshi, Toshinori

    2001-01-01

    Reactive oxygen/nitrogen species are readily generated in vivo, playing roles in many physiological and pathological conditions, such as Alzheimer's disease and Parkinson's disease, by oxidatively modifying various proteins. Previous studies indicate that large conductance Ca2+-activated K+ channels (BKCa or Slo) are subject to redox regulation. However, conflicting results exist whether oxidation increases or decreases the channel activity. We used chloramine-T, which preferentially oxidizes methionine, to examine the functional consequences of methionine oxidation in the cloned human Slo (hSlo) channel expressed in mammalian cells. In the virtual absence of Ca2+, the oxidant shifted the steady-state macroscopic conductance to a more negative direction and slowed deactivation. The results obtained suggest that oxidation enhances specific voltage-dependent opening transitions and slows the rate-limiting closing transition. Enhancement of the hSlo activity was partially reversed by the enzyme peptide methionine sulfoxide reductase, suggesting that the upregulation is mediated by methionine oxidation. In contrast, hydrogen peroxide and cysteine-specific reagents, DTNB, MTSEA, and PCMB, decreased the channel activity. Chloramine-T was much less effective when concurrently applied with the K+ channel blocker TEA, which is consistent with the possibility that the target methionine lies within the channel pore. Regulation of the Slo channel by methionine oxidation may represent an important link between cellular electrical excitability and metabolism. PMID:11222629

  6. Noradrenaline upregulates T-type calcium channels in rat pinealocytes

    PubMed Central

    Yu, Haijie; Seo, Jong Bae; Jung, Seung-Ryoung; Koh, Duk-Su; Hille, Bertil

    2015-01-01

    Our basic hypothesis is that mammalian pinealocytes have cycling electrical excitability and Ca2+ signalling that may contribute to the circadian rhythm of pineal melatonin secretion. This study asked whether the functional expression of voltage-gated Ca2+ channels (CaV channels) in rat pinealocytes is changed by culturing them in noradrenaline (NA) as a surrogate for the night signal. Channel activity was assayed as ionic currents under patch clamp and as optical signals from a Ca2+-sensitive dye. Channel mRNAs were assayed by quantitative polymerase chain reaction. Cultured without NA, pinealocytes showed only non-inactivating L-type dihydropyridine-sensitive Ca2+ current. After 24 h in NA, additional low-voltage activated transient Ca2+ current developed whose pharmacology and kinetics corresponded to a T-type CaV3.1 channel. This change was initiated by β-adrenergic receptors, cyclic AMP and protein kinase A as revealed by pharmacological experiments. mRNA for CaV3.1 T-type channels became significantly elevated, but mRNA for another T-type channel and for the major L-type channel did not change. After only 8 h of NA treatment, the CaV3.1 mRNA was already elevated, but the transient Ca2+ current was not. Even a 16 h wait without NA following the 8 h NA treatment induced little additional transient current. However, these cells were somehow primed to make transient current as a second NA exposure for only 60 min sufficed to induce large T-type currents. The NA-induced T-type channel mediated an increased Ca2+ entry during short depolarizations and supported modest transient electrical responses to depolarizing stimuli. Such experiments reveal the potential for circadian regulation of excitability. PMID:25504572

  7. Detection of calcium activity in human monocytes by the fura-2 fluorescence method: in vitro differentiation sensitizes cells to dihydropyridine calcium channel modulators

    NASA Astrophysics Data System (ADS)

    Oraevsky, Alexander A.; Cabello, Olga A.; Shan, Qin; Tittel, Frank K.; Henry, Philip D.

    1994-07-01

    Dihydropyridine (DHP) calcium channel blockers have been shown to suppress atherogenesis in various species and controlled angiographic trials suggest that these drugs may retard the progression of occlusive coronary disease in humans. Because mononuclear leukocytes play a key role in the formation of early and advanced atheromatous lesions, we determined effects of DHP calcium channel modulators on calcium uptake by cells of the monocytic lineage. Human peripheral blood monocytes were evaluated before and after undergoing in vitro differentiation induced by two days of culture with fetal calf serum and FMLP. Changes in intracellular calcium activity were estimated with fura-2, a fluorescent calcium indicator. Freshly isolated (unactivated) monocytes were insensitive to DHP drugs both in the presence and absence of high potassium membrane depolarization. In contrast, nisoldipine, a DHP calcium channel blocker, and BAY K 8644, a DHP calcium channel activator, decreased and increased calcium uptake by KC1-depolarized differentiated monocytes. Results suggest that differentiation of monocytes to macrophages may involve a change in the expression and/or regulation of DHP- sensitive calcium channels.

  8. Inotropic effect, binding properties, and calcium flux effects of the calcium channel agonist CGP 28392 in intact cultured embryonic chick ventricular cells

    SciTech Connect

    Laurent, S.; Kim, D.; Smith, T.W.; Marsh, J.D.

    1985-05-01

    CGP 28392 is a recently described dihydropyridine derivative with positive inotropic properties. To study the mechanism of action of this putative calcium channel agonist, we have related the effects of CGP 28392 on contraction (measured with an optical video system) and radioactive calcium uptake to ligand-binding studies in cultured, spontaneously beating chick embryo ventricular cells. CGP 28392 produced a concentration-dependent increase in amplitude and velocity of contraction (EC/sub 50/ = 2 x 10(-7) M; maximum contractile effect = 85% of the calcium 3.6 mM response). Nifedipine produced a shift to the right of the concentration-effect curve for CGP 28392 without decreasing the maximum contractile response, suggesting competitive antagonism (pA2 = 8.3). Computer analysis of displacement of (/sup 3/H)nitrendipine binding to intact heart cells by unlabeled CGP 28392 indicated a K /sub D/ = 2.2 +/- 0.95 x 10(-7) M, in good agreement with the EC/sub 50/ for the inotropic effect. CGP 28392 increased the rate of radioactive calcium influx (+39% at 10 seconds) without altering beating rate, while nifedipine decreased radioactive calcium influx and antagonized the CGP 28392-induced increase in calcium influx. Our results indicate that, in intact cultured myocytes, CGP 28392 acts as a calcium channel agonist and competes for the dihydropyridine-binding site of the slow calcium channel. In contrast to calcium channel blockers, CGP 28392 increases calcium influx and enhances the contractile state.

  9. Emerging roles of calcium-activated K channels and TRPV4 channels in lung oedema and pulmonary circulatory collapse.

    PubMed

    Simonsen, U; Wandall-Frostholm, C; Oliván-Viguera, A; Köhler, R

    2017-01-01

    It has been suggested that the transient receptor potential cation (TRP) channel subfamily V (vanilloid) type 4 (TRPV4) and intermediate conductance calcium-activated potassium (KCa3.1) channels contribute to endothelium-dependent vasodilation. Here, we summarize very recent evidence for a synergistic interplay of TRPV4 and KCa3.1 channels in lung disease. Among the endothelial Ca(2+) -permeable TRPs, TRPV4 is best characterized and produces arterial dilation by stimulating Ca(2+) -dependent nitric oxide synthesis and endothelium-dependent hyperpolarization. Besides these roles, some TRP channels control endothelial/epithelial barrier functions and vascular integrity, while KCa3.1 channels provide the driving force required for Cl(-) and water transport in some cells and most secretory epithelia. The three conditions, increased pulmonary venous pressure caused by left heart disease, high inflation pressure and chemically induced lung injury, may lead to activation of TRPV4 channels followed by Ca(2+) influx leading to activation of KCa3.1 channels in endothelial cells ultimately leading to acute lung injury. We find that a deficiency in KCa3.1 channels protects against TRPV4-induced pulmonary arterial relaxation, fluid extravasation, haemorrhage, pulmonary circulatory collapse and cardiac arrest in vivo. These data identify KCa3.1 channels as crucial molecular components in downstream TRPV4 signal transduction and as a potential target for the prevention of undesired fluid extravasation, vasodilatation and pulmonary circulatory collapse. © 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  10. Phaeochromocytoma and hypertrophic cardiomyopathy: apparent suppression of symptoms and noradrenaline secretion by calcium-channel blockade.

    PubMed

    Serfas, D; Shoback, D M; Lorell, B H

    1983-09-24

    A 44-year-old woman with hypertrophic cardiomyopathy and a noradrenaline-secreting phaeochromocytoma is described. She experienced as great improvement in cardiovascular symptoms during double-blind treatment with the calcium-channel blocker nifedipine compared with the placebo period. Symptom relief on nifedipine therapy was associated with a pronounced decline in elevated urinary noradrenaline levels. This observation suggests that calcium-channel blockers interfere with the release of noradrenaline from phaeochromocytoma tissue and thus may be beneficial in patients with phaeochromocytoma.

  11. Modulation of mechanosensitive calcium-selective cation channels by temperature

    NASA Technical Reports Server (NTRS)

    Ding, J. P.; Pickard, B. G.

    1993-01-01

    Gating of associations of mechanosensitive Ca(2+)-selective cation co-channels in the plasmalemma of onion epidermis has a strong and unusual temperature dependence. Tension-dependent activity rises steeply as temperature is lowered from 25 degrees C to about 6 degrees C, but drops to a low level at about 5 degrees C. Under the conditions tested (with Mg2+ and K+ at the cytosolic face of outside-out membrane patches), promotion results both from more bursting at all observed linkage levels and from longer duration of bursts of co-channels linked as quadruplets and quintuplets. Co-channel conductance decreases linearly, but only modestly, with declining temperature. It is proposed that these and related mechanosensitive channels may participate in a variety of responses to temperature, including thermonasty, thermotropism, hydrotropism, and both cold damage and cold acclimation.

  12. Modulation of mechanosensitive calcium-selective cation channels by temperature

    NASA Technical Reports Server (NTRS)

    Ding, J. P.; Pickard, B. G.

    1993-01-01

    Gating of associations of mechanosensitive Ca(2+)-selective cation co-channels in the plasmalemma of onion epidermis has a strong and unusual temperature dependence. Tension-dependent activity rises steeply as temperature is lowered from 25 degrees C to about 6 degrees C, but drops to a low level at about 5 degrees C. Under the conditions tested (with Mg2+ and K+ at the cytosolic face of outside-out membrane patches), promotion results both from more bursting at all observed linkage levels and from longer duration of bursts of co-channels linked as quadruplets and quintuplets. Co-channel conductance decreases linearly, but only modestly, with declining temperature. It is proposed that these and related mechanosensitive channels may participate in a variety of responses to temperature, including thermonasty, thermotropism, hydrotropism, and both cold damage and cold acclimation.

  13. Calcium channels of schistosomes: unresolved questions and unexpected answers

    PubMed Central

    Salvador-Recatalà, Vicenta; Greenberg, Robert M.

    2011-01-01

    Parasitic flatworms of the genus Schistosoma are the causative agents of schistosomiasis, a highly prevalent, neglected tropical disease that causes significant morbidity in hundreds of millions of people worldwide. The current treatment of choice against schistosomiasis is praziquantel (PZQ), which is known to affect Ca2+ homeostasis in schistosomes, but which has an undefined molecular target and mode of action. PZQ is the only available antischistosomal drug in most parts of the world, making reports of PZQ resistance particularly troubling. Voltage-gated Ca2+ (Cav) channels have been proposed as possible targets for PZQ, and, given their central role in the neuromuscular system, may also serve as targets for new anthelmintic therapeutics. Indeed, ion channels constitute the majority of targets for current anthelmintics. Cav channel subunits from schistosomes and other platyhelminths have several unique properties that make them attractive as potential drug targets, and that could also provide insights into structure-function relationships in, and evolution of, Cav channels. PMID:22347719

  14. Mechanism of gating of T-type calcium channels

    PubMed Central

    1990-01-01

    We have analyzed the gating kinetics of T-type Ca channels in 3T3 fibroblasts. Our results show that channel closing, inactivation, and recovery from inactivation each include a voltage-independent step which becomes rate limiting at extreme potentials. The data require a cyclic model with a minimum of two closed, one open, and two inactivated states. Such a model can produce good fits to our data even if the transitions between closed states are the only voltage-dependent steps in the activating pathway leading from closed to inactivated states. Our analysis suggests that the channel inactivation step, as well as the direct opening and closing transitions, are not intrinsically voltage sensitive. Single-channel recordings are consistent with this scheme. As expected, each channel produces a single burst per opening and then inactivates. Comparison of the kinetics of T-type Ca current in fibroblasts and neuronal cells reveals significant differences which suggest that different subtypes of T-type Ca channels are expressed differentially in a tissue specific manner. PMID:2172443

  15. Membrane Incorporation, Channel Formation, and Disruption of Calcium Homeostasis by Alzheimer's β-Amyloid Protein

    PubMed Central

    Kawahara, Masahiro; Ohtsuka, Isao; Yokoyama, Shoko; Kato-Negishi, Midori; Sadakane, Yutaka

    2011-01-01

    Oligomerization, conformational changes, and the consequent neurodegeneration of Alzheimer's β-amyloid protein (AβP) play crucial roles in the pathogenesis of Alzheimer's disease (AD). Mounting evidence suggests that oligomeric AβPs cause the disruption of calcium homeostasis, eventually leading to neuronal death. We have demonstrated that oligomeric AβPs directly incorporate into neuronal membranes, form cation-sensitive ion channels (“amyloid channels”), and cause the disruption of calcium homeostasis via the amyloid channels. Other disease-related amyloidogenic proteins, such as prion protein in prion diseases or α-synuclein in dementia with Lewy bodies, exhibit similarities in the incorporation into membranes and the formation of calcium-permeable channels. Here, based on our experimental results and those of numerous other studies, we review the current understanding of the direct binding of AβP into membrane surfaces and the formation of calcium-permeable channels. The implication of composition of membrane lipids and the possible development of new drugs by influencing membrane properties and attenuating amyloid channels for the treatment and prevention of AD is also discussed. PMID:21547225

  16. Measuring T-Type Calcium Channel Currents in Isolated Vascular Smooth Muscle Cells.

    PubMed

    Kuo, Ivana Y; Hill, Caryl E

    2017-01-01

    Patch clamp electrophysiology is a powerful tool that has been important in isolating and characterizing the ion channels that govern cellular excitability under physiological and pathophysiological conditions. The ability to enzymatically dissociate blood vessels and acutely isolate vascular smooth muscle cells has enabled the application of patch clamp electrophysiology to the identification of diverse voltage dependent ion channels that ultimately control vasoconstriction and vasodilation. Since intraluminal pressure results in depolarization of vascular smooth muscle, the channels that control the voltage dependent influx of extracellular calcium are of particular interest. This chapter describes methods for isolating smooth muscle cells from resistance vessels, and for recording, isolating, and characterizing voltage dependent calcium channel currents, using patch clamp electrophysiological and pharmacological protocols.

  17. Calcium-Activated Potassium Channels at Nodes of Ranvier Secure Axonal Spike Propagation.

    PubMed

    Gründemann, Jan; Clark, Beverley A

    2015-09-22

    Functional connectivity between brain regions relies on long-range signaling by myelinated axons. This is secured by saltatory action potential propagation that depends fundamentally on sodium channel availability at nodes of Ranvier. Although various potassium channel types have been anatomically localized to myelinated axons in the brain, direct evidence for their functional recruitment in maintaining node excitability is scarce. Cerebellar Purkinje cells provide continuous input to their targets in the cerebellar nuclei, reliably transmitting axonal spikes over a wide range of rates, requiring a constantly available pool of nodal sodium channels. We show that the recruitment of calcium-activated potassium channels (IK, K(Ca)3.1) by local, activity-dependent calcium (Ca(2+)) influx at nodes of Ranvier via a T-type voltage-gated Ca(2+) current provides a powerful mechanism that likely opposes depolarizing block at the nodes and is thus pivotal to securing continuous axonal spike propagation in spontaneously firing Purkinje cells.

  18. Calcium-Activated Potassium Channels at Nodes of Ranvier Secure Axonal Spike Propagation

    PubMed Central

    Gründemann, Jan; Clark, Beverley A.

    2015-01-01

    Summary Functional connectivity between brain regions relies on long-range signaling by myelinated axons. This is secured by saltatory action potential propagation that depends fundamentally on sodium channel availability at nodes of Ranvier. Although various potassium channel types have been anatomically localized to myelinated axons in the brain, direct evidence for their functional recruitment in maintaining node excitability is scarce. Cerebellar Purkinje cells provide continuous input to their targets in the cerebellar nuclei, reliably transmitting axonal spikes over a wide range of rates, requiring a constantly available pool of nodal sodium channels. We show that the recruitment of calcium-activated potassium channels (IK, KCa3.1) by local, activity-dependent calcium (Ca2+) influx at nodes of Ranvier via a T-type voltage-gated Ca2+ current provides a powerful mechanism that likely opposes depolarizing block at the nodes and is thus pivotal to securing continuous axonal spike propagation in spontaneously firing Purkinje cells. PMID:26344775

  19. Molecular heterogeneity of large-conductance calcium-activated potassium channels in canine intracardiac ganglia.

    PubMed

    Selga, Elisabet; Pérez-Serra, Alexandra; Moreno-Asso, Alba; Anderson, Seth; Thomas, Kristen; Desai, Mayurika; Brugada, Ramon; Pérez, Guillermo J; Scornik, Fabiana S

    2013-01-01

    Large conductance calcium-activated potassium (BK) channels are widely expressed in the nervous system. We have recently shown that principal neurons from canine intracardiac ganglia (ICG) express a paxilline- and TEA-sensitive BK current, which increases neuronal excitability. In the present work, we further explore the molecular constituents of the BK current in canine ICG. We found that the β1 and β4 regulatory subunits are expressed in ICG. Single channel voltage-dependence at different calcium concentrations suggested that association of the BKα with a particular β subunit was not enough to explain the channel activity in this tissue. Indeed, we detected the presence of several splice variants of the BKα subunit. In conclusion, BK channels in canine ICG may result from the arrangement of different BKα splice variants, plus accessory β subunits. The particular combinations expressed in canine IC neurons likely rule the excitatory role of BK current in this tissue.

  20. Mechanosensory calcium-selective cation channels in epidermal cells

    NASA Technical Reports Server (NTRS)

    Ding, J. P.; Pickard, B. G.

    1993-01-01

    This paper explores the properties and likely functions of an epidermal Ca(2+)-selective cation channel complex activated by tension. As many as eight or nine linked or linkable equivalent conductance units or co-channels can open together. Open time for co-channel quadruplets and quintuplets tends to be relatively long with millimolar Mg2+ (but not millimolar Ca2+) at the cytosolic face of excised plasma membrane. Sensitivity to tension is regulated by transmembrane voltage and temperature. Under some circumstances channel activity is sychronized in rhythmic pulses. Certain lanthanides and a cytoskeleton-disturbing herbicide that inhibit gravitropic reception act on the channel system at low concentrations. Specifically, ethyl-N-phenylcarbamate promotes tension-dependent activity at micromolar levels. With moderate suction, Gd3+ provided at about 0.5 micromole at the extracellular face of the membrane promotes for several seconds but may then become inhibitory. Provision at 1-2 micromoles promotes and subsequently inhibits more vigorously (often abruptly and totally), and at high levels inhibits immediately. La3+, a poor gravitropic inhibitor, acts similarly but much more gradually and only at much higher concentrations. These properties, particularly these susceptibilities to modulation, indicate that in vivo the mechanosensitive channel must be mechanosensory and mechanoregulatory. It could serve to transduce the shear forces generated in the integrated wall-membrane-cytoskeleton system during turgor changes and cell expansion as well as transducing the stresses induced by gravity, touch and flexure. In so far as such transduction is modulated by voltage and temperature, the channels would also be sensors for these modalities as long as the wall-membrane-cytoskeleton system experiences mechanical stress.

  1. Mechanosensory calcium-selective cation channels in epidermal cells

    NASA Technical Reports Server (NTRS)

    Ding, J. P.; Pickard, B. G.

    1993-01-01

    This paper explores the properties and likely functions of an epidermal Ca(2+)-selective cation channel complex activated by tension. As many as eight or nine linked or linkable equivalent conductance units or co-channels can open together. Open time for co-channel quadruplets and quintuplets tends to be relatively long with millimolar Mg2+ (but not millimolar Ca2+) at the cytosolic face of excised plasma membrane. Sensitivity to tension is regulated by transmembrane voltage and temperature. Under some circumstances channel activity is sychronized in rhythmic pulses. Certain lanthanides and a cytoskeleton-disturbing herbicide that inhibit gravitropic reception act on the channel system at low concentrations. Specifically, ethyl-N-phenylcarbamate promotes tension-dependent activity at micromolar levels. With moderate suction, Gd3+ provided at about 0.5 micromole at the extracellular face of the membrane promotes for several seconds but may then become inhibitory. Provision at 1-2 micromoles promotes and subsequently inhibits more vigorously (often abruptly and totally), and at high levels inhibits immediately. La3+, a poor gravitropic inhibitor, acts similarly but much more gradually and only at much higher concentrations. These properties, particularly these susceptibilities to modulation, indicate that in vivo the mechanosensitive channel must be mechanosensory and mechanoregulatory. It could serve to transduce the shear forces generated in the integrated wall-membrane-cytoskeleton system during turgor changes and cell expansion as well as transducing the stresses induced by gravity, touch and flexure. In so far as such transduction is modulated by voltage and temperature, the channels would also be sensors for these modalities as long as the wall-membrane-cytoskeleton system experiences mechanical stress.

  2. Microdamage induced calcium efflux from bone matrix activates intracellular calcium signaling in osteoblasts via L-type and T-type voltage-gated calcium channels.

    PubMed

    Jung, Hyungjin; Best, Makenzie; Akkus, Ozan

    2015-07-01

    Mechanisms by which bone microdamage triggers repair response are not completely understood. It has been shown that calcium efflux ([Ca(2+)]E) occurs from regions of bone undergoing microdamage. Such efflux has also been shown to trigger intracellular calcium signaling ([Ca(2+)]I) in MC3T3-E1 cells local to damaged regions. Voltage-gated calcium channels (VGCCs) are implicated in the entry of [Ca(2+)]E to the cytoplasm. We investigated the involvement of VGCC in the extracellular calcium induced intracellular calcium response (ECIICR). MC3T3-E1 cells were subjected to one dimensional calcium efflux from their basal aspect which results in an increase in [Ca(2+)]I. This increase was concomitant with membrane depolarization and it was significantly reduced in the presence of Bepridil, a non-selective VGCC inhibitor. To identify specific type(s) of VGCC in ECIICR, the cells were treated with selective inhibitors for different types of VGCC. Significant changes in the peak intensity and the number of [Ca(2+)]I oscillations were observed when L-type and T-type specific VGCC inhibitors (Verapamil and NNC55-0396, respectively) were used. So as to confirm the involvement of L- and T-type VGCC in the context of microdamage, cells were seeded on devitalized notched bone specimen, which were loaded to induce microdamage in the presence and absence of Verapamil and NNC55-0396. The results showed significant decrease in [Ca(2+)]I activity of cells in the microdamaged regions of bone when L- and T-type blockers were applied. This study demonstrated that extracellular calcium increase in association with damage depolarizes the cell membrane and the calcium ions enter the cell cytoplasm by L- and T-type VGCCs.

  3. Effect of propionyl-L-carnitine on L-type calcium channels in human heart sarcolemma

    SciTech Connect

    Bevilacqua, M.; Vago, T.; Norbiato, G. )

    1991-02-01

    Propionyl-L-carnitine (PC) protects perfused rat hearts against damage by ischemia-reperfusion. Activation of L-type calcium channel play a role on ischemia-reperfusion damage. Therefore, we studied the effect of PC on some properties of L-type calcium channels in an in vitro preparation from human myocardium sarcolemma (from patients with idiopathic dilated cardiomyopathy). Binding of the L-type calcium channel blockers isradipine ({sup 3}H)-PN 200-110 (PN) to plasma membrane preparations revealed a single population of binding sites (total number: Bmax = 213 +/- 34 fM/mg protein and affinity: Kd = 152 +/- 19 nM; n = 6). The characteristics of these binding sites were evaluated in the presence and in the absence of Ca{sup 2}{sup +} and of calcium blockers (D-888, a verapamillike drug, and diltiazem). Incubation in a Ca{sup 2}{sup +}-containing buffer increased the affinity of PN binding sites. Binding sites for PN were modulated by organic calcium channel blockers; in competition isotherms at 37{degree}C, D-888 (desmethoxyverapamil) decreased the PN binding, whereas diltiazem increased it. These results strongly suggest that the site labelled by PN is the voltage-operated calcium channel of the human myocardium. The addition of PC (1 mM) to plasma membranes labelled with PN at 37{degree}C decreased the affinity of the binding; this effect was counteracted by the addition of Ca{sup 2}{sup +} to the medium. This result was consistent with a competition between Ca{sup 2}{sup +} and PC. The effect of PC incubation at 4{degree}C was the opposite; at this temperature PC increased the affinity of the binding sites and the effect was obscured by Ca{sup 2}{sup +}.

  4. Developmental expression of the calcium release channels during early neurogenesis of the mouse cerebral cortex.

    PubMed

    Faure, A V; Grunwald, D; Moutin, M J; Hilly, M; Mauger, J P; Marty, I; De Waard, M; Villaz, M; Albrieux, M

    2001-11-01

    The developmental changes of intracellular calcium release channels of mouse neocortex were studied at the onset of neurogenesis, which occurs between embryonic days E11 and E17. The three main isoforms of the two families of intracellular calcium release channels, namely the inositol trisphosphate receptors (IP3R) and the ryanodine receptors (RyR), were detected by their transcripts in the cerebral hemispheres, as early as stage E11. The major isoforms of each family, IP3R-1 and RyR-2, were found at the protein level by Western blot analysis. Expression of these proteins increases progressively throughout brain development. Their localization in coronal sections of cortex has been observed by immunodetection from E12, and compared to the TuJ1 (anti-class III beta-tubulin antibody) neuronal specific labelling. The expression of both channels is greatly enhanced after E12, and both were seen to be present in most of the proliferative and neuronal cells of the slice. Between E12 and E13, there is a striking transition in the pattern of calcium release elicited by specific agonists of these channels, thimerosal for IP3R and caffeine for RyR. The signals induced by thimerosal were not zone-specific, while the observed calcium release signals induced by caffeine were predominantly restricted out of the ventricular zone. This zone-specific caffeine sensitivity is consistent with the main RyR localization immunodetected at E13. Our results indicate that there is a time lag of several days between the molecular detection of calcium release channels and their functional expression, around the time of neuronal differentiation. Altogether, they provide a molecular basis for analyzing the developmental modulation of calcium signals useful for neurogenesis progression.

  5. A Gate Hinge Controls the Epithelial Calcium Channel TRPV5

    PubMed Central

    van der Wijst, Jenny; Leunissen, Elizabeth H.; Blanchard, Maxime G.; Venselaar, Hanka; Verkaart, Sjoerd; Paulsen, Candice E.; Bindels, René J.; Hoenderop, Joost G.

    2017-01-01

    TRPV5 is unique within the large TRP channel family for displaying a high Ca2+ selectivity together with Ca2+-dependent inactivation. Our study aims to uncover novel insights into channel gating through in-depth structure-function analysis. We identify an exceptional tryptophan (W583) at the terminus of the intracellular pore that is unique for TRPV5 (and TRPV6). A combination of site-directed mutagenesis, biochemical and electrophysiological analysis, together with homology modeling, demonstrates that W583 is part of the gate for Ca2+ permeation. The W583 mutants show increased cell death due to profoundly enhanced Ca2+ influx, resulting from altered channel function. A glycine residue above W583 might act as flexible linker to rearrange the tryptophan gate. Furthermore, we hypothesize functional crosstalk between the pore region and carboxy terminus, involved in Ca2+-calmodulin-mediated inactivation. This study proposes a unique channel gating mechanism and delivers detailed molecular insight into the Ca2+ permeation pathway that can be extrapolated to other Ca2+-selective channels. PMID:28374795

  6. The Role of Auxiliary Subunits for the Functional Diversity of Voltage-Gated Calcium Channels

    PubMed Central

    Campiglio, Marta; Flucher, Bernhard E

    2015-01-01

    Voltage-gated calcium channels (VGCCs) represent the sole mechanism to convert membrane depolarization into cellular functions like secretion, contraction, or gene regulation. VGCCs consist of a pore-forming α1 subunit and several auxiliary channel subunits. These subunits come in multiple isoforms and splice-variants giving rise to a stunning molecular diversity of possible subunit combinations. It is generally believed that specific auxiliary subunits differentially regulate the channels and thereby contribute to the great functional diversity of VGCCs. If auxiliary subunits can associate and dissociate from pre-existing channel complexes, this would allow dynamic regulation of channel properties. However, most auxiliary subunits modulate current properties very similarly, and proof that any cellular calcium channel function is indeed modulated by the physiological exchange of auxiliary subunits is still lacking. In this review we summarize available information supporting a differential modulation of calcium channel functions by exchange of auxiliary subunits, as well as experimental evidence in support of alternative functions of the auxiliary subunits. At the heart of the discussion is the concept that, in their native environment, VGCCs function in the context of macromolecular signaling complexes and that the auxiliary subunits help to orchestrate the diverse protein–protein interactions found in these calcium channel signalosomes. Thus, in addition to a putative differential modulation of current properties, differential subcellular targeting properties and differential protein–protein interactions of the auxiliary subunits may explain the need for their vast molecular diversity. J. Cell. Physiol. 999: 00–00, 2015. © 2015 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc. J. Cell. Physiol. 230: 2019–2031, 2015. © 2015 Wiley Periodicals, Inc. PMID:25820299

  7. Power spectra and cooperativity of a calcium-regulated cation channel.

    PubMed

    McGeoch, M W; McGeoch, J E

    1994-01-01

    In this article we show that a channel complex of cooperatively interacting subunits can produce a power law spectrum with the slope of the spectrum depending on the strength of the cooperative interaction. The effects of cooperativity are explored via a computational model of a calcium-regulated cation channel for which new data is presented. The results, which concern "flickering" conductances, are correlated with prior work on critical fluctuations in the Ising model of ferromagnetism.

  8. Folding of active calcium channel beta(1b) -subunit by size-exclusion chromatography and its role on channel function.

    PubMed

    Neely, Alan; Garcia-Olivares, Jennie; Voswinkel, Stephan; Horstkott, Hannelore; Hidalgo, Patricia

    2004-05-21

    Voltage-gated calcium channels mediate the influx of Ca(2+) ions into eukaryotic cells in response to membrane depolarization. They are hetero-multimer membrane proteins formed by at least three subunits, the poreforming alpha(1)-subunit and the auxiliary beta- and alpha(2)delta-subunits. The beta-subunit is essential for channel performance because it regulates two distinct features of voltage-gated calcium channels, the surface expression and the channel activity. Four beta-subunit genes have been cloned, beta(1-4), with molecular masses ranging from 52 to 78 kDa, and several splice variants have been identified. The beta(1b)-subunit, expressed at high levels in mammalian brain, has been used extensively to study the interaction between the pore forming alpha(1)- and the regulatory beta-subunit. However, structural characterization has been impaired for its tendency to form aggregates when expressed in bacteria. We applied an on-column refolding procedure based on size exclusion chromatography to fold the beta(1b)-subunit of the voltage gated-calcium channels from Escherichia coli inclusion bodies. The beta(1b)-subunit refolds into monomers, as shown by sucrose gradient analysis, and binds to a glutathione S-transferase protein fused to the known target in the alpha(1)-subunit (the alpha-interaction domain). Using the cut-open oocyte voltage clamp technique, we measured gating and ionic currents in Xenopus oocytes expressing cardiac alpha(1)-subunit (alpha(1C)) co-injected with folded-beta(1b)-protein or beta(1b)-cRNA. We demonstrate that the co-expression of the alpha(1C)-subunit with either folded-beta(1b)-protein or beta(1b)-cRNA increases ionic currents to a similar extent and with no changes in charge movement, indicating that the beta(1b)-subunit primarily modulates channel activity, rather than expression.

  9. Calmodulin regulation (calmodulation) of voltage-gated calcium channels

    PubMed Central

    Ben-Johny, Manu

    2014-01-01

    Calmodulin regulation (calmodulation) of the family of voltage-gated CaV1-2 channels comprises a prominent prototype for ion channel regulation, remarkable for its powerful Ca2+ sensing capabilities, deep in elegant mechanistic lessons, and rich in biological and therapeutic implications. This field thereby resides squarely at the epicenter of Ca2+ signaling biology, ion channel biophysics, and therapeutic advance. This review summarizes the historical development of ideas in this field, the scope and richly patterned organization of Ca2+ feedback behaviors encompassed by this system, and the long-standing challenges and recent developments in discerning a molecular basis for calmodulation. We conclude by highlighting the considerable synergy between mechanism, biological insight, and promising therapeutics. PMID:24863929

  10. Identifying Calcium Channels and Porters in Plant Membranes

    SciTech Connect

    Sze, Heven

    1998-04-01

    The overall objectives of the proposal submitted in 6/90 was to understand how Ca was transported across plant membranes, and how these transport pathways were regulated. Ca participates in many cellular processes, including the transduction of hormonal and environmental signals, secretion, and protein folding. These processes depend on the coordination of passive Ca fluxes via channels and active Ca pumps; however these transport pathways are poorly understood in plants. We had, therefore, proposed to identify and characterize Ca transport proteins, such as the inositol-1 ,4,5-trisphosphate (IP3)-sensitive Ca channels and Ca pumps. We have had difficulties characterizing and cloning the IP3-sensitive Ca channel, but have made considerable progress on the biochemical characterization, and partial purification of a 120 kD Ca-pumping ATPase. We have begun to determine the structure of Ca pumps by molecular cloning and have already obtained a partial cDNA with features characteristic of Ca pumps.

  11. Regulation of Ca(V)2 calcium channels by G protein coupled receptors.

    PubMed

    Zamponi, Gerald W; Currie, Kevin P M

    2013-07-01

    Voltage gated calcium channels (Ca²⁺ channels) are key mediators of depolarization induced calcium influx into excitable cells, and thereby play pivotal roles in a wide array of physiological responses. This review focuses on the inhibition of Ca(V)2 (N- and P/Q-type) Ca²⁺-channels by G protein coupled receptors (GPCRs), which exerts important autocrine/paracrine control over synaptic transmission and neuroendocrine secretion. Voltage-dependent inhibition is the most widespread mechanism, and involves direct binding of the G protein βγ dimer (Gβγ) to the α1 subunit of Ca(V)2 channels. GPCRs can also recruit several other distinct mechanisms including phosphorylation, lipid signaling pathways, and channel trafficking that result in voltage-independent inhibition. Current knowledge of Gβγ-mediated inhibition is reviewed, including the molecular interactions involved, determinants of voltage-dependence, and crosstalk with other cell signaling pathways. A summary of recent developments in understanding the voltage-independent mechanisms prominent in sympathetic and sensory neurons is also included. This article is part of a Special Issue entitled: Calcium channels.

  12. Alternative splicing: functional diversity among voltage-gated calcium channels and behavioral consequences.

    PubMed

    Lipscombe, Diane; Andrade, Arturo; Allen, Summer E

    2013-07-01

    Neuronal voltage-gated calcium channels generate rapid, transient intracellular calcium signals in response to membrane depolarization. Neuronal Ca(V) channels regulate a range of cellular functions and are implicated in a variety of neurological and psychiatric diseases including epilepsy, Parkinson's disease, chronic pain, schizophrenia, and bipolar disorder. Each mammalian Cacna1 gene has the potential to generate tens to thousands of Ca(V) channels by alternative pre-mRNA splicing, a process that adds fine granulation to the pool of Ca(V) channel structures and functions. The precise composition of Ca(V) channel splice isoform mRNAs expressed in each cell are controlled by cell-specific splicing factors. The activity of splicing factors are in turn regulated by molecules that encode various cellular features, including cell-type, activity, metabolic states, developmental state, and other factors. The cellular and behavioral consequences of individual sites of Ca(V) splice isoforms are being elucidated, as are the cell-specific splicing factors that control splice isoform selection. Altered patterns of alternative splicing of Ca(V) pre-mRNAs can alter behavior in subtle but measurable ways, with the potential to influence drug efficacy and disease severity. This article is part of a Special Issue entitled: Calcium channels.

