Sample records for calcium citrate malate

  1. Assessment the levels of tartrate-resistant acid phosphatase (TRAP) on mice fed with eggshell calcium citrate malate.

    PubMed

    Yu, Yiding; Zhang, Mingdi; Lin, Songyi; Wang, Liyan; Liu, Jingbo; Jones, Gregory; Huang, Hsiang-Chi

    2013-07-01

    Optimized conditions were obtained by one-factor-at-a-time test (OFAT) and ternary quadratic regression orthogonal composite design (TQROCD) respectively. By pulse electric fields (PEF) technology, the process of eggshell calcium citrate malate (ESCCM), eggshell calcium citrate (ESCC) and eggshells calcium malate (ESCM) were comprehensive compared. The levels of tartrate-resistant acid phosphatase (TRAP) and the bioavailability on mice fed with eggshell calcium citrate malate (ESCCM) treated by pulsed electric field (PEF) were evaluated. Results showed that the rates of calcium dissolution of the different acids studied can be arranged as ESCCM (7.90 mg/mL)>ESCC (7.12 mg/mL)>ESCM (7.08 mg/mL) from highest to lowest rate of dissolution. At the same dose 133.0 mg kg(-1) d(-1), the levels of TRAP in the ESCCM treatment groups were significantly lower than those in ESCM and ESCC (P<0.05). Bone calcium content in the mice fed with ESCCM was generally higher than fed with ESCM and ESCC. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Citrate, malate and alkali content in commonly consumed diet sodas: implications for nephrolithiasis treatment.

    PubMed

    Eisner, Brian H; Asplin, John R; Goldfarb, David S; Ahmad, Ardalanejaz; Stoller, Marshall L

    2010-06-01

    Citrate is a known inhibitor of calcium stone formation. Dietary citrate and alkali intake may have an effect on citraturia. Increasing alkali intake also increases urine pH, which can help prevent uric acid stones. We determined citrate, malate and total alkali concentrations in commonly consumed diet sodas to help direct dietary recommendations in patients with hypocitraturic calcium or uric acid nephrolithiasis. Citrate and malate were measured in a lemonade beverage commonly used to treat hypocitraturic calcium nephrolithiasis and in 15 diet sodas. Anions were measured by ion chromatography. The pH of each beverage was measured to allow calculation of the unprotonated anion concentration using the known pK of citric and malic acid. Total alkali equivalents were calculated for each beverage. Statistical analysis was done using Pearson's correlation coefficient. Several sodas contained an amount of citrate equal to or greater than that of alkali and total alkali as a lemonade beverage commonly used to treat hypocitraturic calcium nephrolithiasis (6.30 mEq/l citrate as alkali and 6.30 as total alkali). These sodas were Diet Sunkist Orange, Diet 7Up, Sprite Zero, Diet Canada Dry Ginger Ale, Sierra Mist Free, Diet Orange Crush, Fresca and Diet Mountain Dew. Colas, including Caffeine Free Diet Coke, Coke Zero, Caffeine Free Diet Pepsi and Diet Coke with Lime, had the lowest total alkali (less than 1.0 mEq/l). There was no significant correlation between beverage pH and total alkali content. Several commonly consumed diet sodas contain moderate amounts of citrate as alkali and total alkali. This information is helpful for dietary recommendations in patients with calcium nephrolithiasis, specifically those with hypocitraturia. It may also be useful in patients with low urine pH and uric acid stones. Beverage malate content is also important since malate ingestion increases the total alkali delivered, which in turn augments citraturia and increases urine pH. Copyright

  3. Calcium absorption from apple and orange juice fortified with calcium citrate malate (CCM).

    PubMed

    Andon, M B; Peacock, M; Kanerva, R L; De Castro, J A

    1996-06-01

    Determine calcium (Ca) absorption from Ca fortified orange and apple juice. Absorbability was assessed by measuring 45Ca absorption in healthy women (mean age 57 years, n = 57/group) and whole body 47Ca retention in adult female beagle dogs (n = 6/group) and young adult male rats (n = 6/group). Women received 6.24 mmol (250 mg) Ca as calcium citrate malate fortified orange juice (CCM-OJ) or apple juice (CCM-AJ). Dogs received 3.12 mmol (125 mg) Ca as CCM-OJ or CCM-AJ. Rats were administered 0.15 mmol (6 mg) Ca as either milk, CCM-OJ, or CCM-AJ. Additional 47Ca whole body retention experiments in rats measured the effects of differences in the carbohydrate and organic acid contents of the juices on Ca absorption. Mean +/- SEM percent Ca fractional absorption was greater (p < 0.003) in women who consumed CCM-AJ (42 +/- 2%) than those who consumed CCM-OJ (36 +/- 1%). Ca retention in dogs was 15 +/- 1% for CCM-OJ and 29 +/- 2% for CCM-AJ (p < 0.001). Ca retention was significantly different (p < 0.05) in rats administered milk (42 +/- 2%), CCM-OJ (52 +/- 2%), or CCM-AJ (61 +/- 2%). By manipulating the carbohydrate and organic acid concentrations of test solutions to mimic the composition of Ca fortified juices, we found that the greater fructose and lower organic acid content of apple juice accounted for its greater Ca absorbability. CCM fortified versions of orange and apple juice have high Ca absorbability and are potentially important vehicles for increasing dietary Ca intake. The greater Ca absorption from CCM-AJ compared with CCM-OJ is accounted for by differences in the carbohydrate and organic acid content of the juices. These data suggest that by modifying common beverage ingredients, products with even greater Ca absorbability could be formulated.

  4. Soybean NADP-Malic Enzyme Functions in Malate and Citrate Metabolism and Contributes to Their Efflux under Al Stress.

    PubMed

    Zhou, Ying; Yang, Zhenming; Xu, Yuezi; Sun, Haoran; Sun, Zhitao; Lin, Bao; Sun, Wenjing; You, Jiangfeng

    2017-01-01

    Malate accumulation has been suggested to balance Al-induced citrate synthesis and efflux in soybean roots. To test this hypothesis, characteristics of Al-induced accumulation and efflux of citrate and malate were compared between two soybean genotypes combining a functional analysis of GmME1 putatively encode a cytosolic NADP-malic enzyme. Similar amounts of citrate were released, and root elongation was equally inhibited before 8 h of Al treatment of Jiyu 70 and Jiyu 62 cultivars. Jiyu 70 began to secrete more citrate and exhibited higher Al resistance than did Jiyu 62 at 12 h. A sustained increase in internal malate and citrate concentrations was observed in Jiyu 70 at 24 h of Al treatment. However, Jiyu 62 decreased its malate concentration at 12 h and its citrate concentration at 24 h of Al treatment. GmME1 localized to the cytoplast and clustered closely with cytosolic malic enzymes AtME2 and SgME1 and was constitutively expressed in the roots. Al treatment induced higher NADP-malic enzyme activities and GmME1 expression levels in Jiyu 70 than in Jiyu 62 within 24 h. Compared with wild-type hairy roots, over-expressing GmME1 in hairy roots ( GmME1 -OE) produced higher expression levels of GmME1 but did not change the expression patterns of either of the putative citrate transporter genes GmAACT1 and GmFRDL or the malate transporter gene GmALMT1 , with or without Al treatment. GmME1 -OE showed a higher internal concentration and external efflux of both citrate and malate at 4 h of Al stress. Lighter hematoxylin staining and lower Al contents in root apices of GmME1 -OE hairy roots indicated greater Al resistance. Comprehensive experimental results suggest that sustaining Al-induced citrate efflux depends on the malate pool in soybean root apices. GmME1 encodes a cytosolic malic enzyme that contributes to increased internal malate and citrate concentrations and their external efflux to confer higher Al resistance.

  5. Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance.

    PubMed

    Liu, Jiping; Magalhaes, Jurandir V; Shaff, Jon; Kochian, Leon V

    2009-02-01

    Aluminum-activated root malate and citrate exudation play an important role in plant Al tolerance. This paper characterizes AtMATE, a homolog of the recently discovered sorghum and barley Al-tolerance genes, shown here to encode an Al-activated citrate transporter in Arabidopsis. Together with the previously characterized Al-activated malate transporter, AtALMT1, this discovery allowed us to examine the relationship in the same species between members of the two gene families for which Al-tolerance genes have been identified. AtMATE is expressed primarily in roots and is induced by Al. An AtMATE T-DNA knockdown line exhibited very low AtMATE expression and Al-activated root citrate exudation was abolished. The AtALMT1 AtMATE double mutant lacked both Al-activated root malate and citrate exudation and showed greater Al sensitivity than the AtALMT1 mutant. Therefore, although AtALMT1 is a major contributor to Arabidopsis Al tolerance, AtMATE also makes a significant but smaller contribution. The expression patterns of AtALMT1 and AtMATE and the profiles of Al-activated root citrate and malate exudation are not affected by the presence or absence of the other gene. These results suggest that AtALMT1-mediated malate exudation and AtMATE-mediated citrate exudation evolved independently to confer Al tolerance in Arabidopsis. However, a link between regulation of expression of the two transporters in response to Al was identified through work on STOP1, a transcription factor that was previously shown to be necessary for AtALMT1 expression. Here we show that STOP1 is also required for AtMATE expression and Al-activated citrate exudation.

  6. 21 CFR 184.1195 - Calcium citrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium citrate. 184.1195 Section 184.1195 Food... GRAS § 184.1195 Calcium citrate. (a) Calcium citrate (Ca3(C6H5O7)2·4H2O, CAS Reg. No. 813-0994-095) is the calcium salt of citric acid. It is prepared by neutralizing citric acid with calcium hydroxide or...

  7. 21 CFR 582.6195 - Calcium citrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium citrate. 582.6195 Section 582.6195 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium citrate. (a) Product. Calcium citrate. (b) Conditions of use. This substance is generally...

  8. 21 CFR 582.6195 - Calcium citrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium citrate. 582.6195 Section 582.6195 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium citrate. (a) Product. Calcium citrate. (b) Conditions of use. This substance is generally...

  9. 21 CFR 582.6195 - Calcium citrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Calcium citrate. 582.6195 Section 582.6195 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium citrate. (a) Product. Calcium citrate. (b) Conditions of use. This substance is generally...

  10. 21 CFR 582.6195 - Calcium citrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Calcium citrate. 582.6195 Section 582.6195 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium citrate. (a) Product. Calcium citrate. (b) Conditions of use. This substance is generally...

  11. 21 CFR 582.6195 - Calcium citrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Calcium citrate. 582.6195 Section 582.6195 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium citrate. (a) Product. Calcium citrate. (b) Conditions of use. This substance is generally...

  12. 21 CFR 582.1195 - Calcium citrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium citrate. 582.1195 Section 582.1195 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1195 Calcium citrate. (a) Product. Calcium citrate. (b) Conditions of use. This substance is...

  13. 21 CFR 184.1195 - Calcium citrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium citrate. 184.1195 Section 184.1195 Food... Specific Substances Affirmed as GRAS § 184.1195 Calcium citrate. (a) Calcium citrate (Ca3(C6H5O7)2·4H2O, CAS Reg. No. 813-0994-095) is the calcium salt of citric acid. It is prepared by neutralizing citric...

  14. 21 CFR 184.1195 - Calcium citrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium citrate. 184.1195 Section 184.1195 Food and... Substances Affirmed as GRAS § 184.1195 Calcium citrate. (a) Calcium citrate (Ca3(C6H5O7)2·4H2O, CAS Reg. No. 813-0994-095) is the calcium salt of citric acid. It is prepared by neutralizing citric acid with...

  15. 21 CFR 582.5195 - Calcium citrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5195 Calcium citrate. (a) Product. Calcium citrate. (b) Conditions of use. This substance...

  16. 21 CFR 582.5195 - Calcium citrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5195 Calcium citrate. (a) Product. Calcium citrate. (b) Conditions of use. This substance...

  17. 21 CFR 582.5195 - Calcium citrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5195 Calcium citrate. (a) Product. Calcium citrate. (b) Conditions of use. This substance...

  18. 21 CFR 582.5195 - Calcium citrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5195 Calcium citrate. (a) Product. Calcium citrate. (b) Conditions of use. This substance...

  19. 21 CFR 582.1195 - Calcium citrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Additives § 582.1195 Calcium citrate. (a) Product. Calcium citrate. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding practice. ...

  20. 21 CFR 582.5195 - Calcium citrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5195 Calcium citrate. (a) Product. Calcium citrate. (b) Conditions of use. This substance...

  1. 21 CFR 582.1195 - Calcium citrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Additives § 582.1195 Calcium citrate. (a) Product. Calcium citrate. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding practice. ...

  2. 21 CFR 582.1195 - Calcium citrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Additives § 582.1195 Calcium citrate. (a) Product. Calcium citrate. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding practice. ...

  3. 21 CFR 582.1195 - Calcium citrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Additives § 582.1195 Calcium citrate. (a) Product. Calcium citrate. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding practice. ...

  4. Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance

    USDA-ARS?s Scientific Manuscript database

    Aluminum (Al) activated root malate and citrate exudation play an important role in Al tolerance in many plant species. AtALMT1, an Al-activated malate transporter, is a major contributor to Arabidopsis Al tolerance. Here, we demonstrate that a second, unrelated gene, AtMATE, encodes an Arabidopsi...

  5. Metabolism of pyruvate and malate by isolated fat-cell mitochondria.

    PubMed

    Martin, B R; Denton, R M

    1971-11-01

    1. Metabolism of pyruvate and malate by isolated fat-cell mitochondria incubated in the presence of ADP and phosphate has been studied by measuring rates of pyruvate uptake, malate utilization or production, citrate production and oxygen consumption. From these measurements calculations of the flow rates through pyruvate carboxylase, pyruvate dehydrogenase and citrate cycle have been made under various conditions. 2. In the presence of bicarbonate, pyruvate was largely converted into citrate and malate and only about 10% was oxidized by the citrate cycle; citrate and malate outputs were linear after lag periods of 6-9min and 3min respectively, and no other end products of pyruvate metabolism were detected. On the further addition of malate or hydroxymalonate, the lag in the rate of citrate output was less marked but no net malate disappearance was detected. If, however, bicarbonate was omitted then net malate uptake was observed. Addition of butyl malonate was found to greatly inhibit the metabolism of pyruvate to citrate and malate in the presence of bicarbonate. 3. These results are in agreement with earlier conclusions that in adipose tissue acetyl units for fatty acid synthesis are transferred to the cytoplasm as citrate and that this transfer requires malate presumably for counter transport. They also support the view that oxaloacetate for citrate synthesis is preferentially formed from pyruvate through pyruvate carboxylase rather than malate through malate dehydrogenase and that the mitochondrial metabolism of citrate in fat-cells is restricted. The possible consequences of these conclusions are discussed. 4. Studies on the effects of additions of adenine nucleotides to pyruvate metabolism by isolated fat-cell mitochondria are consistent with inhibition of pyruvate carboxylase in the presence of ADP and pyruvate dehydrogenase in the presence of ATP.

  6. The contribution of stored malate and citrate to the substrate requirements of metabolism of ripening peach (Prunus persica L. Batsch) flesh is negligible. Implications for the occurrence of phosphoenolpyruvate carboxykinase and gluconeogenesis.

    PubMed

    Famiani, Franco; Farinelli, Daniela; Moscatello, Stefano; Battistelli, Alberto; Leegood, Richard C; Walker, Robert P

    2016-04-01

    The first aim of this study was to determine the contribution of stored malate and citrate to the substrate requirements of metabolism in the ripening flesh of the peach (Prunus persica L. Batsch) cultivar Adriatica. In the flesh, stored malate accumulated before ripening could contribute little or nothing to the net substrate requirements of metabolism. This was because there was synthesis and not dissimilation of malate throughout ripening. Stored citrate could potentially contribute a very small amount (about 5.8%) of the substrate required by metabolism when the whole ripening period was considered, and a maximum of about 7.5% over the latter part of ripening. The second aim of this study was to investigate why phosphoenolpyruvate carboxykinase (PEPCK) an enzyme utilised in gluconeogenesis from malate and citrate is present in peach flesh. The occurrence and localisation of enzymes utilised in the metabolism of malate, citrate and amino acids were determined in peach flesh throughout its development. Phosphoenolpyruvate carboxylase (essential for the synthesis of malate and citrate) was present in the same cells and at the same time as PEPCK and NADP-malic enzyme (both utilised in the dissimilation of malate and citrate). A hypothesis is presented to explain the presence of these enzymes and to account for the likely occurrence of gluconeogenesis. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. Phenotypes of gene disruptants in relation to a putative mitochondrial malate-citrate shuttle protein in citric acid-producing Aspergillus niger.

    PubMed

    Kirimura, Kohtaro; Kobayashi, Keiichi; Ueda, Yuka; Hattori, Takasumi

    2016-09-01

    The mitochondrial citrate transport protein (CTP) functions as a malate-citrate shuttle catalyzing the exchange of citrate plus a proton for malate between mitochondria and cytosol across the inner mitochondrial membrane in higher eukaryotic organisms. In this study, for functional analysis, we cloned the gene encoding putative CTP (ctpA) of citric acid-producing Aspergillus niger WU-2223L. The gene ctpA encodes a polypeptide consisting 296 amino acids conserved active residues required for citrate transport function. Only in early-log phase, the ctpA disruptant DCTPA-1 showed growth delay, and the amount of citric acid produced by strain DCTPA-1 was smaller than that by parental strain WU-2223L. These results indicate that the CTPA affects growth and thereby citric acid metabolism of A. niger changes, especially in early-log phase, but not citric acid-producing period. This is the first report showing that disruption of ctpA causes changes of phenotypes in relation to citric acid production in A. niger.

  8. Aluminum Citrate Prevents Renal Injury from Calcium Oxalate Crystal Deposition

    PubMed Central

    Besenhofer, Lauren M.; Cain, Marie C.; Dunning, Cody

    2012-01-01

    Calcium oxalate monohydrate crystals are responsible for the kidney injury associated with exposure to ethylene glycol or severe hyperoxaluria. Current treatment strategies target the formation of calcium oxalate but not its interaction with kidney tissue. Because aluminum citrate blocks calcium oxalate binding and toxicity in human kidney cells, it may provide a different therapeutic approach to calcium oxalate-induced injury. Here, we tested the effects of aluminum citrate and sodium citrate in a Wistar rat model of acute high-dose ethylene glycol exposure. Aluminum citrate, but not sodium citrate, attenuated increases in urea nitrogen, creatinine, and the ratio of kidney to body weight in ethylene glycol–treated rats. Compared with ethylene glycol alone, the addition of aluminum citrate significantly increased the urinary excretion of both crystalline calcium and crystalline oxalate and decreased the deposition of crystals in renal tissue. In vitro, aluminum citrate interacted directly with oxalate crystals to inhibit their uptake by proximal tubule cells. These results suggest that treating with aluminum citrate attenuates renal injury in rats with severe ethylene glycol toxicity, apparently by inhibiting calcium oxalate’s interaction with, and retention by, the kidney epithelium. PMID:23138489

  9. Effect of Potassium Citrate on Calcium Phosphate Stones in a Model of Hypercalciuria

    PubMed Central

    Asplin, John R.; Frick, Kevin K.; Granja, Ignacio; Culbertson, Christopher D.; Ng, Adeline; Grynpas, Marc D.; Bushinsky, David A.

    2015-01-01

    Potassium citrate is prescribed to decrease stone recurrence in patients with calcium nephrolithiasis. Citrate binds intestinal and urine calcium and increases urine pH. Citrate, metabolized to bicarbonate, should decrease calcium excretion by reducing bone resorption and increasing renal calcium reabsorption. However, citrate binding to intestinal calcium may increase absorption and renal excretion of both phosphate and oxalate. Thus, the effect of potassium citrate on urine calcium oxalate and calcium phosphate supersaturation and stone formation is complex and difficult to predict. To study the effects of potassium citrate on urine supersaturation and stone formation, we utilized 95th-generation inbred genetic hypercalciuric stone-forming rats. Rats were fed a fixed amount of a normal calcium (1.2%) diet supplemented with potassium citrate or potassium chloride (each 4 mmol/d) for 18 weeks. Urine was collected at 6, 12, and 18 weeks. At 18 weeks, stone formation was visualized by radiography. Urine citrate, phosphate, oxalate, and pH levels were higher and urine calcium level was lower in rats fed potassium citrate. Furthermore, calcium oxalate and calcium phosphate supersaturation were higher with potassium citrate; however, uric acid supersaturation was lower. Both groups had similar numbers of exclusively calcium phosphate stones. Thus, potassium citrate effectively raises urine citrate levels and lowers urine calcium levels; however, the increases in urine pH, oxalate, and phosphate levels lead to increased calcium oxalate and calcium phosphate supersaturation. Potassium citrate induces complex changes in urine chemistries and resultant supersaturation, which may not be beneficial in preventing calcium phosphate stone formation. PMID:25855777

  10. SECONDARY HYPERPARATHYROIDISM AFTER BARIATRIC SURGERY: TREATMENT IS WITH CALCIUM CARBONATE OR CALCIUM CITRATE?

    PubMed Central

    BARETTA, Giorgio Alfredo Pedroso; CAMBI, Maria Paula Carlini; RODRIGUES, Arieli Luz; MENDES, Silvana Aparecida

    2015-01-01

    Background : Bariatric surgery, especially Roux-en-Y gastric bypass, can cause serious nutritional complications arising from poor absorption of essential nutrients. Secondary hyperparathyroidism is one such complications that leads to increased parathyroid hormone levels due to a decrease in calcium and vitamin D, which may compromise bone health. Aim : To compare calcium carbonate and calcium citrate in the treatment of secondary hyperparathyroidism. Method : Patients were selected on the basis of their abnormal biochemical test and treatment was randomly done with citrate or calcium carbonate. Results : After 60 days of supplementation, biochemical tests were repeated, showing improvement in both groups. Conclusion : Supplementation with calcium (citrate or carbonate) and vitamin D is recommended after surgery for prevention of secondary hyperparathyroidism. PMID:26537273

  11. Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance

    USDA-ARS?s Scientific Manuscript database

    Aluminum (Al) activated root malate and citrate exudation plays an important role in Al tolerance in many plant species. Here, we report on the identification and characterization of AtMATE, a homolog of the recently discovered sorghum and barley Al tolerance genes, here shown to encode an Al-activ...

  12. Comparison of the Absorption of Calcium Carbonate and Calcium Citrate after Roux-en-Y Gastric Bypass

    PubMed Central

    Tondapu, P.; Provost, D.; Adams-Huet, B.; Sims, T.; Chang, C.; Sakhaee, K.

    2015-01-01

    Introduction Roux-en-Y gastric bypass (RYGB) restricts food intake. Consequently, patients consume less calcium. In addition, food no longer passes through the duodenum, the main site of calcium absorption. Therefore, calcium absorption is significantly impaired. The goal of this study is to compare two common calcium supplements in gastric bypass patients. Method Nineteen patients were enrolled in a randomized, double-blinded, crossover study comparing the absorption of calcium from calcium carbonate and calcium citrate salts. Serum and urine calcium levels were assessed for peak values (Cmax) and cumulative calcium increment (area under the curve [AUC]). Serum PTH was assessed for minimum values (PTHmin) and cumulative PTH decrement (AUC). Statistical analysis was performed using a repeated analysis of variance model. Results Eighteen subjects completed the study. Calcium citrate resulted in a significantly higher serum Cmax (9.4+0.4 mg/dl vs. 9.2+0.3 mg/dl, p=0.02) and serum AUC (55+2 mg/dl vs. 54+2 mg/dl, p=0.02). Calcium citrate resulted in a significantly lower PTHmin (24+11 pg/ml vs. 30+13 pg/ml, p=0.01) and a higher AUC (−32+51 pg/ml vs. −3+56 pg/ml, p=0.04). There was a non-significant trend for higher urinary AUC in the calcium citrate group (76.13+36.39 mg/6 h vs. 66.04+40.82, p=0.17). Conclusion Calcium citrate has superior bioavailability than calcium carbonate in RYGB patients. PMID:19437082

  13. Localization of the Calcium Regulated Citrate Transport Process in Proximal Tubule Cells

    PubMed Central

    Hering-Smith, Kathleen S.; Mao, Weibo; Schiro, Faith R.; Coleman-Barnett, Joycelynn; Pajor, Ana M.; Hamm, L. Lee

    2014-01-01

    Urinary citrate is an important inhibitor of calcium stone formation. Most of citrate reabsorption in the proximal tubule is thought to occur via a dicarboxylate transporter NaDC1 located in the apical membrane. OK cells, an established opossum kidney proximal tubule cell line, transport citrate but the characteristics change with extracellular calcium such that low calcium solutions stimulate total citrate transport as well as increase the apparent affinity for transport. The present studies address several fundamental properties of this novel process: the polarity of the transport process, the location of the calcium-sensitivity and whether NaDC1 is present in OK cells. OK cells grown on permeable supports exhibited apical > basolateral citrate transport. Apical transport of both citrate and succinate was sensitive to extracellular calcium whereas basolateral transport was not. Apical calcium, rather than basolateral, was the predominant determinant of changes in transport. Also 2,3-dimethylsuccinate, previously identified as an inhibitor of basolateral dicarboxylate transport, inhibited apical citrate uptake. Although the calcium-sensitive transport process in OK cells is functionally not typical NaDC1, NaDC1 is present in OK cells by Western blot and PCR. By immunolocalization studies, NaDC1 was predominantly located in discrete apical membrane or subapical areas. However by biotinylation, apical NaDC1 decreases in the apical membrane with lowering calcium. In sum, OK cells express a calcium-sensitive/regulated dicarboxylate process at the apical membrane which responds to variations in apical calcium. Despite the functional differences of this process compared to NaDC1, NaDC1 is present in these cells, but predominantly in subapical vesicles. PMID:24652587

  14. Role of malate transporter in lipid accumulation of oleaginous fungus Mucor circinelloides.

    PubMed

    Zhao, Lina; Cánovas-Márquez, José T; Tang, Xin; Chen, Haiqin; Chen, Yong Q; Chen, Wei; Garre, Victoriano; Song, Yuanda; Ratledge, Colin

    2016-02-01

    Fatty acid biosynthesis in oleaginous fungi requires the supply of reducing power, NADPH, and the precursor of fatty acids, acetyl-CoA, which is generated in the cytosol being produced by ATP: citrate lyase which requires citrate to be, transported from the mitochondrion by the citrate/malate/pyruvate transporter. This transporter, which is within the mitochondrial membrane, transports cytosolic malate into the mitochondrion in exchange for mitochondrial citrate moving into the cytosol (Fig. 1). The role of malate transporter in lipid accumulation in oleaginous fungi is not fully understood, however. Therefore, the expression level of the mt gene, coding for a malate transporter, was manipulated in the oleaginous fungus Mucor circinelloides to analyze its effect on lipid accumulation. The results showed that mt overexpression increased the lipid content for about 70 % (from 13 to 22 % dry cell weight, CDW), whereas the lipid content in mt knockout mutant decreased about 27 % (from 13 to 9.5 % CDW) compared with the control strain. Furthermore, the extracellular malate concentration was decreased in the mt overexpressing strain and increased in the mt knockout strain compared with the wild-type strain. This work suggests that the malate transporter plays an important role in regulating lipid accumulation in oleaginous fungus M. circinelloides.

  15. Citrate salts for preventing and treating calcium containing kidney stones in adults.

    PubMed

    Phillips, Rebecca; Hanchanale, Vishwanath S; Myatt, Andy; Somani, Bhaskar; Nabi, Ghulam; Biyani, C Shekhar

    2015-10-06

    Kidney stones affect people worldwide and have a high rate of recurrence even with treatment. Recurrences are particularly prevalent in people with low urinary citrate levels. These people have a higher incidence of calcium phosphate and calcium oxalate stones. Oral citrate therapy increases the urinary citrate levels, which in turn binds with calcium and inhibits the crystallisation thus reduces stone formation. Despite the widespread use of oral citrate therapy for prevention and treatment of calcium oxalate stones, the evidence to support its clinical efficacy remains uncertain. The objective of this review was to determine the efficacy and adverse events associated with citrate salts for the treatment and prevention of calcium containing kidney stones. We searched the Cochrane Kidney and Transplant Specialised Register to 29 July 2015 through contact with the Trials' Search Co-ordinator using search terms relevant to this review. We included randomised controlled trials (RCTs) that assessed the efficacy and adverse events associated with citrate salts for the treatment and prevention of calcium containing kidney stones in adults treated for a minimum of six months. Two authors assessed studies for inclusion in this review. Data were extracted according to predetermined criteria. Summary estimates of effect were obtained using a random-effects model, and results were expressed as risk ratios (RR) and their 95% confidence intervals (CI) for dichotomous outcomes, and mean difference (MD) and 95% CI for continuous outcomes. We included seven studies that included a total of 477 participants, most of whom had oxalate stones. Of these, three studies (247 participants) compared potassium citrate with placebo or no intervention; three (166 participants) compared potassium-sodium citrate with no intervention; and one (64 participants) compared potassium-magnesium citrate with placebo. Overall, quality of the reporting of the included studies was considered moderate to

  16. Calcium citrate without aluminum antacids does not cause aluminum retention in patients with functioning kidneys

    NASA Technical Reports Server (NTRS)

    Sakhaee, K.; Wabner, C. L.; Zerwekh, J. E.; Copley, J. B.; Pak, L.; Poindexter, J. R.; Pak, C. Y.

    1993-01-01

    It has been suggested that calcium citrate might enhance aluminum absorption from food, posing a threat of aluminum toxicity even in patients with normal renal function. We therefore measured serum and urinary aluminum before and following calcium citrate therapy in patients with moderate renal failure and in normal subjects maintained on constant metabolic diets with known aluminum content (967-1034 mumol/day, or 26.1-27.9 mg/day, in patients and either 834 or 1579 mumol/day, or 22.5 and 42.6 mg/day, in normal subjects). Seven patients with moderate renal failure (endogenous creatinine clearance of 43 ml/min) took 50 mmol (2 g) calcium/day as effervescent calcium citrate with meals for 17 days. Eight normal women received 25 mmol (1 g) calcium/day as tricalcium dicitrate tablets with meals for 7 days. In patients with moderate renal failure, serum and urinary aluminum were normal before treatment at 489 +/- 293 SD nmol/l (13.2 +/- 7.9 micrograms/l) and 767 +/- 497 nmol/day (20.7 +/- 13.4 micrograms/day), respectively. They remained within normal limits and did not change significantly during calcium citrate treatment (400 +/- 148 nmol/l and 600 +/- 441 nmol/day, respectively). Similarly, no significant change in serum and urinary aluminum was detected in normal women during calcium citrate administration (271 +/- 59 vs 293 +/- 85 nmol/l and 515 +/- 138 vs 615 +/- 170 nmol/day, respectively). In addition, skeletal bone aluminum content did not change significantly in 14 osteoporotic patients (endogenous creatinine clearance of 68.5 ml/min) treated for 24 months with calcium citrate, 10 mmol calcium twice/day separately from meals (29.3 +/- 13.9 ng/mg ash bone to 27.9 +/0- 10.4, P = 0.727). In them, histomorphometric examination did not show any evidence of mineralization defect. Thus, calcium citrate given alone without aluminum-containing drugs does not pose a risk of aluminum toxicity in subjects with normal or functioning kidneys, when it is administered on an

  17. Modification by food of the calcium absorbability and physicochemical effects of calcium citrate

    NASA Technical Reports Server (NTRS)

    Wabner, C. L.; Pak, C. Y.

    1992-01-01

    The food-calcium (Ca) interaction was examined in 12 healthy women (mean age 38 years) maintained on a constant metabolic diet. They underwent three phases of study, comprised of control (no Ca), Ca citrate (1 g Ca/day) during meals, and Ca citrate separately from meals. Each phase was 7 days in length and two 24-hour urine samples were collected on days 6 and 7. The rise from the control phase in urinary Ca was slightly more prominent when Ca citrate was given with meals than without (68 and 62%, respectively). The fall in urinary phosphorus was equivalent at about 25% between Ca citrate phases. The rise in urinary citrate and pH and the decline in urinary ammonium were more prominent when Ca citrate was given with meals; however, the changes were small or nonsignificant. The urinary saturation of Ca oxalate, brushite or monosodium urate did not differ between the two Ca citrate phases. There was a nonsignificant rise in serum iron during Ca citrate phases. The results suggest that: 1) dissolution and absorption of Ca citrate might be slightly greater when given with food than without; 2) that the ability of Ca citrate to attenuate crystallization of stone-forming Ca salts in urine is not modified by food; and 3) that Ca citrate may not impair iron absorption from food.

  18. Leaf malate and succinate accumulation are out of phase throughout the development of the CAM plant Ananas comosus.

    PubMed

    Rainha, N; Medeiros, V P; Ferreira, C; Raposo, A; Leite, J P; Cruz, C; Pacheco, C A; Ponte, D; Silva, A B

    2016-03-01

    In plants with Crassulacean Acid Metabolism (CAM), organic acids, mainly malate are crucial intermediates for carbon fixation. In this research we studied the circadian oscillations of three organic anions (malate, citrate, and succinate) in Ananas comosus, assessing the effect of season and plant development stage. Seasonal and plant development dependencies were observed. The circadian oscillations of malate and citrate were typical of CAM pathways reported in the literature. Citrate content was quite stable (25-30 μmol g(-1) FW) along the day, with a seasonal effect. Succinate was shown to have both diurnal and seasonal oscillations and also a correlation with malate, since it accumulated during the afternoon when malate content was normally at a minimum, suggesting a possible mechanistic effect between both anions in CAM and/or respiratory metabolisms. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  19. A comparative study of calcium absorption following a single serving administration of calcium carbonate powder versus calcium citrate tablets in healthy premenopausal women

    PubMed Central

    Wang, Haiyuan; Bua, Peter; Capodice, Jillian

    2014-01-01

    Background Calcium is an essential mineral often taken as a daily, long-term nutritional supplement. Data suggests that once-daily dosing is important with regard to long-term compliance of both drugs and nutritional supplements. Objective This study was undertaken to compare the bioavailability of a single serving of two calcium supplements in healthy, premenopausal women. Design A two-period, crossover bioavailability study of a single serving of calcium citrate tablets (two tablets=500 mg calcium) versus a single serving of calcium carbonate powder (one packet of powder=1,000 mg calcium) was performed in healthy women aged between 25 and 45. All subjects were on a calcium-restricted diet 7 days prior to testing and fasted for 12 h before being evaluated at 0, 1, 2, and 4 h after oral administration of the test agents. Blood measurements for total and ionized calcium and parathyroid hormone were performed and adverse events were monitored. Results Twenty-three women were evaluable with a mean age of 33.2±8.71. Results showed that administration of a single serving of a calcium carbonate powder resulted in greater absorption in total and ionized calcium versus a single serving of calcium citrate tablets at 4 h (4.25±0.21 vs. 4.16±0.16, p=0.001). There were minimal side effects and no reported serious adverse events. Conclusions This study shows that a single serving of a calcium carbonate powder is more bioavailable than a single serving of calcium citrate tablets. This may be beneficial for long-term compliance. PMID:24772062

  20. Regional citrate anticoagulation in hemodialysis: an observational study of safety, efficacy, and effect on calcium balance during routine care.

    PubMed

    Singer, Richard F; Williams, Oliver; Mercado, Chari; Chen, Bonny; Talaulikar, Girish; Walters, Giles; Roberts, Darren M

    2016-01-01

    Regional citrate hemodialysis anticoagulation is used when heparin is contraindicated, but most protocols require large infusions of calcium and frequent intradialytic plasma ionized calcium measurements. The objective of this study was to determine the safety, efficacy, and effect on calcium balance of regional citrate anticoagulation using sparse plasma ionized calcium sampling. The design of this study was observational. The setting of this study was the hospital hemodialysis center. The subjects of this study were the hospital hemodialysis patients. Dialysate calcium concentration by atomic absorption spectroscopy and total dialysate weight were used as measurements. Regional citrate anticoagulation was introduced using zero calcium dialysate, pre-dialyzer citrate infusion, and post-dialyzer calcium infusion. Infusions were adjusted based on pre- and post-dialyzer calcium measurements obtained at least twice during a 4-h dialysis. The protocol was simplified after the first 357 sessions to dispense with post-dialyzer calcium measurements. Heparin-anticoagulated sessions were performed using acetate-acidified 1.25 mmol/L calcium or citrate-acidified 1.5 mmol/L calcium dialysate. Calcium balance assessment was by complete dialysate recovery. Safety and efficacy were assessed prospectively using a point-of-care database to record ionized calcium and clinical events. Groups were compared using t test, ANOVA, Wilcoxon rank sum, or Kruskal-Wallis as appropriate. Seventy-five patients received regional citrate-anticoagulated dialysis over 1051 dialysis sessions. Of these, 357 dialysis sessions were performed using the original citrate anticoagulation protocol and 694 using the simplified protocol. Dialysis was effective and safe. Only 3 dialyzers clotted; 1 patient suffered symptomatic hypercalcemia and none suffered symptomatic hypocalcemia. Calcium balance was assessed in 15 regional citrate-anticoagulated dialysis sessions and 30 heparin-anticoagulated sessions

  1. Efficacy of Mixtures of Magnesium, Citrate and Phytate as Calcium Oxalate Crystallization Inhibitors in Urine.

    PubMed

    Grases, Felix; Rodriguez, Adrian; Costa-Bauza, Antonia

    2015-09-01

    The main aim of the current study was to evaluate the effectiveness of mixtures of magnesium, citrate and phytate as calcium oxalate crystallization inhibitors. A turbidimetric assay in synthetic urine was performed to obtain induction times for calcium oxalate crystallization in the absence and presence of different mixtures of inhibitors. The morphology of calcium oxalate crystals in the absence or presence of inhibitors and mixtures of the inhibitors was evaluated in 2 crystallization experiments at low and high calcium oxalate supersaturation. The crystals formed were examined using scanning electron microscopy. Examination of crystallization induction times revealed clear inhibitory effects of magnesium, citrate and phytate on calcium oxalate crystallization, supporting usefulness in the treatment and prevention of calcium oxalate nephrolithiasis. Significant synergistic effects between magnesium and phytate were observed. Scanning electron microscopy images revealed that phytate is a powerful crystal growth inhibitor of calcium oxalate, totally preventing the formation of trihydrate and monohydrate. In addition to crystallization inhibition capacity, citrate and magnesium avoided calcium oxalate crystallization by decreasing its supersaturation. The synergistic effect between magnesium and phytate on calcium oxalate crystallization suggests that a combination of these 2 compounds may be highly useful as antilithiasis therapy. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  2. Nanoscale observations of the effect of citrate on calcium oxalate precipitation on calcite surfaces.

    NASA Astrophysics Data System (ADS)

    Burgos-Cara, Alejandro; Ruiz-Agudo, Encarnacion; Putnis, Christine V.

    2016-04-01

    Calcium oxalate (CaC2O4ṡxH2O) minerals are naturally occurring minerals found in fossils, plants, kidney stones and is a by-product in some processes such as paper, food and beverage production [1,2]. In particular, calcium oxalate monohydrate phase (COM) also known as whewellite (CaC2O4ṡH2O), is the most frequently reported mineral phase found in urinary and kidney stones together with phosphates. Organic additives are well known to play a key role in the formation of minerals in both biotic and abiotic systems, either facilitating their precipitation or hindering it. In this regard, recent studies have provided direct evidence demonstrating that citrate species could enhance dissolution of COM and inhibit their precipitation. [3,4] The present work aims at evauate the influence of pH, citrate and oxalic acid concentrations in calcium oxalate precipitation on calcite surfaces (Island Spar, Chihuahua, Mexico) through in-situ nanoscale observation using in situ atomic force microscopy (AFM, Multimode, Bruker) in flow-through experiments. Changes in calcium oxalate morphologies and precipitated phases were observed, as well as the inhibitory effect of citrate on calcium oxalate precipitation, which also lead to stabilization an the amorphous calcium oxalate phase. [1] K.D. Demadis, M. Öner, Inhibitory effects of "green"additives on the crystal growth of sparingly soluble salts, in: J.T. Pearlman (Ed.), Green Chemistry Research Trends, Nova Science Publishers Inc., New York, 2009, pp. 265-287. [2] M. Masár, M. Zuborová, D. Kaniansky, B. Stanislawski, Determination of oxalate in beer by zone electrophoresis on a chip with conductivity detection, J. Sep. Sci. 26 (2003) 647-652. [3] Chutipongtanate S, Chaiyarit S, Thongboonkerd V. Citrate, not phosphate, can dissolve calcium oxalate monohydrate crystals and detach these crystals from renal tubular cells. Eur J Pharmacol 2012;689:219-25. [4] Weaver ML, Qiu SR, Hoyer JR, Casey WH, Nancollas GH, De Yoreo JJ

  3. A Bacillus subtilis malate dehydrogenase gene.

    PubMed Central

    Jin, S; De Jesús-Berríos, M; Sonenshein, A L

    1996-01-01

    A Bacillus subtilis gene for malate dehydrogenase (citH) was found downstream of genes for citrate synthase and isocitrate dehydrogenase. Disruption of citH caused partial auxotrophy for aspartate and a requirement for aspartate during sporulation. In the absence of aspartate, citH mutant cells were blocked at a late stage of spore formation. PMID:8550482

  4. Effect of calcium citrate on bone integration in a rabbit femur defect model.

    PubMed

    Zhang, Wei; Wang, Wei; Chen, Qing-Yu; Lin, Zhong-Qin; Cheng, Shao-Wen; Kou, Dong-Quan; Ying, Xiao-Zhou; Shen, Yue; Cheng, Xiao-Jie; Nie, Peng-Fei; Li, Xiu-Cui; Rompis, Ferdinand An; Huang, Hang; Zhang, Hua; Mu, Zhong-Lin; Peng, Lei

    2012-04-01

    To explore effect of calcium citrate on bone integration in a rabbit femur defect model, and to compare the bone formation with different sizes by radiological and histological study. Twenty-four male Japanese white rabbits were randomly divided into three groups (Group A, B, C) in this study. Under anesthesia, defects of four sizes (1.2, 1.5, 2.0 and 2.5 mm) were created in each of the rabbits. Commercially pure calcium citrate powder was placed inside the medullary compartment of the femur (Experimental), while in the contralateral femur (Control) nothing was implanted. The defects were analyzed using radiography and histological analysis by using Imagepro-Plus 6.0 software after animal was sacrificed at 4th(Group A), 6th(Group B) and 8th(Group C) weeks postoperatively. Four samples were analyzed for each size of defect and each healing period. The histological and the radiologic evaluation were performed after sacrification of all rabbits on postoperative 4th and 6th weeks, It showed significant difference between the experimental group and the control group when these defects were less than or equal to 2.0 mm. No statistical difference was observed when these defects were larger than 2.0 mm at all healing periods except at the 4th week. Calcium citrate affects the early periods of bone defects healing mechanism in Japanese white rabbits positively, especially when the defect is not too large. We suggest further studies on calcium citrate to determine the effects of various dosages, administration ways and the experimental time on the bone defects. Copyright © 2012 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  5. Citrate and renal calculi: an update

    NASA Technical Reports Server (NTRS)

    Pak, C. Y.

    1994-01-01

    Citrate is an inhibitor of the crystallization of stone-forming calcium salts. Hypocitraturia, frequently encountered in patients with nephrolithiasis, is therefore an important risk factor for stone formation. Potassium citrate provides physiological and physicochemical correction and inhibits new stone formation, not only in hypocitraturic calcium nephrolithiasis but also in uric acid nephrolithiasis. Inhibition of stone recurrence has now been validated by a randomized trial. Ongoing research has disclosed additional causes of hypocitraturia (sodium excess, low intestinal alkali absorption, but not primary citrate malabsorption). Moreover, new insights on potassium citrate action have been shown, notably that some of absorbed citrate escapes oxidation and contributes to the citraturic response, that ingestion with a meal does not sacrifice physiological or physicochemical action, that orange juice mimics but does not completely duplicate its actions, that potassium citrate may have a beneficial bone-sparing effect, that it may reduce stone fragments following ESWL, and that danger of aluminum toxicity is not great in subjects with functioning kidneys. Finally, the research on potassium citrate has led to two promising products, calcium citrate as an optimum calcium supplement and potassium-magnesium citrate which may be superior to potassium citrate in the management of stone disease.

  6. Delay in onset of metabolic alkalosis during regional citrate anti-coagulation in continuous renal replacement therapy with calcium-free replacement solution.

    PubMed

    See, Kay Choong; Lee, Margaret; Mukhopadhyay, Amartya

    2009-01-01

    Regional citrate anti-coagulation for continuous renal replacement therapy chelates calcium to produce the anti- coagulation effect. We hypothesise that a calcium-free replacement solution will require less citrate and produce fewer metabolic side effects. Fifty patients, in a Medical Intensive Care Unit of a tertiary teaching hospital (25 in each group), received continuous venovenous hemofiltration using either calcium-containing or calcium-free replacement solutions. Both groups had no significant differences in filter life, metabolic alkalosis, hypernatremia, hypocalcemia, and hypercalcemia. However, patients using calcium-containing solution developed metabolic alkalosis earlier, compared to patients using calcium-free solution (mean 24.6 hours,CI 0.8-48.4 vs. 37.2 hours, CI 9.4-65, P = 0.020). When calcium-containing replacement solution was used, more citrate was required (mean 280 ml/h, CI 227.2-332.8 vs. 265 ml/h, CI 203.4-326.6, P = 0.069), but less calcium was infused (mean 21.2 ml/h, CI 1.2-21.2 vs 51.6 ml/h, CI 26.8-76.4, P < or = 0.0001).

  7. An excess of topical calcium and magnesium reverses the therapeutic effect of citrate on the development of corneal ulcers after alkali injury.

    PubMed

    Haddox, J L; Pfister, R R; Slaughter, S E

    1996-03-01

    Our purpose was to determine whether chelation of Ca2+ and Mg2+ is the mechanism by which sodium citrate inhibits corneal ulceration in the alkali-injured rabbit eye. The right eyes of 60 albino rabbits (2-2.5 kg) were alkali-injured by filling a 12-mm-diameter plastic well placed on the corneal surface with 0.4 ml of 1 N NaOH. After 35 s the alkali was aspirated, and the well was rinsed with physiological saline. Animals were randomly distributed to three treatment groups of equal size. Two drops of the following topical medications were administered on the hour (14 times per day) for 35 days: physiological saline, 10% citrate in saline, and 346 mM Ca2+, 346 mM Mg2+, and 10% citrate in saline. During the experiment, significantly fewer ulcerations occurred in the citrate-treated eyes (five of 20, 25%) than in the saline-treated eyes (13 of 20, 65%) or in the calcium-magnesium-citrate-treated eyes (15 of 20, 75%). When ulcerations did develop in the citrate group, they occurred significantly later and were less severe than those in the saline and calcium-magnesium-citrate groups. There was a significant increase in the number of eyes with signs of band keratopathy and translucent areas in the calcium-magnesium-citrate group when compared with the other two groups. As in previous studies, sodium citrate significantly inhibited the development of corneal ulcers after alkali injury. The annullment of the favorable effect of citrate on ulceration in the alkali-injured eye by the addition of calcium and magnesium shows that the mechanism of action of citrate is the chelation of these divalent cations.

  8. Effect of potential renal acid load of foods on urinary citrate excretion in calcium renal stone formers.

    PubMed

    Trinchieri, Alberto; Lizzano, Renata; Marchesotti, Federica; Zanetti, Giampaolo

    2006-02-01

    The aim of this study was to investigate the influence of the potential renal acid load (PRAL) of the diet on the urinary risk factors for renal stone formation. The present series comprises 187 consecutive renal calcium stone patients (114 males, 73 females) who were studied in our stone clinic. Each patient was subjected to an investigation including a 24-h dietary record and 24-h urine sample taken over the same period. Nutrients and calories were calculated by means of food composition tables using a computerized procedure. Daily PRAL was calculated considering the mineral and protein composition of foods, the mean intestinal absorption rate for each nutrient and the metabolism of sulfur-containing amino acids. Sodium, potassium, calcium, magnesium, phosphate, oxalate, urate, citrate, and creatinine levels were measured in the urine. The mean daily PRAL was higher in male than in female patients (24.1+/-24.0 vs 16.1+/-20.1 mEq/day, P=0.000). A significantly (P=0.01) negative correlation (R=-0.18) was found between daily PRAL and daily urinary citrate, but no correlation between PRAL and urinary calcium, oxalate, and urate was shown. Daily urinary calcium (R=0.186, P=0.011) and uric acid (R=0.157, P=0.033) were significantly related to the dietary intake of protein. Daily urinary citrate was significantly related to the intakes of copper (R=0.178, P=0.015), riboflavin (R=0.20, P=0.006), piridoxine (R=0.169, P=0.021) and biotin (R=0.196, P=0.007). The regression analysis by stepwise selection confirmed the significant negative correlation between PRAL and urinary citrate (P=0.002) and the significant positive correlation between riboflavin and urinary citrate (P=0.000). Urinary citrate excretion of renal stone formers (RSFs) is highly dependent from dietary acid load. The computation of the renal acid load is advisable to investigate the role of diet in the pathogenesis of calcium stone disease and it is also a useful tool to evaluate the lithogenic potential of

  9. The plant homolog to the human sodium/dicarboxylic cotransporter is the vacuolar malate carrier

    PubMed Central

    Emmerlich, Vera; Linka, Nicole; Reinhold, Thomas; Hurth, Marco A.; Traub, Michaela; Martinoia, Enrico; Neuhaus, H. Ekkehard

    2003-01-01

    Malate plays a central role in plant metabolism. It is an intermediate in the Krebs and glyoxylate cycles, it is the store for CO2 in C4 and crassulacean acid metabolism plants, it protects plants from aluminum toxicity, it is essential for maintaining the osmotic pressure and charge balance, and it is therefore involved in regulation of stomatal aperture. To fulfil many of these roles, malate has to be accumulated within the large central vacuole. Many unsuccessful efforts have been made in the past to identify the vacuolar malate transporter; here, we describe the identification of the vacuolar malate transporter [A. thaliana tonoplast dicarboxylate transporter (AttDT)]. This transporter exhibits highest sequence similarity to the human sodium/dicarboxylate cotransporter. Independent T-DNA [portion of the Ti (tumor-inducing) plasmid that is transferred to plant cells] Arabidopsis mutants exhibit substantially reduced levels of leaf malate, but respire exogenously applied [14C]malate faster than the WT. An AttDT-GFP fusion protein was localized to vacuole. Vacuoles isolated from Arabidopsis WT leaves exhibited carbonylcyanide m-chlorophenylhydrazone and citrate inhibitable malate transport, which was not stimulated by sodium. Vacuoles isolated from mutant plants import [14C]-malate at strongly reduced rates, confirming that this protein is the vacuolar malate transporter. PMID:12947042

  10. The plant homolog to the human sodium/dicarboxylic cotransporter is the vacuolar malate carrier.

    PubMed

    Emmerlich, Vera; Linka, Nicole; Reinhold, Thomas; Hurth, Marco A; Traub, Michaela; Martinoia, Enrico; Neuhaus, H Ekkehard

    2003-09-16

    Malate plays a central role in plant metabolism. It is an intermediate in the Krebs and glyoxylate cycles, it is the store for CO2 in C4 and crassulacean acid metabolism plants, it protects plants from aluminum toxicity, it is essential for maintaining the osmotic pressure and charge balance, and it is therefore involved in regulation of stomatal aperture. To fulfil many of these roles, malate has to be accumulated within the large central vacuole. Many unsuccessful efforts have been made in the past to identify the vacuolar malate transporter; here, we describe the identification of the vacuolar malate transporter [A. thaliana tonoplast dicarboxylate transporter (AttDT)]. This transporter exhibits highest sequence similarity to the human sodium/dicarboxylate cotransporter. Independent T-DNA [portion of the Ti (tumor-inducing) plasmid that is transferred to plant cells] Arabidopsis mutants exhibit substantially reduced levels of leaf malate, but respire exogenously applied [14C]malate faster than the WT. An AttDT-GFP fusion protein was localized to vacuole. Vacuoles isolated from Arabidopsis WT leaves exhibited carbonylcyanide m-chlorophenylhydrazone and citrate inhibitable malate transport, which was not stimulated by sodium. Vacuoles isolated from mutant plants import [14C]-malate at strongly reduced rates, confirming that this protein is the vacuolar malate transporter.

  11. Bioaccessibility of four calcium sources in different whey-based dairy matrices assessed by in vitro digestion.

    PubMed

    Lorieau, Lucie; Le Roux, Linda; Gaucheron, Frédéric; Ligneul, Amandine; Hazart, Etienne; Dupont, Didier; Floury, Juliane

    2018-04-15

    Numerous calcium sources are available to enrich food, but their behavior during digestion is still unknown. This study focused on the influence of the gastro-intestinal pH, the food structure and the calcium source on the bioaccessibility of the nutrient. Four calcium sources were studied: calcium carbonate, calcium citrate malate, calcium phosphate and calcium bisglycinate. These were added to dairy matrices, containing cream and whey proteins, of different forms (liquid or gel). The kinetics of solubility and ionic calcium concentration during in vitro digestion were studied, as function of gastro-intestinal pH. All calcium sources were almost fully soluble in the gastric compartment, and then became insoluble in the intestinal phase. The level of calcium insolubilisation in the intestinal phase was not significantly influenced by the matrix structure (liquid or gel), but was more dependent on the calcium source, this effect leading to different final calcium bioaccessibility from 36% to 20%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Effects of calcium carbonate, magnesium oxide and sodium citrate bicarbonate health supplements on the urinary risk factors for kidney stone formation.

    PubMed

    Allie, Shameez; Rodgers, Allen

    2003-01-01

    We describe a model to illustrate different chemical interactions that can occur in urine following ingestion of individual and combined health supplements. Two types of interactions are defined: synergism and addition. The model was applied to eight healthy males who participated in a study to investigate the chemical interactions between calcium carbonate, magnesium oxide and sodium citrate-bicarbonate health supplements on calcium oxalate urinary stone risk factors. Subjects ingested these components individually and in combination for 7 days. Twenty-four-hour urines were collected at baseline and during the final day of supplementation. These were analysed using standard laboratory techniques. Three different chemical interactions, all involving citrate, were identified: magnesium and citrate exerted a synergistic effect on lowering the relative superaturation (RS) of brushite; the same two components produced a synergistic effect on raising pH; finally, calcium and citrate exerted an additive effect on lowering the RS of uric acid. We propose that the novel approach described in this paper allows for the evaluation of individual, additive and synergistic interactions in the assessment of the efficacy of stone-risk reducing preparations.

  13. Blue native polyacrylamide gel electrophoresis and the monitoring of malate- and oxaloacetate-producing enzymes.

    PubMed

    Singh, R; Chénier, D; Bériault, R; Mailloux, R; Hamel, R D; Appanna, V D

    2005-09-30

    We demonstrate a facile blue native polyacrylamide gel electrophoresis (BN-PAGE) technique to detect two malate-generating enzymes, namely fumarase (FUM), malate synthase (MS) and four oxaloacetate-forming enzymes, namely pyruvate carboxylase (PC), phosphoenolpyruvate carboxykinase (PEPCK), citrate lyase (CL) and aspartate aminotransferase (AST). Malate dehydrogenase (MDH) was utilized as a coupling enzyme to detect either malate or oxaloacetate in the presence of their respective substrates and cofactors. The latter four oxaloacetate-forming enzymes were identified by 2,6-dichloroindophenol (DCIP) and p-iodonitrotetrazolium (INT) while the former two malate-producing enzymes were visualized by INT and phenazine methosulfate (PMS) in the reaction mixtures, respectively. The band formed at the site of enzymatic activity was easily quantified, while Coomassie staining provided information on the protein concentration. Hence, the expression and the activity of these enzymes can be readily evaluated. A two-dimensional (2D) BN-PAGE or SDS-PAGE enabled the rapid purification of the enzyme of interest. This technique also provides a quick and inexpensive means of quantifying these enzymatic activities in normal and stressed biological systems.

  14. Inhibition of calcium oxalate monohydrate growth by citrate and the effect of the background electrolyte

    NASA Astrophysics Data System (ADS)

    Weaver, Matthew L.; Qiu, S. Roger; Hoyer, John R.; Casey, William H.; Nancollas, George H.; De Yoreo, James J.

    2007-08-01

    Pathological mineralization is a common phenomenon in broad range of plants and animals. In humans, kidney stone formation is a well-known example that afflicts approximately 10% of the population. Of the various calcium salt phases that comprise human kidney stones, the primary component is calcium oxalate monohydrate (COM). Citrate, a naturally occurring molecule in the urinary system and a common therapeutic agent for treating stone disease, is a known inhibitor of COM. Understanding the physical mechanisms of citrate inhibition requires quantification of the effects of both background electrolytes and citrate on COM step kinetics. Here we report the results of an in situ AFM study of these effects, in which we measure the effect of the electrolytes LiCl, NaCl, KCl, RbCl, and CsCl, and the dependence of step speed on citrate concentration for a range of COM supersaturations. We find that varying the background electrolyte results in significant differences in the measured step speeds and in step morphology, with KCl clearly producing the smallest impact and NaCl the largest. The kinetic coefficient for the former is nearly three times larger than for the latter, while the steps change from smooth to highly serrated when KCl is changed to NaCl. The results on the dependence of step speed on citrate concentration show that citrate produces a dead zone whose width increases with citrate concentration as well as a continual reduction in kinetic coefficient with increasing citrate level. We relate these results to a molecular-scale view of inhibition that invokes a combination of kink blocking and step pinning. Furthermore, we demonstrate that the classic step-pinning model of Cabrera and Vermilyea (C-V model) does an excellent job of predicting the effect of citrate on COM step kinetics provided the model is reformulated to more realistically account for impurity adsorption, include an expression for the Gibbs-Thomson effect that is correct for all supersaturations

  15. Can lemon juice be an alternative to potassium citrate in the treatment of urinary calcium stones in patients with hypocitraturia? A prospective randomized study.

    PubMed

    Aras, Bekir; Kalfazade, Nadir; Tuğcu, Volkan; Kemahli, Eray; Ozbay, Bedi; Polat, Hakan; Taşçi, Ali Ihsan

    2008-12-01

    To investigate that lemon juice could be an alternative to potassium citrate in the treatment of urinary calcium stones in patients with hypocitraturia, 30 patients with hypocitraturic urinary calcium stones were enrolled into study. The patients were divided into three groups equally. Exactly 60 mEq/day fresh lemon juice ( approximately 85 cc/day) and potassium citrate (60 mEq/day) were given to the patients of first and second group, respectively. Dietary recommendations were made for the third group. Blood and 24-h urine tests were performed before treatment and repeated 3 months later. The differences between demographic datas of groups were not significant. There was no significant difference between values of blood tests performed before and after treatment in all groups. Statistically significant differences were found between pre- and post-treatment urine values in each group. Although there was no significant difference between pre-treatment citrate levels of the groups. A significant difference was found between post-treatment citrate levels of the groups. There was 2.5-, 3.5- and 0.8-fold increase in urinary citrate level of lemon juice, potassium citrate and dietary recommendation groups, respectively. Urinary calcium level was decreased only in lemon juice and potassium citrate groups after treatment. While there was no significant difference between pre- and post-treatment urinary oxalate levels in all groups, a significant decrease in urinary uric acid levels was determined in all groups. We suggest that lemon juice can be an alternative in the treatment of urinary calcium stones in patients with hypocitraturia. Additionally, dietary recommendations can increase effectiveness of the treatment.

  16. Concave Urinary Crystallines: Direct Evidence of Calcium Oxalate Crystals Dissolution by Citrate In Vivo

    PubMed Central

    Shang, Yun-Feng; Xu, Meng; Zhang, Guang-Na; Ouyang, Jian-Ming

    2013-01-01

    The changes in urinary crystal properties in patients with calcium oxalate (CaOx) calculi after oral administration of potassium citrate (K3cit) were investigated via atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray powder diffractometry (XRD), and zeta potential analyzer. The AFM and SEM results showed that the surface of urinary crystals became concave, the edges and corners of crystals became blunt, the average size of urinary crystallines decreased significantly, and aggregation of urinary crystals was reduced. These changes were attributed to the significant increase in concentration of excreted citrate to 492 ± 118 mg/L after K3cit intake from 289 ± 83 mg/L before K3cit intake. After the amount of urinary citrate was increased, it complexed with Ca2+ ions on urinary crystals, which dissolved these crystals. Thus, the appearance of concave urinary crystals was a direct evidence of CaOx dissolution by citrate in vivo. The XRD results showed that the quantities and species of urinary crystals decreased after K3cit intake. The mechanism of inhibition of formation of CaOx stones by K3cit was possibly due to the complexation of Ca2+ with citrate, increase in urine pH, concentration of urinary inhibitor glycosaminoglycans (GAGs), and the absolute value of zeta potential after K3cit intake. PMID:24363634

  17. Effect of disodium/calcium malate or supplementation on growth performance, carcass quality, ruminal fermentation products, and blood metabolites of heifers.

    PubMed

    Carrasco, C; Medel, P; Fuentetaja, A; Ranilla, M J; Carro, M D

    2016-10-01

    The aim of this study was to assess the effects of malate salts and culture on growth performance, carcass quality, ruminal fermentation products, and blood metabolites in heifers raised under southern Europe practical farm conditions. A total of 108 Charolaise cross heifers (214 ± 27.3 kg BW and 6.4 ± 1.1 mo of age) were housed in 18 pens of 6 animals each and used in a 114-d feedlot study. There was a totally randomized experimental design, and 6 pens were assigned to each of the following experimental diets: a control (no supplementation), the control plus 4 g of disodium/calcium malate mixture per kilogram of concentrate (2.12 g malate/kg), and the control plus 0.15 g of CBS 493.94 per kilogram of concentrate (1.5 × 10 cfu/kg). The control diet consisted of wheat-barley-based pelleted concentrate (32% starch, DM basis) and full-length barley straw. Concentrate and straw were fed separately ad libitum (5% orts) in an 88:12 ratio. On Days 0, 56, and 114, ruminal fluid and blood samples were obtained from each heifer between 2 and 2.5 h after the morning feeding by ruminocentesis and tail venipuncture, respectively. Body weight, concentrate ADFI, and G:F were recorded at 28, 56, 84, and 114 d. At slaughter, hot carcass weight and yield and carcass classification were determined in 2 representative heifers per pen (12 animals per dietary treatment). Supplementation with malate salts or did not affect concentrate ADFI ( = 0.98), ADG ( = 0.74), or G:F ( = 0.50) at any time during the experiment. At slaughter, there were no differences in carcass weight ( = 0.86), classification ( = 0.18), or carcass yield ( = 0.84) among experimental groups. Also, there were no differences treatments on ruminal pH ( = 0.24), ruminal fermentation products ( = 0.69, = 0.88, and = 0.93 for total VFA, NH-N, and lactate, respectively), and blood metabolites ( = 0.96, = 0.82, and = 0.15 for glucose, urea N, and lactate, respectively). In conclusion, under the feeding and management

  18. Alkali absorption and citrate excretion in calcium nephrolithiasis

    NASA Technical Reports Server (NTRS)

    Sakhaee, K.; Williams, R. H.; Oh, M. S.; Padalino, P.; Adams-Huet, B.; Whitson, P.; Pak, C. Y.

    1993-01-01

    The role of net gastrointestinal (GI) alkali absorption in the development of hypocitraturia was investigated. The net GI absorption of alkali was estimated from the difference between simple urinary cations (Ca, Mg, Na, and K) and anions (Cl and P). In 131 normal subjects, the 24 h urinary citrate was positively correlated with the net GI absorption of alkali (r = 0.49, p < 0.001). In 11 patients with distal renal tubular acidosis (RTA), urinary citrate excretion was subnormal relative to net GI alkali absorption, with data from most patients residing outside the 95% confidence ellipse described for normal subjects. However, the normal relationship between urinary citrate and net absorbed alkali was maintained in 11 patients with chronic diarrheal syndrome (CDS) and in 124 stone-forming patients devoid of RTA or CDS, half of whom had "idiopathic" hypocitraturia. The 18 stone-forming patients without RTA or CDS received potassium citrate (30-60 mEq/day). Both urinary citrate and net GI alkali absorption increased, yielding a significantly positive correlation (r = 0.62, p < 0.0001), with the slope indistinguishable from that of normal subjects. Thus, urinary citrate was normally dependent on the net GI absorption of alkali. This dependence was less marked in RTA, confirming the renal origin of hypocitraturia. However, the normal dependence was maintained in CDS and in idiopathic hypocitraturia, suggesting that reduced citrate excretion was largely dietary in origin as a result of low net alkali absorption (from a probable relative deficiency of vegetables and fruits or a relative excess of animal proteins).

  19. Physicochemical action of potassium-magnesium citrate in nephrolithiasis

    NASA Technical Reports Server (NTRS)

    Pak, C. Y.; Koenig, K.; Khan, R.; Haynes, S.; Padalino, P.

    1992-01-01

    Effect of potassium-magnesium citrate on urinary biochemistry and crystallization of stone-forming salts was compared with that of potassium citrate at same dose of potassium in five normal subjects and five patients with calcium nephrolithiasis. Compared to the placebo phase, urinary pH rose significantly from 6.06 +/- 0.27 to 6.48 +/- 0.36 (mean +/- SD, p less than 0.0167) during treatment with potassium citrate (50 mEq/day for 7 days) and to 6.68 +/- 0.31 during therapy with potassium-magnesium citrate (containing 49 mEq K, 24.5 mEq Mg, and 73.5 mEq citrate per day). Urinary pH was significantly higher during potassium-magnesium citrate than during potassium citrate therapy. Thus, the amount of undissociated uric acid declined from 118 +/- 61 mg/day during the placebo phase to 68 +/- 54 mg/day during potassium citrate treatment and, more prominently, to 41 +/- 46 mg/day during potassium-magnesium citrate therapy. Urinary magnesium rose significantly from 102 +/- 25 to 146 +/- 37 mg/day during potassium-magnesium citrate therapy but not during potassium citrate therapy. Urinary citrate rose more prominently during potassium-magnesium citrate therapy (to 1027 +/- 478 mg/day from 638 +/- 252 mg/day) than during potassium citrate treatment (to 932 +/- 297 mg/day). Consequently, urinary saturation (activity product) of calcium oxalate declined significantly (from 1.49 x 10(-8) to 1.03 x 10(-8) M2) during potassium-magnesium citrate therapy and marginally (to 1.14 x 10(-8) M2) during potassium citrate therapy.(ABSTRACT TRUNCATED AT 250 WORDS).

  20. Calcium signaling in brain mitochondria: interplay of malate aspartate NADH shuttle and calcium uniporter/mitochondrial dehydrogenase pathways.

    PubMed

    Contreras, Laura; Satrústegui, Jorgina

    2009-03-13

    Ca2+ signaling in mitochondria has been mainly attributed to Ca2+ entry to the matrix through the Ca2+ uniporter and activation of mitochondrial matrix dehydrogenases. However, mitochondria can also sense increases in cytosolic Ca2+ through a mechanism that involves the aspartate-glutamate carriers, extramitochondrial Ca2+ activation of the NADH malate-aspartate shuttle (MAS). Both pathways are linked through the shared substrate alpha-ketoglutarate (alphaKG). Here we have studied the interplay between the two pathways under conditions of Ca2+ activation. We show that alphaKG becomes limiting when Ca2+ enters in brain or heart mitochondria, but not liver mitochondria, resulting in a drop in alphaKG efflux through the oxoglutarate carrier and in a drop in MAS activity. Inhibition of alphaKG efflux and MAS activity by matrix Ca2+ in brain mitochondria was fully reversible upon Ca2+ efflux. Because of their differences in cytosolic calcium concentration requirements, the MAS and Ca2+ uniporter-mitochondrial dehydrogenase pathways are probably sequentially activated during a Ca2+ transient, and the inhibition of MAS at the center of the transient may provide an explanation for part of the increase in lactate observed in the stimulated brain in vivo.

  1. Citrate, not phosphate, can dissolve calcium oxalate monohydrate crystals and detach these crystals from renal tubular cells.

    PubMed

    Chutipongtanate, Somchai; Chaiyarit, Sakdithep; Thongboonkerd, Visith

    2012-08-15

    Dissolution therapy of calcium oxalate monohydrate (COM) kidney stone disease has not yet been implemented due to a lack of well characterized COM dissolution agents. The present study therefore aimed to identify potential COM crystal dissolution compounds. COM crystals were treated with deionized water (negative control), 5 mM EDTA (positive control), 5 mM sodium citrate, or 5mM sodium phosphate. COM crystal dissolution activities of these compounds were evaluated by phase-contrast and video-assisted microscopic examinations, semi-quantitative analysis of crystal size, number and total mass, and spectrophotometric oxalate-dissolution assay. In addition, effects of these compounds on detachment of COM crystals, which adhered tightly onto renal tubular cell surface, were also investigated. The results showed that citrate, not phosphate, had a significant dissolution effect on COM crystals as demonstrated by significant reduction of crystal size (approximately 37% decrease), crystal number (approximately 53% decrease) and total crystal mass (approximately 72% decrease) compared to blank and negative controls. Spectrophotometric oxalate-dissolution assay successfully confirmed the COM crystal dissolution property of citrate. Moreover, citrate could detach up to 85% of the adherent COM crystals from renal tubular cell surface. These data indicate that citrate is better than phosphate for dissolution and detachment of COM crystals. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Calcium sensitivity of dicarboxylate transport in cultured proximal tubule cells

    PubMed Central

    Schiro, Faith R.; Pajor, Ana M.; Hamm, L. Lee

    2011-01-01

    Urinary citrate is an important inhibitor of calcium nephrolithiasis and is primarily determined by proximal tubule reabsorption. The major transporter to reabsorb citrate is Na+-dicarboxylate cotransporter (NaDC1), which transports dicarboxylates, including the divalent form of citrate. We previously found that opossum kidney (OK) proximal tubule cells variably express either divalent or trivalent citrate transport, depending on extracellular calcium. The present studies were performed to delineate the mechanism of the effect of calcium on citrate and succinate transport in these cells. Transport was measured using isotope uptake assays. In some studies, NaDC1 transport was studied in Xenopus oocytes, expressing either the rabbit or opossum ortholog. In the OK cell culture model, lowering extracellular calcium increased both citrate and succinate transport by more than twofold; the effect was specific in that glucose transport was not altered. Citrate and succinate were found to reciprocally inhibit transport at low extracellular calcium (<60 μM), but not at normal calcium (1.2 mM); this mutual inhibition is consistent with dicarboxylate transport. The inhibition varied progressively at intermediate levels of extracellular calcium. In addition to changing the relative magnitude and interaction of citrate and succinate transport, decreasing calcium also increased the affinity of the transport process for various other dicarboxylates. Also, the affinity for succinate, at low concentrations of substrate, was increased by calcium removal. In contrast, in oocytes expressing NaDC1, calcium did not have a similar effect on transport, indicating that NaDC1 could not likely account for the findings in OK cells. In summary, extracellular calcium regulates constitutive citrate and succinate transport in OK proximal tubule cells, probably via a novel transport process that is not NaDC1. The calcium effect on citrate transport parallels in vivo studies that demonstrate the

  3. Factors affecting the translocation of oxaloacetate and l-malate into rat liver mitochondria

    PubMed Central

    Haslam, J. M.; Griffiths, D. E.

    1968-01-01

    1. The rates of translocation of oxaloacetate and l-malate into rat liver mitochondria were measured by a direct spectrophotometric assay. 2. Penetration obeyed Michaelis–Menten kinetics, and apparent Km values were 40μm for oxaloacetate and 0·13mm for l-malate. 3. Arrhenius plots of the temperature-dependence of rates of penetration gave activation energies of +10kcal./mole for oxaloacetate and +8kcal./mole for l-malate. 4. The translocation of both oxaloacetate and l-malate was competitively inhibited by d-malate, succinate, malonate, meso-tartrate, maleate and citraconate. The Ki values of these inhibitors were similar for the penetration of both oxaloacetate and l-malate. 5. Rates of penetration were stimulated by NNN′N′-tetramethyl-p-phenylenediamine dihydrochloride plus ascorbate under aerobic conditions or by ATP under anaerobic conditions. 6. The energy-dependent stimulation of translocation was abolished by uncouplers of oxidative phosphorylation. Oligomycin A, aurovertin, octyl-guanidine and atractyloside prevented the stimulation by ATP, but did not inhibit the stimulation by NNN′N′-tetramethyl-p-phenylenediamine dihydrochloride plus ascorbate. 7. Mitochondria prepared in the presence of ethylene-dioxybis(ethyleneamino)tetra-acetic acid did not exhibit the energy-dependent translocation, but this could be restored by the addition of 50μm-calcium chloride. 8. Valinomycin or gramicidin plus potassium chloride enhanced the energy-dependent translocation of oxaloacetate and l-malate. 9. Addition of oxaloacetate stimulated the adenosine triphosphatase activity of the mitochondria, and the ratio of `extra' oxaloacetate translocation to `extra' adenosine triphosphatase activity was 1·6:1. 10. Possible mechanisms for the energy-dependent entry of oxaloacetate and l-malate into mitochondria are discussed in relation to the above results. PMID:4235143

  4. Citrate bridges between mineral platelets in bone

    PubMed Central

    Davies, Erika; Müller, Karin H.; Wong, Wai Ching; Pickard, Chris J.; Reid, David G.; Skepper, Jeremy N.; Duer, Melinda J.

    2014-01-01

    We provide evidence that citrate anions bridge between mineral platelets in bone and hypothesize that their presence acts to maintain separate platelets with disordered regions between them rather than gradual transformations into larger, more ordered blocks of mineral. To assess this hypothesis, we take as a model for a citrate bridging between layers of calcium phosphate mineral a double salt octacalcium phosphate citrate (OCP-citrate). We use a combination of multinuclear solid-state NMR spectroscopy, powder X-ray diffraction, and first principles electronic structure calculations to propose a quantitative structure for this material, in which citrate anions reside in a hydrated layer, bridging between apatitic layers. To assess the relevance of such a structure in native bone mineral, we present for the first time, to our knowledge, 17O NMR data on bone and compare them with 17O NMR data for OCP-citrate and other calcium phosphate minerals relevant to bone. The proposed structural model that we deduce from this work for bone mineral is a layered structure with thin apatitic platelets sandwiched between OCP-citrate–like hydrated layers. Such a structure can explain a number of known structural features of bone mineral: the thin, plate-like morphology of mature bone mineral crystals, the presence of significant quantities of strongly bound water molecules, and the relatively high concentration of hydrogen phosphate as well as the maintenance of a disordered region between mineral platelets. PMID:24706850

  5. Pathogenic mutations of the human mitochondrial citrate carrier SLC25A1 lead to impaired citrate export required for lipid, dolichol, ubiquinone and sterol synthesis.

    PubMed

    Majd, Homa; King, Martin S; Smith, Anthony C; Kunji, Edmund R S

    2018-01-01

    Missense mutations of the human mitochondrial citrate carrier, encoded by the SLC25A1 gene, lead to an autosomal recessive neurometabolic disorder characterised by neonatal-onset encephalopathy with severe muscular weakness, intractable seizures, respiratory distress, and lack of psychomotor development, often resulting in early death. Here, we have measured the effect of all twelve known pathogenic mutations on the transport activity. The results show that nine mutations abolish transport of citrate completely, whereas the other three reduce the transport rate by >70%, indicating that impaired citrate transport is the most likely primary cause of the disease. Some mutations may be detrimental to the structure of the carrier, whereas others may impair key functional elements, such as the substrate binding site and the salt bridge network on the matrix side of the carrier. To understand the consequences of impaired citrate transport on metabolism, the substrate specificity was also determined, showing that the human citrate carrier predominantly transports citrate, isocitrate, cis-aconitate, phosphoenolpyruvate and malate. Although D-2- and L-2 hydroxyglutaric aciduria is a metabolic hallmark of the disease, it is unlikely that the citrate carrier plays a significant role in the removal of hydroxyglutarate from the cytosol for oxidation to oxoglutarate in the mitochondrial matrix. In contrast, computer simulations of central metabolism predict that the export of citrate from the mitochondrion cannot be fully compensated by other pathways, restricting the cytosolic production of acetyl-CoA that is required for the synthesis of lipids, sterols, dolichols and ubiquinone, which in turn explains the severe disease phenotypes. Copyright © 2017. Published by Elsevier B.V.

  6. Synthesis of citrate from phosphoenolpyruvate and acetylcarnitine by mitochondria from rabbit, pigeon and rat liver: implications for lipogenesis.

    PubMed

    Wiese, T J; Wuensch, S A; Ray, P D

    1996-08-01

    Rabbit, pigeon and rat liver mitochondria convert exogenous phosphoenolpyruvate and acetylcarnitine to citrate at rates of 14, 74 and 8 nmol/15 min/mg protein. Citrate formation is dependent on exogenous HCO3-, is increased consistently by exogenous nucleotides (GDP, IDP, GTP, ADP, ATP) and inhibited strongly by 3-mercaptopicolinate and 1,2,3-benzenetricarboxylate. Citrate is not made from pyruvate alone or combined with acetylcarnitine. Pigeon and rat liver mitochondria make large amounts of citrate from exogenous succinate, suggesting the presence of an endogenous source of acetyl units or means of converting oxalacetate to acetyl units. Citrate synthesis from succinate by pigeon and rabbit mitochondria is increased significantly by exogenous acetylcarnitine. Pigeon and rat liver contain 80 and 15 times, respectively, more ATP:citrate lyase activity than does rabbit liver. Data suggest that mitochondrial phosphoenolpyruvate carboxykinase in vivo could convert glycolysis-derived phosphoenolpyruvate to oxalacetate that, with acetyl CoA, could form citrate for export to support cytosolic lipogenesis as an activator of acetyl CoA carboxylase, a carbon source via ATP:citrate lyase and NADPH via NADP:malate dehydrogenase or NADP:isocitrate dehydrogenase.

  7. 21 CFR 184.1195 - Calcium citrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., CAS Reg. No. 813-0994-095) is the calcium salt of citric acid. It is prepared by neutralizing citric acid with calcium hydroxide or calcium carbonate. It occurs as a fine white, odorless powder and...

  8. 21 CFR 184.1195 - Calcium citrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., CAS Reg. No. 813-0994-095) is the calcium salt of citric acid. It is prepared by neutralizing citric acid with calcium hydroxide or calcium carbonate. It occurs as a fine white, odorless powder and...

  9. Use of Potassium Citrate to Reduce the Risk of Renal Stone Formation During Spaceflight

    NASA Technical Reports Server (NTRS)

    Whitson, P. A.; Pietrzyk, R. A.; Sams, C. F.; Jones, J. A.; Nelman-Gonzalez, M.; Hudson, E. K.

