Bengtson, C Peter; Kaiser, Martin; Obermayer, Joshua; Bading, Hilmar
2013-07-01
Both synaptic N-methyl-d-aspartate (NMDA) receptors and voltage-operated calcium channels (VOCCs) have been shown to be critical for nuclear calcium signals associated with transcriptional responses to bursts of synaptic input. However the direct contribution to nuclear calcium signals from calcium influx through NMDA receptors and VOCCs has been obscured by their concurrent roles in action potential generation and synaptic transmission. Here we compare calcium responses to synaptically induced bursts of action potentials with identical bursts devoid of any synaptic contribution generated using the pre-recorded burst as the voltage clamp command input to replay the burst in the presence of blockers of action potentials or ionotropic glutamate receptors. Synapse independent replays of bursts produced nuclear calcium responses with amplitudes around 70% of their original synaptically generated signals and were abolished by the L-type VOCC blocker, verapamil. These results identify a major direct source of nuclear calcium from local L-type VOCCs whose activation is boosted by NMDA receptor dependent depolarization. The residual component of synaptically induced nuclear calcium signals which was both VOCC independent and NMDA receptor dependent showed delayed kinetics consistent with a more distal source such as synaptic NMDA receptors or internal stores. The dual requirement of NMDA receptors and L-type VOCCs for synaptic activity-induced nuclear calcium dependent transcriptional responses most likely reflects a direct somatic calcium influx from VOCCs whose activation is amplified by synaptic NMDA receptor-mediated depolarization and whose calcium signal is boosted by a delayed input from distal calcium sources mostly likely entry through NMDA receptors and release from internal stores. This article is part of a Special Issue entitled: 12th European Symposium on Calcium. Copyright © 2013 Elsevier B.V. All rights reserved.
Meredith, Rhiannon M.; van Ooyen, Arjen
2012-01-01
CA1 pyramidal neurons receive hundreds of synaptic inputs at different distances from the soma. Distance-dependent synaptic scaling enables distal and proximal synapses to influence the somatic membrane equally, a phenomenon called “synaptic democracy”. How this is established is unclear. The backpropagating action potential (BAP) is hypothesised to provide distance-dependent information to synapses, allowing synaptic strengths to scale accordingly. Experimental measurements show that a BAP evoked by current injection at the soma causes calcium currents in the apical shaft whose amplitudes decay with distance from the soma. However, in vivo action potentials are not induced by somatic current injection but by synaptic inputs along the dendrites, which creates a different excitable state of the dendrites. Due to technical limitations, it is not possible to study experimentally whether distance information can also be provided by synaptically-evoked BAPs. Therefore we adapted a realistic morphological and electrophysiological model to measure BAP-induced voltage and calcium signals in spines after Schaffer collateral synapse stimulation. We show that peak calcium concentration is highly correlated with soma-synapse distance under a number of physiologically-realistic suprathreshold stimulation regimes and for a range of dendritic morphologies. Peak calcium levels also predicted the attenuation of the EPSP across the dendritic tree. Furthermore, we show that peak calcium can be used to set up a synaptic democracy in a homeostatic manner, whereby synapses regulate their synaptic strength on the basis of the difference between peak calcium and a uniform target value. We conclude that information derived from synaptically-generated BAPs can indicate synapse location and can subsequently be utilised to implement a synaptic democracy. PMID:22719238
Distance-dependent gradient in NMDAR-driven spine calcium signals along tapering dendrites
Walker, Alison S.; Grillo, Federico; Jackson, Rachel E.; Rigby, Mark; Lowe, Andrew S.; Vizcay-Barrena, Gema; Fleck, Roland A.; Burrone, Juan
2017-01-01
Neurons receive a multitude of synaptic inputs along their dendritic arbor, but how this highly heterogeneous population of synaptic compartments is spatially organized remains unclear. By measuring N-methyl-d-aspartic acid receptor (NMDAR)-driven calcium responses in single spines, we provide a spatial map of synaptic calcium signals along dendritic arbors of hippocampal neurons and relate this to measures of synapse structure. We find that quantal NMDAR calcium signals increase in amplitude as they approach a thinning dendritic tip end. Based on a compartmental model of spine calcium dynamics, we propose that this biased distribution in calcium signals is governed by a gradual, distance-dependent decline in spine size, which we visualized using serial block-face scanning electron microscopy. Our data describe a cell-autonomous feature of principal neurons, where tapering dendrites show an inverse distribution of spine size and NMDAR-driven calcium signals along dendritic trees, with important implications for synaptic plasticity rules and spine function. PMID:28209776
Djakovic, Stevan N.; Schwarz, Lindsay A.; Barylko, Barbara; DeMartino, George N.; Patrick, Gentry N.
2009-01-01
Protein degradation via the ubiquitin proteasome system has been shown to regulate changes in synaptic strength that underlie multiple forms of synaptic plasticity. It is plausible, therefore, that the ubiquitin proteasome system is itself regulated by synaptic activity. By utilizing live-cell imaging strategies we report the rapid and dynamic regulation of the proteasome in hippocampal neurons by synaptic activity. We find that the blockade of action potentials (APs) with tetrodotoxin inhibited the activity of the proteasome, whereas the up-regulation of APs with bicuculline dramatically increased the activity of the proteasome. In addition, the regulation of the proteasome is dependent upon external calcium entry in part through N-methyl-d-aspartate receptors and L-type voltage-gated calcium channels and requires the activity of calcium/calmodulin-dependent protein kinase II (CaMKII). Using in vitro and in vivo assays we find that CaMKII stimulates proteasome activity and directly phosphorylates Rpt6, a subunit of the 19 S (PA700) subcomplex of the 26 S proteasome. Our data provide a novel mechanism whereby CaMKII may regulate the proteasome in neurons to facilitate remodeling of synaptic connections through protein degradation. PMID:19638347
Djakovic, Stevan N; Schwarz, Lindsay A; Barylko, Barbara; DeMartino, George N; Patrick, Gentry N
2009-09-25
Protein degradation via the ubiquitin proteasome system has been shown to regulate changes in synaptic strength that underlie multiple forms of synaptic plasticity. It is plausible, therefore, that the ubiquitin proteasome system is itself regulated by synaptic activity. By utilizing live-cell imaging strategies we report the rapid and dynamic regulation of the proteasome in hippocampal neurons by synaptic activity. We find that the blockade of action potentials (APs) with tetrodotoxin inhibited the activity of the proteasome, whereas the up-regulation of APs with bicuculline dramatically increased the activity of the proteasome. In addition, the regulation of the proteasome is dependent upon external calcium entry in part through N-methyl-D-aspartate receptors and L-type voltage-gated calcium channels and requires the activity of calcium/calmodulin-dependent protein kinase II (CaMKII). Using in vitro and in vivo assays we find that CaMKII stimulates proteasome activity and directly phosphorylates Rpt6, a subunit of the 19 S (PA700) subcomplex of the 26 S proteasome. Our data provide a novel mechanism whereby CaMKII may regulate the proteasome in neurons to facilitate remodeling of synaptic connections through protein degradation.
Synaptic calcium regulation in hair cells of the chicken basilar papilla.
Im, Gi Jung; Moskowitz, Howard S; Lehar, Mohammed; Hiel, Hakim; Fuchs, Paul Albert
2014-12-10
Cholinergic inhibition of hair cells occurs by activation of calcium-dependent potassium channels. A near-membrane postsynaptic cistern has been proposed to serve as a store from which calcium is released to supplement influx through the ionotropic ACh receptor. However, the time and voltage dependence of acetylcholine (ACh)-evoked potassium currents reveal a more complex relationship between calcium entry and release from stores. The present work uses voltage steps to regulate calcium influx during the application of ACh to hair cells in the chicken basilar papilla. When calcium influx was terminated at positive membrane potential, the ACh-evoked potassium current decayed exponentially over ∼100 ms. However, at negative membrane potentials, this current exhibited a secondary rise in amplitude that could be eliminated by dihydropyridine block of the voltage-gated calcium channels of the hair cell. Calcium entering through voltage-gated channels may transit through the postsynaptic cistern, since ryanodine and sarcoendoplasmic reticulum calcium-ATPase blockers altered the time course and magnitude of this secondary, voltage-dependent contribution to ACh-evoked potassium current. Serial section electron microscopy showed that efferent and afferent synaptic structures are juxtaposed, supporting the possibility that voltage-gated influx at afferent ribbon synapses influences calcium homeostasis during long-lasting cholinergic inhibition. In contrast, spontaneous postsynaptic currents ("minis") resulting from stochastic efferent release of ACh were made briefer by ryanodine, supporting the hypothesis that the synaptic cistern serves primarily as a calcium barrier and sink during low-level synaptic activity. Hypolemmal cisterns such as that at the efferent synapse of the hair cell can play a dynamic role in segregating near-membrane calcium for short-term and long-term signaling. Copyright © 2014 the authors 0270-6474/14/3416688-10$15.00/0.
Synaptic Calcium Regulation in Hair Cells of the Chicken Basilar Papilla
Im, Gi Jung; Moskowitz, Howard S.; Lehar, Mohammed; Hiel, Hakim
2014-01-01
Cholinergic inhibition of hair cells occurs by activation of calcium-dependent potassium channels. A near-membrane postsynaptic cistern has been proposed to serve as a store from which calcium is released to supplement influx through the ionotropic ACh receptor. However, the time and voltage dependence of acetylcholine (ACh)-evoked potassium currents reveal a more complex relationship between calcium entry and release from stores. The present work uses voltage steps to regulate calcium influx during the application of ACh to hair cells in the chicken basilar papilla. When calcium influx was terminated at positive membrane potential, the ACh-evoked potassium current decayed exponentially over ∼100 ms. However, at negative membrane potentials, this current exhibited a secondary rise in amplitude that could be eliminated by dihydropyridine block of the voltage-gated calcium channels of the hair cell. Calcium entering through voltage-gated channels may transit through the postsynaptic cistern, since ryanodine and sarcoendoplasmic reticulum calcium-ATPase blockers altered the time course and magnitude of this secondary, voltage-dependent contribution to ACh-evoked potassium current. Serial section electron microscopy showed that efferent and afferent synaptic structures are juxtaposed, supporting the possibility that voltage-gated influx at afferent ribbon synapses influences calcium homeostasis during long-lasting cholinergic inhibition. In contrast, spontaneous postsynaptic currents (“minis”) resulting from stochastic efferent release of ACh were made briefer by ryanodine, supporting the hypothesis that the synaptic cistern serves primarily as a calcium barrier and sink during low-level synaptic activity. Hypolemmal cisterns such as that at the efferent synapse of the hair cell can play a dynamic role in segregating near-membrane calcium for short-term and long-term signaling. PMID:25505321
Ataei, Negar; Sabzghabaee, Ali Mohammad; Movahedian, Ahmad
2015-01-01
Background: Long-term memory is based on synaptic plasticity, a series of biochemical mechanisms include changes in structure and proteins of brain's neurons. In this article, we systematically reviewed the studies that indicate calcium/calmodulin kinase II (CaMKII) is a ubiquitous molecule among different enzymes involved in human long-term memory and the main downstream signaling pathway of long-term memory. Methods: All of the observational, case–control and review studies were considered and evaluated by the search engines PubMed, Cochrane Central Register of Controlled Trials and ScienceDirect Scopus between 1990 and February 2015. We did not carry out meta-analysis. Results: At the first search, it was fined 1015 articles which included “synaptic plasticity” OR “neuronal plasticity” OR “synaptic density” AND memory AND “molecular mechanism” AND “calcium/calmodulin-dependent protein kinase II” OR CaMKII as the keywords. A total of 335 articles were duplicates in the databases and eliminated. A total of 680 title articles were evaluated. Finally, 40 articles were selected as reference. Conclusions: The studies have shown the most important intracellular signal of long-term memory is calcium-dependent signals. Calcium linked calmodulin can activate CaMKII. After receiving information for learning and memory, CaMKII is activated by Glutamate, the most important neurotransmitter for memory-related plasticity. Glutamate activates CaMKII and it plays some important roles in synaptic plasticity modification and long-term memory. PMID:26445635
T-type calcium channels in synaptic plasticity
Lambert, Régis C.
2017-01-01
ABSTRACT The role of T-type calcium currents is rarely considered in the extensive literature covering the mechanisms of long-term synaptic plasticity. This situation reflects the lack of suitable T-type channel antagonists that till recently has hampered investigations of the functional roles of these channels. However, with the development of new pharmacological and genetic tools, a clear involvement of T-type channels in synaptic plasticity is starting to emerge. Here, we review a number of studies showing that T-type channels participate to numerous homo- and hetero-synaptic plasticity mechanisms that involve different molecular partners and both pre- and post-synaptic modifications. The existence of T-channel dependent and independent plasticity at the same synapse strongly suggests a subcellular localization of these channels and their partners that allows specific interactions. Moreover, we illustrate the functional importance of T-channel dependent synaptic plasticity in neocortex and thalamus. PMID:27653665
Bordji, Karim; Becerril-Ortega, Javier; Nicole, Olivier; Buisson, Alain
2010-11-24
Calcium is a key mediator controlling essential neuronal functions depending on electrical activity. Altered neuronal calcium homeostasis affects metabolism of amyloid precursor protein (APP), leading to increased production of β-amyloid (Aβ), and contributing to the initiation of Alzheimer's disease (AD). A linkage between excessive glutamate receptor activation and neuronal Aβ release was established, and recent reports suggest that synaptic and extrasynaptic NMDA receptor (NMDAR) activation may have distinct consequences in plasticity, gene regulation, and neuronal death. Here, we report for the first time that prolonged activation of extrasynaptic NMDAR, but not synaptic NMDAR, dramatically increased the neuronal production of Aβ. This effect was preceded by a shift from APP695 to Kunitz protease inhibitory domain (KPI) containing APPs (KPI-APPs), isoforms exhibiting an important amyloidogenic potential. Conversely, after synaptic NMDAR activation, we failed to detect any KPI-APP expression and neuronal Aβ production was not modified. Calcium imaging data showed that intracellular calcium concentration after extrasynaptic NMDAR stimulation was lower than after synaptic activation. This suggests distinct signaling pathways for each pool of receptors. We found that modification of neuronal APP expression pattern triggered by extrasynaptic NMDAR activation was regulated at an alternative splicing level involving calcium-/calmodulin-dependent protein kinase IV, but overall APP expression remained identical. Finally, memantine dose-dependently inhibited extrasynaptic NMDAR-induced KPI-APPs expression as well as neuronal Aβ release. Altogether, these data suggest that a chronic activation of extrasynaptic NMDAR promotes amyloidogenic KPI-APP expression leading to neuronal Aβ release, representing a causal risk factor for developing AD.
Targeting Chronic and Neuropathic Pain: The N-type Calcium Channel Comes of Age
Snutch, Terrance P.
2005-01-01
Summary: The rapid entry of calcium into cells through activation of voltage-gated calcium channels directly affects membrane potential and contributes to electrical excitability, repetitive firing patterns, excitation-contraction coupling, and gene expression. At presynaptic nerve terminals, calcium entry is the initial trigger mediating the release of neurotransmitters via the calcium-dependent fusion of synaptic vesicles and involves interactions with the soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex of synaptic release proteins. Physiological factors or drugs that affect either presynaptic calcium channel activity or the efficacy of calcium-dependent vesicle fusion have dramatic consequences on synaptic transmission, including that mediating pain signaling. The N-type calcium channel exhibits a number of characteristics that make it an attractive target for therapeutic intervention concerning chronic and neuropathic pain conditions. Within the past year, both U.S. and European regulatory agencies have approved the use of the cationic peptide Prialt for the treatment of intractable pain. Prialt is the first N-type calcium channel blocker approved for clinical use and represents the first new proven mechanism of action for chronic pain intervention in many years. The present review discusses the rationale behind targeting the N-type calcium channel, some of the limitations confronting the widespread clinical application of Prialt, and outlines possible strategies to improve upon Prialt's relatively narrow therapeutic window. PMID:16489373
Muñoz, Pablo; Humeres, Alexis; Elgueta, Claudio; Kirkwood, Alfredo; Hidalgo, Cecilia; Núñez, Marco T.
2011-01-01
Iron deficiency hinders hippocampus-dependent learning processes and impairs cognitive performance, but current knowledge on the molecular mechanisms underlying the unique role of iron in neuronal function is sparse. Here, we investigated the participation of iron on calcium signal generation and ERK1/2 stimulation induced by the glutamate agonist N-methyl-d-aspartate (NMDA), and the effects of iron addition/chelation on hippocampal basal synaptic transmission and long-term potentiation (LTP). Addition of NMDA to primary hippocampal cultures elicited persistent calcium signals that required functional NMDA receptors and were independent of calcium influx through L-type calcium channels or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors; NMDA also promoted ERK1/2 phosphorylation and nuclear translocation. Iron chelation with desferrioxamine or inhibition of ryanodine receptor (RyR)-mediated calcium release with ryanodine-reduced calcium signal duration and prevented NMDA-induced ERK1/2 activation. Iron addition to hippocampal neurons readily increased the intracellular labile iron pool and stimulated reactive oxygen species production; the antioxidant N-acetylcysteine or the hydroxyl radical trapper MCI-186 prevented these responses. Iron addition to primary hippocampal cultures kept in calcium-free medium elicited calcium signals and stimulated ERK1/2 phosphorylation; RyR inhibition abolished these effects. Iron chelation decreased basal synaptic transmission in hippocampal slices, inhibited iron-induced synaptic stimulation, and impaired sustained LTP in hippocampal CA1 neurons induced by strong stimulation. In contrast, iron addition facilitated sustained LTP induction after suboptimal tetanic stimulation. Together, these results suggest that hippocampal neurons require iron to generate RyR-mediated calcium signals after NMDA receptor stimulation, which in turn promotes ERK1/2 activation, an essential step of sustained LTP. PMID:21296883
Gardzinski, Peter; Lee, David W K; Fei, Guang-He; Hui, Kwokyin; Huang, Guan J; Sun, Hong-Shuo; Feng, Zhong-Ping
2007-01-01
Synaptic vesicles aggregate at the presynaptic terminal during synapse formation via mechanisms that are poorly understood. Here we have investigated the role of the putative calcium sensor synaptotagmin I in vesicle aggregation during the formation of soma–soma synapses between identified partner cells using a simple in vitro synapse model in the mollusc Lymnaea stagnalis. Immunocytochemistry, optical imaging and electrophysiological recording techniques were used to monitor synapse formation and vesicle localization. Within 6 h, contact between appropriate synaptic partner cells up-regulated global synaptotagmin I expression, and induced a localized aggregation of synaptotagmin I at the contact site. Cell contacts between non-synaptic partner cells did not affect synaptotagmin I expression. Application of an human immunodeficiency virus type-1 transactivator (HIV-1 TAT)-tagged peptide corresponding to loop 3 of the synaptotagmin I C2A domain prevented synaptic vesicle aggregation and synapse formation. By contrast, a TAT-tagged peptide containing the calcium-binding motif of the C2B domain did not affect synaptic vesicle aggregation or synapse formation. Calcium imaging with Fura-2 demonstrated that TAT–C2 peptides did not alter either basal or evoked intracellular calcium levels. These results demonstrate that contact with an appropriate target cell is necessary to initiate synaptic vesicle aggregation during nascent synapse formation and that the initial aggregation of synaptic vesicles is dependent on loop 3 of the C2A domain of synaptotagmin I. PMID:17317745
Xu, Qiuling; Liu, Tao; Chen, Shuping; Gao, Yonghui; Wang, Junying; Qiao, Lina; Liu, Junling
2012-01-01
In the present study, we examined the analgesic effect of repeated electroacupuncture at bilateral Zusanli (ST36) and Yanglingquan (GB34) once a day for 14 consecutive days in a rat model of chronic sciatic nerve constriction injury-induced neuropathic pain. In addition, concomitant changes in calcium/calmodulin-dependent protein kinase II expression and synaptic ultrastructure of neurons in the hippocampal CA3 region were examined. The thermal pain threshold (paw withdrawal latency) was increased significantly in both groups at 2 weeks after electroacupuncture intervention compared with 2 days of electroacupuncture. In ovariectomized rats with chronic constriction injury, the analgesic effect was significantly reduced. Electroacupuncture for 2 weeks significantly diminished the injury-induced increase in synaptic cleft width and thinning of the postsynaptic density, and it significantly suppressed the down-regulation of intracellular calcium/calmodulin-dependent protein kinase II expression in the hippocampal CA3 region. Repeated electroacupuncture intervention had a cumulative analgesic effect on injury-induced neuropathic pain reactions, and it led to synaptic remodeling of hippocampal neurons and upregulated calcium/calmodulin-dependent protein kinase II expression in the hippocampal CA3 region. PMID:25657670
Freeman, Daniel K.; Jeng, Jed S.; Kelly, Shawn K.; Hartveit, Espen; Fried, Shelley I.
2011-01-01
Extracellular electric stimulation with sinusoidal waveforms has been shown to allow preferential activation of individual types of retinal neurons by varying stimulus frequency. It is important to understand the mechanisms underlying this frequency dependence as a step towards improving methods of preferential activation. In order to elucidate these mechanisms, we implemented a morphologically realistic model of a retinal bipolar cell and measured the response to extracellular stimulation with sinusoidal waveforms. We compared the frequency response of a passive membrane model to the kinetics of voltage-gated calcium channels that mediate synaptic release. The passive electrical properties of the membrane exhibited lowpass filtering with a relatively high cutoff frequency (nominal value = 717 Hz). This cutoff frequency was dependent on intra-axonal resistance, with shorter and wider axons yielding higher cutoff frequencies. However, we found that the cutoff frequency of bipolar cell synaptic release was primarily limited by the relatively slow opening kinetics of Land T-type calcium channels. The cutoff frequency of calcium currents depended nonlinearly on stimulus amplitude, but remained lower than the cutoff frequency of the passive membrane model for a large range of membrane potential fluctuations. These results suggest that while it may be possible to modulate the membrane potential of bipolar cells over a wide range of stimulus frequencies, synaptic release will only be initiated at the lower end of this range. PMID:21628768
Owen, Scott F; Berke, Joshua D; Kreitzer, Anatol C
2018-02-08
Fast-spiking interneurons (FSIs) are a prominent class of forebrain GABAergic cells implicated in two seemingly independent network functions: gain control and network plasticity. Little is known, however, about how these roles interact. Here, we use a combination of cell-type-specific ablation, optogenetics, electrophysiology, imaging, and behavior to describe a unified mechanism by which striatal FSIs control burst firing, calcium influx, and synaptic plasticity in neighboring medium spiny projection neurons (MSNs). In vivo silencing of FSIs increased bursting, calcium transients, and AMPA/NMDA ratios in MSNs. In a motor sequence task, FSI silencing increased the frequency of calcium transients but reduced the specificity with which transients aligned to individual task events. Consistent with this, ablation of FSIs disrupted the acquisition of striatum-dependent egocentric learning strategies. Together, our data support a model in which feedforward inhibition from FSIs temporally restricts MSN bursting and calcium-dependent synaptic plasticity to facilitate striatum-dependent sequence learning. Copyright © 2018 Elsevier Inc. All rights reserved.
Li, Xu-Hui; Song, Qian; Chen, Tao; Zhuo, Min
2017-01-01
Calcium signaling is critical for synaptic transmission and plasticity. N-methyl-D-aspartic acid (NMDA) receptors play a key role in synaptic potentiation in the anterior cingulate cortex. Most previous studies of calcium signaling focus on hippocampal neurons, little is known about the activity-induced calcium signals in the anterior cingulate cortex. In the present study, we show that NMDA receptor-mediated postsynaptic calcium signals induced by different synaptic stimulation in anterior cingulate cortex pyramidal neurons. Single and multi-action potentials evoked significant suprathreshold Ca2+ increases in somas and spines. Both NMDA receptors and voltage-gated calcium channels contributed to this increase. Postsynaptic Ca2+signals were induced by puff-application of glutamate, and a NMDA receptor antagonist AP5 blocked these signals in both somas and spines. Finally, long-term potentiation inducing protocols triggered postsynaptic Ca2+ influx, and these influx were NMDA receptor dependent. Our results provide the first study of calcium signals in the anterior cingulate cortex and demonstrate that NMDA receptors play important roles in postsynaptic calcium signals in anterior cingulate cortex pyramidal neurons. PMID:28726541
Dynamic modulation of spike timing-dependent calcium influx during corticostriatal upstates
Evans, R. C.; Maniar, Y. M.
2013-01-01
The striatum of the basal ganglia demonstrates distinctive upstate and downstate membrane potential oscillations during slow-wave sleep and under anesthetic. The upstates generate calcium transients in the dendrites, and the amplitude of these calcium transients depends strongly on the timing of the action potential (AP) within the upstate. Calcium is essential for synaptic plasticity in the striatum, and these large calcium transients during the upstates may control which synapses undergo plastic changes. To investigate the mechanisms that underlie the relationship between calcium and AP timing, we have developed a realistic biophysical model of a medium spiny neuron (MSN). We have implemented sophisticated calcium dynamics including calcium diffusion, buffering, and pump extrusion, which accurately replicate published data. Using this model, we found that either the slow inactivation of dendritic sodium channels (NaSI) or the calcium inactivation of voltage-gated calcium channels (CDI) can cause high calcium corresponding to early APs and lower calcium corresponding to later APs. We found that only CDI can account for the experimental observation that sensitivity to AP timing is dependent on NMDA receptors. Additional simulations demonstrated a mechanism by which MSNs can dynamically modulate their sensitivity to AP timing and show that sensitivity to specifically timed pre- and postsynaptic pairings (as in spike timing-dependent plasticity protocols) is altered by the timing of the pairing within the upstate. These findings have implications for synaptic plasticity in vivo during sleep when the upstate-downstate pattern is prominent in the striatum. PMID:23843436
Doyle, Sukhjeevan; Pyndiah, Slovénie; De Gois, Stéphanie; Erickson, Jeffrey D
2010-05-07
Homeostatic scaling of glutamatergic and GABAergic transmission is triggered by prolonged alterations in synaptic neuronal activity. We have previously described a presynaptic mechanism for synaptic homeostasis and plasticity that involves scaling the level of vesicular glutamate (VGLUT1) and gamma-aminobutyric acid (GABA) (VGAT) transporter biosynthesis. These molecular determinants of vesicle filling and quantal size are regulated by neuronal activity in an opposite manner and bi-directionally. Here, we report that a striking induction of VGLUT2 mRNA and synaptic protein is triggered by a prolonged increase in glutamatergic synaptic activity in mature neocortical neuronal networks in vitro together with two determinants of inhibitory synaptic strength, the neuronal activity-regulated pentraxin (Narp), and glutamate decarboxylase (GAD65). Activity-dependent induction of VGLUT2 and Narp exhibits a similar intermediate-early gene response that is blocked by actinomycin D and tetrodotoxin, by inhibitors of ionotropic glutamate receptors and L-type voltage-gated calcium channels, and is dependent on downstream signaling via calmodulin, calcium/calmodulin-dependent protein kinase (CaMK) and extracellular signal-regulated kinase 1/2 (ERK1/2). The co-induction of VGLUT2 and Narp triggered by prolonged gamma-aminobutyric acid type A receptor blockade is independent of brain-derived nerve growth factor and TrkB receptor signaling. VGLUT2 protein induction occurs on a subset of cortically derived synaptic vesicles in excitatory synapses on somata and dendritic processes of multipolar GABAergic interneurons, recognized sites for the clustering of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate glutamate receptors by Narp. We propose that VGLUT2 and Narp induction by excitation-transcription coupling leads to increased glutamatergic transmission at synapses on GABAergic inhibitory feedback neurons as part of a coordinated program of Ca(2+)-signal transcription involved in mechanisms of homeostatic plasticity after prolonged hyperactivity.
Bayesian analysis of the kinetics of quantal transmitter secretion at the neuromuscular junction.
Saveliev, Anatoly; Khuzakhmetova, Venera; Samigullin, Dmitry; Skorinkin, Andrey; Kovyazina, Irina; Nikolsky, Eugeny; Bukharaeva, Ellya
2015-10-01
The timing of transmitter release from nerve endings is considered nowadays as one of the factors determining the plasticity and efficacy of synaptic transmission. In the neuromuscular junction, the moments of release of individual acetylcholine quanta are related to the synaptic delays of uniquantal endplate currents recorded under conditions of lowered extracellular calcium. Using Bayesian modelling, we performed a statistical analysis of synaptic delays in mouse neuromuscular junction with different patterns of rhythmic nerve stimulation and when the entry of calcium ions into the nerve terminal was modified. We have obtained a statistical model of the release timing which is represented as the summation of two independent statistical distributions. The first of these is the exponentially modified Gaussian distribution. The mixture of normal and exponential components in this distribution can be interpreted as a two-stage mechanism of early and late periods of phasic synchronous secretion. The parameters of this distribution depend on both the stimulation frequency of the motor nerve and the calcium ions' entry conditions. The second distribution was modelled as quasi-uniform, with parameters independent of nerve stimulation frequency and calcium entry. Two different probability density functions for the distribution of synaptic delays suggest at least two independent processes controlling the time course of secretion, one of them potentially involving two stages. The relative contribution of these processes to the total number of mediator quanta released depends differently on the motor nerve stimulation pattern and on calcium ion entry into nerve endings.
Zhang, Sheng-Jia; Zou, Ming; Lu, Li; Lau, David; Ditzel, Désirée A. W.; Delucinge-Vivier, Celine; Aso, Yoshinori; Descombes, Patrick; Bading, Hilmar
2009-01-01
Synaptic activity can boost neuroprotection through a mechanism that requires synapse-to-nucleus communication and calcium signals in the cell nucleus. Here we show that in hippocampal neurons nuclear calcium is one of the most potent signals in neuronal gene expression. The induction or repression of 185 neuronal activity-regulated genes is dependent upon nuclear calcium signaling. The nuclear calcium-regulated gene pool contains a genomic program that mediates synaptic activity-induced, acquired neuroprotection. The core set of neuroprotective genes consists of 9 principal components, termed Activity-regulated Inhibitor of Death (AID) genes, and includes Atf3, Btg2, GADD45β, GADD45γ, Inhibin β-A, Interferon activated gene 202B, Npas4, Nr4a1, and Serpinb2, which strongly promote survival of cultured hippocampal neurons. Several AID genes provide neuroprotection through a common process that renders mitochondria more resistant to cellular stress and toxic insults. Stereotaxic delivery of AID gene-expressing recombinant adeno-associated viruses to the hippocampus confers protection in vivo against seizure-induced brain damage. Thus, treatments that enhance nuclear calcium signaling or supplement AID genes represent novel therapies to combat neurodegenerative conditions and neuronal cell loss caused by synaptic dysfunction, which may be accompanied by a deregulation of calcium signal initiation and/or propagation to the cell nucleus. PMID:19680447
Anstötz, Max; Lee, Sun Kyong; Maccaferri, Gianmaria
2018-05-28
By taking advantage of calcium imaging and electrophysiology, we provide direct pharmacological evidence for the functional expression of TRPV1 channels in hippocampal Cajal-Retzius cells. Application of the TRPV1 activator capsaicin powerfully enhances spontaneous synaptic transmission in the hippocampal layers that are innervated by the axons of Cajal-Retzius cells. Capsaicin-triggered calcium responses and membrane currents in Cajal-Retzius cells, as well as layer-specific modulation of spontaneous synaptic transmission, are absent when the drug is applied to slices prepared from TRPV1 - / - animals. We discuss the implications of the functional expression of TRPV1 channels in Cajal-Retzius cells and of the observed TRPV1-dependent layer-specific modulation of synaptic transmission for physiological and pathological network processing. The vanilloid receptor TRPV1 forms complex polymodal channels that are expressed by sensory neurons and play a critical role in nociception. Their distribution pattern and functions in cortical circuits are, however, much less understood. Although TRPV1 reporter mice have suggested that, in the hippocampus, TRPV1 is predominantly expressed by Cajal-Retzius cells (CRs), direct functional evidence is missing. As CRs powerfully excite GABAergic interneurons of the molecular layers, TRPV1 could play important roles in the regulation of layer-specific processing. Here, we have taken advantage of calcium imaging with the genetically encoded indicator GCaMP6s and patch-clamp techniques to study the responses of hippocampal CRs to the activation of TRPV1 by capsaicin, and have compared the effect of TRPV1 stimulation on synaptic transmission in layers innervated or non-innervated by CRs. Capsaicin induced both calcium responses and membrane currents in ∼50% of the cell tested. Neither increases of intracellular calcium nor whole-cell currents were observed in the presence of the TRPV1 antagonists capsazepine/Ruthenium Red or in slices prepared from TRPV1 knockout mice. We also report a powerful TRPV1-dependent enhancement of spontaneous synaptic transmission onto interneurons with dendritic trees confined to the layers innervated by CRs. In conclusion, our work establishes that functional TRPV1 is expressed by a significant fraction of CRs and we propose that TRPV1 activity may regulate layer-specific synaptic transmission in the hippocampus. Lastly, as CR density decreases during postnatal development, we also propose that functional TRPV1 receptors may be related to mechanisms involved in CR progressive reduction by calcium-dependent toxicity/apoptosis. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.
NASA Astrophysics Data System (ADS)
Ferron, Laurent; Nieto-Rostro, Manuela; Cassidy, John S.; Dolphin, Annette C.
2014-04-01
Fragile X syndrome (FXS), the most common heritable form of mental retardation, is characterized by synaptic dysfunction. Synaptic transmission depends critically on presynaptic calcium entry via voltage-gated calcium (CaV) channels. Here we show that the functional expression of neuronal N-type CaV channels (CaV2.2) is regulated by fragile X mental retardation protein (FMRP). We find that FMRP knockdown in dorsal root ganglion neurons increases CaV channel density in somata and in presynaptic terminals. We then show that FMRP controls CaV2.2 surface expression by targeting the channels to the proteasome for degradation. The interaction between FMRP and CaV2.2 occurs between the carboxy-terminal domain of FMRP and domains of CaV2.2 known to interact with the neurotransmitter release machinery. Finally, we show that FMRP controls synaptic exocytosis via CaV2.2 channels. Our data indicate that FMRP is a potent regulator of presynaptic activity, and its loss is likely to contribute to synaptic dysfunction in FXS.
Li, Lu; Stefan, Melanie I.; Le Novère, Nicolas
2012-01-01
NMDA receptor dependent long-term potentiation (LTP) and long-term depression (LTD) are two prominent forms of synaptic plasticity, both of which are triggered by post-synaptic calcium elevation. To understand how calcium selectively stimulates two opposing processes, we developed a detailed computational model and performed simulations with different calcium input frequencies, amplitudes, and durations. We show that with a total amount of calcium ions kept constant, high frequencies of calcium pulses stimulate calmodulin more efficiently. Calcium input activates both calcineurin and Ca2+/calmodulin-dependent protein kinase II (CaMKII) at all frequencies, but increased frequencies shift the relative activation from calcineurin to CaMKII. Irrespective of amplitude and duration of the inputs, the total amount of calcium ions injected adjusts the sensitivity of the system to calcium input frequencies. At a given frequency, the quantity of CaMKII activated is proportional to the total amount of calcium. Thus, an input of a small amount of calcium at high frequencies can induce the same activation of CaMKII as a larger amount, at lower frequencies. Finally, the extent of activation of CaMKII signals with high calcium frequency is further controlled by other factors, including the availability of calmodulin, and by the potency of phosphatase inhibitors. PMID:22962589
Masters or slaves? Vesicle release machinery and the regulation of presynaptic calcium channels.
Jarvis, Scott E; Zamponi, Gerald W
2005-05-01
Calcium entry through presynaptic voltage-gated calcium channels is essential for neurotransmitter release. The two major types of presynaptic calcium channels contain a synaptic protein interaction site that physically interacts with synaptic vesicle release proteins. This is thought to tighten the coupling between the sources of calcium entry and the neurotransmitter release machinery. Conversely, the binding of synaptic proteins to presynaptic calcium channels regulates calcium channel activity. Hence, presynaptic calcium channels act not only as the masters of the synaptic release process, but also as key targets for feedback inhibition.
Modulation of CaV2.1 channels by neuronal calcium sensor-1 induces short-term synaptic facilitation.
Yan, Jin; Leal, Karina; Magupalli, Venkat G; Nanou, Evanthia; Martinez, Gilbert Q; Scheuer, Todd; Catterall, William A
2014-11-01
Facilitation and inactivation of P/Q-type Ca2+ currents mediated by Ca2+/calmodulin binding to Ca(V)2.1 channels contribute to facilitation and rapid depression of synaptic transmission, respectively. Other calcium sensor proteins displace calmodulin from its binding site and differentially modulate P/Q-type Ca2 + currents, resulting in diverse patterns of short-term synaptic plasticity. Neuronal calcium sensor-1 (NCS-1, frequenin) has been shown to enhance synaptic facilitation, but the underlying mechanism is unclear. We report here that NCS-1 directly interacts with IQ-like motif and calmodulin-binding domain in the C-terminal domain of Ca(V)2.1 channel. NCS-1 reduces Ca2 +-dependent inactivation of P/Q-type Ca2+ current through interaction with the IQ-like motif and calmodulin-binding domain without affecting peak current or activation kinetics. Expression of NCS-1 in presynaptic superior cervical ganglion neurons has no effect on synaptic transmission, eliminating effects of this calcium sensor protein on endogenous N-type Ca2+ currents and the endogenous neurotransmitter release machinery. However, in superior cervical ganglion neurons expressing wild-type Ca(V)2.1 channels, co-expression of NCS-1 induces facilitation of synaptic transmission in response to paired pulses and trains of depolarizing stimuli, and this effect is lost in Ca(V)2.1 channels with mutations in the IQ-like motif and calmodulin-binding domain. These results reveal that NCS-1 directly modulates Ca(V)2.1 channels to induce short-term synaptic facilitation and further demonstrate that CaS proteins are crucial in fine-tuning short-term synaptic plasticity.
Synaptic transmission at the endbulb of Held deteriorates during age‐related hearing loss
Manis, Paul B.
2016-01-01
Key points Synaptic transmission at the endbulb of Held was assessed by whole‐cell patch clamp recordings from auditory neurons in mature (2–4 months) and aged (20–26 months) mice.Synaptic transmission is degraded in aged mice, which may contribute to the decline in neural processing of the central auditory system during age‐related hearing loss.The changes in synaptic transmission in aged mice can be partially rescued by improving calcium buffering, or decreasing action potential‐evoked calcium influx.These experiments suggest potential mechanisms, such as regulating intraterminal calcium, that could be manipulated to improve the fidelity of transmission at the aged endbulb of Held. Abstract Age‐related hearing loss (ARHL) is associated with changes to the auditory periphery that raise sensory thresholds and alter coding, and is accompanied by alterations in excitatory and inhibitory synaptic transmission, and intrinsic excitability in the circuits of the central auditory system. However, it remains unclear how synaptic transmission changes at the first central auditory synapses during ARHL. Using mature (2–4 months) and old (20–26 months) CBA/CaJ mice, we studied synaptic transmission at the endbulb of Held. Mature and old mice showed no difference in either spontaneous quantal synaptic transmission or low frequency evoked synaptic transmission at the endbulb of Held. However, when challenged with sustained high frequency stimulation, synapses in old mice exhibited increased asynchronous transmitter release and reduced synchronous release. This suggests that the transmission of temporally precise information is degraded at the endbulb during ARHL. Increasing intraterminal calcium buffering with EGTA‐AM or decreasing calcium influx with ω‐agatoxin IVA decreased the amount of asynchronous release and restored synchronous release in old mice. In addition, recovery from depression following high frequency trains was faster in old mice, but was restored to a normal time course by EGTA‐AM treatment. These results suggest that intraterminal calcium in old endbulbs may rise to abnormally high levels during high rates of auditory nerve firing, or that calcium‐dependent processes involved in release are altered with age. These observations suggest that ARHL is associated with a decrease in temporal precision of synaptic release at the first central auditory synapse, which may contribute to perceptual deficits in hearing. PMID:27618790
Calmodulin Activation by Calcium Transients in the Postsynaptic Density of Dendritic Spines
Keller, Daniel X.; Franks, Kevin M.; Bartol, Thomas M.; Sejnowski, Terrence J.
2008-01-01
The entry of calcium into dendritic spines can trigger a sequence of biochemical reactions that begins with the activation of calmodulin (CaM) and ends with long-term changes to synaptic strengths. The degree of activation of CaM can depend on highly local elevations in the concentration of calcium and the duration of transient increases in calcium concentration. Accurate measurement of these local changes in calcium is difficult because the spaces are so small and the numbers of molecules are so low. We have therefore developed a Monte Carlo model of intracellular calcium dynamics within the spine that included calcium binding proteins, calcium transporters and ion channels activated by voltage and glutamate binding. The model reproduced optical recordings using calcium indicator dyes and showed that without the dye the free intracellular calcium concentration transient was much higher than predicted from the fluorescent signal. Excitatory postsynaptic potentials induced large, long-lasting calcium gradients across the postsynaptic density, which activated CaM. When glutamate was released at the synapse 10 ms before an action potential occurred, simulating activity patterns that strengthen hippocampal synapses, the calcium gradient and activation of CaM in the postsynaptic density were much greater than when the order was reversed, a condition that decreases synaptic strengths, suggesting a possible mechanism underlying the induction of long-term changes in synaptic strength. The spatial and temporal mechanisms for selectivity in CaM activation demonstrated here could be used in other signaling pathways. PMID:18446197
Activity-dependent dendritic spine neck changes are correlated with synaptic strength
Araya, Roberto; Vogels, Tim P.; Yuste, Rafael
2014-01-01
Most excitatory inputs in the mammalian brain are made on dendritic spines, rather than on dendritic shafts. Spines compartmentalize calcium, and this biochemical isolation can underlie input-specific synaptic plasticity, providing a raison d’etre for spines. However, recent results indicate that the spine can experience a membrane potential different from that in the parent dendrite, as though the spine neck electrically isolated the spine. Here we use two-photon calcium imaging of mouse neocortical pyramidal neurons to analyze the correlation between the morphologies of spines activated under minimal synaptic stimulation and the excitatory postsynaptic potentials they generate. We find that excitatory postsynaptic potential amplitudes are inversely correlated with spine neck lengths. Furthermore, a spike timing-dependent plasticity protocol, in which two-photon glutamate uncaging over a spine is paired with postsynaptic spikes, produces rapid shrinkage of the spine neck and concomitant increases in the amplitude of the evoked spine potentials. Using numerical simulations, we explore the parameter regimes for the spine neck resistance and synaptic conductance changes necessary to explain our observations. Our data, directly correlating synaptic and morphological plasticity, imply that long-necked spines have small or negligible somatic voltage contributions, but that, upon synaptic stimulation paired with postsynaptic activity, they can shorten their necks and increase synaptic efficacy, thus changing the input/output gain of pyramidal neurons. PMID:24982196
Early-life seizures alter synaptic calcium-permeable AMPA receptor function and plasticity
Lippman-Bell, Jocelyn J.; Zhou, Chengwen; Sun, Hongyu; Feske, Joel S.; Jensen, Frances E.
2016-01-01
Calcium (Ca2+)-mediated1 signaling pathways are critical to synaptic plasticity. In adults, the NMDA glutamate receptor (NMDAR) represents a major route for activity-dependent synaptic Ca2+ entry. However, during neonatal development, when synaptic plasticity is high, many AMPA glutamate receptors (AMPARs) are also permeable to Ca2+ (CP-AMPAR) due to low GluA2 subunit expression, providing an additional route for activity- and glutamate-dependent Ca2+ influx and subsequent signaling. Therefore, altered hippocampal Ca2+ signaling may represent an age-specific pathogenic mechanism. We thus aimed to assess Ca2+ responses 48 hours after hypoxia-induced neonatal seizures (HS) in postnatal day (P)10 rats, a post-seizure time point at which we previously reported LTP attenuation. We found that Ca2+ responses were higher in brain slices from post-HS rats than in controls and this increase was CP-AMPAR-dependent. To determine whether synaptic CP-AMPAR expression was also altered post-HS, we assessed the expression of GluA2 at hippocampal synapses and the expression of long-term depression (LTD), which has been linked to the presence of synaptic GluA2. Here we report a decrease 48 hours after HS in synaptic GluA2 expression at synapses and LTD in hippocampal CA1. Given the potentially critical role of AMPAR trafficking in disease progression, we aimed to establish whether post-seizure in vivo AMPAR antagonist treatment prevented the enhanced Ca2+ responses, changes in GluA2 synaptic expression, and diminished LTD. We found that NBQX treatment prevents all three of these post-seizure consequences, further supporting a critical role for AMPARs as an age-specific therapeutic target. PMID:27521497
Molecular Mechanism of Active Zone Organization at Vertebrate Neuromuscular Junctions
Nishimune, Hiroshi
2013-01-01
Organization of presynaptic active zones is essential for development, plasticity, and pathology of the nervous system. Recent studies indicate a trans-synaptic molecular mechanism that organizes the active zones by connecting the pre- and the postsynaptic specialization. The presynaptic component of this trans-synaptic mechanism is comprised of cytosolic active zone proteins bound to the cytosolic domains of voltage-dependent calcium channels (P/Q-, N-, and L-type) on the presynaptic membrane. The postsynaptic component of this mechanism is the synapse organizer (laminin β2) that is expressed by the postsynaptic cell and accumulates specifically on top of the postsynaptic specialization. The pre- and the postsynaptic components interact directly between the extracellular domains of calcium channels and laminin β2 to anchor the presynaptic protein complex in front of the postsynaptic specialization. Hence, the presynaptic calcium channel functions as a scaffolding protein for active zone organization and as an ion-conducting channel for synaptic transmission. In contrast to the requirement of calcium influx for synaptic transmission, the formation of the active zone does not require the calcium influx through the calcium channels. Importantly, the active zones of adult synapses are not stable structures and require maintenance for their integrity. Furthermore, aging or diseases of the central and peripheral nervous system impair the active zones. This review will focus on the molecular mechanisms that organize the presynaptic active zones and summarize recent findings at the neuromuscular junctions and other synapses. PMID:22135013
Structural stabilization of CNS synapses during postnatal development in rat cortex.
Khaing, Zin Z; Fidler, Lazar; Nandy, Nina; Phillips, Greg R
2006-07-01
CNS synapses are produced rapidly upon pre- and post-synaptic recruitment. However, their composition is known to change during development and we reasoned that this may be reflected in the gross biochemical properties of synapses. We found synaptic structure in adult cortical synaptosomes to be resistant to digestion with trypsin in the presence and absence of calcium ions, contrasting with previous observations. We evaluated the divalent cation dependence and trypsin sensitivities of synapses using synaptosomes from different developmental stages. In contrast to adult synapses, at postnatal day (P) 10 EDTA treatment eliminated approximately 60% of the synapses, and trypsin and EDTA, together, eliminated all junctions. Trypsinization in the presence of calcium eliminated approximately 60% of the junctions at P10. By P35, all synapses were calcium independent, whereas full trypsin resistance was not attained until P49. To compare the calcium dependence and trypsin sensitivity of synapses in another region of the adult brain, we examined synapses from adult (P50) hippocampus. Adult hippocampus maintained a population of synapses that resembled that of P35 cortex. Our results show that synapses are modified over a long time period in the developing cortex. We propose a model in which the addition of synergistic calcium-dependent and -independent adhesive systems stabilize synapses.
Sha, Fern; Johenning, Friedrich W.; Schreiter, Eric R.; Looger, Loren L.; Larkum, Matthew E.