  13. Renoprotective effects of the L-/T-type calcium channel blocker benidipine in patients with hypertension.

    PubMed

    Tomino, Yasuhiko

    2013-05-01

    The renoprotective effects of benidipine, a calcium channel blocker (CCB) developed in Japan, are reviewed herein. Benidipine has a sustained antihypertensive effect independent of its blood concentration since it binds to dihydropyridine (DHP) receptors via a "membrane approach" (approach to the cell membrane followed by long retention at the DHP binding site). Benidipine dilates glomerular afferent and efferent arterioles equally through inhibition of Ttype Ca channels. Thus, it may cause a decrease of intraglomerular pressure and is superior to CCBs (capable of inhibiting only L-type Ca channels) in terms of suppression of proteinuria. Additionally, benidipine suppresses worsening of renal function more powerfully than CCBs (suppressing only L-type Ca channels), allowing better prognosis as to renal function. The inhibitory effect of benidipine on T-type calcium channels results in the suppression of aldosterone formation in the adrenal glands and of oxidative stress induced by aldosterone. Thus, the aldosterone-inhibitory and antioxidant activities of benidipine mediated by inhibition of T-type calcium channels would result in renoprotection and suppression of disease progression in hypertensive patients with chronic kidney disease (CKD). If such patients have proteinuria, renin-angiotensin system (RAS) inhibitors are used as first-line drugs, but benidipine, as an L-/T-type CCB, is recommended when they require some concomitant drugs. Moreover, the superiority of RAS inhibitors has not been demonstrated in hypertensive patients with CKD and without proteinuria. Thus, in such patients, benidipine should be considered as a first-line antihypertensive drug.

  14. Anoctamin Calcium-Activated Chloride Channels May Modulate Inhibitory Transmission in the Cerebellar Cortex.

    PubMed

    Zhang, Weiping; Schmelzeisen, Steffen; Parthier, Daniel; Frings, Stephan; Möhrlen, Frank

    2015-01-01

    Calcium-activated chloride channels of the anoctamin (alias TMEM16) protein family fulfill critical functions in epithelial fluid transport, smooth muscle contraction and sensory signal processing. Little is known, however, about their contribution to information processing in the central nervous system. Here we examined the recent finding that a calcium-dependent chloride conductance impacts on GABAergic synaptic inhibition in Purkinje cells of the cerebellum. We asked whether anoctamin channels may underlie this chloride conductance. We identified two anoctamin channel proteins, ANO1 and ANO2, in the cerebellar cortex. ANO1 was expressed in inhibitory interneurons of the molecular layer and the granule cell layer. Both channels were expressed in Purkinje cells but, while ANO1 appeared to be retained in the cell body, ANO2 was targeted to the dendritic tree. Functional studies confirmed that ANO2 was involved in a calcium-dependent mode of ionic plasticity that reduces the efficacy of GABAergic synapses. ANO2 channels attenuated GABAergic transmission by increasing the postsynaptic chloride concentration, hence reducing the driving force for chloride influx. Our data suggest that ANO2 channels are involved in a Ca2+-dependent regulation of synaptic weight in GABAergic inhibition. Thus, in balance with the chloride extrusion mechanism via the co-transporter KCC2, ANO2 appears to regulate ionic plasticity in the cerebellum.

  15. Anoctamin Calcium-Activated Chloride Channels May Modulate Inhibitory Transmission in the Cerebellar Cortex

    PubMed Central

    Parthier, Daniel; Frings, Stephan; Möhrlen, Frank

    2015-01-01

    Calcium-activated chloride channels of the anoctamin (alias TMEM16) protein family fulfill critical functions in epithelial fluid transport, smooth muscle contraction and sensory signal processing. Little is known, however, about their contribution to information processing in the central nervous system. Here we examined the recent finding that a calcium-dependent chloride conductance impacts on GABAergic synaptic inhibition in Purkinje cells of the cerebellum. We asked whether anoctamin channels may underlie this chloride conductance. We identified two anoctamin channel proteins, ANO1 and ANO2, in the cerebellar cortex. ANO1 was expressed in inhibitory interneurons of the molecular layer and the granule cell layer. Both channels were expressed in Purkinje cells but, while ANO1 appeared to be retained in the cell body, ANO2 was targeted to the dendritic tree. Functional studies confirmed that ANO2 was involved in a calcium-dependent mode of ionic plasticity that reduces the efficacy of GABAergic synapses. ANO2 channels attenuated GABAergic transmission by increasing the postsynaptic chloride concentration, hence reducing the driving force for chloride influx. Our data suggest that ANO2 channels are involved in a Ca2+-dependent regulation of synaptic weight in GABAergic inhibition. Thus, in balance with the chloride extrusion mechanism via the co-transporter KCC2, ANO2 appears to regulate ionic plasticity in the cerebellum. PMID:26558388

  16. Amphetamine activates calcium channels through dopamine transporter-mediated depolarization.

    PubMed

    Cameron, Krasnodara N; Solis, Ernesto; Ruchala, Iwona; De Felice, Louis J; Eltit, Jose M

    2015-11-01

    Amphetamine (AMPH) and its more potent enantiomer S(+)AMPH are psychostimulants used therapeutically to treat attention deficit hyperactivity disorder and have significant abuse liability. AMPH is a dopamine transporter (DAT) substrate that inhibits dopamine (DA) uptake and is implicated in DA release. Furthermore, AMPH activates ionic currents through DAT that modify cell excitability presumably by modulating voltage-gated channel activity. Indeed, several studies suggest that monoamine transporter-induced depolarization opens voltage-gated Ca(2+) channels (CaV), which would constitute an additional AMPH mechanism of action. In this study we co-express human DAT (hDAT) with Ca(2+) channels that have decreasing sensitivity to membrane depolarization (CaV1.3, CaV1.2 or CaV2.2). Although S(+)AMPH is more potent than DA in transport-competition assays and inward-current generation, at saturating concentrations both substrates indirectly activate voltage-gated L-type Ca(2+) channels (CaV1.3 and CaV1.2) but not the N-type Ca(2+) channel (CaV2.2). Furthermore, the potency to achieve hDAT-CaV electrical coupling is dominated by the substrate affinity on hDAT, with negligible influence of L-type channel voltage sensitivity. In contrast, the maximal coupling-strength (defined as Ca(2+) signal change per unit hDAT current) is influenced by CaV voltage sensitivity, which is greater in CaV1.3- than in CaV1.2-expressing cells. Moreover, relative to DA, S(+)AMPH showed greater coupling-strength at concentrations that induced relatively small hDAT-mediated currents. Therefore S(+)AMPH is not only more potent than DA at inducing hDAT-mediated L-type Ca(2+) channel currents but is a better depolarizing agent since it produces tighter electrical coupling between hDAT-mediated depolarization and L-type Ca(2+) channel activation.

  17. Voltage-Dependent Calcium Channels in Glial Cells

    NASA Astrophysics Data System (ADS)

    MacVicar, B. A.

    1984-12-01

    The electrophysiological properties of glial cells were examined in primary culture in the presence of tetraethylammonium and Ba2+, a treatment that reduces K+ permeability of the membrane and enhances currents through voltage-dependent Ca2+ channels. Under these conditions, glial cells showed both spontaneous action potentials and action potentials evoked by the injections of current. These responses appear to represent entry of Ba2+ through Ca2+ channels because they were resistant to tetrodotoxin but were blocked by Mn2+ or Cd2+.

  18. Methamphetamine acutely inhibits voltage-gated calcium channels but chronically up-regulates L-type channels.

    PubMed

    Andres, Marilou A; Cooke, Ian M; Bellinger, Frederick P; Berry, Marla J; Zaporteza, Maribel M; Rueli, Rachel H; Barayuga, Stephanie M; Chang, Linda

    2015-07-01

    In neurons, calcium (Ca(2+) ) channels regulate a wide variety of functions ranging from synaptic transmission to gene expression. They also induce neuroplastic changes that alter gene expression following psychostimulant administration. Ca(2+) channel blockers have been considered as potential therapeutic agents for the treatment of methamphetamine (METH) dependence because of their ability to reduce drug craving among METH users. Here, we studied the effects of METH exposure on voltage-gated Ca(2+) channels using SH-SY5Y cells as a model of dopaminergic neurons. We found that METH has different short- and long-term effects. A short-term effect involves immediate (< 5 min) direct inhibition of Ca(2+) ion movements through Ca(2+) channels. Longer exposure to METH (20 min or 48 h) selectively up-regulates the expression of only the CACNA1C gene, thus increasing the number of L-type Ca(2+) channels. This up-regulation of CACNA1C is associated with the expression of the cAMP-responsive element-binding protein (CREB), a known regulator of CACNA1C gene expression, and the MYC gene, which encodes a transcription factor that putatively binds to a site proximal to the CACNA1C gene transcription initiation site. The short-term inhibition of Ca(2+) ion movement and later, the up-regulation of Ca(2+) channel gene expression together suggest the operation of cAMP-responsive element-binding protein- and C-MYC-mediated mechanisms to compensate for Ca(2+) channel inhibition by METH. Increased Ca(2+) current density and subsequent increased intracellular Ca(2+) may contribute to the neurodegeneration accompanying chronic METH abuse. Methamphetamine (METH) exposure has both short- and long-term effects. Acutely, methamphetamine directly inhibits voltage-gated calcium channels. Chronically, neurons compensate by up-regulating the L-type Ca(2+) channel gene, CACNA1C. This compensatory mechanism is mediated by transcription factors C-MYC and CREB, in which CREB is linked to the

  19. David J. Triggle: Medicinal chemistry, to pharmacology, calcium channels, and beyond.

    PubMed

    Walker, Michael J A

    2015-11-15

    David Triggle's scientific career began as a chemist, went through medicinal chemistry into pharmacology, and finally on to somewhat more philosophical interests in later years. It was a career marked by many contributions to all of those aspects of science. Chief amongst his many contributions, in addition to those in medicinal chemistry, was his work on the drugs known as calcium ion channel blockers or (calcium antagonists). In the calcium ion channel field he was a particularly instrumental figure in sorting out the mechanisms, actions and roles of the class of calcium channel blockers, known chemical and pharmacologically as the dihydropyridines (DHPs) in particular, as well as other calcium blockers of diverse structures. During the course of a long career, and extensive journeys into medicinal chemistry and pharmacology, he published voluminously in terms of papers, reviews, conference proceedings and books. Notably, many of his papers often had limited authorship where, as senior author it reflected his deep involvement in all aspects of the reported work. His work always helped clarify the field while his incisive reviews, together with his role in coordinating and running scientific meetings, were a great help in clarifying and organizing various fields of study. He has had a long and illustrious career, and is wellknown in the world of biomedical science; his contributions are appreciated, and well recognized everywhere. The following article attempts to chart a path through his work and contributions to medicinal chemistry, pharmacology, science, academia and students. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Voltage-gated calcium channel and antisense oligonucleotides thereto

    NASA Technical Reports Server (NTRS)

    Hruska, Keith A. (Inventor); Friedman, Peter A. (Inventor); Barry, Elizabeth L. R. (Inventor); Duncan, Randall L. (Inventor)

    1998-01-01

    An antisense oligonucleotide of 10 to 35 nucleotides in length that can hybridize with a region of the .alpha..sub.1 subunit of the SA-Cat channel gene DNA or mRNA is provided, together with pharmaceutical compositions containing and methods utilizing such antisense oligonucleotide.

  1. Calcium channels and intracellular calcium release are pharmacologically different in frog skeletal muscle.

    PubMed

    McCleskey, E W

    1985-04-01

    The pharmacology of Ca2+ channels and intracellular Ca2+ release from the sarcoplasmic reticulum (s.r.) were compared by injecting Ca2+ channel blockers into the cytoplasm and observing contraction under voltage clamp of frog skeletal muscle fibres, a preparation that contracts only in response to Ca2+ release from the s.r. A method for quantifying intracellular injections by co-injecting a fluorescent dye is described. Nifedipine injected into cells blocks Ca2+ current through the cell membrane showing that nifedipine is active when applied to the cytoplasmic side of the membrane in which Ca2+ channels are located. Neither the presence of Ca2+ channel blockers in the extracellular medium nor 24 h incubation in nifedipine and D-600 affect contraction. Nifedipine and D-600 injected to intracellular concentrations much greater than necessary to block Ca2+ channels do not affect contraction. The presence of 30 microM-D-600 during K+ contractures caused paralysis but 20 microM-nifedipine did not. Thus, contracture-dependent D-600 paralysis is not due to blockade of the transverse tubule Ca2+ channel. It is concluded that: (a) a functioning Ca2+ channel on the cell membrane is not necessary to trigger Ca2+ release from the s.r.; (b) s.r. Ca2+ release and Ca2+ channels are pharmacologically different.

  2. [Cognitive Function and Calcium. Cognitive improvement through T type calcium channel stimulation].

    PubMed

    Fukunaga, Kohji

    2015-02-01

    Low-threshold Ca2+ spikes are mediated by T-type Ca2+ channels, which have fast inactivation and slow deactivation kinetics (transient) , and single channel conductance. The activation are triggered by -60 to -65 mV. T-type Ca2+ channels are predominantly expressed in the brain and heart pacemaker cells. Three subtypes of T-type Ca2+ channels Cav3.1 (α1G), Cav3.2 (α1H), Cav3.3 (α1I) encoding by CACNA1G, CACNA1H, CACNA1I genes have been cloned. Although high-threshold voltage-gated Ca2+ channels have auxiliary α2δ, β, γ subunits, T-type Ca2+ channels are composed only by α1 subunit. Although T-type Ca2+ channels are involved in the pace making in heart and a robust low-threshold Ca2+ spike in neurons, the physiological functions in the memory and synaptic plasticity remain unclear. In this paper, I would like to focus on the pathophysiological relevance of T-type Ca2+ channels in the brain functions including cognition.

  3. Inactivation of Gating Currents of L-Type Calcium Channels

    PubMed Central

    Shirokov, Roman; Ferreira, Gonzalo; Yi, Jianxun; Ríos, Eduardo

    1998-01-01

    In studies of gating currents of rabbit cardiac Ca channels expressed as α1C/β2a or α1C/β2a/α2δ subunit combinations in tsA201 cells, we found that long-lasting depolarization shifted the distribution of mobile charge to very negative potentials. The phenomenon has been termed charge interconversion in native skeletal muscle (Brum, G., and E. Ríos. 1987. J. Physiol. (Camb.). 387:489–517) and cardiac Ca channels (Shirokov, R., R. Levis, N. Shirokova, and E. Ríos. 1992. J. Gen. Physiol. 99:863–895). Charge 1 (voltage of half-maximal transfer, V1/2 ≃ 0 mV) gates noninactivated channels, while charge 2 (V1/2 ≃ −90 mV) is generated in inactivated channels. In α1C/β2a cells, the available charge 1 decreased upon inactivating depolarization with a time constant τ ≃ 8, while the available charge 2 decreased upon recovery from inactivation (at −200 mV) with τ ≃ 0.3 s. These processes therefore are much slower than charge movement, which takes <50 ms. This separation between the time scale of measurable charge movement and that of changes in their availability, which was even wider in the presence of α2δ, implies that charges 1 and 2 originate from separate channel modes. Because clear modal separation characterizes slow (C-type) inactivation of Na and K channels, this observation establishes the nature of voltage-dependent inactivation of L-type Ca channels as slow or C-type. The presence of the α2δ subunit did not change the V1/2 of charge 2, but sped up the reduction of charge 1 upon inactivation at 40 mV (to τ ≃ 2 s), while slowing the reduction of charge 2 upon recovery (τ ≃ 2 s). The observations were well simulated with a model that describes activation as continuous electrodiffusion (Levitt, D. 1989. Biophys. J. 55:489–498) and inactivation as discrete modal change. The effects of α2δ are reproduced assuming that the subunit lowers the free energy of the inactivated mode. PMID:9607938

  4. Sphingosylphosphocholine modulates the ryanodine receptor/calcium-release channel of cardiac sarcoplasmic reticulum membranes.

    PubMed Central

    Betto, R; Teresi, A; Turcato, F; Salviati, G; Sabbadini, R A; Krown, K; Glembotski, C C; Kindman, L A; Dettbarn, C; Pereon, Y; Yasui, K; Palade, P T

    1997-01-01

    Sphingosylphosphocholine (SPC) modulates Ca2+ release from isolated cardiac sarcoplasmic reticulum membranes; 50 microM SPC induces the release of 70 80% of the accumulated calcium. SPC release calcium from cardiac sarcoplasmic reticulum through the ryanodine receptor, since the release is inhibited by the ryanodine receptor channel antagonists ryanodine. Ruthenium Red and sphingosine. In intact cardiac myocytes, even in the absence of extracellular calcium. SPC causes a rise in diastolic Ca2+, which is greatly reduced when the sarcoplasmic reticulum is depleted of Ca2+ by prior thapsigargin treatment. SPC action on the ryanodine receptor is Ca(2+)-dependent. SPC shifts to the left the Ca(2+)-dependence of [3H]ryanodine binding, but only at high pCa values, suggesting that SPC might increase the sensitivity to calcium of the Ca(2+)-induced Ca(2+)-release mechanism. At high calcium concentrations (pCa 4.0 or lower), where [3H]ryanodine binding is maximally stimulated, no effect of SPC is observed. We conclude that SPC releases calcium from cardiac sarcoplasmic reticulum membranes by activating the ryanodine receptor and possibly another intracellular Ca(2+)-release channel, the sphingolipid Ca(2+)-release-mediating protein of endoplasmic reticulum (SCaMPER) [Mao, Kim, Almenoff, Rudner, Kearney and Kindman (1996) Proc.Natl.Acad.Sci. U.S.A 93, 1993-1996], which we have identified for the first time in cardiac tissue. PMID:9078280

  5. Medullary N-type and P/Q-type calcium channels contribute to neuropathy-induced allodynia.

    PubMed

    Urban, Mark O; Ren, Kunkun; Sablad, Marciano; Park, Kenneth T

    2005-04-25

    The present study was designed to determine the contribution of N-type, P/Q-type and L-type calcium channels in the rostral ventromedial medulla to tactile allodynia following peripheral nerve injury. L5/L6 spinal nerve ligation in rats produced tactile allodynia, which was dose-dependently inhibited by intrarostral ventromedial medulla microinjection of the N-type calcium channel antagonist omega-conotoxin MVIIA. Similarly, intrarostral ventromedial medulla microinjection of the P/Q-type calcium channel antagonist omega-agatoxin IVA inhibited spinal nerve ligation-induced tactile allodynia, whereas intrarostral ventromedial medulla microinjection of the L-type calcium channel antagonist nimodipine had no effect. These results demonstrate that N-type and P/Q-type calcium channels in the rostral ventromedial medulla contribute to tactile allodynia following peripheral neuropathy, likely via neurotransmitter-mediated activation of descending facilitatory systems from the rostral ventromedial medulla.

  6. Variation of T-type calcium channel protein expression affects cell division of cultured tumor cells.

    PubMed

    Panner, Amith; Cribbs, Leanne L; Zainelli, Gina M; Origitano, Thomas C; Singh, Sanjay; Wurster, Robert D

    2005-02-01

    In this study we investigated the T-type calcium channel and its involvement in the cell division of U87MG cultured glioma cells and N1E-115 neuroblastoma cells. Using Western blot analysis, we found that expression of both alpha1G and alpha1H subunits of the T-type calcium channel decreased during conditions associated with a decrease in proliferation as evidenced by increased expression of cyclin D1, a marker for non-proliferating cells. Both serum starvation and application of mibefradil, a selective T-type calcium channel antagonist, resulted in a 50% decrease in the expression of alpha1G and alpha1H and a 700-900% increase in levels of cyclin D1 in U87MG and N1E-115 cells, respectively. Furthermore, overexpression of the alpha1H subunit resulted in a two-fold increase in cell proliferation compared to control cultures or cultures receiving an empty vector. In contrast, blocking expression of the alpha1G subunit using antisense oligonucleotides lead to a 70% decrease in proliferation of U87MG and N1E-115 cells compared to control cultures or cultures receiving a scrambled oligonucleotide. Our findings suggest that proliferation of U87MG glioma cells and N1E-115 is regulated by T-type calcium channel expression.

  7. L-type Voltage-Gated Calcium Channels in Conditioned Fear: A Genetic and Pharmacological Analysis

    ERIC Educational Resources Information Center

    McKinney, Brandon C.; Sze, Wilson; White, Jessica A.; Murphy, Geoffrey G.

    2008-01-01

    Using pharmacological approaches, others have suggested that L-type voltage-gated calcium channels (L-VGCCs) mediate both consolidation and extinction of conditioned fear. In the absence of L-VGCC isoform-specific antagonists, we have begun to investigate the subtype-specific role of LVGCCs in consolidation and extinction of conditioned fear…

  8. Involvement of apoptosis and calcium accumulation through TRPV1 channels in neurobiology of epilepsy.

    PubMed

    Nazıroğlu, M; Övey, İ S

    2015-05-07

    Calcium ion accumulation into the cytosol of the hippocampus and dorsal root ganglion (DRG) are main reasons in etiology of epilepsy. Transient receptor potential vanilloid type 1 (TRPV1) channel is a cation-permeable calcium channel found in the DRG and hippocampus. Although previous studies implicate TRPV1 channels in the generation of epilepsy, suppression of ongoing seizures by TRPV1 antagonists has not yet been investigated. We tested the effects of TRPV1-specific antagonists, capsazepine (CPZ) and 5'-iodoresiniferatoxin (IRTX) on the modulation of calcium accumulation, apoptosis and anticonvulsant properties in the hippocampus and DRG of pentylentetrazol (PTZ) and capsaicin (CAP) administrated rats. Forty rats were divided into five groups as follows; control, PTZ, CAP+PTZ, IRTX, and IRTX+PTZ. Fura-2 and patch-clamp experiments were performed on neurons dissected from treated animals by CAP and CPZ. PTZ and CAP+PTZ administrations increased intracellular free Ca(2+) concentrations, TRPV1 current densities, apoptosis, caspase 3 and 9 values although the values were reduced by IRTX and CPZ treatments. Latency time was extended by application CPZ and IRTX although CAP produced acceleration of epileptic seizures. Taken together, these results support a role for TRPV1 channels in the inhibition of apoptosis, epileptic seizures and calcium accumulation, indicating that TRPV1 inhibition may possibly be a novel target in the DRG and hippocampus for prevention of epileptic seizures and peripheral pain.

  9. Pharmacological, pharmacokinetic, and clinical properties of benidipine hydrochloride, a novel, long-acting calcium channel blocker.

    PubMed

    Yao, Kozo; Nagashima, Ken; Miki, Hiroyuki

    2006-04-01

    Benidipine is a dihydropyridine-derived calcium channel blocker developed in Japan, with several unique mechanisms of action, that is, triple calcium channels (L, N, and T) blocking action with a membrane approach. Benidipine has relatively high vascular selectivity and is expected to show protective effects on vascular endothelial cells. Renal protective effects of benidipine also have been shown in several basic and clinical studies. Moreover, anti-oxidative action and enhancing nitric oxide production have been noted with this drug, following its cardio-protective effects in patients with ischemic heart diseases. In fact, benidipine exerted a better prognostic effect than other calcium channel blockers in the therapy for patients with vasospastic angina. In addition, benidipine showed reliable antihypertensive, renoprotective effects if used in combination with angiotensin II type 1 receptor blockers (ARBs) when adequate anti-hypertensive effects are not achieved by ARBs alone, indicating that benidipine is an useful calcium channel blocker in combination therapy for hypertension. Benidipine was launched on the Japanese market 14 years ago, but few severe side effects have been reported, suggesting that this is a drug with established safety and long-acting pharmacological effects.

  10. Sarcoplasmic Reticulum Calcium Release Channels in Ventricles of Older Adult Hamsters

    ERIC Educational Resources Information Center

    Nicholl, Peter A.; Howlett, Susan E.

    2006-01-01

    Whether the density of sarcoplasmic reticulum (SR) calcium release channels/ryanodine receptors in the heart declines with age is not clear. We investigated age-related changes in the density of [3H]-ryanodine receptors in crude ventricular homogenates, which contained all ligand binding sites in heart and in isolated junctional SR membranes.…

  11. Calcium-activated chloride channels anoctamin 1 and 2 promote murine uterine smooth muscle contractility

    PubMed Central

    Bernstein, Kyra; Vink, Joy Y; Fu, Xiao Wen; Wakita, Hiromi; Danielsson, Jennifer; Wapner, Ronald; Gallos, George

    2014-01-01

    Objective To determine the presence of calcium activated chloride channels anoctamin 1 and 2 in human and murine uterine smooth muscle and evaluate the physiologic role for these ion channels in murine myometrial contractility. Study Design We performed reverse transcription polymerase chain reaction to determine if anoctamin 1 and 2 are expressed in human and murine uterine tissue to validate the study of this protein in mouse models. Immunohistochemical staining of anoctamin 1 and 2 was then performed to determine protein expression in murine myometrial tissue. The function of anoctamin 1 and 2 in murine uterine tissue was evaluated using electrophysiological studies, organ bath, and calcium flux experiments. Results Anoctamin 1 and 2 are expressed in human and murine USM cells. Functional studies show that selective antagonism of these channels promotes relaxation of spontaneous murine uterine smooth muscle contractions. Blockade of anoctamin 1 and 2 inhibits both agonist-induced and spontaneous transient inward currents and abolishes G-protein coupled receptor (oxytocin) mediated elevations in intracellular calcium. Conclusion The calcium activated chloride channels ANO 1 and 2 are present in human and murine myometrial tissue and may provide novel potential therapeutic targets to achieve effective tocolysis. PMID:24928056

  12. Sarcoplasmic Reticulum Calcium Release Channels in Ventricles of Older Adult Hamsters

    ERIC Educational Resources Information Center

    Nicholl, Peter A.; Howlett, Susan E.

    2006-01-01

    Whether the density of sarcoplasmic reticulum (SR) calcium release channels/ryanodine receptors in the heart declines with age is not clear. We investigated age-related changes in the density of [3H]-ryanodine receptors in crude ventricular homogenates, which contained all ligand binding sites in heart and in isolated junctional SR membranes.…

  13. Modulation of calcium channels by taurine acting via a metabotropic-like glycine receptor.

    PubMed

    Albiñana, E; Sacristán, S; Martín del Río, R; Solís, J M; Hernández-Guijo, J M

    2010-11-01

    Taurine is one of the most abundant free amino acids in the central nervous system, where it displays several functions. However, its molecular targets remain unknown. It is well known that taurine can activate GABA-A and strychnine-sensitive glycine receptors, which increases a chloride conductance. In this study, we describe that acute application of taurine induces a dose-dependent inhibition of voltage-dependent calcium channels in chromaffin cells from bovine adrenal medullae. This taurine effect was not explained by the activation of either GABA-A, GABA-B or strychnine-sensitive glycine receptors. Interestingly, glycine mimicked the modulatory action exerted by taurine on calcium channels, although the acute application of glycine did not elicit any ionic current in these cells. Additionally, the modulation of calcium channels exerted by both taurine and glycine was prevented by the intracellular dialysis of GDP-β-S. Thus, the modulation of voltage-dependent calcium channels by taurine seems to be mediated by a metabotropic-like glycinergic receptor coupled to G-protein activation in a membrane delimited pathway.

  14. [Influence of rifampicin on antihypertensive effects of dihydropiridine calcium-channel blockers in four elderly patients].

    PubMed

    Yoshimoto, H; Takahashi, M; Saima, S

    1996-09-01

    Rifamicin, an antituberculosis agent, is one of the most potent inducers of hepatic drug-oxidation enzymes. Rifampicin can reduce the efficacy of several therapeutically important drugs (including verapamil and diltiazem) by accelerating systemic elimination or by increasing hepatic first-pass metabolism. Because dihydropyridine calcium-channel blockers are mainly metabolized by the liver, rifampicin may also increase the extraction of these drugs and thereby reduce their antihypertensive effects. Here we report four possible cases of interaction between rifampicin and dihydropiridine calcium-channel blockers. Rifampicin was given to treat tuberculosis in four elderly hypertensive patients whose blood pressure was well-controlled by one or more dihydropiridine calcium-channel blockers (nisoldipine, nifedipine, or barnidipine and manidipine), shortly after the start of antituberculosis therapy, their blood pressures rose. Either much greater doses of dihydropyridines or additional antihypertensive agents had to be given to keep blood pressure under control. After withdrawal of rifampicin, blood pressure fell in all patients and the doses of the antihypertensive agents had to be reduced. These findings indicate that rifampicin may lessen the antihypertensive effects of dihydropiridine calcium-channel blockers.

  15. L-type Voltage-Gated Calcium Channels in Conditioned Fear: A Genetic and Pharmacological Analysis

    ERIC Educational Resources Information Center

    McKinney, Brandon C.; Sze, Wilson; White, Jessica A.; Murphy, Geoffrey G.

    2008-01-01

    Using pharmacological approaches, others have suggested that L-type voltage-gated calcium channels (L-VGCCs) mediate both consolidation and extinction of conditioned fear. In the absence of L-VGCC isoform-specific antagonists, we have begun to investigate the subtype-specific role of LVGCCs in consolidation and extinction of conditioned fear…

  16. The ethanol withdrawal syndrome: A role for dihydropyridine-sensitive calcium channels in neuronal hyperexcitability states

    SciTech Connect

    Whittington, M.A.

    1990-01-01

    This project investigated the effects of dihydropyridine calcium channel blockers on behavioral and electrophysiological aspects of ethanol withdrawal. The effects of the dihydropyridine (+)-PN 200-110, on changes in neuronal function during ethanol withdrawal, were compared with effects on changes caused by the GABAergic convulsant drug bicuculline. Behavioral correlates of ethanol withdrawal were measured in two strains of mice using a rating of handling-induced convulsions. Concurrent chronic treatment with ethanol and the dihydropyridine calcium channel blockers ([plus minus])-nitrendipine, ([plus minus])-nimodipine or ([plus minus])-PN 200-110 prevented withdrawal-induced increased in convulsive behavior. This effect was dose dependent. The duration of chronic treatment with calcium channel blocker affected the degree of protection against increases in convulsive behavior seen during ethanol withdrawal. Concurrent chronic treatment with ethanol, and the mixed calcium channel activator/blocker ([plus minus])-BAY K 8644, prevented ethanol withdrawal-induced increases in convulsive behavior. Single acute injections of nitrendipine immediately on cessation of chronic treatment with ethanol, or 2h later, reduced withdrawal-induced increases in convulsive behavior in a dose-dependent manner throughout the 12h test period. Slices isolated from mice after chronic ethanol treatment showed a complex, time-dependent pattern of changes in the above measurements, culminating in epileptiform discharges seen from 4h to 7h into withdrawal.

  17. Calcium channel antagonists increase morphine-induced analgesia and antagonize morphine tolerance.

    PubMed

    Contreras, E; Tamayo, L; Amigo, M

    1988-04-13

    The influence of calcium channel blockers on morphine-induced analgesia and on tolerance to the chronic administration of the opiate was investigated in mice. The effects of a test dose of morphine were significantly increased by the administration of diltiazem, flunarizine, nicardipine and verapamil. In contrast, nifedipine induced an antagonistic effect. The calcium channel antagonists did not change the reaction time to thermal stimulation in mice (hot plate test). The administration of nifedipine, flunarizine and verapamil reduced the intensity of the tolerance induced by a single dose of morphine administered in a slow release preparation. Diltiazem induced a non-significant decrease of the process. The present results are in accordance with the known interaction of acute and chronic morphine administration with the intracellular calcium concentration in neurones of the central nervous system.

  18. Methylene blue reverses recalcitrant shock in β-blocker and calcium channel blocker overdose.

    PubMed

    Aggarwal, Nidhi; Kupfer, Yizhak; Seneviratne, Chanaka; Tessler, Sidney

    2013-01-18

    β-blocker and calcium channel blocker toxicity generally present with bradycardia and hypotension. A 69-year-old woman presented after a suicide attempt with a β-blocker and calcium channel blocker overdose. Her blood pressure was 69/35 mm Hg and her HR was in the 40s. She was treated with calcium chloride, glucagon, a dextrose-insulin infusion and three vasopressors, but remained hypotensive. She suffered two cardiac arrests and required a transvenous pacemaker. When all interventions failed, she was started on a methylene blue infusion for refractory vasodilatory shock which resulted in a dramatic improvement in her blood pressure. The patient was successfully weaned off all vasopressors and from mechanical ventilation without any end-organ damage.

  19. Active Dendrites and Differential Distribution of Calcium Channels Enable Functional Compartmentalization of Golgi Cells

    PubMed Central

    Rudolph, Stephanie; Hull, Court

    2015-01-01

    Interneurons are essential to controlling excitability, timing, and synaptic integration in neuronal networks. Golgi cells (GoCs) serve these roles at the input layer of the cerebellar cortex by releasing GABA to inhibit granule cells (grcs). GoCs are excited by mossy fibers (MFs) and grcs and provide feedforward and feedback inhibition to grcs. Here we investigate two important aspects of GoC physiology: the properties of GoC dendrites and the role of calcium signaling in regulating GoC spontaneous activity. Although GoC dendrites are extensive, previous studies concluded they are devoid of voltage-gated ion channels. Hence, the current view holds that somatic voltage signals decay passively within GoC dendrites, and grc synapses onto distal dendrites are not amplified and are therefore ineffective at firing GoCs because of strong passive attenuation. Using whole-cell recording and calcium imaging in rat slices, we find that dendritic voltage-gated sodium channels allow somatic action potentials to activate voltage-gated calcium channels (VGCCs) along the entire dendritic length, with R-type and T-type VGCCs preferentially located distally. We show that R- and T-type VGCCs located in the dendrites can boost distal synaptic inputs and promote burst firing. Active dendrites are thus critical to the regulation of GoC activity, and consequently, to the processing of input to the cerebellar cortex. In contrast, we find that N-type channels are preferentially located near the soma, and control the frequency and pattern of spontaneous firing through their close association with calcium-activated potassium (KCa) channels. Thus, VGCC types are differentially distributed and serve specialized functions within GoCs. SIGNIFICANCE STATEMENT Interneurons are essential to neural processing because they modulate excitability, timing, and synaptic integration within circuits. At the input layer of the cerebellar cortex, a single type of interneuron, the Golgi cell (GoC), carries

  20. Evidence for sympathetic neurotransmission through presynaptic N-type calcium channels in human saphenous vein.

    PubMed Central

    Fabi, F.; Chiavarelli, M.; Argiolas, L.; Chiavarelli, R.; del Basso, P.