    2008-01-01

    Introduction: NASA s Vision for Space Exploration centers on exploration class missions including the goals of returning to the moon and landing on Mars. One of NASA s objectives is to focus research on astronaut health and the development of countermeasures that will protect crewmembers during long duration voyages. Exposure to microgravity affects human physiology and results in changes in the urinary chemical composition favoring urinary supersaturation and an increased risk of stone formation. Nephrolithiasis is a multifactorial disease and development of a renal stone is significantly influenced by both dietary and environmental factors. Previous results from long duration Mir and short duration Shuttle missions have shown decreased urine volume, pH, and citrate levels and increased calcium. Citrate, an important inhibitor of calcium-containing stones, binds with urinary calcium reducing the amount of calcium available to form stones. Citrate inhibits renal stone recurrence by preventing crystal growth, aggregation, and nucleation and is one of the most common therapeutic agents used to prevent stone formation. Methods: Thirty long duration crewmembers (29 male, 1 female) participated in this study. 24-hour urines were collected and dietary monitoring was performed pre, in, and postflight. Crewmembers in the treatment group received two potassium citrate (KCIT) pills, 10 mEq/pill, ingested daily beginning 3 days before launch, all inflight days and through 14 days postflight. Urinary biochemical and dietary analyses were completed. Results: KCIT treated subjects exhibited decreased urinary calcium excretion and maintained the levels of calcium oxalate supersaturation risk at their preflight levels. The increased urinary pH levels in these subjects reduced the risk of uric acid stones. Discussion: The current study investigated the use of potassium citrate as a countermeasure to minimize the risk of stone formation during ISS missions. Results suggest that

  10. 78 FR 34642 - Citric Acid and Certain Citrate Salts From the People's Republic of China: Preliminary Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-10

    ... monopotassium forms of potassium citrate.\\1\\ Sodium citrate also includes both trisodium citrate and monosodium... Tariff Schedule of the United States (``HTSUS''), respectively. Potassium citrate and crude calcium... include citric acid, sodium citrate, and potassium citrate are classifiable under 3824.90.9290 of the...

  11. Rewiring the reductive tricarboxylic acid pathway and L-malate transport pathway of Aspergillus oryzae for overproduction of L-malate.

    PubMed

    Liu, Jingjing; Xie, Zhipeng; Shin, Hyun-Dong; Li, Jianghua; Du, Guocheng; Chen, Jian; Liu, Long

    2017-07-10

    Aspergillus oryzae finds wide application in the food, feed, and wine industries, and is an excellent cell factory platform for production of organic acids. In this work, we achieved the overproduction of L-malate by rewiring the reductive tricarboxylic acid (rTCA) pathway and L-malate transport pathway of A. oryzae NRRL 3488. First, overexpression of native pyruvate carboxylase and malate dehydrogenase in the rTCA pathway improved the L-malate titer from 26.1gL -1 to 42.3gL -1 in shake flask culture. Then, the oxaloacetate anaplerotic reaction was constructed by heterologous expression of phosphoenolpyruvate carboxykinase and phosphoenolpyruvate carboxylase from Escherichia coli, increasing the L-malate titer to 58.5gL -1 . Next, the export of L-malate from the cytoplasm to the external medium was strengthened by overexpression of a C4-dicarboxylate transporter gene from A. oryzae and an L-malate permease gene from Schizosaccharomyces pombe, improving the L-malate titer from 58.5gL -1 to 89.5gL -1 . Lastly, guided by transcription analysis of the expression profile of key genes related to L-malate synthesis, the 6-phosphofructokinase encoded by the pfk gene was identified as a potential limiting step for L-malate synthesis. Overexpression of pfk with the strong sodM promoter increased the L-malate titer to 93.2gL -1 . The final engineered A. oryzae strain produced 165gL -1 L-malate with a productivity of 1.38gL -1 h -1 in 3-L fed-batch culture. Overall, we constructed an efficient L-malate producer by rewiring the rTCA pathway and L-malate transport pathway of A. oryzae NRRL 3488, and the engineering strategy adopted here may be useful for the construction of A. oryzae cell factories to produce other organic acids. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Discrepant post filter ionized calcium concentrations by common blood gas analyzers in CRRT using regional citrate anticoagulation.

    PubMed

    Schwarzer, Patrik; Kuhn, Sven-Olaf; Stracke, Sylvia; Gründling, Matthias; Knigge, Stephan; Selleng, Sixten; Helm, Maximilian; Friesecke, Sigrun; Abel, Peter; Kallner, Anders; Nauck, Matthias; Petersmann, Astrid

    2015-09-08

    Ionized calcium (iCa) concentration is often used in critical care and measured using blood gas analyzers at the point of care. Controlling and adjusting regional citrate anticoagulation (RCA) for continuous renal replacement therapy (CRRT) involves measuring the iCa concentration in two samples: systemic with physiological iCa concentrations and post filter samples with very low iCa concentrations. However, modern blood gas analyzers are optimized for physiological iCa concentrations which might make them less suitable for measuring low iCa in blood with a high concentration of citrate. We present results of iCa measurements from six different blood gas analyzers and the impact on clinical decisions based on the recommendations of the dialysis' device manufacturer. The iCa concentrations of systemic and post filter samples were measured using six distinct, frequently used blood gas analyzers. We obtained iCa results of 74 systemic and 84 post filter samples from patients undergoing RCA for CRRT at the University Medicine of Greifswald. The systemic samples showed concordant results on all analyzers with median iCa concentrations ranging from 1.07 to 1.16 mmol/L. The medians of iCa concentrations for post filter samples ranged from 0.21 to 0.50 mmol/L. Results of >70% of the post filter samples would lead to major differences in decisions regarding citrate flow depending on the instrument used. Measurements of iCa in post filter samples may give misleading information in monitoring the RCA. Recommendations of the dialysis manufacturer need to be revised. Meanwhile, little weight should be given to post filter iCa. Reference methods for low iCa in whole blood containing citrate should be established.

  13. Risk of calcium oxalate nephrolithiasis in postmenopausal women supplemented with calcium or combined calcium and estrogen.

    PubMed

    Domrongkitchaiporn, Somnuek; Ongphiphadhanakul, Boonsong; Stitchantrakul, Wasana; Chansirikarn, Sirinthorn; Puavilai, Gobchai; Rajatanavin, Rajata

    2002-02-26

    Recent studies showed that postmenopausal women lost less bone mass when supplemented with calcium or estrogen therapy. However, the safety of the treatments in terms of the risk of calcium oxalate stone formation is unknown. We therefore conducted this study to determine the alteration in calcium oxalate supersaturation after calcium supplement or after combined calcium and estrogen therapy in postmenopausal osteoporotic women. Fifty-six postmenopausal women were enrolled in this study. All subjects were more than 10 years postmenopausal with vertebral or femoral osteoporosis by bone mineral density criteria. They were randomly allocated to receive either 625 mg of calcium carbonate (250 mg of elemental calcium) at the end of a meal three times a day (group A, n=26) or calcium carbonate in the same manner plus 0.625 mg/day of conjugated equine estrogen and 5 mg medrogestone acetate from day 1-12 each month (group B, n=30). The age (mean +/- S.E.M.) was 66.3 +/- 1.2 and 65.1 +/- 1.1 years, weight 54.1 +/- 1.2 and 55.3 +/- 2.1 kg, in group A and group B, respectively. Urine specimens (24-h) were collected at baseline and 3 months after treatment for the determination of calcium oxalate saturation by using Tiselius's index (AP(CaOx)) and calcium/citrate ratio. After 3 months of treatment, there was no significant alteration from baseline for urinary excretion of calcium, citrate and oxalate. Urinary phosphate excretion was significantly reduced (6.3 +/- 0.7 vs. 5.1 +/- 0.7 mmol/day for group A and 8.2 +/- 0.9 vs. 5.8 +/- 0.7 mmol/day for group B, P<0.05), whereas net alkaline absorption was significantly elevated (10.1 +/- 3.6 vs. 20.1 +/- 4.4 meq/day for group A and 4.8 +/- 3.2 vs. 19.9 +/- 3.6 meq/day for group B, P<0.05). Calcium/citrate ratio and AP(CaOx) determined at baseline were not different from the corresponding values after treatment in both groups; calcium/citrate: 10.1 +/- 3.1 vs. 10.1 +/- 2.5 for group A and 9.3 +/- 1.8 vs. 11.9 +/- 2.5 for group B and

  14. SbnG, a Citrate Synthase in Staphylococcus aureus

    PubMed Central

    Kobylarz, Marek J.; Grigg, Jason C.; Sheldon, Jessica R.; Heinrichs, David E.; Murphy, Michael E. P.

    2014-01-01

    In response to iron deprivation, Staphylococcus aureus produces staphyloferrin B, a citrate-containing siderophore that delivers iron back to the cell. This bacterium also possesses a second citrate synthase, SbnG, that is necessary for supplying citrate to the staphyloferrin B biosynthetic pathway. We present the structure of SbnG bound to the inhibitor calcium and an active site variant in complex with oxaloacetate. The overall fold of SbnG is structurally distinct from TCA cycle citrate synthases yet similar to metal-dependent class II aldolases. Phylogenetic analyses revealed that SbnG forms a separate clade with homologs from other siderophore biosynthetic gene clusters and is representative of a metal-independent subgroup in the phosphoenolpyruvate/pyruvate domain superfamily. A structural superposition of the SbnG active site to TCA cycle citrate synthases and site-directed mutagenesis suggests a case for convergent evolution toward a conserved catalytic mechanism for citrate production. PMID:25336653

  15. Impaired Malate and Fumarate Accumulation Due to the Mutation of the Tonoplast Dicarboxylate Transporter Has Little Effects on Stomatal Behavior.

    PubMed

    Medeiros, David B; Barros, Kallyne A; Barros, Jessica Aline S; Omena-Garcia, Rebeca P; Arrivault, Stéphanie; Sanglard, Lílian M V P; Detmann, Kelly C; Silva, Willian Batista; Daloso, Danilo M; DaMatta, Fábio M; Nunes-Nesi, Adriano; Fernie, Alisdair R; Araújo, Wagner L

    2017-11-01

    Malate is a central metabolite involved in a multiplicity of plant metabolic pathways, being associated with mitochondrial metabolism and playing significant roles in stomatal movements. Vacuolar malate transport has been characterized at the molecular level and is performed by at least one carrier protein and two channels in Arabidopsis ( Arabidopsis thaliana ) vacuoles. The absence of the Arabidopsis tonoplast Dicarboxylate Transporter (tDT) in the tdt knockout mutant was associated previously with an impaired accumulation of malate and fumarate in leaves. Here, we investigated the consequences of this lower accumulation on stomatal behavior and photosynthetic capacity as well as its putative metabolic impacts. Neither the stomatal conductance nor the kinetic responses to dark, light, or high CO 2 were highly affected in tdt plants. In addition, we did not observe any impact on stomatal aperture following incubation with abscisic acid, malate, or citrate. Furthermore, an effect on photosynthetic capacity was not observed in the mutant lines. However, leaf mitochondrial metabolism was affected in the tdt plants. Levels of the intermediates of the tricarboxylic acid cycle were altered, and increases in both light and dark respiration were observed. We conclude that manipulation of the tonoplastic organic acid transporter impacted mitochondrial metabolism, while the overall stomatal and photosynthetic capacity were unaffected. © 2017 American Society of Plant Biologists. All Rights Reserved.

  16. Effects of L-malate on physical stamina and activities of enzymes related to the malate-aspartate shuttle in liver of mice.

    PubMed

    Wu, J L; Wu, Q P; Huang, J M; Chen, R; Cai, M; Tan, J B

    2007-01-01

    L-malate, a tricarboxylic acid cycle (TCA) intermediate, plays an important role in transporting NADH from cytosol to mitochondria for energy production and may be involved in the beneficial effects of improving physical stamina. In the present study, we investigated the effects of L-malate on the performance of forced swimming time and blood biochemical parameters related to fatigue - blood urea nitrogen (BUN), glucose (Glc), creatine kinase (CK),total protein (TP) and lactic acid (LA). To investigate the effects of L-malate on the malate-aspartate shuttle and energy metabolism in mice, the activities of enzymes related to the malate-aspartate shuttle were measured. L-malate was orally administered to mice continuously for 30 days using a feeding atraumatic needle. The swimming time was increased by 26.1 % and 28.5 %, respectively, in the 0.210 g/kg and 0.630 g/kg L-malate-treated group compared with the control group. There were no differences in the concentrations of Glc, BUN and TP between the L-malate-treated groups and the control groups. However, the levels of CK were significantly decreased in the L-malate-treated groups. The results predict a potential benefit of L-malate for improving physical stamina and minimizing muscle damage during swimming exercise. The activities of cytosolic and mitochondrial malate dehydrogenase were significantly elevated in the L-malate-treated group compared with the control group. These enzymatic activities may be useful indicators for evaluating changes affecting the malate-aspartate shuttle and energy metabolism in the liver of mice.

  17. A Process-Based Model of TCA Cycle Functioning to Analyze Citrate Accumulation in Pre- and Post-Harvest Fruits.

    PubMed

    Etienne, Audrey; Génard, Michel; Bugaud, Christophe

    2015-01-01

    Citrate is one of the most important organic acids in many fruits and its concentration plays a critical role in organoleptic properties. The regulation of citrate accumulation throughout fruit development, and the origins of the phenotypic variability of the citrate concentration within fruit species remain to be clarified. In the present study, we developed a process-based model of citrate accumulation based on a simplified representation of the TCA cycle to predict citrate concentration in fruit pulp during the pre- and post-harvest stages. Banana fruit was taken as a reference because it has the particularity of having post-harvest ripening, during which citrate concentration undergoes substantial changes. The model was calibrated and validated on the two stages, using data sets from three contrasting cultivars in terms of citrate accumulation, and incorporated different fruit load, potassium supply, and harvest dates. The model predicted the pre and post-harvest dynamics of citrate concentration with fairly good accuracy for the three cultivars. The model suggested major differences in TCA cycle functioning among cultivars during post-harvest ripening of banana, and pointed to a potential role for NAD-malic enzyme and mitochondrial malate carriers in the genotypic variability of citrate concentration. The sensitivity of citrate accumulation to growth parameters and temperature differed among cultivars during post-harvest ripening. Finally, the model can be used as a conceptual basis to study citrate accumulation in fleshy fruits and may be a powerful tool to improve our understanding of fruit acidity.

  18. Idiopathic hypercalciuria and formation of calcium renal stones

    PubMed Central

    Coe, Fredric L.; Worcester, Elaine M.; Evan, Andrew P.

    2018-01-01

    The most common presentation of nephrolithiasis is idiopathic calcium stones in patients without systemic disease. Most stones are primarily composed of calcium oxalate and form on a base of interstitial apatite deposits, known as Randall’s plaque. By contrast some stones are composed largely of calcium phosphate, as either hydroxyapatite or brushite (calcium monohydrogen phosphate), and are usually accompanied by deposits of calcium phosphate in the Bellini ducts. These deposits result in local tissue damage and might serve as a site of mineral overgrowth. Stone formation is driven by supersaturation of urine with calcium oxalate and brushite. The level of supersaturation is related to fluid intake as well as to the levels of urinary citrate and calcium. Risk of stone formation is increased when urine citrate excretion is <400 mg per day, and treatment with potassium citrate has been used to prevent stones. Urine calcium levels >200 mg per day also increase stone risk and often result in negative calcium balance. Reduced renal calcium reabsorption has a role in idiopathic hypercalciuria. Low sodium diets and thiazide-type diuretics lower urine calcium levels and potentially reduce the risk of stone recurrence and bone diseas PMID:27452364

  19. Cyanide degradation by Pseudomonas pseudoalcaligenes CECT5344 involves a malate:quinone oxidoreductase and an associated cyanide-insensitive electron transfer chain.

    PubMed

    Luque-Almagro, Victor M; Merchán, Faustino; Blasco, Rafael; Igeño, M Isabel; Martínez-Luque, Manuel; Moreno-Vivián, Conrado; Castillo, Francisco; Roldán, M Dolores

    2011-03-01

    The alkaliphilic bacterium Pseudomonas pseudoalcaligenes CECT5344 is able to grow with cyanide as the sole nitrogen source. Membrane fractions from cells grown under cyanotrophic conditions catalysed the production of oxaloacetate from L-malate. Several enzymic activities of the tricarboxylic acid and glyoxylate cycles in association with the cyanide-insensitive respiratory pathway seem to be responsible for the oxaloacetate formation in vivo. Thus, in cyanide-grown cells, citrate synthase and isocitrate lyase activities were significantly higher than those observed with other nitrogen sources. Malate dehydrogenase activity was undetectable, but a malate:quinone oxidoreductase activity coupled to the cyanide-insensitive alternative oxidase was found in membrane fractions from cyanide-grown cells. Therefore, oxaloacetate production was linked to the cyanide-insensitive respiration in P. pseudoalcaligenes CECT5344. Cyanide and oxaloacetate reacted chemically inside the cells to produce a cyanohydrin (2-hydroxynitrile), which was further converted to ammonium. In addition to cyanide, strain CECT5344 was able to grow with several cyano derivatives, such as 2- and 3-hydroxynitriles. The specific system required for uptake and metabolization of cyanohydrins was induced by cyanide and by 2-hydroxynitriles, such as the cyanohydrins of oxaloacetate and 2-oxoglutarate.

  20. Two Members of the Aluminum-Activated Malate Transporter Family, SlALMT4 and SlALMT5, are Expressed during Fruit Development, and the Overexpression of SlALMT5 Alters Organic Acid Contents in Seeds in Tomato (Solanum lycopersicum).

    PubMed

    Sasaki, Takayuki; Tsuchiya, Yoshiyuki; Ariyoshi, Michiyo; Nakano, Ryohei; Ushijima, Koichiro; Kubo, Yasutaka; Mori, Izumi C; Higashiizumi, Emi; Galis, Ivan; Yamamoto, Yoko

    2016-11-01

    The aluminum-activated malate transporter (ALMT) family of proteins transports malate and/or inorganic anions across plant membranes. To demonstrate the possible role of ALMT genes in tomato fruit development, we focused on SlALMT4 and SlALMT5, the two major genes expressed during fruit development. Predicted proteins were classified into clade 2 of the family, many members of which localize to endomembranes. Tissue-specific gene expression was determined using transgenic tomato expressing the β-glucuronidase reporter gene controlled by their own promoters. Both the genes were expressed in vascular bundles connecting to developing seeds in fruit and in the embryo of mature seeds. Further, SlALMT5 was expressed in embryo in developing seeds in fruit. Subcellular localization of both proteins to the endoplasmic reticulum (ER) was established by transiently expressing the green fluorescent protein fusions in plant protoplasts. SlALMT5 probably localized to other endomembranes as well. Localization of SlALMT5 to the ER was also confirmed by immunoblot analysis. The transport function of both SlALMT proteins was investigated electrophysiologically in Xenopus oocytes. SlALMT5 transported malate and inorganic anions such as nitrate and chloride, but not citrate. SlALMT4 also transported malate, but the results were less consistent perhaps because it did not localize strongly to the plasma membrane. To elucidate the physiological role of SlALMT5 further, we overexpressed SlALMT5 in tomato. Compared with the wild type, overexpressors exhibited higher malate and citrate contents in mature seeds, but not in fruit. We conclude that the malate transport function of SlALMT5 expressed in developing fruit influences the organic acid contents in mature seeds. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  1. Molecular docking and molecular dynamics simulations of fumarate hydratase and its mutant H235N complexed with pyromellitic acid and citrate.

    PubMed

    Subasri, S; Chaudhary, Santosh Kumar; Sekar, K; Kesherwani, Manish; Velmurugan, D

    2017-12-01

    Fumarase catalyzes the reversible, stereospecific hydration/dehydration of fumarate to L-malate during the Kreb's cycle. In the crystal structure of the tetrameric fumarase, it was found that some of the active site residues S145, T147, N188 G364 and H235 had water-mediated hydrogen bonding interactions with pyromellitic acid and citrate which help to the protonation state for the conversion of fumarate to malate. When His 235 is mutated with Asn (H235N), water-mediated interactions were lost due to the shifting of active site water molecule by 0.7 Å away. Molecular dynamics (MD) simulations were also carried out by NAMD and analyzed using Assisted Model Building with Energy Refinement (AMBER) program to better understand the conformational stability and other aspects during the binding of pyromellitic acid and citrate with native and mutant FH. The role of hydrogen bonds and hydrophobic interactions was also analyzed. The present study confirms that the H235N mutation has a major effect on the catalytic activity of fumarase which is evident from the biochemical studies.

  2. The metabolism of malate by cultured rat brain astrocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKenna, M.C.; Tildon, J.T.; Couto, R.

    1990-12-01

    Since malate is known to play an important role in a variety of functions in the brain including energy metabolism, the transfer of reducing equivalents and possibly metabolic trafficking between different cell types; a series of biochemical determinations were initiated to evaluate the rate of 14CO2 production from L-(U-14C)malate in rat brain astrocytes. The 14CO2 production from labeled malate was almost totally suppressed by the metabolic inhibitors rotenone and antimycin A suggesting that most of malate metabolism was coupled to the electron transport system. A double reciprocal plot of the 14CO2 production from the metabolism of labeled malate revealed biphasicmore » kinetics with two apparent Km and Vmax values suggesting the presence of more than one mechanism of malate metabolism in these cells. Subsequent experiments were carried out using 0.01 mM and 0.5 mM malate to determine whether the addition of effectors would differentially alter the metabolism of high and low concentrations of malate. Effectors studied included compounds which could be endogenous regulators of malate metabolism and metabolic inhibitors which would provide information regarding the mechanisms regulating malate metabolism. Both lactate and aspartate decreased 14CO2 production from malate equally. However, a number of effectors were identified which selectively altered the metabolism of 0.01 mM malate including aminooxyacetate, furosemide, N-acetylaspartate, oxaloacetate, pyruvate and glucose, but had little or no effect on the metabolism of 0.5 mM malate. In addition, alpha-ketoglutarate and succinate decreased 14CO2 production from 0.01 mM malate much more than from 0.5 mM malate. In contrast, a number of effectors altered the metabolism of 0.5 mM malate more than 0.01 mM. These included methionine sulfoximine, glutamate, malonate, alpha-cyano-4-hydroxycinnamate and ouabain.« less

  3. 77 FR 74171 - Citric Acid and Certain Citrate Salts From the People's Republic of China: Final Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-13

    ... citric acid sodium salt, and the monohydrate and monopotassium forms of potassium citrate.\\5\\ Sodium... (``HTSUS''), respectively. Potassium citrate and crude calcium citrate are classifiable under 2918.15.5000... potassium citrate are classifiable under 3824.90.9290 of the HTSUS. Although the HTSUS subheadings are...

  4. [Application of improved regional citrate anticoagulation in continuous hemofiltration in children].

    PubMed

    Bai, K; Liu, C J; Fu, Y Q; Xu, F

    2017-05-04

    Objective: To investigate the application of regional citrate anticoagulation with calcium hemofiltration basic solution in continuous hemofiltration in children. Method: The clinical data of 18 patients with citrate anticoagulation in continuous hemofiltration in children, excluding the hepatic failure and septic shock cases, were analyzed retrospectively, from September 2015 to August 2016 in Intensive Care Unit of the Children's Hospital of Chongqing Medical University.The commercial calcium hemofiltration basic solution was used as displacement liquid . The blood gas analysis, electrolyte, four coagulation tests during the treatment and the corresponding relations of quantity of blood flow(QB), quantity of citrate flow(QCi), quantity of sodium bicarbonate flow(QSB), quantity of calcium flow(QCa), quantity of filtered solution flow (Qf) were monitored. Meanwhile, the blood gas analysis, electrolyte, four coagulation tests, useful life of filter, bleeding and clotting events internal and external before, during and after the treatments were monitored, too. And the common complications of citrate anticoagulation, such as hypocalcaemia, metabolic alkalosis, citrate accumulation and hypernatremia were observed. Result: Continuous hemofiltration was applied in 18 patients for 734.5 hours, and the average useful life of filter was (25±11)h.There was no obvious clotting event. There were 168 groups of datum of the blood gas analysis, electrolyte, four coagulation tests during the treatment and the relationships of QB, QCi, QSB, QCa, Qf had been collected. The relationships of the initial parameter settings of QB, QCi, QSB, QCa and Qf were concluded as QCi=1.8×QB, QCa=0.12×QB, QSB=0.01×Qf . There were 150 times(89.3%)of extracorporeal ionized calcium(iCa(E)(2+)) and 162 times(96.4%) of intracorporal ionized calcium(iCa(I)(2+)) reached the anticoagulation target. Although all the comparisons of Na(+) ((136.2±4.1) vs .(138.2±2.4) vs .(138.5±3.9)mmol/L), iCa(2+) ((1

  5. Glycosomal and mitochondrial malate dehydrogenases in epimastigotes of Trypanosoma cruzi.

    PubMed

    Cannata, J J; Cazzulo, J J

    1984-04-01

    The degradation of glucose by Trypanosoma cruzi leads to the excretion of succinate. Malate dehydrogenase (MDH) participates in this process by reducing to malate the oxaloacetate synthesized by the glycosomal enzyme, phosphoenolpyruvate carboxykinase. The best coupling for these two sequential reactions would be attained if both enzymes were placed in the same subcellular compartment. The intracellular distribution of the MDH activity in epimastigotes of T. cruzi was studied by two methods. Selective disruption of cellular membranes with increasing concentrations of digitonin, indicated that trypanosomal MDH is particulate. Isopycnic centrifugation in a sucrose gradient of a large granule fraction, obtained by grinding the cells with silicon carbide, showed the presence of two MDH activities: one banding together with the glycosomal marker phosphoenolpyruvate carboxykinase, the other with the mitochondrial marker citrate synthase. Isoelectrofocusing of cell-free extracts led to the separation of two enzyme forms, with pI values of about 3.5 (MDHa) and 9.4 (MDHb). These forms had similar molecular weights (approx. 60 000) and apparent Km values, but showed a small but consistent difference in their pH optima (9.23 for MDHa and 9.05 for MDHb), and in their activation by inorganic phosphate (apparent Ka values of 33 mM and 87 mM, for MDHa and MDHb, respectively). Determination of the pH optima of the enzyme forms separated by isopycnic centrifugation suggests that the glycosomal enzyme form is MDHa, and the mitochondrial one is MDHb.

  6. Comparison of pre-filter and post-filter ionised calcium monitoring in continuous veno-venous hemodiafiltration (CVVHD-F) with citrate anti-coagulation.

    PubMed

    Brain, Matthew J; Roodenburg, Owen S; McNeil, John

    2017-01-01

    It is widespread practice during citrate anticoagulated renal replacement therapy to monitor circuit ionised calcium (iCa2+) to evaluate the effectiveness of anticoagulation. Whether the optimal site to sample the blood path is before or after the haemofilter is a common question. Using a prospectively collected observational dataset from intensive care patients receiving pre-dilution continuous veno-venous haemodiafiltration (CVVHD-F) with integrated citrate anticoagulation we compared paired samples of pre and post filter iCa2+ where the target range was 0.3-0.5 mmol.L-1 as well as concurrently collected arterial iCa2+. Two nested mixed methods linear models were fitted to the data describing post vs pre filter iCa2+, and the relationship of pre, post and arterial samples. An 11 bed general intensive care unit. 450 grouped samples from 152 time periods in seven patients on CRRT with citrate anticoagulation. The relationship of post to pre-filter iCa2+ was not 1:1 with post = 0.082 + 0.751 x pre-filter iCa2+ (95% CI intercept: 0.015-0.152, slope 0.558-0.942). Variation was greatest between patients rather than between circuits within the same patient or citrate dose. Compared to arterial iCa2+ there was no significant difference between pre and post-filter sampling sites (F-value 0.047, p = 0.827). These results demonstrate that there is minimal difference between pre and post filter samples for iCa2+ monitoring of circuit anticoagulation in citrate patients relative to the arterial iCa2+ in CVVHD-F however compared to pre-filter sampling, post filter sampling has a flatter response and greater variation.

  7. Parameters for calcium metabolism in women with polycystic ovary syndrome who undergo clomiphene citrate stimulation: a prospective cohort study.

    PubMed

    Ott, J; Wattar, L; Kurz, C; Seemann, R; Huber, J C; Mayerhofer, K; Vytiska-Binstorfer, E

    2012-05-01

    To evaluate whether parameters for calcium metabolism were associated with characteristics of polycystic ovary syndrome (PCOS). A prospective cohort study. Ninety-one anovulatory, infertile women with PCOS patients underwent clomiphene citrate (CC) stimulation. Main outcome measures were parathyroid hormone (PTH); 25-hydroxyvitamin D3 (25OHD3); serum levels of calcium, phosphorus, magnesium, albumin, and total protein; the serum calcium-phosphorus product; LH; FSH; sexual hormone binding globulin; testosterone; and androstenedione. PTH correlated inversely with serum calcium (r=-0.235; P=0.004) and 25OHD3 (r=-0.664; P<0.001), whereas positive correlations were found between PTH and body mass index (BMI; r=0.270; P=0.010) and between PTH and testosterone (r=0.347; P=0.001). After stimulation with 50 mg CC, 57.1% (52/91) developed a follicle, whereas 26.4% (24/91) became pregnant. In a multivariate model to predict both follicle development and pregnancy, BMI and 25OHD3 deficiency were significant predictive parameters. 25OHD3 deficiency was an independent predictive parameter of CC stimulation outcome, in terms of follicle development and pregnancy. Our results suggest a substantial role of vitamin D in PCOS and infertility treatment in these patients.

  8. Absorption of Levothyroxine When Coadministered with Various Calcium Formulations

    PubMed Central

    Zamfirescu, Isabelle

    2011-01-01

    Background Calcium carbonate is a commonly used dietary supplement and has been shown to interfere with levothyroxine absorption. However, calcium citrate, which is also used for supplementation purposes, has not been studied previously and calcium acetate, which is used to treat hyperphosphatemia in renal failure, has been reported to show little or no interference with levothyroxine absorption in a retrospective pharmacoepidemiologic study. We aimed to compare the effect of these three calcium formulations on levothyroxine absorption. Materials and Methods The study was conducted in eight healthy, euthyroid adults. We performed single-dose pharmacokinetic studies in which we measured levothyroxine absorption when given alone or when coadministered with calcium carbonate, calcium citrate, or calcium acetate in doses containing 500 mg elemental calcium. Serum thyroxine was measured at intervals over a 6-hour period after ingestion of the study drugs. Results Coadministration of each of the three calcium preparations significantly reduced levothyroxine absorption by about 20%–25% compared with levothyroxine given alone. Conclusions Contrary to a prior report, our data suggest that calcium acetate interferes with levothyroxine absorption in a manner similar to that seen with calcium carbonate and calcium citrate. Although the effect of calcium is modest compared with some other medications previously studied, hypothyroid patients should be cautioned to take their levothyroxine well-separated from all of these calcium formulations. PMID:21595516

  9. Comparison of pre-filter and post-filter ionised calcium monitoring in continuous veno-venous hemodiafiltration (CVVHD-F) with citrate anti-coagulation

    PubMed Central

    Roodenburg, Owen S.; McNeil, John

    2017-01-01

    Background It is widespread practice during citrate anticoagulated renal replacement therapy to monitor circuit ionised calcium (iCa2+) to evaluate the effectiveness of anticoagulation. Whether the optimal site to sample the blood path is before or after the haemofilter is a common question. Methods Using a prospectively collected observational dataset from intensive care patients receiving pre-dilution continuous veno-venous haemodiafiltration (CVVHD-F) with integrated citrate anticoagulation we compared paired samples of pre and post filter iCa2+ where the target range was 0.3–0.5 mmol.L-1 as well as concurrently collected arterial iCa2+. Two nested mixed methods linear models were fitted to the data describing post vs pre filter iCa2+, and the relationship of pre, post and arterial samples. Setting An 11 bed general intensive care unit. Participants 450 grouped samples from 152 time periods in seven patients on CRRT with citrate anticoagulation. Results The relationship of post to pre-filter iCa2+ was not 1:1 with post = 0.082 + 0.751 x pre-filter iCa2+ (95% CI intercept: 0.015–0.152, slope 0.558–0.942). Variation was greatest between patients rather than between circuits within the same patient or citrate dose. Compared to arterial iCa2+ there was no significant difference between pre and post-filter sampling sites (F-value 0.047, p = 0.827) Conclusion These results demonstrate that there is minimal difference between pre and post filter samples for iCa2+ monitoring of circuit anticoagulation in citrate patients relative to the arterial iCa2+ in CVVHD-F however compared to pre-filter sampling, post filter sampling has a flatter response and greater variation. PMID:29272278

  10. Reassessment of the transhydrogenase/malate shunt pathway in Clostridium thermocellum ATCC 27405 through kinetic characterization of malic enzyme and malate dehydrogenase.

    PubMed

    Taillefer, M; Rydzak, T; Levin, D B; Oresnik, I J; Sparling, R

    2015-04-01

    Clostridium thermocellum produces ethanol as one of its major end products from direct fermentation of cellulosic biomass. Therefore, it is viewed as an attractive model for the production of biofuels via consolidated bioprocessing. However, a better understanding of the metabolic pathways, along with their putative regulation, could lead to improved strategies for increasing the production of ethanol. In the absence of an annotated pyruvate kinase in the genome, alternate means of generating pyruvate have been sought. Previous proteomic and transcriptomic work detected high levels of a malate dehydrogenase and malic enzyme, which may be used as part of a malate shunt for the generation of pyruvate from phosphoenolpyruvate. The purification and characterization of the malate dehydrogenase and malic enzyme are described in order to elucidate their putative roles in malate shunt and their potential role in C. thermocellum metabolism. The malate dehydrogenase catalyzed the reduction of oxaloacetate to malate utilizing NADH or NADPH with a kcat of 45.8 s(-1) or 14.9 s(-1), respectively, resulting in a 12-fold increase in catalytic efficiency when using NADH over NADPH. The malic enzyme displayed reversible malate decarboxylation activity with a kcat of 520.8 s(-1). The malic enzyme used NADP(+) as a cofactor along with NH4 (+) and Mn(2+) as activators. Pyrophosphate was found to be a potent inhibitor of malic enzyme activity, with a Ki of 0.036 mM. We propose a putative regulatory mechanism of the malate shunt by pyrophosphate and NH4 (+) based on the characterization of the malate dehydrogenase and malic enzyme. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. The Phosphate Binder Ferric Citrate and Mineral Metabolism and Inflammatory Markers in Maintenance Dialysis Patients: Results From Prespecified Analyses of a Randomized Clinical Trial

    PubMed Central

    Van Buren, Peter N.; Lewis, Julia B.; Dwyer, Jamie P.; Greene, Tom; Middleton, John; Sika, Mohammed; Umanath, Kausik; Abraham, Josephine D.; Arfeen, Shahabul S.; Bowline, Isai G.; Chernin, Gil; Fadem, Stephen Z.; Goral, Simin; Koury, Mark; Sinsakul, Marvin V.; Weiner, Daniel E.

    2016-01-01

    Background Phosphate binders are the cornerstone of hyperphosphatemia management in dialysis patients. Ferric citrate is an iron-based oral phosphate binder that effectively lowers serum phosphorus levels. Study Design 52-week, open-label, phase 3, randomized, controlled trial for safety-profile assessment. Setting & Participants Maintenance dialysis patients with serum phosphorus levels ≥6.0 mg/dL after washout of prior phosphate binders. Intervention 2:1 randomization to ferric citrate or active control (sevelamer carbonate and/or calcium acetate). Outcomes Changes in mineral bone disease, protein-energy wasting/inflammation, and occurrence of adverse events after 1 year. Measurements Serum calcium, intact parathyroid hormone, phosphorus, aluminum, white blood cell count, percentage of lymphocytes, serum urea nitrogen, and bicarbonate. Results There were 292 participants randomly assigned to ferric citrate, and 149, to active control. Groups were well matched. For mean changes from baseline, phosphorus levels decreased similarly in the ferric citrate and active control groups (−2.04 ± 1.99 [SD] vs −2.18 ± 2.25 mg/dL, respectively; P = 0.9); serum calcium levels increased similarly in the ferric citrate and active control groups (0.22 ± 0.90 vs 0.31 ± 0.95 mg/dL; P = 0.2). Hypercalcemia occurred in 4 participants receiving calcium acetate. Parathyroid hormone levels decreased similarly in the ferric citrate and active control groups (−167.1 ± 399.8 vs −152.7 ± 392.1 pg/mL; P = 0.8). Serum albumin, bicarbonate, serum urea nitrogen, white blood cell count and percentage of lymphocytes, and aluminum values were similar between ferric citrate and active control. Total and low-density lipoprotein cholesterol levels were lower in participants receiving sevelamer than those receiving ferric citrate and calcium acetate. Fewer participants randomly assigned to ferric citrate had serious adverse events compared with active control. Limitations Open

  12. An InDel in the Promoter of Al-ACTIVATED MALATE TRANSPORTER9 Selected during Tomato Domestication Determines Fruit Malate Contents and Aluminum Tolerance[OPEN

    PubMed Central

    Wang, Xin; Hu, Tixu; Zhang, Fengxia; Wang, Bing; Li, Changxin; Yang, Tianxia; Li, Hanxia; Lu, Yongen; Ye, Zhibiao

    2017-01-01

    Deciphering the mechanism of malate accumulation in plants would contribute to a greater understanding of plant chemistry, which has implications for improving flavor quality in crop species and enhancing human health benefits. However, the regulation of malate metabolism is poorly understood in crops such as tomato (Solanum lycopersicum). Here, we integrated a metabolite-based genome-wide association study with linkage mapping and gene functional studies to characterize the genetics of malate accumulation in a global collection of tomato accessions with broad genetic diversity. We report that TFM6 (tomato fruit malate 6), which corresponds to Al-ACTIVATED MALATE TRANSPORTER9 (Sl-ALMT9 in tomato), is the major quantitative trait locus responsible for variation in fruit malate accumulation among tomato genotypes. A 3-bp indel in the promoter region of Sl-ALMT9 was linked to high fruit malate content. Further analysis indicated that this indel disrupts a W-box binding site in the Sl-ALMT9 promoter, which prevents binding of the WRKY transcription repressor Sl-WRKY42, thereby alleviating the repression of Sl-ALMT9 expression and promoting high fruit malate accumulation. Evolutionary analysis revealed that this highly expressed Sl-ALMT9 allele was selected for during tomato domestication. Furthermore, vacuole membrane-localized Sl-ALMT9 increases in abundance following Al treatment, thereby elevating malate transport and enhancing Al resistance. PMID:28814642

  13. MALAT1 affects ovarian cancer cell behavior and patient survival

    PubMed Central

    Lin, Qunbo; Guan, Wencai; Ren, Weimin; Zhang, Lingyun; Zhang, Jinguo; Xu, Guoxiong

    2018-01-01

    Epithelial ovarian cancer (EOC) is one of the most lethal malignancies of the female reproductive organs. Increasing evidence has revealed that long non-coding RNAs (lncRNAs) participate in tumorigenesis. Metastasis associated lung adenocarcinoma transcript 1 (MALAT1) is an lncRNA and plays a role in various types of tumors. However, the function of MALAT1 on cellular behavior in EOC remains unclear. The current study explored the expression of MALAT1 in ovarian cancer tissues and in EOC cell lines. Quantitative RT-PCR analysis revealed that the expression of MALAT1 was higher in human ovarian malignant tumor tissues and EOC cells than in normal ovarian tissues and non-tumorous human ovarian surface epithelial cells, respectively. By analyzing the online database Kaplan-Meier Plotter, MALAT1 was identified to be correlated with the overall survival (OS) and progression-free survival (PFS) of patients with ovarian cancer. Furthermore, knockdown of MALAT1 by small interfering RNA (siRNA) significantly decreased EOC cell viability, migration, and invasion. Finally, dual-luciferase reporter assays demonstrated that MALAT1 interacted with miR-143-3p, a miRNA that plays a role in EOC as demonstrated in our previous study. Inhibition of MALAT1 resulted in an increase of miR-143-3p expression, leading to a decrease of CMPK protein expression. In conclusion, our results indicated that MALAT1 was overexpressed in EOC. Silencing of MALAT1 decreased EOC cell viability and inhibited EOC cell migration and invasion. These data revealed that MALAT1 may serve as a new therapeutic target of human EOC. PMID:29693187

  14. Malate as a key carbon source of leaf dark-respired CO2 across different environmental conditions in potato plants.

    PubMed

    Lehmann, Marco M; Rinne, Katja T; Blessing, Carola; Siegwolf, Rolf T W; Buchmann, Nina; Werner, Roland A

    2015-09-01

    Dissimilation of carbon sources during plant respiration in support of metabolic processes results in the continuous release of CO2. The carbon isotopic composition of leaf dark-respired CO2 (i.e. δ (13) C R ) shows daily enrichments up to 14.8‰ under different environmental conditions. However, the reasons for this (13)C enrichment in leaf dark-respired CO2 are not fully understood, since daily changes in δ(13)C of putative leaf respiratory carbon sources (δ (13) C RS ) are not yet clear. Thus, we exposed potato plants (Solanum tuberosum) to different temperature and soil moisture treatments. We determined δ (13) C R with an in-tube incubation technique and δ (13) C RS with compound-specific isotope analysis during a daily cycle. The highest δ (13) C RS values were found in the organic acid malate under different environmental conditions, showing less negative values compared to δ (13) C R (up to 5.2‰) and compared to δ (13) C RS of soluble carbohydrates, citrate and starch (up to 8.8‰). Moreover, linear relationships between δ (13) C R and δ (13) C RS among different putative carbon sources were strongest for malate during daytime (r(2)=0.69, P≤0.001) and nighttime (r(2)=0.36, P≤0.001) under all environmental conditions. A multiple linear regression analysis revealed δ (13) C RS of malate as the most important carbon source influencing δ (13) C R . Thus, our results strongly indicate malate as a key carbon source of (13)C enriched dark-respired CO2 in potato plants, probably driven by an anapleurotic flux replenishing intermediates of the Krebs cycle. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  15. Malate as a key carbon source of leaf dark-respired CO2 across different environmental conditions in potato plants

    PubMed Central

    Lehmann, Marco M.; Rinne, Katja T.; Blessing, Carola; Siegwolf, Rolf T. W.; Buchmann, Nina; Werner, Roland A.

    2015-01-01

    Dissimilation of carbon sources during plant respiration in support of metabolic processes results in the continuous release of CO2. The carbon isotopic composition of leaf dark-respired CO2 (i.e. δ 13 C R) shows daily enrichments up to 14.8‰ under different environmental conditions. However, the reasons for this 13C enrichment in leaf dark-respired CO2 are not fully understood, since daily changes in δ13C of putative leaf respiratory carbon sources (δ 13 C RS) are not yet clear. Thus, we exposed potato plants (Solanum tuberosum) to different temperature and soil moisture treatments. We determined δ 13 C R with an in-tube incubation technique and δ 13 C RS with compound-specific isotope analysis during a daily cycle. The highest δ 13 C RS values were found in the organic acid malate under different environmental conditions, showing less negative values compared to δ 13 C R (up to 5.2‰) and compared to δ 13 C RS of soluble carbohydrates, citrate and starch (up to 8.8‰). Moreover, linear relationships between δ 13 C R and δ 13 C RS among different putative carbon sources were strongest for malate during daytime (r2=0.69, P≤0.001) and nighttime (r2=0.36, P≤0.001) under all environmental conditions. A multiple linear regression analysis revealed δ 13 C RS of malate as the most important carbon source influencing δ 13 C R. Thus, our results strongly indicate malate as a key carbon source of 13C enriched dark-respired CO2 in potato plants, probably driven by an anapleurotic flux replenishing intermediates of the Krebs cycle. PMID:26139821

  16. The Arabidopsis vacuolar malate channel is a member of the ALMT family.

    PubMed

    Kovermann, Peter; Meyer, Stefan; Hörtensteiner, Stefan; Picco, Cristiana; Scholz-Starke, Joachim; Ravera, Silvia; Lee, Youngsook; Martinoia, Enrico

    2007-12-01

    In plants, malate is a central metabolite and fulfills a large number of functions. Vacuolar malate may reach very high concentrations and fluctuate rapidly, whereas cytosolic malate is kept at a constant level allowing optimal metabolism. Recently, a vacuolar malate transporter (Arabidopsis thaliana tonoplast dicarboxylate transporter, AttDT) was identified that did not correspond to the well-characterized vacuolar malate channel. We therefore hypothesized that a member of the aluminum-activated malate transporter (ALMT) gene family could code for a vacuolar malate channel. Using GFP fusion constructs, we could show that AtALMT9 (A. thaliana ALMT9) is targeted to the vacuole. Promoter-GUS fusion constructs demonstrated that this gene is expressed in all organs, but is cell-type specific as GUS activity in leaves was detected nearly exclusively in mesophyll cells. Patch-clamp analysis of an Atalmt9 T-DNA insertion mutant exhibited strongly reduced vacuolar malate channel activity. In order to functionally characterize AtALMT9 as a malate channel, we heterologously expressed this gene in tobacco and in oocytes. Overexpression of AtALMT9-GFP in Nicotiana benthamiana leaves strongly enhanced the malate current densities across the mesophyll tonoplasts. Functional expression of AtALMT9 in Xenopus oocytes induced anion currents, which were clearly distinguishable from endogenous oocyte currents. Our results demonstrate that AtALMT9 is a vacuolar malate channel. Deletion mutants for AtALMT9 exhibit only slightly reduced malate content in mesophyll protoplasts and no visible phenotype, indicating that AttDT and the residual malate channel activity are sufficient to sustain the transport activity necessary to regulate the cytosolic malate homeostasis.

  17. Enhancing the aluminium tolerance of barley by expressing the citrate transporter genes SbMATE and FRD3

    PubMed Central

    Zhou, Gaofeng; Ryan, Peter R.

    2014-01-01

    Malate and citrate efflux from root apices is a mechanism of Al3+ tolerance in many plant species. Citrate efflux is facilitated by members of the MATE (multidrug and toxic compound exudation) family localized to the plasma membrane of root cells. Barley (Hordeum vulgare) is among the most Al3+-sensitive cereal species but the small genotypic variation in tolerance that is present is correlated with citrate efflux via a MATE transporter named HvAACT1. This study used a biotechnological approach to increase the Al3+ tolerance of barley by transforming it with two MATE genes that encode citrate transporters: SbMATE is the major Al3+-tolerance gene from sorghum whereas FRD3 is involved with Fe nutrition in Arabidopsis. Independent transgenic and null T3 lines were generated for both transgenes. Lines expressing SbMATE showed Al3+-activated citrate efflux from root apices and greater tolerance to Al3+ toxicity than nulls in hydroponic and short-term soil trials. Transgenic lines expressing FRD3 exhibited similar phenotypes except citrate release from roots occurred constitutively. The Al3+ tolerance of these lines was compared with previously generated transgenic barley lines overexpressing the endogenous HvAACT1 gene and the TaALMT1 gene from wheat. Barley lines expressing TaALMT1 showed significantly greater Al3+ tolerance than all lines expressing MATE genes. This study highlights the relative efficacy of different organic anion transport proteins for increasing the Al3+ tolerance of an important crop species. PMID:24692647

  18. [Quantitative mineralogical analyzes of kidney stones and diagnosing metabolic disorders in female patients with calcium oxalate urolithiasis].

    PubMed

    Kustov, A V; Moryganov, M A; Strel'nikov, A I; Zhuravleva, N I; Airapetyan, A O

    2016-02-01

    To conduct a complex examination of female patients with calcium oxalate urolithiasis to detect metabolic disorders, leading to stone formation. The study was carried out using complex physical and chemical methods, including quantitative X-ray phase analysis of urinary stones, pH measurement, volumetry, urine and blood spectrophotometry. Quantitative mineralogical composition of stones, daily urine pH profile, daily urinary excretion of ions of calcium, magnesium, oxalate, phosphate, citrate and uric acid were determined in 20 female patients with calcium oxalate stones. We have shown that most of the stones comprised calcium oxalate monohydrate or mixtures of calcium oxalate dihydrate and hydroxyapatite. Among the identified abnormalities, the most frequent were hypocitraturia and hypercalciuria - 90 and 45%, respectively. Our findings revealed that the daily secretion of citrate and oxalate in patients older than 50 years was significantly lower than in younger patients. In conclusion, daily urinary citrate excretion should be measured in female patients with calcium oxalate stones. This is necessary both to determine the causes of stone formation, and to monitor the effectiveness of citrate therapy.

  19. Malate valves: Old shuttles with new perspectives.

    PubMed

    Selinski, Jennifer; Scheibe, Renate

    2018-06-22

    Malate valves act as powerful systems for balancing the ATP/NAD(P)H ratio required in various subcellular compartments in plant cells. As components of malate valves, isoforms of malate dehydrogenases (MDHs) and dicarboxylate translocators catalyze the reversible interconversion of malate and oxaloacetate and their transport. Depending on the coenzyme specificity of the MDH isoforms, either NADH or NADPH can be transported indirectly. Arabidopsis thaliana possesses nine genes encoding MDH isoenzymes: Activities of NAD-dependent MDHs have been detected in mitochondria, peroxisomes, cytosol and plastids, respectively. In addition, chloroplasts possess a NADP-dependent MDH isoform. The NADP-MDH as part of the "light malate valve" plays an important role as a poising mechanism to adjust the ATP/NADPH ratio in the stroma. Its activity is strictly regulated by post-translational redox-modification mediated via the ferredoxin-thioredoxin system and fine control via the NADP + /NADP(H) ratio, thereby maintaining redox homeostasis under changing conditions. In contrast, the plastid NAD-MDH ("dark malate valve") is constitutively active and its lack leads to failure in early embryo development. While redox regulation of the main cytosolic MDH isoform has been shown, the knowledge about regulation of the other two cytosolic MDHs as well as NAD-MDH isoforms from peroxisomes and mitochondria is still lacking. Knockout mutants lacking the isoforms from chloroplasts, mitochondria, and peroxisomes have been characterized, but not much is known about cytosolic NAD-MDH isoforms and their role in planta. This review updates the current knowledge on MDH isoforms and the shuttle systems for intercompartmental dicarboxylate exchange focusing on the various metabolic functions of these valves. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. Replacement of acetate with citrate in dialysis fluid: a randomized clinical trial of short term safety and fluid biocompatibility

    PubMed Central

    2013-01-01

    Background The majority of bicarbonate based dialysis fluids are acidified with acetate. Citrate, a well known anticoagulant and antioxidant, has been suggested as a biocompatible alternative. The objective of this study was to evaluate short term safety and biocompatibility of a citrate containing acetate-free dialysis fluid. Methods Twenty four (24) patients on maintenance dialysis three times per week, 13 on on-line hemodiafiltration (HDF) and 11 on hemodialysis (HD), were randomly assigned to start with either citrate dialysis fluid (1 mM citrate, 1.5 mM calcium) or control fluid (3 mM acetate, 1.5 mM calcium) in an open-labeled cross-over trial (6 + 6 weeks with 8 treatments wash-out in between). Twenty (20) patients, 11 on HDF and 9 on HD were included in the analyses. Main objective was short term safety assessed by acid–base status, plasma ionized calcium and parathyroid hormone (PTH). In addition, biocompatibility was assessed by markers of inflammation (pentraxin 3 (PTX-3), CRP, IL-6, TNF-α and IL-1β) and thrombogenicity (activated partial thromboplastin time (APTT) and visual clotting scores). Results No differences dependent on randomization order or treatment mode (HD vs. HDF) were detected. Citrate in the dialysis fluid reduced the intra-dialytic shift in pH (+0.04 week 6 vs. +0.06 week 0, p = 0.046) and base excess (+3.9 mM week 6 vs. +5.6 mM week 0, p = 0.006) over the study period. Using the same calcium concentration (1.5 mM), citrate dialysis fluid resulted in lower post-dialysis plasma ionized calcium level (1.10 mM vs. 1.27 mM for control, p < 0.0001) and higher post-dialysis PTH level (28.8 pM vs. 14.7 pM for control, p < 0.0001) while pre-dialysis levels were unaffected. Citrate reduced intra-dialytic induction of PTX-3 (+1.1 ng/ml vs. +1.4 ng/ml for control, p = 0.04) but had no effect on other markers of inflammation or oxidative stress. Citrate reduced visual clotting in the arterial air chamber

  1. Aspects of calcium oxalate crystallization: theory, in vitro studies, and in vivo implementation.

    PubMed

    Rodgers, A

    1999-11-01

    There are three main approaches to urolithiasis research: theory, basic science, and clinical implementation. Although each approach has yielded meaningful results, there does not appear to be complete synergy between them. This article examines these approaches as they pertain to urinary calcium oxalate crystallization processes. Theoretical calculations were performed to examine the role of oxalate concentration on calcium oxalate supersaturation. The effects of magnesium, citrate, and combinations thereof on calcium oxalate crystallization kinetics were examined in a mixed suspension, mixed product removal crystallizer. Finally, male volunteers were given supplements of calcium alone and binary combinations of calcium, magnesium, and citrate to investigate their effects on the urinary supersaturation of calcium oxalate. Calculations showed that oxalate is 23 times more potent than calcium in its effect on the supersaturation of calcium oxalate. In the in vitro experiments, magnesium and citrate reduced the growth and nucleation kinetics as well as the supersaturation. In combination, these two components were more effective than the individual components in reducing the growth rate and the supersaturation. All of the supplements favorably altered the kinetic and thermodynamic risk factors. Calcium was the most effective in reducing the urinary excretion of oxalate. Articulation of these three approaches is essential for the meaningful investigation and understanding of urolithiasis.

  2. Enhancing the aluminium tolerance of barley by expressing the citrate transporter genes SbMATE and FRD3.

    PubMed

    Zhou, Gaofeng; Pereira, Jorge F; Delhaize, Emmanuel; Zhou, Meixue; Magalhaes, Jurandir V; Ryan, Peter R

    2014-06-01

    Malate and citrate efflux from root apices is a mechanism of Al(3+) tolerance in many plant species. Citrate efflux is facilitated by members of the MATE (multidrug and toxic compound exudation) family localized to the plasma membrane of root cells. Barley (Hordeum vulgare) is among the most Al(3+)-sensitive cereal species but the small genotypic variation in tolerance that is present is correlated with citrate efflux via a MATE transporter named HvAACT1. This study used a biotechnological approach to increase the Al(3+) tolerance of barley by transforming it with two MATE genes that encode citrate transporters: SbMATE is the major Al(3+)-tolerance gene from sorghum whereas FRD3 is involved with Fe nutrition in Arabidopsis. Independent transgenic and null T3 lines were generated for both transgenes. Lines expressing SbMATE showed Al(3+)-activated citrate efflux from root apices and greater tolerance to Al(3+) toxicity than nulls in hydroponic and short-term soil trials. Transgenic lines expressing FRD3 exhibited similar phenotypes except citrate release from roots occurred constitutively. The Al(3+) tolerance of these lines was compared with previously generated transgenic barley lines overexpressing the endogenous HvAACT1 gene and the TaALMT1 gene from wheat. Barley lines expressing TaALMT1 showed significantly greater Al(3+) tolerance than all lines expressing MATE genes. This study highlights the relative efficacy of different organic anion transport proteins for increasing the Al(3+) tolerance of an important crop species. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  3. Relayed 13C magnetization transfer: Detection of malate dehydrogenase reaction in vivo

    NASA Astrophysics Data System (ADS)

    Yang, Jehoon; Shen, Jun

    2007-02-01

    Malate dehydrogenase catalyzes rapid interconversion between dilute metabolites oxaloacetate and malate. Both oxaloacetate and malate are below the detection threshold of in vivo MRS. Oxaloacetate is also in rapid exchange with aspartate catalyzed by aspartate aminotransferase, the latter metabolite is observable in vivo using 13C MRS. We hypothesized that the rapid turnover of oxaloacetate can effectively relay perturbation of magnetization between malate and aspartate. Here, we report indirect observation of the malate dehydrogenase reaction by saturating malate C2 resonance at 71.2 ppm and detecting a reduced aspartate C2 signal at 53.2 ppm due to relayed magnetization transfer via oxaloacetate C2 at 201.3 ppm. Using this strategy the rate of the cerebral malate dehydrogenase reaction was determined to be 9 ± 2 μmol/g wet weight/min (means ± SD, n = 5) at 11.7 Tesla in anesthetized adult rats infused with [1,6- 13C 2]glucose.

  4. Microelectrophoretic study of calcium oxalate monohydrate in macromolecular solutions

    NASA Technical Reports Server (NTRS)

    Curreri, P. A.; Onoda, G. Y., Jr.; Finlayson, B.

    1987-01-01

    Electrophoretic mobilities were measured for calcium oxalate monohydrate (COM) in solutions containing macromolecules. Two mucopolysaccharides (sodium heparin and chondroitin sulfate) and two proteins (positively charged lysozyme and negatively charged bovine serum albumin) were studied as adsorbates. The effects of pH, calcium oxalate surface charge (varied by calcium or oxalate ion activity), and citrate concentration were investigated. All four macromolecules showed evidence for adsorption. The macromolecule concentrations needed for reversing the surface charge indicated that the mucopolysaccharides have greater affinity for the COM surface than the proteins. Citrate ions at high concentrations appear to compete effectively with the negative protein for surface sites but show no evidence for competing with the positively charged protein.

  5. 76 FR 34044 - Citric Acid and Certain Citrate Salts From Canada: Final Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-10

    ..., respectively. SUPPLEMENTARY INFORMATION: Background On February 2, 2011, the Department published in the... or more, by weight, of the blend. The scope of this order also includes all forms of crude calcium... this order does not include calcium citrate that satisfies the standards set forth in the United States...

  6. Acute and 3-month effects of microcrystalline hydroxyapatite, calcium citrate and calcium carbonate on serum calcium and markers of bone turnover: a randomised controlled trial in postmenopausal women.

    PubMed

    Bristow, Sarah M; Gamble, Greg D; Stewart, Angela; Horne, Lauren; House, Meaghan E; Aati, Opetaia; Mihov, Borislav; Horne, Anne M; Reid, Ian R

    2014-11-28

    Ca supplements are used for bone health; however, they have been associated with increased cardiovascular risk, which may relate to their acute effects on serum Ca concentrations. Microcrystalline hydroxyapatite (MCH) could affect serum Ca concentrations less than conventional Ca supplements, but its effects on bone turnover are unclear. In the present study, we compared the acute and 3-month effects of MCH with conventional Ca supplements on concentrations of serum Ca, phosphate, parathyroid hormone and bone turnover markers. We randomised 100 women (mean age 71 years) to 1 g/d of Ca as citrate or carbonate (citrate-carbonate), one of two MCH preparations, or a placebo. Blood was sampled for 8 h after the first dose, and after 3 months of daily supplementation. To determine whether the acute effects changed over time, eight participants assigned to the citrate dose repeated 8 h of blood sampling at 3 months. There were no differences between the citrate and carbonate groups, or between the two MCH groups, so their results were pooled. The citrate-carbonate dose increased ionised and total Ca concentrations for up to 8 h, and this was not diminished after 3 months. MCH increased ionised Ca concentrations less than the citrate-carbonate dose; however, it raised the concentrations of phosphate and the Ca-phosphate product. The citrate-carbonate and MCH doses produced comparable decreases in bone resorption (measured as serum C-telopeptide (CTX)) over 8 h and bone turnover (CTX and procollagen type-I N-terminal propeptide) at 3 months. These findings suggest that Ca preparations, in general, produce repeated sustained increases in serum Ca concentrations after ingestion of each dose and that Ca supplements with smaller effects on serum Ca concentrations may have equivalent efficacy in suppressing bone turnover.

  7. SbnG, a citrate synthase in Staphylococcus aureus: A new fold on an old enzyme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobylarz, Marek J.; Grigg, Jason C.; Sheldon, Jessica R.

    In response to iron deprivation, Staphylococcus aureus produces staphyloferrin B, a citrate-containing siderophore that delivers iron back to the cell. This bacterium also possesses a second citrate synthase, SbnG, that is necessary for supplying citrate to the staphyloferrin B biosynthetic pathway. In this paper, we present the structure of SbnG bound to the inhibitor calcium and an active site variant in complex with oxaloacetate. The overall fold of SbnG is structurally distinct from TCA cycle citrate synthases yet similar to metal-dependent class II aldolases. Phylogenetic analyses revealed that SbnG forms a separate clade with homologs from other siderophore biosynthetic genemore » clusters and is representative of a metal-independent subgroup in the phosphoenolpyruvate/pyruvate domain superfamily. Finally, a structural superposition of the SbnG active site to TCA cycle citrate synthases and site-directed mutagenesis suggests a case for convergent evolution toward a conserved catalytic mechanism for citrate production.« less

  8. SbnG, a citrate synthase in Staphylococcus aureus: A new fold on an old enzyme

    DOE PAGES

    Kobylarz, Marek J.; Grigg, Jason C.; Sheldon, Jessica R.; ...

    2014-10-21

    In response to iron deprivation, Staphylococcus aureus produces staphyloferrin B, a citrate-containing siderophore that delivers iron back to the cell. This bacterium also possesses a second citrate synthase, SbnG, that is necessary for supplying citrate to the staphyloferrin B biosynthetic pathway. In this paper, we present the structure of SbnG bound to the inhibitor calcium and an active site variant in complex with oxaloacetate. The overall fold of SbnG is structurally distinct from TCA cycle citrate synthases yet similar to metal-dependent class II aldolases. Phylogenetic analyses revealed that SbnG forms a separate clade with homologs from other siderophore biosynthetic genemore » clusters and is representative of a metal-independent subgroup in the phosphoenolpyruvate/pyruvate domain superfamily. Finally, a structural superposition of the SbnG active site to TCA cycle citrate synthases and site-directed mutagenesis suggests a case for convergent evolution toward a conserved catalytic mechanism for citrate production.« less

  9. SbnG, a citrate synthase in Staphylococcus aureus: a new fold on an old enzyme.

    PubMed

    Kobylarz, Marek J; Grigg, Jason C; Sheldon, Jessica R; Heinrichs, David E; Murphy, Michael E P

    2014-12-05

    In response to iron deprivation, Staphylococcus aureus produces staphyloferrin B, a citrate-containing siderophore that delivers iron back to the cell. This bacterium also possesses a second citrate synthase, SbnG, that is necessary for supplying citrate to the staphyloferrin B biosynthetic pathway. We present the structure of SbnG bound to the inhibitor calcium and an active site variant in complex with oxaloacetate. The overall fold of SbnG is structurally distinct from TCA cycle citrate synthases yet similar to metal-dependent class II aldolases. Phylogenetic analyses revealed that SbnG forms a separate clade with homologs from other siderophore biosynthetic gene clusters and is representative of a metal-independent subgroup in the phosphoenolpyruvate/pyruvate domain superfamily. A structural superposition of the SbnG active site to TCA cycle citrate synthases and site-directed mutagenesis suggests a case for convergent evolution toward a conserved catalytic mechanism for citrate production. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. l-Lactate metabolism in HEP G2 cell mitochondria due to the l-lactate dehydrogenase determines the occurrence of the lactate/pyruvate shuttle and the appearance of oxaloacetate, malate and citrate outside mitochondria.

    PubMed

    Pizzuto, Roberto; Paventi, Gianluca; Porcile, Carola; Sarnataro, Daniela; Daniele, Aurora; Passarella, Salvatore

    2012-09-01

    As part of an ongoing study of l-lactate metabolism both in normal and in cancer cells, we investigated whether and how l-lactate metabolism occurs in mitochondria of human hepatocellular carcinoma (Hep G2) cells. We found that Hep G2 cell mitochondria (Hep G2-M) possess an l-lactate dehydrogenase (ml-LDH) restricted to the inner mitochondrial compartments as shown by immunological analysis, confocal microscopy and by assaying ml-LDH activity in solubilized mitochondria. Cytosolic and mitochondrial l-LDHs were found to differ from one another in their saturation kinetics. Having shown that l-lactate itself can enter Hep G2 cells, we found that Hep G2-M swell in ammonium l-lactate, but not in ammonium pyruvate solutions, in a manner inhibited by mersalyl, this showing the occurrence of a carrier-mediated l-lactate transport in these mitochondria. Occurrence of the l-lactate/pyruvate shuttle and the appearance outside mitochondria of oxaloacetate, malate and citrate arising from l-lactate uptake and metabolism together with the low oxygen consumption and membrane potential generation are in favor of an anaplerotic role for l-LAC in Hep G2-M. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Tricarboxylic acid cycle without malate dehydrogenase in Streptomyces coelicolor M-145.

    PubMed

    Takahashi-Íñiguez, Tóshiko; Barrios-Hernández, Joana; Rodríguez-Maldonado, Marion; Flores, María Elena

    2018-06-23

    The oxidation of malate to oxaloacetate is catalysed only by a nicotinamide adenine dinucleotide-dependent malate dehydrogenase encoded by SCO4827 in Streptomyces coelicolor. A mutant lacking the malate dehydrogenase gene was isolated and no enzymatic activity was detected. As expected, the ∆mdh mutant was unable to grow on malate as the sole carbon source. However, the mutant grew less in minimal medium with glucose and there was a delay of 36 h. The same behaviour was observed when the mutant was grown on minimal medium with casamino acids or glycerol. For unknown reasons, the mutant was not able to grow in YEME medium with glucose. The deficiency of malate dehydrogenase affected the expression of the isocitrate dehydrogenase and alpha-ketoglutarate dehydrogenase genes, decreasing the expression of both genes by approximately two- to threefold.

  12. An InDel in the promoter of Al-activated malate transporter 9 selected during tomato domestication determines fruit malate content and aluminum tolerance

    USDA-ARS?s Scientific Manuscript database

    Deciphering the mechanism of malate accumulation in plants would contribute to a greater understanding of plant chemistry, which has implications for improving flavor quality in crop species and enhancing human health benefits. However, the regulation of malate metabolism is poorly understood in cro...

  13. The effect of organic ligands on the crystallinity of calcium phosphate

    NASA Astrophysics Data System (ADS)

    van der Houwen, Jacqueline A. M.; Cressey, Gordon; Cressey, Barbara A.; Valsami-Jones, Eugenia

    2003-03-01

    Calcium phosphate phases precipitated under critical supersaturation were identified and studied in detail using X-ray powder diffraction, electron probe microanalysis, infrared spectroscopy (IR) and transmission electron microscopy. These synthetic calcium phosphates formed by spontaneous precipitation at pH 7, 25°C and 0.1 M ionic strength (NaCl as the background electrolyte). The combination of several methods allowed detailed characterisation of the calcium phosphates. The purpose of the work was to assess the influence of carboxylate ligands, specifically acetate and citrate, on the quality of the calcium phosphate precipitate. All precipitates were identified as non-stoichiometric, calcium-deficient hydroxylapatites (HAPs), containing carbonate, HPO 42-, sodium and chloride impurities. No other phases were found to be present in any of the precipitates. The presence of citrate resulted in a decrease in crystal size and a higher degree of apatite lattice imperfection in the precipitated HAP. Furthermore, IR spectroscopy showed a higher amount of carbonate present in that HAP, compared with the ones formed in the control and acetate experiments. An additional absorption band, in the infrared spectrum of the HAP formed in the presence of citrate, was observed at 1570 cm -1; this is interpreted as carboxyl groups bound to HAP.

  14. The Effects of High Level Magnesium Dialysis/Substitution Fluid on Magnesium Homeostasis under Regional Citrate Anticoagulation in Critically Ill

    PubMed Central

    Los, Ferdinand; Brodska, Helena

    2016-01-01

    Background The requirements for magnesium (Mg) supplementation increase under regional citrate anticoagulation (RCA) because citrate acts by chelation of bivalent cations within the blood circuit. The level of magnesium in commercially available fluids for continuous renal replacement therapy (CRRT) may not be sufficient to prevent hypomagnesemia. Methods Patients (n = 45) on CRRT (2,000 ml/h, blood flow (Qb) 100 ml/min) with RCA modality (4% trisodium citrate) using calcium free fluid with 0.75 mmol/l of Mg with additional magnesium substitution were observed after switch to the calcium-free fluid with magnesium concentration of 1.50 mmol/l (n = 42) and no extra magnesium replenishment. All patients had renal indications for CRRT, were treated with the same devices, filters and the same postfilter ionized calcium endpoint (<0.4 mmol/l) of prefilter citrate dosage. Under the high level Mg fluid the Qb, dosages of citrate and CRRT were consequently escalated in 9h steps to test various settings. Results Median balance of Mg was -0.91 (-1.18 to -0.53) mmol/h with Mg 0.75 mmol/l and 0.2 (0.06–0.35) mmol/h when fluid with Mg 1.50 mmol/l was used. It was close to zero (0.02 (-0.12–0.18) mmol/h) with higher blood flow and dosage of citrate, increased again to 0.15 (-0.11–0.25) mmol/h with 3,000 ml/h of high magnesium containing fluid (p<0.001). The arterial levels of Mg were mildly increased after the change for high level magnesium containing fluid (p<0.01). Conclusions Compared to ordinary dialysis fluid the mildly hypermagnesemic fluid provided even balances and adequate levels within ordinary configurations of CRRT with RCA and without a need for extra magnesium replenishment. Trial Registration ClinicalTrials.gov Identifier: NCT01361581 PMID:27391902

  15. Materials and methods for efficient succinate and malate production

    DOEpatents

    Jantama, Kaemwich; Haupt, Mark John; Zhang, Xueli; Moore, Jonathan C; Shanmugam, Keelnatham T; Ingram, Lonnie O'Neal

    2014-04-08

    Genetically engineered microorganisms have been constructed to produce succinate and malate in mineral salt media in pH-controlled batch fermentations without the addition of plasmids or foreign genes. The subject invention also provides methods of producing succinate and malate comprising the culture of genetically modified microorganisms.

  16. Post-Dilution on Line Haemodiafiltration with Citrate Dialysate: First Clinical Experience in Chronic Dialysis Patients

    PubMed Central

    Panichi, Vincenzo; Fiaccadori, Enrico; Fanelli, Roberto; Bernabini, Giada; Pizzarelli, Francesco

    2013-01-01

    Background. Citrate has anticoagulative properties and favorable effects on inflammation, but it has the potential hazards of inducing hypocalcemia. Bicarbonate dialysate (BHD) replacing citrate for acetate is now used in chronic haemodialysis but has never been tested in postdilution online haemodiafiltration (OL-HDF). Methods. Thirteen chronic stable dialysis patients were enrolled in a pilot, short-term study. Patients underwent one week (3 dialysis sessions) of BHD with 0.8 mmol/L citrate dialysate, followed by one week of postdilution high volume OL-HDF with standard bicarbonate dialysate, and one week of high volume OL-HDF with 0.8 mmol/L citrate dialysate. Results. In citrate OL-HDF pretreatment plasma levels of C-reactive protein and β2-microglobulin were significantly reduced; intra-treatment plasma acetate levels increased in the former technique and decreased in the latter. During both citrate techniques (OL-HDF and HD) ionized calcium levels remained stable within the normal range. Conclusions. Should our promising results be confirmed in a long-term study on a wider population, then OL-HDF with citrate dialysate may represent a further step in improving dialysis biocompatibility. PMID:24367243

  17. Adherence rates to ferric citrate as compared to active control in patients with end stage kidney disease on dialysis.

    PubMed

    Jalal, Diana; McFadden, Molly; Dwyer, Jamie P; Umanath, Kausik; Aguilar, Erwin; Yagil, Yoram; Greco, Barbara; Sika, Mohammed; Lewis, Julia B; Greene, Tom; Goral, Simin

    2017-04-01

    Oral phosphate binders are the main stay of treatment of hyperphosphatemia. Adherence rates to ferric citrate, a recently approved phosphate binder, are unknown. We conducted a post-hoc analysis to evaluate whether adherence rates were different for ferric citrate vs. active control in 412 subjects with end stage kidney disease (ESKD) who were randomized to ferric citrate vs. active control (sevelamer carbonate and/or calcium acetate). Adherence was defined as percent of actual number of pills taken to total number of pills prescribed. There were no significant differences in baseline characteristics including gender, race/ethnicity, and age between the ferric citrate and active control groups. Baseline phosphorus, calcium, and parathyroid hormone levels were similar. Mean (SD) adherence was 81.4% (17.4) and 81.7% (15.9) in the ferric citrate and active control groups, respectively (P = 0.88). Adherence remained similar between both groups after adjusting for gender, race/ethnicity, age, cardiovascular disease (CVD), and diabetic nephropathy (mean [95% CI]: 81.4% [78.2, 84.6] and 81.5% [77.7, 85.2] for ferric citrate and active control, respectively). Gender, race/ethnicity, age, and diagnosis of diabetic nephropathy did not influence adherence to the prescribed phosphate binder. Subjects with CVD had lower adherence rates to phosphate binder; this was significant only in the active control group. Adherence rates to the phosphate binder, ferric citrate, were similar to adherence rates to active control. Similar adherence rates to ferric citrate are notable since tolerance to active control was an entry criteria and the study was open label. Gender, race/ethnicity, nor age influenced adherence. © 2016 International Society for Hemodialysis.

  18. Malic acid production by Saccharomyces cerevisiae: engineering of pyruvate carboxylation, oxaloacetate reduction, and malate export.

    PubMed

    Zelle, Rintze M; de Hulster, Erik; van Winden, Wouter A; de Waard, Pieter; Dijkema, Cor; Winkler, Aaron A; Geertman, Jan-Maarten A; van Dijken, Johannes P; Pronk, Jack T; van Maris, Antonius J A

    2008-05-01

    Malic acid is a potential biomass-derivable "building block" for chemical synthesis. Since wild-type Saccharomyces cerevisiae strains produce only low levels of malate, metabolic engineering is required to achieve efficient malate production with this yeast. A promising pathway for malate production from glucose proceeds via carboxylation of pyruvate, followed by reduction of oxaloacetate to malate. This redox- and ATP-neutral, CO(2)-fixing pathway has a theoretical maximum yield of 2 mol malate (mol glucose)(-1). A previously engineered glucose-tolerant, C(2)-independent pyruvate decarboxylase-negative S. cerevisiae strain was used as the platform to evaluate the impact of individual and combined introduction of three genetic modifications: (i) overexpression of the native pyruvate carboxylase encoded by PYC2, (ii) high-level expression of an allele of the MDH3 gene, of which the encoded malate dehydrogenase was retargeted to the cytosol by deletion of the C-terminal peroxisomal targeting sequence, and (iii) functional expression of the Schizosaccharomyces pombe malate transporter gene SpMAE1. While single or double modifications improved malate production, the highest malate yields and titers were obtained with the simultaneous introduction of all three modifications. In glucose-grown batch cultures, the resulting engineered strain produced malate at titers of up to 59 g liter(-1) at a malate yield of 0.42 mol (mol glucose)(-1). Metabolic flux analysis showed that metabolite labeling patterns observed upon nuclear magnetic resonance analyses of cultures grown on (13)C-labeled glucose were consistent with the envisaged nonoxidative, fermentative pathway for malate production. The engineered strains still produced substantial amounts of pyruvate, indicating that the pathway efficiency can be further improved.

  19. Long Non-Coding RNA Malat1 Regulates Angiogenesis in Hindlimb Ischemia.

    PubMed

    Zhang, Xuejing; Tang, Xuelian; Hamblin, Milton H; Yin, Ke-Jie

    2018-06-11

    Angiogenesis is a complex process that depends on the delicate regulation of gene expression. Dysregulation of transcription during angiogenesis often leads to various human diseases. Emerging evidence has recently begun to show that long non-coding RNAs (lncRNAs) may mediate angiogenesis in both physiological and pathological conditions; concurrently, underlying molecular mechanisms are largely unexplored. Previously, our lab identified metastasis associates lung adenocarcinoma transcript 1 ( Malat1 ) as an oxygen-glucose deprivation (OGD)-responsive endothelial lncRNA. Here we reported that genetic deficiency of Malat1 leads to reduced blood vessel formation and local blood flow perfusion in mouse hind limbs at one to four weeks after hindlimb ischemia. Malat1 and vascular endothelial growth factor receptor 2 ( VEGFR2 ) levels were found to be increased in both cultured mouse primary skeletal muscle microvascular endothelial cells (SMMECs) after 16 h OGD followed by 24 h reperfusion and in mouse gastrocnemius muscle that underwent hindlimb ischemia followed by 28 days of reperfusion. Moreover, Malat1 silencing by locked nucleic acid (LNA)-GapmeRs significantly reduced tube formation, cell migration, and cell proliferation in SMMEC cultures. Mechanistically, RNA subcellular isolation and RNA-immunoprecipitation experiments demonstrate that Malat1 directly targets VEGFR2 to facilitate angiogenesis. The results suggest that Malat1 regulates cell-autonomous angiogenesis through direct regulation of VEGFR2.

  20. Hypoxia-induced long non-coding RNA Malat1 is dispensable for renal ischemia/reperfusion-injury.

    PubMed

    Kölling, Malte; Genschel, Celina; Kaucsar, Tamas; Hübner, Anika; Rong, Song; Schmitt, Roland; Sörensen-Zender, Inga; Haddad, George; Kistler, Andreas; Seeger, Harald; Kielstein, Jan T; Fliser, Danilo; Haller, Hermann; Wüthrich, Rudolf; Zörnig, Martin; Thum, Thomas; Lorenzen, Johan

    2018-02-21

    Renal ischemia-reperfusion (I/R) injury is a major cause of acute kidney injury (AKI). Non-coding RNAs are crucially involved in its pathophysiology. We identified hypoxia-induced long non-coding RNA Malat1 (Metastasis Associated Lung Adenocarcinoma Transcript 1) to be upregulated in renal I/R injury. We here elucidated the functional role of Malat1 in vitro and its potential contribution to kidney injury in vivo. Malat1 was upregulated in kidney biopsies and plasma of patients with AKI, in murine hypoxic kidney tissue as well as in cultured and ex vivo sorted hypoxic endothelial cells and tubular epithelial cells. Malat1 was transcriptionally activated by hypoxia-inducible factor 1-α. In vitro, Malat1 inhibition reduced proliferation and the number of endothelial cells in the S-phase of the cell cycle. In vivo, Malat1 knockout and wildtype mice showed similar degrees of outer medullary tubular epithelial injury, proliferation, capillary rarefaction, inflammation and fibrosis, survival and kidney function. Small-RNA sequencing and whole genome expression analysis revealed only minor changes between ischemic Malat1 knockout and wildtype mice. Contrary to previous studies, which suggested a prominent role of Malat1 in the induction of disease, we did not confirm an in vivo role of Malat1 concerning renal I/R-injury.