2016-01-01
Key points The genetically encoded fluorescent calcium integrator calcium‐modulated photoactivatable ratiobetric integrator (CaMPARI) reports calcium influx induced by synaptic and neural activity. Its fluorescence is converted from green to red in the presence of violet light and calcium.The rate of conversion – the sensitivity to activity – is tunable and depends on the intensity of violet light.Synaptic activity and action potentials can independently initiate significant CaMPARI conversion.The level of conversion by subthreshold synaptic inputs is correlated to the strength of input, enabling optical readout of relative synaptic strength.When combined with optogenetic activation of defined presynaptic neurons, CaMPARI provides an all‐optical method to map synaptic connectivity. Abstract The calcium‐modulated photoactivatable ratiometric integrator (CaMPARI) is a genetically encoded calcium integrator that facilitates the study of neural circuits by permanently marking cells active during user‐specified temporal windows. Permanent marking enables measurement of signals from large swathes of tissue and easy correlation of activity with other structural or functional labels. One potential application of CaMPARI is labelling neurons postsynaptic to specific populations targeted for optogenetic stimulation, giving rise to all‐optical functional connectivity mapping. Here, we characterized the response of CaMPARI to several common types of neuronal calcium signals in mouse acute cortical brain slices. Our experiments show that CaMPARI is effectively converted by both action potentials and subthreshold synaptic inputs, and that conversion level is correlated to synaptic strength. Importantly, we found that conversion rate can be tuned: it is linearly related to light intensity. At low photoconversion light levels CaMPARI offers a wide dynamic range due to slower conversion rate; at high light levels conversion is more rapid and more sensitive to activity. Finally, we employed CaMPARI and optogenetics for functional circuit mapping in ex vivo acute brain slices, which preserve in vivo‐like connectivity of axon terminals. With a single light source, we stimulated channelrhodopsin‐2‐expressing long‐range posteromedial (POm) thalamic axon terminals in cortex and induced CaMPARI conversion in recipient cortical neurons. We found that POm stimulation triggers robust photoconversion of layer 5 cortical neurons and weaker conversion of layer 2/3 neurons. Thus, CaMPARI enables network‐wide, tunable, all‐optical functional circuit mapping that captures supra‐ and subthreshold depolarization. PMID:27861906
Nanou, Evanthia; Sullivan, Jane M; Scheuer, Todd; Catterall, William A
2016-01-26
Short-term synaptic plasticity is induced by calcium (Ca(2+)) accumulating in presynaptic nerve terminals during repetitive action potentials. Regulation of voltage-gated CaV2.1 Ca(2+) channels by Ca(2+) sensor proteins induces facilitation of Ca(2+) currents and synaptic facilitation in cultured neurons expressing exogenous CaV2.1 channels. However, it is unknown whether this mechanism contributes to facilitation in native synapses. We introduced the IM-AA mutation into the IQ-like motif (IM) of the Ca(2+) sensor binding site. This mutation does not alter voltage dependence or kinetics of CaV2.1 currents, or frequency or amplitude of spontaneous miniature excitatory postsynaptic currents (mEPSCs); however, synaptic facilitation is completely blocked in excitatory glutamatergic synapses in hippocampal autaptic cultures. In acutely prepared hippocampal slices, frequency and amplitude of mEPSCs and amplitudes of evoked EPSCs are unaltered. In contrast, short-term synaptic facilitation in response to paired stimuli is reduced by ∼ 50%. In the presence of EGTA-AM to prevent global increases in free Ca(2+), the IM-AA mutation completely blocks short-term synaptic facilitation, indicating that synaptic facilitation by brief, local increases in Ca(2+) is dependent upon regulation of CaV2.1 channels by Ca(2+) sensor proteins. In response to trains of action potentials, synaptic facilitation is reduced in IM-AA synapses in initial stimuli, consistent with results of paired-pulse experiments; however, synaptic depression is also delayed, resulting in sustained increases in amplitudes of later EPSCs during trains of 10 stimuli at 10-20 Hz. Evidently, regulation of CaV2.1 channels by CaS proteins is required for normal short-term plasticity and normal encoding of information in native hippocampal synapses.
Enhancement of synaptic transmission induced by BDNF in cultured cortical neurons
NASA Astrophysics Data System (ADS)
He, Jun; Gong, Hui; Zeng, Shaoqun; Li, Yanling; Luo, Qingming
2005-03-01
Brain-derived neurotrophic factor (BDNF), like other neurotrophins, has long-term effects on neuronal survival and differentiation; furthermore, BDNF has been reported to exert an acute potentiation of synaptic activity and are critically involved in long-term potentiation (LTP). We found that BDNF rapidly induced potentiation of synaptic activity and an increase in the intracellular Ca2+ concentration in cultured cortical neurons. Within minutes of BDNF application to cultured cortical neurons, spontaneous firing rate was dramatically increased as were the frequency and amplitude of excitatory spontaneous postsynaptic currents (EPSCs). Fura-2 recordings showed that BDNF acutely elicited an increase in intracellular calcium concentration ([Ca2+]c). This effect was partially dependent on [Ca2+]o; The BDNF-induced increase in [Ca2+]c can not be completely blocked by Ca2+-free solution. It was completely blocked by K252a and partially blocked by Cd2+ and TTX. The results demonstrate that BDNF can enhances synaptic transmission and that this effect is accompanied by a rise in [Ca2+]c that requires two route: the release of Ca2+ from intracellular calcium stores and influx of extracellular Ca2+ through voltage-dependent Ca2+ channels in cultured cortical neurons.
Glutamate Signaling and Mitochondrial Dysfunction in Models of Parkinson’s Disease
2014-03-01
stages of PD, an elevation in synaptically released glutamate leads to persistent activation of NMDARs that synergizes with Cav1 calcium channels to...neurons is attributable to activity -dependent calcium entry through Cav1 channels, resulting in mitochondrial oxidant stress. Although this mechanism...glutamate leads to persistent activation of NMDARs that synergizes with Cav1 calcium channels to significantly increase mitochondrial oxidant stress and
Cadetti, Lucia; Bryson, Eric J.; Ciccone, Cory A.; Rabl, Katalin; Thoreson, Wallace B.
2008-01-01
We examined the contribution of calcium-induced calcium release (CICR) to synaptic transmission from rod photoreceptor terminals. Whole-cell recording and confocal calcium imaging experiments were conducted on rods with intact synaptic terminals in a retinal slice preparation from salamander. Low concentrations of ryanodine stimulated calcium increases in rod terminals, consistent with the presence of ryanodine receptors. Application of strong depolarizing steps (−70 to −10 mV) exceeding 200 ms or longer in duration evoked a wave of calcium that spread across the synaptic terminals of voltage-clamped rods. This secondary calcium increase was blocked by high concentrations of ryanodine, indicating it was due to CICR. Ryanodine (50 μM) had no significant effect on rod calcium current (Ica) although it slightly diminished rod light-evoked voltage responses. Bath application of 50 μM ryanodine strongly inhibited light-evoked currents in horizontal cells. Whether applied extracellularly or delivered into the rod cell through the patch pipette, ryanodine (50 μM) also inhibited excitatory post-synaptic currents (EPSCs) evoked in horizontal cells by depolarizing steps applied to rods. Ryanodine caused a preferential reduction in the later portions of EPSCs evoked by depolarizing steps of 200 ms or longer. These results indicate that CICR enhances calcium increases in rod terminals evoked by sustained depolarization, which in turn acts to boost synaptic exocytosis from rods. PMID:16819987
Jones, Scott L; To, Minh-Son; Stuart, Greg J
2017-10-23
Small conductance calcium-activated potassium channels (SK channels) are present in spines and can be activated by backpropagating action potentials (APs). This suggests they may play a critical role in spike-timing dependent synaptic plasticity (STDP). Consistent with this idea, EPSPs in both cortical and hippocampal pyramidal neurons were suppressed by preceding APs in an SK-dependent manner. In cortical pyramidal neurons EPSP suppression by preceding APs depended on their precise timing as well as the distance of activated synapses from the soma, was dendritic in origin, and involved SK-dependent suppression of NMDA receptor activation. As a result SK channel activation by backpropagating APs gated STDP induction during low-frequency AP-EPSP pairing, with both LTP and LTD absent under control conditions but present after SK channel block. These findings indicate that activation of SK channels in spines by backpropagating APs plays a key role in regulating both EPSP amplitude and STDP induction.
Oh, Myongkeun; Zhao, Shunbing; Matveev, Victor; Nadim, Farzan
2012-12-01
Although synaptic output is known to be modulated by changes in presynaptic calcium channels, additional pathways for calcium entry into the presynaptic terminal, such as non-selective channels, could contribute to modulation of short term synaptic dynamics. We address this issue using computational modeling. The neuropeptide proctolin modulates the inhibitory synapse from the lateral pyloric (LP) to the pyloric dilator (PD) neuron, two slow-wave bursting neurons in the pyloric network of the crab Cancer borealis. Proctolin enhances the strength of this synapse and also changes its dynamics. Whereas in control saline the synapse shows depression independent of the amplitude of the presynaptic LP signal, in proctolin, with high-amplitude presynaptic LP stimulation the synapse remains depressing while low-amplitude stimulation causes facilitation. We use simple calcium-dependent release models to explore two alternative mechanisms underlying these modulatory effects. In the first model, proctolin directly targets calcium channels by changing their activation kinetics which results in gradual accumulation of calcium with low-amplitude presynaptic stimulation, leading to facilitation. The second model uses the fact that proctolin is known to activate a non-specific cation current I ( MI ). In this model, we assume that the MI channels have some permeability to calcium, modeled to be a result of slow conformation change after binding calcium. This generates a gradual increase in calcium influx into the presynaptic terminals through the modulatory channel similar to that described in the first model. Each of these models can explain the modulation of the synapse by proctolin but with different consequences for network activity.
SV2 frustrating exocytosis at the semi-diffusor synapse.
Vautrin, Jean
2009-04-01
Presynaptic exocytosis is the mechanism commonly believed to release transmitters by diffusion through a pore opening during vesicular membrane fusion with the plasmalemma, but evidence suggesting that exocytosis and transmitter release are two separate steps of synaptic transmission is accumulating. Vesicular glycoconjugates such as Synaptic Vesicle Protein 2 (SV2) proteoglycans and gangliosides retain transmitters in a nondiffusible form and are transported to the synaptic cleft where they contribute forming a dense synaptomatrix. Transmitters are permanently present in synaptic clefts and readily releasable transmitter is easily accessible from the outer side of the presynaptic membrane suggesting that synaptomatrix glycoconjugates prevent immediate release after PKC-dependent exocytosis. The calcium sensor synaptotagmin is also present at the presynaptic plasma membrane and binds SV2 suggesting a direct coupling between the calcium transient and transmitter release from the synaptomatrix. A quantitative coupling of the cytosolic calcic transient to transmitter release from the synaptomatrix explains better complexity and plasticity of miniature postsynaptic signals hitherto difficult to account for in exocytic terms. This alternative representation of synaptic transmission in which the same components of the synaptomatrix support adhesion and signaling functions may cast new lights on synaptic diseases such as Alzheimer's disease. Copyright 2008 Wiley-Liss, Inc.
Genç, Özgür; Dickman, Dion K; Ma, Wenpei; Tong, Amy; Fetter, Richard D; Davis, Graeme W
2017-01-01
Presynaptic homeostatic plasticity (PHP) controls synaptic transmission in organisms from Drosophila to human and is hypothesized to be relevant to the cause of human disease. However, the underlying molecular mechanisms of PHP are just emerging and direct disease associations remain obscure. In a forward genetic screen for mutations that block PHP we identified mctp (Multiple C2 Domain Proteins with Two Transmembrane Regions). Here we show that MCTP localizes to the membranes of the endoplasmic reticulum (ER) that elaborate throughout the soma, dendrites, axon and presynaptic terminal. Then, we demonstrate that MCTP functions downstream of presynaptic calcium influx with separable activities to stabilize baseline transmission, short-term release dynamics and PHP. Notably, PHP specifically requires the calcium coordinating residues in each of the three C2 domains of MCTP. Thus, we propose MCTP as a novel, ER-localized calcium sensor and a source of calcium-dependent feedback for the homeostatic stabilization of neurotransmission. DOI: http://dx.doi.org/10.7554/eLife.22904.001 PMID:28485711
Exocytosis and Endocytosis: Modes, Functions, and Coupling Mechanisms*
Wu, Ling-Gang; Hamid, Edaeni; Shin, Wonchul; Chiang, Hsueh-Cheng
2016-01-01
Vesicle exocytosis releases content to mediate many biological events, including synaptic transmission essential for brain functions. Following exocytosis, endocytosis is initiated to retrieve exocytosed vesicles within seconds to minutes. Decades of studies in secretory cells reveal three exocytosis modes coupled to three endocytosis modes: (a) full-collapse fusion, in which vesicles collapse into the plasma membrane, followed by classical endocytosis involving membrane invagination and vesicle reformation; (b) kiss-and-run, in which the fusion pore opens and closes; and (c) compound exocytosis, which involves exocytosis of giant vesicles formed via vesicle-vesicle fusion, followed by bulk endocytosis that retrieves giant vesicles. Here we review these exo- and endocytosis modes and their roles in regulating quantal size and synaptic strength, generating synaptic plasticity, maintaining exocytosis, and clearing release sites for vesicle replenishment. Furthermore, we highlight recent progress in understanding how vesicle endocytosis is initiated and is thus coupled to exocytosis. The emerging model is that calcium influx via voltage-dependent calcium channels at the calcium microdomain triggers endocytosis and controls endocytosis rate; calmodulin and synaptotagmin are the calcium sensors; and the exocytosis machinery, including SNARE proteins (synaptobrevin, SNAP25, and syntaxin), is needed to coinitiate endocytosis, likely to control the amount of endocytosis. PMID:24274740
A ‘calcium capacitor’ shapes cholinergic inhibition of cochlear hair cells
Fuchs, Paul Albert
2014-01-01
Efferent cholinergic neurons project from the brainstem to inhibit sensory hair cells of the vertebrate inner ear. This inhibitory synapse combines the activity of an unusual class of ionotropic cholinergic receptor with that of nearby calcium-dependent potassium channels to shunt and hyperpolarize the hair cell. Postsynaptic calcium signalling is constrained by a thin near-membrane cistern that is co-extensive with the efferent terminal contacts. The postsynaptic cistern may play an essential role in calcium homeostasis, serving as sink or source, depending on ongoing activity and the degree of buffer saturation. Release of calcium from postsynaptic stores leads to a process of retrograde facilitation via the synthesis of nitric oxide in the hair cell. Activity-dependent synaptic modification may contribute to changes in hair cell innervation that occur during development, and in the aged or damaged cochlea. PMID:24566542
ERIC Educational Resources Information Center
Bas-Orth, Carlos; Tan, Yan-Wei; Oliveira, Ana M. M.; Bengtson, C. Peter; Bading, Hilmar
2016-01-01
The formation of long-term memory requires signaling from the synapse to the nucleus to mediate neuronal activity-dependent gene transcription. Synapse-to-nucleus communication is initiated by influx of calcium ions through synaptic NMDA receptors and/or L-type voltage-gated calcium channels and involves the activation of transcription factors by…
Diversity of neuropsin (KLK8)-dependent synaptic associativity in the hippocampal pyramidal neuron
Ishikawa, Yasuyuki; Tamura, Hideki; Shiosaka, Sadao
2011-01-01
Abstract Hippocampal early (E-) long-term potentiation (LTP) and long-term depression (LTD) elicited by a weak stimulus normally fades within 90 min. Late (L-) LTP and LTD elicited by strong stimuli continue for >180 min and require new protein synthesis to persist. If a strong tetanus is applied once to synaptic inputs, even a weak tetanus applied to another synaptic input can evoke persistent LTP. A synaptic tag is hypothesized to enable the capture of newly synthesized synaptic molecules. This process, referred to as synaptic tagging, is found between not only the same processes (i.e. E- and L-LTP; E- and L-LTD) but also between different processes (i.e. E-LTP and L-LTD; E-LTD and L-LTP) induced at two independent synaptic inputs (cross-tagging). However, the mechanisms of synaptic tag setting remain unclear. In our previous study, we found that synaptic associativity in the hippocampal Schaffer collateral pathway depended on neuropsin (kallikrein-related peptidase 8 or KLK8), a plasticity-related extracellular protease. In the present study, we investigated how neuropsin participates in synaptic tagging and cross-tagging. We report that neuropsin is involved in synaptic tagging during LTP at basal and apical dendritic inputs. Moreover, neuropsin is involved in synaptic tagging and cross-tagging during LTP at apical dendritic inputs via integrin β1 and calcium/calmodulin-dependent protein kinase II signalling. Thus, neuropsin is a candidate molecule for the LTP-specific tag setting and regulates the transformation of E- to L-LTP during both synaptic tagging and cross-tagging. PMID:21646406
Wippel, Carolin; Maurer, Jana; Förtsch, Christina; Hupp, Sabrina; Bohl, Alexandra; Ma, Jiangtao; Mitchell, Timothy J.; Bunkowski, Stephanie; Brück, Wolfgang; Nau, Roland; Iliev, Asparouh I.
2013-01-01
Streptococcus pneumoniae (pneumococcal) meningitis is a common bacterial infection of the brain. The cholesterol-dependent cytolysin pneumolysin represents a key factor, determining the neuropathogenic potential of the pneumococci. Here, we demonstrate selective synaptic loss within the superficial layers of the frontal neocortex of post-mortem brain samples from individuals with pneumococcal meningitis. A similar effect was observed in mice with pneumococcal meningitis only when the bacteria expressed the pore-forming cholesterol-dependent cytolysin pneumolysin. Exposure of acute mouse brain slices to only pore-competent pneumolysin at disease-relevant, non-lytic concentrations caused permanent dendritic swelling, dendritic spine elimination and synaptic loss. The NMDA glutamate receptor antagonists MK801 and D-AP5 reduced this pathology. Pneumolysin increased glutamate levels within the mouse brain slices. In mouse astrocytes, pneumolysin initiated the release of glutamate in a calcium-dependent manner. We propose that pneumolysin plays a significant synapto- and dendritotoxic role in pneumococcal meningitis by initiating glutamate release from astrocytes, leading to subsequent glutamate-dependent synaptic damage. We outline for the first time the occurrence of synaptic pathology in pneumococcal meningitis and demonstrate that a bacterial cytolysin can dysregulate the control of glutamate in the brain, inducing excitotoxic damage. PMID:23785278
Stauch, Kelly L; Purnell, Phillip R; Fox, Howard S
2014-05-02
Synaptic mitochondria are essential for maintaining calcium homeostasis and producing ATP, processes vital for neuronal integrity and synaptic transmission. Synaptic mitochondria exhibit increased oxidative damage during aging and are more vulnerable to calcium insult than nonsynaptic mitochondria. Why synaptic mitochondria are specifically more susceptible to cumulative damage remains to be determined. In this study, the generation of a super-SILAC mix that served as an appropriate internal standard for mouse brain mitochondria mass spectrometry based analysis allowed for the quantification of the proteomic differences between synaptic and nonsynaptic mitochondria isolated from 10-month-old mice. We identified a total of 2260 common proteins between synaptic and nonsynaptic mitochondria of which 1629 were annotated as mitochondrial. Quantitative proteomic analysis of the proteins common between synaptic and nonsynaptic mitochondria revealed significant differential expression of 522 proteins involved in several pathways including oxidative phosphorylation, mitochondrial fission/fusion, calcium transport, and mitochondrial DNA replication and maintenance. In comparison to nonsynaptic mitochondria, synaptic mitochondria exhibited increased age-associated mitochondrial DNA deletions and decreased bioenergetic function. These findings provide insights into synaptic mitochondrial susceptibility to damage.
2015-01-01
Synaptic mitochondria are essential for maintaining calcium homeostasis and producing ATP, processes vital for neuronal integrity and synaptic transmission. Synaptic mitochondria exhibit increased oxidative damage during aging and are more vulnerable to calcium insult than nonsynaptic mitochondria. Why synaptic mitochondria are specifically more susceptible to cumulative damage remains to be determined. In this study, the generation of a super-SILAC mix that served as an appropriate internal standard for mouse brain mitochondria mass spectrometry based analysis allowed for the quantification of the proteomic differences between synaptic and nonsynaptic mitochondria isolated from 10-month-old mice. We identified a total of 2260 common proteins between synaptic and nonsynaptic mitochondria of which 1629 were annotated as mitochondrial. Quantitative proteomic analysis of the proteins common between synaptic and nonsynaptic mitochondria revealed significant differential expression of 522 proteins involved in several pathways including oxidative phosphorylation, mitochondrial fission/fusion, calcium transport, and mitochondrial DNA replication and maintenance. In comparison to nonsynaptic mitochondria, synaptic mitochondria exhibited increased age-associated mitochondrial DNA deletions and decreased bioenergetic function. These findings provide insights into synaptic mitochondrial susceptibility to damage. PMID:24708184
Hemstedt, Thekla J; Bengtson, C Peter; Ramírez, Omar; Oliveira, Ana M M; Bading, Hilmar
2017-07-19
Nuclear calcium is an important signaling end point in synaptic excitation-transcription coupling that is critical for long-term neuroadaptations. Here, we show that nuclear calcium acting via a target gene, VEGFD, is required for hippocampus-dependent fear memory consolidation and extinction in mice. Nuclear calcium-VEGFD signaling upholds the structural integrity and complexity of the dendritic arbor of CA1 neurons that renders those cells permissive for the efficient generation of synaptic input-evoked nuclear calcium transients driving the expression of plasticity-related genes. Therefore, the gating of memory functions rests on the reciprocally reinforcing maintenance of an intact dendrite geometry and a functional synapse-to-nucleus communication axis. In psychiatric and neurodegenerative disorders, therapeutic application of VEGFD may help to stabilize dendritic structures and network connectivity, which may prevent cognitive decline and could boost the efficacy of extinction-based exposure therapies. SIGNIFICANCE STATEMENT This study uncovers a reciprocal relationship between dendrite geometry, the ability to generate nuclear calcium transients in response to synaptic inputs, and the subsequent induction of expression of plasticity-related and dendritic structure-preserving genes. Insufficient nuclear calcium signaling in CA1 hippocampal neurons and, consequently, reduced expression of the nuclear calcium target gene VEGFD, a dendrite maintenance factor, leads to reduced-complexity basal dendrites of CA1 neurons, which severely compromises the animals' consolidation of both memory and extinction memory. The structure-protective function of VEGFD may prove beneficial in psychiatric disorders as well as neurodegenerative and aging-related conditions that are associated with loss of neuronal structures, dysfunctional excitation-transcription coupling, and cognitive decline. Copyright © 2017 the authors 0270-6474/17/376946-10$15.00/0.
Nanou, Evanthia; Lee, Amy; Catterall, William A
2018-05-02
Activity-dependent regulation controls the balance of synaptic excitation to inhibition in neural circuits, and disruption of this regulation impairs learning and memory and causes many neurological disorders. The molecular mechanisms underlying short-term synaptic plasticity are incompletely understood, and their role in inhibitory synapses remains uncertain. Here we show that regulation of voltage-gated calcium (Ca 2+ ) channel type 2.1 (Ca V 2.1) by neuronal Ca 2+ sensor (CaS) proteins controls synaptic plasticity and excitation/inhibition balance in a hippocampal circuit. Prevention of CaS protein regulation by introducing the IM-AA mutation in Ca V 2.1 channels in male and female mice impairs short-term synaptic facilitation at excitatory synapses of CA3 pyramidal neurons onto parvalbumin (PV)-expressing basket cells. In sharp contrast, the IM-AA mutation abolishes rapid synaptic depression in the inhibitory synapses of PV basket cells onto CA1 pyramidal neurons. These results show that CaS protein regulation of facilitation and inactivation of Ca V 2.1 channels controls the direction of short-term plasticity at these two synapses. Deletion of the CaS protein CaBP1/caldendrin also blocks rapid depression at PV-CA1 synapses, implicating its upregulation of inactivation of Ca V 2.1 channels in control of short-term synaptic plasticity at this inhibitory synapse. Studies of local-circuit function revealed reduced inhibition of CA1 pyramidal neurons by the disynaptic pathway from CA3 pyramidal cells via PV basket cells and greatly increased excitation/inhibition ratio of the direct excitatory input versus indirect inhibitory input from CA3 pyramidal neurons to CA1 pyramidal neurons. This striking defect in local-circuit function may contribute to the dramatic impairment of spatial learning and memory in IM-AA mice. SIGNIFICANCE STATEMENT Many forms of short-term synaptic plasticity in neuronal circuits rely on regulation of presynaptic voltage-gated Ca 2+ (Ca V ) channels. Regulation of Ca V 2.1 channels by neuronal calcium sensor (CaS) proteins controls short-term synaptic plasticity. Here we demonstrate a direct link between regulation of Ca V 2.1 channels and short-term synaptic plasticity in native hippocampal excitatory and inhibitory synapses. We also identify CaBP1/caldendrin as the calcium sensor interacting with Ca V 2.1 channels to mediate rapid synaptic depression in the inhibitory hippocampal synapses of parvalbumin-expressing basket cells to CA1 pyramidal cells. Disruption of this regulation causes altered short-term plasticity and impaired balance of hippocampal excitatory to inhibitory circuits. Copyright © 2018 the authors 0270-6474/18/384430-11$15.00/0.
Parthier, Daniel; Frings, Stephan; Möhrlen, Frank
2015-01-01
Calcium-activated chloride channels of the anoctamin (alias TMEM16) protein family fulfill critical functions in epithelial fluid transport, smooth muscle contraction and sensory signal processing. Little is known, however, about their contribution to information processing in the central nervous system. Here we examined the recent finding that a calcium-dependent chloride conductance impacts on GABAergic synaptic inhibition in Purkinje cells of the cerebellum. We asked whether anoctamin channels may underlie this chloride conductance. We identified two anoctamin channel proteins, ANO1 and ANO2, in the cerebellar cortex. ANO1 was expressed in inhibitory interneurons of the molecular layer and the granule cell layer. Both channels were expressed in Purkinje cells but, while ANO1 appeared to be retained in the cell body, ANO2 was targeted to the dendritic tree. Functional studies confirmed that ANO2 was involved in a calcium-dependent mode of ionic plasticity that reduces the efficacy of GABAergic synapses. ANO2 channels attenuated GABAergic transmission by increasing the postsynaptic chloride concentration, hence reducing the driving force for chloride influx. Our data suggest that ANO2 channels are involved in a Ca2+-dependent regulation of synaptic weight in GABAergic inhibition. Thus, in balance with the chloride extrusion mechanism via the co-transporter KCC2, ANO2 appears to regulate ionic plasticity in the cerebellum. PMID:26558388
Nanou, Evanthia; Scheuer, Todd; Catterall, William A
2016-11-15
Many forms of short-term synaptic plasticity rely on regulation of presynaptic voltage-gated Ca 2+ type 2.1 (Ca V 2.1) channels. However, the contribution of regulation of Ca V 2.1 channels to other forms of neuroplasticity and to learning and memory are not known. Here we have studied mice with a mutation (IM-AA) that disrupts regulation of Ca V 2.1 channels by calmodulin and related calcium sensor proteins. Surprisingly, we find that long-term potentiation (LTP) of synaptic transmission at the Schaffer collateral-CA1 synapse in the hippocampus is substantially weakened, even though this form of synaptic plasticity is thought to be primarily generated postsynaptically. LTP in response to θ-burst stimulation and to 100-Hz tetanic stimulation is much reduced. However, a normal level of LTP can be generated by repetitive 100-Hz stimulation or by depolarization of the postsynaptic cell to prevent block of NMDA-specific glutamate receptors by Mg 2+ The ratio of postsynaptic responses of NMDA-specific glutamate receptors to those of AMPA-specific glutamate receptors is decreased, but the postsynaptic current from activation of NMDA-specific glutamate receptors is progressively increased during trains of stimuli and exceeds WT by the end of 1-s trains. Strikingly, these impairments in long-term synaptic plasticity and the previously documented impairments in short-term synaptic plasticity in IM-AA mice are associated with pronounced deficits in spatial learning and memory in context-dependent fear conditioning and in the Barnes circular maze. Thus, regulation of Ca V 2.1 channels by calcium sensor proteins is required for normal short-term synaptic plasticity, LTP, and spatial learning and memory in mice.
NASA Astrophysics Data System (ADS)
Verisokin, Andrey Yu.; Postnov, Dmitry E.; Verveyko, Darya V.; Brazhe, Alexey R.
2018-04-01
The most abundant non-neuronal cells in the brain, astrocytes, populate all parts of the central nervous system (CNS). Astrocytic calcium activity ranging from subcellular sparkles to intercellular waves is believed to be the key to a plethora of regulatory pathways in the central nervous system from synaptic plasticity to blood flow regulation. Modeling of the calcium wave initiation and transmission and their spatiotemporal dynamics is therefore an important step stone in understanding the crucial cogs of cognition. Astrocytes are active sensors of ongoing neuronal and synaptic activity, and neurotransmitters diffusing from the synaptic cleft make a strong impact on the astrocytic activity. Here we propose a model describing the patterns of calcium wave formation at a single cell level and discuss the interplay between astrocyte shape the calcium waves dynamics driven by local stochastic surges of glutamate simulating synaptic activity.
Zachary, Stephen; Nowak, Nathaniel; Vyas, Pankhuri; Bonanni, Luke; Fuchs, Paul Albert
2018-06-20
Until postnatal day (P) 12, inner hair cells of the rat cochlea are invested with both afferent and efferent synaptic connections. With the onset of hearing at P12, the efferent synapses disappear, and afferent (ribbon) synapses operate with greater efficiency. This change coincides with increased expression of voltage-gated potassium channels, the loss of calcium-dependent electrogenesis, and the onset of graded receptor potentials driven by sound. The transient efferent synapses include near-membrane postsynaptic cisterns thought to regulate calcium influx through the hair cell's α9-containing and α10-containing nicotinic acetylcholine receptors. This influx activates small-conductance Ca 2+ -activated K + (SK) channels. Serial-section electron microscopy of inner hair cells from two 9-d-old (male) rat pups revealed many postsynaptic efferent cisterns and presynaptic afferent ribbons whose average minimal separation in five cells ranged from 1.1 to 1.7 μm. Efferent synaptic function was studied in rat pups (age, 7-9 d) of either sex. The duration of these SK channel-mediated IPSCs was increased by enhanced calcium influx through L-type voltage-gated channels, combined with ryanodine-sensitive release from internal stores-presumably the near-membrane postsynaptic cistern. These data support the possibility that inner hair cell calcium electrogenesis modulates the efficacy of efferent inhibition during the maturation of inner hair cell synapses. SIGNIFICANCE STATEMENT Strict calcium buffering is essential for cellular function. This problem is especially acute for compact hair cells where increasing cytoplasmic calcium promotes the opposing functions of closely adjoining afferent and efferent synapses. The near-membrane postsynaptic cistern at efferent synapses segregates synaptic calcium signals by acting as a dynamic calcium store. The hair cell serves as an informative model for synapses with postsynaptic cisterns (C synapses) found in central neurons. Copyright © 2018 the authors 0270-6474/18/385677-11$15.00/0.
Rudolph, Stephanie; Hull, Court; Regehr, Wade G
2015-11-25
Interneurons are essential to controlling excitability, timing, and synaptic integration in neuronal networks. Golgi cells (GoCs) serve these roles at the input layer of the cerebellar cortex by releasing GABA to inhibit granule cells (grcs). GoCs are excited by mossy fibers (MFs) and grcs and provide feedforward and feedback inhibition to grcs. Here we investigate two important aspects of GoC physiology: the properties of GoC dendrites and the role of calcium signaling in regulating GoC spontaneous activity. Although GoC dendrites are extensive, previous studies concluded they are devoid of voltage-gated ion channels. Hence, the current view holds that somatic voltage signals decay passively within GoC dendrites, and grc synapses onto distal dendrites are not amplified and are therefore ineffective at firing GoCs because of strong passive attenuation. Using whole-cell recording and calcium imaging in rat slices, we find that dendritic voltage-gated sodium channels allow somatic action potentials to activate voltage-gated calcium channels (VGCCs) along the entire dendritic length, with R-type and T-type VGCCs preferentially located distally. We show that R- and T-type VGCCs located in the dendrites can boost distal synaptic inputs and promote burst firing. Active dendrites are thus critical to the regulation of GoC activity, and consequently, to the processing of input to the cerebellar cortex. In contrast, we find that N-type channels are preferentially located near the soma, and control the frequency and pattern of spontaneous firing through their close association with calcium-activated potassium (KCa) channels. Thus, VGCC types are differentially distributed and serve specialized functions within GoCs. Interneurons are essential to neural processing because they modulate excitability, timing, and synaptic integration within circuits. At the input layer of the cerebellar cortex, a single type of interneuron, the Golgi cell (GoC), carries these functions. The extent of inhibition depends on both spontaneous activity of GoCs and the excitatory synaptic input they receive. In this study, we find that different types of calcium channels are differentially distributed, with dendritic calcium channels being activated by somatic activity, boosting synaptic inputs and enabling bursting, and somatic calcium cannels promoting regular firing. We therefore challenge the current view that GoC dendrites are passive and identify the mechanisms that contribute to GoCs regulating the flow of sensory information in the cerebellar cortex. Copyright © 2015 the authors 0270-6474/15/3515492-13$15.00/0.
Ventimiglia, Donovan; Bargmann, Cornelia I
2017-11-21
Synaptic vesicle release properties vary between neuronal cell types, but in most cases the molecular basis of this heterogeneity is unknown. Here, we compare in vivo synaptic properties of two neuronal classes in the C. elegans central nervous system, using VGLUT-pHluorin to monitor synaptic vesicle exocytosis and retrieval in intact animals. We show that the glutamatergic sensory neurons AWC ON and ASH have distinct synaptic dynamics associated with tonic and phasic synaptic properties, respectively. Exocytosis in ASH and AWC ON is differentially affected by SNARE-complex regulators that are present in both neurons: phasic ASH release is strongly dependent on UNC-13, whereas tonic AWC ON release relies upon UNC-18 and on the protein kinase C homolog PKC-1. Strong stimuli that elicit high calcium levels increase exocytosis and retrieval rates in AWC ON , generating distinct tonic and evoked synaptic modes. These results highlight the differential deployment of shared presynaptic proteins in neuronal cell type-specific functions.
Ventimiglia, Donovan
2017-01-01
Synaptic vesicle release properties vary between neuronal cell types, but in most cases the molecular basis of this heterogeneity is unknown. Here, we compare in vivo synaptic properties of two neuronal classes in the C. elegans central nervous system, using VGLUT-pHluorin to monitor synaptic vesicle exocytosis and retrieval in intact animals. We show that the glutamatergic sensory neurons AWCON and ASH have distinct synaptic dynamics associated with tonic and phasic synaptic properties, respectively. Exocytosis in ASH and AWCON is differentially affected by SNARE-complex regulators that are present in both neurons: phasic ASH release is strongly dependent on UNC-13, whereas tonic AWCON release relies upon UNC-18 and on the protein kinase C homolog PKC-1. Strong stimuli that elicit high calcium levels increase exocytosis and retrieval rates in AWCON, generating distinct tonic and evoked synaptic modes. These results highlight the differential deployment of shared presynaptic proteins in neuronal cell type-specific functions. PMID:29160768
Brain cortex mitochondrial bioenergetics in synaptosomes and non-synaptic mitochondria during aging.
Lores-Arnaiz, Silvia; Lombardi, Paulina; Karadayian, Analía G; Orgambide, Federico; Cicerchia, Daniela; Bustamante, Juanita
2016-02-01
Alterations in mitochondrial bioenergetics have been associated with brain aging. In order to evaluate the susceptibility of brain cortex synaptosomes and non-synaptic mitochondria to aging-dependent dysfunction, male Swiss mice of 3 or 17 months old were used. Mitochondrial function was evaluated by oxygen consumption, mitochondrial membrane potential and respiratory complexes activity, together with UCP-2 protein expression. Basal respiration and respiration driving proton leak were decreased by 26 and 33 % in synaptosomes from 17-months old mice, but spare respiratory capacity was not modified by aging. Succinate supported state 3 respiratory rate was decreased by 45 % in brain cortex non-synaptic mitochondria from 17-month-old mice, as compared with young animals, but respiratory control was not affected. Synaptosomal mitochondria would be susceptible to undergo calcium-induced depolarization in 17 months-old mice, while non-synaptic mitochondria would not be affected by calcium overload. UCP-2 was significantly up-regulated in both synaptosomal and submitochondrial membranes from 17-months old mice, compared to young animals. UCP-2 upregulation seems to be a possible mechanism by which mitochondria would be resistant to suffer oxidative damage during aging.
Amin, Shaimaa Nasr; El-Aidi, Ahmed Amro; Ali, Mohamed Mostafa; Attia, Yasser Mahmoud; Rashed, Laila Ahmed
2015-06-01
Stress is any condition that impairs the balance of the organism physiologically or psychologically. The response to stress involves several neurohormonal consequences. Glutamate is the primary excitatory neurotransmitter in the central nervous system, and its release is increased by stress that predisposes to excitotoxicity in the brain. Memantine is an uncompetitive N-methyl D-aspartate glutamatergic receptors antagonist and has shown beneficial effect on cognitive function especially in Alzheimer's disease. The aim of the work was to investigate memantine effect on memory and behavior in animal models of acute and repeated restraint stress with the evaluation of serum markers of stress and the expression of hippocampal markers of synaptic plasticity. Forty-two male rats were divided into seven groups (six rats/group): control, acute restraint stress, acute restraint stress with Memantine, repeated restraint stress, repeated restraint stress with Memantine and Memantine groups (two subgroups as positive control). Spatial working memory and behavior were assessed by performance in Y-maze. We evaluated serum cortisol, tumor necrotic factor, interleukin-6 and hippocampal expression of brain-derived neurotrophic factor, synaptophysin and calcium-/calmodulin-dependent protein kinase II. Our results revealed that Memantine improved spatial working memory in repeated stress, decreased serum level of stress markers and modified the hippocampal synaptic plasticity markers in both patterns of stress exposure; in ARS, Memantine upregulated the expression of synaptophysin and brain-derived neurotrophic factor and downregulated the expression of calcium-/calmodulin-dependent protein kinase II, and in repeated restraint stress, it upregulated the expression of synaptophysin and downregulated calcium-/calmodulin-dependent protein kinase II expression.
Yu, Yan; Oberlaender, Kristin; Bengtson, C Peter; Bading, Hilmar
2017-07-01
Neurons undergo dramatic changes in their gene expression profiles in response to synaptic stimulation. The coupling of neuronal excitation to gene transcription is well studied and is mediated by signaling pathways activated by cytoplasmic and nuclear calcium transients. Despite this, the minimum synaptic activity required to induce gene expression remains unknown. To address this, we used cultured hippocampal neurons and cellular compartment analysis of temporal activity by fluorescence in situ hybridization (catFISH) that allows detection of nascent transcripts in the cell nucleus. We found that a single burst of action potentials, consisting of 24.4±5.1 action potentials during a 6.7±1.9s depolarization of 19.5±2.0mV causing a 9.3±0.9s somatic calcium transient, is sufficient to activate transcription of the immediate early gene arc (also known as Arg3.1). The total arc mRNA yield produced after a single burst-induced nuclear calcium transient was very small and, compared to unstimulated control neurons, did not lead to a significant increase in arc mRNA levels measured using quantitative reverse transcriptase PCR (qRT-PCR) of cell lysates. Significantly increased arc mRNA levels became detectable in hippocampal neurons that had undergone 5-8 consecutive burst-induced nuclear calcium transients at 0.05-0.15Hz. These results indicate that a single burst-induced nuclear calcium transient can activate gene expression and that transcription is rapidly shut off after synaptic stimulation has ceased. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zolezzi, Juan M; Lindsay, Carolina B; Serrano, Felipe G; Ureta, Roxana C; Theoduloz, Cristina; Schmeda-Hirschmann, Guillermo; Inestrosa, Nibaldo C
2018-01-01
Soluble amyloid-β (Aβ) oligomers have been recognized as early neurotoxic intermediates with a key role in the synaptic dysfunction observed in Alzheimer's disease (AD). Aβ oligomers block hippocampal long-term potentiation (LTP) and impair rodent spatial memory. Additionally, the presence of Aβ oligomers is associated with imbalanced intracellular calcium levels and apoptosis in neurons. In this context, we evaluated the effects of three diterpenes (ferruginol, jatrophone, and junicedric acid) that are found in medicinal plants and have several forms of biological activity. The intracellular calcium levels in hippocampal neurons increased in the presence of ferruginol, jatrophone, and junicedric acid, a result that was consistent with the observed increase in CA1 synaptic transmission in mouse hippocampal slices. Additionally, assays using Aβ peptide demonstrated that diterpenes, particularly ferruginol, restore LTP and reduce apoptosis. Recovery of the Aβ oligomer-induced loss of the synaptic proteins PSD-95, synapsin, VGlut, and NMDA receptor subunit 2A was observed in mouse hippocampal slices treated with junicedric acid. This cascade of events may be associated with the regulation of kinases, e.g., protein kinase C (PKC) and calcium/calmodulin-dependent protein kinase II (CaMKII), in addition to the activation of the canonical Wnt signaling pathway and could thus provide protection against Aβ oligomers, which trigger synaptic dysfunction. Our results suggest a potential neuroprotective role for diterpenes against the Aβ oligomers-induced neurodegenerative alterations, which make them interesting molecules to be further studied in the context of AD.
The Yin and Yang of Calcium Effects on Synaptic Vesicle Endocytosis
Wu, Xin-Sheng
2014-01-01
A large number of studies suggest that calcium triggers and accelerates vesicle endocytosis at many synapses and non-neuronal secretory cells. However, many studies show that prolonging the duration of the stimulation train, which induces more calcium influx, slows down endocytosis; and several studies suggest that instead of triggering endocytosis, calcium actually inhibits endocytosis. Here we addressed this apparent conflict at a large nerve terminal, the calyx of Held in rat brainstem, in which recent studies suggest that transient calcium increase up to tens of micromolar concentration at the micro/nano domain triggers endocytosis. By dialyzing 0–1 μm calcium into the calyx via a whole-cell pipette, we found that slow endocytosis was inhibited by calcium dialysis in a concentration-dependent manner. Thus, prolonged, small, and global calcium increase inhibits endocytosis, whereas transient and large calcium increase at the micro/nano domain triggers endocytosis and facilitates endocytosis. This yin and yang effect of calcium may reconcile apparent conflicts regarding whether calcium accelerates or inhibits endocytosis. Whether endocytosis is fast or slow depends on the net outcome between the yin and yang effect of calcium. PMID:24523554
General anesthesia selectively disrupts astrocyte calcium signaling in the awake mouse cortex
Thrane, Alexander Stanley; Zeppenfeld, Douglas; Lou, Nanhong; Xu, Qiwu; Nagelhus, Erlend Arnulf; Nedergaard, Maiken
2012-01-01
Calcium signaling represents the principle pathway by which astrocytes respond to neuronal activity. General anesthetics are routinely used in clinical practice to induce a sleep-like state, allowing otherwise painful procedures to be performed. Anesthetic drugs are thought to mainly target neurons in the brain and act by suppressing synaptic activity. However, the direct effect of general anesthesia on astrocyte signaling in awake animals has not previously been addressed. This is a critical issue, because calcium signaling may represent an essential mechanism through which astrocytes can modulate synaptic activity. In our study, we performed calcium imaging in awake head-restrained mice and found that three commonly used anesthetic combinations (ketamine/xylazine, isoflurane, and urethane) markedly suppressed calcium transients in neocortical astrocytes. Additionally, all three anesthetics masked potentially important features of the astrocyte calcium signals, such as synchronized widespread transients that appeared to be associated with arousal in awake animals. Notably, anesthesia affected calcium transients in both processes and soma and depressed spontaneous signals, as well as calcium responses, evoked by whisker stimulation or agonist application. We show that these calcium transients are inositol 1,4,5-triphosphate type 2 receptor (IP3R2)-dependent but resistant to a local blockade of glutamatergic or purinergic signaling. Finally, we found that doses of anesthesia insufficient to affect neuronal responses to whisker stimulation selectively suppressed astrocyte calcium signals. Taken together, these data suggest that general anesthesia may suppress astrocyte calcium signals independently of neuronal activity. We propose that these glial effects may constitute a nonneuronal mechanism for sedative action of anesthetic drugs. PMID:23112168
A Monte Carlo Simulation of Vesicle Exocytosis in the Buffered Diffusion of Calcium Channel Currents
NASA Astrophysics Data System (ADS)
Dimcovic, Z.; Eagan, T. P.; Brown, R. W.; Petschek, R. G.; Eppell, S. J.; Yunker, A. M. R.; Sharp, A. H.; McEnery, M. W.
2001-04-01
The voltage-dependent opening of calcium channels results in an influx of calcium ions that leads to the fusion of synaptic vesicles with the cell membrane, resulting in the release of neurotransmitters. This allows nerve impulses to be transmitted from one neuron to another. A Monte Carlo model of the three-dimensional diffusion of calcium following a channel opening is employed to estimate the space and time dependence of the calcium density. The effects of fixed and mobile calcium buffers are included, and a tethered nearby vesicle is considered. The importance of the size and location of the vesicle is studied. When the vesicle is ignored, these results are compared with the analytical calculations of Naraghi and Neher and the Monte Carlo calculations of Bennett et al. The finite-vesicle-size analysis offers new insights into the process of neurosecretion. Support: NIH MH55747, AHA 96001250, NSF 0086643, and CWRU Presidential Research Initiative grants.
Heiser, Jeanine H; Schuwald, Anita M; Sillani, Giacomo; Ye, Lian; Müller, Walter E; Leuner, Kristina
2013-11-01
The non-selective cationic transient receptor canonical 6 (TRPC6) channels are involved in synaptic plasticity changes ranging from dendritic growth, spine morphology changes and increase in excitatory synapses. We previously showed that the TRPC6 activator hyperforin, the active antidepressant component of St. John's wort, induces neuritic outgrowth and spine morphology changes in PC12 cells and hippocampal CA1 neurons. However, the signaling cascade that transmits the hyperforin-induced transient rise in intracellular calcium into neuritic outgrowth is not yet fully understood. Several signaling pathways are involved in calcium transient-mediated changes in synaptic plasticity, ranging from calmodulin-mediated Ras-induced signaling cascades comprising the mitogen-activated protein kinase, PI3K signal transduction pathways as well as Ca(2+) /calmodulin-dependent protein kinase II (CAMKII) and CAMKIV. We show that several mechanisms are involved in TRPC6-mediated synaptic plasticity changes in PC12 cells and primary hippocampal neurons. Influx of calcium via TRPC6 channels activates different pathways including Ras/mitogen-activated protein kinase/extracellular signal-regulated kinases, phosphatidylinositide 3-kinase/protein kinase B, and CAMKIV in both cell types, leading to cAMP-response element binding protein phosphorylation. These findings are interesting not only in terms of the downstream targets of TRPC6 channels but also because of their potential to facilitate further understanding of St. John's wort extract-mediated antidepressant activity. Alterations in synaptic plasticity are considered to play an important role in the pathogenesis of depression. Beside several other proteins, TRPC6 channels regulate synaptic plasticity. This study demonstrates that different pathways including Ras/MEK/ERK, PI3K/Akt, and CAMKIV are involved in the improvement of synaptic plasticity by the TRPC6 activator hyperforin, the antidepressant active constituent of St. John's wort extract. © 2013 International Society for Neurochemistry.
Presynaptic strontium dynamics and synaptic transmission.