    1993-01-01

    1. The specific type(s) of voltage-sensitive calcium channels (VSCCs) involved in sympathetic neurotransmission have not yet been characterized in human vascular tissues. We therefore examined the functional role of the N- and L-type VSCCs in human saphenous veins. 2. Contractile response curves for transmural nerve stimulation (TNS) and for exogenously administered noradrenaline (NA) were obtained in superfused saphenous vein rings. The contractions induced by TNS, but not by NA, were inhibited by 1 microM tetrodotoxin and by 10 microM guanethidine. Both responses were substantially reduced by 1 microM phentolamine, indicating that the contractions evoked by TNS were mediated by endogenous NA released from noradrenergic nerves. 3. In the presence of 2 microM omega-conotoxin GVIA (omega Conus Geographus toxin, fraction VI A; omega-CgTx), a polypeptide with specific inhibitory activity on N- and L-type calcium channels, the neurally evoked contractions were almost completely abolished. In contrast, the responses induced by exogenous NA were not affected by the neurotoxin, thus providing evidence of the exclusive presynaptic action of omega-CgTx. 4. In the presence of the calcium antagonist verapamil (10 microM), which selectively blocks L-type VSCCs, the contractions induced by both TNS and NA were diminished to the same extent, suggesting that the organic calcium blocker is active only at the postjunctional level. 5. It is concluded that N-type calcium channels are the main pathway of calcium entry controlling the functional responses induced by activating sympathetic nerves; the role of L-type channels appears to be limited to the postjunctional level, modulating smooth muscle contractions. PMID:8220895

  1. Calcium channel blockade reduces mechanical strain-induced extracellular matrix gene response in lamina cribrosa cells.

    PubMed

    Quill, B; Irnaten, M; Docherty, N G; McElnea, E M; Wallace, D M; Clark, A F; O'Brien, C J

    2015-07-01

    This study examines the effect of the L-type calcium channel blocker verapamil on mechanical strain-induced extracellular matrix genes in optic nerve head lamina cribrosa (LC) cells. Changes in LC cell intracellular calcium [Ca(2+)]i following hypotonic cell membrane stretch were measured with the fluorescent probe fura-2/AM. Fluorescence intensity was measured, after labelling, by calcium (Ca2+) imaging confocal microscopy. Confluent human LC cell cultures were serum starved for 24 h prior to exposure to cyclical mechanical strain (1 Hz, 15%) for 24 h in the presence or absence of verapamil (10 mm). Transforming growth factor-β 1 (TGF-β1), collagen 6A3 (COL6A3) and chondroitin sulfate proteoglycan 2 (CSPG2) mRNA expression levels were assessed by quantitative RT-PCR. Hypotonic cell membrane stretch of LC cells from normal donors significantly increased [Ca2+]i (p<0.05). Exposure to cyclical mechanical strain (15% strain) produced a statistically significant increase in the three matrix genes that were examined (TGF-β1, COL6A3 and CSPG2). This response in both cyclical and mechanical stretch was significantly reduced by pretreating LC cells with the L-type calcium channel blocker verapamil (p<0.05). This study provides evidence of a novel mechanotransduction pathway linking mechanical strain, cation channel function and the induction of LC cell matrix gene transcription. This highlights the potential involvement of calcium influx in the activation of matrix remodelling responses in the optic nerve head and supports the rationale that calcium channel blockers may attenuate disease progression in glaucoma. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  2. Activity-dependent regulation of T-type calcium channels by submembrane calcium ions

    PubMed Central

    Cazade, Magali; Bidaud, Isabelle; Lory, Philippe; Chemin, Jean

    2017-01-01

    Voltage-gated Ca2+ channels are involved in numerous physiological functions and various mechanisms finely tune their activity, including the Ca2+ ion itself. This is well exemplified by the Ca2+-dependent inactivation of L-type Ca2+ channels, whose alteration contributes to the dramatic disease Timothy Syndrome. For T-type Ca2+ channels, a long-held view is that they are not regulated by intracellular Ca2+. Here we challenge this notion by using dedicated electrophysiological protocols on both native and expressed T-type Ca2+ channels. We demonstrate that a rise in submembrane Ca2+ induces a large decrease in T-type current amplitude due to a hyperpolarizing shift in the steady-state inactivation. Activation of most representative Ca2+-permeable ionotropic receptors similarly regulate T-type current properties. Altogether, our data clearly establish that Ca2+ entry exerts a feedback control on T-type channel activity, by modulating the channel availability, a mechanism that critically links cellular properties of T-type Ca2+ channels to their physiological roles. DOI: http://dx.doi.org/10.7554/eLife.22331.001 PMID:28109159

  3. A cyclic nucleotide-gated channel is necessary for optimum fertility in high-calcium environments.

    PubMed

    Chaiwongsar, Suraphon; Strohm, Allison K; Roe, Joshua R; Godiwalla, Roxana Y; Chan, Catherine W M

    2009-01-01

    * Arabidopsis cngc2 plants are hypersensitive to external calcium and exhibit reduced plant size and fertility, especially when they are treated with elevated but physiologically relevant levels of calcium. This report focuses on the role of cyclic nucleotide-gated channel 2 (CNGC2) in plant fertility. * To determine the cause of the reduced fertility, we investigated the flower structure and growth potential of both male and female reproductive organs in cngc2 plants grown in high-calcium conditions. * cngc2 mutants had short stamens that may limit pollen deposition and pistils that were not conducive to pollen tube growth. * Our data indicate that sporophytic, but not gametophytic, defects are the main cause of the observed reduction in seed yield in cngc2 plants, and suggest that correct cyclic nucleotide and calcium signaling are important for cell elongation and pollen tube guidance.

  4. Apamin-sensitive, small-conductance, calcium-activated potassium channels mediate cholinergic inhibition of chick auditory hair cells.

    PubMed

    Yuhas, W A; Fuchs, P A

    1999-11-01

    Acetylcholine released from efferent neurons in the cochlea causes inhibition of mechanosensory hair cells due to the activation of calcium-dependent potassium channels. Hair cells are known to have large-conductance, "BK"-type potassium channels associated with the afferent synapse, but these channels have different properties than those activated by acetylcholine. Whole-cell (tight-seal) and cell-attached patch-clamp recordings were made from short (outer) hair cells isolated from the chicken basilar papilla (cochlea equivalent). The peptides apamin and charybdotoxin were used to distinguish the calcium-activated potassium channels involved in the acetylcholine response from the BK-type channels associated with the afferent synapse. Differential toxin blockade of these potassium currents provides definitive evidence that ACh activates apamin-sensitive, "SK"-type potassium channels, but does not activate carybdotoxin-sensitive BK channels. This conclusion is supported by tentative identification of small-conductance, calcium-sensitive but voltage-insensitive potassium channels in cell-attached patches. The distinction between these channel types is important for understanding the segregation of opposing afferent and efferent synaptic activity in the hair cell, both of which depend on calcium influx. These different calcium-activated potassium channels serve as sensitive indicators for functionally significant calcium influx in the hair cell.

  5. Three-dimensional solution structure of the calcium channel antagonist omega-agatoxin IVA: consensus molecular folding of calcium channel blockers.

    PubMed

    Kim, J I; Konishi, S; Iwai, H; Kohno, T; Gouda, H; Shimada, I; Sato, K; Arata, Y

    1995-07-28

    The three-dimensional solution structure of omega-agatoxin IVA, which is a specific blocker of the P-type calcium channel isolated from funnel web spider venom and has a molecular mass of 5.2 kDa, was determined by two dimensional 1H NMR spectroscopy, combined with simulated annealing calculations. On the basis of 563 experimental constraints, including 516 distance constraints obtained from the nuclear Overhauser effect, 21 torsion angle (phi, chi 1) constraints, and 26 constraints associated with hydrogen bonds and disulfide bonds, a total of 14 converged structures were obtained. The atomic root mean square difference for the 14 converged structures with respect to the mean coordinates is 0.42 (+/- 0.07) A for the backbone atoms (N, C alpha, C) and 0.95 (+/- 0.15) A for all heavy atoms of the central part (residues 4 to 38) constrained by four disulfide bonds. The N- and C-terminal segments (residues 1 to 3 and 39 to 48, respectively) have a disordered structure in aqueous solution. The molecular structure of omega-agatoxin IVA is composed of a short triple-stranded antiparallel beta-sheet, three loops, and the disordered N- and C-terminal segments. The overall beta-sheet topology is +2x, -1, which is the same as that reported for omega-conotoxin GVIA, an N-type calcium channel blocker. Irrespective of differences in the number of disulfide bonds and low primary sequence homology, these two peptide toxins show a significant structural similarity in three dimensions. The whole-cell voltage-clamp recording using rat cerebellar slices suggests that the hydrophobic C-terminal segment of omega-agatoxin IVA, which does not exist in omega-conotoxin GVIA, plays a crucial role in the blocking action of omega-agatoxin IVA on the P-type calcium channel in rat cerebellar Purkinje cells. The present study provides a molecular basis for the toxin-channel interaction, and thereby provides insight into the discrimination of different subtypes of calcium channels.

  6. Role of voltage-gated calcium channels in potassium-stimulated aldosterone secretion from rat adrenal zona glomerulosa cells.

    PubMed

    Uebele, Victor N; Nuss, Cindy E; Renger, John J; Connolly, Thomas M

    2004-10-01

    The mineralocorticoid aldosterone plays an important role in the regulation of plasma electrolyte homeostasis. Exposure of acutely isolated rat adrenal zona glomerulosa cells to elevated K(+) activates voltage-gated calcium channels and initiates a calcium-dependent increase in aldosterone synthesis. We developed a novel 96-well format aldosterone secretion assay to rapidly evaluate the effect of known T- and L-type calcium channel antagonists on K(+)-stimulated aldosterone secretion and better define the role of voltage-gated calcium channels in this process. Reported T-type antagonists, mibefradil and Ni(2+), and selected L-type antagonist dihydropyridines, inhibited K(+)-stimulated aldosterone synthesis. Dihydropyridine-mediated inhibition occurred at concentrations which had no effect on rat alpha1H T-type Ca(2+) currents. In contrast, below 10 microM, the L-type antagonists verapamil and diltiazem showed only minimal inhibitory effects. To examine the selectivity of the calcium channel antagonist-mediated inhibition, we established an aldosterone secretion assay in which 8Br-cAMP stimulates aldosterone secretion independent of extracellular calcium. Mibefradil remained inhibitory in this assay, while the dihydropyridines had only limited effects. Taken together, these data demonstrate a role for the L-type calcium channel in K(+)-stimulated aldosterone secretion. Further, they confirm the need for selective T-type calcium channel antagonists to better address the role of T-type channels in K(+)-stimulated aldosterone secretion.

  7. Atypical calcium regulation of the PKD2-L1 polycystin ion channel

    PubMed Central

    DeCaen, Paul G; Liu, Xiaowen; Abiria, Sunday; Clapham, David E

    2016-01-01

    Native PKD2-L1 channel subunits are present in primary cilia and other restricted cellular spaces. Here we investigate the mechanism for the channel's unusual regulation by external calcium, and rationalize this behavior to its specialized function. We report that the human PKD2-L1 selectivity filter is partially selective to calcium ions (Ca2+) moving into the cell, but blocked by high internal Ca2+concentrations, a unique feature of this transient receptor potential (TRP) channel family member. Surprisingly, we find that the C-terminal EF-hands and coiled-coil domains do not contribute to PKD2-L1 Ca2+-induced potentiation and inactivation. We propose a model in which prolonged channel activity results in calcium accumulation, triggering outward-moving Ca2+ ions to block PKD2-L1 in a high-affinity interaction with the innermost acidic residue (D523) of the selectivity filter and subsequent long-term channel inactivation. This response rectifies Ca2+ flow, enabling Ca2+ to enter but not leave small compartments such as the cilium. DOI: http://dx.doi.org/10.7554/eLife.13413.001 PMID:27348301

  8. Calcium sensing receptor modulates extracellular calcium entry and proliferation via TRPC3/6 channels in cultured human mesangial cells.

    PubMed

    Meng, Kexin; Xu, Jia; Zhang, Chengwei; Zhang, Rui; Yang, He; Liao, Chang; Jiao, Jundong

    2014-01-01

    Calcium-sensing receptor (CaSR) has been demonstrated to be present in several tissues and cells unrelated to systemic calcium homeostasis, where it regulates a series of diverse cellular functions. A previous study indicated that CaSR is expressed in mouse glomerular mesangial cells (MCs), and stimulation of CaSR induces cell proliferation. However, the signaling cascades initiated by CaSR activation in MCs are currently unknown. In this study, our data demonstrate that CaSR mRNA and protein are expressed in a human mesangial cell line. Activating CaSR with high extracellular Ca2+ concentration ([Ca2+]o) or spermine induces a phospholipase C (PLC)-dependent increase in intracellular Ca2+ concentration ([Ca2+]i). Interestingly, the CaSR activation-induced increase in [Ca2+]i results not only from intracellular Ca2+ release from internal stores but also from canonical transient receptor potential (TRPC)-dependent Ca2+ influx. This increase in Ca2+ was attenuated by treatment with a nonselective TRPC channel blocker but not by treatment with a voltage-gated calcium blocker or Na+/Ca2+ exchanger inhibitor. Furthermore, stimulation of CaSR by high [Ca2+]o enhanced the expression of TRPC3 and TRPC6 but not TRPC1 and TRPC4, and siRNA targeting TRPC3 and TRPC6 attenuated the CaSR activation-induced [Ca2+]i increase. Further experiments indicate that 1-oleoyl-2-acetyl-sn-glycerol (OAG), a known activator of receptor-operated calcium channels, significantly enhances the CaSR activation-induced [Ca2+]i increase. Moreover, under conditions in which intracellular stores were already depleted with thapsigargin (TG), CaSR agonists also induced an increase in [Ca2+]i, suggesting that calcium influx stimulated by CaSR agonists does not require the release of calcium stores. Finally, our data indicate that pharmacological inhibition and knock down of TRPC3 and TRPC6 attenuates the CaSR activation-induced cell proliferation in human MCs. With these data, we conclude that Ca

  9. Barnidipine: a new calcium channel blocker for hypertension treatment.

    PubMed

    Liau, Chiau-Suong

    2005-03-01

    Although it is commonly agreed that all antihypertensive medications have similar efficacy, there are important differences related to safety, tolerability, patient adherence, cost effectiveness and effects on the prevention or retardation of associated disease progression. It is desirable for antihypertensives to have a long duration of action so that once-daily dosing is possible. In addition, antihypertensive medication must be able to be administered concomitantly with other drugs likely to be taken by the patients. This is particularly critical in the elderly population. Barnidipine, a novel, long-acting calcium antagonist, has met these challenges of modern pharmacotherapy. Its once-daily dosing, good tolerability and durable antihypertensive effect contribute to excellent patient adherence and make this drug a valuable addition to the antihypertensive formulary.

  10. Hypernitrosylated ryanodine receptor/calcium release channels are leaky in dystrophic muscle

    PubMed Central

    Bellinger, Andrew M.; Reiken, Steven; Carlson, Christian; Mongillo, Marco; Liu, Xiaoping; Rothman, Lisa; Matecki, Stefan; Lacampagne, Alain; Marks, Andrew R.

    2010-01-01

    Duchenne muscular dystrophy (DMD) is characterized by progressive muscle weakness and early death resulting from dystrophin deficiency. Loss of dystrophin results in disruption of a large dystrophin glycoprotein complex (DGC) leading to pathologic calcium (Ca2+)-dependent signals that damage muscle cells 1–5. We have identified a structural and functional defect in the sarcoplasmic reticulum (SR) Ca2+ release channel/ryanodine receptor (RyR1) in the mdx mouse model of muscular dystrophy that may contribute to altered Ca2+ homeostasis in dystrophic muscles. RyR1 isolated from mdx skeletal muscle exhibited an age-dependent increase in S-nitrosylation coincident with dystrophic changes in the muscle. RyR1 S-nitrosylation depleted the channel complex of FKBP12 (or “calstabin1” for calcium channel stabilizing binding protein) resulting in “leaky” channels. Preventing calstabin1 depletion from RyR1 using S107, a compound that binds to the RyR1 channel and enhances the binding affinity of calstabin1 to the nitrosylated channel, inhibited SR Ca2+ leak, reduced biochemical and histologic evidence of muscle damage, improved muscle function and increased exercise performance in mdx mice. Thus, SR Ca2+ leak via RyR1 due to S-nitrosylation of the channel and calstabin1 depletion likely contributes to muscle weakness in muscular dystrophy and preventing the RyR1-mediated SR Ca2+ leak may provide a novel therapeutic approach. PMID:19198614

  11. Hypernitrosylated ryanodine receptor calcium release channels are leaky in dystrophic muscle.

    PubMed

    Bellinger, Andrew M; Reiken, Steven; Carlson, Christian; Mongillo, Marco; Liu, Xiaoping; Rothman, Lisa; Matecki, Stefan; Lacampagne, Alain; Marks, Andrew R

    2009-03-01

    Duchenne muscular dystrophy is characterized by progressive muscle weakness and early death resulting from dystrophin deficiency. Loss of dystrophin results in disruption of a large dystrophin glycoprotein complex, leading to pathological calcium (Ca2+)-dependent signals that damage muscle cells. We have identified a structural and functional defect in the ryanodine receptor (RyR1), a sarcoplasmic reticulum Ca2+ release channel, in the mdx mouse model of muscular dystrophy that contributes to altered Ca2+ homeostasis in dystrophic muscles. RyR1 isolated from mdx skeletal muscle showed an age-dependent increase in S-nitrosylation coincident with dystrophic changes in the muscle. RyR1 S-nitrosylation depleted the channel complex of FKBP12 (also known as calstabin-1, for calcium channel stabilizing binding protein), resulting in 'leaky' channels. Preventing calstabin-1 depletion from RyR1 with S107, a compound that binds the RyR1 channel and enhances the binding affinity of calstabin-1 to the nitrosylated channel, inhibited sarcoplasmic reticulum Ca2+ leak, reduced biochemical and histological evidence of muscle damage, improved muscle function and increased exercise performance in mdx mice. On the basis of these findings, we propose that sarcoplasmic reticulum Ca2+ leak via RyR1 due to S-nitrosylation of the channel and calstabin-1 depletion contributes to muscle weakness in muscular dystrophy, and that preventing the RyR1-mediated sarcoplasmic reticulum Ca2+ leak may provide a new therapeutic approach.

  12. Activation of protein kinase C inhibits calcium-activated potassium channels in rat pituitary tumour cells.

    PubMed Central

    Shipston, M J; Armstrong, D L

    1996-01-01

    1. The regulation of large-conductance, calcium- and voltage-dependent potassium (BK) channels by protein kinase C (PKC) was investigated in clonal rat anterior pituitary cells (GH4C1), which were voltage clamped at -40 mV in a physiological potassium gradient through amphotericin-perforated patches. 2. Maximal activation of PKC by 100 nM phorbol 12, 13-dibutyrate (PdBu) almost completely inhibited the voltage-activated outward current through BK channels. In contrast PdBu had no significant effect on the residual outward current after block of BK channels with 2 mM TEA or 30 nM charybdotoxin. In single-channel recordings from cell-attached patches, PdBu reduced the open probability of BK channels more than eightfold with no significant effect on mean open lifetime or unitary conductance. 3. The effects of PdBu on BK channels were not mimicked by the 4 alpha-isomer, which does not activate PKC, and were blocked almost completely by 25 microM chelerythrine, a specific, noncompetitive PKC inhibitor. 4. PdBu had no significant effect on the amplitude of the pharmacologically isolated, high voltage-activated calcium current. 5. Inhibition of BK channel activity by PKC provides the first molecular mechanism linking hormonal activation of phospholipase C to sustained excitability in pituitary cells. PMID:8799890

  13. New 1,4-dihydropyridines endowed with NO-donor and calcium channel agonist properties.

    PubMed

    Visentin, Sonja; Rolando, Barbara; Di Stilo, Antonella; Fruttero, Roberta; Novara, Monica; Carbone, Emilio; Roussel, Christian; Vanthuyne, Nicolas; Gasco, Alberto

    2004-05-06

    A new series of calcium channel agonists structurally related to Bay K8644, containing NO donor furoxans and the related furazans unable to release NO, is described. The racemic mixtures were studied for their action on L-type Ca(2+) channels expressed in cultured rat insulinoma RINm5F cells. All the products proved to be potent calcium channel agonists. All the racemic mixtures, with the only exception of the carbamoyl derivatives 9, 12 endowed with scanty solubility, were separated by chiral chromatography into the corresponding enantiomers; the (+) enantiomers were found to be potent agonists while the (-) ones were feeble antagonists. The racemic mixtures were also assessed for their positive inotropic activity on electrically stimulated rat papillary muscle and for their ability to increase Ca(2+) entry into the vascular smooth muscle of rat aorta strips. The cyanofuroxan 8 proved to be an interesting product with dual Ca(2+)-dependent positive inotropic and NO-dependent vasodilating activity.

  14. P-type calcium channels are blocked by the alkaloid daurisoline.

    PubMed

    Lu, Y M; Fröstl, W; Dreessen, J; Knöpfel, T

    1994-07-21

    IN looking for a structurally defined non-peptide P-channel blocker we have tested the alkaloid daurisoline which has been isolated from traditional Chinese medicinal herb (Menispermum dauricum) used for the treatment of epilepsy, hypertension and asthma. We have found that daurisoline is an inhibitor of omega-Aga-IVA sensitive barium currents in cerebellar Purkinje cells and of excitatory postsynaptic potentials evoked in Purkinje cells by stimulating parallel fibres in acutely prepared cerebellar slices. Daurisoline did not significantly affect omega-Aga-IVA-insensitive barium currents recorded from granule cells freshly isolated from rat cerebellum. Daurisoline passes the blood-brain barrier and will, therefore, facilitate the functional characterization of brain calcium channels as well as the exploration of P-type calcium channels as possible drug targets.

  15. Reporting sodium channel activity using calcium flux: pharmacological promiscuity of cardiac Nav1.5.

    PubMed

    Zhang, Hongkang; Zou, Beiyan; Du, Fang; Xu, Kaiping; Li, Min

    2015-02-01

    Voltage-gated sodium (Nav) channels are essential for membrane excitability and represent therapeutic targets for treating human diseases. Recent reports suggest that these channels, e.g., Nav1.3 and Nav1.5, are inhibited by multiple structurally distinctive small molecule drugs. These studies give reason to wonder whether these drugs collectively target a single site or multiple sites in manifesting such pharmacological promiscuity. We thus investigate the pharmacological profile of Nav1.5 through systemic analysis of its sensitivity to diverse compound collections. Here, we report a dual-color fluorescent method that exploits a customized Nav1.5 [calcium permeable Nav channel, subtype 5 (SoCal5)] with engineered-enhanced calcium permeability. SoCal5 retains wild-type (WT) Nav1.5 pharmacological profiles. WT SoCal5 and SoCal5 with the local anesthetics binding site mutated (F1760A) could be expressed in separate cells, each with a different-colored genetically encoded calcium sensor, which allows a simultaneous report of compound activity and site dependence. The pharmacological profile of SoCal5 reveals a hit rate (>50% inhibition) of around 13% at 10 μM, comparable to that of hERG. The channel activity is susceptible to blockage by known drugs and structurally diverse compounds. The broad inhibition profile is highly dependent on the F1760 residue in the inner cavity, which is a residue conserved among all nine subtypes of Nav channels. Both promiscuity and dependence on F1760 seen in Nav1.5 were replicated in Nav1.4. Our evidence of a broad inhibition profile of Nav channels suggests a need to consider off-target effects on Nav channels. The site-dependent promiscuity forms a foundation to better understand Nav channels and compound interactions.

  16. The C. elegans T-type calcium channel CCA-1 boosts neuromuscular transmission.

    PubMed

    Steger, Katherine A; Shtonda, Boris B; Thacker, Colin; Snutch, Terrance P; Avery, Leon

    2005-06-01

    Low threshold-activated or T-type calcium channels are postulated to mediate a variety of bursting and rhythmic electrical firing events. However, T-type channels' exact physiological contributions have been difficult to assess because of their incompletely defined pharmacology and the difficulty in isolating T-type currents from more robust high threshold calcium currents. A current in C. elegans pharyngeal muscle displays the kinetic features of a T-type calcium channel and is absent in animals homozygous for mutations at the cca-1 locus (see accompanying paper). cca-1 is expressed in pharyngeal muscle and encodes a protein (CCA-1) with strong homology to the alpha1 subunits of vertebrate T-type channels. We show that CCA-1 plays a critical role at the pharyngeal neuromuscular junction, permitting the efficient initiation of action potentials in response to stimulation by the MC motor neuron. Loss of cca-1 function decreases the chance that excitatory input from MC will successfully trigger an action potential, and reduces the ability of an animal to take in food. Intracellular voltage recordings demonstrate that when wild-type cca-1 is absent, the depolarizing phase of the pharyngeal action potential tends to plateau or stall near -30 mV, the voltage at which the CCA-1 channel is likely to be activated. We conclude that the CCA-1 T-type calcium channel boosts the excitatory effect of synaptic input, allowing for reliable and rapid depolarization and contraction of the pharyngeal muscle. We also show that the pharyngeal muscle employs alternative strategies for initiating action potentials in certain cases of compromised MC motor neuron function.

  17. N-type calcium channel inactivation probed by gating-current analysis.

    PubMed Central

    Jones, L P; DeMaria, C D; Yue, D T

    1999-01-01

    N-type calcium channels inactivate most rapidly in response to moderate, not extreme depolarization. This behavior reflects an inactivation rate that bears a U-shaped dependence on voltage. Despite this apparent similarity to calcium-dependent inactivation, N-type channel inactivation is insensitive to the identity of divalent charge carrier and, in some reports, to the level of internal buffering of divalent cations. Hence, the inactivation of N-type channels fits poorly with the "classic" profile for either voltage-dependent or calcium-dependent inactivation. To investigate this unusual inactivation behavior, we expressed recombinant N-type calcium channels in mammalian HEK 293 cells, permitting in-depth correlation of ionic current inactivation with potential alterations of gating current properties. Such correlative measurements have been particularly useful in distinguishing among various inactivation mechanisms in other voltage-gated channels. Our main results are the following: 1) The degree of gating charge immobilization was unchanged by the block of ionic current and precisely matched by the extent of ionic current inactivation. These results argue for a purely voltage-dependent mechanism of inactivation. 2) The inactivation rate was fastest at a voltage where only approximately (1)/(3) of the total gating charge had moved. This unusual experimental finding implies that inactivation occurs most rapidly from intermediate closed conformations along the activation pathway, as we demonstrate with novel analytic arguments applied to coupled-inactivation schemes. These results provide strong, complementary support for a "preferential closed-state" inactivation mechanism, recently proposed on the basis of ionic current measurements of recombinant N-type channels (Patil et al., . Neuron. 20:1027-1038). PMID:10233069

  18. Isolated human uterine telocytes: immunocytochemistry and electrophysiology of T-type calcium channels.

    PubMed

    Cretoiu, Sanda Maria; Radu, Beatrice Mihaela; Banciu, Adela; Banciu, Daniel Dumitru; Cretoiu, Dragos; Ceafalan, Laura Cristina; Popescu, Laurentiu Mircea

    2015-01-01

    Recently, telocytes (TCs) were described as a new cell type in the interstitial space of many organs, including myometrium. TCs are cells with very long, distinctive extensions named telopodes (Tps). It is suggested that TCs play a major role in intercellular signaling, as well as in morphogenesis, especially in morphogenetic bioelectrical signaling. However, TC plasma membrane is yet unexplored regarding the presence and activity of ion channels and pumps. Here, we used a combination of in vitro immunofluorescence and patch-clamp technique to characterize T-type calcium channels in TCs. Myometrial TCs were identified in cell culture (non-pregnant and pregnant myometrium) as cells having very long Tps and which were positive for CD34 and platelet-derived growth factor receptor-α. Immunofluorescence analysis of the subfamily of T-type (transient) calcium channels CaV3.1 and CaV3.2 presence revealed the expression of these ion channels on the cell body and Tps of non-pregnant and pregnant myometrium TCs. The expression in TCs from the non-pregnant myometrium is less intense, being confined to the cell body for CaV3.2, while CaV3.1 was expressed both on the cell body and in Tps. Moreover, the presence of T-type calcium channels in TCs from non-pregnant myometrium is also confirmed by applying brief ramp depolarization protocols. In conclusion, our results show that T-type calcium channels are present in TCs from human myometrium and could participate in the generation of endogenous bioelectric signals responsible for the regulation of the surrounding cell behavior, during pregnancy and labor.

  19. The mechanism of calcium channel facilitation in bovine chromaffin cells.

    PubMed Central

    Albillos, A; Gandía, L; Michelena, P; Gilabert, J A; del Valle, M; Carbone, E; García, A G

    1996-01-01

    1. This study was planned to clarify the mechanism of Ca2+ channel facilitation by depolarizing prepulses given to voltage-clamped bovine chromaffin cells. The hypothesis for an autocrine modulation of such channels was tested by studying the effects of a soluble vesicle lysate (SVL) on whole-cell Ba2+ currents (IBa). 2. SVL was prepared from a bovine adrenal medullary homogenate. The ATP content in this concentrated SVL amounted to 3.18 +/- 0.12 mM (n = 4). The concentration of noradrenaline and adrenaline present in the SVL was 11.2 +/- 0.97 and 15.2 +/- 2 mM, respectively (n = 5). A 1:1000 dilution of SVL in the external solution halved the magnitude of IBa and produced a 7-fold slowing of its activation kinetics. The blocking effects of SVL were concentration dependent and quickly reversed upon washout. 3. Inhibition and slowing of the kinetics of IBa by SVL could be partially reversed by strong depolarizing prepulses (+90 mV, 45 ms). This reversal of inhibition, called Ca2+ channel facilitation, persisted in the presence of 3 microM nifedipine. 4. Intracellular dialysis of GDP-beta-S (0.5 mM) or pretreatment of the cells with pertussis toxin (100 ng ml-1 for 18-24 h) prevented the reduction in peak current caused by a 1:100 dilution of SVL; no prepulse facilitation could be observed under these conditions. 5. The receptor blockers naloxone (10 microM) or suramin (100 microM) and PPADS (100 microM) largely antagonized the effects of SVL. Treatment of SVL with alkaline phosphatase or dialysis against a saline buffer to remove low molecular mass materials (< 10 kDa) considerably reduced the activity of SVL. 6. Stopping the flow of the external solution (10 mM Ba2+) gradually reduced the size, and slowed down the activation phase, of the current. Prepulse facilitation of IBa was absent or weak in a superfused cell, but was massive upon flow-stop conditions in the presence or absence of 3 microM nifedipine. 7. Our experiments suggest that facilitation by prepulses

  20. Inhibition of recombinant human T-type calcium channels by Delta9-tetrahydrocannabinol and cannabidiol.

    PubMed

    Ross, Hamish Redmond; Napier, Ian; Connor, Mark

    2008-06-06

    Delta(9)-Tetrahydrocannabinol (THC) and cannabidiol (CBD) are the most prevalent biologically active constituents of Cannabis sativa. THC is the prototypic cannabinoid CB1 receptor agonist and is psychoactive and analgesic. CBD is also analgesic, but it is not a CB1 receptor agonist. Low voltage-activated T-type calcium channels, encoded by the Ca(V)3 gene family, regulate the excitability of many cells, including neurons involved in nociceptive processing. We examined the effects of THC and CBD on human Ca(V)3 channels stably expressed in human embryonic kidney 293 cells and T-type channels in mouse sensory neurons using whole-cell, patch clamp recordings. At moderately hyperpolarized potentials, THC and CBD inhibited peak Ca(V)3.1 and Ca(V)3.2 currents with IC(50) values of approximately 1 mum but were less potent on Ca(V)3.3 channels. THC and CBD inhibited sensory neuron T-type channels by about 45% at 1 mum. However, in recordings made from a holding potential of -70 mV, 100 nm THC or CBD inhibited more than 50% of the peak Ca(V)3.1 current. THC and CBD produced a significant hyperpolarizing shift in the steady state inactivation potentials for each of the Ca(V)3 channels, which accounts for inhibition of channel currents. Additionally, THC caused a modest hyperpolarizing shift in the activation of Ca(V)3.1 and Ca(V)3.2. THC but not CBD slowed Ca(V)3.1 and Ca(V)3.2 deactivation and inactivation kinetics. Thus, THC and CBD inhibit Ca(V)3 channels at pharmacologically relevant concentrations. However, THC, but not CBD, may also increase the amount of calcium entry following T-type channel activation by stabilizing open states of the channel.

  1. Inhibition of Recombinant Human T-type Calcium Channels by Δ9-Tetrahydrocannabinol and Cannabidiol*

    PubMed Central

    Ross, Hamish Redmond; Napier, Ian; Connor, Mark

    2008-01-01

    Δ9-Tetrahydrocannabinol (THC) and cannabidiol (CBD) are the most prevalent biologically active constituents of Cannabis sativa. THC is the prototypic cannabinoid CB1 receptor agonist and is psychoactive and analgesic. CBD is also analgesic, but it is not a CB1 receptor agonist. Low voltage-activated T-type calcium channels, encoded by the CaV3 gene family, regulate the excitability of many cells, including neurons involved in nociceptive processing. We examined the effects of THC and CBD on human CaV3 channels stably expressed in human embryonic kidney 293 cells and T-type channels in mouse sensory neurons using whole-cell, patch clamp recordings. At moderately hyperpolarized potentials, THC and CBD inhibited peak CaV3.1 and CaV3.2 currents with IC50 values of ∼1 μm but were less potent on CaV3.3 channels. THC and CBD inhibited sensory neuron T-type channels by about 45% at 1 μm. However, in recordings made from a holding potential of -70 mV, 100 nm THC or CBD inhibited more than 50% of the peak CaV3.1 current. THC and CBD produced a significant hyperpolarizing shift in the steady state inactivation potentials for each of the CaV3 channels, which accounts for inhibition of channel currents. Additionally, THC caused a modest hyperpolarizing shift in the activation of CaV3.1 and CaV3.2. THC but not CBD slowed CaV3.1 and CaV3.2 deactivation and inactivation kinetics. Thus, THC and CBD inhibit CaV3 channels at pharmacologically relevant concentrations. However, THC, but not CBD, may also increase the amount of calcium entry following T-type channel activation by stabilizing open states of the channel. PMID:18390906

  2. Diffusion around a cardiac calcium channel and the role of surface bound calcium.

    PubMed Central

    Bers, D M; Peskoff, A

    1991-01-01

    The diffusion of Ca as it converges to the external mouth of a Ca channel is examined. Diffusional limitation on Ca ions entering Ca channels during current flow, cause local extracellular Ca depletions. Such extracellular Ca depletions have been reported in cardiac muscle. The cardiac sarcolemma has a large number of low-affinity Ca binding sites that can buffer these local Ca depletions. For a hemisphere of extracellular space (of radius less than 0.33 microns) centered on the external mouth of a Ca channel the amount of Ca bound at the membrane surface exceeds that which is free within the associated hemisphere. The ratio of bound Ca/free Ca increases as r decreases, such that the [Ca] nearest the Ca channel is the most strongly buffered by sarcolemmal bound Ca. It is demonstrated that Ca ions coming from these sarcolemmal Ca binding sites contribute quantitatively to the integrated Ca current. The electric field generated by the local depletion of Ca near the channel mouth has little impact on the extent of Ca depletion, but if an additional electric field exists at the mouth of the channel, Ca depletion can be significantly altered. Other low-affinity Ca binding sites in the interstitium may also contribute to the buffering of extracellular Ca. The complex geometry of the extracellular space in cardiac muscle (e.g., transverse tubules and restrictions of extracellular space between cells) increases both the predicted Ca depletions (in the absence of binding) and the bound/free ratio. Thus, the impact of this surface Ca binding is greatly increased. By considering arrays of Ca channels in transverse tubules or in parallel planes (e.g., membranes of neighboring cells), extracellular Ca depletions are predicted which agree with those measured experimentally. Membrane Ca binding may also be expected to buffer increases in [Ca] around the inner mouth of Ca channels. It is demonstrated that in the absence of other intracellular systems most of the Ca entering the

  3. Tunable Calcium Current through TRPV1 Receptor Channels*S⃞

    PubMed Central

    Samways, Damien S. K.; Khakh, Baljit S.; Egan, Terrance M.