  1. Oncogenic long noncoding RNA MALAT1 and HCV-related hepatocellular carcinoma.

    PubMed

    Toraih, Eman A; Ellawindy, Alia; Fala, Salma Y; Al Ageeli, Essam; Gouda, Nawal S; Fawzy, Manal S; Hosny, Somaya

    2018-06-01

    Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related mortality worldwide. The oncogenic function of the long non-coding RNA; metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) in HCC remains unclear. We aimed to evaluate MALAT1 serum expression profile in HCC and explore its relation to the clinicopathological features. Quantitative Real Time-Polymerase Chain Reaction was applied in 70 cohorts (30 HCC, 20 HCV, 20 controls). Further meta-analysis of clinical studies and in vitro validated experiments was employed. Serum MALAT1 showed area under the curve of 0.79 and 0.70 to distinguish patients with cancer from normal and cirrhotic individuals at fold change of 1.0 and 1.26, respectively. Expression level was significantly higher in males (P <0.001) and patients with massive ascites (P = 0.005). Correlation analysis showed positive correlation of MALAT1 with total bilirubin (r = 0.456, P <0.001) and AST (r = 0.280, P = 0.019), and negative correlation with the hemoglobin level (r = 0.312, P = 0.009). Meta-analysis showed that the over-expressed MALAT1 was linked to tumor number [Cohen's d = 0.450, 95% CI (0.21 to 0.68)], clinical stage [Cohen's d = 0.048, 95% CI (-0.83 to 0.74)], and AFP level [Cohen's d = 0.354, 95% CI (0.1 to 0.57)]. In silico data analysis and systematic review confirmed MALAT1 oncogenic function in cancer development and progression. In conclusion, circulatory MALAT1 might represent a putative non-invasive prognostic biomarker indicating worse liver failure score in HCV-related HCC patients with traditional markers. Large-scale verification is warranted in future studies. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  2. Gastrointestinal citrate absorption in nephrolithiasis

    NASA Technical Reports Server (NTRS)

    Fegan, J.; Khan, R.; Poindexter, J.; Pak, C. Y.

    1992-01-01

    Gastrointestinal absorption of citrate was measured in stone patients with idiopathic hypocitraturia to determine if citrate malabsorption could account for low urinary citrate. Citrate absorption was measured directly from recovery of orally administered potassium citrate (40 mEq.) in the intestinal lavage fluid, using an intestinal washout technique. In 7 stone patients citrate absorption, serum citrate levels, peak citrate concentration in serum and area under the curve were not significantly different from those of 7 normal subjects. Citrate absorption was rapid and efficient in both groups, with 96 to 98% absorbed within 3 hours. The absorption of citrate was less efficient from a tablet preparation of potassium citrate than from a liquid preparation, probably due to a delayed release of citrate from wax matrix. However, citrate absorption from solid potassium citrate was still high at 91%, compared to 98% for a liquid preparation. Thus, hypocitraturia is unlikely to be due to an impaired gastrointestinal absorption of citrate in stone patients without overt bowel disease.

  3. Studies on sildenafil citrate (Viagra) interaction with DNA using electrochemical DNA biosensor.

    PubMed

    Rauf, Sakandar; Nawaz, Haq; Akhtar, Kalsoom; Ghauri, Muhammad A; Khalid, Ahmad M

    2007-05-15

    The interaction of sildenafil citrate (Viagra) with DNA was studied by using an electrochemical DNA biosensor. The binding mechanism of sildenafil citrate was elucidated by using constant current potentiometry and differential pulse voltammetry at DNA-modified glassy carbon electrode. The decrease in the guanine oxidation peak area or peak current was used as an indicator for the interaction in 0.2M acetate buffer (pH 5). The binding constant (K) values obtained were 2.01+/-0.05 x 10(5) and 1.97+/-0.01 x 10(5)M(-1) with constant current potentiometry and differential pulse voltammetry, respectively. A linear dependence of the guanine peak area or peak current was observed within the range of 1-40 microM sildenafil citrate with slope=-2.74 x 10(-4)s/microM, r=0.989 and slope=-2.78 x 10(-3)microA/microM, r=0.995 by using constant current potentiometry and differential pulse voltammetry, respectively. Additionally, binding constant values for sildenafil citrate-DNA interaction were determined for the pH range of 4-8 and in biological fluids (serum and urine) at pH 5. The influence of sodium and calcium ions was also studied to elucidate the mechanism of sildenafil citrate-DNA interaction under different solution conditions. The present study may prove to be helpful in extending our understanding of the anticancer activity of sildenafil citrate from cellular to DNA level.

  4. Modeling the vacuolar storage of malate shed lights on pre- and post-harvest fruit acidity.

    PubMed

    Etienne, Audrey; Génard, Michel; Lobit, Philippe; Bugaud, Christophe

    2014-11-18

    Malate is one of the most important organic acids in many fruits and its concentration plays a critical role in organoleptic properties. Several studies suggest that malate accumulation in fruit cells is controlled at the level of vacuolar storage. However, the regulation of vacuolar malate storage throughout fruit development, and the origins of the phenotypic variability of the malate concentration within fruit species remain to be clarified. In the present study, we adapted the mechanistic model of vacuolar storage proposed by Lobit et al. in order to study the accumulation of malate in pre and postharvest fruits. The main adaptation concerned the variation of the free energy of ATP hydrolysis during fruit development. Banana fruit was taken as a reference because it has the particularity of having separate growth and post-harvest ripening stages, during which malate concentration undergoes substantial changes. Moreover, the concentration of malate in banana pulp varies greatly among cultivars which make possible to use the model as a tool to analyze the genotypic variability. The model was calibrated and validated using data sets from three cultivars with contrasting malate accumulation, grown under different fruit loads and potassium supplies, and harvested at different stages. The model predicted the pre and post-harvest dynamics of malate concentration with fairly good accuracy for the three cultivars (mean RRMSE = 0.25-0.42). The sensitivity of the model to parameters and input variables was analyzed. According to the model, vacuolar composition, in particular potassium and organic acid concentrations, had an important effect on malate accumulation. The model suggested that rising temperatures depressed malate accumulation. The model also helped distinguish differences in malate concentration among the three cultivars and between the pre and post-harvest stages by highlighting the probable importance of proton pump activity and particularly of the free

  5. Citrate metabolism in blood transfusions and its relationship due to metabolic alkalosis and respiratory acidosis

    PubMed Central

    Li, Kai; Xu, Yuan

    2015-01-01

    Metabolic alkalosis commonly results from excessive hydrochloric acid (HCl), potassium (K+) and water (H2O) loss from the stomach or through the urine. The plasma anion gap increases in non-hypoproteinemic metabolic alkalosis due to an increased negative charge equivalent on albumin and the free ionized calcium (Ca++) content of plasma decreases. The mean citrate load in all patients was 8740±7027 mg from 6937±6603 mL of transfused blood products. The citrate load was significantly higher in patients with alkalosis (9164±4870 vs. 7809±3967, P < 0.05). The estimated mean total citrate administered via blood and blood products was calculated as 43.2±34.19 mg/kilogram/day. In non-massive and frequent blood transfusions, the elevated carbon dioxide output has been shown to occur. Due to citrate metabolism causes intracellular acidosis. As a result of intracellular acidosis compensation, decompensated metabolic alkalosis + respiratory acidosis and electrolyte imbalance may develop, blood transfusions may result in certain complications. PMID:26131288

  6. Citrate metabolism in blood transfusions and its relationship due to metabolic alkalosis and respiratory acidosis.

    PubMed

    Li, Kai; Xu, Yuan

    2015-01-01

    Metabolic alkalosis commonly results from excessive hydrochloric acid (HCl), potassium (K(+)) and water (H2O) loss from the stomach or through the urine. The plasma anion gap increases in non-hypoproteinemic metabolic alkalosis due to an increased negative charge equivalent on albumin and the free ionized calcium (Ca(++)) content of plasma decreases. The mean citrate load in all patients was 8740±7027 mg from 6937±6603 mL of transfused blood products. The citrate load was significantly higher in patients with alkalosis (9164±4870 vs. 7809±3967, P < 0.05). The estimated mean total citrate administered via blood and blood products was calculated as 43.2±34.19 mg/kilogram/day. In non-massive and frequent blood transfusions, the elevated carbon dioxide output has been shown to occur. Due to citrate metabolism causes intracellular acidosis. As a result of intracellular acidosis compensation, decompensated metabolic alkalosis + respiratory acidosis and electrolyte imbalance may develop, blood transfusions may result in certain complications.

  7. Malate and Aspartate Increase L-Arginine and Nitric Oxide and Attenuate Hypertension.

    PubMed

    Hou, Entai; Sun, Na; Zhang, Fuchang; Zhao, Chenyang; Usa, Kristie; Liang, Mingyu; Tian, Zhongmin

    2017-05-23

    Fumarase catalyzes the interconversion of fumarate and L-malate in the tricarboxylic acid cycle. The Dahl salt-sensitive (SS) rat, a model of salt-sensitive hypertension, exhibits fumarase insufficiencies. To investigate the mechanism mediating the effect of fumarase-related metabolites on hypertension, we considered the pathway in which L-malate can be converted to oxaloacetate, aspartate, argininosuccinate, and L-arginine, the substrate of nitric oxide (NO) synthase. The levels of aspartate, citrulline, L-arginine, and NO were significantly decreased in the kidneys of SS rats compared to salt-insensitive consomic SS.13 BN rats. Knockdown of fumarase in human kidney cells and vascular endothelial cells resulted in decreased levels of malate, aspartate, L-arginine, and NO. Supplementation of aspartate or malate increased renal levels of L-arginine and NO and attenuated hypertension in SS rats. These findings reveal a multi-step metabolic pathway important for hypertension in which malate and aspartate may modulate blood pressure by altering levels of L-arginine and NO. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  8. Aluminum-Activated Malate Transporters Can Facilitate GABA Transport.

    PubMed

    Ramesh, Sunita A; Kamran, Muhammad; Sullivan, Wendy; Chirkova, Larissa; Okamoto, Mamoru; Degryse, Fien; McLaughlin, Michael; Gilliham, Matthew; Tyerman, Stephen D

    2018-05-01

    Plant aluminum-activated malate transporters (ALMTs) are currently classified as anion channels; they are also known to be regulated by diverse signals, leading to a range of physiological responses. Gamma-aminobutyric acid (GABA) regulation of anion flux through ALMT proteins requires a specific amino acid motif in ALMTs that shares similarity with a GABA binding site in mammalian GABA A receptors. Here, we explore why TaALMT1 activation leads to a negative correlation between malate efflux and endogenous GABA concentrations ([GABA] i ) in both wheat ( Triticum aestivum ) root tips and in heterologous expression systems. We show that TaALMT1 activation reduces [GABA] i because TaALMT1 facilitates GABA efflux but GABA does not complex Al 3+ TaALMT1 also leads to GABA transport into cells, demonstrated by a yeast complementation assay and via 14 C-GABA uptake into TaALMT1 -expressing Xenopus laevis oocytes; this was found to be a general feature of all ALMTs we examined. Mutation of the GABA motif (TaALMT1 F213C ) prevented both GABA influx and efflux, and resulted in no correlation between malate efflux and [GABA] i We conclude that ALMTs are likely to act as both GABA and anion transporters in planta. GABA and malate appear to interact with ALMTs in a complex manner to regulate each other's transport, suggestive of a role for ALMTs in communicating metabolic status. © 2018 American Society of Plant Biologists. All rights reserved.

  9. Multiple strategies to prevent oxidative stress in Arabidopsis plants lacking the malate valve enzyme NADP-malate dehydrogenase

    PubMed Central

    Hebbelmann, Inga; Selinski, Jennifer; Wehmeyer, Corinna; Goss, Tatjana; Voss, Ingo; Mulo, Paula; Kangasjärvi, Saijaliisa; Aro, Eva-Mari; Oelze, Marie-Luise; Dietz, Karl-Josef; Nunes-Nesi, Adriano; Do, Phuc T.; Fernie, Alisdair R.; Talla, Sai K.; Raghavendra, Agepati S.; Linke, Vera; Scheibe, Renate

    2012-01-01

    The nuclear-encoded chloroplast NADP-dependent malate dehydrogenase (NADP-MDH) is a key enzyme controlling the malate valve, to allow the indirect export of reducing equivalents. Arabidopsis thaliana (L.) Heynh. T-DNA insertion mutants of NADP-MDH were used to assess the role of the light-activated NADP-MDH in a typical C3 plant. Surprisingly, even when exposed to high-light conditions in short days, nadp-mdh knockout mutants were phenotypically indistinguishable from the wild type. The photosynthetic performance and typical antioxidative systems, such as the Beck–Halliwell–Asada pathway, were barely affected in the mutants in response to high-light treatment. The reactive oxygen species levels remained low, indicating the apparent absence of oxidative stress, in the mutants. Further analysis revealed a novel combination of compensatory mechanisms in order to maintain redox homeostasis in the nadp-mdh plants under high-light conditions, particularly an increase in the NTRC/2-Cys peroxiredoxin (Prx) system in chloroplasts. There were indications of adjustments in extra-chloroplastic components of photorespiration and proline levels, which all could dissipate excess reducing equivalents, sustain photosynthesis, and prevent photoinhibition in nadp-mdh knockout plants. Such metabolic flexibility suggests that the malate valve acts in concert with other NADPH-consuming reactions to maintain a balanced redox state during photosynthesis under high-light stress in wild-type plants. PMID:22140244

  10. Electro-activation of potassium acetate, potassium citrate and calcium lactate: impact on solution acidity, Redox potential, vibrational properties of Raman spectra and antibacterial activity on E. coli O157:H7 at ambient temperature.

    PubMed

    Liato, Viacheslav; Labrie, Steve; Aïder, Mohammed

    2016-01-01

    To study the electro-activation of potassium acetate, potassium citrate and calcium lactate aqueous solutions and to evaluate their antimicrobial effect against E. coli O157:H7 at ambient temperature. Potassium acetate, potassium citrate and calcium lactate aqueous solutions were electrically excited in the anodic compartment of a four sectional electro-activation reactor. Different properties of the electro-activated solutions were measured such as: solutions acidity (pH and titratable), Redox potential and vibrational properties by Raman spectroscopy. Moreover, the antimicrobial activity of these solutions was evaluated against E. coli O157:H7. The results showed a pH decrease from 7.07 ± 0.08, 7.53 ± 0.12 and 6.18 ± 0.1 down to 2.82 ± 0.1, 2.13 ± 0.09 and 2.26 ± 0.15, after 180 min of electro-activation of potassium acetate, potassium citrate and calcium lactate solution, respectively. These solutions were characterized by high oxidative ORP of +1076 ± 12, +958 ± 11 and +820 ± 14 mV, respectively. Raman scattering analysis of anolytes showed stretching vibrations of the hydrogen bonds with the major changes within the region of 3410-3430 cm -1 . These solutions were used against E. coli O157:H7 and the results from antimicrobial assays showed high antibacterial effect with a population reduction of ≥6 log CFU/ml within 5 min of treatment. This study demonstrated the effectiveness of the electro-activation to confer to aqueous solutions of organic salts of highly reactive properties that differ them from their conjugated commercial acids. The electro-activated solutions demonstrated significant antimicrobial activity against E. coli O157:H7. This study opens new possibilities to use electro-activated solutions of salts of weak organic acids as food preservatives to develop safe, nutritive and low heat processed foods.

  11. Optimum nutrition for kidney stone disease.

    PubMed

    Heilberg, Ita P; Goldfarb, David S

    2013-03-01

    We summarize the data regarding the associations of individual dietary components with kidney stones and the effects on 24-hour urinary profiles. The therapeutic recommendations for stone prevention that result from these studies are applied where possible to stones of specific composition. Idiopathic calcium oxalate stone-formers are advised to reduce ingestion of animal protein, oxalate, and sodium while maintaining intake of 800 to 1200 mg of calcium and increasing consumption of citrate and potassium. There are few data regarding dietary therapy of calcium phosphate stones. Whether the inhibitory effect of citrate sufficiently counteracts increasing urine pH to justify more intake of potassium and citrate is not clear. Reduction of sodium intake to decrease urinary calcium excretion would also be expected to decrease calcium phosphate stone recurrence. Conversely, the most important urine variable in the causation of uric acid stones is low urine pH, linked to insulin resistance as a component of obesity and the metabolic syndrome. The mainstay of therapy is weight loss and urinary alkalinization provided by a more vegetarian diet. Reduction in animal protein intake will reduce purine ingestion and uric acid excretion. For cystine stones, restriction of animal protein is associated with reduction in intake of the cystine precursor methionine as well as cystine. Reduction of urine sodium results in less urine cystine. Ingestion of vegetables high in organic anion content, such as citrate and malate, should be associated with higher urine pH and fewer stones because the amino acid cystine is soluble in more alkaline urine. Because of their infectious origin, diet has no definitive role for struvite stones except for avoiding urinary alkalinization, which may worsen their development. Published by Elsevier Inc.

  12. Malat1 regulates serum response factor through miR-133 as a competing endogenous RNA in myogenesis.

    PubMed

    Han, Xiaorui; Yang, Feng; Cao, Huiqing; Liang, Zicai

    2015-07-01

    Metastasis-associated lung adenocarcinoma transcript 1 (Malat1) is an example of a functional long noncoding RNA involved in many biologic processes. However, the mechanisms for Malat1 in myogenesis are unclear. Serum response factor (SRF) is a pivotal transcription factor for muscle proliferation and differentiation and is reported to be a target gene for muscle-specific microRNA-133 (miR-133). In this study, we initially found that silencing Malat1 in the mouse myoblast C2C12 cell line inhibited myocyte differentiation and decreased Srf at both the RNA and protein levels. Srf silencing decreased Malat1 expression as well. Further study revealed that Malat1 contained an miR-133 functional target site, and the interplay between Malat1 and Srf was miR-133 dependent. We demonstrated that Malat1 modulates Srf through miR-133 as a competing endogenous RNA and established a novel connection among Malat1, miR-133, and Srf in myoblast differentiation. © FASEB.

  13. Identification and characterization of a class of MALAT1 -like genomic loci

    DOE PAGES

    Zhang, Bin; Mao, Yuntao S.; Diermeier, Sarah D.; ...

    2017-05-23

    The MALAT1 (Metastasis-Associated Lung Adenocarcinoma Transcript 1) gene encodes a noncoding RNA that is processed into a long nuclear retained transcript ( MALAT1) and a small cytoplasmic tRNA-like transcript (mascRNA). Using an RNA sequence- and structure-based covariance model, we identified more than 130 genomic loci in vertebrate genomes containing the MALAT1 3' end triple-helix structure and its immediate downstream tRNA-like structure, including 44 in the green lizard Anolis carolinensis. Structural and computational analyses revealed a co-occurrence of components of the 3' end module. MALAT1-like genes in Anolis carolinensis are highly expressed in adult testis, thus we named them testis-abundant longmore » noncoding RNAs (tancRNAs). MALAT1-like loci also produce multiple small RNA species, including PIWI-interacting RNAs (piRNAs), from the antisense strand. The 3' ends of tancRNAs serve as potential targets for the PIWI-piRNA complex. Furthermore, we have identified an evolutionarily conserved class of long noncoding RNAs (lncRNAs) with similar structural constraints, post-transcriptional processing, and subcellular localization and a distinct function in spermatocytes.« less

  14. Identification and characterization of a class of MALAT1 -like genomic loci

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Bin; Mao, Yuntao S.; Diermeier, Sarah D.

    The MALAT1 (Metastasis-Associated Lung Adenocarcinoma Transcript 1) gene encodes a noncoding RNA that is processed into a long nuclear retained transcript ( MALAT1) and a small cytoplasmic tRNA-like transcript (mascRNA). Using an RNA sequence- and structure-based covariance model, we identified more than 130 genomic loci in vertebrate genomes containing the MALAT1 3' end triple-helix structure and its immediate downstream tRNA-like structure, including 44 in the green lizard Anolis carolinensis. Structural and computational analyses revealed a co-occurrence of components of the 3' end module. MALAT1-like genes in Anolis carolinensis are highly expressed in adult testis, thus we named them testis-abundant longmore » noncoding RNAs (tancRNAs). MALAT1-like loci also produce multiple small RNA species, including PIWI-interacting RNAs (piRNAs), from the antisense strand. The 3' ends of tancRNAs serve as potential targets for the PIWI-piRNA complex. Furthermore, we have identified an evolutionarily conserved class of long noncoding RNAs (lncRNAs) with similar structural constraints, post-transcriptional processing, and subcellular localization and a distinct function in spermatocytes.« less

  15. Mutation in the peroxin-coding gene PEX22 contributing to high malate production in Saccharomyces cerevisiae.

    PubMed

    Negoro, Hiroaki; Sakamoto, Mitsuru; Kotaka, Atsushi; Matsumura, Kengo; Hata, Yoji

    2018-02-01

    Saccharomyces cerevisiae produces organic acids such as succinate, acetate, and malate during alcoholic fermentation. Since malate contributes to the pleasant taste of sake (a Japanese alcoholic beverage), various methods for breeding high-malate-producing yeast strains have been developed. Here, a high-malate-producing yeast strain F-701H was isolated. This mutant was sensitive to dimethyl succinate (DMS) and harbored a nonsense mutation in the peroxin gene PEX22, which was identified as the cause of high malate production by comparative genome analysis. This mutation, which appeared to cause Pex22p dysfunction, was sufficient to confer increased malate productivity and DMS sensitivity to yeast cells. Next, we investigated the mechanism by which this mutation led to high malate production in yeast cells. Peroxins, such as Pex22p, maintain peroxisomal biogenesis. Analysis of 29 PEX disruptants revealed an increased malate production by deletion of the genes encoding peroxins responsible for importing proteins (containing peroxisomal targeting signal 1, PTS1) into the peroxisomal matrix, and those responsible for the assembly of peroxins themselves in the peroxisomal membrane. A defect in peroxisomal malate dehydrogenase (Mdh3p), harboring endogenous PTS1, inhibited the high malate-producing phenotype in the PEX22 mutant. Moreover, Mdh3p, which was normally sorted to the peroxisomal matrix, was potentially mislocalized to the cytosol in the PEX22 mutant. This suggested that an increase in malate production resulted from the mislocalization of Mdh3p from the peroxisome to the cytoplasm due to the loss of peroxin-mediated transportation. Thus, the present study revealed a novel mechanism for organic acid productions in yeast during sake brewing. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  16. Red Clover HCT2, a Hydroxycinnamoyl-Coenzyme A:Malate Hydroxycinnamoyl Transferase, Plays a Crucial Role in Biosynthesis of Phaselic Acid and Other Hydroxycinnamoyl-Malate Esters in Vivo1[OA

    PubMed Central

    Sullivan, Michael L.; Zarnowski, Robert

    2011-01-01

    In red clover (Trifolium pratense) leaves, phaselic acid (2-O-caffeoyl-l-malate) accumulates to several mmol kg−1 fresh weight and is a crucial component of a natural system that prevents protein breakdown during harvest and storage of this forage crop. Previously, we identified HCT2, a red clover gene encoding a hydroxycinnamoyl-Coenzyme A (CoA) hydroxycinnamoyl transferase capable of transferring p-coumaroyl and caffeoyl moieties from their CoA derivatives to malic acid to form the corresponding hydroxycinnamoyl-malate esters in vitro. Here, we carried out a detailed kinetic analysis of the enzyme and examined its in vivo function in red clover via reverse genetics. The kinetic analysis indicates that in vitro, despite similar Km values for the tested hydroxycinnamoyl-CoA derivatives, HCT2 favors transfer to malate of p-coumaroyl and feruloyl moieties over caffeoyl moieties by greater than 5-fold. Reverse reaction (transfer of hydroxycinnamoyl moieties from malate to CoA) by HCT2 was observed with p-coumaroyl-malate but not phaselic acid. Analysis of red clover plants down-regulated for HCT2 expression via RNA interference showed a significant and substantial correlation between HCT2 mRNA levels and phaselic acid accumulation (P < 0.005). In several of the HCT2-silenced plants, phaselic acid and p-coumaroyl-malate levels were reduced to <5% that of wild-type controls. These reductions resulted in easily observable phenotypes including reduced polyphenol oxidase-mediated browning and a reduction in blue epidermal fluorescence under ultraviolet light. These results demonstrate a crucial role for HCT2 in phaselic acid accumulation in red clover and define a previously undescribed pathway for the biosynthesis of hydroxycinnamoyl-malate esters in plants. PMID:21205620

  17. MALAT1 predicts poor survival in osteosarcoma patients and promotes cell metastasis through associating with EZH2

    PubMed Central

    Huo, Yanqing; Li, Qingbo; Wang, Xiqian; Jiao, Xiejia; Zheng, Jiachun; Li, Zhiqiang; Pan, Xiaohan

    2017-01-01

    Osteosarcoma is the most common type of bone cancer, especially in children and young adults. Recently, long noncoding RNAs (lncRNAs) have emerged as new prognostic markers and gene regulators in several cancers, including osteosarcoma. In this study, we investigated the contributions of the lncRNA MALAT1 in osteosarcoma with a specific focus on its transcriptional regulation and its interaction with EZH2. Our results showed that MALAT1 was significantly increased in osteosarcoma specimens and cell lines. ROC curve analysis showed that MALAT1 had a higher area under the curve than alkaline phosphatase, and Kaplan-Meier survival analysis indicated that patients with high serum levels of MALAT1 showed reduced survival rate. Knockdown of MALAT1 decreased osteosarcoma cell invasion and promoted E-cadherin expression. Mechanistic investigations showed that MALAT1 was transcriptionally activated by TGF-β. Additionally, EZH2 is highly expressed and associated with the 3’ end region of lncRNA MALAT1 in osteosarcoma, and this association finally suppressed the expression of E-cadherin. Subsequently, our gain and loss function assay showed that MALAT1 overexpression promoted cell metastasis and decreased E-cadherin level, however, this effect was partially reversed by EZH2 knockdown. In conclusion, our work illuminates that lncRNA MALAT1 is a potential diagnostic and prognostic factor in osteosarcoma and further demonstrates how MALAT1 confers an oncogenic function. Thus, lncRNA MALAT1 may serve as a promising prognostic and therapeutic target for osteosarcoma patients. PMID:28388584

  18. Ferric Citrate Decreases Fibroblast Growth Factor 23 and Improves Erythropoietin Responsiveness in Hemodialysis Patients.

    PubMed

    Maruyama, Noriaki; Otsuki, Tomoyasu; Yoshida, Yoshinori; Nagura, Chinami; Kitai, Maki; Shibahara, Nami; Tomita, Hyoe; Maruyama, Takashi; Abe, Masanori

    2018-06-06

    Serum phosphate and vitamin D receptor activator regulate fibroblast growth factor 23 (FGF23), and iron may modulate FGF23 metabolism. The aim of the present study was to elucidate the effects of ferric citrate hydrate and lanthanum carbohydrate on serum FGF23 levels in hemodialysis patients. This prospective, open-label, multicenter study enrolled 60 patients on hemodialysis treated with lanthanum carbonate. Patients were randomly assigned to 2 groups: those switching from lanthanum carbonate to ferric citrate hydrate (ferric citrate group, n = 30) or those continuing lanthanum carbonate (control group, n = 30). Patients were monitored for 24 weeks. Endpoints included changes in FGF23, phosphate, and the dose of erythropoiesis stimulating agent (ESA), erythropoietin responsiveness index (ERI), and adverse events. FGF-23 levels were significantly lower in the ferric citrate group compared with the levels in the control group (change from baseline -6,160 vs. -1,118 pg/mL; p = 0.026). There were no significant changes in serum calcium, phosphate, and intact parathyroid hormone levels in either group. The ferric citrate group had significantly increased serum iron, ferritin, and transferrin saturation. Hemoglobin levels were significantly elevated, and the dose of ESA was significantly decreased in the ferric citrate group but not in the control group. ERI and the dose of intravenous saccharated ferric oxide were significantly lower in the ferric citrate group compared with those of the control group (p = 0.015 and p = 0.002). In patients on hemodialysis, 24-week treatment with ferric citrate hydrate resulted in significant reduction in FGF23 and ERI independently of serum phosphate level. © 2018 S. Karger AG, Basel.

  19. L-malate enhances the gene expression of carried proteins and antioxidant enzymes in liver of aged rats.

    PubMed

    Zeng, X; Wu, J; Wu, Q; Zhang, J

    2015-01-01

    Previous studies in our laboratory reported L-malate as a free radical scavenger in aged rats. To investigate the antioxidant mechanism of L-malate in the mitochondria, we analyzed the change in gene expression of two malate-aspartate shuttle (MAS)-related carried proteins (AGC, aspartate/glutamate carrier and OMC, oxoglutarate/malate carrier) in the inner mitochondrial membrane, and three antioxidant enzymes (CAT, SOD, and GSH-Px) in the mitochondria. The changes in gene expression of these proteins and enzymes were examined by real-time RT-PCR in the heart and liver of aged rats treated with L-malate. L-malate was orally administered in rats continuously for 30 days using a feeding atraumatic needle. We found that the gene expression of OMC and GSH-Px mRNA in the liver increased by 39 % and 38 %, respectively, in the 0.630 g/kg L-malate treatment group than that in the control group. The expression levels of SOD mRNA in the liver increased by 39 %, 56 %, and 78 % in the 0.105, 0.210, and 0.630 g/kg L-malate treatment groups, respectively. No difference were observed in the expression levels of AGC, OMC, CAT, SOD, and GSH-Px mRNAs in the heart of rats between the L-malate treatment and control groups. These results predicted that L-malate may increase the antioxidant capacity of mitochondria by enhancing the expression of mRNAs involved in the MAS and the antioxidant enzymes.

  20. Calcium nephrolithiasis: effect of water hardness on urinary electrolytes.

    PubMed

    Schwartz, Bradley F; Schenkman, Noah S; Bruce, Jeremy E; Leslie, Stephen W; Stoller, Marshall L

    2002-07-01

    To analyze the impact of water hardness from public water supplies on calcium stone incidence and 24-hour urine chemistries in patients with known calcium urinary stone formation. Patients are frequently concerned that their public water supply may contribute to urinary stone disease. Investigators have documented an inverse relationship between water hardness and calcium lithogenesis. Others have found no such association. Patients who form calcium stones (n = 4833) were identified geographically by their zip code. Water hardness information from distinct geographic public water supplies was obtained, and patient 24-hour urine chemistries were evaluated. Drinking water hardness was divided into decile rankings on the basis of the public water supply information obtained from the Environmental Protection Agency. These data were compared with patient questionnaires and 24-hour urine chemistries. The calcium and magnesium levels in the drinking water were analyzed as independent variables. The number of total lifetime stone episodes was similar between patients residing in areas with soft public water and hard public water. Patients consuming the softest water decile formed 3.4 lifetime stones and those who consumed the hardest water developed 3.0 lifetime stones (P = 0.0017). The 24-hour urine calcium, magnesium, and citrate levels increased directly with drinking water hardness, and no significant change was found in urinary oxalate, uric acid, pH, or volume. The impact of water hardness on urinary stone formation remains unclear, despite a weak correlation between water hardness and urinary calcium, magnesium, and citrate excretion. Tap water, however, can change urinary electrolytes in patients who form calcium stones.

  1. Citrate metabolism and its complications in non-massive blood transfusions: association with decompensated metabolic alkalosis+respiratory acidosis and serum electrolyte levels.

    PubMed

    Bıçakçı, Zafer; Olcay, Lale

    2014-06-01

    Metabolic alkalosis, which is a non-massive blood transfusion complication, is not reported in the literature although metabolic alkalosis dependent on citrate metabolism is reported to be a massive blood transfusion complication. The aim of this study was to investigate the effect of elevated carbon dioxide production due to citrate metabolism and serum electrolyte imbalance in patients who received frequent non-massive blood transfusions. Fifteen inpatients who were diagnosed with different conditions and who received frequent blood transfusions (10-30 ml/kg/day) were prospectively evaluated. Patients who had initial metabolic alkalosis (bicarbonate>26 mmol/l), who needed at least one intensive blood transfusion in one-to-three days for a period of at least 15 days, and whose total transfusion amount did not fit the massive blood transfusion definition (<80 ml/kg) were included in the study. The estimated mean total citrate administered via blood and blood products was calculated as 43.2 ± 34.19 mg/kg/day (a total of 647.70 mg/kg in 15 days). Decompensated metabolic alkalosis+respiratory acidosis developed as a result of citrate metabolism. There was a positive correlation between cumulative amount of citrate and the use of fresh frozen plasma, venous blood pH, ionized calcium, serum-blood gas sodium and mortality, whereas there was a negative correlation between cumulative amount of citrate and serum calcium levels, serum phosphorus levels and amount of urine chloride. In non-massive, but frequent blood transfusions, elevated carbon dioxide production due to citrate metabolism causes intracellular acidosis. As a result of intracellular acidosis compensation, decompensated metabolic alkalosis+respiratory acidosis and electrolyte imbalance may develop. This situation may contribute to the increase in mortality. In conclusion, it should be noted that non-massive, but frequent blood transfusions may result in certain complications. Copyright © 2014 Elsevier Ltd

  2. The crystal structures of the tri-functional Chloroflexus aurantiacus and bi-functional Rhodobacter sphaeroides malyl-CoA lyases and comparison with CitE-like superfamily enzymes and malate synthases.

    PubMed

    Zarzycki, Jan; Kerfeld, Cheryl A

    2013-11-09

    Malyl-CoA lyase (MCL) is a promiscuous carbon-carbon bond lyase that catalyzes the reversible cleavage of structurally related Coenzyme A (CoA) thioesters. This enzyme plays a crucial, multifunctional role in the 3-hydroxypropionate bi-cycle for autotrophic CO2 fixation in Chloroflexus aurantiacus. A second, phylogenetically distinct MCL from Rhodobacter sphaeroides is involved in the ethylmalonyl-CoA pathway for acetate assimilation. Both MCLs belong to the large superfamily of CitE-like enzymes, which includes the name-giving β-subunit of citrate lyase (CitE), malyl-CoA thioesterases and other enzymes of unknown physiological function. The CitE-like enzyme superfamily also bears sequence and structural resemblance to the malate synthases. All of these different enzymes share highly conserved catalytic residues, although they catalyze distinctly different reactions: C-C bond formation and cleavage, thioester hydrolysis, or both (the malate synthases). Here we report the first crystal structures of MCLs from two different phylogenetic subgroups in apo- and substrate-bound forms. Both the C. aurantiacus and the R. sphaeroides MCL contain elaborations on the canonical β8/α8 TIM barrel fold and form hexameric assemblies. Upon ligand binding, changes in the C-terminal domains of the MCLs result in closing of the active site, with the C-terminal domain of one monomer forming a lid over and contributing side chains to the active site of the adjacent monomer. The distinctive features of the two MCL subgroups were compared to known structures of other CitE-like superfamily enzymes and to malate synthases, providing insight into the structural subtleties that underlie the functional versatility of these enzymes. Although the C. aurantiacus and the R. sphaeroides MCLs have divergent primary structures (~37% identical), their tertiary and quaternary structures are very similar. It can be assumed that the C-C bond formation catalyzed by the MCLs occurs as proposed for

  3. Closing Plant Stomata Requires a Homolog of an Aluminum-Activated Malate Transporter

    PubMed Central

    Sasaki, Takayuki; Mori, Izumi C.; Furuichi, Takuya; Munemasa, Shintaro; Toyooka, Kiminori; Matsuoka, Ken; Murata, Yoshiyuki; Yamamoto, Yoko

    2010-01-01

    Plant stomata limit both carbon dioxide uptake and water loss; hence, stomatal aperture is carefully set as the environment fluctuates. Aperture area is known to be regulated in part by ion transport, but few of the transporters have been characterized. Here we report that AtALMT12 (At4g17970), a homolog of the aluminum-activated malate transporter (ALMT) of wheat, is expressed in guard cells of Arabidopsis thaliana. Loss-of-function mutations in AtALMT12 impair stomatal closure induced by ABA, calcium and darkness, but do not abolish either the rapidly activated or the slowly activated anion currents previously identified as being important for stomatal closure. Expressed in Xenopus oocytes, AtALMT12 facilitates chloride and nitrate currents, but not those of organic solutes. Therefore, we conclude that AtALMT12 is a novel class of anion transporter involved in stomatal closure. PMID:20154005

  4. Closing plant stomata requires a homolog of an aluminum-activated malate transporter.

    PubMed

    Sasaki, Takayuki; Mori, Izumi C; Furuichi, Takuya; Munemasa, Shintaro; Toyooka, Kiminori; Matsuoka, Ken; Murata, Yoshiyuki; Yamamoto, Yoko

    2010-03-01

    Plant stomata limit both carbon dioxide uptake and water loss; hence, stomatal aperture is carefully set as the environment fluctuates. Aperture area is known to be regulated in part by ion transport, but few of the transporters have been characterized. Here we report that AtALMT12 (At4g17970), a homolog of the aluminum-activated malate transporter (ALMT) of wheat, is expressed in guard cells of Arabidopsis thaliana. Loss-of-function mutations in AtALMT12 impair stomatal closure induced by ABA, calcium and darkness, but do not abolish either the rapidly activated or the slowly activated anion currents previously identified as being important for stomatal closure. Expressed in Xenopus oocytes, AtALMT12 facilitates chloride and nitrate currents, but not those of organic solutes. Therefore, we conclude that AtALMT12 is a novel class of anion transporter involved in stomatal closure.

  5. Long noncoding RNA MALAT1 as a potential novel biomarker in digestive system cancers: a meta-analysis.

    PubMed

    Song, Wei; Zhang, Run J; Zou, Shu B

    2016-08-01

    Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), a newly discovered long non-coding RNA (lncRNA), has been reported to be overexpressed in various cancers. However, the clinical value of MALAT1 in digestive system cancers is unclear. This study was designed to investigate the potential value of MALAT1 as a prognostic biomarker in digestive system cancers. We searched the Medline, Embase and Cochrane Library databases. All studies that explored the correlation between lncRNA MALAT1 expression and survival in digestive system tumors were selected. A quantitative meta-analysis was performed for the correlation between lncRNA MALAT1 expression and survival in digestive system tumors. Five studies were eligible for analysis, which included 547 patients. Meta-analysis showed that high expression of MALAT1 could predict poor overall survival (OS) in digestive system cancers (pooled HR: 1.85, 95% CI: 1.41-2.43, P<0.0001). For disease-free survival (DFS), elevated MALAT1 expression was also a significant predictor with a combined HR of 2.28 (95% CI: 1.42-3.67, P=0.0007). lncRNA MALAT1 may serve as a potential novel prognostic biomarker in digestive system cancers.

  6. Long noncoding RNA MALAT1 as a potential novel biomarker in digestive system cancers: a meta-analysis.

    PubMed

    Song, Wei; Zhang, Run J; Zou, Shu B

    2016-05-17

    MALAT1 (Metastasis-associated lung adenocarcinoma transcript 1), a newly discovered long non-coding RNA (lncRNA), has been reported to be overexpressed in various cancers. However, the clinical value of MALAT1 in digestive system cancers is unclear. This study was designed to investigate the potential value of MALAT1 as a prognostic biomarker in digestive system cancers. We searched the MEDLINE, EMBASE and Cochrane Library databases. All studies that explored the correlation between lncRNA MALAT1 expression and survival in digestive system tumors were selected. A quantitative meta-analysis was performed for the correlation between lncRNA MALAT1 expression and survival in digestive system tumors. Five studies were eligible for analysis, which included 547 patients. Meta-analysis showed that high expression of MALAT1 could predict poor overall survival (OS) in digestive system cancers (pooled HR: 1.85, 95% CI: 1.41-2.43, p < 0.0001). For disease-free survival (DFS), elevated MALAT1 expression was also a significant predictor with a combined HR of 2.28 (95% CI: 1.42-3.67, p = 0.0007). lncRNA MALAT1 may serve as a potential novel prognostic biomarker in digestive system cancers.

  7. Malate dehydrogenase isozymes in the longnose dace, Rhinichthys cataractae.

    PubMed

    Starzyk, R M; Merritt, R B

    1980-08-01

    The interspecies homology of dace supernatant (A2,AB,B2) and mitochondrial (C2) malate dehydrogenase isozymes has been established through cell fractionation and tissue distribution studies. Isolated supernatant malate dehydrogenase (s-MDH) isozymes show significant differences in Michaelis constants for oxaloacetate and in pH optima. Shifts in s-MDH isozyme pH optima with temperature may result in immediate compensation for increase in ectotherm body pH with decrease in temperature, but duplicate s-MDH isozymes are probably maintained through selection for tissue specific regulation of metabolism.

  8. Stringency of substrate specificity of Escherichia coli malate dehydrogenase.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boernke, W. E.; Millard, C. S.; Stevens, P. W.

    1995-09-10

    Malate dehydrogenase and lactate dehydrogenase are members of the structurally and functionally homologous family of 2-ketoacid dehydrogenases. Both enzymes display high specificity for their respective keto substrates, oxaloacetate and pyruvate. Closer analysis of their specificity, however, reveals that the specificity of malate dehydrogenase is much stricter and less malleable than that of lactate dehydrogenase. Site-specific mutagenesis of the two enzymes in an attempt to reverse their specificity has met with contrary results. Conversion of a specific active-site glutamine to arginine in lactate dehydrogenase from Bacillus stearothermophilus generated an enzyme that displayed activity toward oxaloacetate equal to that of the nativemore » enzyme toward pyruvate (H. M. Wilks et al. (1988) Science 242, 1541-1544). We have constructed a series of mutants in the mobile, active site loop of the Escherichia coli malate dehydrogenase that incorporate the complementary change, conversion of arginine 81 to glutamine, to evaluate the role of charge distribution and conformational flexibility within this loop in defining the substrate specificity of these enzymes. Mutants incorporating the change R81Q all had reversed specificity, displaying much higher activity toward pyruvate than to the natural substrate, oxaloacetate. In contrast to the mutated lactate dehydrogenase, these reversed-specificity mutants were much less active than the native enzyme. Secondary mutations within the loop of the E. coli enzyme (A80N, A80P, A80P/M85E/D86T) had either no or only moderately beneficial effects on the activity of the mutant enzyme toward pyruvate. The mutation A80P, which can be expected to reduce the overall flexibility of the loop, modestly improved activity toward pyruvate. The possible physiological relevance of the stringent specificity of malate dehydrogenase was investigated. In normal strains of E. coli, fermentative metabolism was not affected by expression of the

  9. Magnetically responsive calcium carbonate microcrystals.

    PubMed

    Fakhrullin, Rawil F; Bikmullin, Aidar G; Nurgaliev, Danis K

    2009-09-01

    Here we report the fabrication of magnetically responsive calcium carbonate microcrystals produced by coprecipitation of calcium carbonate in the presence of citrate-stabilized iron oxide nanoparticles. We demonstrate that the calcite microcrystals obtained possess superparamagnetic properties due to incorporated magnetite nanoparticles and can be manipulated by an external magnetic field. The microcrystals doped with magnetic nanoparticles were utilized as templates for the fabrication of hollow polyelectrolyte microcapsules, which retain the magnetic properties of the sacrificial cores and might be spatially manipulated using a permanent magnet, thus providing the magnetic-field-facilitated delivery and separation of materials templated on magnetically responsive calcite microcrystals.

  10. [The fasting calcium/creatinine ratio in patients with calcium stones and the relation with hypercalciuria and phosphocalcium metabolism].

    PubMed

    Arrabal-Polo, Miguel Ángel; del Carmen Cano-García, María; Arrabal-Martín, Miguel

    2016-04-01

    To determine the importance of fasting calcium/creatinine ratio in patients with calcium stones and its relation with hypercalciuria and phospho-calcium metabolism. Cross-sectional study including 143 patients divided into two groups according to fasting calcium/creatinine. Group 1: 66 patients (calcium/ creatinine<0.11); Group 2: 77 patients (calcium/ creatinine>0.11). A comparative study is performed between groups including phospho-calcium metabolism parameters and excretion of urinary lithogenic markers. Linear correlation studying calciuria and fasting calcium/ creatinine was performed. SPSS 17.0 statistical analysis software was used, considering p≤0.05. It is noteworthy that group 2 had increased 24 h urine calcium excretion in comparison to group 1 (229.3 vs 158.1; p=0.0001) and calcium/citrate (0.47 vs 0.34; p=0.001). There is a positive and significant correlation between calcium levels in 24 h urine and fasting calcium/creatinine (R=0.455; p=0.0001) and a cutoff is set at 0.127 (sensitivity 72%, specificity 66%) to determine hypercalciuria (>260 mg in 24 h). Increased fasting calcium/creatinine determines increased 24 hours calcium excretion, although the sensitivity and specificity to determine hypercalciuria is not high.

  11. Long noncoding RNA MALAT1 regulates generation of reactive oxygen species and the insulin responses in male mice.

    PubMed

    Chen, Jingshu; Ke, Sui; Zhong, Lei; Wu, Jing; Tseng, Alexander; Morpurgo, Benjamin; Golovko, Andrei; Wang, Gang; Cai, James J; Ma, Xi; Li, Defa; Tian, Yanan

    2018-06-01

    The metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is a long noncoding RNA and its overexpression is associated with the development of many types of malignancy. MALAT1 null mice show no overt phenotype. However, in transcriptome analysis of MALAT1 null mice we found significant upregulation of nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) regulated antioxidant genes including Nqo1 and Cat with significant reduction in reactive oxygen species (ROS) and greatly reduced ROS-generated protein carbonylation in hepatocyte and islets. We performed lncRNA pulldown assay using biotinylated antisense oligonucleotides against MALAT1 and found MALAT1 interacted with Nrf2, suggesting Nrf2 is transcriptionally regulated by MALAT1. Exposure to excessive ROS has been shown to cause insulin resistance through activation of c-Jun N-terminal kinase (JNK) which leads to inhibition of insulin receptor substrate 1 (IRS-1) and insulin-induced phosphorylation of serine/threonine kinase Akt. We found MALAT1 ablation suppressed JNK activity with concomitant insulin-induced activation of IRS-1 and phosphorylation of Akt suggesting MALAT1 regulated insulin responses. MALAT1 null mice exhibited sensitized insulin-signaling response to fast-refeeding and glucose/insulin challenges and significantly increased insulin secretion in response to glucose challenge in isolated MALAT1 null islets, suggesting an increased insulin sensitivity. In summary, we demonstrate that MALAT1 plays an important role in regulating insulin sensitivity and has the potential as a therapeutic target for the treatment of diabetes as well as other diseases caused by excessive exposure to ROS. Copyright © 2018. Published by Elsevier Inc.

  12. Prognostic value of long noncoding RNA MALAT1 in digestive system malignancies.

    PubMed

    Zhai, Hui; Li, Xiao-Mei; Maimaiti, Ailifeire; Chen, Qing-Jie; Liao, Wu; Lai, Hong-Mei; Liu, Fen; Yang, Yi-Ning

    2015-01-01

    MALAT1, a newly discovered long noncoding RNA (lncRNA), has been reported to be highly expressed in many types of cancers. This meta-analysis summarizes its potential prognostic value in digestive system malignancies. A quantitative meta-analysis was performed through a systematic search in PubMed, Cochrane Library, Web of Science and Chinese National Knowledge Infrastructure (CNKI) for eligible papers on the prognostic impact of MALAT1 in digestive system malignancies from inception to Apr. 25, 2015. Pooled hazard ratios (HRs) with 95% confidence interval (95% CI) were calculated to summarize the effect. Five studies were included in the study, with a total of 527 patients. A significant association was observed between MALAT1 abundance and poor overall survival (OS) of patients with digestive system malignancies, with pooled hazard ratio (HR) of 7.68 (95% confidence interval [CI]: 4.32-13.66, P<0.001). Meta sensitivity analysis suggested the reliability of our findings. No publication bias was observed. MALAT1 abundance may serve as a novel predictive factor for poor prognosis in patients with digestive system malignancies.

  13. Metabolic engineering of Aspergillus oryzae for efficient production of l-malate directly from corn starch.

    PubMed

    Liu, Jingjing; Li, Jianghua; Shin, Hyun-Dong; Du, Guocheng; Chen, Jian; Liu, Long

    2017-11-20

    l-Malate, an important chemical building block, has been widely applied in the food, pharmaceutical, and bio-based materials industries. In previous work, we engineered Aspergillus oryzae by rewiring the reductive tricarboxylic acid pathway to produce l-malate from glucose. To decrease the production cost, here, we further engineered A. oryzae to efficiently produce l-malate directly from corn starch with simultaneous liquefaction-saccharification and fermentation. First, a promoter PN5 was constructed by quintuple tandem of the 97-bp fragment containing the cis-element of the glucoamylase gene promoter (PglaA), and with the promoter PN5, the transcriptional level of glaA gene increased by 25-45%. Then, by co-overexpression of glaA, a-amylase (amyB) and a-glucosidase (agdA) genes with the promoter PN5, the l-malate titer increased from 55.5g/L to 72.0g/L with 100g/L corn starch in shake flask. In addition, to reduce the concentration of byproducts succinate and fumarate, a fumarase from Saccharomyces cerevisiae, which facilitated the transformation of fumarate to l-malate, was overexpressed. As a result, the concentration of succinate and fumarate decreased from 12.6 and 1.29g/L to 7.8 and 0.59g/L, and the l-malate titer increased from 72.0g/L to 78.5g/L. Finally, we found that the addition of glucose at the initial fermentation stage facilitated the cell growth and l-malate synthesis, and the l-malate titer further increased to 82.3g/L by co-fermentation of 30g/L glucose and 70g/L corn starch, with a productivity of 1.18g/L/h and a yield of 0.82g/g total carbon sources. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Metabolism of Citrate and Other Carboxylic Acids in Erythrocytes As a Function of Oxygen Saturation and Refrigerated Storage

    PubMed Central

    Nemkov, Travis; Sun, Kaiqi; Reisz, Julie A.; Yoshida, Tatsuro; Dunham, Andrew; Wen, Edward Y.; Wen, Alexander Q.; Roach, Rob C.; Hansen, Kirk C.; Xia, Yang; D’Alessandro, Angelo

    2017-01-01

    State-of-the-art proteomics technologies have recently helped to elucidate the unanticipated complexity of red blood cell metabolism. One recent example is citrate metabolism, which is catalyzed by cytosolic isoforms of Krebs cycle enzymes that are present and active in mature erythrocytes and was determined using quantitative metabolic flux analysis. In previous studies, we reported significant increases in glycolytic fluxes in red blood cells exposed to hypoxia in vitro or in vivo, an observation relevant to transfusion medicine owing to the potential benefits associated with hypoxic storage of packed red blood cells. Here, using a combination of steady state and quantitative tracing metabolomics experiments with 13C1,2,3-glucose, 13C6-citrate, 13C515N2-glutamine, and 13C1-aspartate via ultra-high performance liquid chromatography coupled on line with mass spectrometry, we observed that hypoxia in vivo and in vitro promotes consumption of citrate and other carboxylates. These metabolic reactions are theoretically explained by the activity of cytosolic malate dehydrogenase 1 and isocitrate dehydrogenase 1 (abundantly represented in the red blood cell proteome), though moonlighting functions of additional enzymes cannot be ruled out. These observations enhance understanding of red blood cell metabolic responses to hypoxia, which could be relevant to understand systemic physiological and pathological responses to high altitude, ischemia, hemorrhage, sepsis, pulmonary hypertension, or hemoglobinopathies. Results from this study will also inform the design and testing of novel additive solutions that optimize red blood cell storage under oxygen-controlled conditions. PMID:29090212

  15. Metabolism of Citrate and Other Carboxylic Acids in Erythrocytes As a Function of Oxygen Saturation and Refrigerated Storage.

    PubMed

    Nemkov, Travis; Sun, Kaiqi; Reisz, Julie A; Yoshida, Tatsuro; Dunham, Andrew; Wen, Edward Y; Wen, Alexander Q; Roach, Rob C; Hansen, Kirk C; Xia, Yang; D'Alessandro, Angelo

    2017-01-01

    State-of-the-art proteomics technologies have recently helped to elucidate the unanticipated complexity of red blood cell metabolism. One recent example is citrate metabolism, which is catalyzed by cytosolic isoforms of Krebs cycle enzymes that are present and active in mature erythrocytes and was determined using quantitative metabolic flux analysis. In previous studies, we reported significant increases in glycolytic fluxes in red blood cells exposed to hypoxia in vitro or in vivo , an observation relevant to transfusion medicine owing to the potential benefits associated with hypoxic storage of packed red blood cells. Here, using a combination of steady state and quantitative tracing metabolomics experiments with 13 C 1,2,3 -glucose, 13 C 6 -citrate, 13 C 5 15 N 2 -glutamine, and 13 C 1 -aspartate via ultra-high performance liquid chromatography coupled on line with mass spectrometry, we observed that hypoxia in vivo and in vitro promotes consumption of citrate and other carboxylates. These metabolic reactions are theoretically explained by the activity of cytosolic malate dehydrogenase 1 and isocitrate dehydrogenase 1 (abundantly represented in the red blood cell proteome), though moonlighting functions of additional enzymes cannot be ruled out. These observations enhance understanding of red blood cell metabolic responses to hypoxia, which could be relevant to understand systemic physiological and pathological responses to high altitude, ischemia, hemorrhage, sepsis, pulmonary hypertension, or hemoglobinopathies. Results from this study will also inform the design and testing of novel additive solutions that optimize red blood cell storage under oxygen-controlled conditions.

  16. The electrokinetic behavior of calcium oxalate monohydrate in macromolecular solutions

    NASA Technical Reports Server (NTRS)

    Curreri, P. A.; Onoda, G. Y., Jr.; Finlayson, B.

    1988-01-01

    Electrophoretic mobilities were measured for calcium oxalate monohydrate (COM) in solutions containing macromolecules. Two mucopolysaccharides (sodium heparin and chrondroitin sulfate) and two proteins (positively charged lysozyme and negatively charged bovine serum albumin) were studied as adsorbates. The effects of pH, calcium oxalate surface charge (varied by calcium or oxalate ion activity), and citrate concentration were investigated. All four macromolecules showed evidence for chemical adsorption. The macromolecule concentrations needed for reversing the surface charge indicated that the mucopopolysacchrides have greater affinity for the COM surface than the proteins. The amount of proteins that can chemically adsorb appears to be limited to approximately one monomolecular layer. When the surface charge is high, an insufficient number of proteins can chemically adsorb to neutralize or reverse the surface charge. The remaining surface charge is balanced by proteins held near the surface by longer range electrostatic forces only. Citrate ions at high concentrations appear to compete effectively with the negative protein for surface sites but show no evidence for competing with the positively charged protein.

  17. Occurrence of the malate-aspartate shuttle in various tumor types.

    PubMed

    Greenhouse, W V; Lehninger, A L

    1976-04-01

    The activity of the malate-aspartate shuttle for the reoxidation of cytoplasmic reduced nicotinamide adenine dinucleotide (NADH) by mitochondria was assessed in six lines of rodent ascites tumor cells (two strains of Ehrlich ascites carcinoma, Krebs II carcinoma, Novikoff hepatoma, AS-30D hepatoma, and L1210 mouse leukemia). All the tumor cells examined showed mitochondrial reoxidation of cytoplasmic NADH, as evidenced by the accumulation of pyruvate when the cells were incubated aerobically with L-lactate. Reoxidation of cytoplasmic NADH thus generated was completely inhibited by the transaminase inhibitor aminooxyacetate. The involvement of the respiratory chain in the reoxidation of cytoplasmic NADH was demonstrated by the action of cyanide, rotenone, and antimycin A, which strongly inhibited the formation of pyruvate from added L-lactate. Compounds that inhibit the carrier-mediated entry of malate into mitochondria, such as butylmalonate, benzenetricarboxylate, and iodobenzylmalonate, also inhibited the accumulation of pyruvate from added L-lactate by the tumor cells. The maximal rate of the malate-aspartate shuttle was established by addtion of arsenite to inhibit the mitochondrial oxidation of the pyruvate formed from added lactate. The capacity of the various tumor lines for the reoxidation of cytoplasmic NADH via the malate-aspartate shuttle approaches 20% of the total respiratory rate of the cells and thus appears to be sufficient to account for the mitochondrial reoxidation of that fraction of glycolytic NADH not reoxidized by pyruvate and lactate dehydrognenase in the cytoplasm.

  18. Malate-mediated carbon catabolite repression in Bacillus subtilis involves the HPrK/CcpA pathway.

    PubMed

    Meyer, Frederik M; Jules, Matthieu; Mehne, Felix M P; Le Coq, Dominique; Landmann, Jens J; Görke, Boris; Aymerich, Stéphane; Stülke, Jörg

    2011-12-01

    Most organisms can choose their preferred carbon source from a mixture of nutrients. This process is called carbon catabolite repression. The Gram-positive bacterium Bacillus subtilis uses glucose as the preferred source of carbon and energy. Glucose-mediated catabolite repression is caused by binding of the CcpA transcription factor to the promoter regions of catabolic operons. CcpA binds DNA upon interaction with its cofactors HPr(Ser-P) and Crh(Ser-P). The formation of the cofactors is catalyzed by the metabolite-activated HPr kinase/phosphorylase. Recently, it has been shown that malate is a second preferred carbon source for B. subtilis that also causes catabolite repression. In this work, we addressed the mechanism by which malate causes catabolite repression. Genetic analyses revealed that malate-dependent catabolite repression requires CcpA and its cofactors. Moreover, we demonstrate that HPr(Ser-P) is present in malate-grown cells and that CcpA and HPr interact in vivo in the presence of glucose or malate but not in the absence of a repressing carbon source. The formation of the cofactor HPr(Ser-P) could be attributed to the concentrations of ATP and fructose 1,6-bisphosphate in cells growing with malate. Both metabolites are available at concentrations that are sufficient to stimulate HPr kinase activity. The adaptation of cells to environmental changes requires dynamic metabolic and regulatory adjustments. The repression strength of target promoters was similar to that observed in steady-state growth conditions, although it took somewhat longer to reach the second steady-state of expression when cells were shifted to malate.

  19. Oxaloacetate Transport into Plant Mitochondria1

    PubMed Central

    Hanning, Iris; Baumgarten, Katharina; Schott, Karin; Heldt, Hans W.

    1999-01-01

    The properties of oxaloacetate (OA) transport into mitochondria from potato (Solanum tuberosum) tuber and pea (Pisum sativum) leaves were studied by measuring the uptake of 14C-labeled OA into liposomes with incorporated mitochondrial membrane proteins preloaded with various dicarboxylates or citrate. OA was found to be transported in an obligatory counterexchange with malate, 2-oxoglutarate, succinate, citrate, or aspartate. Phtalonate inhibited all of these countertransports. OA-malate countertransport was inhibited by 4,4′-dithiocyanostilbene-2,2′-disulfonate and pyridoxal phosphate, and also by p-chloromercuribenzene sulfonate and mersalyl, indicating that a lysine and a cysteine residue of the translocator protein are involved in the transport. From these and other inhibition studies, we concluded that plant mitochondria contain an OA translocator that differs from all other known mitochondrial translocators. Major functions of this translocator are the export of reducing equivalents from the mitochondria via the malate-OA shuttle and the export of citrate via the citrate-OA shuttle. In the cytosol, citrate can then be converted either into 2-oxoglutarate for use as a carbon skeleton for nitrate assimilation or into acetyl-coenzyme A for use as a precursor for fatty acid elongation or isoprenoid biosynthesis. PMID:10069840

  20. Quantitative Mineralogical Composition of Calculi and Urine Abnormalities for Calcium Oxalate Stone Formers: A Single-Center Results.

    PubMed

    Kustov, Andrey V; Strelnikov, Alexander I

    2018-05-03

    The paper focuses on the relationship of risk factors and metabolic disorders with mineralogical composition of calculi, age and gender of calcium oxalate stone formers. Stone mineralogical composition, 24 hour biochemistry and pH-profile of urine were examined for sixty four stone formers using powder X-ray diffraction, spectrophotometric and potentiometric techniques. The analysis indicated that 44 % of calculi were composed of pure calcium oxalate monohydrate, whereas other 56 % contained both monohydrate and dihydrate or usually their mixtures with hydroxyl apatite. Hypocitraturia, hypercalciuria and hyperuricosuria were identified as the most frequent disorders. Patients with pure calcium oxalate stones and calcium oxalate mixed with apatite revealed different patterns including age, acid-base balance of urine, calcium, citrate excretion etc.Conclusions: Our results demonstrate that most patients simultaneously reveal several risk factors. The special attention should be paid to normalize the daily citrate, calcium and urate excretion. High risk patients, such as postmenopausal females or stone formers with a high apatite content require a specific metabolic evaluation towards in highlighting abnormalities associated with stone formation.

  1. Prognostic value of long noncoding RNA MALAT1 in digestive system malignancies

    PubMed Central

    Zhai, Hui; Li, Xiao-Mei; Maimaiti, Ailifeire; Chen, Qing-Jie; Liao, Wu; Lai, Hong-Mei; Liu, Fen; Yang, Yi-Ning

    2015-01-01

    Background: MALAT1, a newly discovered long noncoding RNA (lncRNA), has been reported to be highly expressed in many types of cancers. This meta-analysis summarizes its potential prognostic value in digestive system malignancies. Methods: A quantitative meta-analysis was performed through a systematic search in PubMed, Cochrane Library, Web of Science and Chinese National Knowledge Infrastructure (CNKI) for eligible papers on the prognostic impact of MALAT1 in digestive system malignancies from inception to Apr. 25, 2015. Pooled hazard ratios (HRs) with 95% confidence interval (95% CI) were calculated to summarize the effect. Results: Five studies were included in the study, with a total of 527 patients. A significant association was observed between MALAT1 abundance and poor overall survival (OS) of patients with digestive system malignancies, with pooled hazard ratio (HR) of 7.68 (95% confidence interval [CI]: 4.32-13.66, P<0.001). Meta sensitivity analysis suggested the reliability of our findings. No publication bias was observed. Conclusions: MALAT1 abundance may serve as a novel predictive factor for poor prognosis in patients with digestive system malignancies. PMID:26770406

  2. Does Citrulline Malate Enhance Physical Performance

    DTIC Science & Technology

    2010-10-01

    Jakeman, P.M. (2010). Citrulline malate enhances athletic anaerobic performance and relieves muscle soreness. Journal of Strength and Conditioning...returned for their third and final VO2 max test. VO2max, lactate threshold , maximum watts reached, ratings of perceived exertion and pre- and post...7 Figure 7. Lactate threshold (as % of VO2max) for all three conditions

  3. Effects of sodium citrate, citric acid and lactic acid on human blood coagulation.

    PubMed

    Scaravilli, Vittorio; Di Girolamo, Luca; Scotti, Eleonora; Busana, Mattia; Biancolilli, Osvaldo; Leonardi, Patrizia; Carlin, Andrea; Lonati, Caterina; Panigada, Mauro; Pesenti, Antonio; Zanella, Alberto

    2018-05-01

    Citric acid infusion in extracorporeal blood may allow concurrent regional anticoagulation and enhancement of extracorporeal CO 2 removal. Effects of citric acid on human blood thromboelastography and aggregometry have never been tested before. In this in vitro study, citric acid, sodium citrate and lactic acid were added to venous blood from seven healthy donors, obtaining concentrations of 9 mEq/L, 12 mEq/L and 15 mEq/L. We measured gas analyses, ionized calcium (iCa ++ ) concentration, activated clotting time (ACT), thromboelastography and multiplate aggregometry. Repeated measure analysis of variance was used to compare the acidifying and anticoagulant properties of the three compounds. Sodium citrate did not affect the blood gas analysis. Increasing doses of citric and lactic acid progressively reduced pH and HCO 3 - and increased pCO 2 (p<0.001). Sodium citrate and citric acid similarly reduced iCa ++ , from 0.39 (0.36-0.39) and 0.35 (0.33-0.36) mmol/L, respectively, at 9 mEq/L to 0.20 (0.20-0.21) and 0.21 (0.20-0.23) mmol/L at 15 mEq/L (p<0.001). Lactic acid did not affect iCa ++ (p=0.07). Sodium citrate and citric acid similarly incremented the ACT, from 234 (208-296) and 202 (178-238) sec, respectively, at 9 mEq/L, to >600 sec at 15 mEq/L (p<0.001). Lactic acid did not affect the ACT values (p=0.486). Sodium citrate and citric acid similarly incremented R-time and reduced α-angle and maximum amplitude (MA) (p<0.001), leading to flat-line thromboelastograms at 15 mEq/L. Platelet aggregometry was not altered by any of the three compounds. Citric acid infusions determine acidification and anticoagulation of blood similar to lactic acid and sodium citrate, respectively.

  4. Calciuric effects of short-term dietary loading of protein, sodium chloride and potassium citrate in prepubescent girls.

    PubMed

    Duff, T L; Whiting, S J

    1998-04-01

    Studies using adult human subjects indicate that dietary protein and sodium chloride have negative effects on the retention of calcium by increasing urinary calcium excretion, while alkaline potassium improves calcium retention along with decreasing urinary calcium losses. This study investigated the effect of these dietary factors on acute urinary calcium excretion in 14 prepubescent girls age 6.7 to 10.0 years. Subjects provided a fasting urine sample then consumed a meal containing one of five treatments: moderate protein (MP) providing 11.8 g protein, moderate protein plus 26 mmol sodium chloride (MP+Na), high protein (HP) providing 28.8 g protein, high protein plus 26 mmol sodium chloride (HP+Na), or high protein plus 32 mmol potassium as tripotassium citrate (HP+K). Urine was collected at 1.5 and 3.0 hours after the meal. Supplemental protein was given as 80:20 casein:lactalbumin. Test meals were isocaloric, and unless intentionally altered, components of interest except phosphate were equal between treatments. Each subject completed all five treatments. Urinary calcium excretion rose after the meal, peaking at 1.5 hours. There were no significant differences in calcium excretion between treatments at any time point. The high protein treatments did not result in a significant increase in either net acid or sulfate excretion at 1.5 hours compared to moderate protein. Dietary sodium chloride had no effect on urinary sodium or calcium excretion over the 3 hours. After the potassium treatment, sodium excretion increased (p< or =0.002) and net acid excretion decreased (p<0.001) compared to other treatments at 1.5 hours. In children, a simultaneous increase in protein and phosphorus due to increased milk protein intake did not increase acute urinary calcium excretion. An effect of dietary sodium chloride on acute urinary calcium excretion was not observed. Both these findings were similar to those of adult studies previously conducted in the same laboratory using

  5. Respiratory properties and malate metabolism in Percoll-purified mitochondria isolated from pineapple, Ananas comosus (L.) Merr. cv. smooth cayenne.

    PubMed

    Hong, Hoang Thi Kim; Nose, Akihiro; Agarie, Sakae

    2004-10-01

    An investigation was made of the respiratory properties and the role of the mitochondria isolated from one phosphoenolpyruvate carboxykinase (PCK)-CAM plant Ananas comosus (pineapple) in malate metabolism during CAM phase III. Pineapple mitochondria showed very high malate dehydrogenase (MDH), and low malic enzyme (ME) and glutamate-oxaloacetate transaminase (GOT) activities. The mitochondria readily oxidized succinate and NADH with high rates and coupling, while they only oxidized NADPH in the presence of Ca(2+). Pineapple mitochondria oxidized malate with low rates under most assay conditions, despite increasing malate concentrations, optimizing pH, providing cofactors such as coenzyme A, thiamine pyrophosphate, and NAD(+), and supplying individually external glutamate or GOT. However, providing glutamate and GOT simultaneously strongly increased the rates of malate oxidation. The OAA easily permeated the mitochondrial membranes to import into or export out of pineapple mitochondria during malate oxidation, but the mitochondria did not consume external Asp or alpha-KG. These results suggest that OAA played a significant role in the mitochondrial malate metabolism of pineapple, in which malate was mainly oxidized by active mMDH to produce OAA which could be exported outside the mitochondria via a malate-OAA shuttle. Cytosolic GOT then consumed OAA by transamination in the presence of glutamate, leading to a large increase in respiration rates. The malate-OAA shuttle might operate as a supporting system for decarboxylation in phase III of PCK-CAM pineapple. This shuttle system may be important in pineapple to provide a source of energy and substrate OAA for cytosolic PCK activity during the day when cytosolic OAA and ATP was limited for the overall decarboxylation process.

  6. Altered Expression of a Malate-Permeable Anion Channel, OsALMT4, Disrupts Mineral Nutrition1[OPEN

    PubMed Central

    Delhaize, Emmanuel

    2017-01-01

    Aluminum-activated malate transporters (ALMTs) form a family of anion channels in plants, but little is known about most of its members. This study examined the function of OsALMT4 from rice (Oryza sativa). We show that OsALMT4 is expressed in roots and shoots and that the OsALMT4 protein localizes to the plasma membrane. Transgenic rice lines overexpressing (OX) OsALMT4 released malate from the roots constitutively and had 2-fold higher malate concentrations in the xylem sap than nulls, indicating greater concentrations of malate in the apoplast. OX lines developed brown necrotic spots on the leaves that did not appear on nulls. These symptoms were not associated with altered concentrations of any mineral element in the leaves, although the OX lines had higher concentrations of Mn and B in their grain compared with nulls. While total leaf Mn concentrations were not different between the OX and null lines, Mn concentrations in the apoplast were greater in the OX plants. The OX lines also displayed increased expression of Mn transporters and were more sensitive to Mn toxicity than null plants. We showed that the growth of wild-type rice was unaffected by 100 µm Mn in hydroponics but, when combined with 1 mm malate, this concentration inhibited growth. We conclude that increasing OsALMT4 expression affected malate efflux and compartmentation within the tissues, which increased Mn concentrations in the apoplast of leaves and induced the toxicity symptoms. This study reveals new links between malate transport and mineral nutrition. PMID:29101278

  7. High expression of long non-coding RNA MALAT1 in breast cancer is associated with poor relapse-free survival.

    PubMed

    Wang, Zhanwei; Katsaros, Dionyssios; Biglia, Nicoletta; Shen, Yi; Fu, Yuanyuan; Loo, Lenora W M; Jia, Wei; Obata, Yuki; Yu, Herbert

    2018-05-29

    Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) has been identified as a prognostic marker for the metastasis of early-stage non-small cell lung cancer (NSCLCs). We studied MALAT1 expression in breast cancer in relation to disease features and patient survival. Quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) was used to measure MALAT1 expression in tumor samples of 509 breast cancer patients. Hazards ratios (HRs) and 95% confidence intervals (CIs) were calculated to assess the association between MALAT1 expression and breast cancer survival using the Cox proportional hazards regression model, and the analysis was adjusted for age at surgery, tumor grade, disease stage, and hormone receptor status. Meta-analysis of multiple microarray datasets from online databases and our own study was performed to evaluate the association of MALAT1 with breast cancer survival. Patients with low-grade or ER-positive tumors had higher expression of MALAT1 compared to those with high-grade (p = 0.013) or ER-negative (p = 0.0002) tumors. Patients with PR-positive tumors also had higher MALAT1 expression than those with PR-negative tumors (p < 0.0001). In patients with positive hormone receptors or low tumor grade, tumors with high MALAT1 expression were more likely to recur. Survival analysis showed that patients with high expression of MALAT1 had a twofold increase in risk of relapse (p = 0.0083) compared to those with low expression. This association remained significant after adjustment for age at surgery, disease stage, tumor grade, and hormone receptor status. Meta-analysis showed that high MALAT1 expression was associated with poor relapse-free survival in patients with hormone receptor-positive tumors (HR 1.44, 95% CI 1.08-1.92). High expression of lncRNA MALAT1 is associated with breast cancer relapse and may play a role in tumor progression.

  8. Organic Acids: The Pools of Fixed Carbon Involved in Redox Regulation and Energy Balance in Higher Plants

    PubMed Central

    Igamberdiev, Abir U.; Eprintsev, Alexander T.

    2016-01-01

    Organic acids are synthesized in plants as a result of the incomplete oxidation of photosynthetic products and represent the stored pools of fixed carbon accumulated due to different transient times of conversion of carbon compounds in metabolic pathways. When redox level in the cell increases, e.g., in conditions of active photosynthesis, the tricarboxylic acid (TCA) cycle in mitochondria is transformed to a partial cycle supplying citrate for the synthesis of 2-oxoglutarate and glutamate (citrate valve), while malate is accumulated and participates in the redox balance in different cell compartments (via malate valve). This results in malate and citrate frequently being the most accumulated acids in plants. However, the intensity of reactions linked to the conversion of these compounds can cause preferential accumulation of other organic acids, e.g., fumarate or isocitrate, in higher concentrations than malate and citrate. The secondary reactions, associated with the central metabolic pathways, in particularly with the TCA cycle, result in accumulation of other organic acids that are derived from the intermediates of the cycle. They form the additional pools of fixed carbon and stabilize the TCA cycle. Trans-aconitate is formed from citrate or cis-aconitate, accumulation of hydroxycitrate can be linked to metabolism of 2-oxoglutarate, while 4-hydroxy-2-oxoglutarate can be formed from pyruvate and glyoxylate. Glyoxylate, a product of either glycolate oxidase or isocitrate lyase, can be converted to oxalate. Malonate is accumulated at high concentrations in legume plants. Organic acids play a role in plants in providing redox equilibrium, supporting ionic gradients on membranes, and acidification of the extracellular medium. PMID:27471516

  9. The effect of intranasal sodium citrate on olfaction in post-infectious loss: results from a prospective, placebo-controlled trial in 49 patients.

    PubMed

    Whitcroft, K L; Ezzat, M; Cuevas, M; Andrews, P; Hummel, T

    2017-06-01

    Free calcium plays an integral role in peripheral olfactory processing, including feedback inhibition. It has therefore been suggested that reduction of intranasal free calcium with buffer solutions such as sodium citrate may improve olfactory function in patients with smell impairment. Several previous studies have supported this hypothesis, particularly in post-infectious olfactory loss. We therefore aimed to determine whether treatment with intranasal sodium citrate improves olfactory function in patients with post-infectious impairment. Prospective, single-blind, placebo-controlled trial. Interdisciplinary Smell and Taste Clinic, TU Dresden (tertiary referral centre). Forty-nine adult participants with post-infectious olfactory impairment (M : F = 11 : 38, mean age 58.71 ± 11.03 years). Olfactory function (odour threshold and identification) before and after treatment as determined using "Sniffin' Sticks". Patients were treated monorhinally with 1 mL sodium citrate solution. The contralateral nasal cavity was treated with 1 mL physiological sodium chloride solution, which acted as internal control. Clinical improvement was assumed where threshold or identification score increased by ≥2.5 or 3 points, respectively, or ≥5.5 points together. We demonstrated a statistically significant improvement in composite threshold + identification scores following treatment with sodium citrate, compared with placebo. This was true for all patients (mean improvement 0.87 ± 2.68 points, P = 0.04), and on subgroup analysis in those with hyposmia (mean improvement 1.15 ± 2.37 points, P = 0.02). However, the effect size did not reach clinical significance. Further basic and clinical work is required to fully delineate the effect of intranasal sodium citrate in the treatment of post-infectious olfactory loss. © 2016 John Wiley & Sons Ltd.

  10. Day-night variations in malate concentration, osmotic pressure, and hydrostatic pressure in Cereus validus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luettge, U.; Nobel, P.S.

    1984-07-01

    Malate concentration and stem osmotic pressure concomitantly increase during nighttime CO/sub 2/ fixation and then decrease during the daytime in the obligate Crassulacean acid metabolism (CAM) plant, Cereus validus (Cactaceae). Changes in malate osmotic pressure calculated using the Van't Hoff relation match the changes in stem osmotic pressure, indicating that changes in malate level affected the water relations of the succulent stems. In contrast to stem osmotic pressure, stem water potential showed little day-night changes, suggesting that changes in cellular hydrostatic pressure occurred. This was corroborated by direct measurements of hydrostatic pressure using the Juelich pressure probe where a smallmore » oil-filled micropipette is inserted directly into chlorenchyma cells, which indicated a 4-fold increase in hydrostatic pressure from dusk to dawn. A transient increase of hydrostatic pressure at the beginning of the dark period was correlated with a short period of stomatal closing between afternoon and nighttime CO/sub 2/ fixation, suggesting that the rather complex hydrostatic pressure patterns could be explained by an interplay between the effects of transpiration and malate levels. A second CAM plant, Agave deserti, showed similar day-night changes in hydrostatic pressure in its succulent leaves. It is concluded that, in addition to the inverted stomatal rhythm, the oscillations of malate markedly affect osmotic pressures and hence water relations of CAM plants. 13 references, 4 figures.« less

  11. Expression of long noncoding RNA MALAT1 correlates with increased levels of Nischarin and inhibits oncogenic cell functions in breast cancer.

    PubMed

    Eastlack, Steven C; Dong, Shengli; Mo, Yin Y; Alahari, Suresh K

    2018-01-01

    Malat1 is a long noncoding RNA with a wide array of functions, including roles in regulating cancer cell migration and metastasis. However, the nature of its involvement in control of these oncogenic processes is incompletely understood. In the present study, we investigate the role of Malat1 and the effects of Malat1 KO in a breast cancer cell model. Our selection of Malat1 as the subject of inquiry followed initial screening experiments seeking to identify lncRNAs which are altered in the presence or absence of Nischarin, a gene of interest previously discovered by our lab. Nischarin is a well characterized tumor suppressor protein and actively represses cell proliferation, migration, and invasion in breast cancer. Our microarray screen for lncRNAs revealed multiple lncRNAs to be significantly elevated in cells ectopically expressing Nischarin compared to control cancer cells, which have only marginal Nisch expression. Using these cells, we assess how the link between Nischarin and Malat1 affects cancer cell function, finding that Malat1 confers an inhibitory effect on cell growth and migration which is lost following Malat1 KO, but in a Nisch-dependent context. Specifically, Malat1 KO in the background of low Nischarin expression had a limited effect on cell functions, while Malat1 KO in cells with high levels of Nischarin led to significant increases in cell proliferation and migration. In summary, this project provides further clarity concerning the function of Malat1, specifically in breast cancer, while also indicating that the Nischarin expression context is an important factor in the determining how Malat1 activity is governed in breast cancer.

  12. Antioxidant properties of polysaccharide from the brown seaweed Sargassum graminifolium (Turn.), and its effects on calcium oxalate crystallization.

    PubMed

    Zhang, Chao-Yan; Wu, Wen-Hui; Wang, Jue; Lan, Min-Bo

    2012-01-01

    We investigated the effects of polysaccharides from the brown seaweed Sargassum graminifolium (Turn.) (SGP) on calcium oxalate crystallization, and determined its antioxidant activities. To examine the effects of SGP on calcium oxalate crystallization, we monitored nucleation and aggregation of calcium oxalate monohydrate crystals, using trisodium citrate as a positive control. We assessed antioxidant activities of SGP by determining its reducing power, its ability to scavenge superoxide radicals, and its activity in the 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay. The nucleation inhibition ratio of trisodium citrate and SGP was 58.5 and 69.2%, respectively, and crystal aggregation was inhibited by 71.4 and 76.8%, respectively. Increasing concentrations of SGP resulted in increased scavenging of superoxide anions and DPPH radicals (IC₅₀ = 1.9 and 0.6 mg/mL, respectively). These results suggest that SGP could be a candidate for treating urinary stones because of its ability to inhibit calcium oxalate crystallization and its antioxidant properties.