Xu-Friedman, M A; Regehr, W G
1999-01-01
Strontium can replace calcium in triggering neurotransmitter release, although peak release is reduced and the duration of release is prolonged. Strontium has therefore become useful in probing release, but its mechanism of action is not well understood. Here we study the action of strontium at the granule cell to Purkinje cell synapse in mouse cerebellar slices. Presynaptic residual strontium levels were monitored with fluorescent indicators, which all responded to strontium (fura-2, calcium orange, fura-2FF, magnesium green, and mag-fura-5). When calcium was replaced by equimolar concentrations of strontium in the external bath, strontium and calcium both entered presynaptic terminals. Contaminating calcium was eliminated by including EGTA in the extracellular bath, or by loading parallel fibers with EGTA, enabling the actions of strontium to be studied in isolation. After a single stimulus, strontium reached higher peak free levels than did calcium (approximately 1.7 times greater), and decayed more slowly (half-decay time 189 ms for strontium and 32 ms for calcium). These differences in calcium and strontium dynamics are likely a consequence of greater strontium permeability through calcium channels, lower affinity of the endogenous buffer for strontium, and less efficient extrusion of strontium. Measurements of presynaptic divalent levels help to explain properties of release evoked by strontium. Parallel fiber synaptic currents triggered by strontium are smaller in amplitude and longer in duration than those triggered by calcium. In both calcium and strontium, release consists of two components, one more steeply dependent on divalent levels than the other. Strontium drives both components less effectively than does calcium, suggesting that the affinities of the sensors involved in both phases of release are lower for strontium than for calcium. Thus, the larger and slower strontium transients account for the prominent slow component of release triggered by strontium. PMID:10096899
Calcium, Synaptic Plasticity and Intrinsic Homeostasis in Purkinje Neuron Models
Achard, Pablo; De Schutter, Erik
2008-01-01
We recently reproduced the complex electrical activity of a Purkinje cell (PC) with very different combinations of ionic channel maximum conductances, suggesting that a large parameter space is available to homeostatic mechanisms. It has been hypothesized that cytoplasmic calcium concentrations control the homeostatic activity sensors. This raises many questions for PCs since in these neurons calcium plays an important role in the induction of synaptic plasticity. To address this question, we generated 148 new PC models. In these models the somatic membrane voltages are stable, but the somatic calcium dynamics are very variable, in agreement with experimental results. Conversely, the calcium signal in spiny dendrites shows only small variability. We demonstrate that this localized control of calcium conductances preserves the induction of long-term depression for all models. We conclude that calcium is unlikely to be the sole activity-sensor in this cell but that there is a strong relationship between activity homeostasis and synaptic plasticity. PMID:19129937
Separate Functional Properties of NMDARs Regulate Distinct Aspects of Spatial Cognition
ERIC Educational Resources Information Center
Sanders, Erin M.; Nyarko-Odoom, Akua O.; Zhao, Kevin; Nguyen, Michael; Liao, Hong Hong Liao; Keith, Matthew; Pyon, Jane; Kozma, Alyssa; Sanyal, Mohima; McHail, Daniel G.; Dumas, Theodore C.
2018-01-01
N-methyl-D-aspartate receptors (NMDARs) at excitatory synapses are central to activity-dependent synaptic plasticity and learning and memory. NMDARs act as ionotropic and metabotropic receptors by elevating postsynaptic calcium concentrations and by direct intracellular protein signaling. In the forebrain, these properties are controlled largely…
Depletion of calcium stores regulates calcium influx and signal transmission in rod photoreceptors
Szikra, Tamas; Cusato, Karen; Thoreson, Wallace B; Barabas, Peter; Bartoletti, Theodore M; Krizaj, David
2008-01-01
Tonic synapses are specialized for sustained calcium entry and transmitter release, allowing them to operate in a graded fashion over a wide dynamic range. We identified a novel plasma membrane calcium entry mechanism that extends the range of rod photoreceptor signalling into light-adapted conditions. The mechanism, which shares molecular and physiological characteristics with store-operated calcium entry (SOCE), is required to maintain baseline [Ca2+]i in rod inner segments and synaptic terminals. Sustained Ca2+ entry into rod cytosol is augmented by store depletion, blocked by La3+ and Gd3+ and suppressed by organic antagonists MRS-1845 and SKF-96365. Store depletion and the subsequent Ca2+ influx directly stimulated exocytosis in terminals of light-adapted rods loaded with the activity-dependent dye FM1–43. Moreover, SOCE blockers suppressed rod-mediated synaptic inputs to horizontal cells without affecting presynaptic voltage-operated Ca2+ entry. Silencing of TRPC1 expression with small interference RNA disrupted SOCE in rods, but had no effect on cone Ca2+ signalling. Rods were immunopositive for TRPC1 whereas cone inner segments immunostained with TRPC6 channel antibodies. Thus, SOCE modulates Ca2+ homeostasis and light-evoked neurotransmission at the rod photoreceptor synapse mediated by TRPC1. PMID:18755743
Santafe, M M; Garcia, N; Lanuza, M A; Tomàs, M; Besalduch, N; Tomàs, J
2009-04-01
We studied the relation among calcium inflows, voltage-dependent calcium channels (VDCC), presynaptic muscarinic acetylcholine receptors (mAChRs), and protein kinase C (PKC) activity in the modulation of synapse elimination. We used intracellular recording to determine the synaptic efficacy in dually innervated endplates of the levator auris longus muscle of newborn rats during axonal competition in the postnatal synaptic elimination period. In these dual junctions, the weak nerve terminal was potentiated by partially reducing calcium entry (P/Q-, N-, or L-type VDCC-specific block or 500 muM magnesium ions), M1- or M4-type selective mAChR block, or PKC block. Moreover, reducing calcium entry or blocking PKC or mAChRs results in unmasking functionally silent nerve endings that now recover neurotransmitter release. Our results show interactions between these molecules and indicate that there is a release inhibition mechanism based on an mAChR-PKC-VDCC intracellular cascade. When it is fully active in certain weak motor axons, it can depress ACh release and even disconnect synapses. We suggest that this mechanism plays a central role in the elimination of redundant neonatal synapses, because functional axonal withdrawal can indeed be reversed by mAChRs, VDCCs, or PKC block.
Calcium-dependent inactivation of calcium channels in cochlear hair cells of the chicken.
Lee, Seunghwan; Briklin, Olga; Hiel, Hakim; Fuchs, Paul
2007-09-15
Voltage-gated calcium channels support both spontaneous and sound-evoked neurotransmitter release from ribbon synapses of cochlear hair cells. A variety of regulatory mechanisms must cooperate to ensure the appropriate level of activity in the restricted pool of synaptic calcium channels ( approximately 100) available to each synaptic ribbon. One potential feedback mechanism, calcium-dependent inactivation (CDI) of voltage-gated, L-type calcium channels, can be modulated by calmodulin-like calcium-binding proteins. CDI of voltage-gated calcium current was studied in hair cells of the chicken's basilar papilla (analogous to the mammalian cochlea) after blocking the predominant potassium conductances. For inactivating currents produced by 2.5 s steps to the peak of the current-voltage relation (1 mm EGTA internal calcium buffer), single exponential fits yielded an average decay time constant of 1.92 +/- 0.18 s (mean +/- s.e.m., n = 12) at 20-22 degrees C, while recovery occurred with a half-time of approximately 10 s. Inactivation produced no change in reversal potential, arguing that the observed relaxation did not result from alternative processes such as calcium accumulation or activation of residual potassium currents. Substitution of external calcium with barium greatly reduced inactivation, while inhibition of endoplasmic calcium pumps with t-benzohydroquinone (BHQ) or thapsigargin made inactivation occur faster and to a greater extent. Raising external calcium 10-fold (from 2 to 20 mm) increased peak current 3-fold, but did not alter the extent or time course of CDI. However, increasing levels of internal calcium buffer consistently reduced the rate and extent of inactivation. With 1 mm EGTA buffering and in 2 mm external calcium, the available pool of calcium channels was half-inactivated near the resting membrane potential (-50 mV). CDI may be further regulated by calmodulin-like calcium-binding proteins (CaBPs). mRNAs for several CaBPs are expressed in chicken cochlear tissue, and antibodies to CaBP4 label hair cells, but not supporting cells, equivalent to the pattern seen in mammalian cochlea. Thus, molecular mechanisms that underlie CDI appeared to be conserved across vertebrate species, may provide a means to adjust calcium channel open probability, and could serve to maintain the set-point for spontaneous release from the ribbon synapse.
Calcium-dependent inactivation of calcium channels in cochlear hair cells of the chicken
Lee, Seunghwan; Briklin, Olga; Hiel, Hakim; Fuchs, Paul
2007-01-01
Voltage-gated calcium channels support both spontaneous and sound-evoked neurotransmitter release from ribbon synapses of cochlear hair cells. A variety of regulatory mechanisms must cooperate to ensure the appropriate level of activity in the restricted pool of synaptic calcium channels (∼100) available to each synaptic ribbon. One potential feedback mechanism, calcium-dependent inactivation (CDI) of voltage-gated, L-type calcium channels, can be modulated by calmodulin-like calcium-binding proteins. CDI of voltage-gated calcium current was studied in hair cells of the chicken's basilar papilla (analogous to the mammalian cochlea) after blocking the predominant potassium conductances. For inactivating currents produced by 2.5 s steps to the peak of the current–voltage relation (1 mm EGTA internal calcium buffer), single exponential fits yielded an average decay time constant of 1.92 ± 0.18 s (mean ±s.e.m., n = 12) at 20–22°C, while recovery occurred with a half-time of ∼10 s. Inactivation produced no change in reversal potential, arguing that the observed relaxation did not result from alternative processes such as calcium accumulation or activation of residual potassium currents. Substitution of external calcium with barium greatly reduced inactivation, while inhibition of endoplasmic calcium pumps with t-benzohydroquinone (BHQ) or thapsigargin made inactivation occur faster and to a greater extent. Raising external calcium 10-fold (from 2 to 20 mm) increased peak current 3-fold, but did not alter the extent or time course of CDI. However, increasing levels of internal calcium buffer consistently reduced the rate and extent of inactivation. With 1 mm EGTA buffering and in 2 mm external calcium, the available pool of calcium channels was half-inactivated near the resting membrane potential (−50 mV). CDI may be further regulated by calmodulin-like calcium-binding proteins (CaBPs). mRNAs for several CaBPs are expressed in chicken cochlear tissue, and antibodies to CaBP4 label hair cells, but not supporting cells, equivalent to the pattern seen in mammalian cochlea. Thus, molecular mechanisms that underlie CDI appeared to be conserved across vertebrate species, may provide a means to adjust calcium channel open probability, and could serve to maintain the set-point for spontaneous release from the ribbon synapse. PMID:17656437
Identification of a human synaptotagmin-1 mutation that perturbs synaptic vesicle cycling
Baker, Kate; Gordon, Sarah L.; Grozeva, Detelina; van Kogelenberg, Margriet; Roberts, Nicola Y.; Pike, Michael; Blair, Edward; Hurles, Matthew E.; Chong, W. Kling; Baldeweg, Torsten; Kurian, Manju A.; Boyd, Stewart G.; Cousin, Michael A.; Raymond, F. Lucy
2015-01-01
Synaptotagmin-1 (SYT1) is a calcium-binding synaptic vesicle protein that is required for both exocytosis and endocytosis. Here, we describe a human condition associated with a rare variant in SYT1. The individual harboring this variant presented with an early onset dyskinetic movement disorder, severe motor delay, and profound cognitive impairment. Structural MRI was normal, but EEG showed extensive neurophysiological disturbances that included the unusual features of low-frequency oscillatory bursts and enhanced paired-pulse depression of visual evoked potentials. Trio analysis of whole-exome sequence identified a de novo SYT1 missense variant (I368T). Expression of rat SYT1 containing the equivalent human variant in WT mouse primary hippocampal cultures revealed that the mutant form of SYT1 correctly localizes to nerve terminals and is expressed at levels that are approximately equal to levels of endogenous WT protein. The presence of the mutant SYT1 slowed synaptic vesicle fusion kinetics, a finding that agrees with the previously demonstrated role for I368 in calcium-dependent membrane penetration. Expression of the I368T variant also altered the kinetics of synaptic vesicle endocytosis. Together, the clinical features, electrophysiological phenotype, and in vitro neuronal phenotype associated with this dominant negative SYT1 mutation highlight presynaptic mechanisms that mediate human motor control and cognitive development. PMID:25705886
Dobson, Katharine L.; Jackson, Claire; Balakrishnan, Saju; Bellamy, Tomas C.
2015-01-01
Background Cerebellar parallel fibres release glutamate at both the synaptic active zone and at extrasynaptic sites—a process known as ectopic release. These sites exhibit different short-term and long-term plasticity, the basis of which is incompletely understood but depends on the efficiency of vesicle release and recycling. To investigate whether release of calcium from internal stores contributes to these differences in plasticity, we tested the effects of the ryanodine receptor agonist caffeine on both synaptic and ectopic transmission. Methods Whole cell patch clamp recordings from Purkinje neurons and Bergmann glia were carried out in transverse cerebellar slices from juvenile (P16-20) Wistar rats. Key Results Caffeine caused complex changes in transmission at both synaptic and ectopic sites. The amplitude of postsynaptic currents in Purkinje neurons and extrasynaptic currents in Bergmann glia were increased 2-fold and 4-fold respectively, but paired pulse ratio was substantially reduced, reversing the short-term facilitation observed under control conditions. Caffeine treatment also caused synaptic sites to depress during 1 Hz stimulation, consistent with inhibition of the usual mechanisms for replenishing vesicles at the active zone. Unexpectedly, pharmacological intervention at known targets for caffeine—intracellular calcium release, and cAMP signalling—had no impact on these effects. Conclusions We conclude that caffeine increases release probability and inhibits vesicle recovery at parallel fibre synapses, independently of known pharmacological targets. This complex effect would lead to potentiation of transmission at fibres firing at low frequencies, but depression of transmission at high frequency connections. PMID:25933382
Dendritic excitability modulates dendritic information processing in a purkinje cell model.
Coop, Allan D; Cornelis, Hugo; Santamaria, Fidel
2010-01-01
Using an electrophysiological compartmental model of a Purkinje cell we quantified the contribution of individual active dendritic currents to processing of synaptic activity from granule cells. We used mutual information as a measure to quantify the information from the total excitatory input current (I(Glu)) encoded in each dendritic current. In this context, each active current was considered an information channel. Our analyses showed that most of the information was encoded by the calcium (I(CaP)) and calcium activated potassium (I(Kc)) currents. Mutual information between I(Glu) and I(CaP) and I(Kc) was sensitive to different levels of excitatory and inhibitory synaptic activity that, at the same time, resulted in the same firing rate at the soma. Since dendritic excitability could be a mechanism to regulate information processing in neurons we quantified the changes in mutual information between I(Glu) and all Purkinje cell currents as a function of the density of dendritic Ca (g(CaP)) and Kca (g(Kc)) conductances. We extended our analysis to determine the window of temporal integration of I(Glu) by I(CaP) and I(Kc) as a function of channel density and synaptic activity. The window of information integration has a stronger dependence on increasing values of g(Kc) than on g(CaP), but at high levels of synaptic stimulation information integration is reduced to a few milliseconds. Overall, our results show that different dendritic conductances differentially encode synaptic activity and that dendritic excitability and the level of synaptic activity regulate the flow of information in dendrites.
NASA Astrophysics Data System (ADS)
Dimcovic, Z. M.; Eagan, T. P.; Kidane, T. K.; Brown, R. W.; Petschek, R. G.; McEnery, M. W.
2001-10-01
The opening of voltage-dependent calcium channels results in an influx of calcium ions promoting the fusion of synaptic vesicles. The fusion leads to release of neurotransmitters, which in turn allow the propagation of nerve impulses. A Monte Carlo model of the diffusion of calcium following its surge into the cell is used to estimate the probability for exocytosis. Besides the calcium absorption by fixed and mobile buffers, key ingredients are the physical size and position of the tethered vesicle and a sensing model for the interaction of the vesicle and calcium. The release probability is compared to previously published studies where the finite vesicle size was not considered. (Supported by NIH MH55747, AHA 96001250, NSF0086643, and a CWRU Presidential Research Initiative grant.)
NASA Astrophysics Data System (ADS)
Choi, Ucheor; Weninger, Keith
2008-10-01
Calcium dependent neurotransmitter release at the synapses involves a synaptic vesicle protein synaptotagmin-1, a calcium sensor, to regulate exocytosis. It has been known that Synaptotagmin-1 interacts with assembled SNARE complexes, but it is unclear how their molecular mechanisms are coupled. X-ray studies in the absence of calcium revealed a closed conformation of synaptotagmin-1 and with calcium bound to the C2 domains of synaptotagmin-3 found extensive interactions holding the domains open. Suggesting the two conformations can be the key to the two functions of synaptotagmin in regulating neurotransmission. Here we use single molecule fluorescence resonance energy transfer (smFRET) to study synaptotagmin interactions with SNARE complexes and the spontaneous conformational changes of synaptotagmin-1 when calcium is induced.
Calcium transient in presynaptic terminal of squid giant synapse: detection with aequorin.
Llinás, R; Blinks, J R; Nicholson, C
1972-06-09
Microinjection of aequorin, a bioluminescent protein sensitive tocalcium, into the presynaptic terminal of the squid giant synapse demnonstrated an increase in intracellular calcium ion concentration during repetitive synaptic transmission. Although no light flashes synchronous with individual presynaptic : tion potentials were detected, the results are considered consistent with the hypothesis that entry of calcium into the presynaptic terminal triggers release of e synaptic transmitter substance.
Ludwar, Bjoern Ch; Evans, Colin G; Cropper, Elizabeth C
2012-07-15
It has been suggested that changes in intracellular calcium mediate the induction of a number of important forms of synaptic plasticity (e.g., homosynaptic facilitation). These hypotheses can be tested by simultaneously monitoring changes in intracellular calcium and alterations in synaptic efficacy. We demonstrate how this can be accomplished by combining calcium imaging with intracellular recording techniques. Our experiments are conducted in a buccal ganglion of the mollusc Aplysia californica. This preparation has a number of experimentally advantageous features: Ganglia can be easily removed from Aplysia and experiments use adult neurons that make normal synaptic connections and have a normal ion channel distribution. Due to the low metabolic rate of the animal and the relatively low temperatures (14-16 °C) that are natural for Aplysia, preparations are stable for long periods of time. To detect changes in intracellular free calcium we will use the cell impermeant version of Calcium Orange which is easily 'loaded' into a neuron via iontophoresis. When this long wavelength fluorescent dye binds to calcium, fluorescence intensity increases. Calcium Orange has fast kinetic properties and, unlike ratiometric dyes (e.g., Fura 2), requires no filter wheel for imaging. It is fairly photo stable and less phototoxic than other dyes (e.g., fluo-3). Like all non-ratiometric dyes, Calcium Orange indicates relative changes in calcium concentration. But, because it is not possible to account for changes in dye concentration due to loading and diffusion, it can not be calibrated to provide absolute calcium concentrations. An upright, fixed stage, compound microscope was used to image neurons with a CCD camera capable of recording around 30 frames per second. In Aplysia this temporal resolution is more than adequate to detect even a single spike induced alteration in the intracellular calcium concentration. Sharp electrodes are simultaneously used to induce and record synaptic transmission in identified pre- and postsynaptic neurons. At the conclusion of each trial, a custom script combines electrophysiology and imaging data. To ensure proper synchronization we use a light pulse from a LED mounted in the camera port of the microscope. Manipulation of presynaptic calcium levels (e.g. via intracellular EGTA injection) allows us to test specific hypotheses, concerning the role of intracellular calcium in mediating various forms of plasticity.
A model of activity-dependent changes in dendritic spine density and spine structure.
Crook, S M; Dur-E-Ahmad, M; Baer, S M
2007-10-01
Recent evidence indicates that the morphology and density of dendritic spines are regulated during synaptic plasticity. See, for instance, a review by Hayashi and Majewska [9]. In this work, we extend previous modeling studies [27] by combining a model for activity-dependent spine density with one for calcium-mediated spine stem restructuring. The model is based on the standard dimensionless cable equation, which represents the change in the membrane potential in a passive dendrite. Additional equations characterize the change in spine density along the dendrite, the current balance equation for an individual spine head, the change in calcium concentration in the spine head, and the dynamics of spine stem resistance. We use computational studies to investigate the changes in spine density and structure for differing synaptic inputs and demonstrate the effects of these changes on the input-output properties of the dendritic branch. Moderate amounts of high-frequency synaptic activation to dendritic spines result in an increase in spine stem resistance that is correlated with spine stem elongation. In addition, the spine density increases both inside and outside the input region. The model is formulated so that this long-term potentiation-inducing stimulus eventually leads to structural stability. In contrast, a prolonged low-frequency stimulation paradigm that would typically induce long-term depression results in a decrease in stem resistance (correlated with stem shortening) and an eventual decrease in spine density.
The complex nature of calcium cation interactions with phospholipid bilayers
Melcrová, Adéla; Pokorna, Sarka; Pullanchery, Saranya; Kohagen, Miriam; Jurkiewicz, Piotr; Hof, Martin; Jungwirth, Pavel; Cremer, Paul S.; Cwiklik, Lukasz
2016-01-01
Understanding interactions of calcium with lipid membranes at the molecular level is of great importance in light of their involvement in calcium signaling, association of proteins with cellular membranes, and membrane fusion. We quantify these interactions in detail by employing a combination of spectroscopic methods with atomistic molecular dynamics simulations. Namely, time-resolved fluorescent spectroscopy of lipid vesicles and vibrational sum frequency spectroscopy of lipid monolayers are used to characterize local binding sites of calcium in zwitterionic and anionic model lipid assemblies, while dynamic light scattering and zeta potential measurements are employed for macroscopic characterization of lipid vesicles in calcium-containing environments. To gain additional atomic-level information, the experiments are complemented by molecular simulations that utilize an accurate force field for calcium ions with scaled charges effectively accounting for electronic polarization effects. We demonstrate that lipid membranes have substantial calcium-binding capacity, with several types of binding sites present. Significantly, the binding mode depends on calcium concentration with important implications for calcium buffering, synaptic plasticity, and protein-membrane association. PMID:27905555
The complex nature of calcium cation interactions with phospholipid bilayers
NASA Astrophysics Data System (ADS)
Melcrová, Adéla; Pokorna, Sarka; Pullanchery, Saranya; Kohagen, Miriam; Jurkiewicz, Piotr; Hof, Martin; Jungwirth, Pavel; Cremer, Paul S.; Cwiklik, Lukasz
2016-12-01
Understanding interactions of calcium with lipid membranes at the molecular level is of great importance in light of their involvement in calcium signaling, association of proteins with cellular membranes, and membrane fusion. We quantify these interactions in detail by employing a combination of spectroscopic methods with atomistic molecular dynamics simulations. Namely, time-resolved fluorescent spectroscopy of lipid vesicles and vibrational sum frequency spectroscopy of lipid monolayers are used to characterize local binding sites of calcium in zwitterionic and anionic model lipid assemblies, while dynamic light scattering and zeta potential measurements are employed for macroscopic characterization of lipid vesicles in calcium-containing environments. To gain additional atomic-level information, the experiments are complemented by molecular simulations that utilize an accurate force field for calcium ions with scaled charges effectively accounting for electronic polarization effects. We demonstrate that lipid membranes have substantial calcium-binding capacity, with several types of binding sites present. Significantly, the binding mode depends on calcium concentration with important implications for calcium buffering, synaptic plasticity, and protein-membrane association.
Hibberd, Timothy J; Travis, Lee; Wiklendt, Lukasz; Costa, Marcello; Brookes, Simon J H; Hu, Hongzhen; Keating, Damien J; Spencer, Nick J
2018-01-01
The gastrointestinal tract contains its own independent population of sensory neurons within the gut wall. These sensory neurons have been referred to as intrinsic primary afferent neurons (IPANs) and can be identified by immunoreactivity to calcitonin gene-related peptide (CGRP) in mice. A common feature of IPANs is a paucity of fast synaptic inputs observed during sharp microelectrode recordings. Whether this is observed using different recording techniques is of particular interest for understanding the physiology of these neurons and neural circuit modeling. Here, we imaged spontaneous and evoked activation of myenteric neurons in isolated whole preparations of mouse colon and correlated recordings with CGRP and nitric oxide synthase (NOS) immunoreactivity, post hoc. Calcium indicator fluo 4 was used for this purpose. Calcium responses were recorded in nerve cell bodies located 5-10 mm oral to transmural electrical nerve stimuli. A total of 618 recorded neurons were classified for CGRP or NOS immunoreactivity. Aboral electrical stimulation evoked short-latency calcium transients in the majority of myenteric neurons, including ~90% of CGRP-immunoreactive Dogiel type II neurons. Activation of Dogiel type II neurons had a time course consistent with fast synaptic transmission and was always abolished by hexamethonium (300 μM) and by low-calcium Krebs solution. The nicotinic receptor agonist 1,1-dimethyl-4-phenylpiperazinium iodide (during synaptic blockade) directly activated Dogiel type II neurons. The present study suggests that murine colonic Dogiel type II neurons receive prominent fast excitatory synaptic inputs from hexamethonium-sensitive neural pathways. NEW & NOTEWORTHY Myenteric neurons in isolated mouse colon were recorded using calcium imaging and then neurochemically defined. Short-latency calcium transients were detected in >90% of calcitonin gene-related peptide-immunoreactive neurons to electrical stimulation of hexamethonium-sensitive pathways. Putative sensory Dogiel type II calcitonin gene-related peptide-immunoreactive myenteric neurons may receive widespread fast synaptic inputs in mouse colon.
Sen, Abhik; Hongpaisan, Jarin; Wang, Desheng; Nelson, Thomas J.; Alkon, Daniel L.
2016-01-01
Protein kinase Cϵ (PKCϵ) promotes synaptic maturation and synaptogenesis via activation of synaptic growth factors such as BDNF, NGF, and IGF. However, many of the detailed mechanisms by which PKCϵ induces synaptogenesis are not fully understood. Accumulation of PSD-95 to the postsynaptic density (PSD) is known to lead to synaptic maturation and strengthening of excitatory synapses. Here we investigated the relationship between PKCϵ and PSD-95. We show that the PKCϵ activators dicyclopropanated linoleic acid methyl ester and bryostatin 1 induce phosphorylation of PSD-95 at the serine 295 residue, increase the levels of PSD-95, and enhance its membrane localization. Elimination of the serine 295 residue in PSD-95 abolished PKCϵ-induced membrane accumulation. Knockdown of either PKCϵ or JNK1 prevented PKCϵ activator-mediated membrane accumulation of PSD-95. PKCϵ directly phosphorylated PSD-95 and JNK1 in vitro. Inhibiting PKCϵ, JNK, or calcium/calmodulin-dependent kinase II activity prevented the effects of PKCϵ activators on PSD-95 phosphorylation. Increase in membrane accumulation of PKCϵ and phosphorylated PSD-95 (p-PSD-95S295) coincided with an increased number of synapses and increased amplitudes of excitatory post-synaptic potentials (EPSPs) in adult rat hippocampal slices. Knockdown of PKCϵ also reduced the synthesis of PSD-95 and the presynaptic protein synaptophysin by 30 and 44%, respectively. Prolonged activation of PKCϵ increased synapse number by 2-fold, increased presynaptic vesicle density, and greatly increased PSD-95 clustering. These results indicate that PKCϵ promotes synaptogenesis by activating PSD-95 phosphorylation directly through JNK1 and calcium/calmodulin-dependent kinase II and also by inducing expression of PSD-95 and synaptophysin. PMID:27330081
Sen, Abhik; Hongpaisan, Jarin; Wang, Desheng; Nelson, Thomas J; Alkon, Daniel L
2016-08-05
Protein kinase Cϵ (PKCϵ) promotes synaptic maturation and synaptogenesis via activation of synaptic growth factors such as BDNF, NGF, and IGF. However, many of the detailed mechanisms by which PKCϵ induces synaptogenesis are not fully understood. Accumulation of PSD-95 to the postsynaptic density (PSD) is known to lead to synaptic maturation and strengthening of excitatory synapses. Here we investigated the relationship between PKCϵ and PSD-95. We show that the PKCϵ activators dicyclopropanated linoleic acid methyl ester and bryostatin 1 induce phosphorylation of PSD-95 at the serine 295 residue, increase the levels of PSD-95, and enhance its membrane localization. Elimination of the serine 295 residue in PSD-95 abolished PKCϵ-induced membrane accumulation. Knockdown of either PKCϵ or JNK1 prevented PKCϵ activator-mediated membrane accumulation of PSD-95. PKCϵ directly phosphorylated PSD-95 and JNK1 in vitro Inhibiting PKCϵ, JNK, or calcium/calmodulin-dependent kinase II activity prevented the effects of PKCϵ activators on PSD-95 phosphorylation. Increase in membrane accumulation of PKCϵ and phosphorylated PSD-95 (p-PSD-95(S295)) coincided with an increased number of synapses and increased amplitudes of excitatory post-synaptic potentials (EPSPs) in adult rat hippocampal slices. Knockdown of PKCϵ also reduced the synthesis of PSD-95 and the presynaptic protein synaptophysin by 30 and 44%, respectively. Prolonged activation of PKCϵ increased synapse number by 2-fold, increased presynaptic vesicle density, and greatly increased PSD-95 clustering. These results indicate that PKCϵ promotes synaptogenesis by activating PSD-95 phosphorylation directly through JNK1 and calcium/calmodulin-dependent kinase II and also by inducing expression of PSD-95 and synaptophysin. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Ng, Enoch; Varaschin, Rafael K; Su, Ping; Browne, Caleb J; Hermainski, Joanna; Le Foll, Bernard; Pongs, Olaf; Liu, Fang; Trudeau, Louis-Eric; Roder, John C; Wong, Albert H C
2016-03-15
Calcium sensors detect intracellular calcium changes and interact with downstream targets to regulate many functions. Neuronal Calcium Sensor-1 (NCS-1) or Frequenin is widely expressed in the nervous system, and involved in neurotransmission, synaptic plasticity and learning. NCS-1 interacts with and regulates dopamine D2 receptor (D2R) internalization and is implicated in disorders like schizophrenia and substance abuse. However, the role of NCS-1 in behaviors dependent on dopamine signaling in the striatum, where D2R is most highly expressed, is unknown. We show that Ncs-1 deletion in the mouse decreases willingness to work for food. Moreover, Ncs-1 knockout mice have significantly lower activity-dependent dopamine release in the nucleus accumbens core in acute slice recordings. In contrast, food preference, responding for conditioned reinforcement, ability to represent changes in reward value, and locomotor response to amphetamine are not impaired. These studies identify novel roles for NCS-1 in regulating activity-dependent striatal dopamine release and aspects of motivated behavior. Copyright © 2015 Elsevier B.V. All rights reserved.
Importance of vesicle release stochasticity in neuro-spike communication.
Ramezani, Hamideh; Akan, Ozgur B
2017-07-01
Aim of this paper is proposing a stochastic model for vesicle release process, a part of neuro-spike communication. Hence, we study biological events occurring in this process and use microphysiological simulations to observe functionality of these events. Since the most important source of variability in vesicle release probability is opening of voltage dependent calcium channels (VDCCs) followed by influx of calcium ions through these channels, we propose a stochastic model for this event, while using a deterministic model for other variability sources. To capture the stochasticity of calcium influx to pre-synaptic neuron in our model, we study its statistics and find that it can be modeled by a distribution defined based on Normal and Logistic distributions.
Electrical Advantages of Dendritic Spines
Gulledge, Allan T.; Carnevale, Nicholas T.; Stuart, Greg J.
2012-01-01
Many neurons receive excitatory glutamatergic input almost exclusively onto dendritic spines. In the absence of spines, the amplitudes and kinetics of excitatory postsynaptic potentials (EPSPs) at the site of synaptic input are highly variable and depend on dendritic location. We hypothesized that dendritic spines standardize the local geometry at the site of synaptic input, thereby reducing location-dependent variability of local EPSP properties. We tested this hypothesis using computational models of simplified and morphologically realistic spiny neurons that allow direct comparison of EPSPs generated on spine heads with EPSPs generated on dendritic shafts at the same dendritic locations. In all morphologies tested, spines greatly reduced location-dependent variability of local EPSP amplitude and kinetics, while having minimal impact on EPSPs measured at the soma. Spine-dependent standardization of local EPSP properties persisted across a range of physiologically relevant spine neck resistances, and in models with variable neck resistances. By reducing the variability of local EPSPs, spines standardized synaptic activation of NMDA receptors and voltage-gated calcium channels. Furthermore, spines enhanced activation of NMDA receptors and facilitated the generation of NMDA spikes and axonal action potentials in response to synaptic input. Finally, we show that dynamic regulation of spine neck geometry can preserve local EPSP properties following plasticity-driven changes in synaptic strength, but is inefficient in modifying the amplitude of EPSPs in other cellular compartments. These observations suggest that one function of dendritic spines is to standardize local EPSP properties throughout the dendritic tree, thereby allowing neurons to use similar voltage-sensitive postsynaptic mechanisms at all dendritic locations. PMID:22532875
Calcium channel blockers and transmitter release at the normal human neuromuscular junction.
Protti, D A; Reisin, R; Mackinley, T A; Uchitel, O D
1996-05-01
Transmitter release evoked by nerve stimulation is highly dependent on Ca2+ entry through voltage-activated plasma membrane channels. Calcium influx may be modified in some neuromuscular diseases like Lambert-Eaton syndrome and amyotrophic lateral sclerosis. We studied the pharmacologic sensitivity of the transmitter release process to different calcium channel blockers in normal human muscles and found that funnel web toxin and omega-Agatoxin-IVA, both P-type calcium channel blockers, blocked nerve-elicited muscle action potentials and inhibited evoked synaptic transmission. The transmitter release was not affected either by nitrendipine, an L-type channel blocker, or omega-Conotoxin-GVIA, an N-type channel blocker. The pharmacologic profile of neuromuscular transmission observed in normal human muscles indicates that P-like channels mediate transmitter release at the motor nerve terminals.
Learning rules for spike timing-dependent plasticity depend on dendritic synapse location.
Letzkus, Johannes J; Kampa, Björn M; Stuart, Greg J
2006-10-11
Previous studies focusing on the temporal rules governing changes in synaptic strength during spike timing-dependent synaptic plasticity (STDP) have paid little attention to the fact that synaptic inputs are distributed across complex dendritic trees. During STDP, propagation of action potentials (APs) back to the site of synaptic input is thought to trigger plasticity. However, in pyramidal neurons, backpropagation of single APs is decremental, whereas high-frequency bursts lead to generation of distal dendritic calcium spikes. This raises the question whether STDP learning rules depend on synapse location and firing mode. Here, we investigate this issue at synapses between layer 2/3 and layer 5 pyramidal neurons in somatosensory cortex. We find that low-frequency pairing of single APs at positive times leads to a distance-dependent shift to long-term depression (LTD) at distal inputs. At proximal sites, this LTD could be converted to long-term potentiation (LTP) by dendritic depolarizations suprathreshold for BAC-firing or by high-frequency AP bursts. During AP bursts, we observed a progressive, distance-dependent shift in the timing requirements for induction of LTP and LTD, such that distal synapses display novel timing rules: they potentiate when inputs are activated after burst onset (negative timing) but depress when activated before burst onset (positive timing). These findings could be explained by distance-dependent differences in the underlying dendritic voltage waveforms driving NMDA receptor activation during STDP induction. Our results suggest that synapse location within the dendritic tree is a crucial determinant of STDP, and that synapses undergo plasticity according to local rather than global learning rules.
Endogenous calcium buffering at photoreceptor synaptic terminals in salamander retina
Van Hook, Matthew J.; Thoreson, Wallace B.
2014-01-01
Calcium operates by several mechanisms to regulate glutamate release at rod and cone synaptic terminals. In addition to serving as the exocytotic trigger, Ca2+ accelerates replenishment of vesicles in cones and triggers Ca2+-induced Ca2+ release (CICR) in rods. Ca2+ thereby amplifies sustained exocytosis, enabling photoreceptor synapses to encode constant and changing light. A complete picture of the role of Ca2+ in regulating synaptic transmission requires an understanding of the endogenous Ca2+ handling mechanisms at the synapse. We therefore used the “added buffer” approach to measure the endogenous Ca2+ binding ratio (κendo) and extrusion rate constant (γ) in synaptic terminals of photoreceptors in retinal slices from tiger salamander. We found that κendo was similar in both cell types - approximately 25 and 50 in rods and cones, respectively. Using measurements of the decay time constants of Ca2+ transients, we found that γ was also similar, with values of approximately 100 s−1 and 160 s−1 in rods and cones, respectively. The measurements of κendo differ considerably from measurements in retinal bipolar cells, another ribbon-bearing class of retinal neurons, but are comparable to similar measurements at other conventional synapses. The values of γ are slower than at other synapses, suggesting that Ca2+ ions linger longer in photoreceptor terminals, supporting sustained exocytosis, CICR, and Ca2+-dependent ribbon replenishment. The mechanisms of endogenous Ca2+ handling in photoreceptors are thus well-suited for supporting tonic neurotransmission. Similarities between rod and cone Ca2+ handling suggest that neither buffering nor extrusion underlie differences in synaptic transmission kinetics. PMID:25049035
CASK regulates CaMKII autophosphorylation in neuronal growth, calcium signaling, and learning
Gillespie, John M.; Hodge, James J. L.
2013-01-01
Calcium (Ca2+)/calmodulin (CaM)-dependent kinase II (CaMKII) activity plays a fundamental role in learning and memory. A key feature of CaMKII in memory formation is its ability to be regulated by autophosphorylation, which switches its activity on and off during synaptic plasticity. The synaptic scaffolding protein CASK (calcium (Ca2+)/calmodulin (CaM) associated serine kinase) is also important for learning and memory, as mutations in CASK result in intellectual disability and neurological defects in humans. We show that in Drosophila larvae, CASK interacts with CaMKII to control neuronal growth and calcium signaling. Furthermore, deletion of the CaMK-like and L27 domains of CASK (CASK β null) or expression of overactive CaMKII (T287D) produced similar effects on synaptic growth and Ca2+ signaling. CASK overexpression rescues the effects of CaMKII overactivity, consistent with the notion that CASK and CaMKII act in a common pathway that controls these neuronal processes. The reduction in Ca2+ signaling observed in the CASK β null mutant caused a decrease in vesicle trafficking at synapses. In addition, the decrease in Ca2+ signaling in CASK mutants was associated with an increase in Ether-à-go-go (EAG) potassium (K+) channel localization to synapses. Reducing EAG restored the decrease in Ca2+ signaling observed in CASK mutants to the level of wildtype, suggesting that CASK regulates Ca2+ signaling via EAG. CASK knockdown reduced both appetitive associative learning and odor evoked Ca2+ responses in Drosophila mushroom bodies, which are the learning centers of Drosophila. Expression of human CASK in Drosophila rescued the effect of CASK deletion on the activity state of CaMKII, suggesting that human CASK may also regulate CaMKII autophosphorylation. PMID:24062638
Doll, Caleb A; Broadie, Kendal
2016-05-01
Neural circuit optimization occurs through sensory activity-dependent mechanisms that refine synaptic connectivity and information processing during early-use developmental critical periods. Fragile X Mental Retardation Protein (FMRP), the gene product lost in Fragile X syndrome (FXS), acts as an activity sensor during critical period development, both as an RNA-binding translation regulator and channel-binding excitability regulator. Here, we employ a Drosophila FXS disease model to assay calcium signaling dynamics with a targeted transgenic GCaMP reporter during critical period development of the mushroom body (MB) learning/memory circuit. We find FMRP regulates depolarization-induced calcium signaling in a neuron-specific manner within this circuit, suppressing activity-dependent calcium transients in excitatory cholinergic MB input projection neurons and enhancing calcium signals in inhibitory GABAergic MB output neurons. Both changes are restricted to the developmental critical period and rectified at maturity. Importantly, conditional genetic (dfmr1) rescue of null mutants during the critical period corrects calcium signaling defects in both neuron classes, indicating a temporally restricted FMRP requirement. Likewise, conditional dfmr1 knockdown (RNAi) during the critical period replicates constitutive null mutant defects in both neuron classes, confirming cell-autonomous requirements for FMRP in developmental regulation of calcium signaling dynamics. Optogenetic stimulation during the critical period enhances depolarization-induced calcium signaling in both neuron classes, but this developmental change is eliminated in dfmr1 null mutants, indicating the activity-dependent regulation requires FMRP. These results show FMRP shapes neuron class-specific calcium signaling in excitatory vs. inhibitory neurons in developing learning/memory circuitry, and that FMRP mediates activity-dependent regulation of calcium signaling specifically during the early-use critical period. Copyright © 2016 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Kimura, Ryoichi; Silva, Alcino J.; Ohno, Masuo
2008-01-01
Accumulating evidence indicates the key role of [alpha]-calcium/calmodulin-dependent protein kinase II ([alpha]CaMKII) in synaptic plasticity and learning, but it remains unclear how this kinase participates in the processing of memory extinction. Here, we investigated the mechanism by which [alpha]CaMKII may mediate extinction by using…
Two Coincidence Detectors for Spike Timing-Dependent Plasticity in Somatosensory Cortex
Bender, Vanessa A.; Bender, Kevin J.; Brasier, Daniel J.; Feldman, Daniel E.
2011-01-01
Many cortical synapses exhibit spike timing-dependent plasticity (STDP) in which the precise timing of presynaptic and postsynaptic spikes induces synaptic strengthening [long-term potentiation (LTP)] or weakening [long-term depression (LTD)]. Standard models posit a single, postsynaptic, NMDA receptor-based coincidence detector for LTP and LTD components of STDP. We show instead that STDP at layer 4 to layer 2/3 synapses in somatosensory (S1) cortex involves separate calcium sources and coincidence detection mechanisms for LTP and LTD. LTP showed classical NMDA receptor dependence. LTD was independent of postsynaptic NMDA receptors and instead required group I metabotropic glutamate receptors and calcium from voltage-sensitive channels and IP3 receptor-gated stores. Downstream of postsynaptic calcium, LTD required retrograde endocannabinoid signaling, leading to presynaptic LTD expression, and also required activation of apparently presynaptic NMDA receptors. These LTP and LTD mechanisms detected firing coincidence on ~25 and ~125 ms time scales, respectively, and combined to implement the overall STDP rule. These findings indicate that STDP is not a unitary process and suggest that endocannabinoid-dependent LTD may be relevant to cortical map plasticity. PMID:16624937
Neuromodulation of activity-dependent synaptic enhancement at crayfish neuromuscular junction.
Qian, S M; Delaney, K R
1997-10-17
Action potential-evoked transmitter release is enhanced for many seconds after moderate-frequency stimulation (e.g. 15 Hz for 30 s) at the excitor motorneuron synapse of the crayfish dactyl opener muscle. Beginning about 1.5 s after a train, activity-dependent synaptic enhancement (ADSE) is dominated by a process termed augmentation (G.D. Bittner, D.A. Baxter, Synaptic plasticity at crayfish neuromuscular junctions: facilitation and augmentation, Synapse 7 (1991) 235-243'[4]; K.L. Magleby, Short-term changes in synaptic efficacy, in: G.M. Edelman, L.E. Gall, C.W. Maxwell (Eds.), Synaptic Function, John Wiley and Sons, New York, 1987, pp. 21-56; K.L. Magleby; J.E. Zengel, Augmentation: a process that acts to increase transmitter release at the frog neuromuscular junction, J. Physiol. (Lond.) 257 (1976) 449-470) which decays approximately exponentially with a time constant of about 10 s at 16 degrees C, reflecting the removal of Ca2+ which accumulates during the train in presynaptic terminals (K.R. Delaney, D.W. Tank, R.S. Zucker, Serotonin-mediated enhancement of transmission at crayfish neuromuscular junction is independent of changes in calcium, J. Neurosci. 11 (1991) 2631-2643). Serotonin (5-HT, 1 microM) increases evoked and spontaneous transmitter release several-fold (D. Dixon, H.L. Atwood, Crayfish motor nerve terminal's response to serotonin examined by intracellular microelectrode, J. Neurobiol. 16 (1985) 409-424; J. Dudel, Modulation of quantal synaptic release by serotonin and forskolin in crayfish motor nerve terminals, in: Modulation of Synaptic Transmission and Plasticity in Nervous Systems, G. Hertting, H.-C. Spatz (Eds.), Springer-Verlag, Berlin, 1988; S. Glusman, E.A. Kravitz. The action of serotonin on excitatory nerve terminals in lobster nerve-muscle preparations, J. Physiol. (Lond.) 325 (1982) 223-241). We found that ADSE persists about 2-3 times longer after moderate-frequency presynaptic stimulation in the presence of 5-HT. This slowing of the decay of ADSE by 5-HT was not accompanied by significant changes in the initial amplitude of activity-dependent components of enhancement 1.5 s after the train. Measurements of presynaptic [Ca2+] indicated that the time course of Ca2+ removal from the presynaptic terminals after trains was not altered by 5-HT. Changes in presynaptic action potential shape, resting membrane potential or postsynaptic impedance after trains cannot account for slower recovery of ADSE. Axonal injection of EDTA slows the removal of residual Ca2+ and the decay of synaptic augmentation after trains of action potentials (K.R. Delaney, D.W. Tank, A quantitative measure of the dependence of short-term synaptic enhancement on presynaptic residual calcium, J. Neurosci. 14 (1994) 5885-5902), but has little or no effect on the 5-HT-induced persistence of ADSE. This also suggests that the time course of ADSE in the presence of 5-HT is not determined primarily by residual Ca2+ removal kinetics. The slowing of ADSE recovery after trains by 5-HT reverses with washing in 5-HT-free saline along with the 5-HT-mediated enhancement of release.
The Cellular Building Blocks of Breathing
Ramirez, J.M.; Doi, A.; Garcia, A.J.; Elsen, F.P.; Koch, H.; Wei, A.D.
2013-01-01
Respiratory brainstem neurons fulfill critical roles in controlling breathing: they generate the activity patterns for breathing and contribute to various sensory responses including changes in O2 and CO2. These complex sensorimotor tasks depend on the dynamic interplay between numerous cellular building blocks that consist of voltage-, calcium-, and ATP-dependent ionic conductances, various ionotropic and metabotropic synaptic mechanisms, as well as neuromodulators acting on G-protein coupled receptors and second messenger systems. As described in this review, the sensorimotor responses of the respiratory network emerge through the state-dependent integration of all these building blocks. There is no known respiratory function that involves only a small number of intrinsic, synaptic, or modulatory properties. Because of the complex integration of numerous intrinsic, synaptic, and modulatory mechanisms, the respiratory network is capable of continuously adapting to changes in the external and internal environment, which makes breathing one of the most integrated behaviors. Not surprisingly, inspiration is critical not only in the control of ventilation, but also in the context of “inspiring behaviors” such as arousal of the mind and even creativity. Far-reaching implications apply also to the underlying network mechanisms, as lessons learned from the respiratory network apply to network functions in general. PMID:23720262
Memory Maintenance in Synapses with Calcium-Based Plasticity in the Presence of Background Activity
Higgins, David; Graupner, Michael; Brunel, Nicolas
2014-01-01
Most models of learning and memory assume that memories are maintained in neuronal circuits by persistent synaptic modifications induced by specific patterns of pre- and postsynaptic activity. For this scenario to be viable, synaptic modifications must survive the ubiquitous ongoing activity present in neural circuits in vivo. In this paper, we investigate the time scales of memory maintenance in a calcium-based synaptic plasticity model that has been shown recently to be able to fit different experimental data-sets from hippocampal and neocortical preparations. We find that in the presence of background activity on the order of 1 Hz parameters that fit pyramidal layer 5 neocortical data lead to a very fast decay of synaptic efficacy, with time scales of minutes. We then identify two ways in which this memory time scale can be extended: (i) the extracellular calcium concentration in the experiments used to fit the model are larger than estimated concentrations in vivo. Lowering extracellular calcium concentration to in vivo levels leads to an increase in memory time scales of several orders of magnitude; (ii) adding a bistability mechanism so that each synapse has two stable states at sufficiently low background activity leads to a further boost in memory time scale, since memory decay is no longer described by an exponential decay from an initial state, but by an escape from a potential well. We argue that both features are expected to be present in synapses in vivo. These results are obtained first in a single synapse connecting two independent Poisson neurons, and then in simulations of a large network of excitatory and inhibitory integrate-and-fire neurons. Our results emphasise the need for studying plasticity at physiological extracellular calcium concentration, and highlight the role of synaptic bi- or multistability in the stability of learned synaptic structures. PMID:25275319
Orientation selectivity and the functional clustering of synaptic inputs in primary visual cortex
Wilson, Daniel E.; Whitney, David E.; Scholl, Benjamin; Fitzpatrick, David
2016-01-01
The majority of neurons in primary visual cortex are tuned for stimulus orientation, but the factors that account for the range of orientation selectivities exhibited by cortical neurons remain unclear. To address this issue, we used in vivo 2-photon calcium imaging to characterize the orientation tuning and spatial arrangement of synaptic inputs to the dendritic spines of individual pyramidal neurons in layer 2/3 of ferret visual cortex. The summed synaptic input to individual neurons reliably predicted the neuron’s orientation preference, but did not account for differences in orientation selectivity among neurons. These differences reflected a robust input-output nonlinearity that could not be explained by spike threshold alone, and was strongly correlated with the spatial clustering of co-tuned synaptic inputs within the dendritic field. Dendritic branches with more co-tuned synaptic clusters exhibited greater rates of local dendritic calcium events supporting a prominent role for functional clustering of synaptic inputs in dendritic nonlinearities that shape orientation selectivity. PMID:27294510
Contributions of two types of calcium channels to synaptic transmission and plasticity.