    2008-01-01

    TRPV1 receptors are polymodal cation channels that open in response to diverse stimuli including noxious heat, capsaicin, and protons. Because Ca2+ is vital for TRPV1 signaling, we sought to precisely measure its contribution to TRPV1 responses and discovered that the Ca2+ current was tuned by the mode of activation. Using patch clamp photometry, we found that the fraction of the total current carried by Ca2+ (called the Pf%) was significantly smaller for TRPV1 currents evoked by protons than for those evoked by capsaicin. Using site-directed mutagenesis, we discovered that the smaller Pf% was due to protonation of three acidic amino acids (Asp646, Glu648, and Glu651) that are located in the mouth of the pore. Thus, in keeping with recent reports of time-dependent changes in the ionic permeability of some ligand-gated ion channels, we now show for the first time that the physiologically important Ca2+ current of the TRPV1 receptor is also dynamic and depends on the mode of activation. This current is significantly smaller when the receptor is activated by a change in pH, owing to atomic scale interactions of H+ and Ca2+ with the fixed negative charge of side chains in the pore. PMID:18775990

  4. The calcium channel blocker verapamil inhibits oxidative stress response in Candida albicans.

    PubMed

    Yu, Qilin; Xiao, Chenpeng; Zhang, Kailun; Jia, Chang; Ding, Xiaohui; Zhang, Bing; Wang, Yu; Li, Mingchun

    2014-04-01

    Candida albicans is a common opportunistic fungal pathogen, causing both superficial candidiasis and life-threatening systemic infections in immune-compromised individuals. Calcium signaling is responsible for this pathogen in responding to several stresses, such as antifungal drugs, alkaline pH and membrane-perturbing agents. Our recent study revealed that it is also involved in oxidative stress response. In this study, we investigated the effect of verapamil, an L-type voltage-gated calcium channel blocker, on oxidative stress response in this fungus. The addition of verapamil resulted in increased sensitivity to the oxidative agent H2O2, which is associated with a decrease of calcium fluctuation under the stress. Moreover, this agent caused enhanced oxidative stress, with increased levels of ROS and enhanced dysfunction of the mitochondria under the oxidative stress. Further investigations in SOD activity, GSH contents and expression of oxidative stress response-related genes indicated that the effect of verapamil is related to the repression of oxidative stress response. Our findings demonstrated that verapamil has an inhibitory effect on oxidative stress response, confirming the relationship between calcium signaling and oxidative stress in C. albicans. Therefore, calcium channels may be potential targets for therapy to enhance the efficacy of oxidative stress against C. albicans-related infections.

  5. Neuronal calcium channel antagonists. Discrimination between calcium channel subtypes using omega-conotoxin from Conus magus venom

    SciTech Connect

    Olivera, B.M.; Cruz, L.J.; de Santos, V.; LeCheminant, G.W.; Griffin, D.; Zeikus, R.; McIntosh, M.; Galyean, R.; Varga, J.; Gray, W.R.; Rivier, J.

    1987-04-21

    The omega-conotoxins from the venom of fish-hunting cone snails are probably the most useful of presently available ligands for neuronal Ca channels from vertebrates. Two of these peptide toxins, omega-conotoxins MVIIA and MVIIB from the venom of Conus magus, were purified. The amino acid sequences show significant differences from omega-conotoxins from Conus geographus. Total synthesis of omega-conotoxin MVIIA was achieved, and biologically active radiolabeled toxin was produced by iodination. Although omega-conotoxins from C. geographus (GVIA) and C. magus (MVIIA) appear to compete for the same sites in mammalian brain, in amphibian brain the high-affinity binding of omega-conotoxin MVIIA has narrower specificity. In this system, it is demonstrated that a combination of two omega-conotoxins can be used for biochemically defining receptor subtypes and suggested that these correspond to subtypes of neutronal Ca/sup 2 +/ channels.

  6. Long-Chain Fatty Acids Activate Calcium Channels in Ventricular Myocytes

    NASA Astrophysics Data System (ADS)

    Huang, James Min-Che; Xian, Hu; Bacaner, Marvin

    1992-07-01

    Nonesterified fatty acids accumulate at sites of tissue injury and necrosis. In cardiac tissue the concentrations of oleic acid, arachidonic acid, leukotrienes, and other fatty acids increase greatly during ischemia due to receptor or nonreceptor-mediated activation of phospholipases and/or diminished reacylation. In ischemic myocardium, the time course of increase in fatty acids and tissue calcium closely parallels irreversible cardiac damage. We postulated that fatty acids released from membrane phospholipids may be involved in the increase of intracellular calcium. We report here that low concentrations (3-30 μM) of each long-chain unsaturated (oleic, linoleic, linolenic, and arachidonic) and saturated (palmitic, stearic, and arachidic) fatty acid tested induced multifold increases in voltage-dependent calcium currents (ICa) in cardiac myocytes. In contrast, neither short-chain fatty acids (<12 carbons) or fatty acid esters (oleic and palmitic methyl esters) had any effect on ICa, indicating that activation of calcium channels depended on chain length and required a free carboxyl group. Inhibition of protein kinases C and A, G proteins, eicosanoid production, or nonenzymatic oxidation did not block the fatty acid-induced increase in ICa. Thus, long-chain fatty acids appear to directly activate ICa, possibly by acting at some lipid sites near the channels or directly on the channel protein itself. We suggest that the combined effects of fatty acids released during ischemia on ICa may contribute to ischemia-induced pathogenic events on the heart that involve calcium, such as arrhythmias, conduction disturbances, and myocardial damage due to cytotoxic calcium overload.

  7. Single-channel Analysis and Calcium Imaging in the Podocytes of the Freshly Isolated Glomeruli.

    PubMed

    Ilatovskaya, Daria V; Palygin, Oleg; Levchenko, Vladislav; Staruschenko, Alexander

    2015-06-27

    Podocytes (renal glomerular epithelial cells) are known to regulate glomerular permeability and maintain glomerular structure; a key role for these cells in the pathogenesis of various renal diseases has been established since podocyte injury leads to proteinuria and foot process effacement. It was previously reported that various endogenous agents may cause a dramatic overload in intracellular Ca(2+) concentration in podocytes, presumably leading to albuminuria, and this likely occurs via calcium-conducting ion channels. Therefore, it appeared important to study calcium handling in the podocytes both under normal conditions and in various pathological states. However, available experimental approaches have remained somewhat limited to cultured and transfected cells. Although they represent a good basic model for such studies, they are essentially extracted from the native environment of the glomerulus. Here we describe the methodology of studying podocytes as a part of the freshly isolated whole glomerulus. This preparation retains the functional potential of the podocytes, which are still attached to the capillaries; therefore, podocytes remain in the environment that conserves the major parts of the glomeruli filtration apparatus. The present manuscript elaborates on two experimental approaches that allow 1) real-time detection of calcium concentration changes with the help of ratiometric confocal fluorescence microscopy, and 2) the recording of the single ion channels activity in the podocytes of the freshly isolated glomeruli. These methodologies utilize the advantages of the native environment of the glomerulus that enable researchers to resolve acute changes in the intracellular calcium handling in response to applications of various agents, measure basal concentration of calcium within the cells (for instance, to evaluate disease progression), and assess and manipulate calcium conductance at the level of single ion channels.

  8. Single-channel Analysis and Calcium Imaging in the Podocytes of the Freshly Isolated Glomeruli

    PubMed Central

    Ilatovskaya, Daria V.; Palygin, Oleg; Levchenko, Vladislav; Staruschenko, Alexander

    2015-01-01

    Podocytes (renal glomerular epithelial cells) are known to regulate glomerular permeability and maintain glomerular structure; a key role for these cells in the pathogenesis of various renal diseases has been established since podocyte injury leads to proteinuria and foot process effacement. It was previously reported that various endogenous agents may cause a dramatic overload in intracellular Ca2+ concentration in podocytes, presumably leading to albuminuria, and this likely occurs via calcium-conducting ion channels. Therefore, it appeared important to study calcium handling in the podocytes both under normal conditions and in various pathological states. However, available experimental approaches have remained somewhat limited to cultured and transfected cells. Although they represent a good basic model for such studies, they are essentially extracted from the native environment of the glomerulus. Here we describe the methodology of studying podocytes as a part of the freshly isolated whole glomerulus. This preparation retains the functional potential of the podocytes, which are still attached to the capillaries; therefore, podocytes remain in the environment that conserves the major parts of the glomeruli filtration apparatus. The present manuscript elaborates on two experimental approaches that allow 1) real-time detection of calcium concentration changes with the help of ratiometric confocal fluorescence microscopy, and 2) the recording of the single ion channels activity in the podocytes of the freshly isolated glomeruli. These methodologies utilize the advantages of the native environment of the glomerulus that enable researchers to resolve acute changes in the intracellular calcium handling in response to applications of various agents, measure basal concentration of calcium within the cells (for instance, to evaluate disease progression), and assess and manipulate calcium conductance at the level of single ion channels. PMID:26167808

  9. L-Type Calcium Channels Are Required for One Form of Hippocampal Mossy Fiber LTP

    PubMed Central

    Kapur, Ajay; Yeckel, Mark F.; Gray, Richard; Johnston, Daniel

    2010-01-01

    The requirement of postsynaptic calcium influx via L-type channels for the induction of long-term potentiation (LTP) of mossy fiber input to CA3 pyramidal neurons was tested for two different patterns of stimulation. Two types of LTP-inducing stimuli were used based on the suggestion that one of them, brief high-frequency stimulation (B-HFS), induces LTP postsynaptically, whereas the other pattern, long high-frequency stimulation (L-HFS), induces mossy fiber LTP presynaptically. To test whether or not calcium influx into CA3 pyramidal neurons is necessary for LTP induced by either pattern of stimulation, nimodipine, a L-type calcium channel antagonist, was added during stimulation. In these experiments nimodipine blocked the induction of mossy fiber LTP when B-HFS was given [34 ± 5% (mean ± SE) increase in control versus 7 ± 4% in nimodipine, P < 0.003]; in contrast, nimodipine did not block the induction of LTP with L-HFS (107 ± 10% in control vs. 80 ± 9% in nimodipine, P > 0.05). Administration of nimodipine after the induction of LTP had no effect on the expression of LTP. In addition, B- and L-HFS delivered directly to commissural/ associational fibers in stratum radiatum failed to induce a N-methyl-d-aspartate-independent form of LTP, obviating the possibility that the presumed mossy fiber LTP resulted from potentiation of other synapses. Nimodipine had no effect on calcium transients recorded from mossy fiber presynaptic terminals evoked with the B-HFS paradigm but reduced postsynaptic calcium transients. Our results support the hypothesis that induction of mossy fiber LTP by B-HFS is mediated postsynaptically and requires entry of calcium through L-type channels into CA3 neurons. PMID:9535977

  10. Does calcium channel blockade have a role in prevention of expression of sepsis in renal transplant recipients?

    PubMed Central

    D’Elia, John A; Gleason, Ray E; Monaco, Anthony P; Weinrauch, Larry A

    2016-01-01

    Many antihypertensive agents have been demonstrated to assist in preservation of kidney function, among them those that modulate calcium channels. Calcium channel blockers may also be of value in protecting hemodialysis patients from complications of sepsis. In diabetic recipients of kidney transplant allografts treated with cyclosporine, calcium channel blockade has been retrospectively linked to improved graft preservation and to fewer episodes of sepsis. This brief review outlines clinical and experimental publications on potential protection from sepsis by addition of calcium channel blockers to standard antibiotic therapy in individuals who may or may not have normal kidney function, or in the presence or absence of immunosuppression. Such mechanisms include blockade of antibiotic cytosolic extrusion in the cases of Pneumococci, Mycobacterium tuberculosis, Plasmodium falciparum malaria, or Schistosoma mansoni; blockade of the calcineurin/calmodulin pathway (in immunosuppressed patients allowing for lower dosage of cyclosporine); stabilization of calcium movement at the level of sarcoplasmic reticulum by which shock (vasopressor instability) is prevented; or of cytosolic calcium influx and cell death (in the case of allograft acute tubular necrosis). Given the high cost of development of new antibiotics, a role for generic calcium channel blockade in sepsis prevention should be pursued by additional studies to investigate potential links between blockade of calcium channels and expression of sepsis in at-risk populations. PMID:27920569

  11. Zebrafish CaV2.1 Calcium Channels Are Tailored for Fast Synchronous Neuromuscular Transmission

    PubMed Central

    Naranjo, David; Wen, Hua; Brehm, Paul

    2015-01-01

    The CaV2.2 (N-type) and CaV2.1 (P/Q-type) voltage-dependent calcium channels are prevalent throughout the nervous system where they mediate synaptic transmission, but the basis for the selective presence at individual synapses still remains an open question. The CaV2.1 channels have been proposed to respond more effectively to brief action potentials (APs), an idea supported by computational modeling. However, the side-by-side comparison of CaV2.1 and CaV2.2 kinetics in intact neurons failed to reveal differences. As an alternative means for direct functional comparison we expressed zebrafish CaV2.1 and CaV2.2 α-subunits, along with their accessory subunits, in HEK293 cells. HEK cells lack calcium currents, thereby circumventing the need for pharmacological inhibition of mixed calcium channel isoforms present in neurons. HEK cells also have a simplified morphology compared to neurons, which improves voltage control. Our measurements revealed faster kinetics and shallower voltage-dependence of activation and deactivation for CaV2.1. Additionally, recordings of calcium current in response to a command waveform based on the motorneuron AP show, directly, more effective activation of CaV2.1. Analysis of calcium currents associated with the AP waveform indicate an approximately fourfold greater open probability (PO) for CaV2.1. The efficient activation of CaV2.1 channels during APs may contribute to the highly reliable transmission at zebrafish neuromuscular junctions. PMID:25650925

  12. SLO3 K+ channels control calcium entry through CATSPER channels in sperm.

    PubMed

    Chávez, Julio César; Ferreira, Juan José; Butler, Alice; De La Vega Beltrán, José Luis; Treviño, Claudia L; Darszon, Alberto; Salkoff, Lawrence; Santi, Celia M

    2014-11-14

    Here we show how a sperm-specific potassium channel (SLO3) controls Ca(2+) entry into sperm through a sperm-specific Ca(2+) channel, CATSPER, in a totally unanticipated manner. The genetic deletion of either of those channels confers male infertility in mice. During sperm capacitation SLO3 hyperpolarizes the sperm, whereas CATSPER allows Ca(2+) entry. These two channels may be functionally connected, but it had not been demonstrated that SLO3-dependent hyperpolarization is required for Ca(2+) entry through CATSPER channels, nor has a functional mechanism linking the two channels been shown. In this study we show that Ca(2+) entry through CATSPER channels is deficient in Slo3 mutant sperm lacking hyperpolarization; we also present evidence supporting the hypothesis that SLO3 channels activate CATSPER channels indirectly by promoting a rise in intracellular pH through a voltage-dependent mechanism. This mechanism may work through a Na(+)/H(+) exchanger (sNHE) and/or a bicarbonate transporter, which utilizes the inward driving force of the Na(+) gradient, rendering it intrinsically voltage-dependent. In addition, the sperm-specific Na(+)/H(+) exchanger (sNHE) possess a putative voltage sensor that might be activated by membrane hyperpolarization, thus increasing the voltage sensitivity of internal alkalization.

  13. Molecular Interactions between Tarantula Toxins and Low-Voltage-Activated Calcium Channels.

    PubMed

    Salari, Autoosa; Vega, Benjamin S; Milescu, Lorin S; Milescu, Mirela

    2016-04-05

    Few gating-modifier toxins have been reported to target low-voltage-activated (LVA) calcium channels, and the structural basis of toxin sensitivity remains incompletely understood. Studies of voltage-gated potassium (Kv) channels have identified the S3b-S4 "paddle motif," which moves at the protein-lipid interface to drive channel opening, as the target for these amphipathic neurotoxins. Voltage-gated calcium (Cav) channels contain four homologous voltage sensor domains, suggesting multiple toxin binding sites. We show here that the S3-S4 segments within Cav3.1 can be transplanted into Kv2.1 to examine their individual contributions to voltage sensing and pharmacology. With these results, we now have a more complete picture of the conserved nature of the paddle motif in all three major voltage-gated ion channel types (Kv, Nav, and Cav). When screened with tarantula toxins, the four paddle sequences display distinct toxin binding properties, demonstrating that gating-modifier toxins can bind to Cav channels in a domain specific fashion. Domain III was the most commonly and strongly targeted, and mutagenesis revealed an acidic residue that is important for toxin binding. We also measured the lipid partitioning strength of all toxins tested and observed a positive correlation with their inhibition of Cav3.1, suggesting a key role for membrane partitioning.

  14. Molecular Interactions between Tarantula Toxins and Low-Voltage-Activated Calcium Channels

    PubMed Central

    Salari, Autoosa; Vega, Benjamin S.; Milescu, Lorin S.; Milescu, Mirela

    2016-01-01

    Few gating-modifier toxins have been reported to target low-voltage-activated (LVA) calcium channels, and the structural basis of toxin sensitivity remains incompletely understood. Studies of voltage-gated potassium (Kv) channels have identified the S3b–S4 “paddle motif,” which moves at the protein-lipid interface to drive channel opening, as the target for these amphipathic neurotoxins. Voltage-gated calcium (Cav) channels contain four homologous voltage sensor domains, suggesting multiple toxin binding sites. We show here that the S3–S4 segments within Cav3.1 can be transplanted into Kv2.1 to examine their individual contributions to voltage sensing and pharmacology. With these results, we now have a more complete picture of the conserved nature of the paddle motif in all three major voltage-gated ion channel types (Kv, Nav, and Cav). When screened with tarantula toxins, the four paddle sequences display distinct toxin binding properties, demonstrating that gating-modifier toxins can bind to Cav channels in a domain specific fashion. Domain III was the most commonly and strongly targeted, and mutagenesis revealed an acidic residue that is important for toxin binding. We also measured the lipid partitioning strength of all toxins tested and observed a positive correlation with their inhibition of Cav3.1, suggesting a key role for membrane partitioning. PMID:27045173

  15. Ryanodine receptor/calcium release channel PKA phosphorylation: a critical mediator of heart failure progression.

    PubMed

    Wehrens, Xander H T; Lehnart, Stephan E; Reiken, Steven; Vest, John A; Wronska, Anetta; Marks, Andrew R

    2006-01-17

    Defective regulation of the cardiac ryanodine receptor (RyR2)/calcium release channel, required for excitation-contraction coupling in the heart, has been linked to cardiac arrhythmias and heart failure. For example, diastolic calcium "leak" via RyR2 channels in the sarcoplasmic reticulum has been identified as an important factor contributing to impaired contractility in heart failure and ventricular arrhythmias that cause sudden cardiac death. In patients with heart failure, chronic activation of the "fight or flight" stress response leads to protein kinase A (PKA) hyperphosphorylation of RyR2 at Ser-2808. PKA phosphorylation of RyR2 Ser-2808 reduces the binding affinity of the channel-stabilizing subunit calstabin2, resulting in leaky RyR2 channels. We developed RyR2-S2808A mice to determine whether Ser-2808 is the functional PKA phosphorylation site on RyR2. Furthermore, mice in which the RyR2 channel cannot be PKA phosphorylated were relatively protected against the development of heart failure after myocardial infarction. Taken together, these data show that PKA phosphorylation of Ser-2808 on the RyR2 channel appears to be a critical mediator of progressive cardiac dysfunction after myocardial infarction.

  16. Peptide Neurotoxins that Affect Voltage-Gated Calcium Channels: A Close-Up on ω-Agatoxins

    PubMed Central

    Pringos, Emilie; Vignes, Michel; Martinez, Jean; Rolland, Valerie

    2011-01-01

    Peptide neurotoxins found in animal venoms have gained great interest in the field of neurotransmission. As they are high affinity ligands for calcium, potassium and sodium channels, they have become useful tools for studying channel structure and activity. Peptide neurotoxins represent the clinical potential of ion-channel modulators across several therapeutic fields, especially in developing new strategies for treatment of ion channel-related diseases. The aim of this review is to overview the latest updates in the domain of peptide neurotoxins that affect voltage-gated calcium channels, with a special focus on ω-agatoxins. PMID:22069688

  17. Management of beta-adrenergic blocker and calcium channel antagonist toxicity.

    PubMed

    Kerns, William

    2007-05-01

    State-of-the-art therapy for beta-adrenergic receptor blocker and calcium channel antagonist toxicity is reviewed in the light of new insights into drug-induced shock. A brief discussion of pathophysiology, including cardiac, hemodynamic, and metabolic effects of cardiac drug toxicity, provides a foundation for understanding the basis of therapy. The major focus of this review is a critical evaluation of antidotal use of calcium, glucagon, catecholamines, insulin-euglycemia, and other novel therapies based on investigational studies and cumulative clinical experience.

  18. T-type calcium channel regulation by specific G-protein betagamma subunits.

    PubMed

    Wolfe, Joshua T; Wang, Hongge; Howard, Jason; Garrison, James C; Barrett, Paula Q

    2003-07-10

    Low-voltage-activated (LVA) T-type calcium channels have a wide tissue distribution and have well-documented roles in the control of action potential burst generation and hormone secretion. In neurons of the central nervous system and secretory cells of the adrenal and pituitary, LVA channels are inhibited by activation of G-protein-coupled receptors that generate membrane-delimited signals, yet these signals have not been identified. Here we show that the inhibition of alpha1H (Ca(v)3.2), but not alpha(1G) (Ca(v)3.1) LVA Ca2+ channels is mediated selectively by beta2gamma2 subunits that bind to the intracellular loop connecting channel transmembrane domains II and III. This region of the alpha1H channel is crucial for inhibition, because its replacement abrogates inhibition and its transfer to non-modulated alpha1G channels confers beta2gamma2-dependent inhibition. betagamma reduces channel activity independent of voltage, a mechanism distinct from the established betagamma-dependent inhibition of non-L-type high-voltage-activated channels of the Ca(v)2 family. These studies identify the alpha1H channel as a new effector for G-protein betagamma subunits, and highlight the selective signalling roles available for particular betagamma combinations.

  19. Nuclear BK Channels Regulate Gene Expression via the Control of Nuclear Calcium Signaling

    PubMed Central

    Li, Boxing; Jie, Wei; Huang, Lianyan; Wei, Peng; Li, Shuji; Luo, Zhengyi; Friedman, Allyson K.; Meredith, Andrea L.; Han, Ming-Hu; Zhu, Xin-Hong; Gao, Tian-Ming

    2014-01-01

    Ion channels are essential for the regulation of neuronal functions. The significance of plasma membrane, mitochondrial, endoplasmic reticulum, and lysosomal ion channels in the regulation of Ca2+ is well established. In contrast, surprisingly less is known about the function of ion channels on the nuclear envelope (NE). Here we demonstrate the presence of functional large-conductance, calcium-activated potassium channels (BK channels) on the NE of rodent hippocampal neurons. Functionally blockade of nuclear BK channels (nBK channels) induces NE-derived Ca2+ release, nucleoplasmic Ca2+ elevation, and cAMP response element binding protein (CREB)-dependent transcription. More importantly, blockade of nBK channels regulates nuclear Ca2+-sensitive gene expression and promotes dendritic arborization in a nuclear Ca2+-dependent manner. These results suggest that nBK channel functions as a molecular linker between neuronal activity and nuclear Ca2+ to convey the signals from synapse to nucleus and is a new modulator for synaptic activity-dependent neuronal functions at the NE level. PMID:24952642

  20. Fear conditioning suppresses large-conductance calcium-activated potassium channels in lateral amygdala neurons.

    PubMed

    Sun, P; Zhang, Q; Zhang, Y; Wang, F; Wang, L; Yamamoto, R; Sugai, T; Kato, N

    2015-01-01

    It was previously shown that depression-like behavior is accompanied with suppression of the large-conductance calcium activated potassium (BK) channel in cingulate cortex pyramidal cells. To test whether BK channels are also involved in fear conditioning, we studied neuronal properties of amygdala principal cells in fear conditioned mice. After behavior, we made brain slices containing the amygdala, the structure critically relevant to fear memory. The resting membrane potential in lateral amygdala (LA) neurons obtained from fear conditioned mice (FC group) was more depolarized than in neurons from naïve controls. The frequencies of spikes evoked by current injections were higher in neurons from FC mice, demonstrating that excitability of LA neurons was elevated by fear conditioning. The depolarization in neurons from FC mice was shown to depend on BK channels by using the BK channel blocker charybdotoxin. Suppression of BK channels in LA neurons from the FC group was further confirmed on the basis of the spike width, since BK channels affect the descending phase of spikes. Spikes were broader in the FC group than those in the naïve control in a manner dependent on BK channels. Consistently, quantitative real-time PCR revealed a decreased expression of BK channel mRNA. The present findings suggest that emotional disorder manifested in the forms of fear conditioning is accompanied with BK channel suppression in the amygdala, the brain structure critical to this emotional disorder.

  1. Enhanced currents through L-type calcium channels in cardiomyocytes disturb the electrophysiology of the dystrophic heart

    PubMed Central

    Obermair, Gerald J.; Cervenka, Rene; Dang, Xuan B.; Lukacs, Peter; Kummer, Stefan; Bittner, Reginald E.; Kubista, Helmut; Todt, Hannes; Hilber, Karlheinz

    2016-01-01

    Duchenne muscular dystrophy (DMD), induced by mutations in the gene encoding for the cytoskeletal protein dystrophin, is an inherited disease characterized by progressive muscle weakness. Besides the relatively well characterized skeletal muscle degenerative processes, DMD is also associated with cardiac complications. These include cardiomyopathy development and cardiac arrhythmias. The current understanding of the pathomechanisms in the heart is very limited, but recent research indicates that dysfunctional ion channels in dystrophic cardiomyocytes play a role. The aim of the present study was to characterize abnormalities in L-type calcium channel function in adult dystrophic ventricular cardiomyocytes. By using the whole cell patch clamp technique, the properties of currents through calcium channels in ventricular cardiomyocytes isolated from the hearts of normal and dystrophic adult mice were compared. Besides the commonly used dystrophin-deficient mdx mouse model for human DMD, we also used mdx-utr mice which are both dystrophin- and utrophin-deficient. We found that calcium channel currents were significantly increased, and channel inactivation was reduced in dystrophic cardiomyocytes. Both effects enhance the calcium influx during an action potential (AP). Whereas the AP in dystrophic mouse cardiomyocytes was nearly normal, implementation of the enhanced dystrophic calcium conductance in a computer model of a human ventricular cardiomyocyte considerably prolonged the AP. Finally, the described dystrophic calcium channel abnormalities entailed alterations in the electrocardiograms of dystrophic mice. We conclude that gain of function in cardiac L-type calcium channels may disturb the electrophysiology of the dystrophic heart and thereby cause arrhythmias. PMID:24337461

  2. Enhanced currents through L-type calcium channels in cardiomyocytes disturb the electrophysiology of the dystrophic heart.

    PubMed

    Koenig, Xaver; Rubi, Lena; Obermair, Gerald J; Cervenka, Rene; Dang, Xuan B; Lukacs, Peter; Kummer, Stefan; Bittner, Reginald E; Kubista, Helmut; Todt, Hannes; Hilber, Karlheinz

    2014-02-15

    Duchenne muscular dystrophy (DMD), induced by mutations in the gene encoding for the cytoskeletal protein dystrophin, is an inherited disease characterized by progressive muscle weakness. Besides the relatively well characterized skeletal muscle degenerative processes, DMD is also associated with cardiac complications. These include cardiomyopathy development and cardiac arrhythmias. The current understanding of the pathomechanisms in the heart is very limited, but recent research indicates that dysfunctional ion channels in dystrophic cardiomyocytes play a role. The aim of the present study was to characterize abnormalities in L-type calcium channel function in adult dystrophic ventricular cardiomyocytes. By using the whole cell patch-clamp technique, the properties of currents through calcium channels in ventricular cardiomyocytes isolated from the hearts of normal and dystrophic adult mice were compared. Besides the commonly used dystrophin-deficient mdx mouse model for human DMD, we also used mdx-utr mice, which are both dystrophin- and utrophin-deficient. We found that calcium channel currents were significantly increased, and channel inactivation was reduced in dystrophic cardiomyocytes. Both effects enhance the calcium influx during an action potential (AP). Whereas the AP in dystrophic mouse cardiomyocytes was nearly normal, implementation of the enhanced dystrophic calcium conductance in a computer model of a human ventricular cardiomyocyte considerably prolonged the AP. Finally, the described dystrophic calcium channel abnormalities entailed alterations in the electrocardiograms of dystrophic mice. We conclude that gain of function in cardiac L-type calcium channels may disturb the electrophysiology of the dystrophic heart and thereby cause arrhythmias.

  3. Evidence for conformational coupling between two calcium channels.

    PubMed

    Paolini, C; Fessenden, James D; Pessah, Isaac N; Franzini-Armstrong, C

    2004-08-24

    Ryanodine receptor 1 (RyR1, the sarcoplasmic reticulum Ca(2+) release channel) and alpha(1S)dihydropyridine receptor (DHPR, the surface membrane voltage sensor) of skeletal muscle belong to separate membrane systems but are functionally and structurally linked. Four alpha(1S)DHPRs associated with the four identical subunits of a RyR form a tetrad. We treated skeletal muscle cell lines with ryanodine, at concentrations that block RyRs, and determined whether this treatment affects the distance between DHPRs in the tetrad. We find a substantial ( approximately 2-nm) shift in the alpha(1S)DHPR positions, indicating that ryanodine induces large conformational changes in the RyR1 cytoplasmic domain and that the alpha(1S)DHPR-RyR complex acts as a unit.

  4. Evidence for conformational coupling between two calcium channels

    PubMed Central

    Paolini, C.; Fessenden, James D.; Pessah, Isaac N.; Franzini-Armstrong, C.

    2004-01-01

    Ryanodine receptor 1 (RyR1, the sarcoplasmic reticulum Ca2+ release channel) and α1Sdihydropyridine receptor (DHPR, the surface membrane voltage sensor) of skeletal muscle belong to separate membrane systems but are functionally and structurally linked. Four α1SDHPRs associated with the four identical subunits of a RyR form a tetrad. We treated skeletal muscle cell lines with ryanodine, at concentrations that block RyRs, and determined whether this treatment affects the distance between DHPRs in the tetrad. We find a substantial (≈2-nm) shift in the α1SDHPR positions, indicating that ryanodine induces large conformational changes in the RyR1 cytoplasmic domain and that the α1SDHPR-RyR complex acts as a unit. PMID:15310845

  5. Roscovitine: a novel regulator of P/Q-type calcium channels and transmitter release in central neurons

    PubMed Central

    Yan, Zhen; Chi, Ping; Bibb, James A; Ryan, Timothy A; Greengard, Paul

    2002-01-01

    Roscovitine is widely used for inhibition of cdk5, a cyclin-dependent kinase expressed predominantly in the brain. A novel function of roscovitine, i.e. an effect on Ca2+ channels and transmitter release in central neurons, was studied by whole-cell voltage-clamp recordings and time-lapse fluorescence imaging techniques. Extracellular application of roscovitine markedly enhanced the tail calcium current following repolarization from depolarized voltages. This effect was rapid, reversible and dose dependent. Roscovitine dramatically slowed the deactivation kinetics of calcium channels. The deactivation time constant was increased 3- to 6-fold, suggesting that roscovitine could prolong the channel open state and increase the calcium influx. The potentiation of tail calcium currents caused by roscovitine and by the L-channel activator Bay K 8644 was not occluded but additive. Roscovitine-induced potentiation of tail calcium currents was significantly blocked by the P/Q-channel blocker CgTx-MVIIC, indicating that the major target of roscovitine is the P/Q-type calcium channel. In mutant mice with targeted deletion of p35, a neuronal specific activator of cdk5, roscovitine regulated calcium currents in a manner similar to that observed in wild-type mice. Moreover, intracellular perfusion of roscovitine failed to modulate calcium currents. These results suggest that roscovitine acts on extracellular site(s) of calcium channels via a cdk5-independent mechanism. Roscovitine potentiated glutamate release at presynaptic terminals of cultured hippocampal neurons detected with the vesicle trafficking dye FM1–43, consistent with the positive effect of roscovitine on the P/Q-type calcium channel, the major mediator of action potential-evoked transmitter release in the mammalian CNS. PMID:11986366

  6. Modulation and pharmacology of low voltage-activated ("T-Type") calcium channels.

    PubMed

    Yunker, Anne Marie R

    2003-12-01

    Although T-type calcium channel currents were observed almost 30 years ago, the genes that encode the pore-forming subunits have only been recently reported. When expressed in heterologous systems, three distinct alpha1 subunits (alpha1G (Cav3.1), alpha1H (Car3.2), and alpha1I (Cav3.3)) conduct T-type currents with insert similar but not identical electrophysiological characteristics that. Alpha 1G, alpha 1H, and alpha 1I transcripts are found throughout neural and nonneural tissues, suggesting multiple types of T-type channels (also called low voltage-activated calcium channels (LVAs)) are coexpressed by many tissues. The study of endogenous LVAs has been hampered by a lack of highly selective antagonists that differentiate between LVA subtypes. Furthermore, many pharmacological agents attenuate currents conducted by LVA and high voltage-activated calcium channels (HVAs). At least 15 classes of pharmacological agents affect T-type currents, and the therapeutic use of many of these drugs has implicated LVAs in the etiology of a variety of diseases. Comparison of the responses of recombinant and native LVAs to pharmacological agents and endogenous modulatory molecules will lead to a better understanding of LVAs in normal and diseased cells.

  7. L-Type Calcium Channel blockers and Parkinson’s Disease in Denmark

    PubMed Central

    Ritz, Beate; Rhodes, Shannon L.; Qian, Lei; Schernhammer, Eva; Olsen, Jorgen; Friis, Soren

    2010-01-01

    Objective Investigate L-type calcium channel blockers of the dihydropyridine class for association with Parkinson’s disease because these drugs traverse the blood brain barrier, are potentially neuroprotective, and have previously been evaluated for impact on PD risk. Methods We identified 1,931 patients with a first time diagnosis for PD between 2001 and 2006 as reported in the Danish national hospital/outpatient database and density matched them by birth year and sex to 9,651 controls from the population register. Index date for cases and their corresponding controls was advanced to date of first recorded prescription for anti-Parkinson drugs, if prior to first PD diagnosis in the hospital records. Prescriptions were determined from the national pharmacy database. In our primary analyses, we excluded all calcium channel blockers prescriptions 2-years before index date/PD diagnosis. Results Employing logistic regression analysis adjusting for age, sex, diagnosis of chronic pulmonary obstructive disorder, and Charlson co-morbidity score we found that subjects prescribed centrally acting calcium channel blockers (excludes amlodipine) between 1995 and two years prior to the index date were less likely to develop Parkinson’s disease (Odds Ratio 0.73; 95% Confidence Interval 0.54-0.97); this 27% risk reduction did not differ with length or intensity of use. Risk estimates were close to null for the peripherally acting drug amlodipine and for other antihypertensive medications. Interpretation Our data suggest a potential neuroprotective role for centrally acting L-type calcium channel blockers of the dihydropyridine class in PD that should be further investigated in studies that can distinguish between types of L-Type channel blockers. PMID:20437557

  8. Fluoride affects calcium homeostasis and osteogenic transcription factor expressions through L-type calcium channels in osteoblast cell line.