  13. Antioxidant Properties of Polysaccharide from the Brown Seaweed Sargassum graminifolium (Turn.), and Its Effects on Calcium Oxalate Crystallization

    PubMed Central

    Zhang, Chao-Yan; Wu, Wen-Hui; Wang, Jue; Lan, Min-Bo

    2012-01-01

    We investigated the effects of polysaccharides from the brown seaweed Sargassum graminifolium (Turn.) (SGP) on calcium oxalate crystallization, and determined its antioxidant activities. To examine the effects of SGP on calcium oxalate crystallization, we monitored nucleation and aggregation of calcium oxalate monohydrate crystals, using trisodium citrate as a positive control. We assessed antioxidant activities of SGP by determining its reducing power, its ability to scavenge superoxide radicals, and its activity in the 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay. The nucleation inhibition ratio of trisodium citrate and SGP was 58.5 and 69.2%, respectively, and crystal aggregation was inhibited by 71.4 and 76.8%, respectively. Increasing concentrations of SGP resulted in increased scavenging of superoxide anions and DPPH radicals (IC50 = 1.9 and 0.6 mg/mL, respectively). These results suggest that SGP could be a candidate for treating urinary stones because of its ability to inhibit calcium oxalate crystallization and its antioxidant properties. PMID:22363225

  14. Long non-coding RNA MALAT1 modulates radiosensitivity of HR-HPV+ cervical cancer via sponging miR-145.

    PubMed

    Lu, Hongzhi; He, Yu; Lin, Lin; Qi, Zhengqin; Ma, Li; Li, Li; Su, Ying

    2016-02-01

    Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is a lncRNA playing oncogenic role in several cancers, including cervical cancer. However, its role in radiosensitivity of cervical cancer is not yet well understood. This study explored the role of MALAT1 in radiosensitivity of high-risk human papillomavirus (HR-HPV)-positive cervical cancer and whether there is a ceRNA mechanism which participated in its regulation over radiosensitivity. Based on tissue samples from 50 cervical cancer cases and 25 healthy controls, we found MALAT1 expression was significantly higher in radioresistant than in radiosensitive cancer cases. In addition, MALAT1 and miR-145 expression inversely changed in response to irradiation in HR-HPV+ cervical cancer cells. By using clonogenic assay and flow cytometry analysis of cell cycle distribution and apoptosis, we found CaSki and Hela cells with knockdown of MALAT1 had significantly lower colony formation, higher ratio of G2/M phase block and higher ratio of cell apoptosis. By performing RNA-binding protein immunoprecipitation (RIP) assay and RNA pull-down assay, we confirmed that miR-145 and MALAT1 were in the same Ago2 complex and there was a reciprocal repression between them. Then, we explored the function of MALAT1-miR-145 in radiosensitivity of cervical cancers cells and demonstrated that si-MALAT1 and miR-145 had some level of synergic effect in reducing cancer cell colony formation, cell cycle regulation, and inducing apoptosis. These findings provide an important clue about microRNA-lncRNA interaction in the mechanism of radioresistance of cervical cancer.

  15. MALAT1-miR-124-RBG2 axis is involved in growth and invasion of HR-HPV-positive cervical cancer cells.

    PubMed

    Liu, Shikai; Song, Lili; Zeng, Saitian; Zhang, Liang

    2016-01-01

    Metastasis-associated lung adenocarcinoma transcript 1 (MALAT 1) is a large, infrequently spliced non-coding RNA aberrantly expressed in cervical cancer. But the molecular mechanisms of its oncogenic role are still not quite clear. The present study explored whether there is a competing endogenous RNAs (ceRNAs) mechanism involved in the oncogenic effect of MALAT1. MALAT1 expression was firstly verified in high-risk human papillomavirus (HR-HPV)-positive tumor tissues and cell lines. Its regulation over miR-124 and the downstream target of miR-124 in regulation of growth, invasion, and apoptosis of the cancer cells are also studied. Findings of this study confirmed higher MALAT1 expression in HR-HPV (+) cervical cancer. Knockdown of endogenous MALAT1 significantly reduced cell growth rate and invasion and increased cell apoptosis of Hela and siHa cells. Besides, knockdown of MALAT1 increased the expression of miRNA-124, while ectopic expression of miR-124 decreased MALAT1 expression. In addition, we also verified a direct interaction between miR-124 and 3'UTR of GRB2. MALAT1 can indirectly modulate GRB2 expression via competing miR-124. Knockdown of GRB2 reduced cell invasion and increased cell apoptosis. In conclusion, MALAT1 can promote HR-HPV (+) cancer cell growth and invasion at least partially through the MALAT1-miR-124-RBG2 axis. This finding might provide some useful evidence about the lncRNA interaction regulatory network in tumorigenesis cervical cancer.

  16. WIF1 re-expression in glioblastoma inhibits migration through attenuation of non-canonical WNT signaling by downregulating the lncRNA MALAT1.

    PubMed

    Vassallo, I; Zinn, P; Lai, M; Rajakannu, P; Hamou, M-F; Hegi, M E

    2016-01-07

    Glioblastoma is the most aggressive primary brain tumor in adults and due to the invasive nature cannot be completely removed. The WNT inhibitory factor 1 (WIF1), a secreted inhibitor of WNTs, is systematically downregulated in glioblastoma and acts as strong tumor suppressor. The aim of this study was the dissection of WIF1-associated tumor-suppressing effects mediated by canonical and non-canonical WNT signaling. We found that WIF1 besides inhibiting the canonical WNT pathway selectively downregulates the WNT/calcium pathway associated with significant reduction of p38-MAPK (p38-mitogen-activated protein kinase) phosphorylation. Knockdown of WNT5A, the only WNT ligand overexpressed in glioblastoma, phenocopied this inhibitory effect. WIF1 expression inhibited cell migration in vitro and in an orthotopic brain tumor model, in accordance with the known regulatory function of the WNT/Ca(2+) pathway on migration and invasion. In search of a mediator for this function differential gene expression profiles of WIF1-expressing cells were performed. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), a long non-coding RNA and key positive regulator of invasion, emerged as the top downregulated gene. Indeed, knockdown of MALAT1 reduced migration in glioblastoma cells, without effect on proliferation. Hence, loss of WIF1 enhances the migratory potential of glioblastoma through WNT5A that activates the WNT/Ca(2+) pathway and MALAT1. These data suggest the involvement of canonical and non-canonical WNT pathways in glioblastoma promoting key features associated with this deadly disease, proliferation on one hand and invasion on the other. Successful targeting will require a dual strategy affecting both canonical and non-canonical WNT pathways.

  17. The Role of Vacuolar Malate-Transport Capacity in Crassulacean Acid Metabolism and Nitrate Nutrition. Higher Malate-Transport Capacity in Ice Plant after Crassulacean Acid Metabolism-Induction and in Tobacco under Nitrate Nutrition1

    PubMed Central

    Lüttge, Ulrich; Pfeifer, Tanja; Fischer-Schliebs, Elke; Ratajczak, Rafael

    2000-01-01

    Anion uptake by isolated tonoplast vesicles was recorded indirectly via increased H+-transport by H+-pumping of the V-ATPase due to dissipation of the electrical component of the electrochemical proton gradient, ΔμH+, across the membrane. ATP hydrolysis by the V-ATPase was measured simultaneously after the Palmgren test. Normalizing for ATP-hydrolysis and effects of chloride, which was added to the assays as a stimulating effector of the V-ATPase, a parameter, Jmalrel, of apparent ATP-dependent malate-stimulated H+-transport was worked out as an indirect measure of malate transport capacity. This allowed comparison of various species and physiological conditions. Jmalrel was high in the obligate crassulacean acid metabolism (CAM) species Kalanchoë daigremontiana Hamet et Perrier, it increased substantially after CAM induction in ice plant (Mesembryanthemum crystallinum), and it was positively correlated with NO3− nutrition in tobacco (Nicotiana tabacum). For tobacco this was confirmed by measurements of malate transport energized via the V-PPase. In ice plant a new polypeptide of 32-kD apparent molecular mass appeared, and a 33-kD polypeptide showed higher levels after CAM induction under conditions of higher Jmalrel. It is concluded that tonoplast malate transport capacity plays an important role in physiological regulation in CAM and NO3− nutrition and that a putative malate transporter must be within the 32- to 33-kD polypeptide fraction of tonoplast proteins. PMID:11080309

  18. Malate transported from chloroplast to mitochondrion triggers production of ROS and PCD in Arabidopsis thaliana.

    PubMed

    Zhao, Yannan; Luo, Lilan; Xu, Jiesi; Xin, Peiyong; Guo, Hongyan; Wu, Jian; Bai, Lin; Wang, Guodong; Chu, Jinfang; Zuo, Jianru; Yu, Hong; Huang, Xun; Li, Jiayang

    2018-04-01

    Programmed cell death (PCD) is a fundamental biological process. Deficiency in MOSAIC DEATH 1 (MOD1), a plastid-localized enoyl-ACP reductase, leads to the accumulation of reactive oxygen species (ROS) and PCD, which can be suppressed by mitochondrial complex I mutations, indicating a signal from chloroplasts to mitochondria. However, this signal remains to be elucidated. In this study, through cloning and analyzing a series of mod1 suppressors, we reveal a comprehensive organelle communication pathway that regulates the generation of mitochondrial ROS and triggers PCD. We show that mutations in PLASTIDIAL NAD-DEPENDENT MALATE DEHYDROGENASE (plNAD-MDH), chloroplastic DICARBOXYLATE TRANSPORTER 1 (DiT1) and MITOCHONDRIAL MALATE DEHYDROGENASE 1 (mMDH1) can each rescue the ROS accumulation and PCD phenotypes in mod1, demonstrating a direct communication from chloroplasts to mitochondria via the malate shuttle. Further studies demonstrate that these elements play critical roles in the redox homeostasis and plant growth under different photoperiod conditions. Moreover, we reveal that the ROS level and PCD are significantly increased in malate-treated HeLa cells, which can be dramatically attenuated by knockdown of the human gene MDH2, an ortholog of Arabidopsis mMDH1. These results uncover a conserved malate-induced PCD pathway in plant and animal systems, revolutionizing our understanding of the communication between organelles.

  19. Malate-Mediated Carbon Catabolite Repression in Bacillus subtilis Involves the HPrK/CcpA Pathway ▿ §

    PubMed Central

    Meyer, Frederik M.; Jules, Matthieu; Mehne, Felix M. P.; Le Coq, Dominique; Landmann, Jens J.; Görke, Boris; Aymerich, Stéphane; Stülke, Jörg

    2011-01-01

    Most organisms can choose their preferred carbon source from a mixture of nutrients. This process is called carbon catabolite repression. The Gram-positive bacterium Bacillus subtilis uses glucose as the preferred source of carbon and energy. Glucose-mediated catabolite repression is caused by binding of the CcpA transcription factor to the promoter regions of catabolic operons. CcpA binds DNA upon interaction with its cofactors HPr(Ser-P) and Crh(Ser-P). The formation of the cofactors is catalyzed by the metabolite-activated HPr kinase/phosphorylase. Recently, it has been shown that malate is a second preferred carbon source for B. subtilis that also causes catabolite repression. In this work, we addressed the mechanism by which malate causes catabolite repression. Genetic analyses revealed that malate-dependent catabolite repression requires CcpA and its cofactors. Moreover, we demonstrate that HPr(Ser-P) is present in malate-grown cells and that CcpA and HPr interact in vivo in the presence of glucose or malate but not in the absence of a repressing carbon source. The formation of the cofactor HPr(Ser-P) could be attributed to the concentrations of ATP and fructose 1,6-bisphosphate in cells growing with malate. Both metabolites are available at concentrations that are sufficient to stimulate HPr kinase activity. The adaptation of cells to environmental changes requires dynamic metabolic and regulatory adjustments. The repression strength of target promoters was similar to that observed in steady-state growth conditions, although it took somewhat longer to reach the second steady-state of expression when cells were shifted to malate. PMID:22001508

  20. Direct evidence that genetic variation in glycerol-3-phosphate and malate dehydrogenase genes (Gpdh and Mdh1) affects adult ethanol tolerance in Drosophila melanogaster.

    PubMed

    Eanes, Walter F; Merritt, Thomas J S; Flowers, Jonathan M; Kumagai, Seiji; Zhu, Chen-Tseh

    2009-02-01

    Many studies of alcohol adaptation in Drosophila melanogaster have focused on the Adh polymorphism, yet the metabolic elimination of alcohol should involve many enzymes and pathways. Here we evaluate the effects of glycerol-3-phosphate dehydrogenase (Gpdh) and cytosolic malate dehydrogenase (Mdh1) genotype activity on adult tolerance to ethanol. We have created a set of P-element-excision-derived Gpdh, Mdh1, and Adh alleles that generate a range of activity phenotypes from full to zero activity. Comparisons of paired Gpdh genotypes possessing 10 and 60% normal activity and 66 and 100% normal activity show significant effects where higher activity increases tolerance. Mdh1 null allele homozygotes show reductions in tolerance. We use piggyBac FLP-FRT site-specific recombination to create deletions and duplications of Gpdh. Duplications show an increase of 50% in activity and an increase of adult tolerance to ethanol exposure. These studies show that the molecular polymorphism associated with GPDH activity could be maintained in natural populations by selection related to adaptation to alcohols. Finally, we examine the interactions between activity genotypes for Gpdh, Mdh1, and Adh. We find no significant interlocus interactions. Observations on Mdh1 in both Gpdh and Adh backgrounds demonstrate significant increases in ethanol tolerance with partial reductions (50%) in cytosolic MDH activity. This observation strongly suggests the operation of pyruvate-malate and, in particular, pyruvate-citrate cycling in adaptation to alcohol exposure. We propose that an understanding of the evolution of tolerance to alcohols will require a system-level approach, rather than a focus on single enzymes.

  1. Regulation by magnesium of potato tuber mitochondrial respiratory activities.

    PubMed

    Vicente, Joaquim A F; Madeira, Vítor M C; Vercesi, Anibal E

    2004-12-01

    Dehydrogenase activities of potato tuber mitochondria and corresponding phosphorylation rates were measured for the dependence on external and mitochondrial matrix Mg2+. Magnesium stimulated state 3 and state 4 respiration, with significantly different concentrations of matrix Mg2+ required for optimal activities of the several substrates. Maximal stimulation of respiration with all substrates was obtained at 2-mM external Mg2+. However, respiration of malate, citrate, and alpha-ketoglutarate requires at least 4-mM Mg2+ inside mitochondria for maximization of dehydrogenase activities. The phosphorylation system, requires a low level of internal Mg2+ (0.25 mM) to reach high activity, as judged by succinate-dependent respiration. However, mitochondria respiring on citrate or alpha-ketoglutarate only sustain high levels of phosphorylation with at least 4-mM matrix Mg2+. Respiration of succinate is active without external and matrix Mg2+, although stimulated by the cation. Respiration of alpha-ketoglutarate was strictly dependent on external Mg2+ required for substrate transport into mitochondria, and internal Mg2+ is required for dehydrogenase activity. Respiration of citrate and malate also depend on internal Mg2+ but, unlike alpha-ketoglutarate, some activity still remains without external Mg2+. All the substrates revealed insensitive to external and internal mitochondrial Ca2+, except the exogenous NADH dehydrogenase, which requires either external Ca2+ or Mg2+ for detectable activity. Calcium is more efficient than Mg2+, both having cumulative stimulation. Unlike Ca2+, Mn2+ could substitute for Mg2+, before and after addition of A23, showing its ability to regulate phosphorylation and succinate dehydrogenase activities, with almost the same efficiency as Mg2+.

  2. Malat1 as an evolutionarily conserved lncRNA, plays a positive role in regulating proliferation and maintaining undifferentiated status of early-stage hematopoietic cells.

    PubMed

    Ma, Xian-Yong; Wang, Jian-Hui; Wang, Jing-Lan; Ma, Charles X; Wang, Xiao-Chun; Liu, Feng-Song

    2015-09-03

    The metastasis-associated lung adenocarcinoma transcription 1 (Malat1) is a highly conserved long non-coding RNA (lncRNA) gene. Previous studies showed that Malat1 is abundantly expressed in many tissues and involves in promoting tumor growth and metastasis by modulating gene expression and target protein activities. However, little is known about the biological function and regulation mechanism of Malat1 in normal cell proliferation. In this study we conformed that Malat1 is highly conserved across vast evolutionary distances amongst 20 species of mammals in terms of sequence, and found that mouse Malat1 expresses in tissues of liver, kidney, lung, heart, testis, spleen and brain, but not in skeletal muscle. After treating erythroid myeloid lymphoid (EML) cells with All-trans Retinoic Acid (ATRA), we investigated the expression and regulation of Malat1 during hematopoietic differentiation, the results showed that ATRA significantly down regulates Malat1 expression during the differentiation of EML cells. Mouse LRH (Lin-Rhodamine(low) Hoechst(low)) cells that represent the early-stage progenitor cells show a high level of Malat1 expression, while LRB (Lin - Hoechst(Low) Rhodamine(Bright)) cells that represent the late-stage progenitor cells had no detectable expression of Malat1. Knockdown experiment showed that depletion of Malat1 inhibits the EML cell proliferation. Along with the down regulation of Malat1, the tumor suppressor gene p53 was up regulated during the differentiation. Interestingly, we found two p53 binding motifs with help of bioinformatic tools, and the following chromatin immunoprecipitation (ChIP) test conformed that p53 acts as a transcription repressor that binds to Malat1's promoter. Furthermore, we testified that p53 over expression in EML cells causes down regulation of Malat1. In summary, this study indicates Malat1 plays a critical role in maintaining the proliferation potential of early-stage hematopoietic cells. In addition to its

  3. BoALMT1, an Al-Induced Malate Transporter in Cabbage, Enhances Aluminum Tolerance in Arabidopsis thaliana

    PubMed Central

    Zhang, Lei; Wu, Xin-Xin; Wang, Jinfang; Qi, Chuandong; Wang, Xiaoyun; Wang, Gongle; Li, Mingyue; Li, Xingsheng; Guo, Yang-Dong

    2018-01-01

    Aluminum (Al) is present in approximately 50% of the arable land worldwide and is regarded as the main limiting factor of crop yield on acidic soil. Al-induced root malate efflux plays an important role in the Al tolerance of plants. Here, the aluminum induced malate transporter BoALMT1 (KF322104) was cloned from cabbage (Brassica oleracea). BoALMT1 showed higher expression in roots than in shoots. The expression of BoALMT1 was specifically induced by Al treatment, but not the trivalent cations lanthanum (La), cadmium (Cd), zinc (Zn), or copper (Cu). Subcellular localization studies were performed in onion epidermal cells and revealed that BoALMT1 was localized at the plasma membrane. Scanning Ion-selective Electrode Technique was used to analyze H+ flux. Xenopus oocytes and Arabidopsis thaliana expressing BoALMT1 excreted more H+ under Al treatment. Overexpressing BoALMT1 in transgenic Arabidopsis resulted in enhanced Al tolerance and increased malate secretion. The results suggested that BoALMT1 functions as an Al-resistant gene and encodes a malate transporter. Expressing BoALMT1 in Xenopus oocytes or A. thaliana indicated that BoALMT1 could increase malate secretion and H+ efflux to resist Al tolerance. PMID:29410672

  4. BoALMT1, an Al-Induced Malate Transporter in Cabbage, Enhances Aluminum Tolerance in Arabidopsis thaliana.

    PubMed

    Zhang, Lei; Wu, Xin-Xin; Wang, Jinfang; Qi, Chuandong; Wang, Xiaoyun; Wang, Gongle; Li, Mingyue; Li, Xingsheng; Guo, Yang-Dong

    2017-01-01

    Aluminum (Al) is present in approximately 50% of the arable land worldwide and is regarded as the main limiting factor of crop yield on acidic soil. Al-induced root malate efflux plays an important role in the Al tolerance of plants. Here, the aluminum induced malate transporter BoALMT1 (KF322104) was cloned from cabbage ( Brassica oleracea ). BoALMT1 showed higher expression in roots than in shoots. The expression of BoALMT1 was specifically induced by Al treatment, but not the trivalent cations lanthanum (La), cadmium (Cd), zinc (Zn), or copper (Cu). Subcellular localization studies were performed in onion epidermal cells and revealed that BoALMT1 was localized at the plasma membrane. Scanning Ion-selective Electrode Technique was used to analyze H + flux. Xenopus oocytes and Arabidopsis thaliana expressing BoALMT1 excreted more H + under Al treatment. Overexpressing BoALMT1 in transgenic Arabidopsis resulted in enhanced Al tolerance and increased malate secretion. The results suggested that BoALMT1 functions as an Al-resistant gene and encodes a malate transporter. Expressing BoALMT1 in Xenopus oocytes or A. thaliana indicated that BoALMT1 could increase malate secretion and H+ efflux to resist Al tolerance.

  5. Are phloem-derived amino acids the origin of the elevated malate concentration in the xylem sap following mineral N starvation in soybean?

    PubMed

    Vitor, Simone C; do Amarante, Luciano; Sodek, Ladaslav

    2018-05-16

    A substantial increase in malate in the xylem sap of soybean subjected to mineral N starvation originates mainly from aspartate, a prominent amino acid of the phloem. A substantial increase in xylem malate was found when non-nodulated soybean plants were transferred to a N-free medium. Nodulated plants growing in the absence of mineral N and, therefore, dependent on symbiotic N 2 fixation also contained elevated concentrations of malate in the xylem sap. When either nitrate or ammonium was supplied, malate concentrations in the xylem sap were low, both for nodulated and non-nodulated plants. Evidence was obtained that the elevated malate concentration of the xylem was derived from amino acids supplied by the phloem. Aspartate was a prominent component of the phloem sap amino acids and, therefore, a potential source of malate. Supplying the roots of intact plants with 13 C-aspartate revealed that malate of the xylem sap was readily labelled under N starvation. A hypothetical scheme is proposed whereby aspartate supplied by the phloem is metabolised in the roots and the products of this metabolism cycled back to the shoot. Under N starvation, aspartate metabolism is diverted from asparagine synthesis to supply N for the synthesis of other amino acids via transaminase activity. The by-product of aspartate transaminase activity, oxaloacetate, is transformed to malate and its export accounts for much of the elevated concentration of malate found in the xylem sap. This mechanism represents a new additional role for malate during mineral N starvation of soybean, beyond that of charge balance.

  6. Cellular distribution, purification and electrophoretic properties of malate dehydrogenase in Trichuris ovis and inhibition by benzimidazoles and pyrimidine derivatives.

    PubMed

    Sanchez-Moreno, M; Ortega, J E; Valero, A

    1989-12-01

    High levels of malate dehydrogenase were found in Trichuris ovis. Two molecular forms of the enzyme, of different cellular location and electrophoretic pattern, were isolated and purified. The activity of soluble malate dehydrogenase was greater than that of mitochondrial malate dehydrogenase. Both forms also displayed different electrophoretic profiles in comparison with purified extracts from goat (Capra hircus) liver. Substrate concentration directly affected enzyme activity. Host and parasite malate dehydrogenase activity were both inhibited by a series of benzimidazoles and pyrimidine-derived compounds, some of which markedly reduced parasite enzyme activity, but not host enzyme activity. Percentage inhibition by some pyrimidine derivatives was greater than that produced by benzimidazoles.

  7. Formulation, characterization and physicochemical evaluation of potassium citrate effervescent tablets.

    PubMed

    Aslani, Abolfazl; Fattahi, Fatemeh

    2013-01-01

    The aim of this study was to design and formulation of potassium citrate effervescent tablet for reduction of calcium oxalate and urate kidney stones in patients suffering from kidney stones. In this study, 13 formulations were prepared from potassium citrate and effervescent base in different concentration. The flowability of powders and granules was studied. Then effervescent tablets were prepared by direct compression, fusion and wet granulation methods. The prepared tablets were evaluated for hardness, friability, effervescent time, pH, content uniformity. To amend taste of formulations, different flavoring agents were used and then panel test was done by using Latin Square method by 30 volunteers. Formulations obtained from direct compression and fusion methods had good flow but low hardness. Wet granulation improves flowability and other physicochemical properties such as acceptable hardness, effervescence time ≤3 minutes, pH<6, friability < 1%, water percentage < 0.5% and accurate content uniformity. In panel test, both of combination flavors; (orange - lemon) and (strawberry - raspberry) had good acceptability. The prepared tablets by wet granulation method using PVP solution had more tablet hardness. It is a reproducible process and suitable to produce granules that are compressed into effervescent tablets due to larger agglomerates.

  8. 21 CFR 582.6625 - Potassium citrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium citrate. 582.6625 Section 582.6625 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Potassium citrate. (a) Product. Potassium citrate. (b) Conditions of use. This substance is generally...

  9. 21 CFR 582.1625 - Potassium citrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Potassium citrate. 582.1625 Section 582.1625 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1625 Potassium citrate. (a) Product. Potassium citrate. (b) Conditions of use. This...

  10. 21 CFR 582.1625 - Potassium citrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium citrate. 582.1625 Section 582.1625 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1625 Potassium citrate. (a) Product. Potassium citrate. (b) Conditions of use. This...

  11. 21 CFR 582.1625 - Potassium citrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Potassium citrate. 582.1625 Section 582.1625 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1625 Potassium citrate. (a) Product. Potassium citrate. (b) Conditions of use. This...

  12. 21 CFR 582.1625 - Potassium citrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Potassium citrate. 582.1625 Section 582.1625 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1625 Potassium citrate. (a) Product. Potassium citrate. (b) Conditions of use. This...

  13. 21 CFR 582.6625 - Potassium citrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Potassium citrate. 582.6625 Section 582.6625 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Potassium citrate. (a) Product. Potassium citrate. (b) Conditions of use. This substance is generally...

  14. 21 CFR 582.6625 - Potassium citrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Potassium citrate. 582.6625 Section 582.6625 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Potassium citrate. (a) Product. Potassium citrate. (b) Conditions of use. This substance is generally...

  15. 21 CFR 582.6625 - Potassium citrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Potassium citrate. 582.6625 Section 582.6625 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Potassium citrate. (a) Product. Potassium citrate. (b) Conditions of use. This substance is generally...

  16. 21 CFR 582.1625 - Potassium citrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Potassium citrate. 582.1625 Section 582.1625 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1625 Potassium citrate. (a) Product. Potassium citrate. (b) Conditions of use. This...

  17. 21 CFR 582.6625 - Potassium citrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Potassium citrate. 582.6625 Section 582.6625 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Potassium citrate. (a) Product. Potassium citrate. (b) Conditions of use. This substance is generally...

  18. 21 CFR 582.6751 - Sodium citrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium citrate. 582.6751 Section 582.6751 Food and..., FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 2 § 582.6751 Sodium citrate. (a) Product. Sodium citrate. (b) Conditions of use. This substance is generally recognized as...

  19. 21 CFR 582.6751 - Sodium citrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium citrate. 582.6751 Section 582.6751 Food and..., FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 2 § 582.6751 Sodium citrate. (a) Product. Sodium citrate. (b) Conditions of use. This substance is generally recognized as...

  20. 21 CFR 582.1751 - Sodium citrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium citrate. 582.1751 Section 582.1751 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1751 Sodium citrate. (a) Product. Sodium citrate. (b) Conditions of use. This substance is generally...

  1. 21 CFR 582.6751 - Sodium citrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium citrate. 582.6751 Section 582.6751 Food and..., FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 2 § 582.6751 Sodium citrate. (a) Product. Sodium citrate. (b) Conditions of use. This substance is generally recognized as...

  2. 21 CFR 582.1751 - Sodium citrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium citrate. 582.1751 Section 582.1751 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1751 Sodium citrate. (a) Product. Sodium citrate. (b) Conditions of use. This substance is generally...

  3. 21 CFR 582.1751 - Sodium citrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium citrate. 582.1751 Section 582.1751 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1751 Sodium citrate. (a) Product. Sodium citrate. (b) Conditions of use. This substance is generally...

  4. 21 CFR 582.6751 - Sodium citrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium citrate. 582.6751 Section 582.6751 Food and..., FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 2 § 582.6751 Sodium citrate. (a) Product. Sodium citrate. (b) Conditions of use. This substance is generally recognized as...

  5. 21 CFR 582.6751 - Sodium citrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium citrate. 582.6751 Section 582.6751 Food and..., FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 2 § 582.6751 Sodium citrate. (a) Product. Sodium citrate. (b) Conditions of use. This substance is generally recognized as...

  6. 21 CFR 582.1751 - Sodium citrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium citrate. 582.1751 Section 582.1751 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1751 Sodium citrate. (a) Product. Sodium citrate. (b) Conditions of use. This substance is generally...

  7. 21 CFR 582.1751 - Sodium citrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium citrate. 582.1751 Section 582.1751 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1751 Sodium citrate. (a) Product. Sodium citrate. (b) Conditions of use. This substance is generally...

  8. Development and prospective multicenter evaluation of the long noncoding RNA MALAT-1 as a diagnostic urinary biomarker for prostate cancer

    PubMed Central

    Lu, Ji; Shi, Xiaolei; Zhu, Yasheng; Zhang, Wei; Jing, Taile; Zhang, Chao; Shen, Jian; Xu, Chuanliang; Wang, Huiqing; Wang, Haifeng; Wang, Yang; Liu, Bin; Li, Yaoming; Fang, Ziyu; Guo, Fei; Qiao, Meng; Wu, Chengyao; Wei, Qiang; Xu, Danfeng; Shen, Dan; Lu, Xin; Gao, Xu; Hou, Jianguo; Sun, Yinghao

    2014-01-01

    The current strategy for diagnosing prostate cancer (PCa) is mainly based on the serum prostate-specific antigen (PSA) test. However, PSA has low specificity and has led to numerous unnecessary biopsies. We evaluated the effectiveness of urinary metastasis-associated lung adenocarcinoma transcript 1 (MALAT-1), a long noncoding RNA, for predicting the risk of PCa before biopsy. The MALAT-1 score was tested in a discovery phase and a multi-center validation phase. The predictive power of the MALAT-1 score was evaluated by the area under receiver operating characteristic (ROC) curve (AUC) and by decision curve analysis. As an independent predictor of PCa, the MALAT-1 score was significantly higher in men with a positive biopsy than in those with a negative biopsy. The ROC analysis showed a higher AUC for the MALAT-1 score (0.670 and 0.742) vs. the total PSA (0.545 and 0.601) and percent free PSA (0.622 and 0.627) in patients with PSA values of 4.0-10 ng/ml. According to the decision curve analysis, using a probability threshold of 25%, the MALAT-1 model would prevent 30.2%-46.5% of unnecessary biopsies in PSA 4–10 ng/ml cohorts, without missing any high-grade cancers. Our results demonstrate that urine MALAT-1 is a promising biomarker for predicting prostate cancer risk. PMID:25526029

  9. Long-Term Supplementation with Chromium Malate Improves Short Chain Fatty Acid Content in Sprague-Dawley Rats.

    PubMed

    Wu, Huiyu; Feng, Weiwei; Mao, Guanghua; Zhao, Ting; Wu, Xiangyang; Wang, Songmei; Zou, Yanmin; Yang, Liuqing; Wang, Liang

    2016-11-01

    Our previous study showed that chromium malate improved the composition of intestinal flora, glycometabolism, glycometabolism-related enzymes, and lipid metabolism in type 2 diabetes mellitus (T2DM) rats. The present study was designed to evaluate the effect of chromium malate with long-term supplementation on short chain fatty acid (SCFA) content in Sprague-Dawley rats. The samples were analyzed by gas chromatography with high linearity (R 2  ≥ 0.9995), low quantification limit (0.011-0.070 mM), and satisfactory recoveries. The method was simple and environmentally friendly. The acetic content in cecum of 3-month control group was significantly higher than that of 1-year control group. When compared with 1-year control group, chromium malate (at a dose of 20.0 μg Cr/kg bw) could significantly increase acetic, propionic, i-butyric butyric, butyric, i-valeric, valeric, and n-caproic levels. The acetic, propionic, i-butyric, valeric, and n-caproic contents of 1-year chromium malate group (at a dose of 20.0 μg Cr/kg bw) had a significant improvement when compared with 1-year chromium picolinate group. Acetic, propionic, and butyric contained approximately 91.65 % of the total SCFAs in 1-year group. The results indicated that the improvement of chromium malate on short chain fatty acid content change was better than that of chromium picolinate.

  10. Enhancement of malate-production and increase in sensitivity to dimethyl succinate by mutation of the VID24 gene in Saccharomyces cerevisiae.

    PubMed

    Negoro, Hiroaki; Kotaka, Atsushi; Matsumura, Kengo; Tsutsumi, Hiroko; Hata, Yoji

    2016-06-01

    Malate in sake (a Japanese alcoholic beverage) is an important component for taste that is produced by yeasts during alcoholic fermentation. To date, many researchers have developed methods for breeding high-malate-producing yeasts; however, genes responsible for the high-acidity phenotype are not known. We determined the mutated gene involved in high malate production in yeast, isolated as a sensitive mutant to dimethyl succinate. In the comparative whole genome analysis between high-malate-producing strain and its parent strain, one of the non-synonymous substitutions was identified in the VID24 gene. The mutation of VID24 resulted in enhancement of malate-productivity and sensitivity to dimethyl succinate. The mutation appeared to lead to a deficiency in Vid24p function. Furthermore, disruption of cytoplasmic malate dehydrogenase (Mdh2p) gene in the VID24 mutant inhibited the high-malate-producing phenotype. Vid24p is known as a component of the multisubunit ubiquitin ligase and participates in the degradation of gluconeogenic enzymes such as Mdh2p. We suggest that the enhancement of malate-productivity results from an accumulation of Mdh2p due to the loss of Vid24p function. These findings propose a novel mechanism for the regulation of organic acid production in yeast cells by the component of ubiquitin ligase, Vid24p. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. LncRNA MALAT1 sponges miR-204 to promote osteoblast differentiation of human aortic valve interstitial cells through up-regulating Smad4.

    PubMed

    Xiao, Xiaoxiong; Zhou, Tingwen; Guo, Shichao; Guo, Chao; Zhang, Qiao; Dong, Nianguo; Wang, Yongjun

    2017-09-15

    Emerging evidences have indicated that long non-coding RNAs (lncRNAs) play vital roles in cardiovascular physiology and pathology. The lncRNA MALAT1, a highly abundant and conserved imprinted gene, has been implicated in many cardiovascular diseases. However, the function of MALAT1 in calcific aortic valve disease (CAVD) remains unknown. This study sought to document the function and underlying mechanism of MALAT1 in regulating CAVD. Protein level was determined by immunoblotting and immunofluorescence staining. MALAT1, miR-204 and mRNA expressions were detected by qRT-PCR. Mineralized bone matrix formation was assessed by Alizarin Red staining. The interaction between MALAT1 and miR-204 was studied using luciferase reporter assay, RNA pull-down assay and RNA-binding protein immunoprecipitation assay. Ectopic expression of MALAT1 was observed in calcific valves and after osteogenic induction in human aortic valve interstitial cells (VICs). In vitro experiments revealed that MALAT1 acted as a positive regulator of osteogenic differentiation by repressing miR-204 expression and activity and thereby promoting expression of osteoblast-specific markers, including alkaline phosphatase, mineralized bone matrix formation and osteocalcin. Mechanistically, we identified Smad4 as a direct target of miR-204. Importantly, MALAT1 could directly interact with miR-204 and overexpression of miR-204 efficiently reversed the upregulation of Smad4 induced by MALAT1. Thus, MALAT1 positively regulated the expression of Smad4 through sponging miR-204, and promoted osteogenic differentiation of VICs. Our study provides novel mechanistic insights into a critical role for lncRNA MALAT1 as a miRNA sponge in CAVD and sheds new light on lncRNA-directed diagnostics and therapeutics in CAVD. Copyright © 2017. Published by Elsevier B.V.

  12. Diethyl citrate and sodium citrate reduce the cytotoxic effects of nanosized hydroxyapatite crystals on mouse vascular smooth muscle cells

    PubMed Central

    Zhang, Chong-Yu; Sun, Xin-Yuan; Ouyang, Jian-Ming; Gui, Bao-Song

    2017-01-01

    Objective This study aimed to investigate the damage mechanism of nanosized hydroxyapatite (nano-HAp) on mouse aortic smooth muscle cells (MOVASs) and the injury-inhibiting effects of diethyl citrate (Et2Cit) and sodium citrate (Na3Cit) to develop new drugs that can simultaneously induce anticoagulation and inhibit vascular calcification. Methods The change in cell viability was evaluated using a cell proliferation assay kit, and the amount of lactate dehydrogenase (LDH) released was measured using an LDH kit. Intracellular reactive oxygen species (ROS) and mitochondrial damage were detected by DCFH-DA staining and JC-1 staining. Cell apoptosis and necrosis were detected by Annexin V staining. Intracellular calcium concentration and lysosomal integrity were measured using Fluo-4/AM and acridine orange, respectively. Results Nano-HAp decreased cell viability and damaged the cell membrane, resulting in the release of a large amount of LDH. Nano-HAp entered the cells and damaged the mitochondria, and then induced cell apoptosis by producing a large amount of ROS. In addition, nano-HAp increased the intracellular Ca2+ concentration, leading to lysosomal rupture and cell necrosis. On addition of the anticoagulant Et2Cit or Na3Cit, cell viability and mitochondrial membrane potential increased, whereas the amount of LDH released, ROS, and apoptosis rate decreased. Et2 Cit and Na3Cit could also chelate with Ca+ to inhibit the intracellular Ca2+ elevations induced by nano-HAp, prevent lysosomal rupture, and reduce cell necrosis. High concentrations of Et2Cit and Na3Cit exhibited strong inhibitory effects. The inhibitory capacity of Na3Cit was stronger than that of Et2Cit at similar concentrations. Conclusion Both Et2Cit and Na3Cit significantly reduced the cytotoxicity of nano-HAp on MOVASs and inhibited the apoptosis and necrosis induced by nano-HAp crystals. The chelating function of citrate resulted in both anticoagulation and binding to HAp. Et2Cit and Na3Cit may play a

  13. MdSOS2L1 phosphorylates MdVHA-B1 to modulate malate accumulation in response to salinity in apple.

    PubMed

    Hu, Da-Gang; Sun, Cui-Hui; Sun, Mei-Hong; Hao, Yu-Jin

    2016-03-01

    Salt-induced phosphorylation of MdVHA-B1 protein was mediated by MdSOS2L1 protein kinase, and thereby increasing malate content in apple. Salinity is an important environmental factor that influences malate accumulation in apple. However, the molecular mechanism by which salinity regulates this process is poorly understood. In this work, we found that MdSOS2L1, a novel AtSOS2-LIKE protein kinase, interacts with V-ATPase subunit MdVHA-B1. Furthermore, MdSOS2L1 directly phosphorylates MdVHA-B1 at Ser(396) site to modulate malate accumulation in response to salt stress. Meanwhile, a series of transgenic analyses in apple calli showed that the MdSOS2L1-MdVHAB1 pathway was involved in the regulation of malate accumulation. Finally, a viral vector-based transformation approach demonstrated that the MdSOS2L1-MdVHAB1 pathway also modulated malate accumulation in apple fruits with or without salt stress. Collectively, our findings provide a new insight into the mechanism by which MdSOS2L1 phosphorylates MdVHA-B1 to modulate malate accumulation in response to salinity in apple.

  14. A generic HTS assay for kinase screening: Validation for the isolation of an engineered malate kinase

    PubMed Central

    Irague, Romain; Topham, Christopher M.; Martineau, Nelly; Baylac, Audrey; Auriol, Clément; Walther, Thomas; François, Jean-Marie; Remaud-Siméon, Magali

    2018-01-01

    An end-point ADP/NAD+ acid/alkali assay procedure, directly applicable to library screening of any type of ATP-utilising/ADP producing enzyme activity, was implemented. Typically, ADP production is coupled to NAD+ co-enzyme formation by the conventional addition of pyruvate kinase and lactate dehydrogenase. Transformation of enzymatically generated NAD+ into a photometrically active alkali derivative product is then achieved through the successive application of acidic/alkali treatment steps. The assay was successfully miniaturized to search for malate kinase activity in a structurally-guided library of LysC aspartate kinase variants comprising 6,700 clones. The screening procedure enabled the isolation of nine positive variants showing novel kinase activity on (L)-malate, the best mutant, LysC V115A:E119S:E434V exhibited strong substrate selectivity for (L)-malate compared to (L)-aspartate with a (kcat/Km)malate/(kcat/Km)aspartate ratio of 86. Double mutants V115A:E119S, V115A:E119C and E119S:E434V were constructed to further probe the origins of stabilising substrate binding energy gains for (L)-malate due to mutation. The introduction of less sterically hindering side-chains in engineered enzymes carrying E119S and V115A mutations increases the effective volume available for substrate binding in the catalytic pocket. Improved binding of the (L)-malate substrate may be assisted by less hindered movement of the Phe184 aromatic side-chain. Additional favourable long-range electostatic effects on binding arising from the E434V surface mutation are conditionally dependent upon the presence of the V115A mutation close to Phe184 in the active-site. PMID:29462203

  15. Expression of novel cytosolic malate dehydrogenases (cMDH) in Lupinus angustifolius nodules during phosphorus starvation.

    PubMed

    Le Roux, Marcellous; Phiri, Ethel; Khan, Wesaal; Sakiroğlu, Muhammet; Valentine, Alex; Khan, Sehaam

    2014-11-01

    During P deficiency, the increased activity of malate dehydrogenase (MDH, EC 1.1.1.37) can lead to malate accumulation. Cytosolic- and nodule-enhanced MDH (cMDH and neMDH, respectively) are known isoforms, which contribute to MDH activity in root nodules. The aim of this study was to investigate the role of the cMDH isoforms in nodule malate supply under P deficiency. Nodulated lupins (Lupinus angustifolius var. Tanjil) were hydroponically grown at adequate P (+P) or low P (-P). Total P concentration in nodules decreased under P deficiency, which coincided with an increase in total MDH activity. A consequence of higher MDH activity was the enhanced accumulation of malate derived from dark CO2 fixation via PEPC and not from pyruvate. Although no measurable neMDH presence could be detected via PCR, gene-specific primers detected two 1kb amplicons of cMDH, designated LangMDH1 (corresponding to +P, HQ690186) and LangMDH2 (corresponding to -P, HQ690187), respectively. Sequencing analyses of these cMDH amplicons showed them to be 96% identical on an amino acid level. There was a high degree of diversification between proteins detected in this study and other known MDH proteins, particularly those from other leguminous plants. Enhanced malate synthesis in P-deficient nodules was achieved via increased anaplerotic CO2 fixation and subsequent higher MDH activities. Novel isoforms of cytosolic MDH may be involved, as shown by gene expression of specific genes under P deficiency. Copyright © 2014 Elsevier GmbH. All rights reserved.

  16. Myostatin-induced inhibition of the long noncoding RNA Malat1 is associated with decreased myogenesis.

    PubMed

    Watts, Rani; Johnsen, Virginia L; Shearer, Jane; Hittel, Dustin S

    2013-05-15

    Myostatin, a member of the transforming growth factor-β (TGF-β) superfamily of secreted proteins, is a potent negative regulator of myogenesis. Free myostatin induces the phosphorylation of the Smad family of transcription factors, which, in turn, regulates gene expression, via the canonical TGF-β signaling pathway. There is, however, emerging evidence that myostatin can regulate gene expression independent of Smad signaling. As such, we acquired global gene expression data from the gastrocnemius muscle of C57BL/6 mice following a 6-day treatment with recombinant myostatin compared with vehicle-treated animals. Of the many differentially expressed genes, the myostatin-associated decrease (-11.20-fold; P < 0.05) in the noncoding metastasis-associated lung adenocarcinoma transcript 1 (Malat1) was the most significant and the most intriguing because of numerous reports describing its novel role in regulating cell growth. We therefore sought to further characterize the role of Malat1 expression in skeletal muscle myogenesis. RT-PCR-based quantification of C2C12 and primary human skeletal muscle cells revealed a significant and persistent upregulation (4- to 7-fold; P < 0.05) of Malat1 mRNA during the differentiation of myoblasts into myotubes. Conversely, targeted knockdown of Malat1 using siRNA suppressed myoblast proliferation by arresting cell growth in the G(0)/G(1) phase. These results reveal Malat1 as novel downstream target of myostatin with a considerable ability to regulate myogenesis. The identification of new targets of myostatin will have important repercussions for regenerative biology through inhibition and/or reversal of muscle atrophy and wasting diseases.

  17. Impaired pH homeostasis in Arabidopsis lacking the vacuolar dicarboxylate transporter and analysis of carboxylic acid transport across the tonoplast.

    PubMed

    Hurth, Marco Alois; Suh, Su Jeoung; Kretzschmar, Tobias; Geis, Tina; Bregante, Monica; Gambale, Franco; Martinoia, Enrico; Neuhaus, H Ekkehard

    2005-03-01

    Arabidopsis (Arabidopsis thaliana) mutants lacking the tonoplastic malate transporter AttDT (A. thaliana tonoplast dicarboxylate transporter) and wild-type plants showed no phenotypic differences when grown under standard conditions. To identify putative metabolic changes in AttDT knock-out plants, we provoked a metabolic scenario connected to an increased consumption of dicarboxylates. Acidification of leaf discs stimulated dicarboxylate consumption and led to extremely low levels of dicarboxylates in mutants. To investigate whether reduced dicarboxylate concentrations in mutant leaf cells and, hence, reduced capacity to produce OH(-) to overcome acidification might affect metabolism, we measured photosynthetic oxygen evolution under conditions where the cytosol is acidified. AttDT::tDNA protoplasts showed a much stronger inhibition of oxygen evolution at low pH values when compared to wild-type protoplasts. Apparently citrate, which is present in higher amounts in knock-out plants, is not able to replace dicarboxylates to overcome acidification. To raise more information on the cellular level, we performed localization studies of carboxylates. Although the total pool of carboxylates in mutant vacuoles was nearly unaltered, these organelles contained a lower proportion of malate and fumarate and a higher proportion of citrate when compared to wild-type vacuoles. These alterations concur with the observation that radioactively labeled malate and citrate are transported into Arabidopsis vacuoles by different carriers. In addition, wild-type vacuoles and corresponding organelles from AttDT::tDNA mutants exhibited similar malate channel activities. In conclusion, these results show that Arabidopsis vacuoles contain at least two transporters and a channel for dicarboxylates and citrate and that the activity of AttDT is critical for regulation of pH homeostasis.

  18. Impaired pH Homeostasis in Arabidopsis Lacking the Vacuolar Dicarboxylate Transporter and Analysis of Carboxylic Acid Transport across the Tonoplast1

    PubMed Central

    Hurth, Marco Alois; Suh, Su Jeoung; Kretzschmar, Tobias; Geis, Tina; Bregante, Monica; Gambale, Franco; Martinoia, Enrico; Neuhaus, H. Ekkehard

    2005-01-01

    Arabidopsis (Arabidopsis thaliana) mutants lacking the tonoplastic malate transporter AttDT (A. thaliana tonoplast dicarboxylate transporter) and wild-type plants showed no phenotypic differences when grown under standard conditions. To identify putative metabolic changes in AttDT knock-out plants, we provoked a metabolic scenario connected to an increased consumption of dicarboxylates. Acidification of leaf discs stimulated dicarboxylate consumption and led to extremely low levels of dicarboxylates in mutants. To investigate whether reduced dicarboxylate concentrations in mutant leaf cells and, hence, reduced capacity to produce OH− to overcome acidification might affect metabolism, we measured photosynthetic oxygen evolution under conditions where the cytosol is acidified. AttDT::tDNA protoplasts showed a much stronger inhibition of oxygen evolution at low pH values when compared to wild-type protoplasts. Apparently citrate, which is present in higher amounts in knock-out plants, is not able to replace dicarboxylates to overcome acidification. To raise more information on the cellular level, we performed localization studies of carboxylates. Although the total pool of carboxylates in mutant vacuoles was nearly unaltered, these organelles contained a lower proportion of malate and fumarate and a higher proportion of citrate when compared to wild-type vacuoles. These alterations concur with the observation that radioactively labeled malate and citrate are transported into Arabidopsis vacuoles by different carriers. In addition, wild-type vacuoles and corresponding organelles from AttDT::tDNA mutants exhibited similar malate channel activities. In conclusion, these results show that Arabidopsis vacuoles contain at least two transporters and a channel for dicarboxylates and citrate and that the activity of AttDT is critical for regulation of pH homeostasis. PMID:15728336

  19. 21 CFR 184.1625 - Potassium citrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium citrate. 184.1625 Section 184.1625 Food... GRAS § 184.1625 Potassium citrate. (a) Potassium citrate (C6H5K3O7·H2O, CAS Reg. No. 006100-0905-096) is the potassium salt of citric acid. It is prepared by neutralizing citric acid with potassium...

  20. Systemic Sunitinib Malate Treatment for Advanced Juxtapapillary Retinal Hemangioblastomas Associated with von Hippel-Lindau Disease.

    PubMed

    Knickelbein, Jared E; Jacobs-El, Naima; Wong, Wai T; Wiley, Henry E; Cukras, Catherine A; Meyerle, Catherine B; Chew, Emily Y

    2017-01-01

    To describe the clinical course of advanced juxtapapillary retinal capillary hemangioblastomas (RCH) associated with von Hippel-Lindau (VHL) disease treated with systemic sunitinib malate, an agent that inhibits both anti-vascular endothelial growth factor and anti-platelet-derived growth factor signaling. Observational case review. Three patients with advanced VHL-related juxtapapillary RCH treated with systemic sunitinib malate. Patient 1 was followed routinely every 4 months while on systemic sunitinib prescribed by her oncologist for metastatic pancreatic neuroendocrine and kidney tumors. Patients 2 and 3 were part of a prospective clinical trial evaluating the use of systemic sunitinib for ocular VHL lesions during a period of 9 months. Visual acuity, size of RCH, and degree of exudation were recorded at each visit. Optical coherence tomography (OCT) and fluorescein angiography were also obtained at some visits. Visual acuity, size of RCH, and degree of exudation. Three patients with advanced VHL-associated juxtapapillary RCH were treated with systemic sunitinib malate. While none of the patients lost vision during therapy, treatment with sunitinib malate did not improve visual acuity or reduce the size of RCH. Improvements in RCH-associated retinal edema were observed in two patients. All patients experienced multiple adverse effects, including thyroid toxicity, thrombocytopenia, nausea, fatigue, jaundice, and muscle aches. Two of the three patients had to discontinue treatment prematurely and the third required dose reduction. Systemic sunitinib malate may be useful in slowing progression of ocular disease from VHL-associated RCH. However, significant systemic adverse effects limited its use in this small series, and systemic sunitinib malate may not be safe for treatment of RCH when used at the doses described in this report. Further studies are required to determine if this medication used at lower doses with different treatment strategies, other

  1. Systemic Sunitinib Malate Treatment for Advanced Juxtapapillary Retinal Hemangioblastomas Associated with von Hippel-Lindau Disease

    PubMed Central

    Knickelbein, Jared E.; Jacobs-El, Naima; Wong, Wai T.; Wiley, Henry E.; Cukras, Catherine A.; Meyerle, Catherine B.; Chew, Emily Y.

    2016-01-01

    Purpose To describe the clinical course of advanced juxtapapillary retinal capillary hemangioblastomas (RCH) associated with von Hippel-Lindau (VHL) disease treated with systemic sunitinib malate, an agent that inhibits both anti-vascular endothelial growth factor and anti-platelet-derived growth factor signaling. Design Observational case review. Participants Three patients with advanced VHL-related juxtapapillary RCH treated with systemic sunitinib malate. Methods Patient 1 was followed routinely every 4 months while on systemic sunitinib prescribed by her oncologist for metastatic pancreatic neuroendocrine and kidney tumors. Patients 2 and 3 were part of a prospective clinical trial evaluating the use of systemic sunitinib for ocular VHL lesions during a period of 9 months. Visual acuity, size of RCH, and degree of exudation were recorded at each visit. Optical coherence tomography (OCT) and fluorescein angiography were also obtained at some visits. Main Outcome Measures Visual acuity, size of RCH, and degree of exudation. Results Three patients with advanced VHL-associated juxtapapillary RCH were treated with systemic sunitinib malate. While none of the patients lost vision during therapy, treatment with sunitinib malate did not improve visual acuity or reduce the size of RCH. Improvements in RCH-associated retinal edema were observed in two patients. All patients experienced multiple adverse effects, including thyroid toxicity, thrombocytopenia, nausea, fatigue, jaundice, and muscle aches. Two of the three patients had to discontinue treatment prematurely and the third required dose reduction. Conclusions Systemic sunitinib malate may be useful in slowing progression of ocular disease from VHL-associated RCH. However, significant systemic adverse effects limited its use in this small series, and systemic sunitinib malate may not be safe for treatment of RCH when used at the doses described in this report. Further studies are required to determine if this

  2. Characterization of the N-Acetyl-[alpha]-d-glucosaminyl l-Malate Synthase and Deacetylase Functions for Bacillithiol Biosynthesis in Bacillus anthracis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parsonage, Derek; Newton, Gerald L.; Holder, Robert C.

    2012-02-21

    Bacillithiol (Cys-GlcN-malate, BSH) has recently been identified as a novel low-molecular weight thiol in Bacillus anthracis, Staphylococcus aureus, and several other Gram-positive bacteria lacking glutathione and mycothiol. We have now characterized the first two enzymes for the BSH biosynthetic pathway in B. anthracis, which combine to produce {alpha}-D-glucosaminyl L-malate (GlcN-malate) from UDP-GlcNAc and L-malate. The structure of the GlcNAc-malate intermediate has been determined, as have the kinetic parameters for the BaBshA glycosyltransferase ({yields}GlcNAc-malate) and the BaBshB deacetylase ({yields}GlcN-malate). BSH is one of only two natural products reported to contain a malyl glycoside, and the crystal structure of the BaBshA-UDP-malate ternarymore » complex, determined in this work at 3.3 {angstrom} resolution, identifies several active-site interactions important for the specific recognition of L-malate, but not other {alpha}-hydroxy acids, as the acceptor substrate. In sharp contrast to the structures reported for the GlcNAc-1-D-myo-inositol-3-phosphate synthase (MshA) apo and ternary complex forms, there is no major conformational change observed in the structures of the corresponding BaBshA forms. A mutant strain of B. anthracis deficient in the BshA glycosyltransferase fails to produce BSH, as predicted. This B. anthracis bshA locus (BA1558) has been identified in a transposon-site hybridization study as required for growth, sporulation, or germination [Day, W. A., Jr., Rasmussen, S. L., Carpenter, B. M., Peterson, S. N., and Friedlander, A. M. (2007) J. Bacteriol. 189, 3296-3301], suggesting that the biosynthesis of BSH could represent a target for the development of novel antimicrobials with broad-spectrum activity against Gram-positive pathogens like B. anthracis. The metabolites that function in thiol redox buffering and homeostasis in Bacillus are not well understood, and we present a composite picture based on this and other recent

  3. 21 CFR 184.1625 - Potassium citrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium citrate. 184.1625 Section 184.1625 Food... Specific Substances Affirmed as GRAS § 184.1625 Potassium citrate. (a) Potassium citrate (C6H5K3O7·H2O, CAS Reg. No. 006100-0905-096) is the potassium salt of citric acid. It is prepared by neutralizing citric...

  4. 21 CFR 184.1625 - Potassium citrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium citrate. 184.1625 Section 184.1625 Food... Specific Substances Affirmed as GRAS § 184.1625 Potassium citrate. (a) Potassium citrate (C6H5K3O7·H2O, CAS Reg. No. 006100-0905-096) is the potassium salt of citric acid. It is prepared by neutralizing citric...

  5. 21 CFR 184.1625 - Potassium citrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium citrate. 184.1625 Section 184.1625 Food... Specific Substances Affirmed as GRAS § 184.1625 Potassium citrate. (a) Potassium citrate (C6H5K3O7·H2O, CAS Reg. No. 006100-0905-096) is the potassium salt of citric acid. It is prepared by neutralizing citric...

  6. 21 CFR 184.1751 - Sodium citrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium citrate. 184.1751 Section 184.1751 Food and....1751 Sodium citrate. (a) Sodium citrate (C6H5Na3O7·2H2O, CAS Reg. No. 68-0904-092) is the sodium salt of citric acid. It is prepared by neutralizing citric acid with sodium hydroxide or sodium carbonate...

  7. 21 CFR 184.1625 - Potassium citrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium citrate. 184.1625 Section 184.1625 Food... Specific Substances Affirmed as GRAS § 184.1625 Potassium citrate. (a) Potassium citrate (C6H5K3O7·H2O, CAS Reg. No. 006100-0905-096) is the potassium salt of citric acid. It is prepared by neutralizing citric...

  8. Long Non-Coding RNA MALAT1 Interacts With miR-204 to Modulate Human Hilar Cholangiocarcinoma Proliferation, Migration, and Invasion by Targeting CXCR4.

    PubMed

    Tan, Xinyu; Huang, Zhiguo; Li, Xiaogang

    2017-11-01

    Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is involved in the development and progression of many types of tumors. An aberrant expression of MALAT1 was observed in many kinds of cancers. However, the exact effects and molecular mechanisms of MALAT1 in human hilar cholangiocarcinoma (HCCA) progression are still unknown. Here, we investigated the role of MALAT1 in human HCCA cell lines and clinical tumor samples in order to determine the function of this lncRNA. In our research, lncRNA-MALAT1 was specifically upregulated in HCCA tissues and cell lines, and was associated with pathological T stage, a larger tumor size, and perineural invasion. Knockdown of MALAT1 inhibited the proliferation, migration, and invasion of human HCCA cell. In addition, chemokine receptor-4 (CXCR4) was involved in MALAT1 induced human HCCA growth, migration, and invasion. By using online tools and a series of mechanistic analysis, we also demonstrated that miR-204-dependent CXCR4 regulation was required in MALAT1 modulating HCCA cell growth, migration and invasion. Taken together, our data indicated that MALAT1 might play an oncogenic role in HCCA through miR-204-dependent CXCR4 regulation, and could be regarded as a therapeutic target in HCCA. J. Cell. Biochem. 118: 3643-3653, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. 21 CFR 184.1751 - Sodium citrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium citrate. 184.1751 Section 184.1751 Food and... Substances Affirmed as GRAS § 184.1751 Sodium citrate. (a) Sodium citrate (C6H5Na3O7·2H2O, CAS Reg. No. 68-0904-092) is the sodium salt of citric acid. It is prepared by neutralizing citric acid with sodium...

  10. 21 CFR 184.1751 - Sodium citrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium citrate. 184.1751 Section 184.1751 Food and... Substances Affirmed as GRAS § 184.1751 Sodium citrate. (a) Sodium citrate (C6H5Na3O7·2H2O, CAS Reg. No. 68-0904-092) is the sodium salt of citric acid. It is prepared by neutralizing citric acid with sodium...

  11. 21 CFR 184.1751 - Sodium citrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium citrate. 184.1751 Section 184.1751 Food and... Substances Affirmed as GRAS § 184.1751 Sodium citrate. (a) Sodium citrate (C6H5Na3O7·2H2O, CAS Reg. No. 68-0904-092) is the sodium salt of citric acid. It is prepared by neutralizing citric acid with sodium...

  12. 21 CFR 184.1751 - Sodium citrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium citrate. 184.1751 Section 184.1751 Food and... Substances Affirmed as GRAS § 184.1751 Sodium citrate. (a) Sodium citrate (C6H5Na3O7·2H2O, CAS Reg. No. 68-0904-092) is the sodium salt of citric acid. It is prepared by neutralizing citric acid with sodium...

  13. Combined coenzyme Q10 and clomiphene citrate for ovulation induction in clomiphene-citrate-resistant polycystic ovary syndrome.

    PubMed

    El Refaeey, Abdelaziz; Selem, Amal; Badawy, Ahmed

    2014-07-01

    This prospective randomized controlled trial evaluated the effect of combined oral coenzyme Q10 (CoQ10) and clomiphene citrate for ovulation induction in clomiphene-citrate-resistant polycystic ovary syndrome (PCOS). A total of 101 infertile women with PCOS resistant to clomiphene citrate were randomized either to combined CoQ10 and clomiphene citrate (51 patients, 82 cycles) or to clomiphene citrate alone (50 patients, 71 cycles). The outcome measures were number of follicles, serum oestradiol, serum progesterone, endometrial thickness and ovulation, clinical pregnancy and miscarriage rates. Numbers of follicles >14 mm and ≥18 mm were significantly higher in the CoQ10 group. Endometrial thickness on the day of human chorionic gonadotrophin was significantly greater in the CoQ10 group (8.82 ± 0.27 mm versus 7.03 ± 0.74 mm). Ovulation occurred in 54/82 cycles (65.9%) in the CoQ10 group and 11/71 cycles (15.5%) in the control group. Clinical pregnancy rate was significantly higher in the CoQ10 group (19/51, 37.3%) versus the control group (3/50, 6.0%). Combination of CoQ10 and clomiphene citrate in the treatment of clomiphene-citrate-resistant PCOS patients improves ovulation and clinical pregnancy rates. It is an effective and safe option and can be considered before gonadotrophin therapy or laparoscopic ovarian drilling. Copyright © 2014 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  14. Mutation and Selection of Lactobacillus plantarum Strains That Do Not Produce Carbon Dioxide from Malate

    PubMed Central

    Daeschel, M. A.; McFeeters, R. F.; Fleming, H. P.; Klaenhammer, T. R.; Sanozky, R. B.

    1984-01-01

    A differential medium was developed to distinguish between malate-decarboxylating (MDC+) and -non-decarboxylating (MDC−) strains of Lactobacillus plantarum. MDC− strains produced a visible acid reaction in the medium, whereas MDC+ strains did not. Use of the medium allowed for rapid screening and isolation of mutagenized cells that had lost the ability to produce CO2 from malate. PMID:16346479

  15. Formulation, Characterization and Physicochemical Evaluation of Potassium Citrate Effervescent Tablets

    PubMed Central

    Aslani, Abolfazl; Fattahi, Fatemeh

    2013-01-01

    Purpose: The aim of this study was to design and formulation of potassium citrate effervescent tablet for reduction of calcium oxalate and urate kidney stones in patients suffering from kidney stones. Methods: In this study, 13 formulations were prepared from potassium citrate and effervescent base in different concentration. The flowability of powders and granules was studied. Then effervescent tablets were prepared by direct compression, fusion and wet granulation methods. The prepared tablets were evaluated for hardness, friability, effervescent time, pH, content uniformity. To amend taste of formulations, different flavoring agents were used and then panel test was done by using Latin Square method by 30 volunteers. Results: Formulations obtained from direct compression and fusion methods had good flow but low hardness. Wet granulation improves flowability and other physicochemical properties such as acceptable hardness, effervescence time ≤3 minutes, pH<6, friability < 1%, water percentage < 0.5% and accurate content uniformity. In panel test, both of combination flavors; (orange - lemon) and (strawberry - raspberry) had good acceptability. Conclusion: The prepared tablets by wet granulation method using PVP solution had more tablet hardness. It is a reproducible process and suitable to produce granules that are compressed into effervescent tablets due to larger agglomerates. PMID:24312839

  16. Incompatibility of Contrast Medium and Trisodium Citrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delcour, Christian, E-mail: christian.delcour@chu-charleroi.be; Bruninx, Guy

    2013-02-15

    To test the compatibility of trisodium citrate, a catheter lock solution, with iodinated contrast medium. Iohexol, iobitridol, iodixanol, ioxaglate, ioxithalamate, iomeprol, and iopromide were tested. In all tests, 2 ml of contrast medium were mixed with 2 ml of trisodium citrate solution. Iodixanol and ioxaglate provoked a highly viscous gluelike precipitation when mixed with trisodium citrate. A brief transient precipitate was observed with iohexol, iomeprol, and ioxithalamate. Permanent precipitation occurred with iobitridol and iopromide. One must be aware of the potential for precipitation when contrast medium is mixed with trisodium citrate solution. Before trisodium citrate solution is injected, the cathetermore » should be thoroughly flushed with saline if a contrast medium has previously been injected through it.« less

  17. Effects of calcium supplementation on body weight reduction in overweight calcium stone formers.

    PubMed

    Menon, Viviane Barcellos; Baxmann, Alessandra Calábria; Froeder, Leila; Martini, Lígia Araújo; Heilberg, Ita Pfeferman

    2009-06-01

    A randomized, placebo-controlled trial was conducted in overweight calcium stone-forming (CSF) patients, to evaluate the effect of calcium supplementation associated with a calorie-restricted diet on body weight (BW) and fat reduction and its potential changes upon serum and urinary parameters. Fifteen patients were placed on a hypocaloric diet for 3 months, supplemented with either calcium carbonate (CaCO(3), n = 8) or placebo (n = 7), 500 mg bid. Blood and 24-h urine samples were collected and body composition was assessed at baseline and after the intervention. At the end of the study, final BW was significantly lower vs baseline in both CaCO(3) (74 +/- 14 vs. 80 +/- 14 kg, P = 0.01) and placebo groups (80 +/- 10 vs. 87 +/- 9 kg, P = 0.02) but the mean percentage of loss of body weight and body fat did not differ between CaCO(3) and placebo (7.0 +/- 2.0 vs. 8.0 +/- 3.0%, P = 0.40 and 13.0 +/- 7.0 vs. 13.0 +/- 10.0%; P = 0.81, respectively). After CaCO(3) or placebo, no significant differences versus baseline were observed for urinary parameters in both CaCO(3) and placebo, except for a higher mean urinary citrate in placebo group. These data suggest that increasing calcium intake by calcium carbonate supplementation did not contribute to a further reduction of BW and fat in overweight CSF patients submitted to a hypocaloric diet nor altered urinary lithogenic parameters.

  18. Aroma compounds generation in citrate metabolism of Enterococcus faecium: Genetic characterization of type I citrate gene cluster.

    PubMed

    Martino, Gabriela P; Quintana, Ingrid M; Espariz, Martín; Blancato, Victor S; Magni, Christian

    2016-02-02

    Enterococcus is one of the most controversial genera belonging to Lactic Acid Bacteria. Research involving this microorganism reflects its dual behavior as regards its safety. Although it has also been associated to nosocomial infections, natural occurrence of Enterococcus faecium in food contributes to the final quality of cheese. This bacterium is capable of fermenting citrate, which is metabolized to pyruvate and finally derives in the production of the aroma compounds diacetyl, acetoin and 2,3 butanediol. Citrate metabolism was studied in E. faecium but no data about genes related to these pathways have been described. A bioinformatic approach allowed us to differentiate cit(-) (no citrate metabolism genes) from cit(+) strains in E. faecium. Furthermore, we could classify them according to genes encoding for the transcriptional regulator, the oxaloacetate decarboxylase and the citrate transporter. Thus we defined type I organization having CitI regulator (DeoR family), CitM cytoplasmic soluble oxaloacetate decarboxylase (Malic Enzyme family) and CitP citrate transporter (2-hydroxy-carboxylate transporter family) and type II organization with CitO regulator (GntR family), OAD membrane oxaloacetate decarboxylase complex (Na(+)-transport decarboxylase enzyme family) and CitH citrate transporter (CitMHS family). We isolated and identified 17 E. faecium strains from regional cheeses. PCR analyses allowed us to classify them as cit(-) or cit(+). Within the latter classification we could differentiate type I but no type II organization. Remarkably, we came upon E. faecium GM75 strain which carries the insertion sequence IS256, involved in adaptative and evolution processes of bacteria related to Staphylococcus and Enterococcus genera. In this work we describe the differential behavior in citrate transport, metabolism and aroma generation of three strains and we present results that link citrate metabolism and genetic organizations in E. faecium for the first time

  19. 21 CFR 582.5449 - Manganese citrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5449 Manganese citrate. (a) Product. Manganese citrate. (b) Conditions of use. This...

  20. 21 CFR 582.5449 - Manganese citrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5449 Manganese citrate. (a) Product. Manganese citrate. (b) Conditions of use. This...

  1. 21 CFR 582.5449 - Manganese citrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5449 Manganese citrate. (a) Product. Manganese citrate. (b) Conditions of use. This...

  2. 21 CFR 582.5449 - Manganese citrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5449 Manganese citrate. (a) Product. Manganese citrate. (b) Conditions of use. This...

  3. 21 CFR 582.5449 - Manganese citrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5449 Manganese citrate. (a) Product. Manganese citrate. (b) Conditions of use. This...

  4. Catalytic properties of thermophilic lactate dehydrogenase and halophilic malate dehydrogenase at high temperature and low water activity.

    PubMed

    Hecht, K; Wrba, A; Jaenicke, R

    1989-07-15

    Thermophilic lactate dehydrogenases from Thermotoga maritima and Bacillus stearothermophilus are stable up to temperature limits close to the optimum growth temperature of their parent organisms. Their catalytic properties are anomalous in that Km shows a drastic increase with increasing temperature. At low temperatures, the effect levels off. Extreme halophilic malate dehydrogenase from Halobacterium marismortui exhibits a similar anomaly. Increasing salt concentration (NaCl) leads to an optimum curve for Km, oxaloacctate while Km, NADH remains constant. Previous claims that the activity of halophilic malate dehydrogenase shows a maximum at 1.25 M NaCl are caused by limiting substrate concentration; at substrate saturation, specific activity of halophilic malate dehydrogenase reaches a constant value at ionic strengths I greater than or equal to 1 M. Non-halophilic (mitochondrial) malate dehydrogenase shows Km characteristics similar to those observed for the halophilic enzyme. The drastic decrease in specific activity of the mitochondrial enzyme at elevated salt concentrations is caused by the salt-induced increase in rigidity of the enzyme, rather than gross structural changes.

  5. The vacuolar channel VvALMT9 mediates malate and tartrate accumulation in berries of Vitis vinifera.

    PubMed

    De Angeli, Alexis; Baetz, Ulrike; Francisco, Rita; Zhang, Jingbo; Chaves, Maria Manuela; Regalado, Ana

    2013-08-01

    Vitis vinifera L. represents an economically important fruit species. Grape and wine flavour is made from a complex set of compounds. The acidity of berries is a major parameter in determining grape berry quality for wine making and fruit consumption. Despite the importance of malic and tartaric acid (TA) storage and transport for grape berry acidity, no vacuolar transporter for malate or tartrate has been identified so far. Some members of the aluminium-activated malate transporter (ALMT) anion channel family from Arabidopsis thaliana have been shown to be involved in mediating malate fluxes across the tonoplast. Therefore, we hypothesised that a homologue of these channels could have a similar role in V. vinifera grape berries. We identified homologues of the Arabidopsis vacuolar anion channel AtALMT9 through a TBLASTX search on the V. vinifera genome database. We cloned the closest homologue of AtALMT9 from grape berry cDNA and designated it VvALMT9. The expression profile revealed that VvALMT9 is constitutively expressed in berry mesocarp tissue and that its transcription level increases during fruit maturation. Moreover, we found that VvALMT9 is targeted to the vacuolar membrane. Using patch-clamp analysis, we could show that, besides malate, VvALMT9 mediates tartrate currents which are higher than in its Arabidopsis homologue. In summary, in the present study we provide evidence that VvALMT9 is a vacuolar malate channel expressed in grape berries. Interestingly, in V. vinifera, a tartrate-producing plant, the permeability of the channel is apparently adjusted to TA.

  6. Inducible transport of citrate in Lactobacillus rhamnosus ATCC 7469.

    PubMed

    de Figueroa, R M; Benito de Cárdenas, I L; Sesma, F; Alvarez, F; de Ruiz Holgado, A P; Oliver, G

    1996-10-01

    Lactobacillus rhamnosus ATCC 7469 exhibited diauxie when grown in a medium containing both glucose and citrate as energy source. Glucose was used as the primary energy source during the glucose-citrate diauxie. Uptake of citrate was carried out by an inducible citrate transport system. The induction of citrate uptake system was repressed in the presence of glucose. This repression was reversible and mediated by cAMP.

  7. A novel mechanism for the pyruvate protection against zinc-induced cytotoxicity: mediation by the chelating effect of citrate and isocitrate.

    PubMed

    Sul, Jee-Won; Kim, Tae-Youn; Yoo, Hyun Ju; Kim, Jean; Suh, Young-Ah; Hwang, Jung Jin; Koh, Jae-Young

    2016-08-01

    Intracellular accumulation of free zinc contributes to neuronal death in brain injuries such as ischemia and epilepsy. Pyruvate, a glucose metabolite, has been shown to block zinc neurotoxicity. However, it is largely unknown how pyruvate shows such a selective and remarkable protective effect. In this study, we sought to find a plausible mechanism of pyruvate protection against zinc toxicity. Pyruvate almost completely blocked cortical neuronal death induced by zinc, yet showed no protective effects against death induced by calcium (ionomycin, NMDA) or ferrous iron. Of the TCA cycle intermediates, citrate, isocitrate, and to a lesser extent oxaloacetate, protected against zinc toxicity. We then noted with LC-MS/MS assay that exposure to pyruvate, and to a lesser degree oxaloacetate, increased levels of citrate and isocitrate, which are known zinc chelators. While pyruvate added only during zinc exposure did not reduce zinc toxicity, citrate and isocitrate added only during zinc exposure, as did extracellular zinc chelator CaEDTA, completely blocked it. Furthermore, addition of pyruvate after zinc exposure substantially reduced intracellular zinc levels. Our results suggest that the remarkable protective effect of pyruvate against zinc cytotoxicity may be mediated indirectly by the accumulation of intracellular citrate and isocitrate, which act as intracellular zinc chelators.

  8. Low pH, aluminum, and phosphorus coordinately regulate malate exudation through GmALMT1 to improve soybean adaptation to acid soils.

    PubMed

    Liang, Cuiyue; Piñeros, Miguel A; Tian, Jiang; Yao, Zhufang; Sun, Lili; Liu, Jiping; Shaff, Jon; Coluccio, Alison; Kochian, Leon V; Liao, Hong

    2013-03-01

    Low pH, aluminum (Al) toxicity, and low phosphorus (P) often coexist and are heterogeneously distributed in acid soils. To date, the underlying mechanisms of crop adaptation to these multiple factors on acid soils remain poorly understood. In this study, we found that P addition to acid soils could stimulate Al tolerance, especially for the P-efficient genotype HN89. Subsequent hydroponic studies demonstrated that solution pH, Al, and P levels coordinately altered soybean (Glycine max) root growth and malate exudation. Interestingly, HN89 released more malate under conditions mimicking acid soils (low pH, +P, and +Al), suggesting that root malate exudation might be critical for soybean adaptation to both Al toxicity and P deficiency on acid soils. GmALMT1, a soybean malate transporter gene, was cloned from the Al-treated root tips of HN89. Like root malate exudation, GmALMT1 expression was also pH dependent, being suppressed by low pH but enhanced by Al plus P addition in roots of HN89. Quantitative real-time PCR, transient expression of a GmALMT1-yellow fluorescent protein chimera in Arabidopsis protoplasts, and electrophysiological analysis of Xenopus laevis oocytes expressing GmALMT1 demonstrated that GmALMT1 encodes a root cell plasma membrane transporter that mediates malate efflux in an extracellular pH-dependent and Al-independent manner. Overexpression of GmALMT1 in transgenic Arabidopsis, as well as overexpression and knockdown of GmALMT1 in transgenic soybean hairy roots, indicated that GmALMT1-mediated root malate efflux does underlie soybean Al tolerance. Taken together, our results suggest that malate exudation is an important component of soybean adaptation to acid soils and is coordinately regulated by three factors, pH, Al, and P, through the regulation of GmALMT1 expression and GmALMT1 function.

  9. Type 2 Diabetic Rats on Diet Supplemented With Chromium Malate Show Improved Glycometabolism, Glycometabolism-Related Enzyme Levels and Lipid Metabolism

    PubMed Central

    Feng, Weiwei; Zhao, Ting; Mao, Guanghua; Wang, Wei; Feng, Yun; Li, Fang; Zheng, Daheng; Wu, Huiyu; Jin, Dun; Yang, Liuqing; Wu, Xiangyang

    2015-01-01

    Our previous study showed that chromium malate improved the regulation of blood glucose in mice with alloxan-induced diabetes. The present study was designed to evaluate the effect of chromium malate on glycometabolism, glycometabolism-related enzymes and lipid metabolism in type 2 diabetic rats. Our results showed that fasting blood glucose, serum insulin level, insulin resistance index and C-peptide level in the high dose group had a significant downward trend when compared with the model group, chromium picolinate group and chromium trichloride group. The hepatic glycogen, glucose-6-phosphate dehydrogenase, glucokinase, Glut4, phosphor-AMPKβ1 and Akt levels in the high dose group were significantly higher than those of the model, chromium picolinate and chromium trichloride groups. Chromium malate in a high dose group can significantly increase high density lipoprotein cholesterol level while decreasing the total cholesterol, low density lipoprotein cholesterol and triglyceride levels when compared with chromium picolinate and chromium trichloride. The serum chromium content in chromium malate and chromium picolinate group is significantly higher than that of the chromium trichloride group. The results indicated that the curative effects of chromium malate on glycometabolism, glycometabolism-related enzymes and lipid metabolism changes are better than those of chromium picolinate and chromium trichloride. Chromium malate contributes to glucose uptake and transport in order to improved glycometabolism and glycometabolism-related enzymes. PMID:25942313

  10. Type 2 diabetic rats on diet supplemented with chromium malate show improved glycometabolism, glycometabolism-related enzyme levels and lipid metabolism.

    PubMed

    Feng, Weiwei; Zhao, Ting; Mao, Guanghua; Wang, Wei; Feng, Yun; Li, Fang; Zheng, Daheng; Wu, Huiyu; Jin, Dun; Yang, Liuqing; Wu, Xiangyang

    2015-01-01

    Our previous study showed that chromium malate improved the regulation of blood glucose in mice with alloxan-induced diabetes. The present study was designed to evaluate the effect of chromium malate on glycometabolism, glycometabolism-related enzymes and lipid metabolism in type 2 diabetic rats. Our results showed that fasting blood glucose, serum insulin level, insulin resistance index and C-peptide level in the high dose group had a significant downward trend when compared with the model group, chromium picolinate group and chromium trichloride group. The hepatic glycogen, glucose-6-phosphate dehydrogenase, glucokinase, Glut4, phosphor-AMPKβ1 and Akt levels in the high dose group were significantly higher than those of the model, chromium picolinate and chromium trichloride groups. Chromium malate in a high dose group can significantly increase high density lipoprotein cholesterol level while decreasing the total cholesterol, low density lipoprotein cholesterol and triglyceride levels when compared with chromium picolinate and chromium trichloride. The serum chromium content in chromium malate and chromium picolinate group is significantly higher than that of the chromium trichloride group. The results indicated that the curative effects of chromium malate on glycometabolism, glycometabolism-related enzymes and lipid metabolism changes are better than those of chromium picolinate and chromium trichloride. Chromium malate contributes to glucose uptake and transport in order to improved glycometabolism and glycometabolism-related enzymes.

  11. 21 CFR 582.6851 - Stearyl citrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Stearyl citrate. (a) Product. Stearyl citrate. (b) Tolerance. This substance is generally recognized as safe for use at a level not exceeding 0.15 percent in accordance with good manufacturing or feeding...

  12. 21 CFR 582.6386 - Isopropyl citrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Isopropyl citrate. (a) Product. Isopropyl citrate. (b) Tolerance. This substance is generally recognized as safe for use at a level not exceeding 0.02 percent in accordance with good manufacturing or feeding...

  13. Malat1 activates autophagy and promotes cell proliferation by sponging miR-101 and upregulating STMN1, RAB5A and ATG4D expression in glioma.