Edmonds, B; Klein, M; Dale, N; Kandel, E R
1990-11-23
In Aplysia sensory and motor neurons in culture, the contributions of the major classes of calcium current can be selectively examined while transmitter release and its modulation are examined. A slowly inactivating, dihydropyridine-sensitive calcium current does not contribute either to normal synaptic transmission or to any of three different forms of plasticity: presynaptic inhibition, homosynaptic depression, and presynaptic facilitation. This current does contribute, however, to a fourth form of plasticity--modulation of transmitter release by tonic depolarization of the sensory neuron. By contrast, a second calcium current, which is rapidly inactivating and dihydropyridine-insensitive, contributes to release elicited by the transient depolarization of an action potential and to the other three forms of plasticity.
Miller-Fleming, Tyne W; Petersen, Sarah C; Manning, Laura; Matthewman, Cristina; Gornet, Megan; Beers, Allison; Hori, Sayaka; Mitani, Shohei; Bianchi, Laura; Richmond, Janet; Miller, David M
2016-01-01
Genetic programming and neural activity drive synaptic remodeling in developing neural circuits, but the molecular components that link these pathways are poorly understood. Here we show that the C. elegans Degenerin/Epithelial Sodium Channel (DEG/ENaC) protein, UNC-8, is transcriptionally controlled to function as a trigger in an activity-dependent mechanism that removes synapses in remodeling GABAergic neurons. UNC-8 cation channel activity promotes disassembly of presynaptic domains in DD type GABA neurons, but not in VD class GABA neurons where unc-8 expression is blocked by the COUP/TF transcription factor, UNC-55. We propose that the depolarizing effect of UNC-8-dependent sodium import elevates intracellular calcium in a positive feedback loop involving the voltage-gated calcium channel UNC-2 and the calcium-activated phosphatase TAX-6/calcineurin to initiate a caspase-dependent mechanism that disassembles the presynaptic apparatus. Thus, UNC-8 serves as a link between genetic and activity-dependent pathways that function together to promote the elimination of GABA synapses in remodeling neurons. DOI: http://dx.doi.org/10.7554/eLife.14599.001 PMID:27403890
Devaraju, P; Yu, J; Eddins, D; Mellado-Lagarde, M M; Earls, L R; Westmoreland, J J; Quarato, G; Green, D R; Zakharenko, S S
2017-09-01
Hemizygous deletion of a 1.5- to 3-megabase region on chromosome 22 causes 22q11.2 deletion syndrome (22q11DS), which constitutes one of the strongest genetic risks for schizophrenia. Mouse models of 22q11DS have abnormal short-term synaptic plasticity that contributes to working-memory deficiencies similar to those in schizophrenia. We screened mutant mice carrying hemizygous deletions of 22q11DS genes and identified haploinsufficiency of Mrpl40 (mitochondrial large ribosomal subunit protein 40) as a contributor to abnormal short-term potentiation (STP), a major form of short-term synaptic plasticity. Two-photon imaging of the genetically encoded fluorescent calcium indicator GCaMP6, expressed in presynaptic cytosol or mitochondria, showed that Mrpl40 haploinsufficiency deregulates STP via impaired calcium extrusion from the mitochondrial matrix through the mitochondrial permeability transition pore. This led to abnormally high cytosolic calcium transients in presynaptic terminals and deficient working memory but did not affect long-term spatial memory. Thus, we propose that mitochondrial calcium deregulation is a novel pathogenic mechanism of cognitive deficiencies in schizophrenia.
Matamales, Miriam
2012-01-01
Synaptic activity can trigger gene expression programs that are required for the stable change of neuronal properties, a process that is essential for learning and memory. Currently, it is still unclear how the stimulation of dendritic synapses can be coupled to transcription in the nucleus in a timely way given that large distances can separate these two cellular compartments. Although several mechanisms have been proposed to explain long distance communication between synapses and the nucleus, the possible co-existence of these models and their relevance in physiological conditions remain elusive. One model suggests that synaptic activation triggers the translocation to the nucleus of certain transcription regulators localised at postsynaptic sites that function as synapto-nuclear messengers. Alternatively, it has been hypothesised that synaptic activity initiates propagating regenerative intracellular calcium waves that spread through dendrites into the nucleus where nuclear transcription machinery is thereby regulated. It has also been postulated that membrane depolarisation of voltage-gated calcium channels on the somatic membrane is sufficient to increase intracellular calcium concentration and activate transcription without the need for transported signals from distant synapses. Here I provide a critical overview of the suggested mechanisms for coupling synaptic stimulation to transcription, the underlying assumptions behind them and their plausible physiological significance. PMID:24327840
Matamales, Miriam
2012-12-19
Synaptic activity can trigger gene expression programs that are required for the stable change of neuronal properties, a process that is essential for learning and memory. Currently, it is still unclear how the stimulation of dendritic synapses can be coupled to transcription in the nucleus in a timely way given that large distances can separate these two cellular compartments. Although several mechanisms have been proposed to explain long distance communication between synapses and the nucleus, the possible co-existence of these models and their relevance in physiological conditions remain elusive. One model suggests that synaptic activation triggers the translocation to the nucleus of certain transcription regulators localised at postsynaptic sites that function as synapto-nuclear messengers. Alternatively, it has been hypothesised that synaptic activity initiates propagating regenerative intracellular calcium waves that spread through dendrites into the nucleus where nuclear transcription machinery is thereby regulated. It has also been postulated that membrane depolarisation of voltage-gated calcium channels on the somatic membrane is sufficient to increase intracellular calcium concentration and activate transcription without the need for transported signals from distant synapses. Here I provide a critical overview of the suggested mechanisms for coupling synaptic stimulation to transcription, the underlying assumptions behind them and their plausible physiological significance.
Matamales, Miriam
2012-01-01
Synaptic activity can trigger gene expression programs that are required for the stable change of neuronal properties, a process that is essential for learning and memory. Currently, it is still unclear how the stimulation of dendritic synapses can be coupled to transcription in the nucleus in a timely way given that large distances can separate these two cellular compartments. Although several mechanisms have been proposed to explain long distance communication between synapses and the nucleus, the possible co-existence of these models and their relevance in physiological conditions remain elusive. One model suggests that synaptic activation triggers the translocation to the nucleus of certain transcription regulators localised at postsynaptic sites that function as synapto-nuclear messengers. Alternatively, it has been hypothesised that synaptic activity initiates propagating regenerative intracellular calcium waves that spread through dendrites into the nucleus where nuclear transcription machinery is thereby regulated. It has also been postulated that membrane depolarisation of voltage-gated calcium channels on the somatic membrane is sufficient to increase intracellular calcium concentration and activate transcription without the need for transported signals from distant synapses. Here I provide a critical overview of the suggested mechanisms for coupling synaptic stimulation to transcription, the underlying assumptions behind them and their plausible physiological significance.
Zhang, Hua; Liu, Jie; Sun, Suya; Pchitskaya, Ekaterina; Popugaeva, Elena; Bezprozvanny, Ilya
2015-01-01
Alzheimer's disease (AD) and aging result in impaired ability to store memories, but the cellular mechanisms responsible for these defects are poorly understood. Presenilin 1 (PS1) mutations are responsible for many early-onset familial AD (FAD) cases. The phenomenon of hippocampal long-term potentiation (LTP) is widely used in studies of memory formation and storage. Recent data revealed long-term LTP maintenance (L-LTP) is impaired in PS1-M146V knock-in (KI) FAD mice. To understand the basis for this phenomenon, in the present study we analyzed structural synaptic plasticity in hippocampal cultures from wild type (WT) and KI mice. We discovered that exposure to picrotoxin induces formation of mushroom spines in both WT and KI cultures, but the maintenance of mushroom spines is impaired in KI neurons. This maintenance defect can be explained by an abnormal firing pattern during the consolidation phase of structural plasticity in KI neurons. Reduced frequency of neuronal firing in KI neurons is caused by enhanced calcium-induced calcium release (CICR), enhanced activity of calcium-activated potassium channels, and increased afterhyperpolarization. As a result, "consolidation" pattern of neuronal activity converted to "depotentiation" pattern of neuronal activity in KI neurons. Consistent with this model, we demonstrated that pharmacological inhibitors of CICR (dantrolene), of calcium-activated potassium channels (apamin), and of calcium-dependent phosphatase calcineurin (FK506) are able to rescue structural plasticity defects in KI neurons. Furthermore, we demonstrate that incubation with dantrolene or apamin also rescued L-LTP defects in KI hippocampal slices, suggesting a role for a similar mechanism. This proposed mechanism may be responsible for memory defects in AD but also for age-related memory decline.
Readily releasable pool of synaptic vesicles measured at single synaptic contacts.
Trigo, Federico F; Sakaba, Takeshi; Ogden, David; Marty, Alain
2012-10-30
To distinguish between different models of vesicular release in brain synapses, it is necessary to know the number of vesicles of transmitter that can be released immediately at individual synapses by a high-calcium stimulus, the readily releasable pool (RRP). We used direct stimulation by calcium uncaging at identified, single-site inhibitory synapses to investigate the statistics of vesicular release and the size of the RRP. Vesicular release, detected as quantal responses in the postsynaptic neuron, showed an unexpected stochastic variation in the number of quanta from stimulus to stimulus at high intracellular calcium, with a mean of 1.9 per stimulus and a maximum of three or four. The results provide direct measurement of the RRP at single synaptic sites. They are consistent with models in which release proceeds from a small number of vesicle docking sites with an average occupancy around 0.7.
Contini, Donatella; Price, Steven D.
2016-01-01
Key points In the synaptic cleft between type I hair cells and calyceal afferents, K+ ions accumulate as a function of activity, dynamically altering the driving force and permeation through ion channels facing the synaptic cleft.High‐fidelity synaptic transmission is possible due to large conductances that minimize hair cell and afferent time constants in the presence of significant membrane capacitance.Elevated potassium maintains hair cells near a potential where transduction currents are sufficient to depolarize them to voltages necessary for calcium influx and synaptic vesicle fusion.Elevated potassium depolarizes the postsynaptic afferent by altering ion permeation through hyperpolarization‐activated cyclic nucleotide‐gated (HCN) channels, and contributes to depolarizing the afferent to potentials where a single EPSP (quantum) can generate an action potential.With increased stimulation, hair cell depolarization increases the frequency of quanta released, elevates [K+]cleft and depolarizes the afferent to potentials at which smaller and smaller EPSPs would be sufficient to trigger APs. Abstract Fast neurotransmitters act in conjunction with slower modulatory effectors that accumulate in restricted synaptic spaces found at giant synapses such as the calyceal endings in the auditory and vestibular systems. Here, we used dual patch‐clamp recordings from turtle vestibular hair cells and their afferent neurons to show that potassium ions accumulating in the synaptic cleft modulated membrane potentials and extended the range of information transfer. High‐fidelity synaptic transmission was possible due to large conductances that minimized hair cell and afferent time constants in the presence of significant membrane capacitance. Increased potassium concentration in the cleft maintained the hair cell near potentials that promoted the influx of calcium necessary for synaptic vesicle fusion. The elevated potassium concentration also depolarized the postsynaptic neuron by altering ion permeation through hyperpolarization‐activated cyclic nucleotide‐gated (HCN) channels. This depolarization enabled the afferent to reliably generate action potentials evoked by single AMPA‐dependent EPSPs. Depolarization of the postsynaptic afferent could also elevate potassium in the synaptic cleft, and would depolarize other hair cells enveloped by the same neuritic process increasing the fidelity of neurotransmission at those synapses as well. Collectively, these data demonstrate that neuronal activity gives rise to potassium accumulation, and suggest that potassium ion action on HCN channels can modulate neurotransmission, preserving the fidelity of high‐speed synaptic transmission by dynamically shifting the resting potentials of both presynaptic and postsynaptic cells. PMID:27633787
Regulation of CaV2 calcium channels by G protein coupled receptors
Zamponi, Gerald W.; Currie, Kevin P.M.
2012-01-01
Voltage gated calcium channels (Ca2+ channels) are key mediators of depolarization induced calcium influx into excitable cells, and thereby play pivotal roles in a wide array of physiological responses. This review focuses on the inhibition of CaV2 (N- and P/Q-type) Ca2+-channels by G protein coupled receptors (GPCRs), which exerts important autocrine/paracrine control over synaptic transmission and neuroendocrine secretion. Voltage-dependent inhibition is the most widespread mechanism, and involves direct binding of the G protein βγ dimer (Gβγ) to the α1 subunit of CaV2 channels. GPCRs can also recruit several other distinct mechanisms including phosphorylation, lipid signaling pathways, and channel trafficking that result in voltage-independent inhibition. Current knowledge of Gβγ-mediated inhibition is reviewed, including the molecular interactions involved, determinants of voltage-dependence, and crosstalk with other cell signaling pathways. A summary of recent developments in understanding the voltage-independent mechanisms prominent in sympathetic and sensory neurons is also included. PMID:23063655
Nishimune, Hiroshi; Numata, Tomohiro; Chen, Jie; Aoki, Yudai; Wang, Yonghong; Starr, Miranda P; Mori, Yasuo; Stanford, John A
2012-01-01
The P/Q-type voltage-dependent calcium channels (VDCCs) are essential for synaptic transmission at adult mammalian neuromuscular junctions (NMJs); however, the subsynaptic location of VDCCs relative to active zones in rodent NMJs, and the functional modification of VDCCs by the interaction with active zone protein Bassoon remain unknown. Here, we show that P/Q-type VDCCs distribute in a punctate pattern within the NMJ presynaptic terminals and align in three dimensions with Bassoon. This distribution pattern of P/Q-type VDCCs and Bassoon in NMJs is consistent with our previous study demonstrating the binding of VDCCs and Bassoon. In addition, we now show that the interaction between P/Q-type VDCCs and Bassoon significantly suppressed the inactivation property of P/Q-type VDCCs, suggesting that the Ca(2+) influx may be augmented by Bassoon for efficient synaptic transmission at NMJs. However, presynaptic Bassoon level was significantly attenuated in aged rat NMJs, which suggests an attenuation of VDCC function due to a lack of this interaction between VDCC and Bassoon. Importantly, the decreased Bassoon level in aged NMJs was ameliorated by isometric strength training of muscles for two months. The training increased Bassoon immunoreactivity in NMJs without affecting synapse size. These results demonstrated that the P/Q-type VDCCs preferentially accumulate at NMJ active zones and play essential role in synaptic transmission in conjunction with the active zone protein Bassoon. This molecular mechanism becomes impaired by aging, which suggests altered synaptic function in aged NMJs. However, Bassoon level in aged NMJs can be improved by muscle exercise.
Presynaptic pH and vesicle fusion in Drosophila larvae neurones.
Caldwell, Lesley; Harries, Peter; Sydlik, Sebastian; Schwiening, Christof J
2013-11-01
Both intracellular pH (pHi) and synaptic cleft pH change during neuronal activity yet little is known about how these pH shifts might affect synaptic transmission by influencing vesicle fusion. To address this we imaged pH- and Ca(2+) -sensitive fluorescent indicators (HPTS, Oregon green) in boutons at neuromuscular junctions. Electrical stimulation of motor nerves evoked presynaptic Ca(2+) i rises and pHi falls (∼0.1 pH units) followed by recovery of both Ca(2+) i and pHi. The plasma-membrane calcium ATPase (PMCA) inhibitor, 5(6)-carboxyeosin diacetate, slowed both the calcium recovery and the acidification. To investigate a possible calcium-independent role for the pHi shifts in modulating vesicle fusion we recorded post-synaptic miniature end-plate potential (mEPP) and current (mEPC) frequency in Ca(2+) -free solution. Acidification by propionate superfusion, NH(4)(+) withdrawal, or the inhibition of acid extrusion on the Na(+)/H(+) exchanger (NHE) induced a rise in miniature frequency. Furthermore, the inhibition of acid extrusion enhanced the rise induced by propionate addition and NH(4)(+) removal. In the presence of NH(4)(+), 10 out of 23 cells showed, after a delay, one or more rises in miniature frequency. These findings suggest that Ca(2+) -dependent pHi shifts, caused by the PMCA and regulated by NHE, may stimulate vesicle release. Furthermore, in the presence of membrane permeant buffers, exocytosed acid or its equivalents may enhance release through positive feedback. This hitherto neglected pH signalling, and the potential feedback role of vesicular acid, could explain some important neuronal excitability changes associated with altered pH and its buffering. Copyright © 2013 Wiley Periodicals, Inc.
Cortical Circuit Activity Evokes Rapid Astrocyte Calcium Signals on a Similar Timescale to Neurons.
Stobart, Jillian L; Ferrari, Kim David; Barrett, Matthew J P; Glück, Chaim; Stobart, Michael J; Zuend, Marc; Weber, Bruno
2018-05-16
Sensory stimulation evokes intracellular calcium signals in astrocytes; however, the timing of these signals is disputed. Here, we used novel combinations of genetically encoded calcium indicators for concurrent two-photon imaging of cortical astrocytes and neurons in awake mice during whisker deflection. We identified calcium responses in both astrocyte processes and endfeet that rapidly followed neuronal events (∼120 ms after). These fast astrocyte responses were largely independent of IP 3 R2-mediated signaling and known neuromodulator activity (acetylcholine, serotonin, and norepinephrine), suggesting that they are evoked by local synaptic activity. The existence of such rapid signals implies that astrocytes are fast enough to play a role in synaptic modulation and neurovascular coupling. VIDEO ABSTRACT. Copyright © 2018 Elsevier Inc. All rights reserved.
Mizerna, O P; Fedulova, S A; Veselovs'kyĭ, M S
2010-01-01
In the present study, we investigated the sensitivity of GABAergic short-term plasticity to the selective P- and P/Q-type calcium channels blocker omega-agatoxin-IVA. To block the P-type channels we used 30 nM of this toxin and 200 nM of the toxin was used to block the P/Q channel types. The evoked inhibitory postsynaptic currents (eIPSC) were studied using patch-clamp technique in whole-cell configuration in postsynaptic neuron and local extracellular stimulation of single presynaptic axon by rectangular pulse. The present data show that the contribution of P- and P/Q-types channels to GABAergic synaptic transmission in cultured hippocampal neurons are 30% and 45%, respectively. It was shown that the mediate contribution of the P- and P/Q-types channels to the amplitudes of eIPSC is different to every discovered neuron. It means that distribution of these channels is non-uniform. To study the short-term plasticity of inhibitory synaptic transmission, axons of presynaptic neurons were paired-pulse stimulated with the interpulse interval of 150 ms. Neurons demonstrated both the depression and facilitation. The application of 30 nM and 200 nM of the blocker decreased the depression and increased facilitation to 8% and 11%, respectively. In addition, we found that the mediate contribution of the P- and P/Q-types channels to realization of synaptic transmission after the second stimuli is 4% less compared to that after the first one. Therefore, blocking of both P- and P/Q-types calcium channels can change the efficiency of synaptic transmission. In this instance it facilitates realization of the transmission via decreased depression or increased facilitation. These results confirm that the P- and P/Q-types calcium channels are involved in regulation of the short-term inhibitory synaptic plasticity in cultured hippocampal neurons.
Wang, Ya-Li; Wang, Jian-Gang; Guo, Fang-Li; Gao, Xia-Huan; Zhao, Dan-Dan; Zhang, Lin; Wang, Jian-Zhi; Lu, Cheng-Biao
2017-09-01
Intracellular calcium is a key factor in most cellular processes, including cell growth, differentiation, proliferation and neurotransmitter release. Dopamine (DA) mediates synaptic transmission by regulating the intracellular calcium content. It is not clear, however, which specific subunit of the DA receptor contributes to DA modulation of intracellular calcium content changes. Through the traditional technique of Fura-2 calcium imaging, this study demonstrated that the DA can induce transient calcium in cultured hippocampal neurons and that this response can be mimicked by a selective dopamine receptor 4 (DR4) agonist PD168077 (PD). PD-induced calcium transience can be blocked by a calcium chelator, such as BAPTA-AM, or by pre-treatment of neurons with thapsigargin, a IP 3 receptor antagonist, or a micromolar concentration of ryanodine, a ryanodine receptor (RyR) antagonist. However PD-induced calcium transience cannot be blocked by pre-treatment of neurons with a free-calcium medium or a cocktail of NMDA receptor, L-type calcium channel and alpha7 nicotinic acetylcholine receptor blockers. These results indicate that the calcium response induced by DR4 activation is mainly through activation of IP 3 receptor in internal stores, which is likely to contribute to the DA modulation of synaptic transmission and cognitive function. Copyright © 2017. Published by Elsevier B.V.
Forrest, Michael D.
2014-01-01
Without synaptic input, Purkinje neurons can spontaneously fire in a repeating trimodal pattern that consists of tonic spiking, bursting and quiescence. Climbing fiber input (CF) switches Purkinje neurons out of the trimodal firing pattern and toggles them between a tonic firing and a quiescent state, while setting the gain of their response to Parallel Fiber (PF) input. The basis to this transition is unclear. We investigate it using a biophysical Purkinje cell model under conditions of CF and PF input. The model can replicate these toggle and gain functions, dependent upon a novel account of intracellular calcium dynamics that we hypothesize to be applicable in real Purkinje cells. PMID:25191262
Miura, Yuki; Naka, Masamitsu; Matsuki, Norio; Nomura, Hiroshi
2012-10-31
Action potential-independent transmitter release, or spontaneous release, is postulated to produce multiple postsynaptic effects (e.g., maintenance of dendritic spines and suppression of local dendritic protein synthesis). Potentiation of spontaneous release may contribute to the precise modulation of synaptic function. However, the expression mechanism underlying potentiated spontaneous release remains unclear. In this study, we investigated the involvement of extracellular and intracellular calcium in basal and potentiated spontaneous release. Miniature excitatory postsynaptic currents (mEPSCs) of the basolateral amygdala neurons in acute brain slices were recorded. Forskolin, an adenylate cyclase activator, increased mEPSC frequency, and the increase lasted at least 25 min after washout. Removal of the extracellular calcium decreased mEPSC frequency in both naïve and forskolin-treated slices. On the other hand, chelation of intracellular calcium by BAPTA-AM decreased mEPSC frequency in naïve, but not in forskolin-treated slices. A blockade of the calcium-sensing receptor (CaSR) resulted in an increase in mEPSC frequency in forskolin-treated, but not in naïve slices. These findings indicate that forskolin-induced potentiation is accompanied by changes in the mechanisms underlying Ca(2+)-dependent spontaneous release. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Gaviño, Michael A; Ford, Kevin J; Archila, Santiago; Davis, Graeme W
2015-01-01
Homeostatic signaling stabilizes synaptic transmission at the neuromuscular junction (NMJ) of Drosophila, mice, and human. It is believed that homeostatic signaling at the NMJ is bi-directional and considerable progress has been made identifying mechanisms underlying the homeostatic potentiation of neurotransmitter release. However, very little is understood mechanistically about the opposing process, homeostatic depression, and how bi-directional plasticity is achieved. Here, we show that homeostatic potentiation and depression can be simultaneously induced, demonstrating true bi-directional plasticity. Next, we show that mutations that block homeostatic potentiation do not alter homeostatic depression, demonstrating that these are genetically separable processes. Finally, we show that homeostatic depression is achieved by decreased presynaptic calcium channel abundance and calcium influx, changes that are independent of the presynaptic action potential waveform. Thus, we identify a novel mechanism of homeostatic synaptic plasticity and propose a model that can account for the observed bi-directional, homeostatic control of presynaptic neurotransmitter release. DOI: http://dx.doi.org/10.7554/eLife.05473.001 PMID:25884248
Role of NMDA Receptor-Mediated Glutamatergic Signaling in Chronic and Acute Neuropathologies
2016-01-01
N-Methyl-D-aspartate receptors (NMDARs) have two opposing roles in the brain. On the one hand, NMDARs control critical events in the formation and development of synaptic organization and synaptic plasticity. On the other hand, the overactivation of NMDARs can promote neuronal death in neuropathological conditions. Ca2+ influx acts as a primary modulator after NMDAR channel activation. An imbalance in Ca2+ homeostasis is associated with several neurological diseases including schizophrenia, Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. These chronic conditions have a lengthy progression depending on internal and external factors. External factors such as acute episodes of brain damage are associated with an earlier onset of several of these chronic mental conditions. Here, we will review some of the current evidence of how traumatic brain injury can hasten the onset of several neurological conditions, focusing on the role of NMDAR distribution and the functional consequences in calcium homeostasis associated with synaptic dysfunction and neuronal death present in this group of chronic diseases. PMID:27630777
Dysregulation of cellular calcium homeostasis in Alzheimer's disease: bad genes and bad habits.
Mattson, M P; Chan, S L
2001-10-01
Calcium is one of the most important intracellular messengers in the brain, being essential for neuronal development, synaptic transmission and plasticity, and the regulation of various metabolic pathways. The findings reviewed in the present article suggest that calcium also plays a prominent role in the pathogenesis of Alzheimer's disease (AD). Associations between the pathological hallmarks ofAD (neurofibrillary tangles [NFT] and amyloid plaques) and perturbed cellular calcium homeostasis have been established in studies of patients, and in animal and cell culture models of AD. Studies of the effects of mutations in the beta-amyloid precursor protein (APP) and presenilins on neuronal plasticity and survival have provided insight into the molecular cascades that result in synaptic dysfunction and neuronal degeneration in AD. Central to the neurodegenerative process is the inability of neurons to properly regulate intracellular calcium levels. Increased levels of amyloid beta-peptide (Abeta) induce oxidative stress, which impairs cellular ion homeostasis and energy metabolism and renders neurons vulnerable to apoptosis and excitotoxicity. Subtoxic levels of Abeta may induce synaptic dysfunction by impairing multiple signal transduction pathways. Presenilin mutations perturb calcium homeostasis in the endoplasmic reticulum in a way that sensitizes neurons to apoptosis and excitotoxicity; links between aberrant calcium regulation and altered APP processing are emerging. Environmental risk factors for AD are being identified and may include high calorie diets, folic acid insufficiency, and a low level of intellectual activity (bad habits); in each case, the environmental factor impacts on neuronal calcium homeostasis. Low calorie diets and intellectual activity may guard against AD by stimulating production of neurotrophic factors and chaperone proteins. The emerging picture of the cell and molecular biology of AD is revealing novel preventative and therapeutic strategies for eradicating this growing epidemic of the elderly.
Caputo, Antonella; Piano, Ilaria; Demontis, Gian Carlo; Bacchi, Niccolò; Casarosa, Simona; Santina, Luca Della; Gargini, Claudia
2015-01-01
Photoreceptors rely upon highly specialized synapses to efficiently transmit signals to multiple postsynaptic targets. Calcium influx in the presynaptic terminal is mediated by voltage-gated calcium channels (VGCC). This event triggers neurotransmitter release, but also gates calcium-activated chloride channels (TMEM), which in turn regulate VGCC activity. In order to investigate the relationship between VGCC and TMEM channels, we analyzed the retina of wild type (WT) and Cacna2d4 mutant mice, in which the VGCC auxiliary α2δ4 subunit carries a nonsense mutation, disrupting the normal channel function. Synaptic terminals of mutant photoreceptors are disarranged and synaptic proteins as well as TMEM16A channels lose their characteristic localization. In parallel, calcium-activated chloride currents are impaired in rods, despite unaltered TMEM16A protein levels. Co-immunoprecipitation revealed the interaction between VGCC and TMEM16A channels in the retina. Heterologous expression of these channels in tsA-201 cells showed that TMEM16A associates with the CaV1.4 subunit, and the association persists upon expression of the mutant α2δ4 subunit. Collectively, our experiments show association between TMEM16A and the α1 subunit of VGCC. Close proximity of these channels allows optimal function of the photoreceptor synaptic terminal under physiological conditions, but also makes TMEM16A channels susceptible to changes occurring to calcium channels. PMID:26557056
The influence of single bursts vs. single spikes at excitatory dendrodendritic synapses
Masurkar, Arjun V.; Chen, Wei R.
2015-01-01
The synchronization of neuronal activity is thought to enhance information processing. There is much evidence supporting rhythmically bursting external tufted cells (ETCs) of the rodent olfactory bulb glomeruli coordinating the activation of glomerular interneurons and mitral cells via dendrodendritic excitation. However, as bursting has variable significance at axodendritic cortical synapses, it is not clear if ETC bursting imparts a specific functional advantage over the preliminary spike in dendrodendritic synaptic networks. To answer this question, we investigated the influence of single ETC bursts and spikes with the in-vitro rat olfactory bulb preparation at different levels of processing, via calcium imaging of presynaptic ETC dendrites, dual electrical recording of ETC–interneuron synaptic pairs, and multicellular calcium imaging of ETC-induced population activity. Our findings supported single ETC bursts, vs. single spikes, driving robust presynaptic calcium signaling, which in turn was associated with profound extension of the initial monosynaptic spike-driven dendrodendritic excitatory postsynaptic potential. This extension could be driven by either the spike-dependent or spike-independent components of the burst. At the population level, burst-induced excitation was more widespread and reliable compared with single spikes. This further supports the ETC network, in part due to a functional advantage of bursting at excitatory dendrodendritic synapses, coordinating synchronous activity at behaviorally relevant frequencies related to odor processing in vivo. PMID:22277089
Nguyen, David; Deng, Ping; Matthews, Elizabeth A; Kim, Doo-Sik; Feng, Guoping; Dickenson, Anthony H; Xu, Zao C; Luo, Z David
2009-01-01
Nerve injury-induced expression of the spinal calcium channel alpha-2-delta-1 subunit (Cavα2δ1) has been shown to mediate behavioral hypersensitivity through a yet identified mechanism. We examined if this neuroplasticity modulates behavioral hypersensitivity by regulating spinal glutamatergic neurotransmission in injury-free transgenic mice overexpressing the Cavα2δ1 proteins in neuronal tissues. The transgenic mice exhibited hypersensitivity to mechanical stimulation (allodynia) similar to the spinal nerve ligation injury model. Intrathecally delivered antagonists for N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxyl-5-methylisoxazole-4-propionic acid (AMPA)/kainate receptors, but not for the metabotropic glutamate receptors, caused a dose-dependent allodynia reversal in the transgenic mice without changing the behavioral sensitivity in wild-type mice. This suggests that elevated spinal Cavα2δ1 mediates allodynia through a pathway involving activation of selective glutamate receptors. To determine if this is mediated by enhanced spinal neuronal excitability or pre-synaptic glutamate release in deep-dorsal horn, we examined wide-dynamic-range (WDR) neuron excitability with extracellular recording and glutamate-mediated excitatory postsynaptic currents with whole-cell patch recording in deep-dorsal horn of the Cavα2δ1 transgenic mice. Our data indicated that overexpression of Cavα2δ1 in neuronal tissues led to increased frequency, but not amplitude, of miniature excitatory post synaptic currents mediated mainly by AMPA/kainate receptors at physiological membrane potentials, and also by NMDA receptors upon depolarization, without changing the excitability of WDR neurons to high intensity stimulation. Together, these findings support a mechanism of Cavα2δ1-mediated spinal sensitization in which elevated Cavα2δ1 causes increased pre-synaptic glutamate release that leads to reduced excitation thresholds of post-synaptic dorsal horn neurons to innocuous stimuli. This spinal sensitization mechanism may mediate at least partially the neuropathic pain states derived from increased pre-synaptic Cavα2δ1 expression. PMID:19216737
Silent synapses in neuromuscular junction development.
Tomàs, Josep; Santafé, Manel M; Lanuza, Maria A; García, Neus; Besalduch, Nuria; Tomàs, Marta
2011-01-01
In the last few years, evidence has been found to suggest that some synaptic contacts become silent but can be functionally recruited before they completely retract during postnatal synapse elimination in muscle. The physiological mechanism of developmental synapse elimination may be better understood by studying this synapse recruitment. This Mini-Review collects previously published data and new results to propose a molecular mechanism for axonal disconnection. The mechanism is based on protein kinase C (PKC)-dependent inhibition of acetylcholine (ACh) release. PKC activity may be stimulated by a methoctramine-sensitive M2-type muscarinic receptor and by calcium inflow though P/Q- and L-type voltage-dependent calcium channels. In addition, tropomyosin-related tyrosine kinase B (trkB) receptor-mediated brain-derived neurotrophic factor (BDNF) activity may oppose the PKC-mediated ACh release depression. Thus, a balance between trkB and muscarinic pathways may contribute to the final functional suppression of some neuromuscular synapses during development. © 2010 Wiley-Liss, Inc.
Nuclear BK Channels Regulate Gene Expression via the Control of Nuclear Calcium Signaling
Li, Boxing; Jie, Wei; Huang, Lianyan; Wei, Peng; Li, Shuji; Luo, Zhengyi; Friedman, Allyson K.; Meredith, Andrea L.; Han, Ming-Hu; Zhu, Xin-Hong; Gao, Tian-Ming
2014-01-01
Ion channels are essential for the regulation of neuronal functions. The significance of plasma membrane, mitochondrial, endoplasmic reticulum, and lysosomal ion channels in the regulation of Ca2+ is well established. In contrast, surprisingly less is known about the function of ion channels on the nuclear envelope (NE). Here we demonstrate the presence of functional large-conductance, calcium-activated potassium channels (BK channels) on the NE of rodent hippocampal neurons. Functionally blockade of nuclear BK channels (nBK channels) induces NE-derived Ca2+ release, nucleoplasmic Ca2+ elevation, and cAMP response element binding protein (CREB)-dependent transcription. More importantly, blockade of nBK channels regulates nuclear Ca2+-sensitive gene expression and promotes dendritic arborization in a nuclear Ca2+-dependent manner. These results suggest that nBK channel functions as a molecular linker between neuronal activity and nuclear Ca2+ to convey the signals from synapse to nucleus and is a new modulator for synaptic activity-dependent neuronal functions at the NE level. PMID:24952642
Churn, Severn B; Rana, Aniruddha; Lee, Kangmin; Parsons, J Travis; De Blas, Angel; Delorenzo, Robert J
2002-09-01
gamma-Aminobutyric acid (GABA) is the primary neurotransmitter that is responsible for the fast inhibitory synaptic transmission in the central nervous system. A major post-translational mechanism that can rapidly regulate GABAAR function is receptor phosphorylation. This study was designed to test the effect of endogenous calcium and calmodulin-dependent kinase II (CaM kinase II) activation on both allosteric modulator binding and GABAA receptor subunit phosphorylation. Endogenous CaM kinase II activity was stimulated, and GABAA receptors were subsequently analyzed for bothallosteric modulator binding properties and immunoprecipitated and analyzed for subunit phosphorylation levels. A significant increase in allosteric-modulator binding of the GABAAR was observed under conditions maximal for CaM kinase II activation. In addition, CaM kinase II activation resulted in a direct increase in phosphorylation of the GABAA receptor alpha1 subunit. The data suggest that the CaM kinase II-dependent phosphorylation of the GABAA receptor alpha1 subunit modulated allosteric modulator binding to the GABAA receptor.
Mukilan, Murugan; Ragu Varman, Durairaj; Sudhakar, Sivasubramaniam; Rajan, Koilmani Emmanuvel
2015-04-01
The activity-dependent expression of immediate-early genes (IEGs) and microRNA (miR)-132 has been implicated in synaptic plasticity and the formation of long-term memory (LTM). In the present study, we show that olfactory training induces the expression of IEGs (EGR-1, C-fos, C-jun) and miR-132 at similar time scale in olfactory bulb (OB) of Cynopterus sphinx. We examined the role of miR-132 in the OB using antisense oligodeoxynucleotide (AS-ODN) and demonstrated that a local infusion of AS-ODN in the OB 2h prior to training impaired olfactory memory formation in C. sphinx. However, the infusion of AS-ODN post-training did not cause a deficit in memory formation. Furthermore, the inhibition of miR-132 reduced the olfactory training-induced expression of IEGs and post synaptic density protein-95 (PSD-95) in the OB. Additionally, we show that miR-132 regulates the activation of calcium/calmodulin-dependent protein kinase-II (CaMKII) and cAMP response element binding protein (CREB), possibly through miR-148a. These data suggest that olfactory training induces the expression of miR-132 and IEGs, which in turn activates post-synaptic proteins that regulate olfactory memory formation. Copyright © 2015 Elsevier Inc. All rights reserved.
Kitamura, Youji; Iida, Yasuhiko; Abe, Jun; Ueda, Masashi; Mifune, Masaki; Kasuya, Fumiyo; Ohta, Masayuki; Igarashi, Kazuo; Saito, Yutaka; Saji, Hideo
2006-02-01
In this study, we investigated the effect of vesicular zinc on ischemic neuronal injury. In cultured neurons, addition of a low concentration (under 100 microM) of zinc inhibited both glutamate-induced calcium influx and neuronal death. In contrast, a higher concentration (over 150 microM) of zinc decreased neuronal viability, although calcium influx was inhibited. These results indicate that zinc exhibits biphasic effects depending on its concentration. Furthermore, in cultured neurons, co-addition of glutamate and CaEDTA, which binds extra-cellular zinc, increased glutamate-induced calcium influx and aggravated the neurotoxicity of glutamate. In a rat transient middle cerebral artery occlusion (MCAO) model, the infarction volume, which is related to the neurotoxicity of glutamate, increased rapidly on the intracerebral ventricular injection of CaEDTA 30 min prior to occlusion. These results suggest that zinc released from synaptic vesicles may provide a protective effect against ischemic neuronal injury.
Video-rate volumetric functional imaging of the brain at synaptic resolution.
Lu, Rongwen; Sun, Wenzhi; Liang, Yajie; Kerlin, Aaron; Bierfeld, Jens; Seelig, Johannes D; Wilson, Daniel E; Scholl, Benjamin; Mohar, Boaz; Tanimoto, Masashi; Koyama, Minoru; Fitzpatrick, David; Orger, Michael B; Ji, Na
2017-04-01
Neurons and neural networks often extend hundreds of micrometers in three dimensions. Capturing the calcium transients associated with their activity requires volume imaging methods with subsecond temporal resolution. Such speed is a challenge for conventional two-photon laser-scanning microscopy, because it depends on serial focal scanning in 3D and indicators with limited brightness. Here we present an optical module that is easily integrated into standard two-photon laser-scanning microscopes to generate an axially elongated Bessel focus, which when scanned in 2D turns frame rate into volume rate. We demonstrated the power of this approach in enabling discoveries for neurobiology by imaging the calcium dynamics of volumes of neurons and synapses in fruit flies, zebrafish larvae, mice and ferrets in vivo. Calcium signals in objects as small as dendritic spines could be resolved at video rates, provided that the samples were sparsely labeled to limit overlap in their axially projected images.
Active action potential propagation but not initiation in thalamic interneuron dendrites
Casale, Amanda E.; McCormick, David A.
2012-01-01
Inhibitory interneurons of the dorsal lateral geniculate nucleus of the thalamus modulate the activity of thalamocortical cells in response to excitatory input through the release of inhibitory neurotransmitter from both axons and dendrites. The exact mechanisms by which release can occur from dendrites are, however, not well understood. Recent experiments using calcium imaging have suggested that Na/K based action potentials can evoke calcium transients in dendrites via local active conductances, making the back-propagating action potential a candidate for dendritic neurotransmitter release. In this study, we employed high temporal and spatial resolution voltage-sensitive dye imaging to assess the characteristics of dendritic voltage deflections in response to Na/K action potentials in interneurons of the mouse dorsal lateral geniculate nucleus. We found that trains or single action potentials elicited by somatic current injection or local synaptic stimulation led to action potentials that rapidly and actively back-propagated throughout the entire dendritic arbor and into the fine filiform dendritic appendages known to release GABAergic vesicles. Action potentials always appeared first in the soma or proximal dendrite in response to somatic current injection or local synaptic stimulation, and the rapid back-propagation into the dendritic arbor depended upon voltage-gated sodium and TEA-sensitive potassium channels. Our results indicate that thalamic interneuron dendrites integrate synaptic inputs that initiate action potentials, most likely in the axon initial segment, that then back-propagate with high-fidelity into the dendrites, resulting in a nearly synchronous release of GABA from both axonal and dendritic compartments. PMID:22171033
NMDA-receptor dependent synaptic activation of TRPC channels in olfactory bulb granule cells
Stroh, Olga; Freichel, Marc; Kretz, Oliver; Birnbaumer, Lutz; Hartmann, Jana; Egger, Veronica
2012-01-01
TRPC channels are widely expressed throughout the nervous system including the olfactory bulb where their function is largely unknown. Here we describe their contribution to central synaptic processing at the reciprocal mitral and tufted cell - granule cell microcircuit, the most abundant synapse of the mammalian olfactory bulb. Suprathreshold activation of the synapse causes sodium action potentials in mouse granule cells and a subsequent long-lasting depolarization (LLD) linked to a global dendritic postsynaptic calcium signal recorded with two-photon laser scanning microscopy. These signals are not observed after action potentials evoked by current injection in the same cells. The LLD persists in the presence of group I metabotropic glutamate receptor antagonists but is entirely absent from granule cells deficient for the NMDA receptor subunit NR1. Moreover, both depolarization and Ca2+ rise are sensitive to the blockade of NMDA receptors. The LLD and the accompanying Ca2+ rise are also absent in granule cells from mice deficient for both TRPC channel subtypes 1 and 4, whereas the deletion of either TRPC1 or TRPC4 results in only a partial reduction of the LLD. Recordings from mitral cells in the absence of both subunits reveal a reduction of asynchronous neurotransmitter release from the granule cells during recurrent inhibition. We conclude that TRPC1 and TRPC4 can be activated downstream of NMDA receptor activation and contribute to slow synaptic transmission in the olfactory bulb, including the calcium dynamics required for asynchronous release from the granule cell spine. PMID:22539836
Microfluidic local perfusion chambers for the visualization and manipulation of synapses
Taylor, Anne M.; Dieterich, Daniela C.; Ito, Hiroshi T.; Kim, Sally A.; Schuman, Erin M.
2010-01-01
Summary The polarized nature of neurons as well as the size and density of synapses complicates the manipulation and visualization of cell biological processes that control synaptic function. Here we developed a microfluidic local perfusion (μLP) chamber to access and manipulate synaptic regions and pre- and post-synaptic compartments in vitro. This chamber directs the formation of synapses in >100 parallel rows connecting separate neuron populations. A perfusion channel transects the parallel rows allowing access to synaptic regions with high spatial and temporal resolution. We used this chamber to investigate synapse-to-nucleus signaling. Using the calcium indicator dye, Fluo-4, we measured changes in calcium at dendrites and somata, following local perfusion of glutamate. Exploiting the high temporal resolution of the chamber, we exposed synapses to “spaced” or “massed” application of glutamate and then examined levels of pCREB in somata. Lastly, we applied the metabotropic receptor agonist, DHPG, to dendrites and observed increases in Arc transcription and Arc transcript localization. PMID:20399729
Contributions of Bcl-xL to acute and long term changes in bioenergetics during neuronal plasticity.
Jonas, Elizabeth A
2014-08-01
Mitochondria manufacture and release metabolites and manage calcium during neuronal activity and synaptic transmission, but whether long term alterations in mitochondrial function contribute to the neuronal plasticity underlying changes in organism behavior patterns is still poorly understood. Although normal neuronal plasticity may determine learning, in contrast a persistent decline in synaptic strength or neuronal excitability may portend neurite retraction and eventual somatic death. Anti-death proteins such as Bcl-xL not only provide neuroprotection at the neuronal soma during cell death stimuli, but also appear to enhance neurotransmitter release and synaptic growth and development. It is proposed that Bcl-xL performs these functions through its ability to regulate mitochondrial release of bioenergetic metabolites and calcium, and through its ability to rapidly alter mitochondrial positioning and morphology. Bcl-xL also interacts with proteins that directly alter synaptic vesicle recycling. Bcl-xL translocates acutely to sub-cellular membranes during neuronal activity to achieve changes in synaptic efficacy. After stressful stimuli, pro-apoptotic cleaved delta N Bcl-xL (ΔN Bcl-xL) induces mitochondrial ion channel activity leading to synaptic depression and this is regulated by caspase activation. During physiological states of decreased synaptic stimulation, loss of mitochondrial Bcl-xL and low level caspase activation occur prior to the onset of long term decline in synaptic efficacy. The degree to which Bcl-xL changes mitochondrial membrane permeability may control the direction of change in synaptic strength. The small molecule Bcl-xL inhibitor ABT-737 has been useful in defining the role of Bcl-xL in synaptic processes. Bcl-xL is crucial to the normal health of neurons and synapses and its malfunction may contribute to neurodegenerative disease. Copyright © 2013. Published by Elsevier B.V.
Structural dynamics of the cell nucleus
Wiegert, Simon; Bading, Hilmar
2011-01-01
Neuronal morphology plays an essential role in signal processing in the brain. Individual neurons can undergo use-dependent changes in their shape and connectivity, which affects how intracellular processes are regulated and how signals are transferred from one cell to another in a neuronal network. Calcium is one of the most important intracellular second messengers regulating cellular morphologies and functions. In neurons, intracellular calcium levels are controlled by ion channels in the plasma membrane such as NMDA receptors (NMDARs), voltage-gated calcium channels (VGCCs) and certain α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) as well as by calcium exchange pathways between the cytosol and internal calcium stores including the endoplasmic reticulum and mitochondria. Synaptic activity and the subsequent opening of ligand and/or voltage-gated calcium channels can initiate cytosolic calcium transients which propagate towards the cell soma and enter the nucleus via its nuclear pore complexes (NPCs) embedded in the nuclear envelope. We recently described the discovery that in hippocampal neurons the morphology of the nucleus affects the calcium dynamics within the nucleus. Here we propose that nuclear infoldings determine whether a nucleus functions as an integrator or detector of oscillating calcium signals. We outline possible ties between nuclear mophology and transcriptional activity and discuss the importance of extending the approach to whole cell calcium signal modeling in order to understand synapse-to-nucleus communication in healthy and dysfunctional neurons. PMID:21738832
Zebrafish CaV2.1 Calcium Channels Are Tailored for Fast Synchronous Neuromuscular Transmission
Naranjo, David; Wen, Hua; Brehm, Paul
2015-01-01
The CaV2.2 (N-type) and CaV2.1 (P/Q-type) voltage-dependent calcium channels are prevalent throughout the nervous system where they mediate synaptic transmission, but the basis for the selective presence at individual synapses still remains an open question. The CaV2.1 channels have been proposed to respond more effectively to brief action potentials (APs), an idea supported by computational modeling. However, the side-by-side comparison of CaV2.1 and CaV2.2 kinetics in intact neurons failed to reveal differences. As an alternative means for direct functional comparison we expressed zebrafish CaV2.1 and CaV2.2 α-subunits, along with their accessory subunits, in HEK293 cells. HEK cells lack calcium currents, thereby circumventing the need for pharmacological inhibition of mixed calcium channel isoforms present in neurons. HEK cells also have a simplified morphology compared to neurons, which improves voltage control. Our measurements revealed faster kinetics and shallower voltage-dependence of activation and deactivation for CaV2.1. Additionally, recordings of calcium current in response to a command waveform based on the motorneuron AP show, directly, more effective activation of CaV2.1. Analysis of calcium currents associated with the AP waveform indicate an approximately fourfold greater open probability (PO) for CaV2.1. The efficient activation of CaV2.1 channels during APs may contribute to the highly reliable transmission at zebrafish neuromuscular junctions. PMID:25650925
Presynaptic Active Zone Density during Development and Synaptic Plasticity.