    PubMed

    Duan, Xiao-Qin; Zhao, Zhi-Tao; Zhang, Xiu-Yun; Wang, Ying; Wang, Huan; Liu, Da-Wei; Li, Guang-Sheng; Jing, Ling

    2014-12-01

    Osteoblast L-type voltage-dependent calcium channels (VDCC) play important roles in maintaining intracellular homeostasis and influencing multiple cellular processes. In particular, they contribute to the activities and functions of osteoblasts (OBs). In order to study how L-type VDCC modulate calcium ion (Ca(2+)) homeostasis and the expression of osteogenic transcription factors in OBs exposed to fluoride, MC3T3-E1 cells were exposed to a gradient of concentrations of fluoride (0, 2.0, 5.0, 10.0 mg/L) in combination with 10 μM nifedipine, a specific inhibitor of VDCC, for 48 h. We examined messenger RNA (mRNA) and protein levels of Cav1.2, the main subunit of VDCC, and c-fos, c-jun, runt-related transcription factor 2 (Runx2), osterix (OSX), and intracellular free Ca(2+) ([Ca(2+)]i) concentrations in MC3T3-E1 cells. Our results showed that [Ca(2+)]i levels increased in a dose-dependent manner with increase in concentration of fluoride. Meantime, results indicated that lower concentrations of fluoride (less than 5 mg/L, especially 2 mg/L) can lead to high expression of Cav1.2 and enhance osteogenic function, while high concentration of fluoride (10 mg/L) can induce decreased Cav1.2 and osteogenic transcriptional factors in MC3T3E1 cells exposed to fluoride. However, the levels of [Ca(2+)]i, Cav1.2, c-fos, c-jun, Runx2, and OSX induced by fluoride were significantly altered and even reversed in the presence of nifedipine. These results demonstrate that L-type calcium channels play a crucial role in Ca(2+) homeostasis and they affect the expression of osteogenic transcription factors in fluoride-treated osteoblasts.

  9. Otilonium bromide inhibits calcium entry through L-type calcium channels in human intestinal smooth muscle.

    PubMed

    Strege, P R; Evangelista, S; Lyford, G L; Sarr, M G; Farrugia, G

    2004-04-01

    Otilonium bromide (OB) is used as an intestinal antispasmodic. The mechanism of action of OB is not completely understood. As Ca(2+) entry into intestinal smooth muscle is required to trigger contractile activity, our hypothesis was that OB blocked Ca(2+) entry through L-type Ca(2+) channels. Our aim was to determine the effects of OB on Ca(2+), Na(+) and K(+) ion channels in human jejunal circular smooth muscle cells and on L-type Ca(2+) channels expressed heterologously in HEK293 cells. Whole cell currents were recorded using standard patch clamp techniques. Otilonium bromide (0.09-9 micromol L(-1)) was used as this reproduced clinical intracellular concentrations. In human circular smooth muscle cells, OB inhibited L-type Ca(2+) current by 25% at 0.9 micromol L(-1) and 90% at 9 micromol L(-1). Otilonium bromide had no effect on Na(+) or K(+) currents. In HEK293 cells, 1 micromol L(-1) OB significantly inhibited the expressed L-type Ca(2+) channels. Truncation of the alpha(1C) subunit C and N termini did not block the inhibitory effects of OB. Otilonium bromide inhibited Ca(2+) entry through L-type Ca(2+) at concentrations similar to intestinal tissue levels. This effect may underlie the observed muscle relaxant effects of the drug.

  10. Calcium signaling in mast cells: focusing on L-type calcium channels.

    PubMed

    Suzuki, Yoshihiro; Inoue, Toshio; Ra, Chisei

    2012-01-01

    Mast cells play central roles in adaptive and innate immunity. IgE-dependent stimulation of the high-affinity IgE receptor (FcεRI) results in rapid secretion of various proinflammatory chemical mediators and cytokines. All of the outputs depend to certain degrees on an increase in the intracellular Ca(2+) concentration, and influx of Ca(2+) from the extracellular space is often required for their full activation. There is strong evidence that FcεRI stimulation induces two different modes of Ca(2+) influx, store-operated Ca(2+) entry (SOCE) and non-SOCE, which are activated in response to endoplasmic reticulum Ca(2+) store depletion and independently of Ca(2+) store depletion, respectively, in mast cells. Although Ca(2+) release-activated Ca(2+) channels are the major route of SOCE, recent evidence indicates that they are not the only Ca(2+) channels activated by Ca(2+) store depletion. The recent data suggest that L-type Ca(2+) channels, which were thought to be a characteristic feature of excitable cells, exist in mast cells to mediate non-SOCE, which is critical for protecting mast cells against activation-induced mitochondrial cell death. In this chapter, we provide an overview of recent advances in our understanding of Ca(2+) signaling in mast cells with a special attention to the emerging role for the L-type Ca(2+) channels as a regulator of mast cell survival.

  11. Energetics of discrete selectivity bands and mutation-induced transitions in the calcium-sodium ion channels family.

    PubMed

    Kaufman, I; Luchinsky, D G; Tindjong, R; McClintock, P V E; Eisenberg, R S

    2013-11-01

    We use Brownian dynamics (BD) simulations to study the ionic conduction and valence selectivity of a generic electrostatic model of a biological ion channel as functions of the fixed charge Q(f) at its selectivity filter. We are thus able to reconcile the discrete calcium conduction bands recently revealed in our BD simulations, M0 (Q(f)=1e), M1 (3e), M2 (5e), with a set of sodium conduction bands L0 (0.5e), L1 (1.5e), thereby obtaining a completed pattern of conduction and selectivity bands vs Q(f) for the sodium-calcium channels family. An increase of Q(f) leads to an increase of calcium selectivity: L0 (sodium-selective, nonblocking channel) → M0 (nonselective channel) → L1 (sodium-selective channel with divalent block) → M1 (calcium-selective channel exhibiting the anomalous mole fraction effect). We create a consistent identification scheme where the L0 band is putatively identified with the eukaryotic sodium channel The scheme created is able to account for the experimentally observed mutation-induced transformations between nonselective channels, sodium-selective channels, and calcium-selective channels, which we interpret as transitions between different rows of the identification table. By considering the potential energy changes during permeation, we show explicitly that the multi-ion conduction bands of calcium and sodium channels arise as the result of resonant barrierless conduction. The pattern of periodic conduction bands is explained on the basis of sequential neutralization taking account of self-energy, as Q(f)(z,i)=ze(1/2+i), where i is the order of the band and z is the valence of the ion. Our results confirm the crucial influence of electrostatic interactions on conduction and on the Ca(2+)/Na(+) valence selectivity of calcium and sodium ion channels. The model and results could be also applicable to biomimetic nanopores with charged walls.

  12. Antagonists of the TMEM16A Calcium-Activated Chloride Channel Modulate Airway Smooth Muscle Tone and Intracellular Calcium

    PubMed Central

    Danielsson, Jennifer; Perez-Zoghbi, Jose; Bernstein, Kyra; Barajas, Matthew B.; Zhang, Yi; Kumar, Satish; Sharma, Pawan K.; Gallos, George; Emala, Charles W.

    2015-01-01

    Background Perioperative bronchospasm refractory to β-agonists continues to challenge anesthesiologists and intensivists. The TMEM16A calcium-activated chloride channel modulates airway smooth muscle (ASM) contraction. We hypothesized that TMEM16A antagonists would relax ASM contraction by modulating membrane potential and calcium flux. Methods Human ASM, guinea pig tracheal rings or mouse peripheral airways were contracted with acetylcholine (Ach) or leukotriene D4 (LTD4) and then treated with the TMEM16A antagonists: benzbromarone, T16Ainh-A01, MONNA or B25. In separate studies, guinea pig tracheal rings were contracted with Ach and then exposed to increasing concentrations of isoproterenol (0.01nM-10μM) ± benzbromarone. Plasma membrane potential and intracellular calcium concentrations were measured in human ASM cells. Results Benzbromarone was the most potent TMEM16A antagonist tested for relaxing an Ach-induced contraction in guinea pig tracheal rings (n=6). Further studies were done to investigate benzbromarone’s clinical utility. In human ASM, benzbromarone relaxed either an acetylcholine- or LTD4-induced contraction (n=8). Benzbromarone was also effective in relaxing peripheral airways (n=9) and potentiating relaxation by β-agonists (n=5–10). In cellular mechanistic studies, benzbromarone hyperpolarized human ASM cells (n=9–12) and attenuated intracellular calcium flux from both the plasma membrane and sarcoplasmic reticulum (n=6–12). Conclusions TMEM16A antagonists work synergistically with β-agonists and through a novel pathway of interrupting ion flux both at the plasma membrane and sarcoplasmic reticulum to acutely relax human airway smooth muscle. PMID:26181339

  13. Calcium permeability of ligand-gated Ca2+ channels.

    PubMed

    Pankratov, Yuriy; Lalo, Ulyana

    2014-09-15

    Many of cation-permeable ionotropic receptors to various neurotransmitters, such as glutamate, acetylcholine and ATP, are permeable to Ca(2+) ions. For some of them, in particular NMDA, nicotinic Ach and P2X receptors, permeability to Ca(2+) is higher than permeability to monovalent cations. Such receptors can be viewed as ligand-gated Ca(2+)-channels (LGCCs). This review provides an overview of past works on structure LGCCs, including structural motifs responsible for their interaction with Ca(2+) ions, and functional implications of their Ca(2+)-permeability. The NMDA, P2X and nicotinic Ach receptors are abundantly expressed in the central nervous system. They are present at the nerve terminals, postsynaptic, extrasynaptic and glial membrane and therefore can contribute to synaptic function at different levels. Their heteromeric structure leads to wide variety of LGCC subtypes and great diversity of their functional properties. The influx of Ca(2+) provided by LGCCs can activate a plethora of secondary messenger cascades, which can modulate activity, trafficking and lateral mobility of LGCCs and thereby are entangled with their physiological function. In the discussion of the physiological importance of LGCCs we are focusing on emerging evidence on their role in control of synaptic transmission, plasticity and glia-neuron interaction.

  14. Calcium signaling in lymphocytes and ELF fields. Evidence for an electric field metric and a site of interaction involving the calcium ion channel.

    PubMed

    Liburdy, R P

    1992-04-13

    Calcium influx increased during mitogen-activated signal transduction in thymic lymphocytes exposed to a 22 mT, 60 Hz magnetic field (E induced = 1.7 mV/cm, 37 degrees C, 60 min). To distinguish between an electric or a magnetic field dependence a special multi-ring annular cell culture plate based on Faraday's Law of Induction was employed. Studies show a dependence on the strength of the induced electric field at constant magnetic flux density. Moreover, exposure to a pure 60 Hz electric field or to a magnetically-induced electric field of identical strength resulted in similar changes in calcium transport. The first real-time monitoring of [Ca2+]i during application of a 60 Hz electric field revealed an increase in [Ca2+]i observed 100 s after mitogen stimulation; this suggests that the plateau phase rather than the early phase of calcium signaling was influenced. The hypothesis was tested by separating, in time, the early release of calcium from intracellular stores from the influx of extracellular calcium. In calcium-free buffer, 60 Hz field exerted little influence on the early release of calcium from intracellular stores. In contrast, addition of extracellular calcium during exposure enhanced calcium influx through the plasma membrane. Alteration of the plateau phase of calcium signaling implicates the calcium channel as a site of field interaction. In addition, an electric field exposure metric is mechanistically consistent with a cell-surface interaction site.

  15. Two-pore channels function in calcium regulation in sea star oocytes and embryos

    PubMed Central

    Ramos, Isabela; Reich, Adrian; Wessel, Gary M.

    2014-01-01

    Egg activation at fertilization is an excellent process for studying calcium regulation. Nicotinic acid adenine dinucleotide-phosphate (NAADP), a potent calcium messenger, is able to trigger calcium release, likely through two-pore channels (TPCs). Concomitantly, a family of ectocellular enzymes, the ADP-ribosyl cyclases (ARCs), has emerged as being able to change their enzymatic mode from one of nucleotide cyclization in formation of cADPR to a base-exchange reaction in the generation of NAADP. Using sea star oocytes we gain insights into the functions of endogenously expressed TPCs and ARCs in the context of the global calcium signals at fertilization. Three TPCs and one ARC were found in the sea star (Patiria miniata) that were localized in the cortex of the oocytes and eggs. PmTPCs were localized in specialized secretory organelles called cortical granules, and PmARCs accumulated in a different, unknown, set of vesicles, closely apposed to the cortical granules in the egg cortex. Using morpholino knockdown of PmTPCs and PmARC in the oocytes, we found that both calcium regulators are essential for early embryo development, and that knockdown of PmTPCs leads to aberrant construction of the fertilization envelope at fertilization and changes in cortical granule pH. The calcium signals at fertilization are not significantly altered when individual PmTPCs are silenced, but the timing and shape of the cortical flash and calcium wave are slightly changed when the expression of all three PmTPCs is perturbed concomitantly, suggesting a cooperative activity among TPC isoforms in eliciting calcium signals that may influence localized physiological activities. PMID:25377554

  16. Two-pore channels function in calcium regulation in sea star oocytes and embryos.

    PubMed

    Ramos, Isabela; Reich, Adrian; Wessel, Gary M

    2014-12-01

    Egg activation at fertilization is an excellent process for studying calcium regulation. Nicotinic acid adenine dinucleotide-phosphate (NAADP), a potent calcium messenger, is able to trigger calcium release, likely through two-pore channels (TPCs). Concomitantly, a family of ectocellular enzymes, the ADP-ribosyl cyclases (ARCs), has emerged as being able to change their enzymatic mode from one of nucleotide cyclization in formation of cADPR to a base-exchange reaction in the generation of NAADP. Using sea star oocytes we gain insights into the functions of endogenously expressed TPCs and ARCs in the context of the global calcium signals at fertilization. Three TPCs and one ARC were found in the sea star (Patiria miniata) that were localized in the cortex of the oocytes and eggs. PmTPCs were localized in specialized secretory organelles called cortical granules, and PmARCs accumulated in a different, unknown, set of vesicles, closely apposed to the cortical granules in the egg cortex. Using morpholino knockdown of PmTPCs and PmARC in the oocytes, we found that both calcium regulators are essential for early embryo development, and that knockdown of PmTPCs leads to aberrant construction of the fertilization envelope at fertilization and changes in cortical granule pH. The calcium signals at fertilization are not significantly altered when individual PmTPCs are silenced, but the timing and shape of the cortical flash and calcium wave are slightly changed when the expression of all three PmTPCs is perturbed concomitantly, suggesting a cooperative activity among TPC isoforms in eliciting calcium signals that may influence localized physiological activities.

  17. Endothelin induces two types of contractions of rat uterus: phasic contractions by way of voltage-dependent calcium channels and developing contractions through a second type of calcium channels

    SciTech Connect

    Kozuka, M.; Ito, T.; Hirose, S.; Takahashi, K.; Hagiwara, H.

    1989-02-28

    Effects of endothelin on nonvascular smooth muscle have been examined using rat uterine horns and two modes of endothelin action have been revealed. Endothelin (0.3 nM) caused rhythmic contractions of isolated uterus in the presence of extracellular calcium. The rhythmic contractions were completely inhibited by calcium channel antagonists. These characteristics of endothelin-induced contractions were very similar to those induced by oxytocin. Binding assays using /sup 125/I-endothelin showed that endothelin and the calcium channel blockers did not compete for the binding sites. However, endothelin was unique in that it caused, in addition to rhythmic contractions, a slowly developing monophasic contraction that was insensitive to calcium channel blockers. This developing contraction became dominant at higher concentrations of endothelin and was also calcium dependent.

  18. Channel properties of the splicing isoforms of the olfactory calcium-activated chloride channel Anoctamin 2.

    PubMed

    Ponissery Saidu, Samsudeen; Stephan, Aaron B; Talaga, Anna K; Zhao, Haiqing; Reisert, Johannes

    2013-06-01

    Anoctamin (ANO)2 (or TMEM16B) forms a cell membrane Ca(2+)-activated Cl(-) channel that is present in cilia of olfactory receptor neurons, vomeronasal microvilli, and photoreceptor synaptic terminals. Alternative splicing of Ano2 transcripts generates multiple variants with the olfactory variants skipping exon 14 and having alternative splicing of exon 4. In the present study, 5' rapid amplification of cDNA ends analysis was conducted to characterize the 5' end of olfactory Ano2 transcripts, which showed that the most abundant Ano2 transcripts in the olfactory epithelium contain a novel starting exon that encodes a translation initiation site, whereas transcripts of the publically available sequence variant, which has an alternative and longer 5' end, were present in lower abundance. With two alternative starting exons and alternative splicing of exon 4, four olfactory ANO2 isoforms are thus possible. Patch-clamp experiments in transfected HEK293T cells expressing these isoforms showed that N-terminal sequences affect Ca(2+) sensitivity and that the exon 4-encoded sequence is required to form functional channels. Coexpression of the two predominant isoforms, one with and one without the exon 4 sequence, as well as coexpression of the two rarer isoforms showed alterations in channel properties, indicating that different isoforms interact with each other. Furthermore, channel properties observed from the coexpression of the predominant isoforms better recapitulated the native channel properties, suggesting that the native channel may be composed of two or more splicing isoforms acting as subunits that together shape the channel properties.

  19. Aluminium and hydrogen ions inhibit a mechanosensory calcium-selective cation channel

    NASA Technical Reports Server (NTRS)

    Ding, J. P.; Pickard, B. G.

    1993-01-01

    The tension-dependent activity of mechanosensory calcium-selective cation channels in excised plasmalemmal patches from onion bulb scale epidermis is modulated by pH in the physiologically meaningful range between 4.5 and 7.2. It is rapidly lowered by lowering pH and rapidly raised by raising pH. Channel activity is effectively inhibited by low levels of aluminium ions and activity can be partially restored by washing for a few minutes. We suggest that under normal conditions the sensitivity of the mechanosensory channels to pH of the wall free space plays important roles in regulation of plant activities such as growth. We further suggest that, when levels of acid and aluminium ions in the soil solution are high, they might inhibit similar sensory channels in cells of the root tip, thus contributing critically to the acid soil syndrome.

  20. Structural and functional characterization of a calcium-activated cation channel from Tsukamurella paurometabola

    PubMed Central

    Dhakshnamoorthy, Balasundaresan; Rohaim, Ahmed; Rui, Huan; Blachowicz, Lydia; Roux, Benoît

    2016-01-01

    The selectivity filter is an essential functional element of K+ channels that is highly conserved both in terms of its primary sequence and its three-dimensional structure. Here, we investigate the properties of an ion channel from the Gram-positive bacterium Tsukamurella paurometabola with a selectivity filter formed by an uncommon proline-rich sequence. Electrophysiological recordings show that it is a non-selective cation channel and that its activity depends on Ca2+ concentration. In the crystal structure, the selectivity filter adopts a novel conformation with Ca2+ ions bound within the filter near the pore helix where they are coordinated by backbone oxygen atoms, a recurrent motif found in multiple proteins. The binding of Ca2+ ion in the selectivity filter controls the widening of the pore as shown in crystal structures and in molecular dynamics simulations. The structural, functional and computational data provide a characterization of this calcium-gated cationic channel. PMID:27678077

  1. Structural and functional characterization of a calcium-activated cation channel from Tsukamurella paurometabola

    NASA Astrophysics Data System (ADS)

    Dhakshnamoorthy, Balasundaresan; Rohaim, Ahmed; Rui, Huan; Blachowicz, Lydia; Roux, Benoît

    2016-09-01

    The selectivity filter is an essential functional element of K+ channels that is highly conserved both in terms of its primary sequence and its three-dimensional structure. Here, we investigate the properties of an ion channel from the Gram-positive bacterium Tsukamurella paurometabola with a selectivity filter formed by an uncommon proline-rich sequence. Electrophysiological recordings show that it is a non-selective cation channel and that its activity depends on Ca2+ concentration. In the crystal structure, the selectivity filter adopts a novel conformation with Ca2+ ions bound within the filter near the pore helix where they are coordinated by backbone oxygen atoms, a recurrent motif found in multiple proteins. The binding of Ca2+ ion in the selectivity filter controls the widening of the pore as shown in crystal structures and in molecular dynamics simulations. The structural, functional and computational data provide a characterization of this calcium-gated cationic channel.

  2. Structural and functional characterization of a calcium-activated cation channel from Tsukamurella paurometabola.

    PubMed

    Dhakshnamoorthy, Balasundaresan; Rohaim, Ahmed; Rui, Huan; Blachowicz, Lydia; Roux, Benoît

    2016-09-28

    The selectivity filter is an essential functional element of K(+) channels that is highly conserved both in terms of its primary sequence and its three-dimensional structure. Here, we investigate the properties of an ion channel from the Gram-positive bacterium Tsukamurella paurometabola with a selectivity filter formed by an uncommon proline-rich sequence. Electrophysiological recordings show that it is a non-selective cation channel and that its activity depends on Ca(2+) concentration. In the crystal structure, the selectivity filter adopts a novel conformation with Ca(2+) ions bound within the filter near the pore helix where they are coordinated by backbone oxygen atoms, a recurrent motif found in multiple proteins. The binding of Ca(2+) ion in the selectivity filter controls the widening of the pore as shown in crystal structures and in molecular dynamics simulations. The structural, functional and computational data provide a characterization of this calcium-gated cationic channel.

  3. Voltage-gated calcium channels function as Ca2+-activated signaling receptors.

    PubMed

    Atlas, Daphne

    2014-02-01

    Voltage-gated calcium channels (VGCCs) are transmembrane cell surface proteins responsible for multifunctional signals. In response to voltage, VGCCs trigger synaptic transmission, drive muscle contraction, and regulate gene expression. Voltage perturbations open VGCCs enabling Ca(2+) binding to the low affinity Ca(2+) binding site of the channel pore. Subsequent to permeation, Ca(2+) targets selective proteins to activate diverse signaling pathways. It is becoming apparent that the Ca(2+)-bound channel triggers secretion in excitable cells and drives contraction in cardiomyocytes prior to Ca(2+) permeation. Here, I highlight recent data implicating receptor-like function of the Ca(2+)-bound channel in converting external Ca(2+) into an intracellular signal. The two sequential mechanistic perspectives of VGCC function are discussed in the context of the prevailing and long-standing current models of depolarization-evoked secretion and cardiac contraction. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Aluminium and hydrogen ions inhibit a mechanosensory calcium-selective cation channel

    NASA Technical Reports Server (NTRS)

    Ding, J. P.; Pickard, B. G.

    1993-01-01

    The tension-dependent activity of mechanosensory calcium-selective cation channels in excised plasmalemmal patches from onion bulb scale epidermis is modulated by pH in the physiologically meaningful range between 4.5 and 7.2. It is rapidly lowered by lowering pH and rapidly raised by raising pH. Channel activity is effectively inhibited by low levels of aluminium ions and activity can be partially restored by washing for a few minutes. We suggest that under normal conditions the sensitivity of the mechanosensory channels to pH of the wall free space plays important roles in regulation of plant activities such as growth. We further suggest that, when levels of acid and aluminium ions in the soil solution are high, they might inhibit similar sensory channels in cells of the root tip, thus contributing critically to the acid soil syndrome.

  5. Voltage-gated calcium channel subunits from platyhelminths: potential role in praziquantel action.

    PubMed

    Jeziorski, Michael C; Greenberg, Robert M

    2006-05-31

    Voltage-gated calcium (Ca2+) channels provide the pathway for Ca2+ influxes that underlie Ca2+ -dependent responses in muscles, nerves and other excitable cells. They are also targets of a wide variety of drugs and toxins. Ca2+ channels are multisubunit protein complexes consisting of a pore-forming alpha(1) subunit and other modulatory subunits, including the beta subunit. Here, we review the structure and function of schistosome Ca2+ channel subunits, with particular emphasis on variant Ca2+ channel beta subunits (Ca(v)betavar) found in these parasites. In particular, we examine the role these beta subunits may play in the action of praziquantel, the current drug of choice against schistosomiasis. We also present evidence that Ca(v)betavar homologs are found in other praziquantel-sensitive platyhelminths such as the pork tapeworm, Taenia solium, and that these variant beta subunits may thus represent a platyhelminth-specific gene family.

  6. Voltage-gated calcium channel subunits from platyhelminths: Potential role in praziquantel action✩

    PubMed Central

    Jeziorski, Michael C.; Greenberg, Robert M.

    2013-01-01

    Voltage-gated calcium (Ca2+) channels provide the pathway for Ca2+ influxes that underlie Ca2+-dependent responses in muscles, nerves and other excitable cells. They are also targets of a wide variety of drugs and toxins. Ca2+ channels are multisubunit protein complexes consisting of a pore-forming α1 subunit and other modulatory subunits, including the β subunit. Here, we review the structure and function of schistosome Ca2+ channel subunits, with particular emphasis on variant Ca2+ channel β subunits (Cavβvar) found in these parasites. In particular, we examine the role these β subunits may play in the action of praziquantel, the current drug of choice against schistosomiasis. We also present evidence that Cavβvar homologs are found in other praziquantel-sensitive platyhelminths such as the pork tapeworm, Taenia solium, and that these variant β subunits may thus represent a platyhelminth-specific gene family. PMID:16545816

  7. Erectile dysfunction in mice lacking the large-conductance calcium-activated potassium (BK) channel

    PubMed Central

    Werner, Matthias E; Zvara, Peter; Meredith, Andrea L; Aldrich, Richard W; Nelson, Mark T

    2005-01-01

    Penile erection is dependent on the nitric oxide (NO)/cGMP-dependent protein kinase I (PKGI) pathway. One important target of PKGI in smooth muscle is the large-conductance, calcium-activated potassium (BK) channel, which upon activation hyperpolarizes the smooth muscle cell membrane, causing relaxation. Relaxation of arterial and corpus cavernosum smooth muscle (CCSM) is necessary to increase blood flow into the corpora cavernosa that leads to penile tumescence. We investigated the functional role of BK channels in the corpus cavernosum utilizing a knock-out mouse lacking the Slo gene (Slo−/−) responsible for the pore-forming subunit of the BK channel. Whole-cell currents were recorded from isolated CCSM cells of Slo+/+ and Slo−/− mice. Iberiotoxin-sensitive voltage- and [Ca2+]-activated K+ currents, the latter activated by local transient calcium releases (calcium sparks), were present in Slo+/+ CCSM cells, but absent in Slo−/− cells. CCSM strips from Slo−/− mice demonstrated a four-fold increase in phasic contractions, in the presence of phenylephrine. Nerve-evoked relaxations of precontracted strips were reduced by 50%, both in strips from Slo−/− mice and by blocking BK channels with iberiotoxin in the Slo+/+ strips. Consistent with the in vitro results, in vivo intracavernous pressure exhibited pronounced oscillations in Slo−/− mice, but not in Slo+/+ mice. Furthermore, intracavernous pressure increases to nerve stimulation, in vivo, were reduced by 22% in Slo−/−mice. These results indicate that the BK channel has an important role in erectile function, and loss of the BK channel leads to erectile dysfunction. PMID:16020453

  8. A role for L-type calcium channels in the maturation of parvalbumin-containing hippocampal interneurons.

    PubMed

    Jiang, M; Swann, J W

    2005-01-01

    While inhibitory interneurons are well recognized to play critical roles in the brain, relatively little is know about the molecular events that regulate their growth and differentiation. Calcium ions are thought to be important in neuronal development and L-type voltage gated Ca(+2) channels have been implicated in activity-dependent mechanisms of early-life. However, few studies have examined the role of these channels in the maturation of interneurons. The studies reported here were conducted in hippocampal slice cultures and indicate that the L-type Ca(+2) channel agonists and antagonists accelerate and suppress respectively the growth of parvalbumin-containing interneurons. The effects of channel blockade were reversible suggesting they are not the result of interneuronal cell death. Results from immunoblotting showed that these drugs have similar effects on the expression of the GABA synthetic enzymes, glutamic acid decarboxylase65, glutamic acid decarboxylase67 and the vesicular GABA transporter. This suggests that L-type Ca(+2) channels regulate not only parvalbumin expression but also interneuron development. These effects are likely mediated by actions on the interneurons themselves since the alpha subunits of L-type channels, voltage-gated calcium channel subunit 1.2 and voltage-gated calcium channel subunit 1.3 were found to be highly expressed in neonatal mouse hippocampus and co-localized with parvalbumin in interneurons. Results also showed that while these interneurons can contain either subunit, voltage-gated calcium channel subunit 1.3 was more widely expressed. Taken together results suggest that an important subset of developing interneurons expresses L-type Ca(+2) channels alpha subunits, voltage-gated calcium channel subunit 1.2 and especially voltage-gated calcium channel subunit 1.3 and that these channels likely regulate the development of these interneurons in an activity-dependent manner.

  9. Evaluation of a Novel Calcium Channel Agonist for Therapeutic Potential in Lambert–Eaton Myasthenic Syndrome

    PubMed Central

    Tarr, Tyler B.; Malick, Waqas; Liang, Mary; Valdomir, Guillermo; Frasso, Michael; Lacomis, David; Reddel, Stephen W.; Garcia-Ocano, Adolfo

    2013-01-01

    We developed a novel calcium (Ca2+) channel agonist that is selective for N- and P/Q-type Ca2+ channels, which are the Ca2+ channels that regulate transmitter release at most synapses. We have shown that this new molecule (GV-58) slows the deactivation of channels, resulting in a large increase in presynaptic Ca2+ entry during activity. GV-58 was developed as a modification of (R)-roscovitine, which was previously shown to be a Ca2+ channel agonist, in addition to its known cyclin-dependent kinase activity. In comparison with the parent molecule, (R)-roscovitine, GV-58 has a ∼20-fold less potent cyclin-dependent kinase antagonist effect, a ∼3- to 4-fold more potent Ca2+ channel agonist effect, and ∼4-fold higher efficacy as a Ca2+ channel agonist. We have further evaluated GV-58 in a passive transfer mouse model of Lambert–Eaton myasthenic syndrome and have shown that weakened Lambert–Eaton myasthenic syndrome-model neuromuscular synapses are significantly strengthened following exposure to GV-58. This new Ca2+ channel agonist has potential as a lead compound in the development of new therapeutic approaches to a variety of disorders that result in neuromuscular weakness. PMID:23785168

  10. Molecular mechanism of calcium channel regulation in the fight-or-flight response.

    PubMed

    Fuller, Matthew D; Emrick, Michelle A; Sadilek, Martin; Scheuer, Todd; Catterall, William A

    2010-09-28

    During the fight-or-flight response, the sympathetic nervous system stimulates L-type calcium ion (Ca2+) currents conducted by Ca(V)1 channels through activation of β-adrenergic receptors, adenylyl cyclase, and phosphorylation by adenosine 3',5'-monophosphate-dependent protein kinase [also known as protein kinase A (PKA)], increasing contractility of skeletal and cardiac muscles. We reconstituted this regulation of cardiac Ca(V)1.2 channels in non-muscle cells by forming an autoinhibitory signaling complex composed of Ca(V)1.2Δ1800 (a form of the channel truncated at the in vivo site of proteolytic processing), its noncovalently associated distal carboxyl-terminal domain, the auxiliary α₂δ₁ and β(2b) subunits, and A-kinase anchoring protein 15 (AKAP15). A factor of 3.6 range of Ca(V)1.2 channel activity was observed from a minimum in the presence of protein kinase inhibitors to a maximum upon activation of adenylyl cyclase. Basal Ca(V)1.2 channel activity in unstimulated cells was regulated by phosphorylation of serine-1700 and threonine-1704, two residues located at the interface between the distal and the proximal carboxyl-terminal regulatory domains, whereas further stimulation of channel activity through the PKA signaling pathway only required phosphorylation of serine-1700. Our results define a conceptual framework for Ca(V)1.2 channel regulation and identify sites of phosphorylation that regulate channel activity.

  11. Calcium-independent K(+)-selective channel from chromaffin granule membranes.

    PubMed

    Arispe, N; Pollard, H B; Rojas, E

    1992-11-01

    Intact adrenal chromaffin granules and purified granule membrane ghosts were allowed to fuse with acidic phospholipid planar bilayer membranes in the presence of Ca2+ (1 mM). From both preparations, we were able to detect a large conductance potassium channel (ca. 160 pS in symmetrical 400 mM K+), which was highly selective for K+ over Na+ (PK/PNa = 11) as estimated from the reversal potential of the channel current. Channel activity was unaffected by charybdotoxin, a blocker of the [Ca2+]-activated K+ channel of large conductance. Furthermore, this channel proved quite different from the previously described channels from other types of secretory vesicle preparations, not only in its selectivity and conductance, but also in its insensitivity to both calcium and potential across the bilayer. We conclude that the chromaffin granule membrane contains a K(+)-selective channel with large conductance. We suggest that the role of this channel may include ion movement during granule assembly or recycling, and do not rule out events leading to exocytosis.

  12. Comparative impact of voltage-gated calcium channels and NMDA receptors on mitochondria-mediated neuronal injury

    PubMed Central

    Stanika, Ruslan I.; Villanueva, Idalis; Kazanina, Galina; Andrews, S. Brian; Pivovarova, Natalia B.

    2012-01-01

    Glutamate excitotoxicity, a major component of many neurodegenerative disorders, is characterized by excessive calcium influx selectively through NMDA receptors (NMDARs). However, there is a substantial uncertainty concerning why other known routes of significant calcium entry, in particular voltage-gated calcium channels (VGCCs), are not similarly toxic. Here, we report that in the majority of neurons in rat hippocampal and cortical cultures, maximal L-type VGCC activation induces much lower calcium loading than toxic NMDAR activation. Consequently, few depolarization-activated neurons exhibit calcium deregulation and cell death. Activation of alternative routes of calcium entry induced neuronal death in proportion to the degree of calcium loading. In a small subset of neurons depolarization evoked stronger calcium elevations, approaching those induced by toxic NMDA. These neurons were characterized by elevated expression of VGCCs and enhanced voltage-gated calcium currents, mitochondrial dysfunction and cell death. Preventing VGCC-dependent mitochondrial calcium loading resulted in stronger cytoplasmic calcium elevations, whereas inhibiting mitochondrial calcium clearance accelerated mitochondrial depolarization. Both observations further implicate mitochondrial dysfunction in VGCC-mediated cell death. Results indicate that neuronal vulnerability tracks the extent of calcium loading but does not appear to depend explicitly on the route of calcium entry. PMID:22573686

  13. Effects of aminoglycoside antibiotics on calcium action potentials and calcium channel currents.

    PubMed

    Suarez-Kurtz, G

    1989-01-01

    The author reviews work from his laboratory on the effects of neomycin and streptomycin on the Ca(2+)-dependent electrogenesis of crustacean muscle fibers and on two distinct Ca2+ channel currents of pituitary cells. The data indicate that these aminoglycosides inhibit the graded electrogenesis and the action potentials of crustacean muscle; these effects are accompanied by inhibition of tension development upon membrane depolarization. Increasing the extracellular Ca2+ concentration reverses the aminoglycoside-induced blockade of the Ca(2+)-dependent electrogenesis of the muscle fibers. Neomycin blocked both the transient (T-type) and the slowly-inactivating (L-type) Ca2+ currents of clonal pituitary GH3 cells, studied with the whole cell modality of the patch clamp technique. The blockade of these currents was not modulated by activation or inactivation of the channels. Neomycin inhibited also the currents conveyed by Na+ through the slowly-inactivating Ca2+ in cells equilibrated with Ca(2+)-free media. Interpretation of these data led to the suggestion that the blockade of Ca2+ currents by neomycin (and other aminoglycosides) cannot be explained by competition with Ca2+ ions for binding to high affinity transition sites within the Ca2+ channel path.

  14. Dihydropyridine-sensitive calcium channels in cardiac and skeletal muscle membranes: studies with antibodies against the. cap alpha. subunits

    SciTech Connect

    Takahashi, M.; Catterall, W.A.