    PubMed

    Fu, Zhenqiang; Luo, Wenzheng; Wang, Jingtao; Peng, Tao; Sun, Guifang; Shi, Jingyu; Li, Zhihong; Zhang, Boai

    2017-10-21

    The long noncoding RNA Malat1 has been reported to be an oncogene that promotes tumor progress and correlates with prognosis in glioma. Growing evidence shows that autophagy plays a very important role in tumorigenesis and tumor cell survival, but whether Malat1 regulates autophagy in glioma is still unclear. In this study, we found that Malat1 expression and autophagy activity were significantly increased in glioma tissues compared with adjacent normal tissues. Additionally, Malat1 level was positively correlated with the expression of LC3-II (autophagy marker) mRNA in vivo. In vitro assays revealed that Malat1 significantly promoted autophagy activation and cell proliferation in glioma cells. More importantly, inhibition of autophagy by 3-MA relieved Malat1-induced cell proliferation. These data demonstrated that Malat1 activates autophagy and increases cell proliferation in glioma. We further investigated the molecular mechanisms whereby Malat1 functioned on glioma cell autophagy and proliferation. We found that Malat1 served as an endogenous sponge to reduce miR-101 expression by directly binding to miR-101. Moreover, Malat1 abolished the suppression effects of miR-101 on glioma cell autophagy and proliferation, which involved in upregulating the expression of miR-101 targets STMN1, RAB5A and ATG4D. Overall, our study elucidated a novel Malat1-miR-101-STMN1/RAB5A/ATG4D regulatory network that Malat1 activates autophagy and promotes cell proliferation by sponging miR-101 and upregulating STMN1, RAB5A and ATG4D expression in glioma cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Long non-coding RNA metastasis associated in lung adenocarcinoma transcript 1 (MALAT1) interacts with estrogen receptor and predicted poor survival in breast cancer.

    PubMed

    Huang, Nai-Si; Chi, Ya-Yun; Xue, Jing-Yan; Liu, Meng-Ying; Huang, Sheng; Mo, Miao; Zhou, Shu-Ling; Wu, Jiong

    2016-06-21

    Metastasis associated in lung adenocarcinoma transcript 1 (MALAT1), a lncRNA that was first recognized as a prognostic parameter for patient survival of stage I lung cancer, is up-regulated in multiple human malignancies, including breast cancer. However, the mechanism of its function remained elusive. In the current study, by examining MALAT1 expression on mRNA level, we demonstrated that compared with MCF10A, MALAT1 expression was up-regulated in the majority of breast cancer cell lines (9/12). In 26 pairs of estrogen receptor (ER)-positive breast cancer samples, MALAT1 expression was significantly up-regulated compared with adjacent normal tissues (P = 0.012). Furthermore, of 204 breast cancer patients, high MALAT1 expression was associated with positive ER (P = 0.023) and progesterone receptor (PR) (P = 0.024) status. Further analysis using TCGA database revealed that ER and its target genes PGR and CCND1, were overexpressed in MALAT1 altered group compared with unaltered group, both on the mRNA and protein level. Lastly, we verified MALAT1's prognostic value in breast cancer. At the cut-off value of 75%, MALAT1 was the only independent prognostic factor of recurrence-free survival (RFS) in ER-negative patients in a multivariate Cox regression model (hazard ratio [HR] = 2.83, 95% confidence interval [CI] 1.02-7.83). MALAT1 overexpression was also associated with poor RFS in tamoxifen treated ER-positive breast cancer patients, which might serve as a potential biomarker to predict endocrine treatment sensitivity.

  15. [A case of respiratory dyskinesia due to clebopride malate].

    PubMed

    Kawasaki, H; Yamamoto, M; Okayasu, H; Wakayama, Y

    1991-08-01

    Clebopride malate is therapeutically used for the treatment of peptic ulcer. This drug has potent antidopaminergic activity that causes acute dystonic reaction, parkinsonism and tardive dyskinesia as adverse effects. Here, we have reported an 86-year-old man who developed abnormal involuntary movement of respiratory muscles and lower limb muscles after this drug had been given for four months. This involuntary movement appeared spontaneously at resting state and disappeared during sleep. Surface EMG demonstrated a synchronous grouping discharge in m. orbicularis oris, m. sternocleidomastoideus and m. interstales which synchronized with diaphragmatic movement on cinefluorography. Involuntary movement of the lower limbs was synchronous bilaterally and had little relationship with diaphragmatic movement. This involuntary movement was irregular not only in rhythm but also in duration. According to this irregular nature, we diagnosed this involuntary movement as respiratory dyskinesia with limb dyskinesia that belongs to tardive dyskinesia. After cessation of clebopride malate limb dyskinesia disappeared rapidly and respiratory dyskinesia markedly decreased. We emphasize that respiratory dyskinesia should be differentiated from psychogenic hyperventilation as easily misdiagnosed on initial examination.

  16. Effects of calcium supplements on the quality and acrylamide content of puffed shrimp chips.

    PubMed

    Chen, Tai-Yuan; Luo, Hsuan-Min; Hsu, Pang-Hung; Sung, Wen-Chieh

    2016-01-01

    The quality and acrylamide content of deep-fried and microwave-puffed shrimp chips fortified with 0.1%, 0.5%, or 1.0% calcium salts (calcium lactate, calcium carbonate, calcium citrate, or calcium acetate) were investigated. Microwave-puffed shrimp chips contained higher amounts of acrylamide (130.43 ppb) than did deep-fried shrimp chips. The greatest mitigation of acrylamide formation in overfried chips was obtained with 0.1% calcium lactate. All browning indexes of fortified shrimp chips, whether deep-fried or microwave-puffed, were reduced. L* values of microwave-puffed shrimp chips were higher than those of deep-fried shrimp chips, whereas a* and b* values and browning indexes were lower. Color differences (ΔE) between deep-fried puffed shrimp chips fortified with calcium salts and a control sample were higher than 5, and the sensory scores of shrimp chips were significantly decreased by the addition of calcium lactate. Copyright © 2015. Published by Elsevier B.V.

  17. Spectroscopic investigation of the influence of calcium ion on the structures of casein micelles.

    PubMed

    Wang, Peng-Jie; Wu, Jian-Ping; Zhang, Hao; Guo, Hui-Yuan; Liu, Hong-Na; Ren, Fa-Zheng

    2014-01-01

    The effects of calcium ion on the structural properties of casein micelles in the course of heat treatment were synthetically examined by non-structure-invasive spectrometry. The hydrophobicity, reflected by extrinsic fluorescence (ANS fluorescence), was positively correlated with the concentration of the calcium ion, within the range of 0 to 12 mmol x L(-1). Meanwhile, the turbidity and stability of casein micelles also increased with the growth of calcium concentrations. However, opposite results were observed for hydrodynamic diameter and polydispersity index. Compared with the calcium ion, the calcium-chelator (citrate) has an opposite effect on the structural characteristics of casein micelles. Within the calcium concentrations range of 0 to 12 mmol x L(-1), the hydrophobicity, stability and turbidity were negatively correlated with the concentration of the calcium ion, nevertheless, opposite results were observed for hydrodynamic diameter and polydispersity index. All the results indicate that the calcium ion could be used to modify the structures of casein micelles during heat heatment.

  18. Aspergillus niger Secretes Citrate to Increase Iron Bioavailability

    PubMed Central

    Odoni, Dorett I.; van Gaal, Merlijn P.; Schonewille, Tom; Tamayo-Ramos, Juan A.; Martins dos Santos, Vitor A. P.; Suarez-Diez, Maria; Schaap, Peter J.

    2017-01-01

    Aspergillus niger has an innate ability to secrete various organic acids, including citrate. The conditions required for A. niger citrate overproduction are well described, but the physiological reasons underlying extracellular citrate accumulation are not yet fully understood. One of the less understood culture conditions is the requirement of growth-limiting iron concentrations. While this has been attributed to iron-dependent citrate metabolizing enzymes, this straightforward relationship does not always hold true. Here, we show that an increase in citrate secretion under iron limited conditions is a physiological response consistent with a role of citrate as A. niger iron siderophore. We found that A. niger citrate secretion increases with decreasing amounts of iron added to the culture medium and, in contrast to previous findings, this response is independent of the nitrogen source. Differential transcriptomics analyses of the two A. niger mutants NW305 (gluconate non-producer) and NW186 (gluconate and oxalate non-producer) revealed up-regulation of the citrate biosynthesis gene citA under iron limited conditions compared to iron replete conditions. In addition, we show that A. niger can utilize Fe(III) citrate as iron source. Finally, we discuss our findings in the general context of the pH-dependency of A. niger organic acid production, offering an explanation, besides competition, for why A. niger organic acid production is a sequential process influenced by the external pH of the culture medium. PMID:28824560

  19. Functional and prognostic significance of long non-coding RNA MALAT1 as a metastasis driver in ER negative lymph node negative breast cancer

    PubMed Central

    Jadaliha, Mahdieh; Zong, Xinying; Malakar, Pushkar; Ray, Tania; Singh, Deepak K.; Freier, Susan M.; Jensen, Tor; Prasanth, Supriya G.; Karni, Rotem; Ray, Partha S.; Prasanth, Kannanganattu V.

    2016-01-01

    MALAT1 (metastasis associated lung adenocarcinoma transcript1) is a conserved long non-coding RNA, known to regulate gene expression by modulating transcription and post-transcriptional pre-mRNA processing of a large number of genes. MALAT1 expression is deregulated in various tumors, including breast cancer. However, the significance of such abnormal expression is yet to be fully understood. In this study, we demonstrate that regulation of aggressive breast cancer cell traits by MALAT1 is not predicted solely based on an elevated expression level but is context specific. By performing loss- and gain-of-function studies, both under in vitro and in vivo conditions, we demonstrate that MALAT1 facilitates cell proliferation, tumor progression and metastasis of triple-negative breast cancer (TNBC) cells despite having a comparatively lower expression level than ER or HER2-positive breast cancer cells. Furthermore, MALAT1 regulates the expression of several cancer metastasis-related genes, but displays molecular subtype specific correlations with such genes. Assessment of the prognostic significance of MALAT1 in human breast cancer (n=1992) revealed elevated MALAT1 expression was associated with decreased disease-specific survival in ER negative, lymph node negative patients of the HER2 and TNBC molecular subtypes. Multivariable analysis confirmed MALAT1 to have independent prognostic significance in the TNBC lymph node negative patient subset (HR=2.64, 95%CI 1.35 − 5.16, p=0.005). We propose that the functional significance of MALAT1 as a metastasis driver and its potential use as a prognostic marker is most promising for those patients diagnosed with ER negative, lymph node negative breast cancer who might otherwise mistakenly be stratified to have low recurrence risk. PMID:27250026

  20. Functional and prognostic significance of long non-coding RNA MALAT1 as a metastasis driver in ER negative lymph node negative breast cancer.

    PubMed

    Jadaliha, Mahdieh; Zong, Xinying; Malakar, Pushkar; Ray, Tania; Singh, Deepak K; Freier, Susan M; Jensen, Tor; Prasanth, Supriya G; Karni, Rotem; Ray, Partha S; Prasanth, Kannanganattu V

    2016-06-28

    MALAT1 (metastasis associated lung adenocarcinoma transcript1) is a conserved long non-coding RNA, known to regulate gene expression by modulating transcription and post-transcriptional pre-mRNA processing of a large number of genes. MALAT1 expression is deregulated in various tumors, including breast cancer. However, the significance of such abnormal expression is yet to be fully understood. In this study, we demonstrate that regulation of aggressive breast cancer cell traits by MALAT1 is not predicted solely based on an elevated expression level but is context specific. By performing loss- and gain-of-function studies, both under in vitro and in vivo conditions, we demonstrate that MALAT1 facilitates cell proliferation, tumor progression and metastasis of triple-negative breast cancer (TNBC) cells despite having a comparatively lower expression level than ER or HER2-positive breast cancer cells. Furthermore, MALAT1 regulates the expression of several cancer metastasis-related genes, but displays molecular subtype specific correlations with such genes. Assessment of the prognostic significance of MALAT1 in human breast cancer (n=1992) revealed elevated MALAT1 expression was associated with decreased disease-specific survival in ER negative, lymph node negative patients of the HER2 and TNBC molecular subtypes. Multivariable analysis confirmed MALAT1 to have independent prognostic significance in the TNBC lymph node negative patient subset (HR=2.64, 95%CI 1.35- 5.16, p=0.005). We propose that the functional significance of MALAT1 as a metastasis driver and its potential use as a prognostic marker is most promising for those patients diagnosed with ER negative, lymph node negative breast cancer who might otherwise mistakenly be stratified to have low recurrence risk.

  1. Long non-coding RNA MALAT1 acts as a competing endogenous RNA to promote malignant melanoma growth and metastasis by sponging miR-22.

    PubMed

    Luan, Wenkang; Li, Lubo; Shi, Yan; Bu, Xuefeng; Xia, Yun; Wang, Jinlong; Djangmah, Henry Siaw; Liu, Xiaohui; You, Yongping; Xu, Bin

    2016-09-27

    Long non-coding RNAs (lncRNAs) are involved in tumorigenesis. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), an lncRNAs, is associated with the growth and metastasis of many human tumors, but its biological roles in malignant melanoma remain unclear. In this study, the aberrant up-regulation of MALAT1 was detected in melanoma. We determined that MALAT1 promotes melanoma cells proliferation, invasion and migration by sponging miR-22. MiR-22 was decreased and acted as a tumor suppressor in melanoma, and MMP14 and Snail were the functional targets of miR-22. Furthermore, MALAT1 could modulate MMP14 and Snail by operating as a competing endogenous RNA (ceRNA) for miR-22. The effects of MALAT1 in malignant melanoma is verified using a xenograft model. This finding elucidates a new mechanism for MALAT1 in melanoma development and provides a potential target for melanoma therapeutic intervention.

  2. Association of urinary citrate with acid-base status, bone resorption, and calcium excretion in older men and women

    USDA-ARS?s Scientific Manuscript database

    Context: Elevated urine net acid excretion (NAE), indicative of subclinical metabolic acidosis, has been associated with higher bone turnover. While NAE is the gold-standard clinical measure of acid-base status, it is impractical to measure in most clinical/research settings. Urine citrate, which is...

  3. 21 CFR 522.800 - Droperidol and fentanyl citrate injection.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Droperidol and fentanyl citrate injection. 522.800... § 522.800 Droperidol and fentanyl citrate injection. (a) Specifications. Droperidol and fentanyl citrate injection is a sterile solution containing 20 milligrams of droperidol and 0.4 milligram of fentanyl citrate...

  4. 21 CFR 522.800 - Droperidol and fentanyl citrate injection.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Droperidol and fentanyl citrate injection. 522.800... § 522.800 Droperidol and fentanyl citrate injection. (a) Specifications. Droperidol and fentanyl citrate injection is a sterile solution containing 20 milligrams of droperidol and 0.4 milligram of fentanyl citrate...

  5. 21 CFR 522.800 - Droperidol and fentanyl citrate injection.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Droperidol and fentanyl citrate injection. 522.800... § 522.800 Droperidol and fentanyl citrate injection. (a) Specifications. Droperidol and fentanyl citrate injection is a sterile solution containing 20 milligrams of droperidol and 0.4 milligram of fentanyl citrate...

  6. Citrate Pharmacokinetics in Critically Ill Patients with Acute Kidney Injury

    PubMed Central

    Zhu, Qiuyu; Liu, Junfeng; Qian, Jing; You, Huaizhou; Gu, Yong; Hao, Chuanming; Jiao, Zheng; Ding, Feng

    2013-01-01

    Introduction Regional citrate anticoagulation (RCA) is gaining popularity in continous renal replacement therapy (CRRT) for critically ill patients. The risk of citrate toxicity is a primary concern during the prolonged process. The aim of this study was to assess the pharmacokinetics of citrate in critically ill patients with AKI, and used the kinetic parameters to predict the risk of citrate accumulation in this population group undergoing continuous veno-venous hemofiltration (CVVH) with RCA. Methods Critically ill patients with AKI (n = 12) and healthy volunteers (n = 12) were investigated during infusing comparative dosage of citrate. Serial blood samples were taken before, during 120 min and up to 120 min after infusion. Citrate pharmacokinetics were calculated and compared between groups. Then the estimated kinetic parameters were applied to the citrate kinetic equation for validation in other ten patients’ CVVH sessions with citrate anticoagulation. Results Total body clearance of citrate was similar in critically ill patients with AKI and healthy volunteers (648.04±347.00 L/min versus 686.64±353.60 L/min; P = 0.624). Basal and peak citrate concentrations were similar in both groups (p = 0.423 and 0.247, respectively). The predicted citrate curve showed excellent fit to the measurements. Conclusions Citrate clearance is not impaired in critically ill patients with AKI in the absence of severe liver dysfunction. Citrate pharmacokinetic data can provide a basis for the clinical use of predicting the risk of citrate accumulation. Trial Registration ClinicalTrials.gov Identifier NCT00948558 PMID:23824037

  7. Calcium-Citrate-Phosphate Solution Injection for In Situ Strontium-90 Immobilization

    NASA Astrophysics Data System (ADS)

    Fruchter, J. S.; Vermeul, V.; Szecsody, J.; Williams, M. D.; Fritz, B. G.

    2010-12-01

    Sr-90 present in groundwater and the vadose zone at the Hanford 100N area due to past waste disposal practices has reached the nearby Columbia River, as evidenced by Sr-90 concentrations in near river wells and aquifer tubes and near shore sediments. Sr-90 is currently being remediated by adsorption onto apatite (55 times stronger than Sr-90 adsorption to sediment), followed by incorporation of the Sr-90 into the apatite structure. If the Sr-90 can remain immobilized for 300 years (~ten 29.1-yr half-lives of Sr-90 decay), it will have decayed below regulatory limits to Y-90 and to stable Zr-90. Apatite [Ca10(PO4)6(OH)2] is being precipitated in situ by injection of an aqueous solution of Ca-citrate and Na-phosphate through a series of injection wells spaced 30 ft on center, forming a 300-ft-long permeable reactive barrier. Design criteria for the injection operations were based on 1) amendment volume and mass injected, 2) amendment arrival at adjacent wells, 3) water-level elevation during treatment, and 4) injection rate limitations associated with well plugging. An evaluation of compliance with these injection design criteria was used to assess operational performance and identify candidate wells for supplemental treatment. Injection design criteria were not fully met at 8 of the 16 injection well locations, with the primary deficiency at 4 of 8 locations being the limited vertical extent of Hanford formation treatment due to low-river-stage conditions during the injection. Wells whose extent of treatment did not meet design criteria were recommended for retreatment. Although injection design criteria were not fully met at a significant number of well locations, aqueous performance assessment monitoring data collected to date indicate good barrier performance. Aqueous Sr-90 monitoring in four compliance monitoring wells over a year following the high concentration injections indicates 84% to 95% decrease in Sr-90 concentrations (relative to the low and high end

  8. Long noncoding RNA MALAT1 promotes osterix expression to regulate osteogenic differentiation by targeting miRNA-143 in human bone marrow-derived mesenchymal stem cells.

    PubMed

    Gao, Yuan; Xiao, Fei; Wang, Chenglong; Wang, Chuandong; Cui, Penglei; Zhang, Xiaoling; Chen, Xiaodong

    2018-05-09

    Osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (hBMSCs) is essential for the human bone formation, and emerging evidence shows that long non-coding RNAs (lncRNAs) play important roles in hBMSC osteogenic differentiation. MALAT1 is often regarded as a tumor-related lncRNA, but its function in mesenchymal stem cell differentiation remains to be defined. In this study, we aimed to investigate whether MALAT1 regulates Osterix (Osx) expression by sponging miR-143 to promote hBMSC osteogenic differentiation. Firstly, we found that the expression of MALAT1 was much lower in hBMSCs from osteoporosis patients and miR-143 was contrarily higher. In addition, MALAT1 expression increased, and miR-143 decreased when hBMSCs were treated with osteogenic induction. Then, we used short hairpin RNAs to knockdown MALAT1, and the results showed that hBMSC osteogenic differentiation decreased significantly, indicating that MALAT1 is a positive regulator of osteogenic differentiation in hBMSCs. Furthermore, by luciferase assays, we found that MALAT1 could directly bind to miR-143 and negatively regulate its expression. Similarly, miR-143 could directly bind to the target site on the Osx 3'-UTR and then inhibit Osx expression. Knockdown of MALAT1 decreased Osx expression, and co-transfection of miR-143 inhibitor could rescue Osx mRNA expression. While Osx expression was increased in MALAT1-overexpressing hBMSCs, it was reversed by the miR-143 mimics. Moreover, Osx silencing decreased ALP, OCN, and OPN mRNA expression induced by the miR-143 inhibitor. Altogether, our findings suggest that MALAT1 acts to regulate Osx expression through targeting miR-143; thus, it is considered as a positive regulator in hBMSC osteogenic differentiation. © 2018 Wiley Periodicals, Inc.

  9. Oxaloacetate Enhances Neuronal Cell Bioenergetic Fluxes and Infrastructure

    PubMed Central

    Wilkins, Heather M.; Koppel, Scott; Carl, Steven M.; Ramanujan, Suruchi; Weidling, Ian; Michaelis, Mary L.; Michaelis, Elias K.; Swerdlow, Russell H.

    2017-01-01

    We tested how the addition of oxaloacetate (OAA) to SH-SY5Y cells affected bioenergetic fluxes and infrastructure, and compared the effects of OAA to malate, pyruvate, and glucose deprivation. OAA displayed pro-glycolysis and pro-respiration effects. OAA pro-glycolysis effects were not a consequence of decarboxylation to pyruvate because unlike OAA, pyruvate lowered the glycolysis flux. Malate did not alter glycolysis flux and reduced mitochondrial respiration. Glucose deprivation essentially eliminated glycolysis and increased mitochondrial respiration. OAA increased, while malate decreased, the cell NAD+/NADH ratio. Cytosolic malate dehydrogenase 1 (MDH1) protein increased with OAA treatment, but not with malate or glucose deprivation. Glucose deprivation increased protein levels of ATP citrate lyase, an enzyme which produces cytosolic OAA, while OAA altered neither ATP citrate lyase mRNA nor protein levels. OAA, but not glucose deprivation, increased COX2, PGC1α, PGC1β, and PRC protein levels. OAA increased total and phosphorylated SIRT1 protein. We conclude that adding OAA to SH-SY5Y cells can support or enhance both glycolysis and respiration fluxes. These effects appear to depend, at least partly, on OAA causing a shift in the cell redox balance to a more oxidized state, that it is not a glycolysis pathway intermediate, and possibly its ability to act in an anaplerotic fashion. PMID:26811028

  10. The R2R3-MYB transcription factor MdMYB73 is involved in malate accumulation and vacuolar acidification in apple.

    PubMed

    Hu, Da-Gang; Li, Yuan-Yuan; Zhang, Quan-Yan; Li, Ming; Sun, Cui-Hui; Yu, Jian-Qiang; Hao, Yu-Jin

    2017-08-01

    Malate, the predominant organic acid in many fruits, is a crucial component of the organoleptic quality of fruit, including taste and flavor. The genetic and environmental mechanisms affecting malate metabolism in fruit cells have been studied extensively. However, the transcriptional regulation of malate-metabolizing enzymes and vacuolar transporters remains poorly understood. Our previous studies demonstrated that MdMYB1 modulates anthocyanin accumulation and vacuolar acidification by directly activating vacuolar transporters, including MdVHA-B1, MdVHA-E, MdVHP1 and MdtDT. Interestingly, we isolated and identified a MYB transcription factor, MdMYB73, a distant relative of MdMYB1 in this study. It was subsequently found that MdMYB73 protein bound directly to the promoters of MdALMT9 (aluminum-activated malate transporter 9), MdVHA-A (vacuolar ATPase subunit A) and MdVHP1 (vacuolar pyrophosphatase 1), transcriptionally activating their expression and thereby enhancing their activities. Analyses of transgenic apple calli demonstrated that MdMYB73 influenced malate accumulation and vacuolar pH. Furthermore, MdCIbHLH1 interacted with MdMYB73 and enhanced its activity upon downstream target genes. These findings help to elucidate how MdMYB73 directly modulates the vacuolar transport system to affect malate accumulation and vacuolar pH in apple. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  11. The calcium content of human erythrocytes

    PubMed Central

    Harrison, D. G.; Long, C.

    1968-01-01

    1. The calcium content of human erythrocytes, after removal of the buffy coat and washing free from plasma with isotonic sodium chloride, has been determined by atomic absorption spectrophotometry. The mean value found for normal subjects was 0·634 μg/ml. of packed erythrocytes (0·0158 μg-atom/ml.). The corresponding values for magnesium and zinc were 79·7 and 20·1 μg/ml., respectively. 2. The calcium is considered to be mostly and perhaps exclusively located in the erythrocyte membrane, since, after osmotic haemolysis, the same amount was found in the ghost cells as was present in the erythrocytes from which they were prepared. By contrast, magnesium and zinc, which are essentially intracellular, were lost to the extent of about 96 and 92%, respectively. 3. About 90% of the calcium was removed from erythrocytes by washing with isotonic sodium chloride containing 5 mM ethylenediaminetetraacetate (EDTA), or other complexing agents of high stability constant for calcium. A small fraction of the magnesium but none of the zinc was removed by this treatment. 4. Other complexing agents of lower stability constant removed somewhat less calcium from the erythrocytes. Citrate was totally ineffective. 5. The buffy coat had a high calcium content, but this could not be removed by washing with EDTA. 6. Calcium was also determined in trichloroacetic acid extracts of ghost cells after ashing and treatment with bis-(o-hydroxyphenylimino)-ethane and measuring the red complex spectrophotometrically. The values obtained confirmed the atomic absorption measurements. PMID:4972779

  12. 21 CFR 172.370 - Iron-choline citrate complex.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Iron-choline citrate complex. 172.370 Section 172... CONSUMPTION Special Dietary and Nutritional Additives § 172.370 Iron-choline citrate complex. Iron-choline citrate complex made by reacting approximately equimolecular quantities of ferric hydroxide, choline, and...

  13. A prospective randomized open-label crossover trial of regional citrate anticoagulation vs. anticoagulation free liver dialysis by the Molecular Adsorbents Recirculating System

    PubMed Central

    2012-01-01

    Introduction The Molecular Adsorbent Recycling System (MARS) is used to treat patients with liver failure. Observational data suggest that citrate anticoagulation during MARS is feasible. Comparative studies on the optimal anticoagulation regimen during MARS are lacking. The aim of the current study was to evaluate two heparin-free anticoagulation regimens. Methods We performed a prospective randomized open-label crossover study of regional citrate anticoagulation against no anticoagulation. Ten patients (age 55 ± 11 years) with liver failure undergoing MARS treatment were included. The primary endpoint was completion of MARS sessions. Secondary endpoints included treatment efficacy and safety. Longevity of MARS treatment was plotted as a Kaplan-Meier estimate. Fisher's exact test was used for contingency table analysis. Results Of a total of 27 6-hour sessions, four sessions had to be terminated prematurely, three due to occlusive clotting of the extracorporeal circuit and one due to uncontrollable bleeding from the vascular access site. All four events occurred in the group without anticoagulation. Between group comparison demonstrated citrate anticoagulation to significantly increase the likelihood of completed MARS treatment (Fisher's exact test, P 0.04). This translates into higher bilirubin reduction ratios when citrate was applied (reduction ratio 0.25 vs. 0.15, P 0.02). Systemic ionized calcium concentrations were significantly reduced during citrate anticoagulation (P < 0.001) but remained within a safe range. We observed no major adverse events. Conclusions Regional citrate anticoagulation in patients with liver failure is feasible. Citrate anticoagulation provides superior patency of the extracorporeal circuit. Avoidance of anticoagulation during MARS results in significant loss of treatment efficacy, due to treatment downtime. Additional studies are required to identify the optimal anticoagulation regimen for extracorporeal circulation in patients with

  14. A chimeric protein of aluminum-activated malate transporter generated from wheat and Arabidopsis shows enhanced response to trivalent cations.

    PubMed

    Sasaki, Takayuki; Tsuchiya, Yoshiyuki; Ariyoshi, Michiyo; Ryan, Peter R; Yamamoto, Yoko

    2016-07-01

    TaALMT1 from wheat (Triticum aestivum) and AtALMT1 from Arabidopsis thaliana encode aluminum (Al)-activated malate transporters, which confer acid-soil tolerance by releasing malate from roots. Chimeric proteins from TaALMT1 and AtALMT1 (Ta::At, At::Ta) were previously analyzed in Xenopus laevis oocytes. Those studies showed that Al could activate malate efflux from the Ta::At chimera but not from At::Ta. Here, functions of TaALMT1, AtALMT1 and the chimeric protein Ta::At were compared in cultured tobacco BY-2 cells. We focused on the sensitivity and specificity of their activation by trivalent cations. The activation of malate efflux by Al was at least two-fold greater in the chimera than the native proteins. All proteins were also activated by lanthanides (erbium, ytterbium, gadolinium, and lanthanum), but the chimera again released more malate than TaALMT1 or AtALMT1. In Xenopus oocytes, Al, ytterbium, and erbium activated inward currents from the native TaALMT1 and the chimeric protein, but gadolinium only activated currents from the chimera. Lanthanum inhibited currents from both proteins. These results demonstrated that function of the chimera protein was altered compared to the native proteins and was more responsive to a range of trivalent cations when expressed in plant cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. 21 CFR 573.580 - Iron-choline citrate complex.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.580 Iron-choline citrate complex. Iron-choline citrate complex made by... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Iron-choline citrate complex. 573.580 Section 573...

  16. 21 CFR 573.580 - Iron-choline citrate complex.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.580 Iron-choline citrate complex. Iron-choline citrate complex made by... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Iron-choline citrate complex. 573.580 Section 573...

  17. 21 CFR 573.580 - Iron-choline citrate complex.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.580 Iron-choline citrate complex. Iron-choline citrate complex made by... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Iron-choline citrate complex. 573.580 Section 573...

  18. 21 CFR 573.580 - Iron-choline citrate complex.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.580 Iron-choline citrate complex. Iron-choline citrate complex made by... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Iron-choline citrate complex. 573.580 Section 573...

  19. 21 CFR 573.580 - Iron-choline citrate complex.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.580 Iron-choline citrate complex. Iron-choline citrate complex made by... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Iron-choline citrate complex. 573.580 Section 573...

  20. Astaxanthin modulates osteopontin and transforming growth factor β1 expression levels in a rat model of nephrolithiasis: a comparison with citrate administration.

    PubMed

    Alex, Manju; Sauganth Paul, M V; Abhilash, M; Mathews, Varghese V; Anilkumar, T V; Nair, R Harikumaran

    2014-09-01

    To evaluate the effect of astaxanthin on renal angiotensin-I converting enzyme (ACE) levels, osteopontin (OPN) and transforming growth factor β1 (TGF-β1) expressions and the extent of crystal deposition in experimentally induced calcium oxalate kidney stone disease in a male Wistar rat model. To compare the efficacy of astaxanthin treatment with a currently used treatment strategy (citrate administration) for kidney stones. The expression of OPN was assessed by immunohistochemistry. One step reverse transcriptase polymerase chain reaction followed by densitometry was used to assess renal OPN and TGF-β1 levels. Renal ACE levels were quantified by an enzyme-linked immunosorbent assay method. Crystal deposition in kidney was analysed by scanning electron microscopic (SEM)-energy-dispersive X-ray (EDX). The renal ACE levels and the expression of OPN and TGF-β1 were upregulated in the nephrolithiasis-induced rats. Astaxanthin treatment reduced renal ACE levels and the expression OPN and TGF-β1. SEM-EDX analysis showed that crystal deposition was reduced in the astaxanthin-treated nephrolithiatic group. Astaxanthin treatment was more effective than citrate administration in the regulation of renal ACE levels, OPN and TGF-β1 expressions. Astaxanthin administration reduced renal calcium oxalate crystal deposition possibly by modulating the renal renin-angiotensin system (RAS), which reduced the expression of OPN and TGF-β1 levels. Astaxanthin administration was more effective than citrate treatment in reducing crystal deposition and down-regulating the expression of OPN and TGF-β1. © 2013 The Authors. BJU International © 2013 BJU International.

  1. Down-regulation of Long Noncoding RNA MALAT1 Protects Hippocampal Neurons Against Excessive Autophagy and Apoptosis via the PI3K/Akt Signaling Pathway in Rats with Epilepsy.

    PubMed

    Wu, Qiang; Yi, Xuewei

    2018-06-01

    Epilepsy is a common chronic brain disorder and is characterized by an enduring predisposition to generate seizures. The hippocampus is especially vulnerable to seizure-induced damage. In this study, we explore the ability of long noncoding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) to influence the autophagy and apoptosis of hippocampal neurons in epilepsy and the underlying mechanism involving the PI3K/Akt signaling pathway. Seventy-two Sprague-Dawley rats were assigned to normal, sham, Ep, Ep + si-NC, Ep + si-MALAT1, and Ep + si-MALAT1 + LY groups. Fluorescence in situ hybridization kit was employed to determine the MALAT1 in the brain tissues. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blotting were performed to determine the expression of MALAT1, mRNAs, and proteins. The autophagy of hippocampal neurons was evaluated under a transmission electron microscope and their apoptosis was evaluated using TUNEL staining. We found that MALAT1 and c-Met were enriched while microRNA-101 (miR-101) decreased in rats with epilepsy. The demonstration showed that MALAT1 binds to miR-101, thus regulating c-Met. In rats with epilepsy, MALAT1 depletion mediated by anti-MALAT1 siRNA resulted in activation of PI3K/Akt signaling pathway and loss of hippocampal neurons. LY294002, an inhibitor of PI3K/Akt signaling pathway, could reverse the events caused by MALAT1 knockdown. Taken together, these findings indicate that down-regulation of MALAT1 activates the PI3K/Akt signaling pathway to protect hippocampal neurons against autophagy and apoptosis in rats with epilepsy.

  2. Long non-coding RNA MALAT1 for promoting metastasis and proliferation by acting as a ceRNA of miR-144-3p in osteosarcoma cells

    PubMed Central

    Wang, Ningning; Li, Pengcheng; Zeng, Xiandong; Zhang, Weiguo

    2017-01-01

    Long non-coding RNAs (lncRNAs) are involved in various biological processes and diseases including osteosarcoma. Long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is overly expressed in osteosarcoma. But the function and mechanism it works on in osteosarcoma proliferation and metastasis mediated by Rho associated coiled-coil containing protein kinase 1 (ROCK1) and Rho associated coiled-coil containing protein kinase 2 (ROCK2) remain unclear. In the present study, an elevated MALAT1 was found in osteosarcoma tissues and cell lines, and the elevated MALAT1 was correlated with a poor prognosis in osteosarcoma patients. The functional experiments show that a decreased MALAT1 could remarkably inhibit osteosarcoma cell metastasis and proliferation but induce cell cycle arrest, indicating that MALAT1 functioned as an oncogene in osteosarcoma. Furthermore, we confirmed that MALAT1 and ROCK1/ROCK2 which were targeted by microRNA-144-3p (miR-144-3p) shared the same miR-144-3p combining site. Furthermore, the constructed luciferase assay verified that MALAT1 was a target of miR-144-3p. Additionally, the results of a qRT-PCR demonstrated that MALAT1 and miR-144-3p repressed each other's expression in a reciprocal manner. Finally, we affirmed that an overexpression of MALAT1 inhibited ROCK1/ROCK2 expression and its mediated metastasis and proliferation by working as a competitive endogenous RNA (ceRNA) via miR-144-3p. In summary, the findings of this study based on the ceRNA theory, combining the research foundation of miR-144-3p, ROCK1 and ROCK2, taking MALAT1 as a new point of study, provided new insights into molecular level proliferation reversal and metastasis of osteosarcoma. PMID:28938647

  3. Serum long non coding RNA MALAT-1 protected by exosomes is up-regulated and promotes cell proliferation and migration in non-small cell lung cancer.

    PubMed

    Zhang, Rui; Xia, Yuhong; Wang, Zhixin; Zheng, Jie; Chen, Yafei; Li, Xiaoli; Wang, Yu; Ming, Huaikun

    2017-08-19

    Circulating lncRNAs have been defined as a novel biomarker for non-small cell lung cancer (NSCLC), MALAT-1 was first identified lncRNA that was related to lung cancer metastasis. However, the relationship between exosomal lncRNAs and the diagnosis and prognosis of NSCLC was poorly understood. The aim of this study is to evaluate the clinical significance of serum exosomal MALAT-1 as a biomarker in the metastasis of NSCLC. In this study, we firstly isolated the exosomes from healthy subjects and NSCLC patients. Then we measured the expression levels of MALAT-1 contained in exosomes, and found that exosomal MALAT-1 was highly expressed in NSCLC patients, more importantly, the levels of exosomal MALAT-1 were positively associated with tumor stage and lymphatic metastasis. In addition, we decreased MALAT-1 expression by short hairpin RNA and conducted a series of assays including MTT, cell cycle, colony formation, wound-healing scratch and Annexin/V PI by flow cytometry in human lung cancer cell lines. These in vitro studies demonstrated that serum exosome-derived long noncoding RNA MALAT-1 promoted the tumor growth and migration, and prevented tumor cells from apoptosis in lung cancer cell lines. Taken together, this study shed a light on utilizing MALAT-1 in exosomes as a non-invasive serum-based tumor biomarker for diagnosis and prognosis of NSCLC. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Long noncoding RNA MALAT1 enhances the docetaxel resistance of prostate cancer cells via miR-145-5p-mediated regulation of AKAP12.

    PubMed

    Xue, Dong; Lu, Hao; Xu, Han-Yan; Zhou, Cui-Xing; He, Xiao-Zhou

    2018-06-01

    Our present work was aimed to study on the regulatory role of MALAT1/miR-145-5p/AKAP12 axis on docetaxel (DTX) sensitivity of prostate cancer (PCa) cells. The microarray data (GSE33455) to identify differentially expressed lncRNAs and mRNAs in DTX-resistant PCa cell lines (DU-145-DTX and PC-3-DTX) was retrieved from the Gene Expression Omnibus (GEO) database. QRT-PCR analysis was performed to measure MALAT1 expression in DTX-sensitive and DTX-resistant tissues/cells. The human DTX-resistant cell lines DU145-PTX and PC3-DTX were established as in vitro cell models, and the expression of MALAT1, miR-145-5p and AKAP12 was manipulated in DTX-sensitive and DTX-resistant cells. Cell viability was examined using MTT assay and colony formation methods. Cell apoptosis was assessed by TUNEL staining. Cell migration and invasion was determined by scratch test (wound healing) and Transwell assay, respectively. Dual-luciferase assay was applied to analyse the target relationship between lncRNA MALAT1 and miR-145-5p, as well as between miR-145-5p and AKAP12. Tumour xenograft study was undertaken to confirm the correlation of MALAT1/miR-145-5p/AKAP12 axis and DTX sensitivity of PCa cells in vivo. In this study, we firstly notified that the MALAT1 expression levels were up-regulated in clinical DTX-resistant PCa samples. Overexpressed MALAT1 promoted cell proliferation, migration and invasion but decreased cell apoptosis rate of PCa cells in spite of DTX treatment. We identified miR-145-5p as a target of MALAT1. MiR-145-5p overexpression in PC3-DTX led to inhibited cell proliferation, migration and invasion as well as reduced chemoresistance to DTX, which was attenuated by MALAT1. Moreover, we determined that AKAP12 was a target of miR-145-5p, which significantly induced chemoresistance of PCa cells to DTX. Besides, it was proved that MALAT1 promoted tumour cell proliferation and enhanced DTX-chemoresistance in vivo. There was an lncRNA MALAT1/miR-145-5p/AKAP12 axis involved in

  5. Citrate chemistry and biology for biomaterials design.

    PubMed

    Ma, Chuying; Gerhard, Ethan; Lu, Di; Yang, Jian

    2018-05-04

    Leveraging the multifunctional nature of citrate in chemistry and inspired by its important role in biological tissues, a class of highly versatile and functional citrate-based materials (CBBs) has been developed via facile and cost-effective polycondensation. CBBs exhibiting tunable mechanical properties and degradation rates, together with excellent biocompatibility and processability, have been successfully applied in vitro and in vivo for applications ranging from soft to hard tissue regeneration, as well as for nanomedicine designs. We summarize in the review, chemistry considerations for CBBs design to tune polymer properties and to introduce functionality with a focus on the most recent advances, biological functions of citrate in native tissues with the new notion of degradation products as cell modulator highlighted, and the applications of CBBs in wound healing, nanomedicine, orthopedic, cardiovascular, nerve and bladder tissue engineering. Given the expansive evidence for citrate's potential in biology and biomaterial science outlined in this review, it is expected that citrate based materials will continue to play an important role in regenerative engineering. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Developmental Physiology of Cluster-Root Carboxylate Synthesis and Exudation in Harsh Hakea. Expression of Phosphoenolpyruvate Carboxylase and the Alternative Oxidase1

    PubMed Central

    Shane, Michael W.; Cramer, Michael D.; Funayama-Noguchi, Sachiko; Cawthray, Gregory R.; Millar, A. Harvey; Day, David A.; Lambers, Hans

    2004-01-01

    Harsh hakea (Hakea prostrata R.Br.) is a member of the Proteaceae family, which is highly represented on the extremely nutrient-impoverished soils in southwest Australia. When phosphorus is limiting, harsh hakea develops proteoid or cluster roots that release carboxylates that mobilize sparingly soluble phosphate in the rhizosphere. To investigate the physiology underlying the synthesis and exudation of carboxylates from cluster roots in Proteaceae, we measured O2 consumption, CO2 release, internal carboxylate concentrations and carboxylate exudation, and the abundance of the enzymes phosphoenolpyruvate carboxylase and alternative oxidase (AOX) over a 3-week time course of cluster-root development. Peak rates of citrate and malate exudation were observed from 12- to 13-d-old cluster roots, preceded by a reduction in cluster-root total protein levels and a reduced rate of O2 consumption. In harsh hakea, phosphoenolpyruvate carboxylase expression was relatively constant in cluster roots, regardless of developmental stage. During cluster-root maturation, however, the expression of AOX protein increased prior to the time when citrate and malate exudation peaked. This increase in AOX protein levels is presumably needed to allow a greater flow of electrons through the mitochondrial electron transport chain in the absence of rapid ATP turnover. Citrate and isocitrate synthesis and accumulation contributed in a major way to the subsequent burst of citrate and malate exudation. Phosphorus accumulated by harsh hakea cluster roots was remobilized during senescence as part of their efficient P cycling strategy for growth on nutrient impoverished soils. PMID:15122030

  7. Ca2+-Citrate Uptake and Metabolism in Lactobacillus casei ATCC 334

    PubMed Central

    Mortera, Pablo; Pudlik, Agata; Magni, Christian; Alarcón, Sergio

    2013-01-01

    The putative citrate metabolic pathway in Lactobacillus casei ATCC 334 consists of the transporter CitH, a proton symporter of the citrate-divalent metal ion family of transporters CitMHS, citrate lyase, and the membrane-bound oxaloacetate decarboxylase complex OAD-ABDH. Resting cells of Lactobacillus casei ATCC 334 metabolized citrate in complex with Ca2+ and not as free citrate or the Mg2+-citrate complex, thereby identifying Ca2+-citrate as the substrate of the transporter CitH. The pathway was induced in the presence of Ca2+ and citrate during growth and repressed by the presence of glucose and of galactose, most likely by a carbon catabolite repression mechanism. The end products of Ca2+-citrate metabolism by resting cells of Lb. casei were pyruvate, acetate, and acetoin, demonstrating the activity of the membrane-bound oxaloacetate decarboxylase complex OAD-ABDH. Following pyruvate, the pathway splits into two branches. One branch is the classical citrate fermentation pathway producing acetoin by α-acetolactate synthase and α-acetolactate decarboxylase. The other branch yields acetate, for which the route is still obscure. Ca2+-citrate metabolism in a modified MRS medium lacking a carbohydrate did not significantly affect the growth characteristics, and generation of metabolic energy in the form of proton motive force (PMF) was not observed in resting cells. In contrast, carbohydrate/Ca2+-citrate cometabolism resulted in a higher biomass yield in batch culture. However, also with these cells, no generation of PMF was associated with Ca2+-citrate metabolism. It is concluded that citrate metabolism in Lb. casei is beneficial when it counteracts acidification by carbohydrate metabolism in later growth stages. PMID:23709502

  8. Enhanced dissolution of sildenafil citrate as dry foam tablets.

    PubMed

    Sawatdee, Somchai; Atipairin, Apichart; Sae Yoon, Attawadee; Srichana, Teerapol; Changsan, Narumon

    2017-01-30

    Dry foam formulation technology is alternative approach to enhance dissolution of the drug. Sildenafil citrate was suspended in sodium dodecyl sulfate solution and adding a mixture of maltodextrin and mannitol as diluent to form a paste. Sildenafil citrate paste was passed through a nozzle spray bottle to obtain smooth foam. The homogeneous foam was dried in a vacuum oven and sieved to obtain dry foam granules. The granules were mixed with croscarmellose sodium, magnesium stearate and compressed into tablet. All formulations were evaluated for their physicochemical properties and dissolution profiles. All the tested excipients were compatible with sildenafil citrate by both differential scanning calorimetry (DSC) and infrared (IR) analysis. There are no X-ray diffraction (XRD) peaks representing crystals of sildenafil citrate observed form dry foam formulations. The hardness of tablets was about 5 kg, friability test <1% with a disintegration time <5 min. The sildenafil citrate dry foam tablet had higher dissolution rate in 0.1 N HCl in comparison with commercial sildenafil citrate tablet, sildenafil citrate prepared by direct compression and wet granulation method. Sildenafil citrate dry foam tablet with the high-level composition of surfactant, water and diluent showed enhanced dissolution rate than that of the lower-level composition of these excipients. This formulation was stable under accelerated conditions for at least 6 months.

  9. L-Malate dehydrogenase activity in the reductive arm of the incomplete citric acid cycle of Nitrosomonas europaea.

    PubMed

    Deutch, Charles E

    2013-11-01

    The autotrophic nitrifying bacterium Nitrosomonas europaea does not synthesize 2-oxoglutarate (α-ketoglutarate) dehydrogenase under aerobic conditions and so has an incomplete citric acid cycle. L-malate (S-malate) dehydrogenase (MDH) from N. europaea was predicted to show similarity to the NADP(+)-dependent enzymes from chloroplasts and was separated from the NAD(+)-dependent proteins from most other bacteria or mitochondria. MDH activity in a soluble fraction from N. europaea ATCC 19718 was measured spectrophotometrically and exhibited simple Michaelis-Menten kinetics. In the reductive direction, activity with NADH increased from pH 6.0 to 8.5 but activity with NADPH was consistently lower and decreased with pH. At pH 7.0, the K m for oxaloacetate was 20 μM; the K m for NADH was 22 μM but that for NADPH was at least 10 times higher. In the oxidative direction, activity with NAD(+) increased with pH but there was very little activity with NADP(+). At pH 7.0, the K m for L-malate was 5 mM and the K m for NAD(+) was 24 μM. The reductive activity was quite insensitive to inhibition by L-malate but the oxidative activity was very sensitive to oxaloacetate. MDH activity was not strongly activated or inhibited by glycolytic or citric acid cycle metabolites, adenine nucleotides, NaCl concentrations, or most metal ions, but increased with temperature up to about 55 °C. The reductive activity was consistently 10-20 times higher than the oxidative activity. These results indicate that the L-malate dehydrogenase in N. europaea is similar to other NAD(+)-dependent MDHs (EC 1.1.1.37) but physiologically adapted for its role in a reductive biosynthetic sequence.

  10. Low pH, Aluminum, and Phosphorus Coordinately Regulate Malate Exudation through GmALMT1 to Improve Soybean Adaptation to Acid Soils1[W][OA

    PubMed Central

    Liang, Cuiyue; Piñeros, Miguel A.; Tian, Jiang; Yao, Zhufang; Sun, Lili; Liu, Jiping; Shaff, Jon; Coluccio, Alison; Kochian, Leon V.; Liao, Hong

    2013-01-01

    Low pH, aluminum (Al) toxicity, and low phosphorus (P) often coexist and are heterogeneously distributed in acid soils. To date, the underlying mechanisms of crop adaptation to these multiple factors on acid soils remain poorly understood. In this study, we found that P addition to acid soils could stimulate Al tolerance, especially for the P-efficient genotype HN89. Subsequent hydroponic studies demonstrated that solution pH, Al, and P levels coordinately altered soybean (Glycine max) root growth and malate exudation. Interestingly, HN89 released more malate under conditions mimicking acid soils (low pH, +P, and +Al), suggesting that root malate exudation might be critical for soybean adaptation to both Al toxicity and P deficiency on acid soils. GmALMT1, a soybean malate transporter gene, was cloned from the Al-treated root tips of HN89. Like root malate exudation, GmALMT1 expression was also pH dependent, being suppressed by low pH but enhanced by Al plus P addition in roots of HN89. Quantitative real-time PCR, transient expression of a GmALMT1-yellow fluorescent protein chimera in Arabidopsis protoplasts, and electrophysiological analysis of Xenopus laevis oocytes expressing GmALMT1 demonstrated that GmALMT1 encodes a root cell plasma membrane transporter that mediates malate efflux in an extracellular pH-dependent and Al-independent manner. Overexpression of GmALMT1 in transgenic Arabidopsis, as well as overexpression and knockdown of GmALMT1 in transgenic soybean hairy roots, indicated that GmALMT1-mediated root malate efflux does underlie soybean Al tolerance. Taken together, our results suggest that malate exudation is an important component of soybean adaptation to acid soils and is coordinately regulated by three factors, pH, Al, and P, through the regulation of GmALMT1 expression and GmALMT1 function. PMID:23341359

  11. Comparison of the efficiency of clomiphene citrate and letrozole in combination with metformin in moderately obese clomiphene citrate-resistant polycystic ovarian syndrome patients.

    PubMed

    Bjelica, Artur; Trninić-Pjević, Aleksandra; Mladenović-Segedi, Ljiljana; Cetković, Nenad; Petrović, Djordje

    2016-01-01

    Polycystic ovary syndrome is the most common endocrinopathy in women of reproductive-age. Therapy for those who want to get pregnant involves ovulation induction using clomiphene citrate, metformin, letrozole and gonadotropins. The aim of the study was to compare the efficacy of combinations of clomiphene citrate-metformin and letrozole-metformin in obese patients who are resistant to clomiphene citrate alone. The investigation was conducted as a retrospective study involving 60 moderately obese patients with polycystic ovary syndrome. Thirty-one of them received the clomiphene citrate-metformin, and 29 letrozole-metformin therapy. Stimulation was carried out for the procedures of intrauterine insemination (IUI). The age of patients, duration of infertility, and body mass index in both groups were similar. There was statistically significant difference in the thickness of the endometrium in favor of the group having the letrozole-metformin therapy (8.9 ± 1.7 mm) compared with the group receiving the clomiphene citrate-metformin treatment (6.3 ± 1.3 mm). The number of follicles was not statistically significantly different. Pregnancy rate in the first cycle of IUI in the clomiphene citrate group was 6.4%, and 17.2% in the letrozole group, which also was not statistically different. After the third IUI cycle, the pregnancy rate was significantly higher in the letrozole group (20.6%), while in the clomiphene citrate group it was (9.6%). This retrospective study demonstrated the advantages of the use of letrozole over clomiphene citrate in combination with metformin in moderately obese patients with polycystic ovary syndrome who are resistant to stimulation with clomiphene citrate alone.

  12. Malate Plays a Crucial Role in Starch Metabolism, Ripening, and Soluble Solid Content of Tomato Fruit and Affects Postharvest Softening[W][OA

    PubMed Central

    Centeno, Danilo C.; Osorio, Sonia; Nunes-Nesi, Adriano; Bertolo, Ana L.F.; Carneiro, Raphael T.; Araújo, Wagner L.; Steinhauser, Marie-Caroline; Michalska, Justyna; Rohrmann, Johannes; Geigenberger, Peter; Oliver, Sandra N.; Stitt, Mark; Carrari, Fernando; Rose, Jocelyn K.C.; Fernie, Alisdair R.

    2011-01-01

    Despite the fact that the organic acid content of a fruit is regarded as one of its most commercially important quality traits when assessed by the consumer, relatively little is known concerning the physiological importance of organic acid metabolism for the fruit itself. Here, we evaluate the effect of modifying malate metabolism in a fruit-specific manner, by reduction of the activities of either mitochondrial malate dehydrogenase or fumarase, via targeted antisense approaches in tomato (Solanum lycopersicum). While these genetic perturbations had relatively little effect on the total fruit yield, they had dramatic consequences for fruit metabolism, as well as unanticipated changes in postharvest shelf life and susceptibility to bacterial infection. Detailed characterization suggested that the rate of ripening was essentially unaltered but that lines containing higher malate were characterized by lower levels of transitory starch and a lower soluble sugars content at harvest, whereas those with lower malate contained higher levels of these carbohydrates. Analysis of the activation state of ADP-glucose pyrophosphorylase revealed that it correlated with the accumulation of transitory starch. Taken together with the altered activation state of the plastidial malate dehydrogenase and the modified pigment biosynthesis of the transgenic lines, these results suggest that the phenotypes are due to an altered cellular redox status. The combined data reveal the importance of malate metabolism in tomato fruit metabolism and development and confirm the importance of transitory starch in the determination of agronomic yield in this species. PMID:21239646

  13. Enclomiphene Citrate for the Treatment of Secondary Male Hypogonadism

    PubMed Central

    Rodriguez, Katherine M.; Pastuszak, Alexander W.; Lipshultz, Larry I.

    2016-01-01

    Introduction Hypogonadism is a growing concern in an aging male population. Historically treated using exogenous testosterone, concerns about possible adverse effects of testosterone have led physicians to seek alternative treatment approaches. Areas Covered Enclomiphene citrate is the trans isomer of clomiphene citrate, a non-steroidal estrogen receptor antagonist that is FDA-approved for the treatment of ovarian dysfunction in women. Clomiphene citrate has also been used off-label for many years to treat secondary male hypogonadism, particularly in the setting of male infertility. Here we review the literature examining the efficacy and safety of enclomiphene citrate in the setting of androgen deficiency. Expert Opinion Initial results support the conclusion that enclomiphene citrate increases serum testosterone levels by raising luteinizing hormone (LH) and follicle stimulating hormone (FSH) levels, without negatively impacting semen parameters. The ability to treat testosterone deficiency in men while maintaining fertility supports a role for enclomiphene citrate in the treatment of men in whom testosterone therapy is not a suitable option. PMID:27337642

  14. Therapeutic plasma exchange performed in tandem with hemodialysis without supplemental calcium in the apheresis circuit.

    PubMed

    Zhao, Yong; Ibrahim, Hiba; Bailey, Jeffrey A; Linden, Jeanne; Hickson, Elda; Haynes, Stefanie; Greene, Mindy; Vauthrin, Michelle; Weinstein, Robert

    2017-06-01

    Therapeutic plasma exchange (TPE) and hemopoietic progenitor cell (HPC) collection are apheresis procedures that can safely be performed in tandem with hemodialysis. Despite the return of citrate-anticoagulated blood to the patient during HPC collection, it is not necessary to administer supplemental calcium during these procedures because the ionized calcium concentration is restored as the returning blood passes through the dialyzer. It is not known whether this applies to TPE, in which a mixture of blood and pharmaceutical albumin, an avid binder of plasma ionized calcium, is returned to the patient through the dialyzer. We report on three dialysis-dependent patients who required TPE and underwent tandem treatments without supplemental calcium in the apheresis circuit. Overall, ionized calcium fell 4-12% (P = 0.0.024) and patients reported no symptoms of hypocalcemic toxicity. Tandem hemodialysis/TPE can be performed without supplemental calcium in the apheresis circuit. J. Clin. Apheresis 32:154-157, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Identification and Functional Characterization of a Tonoplast Dicarboxylate Transporter in Tomato (Solanum lycopersicum)

    PubMed Central

    Liu, Ruiling; Li, Boqiang; Qin, Guozheng; Zhang, Zhanquan; Tian, Shiping

    2017-01-01

    Acidity plays an important role in flavor and overall organoleptic quality of fruit and is mainly due to the presence of organic acids. Understanding the molecular basis of organic acid metabolism is thus of primary importance for fruit quality improvement. Here, we cloned a putative tonoplast dicarboxylate transporter gene (SlTDT) from tomato, and submitted it to the NCBI database (GenBank accession number: KC733165). SlTDT protein contained 13 putative transmembrane domains in silico analysis. Confocal microscopic study using green fluorescent fusion proteins revealed that SlTDT was localized on tonoplast. The expression patterns of SlTDT in tomato were analyzed by RT-qPCR. The results indicated that SlTDT expressed in leaves, roots, flowers and fruits at different ripening stages, suggesting SlTDT may be associated with the development of different tissues. To further explore the function of SlTDT, we constructed both overexpression and RNAi vectors and obtained transgenic tomato plants by agrobacterium-mediated method. Gas chromatography-mass spectrometer (GC-MS) analysis showed that overexpression of SlTDT significantly increased malate content, and reduced citrate content in tomato fruit. By contrast, repression of SlTDT in tomato reduced malate content of and increased citrate content. These results indicated that SlTDT played an important role in remobilization of malate and citrate in fruit vacuoles. PMID:28261242

  16. Identification and Functional Characterization of a Tonoplast Dicarboxylate Transporter in Tomato (Solanum lycopersicum).

    PubMed

    Liu, Ruiling; Li, Boqiang; Qin, Guozheng; Zhang, Zhanquan; Tian, Shiping

    2017-01-01

    Acidity plays an important role in flavor and overall organoleptic quality of fruit and is mainly due to the presence of organic acids. Understanding the molecular basis of organic acid metabolism is thus of primary importance for fruit quality improvement. Here, we cloned a putative tonoplast dicarboxylate transporter gene ( SlTDT ) from tomato, and submitted it to the NCBI database (GenBank accession number: KC733165). SlTDT protein contained 13 putative transmembrane domains in silico analysis. Confocal microscopic study using green fluorescent fusion proteins revealed that SlTDT was localized on tonoplast. The expression patterns of SlTDT in tomato were analyzed by RT-qPCR. The results indicated that SlTDT expressed in leaves, roots, flowers and fruits at different ripening stages, suggesting SlTDT may be associated with the development of different tissues. To further explore the function of SlTDT , we constructed both overexpression and RNAi vectors and obtained transgenic tomato plants by agrobacterium-mediated method. Gas chromatography-mass spectrometer (GC-MS) analysis showed that overexpression of SlTDT significantly increased malate content, and reduced citrate content in tomato fruit. By contrast, repression of SlTDT in tomato reduced malate content of and increased citrate content. These results indicated that SlTDT played an important role in remobilization of malate and citrate in fruit vacuoles.

  17. Antitumor effect and toxicity of free rhodium (II) citrate and rhodium (II) citrate-loaded maghemite nanoparticles in mice bearing breast cancer.

    PubMed

    Carneiro, Marcella Lemos Brettas; Peixoto, Raphael C A; Joanitti, Graziela A; Oliveira, Ricardo G S; Telles, Luis A M; Miranda-Vilela, Ana L; Bocca, Anamélia L; Vianna, Leonora M S; da Silva, Izabel C R; de Souza, Aparecido R; Lacava, Zulmira G M; Báo, Sônia N

    2013-02-16

    Magnetic fluids containing superparamagnetic iron oxide nanoparticles represent an attractive platform as nanocarriers in chemotherapy. Recently, we developed a formulation of maghemite nanoparticles coated with rhodium (II) citrate, which resulted in in vitro cytotoxicity enhanced up to 4.6 times when compared to free rhodium (II) citrate formulation on breast carcinoma cells. In this work, we evaluate the antitumor activity and toxicity induced by these formulations in Balb/c mice bearing orthotopic 4T1 breast carcinoma. Mice were evaluated with regard to the treatments' toxicity through analyses of hemogram, serum levels of alanine aminotransferase, iron, and creatinine; DNA fragmentation and cell cycle of bone marrow cells; and liver, kidney and lung histology. In addition, the antitumor activity of rhodium (II) citrate and maghemite nanoparticles coated with rhodium (II) citrate was verified by tumor volume reduction, histology and immunohistochemistry. Regarding the treatments' toxicity, no experimental groups had alterations in levels of serum ALT or creatinine, and this suggestion was corroborated by the histopathologic examination of liver and kidney of mice. Moreover, DNA fragmentation frequency of bone marrow cells was lower than 15% in all experimental groups. On the other hand, the complexes rhodium (II) citrate-functionalized maghemite and free rhodium (II) citrate led to a marked growth inhibition of tumor and decrease in CD31 and Ki-67 staining. In summary, we demonstrated that both rhodium (II) citrate and maghemite nanoparticles coated with rhodium (II) citrate formulations exhibited antitumor effects against 4T1 metastatic breast cancer cell line following intratumoral administration. This antitumor effect was followed by inhibition of both cell proliferation and microvascularization and by tumor tissue injury characterized as necrosis and fibrosis. Remarkably, this is the first published report demonstrating the therapeutic efficacy of maghemite

  18. Antitumor effect and toxicity of free rhodium (II) citrate and rhodium (II) citrate-loaded maghemite nanoparticles in mice bearing breast cancer

    PubMed Central

    2013-01-01

    Background Magnetic fluids containing superparamagnetic iron oxide nanoparticles represent an attractive platform as nanocarriers in chemotherapy. Recently, we developed a formulation of maghemite nanoparticles coated with rhodium (II) citrate, which resulted in in vitro cytotoxicity enhanced up to 4.6 times when compared to free rhodium (II) citrate formulation on breast carcinoma cells. In this work, we evaluate the antitumor activity and toxicity induced by these formulations in Balb/c mice bearing orthotopic 4T1 breast carcinoma. Methods Mice were evaluated with regard to the treatments’ toxicity through analyses of hemogram, serum levels of alanine aminotransferase, iron, and creatinine; DNA fragmentation and cell cycle of bone marrow cells; and liver, kidney and lung histology. In addition, the antitumor activity of rhodium (II) citrate and maghemite nanoparticles coated with rhodium (II) citrate was verified by tumor volume reduction, histology and immunohistochemistry. Results Regarding the treatments’ toxicity, no experimental groups had alterations in levels of serum ALT or creatinine, and this suggestion was corroborated by the histopathologic examination of liver and kidney of mice. Moreover, DNA fragmentation frequency of bone marrow cells was lower than 15% in all experimental groups. On the other hand, the complexes rhodium (II) citrate-functionalized maghemite and free rhodium (II) citrate led to a marked growth inhibition of tumor and decrease in CD31 and Ki-67 staining. Conclusions In summary, we demonstrated that both rhodium (II) citrate and maghemite nanoparticles coated with rhodium (II) citrate formulations exhibited antitumor effects against 4T1 metastatic breast cancer cell line following intratumoral administration. This antitumor effect was followed by inhibition of both cell proliferation and microvascularization and by tumor tissue injury characterized as necrosis and fibrosis. Remarkably, this is the first published report

  19. Effects of chromium malate on glycometabolism, glycometabolism-related enzyme levels and lipid metabolism in type 2 diabetic rats: A dose–response and curative effects study

    PubMed Central

    Feng, Weiwei; Mao, Guanghua; Li, Qian; Wang, Wei; Chen, Yao; Zhao, Ting; Li, Fang; Zou, Ye; Wu, Huiyu; Yang, Liuqing; Wu, Xiangyang

    2015-01-01

    Aims/Introduction The present study was designed to evaluate the effect of chromium malate on glycometabolism, glycometabolism-related enzyme levels and lipid metabolism in type 2 diabetic rats, and dose–response and curative effects. Materials and Methods The model of type 2 diabetes rats was developed, and daily treatment with chromium malate was given for 4 weeks. A rat enzyme-linked immunosorbent assay kit was used to assay glycometabolism, glycometabolism-related enzyme levels and lipid metabolism changes. Results The results showed that the antihyperglycemic activity increased with administration of chromium malate in a dose–dependent manner. The serum insulin level, insulin resistance index and C-peptide level of the chromium malate groups at a dose of 17.5, 20.0 and 20.8 μg chromium/kg bodyweight were significantly lower than that of the model, chromium trichloride and chromium picolinate groups. The hepatic glycogen, glucose-6-phosphate dehydrogenase and glucokinase levels of the chromium malate groups at a dose of 17.5, 20.0 and 20.8 μg chromium/kg bodyweight were significantly higher than that of the model, chromium trichloride and chromium picolinate groups. Chromium malate at a dose of 20.0 and 20.8 μg chromium/kg bodyweight significantly changed the total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, and triglycerides levels compared with the chromium trichloride and chromium picolinate groups. Conclusions The results showed that chromium malate exhibits greater benefits in treating type 2 diabetes, and the curative effect of chromium malate is superior to chromium trichloride and chromium picolinate. PMID:26221518

  20. Regulation of ATP production: dependence on calcium concentration and respiratory state.

    PubMed

    Fink, Brian D; Bai, Fan; Yu, Liping; Sivitz, William I

    2017-08-01

    Nanomolar free calcium enhances oxidative phosphorylation. However, the effects over a broad concentration range, at different respiratory states, or on specific energy substrates are less clear. We examined the action of varying [Ca 2+ ] over respiratory states ranging 4 to 3 on skeletal muscle mitochondrial respiration, potential, ATP production, and H 2 O 2 production using ADP recycling to clamp external [ADP]. Calcium at 450 nM enhanced respiration in mitochondria energized by the complex I substrates, glutamate/malate (but not succinate), at [ADP] of 4-256 µM, but more substantially at intermediate respiratory states and not at all at state 4. Using varied [Ca 2+ ], we found that the stimulatory effects on respiration and ATP production were most prominent at nanomolar concentrations, but inhibitory at 10 µM or higher. ATP production decreased more than respiration at 10 µM calcium. However, potential continued to increase up to 10 µM; suggesting a calcium-induced inability to utilize potential for phosphorylation independent of opening of the mitochondrial permeability transition pore (MTP). This effect of 10 µM calcium was confirmed by direct determination of ATP production over a range of potential created by differing substrate concentrations. Consistent with past reports, nanomolar [Ca 2+ ] had a stimulatory effect on utilization of potential for phosphorylation. Increasing [Ca 2+ ] was positively and continuously associated with H 2 O 2 production. In summary, the stimulatory effect of calcium on mitochondrial function is substrate dependent and most prominent over intermediate respiratory states. Calcium stimulates or inhibits utilization of potential for phosphorylation dependent on concentration with inhibition at higher concentration independent of MTP opening.

  1. Demographic, dietary, and urinary factors and 24-h urinary calcium excretion.

    PubMed

    Taylor, Eric N; Curhan, Gary C

    2009-12-01

    Higher urinary calcium is a risk factor for nephrolithiasis. This study delineated associations between demographic, dietary, and urinary factors and 24-h urinary calcium. Cross-sectional studies were conducted of 2201 stone formers (SF) and 1167 nonstone formers (NSF) in the Health Professionals Follow-up Study (men) and Nurses' Health Studies I and II (older and younger women). Median urinary calcium was 182 mg/d in men, 182 mg/d in older women, and 192 mg/d in younger women. Compared with NSF, urinary calcium as a fraction of calcium intake was 33 to 38% higher in SF (P values < or =0.01). In regression analyses, participants were combined because associations with urinary calcium were similar in each cohort and in SF and NSF. After multivariate adjustment, participants in the highest quartile of calcium intake excreted 18 mg/d more urinary calcium than those in the lowest (P trend =0.01). Caffeine and family history of nephrolithiasis were positively associated, whereas urinary potassium, thiazides, gout, and age were inversely associated, with urinary calcium. After multivariate adjustment, participants in the highest quartiles of urinary magnesium, sodium, sulfate, citrate, phosphorus, and volume excreted 71 mg/d, 37 mg/d, 44 mg/d, 61 mg/d, 37 mg/d, and 24 mg/d more urinary calcium, respectively, than participants in the lowest (P values trend < or =0.01). Intestinal calcium absorption and/or negative calcium balance is greater in SF than NSF. Higher calcium intakes at levels typically observed in free-living individuals are associated with only small increases in urinary calcium.

  2. Glutamine, glutamate, and other possible regulators of alpha-ketoglutarate and malate uptake by synaptic terminals.

    PubMed

    Shank, R P; Campbell, G L

    1984-04-01

    The uptake of alpha-ketoglutarate and malate by rat brain synaptosomal preparations was found to be affected by a variety of substances at physiologically relevant concentrations. Glutamine altered the uptake of alpha-ketoglutarate by causing an apparent reduction in the substrate-carrier affinity and an increase in Vmax. In contrast, glutamine did not appear to affect the Vmax of malate uptake, but it did increase markedly the uptake velocity at low concentrations of malate. L-Glutamate and L-aspartate were comparatively strong inhibitors of alpha-ketoglutarate and malate uptake. N-Acetylaspartate was a weak inhibitor of alpha-ketoglutarate uptake, a finding that contrasts with our previous observation that this compound potently inhibited alpha-ketoglutarate uptake by synaptosomes obtained from the cerebellum of 8- to 14-day-old mice. Ca2+ exhibited a variable effect but usually enhanced the uptake of alpha-ketoglutarate. The addition of small amounts of postmicrosomal supernatant to the incubation medium enhanced the uptake of alpha-ketoglutarate by low-density synaptosomes. By comparison, the uptake of glutamate, glutamine, gamma-aminobutyric acid, and several other amino acids was not affected. The enhancement of alpha-ketoglutarate uptake by the supernatant was due to a heat labile substance that was retained by dialysis tubing (MW cutoff = 8,000) and Amicon filter cones (CF 25), and was precipitated by ammonium sulfate at 60% saturation. In experiments in which the metabolic conversion of [U-14C] alpha-ketoglutarate to glutamate, aspartate, glutamine, and gamma-aminobutyric acid was determined, the presence of glutamine and glutamate in the incubation medium did not affect the pattern of labelling appreciably.

  3. Altered Expression of the Malate-Permeable Anion Channel OsALMT4 Reduces the Growth of Rice Under Low Radiance

    PubMed Central

    Liu, Jie; Xu, Muyun; Estavillo, Gonzalo M.; Delhaize, Emmanuel; White, Rosemary G.; Zhou, Meixue; Ryan, Peter R.

    2018-01-01

    We examined the function of OsALMT4 in rice (Oryza sativa L.) which is a member of the aluminum-activated malate transporter family. Previous studies showed that OsALMT4 localizes to the plasma membrane and that expression in transgenic rice lines results in a constitutive release of malate from the roots. Here, we show that OsALMT4 is expressed widely in roots, shoots, flowers, and grain but not guard cells. Expression was also affected by ionic and osmotic stress, light and to the hormones ABA, IAA, and salicylic acid. Malate efflux from the transgenic plants over-expressing OsALMT4 was inhibited by niflumate and salicylic acid. Growth of transgenic lines with either increased OsALMT4 expression or reduced expression was measured in different environments. Light intensity caused significant differences in growth between the transgenic lines and controls. When day-time light was reduced from 700 to 300 μmol m-2s-1 independent transgenic lines with either increased or decreased OsALMT4 expression accumulated less biomass compared to their null controls. This response was not associated with differences in photosynthetic capacity, stomatal conductance or sugar concentrations in tissues. We propose that by disrupting malate fluxes across the plasma membrane carbon partitioning and perhaps signaling are affected which compromises growth under low light. We conclude that OsALMT4 is expressed widely in rice and facilitates malate efflux from different cell types. Altering OsALMT4 expression compromises growth in low-light environments. PMID:29774038

  4. Ferric Citrate Controls Phosphorus and Delivers Iron in Patients on Dialysis

    PubMed Central

    Sika, Mohammed; Koury, Mark J.; Chuang, Peale; Schulman, Gerald; Smith, Mark T.; Whittier, Frederick C.; Linfert, Douglas R.; Galphin, Claude M.; Athreya, Balaji P.; Nossuli, A. Kaldun Kaldun; Chang, Ingrid J.; Blumenthal, Samuel S.; Manley, John; Zeig, Steven; Kant, Kotagal S.; Olivero, Juan Jose; Greene, Tom; Dwyer, Jamie P.

    2015-01-01

    Patients on dialysis require phosphorus binders to prevent hyperphosphatemia and are iron deficient. We studied ferric citrate as a phosphorus binder and iron source. In this sequential, randomized trial, 441 subjects on dialysis were randomized to ferric citrate or active control in a 52-week active control period followed by a 4-week placebo control period, in which subjects on ferric citrate who completed the active control period were rerandomized to ferric citrate or placebo. The primary analysis compared the mean change in phosphorus between ferric citrate and placebo during the placebo control period. A sequential gatekeeping strategy controlled study-wise type 1 error for serum ferritin, transferrin saturation, and intravenous iron and erythropoietin-stimulating agent usage as prespecified secondary outcomes in the active control period. Ferric citrate controlled phosphorus compared with placebo, with a mean treatment difference of −2.2±0.2 mg/dl (mean±SEM) (P<0.001). Active control period phosphorus was similar between ferric citrate and active control, with comparable safety profiles. Subjects on ferric citrate achieved higher mean iron parameters (ferritin=899±488 ng/ml [mean±SD]; transferrin saturation=39%±17%) versus subjects on active control (ferritin=628±367 ng/ml [mean±SD]; transferrin saturation=30%±12%; P<0.001 for both). Subjects on ferric citrate received less intravenous elemental iron (median=12.95 mg/wk ferric citrate; 26.88 mg/wk active control; P<0.001) and less erythropoietin-stimulating agent (median epoetin-equivalent units per week: 5306 units/wk ferric citrate; 6951 units/wk active control; P=0.04). Hemoglobin levels were statistically higher on ferric citrate. Thus, ferric citrate is an efficacious and safe phosphate binder that increases iron stores and reduces intravenous iron and erythropoietin-stimulating agent use while maintaining hemoglobin. PMID:25060056

  5. TRANSFUSIONS—Hazardous Acid-Base Changes with Citrated Blood

    PubMed Central

    Pedro, Jovita M. San; Iwai, Seizo; Hattori, Mitsuo; Leigh, M. Digby

    1962-01-01

    In a study of the acid-base changes in the blood of rabbits during and following transfusions of citrated blood and of heparinized blood, it was observed that, with citrated blood, pH decreased and carbon dioxide tensions rose. With heparinized blood, the acid-base balance was maintained within normal limits following transfusions. The potential hazards of rapid massive citrated blood transfusions in the anesthetized patient during operation must be kept in mind. PMID:14496706

  6. 21 CFR 172.755 - Stearyl monoglyceridyl citrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Other Specific Usage Additives § 172.755 Stearyl monoglyceridyl citrate. The food additive stearyl monoglyceridyl citrate may be safely used in food in accordance with the following...

  7. 21 CFR 172.755 - Stearyl monoglyceridyl citrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Other Specific Usage Additives § 172.755 Stearyl monoglyceridyl citrate. The food additive stearyl monoglyceridyl citrate may be safely used in food in accordance with the following...

  8. 21 CFR 172.370 - Iron-choline citrate complex.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.370 Iron-choline citrate complex. Iron-choline citrate complex made by reacting...

  9. The effect of hydrodynamic and thermodynamic factors and the addition of citric acid on the precipitation of calcium oxalate dihydrate.

    PubMed

    Šter, Anamarija; Šafranko, Silvija; Bilić, Katarina; Marković, Berislav; Kralj, Damir

    2018-06-01

    This paper reports on the investigation of experimental conditions relevant for spontaneous precipitation of significant amount of pure calcium oxalate dihydrate (COD). For this purpose, the hydrodynamic and thermodynamic parameters, such as mode of agitation, temperature, supersaturation and concentration of additives (citrate ions), have been studied. The results show that in the model systems, without the citrate addition and applied mechanical stirring, calcium oxalate monohydrate (COM) was observed as dominant modification after 20 min of aging, while the magnetic stirring resulted in a formation of a mixture of COM and calcium oxalate trihydrate (COT), regardless of the temperature applied. In the mechanically stirred systems, the addition of citrate ions in the range of concentrations, 0.001 mol dm -3  < c i (Na 3 C 6 H 5 O 7 ) < 0.012 mol dm -3 , caused the formation of COM and COD mixture at all temperatures. At the same conditions and in the magnetically stirred systems formation of COD, in a mixture with COT or COM, has been observed. The highest COD content in the mechanically stirred system was obtained at 45 °C and c i (Na 3 C 6 H 5 O 7 ) = 0.001 mol dm -3 (w = 89.5%), while in the magnetically stirred system almost pure COD was obtained at 37 °C and c i (Na 3 C 6 H 5 O 7 ) = 0.008 mol dm -3 (w = 96.5%).

  10. The long non-coding RNA MALAT1 promotes the migration and invasion of hepatocellular carcinoma by sponging miR-204 and releasing SIRT1.

    PubMed

    Hou, Zhouhua; Xu, Xuwen; Zhou, Ledu; Fu, Xiaoyu; Tao, Shuhui; Zhou, Jiebin; Tan, Deming; Liu, Shuiping

    2017-07-01

    Increasing evidence supports the significance of long non-coding RNA in cancer development. Several recent studies suggest the oncogenic activity of long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) in hepatocellular carcinoma. In this study, we explored the molecular mechanisms by which MALAT1 modulates hepatocellular carcinoma biological behaviors. We found that microRNA-204 was significantly downregulated in sh-MALAT1 HepG2 cell and 15 hepatocellular carcinoma tissues by quantitative real-time polymerase chain reaction analysis. Through bioinformatic screening, luciferase reporter assay, RNA-binding protein immunoprecipitation, and RNA pull-down assay, we identified microRNA-204 as a potential interacting partner for MALAT1. Functionally, wound-healing and transwell assays revealed that microRNA-204 significantly inhibited the migration and invasion of hepatocellular carcinoma cells. Notably, sirtuin 1 was recognized as a direct downstream target of microRNA-204 in HepG2 cells. Moreover, si-SIRT1 significantly inhibited cell invasion and migration process. These data elucidated, by sponging and competitive binding to microRNA-204, MALAT1 releases the suppression on sirtuin 1, which in turn promotes hepatocellular carcinoma migration and invasion. This study reveals a novel mechanism by which MALAT1 stimulates hepatocellular carcinoma progression and justifies targeting metastasis-associated lung adenocarcinoma transcript 1 as a potential therapy for hepatocellular carcinoma.