Clarke, Gwenaëlle L; Chen, Jie; Nishimune, Hiroshi
2012-01-01
Neural circuits transmit information through synapses, and the efficiency of synaptic transmission is closely related to the density of presynaptic active zones, where synaptic vesicles are released. The goal of this review is to highlight recent insights into the molecular mechanisms that control the number of active zones per presynaptic terminal (active zone density) during developmental and stimulus-dependent changes in synaptic efficacy. At the neuromuscular junctions (NMJs), the active zone density is preserved across species, remains constant during development, and is the same between synapses with different activities. However, the NMJ active zones are not always stable, as exemplified by the change in active zone density during acute experimental manipulation or as a result of aging. Therefore, a mechanism must exist to maintain its density. In the central nervous system (CNS), active zones have restricted maximal size, exist in multiple numbers in larger presynaptic terminals, and maintain a constant density during development. These findings suggest that active zone density in the CNS is also controlled. However, in contrast to the NMJ, active zone density in the CNS can also be increased, as observed in hippocampal synapses in response to synaptic plasticity. Although the numbers of known active zone proteins and protein interactions have increased, less is known about the mechanism that controls the number or spacing of active zones. The following molecules are known to control active zone density and will be discussed herein: extracellular matrix laminins and voltage-dependent calcium channels, amyloid precursor proteins, the small GTPase Rab3, an endocytosis mechanism including synaptojanin, cytoskeleton protein spectrins and β-adducin, and a presynaptic web including spectrins. The molecular mechanisms that organize the active zone density are just beginning to be elucidated.
Presynaptic Active Zone Density during Development and Synaptic Plasticity
Clarke, Gwenaëlle L.; Chen, Jie; Nishimune, Hiroshi
2012-01-01
Neural circuits transmit information through synapses, and the efficiency of synaptic transmission is closely related to the density of presynaptic active zones, where synaptic vesicles are released. The goal of this review is to highlight recent insights into the molecular mechanisms that control the number of active zones per presynaptic terminal (active zone density) during developmental and stimulus-dependent changes in synaptic efficacy. At the neuromuscular junctions (NMJs), the active zone density is preserved across species, remains constant during development, and is the same between synapses with different activities. However, the NMJ active zones are not always stable, as exemplified by the change in active zone density during acute experimental manipulation or as a result of aging. Therefore, a mechanism must exist to maintain its density. In the central nervous system (CNS), active zones have restricted maximal size, exist in multiple numbers in larger presynaptic terminals, and maintain a constant density during development. These findings suggest that active zone density in the CNS is also controlled. However, in contrast to the NMJ, active zone density in the CNS can also be increased, as observed in hippocampal synapses in response to synaptic plasticity. Although the numbers of known active zone proteins and protein interactions have increased, less is known about the mechanism that controls the number or spacing of active zones. The following molecules are known to control active zone density and will be discussed herein: extracellular matrix laminins and voltage-dependent calcium channels, amyloid precursor proteins, the small GTPase Rab3, an endocytosis mechanism including synaptojanin, cytoskeleton protein spectrins and β-adducin, and a presynaptic web including spectrins. The molecular mechanisms that organize the active zone density are just beginning to be elucidated. PMID:22438837
The influence of single bursts versus single spikes at excitatory dendrodendritic synapses.
Masurkar, Arjun V; Chen, Wei R
2012-02-01
The synchronization of neuronal activity is thought to enhance information processing. There is much evidence supporting rhythmically bursting external tufted cells (ETCs) of the rodent olfactory bulb glomeruli coordinating the activation of glomerular interneurons and mitral cells via dendrodendritic excitation. However, as bursting has variable significance at axodendritic cortical synapses, it is not clear if ETC bursting imparts a specific functional advantage over the preliminary spike in dendrodendritic synaptic networks. To answer this question, we investigated the influence of single ETC bursts and spikes with the in vitro rat olfactory bulb preparation at different levels of processing, via calcium imaging of presynaptic ETC dendrites, dual electrical recording of ETC -interneuron synaptic pairs, and multicellular calcium imaging of ETC-induced population activity. Our findings supported single ETC bursts, versus single spikes, driving robust presynaptic calcium signaling, which in turn was associated with profound extension of the initial monosynaptic spike-driven dendrodendritic excitatory postsynaptic potential. This extension could be driven by either the spike-dependent or spike-independent components of the burst. At the population level, burst-induced excitation was more widespread and reliable compared with single spikes. This further supports the ETC network, in part due to a functional advantage of bursting at excitatory dendrodendritic synapses, coordinating synchronous activity at behaviorally relevant frequencies related to odor processing in vivo. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Queisser, Gillian; Wiegert, Simon; Bading, Hilmar
2011-01-01
Neuronal morphology plays an essential role in signal processing in the brain. Individual neurons can undergo use-dependent changes in their shape and connectivity, which affects how intracellular processes are regulated and how signals are transferred from one cell to another in a neuronal network. Calcium is one of the most important intracellular second messengers regulating cellular morphologies and functions. In neurons, intracellular calcium levels are controlled by ion channels in the plasma membrane such as NMDA receptors (NMDARs), voltage-gated calcium channels (VGCCs) and certain α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) as well as by calcium exchange pathways between the cytosol and internal calcium stores including the endoplasmic reticulum and mitochondria. Synaptic activity and the subsequent opening of ligand and/or voltage-gated calcium channels can initiate cytosolic calcium transients which propagate towards the cell soma and enter the nucleus via its nuclear pore complexes (NPCs) embedded in the nuclear envelope. We recently described the discovery that in hippocampal neurons the morphology of the nucleus affects the calcium dynamics within the nucleus. Here we propose that nuclear infoldings determine whether a nucleus functions as an integrator or detector of oscillating calcium signals. We outline possible ties between nuclear mophology and transcriptional activity and discuss the importance of extending the approach to whole cell calcium signal modeling in order to understand synapse-to-nucleus communication in healthy and dysfunctional neurons.
Myoga, Michael H; Beierlein, Michael; Regehr, Wade G
2009-06-17
Somatic spiking is known to regulate dendritic signaling and associative synaptic plasticity in many types of large neurons, but it is unclear whether somatic action potentials play similar roles in small neurons. Here we ask whether somatic action potentials can also influence dendritic signaling in an electrically compact neuron, the cerebellar stellate cell (SC). Experiments were conducted in rat brain slices using a combination of imaging and electrophysiology. We find that somatic action potentials elevate dendritic calcium levels in SCs. There was little attenuation of calcium signals with distance from the soma in SCs from postnatal day 17 (P17)-P19 rats, which had dendrites that averaged 60 microm in length, and in short SC dendrites from P30-P33 rats. Somatic action potentials evoke dendritic calcium increases that are not affected by blocking dendritic sodium channels. This indicates that dendritic signals in SCs do not rely on dendritic sodium channels, which differs from many types of large neurons, in which dendritic sodium channels and backpropagating action potentials allow somatic spikes to control dendritic calcium signaling. Despite the lack of active backpropagating action potentials, we find that trains of somatic action potentials elevate dendritic calcium sufficiently to release endocannabinoids and retrogradely suppress parallel fiber to SC synapses in P17-P19 rats. Prolonged SC firing at physiologically realistic frequencies produces retrograde suppression when combined with low-level group I metabotropic glutamate receptor activation. Somatic spiking also interacts with synaptic stimulation to promote associative plasticity. These findings indicate that in small neurons the passive spread of potential within dendrites can allow somatic spiking to regulate dendritic calcium signaling and synaptic plasticity.
Pellegrino de Iraldi, A; Corazza, J P
1983-01-01
The effect of K+ and Na+ on the Ca2+ binding site in the dense core of monoaminergic vesicles of pineal nerves was investigated in the rat. Rat pineal glands, bisected immediately after decapitation, were incubated at room temperature in solutions containing high K+ or high Na+ in the presence or absence of Ca2+. Fixation was performed in glutaraldehyde-osmium tetroxide in collidine buffer, with and without CaCl2. It was confirmed that, after fixation in Ca2+-containing solutions, an electron-dense particle, located in the vesicle core, which can be considered a calcium deposit, appears within the synaptic vesicles. It was observed that this Ca2+ deposit may be modified by incubation in a high K+ or high Na+ milieu before fixation in Ca2+ containing solutions. When the incubation was carried out with high K+ and high Ca2+ simultaneously, Ca2+ deposits were considerably increased. With K+ alone, no Ca2+ deposits were apparent, as when electrical stimulation is applied before fixation. This effect was not observed when the incubation was done in high Na+. Consecutive incubations in high K+ and high Na+, respectively, restored the capability of the vesicle cores to bind Ca2+. Prolonged incubation in high Na+ before fixation increased Ca2+ deposits within the vesicles. These findings are in line with data on the effect of these ions upon the storage and release of biogenic amines and suggest that these ions modify the capability of synaptic vesicles to bind Ca2+.
Peng, H-Z; Ma, L-X; Lv, M-H; Hu, T; Liu, T
2016-04-05
Minocycline, a second-generation tetracycline, is well known for its antibiotic, anti-inflammatory, and antinociceptive effects. Modulation of synaptic transmission is one of the analgesic mechanisms of minocycline. Although it has been reported that minocycline may suppress excitatory glutamatergic synaptic transmission, it remains unclear whether it could affect inhibitory synaptic transmission, which also plays a key role in modulating pain signaling. To examine the effect of minocycline on synaptic transmission in rat spinal substantia gelatinosa (SG) neurons, we recorded spontaneous inhibitory postsynaptic currents (sIPSCs) using whole-cell patch-clamp recording at a holding potential of 0 mV. Bath application of minocycline significantly increased the frequency but not the amplitude of sIPSCs in a reversible and concentration-dependent manner with an EC50 of 85. The enhancement of inhibitory synaptic transmission produced by minocycline was not affected by the glutamate receptor antagonists CNQX and D-APV or by the voltage-gated sodium channel blocker tetrodotoxin (TTX). Moreover, the potency of minocycline for facilitating sIPSC frequency was the same in both glycinergic and GABAergic sIPSCs without changing their decay phases. However, the facilitatory effect of minocycline on sIPSCs was eliminated in a Ca(2+)-free Krebs solution or by co-administration with calcium channel blockers. In summary, our data demonstrate that baseline inhibitory synaptic transmission in SG neurons is markedly enhanced by minocycline. This may function to decrease the excitability of SG neurons, thus leading to a modulation of nociceptive transmission. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Incontro, Salvatore; Ciruela, Francisco; Ziff, Edward; Hofmann, Franz; Sánchez-Prieto, José; Torres, Magdalena
2014-01-01
Trafficking of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) is regulated by specific interactions with other proteins and by post-translational mechanisms, such as phosphorylation. We have found that the type II cGMP-dependent protein kinase (cGKII) phosphorylates GluA1 (formerly GluR1) at S845, augmenting the surface expression of AMPARs at both synaptic and extrasynaptic sites. Activation of cGKII by 8-Br-cGMP enhances the surface expression of GluA1, whereas its inhibition or suppression effectively diminished the expression of this protein at the cell surface. In granule cells, NMDA receptor activation (NMDAR) stimulates nitric oxide and cGMP production, which in turn activates cGKII and induces the phosphorylation of GluA1, promoting its accumulation in the plasma membrane. GluA1 is mainly incorporated into calcium permeable AMPARs as exposure to 8-Br-cGMP or NMDA activation enhanced AMPA-elicited calcium responses that are sensitive to NASPM inhibition. We summarize evidence for an increase of calcium permeable AMPA receptors downstream of NMDA receptor activation that might be relevant for granule cell development and plasticity. PMID:23545413
High-yield in vitro recordings from neurons functionally characterized in vivo.
Weiler, Simon; Bauer, Joel; Hübener, Mark; Bonhoeffer, Tobias; Rose, Tobias; Scheuss, Volker
2018-06-01
In vivo two-photon calcium imaging provides detailed information about the activity and response properties of individual neurons. However, in vitro methods are often required to study the underlying neuronal connectivity and physiology at the cellular and synaptic levels at high resolution. This protocol provides a fast and reliable workflow for combining the two approaches by characterizing the response properties of individual neurons in mice in vivo using genetically encoded calcium indicators (GECIs), followed by retrieval of the same neurons in brain slices for further analysis in vitro (e.g., circuit mapping). In this approach, a reference frame is provided by fluorescent-bead tracks and sparsely transduced neurons expressing a structural marker in order to re-identify the same neurons. The use of GECIs provides a substantial advancement over previous approaches by allowing for repeated in vivo imaging. This opens the possibility of directly correlating experience-dependent changes in neuronal activity and feature selectivity with changes in neuronal connectivity and physiology. This protocol requires expertise both in in vivo two-photon calcium imaging and in vitro electrophysiology. It takes 3 weeks or more to complete, depending on the time allotted for repeated in vivo imaging of neuronal activity.
Mechanisms of dendritic spine remodeling in a rat model of traumatic brain injury.
Campbell, John N; Low, Brian; Kurz, Jonathan E; Patel, Sagar S; Young, Matt T; Churn, Severn B
2012-01-20
Traumatic brain injury (TBI), a leading cause of death and disability in the United States, causes potentially preventable damage in part through the dysregulation of neural calcium levels. Calcium dysregulation could affect the activity of the calcium-sensitive phosphatase calcineurin (CaN), with serious implications for neural function. The present study used both an in vitro enzymatic assay and Western blot analyses to characterize the effects of lateral fluid percussion injury on CaN activity and CaN-dependent signaling in the rat forebrain. TBI resulted in an acute alteration of CaN phosphatase activity and long-lasting alterations of its downstream effector, cofilin, an actin-depolymerizing protein. These changes occurred bilaterally in the neocortex and hippocampus, appeared to persist for hours after injury, and coincided with synapse degeneration, as suggested by a loss of the excitatory post-synaptic protein PSD-95. Interestingly, the effect of TBI on cofilin in some brain regions was blocked by a single bolus of the CaN inhibitor FK506, given 1 h post-TBI. Overall, these findings suggest a loss of synapse stability in both hemispheres of the laterally-injured brain, and offer evidence for region-specific, CaN-dependent mechanisms.
Mechanisms of Dendritic Spine Remodeling in a Rat Model of Traumatic Brain Injury
Campbell, John N.; Low, Brian; Kurz, Jonathan E.; Patel, Sagar S.; Young, Matt T.
2012-01-01
Abstract Traumatic brain injury (TBI), a leading cause of death and disability in the United States, causes potentially preventable damage in part through the dysregulation of neural calcium levels. Calcium dysregulation could affect the activity of the calcium-sensitive phosphatase calcineurin (CaN), with serious implications for neural function. The present study used both an in vitro enzymatic assay and Western blot analyses to characterize the effects of lateral fluid percussion injury on CaN activity and CaN-dependent signaling in the rat forebrain. TBI resulted in an acute alteration of CaN phosphatase activity and long-lasting alterations of its downstream effector, cofilin, an actin-depolymerizing protein. These changes occurred bilaterally in the neocortex and hippocampus, appeared to persist for hours after injury, and coincided with synapse degeneration, as suggested by a loss of the excitatory post-synaptic protein PSD-95. Interestingly, the effect of TBI on cofilin in some brain regions was blocked by a single bolus of the CaN inhibitor FK506, given 1 h post-TBI. Overall, these findings suggest a loss of synapse stability in both hemispheres of the laterally-injured brain, and offer evidence for region-specific, CaN-dependent mechanisms. PMID:21838518
Synaptic transmission block by presynaptic injection of oligomeric amyloid beta
Moreno, Herman; Yu, Eunah; Pigino, Gustavo; Hernandez, Alejandro I.; Kim, Natalia; Moreira, Jorge E.; Sugimori, Mutsuyuki; Llinás, Rodolfo R.
2009-01-01
Early Alzheimer's disease (AD) pathophysiology is characterized by synaptic changes induced by degradation products of amyloid precursor protein (APP). The exact mechanisms of such modulation are unknown. Here, we report that nanomolar concentrations of intraaxonal oligomeric (o)Aβ42, but not oAβ40 or extracellular oAβ42, acutely inhibited synaptic transmission at the squid giant synapse. Further characterization of this phenotype demonstrated that presynaptic calcium currents were unaffected. However, electron microscopy experiments revealed diminished docked synaptic vesicles in oAβ42-microinjected terminals, without affecting clathrin-coated vesicles. The molecular events of this modulation involved casein kinase 2 and the synaptic vesicle rapid endocytosis pathway. These findings open the possibility of a new therapeutic target aimed at ameliorating synaptic dysfunction in AD. PMID:19304802
Astroglial Glutamate Signaling and Uptake in the Hippocampus
Rose, Christine R.; Felix, Lisa; Zeug, Andre; Dietrich, Dirk; Reiner, Andreas; Henneberger, Christian
2018-01-01
Astrocytes have long been regarded as essentially unexcitable cells that do not contribute to active signaling and information processing in the brain. Contrary to this classical view, it is now firmly established that astrocytes can specifically respond to glutamate released from neurons. Astrocyte glutamate signaling is initiated upon binding of glutamate to ionotropic and/or metabotropic receptors, which can result in calcium signaling, a major form of glial excitability. Release of so-called gliotransmitters like glutamate, ATP and D-serine from astrocytes in response to activation of glutamate receptors has been demonstrated to modulate various aspects of neuronal function in the hippocampus. In addition to receptors, glutamate binds to high-affinity, sodium-dependent transporters, which results in rapid buffering of synaptically-released glutamate, followed by its removal from the synaptic cleft through uptake into astrocytes. The degree to which astrocytes modulate and control extracellular glutamate levels through glutamate transporters depends on their expression levels and on the ionic driving forces that decrease with ongoing activity. Another major determinant of astrocytic control of glutamate levels could be the precise morphological arrangement of fine perisynaptic processes close to synapses, defining the diffusional distance for glutamate, and the spatial proximity of transporters in relation to the synaptic cleft. In this review, we will present an overview of the mechanisms and physiological role of glutamate-induced ion signaling in astrocytes in the hippocampus as mediated by receptors and transporters. Moreover, we will discuss the relevance of astroglial glutamate uptake for extracellular glutamate homeostasis, focusing on how activity-induced dynamic changes of perisynaptic processes could shape synaptic transmission at glutamatergic synapses. PMID:29386994
The Gα o Activator Mastoparan-7 Promotes Dendritic Spine Formation in Hippocampal Neurons
Ramírez, Valerie T.; Ramos-Fernández, Eva; Inestrosa, Nibaldo C.
2016-01-01
Mastoparan-7 (Mas-7), an analogue of the peptide mastoparan, which is derived from wasp venom, is a direct activator of Pertussis toxin- (PTX-) sensitive G proteins. Mas-7 produces several biological effects in different cell types; however, little is known about how Mas-7 influences mature hippocampal neurons. We examined the specific role of Mas-7 in the development of dendritic spines, the sites of excitatory synaptic contact that are crucial for synaptic plasticity. We report here that exposure of hippocampal neurons to a low dose of Mas-7 increases dendritic spine density and spine head width in a time-dependent manner. Additionally, Mas-7 enhances postsynaptic density protein-95 (PSD-95) clustering in neurites and activates Gα o signaling, increasing the intracellular Ca2+ concentration. To define the role of signaling intermediates, we measured the levels of phosphorylated protein kinase C (PKC), c-Jun N-terminal kinase (JNK), and calcium-calmodulin dependent protein kinase IIα (CaMKIIα) after Mas-7 treatment and determined that CaMKII activation is necessary for the Mas-7-dependent increase in dendritic spine density. Our results demonstrate a critical role for Gα o subunit signaling in the regulation of synapse formation. PMID:26881110
The Gαo Activator Mastoparan-7 Promotes Dendritic Spine Formation in Hippocampal Neurons.
Ramírez, Valerie T; Ramos-Fernández, Eva; Inestrosa, Nibaldo C
2016-01-01
Mastoparan-7 (Mas-7), an analogue of the peptide mastoparan, which is derived from wasp venom, is a direct activator of Pertussis toxin- (PTX-) sensitive G proteins. Mas-7 produces several biological effects in different cell types; however, little is known about how Mas-7 influences mature hippocampal neurons. We examined the specific role of Mas-7 in the development of dendritic spines, the sites of excitatory synaptic contact that are crucial for synaptic plasticity. We report here that exposure of hippocampal neurons to a low dose of Mas-7 increases dendritic spine density and spine head width in a time-dependent manner. Additionally, Mas-7 enhances postsynaptic density protein-95 (PSD-95) clustering in neurites and activates Gα(o) signaling, increasing the intracellular Ca(2+) concentration. To define the role of signaling intermediates, we measured the levels of phosphorylated protein kinase C (PKC), c-Jun N-terminal kinase (JNK), and calcium-calmodulin dependent protein kinase IIα (CaMKIIα) after Mas-7 treatment and determined that CaMKII activation is necessary for the Mas-7-dependent increase in dendritic spine density. Our results demonstrate a critical role for Gα(o) subunit signaling in the regulation of synapse formation.
Ogundele, Olalekan M; Pardo, Joaquin; Francis, Joseph; Goya, Rodolfo G; Lee, Charles C
2018-01-01
Insulin-like growth factor 1 receptor (IGF-1R) signaling regulates the activity and phosphorylation of downstream kinases linked to inflammation, neurodevelopment, aging and synaptic function. In addition to the control of Ca 2+ currents, IGF-1R signaling modulates the activity of calcium-calmodulin-dependent kinase 2 alpha (CaMKIIα) and mitogen activated protein kinase (MAPK/ErK) through multiple signaling pathways. These proteins (CaMKIIα and MAPK) regulate Ca 2+ movement and long-term potentiation (LTP). Since IGF-1R controls the synaptic activity of Ca 2+ , CaMKIIα and MAPK signaling, the possible mechanism through which an age-dependent change in IGF-1R can alter the synaptic expression and phosphorylation of these proteins in aging needs to be investigated. In this study, we evaluated the relationship between an age-dependent change in brain IGF-1R and phosphorylation of CaMKIIα/MAPK. Furthermore, we elucidated possible mechanisms through which dysregulated CaMKIIα/MAPK interaction may be linked to a change in neurotransmitter processing and synaptic function. Male C57BL/6 VGAT-Venus mice at postnatal days 80 (P80), 365 and 730 were used to study age-related neural changes in two brain regions associated with cognitive function: hippocampus and prefrontal cortex (PFC). By means of high throughput confocal imaging and quantitative immunoblotting, we evaluated the distribution and expression of IGF-1, IGF-1R, CaMKIIα, p-CaMKIIα, MAPK and p-MAPK in whole brain lysate, hippocampus and cortex. Furthermore, we compared protein expression patterns and regional changes at P80, P365 and P730. Ultimately, we determined the relative phosphorylation pattern of CaMKIIα and MAPK through quantification of neural p-CaMKIIα and p-MAPK/ErK, and IGF-1R expression for P80, P365 and P730 brain samples. In addition to a change in synaptic function, our results show a decrease in neural IGF-1/IGF-1R expression in whole brain, hippocampus and cortex of aged mice. This was associated with a significant upregulation of phosphorylated neural MAPK (p-MAPK) and decrease in total brain CaMKIIα (i.e., CaMKIIα and p-CaMKIIα) in the aged brain. Taken together, we showed that brain aging is associated with a change in neural IGF-1/IGF-1R expression and may be linked to a change in phosphorylation of synaptic kinases (CaMKIIα and MAPK) that are involved in the modulation of LTP.
Di Guilmi, Mariano N.; Urbano, Francisco J.; Inchauspe, Carlota Gonzalez
2011-01-01
In this work, we studied the effects of the anticonvulsant and analgesic drug pregabalin (PGB) on excitatory postsynaptic currents (EPSCs) at principal neurons of the mouse medial nucleus of the trapezoid body and on presynaptic calcium currents at the calyx of Held. We found that the acute application of PGB reduced the amplitude of EPSCs in a dose-dependent manner with a maximal blocking effect of approximately 30%. A clinical high-concentration dose of PGB (e.g., 500 μM) blocked Cav2.1 channel-mediated currents and decreased their facilitation during a 100-Hz train, without changing their voltage-dependent activation. Furthermore, PGB also removed the inactivation of Cav2.1 channels at a clinically relevant low concentration of 100 μM. These results suggest novel modulatory mechanisms mediated by the acute administration of PGB on fast excitatory synaptic transmission and might contribute to better understanding PGB anticonvulsant/analgesic clinical effects. PMID:21177783
Trueta, Citlali; De-Miguel, Francisco F
2012-01-01
We review the evidence of exocytosis from extrasynaptic sites in the soma, dendrites, and axonal varicosities of central and peripheral neurons of vertebrates and invertebrates, with emphasis on somatic exocytosis, and how it contributes to signaling in the nervous system. The finding of secretory vesicles in extrasynaptic sites of neurons, the presence of signaling molecules (namely transmitters or peptides) in the extracellular space outside synaptic clefts, and the mismatch between exocytosis sites and the location of receptors for these molecules in neurons and glial cells, have long suggested that in addition to synaptic communication, transmitters are released, and act extrasynaptically. The catalog of these molecules includes low molecular weight transmitters such as monoamines, acetylcholine, glutamate, gama-aminobutiric acid (GABA), adenosine-5-triphosphate (ATP), and a list of peptides including substance P, brain-derived neurotrophic factor (BDNF), and oxytocin. By comparing the mechanisms of extrasynaptic exocytosis of different signaling molecules by various neuron types we show that it is a widespread mechanism for communication in the nervous system that uses certain common mechanisms, which are different from those of synaptic exocytosis but similar to those of exocytosis from excitable endocrine cells. Somatic exocytosis has been measured directly in different neuron types. It starts after high-frequency electrical activity or long experimental depolarizations and may continue for several minutes after the end of stimulation. Activation of L-type calcium channels, calcium release from intracellular stores and vesicle transport towards the plasma membrane couple excitation and exocytosis from small clear or large dense core vesicles in release sites lacking postsynaptic counterparts. The presence of synaptic and extrasynaptic exocytosis endows individual neurons with a wide variety of time- and space-dependent communication possibilities. Extrasynaptic exocytosis may be the major source of signaling molecules producing volume transmission and by doing so may be part of a long duration signaling mode in the nervous system.
Mechanisms for Antagonistic Regulation of AMPA and NMDA-D1 Receptor Complexes at Postsynaptic Sites
NASA Technical Reports Server (NTRS)
Schumann, Johann; Scheler, Gabriele
2004-01-01
From the analysis of these pathways we conclude that postsynaptic processes that regulate synaptic transmission undergo significant cross-talk with respect to glutamatergic and neuromodulatory (dopamine) signals. The main hypothesis is that of a compensatory regulation, a competitive switch between the induction of increased AMPA conductance by CaMKII-dependent phosphorylation and reduced expression of PP2A, and increased D1 receptor sensitivity and expression by increased PKA, PP2A and decreased PP-1/calcineurin expression. Both types of plasticity are induced by NMDA receptor activation and increased internal calcium, they require different internal conditions to become expressed. Specifically we propose that AMPA regulation and D1 regulation are inversely coupled;The net result may be a bifurcation of synaptic state into predominantly AMPA or NMDA-D1 synapses. This could have functional consequences: stable connections for AMPA and conditional gating for NMDA-D1 synapses.
Sustained neuronal activity generated by glial plasticity
Pirttimaki, Tiina M.; Hall, Stephen D.; Parri, H. Rheinallt
2011-01-01
Astrocytes release gliotransmitters, notably glutamate, that can affect neuronal and synaptic activity. In particular, astrocytic glutamate release results in the generation of N-methyl D-aspartate receptor (NMDA-R) mediated slow inward currents (SICs) in neurons. However, factors underlying the emergence of SICs, and their physiological roles are largely unknown. Here we show that, in acute slices of rat somatosensory thalamus, stimulation of Lemniscal or cortical afferents results in a sustained increase of SICs in thalamocortical (TC) neurons that outlasts the duration of the stimulus by an hour. This long term enhancement (LTE) of astrocytic glutamate release is induced by group I metabotropic glutamate receptors (mGluRs), and is dependent on astrocytic intracellular calcium ([Ca2+]i). Neuronal SICs are mediated by extrasynaptic NR2B subunit-containing NMDA-Rs and are capable of eliciting bursts. These are distinct from T-type Ca2+ channel dependent bursts of action potentials, and are synchronized in neighboring TC neurons. These findings describe a previously unrecognized form of excitatory, non-synaptic plasticity in the central nervous system (CNS) that feeds forward to generate local neuronal firing long after stimulus termination. PMID:21613477
Ivannikov, Maxim V.; Sugimori, Mutsuyuki; Llinás, Rodolfo R.
2012-01-01
Synaptic plasticity in many regions of the central nervous system leads to the continuous adjustment of synaptic strength, which is essential for learning and memory. In this study, we show by visualizing synaptic vesicle release in mouse hippocampal synaptosomes that presynaptic mitochondria and specifically, their capacities for ATP production are essential determinants of synaptic vesicle exocytosis and its magnitude. Total internal reflection microscopy of FM1-43 loaded hippocampal synaptosomes showed that inhibition of mitochondrial oxidative phosphorylation reduces evoked synaptic release. This reduction was accompanied by a substantial drop in synaptosomal ATP levels. However, cytosolic calcium influx was not affected. Structural characterization of stimulated hippocampal synaptosomes revealed that higher total presynaptic mitochondrial volumes were consistently associated with higher levels of exocytosis. Thus, synaptic vesicle release is linked to the presynaptic ability to regenerate ATP, which itself is a utility of mitochondrial density and activity. PMID:22772899
Dendritic mRNA targeting and translation.
Kindler, Stefan; Kreienkamp, Hans-Jürgen
2012-01-01
Selective targeting of specific mRNAs into neuronal dendrites and their locally regulated translation at particular cell contact sites contribute to input-specific synaptic plasticity. Thus, individual synapses become decision-making units, which control gene expression in a spatially restricted and nucleus-independent manner. Dendritic targeting of mRNAs is achieved by active, microtubule-dependent transport. For this purpose, mRNAs are packaged into large ribonucleoprotein (RNP) particles containing an array of trans-acting RNA-binding proteins. These are attached to molecular motors, which move their RNP cargo into dendrites. A variety of proteins may be synthesized in dendrites, including signalling and scaffold proteins of the synapse and neurotransmitter receptors. In some cases, such as the alpha subunit of the calcium/calmodulin-dependent protein kinase II (αCaMKII) and the activity-regulated gene of 3.1 kb (Arg3.1, also referred to as activity-regulated cDNA, Arc), their local synthesis at synapses can modulate long-term changes in synaptic efficiency. Local dendritic translation is regulated by several signalling cascades including Akt/mTOR and Erk/MAP kinase pathways, which are triggered by synaptic activity. More recent findings show that miRNAs also play an important role in protein synthesis at synapses. Disruption of local translation control at synapses, as observed in the fragile X syndrome (FXS) and its mouse models and possibly also in autism spectrum disorders, interferes with cognitive abilities in mice and men.
Acetylcholine Mediates a Slow Synaptic Potential in Hippocampal Pyramidal Cells
NASA Astrophysics Data System (ADS)
Cole, A. E.; Nicoll, R. A.
1983-09-01
The hippocampal slice preparation was used to study the role of acetylcholine as a synaptic transmitter. Bath-applied acetylcholine had three actions on pyramidal cells: (i) depolarization associated with increased input resistance, (ii) blockade of calcium-activated potassium responses, and (iii) blockade of accommodation of cell discharge. All these actions were reversed by the muscarinic antagonist atropine. Stimulation of sites in the slice known to contain cholinergic fibers mimicked all the actions. Furthermore, these evoked synaptic responses were enhanced by the cholinesterase inhibitor eserine and were blocked by atropine. These findings provide electrophysiological support for the role of acetylcholine as a synaptic transmitter in the brain and demonstrate that nonclassical synaptic responses involving the blockade of membrane conductances exist in the brain.
Non-Ionotropic NMDA Receptor Signaling Drives Activity-Induced Dendritic Spine Shrinkage.
Stein, Ivar S; Gray, John A; Zito, Karen
2015-09-02
The elimination of dendritic spine synapses is a critical step in the refinement of neuronal circuits during development of the cerebral cortex. Several studies have shown that activity-induced shrinkage and retraction of dendritic spines depend on activation of the NMDA-type glutamate receptor (NMDAR), which leads to influx of extracellular calcium ions and activation of calcium-dependent phosphatases that modify regulators of the spine cytoskeleton, suggesting that influx of extracellular calcium ions drives spine shrinkage. Intriguingly, a recent report revealed a novel non-ionotropic function of the NMDAR in the regulation of synaptic strength, which relies on glutamate binding but is independent of ion flux through the receptor (Nabavi et al., 2013). Here, we tested whether non-ionotropic NMDAR signaling could also play a role in driving structural plasticity of dendritic spines. Using two-photon glutamate uncaging and time-lapse imaging of rat hippocampal CA1 neurons, we show that low-frequency glutamatergic stimulation results in shrinkage of dendritic spines even in the presence of the NMDAR d-serine/glycine binding site antagonist 7-chlorokynurenic acid (7CK), which fully blocks NMDAR-mediated currents and Ca(2+) transients. Notably, application of 7CK or MK-801 also converts spine enlargement resulting from a high-frequency uncaging stimulus into spine shrinkage, demonstrating that strong Ca(2+) influx through the NMDAR normally overcomes a non-ionotropic shrinkage signal to drive spine growth. Our results support a model in which NMDAR signaling, independent of ion flux, drives structural shrinkage at spiny synapses. Dendritic spine elimination is vital for the refinement of neural circuits during development and has been linked to improvements in behavioral performance in the adult. Spine shrinkage and elimination have been widely accepted to depend on Ca(2+) influx through NMDA-type glutamate receptors (NMDARs) in conjunction with long-term depression (LTD) of synaptic strength. Here, we use two-photon glutamate uncaging and time-lapse imaging to show that non-ionotropic NMDAR signaling can drive shrinkage of dendritic spines, independent of NMDAR-mediated Ca(2+) influx. Signaling through p38 MAPK was required for this activity-dependent spine shrinkage. Our results provide fundamental new insights into the signaling mechanisms that support experience-dependent changes in brain structure. Copyright © 2015 the authors 0270-6474/15/3512303-06$15.00/0.
Role of the MAGUK protein family in synapse formation and function.
Oliva, Carlos; Escobedo, Pía; Astorga, César; Molina, Claudia; Sierralta, Jimena
2012-01-01
Synaptic function is crucially dependent on the spatial organization of the presynaptic and postsynaptic apparatuses and the juxtaposition of both membrane compartments. This precise arrangement is achieved by a protein network at the submembrane region of each cell that is built around scaffold proteins. The membrane-associated guanylate kinase (MAGUK) family of proteins is a widely expressed and well-conserved group of proteins that plays an essential role in the formation and regulation of this scaffolding. Here, we review general features of this protein family, focusing on the discs large and calcium/calmodulin-dependent serine protein kinase subfamilies of MAGUKs in the formation, function, and plasticity of synapses. Copyright © 2011 Wiley Periodicals, Inc.
Cyclical Dynamics and Control of a Neuromechanical System
2012-01-01
of the membrane potentials and synaptic conductances of neurons in the CPG model, or the lengths, velocities, and calcium concentrations in a muscle...empirical data. • We found that muscle is strongly self-stabilizing when activated cyclically, possibly because of the nonlinearity in how calcium binds and...only its natural calcium dynamics and length, velocity, and tension relationships, is strongly self-stabilizing. I plan to submit these results as an
Endocytosis and recycling of AMPA receptors lacking GluR2/3.
Biou, Virginie; Bhattacharyya, Samarjit; Malenka, Robert C
2008-01-22
Excitatory synapses in the mammalian brain contain two types of ligand-gated ion channels: AMPA receptors (AMPARs) and NMDA receptors (NMDARs). AMPARs are responsible for generating excitatory synaptic responses, whereas NMDAR activation triggers long-lasting changes in these responses by modulating the trafficking of AMPARs toward and away from synapses. AMPARs are tetramers composed of four subunits (GluR1-GluR4), which current models suggest govern distinct AMPAR trafficking behavior during synaptic plasticity. Here, we address the roles of GluR2 and GluR3 in controlling the recycling- and activity-dependent endocytosis of AMPARs by using cultured hippocampal neurons prepared from knockout (KO) mice lacking these subunits. We find that synapses and dendritic spines form normally in cells lacking GluR2/3 and that upon NMDAR activation, GluR2/3-lacking AMPARs are endocytosed in a manner indistinguishable from GluR2-containing AMPARs in wild-type (WT) neurons. AMPARs lacking GluR2/3 also recycle to the plasma membrane identically to WT AMPARs. However, because of their permeability to calcium, GluR2-lacking but not WT AMPARs exhibited robust internalization throughout the dendritic tree in response to AMPA application. Dendritic endocytosis of AMPARs also was observed in GABAergic neurons, which express a high proportion of GluR2-lacking AMPARs. These results demonstrate that GluR2 and GluR3 are not required for activity-dependent endocytosis of AMPARs and suggest that the most important property of GluR2 in the context of AMPAR trafficking may be its influence on calcium permeability.
Chua, Yansong; Morrison, Abigail
2016-01-01
The role of dendritic spiking mechanisms in neural processing is so far poorly understood. To investigate the role of calcium spikes in the functional properties of the single neuron and recurrent networks, we investigated a three compartment neuron model of the layer 5 pyramidal neuron with calcium dynamics in the distal compartment. By performing single neuron simulations with noisy synaptic input and occasional large coincident input at either just the distal compartment or at both somatic and distal compartments, we show that the presence of calcium spikes confers a substantial advantage for coincidence detection in the former case and a lesser advantage in the latter. We further show that the experimentally observed critical frequency phenomenon, in which action potentials triggered by stimuli near the soma above a certain frequency trigger a calcium spike at distal dendrites, leading to further somatic depolarization, is not exhibited by a neuron receiving realistically noisy synaptic input, and so is unlikely to be a necessary component of coincidence detection. We next investigate the effect of calcium spikes in propagation of spiking activities in a feed-forward network (FFN) embedded in a balanced recurrent network. The excitatory neurons in the network are again connected to either just the distal, or both somatic and distal compartments. With purely distal connectivity, activity propagation is stable and distinguishable for a large range of recurrent synaptic strengths if the feed-forward connections are sufficiently strong, but propagation does not occur in the absence of calcium spikes. When connections are made to both the somatic and the distal compartments, activity propagation is achieved for neurons with active calcium dynamics at a much smaller number of neurons per pool, compared to a network of passive neurons, but quickly becomes unstable as the strength of recurrent synapses increases. Activity propagation at higher scaling factors can be stabilized by increasing network inhibition or introducing short term depression in the excitatory synapses, but the signal to noise ratio remains low. Our results demonstrate that the interaction of synchrony with dendritic spiking mechanisms can have profound consequences for the dynamics on the single neuron and network level. PMID:27499740
Chua, Yansong; Morrison, Abigail
2016-01-01
The role of dendritic spiking mechanisms in neural processing is so far poorly understood. To investigate the role of calcium spikes in the functional properties of the single neuron and recurrent networks, we investigated a three compartment neuron model of the layer 5 pyramidal neuron with calcium dynamics in the distal compartment. By performing single neuron simulations with noisy synaptic input and occasional large coincident input at either just the distal compartment or at both somatic and distal compartments, we show that the presence of calcium spikes confers a substantial advantage for coincidence detection in the former case and a lesser advantage in the latter. We further show that the experimentally observed critical frequency phenomenon, in which action potentials triggered by stimuli near the soma above a certain frequency trigger a calcium spike at distal dendrites, leading to further somatic depolarization, is not exhibited by a neuron receiving realistically noisy synaptic input, and so is unlikely to be a necessary component of coincidence detection. We next investigate the effect of calcium spikes in propagation of spiking activities in a feed-forward network (FFN) embedded in a balanced recurrent network. The excitatory neurons in the network are again connected to either just the distal, or both somatic and distal compartments. With purely distal connectivity, activity propagation is stable and distinguishable for a large range of recurrent synaptic strengths if the feed-forward connections are sufficiently strong, but propagation does not occur in the absence of calcium spikes. When connections are made to both the somatic and the distal compartments, activity propagation is achieved for neurons with active calcium dynamics at a much smaller number of neurons per pool, compared to a network of passive neurons, but quickly becomes unstable as the strength of recurrent synapses increases. Activity propagation at higher scaling factors can be stabilized by increasing network inhibition or introducing short term depression in the excitatory synapses, but the signal to noise ratio remains low. Our results demonstrate that the interaction of synchrony with dendritic spiking mechanisms can have profound consequences for the dynamics on the single neuron and network level.
Hosoi, Nobutake; Arai, Itaru; Tachibana, Masao
2005-04-20
Light responses of photoreceptors (rods and cones) are transmitted to the second-order neurons (bipolar cells and horizontal cells) via glutamatergic synapses located in the outer plexiform layer of the retina. Although it has been well established that postsynaptic group III metabotropic glutamate receptors (mGluRs) of ON bipolar cells contribute to generating the ON signal, presynaptic roles of group III mGluRs remain to be elucidated at this synaptic connection. We addressed this issue by applying the slice patch-clamp technique to the newt retina. OFF bipolar cells and horizontal cells generate a steady inward current in the dark and a transient inward current at light offset, both of which are mediated via postsynaptic non-NMDA receptors. A group III mGluR-specific agonist, L-2-amino-4-phosphonobutyric acid (L-AP-4), inhibited both the steady and off-transient inward currents but did not affect the glutamate-induced current in these postsynaptic neurons. L-AP-4 inhibited the presynaptic L-type calcium current (ICa) in cones by shifting the voltage dependence of activation to more positive membrane potentials. The inhibition of ICa was most prominent around the physiological range of cone membrane potentials. In contrast, L-AP-4 did not affect L-type ICa in rods. Paired recordings from photoreceptors and the synaptically connected second-order neurons confirmed that L-AP-4 inhibited both ICa and glutamate release in cones but not in rods. Furthermore, we found that exocytosed protons also inhibited ICa in cones but not in rods. Selective modulation of ICa in cones may help broaden the dynamic range of synaptic transfer by controlling the amount of transmitter release from cones.
Drug interactions with neuromuscular blockers.
Feldman, S; Karalliedde, L
1996-10-01
Drugs administered to patients undergoing anaesthesia may complicate the use of the neuromuscular blockers that are given to provide good surgical conditions. The various sites of interaction include actions on motor nerve conduction and spinal reflexes, acetylcholine (ACh) synthesis, mobilisation and release, sensitivity of the motor end plate to ACh and the ease of propagation of the motor action potential. In addition, many drugs affect the pharmacokinetics of neuromuscular blockers, especially as most drugs depend to a greater or lesser extent upon renal excretion. The clinically significant interaction between nondepolarisers and depolarisers may be due to blockade of the pre-synaptic nicotinic receptors by the depolarisers, leading to decreased ACh mobilisation and release. Synergism between nondepolarisers probably results from post-synaptic receptor mechanisms. Volatile anaesthetic agents affect the sensitivity of the motor end-plate (post-synaptic receptor blockade) in addition to having effects on pre-synaptic nicotinic function. The effects of nondepolarisers are likely to be potentiated and their action prolonged by large doses of local anaesthetics due to depression of nerve conduction, depression of ACh formation, mobilisation and release, decreases in post-synaptic receptor channel opening times and reductions in muscular contraction. Most antibacterials have effects on pre-synaptic mechanisms. Procainamide and quinidine principally block nicotinic receptor channels. Magnesium has a marked inhibitory effect on ACh release. Calcium antagonists could theoretically interfere with neurotransmitter release and muscle contractility. Phenytoin and lithium decrease ACh release, whilst corticosteroids and furosemide (frusemide) tend to increase the release of the transmitter. Ecothiopate, tacrine, organophosphates, propanidid, metoclopramide and bambuterol depress cholinesterase activity and prolong the duration of the neuromuscular block. The probability of clinically significant interactions increases in patients receiving several drugs with possible effects on neuromuscular transmission and muscle contraction.
Normann, Claus; Frase, Sibylle; Haug, Verena; von Wolff, Gregor; Clark, Kristin; Münzer, Patrick; Dorner, Alexandra; Scholliers, Jonas; Horn, Max; Vo Van, Tanja; Seifert, Gabriel; Serchov, Tsvetan; Biber, Knut; Nissen, Christoph; Klugbauer, Norbert; Bischofberger, Josef
2017-10-19
Long-term synaptic plasticity is a basic ability of the brain to dynamically adapt to external stimuli and regulate synaptic strength and ultimately network function. It is dysregulated by behavioral stress in animal models of depression and in humans with major depressive disorder. Antidepressants have been shown to restore disrupted synaptic plasticity in both animal models and humans; however, the underlying mechanism is unclear. We examined modulation of synaptic plasticity by selective serotonin reuptake inhibitors (SSRIs) in hippocampal brain slices from wild-type rats and serotonin transporter (SERT) knockout mice. Recombinant voltage-gated calcium (Ca 2+ ) channels in heterologous expression systems were used to determine the modulation of Ca 2+ channels by SSRIs. We tested the behavioral effects of SSRIs in the chronic behavioral despair model of depression both in the presence and in the absence of SERT. SSRIs selectively inhibited hippocampal long-term depression. The inhibition of long-term depression by SSRIs was mediated by a direct block of voltage-activated L-type Ca 2+ channels and was independent of SERT. Furthermore, SSRIs protected both wild-type and SERT knockout mice from behavioral despair induced by chronic stress. Finally, long-term depression was facilitated in animals subjected to the behavioral despair model, which was prevented by SSRI treatment. These results showed that antidepressants protected synaptic plasticity and neuronal circuitry from the effects of stress via a modulation of Ca 2+ channels and synaptic plasticity independent of SERT. Thus, L-type Ca 2+ channels might constitute an important signaling hub for stress response and for pathophysiology and treatment of depression. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Brain signaling and behavioral responses induced by exposure to (56)Fe-particle radiation
NASA Technical Reports Server (NTRS)
Denisova, N. A.; Shukitt-Hale, B.; Rabin, B. M.; Joseph, J. A.
2002-01-01
Previous experiments have demonstrated that exposure to 56Fe-particle irradiation (1.5 Gy, 1 GeV) produced aging-like accelerations in neuronal and behavioral deficits. Astronauts on long-term space flights will be exposed to similar heavy-particle radiations that might have similar deleterious effects on neuronal signaling and cognitive behavior. Therefore, the present study evaluated whether radiation-induced spatial learning and memory behavioral deficits are associated with region-specific brain signaling deficits by measuring signaling molecules previously found to be essential for behavior [pre-synaptic vesicle proteins, synaptobrevin and synaptophysin, and protein kinases, calcium-dependent PRKCs (also known as PKCs) and PRKA (PRKA RIIbeta)]. The results demonstrated a significant radiation-induced increase in reference memory errors. The increases in reference memory errors were significantly negatively correlated with striatal synaptobrevin and frontal cortical synaptophysin expression. Both synaptophysin and synaptobrevin are synaptic vesicle proteins that are important in cognition. Striatal PRKA, a memory signaling molecule, was also significantly negatively correlated with reference memory errors. Overall, our findings suggest that radiation-induced pre-synaptic facilitation may contribute to some previously reported radiation-induced decrease in striatal dopamine release and for the disruption of the central dopaminergic system integrity and dopamine-mediated behavior.
Brain signaling and behavioral responses induced by exposure to (56)Fe-particle radiation.
Denisova, N A; Shukitt-Hale, B; Rabin, B M; Joseph, J A
2002-12-01
Previous experiments have demonstrated that exposure to 56Fe-particle irradiation (1.5 Gy, 1 GeV) produced aging-like accelerations in neuronal and behavioral deficits. Astronauts on long-term space flights will be exposed to similar heavy-particle radiations that might have similar deleterious effects on neuronal signaling and cognitive behavior. Therefore, the present study evaluated whether radiation-induced spatial learning and memory behavioral deficits are associated with region-specific brain signaling deficits by measuring signaling molecules previously found to be essential for behavior [pre-synaptic vesicle proteins, synaptobrevin and synaptophysin, and protein kinases, calcium-dependent PRKCs (also known as PKCs) and PRKA (PRKA RIIbeta)]. The results demonstrated a significant radiation-induced increase in reference memory errors. The increases in reference memory errors were significantly negatively correlated with striatal synaptobrevin and frontal cortical synaptophysin expression. Both synaptophysin and synaptobrevin are synaptic vesicle proteins that are important in cognition. Striatal PRKA, a memory signaling molecule, was also significantly negatively correlated with reference memory errors. Overall, our findings suggest that radiation-induced pre-synaptic facilitation may contribute to some previously reported radiation-induced decrease in striatal dopamine release and for the disruption of the central dopaminergic system integrity and dopamine-mediated behavior.
Neurexin and Neuroligin Mediate Retrograde Synaptic Inhibition in C. elegans
Hu, Zhitao; Hom, Sabrina; Kudze, Tambudzai; Tong, Xia-Jing; Choi, Seungwon; Aramuni, Gayane; Zhang, Weiqi; Kaplan, Joshua M.