    1987-08-25

    Polyclonal antibodies (PAC-2) against the purified skeletal muscle calcium channel were prepared and shown to be directed against ..cap alpha.. subunits of this protein by immunoblotting and immunoprecipitation. These polypeptides have an apparent molecular weight of 162,000 without reduction of disulfide bonds. Under conditions where the functional properties of the purified skeletal muscle calcium channel are retained, ..beta.. subunits (M/sub r/ 50,000) and lambda subunits (M/sub r/ 33,000) are coprecipitated, demonstrating specific noncovalent association of these three polypeptides in the purified skeletal muscle channel. PAC-2 immunoprecipitated cardiac calcium channels labeled with (/sup 3/H)isopropyl 4-(2,1,3-benzoxadiazol-4-yl)-1,4-dihydro-2,6-dimethyl-5-(methoxycarbonyl)pyridine-3-carboxylate ((/sup 3/H)PN200-110) at a 3-fold higher concentration than skeletal muscle channels. Preincubation with cardiac calcium channels blocked only 49% of the immunoreactivity of PAC-2 toward skeletal muscle channels, indicating that these two proteins have both homologous and distinct epitopes. The immunoreactive component of the cardiac calcium channel was identified by immunoprecipitation and polyacrylamide gel electrophoresis as a polypeptide with an apparent molecular weight of 170,000 before reduction of disulfide bonds and 141,000 after reduction, in close analogy with the properties of the ..cap alpha../sub 2/ subunits of the skeletal muscle channel. The calcium channels were radiolabeled with /sup 32/P and /sup 125/I. It is concluded that these two calcium channels have a homologous, but distinct, ..cap alpha.. subunit as a major polypeptide component.

  15. Calcium permeability of transient receptor potential canonical (TRPC) 4 channels measured by TRPC4-GCaMP6s

    PubMed Central

    Ko, Juyeon; Myeong, Jongyun; Yang, Dongki

    2017-01-01

    Conflicting evidence has been obtained regarding whether transient receptor potential cation channels (TRPC) are store-operated channels (SOCs) or receptor-operated channels (ROCs). Moreover, the Ca/Na permeability ratio differs depending on whether the current-voltage (I-V) curve has a doubly rectifying shape or inward rectifying shape. To investigate the calcium permeability of TRPC4 channels, we attached GCaMP6s to TRPC4 and simultaneously measured the current and calcium signals. A TRPC4 specific activator, (–)-englerin A, induced both current and calcium fluorescence with the similar time course. Muscarinic receptor stimulator, carbachol, also induced both current and calcium fluorescence with the similar time course. By forming heteromers with TRPC4, TRPC1 significantly reduced the inward current with outward rectifying I-V curve, which also caused the decrease of calcium fluorescence intensity. These results suggest that GCaMP6s attached to TRPC4 can detect slight calcium changes near TRPC4 channels. Consequently, TRPC4-GCaMP6s can be a useful tool for testing the calcium permeability of TRPC4 channels. PMID:28066150

  16. Discovery, structure-activity relationship study, and oral analgesic efficacy of cyproheptadine derivatives possessing N-type calcium channel inhibitory activity.

    PubMed

    Yamamoto, Takashi; Niwa, Seiji; Iwayama, Satoshi; Koganei, Hajime; Fujita, Shin-ichi; Takeda, Tomoko; Kito, Morikazu; Ono, Yukitsugu; Saitou, Yuki; Takahara, Akira; Iwata, Seinosuke; Yamamoto, Hiroshi; Shoji, Masataka

    2006-08-01

    Antiallergic drug cyproheptadine (Cyp) is known to have inhibitory activities for L-type calcium channels in addition to histamine and serotonin receptors. Since we found that Cyp had an inhibitory activity against N-type calcium channel, Cyp was optimized to obtain more selective N-type calcium channel blocker with analgesic action. As a consequence of the optimization, we found 13 with potent N-type calcium channel inhibitory activity which had lower inhibitory activities against L-type calcium channel, histamine (H1), and serotonin (5-HT2A) receptors than those of Cyp. 13 showed an oral analgesic activity in rat formalin-induced pain model.

  17. Experts Consensus Recommendations for the Management of Calcium Channel Blocker Poisoning in Adults

    PubMed Central

    Anseeuw, Kurt; Cantrell, Frank Lee; Gilchrist, Ian C.; Hantson, Philippe; Bailey, Benoit; Lavergne, Valéry; Gosselin, Sophie; Kerns, William; Laliberté, Martin; Lavonas, Eric J.; Juurlink, David N.; Muscedere, John; Yang, Chen-Chang; Sinuff, Tasnim; Rieder, Michael; Mégarbane, Bruno

    2017-01-01

    Objective: To provide a management approach for adults with calcium channel blocker poisoning. Data Sources, Study Selection, and Data Extraction: Following the Appraisal of Guidelines for Research & Evaluation II instrument, initial voting statements were constructed based on summaries outlining the evidence, risks, and benefits. Data Synthesis: We recommend 1) for asymptomatic patients, observation and consideration of decontamination following a potentially toxic calcium channel blocker ingestion (1D); 2) as first-line therapies (prioritized based on desired effect), IV calcium (1D), high-dose insulin therapy (1D–2D), and norepinephrine and/or epinephrine (1D). We also suggest dobutamine or epinephrine in the presence of cardiogenic shock (2D) and atropine in the presence of symptomatic bradycardia or conduction disturbance (2D); 3) in patients refractory to the first-line treatments, we suggest incremental doses of high-dose insulin therapy if myocardial dysfunction is present (2D), IV lipid-emulsion therapy (2D), and using a pacemaker in the presence of unstable bradycardia or high-grade arteriovenous block without significant alteration in cardiac inotropism (2D); 4) in patients with refractory shock or who are periarrest, we recommend incremental doses of high-dose insulin (1D) and IV lipid-emulsion therapy (1D) if not already tried. We suggest venoarterial extracorporeal membrane oxygenation, if available, when refractory shock has a significant cardiogenic component (2D), and using pacemaker in the presence of unstable bradycardia or high-grade arteriovenous block in the absence of myocardial dysfunction (2D) if not already tried; 5) in patients with cardiac arrest, we recommend IV calcium in addition to the standard advanced cardiac life-support (1D), lipid-emulsion therapy (1D), and we suggest venoarterial extracorporeal membrane oxygenation if available (2D). Conclusion: We offer recommendations for the stepwise management of calcium channel blocker

  18. Calcium channels are differentially activated in cerebral and hindquarter arteries of rats during simulated microgravity

    NASA Astrophysics Data System (ADS)

    Xie, Man-Jiang; Fu, Zhao-Jun; Zhang, Li-Fan; Ma, Jin; Cheng, Hong-Wei

    2005-08-01

    The purpose of this study was to investigate whether L-type Ca2+ channels (CaL) are differentially activated in cerebral and mesenteric arteries during simulated microgravity. The function of CaL in vascular smooth muscle cells (VSMCs) was studied by whole-cell patch clamp. For cerebral arteries, the VSMCs of suspended rats had a more depolarized membrane potential (Em) and a larger calcium current density as compared with those of control rats. For small mesenteric arteries, VSMCs of suspended rats had a more negative Em and smaller calcium current densities. These results suggested that different profiles of channel remodeling in VSMCs might occur and play an important role in vascular adaptation to microgravity.

  19. Selenoprotein N is required for ryanodine receptor calcium release channel activity in human and zebrafish muscle.

    PubMed

    Jurynec, Michael J; Xia, Ruohong; Mackrill, John J; Gunther, Derrick; Crawford, Thomas; Flanigan, Kevin M; Abramson, Jonathan J; Howard, Michael T; Grunwald, David Jonah

    2008-08-26

    Mutations affecting the seemingly unrelated gene products, SepN1, a selenoprotein of unknown function, and RyR1, the major component of the ryanodine receptor intracellular calcium release channel, result in an overlapping spectrum of congenital myopathies. To identify the immediate developmental and molecular roles of SepN and RyR in vivo, loss-of-function effects were analyzed in the zebrafish embryo. These studies demonstrate the two proteins are required for the same cellular differentiation events and are needed for normal calcium fluxes in the embryo. SepN is physically associated with RyRs and functions as a modifier of the RyR channel. In the absence of SepN, ryanodine receptors from zebrafish embryos or human diseased muscle have altered biochemical properties and have lost their normal sensitivity to redox conditions, which likely accounts for why mutations affecting either factor lead to similar diseases.

  20. Has the role of calcium channel blockers in treating hypertension finally been defined?

    PubMed

    Chrysant, George S; Chrysant, Steven G

    2003-08-01

    Several large, prospective, randomized, clinical outcome trials have shown that calcium channel blockers are effective and safe antihypertensive drugs compared with placebo and reduce the cardiovascular morbidity and mortality of treated patients. In other studies, when compared with conventional antihypertensive drugs, they demonstrated similar blood pressure-lowering effects and similar reductions in cardiovascular morbidity and mortality, with the exception of a higher incidence of heart failure and fatal myocardial infarction in some studies. However, considering all the evidence available today, these drugs should be considered safe for the treatment of the uncomplicated hypertensive patient in combination with other drugs. They can also be used as first-line therapy for older, stroke-prone hypertensive patients. In addition, when a calcium channel blocker is indicated for better blood pressure control, its use should not be withheld for safety concerns.

  1. Postcountershock myocardial damage after pretreatment with adrenergic and calcium channel antagonists in halothane-anesthetized dogs

    SciTech Connect

    Gaba, D.M.; Metz, S.; Maze, M.

    1985-05-01

    Transthoracic electric countershock can cause necrotic myocardial lesions in humans as well as experimental animals. The authors investigated the effect on postcountershock myocardial damage of pretreatment with prazosin, an alpha-1 antagonist; L-metoprolol, a beta-1 antagonist, and verapamil, a calcium channel-blocking agent. Twenty dogs were anesthetized with halothane and given two transthoracic countershocks of 295 delivered joules each after drug or vehicle treatment. Myocardial injury was quantitated 24 h following countershock by measuring the uptake of technetium-99m pyrophosphate in the myocardium. Elevated technetium-99m pyrophosphate uptake occurred in visible lesions in most dogs regardless of drug treatment. For each of four parameters of myocardial damage there was no statistically significant difference between control animals and those treated with prazosin, metoprolol, or verapamil. These data suggest that adrenergic or calcium channel-mediated mechanisms are not involved in the pathogenesis of postcountershock myocardial damage.

  2. International Union of Basic and Clinical Pharmacology. LXXXV: Calcium-Activated Chloride Channels

    PubMed Central

    Huang, Fen; Wong, Xiuming

    2012-01-01

    Calcium-activated chloride channels (CaCCs) are widely expressed in various tissues and implicated in physiological processes such as sensory transduction, epithelial secretion, and smooth muscle contraction. Transmembrane proteins with unknown function 16 (TMEM16A) has recently been identified as a major component of CaCCs. Detailed molecular analysis of TMEM16A will be needed to understand its structure-function relationships. The role this channel plays in physiological systems remains to be established and is currently a subject of intense investigation. PMID:22090471

  3. Complex voltage-dependent behavior of single unliganded calcium-sensitive potassium channels.

    PubMed Central

    Talukder, G; Aldrich, R W

    2000-01-01

    study and characterization of unliganded openings is of central significance for the elucidation of gating mechanisms for allosteric ligand-gated ion channels. Unliganded openings have been reported for many channel types, but their low open probability can make it difficult to study their kinetics in detail. Because the large conductance calcium-activated potassium channel mSlo is sensitive to both intracellular calcium and to membrane potential, we have been able to obtain stable unliganded single-channel recordings of mSlo with relatively high opening probability. We have found that the single-channel gating behavior of mSlo is complex, with multiple open and closed states, even when no ligand is present. Our results rule out a Monod-Wyman-Changeux allosteric mechanism with a central voltage-dependent concerted step, and they support the existence of quaternary states with less than the full number of voltage sensors activated, as has been suggested by previous work involving measurements of gating currents. PMID:10653789

  4. Direct recording and molecular identification of the calcium channel of primary cilia

    NASA Astrophysics Data System (ADS)

    Decaen, Paul G.; Delling, Markus; Vien, Thuy N.; Clapham, David E.

    2013-12-01

    A primary cilium is a solitary, slender, non-motile protuberance of structured microtubules (9+0) enclosed by plasma membrane. Housing components of the cell division apparatus between cell divisions, primary cilia also serve as specialized compartments for calcium signalling and hedgehog signalling pathways. Specialized sensory cilia such as retinal photoreceptors and olfactory cilia use diverse ion channels. An ion current has been measured from primary cilia of kidney cells, but the responsible genes have not been identified. The polycystin proteins (PC and PKD), identified in linkage studies of polycystic kidney disease, are candidate channels divided into two structural classes: 11-transmembrane proteins (PKD1, PKD1L1 and PKD1L2) remarkable for a large extracellular amino terminus of putative cell adhesion domains and a G-protein-coupled receptor proteolytic site, and the 6-transmembrane channel proteins (PKD2, PKD2L1 and PKD2L2; TRPPs). Evidence indicates that the PKD1 proteins associate with the PKD2 proteins via coiled-coil domains. Here we use a transgenic mouse in which only cilia express a fluorophore and use it to record directly from primary cilia, and demonstrate that PKD1L1 and PKD2L1 form ion channels at high densities in several cell types. In conjunction with an accompanying manuscript, we show that the PKD1L1-PKD2L1 heteromeric channel establishes the cilia as a unique calcium compartment within cells that modulates established hedgehog pathways.

  5. KATP channels are common mediators of ischemic and calcium preconditioning in rabbits.

    PubMed

    Kouchi, I; Murakami, T; Nawada, R; Akao, M; Sasayama, S

    1998-04-01

    Calcium preconditioning (CPC), like ischemic preconditioning (IPC), reduces myocardial infarct size in dogs and rats. ATP-sensitive potassium (KATP) channels induce cardioprotection of IPC in these animals. To determine whether KATP channels mediate both IPC and CPC, pentobarbital sodium-anesthetized rabbits received 30 min of coronary artery occlusion followed by 180 min of reperfusion. IPC was elicited by 5 min of occlusion and 10 min of reperfusion, and CPC was elicited by two cycles of 5 min of calcium infusion with an interval period of 15 min. Infarct size expressed as a percentage of the area at risk was 38 +/- 3% (mean +/- SE) in controls. IPC, CPC, and pretreatment with a KATP channel opener, cromakalim, all reduced infarct size to 13 +/- 2, 17 +/- 2, and 12 +/- 3%, respectively (P < 0.01 vs. controls). Glibenclamide, a KATP channel blocker administered 45 min (but not 20 min) before sustained ischemia, attenuated the effects of IPC and CPC (31 +/- 4 and 41 +/- 6%, respectively). Thus KATP channel activation appears to contribute to these two types of cardioprotection in rabbits.

  6. Structural Basis for Calcium and Magnesium Regulation of a Large Conductance Calcium-activated Potassium Channel with β1 Subunits*

    PubMed Central

    Liu, Hao-Wen; Hou, Pan-Pan; Guo, Xi-Ying; Zhao, Zhi-Wen; Hu, Bin; Li, Xia; Wang, Lu-Yang; Ding, Jiu-Ping; Wang, Sheng

    2014-01-01

    Large conductance Ca2+- and voltage-activated potassium (BK) channels, composed of pore-forming α subunits and auxiliary β subunits, play important roles in diverse physiological activities. The β1 is predominately expressed in smooth muscle cells, where it greatly enhances the Ca2+ sensitivity of BK channels for proper regulation of smooth muscle tone. However, the structural basis underlying dynamic interaction between BK mSlo1 α and β1 remains elusive. Using macroscopic ionic current recordings in various Ca2+ and Mg2+ concentrations, we identified two binding sites on the cytosolic N terminus of β1, namely the electrostatic enhancing site (mSlo1(K392,R393)-β1(E13,T14)), increasing the calcium sensitivity of BK channels, and the hydrophobic site (mSlo1(L906,L908)-β1(L5,V6,M7)), passing the physical force from the Ca2+ bowl onto the enhancing site and S6 C-linker. Dynamic binding of these sites affects the interaction between the cytosolic domain and voltage-sensing domain, leading to the reduction of Mg2+ sensitivity. A comprehensive structural model of the BK(mSlo1 α-β1) complex was reconstructed based on these functional studies, which provides structural and mechanistic insights for understanding BK gating. PMID:24764303

  7. [Results of an intervention to reduce potentially inappropriate prescriptions of beta blockers and calcium channel blockers].

    PubMed

    Machado-Alba, J E; Giraldo-Giraldo, C; Aguirre Novoa, A

    2016-01-01

    To determine the frequency of simultaneous prescription of β-blockers and calcium channel blockers, notify the cardiovascular risk of these patients to the health care professionals in charge of them, and achieve a reduction in the number of those who use them. Quasi-experimental, prospective study by developing an intervention on medical prescriptions of patients older than 65 years treated between January 1 and July 30, 2014, affiliated to the Health System in 101 cities in Colombia. A total of 43,180 patients received a β-blocker each month, and 14,560 receiving a calcium channel blocker were identified. Educational interventions were performed and an evaluation was made, using sociodemographic and pharmacological variables, on the number of patients that stopped taking any of the two drugs in the following three months. A total of 535 patients, with a mean age 75.8±6.7 years received concomitant β-blockers plus calcium channel blockers. Modification of therapy was achieved in 235 patients (43.9% of users) after 66 educational interventions. In 209 cases (88.9%) one of the two drugs was suspended, and 11.1% changed to other antihypertensive drugs. The variable of being more than 85 years old (OR: 1.93; 95% CI: 1.07-3.50), and receiving concomitant medication with inhibitors of the renin-angiotensin system (OR: 2.16; 95% CI: 1.28-3.65) were associated with increased risk of their doctor changing or stopping the prescription. An improved adherence to recommendations for appropriate use of β-blockers and calcium channel blockers by health service providers was achieved. Intervention programs that reduce potentially inappropriate prescriptions for patients treated for cardiovascular disease should be used more frequently. Copyright © 2015 SECA. Published by Elsevier Espana. All rights reserved.

  8. A small-molecule screen in C. elegans yields a new calcium channel antagonist.

    PubMed

    Kwok, Trevor C Y; Ricker, Nicole; Fraser, Regina; Chan, Allen W; Burns, Andrew; Stanley, Elise F; McCourt, Peter; Cutler, Sean R; Roy, Peter J

    2006-05-04

    Small-molecule inhibitors of protein function are powerful tools for biological analysis and can lead to the development of new drugs. However, a major bottleneck in generating useful small-molecule tools is target identification. Here we show that Caenorhabditis elegans can provide a platform for both the discovery of new bioactive compounds and target identification. We screened 14,100 small molecules for bioactivity in wild-type worms and identified 308 compounds that induce a variety of phenotypes. One compound that we named nemadipine-A induces marked defects in morphology and egg-laying. Nemadipine-A resembles a class of widely prescribed anti-hypertension drugs called the 1,4-dihydropyridines (DHPs) that antagonize the alpha1-subunit of L-type calcium channels. Through a genetic suppressor screen, we identified egl-19 as the sole candidate target of nemadipine-A, a conclusion that is supported by several additional lines of evidence. egl-19 encodes the only L-type calcium channel alpha1-subunit in the C. elegans genome. We show that nemadipine-A can also antagonize vertebrate L-type calcium channels, demonstrating that worms and vertebrates share the orthologous protein target. Conversely, FDA-approved DHPs fail to elicit robust phenotypes, making nemadipine-A a unique tool to screen for genetic interactions with this important class of drugs. Finally, we demonstrate the utility of nemadipine-A by using it to reveal redundancy among three calcium channels in the egg-laying circuit. Our study demonstrates that C. elegans enables rapid identification of new small-molecule tools and their targets.

  9. Calcium Channels: Structure and Function (Annals of the New York Academy of Sciences. Volume 560)

    DTIC Science & Technology

    1989-06-26

    8033 Planegg, Federal Republic of Germany c Dipartimento di Anatomia e Fisiologia Umana Corso Raffaello 30 1-10125 Torino, Italy INTRODUCTION In...mobilization during contraction of smooth muscle. In Calcium and Con- tractility. A. K. Grover & E. E. Daniel, Eds. Humana Press. Clifton, NJ. 12. IRVINE...4313-4317. I Modulation of Ca Channels in Peripheral Neuronsa E. CARBONE Dipardmento di Anatomia e Fisiologia Umana Corso Raffaello 30 1-10125 Torino

  10. Expression of the apoptotic calcium channel P2X7 in the glandular epithelium.

    PubMed

    Slater, Michael; Danieletto, Suzanne; Barden, Julian A

    2005-03-01

    In the current study, expression of the apoptotic calcium channel receptor P2X(7) and prostate-specific antigen (PSA) levels were studied in biopsy cores from 174 patients as well as 20 radical prostatectomy cases. In clinical biopsies, we have previously demonstrated that P2X(1 )and P2X(2) calcium channel receptors are absent from normal prostate epithelium that does not progress to prostate cancer within 5 years. In cases that did progress to prostate cancer however, P2X(1 )and P2X(2) labeling was observed in a stage-specific manner first in the nucleus, then the cytoplasm and finally on the apical epithelium, as prostate cancer developed. These markers were present up to 5 years before cancer was detectable by the usual morphological criteria (Gleason grading) as determined by H and E staining. In the current study, the apoptotic calcium channel receptor P2X(7) yielded similar results to that of P2X(1) and P2X(2). Using radical prostatectomy tissue sections as well as biopsies, these changes in calcium channel metabolism were noted throughout the prostate, indicating a field effect. This finding suggests that the presence of a prostate tumor could be detected without the need for direct sampling of tumor tissue, leading to detection of false negative cases missed by H or E stain. The reliability of PSA levels as a prognostic indicator has been questioned in recent years. In the current study, PSA levels were correlated with the P2X(7) labeling results. All patients who exhibited no P2X(7) labeling had a prostatic serum antigen (PSA) level of <2. Patients who exhibited stage-specific P2X(7) expression, and who later developed obvious prostate cancer as diagnosed by H and E stain, all had a PSA > 2. This finding suggests that increasing PSA may be an accurate indicator of cancer development.

  11. Calcium channel blockers in the management of hypertension in the elderly.

    PubMed

    Caballero-Gonzalez, Francisco J

    2015-01-01

    The aging population is rapidly increasing, and is mainly due to medical advances and the control of chronic diseases, with a real worldwide increase in the elderly population. Special emphasis has been placed on the management of hypertension in the geriatric patient, since its long-term benefits have been shown to prevent both cerebral and cardiac infarctions. Calcium channel blockers have been shown to be effective in this condition in the elderly. Their success depends on their mechanism of action, as well as on the physiological changes observed, and on the aging process itself, which include cardiac hypertrophy, calcification of cardiac valves, and a decrease in the excitation-conduction system. There is thickening of the tunica intima of the arteries, and the production of nitric oxide at cellular level decreases with age, along with an increase in endothelin 1, which leads to vascular endothelium dysfunction. In the kidneys, there is a decrease in prostacyclin, endothelial hyperpolarization factor, as well as the Klotho anti-aging protein, which leads to an increase in blood pressure. Calcium channel blocker drugs have been shown to be effective in any age group for the management of hypertension, and are safe in the elderly patients. These drugs block L-type calcium channels, with the long-acting or latest generation dihydropyridines being the most effective of this group. Several studies, including SYST-EUR2, NORDIL, and STOP-2, have demonstrated the effectiveness of these drugs in the geriatric patient. The prescribing of long-acting calcium channel blocker drugs in a single dose is the most recommended. The safety in the use of this drug group has been demonstrated in the treatment of hypertension in the elderly patient, with a level of effectiveness similar to other widely used drugs.

  12. Calcium channel blockers, beta-blockers and digitalis poisoning: management in the emergency room.

    PubMed

    Ojetti, V; Migneco, A; Bononi, F; De Lorenzo, A; Gentiloni Silveri, N

    2005-01-01

    Calcium channel blockers and beta-blockers intoxications account for up to 65% of deaths for cardiovascular drugs, causing severe clinical symptoms refractory to standard medications. The most serious poisonings are those resulting from verapamil and propanolol ingestion. Both support and antidotic therapy are necessary for these potentially unstable patients. Supportive measures and the use of digoxin-specific antibody fragments are first line treatment for digitalis glycoside poisoning.

  13. Functional segregation of voltage-activated calcium channels in motoneurons of the dorsal motor nucleus of the vagus.

    PubMed

    Cooper, Garry; Lasser-Katz, Efrat; Simchovitz, Alon; Sharon, Ronit; Soreq, Hermona; Surmeier, D James; Goldberg, Joshua A

    2015-09-01

    Calcium influx elevates mitochondrial oxidant stress (mOS) in dorsal motor nucleus of the vagus (DMV) neurons that are prone to Lewy body pathologies in presymptomatic Parkinson's disease (PD) patients. In experimental PD models, treatment with isradipine, the dihydropyridine with the highest affinity to Cav1.3 channels, prevents subthreshold calcium influx via Cav1.3 channels into midbrain dopamine neurons and protects them from mOS. In DMV neurons, isradipine is also effective in reducing mOS despite overwhelming evidence that subthreshold calcium influx is negligible compared with spike-triggered influx. To solve this conundrum we combined slice electrophysiology, two-photon laser scanning microscopy, mRNA profiling, and computational modeling. We find that the unusually depolarized subthreshold voltage trajectory of DMV neurons is positioned between the relatively hyperpolarized activation curve of Cav1.3 channels and that of other high-voltage activated (HVA) calcium channels, thus creating a functional segregation between Cav1.3 and HVA calcium channels. The HVA channels flux the bulk of calcium during spikes but can only influence pacemaking through their coupling to calcium-activated potassium currents. In contrast, Cav1.3 currents, which we show to be more than an order-of-magnitude smaller than the HVA calcium currents, are able to introduce sufficient inward current to speed up firing. However, Kv4 channels that are constitutively open in the subthreshold range guarantee slow pacemaking, despite the depolarizing action of Cav1.3 and other pacemaking currents. We propose that the efficacy of isradipine in preventing mOS in DMV neurons arises from its mixed effect on Cav1.3 channels and on HVA Cav1.2 channels.

  14. Functional segregation of voltage-activated calcium channels in motoneurons of the dorsal motor nucleus of the vagus

    PubMed Central

    Cooper, Garry; Lasser-Katz, Efrat; Simchovitz, Alon; Sharon, Ronit; Soreq, Hermona; Surmeier, D. James

    2015-01-01

    Calcium influx elevates mitochondrial oxidant stress (mOS) in dorsal motor nucleus of the vagus (DMV) neurons that are prone to Lewy body pathologies in presymptomatic Parkinson's disease (PD) patients. In experimental PD models, treatment with isradipine, the dihydropyridine with the highest affinity to Cav1.3 channels, prevents subthreshold calcium influx via Cav1.3 channels into midbrain dopamine neurons and protects them from mOS. In DMV neurons, isradipine is also effective in reducing mOS despite overwhelming evidence that subthreshold calcium influx is negligible compared with spike-triggered influx. To solve this conundrum we combined slice electrophysiology, two-photon laser scanning microscopy, mRNA profiling, and computational modeling. We find that the unusually depolarized subthreshold voltage trajectory of DMV neurons is positioned between the relatively hyperpolarized activation curve of Cav1.3 channels and that of other high-voltage activated (HVA) calcium channels, thus creating a functional segregation between Cav1.3 and HVA calcium channels. The HVA channels flux the bulk of calcium during spikes but can only influence pacemaking through their coupling to calcium-activated potassium currents. In contrast, Cav1.3 currents, which we show to be more than an order-of-magnitude smaller than the HVA calcium currents, are able to introduce sufficient inward current to speed up firing. However, Kv4 channels that are constitutively open in the subthreshold range guarantee slow pacemaking, despite the depolarizing action of Cav1.3 and other pacemaking currents. We propose that the efficacy of isradipine in preventing mOS in DMV neurons arises from its mixed effect on Cav1.3 channels and on HVA Cav1.2 channels. PMID:26156385

  15. Activation and Inhibition of TMEM16A Calcium-Activated Chloride Channels

    PubMed Central

    Ni, Yu-Li; Kuan, Ai-Seon; Chen, Tsung-Yu

    2014-01-01

    Calcium-activated chloride channels (CaCC) encoded by family members of transmembrane proteins of unknown function 16 (TMEM16) have recently been intensely studied for functional properties as well as their physiological roles as chloride channels in various tissues. One technical hurdle in studying these channels is the well-known channel rundown that frequently impairs the precision of electrophysiological measurements for the channels. Using experimental protocols that employ fast-solution exchange, we circumvented the problem of channel rundown by normalizing the Ca2+-induced current to the maximally-activated current obtained within a time period in which the channel rundown was negligible. We characterized the activation of the TMEM16A-encoded CaCC (also called ANO1) by Ca2+, Sr2+, and Ba2+, and discovered that Mg2+ competes with Ca2+ in binding to the divalent-cation binding site without activating the channel. We also studied the permeability of the ANO1 pore for various anions and found that the anion occupancy in the pore–as revealed by the permeability ratios of these anions–appeared to be inversely correlated with the apparent affinity of the ANO1 inhibition by niflumic acid (NFA). On the other hand, the NFA inhibition was neither affected by the degree of the channel activation nor influenced by the types of divalent cations used for the channel activation. These results suggest that the NFA inhibition of ANO1 is likely mediated by altering the pore function but not through changing the channel gating. Our study provides a precise characterization of ANO1 and documents factors that can affect divalent cation activation and NFA inhibition of ANO1. PMID:24489780

  16. Activation and inhibition of TMEM16A calcium-activated chloride channels.

    PubMed

    Ni, Yu-Li; Kuan, Ai-Seon; Chen, Tsung-Yu

    2014-01-01

    Calcium-activated chloride channels (CaCC) encoded by family members of transmembrane proteins of unknown function 16 (TMEM16) have recently been intensely studied for functional properties as well as their physiological roles as chloride channels in various tissues. One technical hurdle in studying these channels is the well-known channel rundown that frequently impairs the precision of electrophysiological measurements for the channels. Using experimental protocols that employ fast-solution exchange, we circumvented the problem of channel rundown by normalizing the Ca(2+)-induced current to the maximally-activated current obtained within a time period in which the channel rundown was negligible. We characterized the activation of the TMEM16A-encoded CaCC (also called ANO1) by Ca(2+), Sr(2+), and Ba(2+), and discovered that Mg(2+) competes with Ca(2+) in binding to the divalent-cation binding site without activating the channel. We also studied the permeability of the ANO1 pore for various anions and found that the anion occupancy in the pore-as revealed by the permeability ratios of these anions-appeared to be inversely correlated with the apparent affinity of the ANO1 inhibition by niflumic acid (NFA). On the other hand, the NFA inhibition was neither affected by the degree of the channel activation nor influenced by the types of divalent cations used for the channel activation. These results suggest that the NFA inhibition of ANO1 is likely mediated by altering the pore function but not through changing the channel gating. Our study provides a precise characterization of ANO1 and documents factors that can affect divalent cation activation and NFA inhibition of ANO1.

  17. Inhibition of calcium channels by neurokinin receptor and signal transduction in hamster submandibular ganglion cells.

    PubMed

    Yamada, T; Endoh, T; Suzuki, T

    1999-04-16

    Both substance P (SP) and neurokinin A (NKA) are known as neurotransmitters of the submandibular ganglion (SMG) neurons. SP released from collaterals of the sensory nerves also regulates the excitability of SMG neurons. It has recently been shown that neurokinins (NK) inhibit calcium channels in various neurons. In this study, the effects of NK on voltage-dependent calcium channel current (I(Ca)) in SMG cells were investigated using the whole-cell patch-clamp recording method. NK-1 receptor agonist and SP caused inhibition of I(Ca) in SMG cells in a dose-dependent manner. NK-1 receptor agonist inhibited L-, N- and P/Q-type I(Ca) components. GDP-beta-S included in the pipette solution reduced the NK-1 receptor agonist-induced inhibition of I(Ca). In addition, NK-1 receptor agonist-induced inhibition of I(Ca) was reduced by stimulation of protein kinase C (PKC) but not cyclic AMP-dependent protein kinase (PKA). The results provided evidence for a signal transduction pathway in which calcium channel inhibition by NK receptors required activation of G-protein and PKC-affected step phosphorylation in SMG neurons.

  18. Calcium uptake in rat liver mitochondria accompanied by activation of ATP-dependent potassium channel.

    PubMed

    Akopova, O V; Nosar, V I; Mankovskaya, I N; Sagach, V F

    2008-10-01

    The influence of potassium ions on calcium uptake in rat liver mitochondria is studied. It is shown that an increase in K+ and Ca2+ concentrations in the incubation medium leads to a decrease in calcium uptake in mitochondria together with a simultaneous increase in potassium uptake due to the potential-dependent transport of K+ in the mitochondrial matrix. Both effects are more pronounced in the presence of an ATP-dependent K+-channel (K+(ATP)-channel) opener, diazoxide (Dz). Activation of the K+(ATP)-channel by Dz alters the functional state of mitochondria and leads to an increase in the respiration rate in state 2 and a decrease in the oxygen uptake and the rate of ATP synthesis in state 3. The effect of Dz on oxygen consumption in state 3 is mimicked by valinomycin, but it is opposite to that of the classical protonophore uncoupler CCCP. It is concluded that the potential-dependent uptake of potassium is closely coupled to calcium transport and is an important parameter of energy coupling responsible for complex changes in oxygen consumption and Ca2+-transport properties of mitochondria.

  19. Role of dihydropyridinic calcium channel blockers in the management of hypertension.

    PubMed

    Coca, Antonio; Mazón, Pilar; Aranda, Pedro; Redón, Josep; Divisón, Juan Antonio; Martínez, Javier; Calvo, Carlos; Galcerán, Josep María; Barrios, Vivencio; Roca-Cusachs I Coll, Alexandre

    2013-01-01

    Dihydropyridinic calcium channel blockers are a subclass of antihypertensive drugs with growing significance in the therapeutic armamentarium. Early studies in the 1990s had aroused certain fears with regard to the safety of the first drugs from this class, since they had a fast onset of action and a short half-life, and thus they were associated with reflex adrenergic activation. New molecules with long half-lives and high lipophilia have shown safety and efficacy in the control of blood pressure, as well as in the reduction of several end points related to hypertension. Moreover, these new molecules, which block special subtypes of calcium channel receptors, provide drugs not only with an action profile that goes beyond the antihypertensive effect, but also with a lower rate of side effects. Therefore, in the light of new studies that include calcium channel blockers alone or in combination, these agents will probably be used even more extensively for the management of hypertension in the following years.

  20. Unexpected Effect of Calcium Channel Blockers on the Optic Nerve Compartment Syndrome.

    PubMed

    Konieczka, K; Todorova, M G; Bojinova, R I; Binggeli, T; Chackathayil, T N; Flammer, J

    2016-04-01

    The optic nerve compartment syndrome is a pathological condition in which cerebrospinal fluid of the subarachnoid space surrounding the optic nerve is partly or totally segregated from the cerebrospinal fluid of the intracranial subarachnoid space, leading - inter alia - to an increase in the diameter of the optic nerve sheath. The pathogenesis of this condition remains unclear. We have observed clinically that optic nerve compartment syndrome often occurs in normal tension glaucoma patients with Flammer syndrome. To treat Flammer syndrome, some glaucoma patients received a low dose of a calcium channel blocker and we analysed whether this treatment also had an effect on the optic nerve compartment syndrome. We retrospectively analysed the data of 10 eyes of seven patients suffering from a combination of primary open angle glaucoma, optic nerve compartment syndrome, and Flammer syndrome. We included subjects who had eye socket echography before and after a few months of therapy with a calcium channel blocker. All patients received a low dose of a calcium channel blocker (nifedipine or amlodipine) to treat Flammer syndrome. As expected, the symptoms of Flammer syndrome were mitigated. To our surprise, the optic nerve compartment syndrome also improved in eight of the 10 eyes (80 %), but remained unchanged in the remainder. To some extent, the optic nerve compartment syndrome is related to the combination of primary open angle glaucoma and Flammer syndrome. On the basis of our results, we hypothesise that treatment of Flammer syndrome may also improve the optic nerve compartment syndrome. Georg Thieme Verlag KG Stuttgart · New York.