  11. Oxaloacetate enhances neuronal cell bioenergetic fluxes and infrastructure.

    PubMed

    Wilkins, Heather M; Koppel, Scott; Carl, Steven M; Ramanujan, Suruchi; Weidling, Ian; Michaelis, Mary L; Michaelis, Elias K; Swerdlow, Russell H

    2016-04-01

    We tested how the addition of oxaloacetate (OAA) to SH-SY5Y cells affected bioenergetic fluxes and infrastructure, and compared the effects of OAA to malate, pyruvate, and glucose deprivation. OAA displayed pro-glycolysis and pro-respiration effects. OAA pro-glycolysis effects were not a consequence of decarboxylation to pyruvate because unlike OAA, pyruvate lowered the glycolysis flux. Malate did not alter glycolysis flux and reduced mitochondrial respiration. Glucose deprivation essentially eliminated glycolysis and increased mitochondrial respiration. OAA increased, while malate decreased, the cell NAD+/NADH ratio. Cytosolic malate dehydrogenase 1 protein increased with OAA treatment, but not with malate or glucose deprivation. Glucose deprivation increased protein levels of ATP citrate lyase, an enzyme which produces cytosolic OAA, whereas OAA altered neither ATP citrate lyase mRNA nor protein levels. OAA, but not glucose deprivation, increased cytochrome oxidase subunit 2, PGC1α, PGC1β, and PGC1 related co-activator protein levels. OAA increased total and phosphorylated SIRT1 protein. We conclude that adding OAA to SH-SY5Y cells can support or enhance both glycolysis and respiration fluxes. These effects appear to depend, at least partly, on OAA causing a shift in the cell redox balance to a more oxidized state, that it is not a glycolysis pathway intermediate, and possibly its ability to act in an anaplerotic fashion. We examined how oxaloacetate (OAA) affects bioenergetic fluxes. To advance the understanding of how OAA mediates these changes, we compared the effects of OAA to malate, pyruvate, and glucose deprivation. We further examined how OAA affects levels of enzymes that facilitate its cytosolic metabolism, and found OAA increased the expression of malate dehydrogenase 1 (MDH1-cytosolic). We propose the following: OAA supports both glycolysis and respiration fluxes, shifts the cell redox balance toward a more oxidized state, and acts in an anaplerotic

  12. The varied functions of aluminium-activated malate transporters–much more than aluminium resistance

    PubMed Central

    Palmer, Antony J.; Baker, Alison; Muench, Stephen P.

    2016-01-01

    The ALMT (aluminium-activated malate transporter) family comprises a functionally diverse but structurally similar group of ion channels. They are found ubiquitously in plant species, expressed throughout different tissues, and located in either the plasma membrane or tonoplast. The first family member identified was TaALMT1, discovered in wheat root tips, which was found to be involved in aluminium resistance by means of malate exudation into the soil. However, since this discovery other family members have been shown to have many other functions such as roles in stomatal opening, general anionic homoeostasis, and in economically valuable traits such as fruit flavour. Recent evidence has also shown that ALMT proteins can act as key molecular actors in GABA (γ-aminobutyric acid) signalling, the first evidence that GABA can act as a signal transducer in plants. PMID:27284052

  13. Glutamine and ornithine alpha-ketoglutarate supplementation on malate dehydrogenases expression in hepatectomized rats.

    PubMed

    Guimarães Filho, Artur; Cunha, Rodrigo Maranguape Silva da; Vasconcelos, Paulo Roberto Leitão de; Guimarães, Sergio Botelho

    2014-06-01

    To evaluate the relative gene expression (RGE) of cytosolic (MDH1) and mitochondrial (MDH2) malate dehydrogenases enzymes in partially hepatectomized rats after glutamine (GLN) or ornithine alpha-ketoglutarate (OKG) suplementation. One-hundred and eight male Wistar rats were randomly distributed into six groups (n=18): CCaL, GLNL and OKGL and fed calcium caseinate (CCa), GLN and OKG, 0.5 g/Kg by gavage, 30 minutes before laparotomy. CCaH, GLNH and OKGH groups were likewise fed 30 minutes before 70% partial hepatectomy. Blood and liver samples were collected three, seven and 14 days after laparotomy/hepatectomy for quantification of MDH1/MDH2 enzymes using the real-time polymerase chain reaction (PCR) methodology. Relative enzymes expression was calculated by the 2-(ΔΔC)T method using the threshold cycle (CT) value for normalization. MDH1/MDH2 RGE was not different in hepatectomized rats treated with OKG compared to rats treated with CCa. However, MDH1/MDH2 RGE was greater on days 3 (321:1/26.48:1) and 7 (2.12:1/2.48:1) while MDH2 RGE was greater on day 14 (7.79:1) in hepatectomized rats treated with GLN compared to control animals. Glutamine has beneficial effects in liver regeneration in rats by promoting an up-regulation of the MDH1 and MDH2 relative gene expression.

  14. Long non-coding RNA MALAT1 interacts with transcription factor Foxo1 to regulate SIRT1 transcription in high glucose-induced HK-2 cells injury.

    PubMed

    Zhou, Ling; Xu, De-Yu; Sha, Wen-Gang; Shen, Lei; Lu, Guo-Yuan

    2018-06-18

    Tubular injury is considered as a crucial pathological feature of diabetic nephropathy. LncRNA MALAT1 is involved in diabetic complications. Hence the role of MALAT1 in high glucose-induced renal tubular epithelial cells (HK-2) injury deserves investigation. The diabetic mice model was established with streptozotocin (STZ) injection. The expression of NEAT1, SIRT1, and Foxo1 mRNA and protein was determined with qRT-PCR and western blot, respectively. The serum creatinine and urinary albumin were examined by enzyme linked immunosorbent assay (ELISA). Interaction between MALAT1 and Foxo1 was detected with RIP and RNA pull-down assay, respectively. Dual luciferase reporter assay was used to evaluate the binding between Foxo1 and SIRT1. LncRNA MALAT1 was up-regulated in kidney tissues of diabetic mice and in HK-2 cells treated with high glucose, while the expression of SIRT1 was decreased. Interaction between MALAT1 and Foxo1 was observed in HK-2 cells and the interaction was promoted by high glucose treatment. Foxo1 activated SIRT1 transcription by binding to its promoter, and MALAT1 repressed SIRT1 expression through targeting Foxo1. LncRNA MALAT1 interacts with transcription factor Foxo1 to represses SIRT1 transcription in high glucose incubated HK-2 cells, which promotes high glucose-induced HK-2 cells injury. Copyright © 2018. Published by Elsevier Inc.

  15. 21 CFR 73.1025 - Ferric ammonium citrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Ferric ammonium citrate. 73.1025 Section 73.1025 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1025 Ferric ammonium citrate. (a) Identity. The...

  16. 21 CFR 73.1025 - Ferric ammonium citrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Ferric ammonium citrate. 73.1025 Section 73.1025 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1025 Ferric ammonium citrate. (a) Identity. The...

  17. 21 CFR 73.1025 - Ferric ammonium citrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Ferric ammonium citrate. 73.1025 Section 73.1025 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1025 Ferric ammonium citrate. (a) Identity. The...

  18. 21 CFR 73.1025 - Ferric ammonium citrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Ferric ammonium citrate. 73.1025 Section 73.1025 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1025 Ferric ammonium citrate. (a) Identity. The...

  19. 21 CFR 73.1025 - Ferric ammonium citrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Ferric ammonium citrate. 73.1025 Section 73.1025 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1025 Ferric ammonium citrate. (a) Identity. The...

  20. Demographic, Dietary, and Urinary Factors and 24-h Urinary Calcium Excretion

    PubMed Central

    Curhan, Gary C.

    2009-01-01

    Background and objectives: Higher urinary calcium is a risk factor for nephrolithiasis. This study delineated associations between demographic, dietary, and urinary factors and 24-h urinary calcium. Design, setting, participants, & measurements: Cross-sectional studies were conducted of 2201 stone formers (SF) and 1167 nonstone formers (NSF) in the Health Professionals Follow-up Study (men) and Nurses' Health Studies I and II (older and younger women). Results: Median urinary calcium was 182 mg/d in men, 182 mg/d in older women, and 192 mg/d in younger women. Compared with NSF, urinary calcium as a fraction of calcium intake was 33 to 38% higher in SF (P values ≤0.01). In regression analyses, participants were combined because associations with urinary calcium were similar in each cohort and in SF and NSF. After multivariate adjustment, participants in the highest quartile of calcium intake excreted 18 mg/d more urinary calcium than those in the lowest (P trend =0.01). Caffeine and family history of nephrolithiasis were positively associated, whereas urinary potassium, thiazides, gout, and age were inversely associated, with urinary calcium. After multivariate adjustment, participants in the highest quartiles of urinary magnesium, sodium, sulfate, citrate, phosphorus, and volume excreted 71 mg/d, 37 mg/d, 44 mg/d, 61 mg/d, 37 mg/d, and 24 mg/d more urinary calcium, respectively, than participants in the lowest (P values trend ≤0.01). Conclusions: Intestinal calcium absorption and/or negative calcium balance is greater in SF than NSF. Higher calcium intakes at levels typically observed in free-living individuals are associated with only small increases in urinary calcium. PMID:19820135

  1. Cytosolic malate dehydrogenase regulates RANKL-mediated osteoclastogenesis via AMPK/c-Fos/NFATc1 signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh, Se Jeong; Gu, Dong Ryun; Center for Metabolic Function Regulation

    2016-06-17

    Cytosolic malate dehydrogenase (malate dehydrogenase 1, MDH1) plays pivotal roles in the malate/aspartate shuttle that might modulate metabolism between the cytosol and mitochondria. In this study, we investigated the role of MDH1 in osteoclast differentiation and formation. MDH1 expression was induced by receptor activator of nuclear factor kappa-B ligand (RANKL) treatment. Knockdown of MDH1 by infection with retrovirus containing MDH1-specific shRNA (shMDH1) reduced mature osteoclast formation and bone resorption activity. Moreover, the expression of marker genes associated with osteoclast differentiation was downregulated by shMDH1 treatment, suggesting a role of MDH1 in osteoclast differentiation. In addition, intracellular ATP production was reducedmore » following the activation of adenosine 5′ monophosphate-activated protein kinase (AMPK), a cellular energy sensor and negative regulator of RANKL-induced osteoclast differentiation, in shMDH1-infected osteoclasts compared to control cells. In addition, the expression of c-Fos and nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), a critical transcription factor of osteoclastogenesis, was decreased with MDH1 knockdown during RANKL-mediated osteoclast differentiation. These findings provide strong evidence that MDH1 plays a critical role in osteoclast differentiation and function via modulation of the intracellular energy status, which might affect AMPK activity and NFATc1 expression.« less

  2. Characterisation of the two malate dehydrogenases from Phytomonas sp. Purification of the glycosomal isoenzyme.

    PubMed

    Uttaro, A D; Opperdoes, F R

    1997-10-01

    Two NAD(H)-dependent malate dehydrogenase (MDH) isoenzymes were detected in Phytomonas isolated from the lactiferous tubes of Euphorbia characias. The total specific activity in crude extracts using oxaloacetate as substrate was 3.3 U mg-1 of protein. The two isoenzymes had isoelectric points of 6.0 and 7.2, respectively. The acidic isoform represented 80% of the total activity in the cell and was present in the glycosome. It was purified to homogeneity by a method involving hydrophobic interaction chromatography on Phenyl-Sepharose followed by ionic exchange on CM-Sepharose and affinity chromatography on Blue-Sepharose. The purified glycosomal MDH is a homodimeric protein with a subunit molecular mass of 37 kDa and it has a low substrate specificity, since it was able to reduce both aromatic and aliphatic alpha-ketoacids as substrate including oxaloacetate, phenyl pyruvate, alpha-keto iso-caproate and pyruvate. The apparent K(m)s for oxaloacetate and NADH were 166 and 270 microM, respectively and for L-malate and NAD+, 3000 and 246 microM, respectively. The basic isoform was present in the mitochondrion. It has a high substrate specificity and an apparent K(m) of 132 and 63 microM for oxaloacetate and NADH, respectively, and of 450 and 91 microM, respectively, with L-malate and NAD+.

  3. 21 CFR 184.1296 - Ferric ammonium citrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... citrate (iron (III) ammonium citrate) is prepared by the reaction of ferric hydroxide with citric acid... 18.5 percent iron, approximately 9 percent ammonia, and 65 percent citric acid and occurs as reddish... composed of 14.5 to 16 percent iron, approximately 7.5 percent ammonia, and 75 percent citric acid and...

  4. 21 CFR 184.1296 - Ferric ammonium citrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... citrate (iron (III) ammonium citrate) is prepared by the reaction of ferric hydroxide with citric acid... 18.5 percent iron, approximately 9 percent ammonia, and 65 percent citric acid and occurs as reddish... composed of 14.5 to 16 percent iron, approximately 7.5 percent ammonia, and 75 percent citric acid and...

  5. 21 CFR 184.1296 - Ferric ammonium citrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... citrate (iron (III) ammonium citrate) is prepared by the reaction of ferric hydroxide with citric acid... 18.5 percent iron, approximately 9 percent ammonia, and 65 percent citric acid and occurs as reddish... composed of 14.5 to 16 percent iron, approximately 7.5 percent ammonia, and 75 percent citric acid and...

  6. 21 CFR 184.1296 - Ferric ammonium citrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... citrate (iron (III) ammonium citrate) is prepared by the reaction of ferric hydroxide with citric acid... 18.5 percent iron, approximately 9 percent ammonia, and 65 percent citric acid and occurs as reddish... composed of 14.5 to 16 percent iron, approximately 7.5 percent ammonia, and 75 percent citric acid and...

  7. Conjugated fatty acids and methane production by rumen microbes when incubated with linseed oil alone or mixed with fish oil and/or malate.

    PubMed

    Li, Xiang Z; Gao, Qing S; Yan, Chang G; Choi, Seong H; Shin, Jong S; Song, Man K

    2015-08-01

    We hypothesized that manipulating metabolism with fish oil and malate as a hydrogen acceptor would affect the biohydrogenation process of α-linolenic acid by rumen microbes. This study was to examine the effect of fish oil and/or malate on the production of conjugated fatty acids and methane (CH4 ) by rumen microbes when incubated with linseed oil. Linseed oil (LO), LO with fish oil (LO-FO), LO with malate (LO-MA), or LO with fish oil and malate (LO-FO-MA) was added to diluted rumen fluid, respectively. The LO-MA and LO-FO-MA increased pH and propionate concentration compared to the other treatments. LO-MA and LO-FO-MA reduced CH4 production compared to LO. LO-MA and LO-FO-MA increased the contents of c9,t11-conjugated linoleic acid (CLA) and c9,t11,c15-conjugated linolenic acid (CLnA) compared to LO. The content of malate was rapidly reduced while that of lactate was reduced in LO-MA and LO-FO-MA from 3 h incubation time. The fold change of the quantity of methanogen related to total bacteria was decreased at both 3 h and 6 h incubation times in all treatments compared to the control. Overall data indicate that supplementation of combined malate and/or fish oil when incubated with linseed oil, could depress methane generation and increase production of propionate, CLA and CLnA under the conditions of the current in vitro study. © 2015 Japanese Society of Animal Science.

  8. Synthesis and characterization of bioresorbable calcium phosphosilicate nanocomposite particles for fluorescence imaging and biomedical applications

    NASA Astrophysics Data System (ADS)

    Morgan, Thomas T.

    Organically doped calcium phosphosilicate nanoparticles (CPSNPs) were developed and characterized, driven by the need for non-toxic vectors for drug delivery and fluorescence biological imaging applications. In particular, advancement in drug delivery for the chemotherapeutic treatment of cancers is required to increase drug efficacy and improve patient quality of life. Additionally, brighter and more photostable fluorophores are needed to meet demands for improved sensitivity and experimental diversity, which may lead to improvements in early detection of solid tumors and advancement in understanding of biological processes. A literature survey on the state of the field for nanoparticle based biological fluorescence imaging and drug delivery is presented in Chapter 1. Chapter 2 focuses on the characterization techniques used in this work. The development and optical characterization of 20-40 nm diameter, citrate functionalized Cy3 amidite doped calcium phosphosilicate nanoparticles (Cy3 CPSNPs) for in vitro fluorescence imaging is outlined in Chapters 3 and 4, respectively. In particular, sodium citrate was used to functionalize the surface and provide electrosteric dispersion of these particles. CPSNPs stabilized with sodium citrate routinely exhibited highly negative zeta potentials greater than -25 mV in magnitude. Furthermore, the fluorescence quantum yield of the encapsulated fluorophore was improved by more than 4.5-fold when compared to the unencapsulated dye. The bioimaging and drug delivery capability of CPSNPs was explored. Cy3 CPSNPs dissolved quickly in the acidic environment experienced during endocytosis, releasing the encapsulated fluorophore. This is consistent with solution phase experiments that show the particles are dissolved at pH 5. CPSNPs loaded with fluorescein and a hydrophobic growth inhibitor, ceramide C6, proved the ability to simultaneously image and delivery of the hydrophobic drug to cells in vitro. Chapter 5 examined the colloidal

  9. Addition of senna improves quality of colonoscopy preparation with magnesium citrate.

    PubMed

    Vradelis, Stergios; Kalaitzakis, Evangelos; Sharifi, Yalda; Buchel, Otto; Keshav, Satish; Chapman, Roger W; Braden, Barbara

    2009-04-14

    To prospectively investigate the effectiveness and patient's tolerance of two low-cost bowel cleansing preparation protocols based on magnesium citrate only or the combination of magnesium citrate and senna. A total of 342 patients who were referred for colonoscopy underwent a colon cleansing protocol with magnesium citrate alone (n = 160) or magnesium citrate and senna granules (n = 182). The colonoscopist rated the overall efficacy of colon cleansing using an established score on a 4-point scale. Patients were questioned before undergoing colonoscopy for side effects and symptoms during bowel preparation. The percentage of procedures rescheduled because of insufficient colon cleansing was 7% in the magnesium citrate group and 4% in the magnesium citrate/senna group (P = 0.44). Adequate visualization of the colonic mucosa was rated superior under the citramag/senna regimen (P = 0.004). Both regimens were well tolerated, and did not significantly differ in the occurrence of nausea, bloating or headache. However, abdominal cramps were observed more often under the senna protocol (29.2%) compared to the magnesium citrate only protocol (9.9%, P < 0.0003). The addition of senna to the bowel preparation protocol with magnesium citrate significantly improves the cleansing outcome.

  10. Structural Basis for Norovirus Inhibition and Fucose Mimicry by Citrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansman, Grant S.; Shahzad-ul-Hussan, Syed; McLellan, Jason S.

    2012-01-20

    Human noroviruses bind with their capsid-protruding domains to histo-blood-group antigens (HBGAs), an interaction thought to direct their entry into cells. Although human noroviruses are the major cause of gastroenteritis outbreaks, development of antivirals has been lacking, mainly because human noroviruses cannot be cultivated. Here we use X-ray crystallography and saturation transfer difference nuclear magnetic resonance (STD NMR) to analyze the interaction of citrate with genogroup II (GII) noroviruses. Crystals of citrate in complex with the protruding domain from norovirus GII.10 Vietnam026 diffracted to 1.4 {angstrom} and showed a single citrate bound at the site of HBGA interaction. The citrate interactionmore » was coordinated with a set of capsid interactions almost identical to that involved in recognizing the terminal HBGA fucose, the saccharide which forms the primary conserved interaction between HBGAs and GII noroviruses. Citrate and a water molecule formed a ring-like structure that mimicked the pyranoside ring of fucose. STD NMR showed the protruding domain to have weak affinity for citrate (460 {mu}M). This affinity, however, was similar to the affinities of the protruding domain for fucose (460 {mu}M) and H type 2 trisaccharide (390 {mu}M), an HBGA shown previously to be specifically recognized by human noroviruses. Importantly, competition STD NMR showed that citrate could compete with HBGA for norovirus binding. Together, the results suggest that citrate and other glycomimetics have the potential to block human noroviruses from binding to HBGAs.« less

  11. The varied functions of aluminium-activated malate transporters-much more than aluminium resistance.

    PubMed

    Palmer, Antony J; Baker, Alison; Muench, Stephen P

    2016-06-15

    The ALMT (aluminium-activated malate transporter) family comprises a functionally diverse but structurally similar group of ion channels. They are found ubiquitously in plant species, expressed throughout different tissues, and located in either the plasma membrane or tonoplast. The first family member identified was TaALMT1, discovered in wheat root tips, which was found to be involved in aluminium resistance by means of malate exudation into the soil. However, since this discovery other family members have been shown to have many other functions such as roles in stomatal opening, general anionic homoeostasis, and in economically valuable traits such as fruit flavour. Recent evidence has also shown that ALMT proteins can act as key molecular actors in GABA (γ-aminobutyric acid) signalling, the first evidence that GABA can act as a signal transducer in plants. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  12. [Effect of L-arginine and the nitric oxide synthase blocker L-NNA on calcium capacity in rat liver mitochondria with differing resistance to hypoxia].

    PubMed

    Kurhaliuk, N M; Ikkert, O V; Vovkanych, L S; Horyn', O V; Hal'kiv, M O; Hordiĭ, S K

    2001-01-01

    The effect of L-arginine and blockator of nitric oxide synthase L-NNA on processes of calcium mitochondrial capacity in liver with different resistance to hypoxia in the experiments with Wistar rats has been studied using the followrng substrates of energy support: succinic, alpha-ketoglutaric acids, alpha-ketolutarate and inhibitor succinatedehydrogenase malonate. As well we used substrates mixtures combination providing for activation of aminotransferase mechanism: glutamate and piruvate, glutamate and malate. It has been shown that L-arginine injection increases calcium mitochondrial capacity of low resistant rats using as substrates the succinate and alpha-ketoglutarate to control meanings of high resistance rats. Effects of donors nitric oxide on this processes limit NO-synthase inhibitor L-NNA.

  13. Addition of senna improves quality of colonoscopy preparation with magnesium citrate

    PubMed Central

    Vradelis, Stergios; Kalaitzakis, Evangelos; Sharifi, Yalda; Buchel, Otto; Keshav, Satish; Chapman, Roger W; Braden, Barbara

    2009-01-01

    AIM: To prospectively investigate the effectiveness and patient’s tolerance of two low-cost bowel cleansing preparation protocols based on magnesium citrate only or the combination of magnesium citrate and senna. METHODS: A total of 342 patients who were referred for colonoscopy underwent a colon cleansing protocol with magnesium citrate alone (n = 160) or magnesium citrate and senna granules (n = 182). The colonoscopist rated the overall efficacy of colon cleansing using an established score on a 4-point scale. Patients were questioned before undergoing colonoscopy for side effects and symptoms during bowel preparation. RESULTS: The percentage of procedures rescheduled because of insufficient colon cleansing was 7% in the magnesium citrate group and 4% in the magnesium citrate/senna group (P = 0.44). Adequate visualization of the colonic mucosa was rated superior under the citramag/senna regimen (P = 0.004). Both regimens were well tolerated, and did not significantly differ in the occurrence of nausea, bloating or headache. However, abdominal cramps were observed more often under the senna protocol (29.2%) compared to the magnesium citrate only protocol (9.9%, P < 0.0003). CONCLUSION: The addition of senna to the bowel preparation protocol with magnesium citrate significantly improves the cleansing outcome. PMID:19360920

  14. Sodium citrate inhibits the proliferation of human gastric adenocarcinoma epithelia cells

    PubMed Central

    Xia, Yuan; Zhang, Xulong; Bo, Agula; Sun, Juan; Li, Minhui

    2018-01-01

    The objective of the present study was to investigate the cytotoxic effects of sodium citrate on human gastric adenocarcinoma epithelia AGS cells. Numerous cytotoxicity-associated sodium citrate-induced effects were assessed, including cell viability and proliferation, cytokine expression and caspase activity. In vitro studies demonstrated that incubation with sodium citrate (>3.125 mM) inhibited AGS cell viability and proliferation in a dose-dependent manner. Incubation with sodium citrate for 24 h revealed that the levels of interleukin-1β (IL-1β), IL-8 and tumor necrosis factor increased with an increasing of dose of sodium citrate, whereas the IL-6 levels exhibited only a slight alteration. In addition, increases in caspase-3 and −9 activities were associated with increased duration of treatment and dosage of sodium citrate. Collectively, the results of the present study demonstrated that treatment with sodium citrate at higher concentrations or for longer durations exerts a cytotoxic effect on AGS cells via the induction of the intrinsic apoptosis pathway and the alteration in the levels of certain cytokines. PMID:29616124

  15. Sildenafil citrate, bronchopulmonary dysplasia and disordered pulmonary gas exchange: any benefits?

    PubMed

    Nyp, M; Sandritter, T; Poppinga, N; Simon, C; Truog, W E

    2012-01-01

    The objective of this study is to determine the effects that sildenafil citrate has on gas exchange in infants with bronchopulmonary dysplasia (BPD)-associated pulmonary hypertension (PH). A retrospective review was performed from 2005 to 2009. Infants treated with sildenafil citrate for greater than 48  h were included. Standard patient data was collected, including echocardiogram, inspired oxygen and systemic blood pressure, before and during administration of sildenafil citrate. Sildenafil citrate was used in 21 preterm infants with BPD-associated PH. A significant reduction in estimated right ventricular peak systolic pressure was seen after initiation of sildenafil citrate, with the majority of infants showing no improvement in gas exchange at 48  h of treatment. Four infants died during treatment. Sildenafil citrate reduced estimated pulmonary artery pressures, but this reduction was not reflected in improved gas exchange within the first 48  h.

  16. Effects of malate supplementation on acid-base balance and productive performance in growing/finishing bull calves fed a high-grain diet.

    PubMed

    Castillo, Cristina; Benedito, Jose Luis; Pereira, Victor; Méndez, Jesus; Vazquez, Patricia; López-Alonso, Marta; Hernández, Joaquin

    2008-02-01

    This study investigated the effects of malate supplementation on blood acid-base balance and serum lactate levels in a 137-day feedlot experiment with bull calves. Animals were allotted to one of two experimental groups: (1) A control group (no supplementation), and (2) a group receiving a salt of DL-malic acid. Blood pH, pCO2, HCO3-, base excess, serum L-lactate and productivity parameters were evaluated. Our data reveal that under the conditions of the present experiment malate supplementation did not have any significant effect on productivity parameters by comparison with non-supplemented animals. As regards acid-base balance, no significant effects attributable only to malate were observed. In conclusion, the time-course and the overall means of serum L-lactate for both groups in both growing and finishing periods (0.44 +/- 0.04 mmol/l and 0.39 +/- 0.02 mmol/l, respectively, for control animal; and 0.54 +/- 0.03 mmol/l and 0.49 +/- 0.01 mmol/l, respectively, for supplemented animals) suggests that malate does not have any beneficial effects in animals fed a diet of similar characteristics to that given in this study.

  17. Stoichiometric Correlation of Malate Accumulation with Auxin-dependent K+-H+ Exchange and Growth in Avena Coleoptile Segments 12

    PubMed Central

    Haschke, Hans-Peter; Lüttge, Ulrich

    1975-01-01

    The action of auxin in the promotion of growth has been suggested in the literature to depend on cell wall acidification. In a former investigation by the present authors the electrochemical balance in auxin-induced proton extrusion was shown to be maintained by potassium net uptake. The present paper reports data demonstrating that the elongation of Avena coleoptile segments is accompanied by an accumulation of malate, which is stoichiometrically correlated with potassium uptake. We concluded that this malate accumulation is required in a mechanism regulating intracellular pH. PMID:16659374

  18. Development of antimigraine transdermal delivery systems of pizotifen malate.

    PubMed

    Serna-Jiménez, C E; del Rio-Sancho, S; Calatayud-Pascual, M A; Balaguer-Fernández, C; Femenía-Font, A; López-Castellano, A; Merino, V

    2015-08-15

    The aim of this study was to develop and evaluate a transdermal delivery system of pizotifen malate. Pizotifen is frequently used in the preventive treatment of migraine, but is also indicated in eating disorders. In the course of the project, the effects of chemical enhancers such as ethanol, 1,8-cineole, limonene, azone and different fatty acids (decanoic, decenoic, dodecanoic, linoleic and oleic acids) were determined, first using a pizotifen solution. Steady state flux, diffusion and partition parameters were estimated by fitting the Scheuplein equation to the data obtained. Among the chemical enhancers studied, decenoic acid showed the highest enhancement activity, which seemed to be due to the length of its alkyl chain and unsaturation at the 9th carbon. The influence of iontophoresis and the involvement of electrotransport in said process was determined. The absorption profile obtained with iontophoresis was similar to that obtained with fatty acids and terpenes, though skin deposition of the drug was lower with the former. Transdermal delivery systems (TDS) of pizotifen were manufactured by including chemical enhancers, decenoic acid or oleic acid, and were subsequently characterized. When the results obtained with solutions were compared with those obtained with the TDS, a positive enhancement effect was observed with the latter with respect to the partitioning and diffusion of the drug across the skin. Our findings endorse the suitability of our TDS for delivering therapeutic amounts of pizotifen malate. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Comparative transcriptome analysis reveals different molecular mechanisms of Bacillus coagulans 2-6 response to sodium lactate and calcium lactate during lactic acid production.

    PubMed

    Qin, Jiayang; Wang, Xiuwen; Wang, Landong; Zhu, Beibei; Zhang, Xiaohua; Yao, Qingshou; Xu, Ping

    2015-01-01

    Lactate production is enhanced by adding calcium carbonate or sodium hydroxide during fermentation. However, Bacillus coagulans 2-6 can produce more than 180 g/L L-lactic acid when calcium lactate is accumulated, but less than 120 g/L L-lactic acid when sodium lactate is formed. The molecular mechanisms by which B. coagulans responds to calcium lactate and sodium lactate remain unclear. In this study, comparative transcriptomic methods based on high-throughput RNA sequencing were applied to study gene expression changes in B. coagulans 2-6 cultured in non-stress, sodium lactate stress and calcium lactate stress conditions. Gene expression profiling identified 712 and 1213 significantly regulated genes in response to calcium lactate stress and sodium lactate stress, respectively. Gene ontology assignments of the differentially expressed genes were performed. KEGG pathway enrichment analysis revealed that 'ATP-binding cassette transporters' were significantly affected by calcium lactate stress, and 'amino sugar and nucleotide sugar metabolism' was significantly affected by sodium lactate stress. It was also found that lactate fermentation was less affected by calcium lactate stress than by sodium lactate stress. Sodium lactate stress had negative effect on the expression of 'glycolysis/gluconeogenesis' genes but positive effect on the expression of 'citrate cycle (TCA cycle)' genes. However, calcium lactate stress had positive influence on the expression of 'glycolysis/gluconeogenesis' genes and had minor influence on 'citrate cycle (TCA cycle)' genes. Thus, our findings offer new insights into the responses of B. coagulans to different lactate stresses. Notably, our RNA-seq dataset constitute a robust database for investigating the functions of genes induced by lactate stress in the future and identify potential targets for genetic engineering to further improve L-lactic acid production by B. coagulans.

  20. Comparative Transcriptome Analysis Reveals Different Molecular Mechanisms of Bacillus coagulans 2-6 Response to Sodium Lactate and Calcium Lactate during Lactic Acid Production

    PubMed Central

    Qin, Jiayang; Wang, Xiuwen; Wang, Landong; Zhu, Beibei; Zhang, Xiaohua; Yao, Qingshou; Xu, Ping

    2015-01-01

    Lactate production is enhanced by adding calcium carbonate or sodium hydroxide during fermentation. However, Bacillus coagulans 2-6 can produce more than 180 g/L L-lactic acid when calcium lactate is accumulated, but less than 120 g/L L-lactic acid when sodium lactate is formed. The molecular mechanisms by which B. coagulans responds to calcium lactate and sodium lactate remain unclear. In this study, comparative transcriptomic methods based on high-throughput RNA sequencing were applied to study gene expression changes in B. coagulans 2-6 cultured in non-stress, sodium lactate stress and calcium lactate stress conditions. Gene expression profiling identified 712 and 1213 significantly regulated genes in response to calcium lactate stress and sodium lactate stress, respectively. Gene ontology assignments of the differentially expressed genes were performed. KEGG pathway enrichment analysis revealed that ‘ATP-binding cassette transporters’ were significantly affected by calcium lactate stress, and ‘amino sugar and nucleotide sugar metabolism’ was significantly affected by sodium lactate stress. It was also found that lactate fermentation was less affected by calcium lactate stress than by sodium lactate stress. Sodium lactate stress had negative effect on the expression of ‘glycolysis/gluconeogenesis’ genes but positive effect on the expression of ‘citrate cycle (TCA cycle)’ genes. However, calcium lactate stress had positive influence on the expression of ‘glycolysis/gluconeogenesis’ genes and had minor influence on ‘citrate cycle (TCA cycle)’ genes. Thus, our findings offer new insights into the responses of B. coagulans to different lactate stresses. Notably, our RNA-seq dataset constitute a robust database for investigating the functions of genes induced by lactate stress in the future and identify potential targets for genetic engineering to further improve L-lactic acid production by B. coagulans. PMID:25875592

  1. Noncitrus alkaline fruit: a dietary alternative for the treatment of hypocitraturic stone formers.

    PubMed

    Baia, Leandro da Cunha; Baxmann, Alessandra Calábria; Moreira, Silvia Regina; Holmes, Ross Philip; Heilberg, Ita Pfeferman

    2012-09-01

    Fruits and vegetables are natural suppliers of potassium, bicarbonate, or bicarbonate precursors such as citrate, malate and others-hence, possessing potential effects on citraturia. We aimed to compare the acute effects of a noncitrus (melon) fruit vs citric ones (orange and lime) on citraturia and other lithogenic parameters. Two-hour urine samples were collected from 30 hypocitraturic stone-forming patients after an overnight fast and 2, 4, and 6 hours after the consumption of 385 mL (13 oz) of either freshly squeezed orange juice (n=10), freshly blended melon juice (n=10), or freshly squeezed lime juice (n=10). Urinary citrate, potassium, pH, and other lithogenic parameters were determined and net gastrointestinal alkali absorption (NGIA) was calculated. Potential renal acid load (PRAL) and pH from juices were determined. Significant and comparable increases of mean urinary citrate were observed in all groups, whereas mean urinary potassium, pH, and NGIA were significantly increased only after consumption of melon and orange juices. The pH of melon juice was higher and the PRAL value was more negative compared with orange juice, indicating a higher alkalinity. These findings suggested that melon, a noncitrus source of potassium, citrate, and malate, yielded an increase in urinary citrate excretion equivalent to that provided by orange, and hence represents another dietary alternative for the treatment of hypocitraturic stone-formers. Despite its low potassium content, lime also produced comparable increases in citraturia possibly because of its high citric acid content.

  2. Are All Gallium Citrate Preparations the Same? 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waxman, Alan D.; Kawada, Tom; Wolf, Walter

    1975-12-01

    Recent studies on brain imaging using 67Ga citrate from three different manufacturers revealed some clinical differences. Using chromatographic techniques, it was found that 67Ga citrate supplied by vendor A clearly differed from those of vendors B and C in mobility. When citrate was added to material of vendor B to bring the final concentration to 25 mg/ml, the chromatographic mobility increased dramatically. Addition of benzyl alcohol had no effect. The mechanisms involved in causing these chromatographic changes are not clear; however, the in vitro variations noted indicate a difference in chemistry which may ultimately affect the distribution andmore » localization of the radiopharmaceutical.« less

  3. Mathematical model to estimate risk of calcium-containing renal stones

    NASA Technical Reports Server (NTRS)

    Pietrzyk, R. A.; Feiveson, A. H.; Whitson, P. A.

    1999-01-01

    BACKGROUND/AIMS: Astronauts exposed to microgravity during the course of spaceflight undergo physiologic changes that alter the urinary environment so as to increase the risk of renal stone formation. This study was undertaken to identify a simple method with which to evaluate the potential risk of renal stone development during spaceflight. METHOD: We used a large database of urinary risk factors obtained from 323 astronauts before and after spaceflight to generate a mathematical model with which to predict the urinary supersaturation of calcium stone forming salts. RESULT: This model, which involves the fewest possible analytical variables (urinary calcium, citrate, oxalate, phosphorus, and total volume), reliably and accurately predicted the urinary supersaturation of the calcium stone forming salts when compared to results obtained from a group of 6 astronauts who collected urine during flight. CONCLUSIONS: The use of this model will simplify both routine medical monitoring during spaceflight as well as the evaluation of countermeasures designed to minimize renal stone development. This model also can be used for Earth-based applications in which access to analytical resources is limited.

  4. Combination of long noncoding RNA MALAT1 and carcinoembryonic antigen for the diagnosis of malignant pleural effusion caused by lung cancer.

    PubMed

    Wang, Wan-Wei; Zhou, Xi-Lei; Song, Ying-Jian; Yu, Chang-Hua; Zhu, Wei-Guo; Tong, Yu-Suo

    2018-01-01

    Long noncoding RNAs (lncRNAs) are present in body fluids, but their potential as tumor biomarkers has never been investigated in malignant pleural effusion (MPE) caused by lung cancer. The aim of this study was to assess the clinical significance of lncRNAs in pleural effusion, which could potentially serve as diagnostic and predictive markers for lung cancer-associated MPE (LC-MPE). RNAs from pleural effusion were extracted in 217 cases of LC-MPE and 132 cases of benign pleural effusion (BPE). Thirty-one lung cancer-associated lncRNAs were measured using quantitative real-time polymerase chain reaction (qRT-PCR). The level of carcinoembryonic antigen (CEA) was also determined. The receiver operating characteristic (ROC) curves and the area under the ROC curve (AUC) were established to evaluate the sensitivity and specificity of the identified lncRNAs and other biomarkers. The correlations between baseline pleural effusion lncRNAs expression and response to chemotherapy were also analyzed. Three lncRNAs ( MALAT1 , H19 , and CUDR ) were found to have potential as diagnostic markers in LC-MPE. The AUCs for MALAT1 , H19 , CUDR , and CEA were 0.891, 0.783, 0.824, and 0.826, respectively. Using a logistic model, the combination of MALAT1 and CEA (AUC, 0.924) provided higher sensitivity and accuracy in predicting LC-MPE than CEA (AUC, 0.826) alone. Moreover, baseline MALAT1 expression in pleural fluid was inversely correlated with chemotherapy response in patients with LC-MPE. Pleural effusion lncRNAs were effective in differentiating LC-MPE from BPE. The combination of MALAT1 and CEA was more effective for LC-MPE diagnosis.

  5. Synthesis of Stable Citrate-Capped Silver Nanoprisms.

    PubMed

    Haber, Jason; Sokolov, Konstantin

    2017-10-10

    Citrate-stabilized silver nanoprisms (AgNPrs) can be easily functionalized using well-developed thiol based surface chemistry that is an important requirement for biosensor applications utilizing localized surface plasmon resonance (LSPR) and surface-enhanced Raman Scattering (SERS). Unfortunately, currently available protocols for synthesis of citrate-coated AgNPrs do not produce stable nanoparticles thus limiting their usefulness in biosensing applications. Here we address this problem by carrying out a systematic study of citrate-stabilized, peroxide-based synthesis of AgNPrs to optimize reaction conditions for production of stable and reproducible nanoprisms. Our analysis showed that concentration of secondary reducing agent, l-ascorbic acid, is critical to AgNPr stability. Furthermore, we demonstrated that optimization of other synthesis conditions such as stabilizer concentration, rate of silver nitrate addition, and seed dilution result in highly stable nanoprisms with narrow absorbance peaks ranging from 450 nm into near-IR. In addition, the optimized reaction conditions can be used to produce AgNPrs in a one-pot synthesis instead of a previously described two-step reaction. The resulting nanoprisms can readily interact with thiols for easy surface functionalization. These studies provide an optimized set of parameters for precise control of citrate stabilized AgNPr synthesis for biomedical applications.

  6. Timeline (Bioavailability) of Magnesium Compounds in Hours: Which Magnesium Compound Works Best?

    PubMed

    Uysal, Nazan; Kizildag, Servet; Yuce, Zeynep; Guvendi, Guven; Kandis, Sevim; Koc, Basar; Karakilic, Aslı; Camsari, Ulas M; Ates, Mehmet

    2018-04-21

    Magnesium is an element of great importance functioning because of its association with many cellular physiological functions. The magnesium content of foods is gradually decreasing due to food processing, and magnesium supplementation for healthy living has become increasingly popular. However, data is very limited on the bioavailability of various magnesium preparations. The aim of this study is to investigate the bioavailability of five different magnesium compounds (magnesium sulfate, magnesium oxide, magnesium acetyl taurate, magnesium citrate, and magnesium malate) in different tissues. Following a single dose 400 mg/70 kg magnesium administration to Sprague Dawley rats, bioavailability was evaluated by examining time-dependent absorption, tissue penetration, and the effects on the behavior of the animals. Pharmacokinetically, the area under the curve calculation is highest in the magnesium malate. The magnesium acetyl taurate was found to have the second highest area under the curve calculation. Magnesium acetyl taurate was rapidly absorbed, able to pass through to the brain easily, had the highest tissue concentration level in the brain, and was found to be associated with decreased anxiety indicators. Magnesium malate levels remained high for an extended period of time in the serum. The commonly prescribed dietary supplements magnesium oxide and magnesium citrate had the lowest bioavailability when compared to our control group. More research is needed to investigate the bioavailability of magnesium malate and acetyl taurate compounds and their effects in specific tissues and on behavior.

  7. Inhibitory effect of calcium on non-heme iron absorption may be related to translocation of DMT-1 at the apical membrane of enterocytes.

    PubMed

    Thompson, Ben A V; Sharp, Paul A; Elliott, Ruan; Fairweather-Tait, Susan J

    2010-07-28

    Many studies show that calcium reduces iron absorption from single meals, but the underlying mechanism is not known. We tested the hypothesis that calcium alters the expression and/or functionality of iron transport proteins. Differentiated Caco-2 cells were treated with ferric ammonium citrate and calcium chloride, and ferritin, DMT-1, and ferroportin were quantified in whole-cell lysate and cell-membrane fractions. Calcium attenuated the iron-induced increase in cell ferritin levels in a dose-dependent manner; a significant decrease was seen at calcium concentrations of 1.25 and 2.5 mM but was only evident after a 16-24 h incubation period. Calcium and iron treatments decreased DMT-1 protein in Caco-2 cell membranes, although total DMT-1 in whole cell lysates was unchanged by either iron or calcium. No change was seen in ferroportin expression. Our data suggest that calcium reduces iron bioavailability by decreasing DMT-1 expression at the apical cell membrane, thereby downregulating iron transport into the cell.

  8. Posttranscriptional silencing of the lncRNA MALAT1 by miR-217 inhibits the epithelial–mesenchymal transition via enhancer of zeste homolog 2 in the malignant transformation of HBE cells induced by cigarette smoke extract

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Lu; Luo, Fei; Liu, Yi

    Lung cancer is regarded as the leading cause of cancer-related deaths, and cigarette smoking is one of the strongest risk factors for the development of lung cancer. However, the mechanisms for cigarette smoke-induced lung carcinogenesis remain unclear. The present study investigated the effects of an miRNA (miR-217) on levels of an lncRNA (MALAT1) and examined the role of these factors in the epithelial–mesenchymal transition (EMT) induced by cigarette smoke extract (CSE) in human bronchial epithelial (HBE) cells. In these cells, CSE caused decreases of miR-217 levels and increases in lncRNA MALAT1 levels. Over-expression of miR-217 with a mimic attenuated themore » CSE-induced increase of MALAT1 levels, and reduction of miR-217 levels by an inhibitor enhanced expression of MALAT1. Moreover, the CSE-induced increase of MALAT1 expression was blocked by an miR-217 mimic, indicating that miR-217 negatively regulates MALAT1 expression. Knockdown of MALAT1 reversed CSE-induced increases of EZH2 (enhancer of zeste homolog 2) and H3K27me3 levels. In addition to the alteration from epithelial to spindle-like mesenchymal morphology, chronic exposure of HBE cells to CSE increased the levels of EZH2, H3K27me3, vimentin, and N-cadherin and decreased E-cadherin levels, effects that were reversed by MALAT1 siRNA or EZH2 siRNA. The results indicate that miR-217 regulation of EZH2/H3K27me3 via MALAT1 is involved in CSE-induced EMT and malignant transformation of HBE cells. The posttranscriptional silencing of MALAT1 by miR-217 provides a link, through EZH2, between ncRNAs and the EMT and establishes a mechanism for CSE-induced lung carcinogenesis. - Highlights: • CSE exposure decreases miR-217 levels and increases MALAT1 levels. • miR-217 negatively regulates MALAT1 expression. • MALAT1, via EZH2, is involved in the EMT of CSE-transformed HBE cells.« less

  9. 21 CFR 520.622a - Diethylcarbamazine citrate tablets.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Diethylcarbamazine citrate tablets. 520.622a... Diethylcarbamazine citrate tablets. (a) Sponsors. (1) See 015579 in § 510.600(c) of this chapter for use of 50, 200, and 400 milligram tablets for prevention of heartworm disease in dogs and as an aid in the treatment...

  10. Effect of clomifene citrate plus metformin and clomifene citrate plus placebo on induction of ovulation in women with newly diagnosed polycystic ovary syndrome: randomised double blind clinical trial.

    PubMed

    Moll, Etelka; Bossuyt, Patrick M M; Korevaar, Johanna C; Lambalk, Cornelis B; van der Veen, Fulco

    2006-06-24

    To compare the effectiveness of clomifene citrate plus metformin and clomifene citrate plus placebo in women with newly diagnosed polycystic ovary syndrome. Randomised clinical trial. Multicentre trial in 20 Dutch hospitals. 228 women with polycystic ovary syndrome. Clomifene citrate plus metformin or clomifene citrate plus placebo. The primary outcome measure was ovulation. Secondary outcome measures were ongoing pregnancy, spontaneous abortion, and clomifene resistance. 111 women were allocated to clomifene citrate plus metformin (metformin group) and 114 women were allocated to clomifene citrate plus placebo (placebo group). The ovulation rate in the metformin group was 64% compared with 72% in the placebo group, a non-significant difference (risk difference - 8%, 95% confidence interval - 20% to 4%). There were no significant differences in either rate of ongoing pregnancy (40% v 46%; - 6%, - 20% to 7%) or rate of spontaneous abortion (12% v 11%; 1%, - 7% to 10%). A significantly larger proportion of women in the metformin group discontinued treatment because of side effects (16% v 5%; 11%, 5% to 16%). Metformin is not an effective addition to clomifene citrate as the primary method of inducing ovulation in women with polycystic ovary syndrome. Current Controlled Trials ISRCTN55906981 [controlled-trials.com].

  11. Experimental Determination of Solubilities of Tri-calcium Di-Citrate Tetrahydrate [Ca 3[C 3H 5O(COO) 3] 2•4H 2O] Earlandite in NaCl and MgCl 2 Solutions to High Ionic Strengths and Its Pitzer Model: Applications to Nuclear Waste Isolation and Other Low Temperature Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Yongliang; Kirkes, Leslie Dawn; Westfall, Terry

    In this study, solubility measurements on tri-calcium di-citrate tetrahydrate [Ca 3[C 3H 5O(COO) 3]2•4H 2O, abbreviated as Ca 3[Citrate] 2•4H 2O] as a function of ionic strength are conducted in NaCl solutions up to I = 5.0 mol•kg –1 and in MgCl 2 solutions up to I = 7.5 mol•kg –1, at room temperature (22.5 ± 0.5°C). The solubility constant (log Kmore » $$0\\atop{sp}$$) for Ca 3[Citrate] 2•4H 2O and formation constant (logβ$$0\\atop{1}$$) for Ca[C 3H 5O(COO) 3] –Ca 3[C 3H 5O(COO) 3] 2•4H 2O (earlandite) = 3Ca 2+ + 2[C 3H 5O(COO) 3] 3– + 4H 2O (1) Ca 2+ + [C 3H 5O(COO) 3] 3– = Ca[C 3H 5O(COO) 3] – (2) are determined as –18.11 ± 0.05 and 4.97 ± 0.05, respectively, based on the Pitzer model with a set of Pitzer parameters describing the specific interactions in NaCl and M gCl 2 media.« less

  12. Risks and benefits of citrate anticoagulation for continuous renal replacement therapy.

    PubMed

    Shum, H P; Yan, W W; Chan, T M

    2015-04-01

    Heparin, despite its significant side-effects, is the most commonly used anticoagulant for continuous renal replacement therapy in critical care setting. In recent years, citrate has gained much popularity by improving continuous renal replacement therapy circuit survival and decreasing blood transfusion requirements. However, its complex metabolic consequences warrant modification in the design of the citrate-based continuous renal replacement therapy protocol. With thorough understanding of the therapeutic mechanism of citrate, a simple and practicable protocol can be devised. Citrate-based continuous renal replacement therapy can be safely and widely used in the clinical setting with appropriate clinical staff training.

  13. 21 CFR 520.623 - Diethylcarbamazine citrate, oxibendazole chewable tablets.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Diethylcarbamazine citrate, oxibendazole chewable tablets. 520.623 Section 520.623 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... § 520.623 Diethylcarbamazine citrate, oxibendazole chewable tablets. (a) Specifications. Each tablet...

  14. Preparation and Quality Control of 68Ga-Citrate for PET Applications

    PubMed Central

    Aghanejad, Ayuob; Jalilian, Amir Reza; Ardaneh, Khosro; Bolourinovin, Fatemeh; Yousefnia, Hassan; Samani, Ali Bahrami

    2015-01-01

    Objective(s): In nuclear medicine studies, gallium-68 (8Ga) citrate has been recently known as a suitable infection agent in positron emission tomography (PET). In this study, by applying an in-house produced 68Ge/68Ga generator, a simple technique for the synthesis and quality control of 68Ga-citrate was introduced; followed by preliminary animal studies. Methods: 68GaCl3 eluted from the generator was studied in terms of quality control factors including radiochemical purity (assessed by HPLC and RTLC), chemical purity (assessed by ICP-EOS), radionuclide purity (evaluated by HPGe), and breakthrough. 68Ga-citrate was prepared from eluted 68GaCl3 and sodium citrate under various reaction conditions. Stability of the complex was evaluated in human serum for 2 h at 370C, followed by biodistribution studies in rats for 120 min. Results: 68Ga-citrate was prepared with acceptable radiochemical purity (>97 ITLC and >98% HPLC), specific activity (4-6 GBq/mM), chemical purity (Sn, Fe<0.3 ppm and Zn<0.2 ppm) within 15 min at 500C. The biodistribution of 68Ga-citrate was consistent with former reports up to 120 minutes. Conclusion: This study demonstrated the possible in-house preparation and quality control of 68Ga-citrate, using a commercially available 68Ge/68Ga generator for PET imaging throughout the country. PMID:27408889

  15. Biowaiver or Bioequivalence: Ambiguity in Sildenafil Citrate BCS Classification.

    PubMed

    Miranda, Claudia; Pérez-Rodríguez, Zenia; Hernández-Armengol, Rosario; Quiñones-García, Yaidel; Betancourt-Purón, Tania; Cabrera-Pérez, Miguel Ángel

    2018-05-01

    The aim of the present study is to contribute to the scientific characterization of sildenafil citrate according to the Biopharmaceutics Classification System, following the World Health Organization (WHO) guidelines for biowaivers. The solubility and intestinal permeability data of sildenafil citrate were collected from literature; however, the experimental solubility studies are inconclusive and its "high permeability" suggests an API in the borderline of BCS Class I and Class II. The pH-solubility profile was determined using the saturation shake-flask method over the pH range of 1.2-6.8 at a temperature of 37 °C in aqueous media. The intestinal permeability was determined in rat by a closed-loop in situ perfusion method (the Doluisio technique). The solubility of sildenafil citrate is pH-dependent and at pH 6.8 the dose/solubility ratio obtained does not meet the WHO criteria for "high solubility." The high permeability values obtained by in situ intestinal perfusion in rat reinforce the published permeability data for sildenafil citrate. The experimental results obtained and the data available in the literature suggest that sildenafil citrate is clearly a Class II of BCS, according to the current biopharmaceutics classification system and WHO guidance.

  16. Sildenafil citrate (Viagra) enhances vasodilatation in fetal growth restriction.

    PubMed

    Wareing, Mark; Myers, Jenny E; O'Hara, Maureen; Baker, Philip N

    2005-05-01

    Fetal growth restriction (FGR) affects up to 8% of all pregnancies and has massive short-term (increased fetal morbidity and mortality) and long-term (increased incidence of cardiovascular disease in adulthood) health implications. Doppler waveform analysis of pregnancies complicated by FGR suggests compromised uteroplacental circulation and placental hypoperfusion. Our aim was to determine whether myometrial small artery function was aberrant in FGR and to assess whether sildenafil citrate could improve vasodilatation in FGR pregnancies. Small arteries dissected from myometrial biopsies obtained at cesarean section from normal pregnant women (n = 27) or women whose pregnancies were complicated by FGR (n = 12) were mounted on wire myographs. Vessels were constricted (with arginine vasopressin or U46619) and relaxed (with bradykinin) before and after incubation with a phosphodiesterase-5 inhibitor, sildenafil citrate. We demonstrated increased myometrial small artery vasoconstriction and decreased endothelium-dependent vasodilatation in vessels from women whose pregnancies were complicated by FGR. Sildenafil citrate significantly reduced vasoconstriction and significantly improved relaxation of FGR small arteries. We conclude that sildenafil citrate improves endothelial function of myometrial vessels from women whose pregnancies are complicated by intrauterine growth restriction. Sildenafil citrate may offer a potential therapeutic strategy to improve uteroplacental blood flow in FGR pregnancies.

  17. Correlation between myocardial malate/aspartate shuttle activity and EAAT1 protein expression in hyper- and hypothyroidism.

    PubMed

    Ralphe, J Carter; Bedell, Kurt; Segar, Jeffrey L; Scholz, Thomas D

    2005-05-01

    In the heart, elevated thyroid hormone leads to upregulation of metabolic pathways associated with energy production and development of hypertrophy. The malate/aspartate shuttle, which transfers cytosolic-reducing equivalents into the cardiac mitochondria, is increased 33% in hyperthyroid rats. Within the shuttle, the aspartate-glutamate carrier is rate limiting. The excitatory amino acid transporter type 1 (EAAT1) functions as a glutamate carrier in the malate/aspartate shuttle. In this study, we hypothesize that EAAT1 is regulated by thyroid hormone. Adult rats were injected with triiodothyronine (T3) or saline over a period of 8-9 days or provided with propylthiouracil (PTU) in their drinking water for 2 mo. Steady-state mRNA levels of EAAT1 and aralar1 and citrin (both cardiac mitochondrial aspartate-glutamate transporters) were determined by Northern blot analysis and normalized to 18S rRNA. A spectrophotometric assay of maximal malate/aspartate shuttle activity was performed on isolated cardiac mitochondria from PTU-treated and control animals. Protein lysates from mitochondria were separated by SDS-PAGE and probed with a human anti-EAAT1 IgG. Compared with control, EAAT1 mRNA levels (arbitrary units) were increased nearly threefold in T3-treated (3.1 +/- 0.5 vs. 1.1 +/- 0.2; P < 0.05) and decreased in PTU-treated (2.0 +/- 0. 3 vs. 5.2 +/- 1; P < 0.05) rats. Aralar1 mRNA levels were unchanged in T3-treated and somewhat decreased in PTU-treated (7.1 +/- 1.0 vs. 9.3 +/- 0.1, P < 0.05) rats. Citrin mRNA levels were decreased in T3-treated and unchanged in PTU-treated rats. EAAT1 protein levels (arbitrary units) in T3-treated cardiac mitochondria were increased compared with controls (8.9 +/- 0.4 vs. 5.9 +/- 0.6; P < 0.005) and unchanged in PTU-treated mitochondria. No difference in malate/aspartate shuttle capacity was found between PTU-treated and control cardiac mitochondria. Hyperthyroidism in rats is related to an increase in cardiac expression of EAAT1 m

  18. Effect of clomifene citrate plus metformin and clomifene citrate plus placebo on induction of ovulation in women with newly diagnosed polycystic ovary syndrome: randomised double blind clinical trial

    PubMed Central

    Moll, Etelka; Bossuyt, Patrick M M; Korevaar, Johanna C; Lambalk, Cornelis B; van der Veen, Fulco

    2006-01-01

    Objective To compare the effectiveness of clomifene citrate plus metformin and clomifene citrate plus placebo in women with newly diagnosed polycystic ovary syndrome. Design Randomised clinical trial. Setting Multicentre trial in 20 Dutch hospitals. Participants 228 women with polycystic ovary syndrome. Interventions Clomifene citrate plus metformin or clomifene citrate plus placebo. Main outcome measure The primary outcome measure was ovulation. Secondary outcome measures were ongoing pregnancy, spontaneous abortion, and clomifene resistance. Results 111 women were allocated to clomifene citrate plus metformin (metformin group) and 114 women were allocated to clomifene citrate plus placebo (placebo group). The ovulation rate in the metformin group was 64% compared with 72% in the placebo group, a non-significant difference (risk difference - 8%, 95% confidence interval - 20% to 4%). There were no significant differences in either rate of ongoing pregnancy (40% v 46%; - 6%, - 20% to 7%) or rate of spontaneous abortion (12% v 11%; 1%, - 7% to 10%). A significantly larger proportion of women in the metformin group discontinued treatment because of side effects (16% v 5%; 11%, 5% to 16%). Conclusion Metformin is not an effective addition to clomifene citrate as the primary method of inducing ovulation in women with polycystic ovary syndrome. Trial registration Current Controlled Trials ISRCTN55906981 [controlled-trials.com]. PMID:16769748

  19. Oxaloacetate and malate production in engineered Escherichia coli by expression of codon-optimized phosphoenolpyruvate carboxylase2 gene from Dunaliella salina.

    PubMed

    Park, Soohyun; Chang, Kwang Suk; Jin, Eonseon; Pack, Seung Pil; Lee, Jinwon

    2013-01-01

    A new phosphoenolpyruvate carboxylase (PEPC) gene of Dunaliella salina is identified using homology analysis was conducted using PEPC gene of Chlamydomonas reinhardtii and Arabidopsis thaliana. Recombinant E. coli SGJS115 with increased production of malate and oxaloacetate was developed by introducing codon-optimized phosphoenolpyruvate carboxylase2 (OPDSPEPC2) gene of Dunaliella salina. E. coli SGJS115 yielded a 9.9 % increase in malate production. In addition, E. coli SGJS115 exhibited two times increase in the yield of oxaloacetate over the E. coli SGJS114 having identified PEPC2 gene obtained from Dunaliella salina.

  20. Effects of Orthosiphon grandiflorus, Hibiscus sabdariffa and Phyllanthus amarus extracts on risk factors for urinary calcium oxalate stones in rats.

    PubMed

    Woottisin, Surachet; Hossain, Rayhan Zubair; Yachantha, Chatchai; Sriboonlue, Pote; Ogawa, Yoshihide; Saito, Seiichi

    2011-01-01

    We evaluated the antilithic effect of Orthosiphon grandiflorus, Hibiscus sabdariffa and Phyllanthus amarus extracts on known risk factors for calcium oxalate stones in rats. We divided 30 male Wistar rats into 5 equal groups. Controls were fed a standard diet and the remaining groups received a 3% glycolate diet for 4 weeks to induce hyperoxaluria. One glycolate fed group served as the untreated group and the others were given oral extracts of Orthosiphon grandiflorus, Hibiscus sabdariffa or Phyllanthus amarus at a dose of 3.5 mg daily. We collected 24-hour urine and blood samples. Kidneys were harvested for histological examination. We measured the renal tissue content of calcium and oxalate. The Hibiscus sabdariffa group showed significantly decreased serum oxalate and glycolate, and higher oxalate urinary excretion. The Phyllanthus amarus group showed significantly increased urinary citrate vs the untreated group. Histological examination revealed less CaOx crystal deposition in the kidneys of Hibiscus sabdariffa and Phyllanthus amarus treated rats than in untreated rats. Those rats also had significantly lower renal tissue calcium content than untreated rats. All parameters in the Orthosiphon grandiflorus treated group were comparable to those in the untreated group. Hibiscus sabdariffa and Phyllanthus amarus decreased calcium crystal deposition in the kidneys. The antilithic effect of Hibiscus sabdariffa may be related to decreased oxalate retention in the kidney and more excretion into urine while that of Phyllanthus amarus may depend on increased urinary citrate. In contrast, administering Orthosiphon grandiflorus had no antilithic effect. Copyright © 2011 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  1. Evidence That Isoprene Emission Is Not Limited by Cytosolic Metabolites. Exogenous Malate Does Not Invert the Reverse Sensitivity of Isoprene Emission to High [CO2].

    PubMed

    Rasulov, Bahtijor; Talts, Eero; Bichele, Irina; Niinemets, Ülo

    2018-02-01

    Isoprene is synthesized via the chloroplastic 2- C -methyl-d-erythritol 4-phosphate/1-deoxy-d-xylulose 5-phosphate pathway (MEP/DOXP), and its synthesis is directly related to photosynthesis, except under high CO 2 concentration, when the rate of photosynthesis increases but isoprene emission decreases. Suppression of MEP/DOXP pathway activity by high CO 2 has been explained either by limited supply of the cytosolic substrate precursor, phospho enol pyruvate (PEP), into chloroplast as the result of enhanced activity of cytosolic PEP carboxylase or by limited supply of energetic and reductive equivalents. We tested the PEP-limitation hypotheses by feeding leaves with the PEP carboxylase competitive inhibitors malate and diethyl oxalacetate (DOA) in the strong isoprene emitter hybrid aspen ( Populus tremula × Populus tremuloides ). Malate feeding resulted in the inhibition of net assimilation, photosynthetic electron transport, and isoprene emission rates, but DOA feeding did not affect any of these processes except at very high application concentrations. Both malate and DOA did not alter the sensitivity of isoprene emission to high CO 2 concentration. Malate inhibition of isoprene emission was associated with enhanced chloroplastic reductive status that suppressed light reactions of photosynthesis, ultimately leading to reduced isoprene substrate dimethylallyl diphosphate pool size. Additional experiments with altered oxygen concentrations in conditions of feedback-limited and non-feedback-limited photosynthesis further indicated that changes in isoprene emission rate in control and malate-inhibited leaves were associated with changes in the share of ATP and reductive equivalent supply for isoprene synthesis. The results of this study collectively indicate that malate importantly controls the chloroplast reductive status and, thereby, affects isoprene emission, but they do not support the hypothesis that cytosolic metabolite availability alters the response of

  2. Ferric citrate hydrate for the treatment of hyperphosphatemia in nondialysis-dependent CKD.

    PubMed

    Yokoyama, Keitaro; Hirakata, Hideki; Akiba, Takashi; Fukagawa, Masafumi; Nakayama, Masaaki; Sawada, Kenichi; Kumagai, Yuji; Block, Geoffrey A

    2014-03-01

    Ferric citrate hydrate is a novel iron-based phosphate binder being developed for hyperphosphatemia in patients with CKD. A phase 3, multicenter, randomized, double blind, placebo-controlled study investigated the efficacy and safety of ferric citrate hydrate in nondialysis-dependent patients with CKD. Starting in April of 2011, 90 CKD patients (eGFR=9.21±5.72 ml/min per 1.73 m(2)) with a serum phosphate≥5.0 mg/dl were randomized 2:1 to ferric citrate hydrate or placebo for 12 weeks. The primary end point was change in serum phosphate from baseline to the end of treatment. Secondary end points included the percentage of patients achieving target serum phosphate levels (2.5-4.5 mg/dl) and change in fibroblast growth factor-23 at the end of treatment. The mean change in serum phosphate was -1.29 mg/dl (95% confidence interval, -1.63 to -0.96 mg/dl) in the ferric citrate hydrate group and 0.06 mg/dl (95% confidence interval, -0.20 to 0.31 mg/dl) in the placebo group (P<0.001 for difference between groups). The percentage of patients achieving target serum phosphate levels was 64.9% in the ferric citrate hydrate group and 6.9% in the placebo group (P<0.001). Fibroblast growth factor-23 concentrations were significantly lower in patients treated with ferric citrate hydrate versus placebo (change from baseline [median], -142.0 versus 67.0 pg/ml; P<0.001). Ferric citrate hydrate significantly increased serum iron, ferritin, and transferrin saturation compared with placebo (P=0.001 or P<0.001). Five patients discontinued active treatment because of treatment-emergent adverse events with ferric citrate hydrate treatment versus one patient with placebo. Overall, adverse drug reactions were similar in patients receiving ferric citrate hydrate or placebo, with gastrointestinal disorders occurring in 30.0% of ferric citrate hydrate patients and 26.7% of patients receiving placebo. In patients with nondialysis-dependent CKD, 12-week treatment with ferric citrate hydrate

  3. Potential for quantifying expression of the Geobacteraceae citrate synthase gene to assess the activity of Geobacteraceae in the subsurface and on current-harvesting electrodes

    USGS Publications Warehouse

    Holmes, Dawn E.; Nevin, Kelly P.; O'Neil, Regina A.; Ward, Joy E.; Adams, Lorrie A.; Woodard, Trevor L.; Vrionis, Helen A.; Lovely, Derek R.

    2005-01-01

    The Geobacteraceae citrate synthase is phylogenetically distinct from those of other prokaryotes and is a key enzyme in the central metabolism of Geobacteraceae. Therefore, the potential for using levels of citrate synthase mRNA to estimate rates of Geobacter metabolism was evaluated in pure culture studies and in four different Geobacteraceae-dominated environments. Quantitative reverse transcription-PCR studies with mRNA extracted from cultures of Geobacter sulfurreducens grown in chemostats with Fe(III) as the electron acceptor or in batch with electrodes as the electron acceptor indicated that transcript levels of the citrate synthase gene, gltA, increased with increased rates of growth/Fe(III) reduction or current production, whereas the expression of the constitutively expressed housekeeping genes recA, rpoD, and proC remained relatively constant. Analysis of mRNA extracted from groundwater collected from a U(VI)-contaminated site undergoing in situ uranium bioremediation revealed a remarkable correspondence between acetate levels in the groundwater and levels of transcripts of gltA. The expression of gltA was also significantly greater in RNA extracted from groundwater beneath a highway runoff recharge pool that was exposed to calcium magnesium acetate in June, when acetate concentrations were high, than in October, when the levels had significantly decreased. It was also possible to detect gltA transcripts on current-harvesting anodes deployed in freshwater sediments. These results suggest that it is possible to monitor the in situ metabolic rate of Geobacteraceae by tracking the expression of the citrate synthase gene.

  4. Microbial biosynthesis and secretion of l-malic acid and its applications.

    PubMed

    Chi, Zhe; Wang, Zhi-Peng; Wang, Guang-Yuan; Khan, Ibrar; Chi, Zhen-Ming

    2016-01-01

    l-Malic acid has many uses in food, beverage, pharmaceutical, chemical and medical industries. It can be produced by one-step fermentation, enzymatic transformation of fumaric acid to l-malate and acid hydrolysis of polymalic acid. However, the process for one-step fermentation is preferred as it has many advantages over any other process. The pathways of l-malic acid biosynthesis in microorganisms are partially clear and three metabolic pathways including non-oxidative pathway, oxidative pathway and glyoxylate cycle for the production of l-malic acid from glucose have been identified. Usually, high levels of l-malate are produced under the nitrogen starvation conditions, l-malate, as a calcium salt, is secreted from microbial cells and CaCO3 can play an important role in calcium malate biosynthesis and regulation. However, it is still unclear how it is secreted into the medium. To enhance l-malate biosynthesis and secretion by microbial cells, it is very important to study the mechanisms of l-malic acid biosynthesis and secretion at enzymatic and molecular levels.

  5. Temperature shift experiments suggest that metabolic impairment and enhanced rates of photorespiration decrease organic acid levels in soybean leaflets exposed to supra-optimal growth temperatures

    USDA-ARS?s Scientific Manuscript database

    Citrate, malate, malonate, fumarate and succinate in soybean leaflets decreased 40 to 80% when plants were grown continuously in controlled environment chambers at 36/28 compared to 28/20 °C. Glycerate was not temperature responsive in this study. Temperature effects on the above mentioned organi...

  6. Effects of citrate on hexavalent chromium reduction by structural Fe(II) in nontronite

    DOE PAGES

    Liu, Xiaolei; Dong, Hailiang; Yang, Xuewei; ...

    2017-09-23

    Previous studies have shown that organic ligands could influence Cr(VI) reduction by aqueous Fe 2+ and pyrite. In this study, the effects of citrate on Cr(VI) reduction by structural Fe(II) in nontronite (NAu-2) were investigated at pH 6. Our results showed that the presence of citrate decreased the rate but increased the amount of Cr(VI) reduction. The decreased rate was likely due to competitive sorption of citrate and anionic dichromate (Cr 2O 7–) to NAu-2 surface sites, because sorption of dichromate appeared to be the first step for subsequent Cr(VI) reduction. The increased amount of Cr(VI) reduction was likely becausemore » citrate served as an additional electron donor to reduce Cr(VI) through ligand-metal electron transfer in the presence of soluble Fe 3+, which was possibly derived from dissolution of reduced NAu-2. Soluble Cr(III)-citrate complex was a possible form of reduced Cr(VI) when citrate was present. Without citrate, nanometer-sized Cr 2O 3 particles were the product of Cr(VI) reduction. In conclusion, our study highlights the importance of citrate on Cr(VI) reduction and immobilization when iron-rich smectite is applied to treat Cr(VI) contaminant in organic carbon rich environments.« less

  7. A randomized controlled trial of clomifene citrate, metformin, and pioglitazone versus letrozole, metformin, and pioglitazone for clomifene-citrate-resistant polycystic ovary syndrome.

    PubMed

    El-khayat, Waleed; Abdel Moety, Ghada; Al Mohammady, Maged; Hamed, Dalia

    2016-02-01

    To examine the efficacy of clomifene citrate, metformin, and pioglitazone versus letrozole, metformin, and pioglitazone among women with polycystic ovary syndrome (PCOS) resistant to clomifene citrate. A prospective double-blind randomized controlled trial of women younger than 40 years who had primary/secondary infertility associated with PCOS and had not ovulated in response to clomifene citrate regimens previously was conducted at a center in Cairo, Egypt, between August 1, 2013, and December 31, 2014. Computer-generated random number tables and opaque envelopes were used to assign participants to group A or group B. Participants allocated to group A received 100mg clomifene citrate daily for 5 days from the third day of the menstrual cycle, whereas those in group B received 5mg letrozole daily in the same regimen. All patients received 850 mg metformin and 15 mg pioglitazone for 10 days from the first day of the menstrual cycle. The primary outcome was cumulative ovulation rate. Analyses were by intention to treat. Fifty women were assigned to each group. Ovulation occurred in 108 (92.3%) of 117 cycles in group A and 93 (86.9%) of 107 cycles in Group B (P=0.184). Combined treatment with letrozole, metformin, and pioglitazone was efficacious among women with PCOS resistant to clomifene citrate. ClinicalTrials.gov: NCT01909141. Copyright © 2015 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved.

  8. 21 CFR 520.622c - Diethylcarbamazine citrate chewable tablets.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Diethylcarbamazine citrate chewable tablets. 520... Diethylcarbamazine citrate chewable tablets. (a) Specifications. Each chewable tablet contains 30, 45, 60, 120, 150... tablets as in paragraph (c)(2)(i) of this section. (2) For 000069, use of 60, 120, or 180 milligram...

  9. [Effect of salt stress on respiration metabolism in higher plants].

    PubMed

    Mittova, V O; Igamberdiev, A U

    2000-01-01

    We studied the activity of NADP-dependent isocitrate dehydrogenase, malate dehydrogenase, succinate dehydrogenase, catalase, and peroxidase as well as the rate of 14CO2 release after introduction of labeled substrates for glycolysis and citrate acid cycle within 24 h after salt stress (1% NaCl) in 10-14 days old germinants of wheat (Triticum aestivum L.) and maize (Zea mays L.) as well as thallus of small duckweed (Wolffia arrhiza (L.) Hork ex Wimmer). Oscillations in the enzymes activity with 4-6 h period have been revealed under stress conditions. Activity of glycolysis decreased in wheat and maize and increased in duckweed under the influence of stress stimulus. Six hours after NaCl action decarboxylation of exogenous citrate and succinate was enhanced in all three plants while the rate of exogenous malate decarboxylation was decreased. We conclude that adaptation of higher plans to salinization is accompanied by rearrangements in oxidative metabolism reflected by oscillations in activity of the enzymes involved in oxidative metabolism.

  10. Effects of granulation on organic acid metabolism and its relation to mineral elements in Citrus grandis juice sacs.

    PubMed

    Wang, Xian-You; Wang, Ping; Qi, Yi-Ping; Zhou, Chen-Ping; Yang, Lin-Tong; Liao, Xin-Yan; Wang, Liu-Qing; Zhu, Dong-Huang; Chen, Li-Song

    2014-02-15

    We investigated the effects of granulation on organic acid metabolism and its relation to mineral elements in 'Guanximiyou' pummelo (Citrus grandis) juice sacs. Granulated juice sacs had decreased concentrations of citrate and isocitrate, thus lowering juice sac acidity. By contrast, malate concentration was higher in granulated juice sacs than in normal ones. The reduction in citrate concentration might be caused by increased degradation, as indicated by enhanced aconitase activity, whilst the increase in malate concentration might be caused by increased biosynthesis, as indicated by enhanced phosphoenolpyruvate carboxylase (PEPC). Real time quantitative reverse transcription PCR (qRT-PCR) analysis showed that the activities of most acid-metabolizing enzymes were regulated at the transcriptional level, whilst post-translational modifications might influence the PEPC activity. Granulation led to increased accumulation of mineral elements (especially phosphorus, magnesium, sulphur, zinc and copper) in juice sacs, which might be involved in the incidence of granulation in pummelo fruits. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Diffuse abdominal gallium-67 citrate uptake in salmonella infections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garty, I.; Koren, A.

    1987-11-01

    Two pediatric patients with salmonella infections (one with typhoid fever and the second with salmonella C2 gastroenteritis), had a diffuse abdominal uptake of Ga-67 citrate. The possible explanation for this finding is discussed. Salmonella infection should be included as a cause in the differential diagnosis of diffuse accumulation of Ga-67 citrate.

  12. Succinate-driven reverse electron transport in the respiratory chain of plant mitochondria. The effects of rotenone and adenylates in relation to malate and oxaloacetate metabolism.

    PubMed Central

    Rustin, P; Lance, C

    1991-01-01

    The effects of rotenone on the succinate-driven reduction of matrix nicotinamide nucleotides were investigated in Percoll-purified mitochondria from potato (Solanum tuberosum) tubers. Depending on the presence of ADP or ATP, rotenone caused an increase or a decrease in the level of reduction of the matrix nicotinamide nucleotides. The increase in the reduction induced by rotenone in the presence of ADP was linked to the oxidation of the malate resulting from the oxidation of succinate. Depending on the experimental conditions, malic enzyme (at pH 6.6 or in the presence of added CoA) or malate dehydrogenase (at pH 7.9) were involved in this oxidation. At pH 7.9, the oxaloacetate produced progressively inhibited the succinate dehydrogenase. In the presence of ATP the production of oxaloacetate was stopped, and succinate dehydrogenase was protected from inhibition by oxaloacetate. However, previously accumulated oxaloacetate transitorily decreased the level of the reduction of the NAD+ driven by succinate, by causing the reversal of the malate dehydrogenase reaction. Under these conditions (i.e. presence of ATP), rotenone strongly inhibited the reduction of NAD+ by succinate-driven reverse electron flow. No evidence for an active reverse electron transport through a rotenone-insensitive path could be obtained. The inhibitory effect of rotenone was masked if malate had previously accumulated, owing to the malate-oxidizing enzymes which reduced part or all of the matrix NAD+. PMID:2001241

  13. Comparative genomics and transcriptome analysis of Aspergillus niger and metabolic engineering for citrate production

    PubMed Central

    Yin, Xian; Shin, Hyun-dong; Li, Jianghua; Du, Guocheng; Liu, Long; Chen, Jian

    2017-01-01

    Despite a long and successful history of citrate production in Aspergillus niger, the molecular mechanism of citrate accumulation is only partially understood. In this study, we used comparative genomics and transcriptome analysis of citrate-producing strains—namely, A. niger H915-1 (citrate titer: 157 g L−1), A1 (117 g L−1), and L2 (76 g L−1)—to gain a genome-wide view of the mechanism of citrate accumulation. Compared with A. niger A1 and L2, A. niger H915-1 contained 92 mutated genes, including a succinate-semialdehyde dehydrogenase in the γ-aminobutyric acid shunt pathway and an aconitase family protein involved in citrate synthesis. Furthermore, transcriptome analysis of A. niger H915-1 revealed that the transcription levels of 479 genes changed between the cell growth stage (6 h) and the citrate synthesis stage (12 h, 24 h, 36 h, and 48 h). In the glycolysis pathway, triosephosphate isomerase was up-regulated, whereas pyruvate kinase was down-regulated. Two cytosol ATP-citrate lyases, which take part in the cycle of citrate synthesis, were up-regulated, and may coordinate with the alternative oxidases in the alternative respiratory pathway for energy balance. Finally, deletion of the oxaloacetate acetylhydrolase gene in H915-1 eliminated oxalate formation but neither influence on pH decrease nor difference in citrate production were observed. PMID:28106122

  14. Calcium-deficiency assessment and biomarker identification by an integrated urinary metabonomics analysis

    PubMed Central

    2013-01-01

    correlation, r = 0.53, P = 0.0001) and citrate (Pearson correlation, r = -0.43, P = 0.001), were further confirmed in 70 women. Conclusions To our knowledge, this is the first report of reliable biomarkers of calcium deficiency, which were identified using an integrated strategy. The identified biomarkers give new insights into the pathophysiological changes and molecular mechanisms of calcium deficiency. The correlations between calcium intake and two of the biomarkers provide a rationale or potential for further assessment and elucidation of the metabolic responses of calcium deficiency in humans. PMID:23537001

  15. Structural insights into the stabilization of MALAT1 noncoding RNA by a bipartite triple helix

    PubMed Central

    Brown, Jessica A.; Bulkley, David; Wang, Jimin; Valenstein, Max L.; Yario, Therese A.; Steitz, Thomas A.; Steitz, Joan A.