2013-01-01
The synaptic adhesion molecules Neurexin and Neuroligin alter the development and function of synapses and are linked to autism in humans. We find that C. elegans Neurexin (NRX-1) and Neuroligin (NLG-1) mediate a retrograde synaptic signal that inhibits neurotransmitter release at neuromuscular junctions. Retrograde signaling was induced in mutants lacking a muscle microRNA (miR-1) and was blocked in mutants lacking NLG-1 or NRX-1. Release was rapid and abbreviated when the retrograde signal was on whereas release was slow and prolonged when retrograde signaling was blocked. The retrograde signal adjusted release kinetics by inhibiting exocytosis of synaptic vesicles (SVs) that are distal to the site of calcium entry. Inhibition of release was mediated by increased pre-synaptic levels of Tomosyn, an inhibitor of SV fusion. PMID:22859820
Amyloid-beta oligomers impair fear conditioned memory in a calcineurin-dependent fashion in mice.
Dineley, Kelly T; Kayed, Rakez; Neugebauer, Volker; Fu, Yu; Zhang, Wenru; Reese, Lindsay C; Taglialatela, Giulio
2010-10-01
Soluble oligomeric aggregates of the amyloid-beta (A beta) peptide are believed to be the most neurotoxic A beta species affecting the brain in Alzheimer disease (AD), a terminal neurodegenerative disorder involving severe cognitive decline underscored by initial synaptic dysfunction and later extensive neuronal death in the CNS. Recent evidence indicates that A beta oligomers are recruited at the synapse, oppose expression of long-term potentiation (LTP), perturb intracellular calcium balance, disrupt dendritic spines, and induce memory deficits. However, the molecular mechanisms behind these outcomes are only partially understood; achieving such insight is necessary for the comprehension of A beta-mediated neuronal dysfunction. We have investigated the role of the phosphatase calcineurin (CaN) in these pathological processes of AD. CaN is especially abundant in the CNS, where it is involved in synaptic activity, LTP, and memory function. Here, we describe how oligomeric A beta treatment causes memory deficits and depresses LTP expression in a CaN-dependent fashion. Mice given a single intracerebroventricular injection of A beta oligomers exhibited increased CaN activity and decreased pCREB, a transcription factor involved in proper synaptic function, accompanied by decreased memory in a fear conditioning task. These effects were reversed by treatment with the CaN inhibitor FK506. We further found that expression of hippocampal LTP in acutely cultured rodent brain slices was opposed by A beta oligomers and that this effect was also reversed by FK506. Collectively, these results indicate that CaN activation may play a central role in mediating synaptic and memory disruption induced by acute oligomeric A beta treatment in mice. (c) 2010 Wiley-Liss, Inc.
Electric Dipole Theory of Chemical Synaptic Transmission
Wei, Ling Y.
1968-01-01
In this paper we propose that chemicals such as acetylcholine are electric dipoles which when oriented and arranged in a large array could produce an electric field strong enough to drive positive ions over the junction barrier of the post-synaptic membrane and thus initiate excitation or produce depolarization. This theory is able to explain a great number of facts such as cleft size, synaptic delay, nonregeneration, subthreshold integration, facilitation with repetition, and the calcium and magnesium effects. It also shows why and how acetylcholine could act as excitatory or inhibitory transmitters under different circumstances. Our conclusion is that the nature of synaptic transmission is essentially electrical, be it mediated by electrical or chemical transmitters. PMID:4296121
MacGregor, Duncan J.; Leng, Gareth
2012-01-01
Vasopressin neurons, responding to input generated by osmotic pressure, use an intrinsic mechanism to shift from slow irregular firing to a distinct phasic pattern, consisting of long bursts and silences lasting tens of seconds. With increased input, bursts lengthen, eventually shifting to continuous firing. The phasic activity remains asynchronous across the cells and is not reflected in the population output signal. Here we have used a computational vasopressin neuron model to investigate the functional significance of the phasic firing pattern. We generated a concise model of the synaptic input driven spike firing mechanism that gives a close quantitative match to vasopressin neuron spike activity recorded in vivo, tested against endogenous activity and experimental interventions. The integrate-and-fire based model provides a simple physiological explanation of the phasic firing mechanism involving an activity-dependent slow depolarising afterpotential (DAP) generated by a calcium-inactivated potassium leak current. This is modulated by the slower, opposing, action of activity-dependent dendritic dynorphin release, which inactivates the DAP, the opposing effects generating successive periods of bursting and silence. Model cells are not spontaneously active, but fire when perturbed by random perturbations mimicking synaptic input. We constructed one population of such phasic neurons, and another population of similar cells but which lacked the ability to fire phasically. We then studied how these two populations differed in the way that they encoded changes in afferent inputs. By comparison with the non-phasic population, the phasic population responds linearly to increases in tonic synaptic input. Non-phasic cells respond to transient elevations in synaptic input in a way that strongly depends on background activity levels, phasic cells in a way that is independent of background levels, and show a similar strong linearization of the response. These findings show large differences in information coding between the populations, and apparent functional advantages of asynchronous phasic firing. PMID:23093929
Magupalli, Venkat G.; Mochida, Sumiko; Yan, Jin; Jiang, Xin; Westenbroek, Ruth E.; Nairn, Angus C.; Scheuer, Todd; Catterall, William A.
2013-01-01
Ca2+/calmodulin-dependent protein kinase II (CaMKII) forms a major component of the postsynaptic density where its functions in synaptic plasticity are well established, but its presynaptic actions are poorly defined. Here we show that CaMKII binds directly to the C-terminal domain of CaV2.1 channels. Binding is enhanced by autophosphorylation, and the kinase-channel signaling complex persists after dephosphorylation and removal of the Ca2+/CaM stimulus. Autophosphorylated CaMKII can bind the CaV2.1 channel and synapsin-1 simultaneously. CaMKII binding to CaV2.1 channels induces Ca2+-independent activity of the kinase, which phosphorylates the enzyme itself as well as the neuronal substrate synapsin-1. Facilitation and inactivation of CaV2.1 channels by binding of Ca2+/CaM mediates short term synaptic plasticity in transfected superior cervical ganglion neurons, and these regulatory effects are prevented by a competing peptide and the endogenous brain inhibitor CaMKIIN, which blocks binding of CaMKII to CaV2.1 channels. These results define the functional properties of a signaling complex of CaMKII and CaV2.1 channels in which both binding partners are persistently activated by their association, and they further suggest that this complex is important in presynaptic terminals in regulating protein phosphorylation and short term synaptic plasticity. PMID:23255606
Separate functional properties of NMDARs regulate distinct aspects of spatial cognition.
Sanders, Erin M; Nyarko-Odoom, Akua O; Zhao, Kevin; Nguyen, Michael; Liao, Hong Hong; Keith, Matthew; Pyon, Jane; Kozma, Alyssa; Sanyal, Mohima; McHail, Daniel G; Dumas, Theodore C
2018-06-01
N -methyl-d-aspartate receptors (NMDARs) at excitatory synapses are central to activity-dependent synaptic plasticity and learning and memory. NMDARs act as ionotropic and metabotropic receptors by elevating postsynaptic calcium concentrations and by direct intracellular protein signaling. In the forebrain, these properties are controlled largely by the auxiliary GluN2 subunits, GluN2A and GluN2B. While calcium conductance through NMDAR channels and intracellular protein signaling make separate contributions to synaptic plasticity, it is not known if these properties individually influence learning and memory. To address this issue, we created chimeric GluN2 subunits containing the amino-terminal domain and transmembrane domains from GluN2A or GluN2B fused to the carboxy-terminal domain of GluN2B (termed ABc) or GluN2A ATD (termed BAc), respectively, and expressed these mutated GluN2 subunits in transgenic mice. Expression was confirmed at the mRNA level and protein subunit translation and translocation into dendrites were observed in forebrain neurons. In the spatial version of the Morris water maze, BAc mice displayed signs of a learning deficit. In contrast, ABc animals performed similarly to wild-types during training, but showed a more direct approach to the goal location during a long-term memory test. There was no effect of ABc or BAc expression in a nonspatial water escape task. Since background expression is predominantly GluN2A in mature animals, the results suggest that spatial learning is more sensitive to manipulations of the amino-terminal domain and transmembrane domains (calcium conductance) and long-term memory is regulated more by the carboxy-terminal domain (intracellular protein signaling). © 2018 Sanders et al.; Published by Cold Spring Harbor Laboratory Press.
Amine Neurotransmitter Regulation of Long-Term Synaptic Plasticity in Hippocampus.
1987-04-27
T.H. ontrol theory applied to neural networks illuminates synaptic basis of interictal epileptiform activity. In: Basic Mechanimw of the Epilepsies...the activity of voltage-dqmxfdm* calcium dwas in hixocaupal nerone . Nature (in press). atecir.U P. A., pebeda,# F. J., a nd Jduutoni, D. 4...Annual Synposium on Networks in Brain and ompiter Arhitecture at North Texas State University in Denton. Oct. 22-25 Attended Neurdehavioral Research
Target-specific expression of presynaptic NMDA receptors in neocortical microcircuits.
Buchanan, Katherine A; Blackman, Arne V; Moreau, Alexandre W; Elgar, Dale; Costa, Rui P; Lalanne, Txomin; Tudor Jones, Adam A; Oyrer, Julia; Sjöström, P Jesper
2012-08-09
Traditionally, NMDA receptors are located postsynaptically; yet, putatively presynaptic NMDA receptors (preNMDARs) have been reported. Although implicated in controlling synaptic plasticity, their function is not well understood and their expression patterns are debated. We demonstrate that, in layer 5 of developing mouse visual cortex, preNMDARs specifically control synaptic transmission at pyramidal cell inputs to other pyramidal cells and to Martinotti cells, while leaving those to basket cells unaffected. We also reveal a type of interneuron that mediates ascending inhibition. In agreement with synapse-specific expression, we find preNMDAR-mediated calcium signals in a subset of pyramidal cell terminals. A tuned network model predicts that preNMDARs specifically reroute information flow in local circuits during high-frequency firing, in particular by impacting frequency-dependent disynaptic inhibition mediated by Martinotti cells, a finding that we experimentally verify. We conclude that postsynaptic cell type determines presynaptic terminal molecular identity and that preNMDARs govern information processing in neocortical columns. Copyright © 2012 Elsevier Inc. All rights reserved.
Zhou, Keming; Cherra, Salvatore J; Goncharov, Alexandr; Jin, Yishi
2017-05-09
Excitation-inhibition imbalance in neural networks is widely linked to neurological and neuropsychiatric disorders. However, how genetic factors alter neuronal activity, leading to excitation-inhibition imbalance, remains unclear. Here, using the C. elegans locomotor circuit, we examine how altering neuronal activity for varying time periods affects synaptic release pattern and animal behavior. We show that while short-duration activation of excitatory cholinergic neurons elicits a reversible enhancement of presynaptic strength, persistent activation results to asynchronous and reduced cholinergic drive, inducing imbalance between endogenous excitation and inhibition. We find that the neuronal calcium sensor protein NCS-2 is required for asynchronous cholinergic release in an activity-dependent manner and dampens excitability of inhibitory neurons non-cell autonomously. The function of NCS-2 requires its Ca 2+ binding and membrane association domains. These results reveal a synaptic mechanism implicating asynchronous release in regulation of excitation-inhibition balance. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Smith, Heather L; Bourne, Jennifer N; Cao, Guan; Chirillo, Michael A; Ostroff, Linnaea E; Watson, Deborah J; Harris, Kristen M
2016-01-01
Mitochondria support synaptic transmission through production of ATP, sequestration of calcium, synthesis of glutamate, and other vital functions. Surprisingly, less than 50% of hippocampal CA1 presynaptic boutons contain mitochondria, raising the question of whether synapses without mitochondria can sustain changes in efficacy. To address this question, we analyzed synapses from postnatal day 15 (P15) and adult rat hippocampus that had undergone theta-burst stimulation to produce long-term potentiation (TBS-LTP) and compared them to control or no stimulation. At 30 and 120 min after TBS-LTP, vesicles were decreased only in presynaptic boutons that contained mitochondria at P15, and vesicle decrement was greatest in adult boutons containing mitochondria. Presynaptic mitochondrial cristae were widened, suggesting a sustained energy demand. Thus, mitochondrial proximity reflected enhanced vesicle mobilization well after potentiation reached asymptote, in parallel with the apparently silent addition of new dendritic spines at P15 or the silent enlargement of synapses in adults. DOI: http://dx.doi.org/10.7554/eLife.15275.001 PMID:27991850
Oikonomou, Katerina D.; Short, Shaina M.; Rich, Matthew T.; Antic, Srdjan D.
2012-01-01
Repetitive synaptic stimulation overcomes the ability of astrocytic processes to clear glutamate from the extracellular space, allowing some dendritic segments to become submerged in a pool of glutamate, for a brief period of time. This dynamic arrangement activates extrasynaptic NMDA receptors located on dendritic shafts. We used voltage-sensitive and calcium-sensitive dyes to probe dendritic function in this glutamate-rich location. An excess of glutamate in the extrasynaptic space was achieved either by repetitive synaptic stimulation or by glutamate iontophoresis onto the dendrites of pyramidal neurons. Two successive activations of synaptic inputs produced a typical NMDA spike, whereas five successive synaptic inputs produced characteristic plateau potentials, reminiscent of cortical UP states. While NMDA spikes were coupled with brief calcium transients highly restricted to the glutamate input site, the dendritic plateau potentials were accompanied by calcium influx along the entire dendritic branch. Once initiated, the glutamate-mediated dendritic plateau potentials could not be interrupted by negative voltage pulses. Activation of extrasynaptic NMDA receptors in cellular compartments void of spines is sufficient to initiate and support plateau potentials. The only requirement for sustained depolarizing events is a surplus of free glutamate near a group of extrasynaptic receptors. Highly non-linear dendritic spikes (plateau potentials) are summed in a highly sublinear fashion at the soma, revealing the cellular bases of signal compression in cortical circuits. Extrasynaptic NMDA receptors provide pyramidal neurons with a function analogous to a dynamic range compression in audio engineering. They limit or reduce the volume of “loud sounds” (i.e., strong glutamatergic inputs) and amplify “quiet sounds” (i.e., glutamatergic inputs that barely cross the dendritic threshold for local spike initiation). Our data also explain why consecutive cortical UP states have uniform amplitudes in a given neuron. PMID:22934081
Evstratova, Alesya; Tóth, Katalin
2011-12-01
The co-release of neuromodulatory substances in combination with classic neurotransmitters such as glutamate and GABA from individual presynaptic nerve terminals has the capacity to dramatically influence synaptic efficacy and plasticity. At hippocampal mossy fibre synapses vesicular zinc is suggested to serve as a cotransmitter capable of regulating calcium release from internal stores in postsynaptic CA3 pyramidal cells. Here we investigated this possibility using combined intracellular ratiometric calcium imaging and patch-clamp recording techniques. In acute hippocampal slices a brief train of mossy fibre stimulation produced a large, delayed postsynaptic Ca(2+) wave that was spatially restricted to the proximal apical dendrites of CA3 pyramidal cells within stratum lucidum. This calcium increase was sensitive to intracellularly applied heparin indicating reliance upon release from internal stores and was triggered by activation of both group I metabotropic glutamate and NMDA receptors. Importantly, treatment of slices with the membrane-impermeant zinc chelator CaEDTA did not influence the synaptically evoked postsynaptic Ca(2+) waves. Moreover, mossy fibre stimulus evoked postsynaptic Ca(2+) signals were not significantly different between wild-type and zinc transporter 3 (ZnT3) knock-out animals. Considered together our data do not support a role for vesicular zinc in regulating mossy fibre evoked Ca(2+) release from CA3 pyramidal cell internal stores.
Evstratova, Alesya; Tóth, Katalin
2011-01-01
Abstract The co-release of neuromodulatory substances in combination with classic neurotransmitters such as glutamate and GABA from individual presynaptic nerve terminals has the capacity to dramatically influence synaptic efficacy and plasticity. At hippocampal mossy fibre synapses vesicular zinc is suggested to serve as a cotransmitter capable of regulating calcium release from internal stores in postsynaptic CA3 pyramidal cells. Here we investigated this possibility using combined intracellular ratiometric calcium imaging and patch-clamp recording techniques. In acute hippocampal slices a brief train of mossy fibre stimulation produced a large, delayed postsynaptic Ca2+ wave that was spatially restricted to the proximal apical dendrites of CA3 pyramidal cells within stratum lucidum. This calcium increase was sensitive to intracellularly applied heparin indicating reliance upon release from internal stores and was triggered by activation of both group I metabotropic glutamate and NMDA receptors. Importantly, treatment of slices with the membrane-impermeant zinc chelator CaEDTA did not influence the synaptically evoked postsynaptic Ca2+ waves. Moreover, mossy fibre stimulus evoked postsynaptic Ca2+ signals were not significantly different between wild-type and zinc transporter 3 (ZnT3) knock-out animals. Considered together our data do not support a role for vesicular zinc in regulating mossy fibre evoked Ca2+ release from CA3 pyramidal cell internal stores. PMID:21986206
Michalak, Agnieszka; Biala, Grazyna
2017-01-15
Long-term potentiation (LTP) and long-term depression (LTD) depend on specific postsynaptic Ca 2+ /calmodulin concentration. LTP results from Ca 2+ influx through the activated NMDA receptors or voltage-gated calcium channels (VGCCs) and is linked with activation of protein kinases including mitogen-activated protein kinase (MAPK). Weaker synaptic stimulation, as a result of low Ca 2+ influx, leads to activation of Ca 2+ /calmodulin-dependent phosphatase (calcineurin - CaN) and triggers LTD. Interestingly, both memory formation and drug addiction share similar neuroplastic changes. Nicotine, which is one of the most common addictive drugs, manifests its memory effects through nicotinic acetylcholine receptors (nAChRs). Because nAChRs may also gate Ca 2+ , it is suggested that calcium signaling pathways are involved in nicotine-induced memory effects. Within the scope of the study was to evaluate the importance of calcium homeostasis and protein kinase/phosphatase balance in nicotine-induced short- and long-term memory effects. To assess memory function in mice passive avoidance test was used. The presented results confirm that acute nicotine (0.1mg/kg) improves short- and long-term memory. Pretreatment with L-type VGCC blockers (amlodipine, nicardipine verapamil) increased nicotine-induced memory improvement in the context of short- and long-term memory. Pretreatment with FK-506 (a potent CaN inhibitor) enhanced short- but not long-term memory effects of nicotine, while SL-327 (a selective MAPK/ERK kinase inhibitor) attenuated both nicotine-induced short- and long-term memory improvement. Acute nicotine enhances both types of memory via L-type VGCC blockade and via ERK1/2 activation. Only short- but not long-term memory enhancement induced by nicotine is dependent on CaN inhibition. Copyright © 2016 Elsevier B.V. All rights reserved.
Development of Ca2+ hotspots between Lymnaea neurons during synaptogenesis
Feng, Zhong-Ping; Grigoriev, Nikita; Munno, David; Lukowiak, Ken; MacVicar, Brian A; Goldberg, Jeffrey I; Syed, Naweed I
2002-01-01
Calcium (Ca2+) channel clustering at specific presynaptic sites is a hallmark of mature synapses. However, the spatial distribution patterns of Ca2+ channels at newly formed synapses have not yet been demonstrated. Similarly, it is unclear whether Ca2+ ‘hotspots’ often observed at the presynaptic sites are indeed target cell contact specific and represent a specialized mechanism by which Ca2+ channels are targeted to select synaptic sites. Utilizing both soma–soma paired (synapsed) and single neurons from the mollusk Lymnaea, we have tested the hypothesis that differential gradients of voltage-dependent Ca2+ signals develop in presynaptic neuron at its contact point with the postsynaptic neuron; and that these Ca2+ hotspots are target cell contact specific. Fura-2 imaging, or two-photon laser scanning microscopy of Calcium Green, was coupled with electrophysiological techniques to demonstrate that voltage-induced Ca2+ gradients (hotspots) develop in the presynaptic cell at its contact point with the postsynaptic neuron, but not in unpaired single cells. The incidence of Ca2+ hotspots coincided with the appearance of synaptic transmission between the paired cells, and these gradients were target cell contact specific. In contrast, the voltage-induced Ca2+ signal in unpaired neurons was uniformly distributed throughout the somata; a similar pattern of Ca2+ gradient was observed in the presynaptic neuron when it was soma–soma paired with a non-synaptic partner cell. Moreover, voltage clamp recording techniques, in conjunction with a fast, optical differential perfusion system, were used to demonstrate that the total whole-cell Ca2+ (or Ba2+) current density in single and paired cells was not significantly different. However, the amplitude of Ba2+ current was significantly higher in the presynaptic cell at its contact side with the postsynaptic neurons, compared with non-contacted regions. In summary, this study demonstrates that voltage-induced Ca2+ hotspots develop in the presynaptic cell, concomitant with the appearance of synaptic transmission between the soma–soma paired cells. The appearance of Ca2+ gradients in presynaptic neurons is target cell contact specific and is probably due to a spatial redistribution of existing channels during synaptogenesis. PMID:11850501
Ostapchenko, Valeriy G; Chen, Megan; Guzman, Monica S; Xie, Yu-Feng; Lavine, Natalie; Fan, Jue; Beraldo, Flavio H; Martyn, Amanda C; Belrose, Jillian C; Mori, Yasuo; MacDonald, John F; Prado, Vania F; Prado, Marco A M; Jackson, Michael F
2015-11-11
In Alzheimer's disease, accumulation of soluble oligomers of β-amyloid peptide is known to be highly toxic, causing disturbances in synaptic activity and neuronal death. Multiple studies relate these effects to increased oxidative stress and aberrant activity of calcium-permeable cation channels leading to calcium imbalance. The transient receptor potential melastatin 2 (TRPM2) channel, a Ca(2+)-permeable nonselective cation channel activated by oxidative stress, has been implicated in neurodegenerative diseases, and more recently in amyloid-induced toxicity. Here we show that the function of TRPM2 is augmented by treatment of cultured neurons with β-amyloid oligomers. Aged APP/PS1 Alzheimer's mouse model showed increased levels of endoplasmic reticulum stress markers, protein disulfide isomerase and phosphorylated eukaryotic initiation factor 2α, as well as decreased levels of the presynaptic marker synaptophysin. Elimination of TRPM2 in APP/PS1 mice corrected these abnormal responses without affecting plaque burden. These effects of TRPM2 seem to be selective for β-amyloid toxicity, as ER stress responses to thapsigargin or tunicamycin in TRPM2(-/-) neurons was identical to that of wild-type neurons. Moreover, reduced microglial activation was observed in TRPM2(-/-)/APP/PS1 hippocampus compared with APP/PS1 mice. In addition, age-dependent spatial memory deficits in APP/PS1 mice were reversed in TRPM2(-/-)/APP/PS1 mice. These results reveal the importance of TRPM2 for β-amyloid neuronal toxicity, suggesting that TRPM2 activity could be potentially targeted to improve outcomes in Alzheimer's disease. Transient receptor potential melastatin 2 (TRPM2) is an oxidative stress sensing calcium-permeable channel that is thought to contribute to calcium dysregulation associated with neurodegenerative diseases, including Alzheimer's disease. Here we show that oligomeric β-amyloid, the toxic peptide in Alzheimer's disease, facilitates TRPM2 channel activation. In mice designed to model Alzheimer's disease, genetic elimination of TRPM2 normalized deficits in synaptic markers in aged mice. Moreover, the absence of TRPM2 improved age-dependent spatial memory deficits observed in Alzheimer's mice. Our results reveal the importance of TRPM2 for neuronal toxicity and memory impairments in an Alzheimer's mouse model and suggest that TRPM2 could be targeted for the development of therapeutic agents effective in the treatment of dementia. Copyright © 2015 the authors 0270-6474/15/3515158-13$15.00/0.
Shaping Neuronal Network Activity by Presynaptic Mechanisms
Ashery, Uri
2015-01-01
Neuronal microcircuits generate oscillatory activity, which has been linked to basic functions such as sleep, learning and sensorimotor gating. Although synaptic release processes are well known for their ability to shape the interaction between neurons in microcircuits, most computational models do not simulate the synaptic transmission process directly and hence cannot explain how changes in synaptic parameters alter neuronal network activity. In this paper, we present a novel neuronal network model that incorporates presynaptic release mechanisms, such as vesicle pool dynamics and calcium-dependent release probability, to model the spontaneous activity of neuronal networks. The model, which is based on modified leaky integrate-and-fire neurons, generates spontaneous network activity patterns, which are similar to experimental data and robust under changes in the model's primary gain parameters such as excitatory postsynaptic potential and connectivity ratio. Furthermore, it reliably recreates experimental findings and provides mechanistic explanations for data obtained from microelectrode array recordings, such as network burst termination and the effects of pharmacological and genetic manipulations. The model demonstrates how elevated asynchronous release, but not spontaneous release, synchronizes neuronal network activity and reveals that asynchronous release enhances utilization of the recycling vesicle pool to induce the network effect. The model further predicts a positive correlation between vesicle priming at the single-neuron level and burst frequency at the network level; this prediction is supported by experimental findings. Thus, the model is utilized to reveal how synaptic release processes at the neuronal level govern activity patterns and synchronization at the network level. PMID:26372048
Astrocytic control of synaptic function.
Papouin, Thomas; Dunphy, Jaclyn; Tolman, Michaela; Foley, Jeannine C; Haydon, Philip G
2017-03-05
Astrocytes intimately interact with synapses, both morphologically and, as evidenced in the past 20 years, at the functional level. Ultrathin astrocytic processes contact and sometimes enwrap the synaptic elements, sense synaptic transmission and shape or alter the synaptic signal by releasing signalling molecules. Yet, the consequences of such interactions in terms of information processing in the brain remain very elusive. This is largely due to two major constraints: (i) the exquisitely complex, dynamic and ultrathin nature of distal astrocytic processes that renders their investigation highly challenging and (ii) our lack of understanding of how information is encoded by local and global fluctuations of intracellular calcium concentrations in astrocytes. Here, we will review the existing anatomical and functional evidence of local interactions between astrocytes and synapses, and how it underlies a role for astrocytes in the computation of synaptic information.This article is part of the themed issue 'Integrating Hebbian and homeostatic plasticity'. © 2017 The Author(s).
Mukherjee, Bandhan; Yuan, Qi
2016-10-14
The interactions of L-type calcium channels (LTCCs) and NMDA receptors (NMDARs) in memories are poorly understood. Here we investigated the specific roles of anterior piriform cortex (aPC) LTCCs and NMDARs in early odor preference memory in mice. Using calcium imaging in aPC slices, LTCC activation was shown to be dependent on NMDAR activation. Either D-APV (NMDAR antagonist) or nifedipine (LTCC antagonist) reduced somatic calcium transients in pyramidal cells evoked by lateral olfactory tract stimulation. However, nifedipine did not further reduce calcium in the presence of D-APV. In mice that underwent early odor preference training, blocking NMDARs in the aPC prevented short-term (3 hr) and long-term (24 hr) odor preference memory, and both memories were rescued when BayK-8644 (LTCC agonist) was co-infused. However, activating LTCCs in the absence of NMDARs resulted in loss of discrimination between the conditioned odor and a similar odor mixture at 3 hr. Elevated synaptic AMPAR expression at 3 hr was prevented by D-APV infusion but restored when LTCCs were directly activated, mirroring the behavioral outcomes. Blocking LTCCs prevented 24 hr memory and spared 3 hr memory. These results suggest that NMDARs mediate stimulus-specific encoding of odor memory while LTCCs mediate intracellular signaling leading to long-term memory.
Ireland, D R; Davies, P J; McLachlan, E M
1999-01-01
1. The involvement of different presynaptic Ca2+ channels in transmission at 'weak' (subthreshold) and 'strong' (suprathreshold) synapses was investigated in guinea-pig paravertebral ganglia isolated in vitro. Selective Ca2+ channel antagonists were used to block excitatory synaptic currents evoked by stimulating single preganglionic axons. 2. The N-type Ca2+ channel blocker, omega-conotoxin GVIA (100 nM), reduced peak synaptic conductance by similar amounts at weak synapses (by 39 +/- 6 %) and strong synapses (34 +/- 6 %). 3. The P-type Ca2+ channel blocker, omega-agatoxin IVA (40 nM), significantly reduced transmitter release at weak synapses (by 42 +/- 6 %) but had only a small effect at strong synapses (reduced by 6 +/- 2 %). 4. Blockers of Q-, L- or T-type Ca2+ channels had no significant effects on peak synaptic conductance at either type of synapse. 5. We conclude that the two functionally distinct types of preganglionic terminal in sympathetic ganglia which synapse on the same neurone differ in their expression of particular types of voltage-dependent Ca2+ channels. Both types utilize N-type channels and channels resistant to blockade by specific antagonists, but Ca2+ entry through P-type channels makes a substantial contribution to acetylcholine release only at weak synapses.
Ireland, David R; Davies, Philip J; McLachlan, Elspeth M
1999-01-01
The involvement of different presynaptic Ca2+ channels in transmission at ‘weak’ (subthreshold) and ‘strong’ (suprathreshold) synapses was investigated in guinea-pig paravertebral ganglia isolated in vitro. Selective Ca2+ channel antagonists were used to block excitatory synaptic currents evoked by stimulating single preganglionic axons.The N-type Ca2+ channel blocker, ω-conotoxin GVIA (100 nm), reduced peak synaptic conductance by similar amounts at weak synapses (by 39 ± 6%) and strong synapses (34 ± 6%).The P-type Ca2+ channel blocker, ω-agatoxin IVA (40 nm), significantly reduced transmitter release at weak synapses (by 42 ± 6%) but had only a small effect at strong synapses (reduced by 6 ± 2%).Blockers of Q-, L- or T-type Ca2+ channels had no significant effects on peak synaptic conductance at either type of synapse.We conclude that the two functionally distinct types of preganglionic terminal in sympathetic ganglia which synapse on the same neurone differ in their expression of particular types of voltage-dependent Ca2+ channels. Both types utilize N-type channels and channels resistant to blockade by specific antagonists, but Ca2+ entry through P-type channels makes a substantial contribution to acetylcholine release only at weak synapses. PMID:9831716
The antidepressant tianeptine reverts synaptic AMPA receptor defects caused by deficiency of CDKL5.
Tramarin, Marco; Rusconi, Laura; Pizzamiglio, Lara; Barbiero, Isabella; Peroni, Diana; Scaramuzza, Linda; Guilliams, Tim; Cavalla, David; Antonucci, Flavia; Kilstrup-Nielsen, Charlotte
2018-06-15
Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene cause a complex neurological disorder, characterized by infantile seizures, impairment of cognitive and motor skills and autistic features. Loss of Cdkl5 in mice affects dendritic spine maturation and dynamics but the underlying molecular mechanisms are still far from fully understood. Here we show that Cdkl5 deficiency in primary hippocampal neurons leads to deranged expression of the alpha-amino-3-hydroxy-5-methyl-4-iso-xazole propionic acid receptors (AMPA-R). In particular, a dramatic reduction of expression of the GluA2 subunit occurs concomitantly with its hyper-phosphorylation on Serine 880 and increased ubiquitination. Consequently, Cdkl5 silencing skews the composition of membrane-inserted AMPA-Rs towards the GluA2-lacking calcium-permeable form. Such derangement is likely to contribute, at least in part, to the altered synaptic functions and cognitive impairment linked to loss of Cdkl5. Importantly, we find that tianeptine, a cognitive enhancer and antidepressant drug, known to recruit and stabilise AMPA-Rs at the synaptic sites, can normalise the expression of membrane inserted AMPA-Rs as well as the number of PSD-95 clusters, suggesting its therapeutic potential for patients with mutations in CDKL5.
Parmelee, Caitlyn M.; Chen, Minghui; Cork, Karlene M.; Curto, Carina; Thoreson, Wallace B.
2014-01-01
At the first synapse in the vertebrate visual pathway, light-evoked changes in photoreceptor membrane potential alter the rate of glutamate release onto second-order retinal neurons. This process depends on the synaptic ribbon, a specialized structure found at various sensory synapses, to provide a supply of primed vesicles for release. Calcium (Ca2+) accelerates the replenishment of vesicles at cone ribbon synapses, but the mechanisms underlying this acceleration and its functional implications for vision are unknown. We studied vesicle replenishment using paired whole-cell recordings of cones and postsynaptic neurons in tiger salamander retinas and found that it involves two kinetic mechanisms, the faster of which was diminished by calmodulin (CaM) inhibitors. We developed an analytical model that can be applied to both conventional and ribbon synapses and showed that vesicle resupply is limited by a simple time constant, τ = 1/(Dρδs), where D is the vesicle diffusion coefficient, δ is the vesicle diameter, ρ is the vesicle density, and s is the probability of vesicle attachment. The combination of electrophysiological measurements, modeling, and total internal reflection fluorescence microscopy of single synaptic vesicles suggested that CaM speeds replenishment by enhancing vesicle attachment to the ribbon. Using electroretinogram and whole-cell recordings of light responses, we found that enhanced replenishment improves the ability of cone synapses to signal darkness after brief flashes of light and enhances the amplitude of responses to higher-frequency stimuli. By accelerating the resupply of vesicles to the ribbon, CaM extends the temporal range of synaptic transmission, allowing cones to transmit higher-frequency visual information to downstream neurons. Thus, the ability of the visual system to encode time-varying stimuli is shaped by the dynamics of vesicle replenishment at photoreceptor synaptic ribbons. PMID:25311636
Mancini, Maria; Ghiglieri, Veronica; Bagetta, Vincenza; Pendolino, Valentina; Vannelli, Anna; Cacace, Fabrizio; Mineo, Desireé; Calabresi, Paolo; Picconi, Barbara
2016-02-01
Memantine is an open channel blocker that antagonizes NMDA receptors reducing the inappropriate calcium (Ca(2+)) influx occurring in presence of moderately increased glutamate levels. At the same time, memantine has the ability to preserve the transient physiological activation of NMDA receptor, essential for learning and memory formation at synaptic level. In the present study we investigated the effects exerted by memantine on striatal synaptic plasticity in rat striatal spiny projection neurons (SPNs). In vitro application of memantine in striatal slices elicited a disruption of long-term potentiation (LTP) induction and maintenance, and revealed, in the majority of the recorded neurons, a long-term depression (LTD), whose amplitude was concentration-dependent (0.3-10 μM). Interestingly, preincubation with the dopamine (DA) D2 receptor antagonist sulpiride (10 μM) prevented memantine-induced LTD and restored LTP. Moreover, the DA D2 agonist quinpirole (10 μM), similarly to memantine, induced LTD in a subgroup of SPNs. In addition, memantine-induced LTD was also prevented by the CB1 endocannabinoid receptor antagonist AM 251 (1 μM). These results suggest that the actions exerted by memantine on striatal synaptic plasticity, and in particular the induction of LTD observed in SPNs, could be attributed to its ability to activate DA D2 receptors. By contrast, blockade of NMDA receptor is not involved in memantine-induced LTD since APV (30 μM) and MK801 (10 μM), two NMDA receptor antagonists, failed to induce this form of synaptic plasticity. Our data indicate that memantine could be used as treatment of neurological disorders in which DA D2 receptor represents a possible therapeutic target. Copyright © 2015 Elsevier Ltd. All rights reserved.
Gibson, Gary E.; Thakkar, Ankita
2017-01-01
Decades of research suggest that alterations in calcium are central to the pathophysiology of Alzheimer’s Disease (AD). Highly reproducible changes in calcium dynamics occur in cells from patients with both genetic and non-genetic forms of AD relative to controls. The most robust change is an exaggerated release of calcium from internal stores. Detailed analysis of these changes in animal and cell models of the AD-causing presenilin mutations reveal robust changes in ryanodine receptors, inositol tris-phosphate receptors, calcium leak channels and store activated calcium entry. Similar anomalies in calcium result when AD-like changes in mitochondrial enzymes or oxidative stress are induced experimentally. The calcium abnormalities can be directly linked to the altered tau phosphorylation, amyloid precursor protein processing and synaptic dysfunction that are defining features of AD. A better understanding of these changes is required before using calcium abnormalities as therapeutic targets. PMID:28181072
Gibson, Gary E; Thakkar, Ankita
2017-06-01
Decades of research suggest that alterations in calcium are central to the pathophysiology of Alzheimer's Disease (AD). Highly reproducible changes in calcium dynamics occur in cells from patients with both genetic and non-genetic forms of AD relative to controls. The most robust change is an exaggerated release of calcium from internal stores. Detailed analysis of these changes in animal and cell models of the AD-causing presenilin mutations reveal robust changes in ryanodine receptors, inositol tris-phosphate receptors, calcium leak channels and store activated calcium entry. Similar anomalies in calcium result when AD-like changes in mitochondrial enzymes or oxidative stress are induced experimentally. The calcium abnormalities can be directly linked to the altered tau phosphorylation, amyloid precursor protein processing and synaptic dysfunction that are defining features of AD. A better understanding of these changes is required before using calcium abnormalities as therapeutic targets.
Shaia, Wayne T; Shapiro, Steven M; Heller, Andrew J; Galiani, David L; Sismanis, Aristides; Spencer, Robert F
2002-11-01
Vestibular gaze and postural abnormalities are major sequelae of neonatal hyperbilirubinemia. The sites and cellular effects of bilirubin toxicity in the brainstem vestibular pathway are not easily detected. Since altered intracellular calcium homeostasis may play a role in neuronal cell death, we hypothesized that altered expression of calcium-binding proteins may occur in brainstem vestibular nuclei of the classic animal model of bilirubin neurotoxicity. The expression of the calcium-binding proteins calbindin-D28k and parvalbumin in the brainstem vestibular pathways and cerebellum of homozygous recessive jaundiced (jj) Gunn rats was examined by light microscopy and immunohistochemistry at 18 days postnatally and compared to the findings obtained from age-matched non-jaundiced heterozygous (Nj) littermate controls. Jaundiced animals exhibited decreased parvalbumin immunoreactivity specifically in synaptic inputs to superior, medial, and inferior vestibular nuclei, and to oculomotor and trochlear nuclei, whereas the neurons retained their normal immunoreactivity. Jaundiced animals also demonstrated a decrease in calbindin expression in the lateral vestibular nuclei and a paucity of calbindin-immunoreactive synaptic endings on the somata of Deiters' neurons. The involved regions are related to the control of the vestibulo-ocular and vestibulospinal reflexes. Decreased expression of calcium-binding proteins in brainstem vestibular neurons may relate to the vestibulo-ocular and vestibulospinal dysfunction seen with clinical kernicterus, and may provide a sensitive new way to assess bilirubin toxicity in the vestibular system.
Sundaresan, Srividya; Kong, Jee-Hyun; Fang, Qing; Salles, Felipe T.; Wangsawihardja, Felix; Ricci, Anthony J.; Mustapha, Mirna
2016-01-01
Functional maturation of afferent synaptic connections to inner hair cells (IHCs) involves pruning of excess synapses formed during development, as well as the strengthening and survival of the retained synapses. These events take place during the thyroid hormone (TH)-critical period of cochlear development, which is in the perinatal period for mice and in the third trimester for humans. Here, we used the hypothyroid Snell dwarf mouse (Pit1dw) as a model to study the role of TH in afferent type I synaptic refinement and functional maturation. We observed defects in afferent synaptic pruning and delays in calcium channel clustering in the IHCs of Pit1dw mice. Nevertheless, calcium currents and capacitance reached near normal levels in Pit1dw IHCs by the age of onset of hearing, despite the excess number of retained synapses. We restored normal synaptic pruning in Pit1dw IHCs by supplementing with TH from postnatal day (P)3 to P8, establishing this window as being critical for TH action on this process. Afferent terminals of older Pit1dw IHCs showed evidence of excitotoxic damage accompanied by a concomitant reduction in the levels of the glial glutamate transporter, GLAST. Our results indicate that a lack of TH during a critical period of inner ear development causes defects in pruning and long-term homeostatic maintenance of afferent synapses. PMID:26386265
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanley, M.R.
1978-11-01
The crude venom of the Formosan banded krait, Bungarus multicinctus, was separated into eleven lethal protein fractions. Nine fractions were purified to final homogeneous toxins, designated ..cap alpha..-bungarotoxin, ..beta..-bungarotoxin, and toxins 7, 8, 9A, 11, 12, 13, and 14. Three of the toxins, ..cap alpha..-bungarotoxin, 7, and 8, were identified as post-synaptic curarimimetic neurotoxins. The remaining toxins were identified as pre-synaptic neurotoxins. ..cap alpha..-Bungarotoxin, toxin 7, and toxin 8 are all highly stable basic polypeptides of approx. 8000 daltons molecular weight. The pre-synaptic toxins fell into two structural groups: toxin 9A and 14 which were single basic chains of approx.more » 14,000 daltons, and ..beta..-bungarotoxin, and toxins 11 thru 13 which were composed of two chains of approx. 8000 and approx. 13,000 daltons covalently linked by disulfides. All the pre-synaptic neurotoxins were shown to have intrinsic calcium-dependent phospholipase A activities. Under certain conditions, intact synaptic membranes were hydrolyzed more rapidly than protein-free extracted synaptic-lipid liposomes which, in turn, were hydrolyzed more rapidly than any other tested liposomes. It was speculated that cell-surface arrays of phosphatidyl serine/glycolipids created high affinity target sites for ..beta..-bungarotoxin. Single-chain toxins were found to be qualitatively different from the two-chain toxins in their ability to block the functioning of acetylcholine receptors, and were quantitatively different in their enzymatic and membrane disruptive activities. ..beta..-Bungarotoxin was shown to be an extremely potent neuronal lesioning agent. There was no apparent selectivity for cholinergic over non-cholinergic neurons, nor for nerve terminals over cell bodies. It was suggested that ..beta..-bungarotoxin can be considered a useful new histological tool, which may exhibit some regional selectivity.« less
Clarke, Stephen G.; Scarnati, Matthew S.
2016-01-01
At chemical synapses, presynaptic action potentials (APs) activate voltage-gated calcium channels, allowing calcium to enter and trigger neurotransmitter release. The duration, peak amplitude, and shape of the AP falling phase alter calcium entry, which can affect neurotransmitter release significantly. In many neurons, APs do not immediately return to the resting potential, but instead exhibit a period of depolarization or hyperpolarization referred to as an afterpotential. We hypothesized that presynaptic afterpotentials should alter neurotransmitter release by affecting the electrical driving force for calcium entry and calcium channel gating. In support of this, presynaptic calcium entry is affected by afterpotentials after standard instant voltage jumps. Here, we used the mouse calyx of Held synapse, which allows simultaneous presynaptic and postsynaptic patch-clamp recording, to show that the postsynaptic response is affected significantly by presynaptic afterpotentials after voltage jumps. We therefore tested the effects of presynaptic afterpotentials using simultaneous presynaptic and postsynaptic recordings and AP waveforms or real APs. Surprisingly, presynaptic afterpotentials after AP stimuli did not alter calcium channel responses or neurotransmitter release appreciably. We show that the AP repolarization time course causes afterpotential-induced changes in calcium driving force and changes in calcium channel gating to effectively cancel each other out. This mechanism, in which electrical driving force is balanced by channel gating, prevents changes in calcium influx from occurring at the end of the AP and therefore acts to stabilize synaptic transmission. In addition, this mechanism can act to stabilize neurotransmitter release when the presynaptic resting potential changes. SIGNIFICANCE STATEMENT The shape of presynaptic action potentials (APs), particularly the falling phase, affects calcium entry and small changes in calcium influx can produce large changes in postsynaptic responses. We hypothesized that afterpotentials, which often follow APs, affect calcium entry and neurotransmitter release. We tested this in calyx of Held nerve terminals, which allow simultaneous recording of presynaptic calcium currents and postsynaptic responses. Surprisingly, presynaptic afterpotentials did not alter calcium current or neurotransmitter release. We show that the AP falling phase causes afterpotential-induced changes in electrical driving force and calcium channel gating to cancel each other out. This mechanism regulates calcium entry at the end of APs and therefore stabilizes synaptic transmission. This also stabilizes responses when the presynaptic resting potential changes. PMID:27911759
Clarke, Stephen G; Scarnati, Matthew S; Paradiso, Kenneth G
2016-11-09
At chemical synapses, presynaptic action potentials (APs) activate voltage-gated calcium channels, allowing calcium to enter and trigger neurotransmitter release. The duration, peak amplitude, and shape of the AP falling phase alter calcium entry, which can affect neurotransmitter release significantly. In many neurons, APs do not immediately return to the resting potential, but instead exhibit a period of depolarization or hyperpolarization referred to as an afterpotential. We hypothesized that presynaptic afterpotentials should alter neurotransmitter release by affecting the electrical driving force for calcium entry and calcium channel gating. In support of this, presynaptic calcium entry is affected by afterpotentials after standard instant voltage jumps. Here, we used the mouse calyx of Held synapse, which allows simultaneous presynaptic and postsynaptic patch-clamp recording, to show that the postsynaptic response is affected significantly by presynaptic afterpotentials after voltage jumps. We therefore tested the effects of presynaptic afterpotentials using simultaneous presynaptic and postsynaptic recordings and AP waveforms or real APs. Surprisingly, presynaptic afterpotentials after AP stimuli did not alter calcium channel responses or neurotransmitter release appreciably. We show that the AP repolarization time course causes afterpotential-induced changes in calcium driving force and changes in calcium channel gating to effectively cancel each other out. This mechanism, in which electrical driving force is balanced by channel gating, prevents changes in calcium influx from occurring at the end of the AP and therefore acts to stabilize synaptic transmission. In addition, this mechanism can act to stabilize neurotransmitter release when the presynaptic resting potential changes. The shape of presynaptic action potentials (APs), particularly the falling phase, affects calcium entry and small changes in calcium influx can produce large changes in postsynaptic responses. We hypothesized that afterpotentials, which often follow APs, affect calcium entry and neurotransmitter release. We tested this in calyx of Held nerve terminals, which allow simultaneous recording of presynaptic calcium currents and postsynaptic responses. Surprisingly, presynaptic afterpotentials did not alter calcium current or neurotransmitter release. We show that the AP falling phase causes afterpotential-induced changes in electrical driving force and calcium channel gating to cancel each other out. This mechanism regulates calcium entry at the end of APs and therefore stabilizes synaptic transmission. This also stabilizes responses when the presynaptic resting potential changes. Copyright © 2016 the authors 0270-6474/16/3611559-14$15.00/0.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albuquerque, E.X.
1996-11-01
In this study, the patch-clamp technique was used as an approach to evaluate the pre- and postsynaptic effects of VX and soman on synaptic currents of cultured hippocampal neurons. Compared to control, the frequency of the currents mediated by the activation of GABA or glutamate receptors was increased in a concentration-dependent manner from 200% to 550%, when exposed to VX from 10 nM to 1 pM. The effect of VX was observed in the presence of TTX and atropine, indicating that it was a presynaptic effect unrelated to the activation of muscarinic receptors. In addition, it was found that themore » dlhydron-B-erythroldine did not prevent or abolished the effects of VX. Because, either soman or acetylcholine at high concentrations, applied for 5 to 10 min to the cultured neurons did not mimic the potentiation of transmitter release induced by VX, it was concluded that the presynaptic effect of VX was unrelated to the inhibition of cholinesterase enzyme. At the concentrations studied, VX and soman did not change the post-synaptic properties of GABAA, NMDA, and AMPA receptors. The effect of VX was markedly reduced when the extracellular calcium was removed, but was unaffected when the calcium channel blocker verapamil was added to the preparation. The present findings shows that VX exerts a presynaptic effect unrelated to cholinesterase enzyme that is unaffected by the common antidote atropine used for treating intoxication with VX.« less
Heterosynaptic metaplasticity in the hippocampus in vivo: A BCM-like modifiable threshold for LTP
Abraham, Wickliffe C.; Mason-Parker, Sara E.; Bear, Mark F.; Webb, Sarah; Tate, Warren P.