  1. Effect of calcium antagonists, calcium channel blockers and calmodulin inhibitors on the growth and encystation of Entamoeba histolytica and E. invadens.

    PubMed

    Makioka, A; Kumagai, M; Ohtomo, H; Kobayashi, S; Takeuchi, T

    2001-10-01

    The effects of calcium antagonists, calcium channel blockers, and calmodulin inhibitors on the growth of Entamoeba histolytica and the growth and encystation of Entamoeba invadens were examined. Calcium chelators ethyleneglycol bis (beta-aminoethyl ether)-N,N'-tetraacetate (EGTA) and ethylene-diaminetetraacetate (EDTA) inhibited the growth of both Entamoeba and also the encystation of E. invadens in a dose-dependent manner, with EDTA being more effective than EGTA. A putative antagonist of intracellular calcium flux, 8-(N,N-diethylamino) octyl-3,4,5-trimethoxybenzoate (TMB-8) also inhibited both growth and encystation, with the E. histolytica being more sensitive than E. invadens, and with the growth of E. invadens being more sensitive than encystation. The slow Na+-Ca2+ channel blockers bepridil and verapamil inhibited both growth and encystation. Bepridil was more effective than verapamil. The calmodulin (CaM) inhibitors, W-7 (N-(6-aminohexyl)-chloro-1-naphtalene sulphonamide) and trifluoperazine (TFP), were also inhibitory for both the growth and encystation; TFP was more effective than W-7, and encystation was more sensitive than growth in E. invadens. These results indicate that extracellular calcium ions, amebic intracellular calcium flux, calcium channels, and a CaM-dependent process contribute to the growth and encystation of Entamoeba.

  2. Channel properties of the splicing isoforms of the olfactory calcium-activated chloride channel Anoctamin 2

    PubMed Central

    Ponissery Saidu, Samsudeen; Stephan, Aaron B.; Talaga, Anna K.

    2013-01-01

    Anoctamin (ANO)2 (or TMEM16B) forms a cell membrane Ca2+-activated Cl− channel that is present in cilia of olfactory receptor neurons, vomeronasal microvilli, and photoreceptor synaptic terminals. Alternative splicing of Ano2 transcripts generates multiple variants with the olfactory variants skipping exon 14 and having alternative splicing of exon 4. In the present study, 5′ rapid amplification of cDNA ends analysis was conducted to characterize the 5′ end of olfactory Ano2 transcripts, which showed that the most abundant Ano2 transcripts in the olfactory epithelium contain a novel starting exon that encodes a translation initiation site, whereas transcripts of the publically available sequence variant, which has an alternative and longer 5′ end, were present in lower abundance. With two alternative starting exons and alternative splicing of exon 4, four olfactory ANO2 isoforms are thus possible. Patch-clamp experiments in transfected HEK293T cells expressing these isoforms showed that N-terminal sequences affect Ca2+ sensitivity and that the exon 4–encoded sequence is required to form functional channels. Coexpression of the two predominant isoforms, one with and one without the exon 4 sequence, as well as coexpression of the two rarer isoforms showed alterations in channel properties, indicating that different isoforms interact with each other. Furthermore, channel properties observed from the coexpression of the predominant isoforms better recapitulated the native channel properties, suggesting that the native channel may be composed of two or more splicing isoforms acting as subunits that together shape the channel properties. PMID:23669718

  3. Synthesis of a new series of 4-aryl-1,4-dihydropyridines with calcium channel blocking and vasodilatory activity.

    PubMed

    Jain, P; Narang, G; Jindal, D P; Bansal, R; Calle, C; Carron, R; Pemberton, K; Harvey, A L

    2006-05-01

    Synthesis of a new series of 4-aryl-1,4-dihydropyridines possessing potential calcium channel blocking activity along with good vasodilatory profile is reported. The compounds were synthesized using modified Hantzsch condensation of various aldehydes with methyl 3-aminocrotonate in the presence of a catalytic amount of trifluoroacetic acid and subsequent alkylation with various hydrochlorides of dialkylaminoalkyl chlorides. In vitro calcium channel blocking activity has been evaluated in cultures of neonatal rat cortical neurons by measuring the inhibitory response at L-type calcium channels activated by veratridine. Many compounds exhibited moderate to significant calcium channel blockade around 1 microM. The vasodilatory activity was assessed on isolated rat thoracic aortic rings precontracted by phenylephrine/KCl (30 mM). Most of the compounds produced a concentration-dependent inhibition of the contractile response.

  4. Voltage-dependent and calcium-dependent inactivation of calcium channel current in identified snail neurones.

    PubMed Central

    Gutnick, M J; Lux, H D; Swandulla, D; Zucker, H

    1989-01-01

    1. The dependence of Ca2+ current inactivation on membrane potential and intracellular Ca2+ concentration ([Ca2+]i) was studied in TEA-loaded, identified Helix neurones which possess a single population of high-voltage-activated Ca2+ channels. During prolonged depolarization, the Ca2+ current declined from its peak with two clearly distinct phases. The time course of its decay was readily fitted by a double-exponential function. 2. In double-pulse experiments, the relationship between the magnitude of the Ca2+ current and the amount of Ca2+ inactivation was not linear, and considerable inactivation was present, even when conditioning pulses were to levels of depolarization so great that Ca2+ currents were near zero. Similar results were obtained when external Ca2+ was replaced by Ba2+. 3. In double-pulse experiments, hyperpolarization during the interpulse interval served to reprime a portion of the inactivated Ca2+ current for subsequent activation. The extent of repriming increased with hyperpolarization, reaching a maximum between -130 and -150 mV. The effectiveness of repriming hyperpolarizations was considerably increased when Ca2+ was replaced by Ba2+. 4. A significant fraction of inactivated Ca2+ channels can be recovered during hyperpolarizing pulses lasting only milliseconds. If hyperpolarizing pulses were applied before substantial inactivation of Ca2+ current, Ca2+ channels remained available for activation despite considerable Ca2+ entry. 5. The relationship between [Ca2+]i and inactivation was investigated by quantitatively injecting Ca2+-buffered solutions into the cells. The time course of Ca2+ current inactivation was unchanged at free [Ca2+] between 1 x 10(-7) and 1 x 10(-5) M. From 1 x 10(-7) to 1 x 10(-9) M, inactivation became progressively slower, mainly due to a decrease of the amplitude ratio (fast/slow) of the two components of inactivation, which fell from about unity to near zero at 1 x 10(-9) M. In double-pulse experiments, recovery from

  5. Selective T-type calcium channel blockade alleviates hyperalgesia in ob/ob mice.

    PubMed

    Latham, Janelle R; Pathirathna, Sriyani; Jagodic, Miljen M; Choe, Won Joo; Levin, Michaela E; Nelson, Michael T; Lee, Woo Yong; Krishnan, Kathiresan; Covey, Douglas F; Todorovic, Slobodan M; Jevtovic-Todorovic, Vesna

    2009-11-01

    Morbid obesity may be accompanied by diabetes and painful diabetic neuropathy, a poorly understood condition that is manifested by mechanical or thermal allodynia and hyperalgesia. Recent studies have highlighted the importance of T-type calcium channels (T-channels) in peripheral nociception; therefore, our goal was to examine the function of these channels in the pathophysiology and development of painful diabetic neuropathy. In vivo testing of mechanical and thermal sensation, morphometric peripheral nerve studies, and electrophysiological and biochemical measurements were used to characterize the role of T-channels and the development of painful diabetic neuropathy in leptin-deficient (ob/ob) mice. We found that ob/ob mice developed significant mechanical and thermal hypersensitivity early in life that coincided with hyperglycemia and was readily reversed with insulin therapy. These disturbances were accompanied by significant biophysical and biochemical modulation of T-channels in dorsal root ganglion neurons as measured by a large increase in the amplitude of T-currents and the expression of mRNA. The most prevalent subtype, alpha1H (Ca(v)3.2), was most strongly affected. Moreover, (3beta,5alpha,17beta)-17-hydroxyestrane-3-carbonitrile (ECN), a novel neuroactive steroid and selective T-channel antagonist, provided dose-dependent alleviation of neuropathic thermal and mechanical hypersensitivity in diabetic ob/ob mice. Our results indicate that pharmacological antagonism of T-channels is potentially an important novel therapeutic approach for the management of painful diabetic neuropathy.

  6. Phospholemman Modulates the Gating of Cardiac L-Type Calcium Channels

    PubMed Central

    Wang, Xianming; Gao, Guofeng; Guo, Kai; Yarotskyy, Viktor; Huang, Congxin; Elmslie, Keith S.; Peterson, Blaise Z.

    2010-01-01

    Ca2+ entry through L-type calcium channels (CaV1.2) is critical in shaping the cardiac action potential and initiating cardiac contraction. Modulation of CaV1.2 channel gating directly affects myocyte excitability and cardiac function. We have found that phospholemman (PLM), a member of the FXYD family and regulator of cardiac ion transport, coimmunoprecipitates with CaV1.2 channels from guinea pig myocytes, which suggests PLM is an endogenous modulator. Cotransfection of PLM in HEK293 cells slowed CaV1.2 current activation at voltages near the threshold for activation, slowed deactivation after long and strong depolarizing steps, enhanced the rate and magnitude of voltage-dependent inactivation (VDI), and slowed recovery from inactivation. However, Ca2+-dependent inactivation was not affected. Consistent with slower channel closing, PLM significantly increased Ca2+ influx via CaV1.2 channels during the repolarization phase of a human cardiac action potential waveform. Our results support PLM as an endogenous regulator of CaV1.2 channel gating. The enhanced VDI induced by PLM may help protect the heart under conditions such as ischemia or tachycardia where the channels are depolarized for prolonged periods of time and could induce Ca2+ overload. The time and voltage-dependent slowed deactivation could represent a gating shift that helps maintain Ca2+ influx during the cardiac action potential waveform plateau phase. PMID:20371314

  7. Calcium Channel Dysfunction in Inferior Colliculus Neurons of the Genetically Epilepsy-Prone Rat

    PubMed Central

    N’Gouemo, Prosper; Faingold, Carl L.; Morad, Martin

    2008-01-01

    Summary Voltage-gated calcium (Ca2+) channels are thought to play an important role in epileptogenesis and seizure generation. Here, using the whole-cell configuration of patch-clamp techniques, we report on the modifications of biophysical and pharmacological properties of high threshold voltage-activated Ca2+ channel currents in inferior colliculus (IC) neurons of the genetically epilepsy-prone rats (GEPR-3s). Ca2+channel currents were measured by depolarizing pulses from a holding potential of −80 mV using barium (Ba2+) as the charge carrier. We found that the current density of high threshold voltage-activated Ca2+ channels was significantly larger in IC neurons of seizure-naive GEPR-3s compared to control Sprague-Dawley rats, and that seizure episodes further enhanced the current density in the GEPR-3s. The increased current density was reflected by both a −20 mV shifts in channel activation and a 25% increase in the non-inactivating fraction of channels in seizure-naive GEPR-3s. Such changes were reduced by seizure episodes in the GEPR-3s. Pharmacological analysis of the current density suggests that upregulation of L-, N- and R-type of Ca2+ channels may contribute to IC neuronal hyperexcitability that leads to seizure susceptibility in the GEPR-3s. PMID:19084544

  8. Calcium-dependent block of P2X7 receptor channel function is allosteric.

    PubMed

    Yan, Zonghe; Khadra, Anmar; Sherman, Arthur; Stojilkovic, Stanko S

    2011-10-01

    Among purinergic P2X receptor (P2XR) channels, the P2X7R exhibits the most complex gating kinetics; the binding of orthosteric agonists at the ectodomain induces a conformational change in the receptor complex that favors a gating transition from closed to open and dilated states. Bath Ca(2+) affects P2X7R gating through a still uncharacterized mechanism: it could act by reducing the adenosine triphosphate(4-) (ATP(4-)) concentration (a form proposed to be the P2X7R orthosteric agonist), as an allosteric modulator, and/or by directly altering the selectivity of pore to cations. In this study, we combined biophysical and mathematical approaches to clarify the role of calcium in P2X7R gating. In naive receptors, bath calcium affected the activation permeability dynamics indirectly by decreasing the potency of orthosteric agonists in a concentration-dependent manner and independently of the concentrations of the free acid form of agonists and status of pannexin-1 (Panx1) channels. Bath calcium also facilitated the rates of receptor deactivation in a concentration-dependent manner but did not affect a progressive delay in receptor deactivation caused by repetitive agonist application. The effects of calcium on the kinetics of receptor deactivation were rapid and reversible. A438079, a potent orthosteric competitive antagonist, protected the rebinding effect of 2'(3')-O-4-benzoylbenzoyl)ATP on the kinetics of current decay during the washout period, but in the presence of A438079, calcium also increased the rate of receptor deactivation. The corresponding kinetic (Markov state) model indicated that the decrease in binding affinity leads to a decrease in current amplitudes and facilitation of receptor deactivation, both in an extracellular calcium concentration-dependent manner expressed as a Hill function. The results indicate that calcium in physiological concentrations acts as a negative allosteric modulator of P2X7R by decreasing the affinity of receptors for

  9. Calcium

    MedlinePlus

    ... You'll also find calcium in broccoli and dark green, leafy vegetables (especially collard and turnip greens, ... can enjoy good sources of calcium such as dark green, leafy vegetables, broccoli, chickpeas, and calcium-fortified ...

  10. A critical GxxxA motif in the gamma6 calcium channel subunit mediates its inhibitory effect on Cav3.1 calcium current.

    PubMed

    Lin, Zuojun; Witschas, Katja; Garcia, Thomas; Chen, Ren-Shiang; Hansen, Jared P; Sellers, Zachary M; Kuzmenkina, Elza; Herzig, Stefan; Best, Philip M

    2008-11-15

    The eight members of the calcium channel gamma subunit family are integral membrane proteins that regulate the expression and behaviour of voltage and ligand gated ion channels. While a subgroup consisting of gamma(2), gamma(3), gamma(4) and gamma(8) (the TARPs) modulate AMPA receptor localization and function, the gamma(1) and gamma(6) subunits conform to the original description of these proteins as regulators of voltage gated calcium channels. We have previously shown that the gamma(6) subunit is highly expressed in atrial myocytes and that it is capable of acting as a negative modulator of low voltage activated calcium current. In this study we extend our understanding of gamma(6) subunit modulation of low voltage activated calcium current. Using engineered chimeric constructs, we demonstrate that the first transmembrane domain (TM1) of gamma(6) is necessary for its inhibitory effect on Cav3.1 current. Mutational analysis is then used to identify a unique GxxxA motif within TM1 that is required for the function of the subunit strongly suggesting the involvement of helix-helix interactions in its effects. Results from co-immunoprecipitation experiments confirm a physical association of gamma(6) with the Cav3.1 channel in both HEK cells and atrial myocytes. Single channel analysis reveals that binding of gamma(6) reduces channel availability for activation. Taken together, the results of this study provide both a molecular and a mechanistic framework for understanding the unique ability of the gamma(6) calcium channel subunit to modulate low voltage activated (Cav3.1) calcium current density.

  11. A critical GxxxA motif in the γ6 calcium channel subunit mediates its inhibitory effect on Cav3.1 calcium current

    PubMed Central

    Lin, Zuojun; Witschas, Katja; Garcia, Thomas; Chen, Ren-Shiang; Hansen, Jared P; Sellers, Zachary M; Kuzmenkina, Elza; Herzig, Stefan; Best, Philip M

    2008-01-01

    The eight members of the calcium channel γ subunit family are integral membrane proteins that regulate the expression and behaviour of voltage and ligand gated ion channels. While a subgroup consisting of γ2, γ3, γ4 and γ8 (the TARPs) modulate AMPA receptor localization and function, the γ1 and γ6 subunits conform to the original description of these proteins as regulators of voltage gated calcium channels. We have previously shown that the γ6 subunit is highly expressed in atrial myocytes and that it is capable of acting as a negative modulator of low voltage activated calcium current. In this study we extend our understanding of γ6 subunit modulation of low voltage activated calcium current. Using engineered chimeric constructs, we demonstrate that the first transmembrane domain (TM1) of γ6 is necessary for its inhibitory effect on Cav3.1 current. Mutational analysis is then used to identify a unique GxxxA motif within TM1 that is required for the function of the subunit strongly suggesting the involvement of helix–helix interactions in its effects. Results from co-immunoprecipitation experiments confirm a physical association of γ6 with the Cav3.1 channel in both HEK cells and atrial myocytes. Single channel analysis reveals that binding of γ6 reduces channel availability for activation. Taken together, the results of this study provide both a molecular and a mechanistic framework for understanding the unique ability of the γ6 calcium channel subunit to modulate low voltage activated (Cav3.1) calcium current density. PMID:18818244

  12. Calcium activated potassium channel expression during human iPS cell-derived neurogenesis.

    PubMed

    Linta, Leonhard; Boeckers, Tobias M; Kleger, Alexander; Liebau, Stefan

    2013-07-01

    The family of calcium activated potassium channels of low and intermediate conductance, known as SK channels, consists of four members (SK1-4). These channels are widely expressed throughout the organism and involved in various cellular processes, such as the afterhyperpolarization in excitable cells but also in differentiation processes of various tissues. To date, the role of SK channels in developmental processes has been merely a marginal focus of investigation, although it is well accepted that cell differentiation and maturation affect the expression patterns of certain ion channels. Recently, several studies from our laboratory delineated the influence of SK channel expression and their respective activity on cytoskeletal reorganization in neural and pluripotent stem cells and regulation of cell fate determination toward the cardiac lineage in human and mouse pluripotent stem cells. Herein, we have now analyzed SK channel expression patterns and distribution at various stages of human induced pluripotent stem cell-derived neurogenesis particularly focusing on undifferentiated iPS cells, neural progenitors and mature neurons. All family members could be detected starting at the iPS cell level and were differentially expressed during the subsequent maturation process. Intriguingly, we found obvious discrepancies between mRNA and protein expression pointing toward a complex regulatory mechanism. Inhibition of SK channels with either apamin or clotrimazol did not have any significant effects on the speed or amount of neurogenesis in vitro. The abundance and specific regulation of SK channel expression during iPS cell differentiation indicates distinct roles of these ion channels not only for the cardiac but also for neuronal cell differentiation and in vitro neurogenesis.

  13. Synapse-to-synapse variation of calcium channel subtype contributions in large mossy fiber terminals of mouse hippocampus.

    PubMed

    Miyazaki, K; Ishizuka, T; Yawo, H

    2005-01-01

    Both N- and P/Q-type voltage-dependent calcium channels are involved in fast transmitter release in the hippocampus, but are differentially regulated. Although variable contributions of voltage-dependent calcium channel subtypes to presynaptic Ca2+ influx have been suggested to give a neural network of great diversity, their presence has only been demonstrated in a culture system and has remained unclear in the brain. Here, the individual large mossy fiber presynaptic terminal was labeled with Ca2+/Sr2+-sensitive fluorescent dextrans in the hippocampal slice of the mouse. The fractional contribution of voltage-dependent calcium channel subtypes to presynaptic Ca2+/Sr2+ influx was directly measured by the sensitivity of Ca2+/Sr2+-dependent fluorescent increment to subtype-selective neurotoxins, omega-conotoxin GVIA (an N-type selective blocker), omega-agatoxin IVA (a P/Q-type selective blocker) and SNX-482 (an R-type selective blocker). Synapse-to-synapse comparison of large mossy fiber terminals revealed that the contributions of N- and R-type voltage-dependent calcium channels varied more widely than that of P/Q-type. Even two large mossy fiber presynaptic terminals neighboring on the same axon differed in the fractional contributions of N- and R-type voltage-dependent calcium channels. On the other hand, these terminals were similar in the fractional contributions of P/Q-type voltage-dependent calcium channels. These results provide direct evidence that individual large mossy fiber synapses are differential in the contribution of N- and R-type voltage-dependent calcium channel subtypes to presynaptic Ca2+/Sr2+ influx. We suggest that the synapse-to-synapse variation of presynaptic voltage-dependent calcium channel subtype contributions may be one of the mechanisms amplifying diversity of the hippocampal network.

  14. Low Voltage Activated Calcium Channels - Their Role in HER2 Driven Breast Cancer and Potential as a New Therapeutic Target

    DTIC Science & Technology

    2016-10-01

    AWARD NUMBER: W81XWH-15-1-0308 TITLE: Low-Voltage Activated Calcium Channels - Their Role in HER2-Driven Breast Cancer and Potential as a New...DATES COVERED 15 Sep 2015 - 14 Sep 2016 4. TITLE AND SUBTITLE Low-Voltage Activated Calcium Channels - Their Role in HER2-Driven Breast Cancer and...metastatic. Efficient novel treatments, or enhancements to current ones, are desperately needed to improve breast cancer therapy and to extend the lives of

  15. Forskolin Regulates L-Type Calcium Channel through Interaction between Actinin 4 and β3 Subunit in Osteoblasts.

    PubMed

    Zhang, Xuemei; Li, Fangping; Guo, Lin; Hei, Hongya; Tian, Lulu; Peng, Wen; Cai, Hui

    2015-01-01

    Voltage-dependent L-type calcium channels that permit cellular calcium influx are essential in calcium-mediated modulation of cellular signaling. Although the regulation of voltage-dependent L-type calcium channels is linked to many factors including cAMP-dependent protein kinase A (PKA) activity and actin cytoskeleton, little is known about the detailed mechanisms underlying the regulation in osteoblasts. Our present study investigated the modulation of L-type calcium channel activities through the effects of forskolin on actin reorganization and on its functional interaction with actin binding protein actinin 4. The results showed that forskolin did not significantly affect the trafficking of pore forming α1c subunit and its interaction with actin binding protein actinin 4, whereas it significantly increased the expression of β3 subunit and its interaction with actinin 4 in osteoblast cells as assessed by co-immunoprecipitation, pull-down assay, and immunostaining. Further mapping showed that the ABD and EF domains of actinin 4 were interaction sites. This interaction is independent of PKA phosphorylation. Knockdown of actinin 4 significantly decreased the activities of L-type calcium channels. Our study revealed a new aspect of the mechanisms by which the forskolin activation of adenylyl cyclase - cAMP cascade regulates the L-type calcium channel in osteoblast cells, besides the PKA mediated phosphorylation of the channel subunits. These data provide insight into the important role of interconnection among adenylyl cyclase, cAMP, PKA, the actin cytoskeleton, and the channel proteins in the regulation of voltage-dependent L-type calcium channels in osteoblast cells.

  16. The effect of calcium hardness on hatching success of channel catfish x blue catfish hybrid catfish eggs

    USDA-ARS?s Scientific Manuscript database

    The present study was designed to determine the optimal level of calcium hardness in hatching waters to incubate channel catfish Ictalurus punctatus ' x blue catfish I. furcatus ' hybrid catfish eggs. Hatching success of hybrid catfish eggs was higher (p<0.05) at 75 mg L-1 of calcium hardness (C...

  17. pH modification of human T-type calcium channel gating.

    PubMed

    Delisle, B P; Satin, J

    2000-04-01

    External pH (pH(o)) modifies T-type calcium channel gating and permeation properties. The mechanisms of T-type channel modulation by pH remain unclear because native currents are small and are contaminated with L-type calcium currents. Heterologous expression of the human cloned T-type channel, alpha1H, enables us to determine the effect of changing pH on isolated T-type calcium currents. External acidification from pH(o) 8.2 to pH(o) 5.5 shifts the midpoint potential (V(1/2)) for steady-state inactivation by 11 mV, shifts the V(1/2) for maximal activation by 40 mV, and reduces the voltage dependence of channel activation. The alpha1H reversal potential (E(rev)) shifts from +49 mV at pH(o) 8.2 to +36 mV at pH(o) 5.5. The maximal macroscopic conductance (G(max)) of alpha1H increases at pH(o) 5.5 compared to pH(o) 8.2. The E(rev) and G(max) data taken together suggest that external protons decrease calcium/monovalent ion relative permeability. In response to a sustained depolarization alpha1H currents inactivate with a single exponential function. The macroscopic inactivation time constant is a steep function of voltage for potentials < -30 mV at pH(o) 8.2. At pH(o) 5.5 the voltage dependence of tau(inact) shifts more depolarized, and is also a more gradual function of voltage. The macroscopic deactivation time constant (tau(deact)) is a function of voltage at the potentials tested. At pH(o) 5.5 the voltage dependence of tau(deact) is simply transposed by approximately 40 mV, without a concomitant change in the voltage dependence. Similarly, the delay in recovery from inactivation at V(rec) of -80 mV in pH(o) 5.5 is similar to that with a V(rec) of -120 mV at pH(o) 8.2. We conclude that alpha1H is uniquely modified by pH(o) compared to other calcium channels. Protons do not block alpha1H current. Rather, a proton-induced change in activation gating accounts for most of the change in current magnitude with acidification.

  18. RT-PCR and pharmacological analysis of L-and T-type calcium channels in rat carotid body.

    PubMed

    Cáceres, A I; Gonzalez-Obeso, E; Gonzalez, C; Rocher, A

    2009-01-01

    Mechanisms involved in carotid body (CB) chemoreceptor cells O(2)-sensing and responses are not fully understood. So far, it is known that hypoxia depolarizes chemoreceptor cells via O(2)-sensitive K(+)-channel inhibition; calcium influx via voltage-gated channels and neurotransmitter secretion follow. Presence of high voltage activated (HVA) calcium channels in rat CB chemoreceptor cells is well documented, but the presence of low voltage activated (LVH) or T-type calcium channels has not been reported to date. The fact that O(2)-sensitive PC12 cells express T-type channels and that they are inducible by chronic hypoxia (CH) lead us to hypothesize they could be present and play a role in the genesis of the hypoxic response in rat CB chemoreceptor cells. We have analyzed the expression of the three isoforms of T-type calcium channels (alpha1G, alpha1H and alpha1I) and the isoforms alpha1C and alpha1D of L-type calcium channels in rat CB by RT-PCR. We found that rat CB expresses alpha1G and alpha1C subunits. After chronic hypoxic treatment of adult rats (10 degrees O(2), 8 days), expression of alpha1G seems to be down-regulated whereas alpha1C expression is up-regulated. Functionally, it was found that the release of catecholamine induced by hypoxia and high external K({+}) from CB chemoreceptor cells was fully sensitive to L-type channel inhibition (nisoldipine, 2 microM), while specific inhibition of T-channels (mibefradil, 2 microM) inhibited exclusively hypoxia-induced release (50 degrees ). As a whole, present findings demonstrate the presence of T-type as well as L-type calcium channels in rat CB and suggest a selective participation of the T-type channels in the hypoxic activation of chemoreceptor cells.

  19. Investigation of calcium antagonist-L-type calcium channel interactions by a vascular smooth muscle cell membrane chromatography method.

    PubMed

    Du, Hui; He, Jianyu; Wang, Sicen; He, Langchong

    2010-07-01

    The dissociation equilibrium constant (K(D)) is an important affinity parameter for studying drug-receptor interactions. A vascular smooth muscle (VSM) cell membrane chromatography (CMC) method was developed for determination of the K(D) values for calcium antagonist-L-type calcium channel (L-CC) interactions. VSM cells, by means of primary culture with rat thoracic aortas, were used for preparation of the cell membrane stationary phase in the VSM/CMC model. All measurements were performed with spectrophotometric detection (237 nm) at 37 degrees C. The K(D) values obtained using frontal analysis were 3.36 x 10(-6) M for nifedipine, 1.34 x 10(-6) M for nimodipine, 6.83 x 10(-7) M for nitrendipine, 1.23 x 10(-7) M for nicardipine, 1.09 x 10(-7) M for amlodipine, and 8.51 x 10(-8) M for verapamil. This affinity rank order obtained from the VSM/CMC method had a strong positive correlation with that obtained from radioligand binding assay. The location of the binding region was examined by displacement experiments using nitrendipine as a mobile-phase additive. It was found that verapamil occupied a class of binding sites on L-CCs different from those occupied by nitrendipine. In addition, nicardipine, amlodipine, and nitrendipine had direct competition at a single common binding site. The studies showed that CMC can be applied to the investigation of drug-receptor interactions.

  20. Calcium-dependent expression of transient receptor potential canonical type 3 channels in patients with chronic kidney disease.

    PubMed

    Liu, Ying; Krueger, Katharina; Hovsepian, Anahit; Tepel, Martin; Thilo, Florian

    2011-10-01

    It is unknown whether extracellular calcium may regulate the expression of transient receptor potential canonical type 3 (TRPC3) channels in patients with chronic kidney disease. Using quantitative in-cell Western assay we compared the expression of TRPC3 channel protein in monocytes from 20 patients with chronic kidney disease and 19 age- and sex-matched healthy control subjects. TRPC3 channels were identified by immunoblotting using specific antibodies and TRPC3 protein was further confirmed by mass spectrometry. We observed a significant increase of TRPC3 channel protein expression in patients with chronic kidney disease compared to healthy control subjects (normalized expression, 0.42±0.06 vs. 0.19±0.03; p<0.01). Expression of TRPC3 was significantly inversely correlated with estimated glomerular filtration rates (Spearman r=-0.41) or serum calcium concentration (Spearman r=-0.34). During a hemodialysis session serum calcium concentrations significantly increased, whereas the expression of TRPC3 channels and calcium influx significantly decreased. In vitro studies confirmed that higher calcium concentrations but not magnesium, barium nor sodium concentrations significantly decreased TRPC3 expression in human monocytes. This study indicates that reduced extracellular calcium concentrations up-regulate TRPC3 channel protein expression in patients with chronic kidney disease.

  1. Presynaptic BK channel localization is dependent on the hierarchical organization of alpha-catulin and dystrobrevin and fine-tuned by CaV2 calcium channels.

    PubMed

    Oh, Kelly H; Abraham, Linu S; Gegg, Chandler; Silvestri, Christian; Huang, Yung-Chi; Alkema, Mark J; Furst, Jacob; Raicu, Daniela; Kim, Hongkyun

    2015-04-24

    Large conductance, calcium-activated BK channels regulate many important physiological processes, including smooth muscle excitation, hormone release and synaptic transmission. The biological roles of these channels hinge on their unique ability to respond synergistically to both voltage and cytosolic calcium elevations. Because calcium influx is meticulously regulated both spatially and temporally, the localization of BK channels near calcium channels is critical for their proper function. However, the mechanism underlying BK channel localization near calcium channels is not fully understood. We show here that in C. elegans the localization of SLO-1/BK channels to presynaptic terminals, where UNC-2/CaV2 calcium channels regulate neurotransmitter release, is controlled by the hierarchical organization of CTN-1/α-catulin and DYB-1/dystrobrevin, two proteins that interact with cortical cytoskeletal proteins. CTN-1 organizes a macromolecular SLO-1 channel complex at presynaptic terminals by direct physical interaction. DYB-1 contributes to the maintenance or stabilization of the complex at presynaptic terminals by interacting with CTN-1. We also show that SLO-1 channels are functionally coupled with UNC-2 calcium channels, and that normal localization of SLO-1 to presynaptic terminals requires UNC-2. In the absence of UNC-2, SLO-1 clusters lose the localization specificity, thus accumulating inside and outside of presynaptic terminals. Moreover, CTN-1 is also similarly localized in unc-2 mutants, consistent with the direct interaction between CTN-1 and SLO-1. However, localization of UNC-2 at the presynaptic terminals is not dependent on either CTN-1 or SLO-1. Taken together, our data strongly suggest that the absence of UNC-2 indirectly influences SLO-1 localization via the reorganization of cytoskeletal proteins. CTN-1 and DYB-1, which interact with cortical cytoskeletal proteins, are required for the presynaptic punctate localization of SLO-1 in a hierarchical

  2. Mechanism of Auxiliary Subunit Modulation of Neuronal α1E Calcium Channels

    PubMed Central

    Jones, Lisa P.; Wei, Shao-kui; Yue, David T.

    1998-01-01

    Voltage-gated calcium channels are composed of a main pore-forming α1 moiety, and one or more auxiliary subunits (β, α2δ) that modulate channel properties. Because modulatory properties may vary greatly with different channels, expression systems, and protocols, it is advantageous to study subunit regulation with a uniform experimental strategy. Here, in HEK 293 cells, we examine the expression and activation gating of α1E calcium channels in combination with a β (β1–β4) and/or the α2δ subunit, exploiting both ionic- and gating-current measurements. Furthermore, to explore whether more than one auxiliary subunit can concomitantly specify gating properties, we investigate the effects of cotransfecting α2δ with β subunits, of transfecting two different β subunits simultaneously, and of COOH-terminal truncation of α1E to remove a second β binding site. The main results are as follows. (a) The α2δ and β subunits modulate α1E in fundamentally different ways. The sole effect of α2δ is to increase current density by elevating channel density. By contrast, though β subunits also increase functional channel number, they also enhance maximum open probability (Gmax/Qmax) and hyperpolarize the voltage dependence of ionic-current activation and gating-charge movement, all without discernible effect on activation kinetics. Different β isoforms produce nearly indistinguishable effects on activation. However, β subunits produced clear, isoform-specific effects on inactivation properties. (b) All the β subunit effects can be explained by a gating model in which subunits act only on weakly voltage-dependent steps near the open state. (c) We find no clear evidence for simultaneous modulation by two different β subunits. (d) The modulatory features found here for α1E do not generalize uniformly to other α1 channel types, as α1C activation gating shows marked β isoform dependence that is absent for α1E. Together, these results help to establish a more

  3. Knockdown of L calcium channel subtypes: differential effects in neuropathic pain.

    PubMed

    Fossat, Pascal; Dobremez, Eric; Bouali-Benazzouz, Rabia; Favereaux, Alexandre; Bertrand, Sandrine S; Kilk, Kalle; Léger, Claire; Cazalets, Jean-René; Langel, Ulo; Landry, Marc; Nagy, Frédéric

    2010-01-20

    The maintenance of chronic pain states requires the regulation of gene expression, which relies on an influx of calcium. Calcium influx through neuronal L-type voltage-gated calcium channels (LTCs) plays a pivotal role in excitation-transcription coupling, but the involvement of LTCs in chronic pain remains unclear. We used a peptide nucleic acid (transportan 10-PNA conjugates)-based antisense strategy to investigate the role of the LTC subtypes Ca(V)1.2 and Ca(V)1.3 in long-term pain sensitization in a rat model of neuropathy (spinal nerve ligation). Our results demonstrate that specific knockdown of Ca(V)1.2 in the spinal dorsal horn reversed the neuropathy-associated mechanical hypersensitivity and the hyperexcitability and increased responsiveness of dorsal horn neurons. Intrathecal application of anti-Ca(V)1.2 siRNAs confirmed the preceding results. We also demonstrated an upregulation of Ca(V)1.2 mRNA and protein in neuropathic animals concomitant to specific Ca(V)1.2-dependent phosphorylation of the cAMP response element (CRE)-binding protein (CREB) transcription factor. Moreover, spinal nerve ligation animals showed enhanced transcription of the CREB/CRE-dependent gene COX-2 (cyclooxygenase 2), which also depends strictly on Ca(V)1.2 activation. We propose that L-type calcium channels in the spinal dorsal horn play an important role in pain processing, and that the maintenance of chronic neuropathic pain depends specifically on channels comprising Ca(V)1.2.