    2014-01-01

    Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is a highly-abundant nuclear long noncoding RNA that promotes malignancy. A 3′-stem-loop structure is predicted to confer stability by engaging a downstream A-rich tract in a triple helix, similar to the expression and nuclear retention element (ENE) from the KSHV polyadenylated nuclear RNA. The 3.1-Å resolution crystal structure of the human MALAT1 ENE and A-rich tract reveals a bipartite triple helix containing stacks of five and four U•A-U triples separated by a C+•G-C triplet and C-G doublet, extended by two A-minor interactions. In vivo decay assays indicate that this blunt-ended triple helix, with the 3′ nucleotide in a U•A-U triple, inhibits rapid nuclear RNA decay. Interruption of the triple helix by the C-G doublet induces a “helical reset” that explains why triple-helical stacks longer than six do not occur in nature. PMID:24952594

  16. Study on the Antimicrobial Properties of Citrate-Based Biodegradable Polymers

    PubMed Central

    Su, Lee-Chun; Xie, Zhiwei; Zhang, Yi; Nguyen, Kytai Truong; Yang, Jian

    2014-01-01

    Citrate-based polymers possess unique advantages for various biomedical applications since citric acid is a natural metabolism product, which is biocompatible and antimicrobial. In polymer synthesis, citric acid also provides multiple functional groups to control the crosslinking of polymers and active binding sites for further conjugation of biomolecules. Our group recently developed a number of citrate-based polymers for various biomedical applications by taking advantage of their controllable chemical, mechanical, and biological characteristics. In this study, various citric acid derived biodegradable polymers were synthesized and investigated for their physicochemical and antimicrobial properties. Results indicate that citric acid derived polymers reduced bacterial proliferation to different degrees based on their chemical composition. Among the studied polymers, poly(octamethylene citrate) showed ~70–80% suppression to microbe proliferation, owing to its relatively higher ratio of citric acid contents. Crosslinked urethane-doped polyester elastomers and biodegradable photoluminescent polymers also exhibited significant bacteria reduction of ~20 and ~50% for Staphylococcus aureus and Escherichia coli, respectively. Thus, the intrinsic antibacterial properties in citrate-based polymers enable them to inhibit bacteria growth without incorporation of antibiotics, silver nanoparticles, and other traditional bacteria-killing agents suggesting that the citrate-based polymers are unique beneficial materials for wound dressing, tissue engineering, and other potential medical applications where antimicrobial property is desired. PMID:25023605

  17. Pretreatment With Caffeine Citrate to Increase Seizure Duration During Electroconvulsive Therapy: A Case Series.

    PubMed

    Pinkhasov, Aaron; Biglow, Michael; Chandra, Subhash; Pica, Tiffany

    2016-04-01

    Due to the shortage of parenteral caffeine and sodium benzoate, patients were pretreated with caffeine citrate to increase therapeutic seizure duration during electroconvulsive therapy (ECT). To date, no data are available on the use of caffeine citrate during ECT. This retrospective case series was done to demonstrate utilization of caffeine citrate as a substitute for caffeine and sodium benzoate in optimizing ECT. Medical records were reviewed to identify patients who received ECT and caffeine citrate. Physician notes were reviewed to determine the parameters of the ECT procedure, the seizure length, and the dose of caffeine citrate. Each chart was thoroughly studied to find the relationship between seizure duration and dose of caffeine citrate. Of the 12 ECT treatments utilizing caffeine citrate, 9 achieved at least 1 session lasting >30 seconds with an average seizure duration of 35 seconds. Increase in seizure duration ranged from -41% to 276% with an average increase of 48%. Only 3 treatment sessions utilizing caffeine citrate showed no increase in seizure duration. Doses ranged from 120 to 600 mg of both oral and parenteral caffeine citrate. Although increase in seizure duration was achieved for the majority of the ECT sessions, no dose-response correlation could be made. No significant adverse reactions were noted with the use of caffeine citrate during ECT. It was determined that, much like caffeine and sodium benzoate, caffeine citrate does increase the seizure duration. However, this response did vary due to many reasons including small sample size, concomitant medications, duration of illness, and number of ECTs they received in the past and how long ago they received the last ECT. Further research is required to elucidate the effect of these variables on seizure duration. © The Author(s) 2014.

  18. Sildenafil citrate (Viagra) enhances vasodilatation by atrial natriuretic peptide in normal dogs.

    PubMed

    Ishikura, Fuminobu; Beppu, Shintaro; Asanuma, Toshihiko; Seward, James B; Khandheria, Bijoy K

    2007-12-01

    Sildenafil citrate (Viagra) is a selective inhibitor of cyclic guanosine monophosphate (cGMP)-specific phosphodiesterase type 5, which might enhance the vasorelaxant and natriuretic actions of atrial natriuretic peptide (ANP) in patients with heart failure. The objective of this study was to examine the combined effect of Viagra on hemodynamic changes during infusion of exogenous ANP. Healthy male beagles were used to assess systemic blood pressure, pulmonary artery pressure (PAP), and plasma levels of cGMP. After hemodynamic variables were measured, 0.1 microg.kg(-1).min(-1) of ANP was given during this study. One hour after initiating infusion of ANP, 2 mg/kg of sildenafil citrate or vehicle was given orally via a nasogastric tube. Hemodynamic changes were measured before and 1 h after these administrations. Mean systemic and PAP decreased during infusion of ANP, and further decreased after sildenafil citrate administration, however, mean systemic blood pressure decreased within 10 mmHg. Plasma levels of cGMP also increased after sildenafil citrate administration. In normal dogs, sildenafil citrate enhances the vasodilator effect of ANP by increasing the cGMP level, however, the concomitant use of sildenafil citrate with ANP will not induce severe hypotension.

  19. GALLIUM CITRATE, A NEW SENSITIZER OF CELLS TO HYPERTHERMIA

    PubMed Central

    Shinohara, Kunio; Kawakami, Noriko; Kugotani, Maho; Nakano, Hisako

    1988-01-01

    The killing effects of heat were studied on cultured mammalian cells (L5178Y) pre‐incubated with gallium (Ga) citrate, which is a popular tumor‐imaging diagnostic agent. The cells showed higher sensitivity to heat when they were pre‐incubated with Ga‐citrate. The pre‐incubated cells showed decreased ATP levels, and this may be responsible for the heat‐sensitizing effect. PMID:3128502

  20. Comparison of Success of Clomiphene citrate and Letrozole in Ovulation Induction.

    PubMed

    Saha, J; Akhter, S; Prasad, I; Siddiq, S

    2016-01-01

    The study was carried out to evaluate which drug is better in ovulation induction between clomiphene citrate and letrozole. The study was carried out in the infertility unit of Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka and Centre for Assisted Reproduction (CARE) at Bangladesh Institute of Research and Rehabilitation in Diabetes Endocrine and Metabolic Disorders (BIRDEM), Dhaka from January 2007 to December 2007. One hundred and sixty five cases were taken for the study. It was a prospective interventional comparative study of clomiphene citrate and letrozole in infertile cases. The patients were divided into three groups. Group I--newly detected cases of sub fertility studied with clomiphene citrate. Group II--clomiphene citrate resistant cases studied with letrozole, Group III--newly detected cases of sub fertility studied with letrozole. The cases were followed up for outcome; (ovulation). The TVS was done on 12th or 13th day of menstruation and level of serum progesterone on 21st day of menstrual cycle to see the evidence of ovulation. Endometrial thickness was also measured. The data was collected on a predesigned questionnaire. The variables that influenced the study were-age, occupation, socioeconomic status, menstrual cycle, marital age, parity, history of MR, history of abortion, past medical and surgical history. In the current study it was observed that the signs of ovulation were significantly (p<0.05) higher in Group I treated with clomiphene citrate in comparison to Group II clomiphene citrate resistant cases treated with letrozole. The rate of ovulation was higher in Group I than that of Group III treated with letrozole, but the difference was not statistically significant (p>0.05). The signs of ovulation were present in 45(81.8%) cases in Group I, 33(60.0%) cases in Group II and 37(67.3%) cases in Group III. This findings of the study suggested that clomiphene citrate is higher successful than letrozole though not statistically

  1. The equilibrium of the reaction catalysed by citrate oxaloacetate-lyase

    PubMed Central

    Tate, S. S.; Datta, S. P.

    1965-01-01

    1. A method of preparation and purification of citrate oxaloacetate-lyase (EC 4.1.3.6) from Aerobacter aerogenes is described. 2. The equilibrium of this reaction has been determined at pH 8·4 and 25°. It has been shown that K, i.e. [citrate3−]/[oxaloacetateketo2−][acetate −], is 3·08±0·72, but that Kapp., i.e. [total citrate]/[total oxaloacetate][total acetate], is markedly affected by the initial concentrations of the reactants and magnesium. 3. The free-energy change during the cleavage of citrate has been calculated and compared with data from other sources. 4. The free energy of hydrolysis of acetyl-CoA has been evaluated from the present data. 5. A detailed knowledge of the interactions of the reactants with metal ions has been shown to be important in the calculation of the equilibrium constant and related thermodynamic functions. PMID:14348207

  2. Mayenite Synthesized Using the Citrate Sol-Gel Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ude, Sabina N; Rawn, Claudia J; Meisner, Roberta A

    2014-01-01

    A citrate sol-gel method has been used to synthesize mayenite (Ca12Al14O33). X-ray powder diffraction data show that the samples synthesized using the citrate sol-gel method contained CaAl2O4 and CaCO3 along with mayenite when fired ex-situ in air at 800 C but were single phase when fired at 900 C and above. Using high temperature x-ray diffraction, data collected in-situ in air at temperatures of 600 C and below showed only amorphous content; however, data collected at higher temperatures indicated the first phase to crystallize is CaCO3. High temperature x-ray diffraction data collected in 4% H2/96% N2 does not show themore » presence of CaCO3, and Ca12Al14O33 starts to form around 850 C. In comparison, x-ray powder diffraction data collected ex-situ on samples synthesized using traditional solid-state synthesis shows that single phase was not reached until samples were fired at 1350 C. DTA/TGA data collected either in a nitrogen environment or air on samples synthesized using the citrate gel method suggest the complete decomposition of metastable phases and the formation of mayenite at 900 C, although the phase evolution is very different depending on the environment. Brunauer-Emmett-Teller (BET) measurements showed a slightly higher surface area of 7.4 0.1 m2/g in the citrate gel synthesized samples compared to solid-state synthesized sample with a surface area of 1.61 0.02 m2/g. SEM images show a larger particle size for samples synthesized using the solid-state method compared to those synthesized using the citrate gel method.« less

  3. Mitochondria from the left heart ventricles of both normotensive and spontaneously hypertensive rats oxidize externally added NADH mostly via a novel malate/oxaloacetate shuttle as reconstructed in vitro.

    PubMed

    Atlante, Anna; Seccia, Teresa M; De Bari, Lidia; Marra, Ersilia; Passarella, Salvatore

    2006-07-01

    A substantial increase in NADH production, arising from accelerated glycolysis, occurs in cardiac hypertrophy and this raises the question of how the NADH is oxidised. We have addressed this problem by reconstructing appropriate mitochondrial shuttles in vitro, using mitochondria from the left ventricles of both normotensive and spontaneously hypertensive rats at 5 and 24 weeks of age as model systems for left ventricle hypertrophy and hypertrophy/hypertension respectively. We found that most NADH oxidation occurs via a novel malate/oxaloacetate shuttle, the activity of which increases with time and with the progression of hypertrophy and development of hypertension as judged by statistical ANOVA analysis. In contrast, alpha-glycerol-phosphate and the malate/aspartate shuttles were shown to make only a minor contribution to NADH oxidation in a manner essentially independent of age and progression of hypertrophy/hypertension. The rate of malate transport in exchange with oxaloacetate proved to limit the rate of NADH oxidation via this malate/oxaloacetate shuttle.

  4. A new ETV6-NTRK3 cell line model reveals MALAT1 as a novel therapeutic target - a short report.

    PubMed

    Chen, Suning; Nagel, Stefan; Schneider, Bjoern; Dai, Haiping; Geffers, Robert; Kaufmann, Maren; Meyer, Corinna; Pommerenke, Claudia; Thress, Kenneth S; Li, Jiao; Quentmeier, Hilmar; Drexler, Hans G; MacLeod, Roderick A F

    2018-02-01

    Previously, the chromosomal translocation t(12;15)(p13;q25) has been found to recurrently occur in both solid tumors and leukemias. This translocation leads to ETV6-NTRK3 (EN) gene fusions resulting in ectopic expression of the NTRK3 neurotropic tyrosine receptor kinase moiety as well as oligomerization through the donated ETV6-sterile alpha motif domain. As yet, no in vitro cell line model carrying this anomaly is available. Here we genetically characterized the acute promyelocytic leukemia (APL) cell line AP-1060 and, by doing so, revealed the presence of a t(12;15)(p13;q25). Subsequently, we evaluated its suitability as a model for this important clinical entity. Spectral karyotyping, fluorescence in situ hybridization (FISH), and genomic and transcriptomic microarray-based profiling were used to screen for the presence of EN fusions. qRT-PCR was used for quantitative expression analyses. Responses to AZ-23 (NTRK) and wortmannin (PI3K) inhibitors, as well as to arsenic trioxide (ATO), were assessed using colorimetric assays. An AZ-23 microarray screen was used to define the EN targetome, which was parsed bioinformatically. MAPK1 and MALAT1 activation were assayed using Western blotting and RNA-FISH, respectively, whereas an AML patient cohort was used to assess the clinical occurrence of MALAT1 activation. An EN fusion was detected in AP1060 cells which, accordingly, turned out to be hypersensitive to AZ-23. We also found that AZ-23 can potentiate the effect of ATO and inhibit the phosphorylation of its canonical target MAPK1. The AZ-23 microarray screen highlighted a novel EN target, MALAT1, which also proved sensitive to wortmannin. Finally, we found that MALAT1 was massively up-regulated in a subset of AML patients. From our data we conclude that AP-1060 may serve as a first publicly available preclinical model for EN. In addition, we conclude that these EN-positive cells are sensitive to the NTRK inhibitor AZ-23 and that this inhibitor may potentiate the

  5. 77 FR 47370 - Citric Acid and Certain Citrate Salts from the People's Republic of China: Intent To Rescind...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-08

    ... order includes all grades and granulation sizes of citric acid, sodium citrate, and potassium citrate in... includes blends of citric acid, sodium citrate, and potassium citrate; as well as blends with other ingredients, such as sugar, where the unblended form(s) of citric acid, sodium citrate, and potassium citrate...

  6. Extracellular Citrate Affects Critical Elements of Cancer Cell Metabolism and Supports Cancer Development In Vivo.

    PubMed

    Mycielska, Maria E; Dettmer, Katja; Rümmele, Petra; Schmidt, Katharina; Prehn, Cornelia; Milenkovic, Vladimir M; Jagla, Wolfgang; Madej, Gregor M; Lantow, Margareta; Schladt, Moritz; Cecil, Alexander; Koehl, Gudrun E; Eggenhofer, Elke; Wachsmuth, Christian J; Ganapathy, Vadivel; Schlitt, Hans J; Kunzelmann, Karl; Ziegler, Christine; Wetzel, Christian H; Gaumann, Andreas; Lang, Sven A; Adamski, Jerzy; Oefner, Peter J; Geissler, Edward K

    2018-05-15

    Glycolysis and fatty acid synthesis are highly active in cancer cells through cytosolic citrate metabolism, with intracellular citrate primarily derived from either glucose or glutamine via the tricarboxylic acid cycle. We show here that extracellular citrate is supplied to cancer cells through a plasma membrane-specific variant of the mitochondrial citrate transporter (pmCiC). Metabolomic analysis revealed that citrate uptake broadly affected cancer cell metabolism through citrate-dependent metabolic pathways. Treatment with gluconate specifically blocked pmCiC and decreased tumor growth in murine xenografts of human pancreatic cancer. This treatment altered metabolism within tumors, including fatty acid metabolism. High expression of pmCiC was associated with invasion and advanced tumor stage across many human cancers. These findings support the exploration of extracellular citrate transport as a novel potential target for cancer therapy. Significance: Uptake of extracellular citrate through pmCiC can be blocked with gluconate to reduce tumor growth and to alter metabolic characteristics of tumor tissue. Cancer Res; 78(10); 2513-23. ©2018 AACR . ©2018 American Association for Cancer Research.

  7. Salmonella enterica serovar Typhimurium mutants unable to convert malate to pyruvate and oxaloacetate are avirulent and immunogenic in BALB/c mice.

    PubMed

    Mercado-Lubo, Regino; Leatham, Mary P; Conway, Tyrrell; Cohen, Paul S

    2009-04-01

    Previously, we showed that the Salmonella enterica serovar Typhimurium SR-11 tricarboxylic acid (TCA) cycle must operate as a complete cycle for full virulence after oral infection of BALB/c mice (M. Tchawa Yimga, M. P. Leatham, J. H. Allen, D. C. Laux, T. Conway, and P. S. Cohen, Infect. Immun. 74:1130-1140, 2006). In the same study, we showed that for full virulence, malate must be converted to both oxaloacetate and pyruvate. Moreover, it was recently demonstrated that blocking conversion of succinyl-coenzyme A to succinate attenuates serovar Typhimurium SR-11 but does not make it avirulent; however, blocking conversion of succinate to fumarate renders it completely avirulent and protective against subsequent oral infection with the virulent serovar Typhimurium SR-11 wild-type strain (R. Mercado-Lubo, E. J. Gauger, M. P. Leatham, T. Conway, and P. S. Cohen, Infect. Immun. 76:1128-1134, 2008). Furthermore, the ability to convert succinate to fumarate appeared to be required only after serovar Typhimurium SR-11 became systemic. In the present study, evidence is presented that serovar Typhimurium SR-11 mutants that cannot convert fumarate to malate or that cannot convert malate to both oxaloacetate and pyruvate are also avirulent and protective in BALB/c mice. These results suggest that in BALB/c mice, the malate that is removed from the TCA cycle in serovar Typhimurium SR-11 for conversion to pyruvate must be replenished by succinate or one of its precursors, e.g., arginine or ornithine, which might be available in mouse phagocytes.

  8. A promoter swap strategy between the AtALMT and AtMATE genes increased arabidopsis aluminum resistance and improved carbon use efficiency for aluminum resistance

    USDA-ARS?s Scientific Manuscript database

    In Arabidopsis, aluminum (Al)-activated AtALMT1-mediated root malate exudation plays a major role in Al tolerance, while Al-activated AtMATE-mediated citrate exudation plays a much smaller role. In this study, we demonstrate that the levels of Al-activated root organic acid exudation are closely co...

  9. MdMYB1 Regulates Anthocyanin and Malate Accumulation by Directly Facilitating Their Transport into Vacuoles in Apples.

    PubMed

    Hu, Da-Gang; Sun, Cui-Hui; Ma, Qi-Jun; You, Chun-Xiang; Cheng, Lailiang; Hao, Yu-Jin

    2016-03-01

    Tonoplast transporters, including proton pumps and secondary transporters, are essential for plant cell function and for quality formation of fleshy fruits and ornamentals. Vacuolar transport of anthocyanins, malate, and other metabolites is directly or indirectly dependent on the H(+)-pumping activities of vacuolar H(+)-ATPase (VHA) and/or vacuolar H(+)-pyrophosphatase, but how these proton pumps are regulated in modulating vacuolar transport is largely unknown. Here, we report a transcription factor, MdMYB1, in apples that binds to the promoters of two genes encoding the B subunits of VHA, MdVHA-B1 and MdVHA-B2, to transcriptionally activate its expression, thereby enhancing VHA activity. A series of transgenic analyses in apples demonstrates that MdMYB1/10 controls cell pH and anthocyanin accumulation partially by regulating MdVHA-B1 and MdVHA-B2. Furthermore, several other direct target genes of MdMYB10 are identified, including MdVHA-E2, MdVHP1, MdMATE-LIKE1, and MdtDT, which are involved in H(+)-pumping or in the transport of anthocyanins and malates into vacuoles. Finally, we show that the mechanism by which MYB controls malate and anthocyanin accumulation in apples also operates in Arabidopsis (Arabidopsis thaliana). These findings provide novel insights into how MYB transcription factors directly modulate the vacuolar transport system in addition to anthocyanin biosynthesis, consequently controlling organ coloration and cell pH in plants. © 2016 American Society of Plant Biologists. All Rights Reserved.

  10. Sensitizing effects of gallium citrate on hyperthermic cell killing in vitro.

    PubMed

    Miyazaki, N; Nakano, H; Kawakami, N; Kugotani, M; Nishihara, K; Aoki, Y; Shinohara, K

    2000-01-01

    The lethal effects of gallium citrate in combination with heat were studied using four cell lines, L5178Y, FM3A, P388 and HeLa. Cells were incubated with different concentrations (0.2 2 mM) of gallium citrate at 37 degrees C for 24 h and heated at a range of temperatures from 40-44 degrees C for various time periods up to 6 h in the absence of gallium citrate. Survival and cell viability were determined by clonogenic assay and the dye-exclusion test, respectively. All of the cell lines tested were insensitive to heat below 41 degrees C, but were very sensitive to heat above 43 degrees C. Gallium citrate was cytotoxic to these cell lines at different levels: P388 and HeLa were far more sensitive than L5178Y and FM3A. The killing effects of heat at 41 degrees C were greatly enhanced by gallium citrate in L5178Y and P388 cells. The Arrhenius analysis for the lethal effect of heat, determined by clonogenic assay, in L5178Y cells showed that the transition temperature was remarkably decreased for the gallium-treated cells from approximately 43 degrees C to 41 degrees C. The mechanism for this decrease in the transition temperature may be attributable to the additional effects of gallium citrate on energy metabolism. Preincubation with 0.05 mM gallium citrate at 37 degrees C for 7 days also enhanced heat sensitization at 41 degrees C in L5178Y. This preincubation condition may correspond to the condition for the continuous infusion of gallium that is clinically used for cancer treatment. In contrast, treatment with gallium did not greatly enhance the sensitivity of FM3A or HeLa cells to heat at 41 degrees C, but the effects of gallium were significant.

  11. Malate secretion from the root system is an important reason for higher resistance of Miscanthus sacchariflorus to cadmium.

    PubMed

    Guo, Haipeng; Feng, Xue; Hong, Chuntao; Chen, Houming; Zeng, Fanrong; Zheng, Bingsong; Jiang, Dean

    2017-03-01

    Miscanthus is a vigorous perennial Gramineae genus grown throughout the world as a promising bioenergy crop and generally regarded as heavy metal tolerant due to its ability to absorb heavy metals. However, little is known about the mechanism for heavy metal tolerance in Miscanthus. In this study, two Miscanthus species (Miscanthus sacchariflorus and Miscanthus floridulus) exhibiting different cadmium (Cd) sensitivity were used to address the mechanisms of Cd tolerance. Under the same Cd stress, M. sacchariflorus showed higher Cd tolerance with better growth and lower Cd accumulation in both shoots and roots than M. floridulus. The malate (MA) content significantly increased in root exudates of M. sacchariflorus following Cd treatment while it was almost unchanged in M. floridulus. Cellular Cd analysis and flux data showed that exogenous MA application markedly restricted Cd influx and accumulation while an anion-channel inhibitor (phenylglyoxal) effectively blocked Cd-induced MA secretion and increased Cd influx in M. sacchariflorus, indicating that MA secretion could alleviate Cd toxicity by reducing Cd uptake. The genes of malate dehydrogenases (MsMDHs) and Al-activated malate transporter 1 (MsALMT1) in M. sacchariflorus were highly upregulated under Cd stress, compared with that in M. floridulus. The results indicate that Cd-induced MA synthesis and secretion efficiently alleviate Cd toxicity by reducing Cd influx in M. sacchariflorus. © 2016 Scandinavian Plant Physiology Society.

  12. Spirocyclic character of ixazomib citrate revealed by comprehensive XRD, NMR and DFT study

    NASA Astrophysics Data System (ADS)

    Skorepova, Eliska; Čerňa, Igor; Vlasáková, Růžena; Zvoníček, Vít; Tkadlecová, Marcela; Dušek, Michal

    2017-11-01

    Ixazomib citrate is a very recently approved anti-cancer drug. Until now, to the best of our knowledge, no one has been able to solve any crystal structures of this compound. In this work, we present the crystal structures of two isostructural solvates of ixazomib citrate. In all currently available literature, the molecule is characterized as containing a single optically active carbon atom and a borate cycle formed when ixazomib is reacted with citric acid to form a stabilized ixazomib citrate that can be administered orally. However, the crystal structures revealed that none of the up-to-date presented structural formulas of ixazomib citrate are fully accurate. In addition to the citrate ring, another 5-membered ring is formed. These two rings are connected by the boron atom, making this compound a spirocyclic borate. By spirocyclization, the boron atom becomes tetrahedral and therefore optically active. In the crystal structures, ixazomib citrate was found to be in forms of two RR and RS stereoisomers. The results are supported by solid-state and solution NMR and DFT quantum mechanical calculations.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Recker, R.R.

    Defective absorption of calcium has been thought to exist in patients with achlorhydria. The author compared absorption of calcium in its carbonate form with that in a pH-adjusted citrate form in a group of 11 fasting patients with achlorhydria and in 9 fasting normal subjects. Fractional calcium absorption was measured by a modified double-isotope procedure with 0.25 g of calcium used as the carrier. Mean calcium absorption (+/- S.D.) in the patients with achlorhydria was 0.452 +/- 0.125 for citrate and 0.042 +/- 0.021 for carbonate (P less than 0.0001). Fractional calcium absorption in the normal subjects was 0.243 +/-more » 0.049 for citrate and 0.225 +/- 0.108 for carbonate (not significant). Absorption of calcium from carbonate in patients with achlorhydria was significantly lower than in the normal subjects and was lower than absorption from citrate in either group; absorption from citrate in those with achlorhydria was significantly higher than in the normal subjects, as well as higher than absorption from carbonate in either group. Administration of calcium carbonate as part of a normal breakfast resulted in completely normal absorption in the achlorhydric subjects. These results indicate that calcium absorption from carbonate is impaired in achlorhydria under fasting conditions. Since achlorhydria is common in older persons, calcium carbonate may not be the ideal dietary supplement.« less

  14. Management strategies for ovulation induction in women with polycystic ovary syndrome and known clomifene citrate resistance.

    PubMed

    Palomba, Stefano; Falbo, Angela; Zullo, Fulvio

    2009-12-01

    Clomifene citrate is the first and the most used agent for inducing ovulation in patients affected by polycystic ovary syndrome (PCOS). About 60-85% of PCOS women ovulated under clomifene citrate, whereas the others were defined clomifene citrate-resistant. The purpose of the current review will be to describe treatment strategies to induce ovulation in infertile PCOS patients with clomifene citrate resistance. Clomifene citrate and metformin association are a valid option for inducing ovulation in clomifene citrate-resistant PCOS patients. Surgical ovulation induction by laparoscopic ovarian drilling should be reserved to well selected cases. Excellent preliminary results are obtained using new drug formulations, such as aromatase inhibitors. In clomifene citrate-resistant PCOS patients, clomifene citrate and metformin combination and laparoscopic ovarian drilling, in selected cases, should be considered before gonadotropin administration. The efficacy of the other treatments must be confirmed in future well designed studies.

  15. Effect of sildenafil citrate (Viagra) on coronary flow in normal subjects.

    PubMed

    Ishikura, Fuminobu; Beppu, Shintaro; Ueda, Hiroaki; Nehra, Ajay; Khandheria, Bijoy K

    2008-01-01

    The purpose of this study was to evaluate the effect of sildenafil citrate (Viagra) on coronary function in normal subjects. The study assessed mean blood pressure, left anterior descending coronary artery (LAD) flow, and echocardiographic variables before and 30 and 60 minutes after taking 50 mg of sildenafil citrate. The mean velocity of LAD flow was assessed with Doppler flow imaging. The study subjects were 6 healthy male volunteers (mean age 37 years). The mean velocity of LAD flow increased 60 minutes after taking sildenafil citrate, but there were no other changes. Two volunteers felt mild flashing and one had mild headache during the study. Sildenafil citrate caused vasodilatation in a normal coronary artery without systemic pressure drops. These results suggest that the agent itself did not have negative effects on the heart in normal subjects.

  16. SERS substrates fabricated using ceramic filters for the detection of bacteria: Eliminating the citrate interference

    NASA Astrophysics Data System (ADS)

    Mosier-Boss, P. A.; Sorensen, K. C.; George, R. D.; Sims, P. C.; O'braztsova, A.

    2017-06-01

    It was found that spectra obtained for bacteria on SERS substrates fabricated by filtering citrate-generated Ag nanoparticles (NPs) onto rigid, ceramic filters exhibited peaks due to citrate as well as the bacteria. In many cases the citrate spectrum overwhelmed that of the bacteria. Given the simplicity of the method to prepare these substrates, means of eliminating this citrate interference were explored. It was found that allowing a mixture of bacteria suspension and citrate-generated Ag NPs to incubate prior to filtering onto the ceramic filter eliminated this interference.

  17. Effects of citrate on hexavalent chromium reduction by structural Fe(II) in nontronite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiaolei; Dong, Hailiang; Yang, Xuewei

    Iron-bearing clay minerals and organic matter are two important components in natural environments that influence hexavalent chromium (Cr(VI)) reduction. Previous studies have shown that organic ligands could influence Cr(VI) reduction by aqueous Fe2+ and pyrite. However, the effects of organic ligands on Cr(VI) reduction by structural Fe(II) in clays are not well understood. In this study, the effects of citrate on Cr(VI) reduction by nontronite (NAu-2) were investigated under near neutral pH condition (pH=6). Our results showed that the presence of citrate decreased the rate but increased the amount of Cr(VI) reduction by structural Fe(II) in NAu-2. The decreased reactionmore » rate was likely due to competitive sorption of citrate and polyanionic dichromate (Cr2O7- ), because sorption of dichromate appeared to be the first step for subsequent Cr(VI) reduction. The increased amount of Cr(VI) reduction in the presence of citrate was likely because citrate provided additional reducing power through ligand-metal electron transfer in the presence of soluble Fe 3+ derived from dissolution of reduced NAu-2. Soluble Cr(III)-citrate complex was the possible form of reduced chromium when citrate was present. In contrast, nanometer-sized Cr2O3 particles were the product of Cr(VI) reduction by reduced NAu-2 without citrate. Our study highlights the importance of organic ligands on Cr(VI) reduction and immobilization when iron-bearing clay minerals are applied to treat Cr(VI) contaminant in organic matter rich environments.« less

  18. AtALMT9 is a malate-activated vacuolar chloride channel required for stomatal opening in Arabidopsis

    PubMed Central

    De Angeli, Alexis; Zhang, Jingbo; Meyer, Stefan; Martinoia, Enrico

    2013-01-01

    Water deficit strongly affects crop productivity. Plants control water loss and CO2 uptake by regulating the aperture of the stomatal pores within the leaf epidermis. Stomata aperture is regulated by the two guard cells forming the pore and changing their size in response to ion uptake and release. While our knowledge about potassium and chloride fluxes across the plasma membrane of guard cells is advanced, little is known about fluxes across the vacuolar membrane. Here we present the molecular identification of the long-sought-after vacuolar chloride channel. AtALMT9 is a chloride channel activated by physiological concentrations of cytosolic malate. Single-channel measurements demonstrate that this activation is due to a malate-dependent increase in the channel open probability. Arabidopsis thaliana atalmt9 knockout mutants exhibited impaired stomatal opening and wilt more slowly than the wild type. Our findings show that AtALMT9 is a vacuolar chloride channel having a major role in controlling stomata aperture. PMID:23653216

  19. [Effect of glucose and lactose on the utilization of citrate by Lactobacillus casei subsp. rhamnosus ATCC 7469].

    PubMed

    Benito de Cárdenas, I L; Medina, R; Oliver, G

    1992-01-01

    The utilization of citrate by Lactobacillus casei subsp. rhamnosus ATCC 7469 in a complex medium containing glucose, lactose or citrate was investigated, as an approach to the question of the transport of this acid and the possible relationship with the production of flavour compounds (diacetyl and acetoin). This lactobacillus uses citrate as an energy source in the absence of carbohydrates. External pH and growth increases when citrate is added to complex medium. The presence of citrate does not affect glucose uptake. L. casei ATCC 7469 possibly uses a transport system for citrate utilization, and citrate uptake seems to be under glucose or lactose control. Lactose only inhibits the entrance of citrate at high concentration while the utilization of this acid was negatively regulated by low glucose concentration.

  20. SERS substrates fabricated using ceramic filters for the detection of bacteria: Eliminating the citrate interference.

    PubMed

    Mosier-Boss, P A; Sorensen, K C; George, R D; Sims, P C; O'braztsova, A

    2017-06-05

    It was found that spectra obtained for bacteria on SERS substrates fabricated by filtering citrate-generated Ag nanoparticles (NPs) onto rigid, ceramic filters exhibited peaks due to citrate as well as the bacteria. In many cases the citrate spectrum overwhelmed that of the bacteria. Given the simplicity of the method to prepare these substrates, means of eliminating this citrate interference were explored. It was found that allowing a mixture of bacteria suspension and citrate-generated Ag NPs to incubate prior to filtering onto the ceramic filter eliminated this interference. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Comparative transcriptome analysis reveals a global insight into molecular processes regulating citrate accumulation in sweet orange (Citrus sinensis).

    PubMed

    Lu, Xiaopeng; Cao, Xiongjun; Li, Feifei; Li, Jing; Xiong, Jiang; Long, Guiyou; Cao, Shangyin; Xie, Shenxi

    2016-12-01

    Citrate, the predominant organic acid in citrus, determines the taste of these fruits. However, little is known about the synergic molecular processes regulating citrate accumulation. Using 'Dahongtiancheng' (Citrus sinensis) and 'Bingtangcheng' (C. sinensis) with significant difference in citrate, the objectives of this study were to understand the global mechanisms of high-citrate accumulation in sweet orange. 'Dahongtiancheng' and 'Bingtangcheng' exhibit significantly different patterns in citrate accumulation throughout fruit development, with the largest differences observed at 50-70 days after full bloom (DAFB). Comparative transcriptome profiling was performed for the endocarps of both cultivars at 50 and 70 DAFB. Over 34.5 million clean reads per library were successfully mapped to the reference database and 670-2630 differentially expressed genes (DEGs) were found in four libraries. Among the genes, five transcription factors were ascertained to be the candidates regulating citrate accumulation. Functional assignments of the DEGs indicated that photosynthesis, the citrate cycle and amino acid metabolism were significantly altered in 'Dahongtiancheng'. Physiological and molecular analyses suggested that high photosynthetic efficiency and partial impairment of citrate catabolism were crucial for the high-citrate trait, and amino acid biosynthesis was one of the important directions for citrate flux. The results reveal a global insight into the gene expression changes in a high-citrate compared with a low-citrate sweet orange. High accumulating efficiency and impaired degradation of citrate may be associated with the high-citrate trait of 'Dahongtiancheng'. Findings in this study increase understanding of the molecular processes regulating citrate accumulation in sweet orange. © 2016 Scandinavian Plant Physiology Society.

  2. Stability of ionized calcium measurements at concentrations less than 0.3 mmol/L by point-of-care blood gas instruments: application for postfilter calcium quality control in patients with citrate anticoagulation during extracorporeal circulation.

    PubMed

    Averina, Maria; Jakobsen, Raymond

    2017-05-01

    Background Measurements of ionized calcium (Ca 2+ ) at concentrations less than 0.3 mmol/L are required for postfilter control in patients who receive extracorporeal circulation with sodium citrate anticoagulation. This study evaluates the stability of the Ca 2+ measurements at such concentrations. Methods The stability of the Ca 2+ measurements was tested by measuring daily the external standard Qualicheck concentration 3 s7950, Radiometer (0.22-0.25 mmol/L) by blood gas instruments ABL800 and ABL90, Radiometer. Two different Ca 2+ membrane lots were tested for the usual membrane lifetime of 12 weeks at ABL800 instruments. For the ABL90 instrument, the sensor cassette (with Ca 2+ membrane and electrode) was replaced after four weeks as required. Results We observed over 40% Ca 2+ increase within the usual 12 weeks lifetime of the Ca 2+ membrane at the ABL800 instruments. Measurements of Ca 2+ at concentrations less than 0.3 mmol/L were within acceptable limits for both ABL800 and ABL90 instruments when Ca 2+ membrane and sensor cassette were replaced after four weeks. Conclusions For ABL800 instruments, it is necessary to use an extra quality control (<0.3 mmol/L) in addition to the usual quality controls to monitor Ca 2+ measurements below 0.3 mmol/L. The acceptable stability of the Ca 2+ measurements can be achieved by the Ca 2+ membrane and sensor cassette replacement after four weeks. If the usual 12 weeks of Ca 2+ membrane lifetime is maintained, it may result in a clinically significant overestimation of Ca 2+ by ABL800 instruments.

  3. Media calcification, low erythrocyte magnesium, altered plasma magnesium, and calcium homeostasis following grafting of the thoracic aorta to the infrarenal aorta in the rat--differential preventive effects of long-term oral magnesium supplementation alone and in combination with alkali.

    PubMed

    Schwille, P O; Schmiedl, A; Schwille, R; Brunner, P; Kissler, H; Cesnjevar, R; Gepp, H

    2003-03-01

    Calcifications in arterial media are clinically well documented, but the role played by magnesium in pathophysiology and therapy is uncertain. To clarify this, an animal model in which the juxtacardial aorta was grafted to the infrarenal aorta, and the subsequent calcifications in the media of the graft and their response to oral supplementation with three magnesium-containing and alkalinizing preparations was investigated. Groups of highly inbred rats were formed as follows: sham-operation (Sham, n = 12), aorta transplantation (ATx, n = 12), ATx + magnesium citrate (MgC, n = 12), ATx + MgC + potassium citrate (MgCPC, n = 12), ATx + MgC + MgCPC (MgCPCSB, n = 12). At 84 (+/-2) days after ATx with or without treatment the following observations were made: (1) weight gain and general status were normal; (2) ATx rats developed massive media calcification, mineral accumulation in the graft, decreased erythrocyte magnesium and plasma parathyroid hormone, and increased plasma ionized magnesium and calcium, and uric acid; (3) Mg-treated rats developed variable degrees of metabolic alkalosis, but only MgCPCSB supplementation prevented calcifications. Additional findings after ATx alone were: imbalance in endothelin and nitric oxide production, the mineral deposited in media was poorly crystallized calcium phosphate, calcium exchange between plasma and graft, and bone resorption were unchanged. The superior anti-calcification effect of MgCPCSB was characterized by complete restoration of normal extracellular mineral homeostasis and uric acid, but sub-optimal normalization of erythrocyte magnesium. It was concluded that in the rat: (1) ATx causes loss of cellular magnesium, excess of extracellular magnesium and calcium in the presence of apparently unchanged bone resorption, and increased uricemia; (2) ATx facilitates enhanced influx of calcium into vascular tissue, leading to calcium phosphate deposition in the media; (3) ATx-induced calcification is prevented by dietary

  4. Temperature effect on nickel release in ammonium citrate.

    PubMed

    Oller, Adriana R; Cappellini, Danielle; Henderson, Rayetta G; Bates, Hudson K

    2009-09-01

    Leaching in ammonium citrate has been extensively used to assess the fraction of water-soluble nickel compounds present in nickel producing and using workplace aerosols. Leaching in ammonium citrate according to the first step of the Zatka protocol was found to overestimate the water-soluble nickel fraction by more than ten-fold compared to synthetic lung fluid (37 degrees C), when nickel carbonate and subsulfide were present. These results suggest that exposure matrices based on this method should be reexamined. Leaching studies of refinery particles are needed to further clarify this important issue.

  5. Effects and mechanisms of action of sildenafil citrate in human chorionic arteries

    PubMed Central

    Maharaj, Chrisen H; O'Toole, Daniel; Lynch, Tadhg; Carney, John; Jarman, James; Higgins, Brendan D; Morrison, John J; Laffey, John G

    2009-01-01

    Objectives Sildenafil citrate, a specific phosphodiesterase-5 inhibitor, is increasingly used for pulmonary hypertension in pregnancy. Sildenafil is also emerging as a potential candidate for the treatment of intra-uterine growth retardation and for premature labor. Its effects in the feto-placental circulation are not known. Our objectives were to determine whether phosphodiesterase-5 is present in the human feto-placental circulation, and to characterize the effects and mechanisms of action of sildenafil citrate in this circulation. Study Design Ex vivo human chorionic plate arterial rings were used in all experiments. The presence of phosphodiesterase-5 in the feto-placental circulation was determined by western blotting and immunohistochemical staining. In a subsequent series of pharmacologic studies, the effects of sildenafil citrate in pre-constricted chorionic plate arterial rings were determined. Additional studies examined the role of cGMP and nitric oxide in mediating the effects of sildenafil. Results Phosphodiesterase-5 mRNA and protein was demonstrated in human chorionic plate arteries. Immunohistochemistry demonstrated phosphodiesterase-5 within the arterial muscle layer. Sildenafil citrate produced dose dependent vasodilatation at concentrations at and greater than 10 nM. Both the direct cGMP inhibitor methylene blue and the cGMP-dependent protein kinase inhibitor Rp-8-Br-PET-cGMPS significantly attenuated the vasodilation produced by sildenafil citrate. Inhibition of NO production with L-NAME did not attenuate the vasodilator effects of sildenafil. In contrast, sildenafil citrate significantly enhanced the vasodilation produced by the NO donor sodium nitroprusside. Conclusion Phosphodiesterase-5 is present in the feto-placental circulation. Sildenafil citrate vasodilates the feto-placental circulation via a cGMP dependent mechanism involving increased responsiveness to NO. PMID:19389232

  6. Urethral dysfunction due to alloxan-induced diabetes. Urodynamic evaluation and action of sildenafil citrate.

    PubMed

    Gomes de Souza Pegorare, Ana Beatriz; Gonçalves, Marco Antonio; Martiniano de Oliveira, Alessandra; Rodrigues Junior, Antonio Antunes; Tucci, Silvio; Suaid, Haylton Jorge

    2014-04-01

    To evaluate the effect of diabetes mellitus and of sildenafil citrate on female urethral function. Twenty nine female rats were divided into four groups: G1 - (n=9), normal rats; G2 - (n=6), normal rats treated with sildenafil citrate; G3 - (n=9) rats with alloxan-induced diabetes; G4 - (n=5) rats with alloxan-induced diabetes treated with sildenafil citrate. Under anesthesia, urodynamic evaluation was performed by cystometry and urethral pressure simultaneously. A significant increase in urethral pressure was observed during micturition. Sildenafil citrate can partially reduced urethral pressure in diabetic female rats.

  7. A domain-based approach for analyzing the function of aluminum-activated malate transporters from wheat (Triticum aestivum) and Arabidopsis thaliana in Xenopus oocytes.

    PubMed

    Sasaki, Takayuki; Tsuchiya, Yoshiyuki; Ariyoshi, Michiyo; Ryan, Peter R; Furuichi, Takuya; Yamamoto, Yoko

    2014-12-01

    Wheat and Arabidopsis plants respond to aluminum (Al) ions by releasing malate from their root apices via Al-activated malate transporter. Malate anions bind with the toxic Al ions and contribute to the Al tolerance of these species. The genes encoding the transporters in wheat and Arabidopsis, TaALMT1 and AtALMT1, respectively, were expressed in Xenopus laevis oocytes and characterized electrophysiologically using the two-electrode voltage clamp system. The Al-activated currents generated by malate efflux were detected for TaALMT1 but not for AtALMT1. Chimeric proteins were generated by swapping the N- and C-terminal halves of TaALMT1 and AtALMT1 (Ta::At and At::Ta). When these chimeras were characterized in oocytes, Al-activated malate efflux was detected for the Ta::At chimera but not for At::Ta, suggesting that the N-terminal half of TaALMT1 is necessary for function in oocytes. An additional chimera, Ta(48)::At, generated by swapping 17 residues from the N-terminus of AtALMT1 with the equivalent 48 residues from TaALMT1, was sufficient to support transport activity. This 48 residue region includes a helical region with a putative transmembrane domain which is absent in AtALMT1. The deletion of this domain from Ta(48)::At led to the complete loss of transport activity. Furthermore, truncations and a deletion at the C-terminal end of TaALMT1 indicated that a putative helical structure in this region was also required for transport function. This study provides insights into the structure-function relationships of Al-activated ALMT proteins by identifying specific domains on the N- and C-termini of TaALMT1 that are critical for basal transport function and Al responsiveness in oocytes. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. Citrate-Based Biomaterials and Their Applications in Regenerative Engineering

    PubMed Central

    Tran, Richard T.; Yang, Jian; Ameer, Guillermo A.

    2015-01-01

    Advances in biomaterials science and engineering are crucial to translating regenerative engineering, an emerging field that aims to recreate complex tissues, into clinical practice. In this regard, citrate-based biomaterials have become an important tool owing to their versatile material and biological characteristics including unique antioxidant, antimicrobial, adhesive, and fluorescent properties. This review discusses fundamental design considerations, strategies to incorporate unique functionality, and examples of how citrate-based biomaterials can be an enabling technology for regenerative engineering. PMID:27004046

  9. Interactions of citrate synthases from osmoconforming and osmoregulating animals with salt: possible signs of molecular eco-adaptation?

    PubMed

    Sarkissian, I V

    1977-01-01

    This study considers differential sensitivity of citrate synthase (citrate oxaloacetatelyase [CoA acetylating]) EC 4.1.3.7. from an osmoconforming animal (sea anemone) and an osmoregulating animal (the pig) to salt. Attention is drawn to the fact that the osmoconforming sea anemone is in essence a sessile creature while the pig is readily mobile and able to change its ionic environment at will. It had been shown earlier that citrate synthase from another osmoconformer (oyster) is also not sensitive to ionic strength while citrate synthase from osmoregulating white shrimp is sensitive to increasing levels of salt. However, these enzymes are characteristically regulated by ATP and alpha-ketoglutarate. Both forms of citrate synthase are denatured by 6 M guanidine hydrochloride and are aided by salt levels in their refolding but the rate and extent of refolding of the osmoconformer citrate synthase are greater than those of the osmoregulator citrate synthase. Catalytic activity of both forms of citrate synthase is inhibited by incubation in distilled water; osmoconformer citrate synthase was inhibited completely in 7 h while osmoregulator citrate synthase was inhibited only 60% in this time and 80% after 22 h in distilled water. The eco-adaptive and evolutionary implications of these findings are discussed.

  10. SILDENAFIL CITRATE INDUCED RETINAL TOXICITY-ELECTRORETINOGRAM, OPTICAL COHERENCE TOMOGRAPHY, AND ADAPTIVE OPTICS FINDINGS.

    PubMed

    Yanoga, Fatoumata; Gentile, Ronald C; Chui, Toco Y P; Freund, K Bailey; Fell, Millie; Dolz-Marco, Rosa; Rosen, Richard B

    2018-02-27

    To report a case of persistent retinal toxicity associated with a high dose of sildenafil citrate intake. Single retrospective case report. A 31-year-old white man with no medical history presented with complaints of bilateral multicolored photopsias and erythropsia (red-tinted vision), shortly after taking sildenafil citrate-purchased through the internet. Patient was found to have cone photoreceptor damage, demonstrated using electroretinogram, optical coherence tomography, and adaptive optics imaging. The patient's symptoms and the photoreceptor structural changes persisted for several months. Sildenafil citrate is a widely used erectile dysfunction medication that is typically associated with transient visual symptoms in normal dosage. At high dosage, sildenafil citrate can lead to persistent retinal toxicity in certain individuals.

  11. Interaction of E3 Ubiquitin Ligase MARCH7 with Long Noncoding RNA MALAT1 and Autophagy-Related Protein ATG7 Promotes Autophagy and Invasion in Ovarian Cancer.

    PubMed

    Hu, Jianguo; Zhang, Luo; Mei, Zhiqiang; Jiang, Yuan; Yi, Yuan; Liu, Li; Meng, Ying; Zhou, Lili; Zeng, Jianhua; Wu, Huan; Jiang, Xingwei

    2018-05-22

    Ubiquitin E3 ligase MARCH7 plays an important role in T cell proliferation and neuronal development. But its role in ovarian cancer remains unclear. This study aimed to investigate the role of Ubiquitin E3 ligase MARCH7 in ovarian cancer. Real-time PCR, immunohistochemistry and western blotting analysis were performed to determine the expression of MARCH7, MALAT1 and ATG7 in ovarian cancer cell lines and clinical specimens. The role of MARCH7 in maintaining ovarian cancer malignant phenotype was examined by Wound healing assay, Matrigel invasion assays and Mouse orthotopic xenograft model. Luciferase reporter assay, western blot analysis and ChIP assay were used to determine whether MARCH7 activates TGF-β-smad2/3 pathway by interacting with TGFβR2. MARCH7 interacted with MALAT1 by miR-200a (microRNA-200a). MARCH7 may function as a competing endogenous RNA (ceRNA) to regulate the expression of ATG7 by competing with miR-200a. MARCH7 regulated TGF-β-smad2/3 pathway by interacting with TGFβR2. Inhibition of TGF-β-smad2/3 pathway downregulated MARCH7, MALAT1 and ATG7. MiR-200a regulated TGF-β induced autophagy, invasion and metastasis of SKOV3 cells by targeting MARCH7. MARCH7 silencing inhibited autophagy invasion and metastasis of SKOV3 cells both in vitro and in vivo. In contrast, MARCH7 overexpression promoted TGF-β induced autophagy, invasion and metastasis of A2780 cells in vitro by depending on MALAT1 and ATG7. We also found that TGF-β-smad2/3 pathway regulated MARCH7 and ATG7 through MALAT1. These findings suggested that TGFβR2-Smad2/3-MALAT1/MARCH7/ATG7 feedback loop mediated autophagy, migration and invasion in ovarian cancer. © 2018 The Author(s). Published by S. Karger AG, Basel.

  12. Proteomic analysis of a high aluminum tolerant yeast Rhodotorula taiwanensis RS1 in response to aluminum stress.

    PubMed

    Wang, Chao; Wang, Chang Yi; Zhao, Xue Qiang; Chen, Rong Fu; Lan, Ping; Shen, Ren Fang

    2013-10-01

    Rhodotorula taiwanensis RS1 is a high-aluminum (Al)-tolerant yeast that can survive in Al concentrations up to 200mM. The mechanisms for the high Al tolerance of R. taiwanensis RS1 are not well understood. To investigate the molecular mechanisms underlying Al tolerance and toxicity in R. taiwanensis RS1, Al toxicity-induced changes in the total soluble protein profile were analyzed using two-dimensional gel electrophoresis (2-DE) coupled with mass spectrometry. A total of 33 differentially expressed proteins responding to Al stress were identified from approximately 850 reproducibly detected proteins. Among them, the abundance of 29 proteins decreased and 4 increased. In the presence of 100mM Al, the abundance of proteins involved in DNA transcription, protein translation, DNA defense, Golgi functions and glucose metabolism was decreased. By contrast, Al treatment led to increased abundance of malate dehydrogenase, which correlated with increased malate dehydrogenase activity and the accumulation of intracellular citrate, suggesting that Al-induced intracellular citrate could play an important role in detoxification of Al in R. taiwanensis RS1. © 2013.

  13. Films based on neutralized chitosan citrate as innovative composition for cosmetic application.

    PubMed

    Libio, Illen C; Demori, Renan; Ferrão, Marco F; Lionzo, Maria I Z; da Silveira, Nádya P

    2016-10-01

    In this work, citrate and acetate buffers, were investigated as neutralizers to chitosan salts in order to provide biocompatible and stable films. To choose the appropriate film composition for this study, neutralized chitosan citrate and acetate films, with and without the plasticizer glycerol, were prepared and characterized by thickness, moisture content, degree of swelling, total soluble matter in acid medium, simultaneous thermal analysis and differential scanning calorimetry. Chitosan films neutralized in citrate buffer showed greater physical integrity resulted from greater thicknesses, lower moisture absorbance, lower tendency to solubility in the acid medium, and better swelling capacities. According to thermal analyses, these films had higher interaction with water which is considered an important feature for cosmetic application. Since the composition prepared in citrate buffer without glycerol was considered to present better physical integrity, it was applied to investigate hyaluronic acid release in a skin model. Skins treated with those films, with or without hyaluronic acid, show stratum corneum desquamation and hydration within 10min. The results suggest that the neutralized chitosan citrate film prepared without glycerol promotes a cosmetic effect for skin exfoliation in the presence or absence of hyaluronic acid. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. 76 FR 19997 - Determination That FENTORA (Fentanyl Citrate) Buccal Tablet, 300 Micrograms, Was Not Withdrawn...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-11

    ...] Determination That FENTORA (Fentanyl Citrate) Buccal Tablet, 300 Micrograms, Was Not Withdrawn From Sale for... Food and Drug Administration (FDA) has determined that FENTORA (fentanyl citrate) buccal tablet, 300... allow FDA to approve abbreviated new drug applications (ANDAs) for fentanyl citrate buccal tablet, 300...

  15. Meta-analysis of letrozole versus clomiphene citrate in polycystic ovary syndrome.

    PubMed

    He, Donghong; Jiang, Fengyan

    2011-07-01

    The aim of this study was to systematically compare the clinical efficacy and safety of letrozole with clomiphene citrate for ovulation induction in women with polycystic ovary syndrome (PCOS). The Cochrane Central Register of Controlled Trials, PubMed, EMbase, CBMdisc and CNKI were searched for eligible randomized controlled trials (RCT) comparing letrozole with clomiphene citrate in PCOS patients. Two reviewers independently extracted information and evaluated methodological quality according to the Cochrane Handbook 5.0. Meta-analysis was performed with the fixed-effects model or random-effects model according to the heterogeneity. Six eligible RCT involving 841 patients were included. Letrozole was associated with a number of lower mature follicles per cycle (standardized mean difference (SMD) -1.41; 95% confidence intervales (CI) -1.54 to -1.28; P<0.00001) compared with clomiphene citrate. There were no significant differences in pregnancy rate (relative risk (RR) 0.97; 95% CI 0.79 to 1.18), abortion rate (RR 1.38; 95% CI 0.48 to -3.96) and multiple pregnancy rate (RR 0.34; 95% CI 0.07 to -1.72) between the two groups. The evidence from ovulation rates was not enough to support either letrozole or clomiphene citrate. In conclusion, letrozole is as effective as clomiphene citrate for ovulation induction in patients with PCOS. Copyright © 2011 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  16. Nitrate Protects Cucumber Plants Against Fusarium oxysporum by Regulating Citrate Exudation.

    PubMed

    Wang, Min; Sun, Yuming; Gu, Zechen; Wang, Ruirui; Sun, Guomei; Zhu, Chen; Guo, Shiwei; Shen, Qirong

    2016-09-01

    Fusarium wilt causes severe yield losses in cash crops. Nitrogen plays a critical role in the management of plant disease; however, the regulating mechanism is poorly understood. Using biochemical, physiological, bioinformatic and transcriptome approaches, we analyzed how nitrogen forms regulate the interactions between cucumber plants and Fusarium oxysporum f. sp. cucumerinum (FOC). Nitrate significantly suppressed Fusarium wilt compared with ammonium in both pot and hydroponic experiments. Fewer FOC colonized the roots and stems under nitrate compared with ammonium supply. Cucumber grown with nitrate accumulated less fusaric acid (FA) after FOC infection and exhibited increased tolerance to chemical FA by decreasing FA absorption and transportation in shoots. A lower citrate concentration was observed in nitrate-grown cucumbers, which was associated with lower MATE (multidrug and toxin compound extrusion) family gene and citrate synthase (CS) gene expression, as well as lower CS activity. Citrate enhanced FOC spore germination and infection, and increased disease incidence and the FOC population in ammonium-treated plants. Our study provides evidence that nitrate protects cucumber plants against F. oxysporum by decreasing root citrate exudation and FOC infection. Citrate exudation is essential for regulating disease development of Fusarium wilt in cucumber plants. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  17. Low-molecular-weight poly(alpha-methyl beta,L-malate) of microbial origin: synthesis and crystallization.

    PubMed

    Fernández, Carlos E; Mancera, Manuel; Holler, Eggehard; Bou, Jordi J; Galbis, Juan A; Muñoz-Guerra, Sebastián

    2005-02-23

    Low-molecular-weight poly(alpha-methyl beta,L-malate) made of approximately 25-30 units was prepared from microbial poly(beta,L-malic acid) by treatment with diazomethane. The thermal characterization of the polymalate methyl ester was carried out and its crystalline structure was preliminary examined. Its ability to crystallize both from solution and from the melt was comparatively evaluated.

  18. Sildenafil citrate use in Addis Ababa: characteristics of users and pharmacists' dispensing practices.

    PubMed

    Gebregeorgise, Dawit Teshome; Belay, Yajeb Melesse; Kälvemark Sporrong, Sofia

    2018-02-01

    Background Studies have reported misuse of sildenafil citrate for recreational purpose, not least by healthy young men. This is becoming a major concern, for medical and other reasons. Objective The aim of this study was to document the characteristics of sildenafil citrate users and to explore the dispensing practices of the medicine in selected community pharmacies in Addis Ababa, Ethiopia. Setting Data was collected in community pharmacies in Addis Ababa, Ethiopia. Method A survey, using a self-administrated questionnaire, was conducted among customers who purchased sildenafil citrate from community pharmacies. Simple descriptive statistics were used to analyse data. Also, semi-structured interviews were conducted with community pharmacists. These were analysed thematically. Main outcome measures Socio-demographic characteristics (survey), themes (interviews). Results All survey respondents (n = 197) were men, 57.9% were below 40 years old, 53.8% had never been married and 58.4% had used sildenafil citrate before. A minority (16.2%) were diagnosed with erectile dysfunction. The main reason for buying sildenafil citrate was experimentation (45.7%). Pharmacists reported that sildenafil citrate was often dispensed without a prescription. The reason for this was, according to the interviewees, competition in the market. Also, the medicine was often dispensed without adequate information or counselling. Conclusions Selling and buying sildenafil citrate without a prescription seems to be common practice in pharmacies in Addis Ababa. It is crucial to strengthen the regulatory activity to protect customers from health risks. In addition pharmacy professionals should be supported to work in accordance with professional and legal standards.

  19. Albumin Loss and Citrate Load in Pre-Dilution High Cut-Off-CVVHDF with Regional Citrate (18 mmol/L) and High Cut-Off CVVHD with Systemic Heparin: An in vitro Study.

    PubMed

    Villa, Gianluca; Neri, Mauro; De Rosa, Silvia; Samoni, Sara; Chelazzi, Cosimo; Romagnoli, Stefano; Lorenzin, Anna; de Cal, Massimo; Ronco, Claudio; De Gaudio, Angelo Raffaele

    2018-06-08

    Convective therapies with high cut-off membranes (HCO) are usually not recommended because of theoretical excessive albumin loss. The aim of this in vitro study is to demonstrate the noninferior safety of pre-dilution hemodiafiltration with HCO (HCO-CVVHDF) with isotonic citrate anticoagulation (18 mmol/L) with respect to heparin anticoagulated hemodialysis with HCO (HCO-CVVHD) in terms of albumin removal and citrate load. -Albumin removal was compared in vitro between 3 pre--dilution-HCO-CVVHDF with citrate anticoagulation and 3 -HCO-CVVHD with heparin anticoagulation during 30-min single-pass and 180-min recirculation phases. Considering concentrations and flows in the extracorporeal circuit, the transmembrane albumin removal was 2.06 (1.51; 2.09) g and 2.09 (1.9; 2.8) g respectively for HCO-CVVHDF and HCO-CVVHD, during the single-pass phase; 2.8 (2.67; 4.59) g and 2.54 (2.35; 4.67) g, respectively, for HCO-CVVHDF and HCO-CVVHD during the recirculation phase. Based on the citrate saturation coefficients, a citrate metabolic load of 8.86 mmol/h has been calculated for HCO-CVVHDF. HCO-CVVHDF performed with regional anticoagulation with 18 mmol/L citrate solution does not induce higher -albumin transmembrane removal compared to HCO-CVVHD. © 2018 S. Karger AG, Basel.

  20. 17β-Estradiol regulates cell proliferation, colony formation, migration, invasion and promotes apoptosis by upregulating miR-9 and thus degrades MALAT-1 in osteosarcoma cell MG-63 in an estrogen receptor-independent manner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Dengfeng; Yang, Hui; Lin, Jing

    2015-02-20

    In bone, different concentration of estrogen leads to various of physiological processes in osteoblast, such as the proliferation, migration, and apoptosis in an estrogen receptor-dependent manner. But little was known about the estrogen effects on osteosarcoma (OS). In this study, OS cell MG-63 was treated with low (1 nM) or high (100 nM) dose of 17β-Estradiol (E2) with the presence or absence of estrogen receptor α (ERα), for evaluating the E2 effects on proliferation, migration, invasion, colony formation and apoptosis. Consistent with a previous study, high dose of E2 treatment dramatically downregulated expressing level of long non-coding RNA metastasis associated lung adenocarcinomamore » transcript 1 (MALAT-1). The observation of upregulation of miR-9 after a high dose of E2 treatment indicated the cause of MALAT-1 reduction. Downregulation of MALAT-1 promoted the combination of SFPQ/PTBP2 complex. It was also observed that the proliferation, migration, invasion, colony formation and apoptosis of OS cells were remarkably affected by high dose of E2 treatment, but not by low dose, in an ERα independent manner. Furthermore, the abolishment of the effects on these physiological processes caused by ectopic expression of miR-9 ASOs suggested the necessity of miR-9 in MALAT-1 regulation. Here we found that the high dose of E2 treatment upregulated miR-9 thus posttranscriptionally regulated MALAT-1 RNA level in OS cells, and then the downregulation of MALAT-1 inhibited cell proliferation, migration, invasion and epithelial–mesenchymal transition (EMT) processes in the E2-dose dependent and ER-independent ways. - Highlights: • E2 affects osteosarcoma cell MG-63 in an Estrogen receptor-independent way. • High dose of E2 treatment upregulates miR-9 which target to MALAT-1 RNA. • Upregulated miR-9 degrades MALAT-1 and thus affects combination of SFPQ/PTBP2. • E2 treatment block cell proliferation, colony formation, mobility, and enhance apoptosis.« less

  1. Characterization of mitochondrial dicarboxylate/tricarboxylate transporters from grape berries.

    PubMed

    Regalado, Ana; Pierri, Ciro Leonardo; Bitetto, Maria; Laera, Valentina Liliana; Pimentel, Catarina; Francisco, Rita; Passarinho, José; Chaves, Maria M; Agrimi, Gennaro

    2013-03-01

    Grape berries (Vitis vinifera L fruit) exhibit a double-sigmoid pattern of development that results from two successive periods of vacuolar swelling during which the nature of accumulated solutes changes significantly. Throughout the first period, called green or herbaceous stage, berries accumulate high levels of organic acids, mainly malate and tartrate. At the cellular level fruit acidity comprises both metabolism and vacuolar storage. Malic acid compartmentation is critical for optimal functioning of cytosolic enzymes. Therefore, the identification and characterization of the carriers involved in malate transport across sub-cellular compartments is of great importance. The decrease in acid content during grape berry ripening has been mainly associated to mitochondrial malate oxidation. However, no Vitis vinifera mitochondrial carrier involved in malate transport has been reported to date. Here we describe the identification of three V. vinifera mitochondrial dicarboxylate/tricarboxylate carriers (VvDTC1-3) putatively involved in mitochondrial malate, citrate and other di/tricarboxylates transport. The three VvDTCs are very similar, sharing a percentage of identical residues of at least 83 %. Expression analysis of the encoding VvDTC genes in grape berries shows that they are differentially regulated exhibiting a developmental pattern of expression. The simultaneous high expression of both VvDTC2 and VvDTC3 in grape berry mesocarp close to the onset of ripening suggests that these carriers might be involved in the transport of malate into mitochondria.

  2. In situ molecular NMR picture of bioavailable calcium stabilized as amorphous CaCO3 biomineral in crayfish gastroliths

    PubMed Central

    Akiva-Tal, Anat; Kababya, Shifi; Balazs, Yael S.; Glazer, Lilah; Berman, Amir; Sagi, Amir; Schmidt, Asher

    2011-01-01

    Bioavailable calcium is maintained by some crustaceans, in particular freshwater crayfish, by stabilizing amorphous calcium carbonate (ACC) within reservoir organs—gastroliths, readily providing the Ca2+ needed to build a new exoskeleton. Despite the key scientific and biomedical importance of the in situ molecular-level picture of biogenic ACC and its stabilization in a bioavailable form, its description has eluded efforts to date. Herein, using multinuclear NMR, we accomplish in situ molecular-level characterization of ACC within intact gastroliths of the crayfish Cherax quadricarinatus. In addition to the known CaCO3, chitin scaffold and inorganic phosphate (Pi), we identify within the gastrolith two primary metabolites, citrate and phosphoenolpyruvate (PEP) and quantify their abundance by applying solution NMR techniques to the gastrolith “soluble matrix.” The long-standing question on the physico-chemical state of ACC stabilizing, P-bearing moieties within the gastrolith is answered directly by the application of solid state rotational-echo double-resonance (REDOR) and transferred-echo double-resonance (TEDOR) NMR to the intact gastroliths: Pi and PEP are found molecularly dispersed throughout the ACC as a solid solution. Citrate carboxylates are found < 5 Å from a phosphate (intermolecular C⋯P distance), an interaction that must be mediated by Ca2+. The high abundance and extensive interactions of these molecules with the ACC matrix identify them as the central constituents stabilizing the bioavailable form of calcium. This study further emphasizes that it is imperative to characterize the intact biogenic CaCO3. Solid state NMR spectroscopy is shown to be a robust and accessible means of determining composition, internal structure, and molecular functionality in situ. PMID:21873244

  3. Stabilizing effect of citrate buffer on the photolysis of riboflavin in aqueous solution

    PubMed Central

    Ahmad, Iqbal; Sheraz, Muhammad Ali; Ahmed, Sofia; Kazi, Sadia Hafeez; Mirza, Tania; Aminuddin, Mohammad

    2011-01-01

    In the present investigation the photolysis of riboflavin (RF) in the presence of citrate species at pH 4.0–7.0 has been studied. A specific multicomponent spectrophotometric method has been used to assay RF in the presence of photoproducts during the reactions. The overall first-order rate constants (kobs) for the photolysis of RF range from 0.42 to 1.08×10–2 min−1 in the region. The values of kobs have been found to decrease with an increase in citrate concentration indicating an inhibitory effect of these species on the rate of reaction. The second-order rate constants for the interaction of RF with total citrate species causing inhibition range from 1.79 to 5.65×10–3 M−1 min−1 at pH 4.0–7.0. The log k–pH profiles for the reactions at 0.2–1.0 M citrate concentration show a gradual decrease in kobs and the value at 1.0 M is more than half compared to that of k0, i.e., in the absence of buffer, at pH 5.0. Divalent citrate ions cause a decrease in RF fluorescence due to the quenching of the excited singlet state resulting in a decrease in the rate of reaction and consequently leading to the stabilization of RF solutions. The greater quenching of fluorescence at pH 4.0 compared to that of 7.0 is in accordance with the greater concentration of divalent citrate ions (99.6%) at that pH. The trivalent citrate ions exert a greater inhibitory effect on the rate of RF photolysis compared to that of the divalent citrate ions probably as a result of excited triplet state quenching. The values of second-order rate constants for the interaction of divalent and trivalent citrate ions are 0.44×10–2 and 1.06×10–3 M–1 min–1, respectively, indicating that the trivalent ions exert a greater stabilizing effect, compared to the divalent ions, on RF solutions. PMID:25755977

  4. Electrospray ionization of uranyl-citrate complexes

    NASA Astrophysics Data System (ADS)

    Somogyi, Árpád; Pasilis, Sofie P.; Pemberton, Jeanne E.

    2007-09-01

    Results presented here demonstrate the usefulness of electrospray ionization and gas-phase ion-molecule reactions to predict structural and electronic differences in complex inorganic ions. Electrospray ionization of uranyl citrate solutions generates positively and negatively charged ions that participate in further ion-molecule reactions in 3D ion trap and FT-ICR mass analyzers. Most ions observed are derived from the major solution uranyl-citrate complexes and involve species of {(UO2)2Cit2}2-, (UO2)3Cit2, and {(UO2)3Cit3}3-, where Cit indicates the citrate trianion, C6H5O73-. In a 3D ion trap operated at relatively high pressure, complex adducts containing solvent molecules, alkali and ammonium cations, and nitrate or chloride anions are dominant, and proton/alkali cation (Na+, K+) exchange is observed for up to six exchangeable protons in an excess of alkali cations. Adduct formation in a FT-ICR cell that is operated at lower pressures is less dominant, and direct detection of positive and negative ions of the major solution complexes is possible. Multiply charged ions are also detected, suggesting the presence of uranium in different oxidation states. Changes in uranium oxidation state are detected by He-CID and SORI-CID fragmentation, and certain fragments undergo association reactions in trapping analyzers, forming "exotic" species such as [(UO2)4O3]-, [(UO2)4O4]-, and [(UO2)4O5]-. Ion-molecule reactions with D2O in the FT-ICR cell indicate substantial differences in H/D exchange rate and D2O accommodation for different ion structures and charge states. Most notably, the positively charged ions [H2(UO2)2Cit2(H)]+ and [(UO2)2(Cit)]+ accommodate two and three D2O molecules, respectively, which reflects well the structural differences, i.e., tighter uranyl-citrate coordination in the former ion than in the latter. The corresponding negatively charged ions accommodate zero or two D2O molecules, which can be rationalized using suggested solution phase structures

  5. The efficacies of pure LICAM(C) and DTPA on the retention of plutonium-238 and americium-241 in rats after their inhalation as nitrate and intravenous injection as citrate.

    PubMed

    Stradling, G N; Stather, J W; Gray, S A; Moody, J C; Ellender, M; Hodgson, A; Volf, V; Taylor, D M; Wirth, P; Gaskin, P W

    1989-10-01

    The pure carboxylated catechoyl amide LICAM(C) and the calcium and zinc salts of diethylenetriaminepenta-acetic acid (DTPA), were tested for efficacy for removing 238Pu and 241Am from rats after inhalation of the nitrate or intravenous injection of the citrate. The results were compared with the efficacy of methylated LICAM(C) used in previous experiments. It was shown that: (1) after inhalation of 238Pu nitrate, DTPA was far superior to pure LICAM(C); (2) after intravenous injection of 238Pu citrate, the infusion of DTPA plus LICAM(C) was only marginally more effective than DTPA alone; and (3) after inhalation or intravenous injection of 238Pu plus 241Am, the efficacy of pure LICAM(C) was only marginally more effective than the methylated form and neither form was effective for the decorporation of 241Am. It was concluded that DTPA, at present, remains the chelating agent of choice for treating persons accidentally contaminated with transportable forms of Pu and Am.

  6. Calcium Tartrate Tetrahydrate, Case Report of a Novel Human Kidney Stone.

    PubMed

    Kleinguetl, Colin; Williams, James C; Ibrahim, Samar A; Daudon, Michel; Bird, Erin T; El Tayeb, Marawan M

    2017-01-01

    Background: Calcium tartrate tetrahydrate has been reported as the main mineral in urinary stones in rats that have significant tartrate in their diet, but in humans, there has been only one mention of calcium tartrate stones in the form of bladder stone, and that case was in Africa. Case Presentation: Patient is a 34-year-old Caucasian male who presented with typical symptoms of nephrolithiasis. CT abd/pelvis (renal stone protocol) revealed a 2 cm nonobstructing stone of the right renal pelvis. Patient underwent an uncomplicated right percutaneous nephrolithotomy and was noted to be stone free after surgery. Stone analysis was difficult with regard to determining composition, but was finally identified as calcium tartrate tetrahydrate. Conclusion: This was an unusual case, as this is the first recorded case of a calcium tartrate tetrahydrate outside of Africa. This type of stone had only been mainly described in rat models with dl- bitartrate in their diet. Our patient was an otherwise healthy, relatively muscular individual with no obvious source for this stone other than a vitamin and amino acid supplement that he takes regularly that contains l-carnitine (as tartrate) and choline (as bitartrate and citrate). The prevalence of this stone type is presently unknown, as stone analysis laboratories have not had the ability to recognize it. Although a connection between the supplement and stone formation is conjecture at this time, we believe this necessitates further investigation.

  7. Profiling Taste and Aroma Compound Metabolism during Apricot Fruit Development and Ripening

    PubMed Central

    Xi, Wanpeng; Zheng, Huiwen; Zhang, Qiuyun; Li, Wenhui

    2016-01-01

    Sugars, organic acids and volatiles of apricot were determined by HPLC and GC-MS during fruit development and ripening, and the key taste and aroma components were identified by integrating flavor compound contents with consumers’ evaluation. Sucrose and glucose were the major sugars in apricot fruit. The contents of all sugars increased rapidly, and the accumulation pattern of sugars converted from glucose-predominated to sucrose-predominated during fruit development and ripening. Sucrose synthase (SS), sorbitol oxidase (SO) and sorbitol dehydrogenase (SDH) are under tight developmental control and they might play important roles in sugar accumulation. Almost all organic acids identified increased during early development and then decrease rapidly. During early development, fruit mainly accumulated quinate and malate, with the increase of citrate after maturation, and quinate, malate and citrate were the predominant organic acids at the ripening stage. The odor activity values (OAV) of aroma volatiles showed that 18 aroma compounds were the characteristic components of apricot fruit. Aldehydes and terpenes decreased significantly during the whole development period, whereas lactones and apocarotenoids significantly increased with fruit ripening. The partial least squares regression (PLSR) results revealed that β-ionone, γ-decalactone, sucrose and citrate are the key characteristic flavor factors contributing to consumer acceptance. Carotenoid cleavage dioxygenases (CCD) may be involved in β-ionone formation in apricot fruit. PMID:27347931

  8. Effects of aluminum on organic acid metabolism and secretion by red spruce cell suspension cultures and the reversal of Al effects on growth and polyamine metabolism by exogenous organic acids

    Treesearch

    Rakesh Minocha; Stephanie Long

    2004-01-01

    In the absence of added Al, the concentration of succinate in cultured red spruce (Picea rubens Sarg.) cells was 15-20 times higher (> 600 nmol g-1FW) than that of citrate or oxalate and 4-6 times higher than that of malate. Addition of AICIJ (effective monomeric Al concentrations of 0.23 and 0.48...

  9. Mitochondrial dysfunction is responsible for the intestinal calcium absorption inhibition induced by menadione.

    PubMed

    Marchionatti, Ana M; Perez, Adriana V; Diaz de Barboza, Gabriela E; Pereira, Beatriz M; Tolosa de Talamoni, Nori G

    2008-02-01

    Menadione (MEN) inhibits intestinal calcium absorption by a mechanism not completely understood. The aim of this work was to find out the role of mitochondria in this inhibitory mechanism. Hence, normal chicks treated with one i.p. dose of MEN were studied in comparison with controls. Intestinal calcium absorption was measured by the in situ ligated intestinal segment technique. GSH, oxidoreductase activities from the Krebs cycle and enzymes of the antioxidant system were measured in isolated mitochondria. Mitochondrial membrane potential was measured by a flow cytometer technique. DNA fragmentation and cytochrome c localization were determined by immunocytochemistry. Data indicate that in 30 min, MEN decreases intestinal Ca(2+) absorption, which returns to the control values after 10 h. GSH was only decreased for half an hour, while the activity of malate dehydrogenase and alpha-ketoglutarate dehydrogenase was diminished for 48 h. Mn(2+)-superoxide dismutase activity was increased in 30 min, whereas the activity of catalase and glutathione peroxidase remained unaltered. DNA fragmentation and cytochrome c release were maximal in 30 min, but were recovered after 15 h. In conclusion, MEN inhibits intestinal Ca(2+) absorption by mitochondrial dysfunction as revealed by GSH depletion and alteration of the permeability triggering the release of cytochrome c and DNA fragmentation.

  10. Protective effects of sildenafil citrate administration on cisplatin-induced ovarian damage in rats.

    PubMed

    Taskin, Mine Islimye; Yay, Arzu; Adali, Ertan; Balcioglu, Esra; Inceboz, Umit

    2015-04-01

    The aim of this study is to evaluate the effects of sildenafil citrate on cisplatin-induced ovarian toxicity. Thirty-two female rats were divided into four groups. Group 1: saline control; group 2: cisplatin; group 3: sildenafil citrate; and group 4: cisplatin plus sildenafil citrate group. In groups 2 and 4, the rats were injected with 5 mg/kg cisplatin intraperitoneally (i.p.). In groups 3 and 4, the rats were injected with 1.4 mg/kg sildenafil citrate i.p. The ovaries were removed two weeks later in all groups. Histopathologic examination, follicle counting and classification were performed. The expression of anti-Müllerian hormone (AMH) was detected immunohistochemically in the ovarian tissues. Sildenafil alleviated cisplatin-induced histopathological changes in the ovarian tissue. Primordial, secondary and tertiary follicles were diminished in group 2 compared with group 1 (p < 0.05). Pretreatment with sildenafil citrate preserved primordial follicle count in group 4 compared with group 2, and the difference was statistically significant (p < 0.05). According to our results, immunoreactivity intensity of AMH was lower in group 2 compared with group 1 (92.4 ± 3.97 versus 88.8 ± 1.77) but not significantly, whereas immunoreactivity intensity of AMH was higher in group 4 compared with group 2 (88.8 ± 1.77 versus 94.1 ± 2.36; p < 0.05). Our results demonstrated that pretreatment with sildenafil citrate is beneficial for protecting the ovaries from cisplatin-induced damage. Sildenafil citrate can be a choice for fertility preservation.

  11. MdMYB1 Regulates Anthocyanin and Malate Accumulation by Directly Facilitating Their Transport into Vacuoles in Apples1[OPEN

    PubMed Central

    Hu, Da-Gang; Sun, Cui-Hui; Ma, Qi-Jun; You, Chun-Xiang; Hao, Yu-Jin

    2016-01-01

    Tonoplast transporters, including proton pumps and secondary transporters, are essential for plant cell function and for quality formation of fleshy fruits and ornamentals. Vacuolar transport of anthocyanins, malate, and other metabolites is directly or indirectly dependent on the H+-pumping activities of vacuolar H+-ATPase (VHA) and/or vacuolar H+-pyrophosphatase, but how these proton pumps are regulated in modulating vacuolar transport is largely unknown. Here, we report a transcription factor, MdMYB1, in apples that binds to the promoters of two genes encoding the B subunits of VHA, MdVHA-B1 and MdVHA-B2, to transcriptionally activate its expression, thereby enhancing VHA activity. A series of transgenic analyses in apples demonstrates that MdMYB1/10 controls cell pH and anthocyanin accumulation partially by regulating MdVHA-B1 and MdVHA-B2. Furthermore, several other direct target genes of MdMYB10 are identified, including MdVHA-E2, MdVHP1, MdMATE-LIKE1, and MdtDT, which are involved in H+-pumping or in the transport of anthocyanins and malates into vacuoles. Finally, we show that the mechanism by which MYB controls malate and anthocyanin accumulation in apples also operates in Arabidopsis (Arabidopsis thaliana). These findings provide novel insights into how MYB transcription factors directly modulate the vacuolar transport system in addition to anthocyanin biosynthesis, consequently controlling organ coloration and cell pH in plants. PMID:26637549

  12. Effect of topically applied sildenafil citrate on wound healing: experimental study.

    PubMed

    Gürsoy, Koray; Oruç, Melike; Kankaya, Yüksel; Ulusoy, Mustafa Gürhan; Koçer, Uğur; Kankaya, Duygu; Gürsoy, Reyhan Neslihan; Çevik, Özge; Öğüş, Elmas; Fidanci, Vildan

    2014-08-16

    Wound healing is a complex process that necessitates organization of different cell types and several signalling molecules. The aim of this study is to evaluate the effect of different concentrations of sildenafil citrate, which decreases cGMP degradation, on wound healing by secondary intention.This study was performed using 25 Sprague Dawley rats weighing 200-250 grams. 4 dorsal defects were created. Four different treatment modalities which were 1% and 5% sildenafil citrate gel prepared with carbopol, pure carbopol gel without any drug in it and 0,9% NaCl solution; were applied to each lesion of the same rat. Randomly selected five rats (25 rats in total) were sacrificed on 3rd, 5th, 7th, 10th, and 14th days; and the effect of each modality was evaluated by means of defect area measurement, histopathological examination and measurement of tissue hydroxyproline levels.Sildenafil citrate gel application decreased the defect areas in a dose independent manner starting from 3rd day and dose dependent manner after 7th day. By means of vascularization, sildenafil citrate increased vascularity starting from 3rd day. The strength of acute inflammation was superior in sildenafil groups starting from 5th day; and the amount and maturation of granulation in the wound bed, as well as the strength of chronic inflammation were superior in defects treated with sildenafil citrate as early as 7th day.