2001-01-01
The homeostatic maintenance of the “modification threshold” for inducing long-term potentiation (LTP) is a fundamental feature of the Bienenstock, Cooper, and Munro (BCM) model of synaptic plasticity. In the present study, two key features of the modification threshold, its heterosynaptic expression and its regulation by postsynaptic neural activity, were tested experimentally in the dentate gyrus of awake, freely moving rats. Conditioning stimulation ranging from 10 to 1,440 brief 400-Hz trains, when applied to medial perforant path afferents, raised the threshold for LTP induction heterosynaptically in the neighboring lateral perforant path synapses. This effect recovered slowly over a 7- to 35-day period. The same conditioning paradigms, however, did not affect the reversal of long-term depression. The inhibition of LTP by medial-path conditioning stimulation was N-methyl-D-aspartate (NMDA) receptor-dependent, but antidromic stimulation of the granule cells could also inhibit lateral path LTP induction, independently of NMDA receptor activation. Increased calcium buffering is a potential mechanism underlying the altered LTP threshold, but the levels of two important calcium-binding proteins did not increase after conditioning stimulation, nor was de novo protein synthesis required for generating the threshold shift. These data confirm, in an in vivo model, two key postulates of the BCM model regarding the LTP threshold. They also provide further evidence for the broad sensitivity of synaptic plasticity mechanisms to the history of prior activity, i.e., metaplasticity. PMID:11517323
The spread of Ras activity triggered by activation of a single dendritic spine.
Harvey, Christopher D; Yasuda, Ryohei; Zhong, Haining; Svoboda, Karel
2008-07-04
In neurons, individual dendritic spines isolate N-methyl-d-aspartate (NMDA) receptor-mediated calcium ion (Ca2+) accumulations from the dendrite and other spines. However, the extent to which spines compartmentalize signaling events downstream of Ca2+ influx is not known. We combined two-photon fluorescence lifetime imaging with two-photon glutamate uncaging to image the activity of the small guanosine triphosphatase Ras after NMDA receptor activation at individual spines. Induction of long-term potentiation (LTP) triggered robust Ca2+-dependent Ras activation in single spines that decayed in approximately 5 minutes. Ras activity spread over approximately 10 micrometers of dendrite and invaded neighboring spines by diffusion. The spread of Ras-dependent signaling was necessary for the local regulation of the threshold for LTP induction. Thus, Ca2+-dependent synaptic signals can spread to couple multiple synapses on short stretches of dendrite.
González-Rueda, Ana; Pedrosa, Victor; Feord, Rachael C; Clopath, Claudia; Paulsen, Ole
2018-03-21
Activity-dependent synaptic plasticity is critical for cortical circuit refinement. The synaptic homeostasis hypothesis suggests that synaptic connections are strengthened during wake and downscaled during sleep; however, it is not obvious how the same plasticity rules could explain both outcomes. Using whole-cell recordings and optogenetic stimulation of presynaptic input in urethane-anesthetized mice, which exhibit slow-wave-sleep (SWS)-like activity, we show that synaptic plasticity rules are gated by cortical dynamics in vivo. While Down states support conventional spike timing-dependent plasticity, Up states are biased toward depression such that presynaptic stimulation alone leads to synaptic depression, while connections contributing to postsynaptic spiking are protected against this synaptic weakening. We find that this novel activity-dependent and input-specific downscaling mechanism has two important computational advantages: (1) improved signal-to-noise ratio, and (2) preservation of previously stored information. Thus, these synaptic plasticity rules provide an attractive mechanism for SWS-related synaptic downscaling and circuit refinement. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
LY404187: a novel positive allosteric modulator of AMPA receptors.
Quirk, Jennifer C; Nisenbaum, Eric S
2002-01-01
LY404187 is a selective, potent and centrally active positive allosteric modulator of AMPA receptors. LY404187 preferentially acts at recombinant human homomeric GluR2 and GluR4 versus GluR1 and GluR3 AMPA receptors. In addition, LY404187 potentiates the flip splice variant of these AMPA receptors to a greater degree than the flop splice variant. In both recombinant and native AMPA receptors, potentiation by LY404187 displays a unique time-dependent growth that appears to involve a suppression of the desensitization process of these ion channels. LY404187 has been shown to enhance glutamatergic synaptic transmission both in vitro and in vivo. This augmentation of synaptic activity is due to the direct potentiation of AMPA receptor function, as well as an indirect recruitment of voltage-dependent NMDA receptor activity. Enhanced calcium influx through NMDA receptors is known to be a critical step in initiating long-term modifications in synaptic function (e.g., long-term potentiation, LTP). These modifications in synaptic function may be substrates for certain forms of memory encoding. Consistent with a recruitment of NMDA receptor activity, LY404187 has been shown to enhance performance in animal models of cognitive function requiring different mnemonic processes. These data suggest that AMPA receptor potentiators may be therapeutically beneficial for treating cognitive deficits in a variety of disorders, particularly those that are associated with reduced glutamatergic signaling such as schizophrenia. In addition, LY404187 has been demonstrated to be efficacious in animal models of behavioral despair that possess considerable predictive validity for antidepressant activity. Although the therapeutic efficacy of AMPA receptor potentiators in these and other diseases will ultimately be determined in the clinic, evidence suggests that the benefit of these compounds will be mediated by multiple mechanisms of action. These mechanisms include direct enhancement of AMPA receptor function, secondary mobilization of intracellular signaling cascades, and prolonged modulation of gene expression.
Alqadah, Amel; Hsieh, Yi-Wen; Schumacher, Jennifer A; Wang, Xiaohong; Merrill, Sean A; Millington, Grethel; Bayne, Brittany; Jorgensen, Erik M; Chuang, Chiou-Fen
2016-01-01
The C. elegans AWC olfactory neuron pair communicates to specify asymmetric subtypes AWCOFF and AWCON in a stochastic manner. Intercellular communication between AWC and other neurons in a transient NSY-5 gap junction network antagonizes voltage-activated calcium channels, UNC-2 (CaV2) and EGL-19 (CaV1), in the AWCON cell, but how calcium signaling is downregulated by NSY-5 is only partly understood. Here, we show that voltage- and calcium-activated SLO BK potassium channels mediate gap junction signaling to inhibit calcium pathways for asymmetric AWC differentiation. Activation of vertebrate SLO-1 channels causes transient membrane hyperpolarization, which makes it an important negative feedback system for calcium entry through voltage-activated calcium channels. Consistent with the physiological roles of SLO-1, our genetic results suggest that slo-1 BK channels act downstream of NSY-5 gap junctions to inhibit calcium channel-mediated signaling in the specification of AWCON. We also show for the first time that slo-2 BK channels are important for AWC asymmetry and act redundantly with slo-1 to inhibit calcium signaling. In addition, nsy-5-dependent asymmetric expression of slo-1 and slo-2 in the AWCON neuron is necessary and sufficient for AWC asymmetry. SLO-1 and SLO-2 localize close to UNC-2 and EGL-19 in AWC, suggesting a role of possible functional coupling between SLO BK channels and voltage-activated calcium channels in AWC asymmetry. Furthermore, slo-1 and slo-2 regulate the localization of synaptic markers, UNC-2 and RAB-3, in AWC neurons to control AWC asymmetry. We also identify the requirement of bkip-1, which encodes a previously identified auxiliary subunit of SLO-1, for slo-1 and slo-2 function in AWC asymmetry. Together, these results provide an unprecedented molecular link between gap junctions and calcium pathways for terminal differentiation of olfactory neurons.
ERIC Educational Resources Information Center
Temme, Stephanie J.; Murphy, Geoffrey G.
2017-01-01
L-type voltage-gated calcium channels (LVGCCs) have been implicated in both the formation and the reduction of fear through Pavlovian fear conditioning and extinction. Despite the implication of LVGCCs in fear learning and extinction, studies of the individual LVGCC subtypes, Ca[subscript V]1.2 and Ca[subscript V] 1.3, using transgenic mice have…
Scanlin, Heather L.; Carroll, Elizabeth A.; Jenkins, Victoria K.; Balkowiec, Agnieszka
2008-01-01
Recent evidence indicates that endomorphins, endogenous mu-opioid receptor (MOR) agonists, modulate synaptic transmission in both somatic and visceral sensory pathways. Here we show that endomorphin-2 (END-2) is expressed in newborn rat dorsal root ganglion (DRG) and nodose-petrosal ganglion complex (NPG) neurons, and rarely co-localizes with brain-derived neurotrophic factor (BDNF). In order to examine activity-dependent release of END-2 from neurons, we established a model using dispersed cultures of DRG and NPG cells activated by patterned electrical field stimulation. To detect release of END-2, we developed a novel rapid capture ELISA, in which END-2 capture antibody was added to neuronal cultures shortly before their electrical stimulation. The conventional assay was effective at reliably detecting END-2 only when the cells were stimulated in the presence of CTAP, a MOR-selective antagonist. This suggests that the strength of the novel assay is related primarily to rapid capture of released END-2 before it binds to endogenous MORs. Using the rapid capture ELISA, we found that stimulation protocols known to induce plastic changes at sensory synapses were highly effective at releasing END-2. Removal of extracellular calcium or blocking voltage-activated calcium channels significantly reduced the release. Together, our data provide the first evidence that END-2 is expressed by newborn DRG neurons of all sizes found in this age group, and can be released from these, as well as from NPG neurons, in an activity-dependent manner. These results point to END-2 as a likely mediator of activity-dependent plasticity in sensory pathways. PMID:18513316
Levetiracetam Reverses Synaptic Deficits Produced by Overexpression of SV2A
Yao, Jia; Bleckert, Adam; Hill, Jessica; Bajjalieh, Sandra M.
2011-01-01
Levetiracetam is an FDA-approved drug used to treat epilepsy and other disorders of the nervous system. Although it is known that levetiracetam binds the synaptic vesicle protein SV2A, how drug binding affects synaptic functioning remains unknown. Here we report that levetiracetam reverses the effects of excess SV2A in autaptic hippocampal neurons. Expression of an SV2A-EGFP fusion protein produced a ∼1.5-fold increase in synaptic levels of SV2, and resulted in reduced synaptic release probability. The overexpression phenotype parallels that seen in neurons from SV2 knockout mice, which experience severe seizures. Overexpression of SV2A also increased synaptic levels of the calcium-sensor protein synaptotagmin, an SV2-binding protein whose stability and trafficking are regulated by SV2. Treatment with levetiracetam rescued normal neurotransmission and restored normal levels of SV2 and synaptotagmin at the synapse. These results indicate that changes in SV2 expression in either direction impact neurotransmission, and suggest that levetiracetam may modulate SV2 protein interactions. PMID:22220214
Expression of the P/Q (Cav2.1) calcium channel in nodose sensory neurons and arterial baroreceptors.
Tatalovic, Milos; Glazebrook, Patricia A; Kunze, Diana L
2012-06-27
The predominant calcium current in nodose sensory neurons, including the subpopulation of baroreceptor neurons, is the N-type channel, Cav2.2. It is also the primary calcium channel responsible for transmitter release at their presynaptic terminals in the nucleus of the solitary tract in the brainstem. The P/Q channel, Cav2.1, the other major calcium channel responsible for transmitter release at mammalian synapses, represents only 15-20% of total calcium current in the general population of sensory neurons and makes a minor contribution to transmitter release at the presynaptic terminal. In the present study we identified a subpopulation of the largest nodose neurons (capacitance>50pF) in which, surprisingly, Cav2.1 represents over 50% of the total calcium current, differing from the remainder of the population. Consistent with these electrophysiological data, anti-Cav2.1 antibody labeling was more membrane delimited in a subgroup of the large neurons in slices of nodose ganglia. Data reported in other synapses in the central nervous system assign different roles in synaptic information transfer to the P/Q-type versus N-type calcium channels. The study raises the possibility that the P/Q channel which has been associated with high fidelity transmission at other central synapses serves a similar function in this group of large myelinated sensory afferents, including arterial baroreceptors where a high frequency regular discharge pattern signals the pressure pulse. This contrasts to the irregular lower frequency discharge of the unmyelinated fibers that make up the majority of the sensory population and that utilize the N-type channel in synaptic transmission. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Relative roles of different mechanisms of depression at the mouse endbulb of Held
Yang, Hua; Xu-Friedman, Matthew A.
2010-01-01
Several mechanisms can underlie short-term synaptic depression, including vesicle depletion, receptor desensitization, and changes in presynaptic release probability. To determine which mechanisms affect depression under physiological conditions, we studied the synapse formed by auditory nerve fibers onto bushy cells in the anteroventral cochlear nucleus (the “endbulb of Held”) using voltage-clamp recordings of brain slices from P15–21 mice near physiological temperatures. Depression of both AMPA and NMDA EPSCs showed two phases of recovery. The fast component of depression for the AMPA EPSC was eliminated by cyclothiazide and aniracetam, suggesting it results from desensitization. The fast component of depression for the NMDA EPSC was reduced by the low-affinity antagonist L-AP5, suggesting it results from saturation. The remaining depression in AMPA and NMDA components is identical and therefore presynaptic in origin. It is likely to result from presynaptic vesicle depletion. Recovery from depression after trains of activity was slowed by the application of EGTA-AM, suggesting that the endbulb has a residual-calcium-dependent form of recovery. We developed a model that incorporates depletion, desensitization, and calcium-dependent recovery. This model replicated experimental findings over a range of experimental conditions. The model further indicated that desensitization plays only a minor role during prolonged activity, in large part because presynaptic release is so depleted. Thus, depletion appears to be the dominant mechanism of depression at the endbulb during normal activity. Furthermore, calcium-dependent recovery at the endbulb is critical to prevent complete run-down during high activity and to preserve the reliability of information transmission. PMID:18367696
Zou, Wenjuan; Cheng, Hankui; Li, Shitian; Yue, Xiaomin; Xue, Yadan; Chen, Sixi; Kang, Lijun
2017-01-01
Animals utilize specialized sensory neurons enabling the detection of a wide range of environmental stimuli from the presence of toxic chemicals to that of touch. However, how these neurons discriminate between different kinds of stimuli remains poorly understood. By combining in vivo calcium imaging and molecular genetic manipulation, here we investigate the response patterns and the underlying mechanisms of the C. elegans phasmid neurons PHA/PHB to a variety of sensory stimuli. Our observations demonstrate that PHA/PHB neurons are polymodal sensory neurons which sense harmful chemicals, hyperosmotic solutions and mechanical stimulation. A repulsive concentration of IAA induces calcium elevations in PHA/PHB and both OSM-9 and TAX-4 are essential for IAA-sensing in PHA/PHB. Nevertheless, the PHA/PHB neurons are inhibited by copper and post-synaptically activated by copper removal. Neuropeptide is likely involved in copper removal-induced calcium elevations in PHA/PHB. Furthermore, mechanical stimulation activates PHA/PHB in an OSM-9-dependent manner. Our work demonstrates how PHA/PHB neurons respond to multiple environmental stimuli and lays a foundation for the further understanding of the mechanisms of polymodal signaling, such as nociception, in more complex organisms. PMID:28195191
Villareal, Greg; Li, Quan; Cai, Diancai; Fink, Ann E; Lim, Travis; Bougie, Joanna K; Sossin, Wayne S; Glanzman, David L
2009-04-22
Serotonin (5-HT) mediates learning-related facilitation of sensorimotor synapses in Aplysia californica. Under some circumstances 5-HT-dependent facilitation requires the activity of protein kinase C (PKC). One critical site of PKC's contribution to 5-HT-dependent synaptic facilitation is the presynaptic sensory neuron. Here, we provide evidence that postsynaptic PKC also contributes to synaptic facilitation. We investigated the contribution of PKC to enhancement of the glutamate-evoked potential (Glu-EP) in isolated siphon motor neurons in cell culture. A 10 min application of either 5-HT or phorbol ester, which activates PKC, produced persistent (> 50 min) enhancement of the Glu-EP. Chelerythrine and bisindolylmaleimide-1 (Bis), two inhibitors of PKC, both blocked the induction of 5-HT-dependent enhancement. An inhibitor of calpain, a calcium-dependent protease, also blocked 5-HT's effect. Interestingly, whereas chelerythrine blocked maintenance of the enhancement, Bis did not. Because Bis has greater selectivity for conventional and novel isoforms of PKC than for atypical isoforms, this result implicates an atypical isoform in the maintenance of 5-HT's effect. Although induction of enhancement of the Glu-EP requires protein synthesis (Villareal et al., 2007), we found that maintenance of the enhancement does not. Maintenance of 5-HT-dependent enhancement appears to be mediated by a PKM-type fragment generated by calpain-dependent proteolysis of atypical PKC. Together, our results suggest that 5-HT treatment triggers two phases of PKC activity within the motor neuron, an early phase that may involve conventional, novel or atypical isoforms of PKC, and a later phase that selectively involves an atypical isoform.
Blocking Effects of Human Tau on Squid Giant Synapse Transmission and Its Prevention by T-817 MA
Moreno, Herman; Choi, Soonwook; Yu, Eunah; Brusco, Janaina; Avila, Jesus; Moreira, Jorge E.; Sugimori, Mutsuyuki; Llinás, Rodolfo R.
2011-01-01
Filamentous tau inclusions are hallmarks of Alzheimer's disease and related neurodegenerative tauopathies, but the molecular mechanisms involved in tau-mediated changes in neuronal function and their possible effects on synaptic transmission are unknown. We have evaluated the effects of human tau protein injected directly into the presynaptic terminal axon of the squid giant synapse, which affords functional, structural, and biochemical analysis of its action on the synaptic release process. Indeed, we have found that at physiological concentration recombinant human tau (h-tau42) becomes phosphorylated, produces a rapid synaptic transmission block, and induces the formation of clusters of aggregated synaptic vesicles in the vicinity of the active zone. Presynaptic voltage clamp recordings demonstrate that h-tau42 does not modify the presynaptic calcium current amplitude or kinetics. Analysis of synaptic noise at the post-synaptic axon following presynaptic h-tau42 microinjection revealed an initial phase of increase spontaneous transmitter release followed by a marked reduction in noise. Finally, systemic administration of T-817MA, a proposed neuro-protective agent, rescued tau-induced synaptic abnormalities. Our results show novel mechanisms of h-tau42 mediated synaptic transmission failure and identify a potential therapeutic agent to treat tau-related neurotoxicity. PMID:21629767
Induction and Consolidation of Calcium-Based Homo- and Heterosynaptic Potentiation and Depression
Li, Yinyun; Kulvicius, Tomas; Tetzlaff, Christian
2016-01-01
The adaptive mechanisms of homo- and heterosynaptic plasticity play an important role in learning and memory. In order to maintain plasticity-induced changes for longer time scales (up to several days), they have to be consolidated by transferring them from a short-lasting early-phase to a long-lasting late-phase state. The underlying processes of this synaptic consolidation are already well-known for homosynaptic plasticity, however, it is not clear whether the same processes also enable the induction and consolidation of heterosynaptic plasticity. In this study, by extending a generic calcium-based plasticity model with the processes of synaptic consolidation, we show in simulations that indeed heterosynaptic plasticity can be induced and, furthermore, consolidated by the same underlying processes as for homosynaptic plasticity. Furthermore, we show that by local diffusion processes the heterosynaptic effect can be restricted to a few synapses neighboring the homosynaptically changed ones. Taken together, this generic model reproduces many experimental results of synaptic tagging and consolidation, provides several predictions for heterosynaptic induction and consolidation, and yields insights into the complex interactions between homo- and heterosynaptic plasticity over a broad variety of time (minutes to days) and spatial scales (several micrometers). PMID:27560350
Impact of pH on the structure and function of neural cadherin.
Jungles, Jared M; Dukes, Matthew P; Vunnam, Nagamani; Pedigo, Susan
2014-12-02
Neural (N-) cadherin is a transmembrane protein within adherens junctions that mediates cell-cell adhesion. It has 5 modular extracellular domains (EC1-EC5) that bind 3 calcium ions between each of the modules. Calcium binding is required for dimerization. N-Cadherin is involved in diverse processes including tissue morphogenesis, excitatory synapse formation and dynamics, and metastasis of cancer. During neurotransmission and tumorigenesis, fluctuations in extracellular pH occur, causing tissue acidosis with associated physiological consequences. Studies reported here aim to determine the effect of pH on the dimerization properties of a truncated construct of N-cadherin containing EC1-EC2. Since N-cadherin is an anionic protein, we hypothesized that acidification of solution would cause an increase in stability of the apo protein, a decrease in the calcium-binding affinity, and a concomitant decrease in the formation of adhesive dimer. The stability of the apo monomer was increased and the calcium-binding affinity was decreased at reduced pH, consistent with our hypothesis. Surprisingly, analytical SEC studies showed an increase in calcium-induced dimerization as solution pH decreased from 7.4 to 5.0. Salt-dependent dimerization studies indicated that electrostatic repulsion attenuates dimerization affinity. These results point to a possible electrostatic mechanism for moderating dimerization affinity of the Type I cadherin family. Extrapolating these results to cell adhesion in vivo leads to the assertion that decreased pH promotes adhesion by N-cadherin, thereby stabilizing synaptic junctions.
A store-operated current (SOC) mediates oxytocin autocontrol in the developing rat hypothalamus.
Tobin, Vicky; Gouty, Laurie-Anne; Moos, Françoise C; Desarménien, Michel G
2006-07-01
Oxytocin (OT) and vasopressin (VP) autocontrol their secreting neurons in the supraoptic nucleus (SON) by modulating action potential firing through activation of specific metabotropic receptors. However, the mechanisms linking receptor activation to firing remain unknown. In almost all cell types, activation of plasma membrane metabotropic receptors triggers signalling cascades that induce mobilization of calcium from intracellular stores. In turn, emptying the calcium stores may evoke calcium influx through store-operated channels (SOCs), the functions of which remain largely unknown in neurons. In this study, we show that these channels play a key role in the SON, at least in the response to OT. In isolated rat SON neurons, store depletion by thapsigargin induced an influx of calcium, demonstrating the presence of SOCs in these neurons. This calcium influx was specifically inhibited by 0.2 mM 1-(2-trifluoromethylphenyl-)imidazole (TRIM). At 2 mM, this compound affected neither the resting electrophysiological properties nor the voltage-dependant inward currents. In fresh slices, TRIM (2 mM) did not affect the resting potential of SON neurons, action potential characteristics, spontaneous action potential firing or synaptic activity; this compound thus appears to be a specific blocker of SOCs in SON neurons. TRIM (0.2 mM) specifically reduced the increase in action potential firing triggered by OT but did not affect the VP-induced response. These observations demonstrate that store operated channels exist in hypothalamic neurons and specifically mediate the response to OT in the SON.
Bu, Yunfei; Wang, Ning; Wang, Shaoli; Sheng, Tao; Tian, Tian; Chen, Linlin; Pan, Weiwei; Zhu, Minsheng; Luo, Jianhong; Lu, Wei
2015-10-16
N-Methyl-d-aspartate receptor (NMDAR) synaptic incorporation changes the number of NMDARs at synapses and is thus critical to various NMDAR-dependent brain functions. To date, the molecules involved in NMDAR trafficking and the underlying mechanisms are poorly understood. Here, we report that myosin IIb is an essential molecule in NMDAR synaptic incorporation during PKC- or θ burst stimulation-induced synaptic plasticity. Moreover, we demonstrate that myosin light chain kinase (MLCK)-dependent actin reorganization contributes to NMDAR trafficking. The findings from additional mutual occlusion experiments demonstrate that PKC and MLCK share a common signaling pathway in NMDAR-mediated synaptic regulation. Because myosin IIb is the primary substrate of MLCK and can regulate actin dynamics during synaptic plasticity, we propose that the MLCK- and myosin IIb-dependent regulation of actin dynamics is required for NMDAR trafficking during synaptic plasticity. This study provides important insights into a mechanical framework for understanding NMDAR trafficking associated with synaptic plasticity. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Naga, Kranthi Kumari
2012-01-01
Dimebon was originally introduced as an antihistamine and subsequently investigated as a possible therapeutic for a variety of disorders, including Alzheimer's disease. One putative mechanism underlying the neuroprotective properties of Dimebon is inhibition of mitochondrial permeability transition, based on the observation that Dimebon inhibited the swelling of rat liver mitochondria induced by calcium and other agents that induce permeability transition. Because liver and brain mitochondria differ substantially in their properties and response to conditions associated with opening of the permeability transition pore, we sought to determine whether Dimebon inhibited permeability transition in brain mitochondria. Dimebon reduced calcium-induced mitochondrial swelling but did not enhance the calcium retention capacity or impair calcium-induced cytochrome C release from non-synaptic mitochondria isolated from rat brain cerebral cortex. These findings indicate that Dimebon does not inhibit mitochondrial permeability transition, induced by excessive calcium uptake, in brain mitochondria. PMID:20625939
Naga, Kranthi Kumari; Geddes, James W
2011-03-01
Dimebon was originally introduced as an antihistamine and subsequently investigated as a possible therapeutic for a variety of disorders, including Alzheimer's disease. One putative mechanism underlying the neuroprotective properties of Dimebon is inhibition of mitochondrial permeability transition, based on the observation that Dimebon inhibited the swelling of rat liver mitochondria induced by calcium and other agents that induce permeability transition. Because liver and brain mitochondria differ substantially in their properties and response to conditions associated with opening of the permeability transition pore, we sought to determine whether Dimebon inhibited permeability transition in brain mitochondria. Dimebon reduced calcium-induced mitochondrial swelling but did not enhance the calcium retention capacity or impair calcium-induced cytochrome C release from non-synaptic mitochondria isolated from rat brain cerebral cortex. These findings indicate that Dimebon does not inhibit mitochondrial permeability transition, induced by excessive calcium uptake, in brain mitochondria.
Iron-mediated redox modulation in neural plasticity
Muñoz, Pablo
2012-01-01
The role of iron in brain physiology has focused on the neuropathological, effects due to iron-induced oxidative stress. However, our recent work has established a physiological relationship between the iron-mediated oxidative modification and normal neuronal function. Our results obtained from hippocampal neurons, suggest that iron-generated reactive species oxygen (ROS) are involved in calcium signaling initiated by stimulation of NMDA receptors. This signal is amplified by ryanodine receptors (RyR), a redox- sensitive calcium channel, allowing the phosphorylation and nuclear translocation of ERK1/2. Furthermore, using electrophysiological approaches, we showed that iron is required for basal synaptic transmission and full expression of long-term potentiation, a type of synaptic plasticity. Our data combined suggest that the oxidative effect of iron is critical to activate processes that are downstream of NMDAR activation. Finally, due to the high reactivity of DNA with iron-generated ROS, we hypothesize an additional function of iron in gene regulation. PMID:22808323
Independent localization of MAP2, CaMKIIα and β-actin RNAs in low copy numbers.
Mikl, Martin; Vendra, Georgia; Kiebler, Michael A
2011-09-30
Messenger RNA localization involves the assembly of ribonucleoprotein particles (RNPs) and their subsequent transport along the cytoskeleton to their final destination. Here, we provide new evidence that microtubule-associated protein 2 (MAP2), calcium/calmodulin-dependent protein kinase II (CaMKIIα) and β-actin RNAs localize to dendrites in distinct RNPs, which contain--unexpectedly--very few RNA molecules. The number of MAP2 molecules per particle is affected by synaptic activity and Staufen 2, indicating that RNP composition is tightly controlled. Our data suggest that the independent localization of individual RNAs in low copy numbers could contribute to tighter temporal and spatial control of expression in neurons and synapse-specific plasticity.
Zündorf, Gregor
2011-01-01
Abstract The intracellular free calcium concentration subserves complex signaling roles in brain. Calcium cations (Ca2+) regulate neuronal plasticity underlying learning and memory and neuronal survival. Homo- and heterocellular control of Ca2+ homeostasis supports brain physiology maintaining neural integrity. Ca2+ fluxes across the plasma membrane and between intracellular organelles and compartments integrate diverse cellular functions. A vast array of checkpoints controls Ca2+, like G protein-coupled receptors, ion channels, Ca2+ binding proteins, transcriptional networks, and ion exchangers, in both the plasma membrane and the membranes of mitochondria and endoplasmic reticulum. Interactions between Ca2+ and reactive oxygen species signaling coordinate signaling, which can be either beneficial or detrimental. In neurodegenerative disorders, cellular Ca2+-regulating systems are compromised. Oxidative stress, perturbed energy metabolism, and alterations of disease-related proteins result in Ca2+-dependent synaptic dysfunction, impaired plasticity, and neuronal demise. We review Ca2+ control processes relevant for physiological and pathophysiological conditions in brain tissue. Dysregulation of Ca2+ is decisive for brain cell death and degeneration after ischemic stroke, long-term neurodegeneration in Alzheimer's disease, Parkinson's disease, Huntington's disease, inflammatory processes, such as in multiple sclerosis, epileptic sclerosis, and leucodystrophies. Understanding the underlying molecular processes is of critical importance for the development of novel therapeutic strategies to prevent neurodegeneration and confer neuroprotection. Antioxid. Redox Signal. 14, 1275–1288. PMID:20615073
Tang, Bo; Luo, Dong; Yang, Jie; Xu, Xiao-Yan; Zhu, Bing-Lin; Wang, Xue-Feng; Yan, Zhen; Chen, Guo-Jun
2015-01-01
Layer I neurons in the prefrontal cortex (PFC) exhibit extensive synaptic connections with deep layer neurons, implying their important role in the neural circuit. Study demonstrates that activation of nicotinic acetylcholine receptors (nAChRs) increases excitatory neurotransmission in this layer. Here we found that nicotine selectively increased the amplitude of AMPA receptor (AMPAR)-mediated current and AMPA/NMDA ratio, while without effect on NMDA receptor-mediated current. The augmentation of AMPAR current by nicotine was inhibited by a selective α7-nAChR antagonist methyllycaconitine (MLA) and intracellular calcium chelator BAPTA. In addition, nicotinic effect on mEPSC or paired-pulse ratio was also prevented by MLA. Moreover, an enhanced inward rectification of AMPAR current by nicotine suggested a functional role of calcium permeable and GluA1 containing AMPAR. Consistently, nicotine enhancement of AMPAR current was inhibited by a selective calcium-permeable AMPAR inhibitor IEM-1460. Finally, the intracellular inclusion of synthetic peptide designed to block GluA1 subunit of AMPAR at CAMKII, PKC or PKA phosphorylation site, as well as corresponding kinase inhibitor, blocked nicotinic augmentation of AMPA/NMDA ratio. These results have revealed that nicotine increases AMPAR current by modulating the phosphorylation state of GluA1 which is dependent on α7-nAChR and intracellular calcium. PMID:26370265
Radwani, Houda; Lopez‐Gonzalez, Maria José; Cattaert, Daniel; Roca‐Lapirot, Olivier; Dobremez, Eric; Bouali‐Benazzouz, Rabia; Eiríksdóttir, Emelía; Langel, Ülo; Favereaux, Alexandre; Errami, Mohammed; Landry, Marc
2016-01-01
Key points L‐type calcium channels in the CNS exist as two subunit forming channels, Cav1.2 and Cav1.3, which are involved in short‐ and long‐term plasticity.We demonstrate that Cav1.3 but not Cav1.2 is essential for wind‐up.These results identify Cav1.3 as a key conductance responsible for short‐term sensitization in physiological pain transmission.We confirm the role of Cav1.2 in a model of long‐term plasticity associated with neuropathic pain.Up‐regulation of Cav1.2 and down‐regultation of Cav1.3 in neuropathic pain underlies the switch from physiology to pathology.Finally, the results of the present study reveal that therapeutic targeting molecular pathways involved in wind‐up may be not relevant in the treatment of neuropathy. Abstract Short‐term central sensitization to pain temporarily increases the responsiveness of nociceptive pathways after peripheral injury. In dorsal horn neurons (DHNs), short‐term sensitization can be monitored through the study of wind‐up. Wind‐up, a progressive increase in DHNs response following repetitive peripheral stimulations, depends on the post‐synaptic L‐type calcium channels. In the dorsal horn of the spinal cord, two L‐type calcium channels are present, Cav1.2 and Cav1.3, each displaying specific kinetics and spatial distribution. In the present study, we used a mathematical model of DHNs in which we integrated the specific patterns of expression of each Cav subunits. This mathematical approach reveals that Cav1.3 is necessary for the onset of wind‐up, whereas Cav1.2 is not and that synaptically triggered wind‐up requires NMDA receptor activation. We then switched to a biological preparation in which we knocked down Cav subunits and confirmed the prominent role of Cav1.3 in both naive and spinal nerve ligation model of neuropathy (SNL). Interestingly, although a clear mechanical allodynia dependent on Cav1.2 expression was observed after SNL, the amplitude of wind‐up was decreased. These results were confirmed with our model when adapting Cav1.3 conductance to the changes observed after SNL. Finally, our mathematical approach predicts that, although wind‐up amplitude is decreased in SNL, plateau potentials are not altered, suggesting that plateau and wind‐up are not fully equivalent. Wind‐up and long‐term hyperexcitability of DHNs are differentially controlled by Cav1.2 and Cav1.3, therefore confirming that short‐ and long‐term sensitization are two different phenomena triggered by distinct mechanisms. PMID:27231046
Synaptotagmin 7 confers frequency invariance onto specialized depressing synapses
NASA Astrophysics Data System (ADS)
Turecek, Josef; Jackman, Skyler L.; Regehr, Wade G.
2017-11-01
At most synapses in the brain, short-term plasticity dynamically modulates synaptic strength. Rapid frequency-dependent changes in synaptic strength have key roles in sensory adaptation, gain control and many other neural computations. However, some auditory, vestibular and cerebellar synapses maintain constant strength over a wide range of firing frequencies, and as a result efficiently encode firing rates. Despite its apparent simplicity, frequency-invariant transmission is difficult to achieve because of inherent synaptic nonlinearities. Here we study frequency-invariant transmission at synapses from Purkinje cells to deep cerebellar nuclei and at vestibular synapses in mice. Prolonged activation of these synapses leads to initial depression, which is followed by steady-state responses that are frequency invariant for their physiological activity range. We find that synaptotagmin 7 (Syt7), a calcium sensor for short-term facilitation, is present at both synapses. It was unclear why a sensor for facilitation would be present at these and other depressing synapses. We find that at Purkinje cell and vestibular synapses, Syt7 supports facilitation that is normally masked by depression, which can be revealed in wild-type mice but is absent in Syt7 knockout mice. In wild-type mice, facilitation increases with firing frequency and counteracts depression to produce frequency-invariant transmission. In Syt7-knockout mice, Purkinje cell and vestibular synapses exhibit conventional use-dependent depression, weakening to a greater extent as the firing frequency is increased. Presynaptic rescue of Syt7 expression restores both facilitation and frequency-invariant transmission. Our results identify a function for Syt7 at synapses that exhibit overall depression, and demonstrate that facilitation has an unexpected and important function in producing frequency-invariant transmission.
Chipman, Peter H.; Schachner, Melitta
2014-01-01
The function of neural cell adhesion molecule (NCAM) expression in motor neurons during axonal sprouting and compensatory reinnervation was explored by partially denervating soleus muscles in mice lacking presynaptic NCAM (Hb9creNCAMflx). In agreement with previous studies, the contractile force of muscles in wild-type (NCAM+/+) mice recovered completely 2 weeks after 75% of the motor innervation was removed because motor unit size increased by 2.5 times. In contrast, similarly denervated muscles in Hb9creNCAMflx mice failed to recover the force lost due to the partial denervation because motor unit size did not change. Anatomical analysis indicated that 50% of soleus end plates were completely denervated 1–4 weeks post-partial denervation in Hb9creNCAMflx mice, while another 25% were partially reinnervated. Synaptic vesicles (SVs) remained at extrasynaptic regions in Hb9creNCAMflx mice rather than being distributed, as occurs normally, to newly reinnervated neuromuscular junctions (NMJs). Electrophysiological analysis revealed two populations of NMJs in partially denervated Hb9creNCAMflx soleus muscles, one with high (mature) quantal content, and another with low (immature) quantal content. Extrasynaptic SVs in Hb9creNCAMflx sprouts were associated with L-type voltage-dependent calcium channel (L-VDCC) immunoreactivity and maintained an immature, L-VDCC-dependent recycling phenotype. Moreover, acute nifedipine treatment potentiated neurotransmission at newly sprouted NMJs, while chronic intraperitoneal treatment with nifedipine during a period of synaptic consolidation enhanced functional motor unit expansion in the absence of presynaptic NCAM. We propose that presynaptic NCAM bridges a critical link between the SV cycle and the functional expansion of synaptic territory through the regulation of L-VDCCs. PMID:25100585
Arias-García, Mario A.; Tapia, Dagoberto; Flores-Barrera, Edén; Pérez-Ortega, Jesús E.; Bargas, José; Galarraga, Elvira
2013-01-01
The firing of striatal projection neurons (SPNs) exhibits afterhyperpolarizing potentials (AHPs) that determine discharge frequency. They are in part generated by Ca2+-activated K+-currents involving BK and SK components. It has previously been shown that suprathreshold corticostriatal responses are more prolonged and evoke more action potentials in direct pathway SPNs (dSPNs) than in indirect pathway SPNs (iSPNs). In contrast, iSPNs generate dendritic autoregenerative responses. Using whole cell recordings in brain slices, we asked whether the participation of Ca2+-activated K+-currents plays a role in these responses. Secondly, we asked if these currents may explain some differences in synaptic integration between dSPNs and iSPNs. Neurons obtained from BAC D1 and D2 GFP mice were recorded. We used charybdotoxin and apamin to block BK and SK channels, respectively. Both antagonists increased the depolarization and delayed the repolarization of suprathreshold corticostriatal responses in both neuron classes. We also used NS 1619 and NS 309 (CyPPA), to enhance BK and SK channels, respectively. Current enhancers hyperpolarized and accelerated the repolarization of corticostriatal responses in both neuron classes. Nevertheless, these drugs made evident that the contribution of Ca2+-activated K+-currents was different in dSPNs as compared to iSPNs: in dSPNs their activation was slower as though calcium took a diffusion delay to activate them. In contrast, their activation was fast and then sustained in iSPNs as though calcium flux activates them at the moment of entry. The blockade of Ca2+-activated K+-currents made iSPNs to look as dSPNs. Conversely, their enhancement made dSPNs to look as iSPNs. It is concluded that Ca2+-activated K+-currents are a main intrinsic determinant causing the differences in synaptic integration between corticostriatal polysynaptic responses between dSPNs and iSPNs. PMID:24109439
PSD-95 and PSD-93 Play Critical but Distinct Roles in Synaptic Scaling Up and Down
Sun, Qian; Turrigiano, Gina G.
2011-01-01
Synaptic scaling stabilizes neuronal firing through the homeostatic regulation of postsynaptic strength, but the mechanisms by which chronic changes in activity lead to bidirectional adjustments in synaptic AMPAR abundance are incompletely understood. Further, it remains unclear to what extent scaling up and scaling down utilize distinct molecular machinery. PSD-95 is a scaffold protein proposed to serve as a binding “slot” that determines synaptic AMPAR content, and synaptic PSD-95 abundance is regulated by activity, raising the possibility that activity-dependent changes in the synaptic abundance of PSD-95 or other MAGUKs drives the bidirectional changes in AMPAR accumulation during synaptic scaling. We found that synaptic PSD-95 and SAP102 (but not PSD-93) abundance were bidirectionally regulated by activity, but these changes were not sufficient to drive homeostatic changes in synaptic strength. Although not sufficient, the PSD-95-MAGUKs were necessary for synaptic scaling, but scaling up and down were differentially dependent on PSD-95 and PSD-93. Scaling down was completely blocked by reduced or enhanced PSD-95, through a mechanism that depended on the PDZ1/2 domains. In contrast scaling up could be supported by either PSD-95 or PSD-93 in a manner that depended on neuronal age, and was unaffected by a superabundance of PSD-95. Taken together, our data suggest that scaling up and down of quantal amplitude is not driven by changes in synaptic abundance of PSD-95-MAGUKs, but rather that the PSD-95 MAGUKs serve as critical synaptic organizers that utilize distinct protein-protein interactions to mediate homeostatic accumulation and loss of synaptic AMPAR. PMID:21543610
The interplay between neuronal activity and actin dynamics mimic the setting of an LTD synaptic tag
Szabó, Eszter C.; Manguinhas, Rita; Fonseca, Rosalina
2016-01-01
Persistent forms of plasticity, such as long-term depression (LTD), are dependent on the interplay between activity-dependent synaptic tags and the capture of plasticity-related proteins. We propose that the synaptic tag represents a structural alteration that turns synapses permissive to change. We found that modulation of actin dynamics has different roles in the induction and maintenance of LTD. Inhibition of either actin depolymerisation or polymerization blocks LTD induction whereas only the inhibition of actin depolymerisation blocks LTD maintenance. Interestingly, we found that actin depolymerisation and CaMKII activation are involved in LTD synaptic-tagging and capture. Moreover, inhibition of actin polymerisation mimics the setting of a synaptic tag, in an activity-dependent manner, allowing the expression of LTD in non-stimulated synapses. Suspending synaptic activation also restricts the time window of synaptic capture, which can be restored by inhibiting actin polymerization. Our results support our hypothesis that modulation of the actin cytoskeleton provides an input-specific signal for synaptic protein capture. PMID:27650071
Papaleonidopoulos, Vassilios; Papatheodoropoulos, Costas
2018-05-01
The hippocampus is a functionally heterogeneous structure with the cognitive and emotional signal processing ascribed to the dorsal (DH) and the ventral hippocampus (VH) respectively. However, the underlying mechanisms are poorly understood. Noradrenaline is released in hippocampus during emotional arousal modulating synaptic plasticity and memory consolidation through activation of β adrenergic receptors (β-ARs). Using recordings of field excitatory postsynaptic potentials from the CA1 field of adult rat hippocampal slices we demonstrate that long-term potentiation (LTP) induced either by theta-burst stimulation (TBS) that mimics a physiological firing pattern of hippocampal neurons or by high-frequency stimulation is remarkably more sensitive to β-AR activation in VH than in DH. Thus, pairing of subthreshold primed burst stimulation with activation of β-ARs by their agonist isoproterenol (1 μM) resulted in a reliable induction of NMDA receptor-dependent LTP in the VH without affecting LTP in the DH. Activation of β-ARs by isoproterenol during application of intense TBS increased the magnitude of LTP in both hippocampal segments but facilitated voltage-gated calcium channel-dependent LTP in VH only. Endogenous β-AR activation contributed to the stabilization and the magnitude of LTP in VH but not DH as demonstrated by the effects of the β-ARs antagonist propranolol (10 μM). Exogenous (but not endogenous) β-AR activation strongly increased TBS-induced facilitation of postsynaptic excitability in VH. In DH, isoproterenol only produced a moderate and GABAergic inhibition-dependent enhancement in the facilitation of synaptic burst responses. Paired-pulse facilitation did not change with LTP at any experimental condition suggesting that expression of LTP does not involve presynaptic mechanisms. These findings suggest that β-AR may act as a switch that selectively promotes synaptic plasticity in VH through multiple ways and provide thus a first clue to mechanisms that underlie VH involvement in emotionality. Copyright © 2018 Elsevier Inc. All rights reserved.
[Cognitive Function and Calcium. Structures and functions of Ca2+-permeable channels].
Kaneko, Shuji
2015-02-01
Calcium is essential for living organisms where the increase in intracellular Ca2+ concentration functions as a second messenger for many cellular processes including synaptic transmission and neural plasticity. The cytosolic concentration of Ca2+ is finely controlled by many Ca2+-permeable ion channels and transporters. The comprehensive view of their expression, function, and regulation will advance our understanding of neural and cognitive functions of Ca2+, which leads to the future drug discovery.
Properties of Contextual Memory Formed in the Absence of αCaMKII Autophosphorylation
2011-01-01
The alpha-isoform of calcium/calmodulin-dependent kinase II (αCaMKII) is a major synaptic kinase that undergoes autophosphorylation after NMDA receptor activation, switching the kinase into a calcium-independent activity state. This αCaMKII autophosphorylation is essential for NMDA receptor-dependent long-term potentiation (LTP), induced by a single tetanus, in hippocampal area CA1 and in neocortex. Furthermore, the αCaMKII autophosphorylation is essential for contextual long-term memory (LTM) formation after a single training trial but not after a massed training session. Here, we show that in the absence of αCaMKII autophosphorylation contextual fear conditioning is hippocampus dependent and that multi-tetanus-dependent late-LTP cannot be induced in hippocampal area CA1. Furthermore, we show that in the absence of αCaMKII autophosphorylation contextual LTM persists for 30 days, the latest time point tested. Additionally, contextual, but not cued, LTM formation in the absence of αCaMKII autophosphorylation appears to be impaired in 18 month-old mice. Taken together, our findings suggest that αCaMKII autophosphorylation-independent plasticity in the hippocampus is sufficient for contextual LTM formation and that αCaMKII autophosphorylation may be important for delaying age-related impairments in hippocampal memory formation. Furthermore, they propose that NMDA receptor-dependent LTP in hippocampal area CA1 is essential for contextual LTM formation after a single trial but not after massed training. Finally, our results challenge the proposal that NMDA receptor-dependent LTP in neocortex is required for remote contextual LTM. PMID:21276220
Sleep and protein synthesis-dependent synaptic plasticity: impacts of sleep loss and stress
Grønli, Janne; Soulé, Jonathan; Bramham, Clive R.
2014-01-01
Sleep has been ascribed a critical role in cognitive functioning. Several lines of evidence implicate sleep in the consolidation of synaptic plasticity and long-term memory. Stress disrupts sleep while impairing synaptic plasticity and cognitive performance. Here, we discuss evidence linking sleep to mechanisms of protein synthesis-dependent synaptic plasticity and synaptic scaling. We then consider how disruption of sleep by acute and chronic stress may impair these mechanisms and degrade sleep function. PMID:24478645
Oxide-based synaptic transistors gated by solution-processed gelatin electrolytes
NASA Astrophysics Data System (ADS)
He, Yinke; Sun, Jia; Qian, Chuan; Kong, Ling-An; Gou, Guangyang; Li, Hongjian
2017-04-01
In human brain, a large number of neurons are connected via synapses. Simulation of the synaptic behaviors using electronic devices is the most important step for neuromorphic systems. In this paper, proton conducting gelatin electrolyte-gated oxide field-effect transistors (FETs) were used for emulating synaptic functions, in which the gate electrode is regarded as pre-synaptic neuron and the channel layer as the post-synaptic neuron. In analogy to the biological synapse, a potential spike can be applied at the gate electrode and trigger ionic motion in the gelatin electrolyte, which in turn generates excitatory post-synaptic current (EPSC) in the channel layer. Basic synaptic behaviors including spike time-dependent EPSC, paired-pulse facilitation (PPF), self-adaptation, and frequency-dependent synaptic transmission were successfully mimicked. Such ionic/electronic hybrid devices are beneficial for synaptic electronics and brain-inspired neuromorphic systems.
Currie, Kevin P M; Fox, Aaron P
2002-01-01
Inhibition of presynaptic voltage-gated calcium channels by direct G-protein βγ subunit binding is a widespread mechanism that regulates neurotransmitter release. Voltage-dependent relief of this inhibition (facilitation), most likely to be due to dissociation of the G-protein from the channel, may occur during bursts of action potentials. In this paper we compare the facilitation of N- and P/Q-type Ca2+ channels during short trains of action potential-like waveforms (APWs) using both native channels in adrenal chromaffin cells and heterologously expressed channels in tsA201 cells. While both N- and P/Q-type Ca2+ channels exhibit facilitation that is dependent on the frequency of the APW train, there are important quantitative differences. Approximately 20 % of the voltage-dependent inhibition of N-type ICa was reversed during a train while greater than 40 % of the inhibition of P/Q-type ICa was relieved. Changing the duration or amplitude of the APW dramatically affected the facilitation of N-type channels but had little effect on the facilitation of P/Q-type channels. Since the ratio of N-type to P/Q-type Ca2+ channels varies widely between synapses, differential facilitation may contribute to the fine tuning of synaptic transmission, thereby increasing the computational repertoire of neurons. PMID:11882675
Alcohol induces synaptotagmin 1 expression in neurons via activation of heat shock factor 1.