  4. The Involvement of the Mid1/Cch1/Yvc1 Calcium Channels in Aspergillus fumigatus Virulence

    PubMed Central

    de Castro, Patrícia Alves; Chiaratto, Jéssica; Winkelströter, Lizziane K.; Bom, Vinícius Leite Pedro; Ramalho, Leandra Naira Zambelli; Goldman, Maria Helena S.; Brown, Neil Andrew; Goldman, Gustavo H.

    2014-01-01

    Aspergillus fumigatus is a major opportunistic pathogen and allergen of mammals. Calcium homeostasis and signaling is essential for numerous biological processes and also influences A. fumigatus pathogenicity. The presented study characterized the function of the A. fumigatus homologues of three Saccharomyces cerevisiae calcium channels, voltage-gated Cch1, stretch-activated Mid1 and vacuolar Yvc1. The A. fumigatus calcium channels cchA, midA and yvcA were regulated at transcriptional level by increased calcium levels. The YvcA::GFP fusion protein localized to the vacuoles. Both ΔcchA and ΔmidA mutant strains showed reduced radial growth rate in nutrient-poor minimal media. Interestingly, this growth defect in the ΔcchA strain was rescued by the exogenous addition of CaCl2. The ΔcchA, ΔmidA, and ΔcchA ΔmidA strains were also sensitive to the oxidative stress inducer, paraquat. Restriction of external Ca2+ through the addition of the Ca2+-chelator EGTA impacted upon the growth of the ΔcchA and ΔmidA strains. All the A. fumigatus ΔcchA, ΔmidA, and ΔyvcA strains demonstrated attenuated virulence in a neutropenic murine model of invasive pulmonary aspergillosis. Infection with the parental strain resulted in a 100% mortality rate at 15 days post-infection, while the mortality rate of the ΔcchA, ΔmidA, and ΔyvcA strains after 15 days post-infection was only 25%. Collectively, this investigation strongly indicates that CchA, MidA, and YvcA play a role in A. fumigatus calcium homeostasis and virulence. PMID:25083783

  5. A mammalian capacitative calcium entry channel homologous to Drosophila TRP and TRPL.

    PubMed Central

    Philipp, S; Cavalié, A; Freichel, M; Wissenbach, U; Zimmer, S; Trost, C; Marquart, A; Murakami, M; Flockerzi, V

    1996-01-01

    Intracellular Ca2+ signalling evoked by Ca2+ mobilizing agonists, like angiotensin II in the adrenal gland, involves the activation of inositol(1,4,5)trisphosphate(InsP3)-mediated Ca2+ release from internal stores followed by activation of a Ca2+ influx termed capacitative calcium entry. Here we report the amino acid sequence of a functional capacitative Ca2+ entry (CCE) channel that supports inward Ca2+ currents in the range of the cell resting potential. The expressed CCE channel opens upon depletion of Ca2+ stores by InsP3 or thapsigargin, suggesting that the newly identified channel supports the CCE coupled to InsP3 signalling. Images PMID:8947038

  6. CaV3.2 calcium channels control NMDA receptor-mediated transmission: a new mechanism for absence epilepsy.

    PubMed

    Wang, Guangfu; Bochorishvili, Genrieta; Chen, Yucai; Salvati, Kathryn A; Zhang, Peng; Dubel, Steve J; Perez-Reyes, Edward; Snutch, Terrance P; Stornetta, Ruth L; Deisseroth, Karl; Erisir, Alev; Todorovic, Slobodan M; Luo, Jian-Hong; Kapur, Jaideep; Beenhakker, Mark P; Zhu, J Julius

    2015-07-15

    CaV3.2 T-type calcium channels, encoded by CACNA1H, are expressed throughout the brain, yet their general function remains unclear. We discovered that CaV3.2 channels control NMDA-sensitive glutamatergic receptor (NMDA-R)-mediated transmission and subsequent NMDA-R-dependent plasticity of AMPA-R-mediated transmission at rat central synapses. Interestingly, functional CaV3.2 channels primarily incorporate into synapses, replace existing CaV3.2 channels, and can induce local calcium influx to control NMDA transmission strength in an activity-dependent manner. Moreover, human childhood absence epilepsy (CAE)-linked hCaV3.2(C456S) mutant channels have a higher channel open probability, induce more calcium influx, and enhance glutamatergic transmission. Remarkably, cortical expression of hCaV3.2(C456S) channels in rats induces 2- to 4-Hz spike and wave discharges and absence-like epilepsy characteristic of CAE patients, which can be suppressed by AMPA-R and NMDA-R antagonists but not T-type calcium channel antagonists. These results reveal an unexpected role of CaV3.2 channels in regulating NMDA-R-mediated transmission and a novel epileptogenic mechanism for human CAE.

  7. CaV3.2 calcium channels control NMDA receptor-mediated transmission: a new mechanism for absence epilepsy

    PubMed Central

    Wang, Guangfu; Bochorishvili, Genrieta; Chen, Yucai; Salvati, Kathryn A.; Zhang, Peng; Dubel, Steve J.; Perez-Reyes, Edward; Snutch, Terrance P.; Stornetta, Ruth L.; Deisseroth, Karl; Erisir, Alev; Todorovic, Slobodan M.; Luo, Jian-Hong; Kapur, Jaideep; Beenhakker, Mark P.; Zhu, J. Julius

    2015-01-01

    CaV3.2 T-type calcium channels, encoded by CACNA1H, are expressed throughout the brain, yet their general function remains unclear. We discovered that CaV3.2 channels control NMDA-sensitive glutamatergic receptor (NMDA-R)-mediated transmission and subsequent NMDA-R-dependent plasticity of AMPA-R-mediated transmission at rat central synapses. Interestingly, functional CaV3.2 channels primarily incorporate into synapses, replace existing CaV3.2 channels, and can induce local calcium influx to control NMDA transmission strength in an activity-dependent manner. Moreover, human childhood absence epilepsy (CAE)-linked hCaV3.2(C456S) mutant channels have a higher channel open probability, induce more calcium influx, and enhance glutamatergic transmission. Remarkably, cortical expression of hCaV3.2(C456S) channels in rats induces 2- to 4-Hz spike and wave discharges and absence-like epilepsy characteristic of CAE patients, which can be suppressed by AMPA-R and NMDA-R antagonists but not T-type calcium channel antagonists. These results reveal an unexpected role of CaV3.2 channels in regulating NMDA-R-mediated transmission and a novel epileptogenic mechanism for human CAE. PMID:26220996

  8. Role of low voltage activated calcium channels in neuritogenesis and active migration of embryonic neural progenitor cells.

    PubMed

    Louhivuori, Lauri M; Louhivuori, Verna; Wigren, Henna-Kaisa; Hakala, Elina; Jansson, Linda C; Nordström, Tommy; Castrén, Maija L; Akerman, Karl E

    2013-04-15

    The central role of calcium influx and electrical activity in embryonic development raises important questions about the role and regulation of voltage-dependent calcium influx. Using cultured neural progenitor cell (NPC) preparations, we recorded barium currents through voltage-activated channels using the whole-cell configuration of the patch-clamp technique and monitored intracellular free calcium concentrations with Fura-2 digital imaging. We found that NPCs as well as expressing high-voltage-activated (HVA) calcium channels express functional low-threshold voltage-dependent calcium channels in the very early stages of differentiation (5 h to 1 day). The size of the currents recorded at -50 versus -20 mV after 1 day in differentiation was dependent on the nature of the charge carrier. Peak currents measured at -20 mV in the presence 10 mM Ca2+ instead of 10 mM Ba2+ had a tendency to be smaller, whereas the nature of the divalent species did not influence the amplitude measured at -50 mV. The T-type channel blockers mibefradil and NNC 55-0396 significantly reduced the calcium responses elicited by depolarizing with extracellular potassium, while the overall effect of the HVA calcium channel blockers was small at differentiation day 1. At differentiation day 20, the calcium responses were effectively blocked by nifedipine. Time-lapse imaging of differentiating neurospheres cultured in the presence of low-voltage-activated (LVA) blockers showed a significant decrease in the number of active migrating neuron-like cells and neurite extensions. Together, these data provide evidence that LVA calcium channels are involved in the physiology of differentiating and migrating NPCs.

  9. Calcium regulation of HCN channels supports persistent activity in a multiscale model of neocortex

    PubMed Central

    McDougal, Robert A.; Bulanova, Anna S.; Zeki, Mustafa; Lakatos, Peter; Terman, David; Hines, Michael L.; Lytton, William W.

    2016-01-01

    Neuronal persistent activity has been primarily assessed in terms of electrical mechanisms, without attention to the complex array of molecular events that also control cell excitability. We developed a multiscale neocortical model proceeding from the molecular to the network level to assess the contributions of calcium regulation of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in providing additional and complementary support of continuing activation in the network. The network contained 776 compartmental neurons arranged in the cortical layers, connected using synapses containing AMPA/NMDA/GABAA/GABAB receptors. Metabotropic glutamate receptors (mGluR) produced inositol triphosphate (IP3) which caused release of Ca2+ from endoplasmic reticulum (ER) stores, with reuptake by sarco/ER Ca2+-ATP-ase pumps (SERCA), and influence on HCN channels. Stimulus-induced depolarization led to Ca2+ influx via NMDA and voltage-gated Ca2+ channels (VGCCs). After a delay, mGluR activation led to ER Ca2+ release via IP3 receptors. These factors increased HCN channel conductance and produced firing lasting for ~1 minute. The model displayed inter-scale synergies among synaptic weights, excitation/inhibition balance, firing rates, membrane depolarization, calcium levels, regulation of HCN channels, and induction of persistent activity. The interaction between inhibition and Ca2+ at the HCN channel nexus determined a limited range of inhibition strengths for which intracellular Ca2+ could prepare population-specific persistent activity. Interactions between metabotropic and ionotropic inputs to the neuron demonstrated how multiple pathways could contribute in a complementary manner to persistent activity. Such redundancy and complementarity via multiple pathways is a critical feature of biological systems. Mediation of activation at different time scales, and through different pathways, would be expected to protect against disruption, in this case providing

  10. Functional calcium release channel formed by the carboxyl-terminal portion of ryanodine receptor.

    PubMed Central

    Bhat, M B; Zhao, J; Takeshima, H; Ma, J

    1997-01-01

    The ryanodine receptor (RyR) is one of the key proteins involved in excitation-contraction (E-C) coupling in skeletal muscle, where it functions as a Ca2+ release channel in the sarcoplasmic reticulum (SR) membrane. RyR consists of a single polypeptide of approximately 560 kDa normally arranged in a homotetrameric structure, which contains a carboxyl (C)-terminal transmembrane domain and a large amino (N)-terminal cytoplasmic domain. To test whether the carboxyl-terminal portion of RyR is sufficient to form a Ca2+ release channel, we expressed the full-length (RyR-wt) and C-terminal (RyR-C, approximately 130 kDa) RyR proteins in a Chinese hamster ovary (CHO) cell line, and measured their Ca2+ release channel functions in planar lipid bilayer membranes. The single-channel properties of RyR-wt were found to be similar to those of RyR from skeletal muscle SR. The RyR-C protein forms a cation-selective channel that shares some of the channel properties with RyR-wt, including activation by cytoplasmic Ca2+ and regulation by ryanodine. Unlike RyR-wt, which exhibits a linear current-voltage relationship and inactivates at millimolar Ca2+, the channels formed by RyR-C display significant inward rectification and fail to close at high cytoplasmic Ca2+. Our results show that the C-terminal portion of RyR contains structures sufficient to form a functional Ca2+ release channel, but the N-terminal portion of RyR also affects the ion-conduction and calcium-dependent regulation of the Ca2+ release channel. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 PMID:9284301

  11. A potent 1,4-dihydropyridine L-type calcium channel blocker, benidipine, promotes osteoblast differentiation.

    PubMed

    Nishiya, Y; Kosaka, N; Uchii, M; Sugimoto, S

    2002-01-01

    During their differentiation, osteoblasts sequentially express type I collagen, alkaline phosphatase (ALP), and osteocalcin, and then undergo mineral deposition. Among dihydropyridine-type calcium channel blockers, only benidipine stimulated ALP activity of osteoblastic cells derived from neonatal mouse calvaria. To identify the molecular target of benidipine and elucidate the mechanism of action of the drug in osteoblasts, the mouse osteoblastic cell line MC3T3-E1 was used. Benidipine prompted ALP activity and ALP transcription induced by ascorbic acid, and mineral deposition by ascorbic acid and b-glycerophosphate. Benidipine, however, did not change collagen accumulation. MC3T3-E1 cells expressed the L-type Ca channel a1C subunit throughout the differentiation process, and Ca influx by potassium ions and Bay K 8644, an agonist, was strongly attenuated by benidipine. Each one of three structurally different classes of Ca channel blockers, nifedipine, verapamil, and diltiazem stimulated ALP activity, although at much higher concentrations of ca. 100 nM than benidipine, 1 pM. These results suggest that benidipine directly exerts its effect on osteoblasts and promotes osteoblast differentiation after the step of collagen accumulation by blocking the L-type Ca channel. Since benidipine blocked Ca influx more potently than the three other Ca channel blockers, the unique and potent osteoblast differentiating ability of benidipine may be due to its high affinity for Ca channel together with its high membrane retaining ability, as has been previously reported.

  12. Functional expression of voltage-gated calcium channels in human melanoma.

    PubMed

    Das, A; Pushparaj, C; Bahí, N; Sorolla, A; Herreros, J; Pamplona, R; Vilella, R; Matias-Guiu, X; Martí, R M; Cantí, C

    2012-03-01

    The expression of voltage-gated calcium channels (VGCCs) has not been reported previously in melanoma cells in spite of increasing evidence of a role of VGCCs in tumorigenesis and tumour progression. To address this issue we have performed an extensive RT-PCR analysis of VGCC expression in human melanocytes and a range of melanoma cell lines and biopsies. In addition, we have tested the functional expression of these channels using Ca(2+) imaging techniques and examined their relevance for the viability and proliferation of the melanoma cells. Our results show that control melanocytes and melanoma cells express channel isoforms belonging to the Ca(v) 1 and Ca(v) 2 gene families. Importantly, the expression of low voltage-activated Ca(v) 3 (T-type) channels is restricted to melanoma. We have confirmed the function of T-type channels as mediators of constitutive Ca(2+) influx in melanoma cells. Finally, pharmacological and gene silencing approaches demonstrate a role for T-type channels in melanoma viability and proliferation. These results encourage the analysis of T-type VGCCs as targets for therapeutic intervention in melanoma tumorigenesis and/or tumour progression.

  13. The Rotavirus NSP4 Viroporin Domain is a Calcium-conducting Ion Channel

    PubMed Central

    Pham, Thieng; Perry, Jacob L.; Dosey, Timothy L.; Delcour, Anne H.; Hyser, Joseph M.

    2017-01-01

    Viroporins are small virus-encoded ion channel proteins. Most viroporins are monovalent selective cation channels, with few showing the ability to conduct divalent cations, like calcium (Ca2+). Nevertheless, some viroporins are known to disrupt host cell Ca2+ homeostasis, which is critical for virus replication and pathogenesis. Rotavirus nonstructural protein 4 (NSP4) is an endoplasmic reticulum transmembrane glycoprotein that has a viroporin domain (VPD), and NSP4 viroporin activity elevates cytosolic Ca2+ in mammalian cells. The goal of this study was to demonstrate that the NSP4 VPD forms an ion channel and determine whether the channel can conduct Ca2+. Using planar lipid bilayer and liposome patch clamp electrophysiology, we show that a synthetic peptide of the NSP4 VPD has ion channel activity. The NSP4 VPD was selective for cations over anions and channel activity was observed to have both well-defined “square top” openings as well as fast current fluctuations, similar to other viroporins. Importantly, the NSP4 VPD showed similar conductance of divalent cations (Ca2+ and Ba2+) as monovalent cations (K+), but a viroporin defective mutant lacked Ca2+ conductivity. These data demonstrate that the NSP4 VPD is a Ca2+-conducting viroporin and establish the mechanism by which NSP4 disturbs host cell Ca2+ homeostasis. PMID:28256607

  14. The Large Conductance, Calcium-activated K+ (BK) Channel is regulated by Cysteine String Protein

    PubMed Central

    Kyle, Barry D.; Ahrendt, Eva; Braun, Andrew P.; Braun, Janice E. A.

    2013-01-01

    Large-conductance, calcium-activated-K+ (BK) channels are widely distributed throughout the nervous system, where they regulate action potential duration and firing frequency, along with presynaptic neurotransmitter release. Our recent efforts to identify chaperones that target neuronal ion channels have revealed cysteine string protein (CSPα) as a key regulator of BK channel expression and current density. CSPα is a vesicle-associated protein and mutations in CSPα cause the hereditary neurodegenerative disorder, adult-onset autosomal dominant neuronal ceroid lipofuscinosis (ANCL). CSPα null mice show 2.5 fold higher BK channel expression compared to wild type mice, which is not seen with other neuronal channels (i.e. Cav2.2, Kv1.1 and Kv1.2). Furthermore, mutations in either CSPα's J domain or cysteine string region markedly increase BK expression and current amplitude. We conclude that CSPα acts to regulate BK channel expression, and consequently CSPα-associated changes in BK activity may contribute to the pathogenesis of neurodegenerative disorders, such as ANCL. PMID:23945775

  15. Proteolytic maturation of α2δ represents a checkpoint for activation and neuronal trafficking of latent calcium channels

    PubMed Central

    Kadurin, Ivan; Ferron, Laurent; Rothwell, Simon W; Meyer, James O; Douglas, Leon R; Bauer, Claudia S; Lana, Beatrice; Margas, Wojciech; Alexopoulos, Orpheas; Nieto-Rostro, Manuela; Pratt, Wendy S; Dolphin, Annette C

    2016-01-01

    The auxiliary α2δ subunits of voltage-gated calcium channels are extracellular membrane-associated proteins, which are post-translationally cleaved into disulfide-linked polypeptides α2 and δ. We now show, using α2δ constructs containing artificial cleavage sites, that this processing is an essential step permitting voltage-dependent activation of plasma membrane N-type (CaV2.2) calcium channels. Indeed, uncleaved α2δ inhibits native calcium currents in mammalian neurons. By inducing acute cell-surface proteolytic cleavage of α2δ, voltage-dependent activation of channels is promoted, independent from the trafficking role of α2δ. Uncleaved α2δ does not support trafficking of CaV2.2 channel complexes into neuronal processes, and inhibits Ca2+ entry into synaptic boutons, and we can reverse this by controlled intracellular proteolytic cleavage. We propose a model whereby uncleaved α2δ subunits maintain immature calcium channels in an inhibited state. Proteolytic processing of α2δ then permits voltage-dependent activation of the channels, acting as a checkpoint allowing trafficking only of mature calcium channel complexes into neuronal processes. DOI: http://dx.doi.org/10.7554/eLife.21143.001 PMID:27782881

  16. Use of a purified and functional recombinant calcium-channel beta4 subunit in surface-plasmon resonance studies.

    PubMed Central

    Geib, Sandrine; Sandoz, Guillaume; Mabrouk, Kamel; Matavel, Alessandra; Marchot, Pascale; Hoshi, Toshinori; Villaz, Michel; Ronjat, Michel; Miquelis, Raymond; Lévêque, Christian; de Waard, Michel

    2002-01-01

    Native high-voltage-gated calcium channels are multi-subunit complexes comprising a pore-forming subunit Ca(v) and at least two auxiliary subunits alpha(2)delta and beta. The beta subunit facilitates cell-surface expression of the channel and contributes significantly to its biophysical properties. In spite of its importance, detailed structural and functional studies are hampered by the limited availability of native beta subunit. Here, we report the purification of a recombinant calcium-channel beta(4) subunit from bacterial extracts by using a polyhistidine tag. The purified protein is fully functional since it binds on the alpha1 interaction domain, its main Ca(v)-binding site, and regulates the activity of P/Q calcium channel expressed in Xenopus oocytes in a similar way to the beta(4) subunit produced by cRNA injection. We took advantage of the functionality of the purified material to (i) develop an efficient surface-plasmon resonance assay of the interaction between two calcium channel subunits and (ii) measure, for the first time, the affinity of the recombinant His-beta(4) subunit for the full-length Ca(v)2.1 channel. The availability of this purified material and the development of a surface-plasmon resonance assay opens two immediate research perspectives: (i) drug screening programmes applied to the Ca(v)/beta interaction and (ii) crystallographic studies of the calcium-channel beta(4) subunit. PMID:11988102

  17. Use of a purified and functional recombinant calcium-channel beta4 subunit in surface-plasmon resonance studies.

    PubMed

    Geib, Sandrine; Sandoz, Guillaume; Mabrouk, Kamel; Matavel, Alessandra; Marchot, Pascale; Hoshi, Toshinori; Villaz, Michel; Ronjat, Michel; Miquelis, Raymond; Lévêque, Christian; de Waard, Michel

    2002-05-15

    Native high-voltage-gated calcium channels are multi-subunit complexes comprising a pore-forming subunit Ca(v) and at least two auxiliary subunits alpha(2)delta and beta. The beta subunit facilitates cell-surface expression of the channel and contributes significantly to its biophysical properties. In spite of its importance, detailed structural and functional studies are hampered by the limited availability of native beta subunit. Here, we report the purification of a recombinant calcium-channel beta(4) subunit from bacterial extracts by using a polyhistidine tag. The purified protein is fully functional since it binds on the alpha1 interaction domain, its main Ca(v)-binding site, and regulates the activity of P/Q calcium channel expressed in Xenopus oocytes in a similar way to the beta(4) subunit produced by cRNA injection. We took advantage of the functionality of the purified material to (i) develop an efficient surface-plasmon resonance assay of the interaction between two calcium channel subunits and (ii) measure, for the first time, the affinity of the recombinant His-beta(4) subunit for the full-length Ca(v)2.1 channel. The availability of this purified material and the development of a surface-plasmon resonance assay opens two immediate research perspectives: (i) drug screening programmes applied to the Ca(v)/beta interaction and (ii) crystallographic studies of the calcium-channel beta(4) subunit.

  18. Voltage gated sodium and calcium channel blockers for the treatment of chronic inflammatory pain.

    PubMed

    Rahman, Wahida; Dickenson, Anthony H

    2013-12-17

    The inflammatory response is a natural response of the body that occurs immediately following tissue damage, which may be due to injury, infection or disease. The acute inflammatory response is an essential mechanism that promotes healing and a key aspect is the ensuing pain, which warns the subject to protect the site of injury. Thus, it is common to see a zone of primary sensitization as well as consequential central sensitization that generally, is maintained by a peripheral drive from the zone of tissue injury. Inflammation associated with chronic pain states, such as rheumatoid and osteoarthritis, cancer and migraine etc. is deleterious to health and often debilitating for the patient. Thus there is a large unmet clinical need. The mechanisms underlying both acute and chronic inflammatory pain are extensive and complex, involving a diversity of cell types, receptors and proteins. Among these the contribution of voltage gated sodium and calcium channels on peripheral nociceptors is critical for nociceptive transmission beyond the peripheral transducers and changes in their distribution, accumulation, clustering and functional activities have been linked to both inflammatory and neuropathic pain. The latter has been the main area for trials and use of drugs that modulate ion channels such as carbamazepine and gabapentin, but given the large peripheral drive that follows tissue damage, there is a clear rationale for blocking voltage gated sodium and calcium channels in these pain states. It has been hypothesized that pain of inflammatory origin may evolve into a condition that resembles neuropathic pain, but mixed pains such as low back pain and cancer pain often include elements of both pain states. This review considers the therapeutic potential for sodium and calcium channel blockers for the treatment of chronic inflammatory pain states. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. Two novel alleles of tottering with distinct Ca(v)2.1 calcium channel neuropathologies.

    PubMed

    Miki, T; Zwingman, T A; Wakamori, M; Lutz, C M; Cook, S A; Hosford, D A; Herrup, K; Fletcher, C F; Mori, Y; Frankel, W N; Letts, V A

    2008-07-31

    The calcium channel CACNA1A gene encodes the pore-forming, voltage-sensitive subunit of the voltage-dependent calcium Ca(v)2.1 type channel. Mutations in this gene have been linked to several human disorders, including familial hemiplegic migraine, episodic ataxia 2 and spinocerebellar ataxia type 6. The mouse homologue, Cacna1a, is associated with the tottering, Cacna1a(tg), mutant series. Here we describe two new missense mutant alleles, Cacna1a(tg-4J) and Cacna1a(Tg-5J). The Cacna1a(tg-4J) mutation is a valine to alanine mutation at amino acid 581, in segment S5 of domain II. The recessive Cacna1a(tg-4J) mutant exhibited the ataxia, paroxysmal dyskinesia and absence seizures reminiscent of the original tottering mouse. The Cacna1a(tg-4J) mutant also showed altered activation and inactivation kinetics of the Ca(v)2.1 channel, not previously reported for other tottering alleles. The semi-dominant Cacna1a(Tg-5J) mutation changed a conserved arginine residue to glutamine at amino acid 1252 within segment S4 of domain III. The heterozygous mouse was ataxic and homozygotes rarely survived. The Cacna1a(Tg-5J) mutation caused a shift in both voltage activation and inactivation to lower voltages, showing that this arginine residue is critical for sensing Ca(v)2.1 voltage changes. These two tottering mouse models illustrate how novel allelic variants can contribute to functional studies of the Ca(v)2.1 calcium channel.

  20. Two novel alleles of tottering with distinct Ca(v)2.1 calcium channel neuropathologies

    PubMed Central

    Miki, Takafumi; Zwingman, Theresa A.; Wakamori, Minoru; Lutz, Cathy M.; Cook, Susan A.; Hosford, David A.; Herrup, Karl; Fletcher, Colin F.; Mori, Yasuo; Frankel, Wayne N.; Letts, Verity A.

    2008-01-01

    The calcium channel CACNA1A gene encodes the pore-forming, voltage-sensitive subunit of the voltage-dependent calcium Ca(v)2.1 type channel. Mutations in this gene have been linked to several human disorders, including familial hemiplegic migraine, episodic ataxia 2 and spinocerebellar ataxia type 6. The mouse homologue, Cacna1a, is associated with the tottering, Cacna1atg, mutant series. Here we describe two new missense mutant alleles, Cacna1atg-4J and Cacna1aTg-5J. The Cacna1atg-4J mutation is a valine to alanine mutation at amino acid 581, in segment S5 of domain II. The recessive Cacna1atg-4J mutant exhibited the ataxia, paroxysmal dyskinesia and absence seizures reminiscent of the original tottering mouse. The Cacna1atg-4J mutant also showed altered activation and inactivation kinetics of the Ca(v)2.1 channel, not previously reported for other tottering alleles. The semi-dominant Cacna1aTg-5J mutation changed a conserved arginine residue to glutamine at amino acid 1252 within segment S4 of domain III. The heterozygous mouse was ataxic and homozygotes rarely survived. The Cacna1aTg-5J mutation caused a shift in both voltage activation and inactivation to lower voltages, showing that this arginine residue is critical for sensing Ca(v)2.1 voltage changes. These two tottering mouse models illustrate how novel allelic variants can contribute to functional studies of the Ca(v)2.1 calcium channel. PMID:18597946

  1. FM dyes enter via a store-operated calcium channel and modify calcium signaling of cultured astrocytes

    PubMed Central

    Li, Dongdong; Hérault, Karine; Oheim, Martin; Ropert, Nicole

    2009-01-01

    The amphiphilic fluorescent styryl pyridinium dyes FM1-43 and FM4-64 are used to probe activity-dependent synaptic vesicle cycling in neurons. Cultured astrocytes can internalize FM1-43 and FM4-64 inside vesicles but their uptake is insensitive to the elevation of cytosolic calcium (Ca2+) concentration and the underlying mechanism remains unclear. Here we used total internal reflection fluorescence microscopy and pharmacological tools to study the mechanisms of FM4-64 uptake into cultured astrocytes from mouse neocortex. Our data show that: (i) endocytosis is not a major route for FM4-64 uptake into astrocytes; (ii) FM4-64 enters astrocytes through an aqueous pore and strongly affects Ca2+ homeostasis; (iii) partitioning of FM4-64 into the outer leaflet of the plasma membrane results in a facilitation of store-operated Ca2+ entry (SOCE) channel gating; (iv) FM4-64 permeates and competes with Ca2+ for entry through a SOCE channel; (v) intracellular FM4-64 mobilizes Ca2+ from the endoplasmic reticulum stores, conveying a positive feedback to activate SOCE and to sustain dye uptake into astrocytes. Our study demonstrates that FM dyes are not markers of cycling vesicles in astrocytes and calls for a careful interpretation of FM fluorescence. PMID:20007370

  2. Ziconotide, an intrathecally administered N-type calcium channel antagonist for the treatment of chronic pain.

    PubMed

    Wermeling, Daniel P

    2005-08-01

    Ziconotide is a novel peptide that blocks the entry of calcium into neuronal N-type voltage-sensitive calcium channels, preventing the conduction of nerve signals. N-type calcium channels are present in the superficial laminae of the dorsal horn of the spinal cord. In various animal models of pain, intrathecal administration of ziconotide blocked nerve transmission and nociception. The United States Food and Drug Administration recently approved ziconotide intrathecal infusion for the management of severe chronic pain in patients who require intrathecal therapy and who are intolerant of or refractory to other treatment, such as systemic analgesics, adjunctive therapies, or intrathecal morphine. The drug has a narrow therapeutic window and a lag time for the onset and offset of analgesia and adverse events. In early clinical trials, frequent and severe psychiatric and central nervous system adverse effects were associated with rapid intrathecal infusion (0.4 microg/hr) and frequent up-titration (every 12 hrs). Therefore, patients with psychiatric symptoms are not candidates for this drug. Drug trials of external intrathecal catheters and microinfusion devices demonstrated a 3% risk of meningitis. A low initial infusion rate of 0.1 microg/hour and limiting infusion rate increases to 2-3 times/week are now recommended. Patients responsive to intrathecal ziconotide require an implanted infusion system to receive long-term therapy.

  3. Long term regulation of cardiac L-type calcium channel by small G proteins.

    PubMed

    Magyar, J; Jenes, A; Kistamás, K; Ruzsnavszky, F; Nánási, P P; Satin, J; Szentandrássy, N; Bányász, T

    2011-01-01

    Calcium ions are crucial elements of excitation-contraction coupling in cardiac myocytes. The intracellular Ca(2+ ) concentration changes continously during the cardiac cycle, but the Ca(2+ ) entering to the cell serves as an intracellular second messenger, as well. The Ca(2+ ) as a second messenger influences the activity of many intracellular signalling pathways and regulates gene expression. In cardiac myocytes the major pathway for Ca(2+ ) entry into cells is L-type calcium channel (LTCC). The precise control of LTCC function is essential for maintaining the calcium homeostasis of cardiac myocytes. Dysregulation of LTCC may result in different diseases like cardiac hypertrophy, arrhytmias, heart failure. The physiological and pathological structural changes in the heart are induced in part by small G proteins. These proteins are involved in wide spectrum of cell biological functions including protein transport, regulation of cell proliferation, migration, apoptosis, and cytoskeletal rearrangement. Understanding the crosstalk between small G proteins and LTCC may help to understand the pathomechanism of different cardiac diseases and to develop a new generation of genetically-encoded Ca(2+ ) channel inhibitors.

  4. CRAC channels, calcium, and cancer in light of the driver and passenger concept.

    PubMed

    Hoth, Markus

    2016-06-01

    Advances in next-generation sequencing allow very comprehensive analyses of large numbers of cancer genomes leading to an increasingly better characterization and classification of cancers. Comparing genomic data predicts candidate genes driving development, growth, or metastasis of cancer. Cancer driver genes are defined as genes whose mutations are causally implicated in oncogenesis whereas passenger mutations are defined as not being oncogenic. Currently, a list of several hundred cancer driver mutations is discussed including prominent members like TP53, BRAF, NRAS, or NF1. According to the vast literature on Ca(2+) and cancer, Ca(2+) signals and the underlying Ca(2+) channels and transporters certainly influence the development, growth, and metastasis of many cancers. In this review, I focus on the calcium release-activated calcium (CRAC) channel genes STIM and Orai and their role for cancer development, growth, and metastasis. STIM and Orai genes are being discussed in the context of current cancer concepts with a focus on the driver-passenger hypothesis. One result of this discussion is the hypothesis that a driver analysis of Ca(2+) homeostasis-related genes should not be carried out by looking at isolated genes. Rather a pool of “Ca(2+) genes” might be considered to act as one potential cancer driver. This article is part of a Special Issue entitled: Calcium and Cell Fate. Guest Editors: Jacques Haiech, Claus Heizmann, Joachim Krebs, Thierry Capiod and Olivier Mignen.

  5. Effect of gadolinium on the ryanodine receptor/sarcoplasmic reticulum calcium release channel of skeletal muscle.

    PubMed

    Sárközi, Sándor; Szegedi, Csaba; Lukács, Balázs; Ronjat, Michel; Jóna, István

    2005-01-01

    The effect of gadolinium ions on the sarcoplasmic reticulum (SR) calcium release channel/ryanodine receptor (RyR1) was studied using heavy SR (HSR) vesicles and RyR1 isolated from rabbit fast twitch muscle. In the [(3)H]ryanodine binding assay, 5 microM Gd(3+) increased the K(d) of the [(3)H]ryanodine binding of the vesicles from 33.8 nM to 45.6 nM while B(max), referring to the binding capacity, was not affected significantly. In the presence of 18 nM[(3)H]ryanodine and 100 microM free Ca(2+), Gd(3+) inhibited the binding of the radiolabeled ryanodine with an apparent K(d) value of 14.7 microM and a Hill coefficient of 3.17. In (45)Ca(2+) experiments the time constant of (45)Ca(2+) efflux from HSR vesicles increased from 90.9 (+/- 11.1) ms to 187.7 (+/- 24.9) ms in the presence of 20 microM gadolinium. In single channel experiments gadolinium inhibited the channel activity from both the cytoplasmic (cis) (IC(50) = 5.65 +/- 0.33 microM, n(Hill) = 4.71) and the luminal (trans) side (IC(50) = 5.47 +/- 0.24 microM, n(Hill) = 4.31). The degree of inhibition on the cis side didn't show calcium dependency in the 100 microM to 1 mM Ca(2+) concentration range which indicates no competition with calcium on its regulatory binding sites. When Gd(3+) was applied at the trans side, EGTA was present at the cis side to prevent the binding of Gd(+3) to the cytoplasmic calcium binding regulatory sites of the RyR1 if Gd(3+) accidentally passed through the channel. The inhibition of the channel did not show any voltage dependence, which would be the case if Gd(3+) exerted its effect after getting to the cis side. Our results suggest the presence of inhibitory binding sites for Gd(3+) on both sides of the RyR1 with similar Hill coefficients and IC(50) values.

  6. Retinoschisin Facilitates the Function of L-Type Voltage-Gated Calcium Channels

    PubMed Central

    Shi, Liheng; Ko, Michael L.; Ko, Gladys Y.-P.

    2017-01-01

    Modulation of ion channels by extracellular proteins plays critical roles in shaping synaptic plasticity. Retinoschisin (RS1) is an extracellular adhesive protein secreted from photoreceptors and bipolar cells, and it plays an important role during retinal development, as well as in maintaining the stability of retinal layers. RS1 is known to form homologous octamers and interact with molecules on the plasma membrane including phosphatidylserine, sodium-potassium exchanger complex, and L-type voltage-gated calcium channels (LTCCs). However, how this physical interaction between RS1 and ion channels might affect the channel gating properties is unclear. In retinal photoreceptors, two major LTCCs are Cav1.3 (α1D) and Cav1.4 (α1F) with distinct biophysical properties, functions and distributions. Cav1.3 is distributed from the inner segment (IS) to the synaptic terminal and is responsible for calcium influx to the photoreceptors and overall