  13. Effect of topically applied sildenafil citrate on wound healing: experimental study

    PubMed Central

    Gürsoy, Koray; Oruç, Melike; Kankaya, Yüksel; Ulusoy, M. Gürhan; Koçer, Uğur; Kankaya, Duygu; Gürsoy, R. Neslihan; Çevik, Özge; Öğüş, Elmas; Fidanci, Vildan

    2014-01-01

    Wound healing is a complex process that necessitates organization of different cell types and several signalling molecules. The aim of this study is to evaluate the effect of different concentrations of sildenafil citrate, which decreases cGMP degradation, on wound healing by secondary intention. This study was performed using 25 Sprague Dawley rats weighing 200-250 grams. 4 dorsal defects were created. Four different treatment modalities which were 1% and 5% sildenafil citrate gel prepared with carbopol, pure carbopol gel without any drug in it and 0,9% NaCl solution; were applied to each lesion of the same rat. Randomly selected five rats (25 rats in total) were sacrificed on 3rd, 5th, 7th, 10th, and 14th days; and the effect of each modality was evaluated by means of defect area measurement, histopathological examination and measurement of tissue hydroxyproline levels. Sildenafil citrate gel application decreased the defect areas in a dose independent manner starting from 3rd day and dose dependent manner after 7th day. By means of vascularization, sildenafil citrate increased vascularity starting from 3rd day. The strength of acute inflammation was superior in sildenafil groups starting from 5th day; and the amount and maturation of granulation in the wound bed, as well as the strength of chronic inflammation were superior in defects treated with sildenafil citrate as early as 7th day. PMID:25172969

  14. Structure and Function of Plasmodium falciparum malate dehydrogenase: Role of Critical Amino Acids in C-substrate Binding Procket

    USDA-ARS?s Scientific Manuscript database

    Malaria parasite thrives on anaerobic fermentation of glucose for energy. Earlier studies from our lab have demonstrated that a cytosolic malate dehydrogenase (PfMDH) with striking similarity to lactate dehydrogenase (PfLDH) might complement PfLDH function in Plasmodium falciparum. The N-terminal g...

  15. Inhibition of several enzymes by gold compounds. II. beta-Glucuronidase, acid phosphatase and L-malate dehydrogenase by sodium thiomalatoraurate (I), sodium thiosulfatoaurate (I) and thioglucosoaurate (I).

    PubMed

    Lee, M T; Ahmed, T; Haddad, R; Friedman, M E

    1989-01-01

    Bovine liver beta-D-glucuronide glucuronohydrolase, EC 3.2.1.32), wheat germ acid phosphatase (orthophosphoric monoesterphosphohydrolase, EC 3.1.3.2) and bovine liver L-malate dehydrogenase (L-malate: NAD oxidoreductase, EC 1.1.1.37) were inhibited by a series of gold (I) complexes that have been used as anti-inflammatory drugs. Both sodium thiosulfatoaurate (I) (Na AuTs) and sodium thiomalatoraurate (NaAuTM) effectively inhibited all three enzymes, while thioglucosoaurate (I) (AuTG) only inhibited L-malate dehydrogenase. The equilibrium constants (K1) ranged from nearly 4000 microM for the NaAuTM-beta-glucuronidase interaction to 24 microM for the NaAuTS-beta-glucuronidase interaction. The rate of covalent bond formation (kp) ranged from 0.00032 min-1 for NaAuTM-beta-glucuronidase formation to 1.7 min-1 for AuTG-L-malate dehydrogenase formation. The equilibrium data shows that the gold (I) drugs bind by several orders lower than the gold (III) compounds, suggesting a significantly stronger interaction between the more highly charged gold ion and the enzyme. Yet the rate of covalent bond formation depends as much on the structure of the active site as upon the lability of the gold-ligand bond. It was also observed that the more effective the gold inhibition the more toxic the compound.

  16. 77 FR 56188 - Citric Acid and Certain Citrate Salts from the People's Republic of China: Notice of Rescission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-12

    ... the order includes all grades and granulation sizes of citric acid, sodium citrate, and potassium... also includes blends of citric acid, sodium citrate, and potassium citrate; as well as blends with other ingredients, such as sugar, where the unblended form(s) of citric acid, sodium citrate, and...

  17. Sensitive and selective SERS probe for trivalent chromium detection using citrate attached gold nanoparticles.

    PubMed

    Ye, Yingjie; Liu, Honglin; Yang, Liangbao; Liu, Jinhuai

    2012-10-21

    In this article, we have demonstrated a sensitive and selective surface enhanced Raman spectroscopy (SERS) probe, based on citrate-capped gold nanoparticles (AuNPs), for trivalent chromium (Cr(3+)) detection. After introducing Tween 20 to a solution of citrate-capped AuNPs, the as-prepared Tween 20/citrate-AuNP probe could recognize Cr(3+) at a 50 × 10(-9) M level in an aqueous medium at a pH of 6.0. Tween 20 can stabilize the citrate-capped AuNPs against conditions of high ionic strength. Due to the chelation between Cr(3+) and citrate ions, AuNPs undergo aggregation. As a result, it formed several hot spots and provided a significant enhancement of the Raman signal intensity through electromagnetic (EM) field enhancements. A detailed mechanism for tremendous SERS intensity change had been discussed. The selectivity of this system toward Cr(3+) was 400-fold, remarkably greater than other metal ions.

  18. Formation of apatitic calcium phosphates in a Na-K-phosphate solution of pH 7.4.

    PubMed

    Tas, A C; Aldinger, F

    2005-02-01

    Poorly crystalline, apatitic calcium phosphate powders have been synthesized by slowly adding a Na- and K-containing reference phosphate solution with a pH value of 7.4 to an aqueous calcium nitrate solution at 37 degrees C. Nano-particulated apatitic powders obtained were shown to contain small amounts of Na and K, which render them more similar in chemical composition to that of the bone mineral. Precipitated and dried powders were found to exhibit self-hardening cement properties when kneaded in a mortar with a sodium citrate- and sodium phosphate-containing starter solution. The same phosphate solution used in powder synthesis was found to be able to partially convert natural, white and translucent marble pieces of calcite (CaCO3) into calcium-deficient hydroxyapatite upon aging the samples in that solution for 3 days at 60 degrees C. Sample characterization was performed by using scanning electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, inductively-coupled plasma atomic emission spectroscopy, and simultaneous thermogravimetry and differential thermal analysis.

  19. A Role for the Krebs Cycle Intermediate Citrate in Metabolic Reprogramming in Innate Immunity and Inflammation

    PubMed Central

    Williams, Niamh C.; O’Neill, Luke A. J.

    2018-01-01

    Metabolism in immune cells is no longer thought of as merely a process for adenosine triphosphate (ATP) production, biosynthesis, and catabolism. The reprogramming of metabolic pathways upon activation is also for the production of metabolites that can act as immune signaling molecules. Activated dendritic cells (DCs) and macrophages have an altered Krebs cycle, one consequence of which is the accumulation of both citrate and succinate. Citrate is exported from the mitochondria via the mitochondrial citrate- carrier. Cytosolic metabolism of citrate to acetyl-coenzyme A (acetyl-CoA) is important for both fatty-acid synthesis and protein acetylation, both of which have been linked to macrophage and DC activation. Citrate-derived itaconate has a direct antibacterial effect and also has been shown to act as an anti-inflammatory agent, inhibiting succinate dehydrogenase. These findings identify citrate as an important metabolite for macrophage and DC effector function. PMID:29459863

  20. A Role for the Krebs Cycle Intermediate Citrate in Metabolic Reprogramming in Innate Immunity and Inflammation.

    PubMed

    Williams, Niamh C; O'Neill, Luke A J

    2018-01-01

    Metabolism in immune cells is no longer thought of as merely a process for adenosine triphosphate (ATP) production, biosynthesis, and catabolism. The reprogramming of metabolic pathways upon activation is also for the production of metabolites that can act as immune signaling molecules. Activated dendritic cells (DCs) and macrophages have an altered Krebs cycle, one consequence of which is the accumulation of both citrate and succinate. Citrate is exported from the mitochondria via the mitochondrial citrate- carrier. Cytosolic metabolism of citrate to acetyl-coenzyme A (acetyl-CoA) is important for both fatty-acid synthesis and protein acetylation, both of which have been linked to macrophage and DC activation. Citrate-derived itaconate has a direct antibacterial effect and also has been shown to act as an anti-inflammatory agent, inhibiting succinate dehydrogenase. These findings identify citrate as an important metabolite for macrophage and DC effector function.

  1. Sodium citrate 4% versus heparin as a lock solution in hemodialysis patients with central venous catheters.

    PubMed

    Yon, Calantha K; Low, Chai L

    2013-01-15

    The effects of heparin versus sodium citrate 4% as a lock solution on catheter-related infections (CRIs), catheter patency, and hospitalizations in long-term hemodialysis patients with central venous catheters (CVCs) were compared. Data for patients receiving heparin lock solutions were collected from July 2008 to July 2009. Data on patients receiving sodium citrate 4% lock solution were collected from September 2009 through December 2010. Patients who were receiving the heparin lock solution who continued to have a CVC in September 2009 were transitioned from heparin to sodium citrate catheter 4% lock solution. New patients with CVCs placed after September 2009 received sodium citrate 4% without a period of using heparin lock solution. Pertinent information on patient medical history, bleeding or clotting events, infections, and hospitalization was collected. Data were collected retrospectively for the heparin group and prospectively for the sodium citrate group. Data were collected from 360 patient-months among 60 patients during the heparin treatment period and from 451 patient-months among 58 patients during the sodium citrate period. Thirty-three patients were common to both study groups. There were significantly more CRIs and CRIs per 1000 catheter-days in the heparin than the sodium citrate treatment group. Secondary outcomes of hospitalizations and catheter thrombosis were comparable. CRIs and thrombosis led to significantly more catheter exchanges or removals in the heparin group than the sodium citrate group. In patients with long-term hemodialysis catheters, a lock solution of sodium citrate 4% was associated with fewer CRIs and similar effectiveness when compared with heparin 5000 units/mL.

  2. 75 FR 14491 - Listing of Color Additives Exempt From Certification; Bismuth Citrate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-26

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 73 [Docket No. FDA-2008-C-0098] Listing of Color Additives Exempt From Certification; Bismuth Citrate AGENCY: Food... amending the color additive regulations to increase the permitted use level of bismuth citrate as a color...

  3. Sildenafil citrate for erectile dysfunction in patients with multiple sclerosis.

    PubMed

    Xiao, Yousheng; Wang, Jin; Luo, Hongye

    2012-04-18

    Erectile dysfunction (ED) is a common sexual disease in male patients with multiple sclerosis (MS). Sildenafil citrate is considered as an effective drug in the treatment of male ED in the general population, but it has not been systematically reviewed in patients with MS. To assess the efficacy and safety of sildenafil citrate for ED in patients with MS. We searched the Cochrane (November 2011), the Cochrane Central Register of Controlled Trials (The Cochrane Library, Issue 4 of 4, 2011), MEDLINE (PubMed) (January 1966 to November 2011), EMBASE (January 1974 to November 2011) and the China Biological Medicine Database (CBM) (1979 to November 2011). We searched trials registers and conference proceedings and contacted pharmaceutical company and authors of included studies for additional data. There were no language restrictions. Randomised controlled trials comparing sildenafil citrate with placebo or no treatment for ED in patients with MS. Two review authors independently selected articles for inclusion, extracted data and assessed trial quality. Disagreements were resolved by discussion between review authors. Authors of included studies were contacted for additional information. Results were presented as relative risks (RR) or mean differences (MD) with 95% confidence intervals (CI). Two randomised controlled trials involving a total of 420 patients were identified. Both trials investigated the short-term efficacy and safety of sildenafil citrate for ED in patients with MS. Patients taking sildenafil citrate were more likely to improve their ability to achieve and maintain an erection measured by International Index of Erectile Function and achieve vaginal penetration ( (RR 1.28, 95%CI 0.92 to 1.78) and complete intercourse measured by Sexual Encounter Profile diary (RR RR 1.38, 95%CI 1.00 to 1.90). and receive A global well respond measured by Global Assessment Question (RR 2.72, 95%CI 1.40 to 5.28) was reported. One trial showed sildenafil citrate is

  4. Optimalization of Poly(neutral red) Coated-wire Electrode for Determination of Citrate in Soft Drinks

    PubMed Central

    Broncová, Gabriela; Shishkanova, Tatiana V.; Krondak, Martin; Volf, Radko; Král, Vladimír

    2008-01-01

    This report presents an optimization of potentiometric measurements with citrate-selective electropolymerized poly(neutral red) electrodes. The optimal background electrolyte for these measurements is a TRIS buffer with nitrate at pH 8.5. The electrodes described here exhibit stable and reproducible near-Nernstian response to citrates with a low detection limit of 6 × 10-6 M. Electrodes polymerized from sulfuric acid and acetonitrile are compared in detail. Simple and sensitive method for quantification of citrate in real-life samples by potentiometry with poly(neutral red) electrodes are presented. Data from potentiometric measurements of citrate are compared with capillary electrophoresis. PMID:27879724

  5. Molecular characterization of microbial population dynamics during sildenafil citrate degradation.

    PubMed

    De Felice, Bruna; Argenziano, Carolina; Guida, Marco; Trifuoggi, Marco; Russo, Francesca; Condorelli, Valerio; Inglese, Mafalda

    2009-02-01

    Little is known about pharmaceutical and personal care products pollutants (PPCPs), but there is a growing interest in how they might impact the environment and microbial communities. The widespread use of Viagra (sildenafil citrate) has attracted great attention because of the high usage rate, the unpredictable disposal and the unknown potential effects on wildlife and the environment. Until now information regarding the impact of Viagra on microbial community in water environment has not been reported. In this research, for the first time, the genetic profile of the microbial community, developing in a Viagra polluted water environment, was evaluated by means of the 16S and 18S rRNA genes, for bacteria and fungi, respectively, amplified by polymerase chain reaction (PCR) and separated using the denaturing gradient gel electrophoresis (DGGE) technique. The DGGE results revealed a complex microbial community structure with most of the population persisting throughout the experimental period. DNA sequences from bands observed in the different denaturing gradient gel electrophoresis profiles exhibited the highest degree of identity to uncultured bacteria and fungi found previously mainly in polluted environmental and treating bioreactors. Biotransformation ability of sildenafil citrate by the microbial pool was studied and the capability of these microorganisms to detoxify a polluted water ecosystem was assessed. The bacterial and fungal population was able to degrade sildenafil citrate entirely. Additionally, assays conducted on Daphnia magna, algal growth inhibition assay and cell viability determination on HepG2 human cells showed that biotransformation products obtained from the bacterial growth was not toxic. The higher removal efficiency for sildenafil citrate and the lack of toxicity by the biotransformation products obtained showed that the microbial community identified here represented a composite population that might have biotechnological relevance to

  6. Preparation of hydroxyapatite/collagen injectable bone paste with an anti-washout property utilizing sodium alginate. Part 1: influences of excess supplementation of calcium compounds.

    PubMed

    Sato, Taira; Kikuchi, Masanori; Aizawa, Mamoru

    2017-03-01

    The anti-washout property, viscosity, and cytocompatibility to an osteoblastic cell line, MG-63, of anti-washout pastes were investigated. Mixing a hydroxyapatite/collagen bone-like nanocomposite (HAp/Col), an aqueous solution of sodium alginate (Na-Alg), which is a paste hardening and lubricant agent, and supplementation of calcium carbonate or calcium citrate (Ca-Cit) as a calcium resource for the hardening reaction realized an injectable bone paste. Adding Ca-Cit at a concentration greater than eight times the Ca 2+ ion concentration to Na-Alg improved the anti-washout property. Although the viscosity test indicated a gradual increase in the paste viscosity as the calcium compounds increased, pastes with excess supplementation of calcium compounds exhibited injectability through a syringe with a 1.8 mm inner diameter, realizing an injectable bone filler. Furthermore, the anti-washout pastes with Ca-Cit had almost the same cell proliferation rate as that of the HAp/Col dense body. Therefore, HAp/Col injectable anti-washout pastes composed of the HAp/Col, Na-Alg, and Ca-Cit are potential candidates for bioresorbable bone filler pastes.

  7. Closed circuit recovery of copper, lead and iron from electronic waste with citrate solutions.

    PubMed

    Torres, Robinson; Lapidus, Gretchen T

    2017-02-01

    An integral closed circuit hydrometallurgical process is presented for base metal recovery from electronic waste. The leaching medium consists of a sodium citrate solution, from which base metals are retrieved by direct electrowinning, and the barren solution is recycled back to the leaching stage. This leaching-electrowinning cycle was repeated four times. The redox properties of the fresh citrate solution, as well as the leach liquors, were characterized by cyclic voltammetry to determine adequate conditions for metal reduction, as well as to limit citrate degradation. The leaching efficiency of electronic waste, employing the same solution after four complete cycles was 71, 83 and 94% for copper, iron and lead, respectively, compared to the original leach with fresh citrate solution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Novel porcine model for calcium oxalate stone formation.

    PubMed

    Trojan, Brandon P; Trojan, Sara J; Navetta, Andrew; Staches, Bryce; Sutton, Bryan; Filleur, Stephanie; Nelius, Thomas

    2017-10-01

    Mechanisms for calcium-based stone formation are not clearly delineated. Porcine are the most anatomically and physiologically congruent mammal to humans. Our objectives were to develop a cost-effective and easily reproducible porcine model for the study of calcium-based nephrolithiasis. Crossbred male pigs (n = 16) were assigned randomly to one of the following treatments: (1) control; (2) ethylene glycol (EG) + vitamin D (VD); (3) EG + ammonium chloride (AC); (4) EG + gentamicin (G); (5) EG + Lasix; (6) EG + VD + AC; (7) EG + VD + G. Treatments were administered for 28 days; blood and urine were collected on day 0, 14, and 28. At the endpoint of the study, renal tissue was collected for gross and microscopic analysis of crystal stone formation and inflammation. Stone-forming parameters were observed in serum and urine. For control versus all other treatments, by day 28, serum BUN and creatinine were less (P < 0.01), urinary creatinine, citrate and pH were greater (P < 0.01), and urinary oxalate was less (P < 0.01). Histopathological analysis of H&E staining and stone analysis revealed formation of calcium oxalate stones and crystal formation within the renal cortex and medulla for all animals except control. Nephrotoxicity was observed in one animal from treatment EG + G. The treatments explored in this experiment provided novel examples of cost-effective porcine models for the study of nephrolithiasis. EG + VD had the strongest indicators of nephrolithiasis without nephrotoxicity.

  9. Mitochondrial and Plasma Membrane Citrate Transporters: Discovery of Selective Inhibitors and Application to Structure/Function Analysis

    PubMed Central

    Sun, Jiakang; Aluvila, Sreevidya; Kotaria, Rusudan; Mayor, June A.; Walters, D. Eric; Kaplan, Ronald S.

    2010-01-01

    Cytoplasmic citrate is the prime carbon source for fatty acid, triacylglycerol, and cholesterol biosyntheses, and also regulates glucose metabolism via its allosteric inhibition of phosphofructokinase. It originates either via the efflux of citrate from the mitochondrial matrix on the inner membrane citrate transport protein (CTP) or via the influx of extracellular citrate on the plasma membrane citrate transporter (PMCT). Despite their common substrate, the two transport proteins share little sequence similarity and they transport citrate via fundamentally different mechanisms. We tested the ability of a set of previously identified CTP inhibitors, to inhibit the PMCT. We found that of the top 10 CTP inhibitors only one substantially inhibited the PMCT. Conversely, we identified two other inhibitors that inhibited the PMCT but had little effect on the CTP. All three identified PMCT inhibitors displayed a noncompetitive mechanism. Furthermore, models to explain inhibitor interactions with the CTP are proposed. As part of the present studies a PMCT homology model has been developed based on the crystal structure of the leucine transporter, and a possible citrate binding site has been identified and its composition compared with the two known citrate binding sites present within the CTP. The ability to selectively inhibit the PMCT may prove key to the pharmacologic amelioration of metabolic disorders resulting from the synthesis of excess lipid, cholesterol, and glucose, including human obesity, hyperlipidemia, hyper-cholesterolemia, and Type 2 diabetes. PMID:20686672

  10. 21 CFR 184.1911 - Triethyl citrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Academy Press, 2101 Constitution Ave. NW., Washington, DC 20418, and the Center for Food Safety and... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Triethyl citrate. 184.1911 Section 184.1911 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR...

  11. Sildenafil citrate monohydrate-cyclodextrin nanosuspension complexes for use in metered-dose inhalers.

    PubMed

    Sawatdee, Somchai; Phetmung, Hirihattaya; Srichana, Teerapol

    2013-10-15

    Sildenafil is a selective phosphodiesterase-5 inhibitor used for the treatment of erectile dysfunction and pulmonary hypertension. Sildenafil citrate monohydrate was complexed with α-, hydroxypropyl-β- and γ-cyclodextrin (α-CD, HP-β-CD and γ-CD, respectively) to enhance its water solubility. The complexes of sildenafil citrate monohydrate with all types of CDs were characterized by phase solubility diagrams, (1)H and (13)C NMR, and dielectric constants. Sildenafil citrate monohydrate complexed with CDs was developed as nanosuspensions for use in a pressurized metered-dose inhaler (pMDI). Sildenafil citrate monohydrate pMDI formulations were prepared by a bottom-up process using dried ethanol as a solvent and HFA-134a as an antisolvent and propellant in order to form nanosuspensions. A 3×3 factorial design was applied for the contents of the dried ethanol and HFA-134a propellant. The phase solubility profiles of the sildenafil and cyclodextrins were described as AL type with a mole ratio 1:1. The piperazine moiety of sildenafil formed an inclusion in the cavity of the CDs. The particle diameters of the sildenafil citrate monohydrate suspensions in pMDIs were all within a nanosuspension size range. An assay of the sildenafil content showed that the formation of complexes with CDs was close to 100%. In the case of the formulations with CDs, the emitted doses varied within 97.4±10.8%, the fine particle fractions (FPFs) were in a range of 45-81%, the fine particle dose (FPD) was 12.6±2.0 μg and the mass median aerodynamic diameters (MMADs) were 1.86±0.41 μm. In contrast, the formulations without CDs produced a low emitted dose of sildenafil (<60%). Therefore, only sildenafil citrate monohydrate pMDI formulations containing CDs were suitable for use as aerosols. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Malate decarboxylases: evolution and roles of NAD(P)-ME isoforms in species performing C(4) and C(3) photosynthesis.

    PubMed

    Maier, Alexandra; Zell, Martina B; Maurino, Veronica G

    2011-05-01

    In the C(4) pathway of photosynthesis two types of malate decarboxylases release CO(2) in bundle sheath cells, NADP- and NAD-dependent malic enzyme (NADP-ME and NAD-ME), located in the chloroplasts and the mitochondria of these cells, respectively. The C(4) decarboxylases involved in C(4) photosynthesis did not evolve de novo; they were recruited from existing housekeeping isoforms. NADP-ME housekeeping isoforms would function in the control of malate levels during hypoxia, pathogen defence responses, and microspore separation, while NAD-ME participates in the respiration of malate in the tricarboxylic acid cycle. Recently, the existence of three enzymatic NAD-ME entities in Arabidopsis, occurring by alternative association of two subunits, was described as a novel mechanism to regulate NAD-ME activity under changing metabolic environments. The C(4) NADP-ME is thought to have evolved from a C(3) chloroplastic ancestor, which in turn would have evolved from an ancient cytosolic enzyme. In this way, the C(4) NADP-ME would have emerged through gene duplication, acquisition of a new promoter, and neo-functionalization. In contrast, there would exist a unique NAD-ME in C(4) plants, which would have been adapted to perform a dual function through changes in the kinetic and regulatory properties of the C(3) ancestors. In addition to this, for the evolution of C(4) NAD-ME, insertion of promoters or enhancers into the single-copy genes of the C(3) ancestors would have changed the expression without gene duplication.

  13. Free Rhodium (II) citrate and rhodium (II) citrate magnetic carriers as potential strategies for breast cancer therapy

    PubMed Central

    2011-01-01

    Background Rhodium (II) citrate (Rh2(H2cit)4) has significant antitumor, cytotoxic, and cytostatic activity on Ehrlich ascite tumor. Although toxic to normal cells, its lower toxicity when compared to carboxylate analogues of rhodium (II) indicates Rh2(H2cit)4 as a promising agent for chemotherapy. Nevertheless, few studies have been performed to explore this potential. Superparamagnetic particles of iron oxide (SPIOs) represent an attractive platform as carriers in drug delivery systems (DDS) because they can present greater specificity to tumor cells than normal cells. Thus, the association between Rh2(H2cit)4 and SPIOs can represent a strategy to enhance the former's therapeutic action. In this work, we report the cytotoxicity of free rhodium (II) citrate (Rh2(H2cit)4) and rhodium (II) citrate-loaded maghemite nanoparticles or magnetoliposomes, used as drug delivery systems, on both normal and carcinoma breast cell cultures. Results Treatment with free Rh2(H2cit)4 induced cytotoxicity that was dependent on dose, time, and cell line. The IC50 values showed that this effect was more intense on breast normal cells (MCF-10A) than on breast carcinoma cells (MCF-7 and 4T1). However, the treatment with 50 μM Rh2(H2cit)4-loaded maghemite nanoparticles (Magh-Rh2(H2cit)4) and Rh2(H2cit)4-loaded magnetoliposomes (Lip-Magh-Rh2(H2cit)4) induced a higher cytotoxicity on MCF-7 and 4T1 than on MCF-10A (p < 0.05). These treatments enhanced cytotoxicity up to 4.6 times. These cytotoxic effects, induced by free Rh2(H2cit)4, were evidenced by morphological alterations such as nuclear fragmentation, membrane blebbing and phosphatidylserine exposure, reduction of actin filaments, mitochondrial condensation and an increase in number of vacuoles, suggesting that Rh2(H2cit)4 induces cell death by apoptosis. Conclusions The treatment with rhodium (II) citrate-loaded maghemite nanoparticles and magnetoliposomes induced more specific cytotoxicity on breast carcinoma cells than on breast

  14. 21 CFR 172.832 - Monoglyceride citrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Monoglyceride citrate. A food additive that is a mixture of glyceryl monooleate and its citric acid monoester manufactured by the reaction of glyceryl monooleate with citric acid under controlled conditions may be safely..., 70-100. Total citric acid (free and combined), 14 percent-17 percent. (b) It is used, or intended for...

  15. 21 CFR 172.370 - Iron-choline citrate complex.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.370 Iron-choline citrate complex. Iron-choline...

  16. 21 CFR 172.370 - Iron-choline citrate complex.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.370 Iron-choline citrate complex. Iron-choline...

  17. Enrofloxacinium citrate monohydrate: Preparation, crystal structure, thermal stability and IR-characterization

    NASA Astrophysics Data System (ADS)

    Golovnev, Nicolay N.; Vasiliev, Alexander D.; Kirik, Sergei D.

    2012-08-01

    Enrofloxacinium citrate monohydrate (I), CHFNO3+·CHO7-·HO, [C19H22FN3O3 - enrofloxacin, EnrH] has been crystallized from the mutual solution of citric acid and enrofloxacin in ambient conditions. The colorless crystals have been investigated using X-ray single crystal and powder techniques, and characterized by differential scanning calorimetry, thermogravimetry and infrared spectroscopy. The obtained compound can be considered as a salt with enrofloxacinium in the role of a cation and citrate as an anion. The ions ratio equals to 1:1. The compound crystallizes in the triclinic lattice with a = 9.0489(8) Å, b = 9.6531(8) Å, c = 14.913(1) Å, α = 98.813(1)°, β = 92.029(1)°, γ = 91.013(1)°, Z = 2, V = 1286.1(2) Å3, S.G. P1¯. The crystal structure determination reveals the importance of inter- and intramolecular interactions in the crystal formation. The EnrH2+ and HCit molecular ions are packed in alternating layers with water molecules inserted into the citrate layers. A citrate ion in the layer is linked via H-bondings with two adjacent ones and three water molecules. Enrofloxacinium cations are packaged by means of a benched mode and every cation is linked by three intermolecular thymus type H-bondings with nitrogens of adjacent cations and by two links with the oxygen of the citrate ions. The infrared spectra gave the evidence of H-bonding formation in the obtained salt. The π-stacking interactions are observed between the aromatic cycles of the adjacent cations which are located in an antiparallel style in a layer.

  18. Tunable Manipulation of Mineral Carbonation Kinetics in Nanoscale Water Films via Citrate Additives.

    PubMed

    Miller, Quin R S; Schaef, Herbert T; Kaszuba, John P; Qiu, Lin; Bowden, Mark E; McGrail, Bernard P

    2018-06-06

    We explored the influence of a model organic ligand on mineral carbonation in nanoscale interfacial water films by conducting five time-resolved in situ X-ray diffraction (XRD) experiments at 50 °C. Forsterite was exposed to water-saturated supercritical carbon dioxide (90 bar) that had been equilibrated with 0-0.5 m citrate (C 6 H 5 O 7 -3 ) solutions. The experimental results demonstrated that greater concentrations of citrate in the nanoscale interfacial water film promoted the precipitation of magnesite (MgCO 3 ) relative to nesquehonite (MgCO 3 ·3H 2 O). At the highest concentrations tested, magnesite nucleation and growth were inhibited, lowering the carbonation rate constant from 9.1 × 10 -6 to 3.6 × 10 -6 s -1 . These impacts of citrate were due to partial dehydration of Mg 2+ (aq) and the adsorption of citrate onto nuclei and magnesite surfaces. This type of information may be used to predict and tailor subsurface mineralization rates and pathways.

  19. Diameter and location control of ZnO nanowires using electrodeposition and sodium citrate

    NASA Astrophysics Data System (ADS)

    Lifson, Max L.; Levey, Christopher G.; Gibson, Ursula J.

    2013-10-01

    We report single-step growth of spatially localized ZnO nanowires of controlled diameter to enable improved performance of piezoelectric devices such as nanogenerators. This study is the first to demonstrate the combination of electrodeposition with zinc nitrate and sodium citrate in the growth solution. Electrodeposition through a thermally-grown silicon oxide mask results in localization, while the growth voltage and solution chemistry are tuned to control the nanowire geometry. We observe a competition between lateral (relative to the (0001) axis) citrate-related morphology and voltage-driven vertical growth which enables this control. High aspect ratios result with either pure nitrate or nitrate-citrate mixtures if large voltages are used, but low growth voltages permit the growth of large diameter nanowires in solution with citrate. Measurements of the current density suggest a two-step growth process. An oxide mask blocks the electrodeposition, and suppresses nucleation of thermally driven growth, permitting single-step lithography on low cost p-type silicon substrates.

  20. Oxidative status and citrate concentration in rat tissues during experimental hyperthyroidism and melatonin treatment.

    PubMed

    Popov, S S; Pashkov, A N; Popova, T N; Zoloedov, V I; Semenikhina, A V; Rakhmanova, T I

    2007-08-01

    Biochemiluminescence increased, while aconitate hydratase activity and citrate accumulation in tissues of the liver and heart and blood decreased in rats with experimental hyperthyroidism. These changes reflect activation of free radical oxidation, damage to enzyme molecules with reactive oxygen species, and impaired utilization of citrate under pathological conditions. Melatonin treatment during hyperthyroidism normalized aconitate hydratase activity and citrate concentration. Biochemiluminescence study showed that the effect of melatonin is related to antioxidant activity of this hormone, inhibition of free radical oxidation, and suppression of reactive oxygen species generation.

  1. Calcium-regulation of mitochondrial respiration maintains ATP homeostasis and requires ARALAR/AGC1-malate aspartate shuttle in intact cortical neurons.

    PubMed

    Llorente-Folch, Irene; Rueda, Carlos B; Amigo, Ignacio; del Arco, Araceli; Saheki, Takeyori; Pardo, Beatriz; Satrústegui, Jorgina

    2013-08-28

    Neuronal respiration is controlled by ATP demand and Ca2+ but the roles played by each are unknown, as any Ca2+ signal also impacts on ATP demand. Ca2+ can control mitochondrial function through Ca2+-regulated mitochondrial carriers, the aspartate-glutamate and ATP-Mg/Pi carriers, ARALAR/AGC1 and SCaMC-3, respectively, or in the matrix after Ca2+ transport through the Ca2+ uniporter. We have studied the role of Ca2+ signaling in the regulation of mitochondrial respiration in intact mouse cortical neurons in basal conditions and in response to increased workload caused by increases in [Na+]cyt (veratridine, high-K+ depolarization) and/or [Ca2+]cyt (carbachol). Respiration in nonstimulated neurons on 2.5-5 mm glucose depends on ARALAR-malate aspartate shuttle (MAS), with a 46% drop in aralar KO neurons. All stimulation conditions induced increased OCR (oxygen consumption rate) in the presence of Ca2+, which was prevented by BAPTA-AM loading (to preserve the workload), or in Ca2+-free medium (which also lowers cell workload). SCaMC-3 limits respiration only in response to high workloads and robust Ca2+ signals. In every condition tested Ca2+ activation of ARALAR-MAS was required to fully stimulate coupled respiration by promoting pyruvate entry into mitochondria. In aralar KO neurons, respiration was stimulated by veratridine, but not by KCl or carbachol, indicating that the Ca2+ uniporter pathway played a role in the first, but not in the second condition, even though KCl caused an increase in [Ca2+]mit. The results suggest a requirement for ARALAR-MAS in priming pyruvate entry in mitochondria as a step needed to activate respiration by Ca2+ in response to moderate workloads.

  2. Rôle modeste du citrate comme transporteur d'acétyl-CoA chez l'animal vivant.

    PubMed

    Rous, S

    1971-02-09

    2,4-(14) C-Citrate incorporated to a far greater extent than 1,5-(14) C-citrate into liver, carcass or adipose tissue fatty acids of living mice. This finding excludes the possibility that the acetyl units emerge from the mitochondria in the form of citrate.

  3. Dose-dependent protective effect of sildenafil citrate on testicular injury after torsion/detorsion in rats.

    PubMed

    Yıldız, H; Durmus, A S; Şimşek, H; Yaman, M

    2012-05-01

    This experiment was designed to investigate the effect of sildenafil citrate on testicular injury after unilateral testicular torsion/detorsion (T/D). Thirty-seven adult male Wistar albino rats were divided into four groups: sham operated group (group 1), T/D+ saline (group 2), T/D+ 0.7 mg sildenafil citrate (group 3) and T/D+ 1.4 mg sildenafil citrate (group 4). Testicular torsion was created by rotating the right testis 720° in a clockwise direction for 2 h in other groups, except for group 1, which was served as sham group. The level of GSH (P < 0.05) in the testis in the group 2 were significantly lower (P < 0.05) and the levels of MDA and NO (P < 0.01 for both) in the testis were significantly higher when compared with those of the group 1. Administration of low dose sildenafil citrate prevented the increases in MDA and NO levels and decreases in GSH values induced by testicular torsion. However, administration of high dose sildenafil citrate did not have any effect on these testicular tissue parameters (P > 0.05). Also, mean values of seminiferous tubules diameters, germinal cell layer thicknesses and mean testicular biopsy score were significantly better in group 3 than groups 2 and 4. These results suggest that T/D injury occurred in testis after unilateral testicular T/D and that administration of low dose sildenafil citrate before detorsion prevents ischemia/reperfusion cellular damage in testicular torsion. Sildenafil citrate probably acts through reduction of reactive oxygen species and support antioxidant enzyme systems. © 2011 Blackwell Verlag GmbH.

  4. Influence of temperature on flavour compound production from citrate by Lactobacillus rhamnosus ATCC 7469.

    PubMed

    De Figueroa, R M; Oliver, G; Benito de Cárdenas, I L

    2001-03-01

    The citrate utilization by Lactobacillus rhamnosus ATCC 7469 was found to be temperature-dependent. The maximum citrate utilization and incorporation of [1,5-14C]citrate rate were observed at 37 degreesC. At this temperature, maximum citrate lyase activity and specific diacetyl and acetoin production (Y(DA%)) were observed. The high levels of alpha-acetolactate synthase and low levels of diacetyl reductase, acetoin reductase and L-lactate dehydrogenase found at 37 degreesC led to an accumulation of diacetyl and acetoin. Optimum lactic acid production was observed at 45 degreesC, according to the high lactate dehydrogenase activity. The NADH oxidase activity increased with increasing culture temperature from 22 degreesC to 37 degreesC. Thus there are greater quantities of pyruvate available for the production of alpha-acetolactate, diacetyl and aceotin, and less diacetyl and acetoin are reduced.

  5. Antitumor effect of free rhodium (II) citrate and rhodium (II) citrate-loaded maghemite nanoparticles on mice bearing breast cancer: a systemic toxicity assay.

    PubMed

    Peixoto, Raphael Cândido Apolinário; Miranda-Vilela, Ana Luisa; de Souza Filho, José; Carneiro, Marcella Lemos' Brettas; Oliveira, Ricardo G S; da Silva, Matheus Oliveira; de Souza, Aparecido R; Báo, Sônia Nair

    2015-05-01

    Breast cancer is one of the most prevalent cancer types among women. The use of magnetic fluids for specific delivery of drugs represents an attractive platform for chemotherapy. In our previous studies, it was demonstrated that maghemite nanoparticles coated with rhodium (II) citrate (Magh-Rh2Cit) induced in vitro cytotoxicity and in vivo antitumor activity, followed by intratumoral administration in breast carcinoma cells. In this study, our aim was to follow intravenous treatment to evaluate the systemic antitumor activity and toxicity induced by these formulations in Balb/c mice bearing orthotopic 4T1 breast carcinoma. Female Balb/c mice were evaluated with regard to toxicity of intravenous treatments through analyses of hemogram, serum levels of alanine aminotransferase, iron, and creatinine and liver, kidney, and lung histology. The antitumor activity of rhodium (II) citrate (Rh2Cit), Magh-Rh2Cit, and maghemite nanoparticles coated with citrate (Magh-Cit), used as control, was evaluated by tumor volume reduction, histology, and morphometric analysis. Magh-Rh2Cit and Magh-Cit promoted a significant decrease in tumor area, and no experimental groups presented hematotoxic effects or increased levels of serum ALT and creatinine. This observation was corroborated by the histopathological examination of the liver and kidney of mice. Furthermore, the presence of nanoparticles was verified in lung tissue with no morphological changes, supporting the idea that our nanoformulations did not induce toxicity effects. No studies about the systemic action of rhodium (II) citrate-loaded maghemite nanoparticles have been carried out, making this report a suitable starting point for exploring the therapeutic potential of these compounds in treating breast cancer.

  6. Adaptation of skeletal muscle energy metabolism to repeated hypoxic-normoxic exposures and drug treatment.

    PubMed

    Pastoris, O; Dossena, M; Gorini, A; Vercesi, L; Benzi, G

    1985-03-01

    Muscular glycolytic fuels, intermediates and end-products (glycogen, glucose, glucose-6-phosphate, pyruvate, lactate), Krebs cycle intermediates (citrate, alpha-ketoglutarate, succinate, malate), related free amino acids (glutamate, alanine), ammonia, energy store (creatine phosphate), energy mediators (ATP, ADP, AMP) and energy charge potential were evaluated. Furthermore the maximum rate (Vmax) of the following muscular enzyme activities was evaluated in the crude extract and/or mitochondrial fraction: for the anaerobic glycolytic pathway: hexokinase, phosphofructokinase, pyruvate kinase, lactate dehydrogenase; for the tricarboxylic acid cycle: citrate synthase, malate dehydrogenase; for the electron transfer chain: total NADH cytochrome c reductase, cytochrome oxidase. The rat gastrocnemius muscles were analyzed in normoxia and after repeated, alternate hypoxic and normoxic exposures (12 hours of hypoxia daily; for 5 days). Naftidrofuryl was administered daily at three different doses: 10, 15 and 22.5 mg/kg i.m., 30 min before the beginning of the experimental hypoxia. The biochemical adaptation to intermittent normobaric hypoxic-normoxic exposures was characterized by the decrease of the muscular contents of creatine phosphate, citrate, alpha-ketoglutarate and glutamate. This adaptation occurred in absence of significant changes in the Vmax of the muscle enzymes tested. By naftidrofuryl treatment, in gastrocnemius muscle from hypoxic rats both alpha-ketoglutarate and creatine phosphate contents maintained normal values, while glutamate concentration remained reduced to subnormal values. With the exception of hexokinase, naftidrofuryl treatment did not modify the Vmax of marker enzymes related to energy transduction.

  7. 21 CFR 73.2110 - Bismuth citrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... restrictions. The color additive bismuth citrate may be safely used in cosmetics intended for coloring hair on..., eyebrows, or hair on parts of the body other than the scalp. (d) Labeling. (1) The label of the color... abraded scalp. Do not use to color eyelashes, eyebrows, or hair on parts of the body other than the scalp...

  8. 21 CFR 73.2110 - Bismuth citrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... restrictions. The color additive bismuth citrate may be safely used in cosmetics intended for coloring hair on..., eyebrows, or hair on parts of the body other than the scalp. (d) Labeling. (1) The label of the color... abraded scalp. Do not use to color eyelashes, eyebrows, or hair on parts of the body other than the scalp...

  9. 21 CFR 73.2110 - Bismuth citrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... restrictions. The color additive bismuth citrate may be safely used in cosmetics intended for coloring hair on..., eyebrows, or hair on parts of the body other than the scalp. (d) Labeling. (1) The label of the color... abraded scalp. Do not use to color eyelashes, eyebrows, or hair on parts of the body other than the scalp...

  10. 21 CFR 73.2110 - Bismuth citrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... restrictions. The color additive bismuth citrate may be safely used in cosmetics intended for coloring hair on..., eyebrows, or hair on parts of the body other than the scalp. (d) Labeling. (1) The label of the color... abraded scalp. Do not use to color eyelashes, eyebrows, or hair on parts of the body other than the scalp...

  11. 21 CFR 73.2110 - Bismuth citrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... restrictions. The color additive bismuth citrate may be safely used in cosmetics intended for coloring hair on..., eyebrows, or hair on parts of the body other than the scalp. (d) Labeling. (1) The label of the color... abraded scalp. Do not use to color eyelashes, eyebrows, or hair on parts of the body other than the scalp...

  12. Primary structure of the light-dependent regulatory site of corn NADP-malate dehydrogenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Decottignies, P.; Schmitter, J.M.; Miginiac-Maslow, M.

    1988-08-25

    The light-activated NADP-malate dehydrogenase (NADP-MDH) catalyzes the reduction of oxaloacetate to malate in higher plant chloroplasts. This enzyme is regulated in vivo by the ferredoxin-thioredoxin system through redox reactions. NADP-MDH has been photoactivated in vitro in a chloroplast system reconstituted from the pure protein components and thylakoid membranes. Photoactivation was accompanied by the appearance of new thiol groups (followed by (14C)iodoacetate incorporation). 14C-Carboxymethylated NADP-MDH has been purified from the incubation mixture and its amino-terminal sequence analyzed. Two (14C)carboxymethylcysteines were identified at positions 10 and 15 after light activation, while they were not detected in the dark-treated protein. In addition, themore » analysis of the tryptic digest of light-activated (14C)carboxymethylated NADP-MDH revealed that the radioactive label was mostly incorporated in Cys10 and Cys15, indicating that these 2 residues play a major role in the light activation mechanism. Moreover, an activation model, in which photoreduced thio-redoxin was replaced by the dithiol reductant dithio-threitol, has been developed. When NADP-MDH was activated in this way, the same sulfhydryls were found to be labeled, and alternatively, they did not incorporate any radioactivity when dithiothreitol reduction was performed after carboxymethylation in denaturating conditions. These results indicate that activation (by light or by dithiothreitol) proceeds on each subunit by reduction of a disulfide bridge located at the amino terminus of the enzyme between Cys10 and Cys15.« less

  13. Citrate Inhibition-Resistant Form of 6-Phosphofructo-1-Kinase from Aspergillus niger

    PubMed Central

    Mlakar, Tina; Legiša, Matic

    2006-01-01

    Two forms of Aspergillus niger 6-phosphofructo-1-kinase (PFK1) have been described recently, the 85-kDa native enzyme and 49-kDa shorter fragment that is formed from the former by posttranslational modification. So far, kinetic characteristics have never been determined on the enzyme purified to near homogeneity. For the first time, kinetic parameters were determined for individual enzymes with respect to citrate inhibition. The native 85-kDa enzyme was found to be moderately inhibited by citrate, with the Ki value determined to be 1.5 mM, in the system with 5 mM Mg2+ ions, while increasing magnesium concentrations relieved the negative effect of citrate. An identical inhibition coefficient was determined also in the presence of ammonium ions, although ammonium acted as a strong activator of enzyme activity. On the other hand, the shorter fragment of PFK1 proved to be completely resistant to inhibition by citrate. Allosteric citrate binding sites were most probably lost after the truncation of the C-terminal part of the native protein, in which region some binding sites for inhibitor are known to be located. At near physiological conditions, characterized by low fructose-6-phosphate concentrations, a much higher efficiency of the shorter fragment was observed during an in vitro experiment. Since the enzyme became more susceptible to the positive control by specific ligands, while the negative control was lost after posttranslational modification, the shorter PFK1 fragment seems to be the enzyme most responsible for generating undisturbed metabolic flow through glycolysis in A. niger cells. PMID:16820438

  14. citrate inhibition-resistant form of 6-phosphofructo-1-kinase from Aspergillus niger.

    PubMed

    Mlakar, Tina; Legisa, Matic

    2006-07-01

    Two forms of Aspergillus niger 6-phosphofructo-1-kinase (PFK1) have been described recently, the 85-kDa native enzyme and 49-kDa shorter fragment that is formed from the former by posttranslational modification. So far, kinetic characteristics have never been determined on the enzyme purified to near homogeneity. For the first time, kinetic parameters were determined for individual enzymes with respect to citrate inhibition. The native 85-kDa enzyme was found to be moderately inhibited by citrate, with the Ki value determined to be 1.5 mM, in the system with 5 mM Mg2+ ions, while increasing magnesium concentrations relieved the negative effect of citrate. An identical inhibition coefficient was determined also in the presence of ammonium ions, although ammonium acted as a strong activator of enzyme activity. On the other hand, the shorter fragment of PFK1 proved to be completely resistant to inhibition by citrate. Allosteric citrate binding sites were most probably lost after the truncation of the C-terminal part of the native protein, in which region some binding sites for inhibitor are known to be located. At near physiological conditions, characterized by low fructose-6-phosphate concentrations, a much higher efficiency of the shorter fragment was observed during an in vitro experiment. Since the enzyme became more susceptible to the positive control by specific ligands, while the negative control was lost after posttranslational modification, the shorter PFK1 fragment seems to be the enzyme most responsible for generating undisturbed metabolic flow through glycolysis in A. niger cells.

  15. Renal stone clinic survey: calcium stone formers' self-declared understanding of and adherence to physician's recommendations.

    PubMed

    Hess, Bernhard

    2017-08-01

    Nothing is known about how well stone formers understand physician's explanations of stone formation, and a few data are available on adherence to provided recommendations. In this study, two groups of recurrent calcium stone formers (RCSFs) were compared. Group 1: 153 consecutive RCSF (118 men, 35 women) referred 1/2011-6/2014. At least 3 months after a 60-75 min consultation explaining metabolic evaluation and therapeutic measures, RCSF received a questionnaire by mail, regarding understanding of stone formation and adherence to therapeutic recommendations (diet, lifestyle, drug treatment). Response rate was 62 %. Group 2 (control): 81 consecutive RCSFs referred 7/2014-3/2016 (60 men, 21 women) were asked to answer the same questionnaire in the stone center while waiting for their follow-up consultation 3 months after starting prevention; response rate was 100 %. Alkali citrate was prescribed in 45 %. Answer sheets were analyzed anonymously, and frequencies of answers were compared by Chi-square test. 67 % (group 1) and 62 % (group 2) indicated >80 % understanding of the given information (NS). Over 80 % adherence to recommendations occurred in 26 and 30 % (NS). Most frequent changes in dietary/lifestyle habits were increases in calcium (93 vs. 89 %) and fluid intakes (81 vs. 78 %); lowering psychosocial stress (23 vs. 24 %) was least popular. Adherence to 100 % on 6-7 days/week was significantly more frequent for medication than for dietary/lifestyle interventions, both in group 1 (84 vs. 24 %, p < 0.001) and group 2 (91 vs. 28 %, p < 0.001). (1) results do not differ whether RCSFs are voluntarily participating by mail or asked to answer questionnaires in the stone clinic; (2) pathophysiologic explanations of stone disease are understood to >80 % by 2/3 of RCSFs; (3) after 3 months, perfect adherence to recommended treatment is more frequent on alkali citrate than on dietary/lifestyle measures; and (4) increasing calcium and fluid

  16. RNA sequencing to study gene expression and single nucleotide polymorphism variation associated with citrate content in cow milk.

    PubMed

    Cánovas, A; Rincón, G; Islas-Trejo, A; Jimenez-Flores, R; Laubscher, A; Medrano, J F

    2013-04-01

    The technological properties of milk have significant importance for the dairy industry. Citrate, a normal constituent of milk, forms one of the main buffer systems that regulate the equilibrium between Ca(2+) and H(+) ions. Higher-than-normal citrate content is associated with poor coagulation properties of milk. To identify the genes responsible for the variation of citrate content in milk in dairy cattle, the metabolic steps involved in citrate and fatty acid synthesis pathways in ruminant mammary tissue using RNA sequencing were studied. Genetic markers that could influence milk citrate content in Holstein cows were used in a marker-trait association study to establish the relationship between 74 single nucleotide polymorphisms (SNP) in 20 candidate genes and citrate content in 250 Holstein cows. This analysis revealed 6 SNP in key metabolic pathway genes [isocitrate dehydrogenase 1 (NADP+), soluble (IDH1); pyruvate dehydrogenase (lipoamide) β (PDHB); pyruvate kinase (PKM2); and solute carrier family 25 (mitochondrial carrier; citrate transporter), member 1 (SLC25A1)] significantly associated with increased milk citrate content. The amount of the phenotypic variation explained by the 6 SNP ranged from 10.1 to 13.7%. Also, genotype-combination analysis revealed the highest phenotypic variation was explained combining IDH1_23211, PDHB_5562, and SLC25A1_4446 genotypes. This specific genotype combination explained 21.3% of the phenotypic variation. The largest citrate associated effect was in the 3' untranslated region of the SLC25A1 gene, which is responsible for the transport of citrate across the mitochondrial inner membrane. This study provides an approach using RNA sequencing, metabolic pathway analysis, and association studies to identify genetic variation in functional target genes determining complex trait phenotypes. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Sildenafil citrate (Viagra) impairs fertilization and early embryo development in mice.

    PubMed

    Glenn, David R J; McClure, Neil; Cosby, S Louise; Stevenson, Michael; Lewis, Sheena E M

    2009-03-01

    To determine the effects of sildenafil citrate, a cyclic monophosphate-specific type 5 phosphodiesterase inhibitor known to affect sperm function, on fertilization and early embryo cleavage. This acute mammal study included male and female mice assigned randomly, the females sacrificed after mating and their oocytes/embryos evaluated at four time periods after treatment. Academic research environment. Male and female CBAB(6) mice. Female mice were injected intraperitoneally with 5 IU gonadotropin (hCG) to stimulate follicular growth and induce ovulation. They were each caged with a male that had been gavaged with sildenafil citrate (0.06 mg/0.05 mL) and allowed to mate. After 12, 36, 60, and 84 h, females were killed, their oviducts were dissected out, and retrieved embryos were assessed for blastomere number and quality. Fertilization rates and numbers of embryos were evaluated after treatment. Fertilization rates (day 1) were markedly reduced (-33%) in matings where the male had taken sildenafil citrate. Over days 2-4, the numbers of embryos developing in the treated group were significantly fewer than in the control group. There was also a trend for impaired cleavage rates within those embryos, although this did not reach significance. The impairments to fertility caused by sildenafil citrate have important implications for infertility centers and for couples who are using this drug precoitally while attempting to conceive.

  18. Self-nanoemulsifying drug delivery systems of tamoxifen citrate: design and optimization.

    PubMed

    Elnaggar, Yosra S R; El-Massik, Magda A; Abdallah, Ossama Y

    2009-10-01

    Tamoxifen citrate is an antiestrogen for peroral breast cancer treatment. The drug delivery encounters problems of poor water solubility and vulnerability to enzymatic degradation in both intestine and liver. In the current study, tamoxifen citrate self-nanoemulsifying drug delivery systems (SNEDDS) were prepared in an attempt to circumvent such obstacles. Preliminary screening was carried out to select proper ingredient combinations. All surfactants screened were recognized for their bioactive aspects. Ternary phase diagrams were then constructed and an optimum system was designated. Three tamoxifen SNEDDS were then compared for optimization. The systems were assessed for robustness to dilution, globule size, cloud point, surface morphology and drug release. An optimum system composed of tamoxifen citrate (1.6%), Maisine 35-1 (16.4%), Caproyl 90 (32.8%), Cremophor RH40 (32.8%) and propylene glycol (16.4%) was selected. The system was robust to different dilution volumes and types. It possessed a mean globule size of 150 nm and a cloud point of 80 degrees C. Transmission electron microscopy demonstrated spherical particle morphology. The drug release from the selected formulation was significantly higher than other SNEDDS and drug suspension, as well. Realizing drug incorporation into an optimized nano-sized SNEDD system that encompasses a bioactive surfactant, our results proposed that the prepared system could be promising to improve oral efficacy of the tamoxifen citrate.

  19. Mechanism of citrate metabolism by an oxaloacetate decarboxylase-deficient mutant of Lactococcus lactis IL1403.

    PubMed

    Pudlik, Agata M; Lolkema, Juke S

    2011-08-01

    Citrate metabolism in resting cells of Lactococcus lactis IL1403(pFL3) results in the formation of two end products from the intermediate pyruvate, acetoin and acetate (A. M. Pudlik and J. S. Lolkema, J. Bacteriol. 193:706-714, 2011). Pyruvate is formed from citrate following uptake by the transporter CitP through the subsequent actions of citrate lyase and oxaloacetate decarboxylase. The present study describes the metabolic response of L. lactis when oxaloacetate accumulates in the cytoplasm. The oxaloacetate decarboxylase-deficient mutant ILCitM(pFL3) showed nearly identical rates of citrate consumption, but the end product profile in the presence of glucose shifted from mainly acetoin to only acetate. In addition, in contrast to the parental strain, the mutant strain did not generate proton motive force. Citrate consumption by the mutant strain was coupled to the excretion of oxaloacetate, with a yield of 80 to 85%. Following citrate consumption, oxaloacetate was slowly taken up by the cells and converted to pyruvate by a cryptic decarboxylase and, subsequently, to acetate. The transport of oxaloacetate is catalyzed by CitP. The parental strain IL1403(pFL3) containing CitP consumed oxaloacetate, while the original strain, IL1403, not containing CitP, did not. Moreover, oxaloacetate consumption was enhanced in the presence of L-lactate, indicating exchange between oxaloacetate and L-lactate catalyzed by CitP. Hence, when oxaloacetate inadvertently accumulates in the cytoplasm, the physiological response of L. lactis is to excrete oxaloacetate in exchange with citrate by an electroneutral mechanism catalyzed by CitP. Subsequently, in a second step, oxaloacetate is taken up by CitP and metabolized to pyruvate and acetate.

  20. Tamoxifen citrate loaded ethosomes for transdermal drug delivery system: preparation and characterization.

    PubMed

    Sarwa, Khomendra Kumar; Suresh, Preeti K; Debnath, Manabendra; Ahmad, Mohammad Zaki

    2013-08-01

    Long term tamoxifen citrate therapy is imperative to treat several dermatological and hormonal sensitive disorders. Successful oral and parenteral administration of tamoxifen citrate has been challenging since it undergoes enzymatic degradation and has poor aqueous solubility issues. In the present work, tamoxifen citrate loaded ethosomes were prepared and characterized for transdermal applications. The prepared formulations were characterized for morphological features, particle size distribution, calorimetric attributes, zeta potential and drug entrapment. Permeation profile of prepared ethosomes was compared with liposomes and hydroethonalic solution across cellophane membrane and human cadaver skin. Results of the permeation studies indicate that ethosomes were able to deliver >90% drug within 24 hours of application, while liposomes and hydroethanolic solution delivered only 39.04% and 36.55% respectively. Skin deposition and stability studies are also reported.

  1. [Sonographic ovarian vascularization and volume in women with polycystic ovary syndrome treated with clomiphene citrate and metformin].

    PubMed

    de la Fuente-Valero, Jesús; Zapardiel-Gutiérrez, Ignacio; Orensanz-Fernández, Inmaculada; Alvarez-Alvarez, Pilar; Engels-Calvo, Virginia; Bajo-Arenas, José Manuel

    2010-01-01

    To measure the vascularization and ovarian volume with three-dimensional sonography in patients diagnosed of polycystic ovary syndrome with stimulated ovulation treatment, and to analyse the differences between the patients treated with clomiphen citrate versus clomiphen citrate and metformin. Therty patients were studied. Twenty ovulation cycles were obtained with clomiphen citrate and 17 with clomiphen citrate plus merformin (added in case of obesity or hyperglucemy/hyperinsulinemia). Ovarian volumes and vascular indexes were studied with 3D-sonography and results were analysed by treatment. There were no statistical differences of ovarian volume by treatment along the cycles, although bigger volume were found in ovulatory cycles compared to non-ovulatory ones (20,36 versus 13,89 ml, p = 0,026). No statistical differences were also found concerning vascular indexes, neither by treatment nor by the obtention of ovulation in the cycle. Ovarian volume and vascular indexes measured with three-dimensional sonography in patients diagnosed of polycystic ovary syndrome do not show differents values in patients treated with clomiphen citrate alone versus clomiphen citrate plus metformin.

  2. Protective effect of sildenafil citrate on contralateral testis injury after unilateral testicular torsion/detorsion.

    PubMed

    Yíldíz, Hamit; Durmus, Ali Said; Simşek, Halil; Yaman, Mine

    2011-01-01

    This study was designed to investigate prevention of contralateral testicular injury with sildenafil citrate after unilateral testicular torsion/detorsion. Thirty-seven adult male rats were divided into four groups: sham operated (group 1, n = 7), torsion/detorsion + saline (group 2, n = 10), torsion/detorsion + 0.7 mg of sildenafil citrate (group 3, n = 10) and torsion/detorsion + 1.4 mg of sildenafil citrate (group 4, n = 10). Unilateral testicular torsion was created by rotating the right testis 720º in a clockwise direction for 2 h in other groups, except for group 1, which was served as sham group. After torsion (2 h) and detorsion (2 h) periods, rats were killed. The level of reduced glutathion (GSH) (p < 0.05) and the activities of catalase (p < 0.01) and glutathione peroxidase (p < 0.05) in the contralateral testis from group 2 were significantly lower and nitric oxide (NO) (p < 0.05) level in the contralateral testis were significantly higher than those of group 1. Administration of low-dose sildenafil citrate (group 3) prevented the increases in malondialdehyde and NO levels and decreases in glutathione peroxidase activities and GSH values induced by testicular torsion. However, administration of high-dose sildenafil citrate (group 4) had no effect on these testicular parameters (p > 0.05). Histopathological changes were detected in groups 2, 3 and 4. These results suggest that biochemically and histologically torsion/detorsion injury occurs in the contralateral testis following 2-h torsion and 2-h detorsion and that administration of low-dose sildenafil citrate before detorsion prevents ischemia/reperfusion cellular damage in testicular tissue.

  3. The structure and binding mode of citrate in the stabilization of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Al-Johani, Hind; Abou-Hamad, Edy; Jedidi, Abdesslem; Widdifield, Cory M.; Viger-Gravel, Jasmine; Sangaru, Shiv Shankar; Gajan, David; Anjum, Dalaver H.; Ould-Chikh, Samy; Hedhili, Mohamed Nejib; Gurinov, Andrei; Kelly, Michael J.; El Eter, Mohamad; Cavallo, Luigi; Emsley, Lyndon; Basset, Jean-Marie

    2017-09-01

    Elucidating the binding mode of carboxylate-containing ligands to gold nanoparticles (AuNPs) is crucial to understand their stabilizing role. A detailed picture of the three-dimensional structure and coordination modes of citrate, acetate, succinate and glutarate to AuNPs is obtained by 13C and 23Na solid-state NMR in combination with computational modelling and electron microscopy. The binding between the carboxylates and the AuNP surface is found to occur in three different modes. These three modes are simultaneously present at low citrate to gold ratios, while a monocarboxylate monodentate (1κO1) mode is favoured at high citrate:gold ratios. The surface AuNP atoms are found to be predominantly in the zero oxidation state after citrate coordination, although trace amounts of Auδ+ are observed. 23Na NMR experiments show that Na+ ions are present near the gold surface, indicating that carboxylate binding occurs as a 2e- L-type interaction for each oxygen atom involved. This approach has broad potential to probe the binding of a variety of ligands to metal nanoparticles.

  4. Struvite crystal growth inhibition by trisodium citrate and the formation of chemical complexes in growth solution

    NASA Astrophysics Data System (ADS)

    Prywer, Jolanta; Mielniczek-Brzóska, Ewa; Olszynski, Marcin

    2015-05-01

    Effect of trisodium citrate on the crystallization of struvite was studied. To evaluate such an effect an experiment of struvite growth from artificial urine was performed. The investigations are related to infectious urinary stones formation. The crystallization process was induced by the addition of aqueous ammonia solution to mimic the bacterial activity. The spectrophotometric results demonstrate that trisodium citrate increases induction time with respect to struvite formation and decreases the growth efficiency of struvite. The inhibitory effect of trisodium citrate on the nucleation and growth of struvite is explained in base of chemical speciation analysis. Such an analysis demonstrates that the inhibitory effect is related with the fact that trisodium citrate binds NH4 + and Mg2+ ions in the range of pH from 7 to 9.5 characteristic for struvite precipitation. The most important is the MgCit- complex whose concentration strongly depends on an increase in pH rather than on an increase in citrate concentrations.

  5. Effects of exercise on bone mineral density in calcium-replete postmenopausal women with and without hormone replacement therapy.

    PubMed

    Going, Scott; Lohman, Timothy; Houtkooper, Linda; Metcalfe, Lauve; Flint-Wagner, Hilary; Blew, Robert; Stanford, Vanessa; Cussler, Ellen; Martin, Jane; Teixeira, Pedro; Harris, Margaret; Milliken, Laura; Figueroa-Galvez, Arturo; Weber, Judith

    2003-08-01

    Osteoporosis is a major public health concern. The combination of exercise, hormone replacement therapy, and calcium supplementation may have added benefits for improving bone mineral density compared to a single intervention. To test this notion, 320 healthy, non-smoking postmenopausal women, who did or did not use hormone replacement therapy (HRT), were randomized within groups to exercise or no exercise and followed for 12 months. All women received 800 mg calcium citrate supplements daily. Women who exercised performed supervised aerobic, weight-bearing and weight-lifting exercise, three times per week in community-based exercise facilities. Regional bone mineral density (BMD) was assessed by dual energy X-ray absorptiometry. Women who used HRT, calcium, and exercised increased femoral neck, trochanteric and lumbar spine bone mineral density by approximately 1-2%. Trochanteric BMD was also significantly increased by approximately 1.0% in women who exercised and used calcium without HRT compared to a negligible change in women who used HRT and did not exercise. The results demonstrate that regional BMD can be improved with aerobic, weight-bearing activity combined with weight lifting at clinically relevant sites in postmenopausal women. The response was significant at more sites in women who used HRT, suggesting a greater benefit with hormone replacement and exercise compared to HRT alone.

  6. Nucleotide sequence of the gene determining plasmid-mediated citrate utilization.

    PubMed Central

    Ishiguro, N; Sato, G

    1985-01-01

    The citrate utilization determinant from transposon Tn3411 has been cloned and sequenced, and its polypeptide products have been characterized in minicell experiments. The nucleotide sequence was determined for a 2,047-base-pair BglII restriction endonuclease fragment that includes the citrate determinant. This region contains an open reading frame that would encode a 431-amino-acid very hydrophobic polypeptide and which is preceded by a reasonable ribosomal binding site. However, the single polypeptide found in minicell experiments had an apparent molecular weight of 35,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Images PMID:2999087

  7. Thermosensitive bioadhesive gels for the vaginal delivery of sildenafil citrate: in vitro characterization and clinical evaluation in women using clomiphene citrate for induction of ovulation.

    PubMed

    Soliman, Ghareb M; Fetih, Gihan; Abbas, Ahmed M

    2017-03-01

    The objective of this study is to develop and characterize in situ thermosensitive gels for the vaginal administration of sildenafil as a potential treatment of endometrial thinning occurring as a result of using clomiphene citrate for ovulation induction in women with type II eugonadotrophic anovulation. While sildenafil has shown promising results in the treatment of infertility in women, the lack of vaginal pharmaceutical preparation and the side effects associated with oral sildenafil limit its clinical effectiveness. Sildenafil citrate in situ forming gels were prepared using different grades of Pluronic ® (PF-68 and PF-127). Mucoadhesive polymers as sodium alginate and hydroxyethyl cellulose were added to the gels in different concentrations and the effect on gel properties was studied. The formulations were evaluated in terms of viscosity, gelation temperature (T sol-gel ), mucoadhesion properties, and in vitro drug release characteristics. Selected formulations were evaluated in women with clomiphene citrate failure due to thin endometrium (Clinicaltrial.gov identifier NCT02766725). The T sol-gel decreased with increasing PF-127 concentration and it was modulated by addition of PF-68 to be within the acceptable range of 28-37 °C. Increasing Pluronic® concentration increased gel viscosity and mucoadhesive force but decreased drug release rate. Clinical results showed that the in situ sildenafil vaginal gel significantly increased endometrial thickness and uterine blood flow with no reported side effects. Further, these results were achieved at lower frequency and duration of drug administration. Sildenafil thermosensitive vaginal gels might result in improved potential of pregnancy in anovulatory patients with clomiphene citrate failure due to thin endometrium.

  8. 21 CFR 172.755 - Stearyl monoglyceridyl citrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Stearyl monoglyceridyl citrate. 172.755 Section 172.755 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR...

  9. Sildenafil citrate and uteroplacental perfusion in fetal growth restriction

    PubMed Central

    Dastjerdi, Marzieh Vahid; Hosseini, Sayedehafagh; Bayani, Leila

    2012-01-01

    Background: To determine whether the phosphodiesterase type 5 inhibitor, Sildenafil citrate, affects uteroplacental perfusion. Materials and Methods: Based on a randomized double-blinded and placebo-controlled trial, forty one pregnant women with documented intrauterine growth retardation at 24-37 weeks of gestation were evaluated for the effect of a single dose of Sildenafil citrate on uteroplacental circulation as determined by Doppler ultrasound study of the umbilical and middle cerebral arteries. Statistical analysis included χ2-test to compare proportions, and independent-samples t-test and paired student's t-test to compare continuous variables. Results: Sildenafil group fetuses demonstrated a significant decrease in systolic/diastolic ratios (0.60 [SD 0.40] [95% Cl 0.37-0.84], P=0.000), and pulsatility index (0.12 [SD 0.15] [95% Cl 0.02-0.22], P=0.019) for the umbilical artery and a significant increase in middle cerebral artery pulsatility index (MCA PI) (0.51 [SD 0.60] [95% Cl 0.16-0.85], P=0.008). Conclusion: Doppler velocimetry index values reflect decreased placental bed vascular resistance after Sildenafil. Sildenafil citrate can improve fetoplacental perfusion in pregnancies complicated by intrauterine growth restriction. It could be a potential therapeutic strategy to improve uteroplacental blood flow in pregnancies with fetal growth restriction (FGR). PMID:23798922

  10. Sildenafil citrate for the management of fetal growth restriction and oligohydramnios

    PubMed Central

    Choudhary, Rana; Desai, Kavita; Parekh, Hetal; Ganla, Kedar

    2016-01-01

    Fetal growth restriction (FGR) and preeclampsia are the major causes of neonatal morbidity and mortality, which affect up to 8% of all pregnancies. The pathogenesis in FGR is an abnormal trophoblastic invasion leading to compromised uteroplacental circulation. However, in spite of this understanding and identification of high-risk patients, the management options are limited. There are some new studies which have demonstrated the role of sildenafil citrate in improving vasodilatation of small myometrial vessels and therefore improvement in amniotic fluid index, fetal weight, and even uterine and umbilical artery Doppler patterns. We report here the case of a 31-year-old female with infertility and preconceptional thin endometrium responding well to sildenafil citrate, followed by conception. However, she presented with an early-onset FGR at 26 weeks of gestation, and again after treatment with sildenafil citrate, showed improvement in amniotic fluid index and fetal weight, finally resulting in delivery of a full-term healthy baby with uneventful neonatal course. PMID:27563258

  11. 21 CFR 181.29 - Stabilizers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    .... Ammonium citrate. Ammonium potassium hydrogen phosphate. Calcium glycerophosphate. Calcium phosphate.... Calcium stearate. Disodium hydrogen phosphate. Magnesium glycerophosphate. Magnesium stearate. Magnesium...

  12. Phosphorylation at S384 regulates the activity of the TaALMT1 malate transporter that underlies aluminum resistance in wheat

    USDA-ARS?s Scientific Manuscript database

    In this study we examined the role of protein phosphorylation & dephosphorylation in the transport properties of the wheat root malate efflux transporter underlying Al resistance, TaALMT1. Preincubation of Xenopus laevis oocytes expressing TaALMT1 with protein kinase inhibitors (K252a and staurospo...

  13. Effects of extracellular calcium on viability and osteogenic differentiation of bone marrow stromal cells in vitro.

    PubMed

    Cheng, Shaowen; Wang, Wei; Lin, Zhongqin; Zhou, Ping; Zhang, Xiaolei; Zhang, Wei; Chen, Qingyu; Kou, Dongquan; Ying, Xiaozhou; Shen, Yue; Cheng, Xiaojie; Yu, Ziming; Peng, Lei; Lu, Chuanzhu

    2013-09-01

    Bone marrow stromal cells (BMSCs) have been extensively used for tissue engineering. However, the effect of Ca(2+) on the viability and osteogenic differentiation of BMSCs has yet to be evaluated. To determine the dose-dependent effect of Ca(2+) on viability and osteogenesis of BMSCs in vitro, BMSCs were cultured in calcium-free DMEM medium supplemented with various concentrations of Ca(2+) (0, 1, 2, 3, 4, and 5 mM) from calcium citrate. Cell viability was analyzed by MTT assay and osteogenic differentiation was evaluated by alkaline phosphatase (ALP) assay, Von Kossa staining, and real-time PCR. Ca(2+) stimulated BMSCs viability in a dose-dependent manner. At slightly higher concentrations (4 and 5 mM) in the culture, Ca(2+) significantly inhibited the activity of ALP on days 7 and 14 (P < 0.01 or P < 0.05), significantly suppressed collagen synthesis (P < 0.01 or P < 0.05), and significantly elevated calcium deposition (P < 0.01) and mRNA levels of osteocalcin (P < 0.01 or P < 0.05) and osteopontin (P < 0.01 or P < 0.05). Therefore, elevated concentrations of extracellular calcium may promote cell viability and late-stage osteogenic differentiation, but may suppress early-stage osteogenic differentiation in BMSCs.

  14. Secreted Citrate Serves as Iron Carrier for the Marine Pathogen Photobacterium damselae subsp damselae

    PubMed Central

    Balado, Miguel; Puentes, Beatriz; Couceiro, Lucía; Fuentes-Monteverde, Juan C.; Rodríguez, Jaime; Osorio, Carlos R.; Jiménez, Carlos; Lemos, Manuel L.

    2017-01-01

    Photobacterium damselae subsp damselae (Pdd) is a Vibrionaceae that has a wide pathogenic potential against many marine animals and also against humans. Some strains of this bacterium acquire iron through the siderophore vibrioferrin. However, there are virulent strains that do not produce vibrioferrin, but they still give a strong positive reaction in the CAS test for siderophore production. In an in silico search on the genome sequences of this type of strains we could not find any ORF which could be related to a siderophore system. To identify genes that could encode a siderophore-mediated iron acquisition system we used a mini-Tn10 transposon random mutagenesis approach. From more than 1,400 mutants examined, we could isolate a mutant (BP53) that showed a strong CAS reaction independently of the iron levels of the medium. In this mutant the transposon was inserted into the idh gene, which encodes an isocitrate dehydrogenase that participates in the tricarboxylic acid cycle. The mutant did not show any growth impairment in rich or minimal media, but it accumulated a noticeable amount of citrate (around 7 mM) in the culture medium, irrespective of the iron levels. The parental strain accumulated citrate, but in an iron-regulated fashion, being citrate levels 5–6 times higher under iron restricted conditions. In addition, a null mutant deficient in citrate synthase showed an impairment for growth at high concentrations of iron chelators, and showed almost no reaction in the CAS test. Chemical analysis by liquid chromatography of the iron-restricted culture supernatants resulted in a CAS-positive fraction with biological activity as siderophore. HPLC purification of that fraction yielded a pure compound which was identified as citrate from its MS and NMR spectral data. Although the production of another citrate-based compound with siderophore activity cannot be ruled out, our results suggest that Pdd secretes endogenous citrate and use it for iron scavenging from

  15. pH-specific synthesis and spectroscopic, structural, and magnetic studies of a chromium(III)-citrate species. Aqueous solution speciation of the binary chromium(III)-citrate system.

    PubMed

    Gabriel, C; Raptopoulou, C P; Terzis, A; Tangoulis, V; Mateescu, C; Salifoglou, A

    2007-04-16

    In an attempt to understand the aqueous interactions of Cr(III) with the low-molecular-mass physiological ligand citric acid, the pH-specific synthesis in the binary Cr(III)-citrate system was explored, leading to the complex (NH4)4[Cr(C6H4O7)(C6H5O7)].3H2O (1). 1 crystallizes in the monoclinic space group I2/a, with a = 19.260(10) A, b = 10.006(6) A, c = 23.400(10) A, beta = 100.73(2) degrees , V = 4431(4) A3, and Z = 8. 1 was characterized by elemental analysis and spectroscopic, structural, thermal, and magnetic susceptibility studies. Detailed aqueous speciation studies in the Cr(III)-citrate system suggest the presence of a number of species, among which is the mononuclear [Cr(C6H4O7)(C6H5O7)]4- complex, optimally present around pH approximately 5.5. The structure of 1 reveals a mononuclear octahedral complex of Cr(III) with two citrate ligands bound to it. The two citrate ligands have different deprotonation states, thus signifying the importance of the mixed deprotonation state in the coordination sphere of the Cr(III) species in aqueous speciation. The latter reveals the distribution of numerous species, including 1, for which the collective structural, spectroscopic, and magnetic data point out its physicochemical profile in the solid state and in solution. The importance of the synthetic efforts linked to 1 and the potential ramifications of Cr(III) reactivity toward both low- and high-molecular-mass biotargets are discussed in light of (a) the quest for well-characterized soluble Cr(III) species that could be detected and identified in biologically relevant fluids, (b) ongoing efforts to delineate the aqueous speciation of the Cr(III)-citrate system and its link to biotoxic Cr(III) manifestations, and (c) the synthetic utility of convenient Cr(III) precursors in the synthesis of advanced materials.

  16. Suppression of experimental cerebral malaria by disruption of malate:quinone oxidoreductase.

    PubMed

    Niikura, Mamoru; Komatsuya, Keisuke; Inoue, Shin-Ichi; Matsuda, Risa; Asahi, Hiroko; Inaoka, Daniel Ken; Kita, Kiyoshi; Kobayashi, Fumie

    2017-06-12

    Aspartate, which is converted from oxaloacetate (OAA) by aspartate aminotransferase, is considered an important precursor for purine salvage and pyrimidine de novo biosynthesis, and is thus indispensable for the growth of Plasmodium parasites at the asexual blood stages. OAA can be produced in malaria parasites via two routes: (i) from phosphoenolpyruvate (PEP) by phosphoenolpyruvate carboxylase (PEPC) in the cytosol, or (ii) from fumarate by consecutive reactions catalyzed by fumarate hydratase (FH) and malate:quinone oxidoreductase (MQO) in the mitochondria of malaria parasites. Although PEPC-deficient Plasmodium falciparum and Plasmodium berghei (rodent malaria) parasites show a growth defect, the mutant P. berghei can still cause experimental cerebral malaria (ECM) with similar dynamics to wild-type parasites. In contrast, the importance of FH and MQO for parasite viability, growth and virulence is not fully understood because no FH- and MQO-deficient P. falciparum has been established. In this study, the role of FH and MQO in the pathogenicity of asexual-blood-stage Plasmodium parasites causing cerebral malaria was examined. First, FH- and MQO-deficient parasites were generated by inserting a luciferase-expressing cassette into the fh and mqo loci in the genome of P. berghei ANKA strain. Second, the viability of FH-deficient and MQO-deficient parasites that express luciferase was determined by measuring luciferase activity, and the effect of FH or MQO deficiency on the development of ECM was examined. While the viability of FH-deficient P. berghei was comparable to that of control parasites, MQO-deficient parasites exhibited considerably reduced viability. FH activity derived from erythrocytes was also detected. This result and the absence of phenotype in FH-deficient P. berghei parasites suggest that fumarate can be metabolized to malate by host or parasite FH in P. berghei-infected erythrocytes. Furthermore, although the growth of FH- and MQO

  17. Separation of Ni and Co by D2EHPA in the Presence of Citrate Ion

    NASA Astrophysics Data System (ADS)

    Nadimi, Hamed; Haghshenas Fatmehsari, Davoud; Firoozi, Sadegh

    2017-10-01

    Recycling processes for the recovery of metallic content from the electronic wastes are environmentally friendly and economical. This paper reports a method for the recovery and separation of Ni and Co from the sulfate solution by the use of D2EHPA. In this regard, the influence of citrate ion, as a carboxylate ligand, was examined in the separation conditions of Ni and Co via D2EHPA (a poor selective extractant for Ni and Co separation). It was found that the Δ {pH}_{0.5}^{Ni-Co} (the difference between pH values corresponding to 50 pct extraction of metallic ion) increases to 1.5 at the citrate concentration of 0.05 M; this Δ {pH}_{0.5}^{Ni-Co} value is much higher than that obtained in the absence of citrate ion (0.1). Fourier Transform Infrared Spectroscopy (FT-IR) indicated that the citrate ion is co-absorbed during the metallic ions absorption by D2EHPA meaning that the metal-organic complexes contain Co/Ni and citrate ion. Also, the stoichiometric coefficients of the Ni and Co extraction reaction were proposed by applying the slope analysis method.

  18. 21 CFR 522.300 - Carfentanil citrate injection.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522... effect, use 7 milligrams of diprenorphine for each milligram of carefentanil citrate, given intravenously... animals intended for food. Do not use 30 days before or during hunting season. Do not use in animals that...

  19. 21 CFR 573.560 - Iron ammonium citrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Iron ammonium citrate. 573.560 Section 573.560 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food...

  20. 21 CFR 573.560 - Iron ammonium citrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Iron ammonium citrate. 573.560 Section 573.560 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food...