Varodayan, F P; Pignataro, L; Harrison, N L
2011-10-13
Many synapses within the central nervous system are sensitive to ethanol. Although alcohol is known to affect the probability of neurotransmitter release in specific brain regions, the effects of alcohol on the underlying synaptic vesicle fusion machinery have been little studied. To identify a potential pathway by which ethanol can regulate neurotransmitter release, we investigated the effects of acute alcohol exposure (1-24 h) on the expression of the gene encoding synaptotagmin 1 (Syt1), a synaptic protein that binds calcium to directly trigger vesicle fusion. Syt1 was identified in a microarray screen as a gene that may be sensitive to alcohol and heat shock. We found that Syt1 mRNA and protein expression are rapidly and robustly up-regulated by ethanol in mouse cortical neurons, and that the distribution of Syt1 protein along neuronal processes is also altered. Syt1 mRNA up-regulation is dependent on the activation of the transcription factor heat shock factor 1 (HSF1). The transfection of a constitutively active Hsf1 construct into neurons stimulates Syt1 transcription, while transfection of Hsf1 small interfering RNA (siRNA) or a constitutively inactive Hsf1 construct into neurons attenuates the induction of Syt1 by ethanol. This suggests that the activation of HSF1 can induce Syt1 expression and that this may be a mechanism by which alcohol regulates neurotransmitter release during brief exposures. Further analysis revealed that a subset of the genes encoding the core synaptic vesicle fusion (soluble NSF (N-ethylmaleimide-sensitive factor) attachment protein receptor; SNARE) proteins share this property of induction by ethanol, suggesting that alcohol may trigger a specific coordinated adaptation in synaptic function. This molecular mechanism could explain some of the changes in synaptic function that occur following alcohol administration and may be an important step in the process of neuronal adaptation to alcohol. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.
Ca2+ Dependence of Synaptic Vesicle Endocytosis.
Leitz, Jeremy; Kavalali, Ege T
2016-10-01
Ca(2+)-dependent synaptic vesicle recycling is essential for structural homeostasis of synapses and maintenance of neurotransmission. Although, the executive role of intrasynaptic Ca(2+) transients in synaptic vesicle exocytosis is well established, identifying the exact role of Ca(2+) in endocytosis has been difficult. In some studies, Ca(2+) has been suggested as an essential trigger required to initiate synaptic vesicle retrieval, whereas others manipulating synaptic Ca(2+) concentrations reported a modulatory role for Ca(2+) leading to inhibition or acceleration of endocytosis. Molecular studies of synaptic vesicle endocytosis, on the other hand, have consistently focused on the roles of Ca(2+)-calmodulin dependent phosphatase calcineurin and synaptic vesicle protein synaptotagmin as potential Ca(2+) sensors for endocytosis. Most studies probing the role of Ca(2+) in endocytosis have relied on measurements of synaptic vesicle retrieval after strong stimulation. Strong stimulation paradigms elicit fusion and retrieval of multiple synaptic vesicles and therefore can be affected by several factors besides the kinetics and duration of Ca(2+) signals that include the number of exocytosed vesicles and accumulation of released neurotransmitters thus altering fusion and retrieval processes indirectly via retrograde signaling. Studies monitoring single synaptic vesicle endocytosis may help resolve this conundrum as in these settings the impact of Ca(2+) on synaptic fusion probability can be uncoupled from its putative role on synaptic vesicle retrieval. Future experiments using these single vesicle approaches will help dissect the specific role(s) of Ca(2+) and its sensors in synaptic vesicle endocytosis. © The Author(s) 2015.
Spontaneous Activity Drives Local Synaptic Plasticity In Vivo.
Winnubst, Johan; Cheyne, Juliette E; Niculescu, Dragos; Lohmann, Christian
2015-07-15
Spontaneous activity fine-tunes neuronal connections in the developing brain. To explore the underlying synaptic plasticity mechanisms, we monitored naturally occurring changes in spontaneous activity at individual synapses with whole-cell patch-clamp recordings and simultaneous calcium imaging in the mouse visual cortex in vivo. Analyzing activity changes across large populations of synapses revealed a simple and efficient local plasticity rule: synapses that exhibit low synchronicity with nearby neighbors (<12 μm) become depressed in their transmission frequency. Asynchronous electrical stimulation of individual synapses in hippocampal slices showed that this is due to a decrease in synaptic transmission efficiency. Accordingly, experimentally increasing local synchronicity, by stimulating synapses in response to spontaneous activity at neighboring synapses, stabilized synaptic transmission. Finally, blockade of the high-affinity proBDNF receptor p75(NTR) prevented the depression of asynchronously stimulated synapses. Thus, spontaneous activity drives local synaptic plasticity at individual synapses in an "out-of-sync, lose-your-link" fashion through proBDNF/p75(NTR) signaling to refine neuronal connectivity. VIDEO ABSTRACT. Copyright © 2015 Elsevier Inc. All rights reserved.
Shambharkar, Prashant B.; Bittinger, Mark; Latario, Brian; Xiong, ZhaoHui; Bandyopadhyay, Somnath; Davis, Vanessa; Lin, Victor; Yang, Yi; Valdez, Reginald; Labow, Mark A.
2015-01-01
Intracellular calcium signaling is critical for initiating and sustaining diverse cellular functions including transcription, synaptic signaling, muscle contraction, apoptosis and fertilization. Trans-membrane 203 (TMEM203) was identified here in cDNA overexpression screens for proteins capable of modulating intracellular calcium levels using activation of a calcium/calcineurin regulated transcription factor as an indicator. Overexpression of TMEM203 resulted in a reduction of Endoplasmic Reticulum (ER) calcium stores and elevation in basal cytoplasmic calcium levels. TMEM203 protein was localized to the ER and found associated with a number of ER proteins which regulate ER calcium entry and efflux. Mouse Embryonic Fibroblasts (MEFs) derived from Tmem203 deficient mice had reduced ER calcium stores and altered calcium homeostasis. Tmem203 deficient mice were viable though male knockout mice were infertile and exhibited a severe block in spermiogenesis and spermiation. Expression profiling studies showed significant alternations in expression of calcium channels and pumps in testes and concurrently Tmem203 deficient spermatocytes demonstrated significantly altered calcium handling. Thus Tmem203 is an evolutionarily conserved regulator of cellular calcium homeostasis, is required for spermatogenesis and provides a causal link between intracellular calcium regulation and spermiogenesis. PMID:25996873
Control of extracellular dopamine at dendrite and axon terminals
Ford, Christopher P.; Gantz, Stephanie C.; Phillips, Paul E. M.; Williams, John T.
2010-01-01
Midbrain dopamine neurons release dopamine from both axons and dendrites. The mechanism underlying release at these different sites has been proposed to differ. This study used electrochemical and electrophysiological methods to compare the time course and calcium-dependence of somatodendritc dopamine release in the ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) to that of axonal dopamine release in the dorsal striatum. The amount of dopamine released in the striatum was ~20 fold greater than in cell body regions of the VTA or SNc. However the calcium dependence and time to peak of the dopamine transients were similar. These results illustrate an unexpected overall similarity in the mechanisms of dopamine release in the striatum and cell body regions. To examine how diffusion regulates the time course of dopamine following release, dextran was added to the extracellular solution to slow diffusion. In the VTA, dextran slowed the rate of rise and fall of the extracellular dopamine transient as measured by fast-scan cyclic voltammetry (FSCV) yet did not alter the kinetics of the dopamine dependent inhibitory post-synaptic current (IPSC). Dextran failed to significantly alter the time course of the rise and fall of the dopamine transient in the striatum suggesting a more influential role for reuptake in the striatum. The conclusion is that the time course of dopamine within the extracellular space of the VTA is dependent on both diffusion and reuptake, whereas the activation of D2-receptors on dopamine neurons is primarily limited by reuptake. PMID:20484639
CALHM1 deficiency impairs cerebral neuron activity and memory flexibility in mice.
Vingtdeux, Valérie; Chang, Eric H; Frattini, Stephen A; Zhao, Haitian; Chandakkar, Pallavi; Adrien, Leslie; Strohl, Joshua J; Gibson, Elizabeth L; Ohmoto, Makoto; Matsumoto, Ichiro; Huerta, Patricio T; Marambaud, Philippe
2016-04-12
CALHM1 is a cell surface calcium channel expressed in cerebral neurons. CALHM1 function in the brain remains unknown, but recent results showed that neuronal CALHM1 controls intracellular calcium signaling and cell excitability, two mechanisms required for synaptic function. Here, we describe the generation of Calhm1 knockout (Calhm1(-/-)) mice and investigate CALHM1 role in neuronal and cognitive functions. Structural analysis revealed that Calhm1(-/-) brains had normal regional and cellular architecture, and showed no evidence of neuronal or synaptic loss, indicating that CALHM1 deficiency does not affect brain development or brain integrity in adulthood. However, Calhm1(-/-) mice showed a severe impairment in memory flexibility, assessed in the Morris water maze, and a significant disruption of long-term potentiation without alteration of long-term depression, measured in ex vivo hippocampal slices. Importantly, in primary neurons and hippocampal slices, CALHM1 activation facilitated the phosphorylation of NMDA and AMPA receptors by protein kinase A. Furthermore, neuronal CALHM1 activation potentiated the effect of glutamate on the expression of c-Fos and C/EBPβ, two immediate-early gene markers of neuronal activity. Thus, CALHM1 controls synaptic activity in cerebral neurons and is required for the flexible processing of memory in mice. These results shed light on CALHM1 physiology in the mammalian brain.
Dinamarca, Margarita C; Guzzetti, Francesca; Karpova, Anna; Lim, Dmitry; Mitro, Nico; Musardo, Stefano; Mellone, Manuela; Marcello, Elena; Stanic, Jennifer; Samaddar, Tanmoy; Burguière, Adeline; Caldarelli, Antonio; Genazzani, Armando A; Perroy, Julie; Fagni, Laurent; Canonico, Pier Luigi; Kreutz, Michael R; Gardoni, Fabrizio; Luca, Monica Di
2016-01-01
Synapses and nuclei are connected by bidirectional communication mechanisms that enable information transfer encoded by macromolecules. Here, we identified RNF10 as a novel synaptonuclear protein messenger. RNF10 is activated by calcium signals at the postsynaptic compartment and elicits discrete changes at the transcriptional level. RNF10 is enriched at the excitatory synapse where it associates with the GluN2A subunit of NMDA receptors (NMDARs). Activation of synaptic GluN2A-containing NMDARs and induction of long term potentiation (LTP) lead to the translocation of RNF10 from dendritic segments and dendritic spines to the nucleus. In particular, we provide evidence for importin-dependent long-distance transport from synapto-dendritic compartments to the nucleus. Notably, RNF10 silencing prevents the maintenance of LTP as well as LTP-dependent structural modifications of dendritic spines. DOI: http://dx.doi.org/10.7554/eLife.12430.001 PMID:26977767
Recording Gamma Band Oscillations in Pedunculopontine Nucleus Neurons.
Urbano, Francisco J; Luster, Brennon R; D'Onofrio, Stasia; Mahaffey, Susan; Garcia-Rill, Edgar
2016-09-14
Synaptic efferents from the PPN are known to modulate the neuronal activity of several intralaminar thalamic regions (e.g., the centrolateral/parafascicular; Cl/Pf nucleus). The activation of either the PPN or Cl/Pf nuclei in vivo has been described to induce the arousal of the animal and an increment in gamma band activity in the cortical electroencephalogram (EEG). The cellular mechanisms for the generation of gamma band oscillations in Reticular Activating System (RAS) neurons are the same as those found to generate gamma band oscillations in other brains nuclei. During current-clamp recordings of PPN neurons (from parasagittal slices from 9 - 25 day-old rats), the use of depolarizing square steps rapidly activated voltage-dependent potassium channels that prevented PPN neurons from being depolarized beyond -25 mV. Injecting 1 - 2 sec long depolarizing current ramps gradually depolarized PPN membrane potential resting values towards 0 mV. However, injecting depolarizing square pulses generated gamma-band oscillations of membrane potential that showed to be smaller in amplitude compared to the oscillations generated by ramps. All experiments were performed in the presence of voltage-gated sodium channels and fast synaptic receptors blockers. It has been shown that the activation of high-threshold voltage-dependent calcium channels underlie gamma-band oscillatory activity in PPN neurons. Specific methodological and pharmacological interventions are described here, providing the necessary tools to induce and sustain PPN subthreshold gamma band oscillation in vitro.
Dynamics of excitatory synaptic components in sustained firing at low rates.
Wyart, Claire; Cocco, Simona; Bourdieu, Laurent; Léger, Jean-Francois; Herr, Catherine; Chatenay, Didier
2005-06-01
Sustained firing is necessary for the persistent activity associated with working memory. The relative contributions of the reverberation of excitation and of the temporal dynamics of the excitatory postsynaptic potential (EPSP) to the maintenance of activity are difficult to evaluate in classical preparations. We used simplified models of synchronous excitatory networks, hippocampal autapses and pairs, to study the synaptic mechanisms underlying firing at low rates. Calcium imaging and cell attached recordings showed that these neurons spontaneously fired bursts of action potentials that lasted for seconds over a wide range of frequencies. In 2-wk-old cells, the median firing frequency was low (11 +/- 8.8 Hz), whereas in 3- to 4-wk-old cells, it decreased to a very low value (2 +/- 1.3 Hz). In both cases, we have shown that the slowest synaptic component supported firing. In 2-wk-old autapses, antagonists of N-methyl-d-aspartate receptors (NMDARs) induced rare isolated spikes showing that the NMDA component of the EPSP was essential for bursts at low frequency. In 3- to 4-wk-old neurons, the very low frequency firing was maintained without the NMDAR activation. However EGTA-AM or alpha-methyl-4-carboxyphenylglycine (MCPG) removed the very slow depolarizing component of the EPSP and prevented the sustained firing at very low rate. A metabotropic glutamate receptor (mGluR)-activated calcium sensitive conductance is therefore responsible for a very slow synaptic component associated with firing at very low rate. In addition, our observations suggested that the asynchronous release of glutamate might participate also in the recurring bursting.
Disrupted cortical function underlies behavior dysfunction due to social isolation
Miyazaki, Tomoyuki; Takase, Kenkichi; Nakajima, Waki; Tada, Hirobumi; Ohya, Daisuke; Sano, Akane; Goto, Takahisa; Hirase, Hajime; Malinow, Roberto; Takahashi, Takuya
2012-01-01
Stressful events during early childhood can have a profound lifelong influence on emotional and cognitive behaviors. However, the mechanisms by which stress affects neonatal brain circuit formation are poorly understood. Here, we show that neonatal social isolation disrupts molecular, cellular, and circuit developmental processes, leading to behavioral dysfunction. Neonatal isolation prevented long-term potentiation and experience-dependent synaptic trafficking of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors normally occurring during circuit formation in the rodent barrel cortex. This inhibition of AMPA receptor trafficking was mediated by an increase of the stress glucocorticoid hormone and was associated with reduced calcium/calmodulin-dependent protein kinase type II (CaMKII) signaling, resulting in attenuated whisker sensitivity at the cortex. These effects led to defects in whisker-dependent behavior in juvenile animals. These results indicate that neonatal social isolation alters neuronal plasticity mechanisms and perturbs the initial establishment of a normal cortical circuit, which potentially explains the long-lasting behavioral effects of neonatal stress. PMID:22706303
Li, Dongdong; Hérault, Karine; Oheim, Martin; Ropert, Nicole
2009-01-01
The amphiphilic fluorescent styryl pyridinium dyes FM1-43 and FM4-64 are used to probe activity-dependent synaptic vesicle cycling in neurons. Cultured astrocytes can internalize FM1-43 and FM4-64 inside vesicles but their uptake is insensitive to the elevation of cytosolic calcium (Ca2+) concentration and the underlying mechanism remains unclear. Here we used total internal reflection fluorescence microscopy and pharmacological tools to study the mechanisms of FM4-64 uptake into cultured astrocytes from mouse neocortex. Our data show that: (i) endocytosis is not a major route for FM4-64 uptake into astrocytes; (ii) FM4-64 enters astrocytes through an aqueous pore and strongly affects Ca2+ homeostasis; (iii) partitioning of FM4-64 into the outer leaflet of the plasma membrane results in a facilitation of store-operated Ca2+ entry (SOCE) channel gating; (iv) FM4-64 permeates and competes with Ca2+ for entry through a SOCE channel; (v) intracellular FM4-64 mobilizes Ca2+ from the endoplasmic reticulum stores, conveying a positive feedback to activate SOCE and to sustain dye uptake into astrocytes. Our study demonstrates that FM dyes are not markers of cycling vesicles in astrocytes and calls for a careful interpretation of FM fluorescence. PMID:20007370
Calcium signal communication in the central nervous system.
Braet, Katleen; Cabooter, Liesbet; Paemeleire, Koen; Leybaert, Luc
2004-02-01
The communication of calcium signals between cells is known to be operative between neurons where these signals integrate intimately with electrical and chemical signal communication at synapses. Recently, it has become clear that glial cells also exchange calcium signals between each other in cultures and in brain slices. This communication pathway has received utmost attention since it is known that astrocytic calcium signals can be induced by neuronal stimulation and can be communicated back to the neurons to modulate synaptic transmission. In addition to this, cells that are generally not considered as brain cells become progressively incorporated in the picture, as astrocytic calcium signals are reported to be communicated to endothelial cells of the vessel wall and can affect smooth muscle cell tone to influence the vessel diameter and thus blood flow. We review the available evidence for calcium signal communication in the central nervous system, taking into account a basic functional unit -the brain cell tripartite- consisting of neurons, glial cells and vascular cells and with emphasis on glial-vascular calcium signaling aspects.
Krieger, Patrik; de Kock, Christiaan P. J.; Frick, Andreas
2017-01-01
Layer 5 (L5) is a major neocortical output layer containing L5A slender-tufted (L5A-st) and L5B thick-tufted (L5B-tt) pyramidal neurons. These neuron types differ in their in vivo firing patterns, connectivity and dendritic morphology amongst other features, reflecting their specific functional role within the neocortical circuits. Here, we asked whether the active properties of the basal dendrites that receive the great majority of synaptic inputs within L5 differ between these two pyramidal neuron classes. To quantify their active properties, we measured the efficacy with which action potential (AP) firing patterns backpropagate along the basal dendrites by measuring the accompanying calcium transients using two-photon laser scanning microscopy in rat somatosensory cortex slices. For these measurements we used both “artificial” three-AP patterns and more complex physiological AP patterns that were previously recorded in anesthetized rats in L5A-st and L5B-tt neurons in response to whisker stimulation. We show that AP patterns with relatively few APs (3APs) evoke a calcium response in L5B-tt, but not L5A-st, that is dependent on the temporal pattern of the three APs. With more complex in vivo recorded AP patterns, the average calcium response was similar in the proximal dendrites but with a decay along dendrites (measured up to 100 μm) of L5B-tt but not L5A-st neurons. Interestingly however, the whisker evoked AP patterns—although very different for the two cell types—evoke similar calcium responses. In conclusion, although the effectiveness with which different AP patterns evoke calcium transients vary between L5A-st and L5B-tt cell, the calcium influx appears to be tuned such that whisker-evoked calcium transients are within the same dynamic range for both cell types. PMID:28744201
Login, I S; Pal, S N; Adams, D T; Gold, P E
1998-01-01
Because GabaA ligands increase acetylcholine (ACh) release from adult striatal slices, we hypothesized that activation of GabaA receptors on striatal cholinergic interneurons directly stimulates ACh secretion. Fractional [3H]ACh release was recorded during perifusion of acutely dissociated, [3H]choline-labeled, adult male rat striata. The GabaA agonist, muscimol, immediately stimulated release maximally approximately 300% with EC50 = approximately 1 microM. This action was enhanced by the allosteric GabaA receptor modulators, diazepam and secobarbital, and inhibited by the GabaA antagonist, bicuculline, by ligands for D2 or muscarinic cholinergic receptors or by low calcium buffer, tetrodotoxin or vesamicol. Membrane depolarization inversely regulated muscimol-stimulated secretion. Release of endogenous and newly synthesized ACh was stimulated in parallel by muscimol without changing choline release. Muscimol pretreatment inhibited release evoked by K+ depolarization or by receptor-mediated stimulation with glutamate. Thus, GabaA receptors on adult striatal cholinergic interneurons directly stimulate voltage- and calcium-dependent exocytosis of ACh stored in vesamicol-sensitive synaptic vesicles. The action depends on the state of membrane polarization and apparently depolarizes the membrane in turn. This functional assay demonstrates that excitatory GabaA actions are not limited to neonatal tissues. GabaA-stimulated ACh release may be prevented in situ by normal tonic dopaminergic and muscarinic input to cholinergic neurons.
Independent localization of MAP2, CaMKIIα and β-actin RNAs in low copy numbers
Mikl, Martin; Vendra, Georgia; Kiebler, Michael A
2011-01-01
Messenger RNA localization involves the assembly of ribonucleoprotein particles (RNPs) and their subsequent transport along the cytoskeleton to their final destination. Here, we provide new evidence that microtubule-associated protein 2 (MAP2), calcium/calmodulin-dependent protein kinase II (CaMKIIα) and β-actin RNAs localize to dendrites in distinct RNPs, which contain—unexpectedly—very few RNA molecules. The number of MAP2 molecules per particle is affected by synaptic activity and Staufen 2, indicating that RNP composition is tightly controlled. Our data suggest that the independent localization of individual RNAs in low copy numbers could contribute to tighter temporal and spatial control of expression in neurons and synapse-specific plasticity. PMID:21869818
Fife organizes synaptic vesicles and calcium channels for high-probability neurotransmitter release
Rao, Monica; Ukken, Fiona
2017-01-01
The strength of synaptic connections varies significantly and is a key determinant of communication within neural circuits. Mechanistic insight into presynaptic factors that establish and modulate neurotransmitter release properties is crucial to understanding synapse strength, circuit function, and neural plasticity. We previously identified Drosophila Piccolo-RIM-related Fife, which regulates neurotransmission and motor behavior through an unknown mechanism. Here, we demonstrate that Fife localizes and interacts with RIM at the active zone cytomatrix to promote neurotransmitter release. Loss of Fife results in the severe disruption of active zone cytomatrix architecture and molecular organization. Through electron tomographic and electrophysiological studies, we find a decrease in the accumulation of release-ready synaptic vesicles and their release probability caused by impaired coupling to Ca2+ channels. Finally, we find that Fife is essential for the homeostatic modulation of neurotransmission. We propose that Fife organizes active zones to create synaptic vesicle release sites within nanometer distance of Ca2+ channel clusters for reliable and modifiable neurotransmitter release. PMID:27998991
A method for decoding the neurophysiological spike-response transform.
Stern, Estee; García-Crescioni, Keyla; Miller, Mark W; Peskin, Charles S; Brezina, Vladimir
2009-11-15
Many physiological responses elicited by neuronal spikes-intracellular calcium transients, synaptic potentials, muscle contractions-are built up of discrete, elementary responses to each spike. However, the spikes occur in trains of arbitrary temporal complexity, and each elementary response not only sums with previous ones, but can itself be modified by the previous history of the activity. A basic goal in system identification is to characterize the spike-response transform in terms of a small number of functions-the elementary response kernel and additional kernels or functions that describe the dependence on previous history-that will predict the response to any arbitrary spike train. Here we do this by developing further and generalizing the "synaptic decoding" approach of Sen et al. (1996). Given the spike times in a train and the observed overall response, we use least-squares minimization to construct the best estimated response and at the same time best estimates of the elementary response kernel and the other functions that characterize the spike-response transform. We avoid the need for any specific initial assumptions about these functions by using techniques of mathematical analysis and linear algebra that allow us to solve simultaneously for all of the numerical function values treated as independent parameters. The functions are such that they may be interpreted mechanistically. We examine the performance of the method as applied to synthetic data. We then use the method to decode real synaptic and muscle contraction transforms.
A method for decoding the neurophysiological spike-response transform
Stern, Estee; García-Crescioni, Keyla; Miller, Mark W.; Peskin, Charles S.; Brezina, Vladimir
2009-01-01
Many physiological responses elicited by neuronal spikes—intracellular calcium transients, synaptic potentials, muscle contractions—are built up of discrete, elementary responses to each spike. However, the spikes occur in trains of arbitrary temporal complexity, and each elementary response not only sums with previous ones, but can itself be modified by the previous history of the activity. A basic goal in system identification is to characterize the spike-response transform in terms of a small number of functions—the elementary response kernel and additional kernels or functions that describe the dependence on previous history—that will predict the response to any arbitrary spike train. Here we do this by developing further and generalizing the “synaptic decoding” approach of Sen et al. (J Neurosci 16:6307-6318, 1996). Given the spike times in a train and the observed overall response, we use least-squares minimization to construct the best estimated response and at the same time best estimates of the elementary response kernel and the other functions that characterize the spike-response transform. We avoid the need for any specific initial assumptions about these functions by using techniques of mathematical analysis and linear algebra that allow us to solve simultaneously for all of the numerical function values treated as independent parameters. The functions are such that they may be interpreted mechanistically. We examine the performance of the method as applied to synthetic data. We then use the method to decode real synaptic and muscle contraction transforms. PMID:19695289
GRASP1 regulates synaptic plasticity and learning through endosomal recycling of AMPA receptors
Chiu, Shu-Ling; Diering, Graham Hugh; Ye, Bing; Takamiya, Kogo; Chen, Chih-Ming; Jiang, Yuwu; Niranjan, Tejasvi; Schwartz, Charles E.; Wang, Tao; Huganir, Richard L.
2017-01-01
Summary Learning depends on experience-dependent modification of synaptic efficacy and neuronal connectivity in the brain. We provide direct evidence for physiological roles of the recycling endosome protein GRASP1 in glutamatergic synapse function and animal behavior. Mice lacking GRASP1 showed abnormal excitatory synapse number, synaptic plasticity and hippocampal-dependent learning and memory due to a failure in learning-induced synaptic AMPAR incorporation. We identified two GRASP1 point mutations from intellectual disability (ID) patients that showed convergent disruptive effects on AMPAR recycling and glutamate uncaging-induced structural and functional plasticity. Wild-type GRASP1, but not ID mutants, rescues spine loss in hippocampal CA1 neurons of Grasp1 knockout mice. Together, these results demonstrate a requirement for normal recycling endosome function in AMPAR-dependent synaptic function and neuronal connectivity in vivo, and suggest a potential role for GRASP1 in the pathophysiology of human cognitive disorders. PMID:28285821
The microRNA miR-1 regulates a MEF-2 dependent retrograde signal at neuromuscular junctions
Simon, David J.; Madison, Jon M.; Conery, Annie L.; Thompson-Peer, Katherine L.; Soskis, Michael; Ruvkun, Gary B.; Kaplan, Joshua M.; Kim, John K.
2008-01-01
Summary We show that miR-1, a conserved muscle specific microRNA, regulates aspects of both pre- and post-synaptic function at C. elegans neuromuscular junctions. miR-1 regulates the expression level of two nicotinic acetylcholine receptor (nAChR) subunits (UNC-29 and UNC-63), thereby altering muscle sensitivity to acetylcholine (ACh). miR-1 also regulates the muscle transcription factor MEF-2, which results in altered pre-synaptic ACh secretion, suggesting that MEF-2 activity in muscles controls a retrograde signal. The effect of the MEF-2-dependent retrograde signal on secretion is mediated by the synaptic vesicle protein RAB-3. Finally, acute activation of levamisole-sensitive nAChRs stimulates MEF-2-dependent transcriptional responses, and induces the MEF-2-dependent retrograde signal. We propose that miR-1 refines synaptic function by coupling changes in muscle activity to changes in pre-synaptic function. PMID:18510933
Roux, Isabelle; Wu, Jingjing Sherry; McIntosh, J Michael; Glowatzki, Elisabeth
2016-08-01
Hair cell (HC) activity in the mammalian cochlea is modulated by cholinergic efferent inputs from the brainstem. These inhibitory inputs are mediated by calcium-permeable nicotinic acetylcholine receptors (nAChRs) containing α9- and α10-subunits and by subsequent activation of calcium-dependent potassium channels. Intriguingly, mRNAs of α1- and γ-nAChRs, subunits of the "muscle-type" nAChR have also been found in developing HCs (Cai T, Jen HI, Kang H, Klisch TJ, Zoghbi HY, Groves AK. J Neurosci 35: 5870-5883, 2015; Scheffer D, Sage C, Plazas PV, Huang M, Wedemeyer C, Zhang DS, Chen ZY, Elgoyhen AB, Corey DP, Pingault V. J Neurochem 103: 2651-2664, 2007; Sinkkonen ST, Chai R, Jan TA, Hartman BH, Laske RD, Gahlen F, Sinkkonen W, Cheng AG, Oshima K, Heller S. Sci Rep 1: 26, 2011) prompting proposals that another type of nAChR is present and may be critical during early synaptic development. Mouse genetics, histochemistry, pharmacology, and whole cell recording approaches were combined to test the role of α1-nAChR subunit in HC efferent synapse formation and cholinergic function. The onset of α1-mRNA expression in mouse HCs was found to coincide with the onset of the ACh response and efferent synaptic function. However, in mouse inner hair cells (IHCs) no response to the muscle-type nAChR agonists (±)-anatoxin A, (±)-epibatidine, (-)-nicotine, or 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP) was detected, arguing against the presence of an independent functional α1-containing muscle-type nAChR in IHCs. In α1-deficient mice, no obvious change of IHC efferent innervation was detected at embryonic day 18, contrary to the hyperinnervation observed at the neuromuscular junction. Additionally, ACh response and efferent synaptic activity were detectable in α1-deficient IHCs, suggesting that α1 is not necessary for assembly and membrane targeting of nAChRs or for efferent synapse formation in IHCs.
Wu (武靜靜), Jingjing Sherry; McIntosh, J. Michael; Glowatzki, Elisabeth
2016-01-01
Hair cell (HC) activity in the mammalian cochlea is modulated by cholinergic efferent inputs from the brainstem. These inhibitory inputs are mediated by calcium-permeable nicotinic acetylcholine receptors (nAChRs) containing α9- and α10-subunits and by subsequent activation of calcium-dependent potassium channels. Intriguingly, mRNAs of α1- and γ-nAChRs, subunits of the “muscle-type” nAChR have also been found in developing HCs (Cai T, Jen HI, Kang H, Klisch TJ, Zoghbi HY, Groves AK. J Neurosci 35: 5870–5883, 2015; Scheffer D, Sage C, Plazas PV, Huang M, Wedemeyer C, Zhang DS, Chen ZY, Elgoyhen AB, Corey DP, Pingault V. J Neurochem 103: 2651–2664, 2007; Sinkkonen ST, Chai R, Jan TA, Hartman BH, Laske RD, Gahlen F, Sinkkonen W, Cheng AG, Oshima K, Heller S. Sci Rep 1: 26, 2011) prompting proposals that another type of nAChR is present and may be critical during early synaptic development. Mouse genetics, histochemistry, pharmacology, and whole cell recording approaches were combined to test the role of α1-nAChR subunit in HC efferent synapse formation and cholinergic function. The onset of α1-mRNA expression in mouse HCs was found to coincide with the onset of the ACh response and efferent synaptic function. However, in mouse inner hair cells (IHCs) no response to the muscle-type nAChR agonists (±)-anatoxin A, (±)-epibatidine, (−)-nicotine, or 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP) was detected, arguing against the presence of an independent functional α1-containing muscle-type nAChR in IHCs. In α1-deficient mice, no obvious change of IHC efferent innervation was detected at embryonic day 18, contrary to the hyperinnervation observed at the neuromuscular junction. Additionally, ACh response and efferent synaptic activity were detectable in α1-deficient IHCs, suggesting that α1 is not necessary for assembly and membrane targeting of nAChRs or for efferent synapse formation in IHCs. PMID:27098031
Xu, Minfu; Chandler, L. Judson; Woodward, John J.
2008-01-01
Previous studies have shown that the N-methyl-D-aspartate (NMDA) receptor is an important target for the actions of ethanol in the brain. NMDA receptors are glutamate-activated ion channels that are highly expressed in neurons. They are activated during periods of significant glutamatergic synaptic activity and are an important source of the signaling molecule calcium in the post-synaptic spine. Alterations in the function of NMDA receptors by drugs or disease are associated with deficits in motor, sensory and cognitive processes of the brain. Acutely, ethanol inhibits ion flow through NMDA receptors while sustained exposure to ethanol can induce compensatory changes in the density and localization of the receptor. Defining factors that govern the acute ethanol sensitivity of NMDA receptors is an important step in how an individual responds to ethanol. In the present study, we investigated the effect of calcium-calmodulin dependent protein kinase II (CaMKII) on the ethanol sensitivity of recombinant NMDA receptors. CaMKII is a major constituent of the post-synaptic density and is critically involved in various forms of learning and memory. NMDA receptor subunits were transiently expressed in human embryonic kidney 293 cells (HEK 293) along with CaMKII-α or CaMKII-β tagged with the green fluorescent protein (GFP). Whole cell currents were elicited by brief exposures to glutamate and were measured using patchclamp electrophysiology. Neither CaMKII-α or CaMKII-β had any significant effect on the ethanol inhibition of NR1/2A or NR1/2B receptors. Ethanol inhibition was also unaltered by deletion of CaMKII binding domains in NR1 or NR2 subunits or by phospho-site mutants that mimic or occlude CaMKII phosphorylation. Chronic treatment of cortical neurons with ethanol had no significant effect on the expression of CaMKII-α or CaMKII-β. The results of this study suggest that CaMKII is not involved in regulating the acute ethanol sensitivity of NMDA receptors. PMID:18562151
Chia, Poh Hui; Zhong, Franklin Lei; Niwa, Shinsuke; Bonnard, Carine; Utami, Kagistia Hana; Zeng, Ruizhu; Lee, Hane; Eskin, Ascia; Nelson, Stanley F; Xie, William H; Al-Tawalbeh, Samah; El-Khateeb, Mohammad; Shboul, Mohammad; Pouladi, Mahmoud A; Al-Raqad, Mohammed; Reversade, Bruno
2018-05-22
Calcium/calmodulin-dependent protein kinase II (CAMK2) plays fundamental roles in synaptic plasticity that underlies learning and memory. Here, we describe a new recessive neurodevelopmental syndrome with global developmental delay, seizures and intellectual disability. Using linkage analysis and exome sequencing, we found that this disease maps to chromosome 5q31.1-q34 and is caused by a biallelic germline mutation in CAMK2A . The missense mutation, p.His477Tyr is located in the CAMK2A association domain that is critical for its function and localization. Biochemically, the p.His477Tyr mutant is defective in self-oligomerization and unable to assemble into the multimeric holoenzyme. In vivo , CAMK2A H477Y failed to rescue neuronal defects in C. elegans lacking unc-43 , the ortholog of human CAMK2A. In vitro , neurons derived from patient iPSCs displayed profound synaptic defects. Together, our data demonstrate that a recessive germline mutation in CAMK2A leads to neurodevelopmental defects in humans and suggest that dysfunctional CAMK2 paralogs may contribute to other neurological disorders. © 2018, Chia et al.
Nicotinic modulation of hippocampal cell signaling and associated effects on learning and memory.
Kutlu, Munir Gunes; Gould, Thomas J
2016-03-01
The hippocampus is a key brain structure involved in synaptic plasticity associated with long-term declarative memory formation. Importantly, nicotine and activation of nicotinic acetylcholine receptors (nAChRs) can alter hippocampal plasticity and these changes may occur through modulation of hippocampal kinases and transcription factors. Hippocampal kinases such as cAMP-dependent protein kinase (PKA), calcium/calmodulin-dependent protein kinases (CAMKs), extracellular signal-regulated kinases 1 and 2 (ERK1/2), and c-jun N-terminal kinase 1 (JNK1), and the transcription factor cAMP-response element-binding protein (CREB) that are activated either directly or indirectly by nicotine may modulate hippocampal plasticity and in parallel hippocampus-dependent learning and memory. Evidence suggests that nicotine may alter hippocampus-dependent learning by changing the time and magnitude of activation of kinases and transcription factors normally involved in learning and by recruiting additional cell signaling molecules. Understanding how nicotine alters learning and memory will advance basic understanding of the neural substrates of learning and aid in understanding mental disorders that involve cognitive and learning deficits. Copyright © 2015 Elsevier Inc. All rights reserved.
Köhr, G; Heinemann, U
1989-01-01
The anticonvulsant properties of ketamine and 2-APV were compared on 3 types of convulsant activity in hippocampal area CA1: the 'picrotoxin-epilepsy,' the 'low magnesium epilepsy' and the 'low calcium epilepsy.' In particular the spontaneous activity, the synaptically evoked responses and the changes in [Ca2+]0 were examined, since in many cases of epilepsy, Ca2+ uptake into cells is enhanced. In normal medium, ketamine and 2-APV have nearly no effect on stimulus evoked decreases in [Ca2+]0, although they clearly depress NMDA-induced ionic changes. However, ketamine and 2-APV prevent to some extent the augmentation of stimulus-induced changes in [Ca2+]0, observed after treating slices with picrotoxin or Mg2+-free medium. This extra Ca2+ uptake is probably mediated by NMDA operated channels. Our findings also show that ketamine, like 2-APV, has a stronger anticonvulsant effect on the low Mg-than on the picrotoxin-induced epileptiform activity. Responses to iontophoretically applied NMDA are facilitated in the 'low calcium epilepsy' and can be selectively blocked by ketamine. Spontaneous epileptiform activity occurring in low calcium can be blocked by ketamine only when some synaptic transmission is still present.
Contribution of synchronized GABAergic neurons to dopaminergic neuron firing and bursting.
Morozova, Ekaterina O; Myroshnychenko, Maxym; Zakharov, Denis; di Volo, Matteo; Gutkin, Boris; Lapish, Christopher C; Kuznetsov, Alexey
2016-10-01
In the ventral tegmental area (VTA), interactions between dopamine (DA) and γ-aminobutyric acid (GABA) neurons are critical for regulating DA neuron activity and thus DA efflux. To provide a mechanistic explanation of how GABA neurons influence DA neuron firing, we developed a circuit model of the VTA. The model is based on feed-forward inhibition and recreates canonical features of the VTA neurons. Simulations revealed that γ-aminobutyric acid (GABA) receptor (GABAR) stimulation can differentially influence the firing pattern of the DA neuron, depending on the level of synchronization among GABA neurons. Asynchronous activity of GABA neurons provides a constant level of inhibition to the DA neuron and, when removed, produces a classical disinhibition burst. In contrast, when GABA neurons are synchronized by common synaptic input, their influence evokes additional spikes in the DA neuron, resulting in increased measures of firing and bursting. Distinct from previous mechanisms, the increases were not based on lowered firing rate of the GABA neurons or weaker hyperpolarization by the GABAR synaptic current. This phenomenon was induced by GABA-mediated hyperpolarization of the DA neuron that leads to decreases in intracellular calcium (Ca 2+ ) concentration, thus reducing the Ca 2+ -dependent potassium (K + ) current. In this way, the GABA-mediated hyperpolarization replaces Ca 2+ -dependent K + current; however, this inhibition is pulsatile, which allows the DA neuron to fire during the rhythmic pauses in inhibition. Our results emphasize the importance of inhibition in the VTA, which has been discussed in many studies, and suggest a novel mechanism whereby computations can occur locally. Copyright © 2016 the American Physiological Society.
Contribution of synchronized GABAergic neurons to dopaminergic neuron firing and bursting
Myroshnychenko, Maxym; Zakharov, Denis; di Volo, Matteo; Gutkin, Boris; Lapish, Christopher C.; Kuznetsov, Alexey
2016-01-01
In the ventral tegmental area (VTA), interactions between dopamine (DA) and γ-aminobutyric acid (GABA) neurons are critical for regulating DA neuron activity and thus DA efflux. To provide a mechanistic explanation of how GABA neurons influence DA neuron firing, we developed a circuit model of the VTA. The model is based on feed-forward inhibition and recreates canonical features of the VTA neurons. Simulations revealed that γ-aminobutyric acid (GABA) receptor (GABAR) stimulation can differentially influence the firing pattern of the DA neuron, depending on the level of synchronization among GABA neurons. Asynchronous activity of GABA neurons provides a constant level of inhibition to the DA neuron and, when removed, produces a classical disinhibition burst. In contrast, when GABA neurons are synchronized by common synaptic input, their influence evokes additional spikes in the DA neuron, resulting in increased measures of firing and bursting. Distinct from previous mechanisms, the increases were not based on lowered firing rate of the GABA neurons or weaker hyperpolarization by the GABAR synaptic current. This phenomenon was induced by GABA-mediated hyperpolarization of the DA neuron that leads to decreases in intracellular calcium (Ca2+) concentration, thus reducing the Ca2+-dependent potassium (K+) current. In this way, the GABA-mediated hyperpolarization replaces Ca2+-dependent K+ current; however, this inhibition is pulsatile, which allows the DA neuron to fire during the rhythmic pauses in inhibition. Our results emphasize the importance of inhibition in the VTA, which has been discussed in many studies, and suggest a novel mechanism whereby computations can occur locally. PMID:27440240
Calcium currents and graded synaptic transmission between heart interneurons of the leech.
Angstadt, J D; Calabrese, R L
1991-03-01
Synaptic transmission between reciprocally inhibitory heart interneurons (HN cells) of the medicinal leech was examined in the absence of Na-mediated action potentials. Under voltage clamp, depolarizing steps from a holding potential of -60 mV elicited 2 kinetically distinct components of inward current in the presynaptic HN cell: an early transient current that inactivates within 200 msec and a persistent current that only partially decays over several seconds. Both currents begin to activate near -60 mV. Steady-state inactivation occurs over the voltage range between -70 and -45 mV and is completely removed by 1-2-sec hyperpolarizing voltage steps to -80 mV. The inward currents are carried by Ca2+, Ba2+, or Sr2+ ions, but not by Co2+, Mn2+, or Ni2+. These same inward currents underlie the burst-generating plateau potentials previously described in HN cells (Arbas and Calabrese, 1987a,b). With a presynaptic holding potential of -60 mV, the threshold for transmitter release is near -45 mV. Postsynaptic currents in the contralateral HN cell have a reversal potential near -60 mV. The largest postsynaptic currents (300-400 pA) exhibit an initial peak response that is followed by a more slowly decaying component. The persistent component of Ca2+ current in the presynaptic neuron is strongly correlated with the prolonged component of the postsynaptic current, while the transient presynaptic Ca2+ current appears to correspond to the early peak of postsynaptic current. These data are consistent with the hypothesis that voltage-dependent calcium currents contribute to the oscillatory capability of reciprocally inhibitory HN cells by (1) generating the plateau potential that drives the burst of action potentials and (2) underlying the release of inhibitory transmitter onto the contralateral cell.
Blackmer, Trillium; Kuo, Sidney P; Bender, Kevin J; Apostolides, Pierre F; Trussell, Laurence O
2009-08-01
The avian nucleus laminaris (NL) encodes the azimuthal location of low-frequency sound sources by detecting the coincidence of binaural signals. Accurate coincidence detection requires precise developmental regulation of the lengths of the fine, bitufted dendrites that characterize neurons in NL. Such regulation has been suggested to be driven by local, synaptically mediated, dendritic signals such as Ca(2+). We examined Ca(2+) signaling through patch clamp and ion imaging experiments in slices containing nucleus laminaris from embryonic chicks. Voltage-clamp recordings of neurons located in the NL showed the presence of large Ca(2+) currents of two types, a low voltage-activated, fast inactivating Ni(2+) sensitive channel resembling mammalian T-type channels, and a high voltage-activated, slowly inactivating Cd(2+) sensitive channel. Two-photon Ca(2+) imaging showed that both channel types were concentrated on dendrites, even at their distal tips. Single action potentials triggered synaptically or by somatic current injection immediately elevated Ca(2+) throughout the entire cell. Ca(2+) signals triggered by subthreshold synaptic activity were highly localized. Thus when electrical activity is suprathreshold, Ca(2+) channels ensure that Ca(2+) rises in all dendrites, even those that are synaptically inactive.
A family of photoswitchable NMDA receptors
Berlin, Shai; Szobota, Stephanie; Reiner, Andreas; Carroll, Elizabeth C; Kienzler, Michael A; Guyon, Alice; Xiao, Tong; Trauner, Dirk; Isacoff, Ehud Y
2016-01-01
NMDA receptors, which regulate synaptic strength and are implicated in learning and memory, consist of several subtypes with distinct subunit compositions and functional properties. To enable spatiotemporally defined, rapid and reproducible manipulation of function of specific subtypes, we engineered a set of photoswitchable GluN subunits ('LiGluNs'). Photo-agonism of GluN2A or GluN2B elicits an excitatory drive to hippocampal neurons that can be shaped in time to mimic synaptic activation. Photo-agonism of GluN2A at single dendritic spines evokes spine-specific calcium elevation and expansion, the morphological correlate of LTP. Photo-antagonism of GluN2A alone, or in combination with photo-antagonism of GluN1a, reversibly blocks excitatory synaptic currents, prevents the induction of long-term potentiation and prevents spine expansion. In addition, photo-antagonism in vivo disrupts synaptic pruning of developing retino-tectal projections in larval zebrafish. By providing precise and rapidly reversible optical control of NMDA receptor subtypes, LiGluNs should help unravel the contribution of specific NMDA receptors to synaptic transmission, integration and plasticity. DOI: http://dx.doi.org/10.7554/eLife.12040.001 PMID:26929991
Sanganahalli, Basavaraju G.; Rebello, Michelle R.; Herman, Peter; Papademetris, Xenophon; Shepherd, Gordon M.; Verhagen, Justus V.; Hyder, Fahmeed
2015-01-01
Functional imaging signals arise from distinct metabolic and hemodynamic events at the neuropil, but how these processes are influenced by pre- and post-synaptic activities need to be understood for quantitative interpretation of stimulus-evoked mapping data. The olfactory bulb (OB) glomeruli, spherical neuropil regions with well-defined neuronal circuitry, can provide insights into this issue. Optical calcium-sensitive fluorescent dye imaging (OICa2+) reflects dynamics of pre-synaptic input to glomeruli, whereas high-resolution functional magnetic resonance imaging (fMRI) using deoxyhemoglobin contrast reveals neuropil function within the glomerular layer where both pre- and post-synaptic activities contribute. We imaged odor-specific activity patterns of the dorsal OB in the same anesthetized rats with fMRI and OICa2+ and then co-registered the respective maps to compare patterns in the same space. Maps by each modality were very reproducible as trial-to-trial patterns for a given odor, overlapping by ~80%. Maps evoked by ethyl butyrate and methyl valerate for a given modality overlapped by ~80%, suggesting activation of similar dorsal glomerular networks by these odors. Comparison of maps generated by both methods for a given odor showed ~70% overlap, indicating similar odor-specific maps by each method. These results suggest that odor-specific glomerular patterns by high-resolution fMRI primarily tracks pre-synaptic input to the OB. Thus combining OICa2+ and fMRI lays the framework for studies of OB processing over a range of spatiotemporal scales, where OICa2+ can feature the fast dynamics of dorsal glomerular clusters and fMRI can map the entire glomerular sheet in the OB. PMID:26631819
Ahmad, Faraz; Singh, Kunal; Das, Debajyoti; Gowaikar, Ruturaj; Shaw, Eisha; Ramachandran, Arathy; Rupanagudi, Khader Valli; Kommaddi, Reddy Peera; Bennett, David A; Ravindranath, Vijayalakshmi
2017-12-01
Synaptic deficits are known to underlie the cognitive dysfunction seen in Alzheimer's disease (AD). Generation of reactive oxygen species (ROS) by β-amyloid has also been implicated in AD pathogenesis. However, it is unclear whether ROS contributes to synaptic dysfunction seen in AD pathogenesis and, therefore, we examined whether altered redox signaling could contribute to synaptic deficits in AD. Activity dependent but not basal translation was impaired in synaptoneurosomes from 1-month old presymptomatic APP Swe /PS1ΔE9 (APP/PS1) mice, and this deficit was sustained till middle age (MA, 9-10 months). ROS generation leads to oxidative modification of Akt1 in the synapse and consequent reduction in Akt1-mechanistic target of rapamycin (mTOR) signaling, leading to deficiency in activity-dependent protein translation. Moreover, we found a similar loss of activity-dependent protein translation in synaptoneurosomes from postmortem AD brains. Loss of activity-dependent protein translation occurs presymptomatically early in the pathogenesis of AD. This is caused by ROS-mediated loss of pAkt1, leading to reduced synaptic Akt1-mTOR signaling and is rescued by overexpression of Akt1. ROS-mediated damage is restricted to the synaptosomes, indicating selectivity. We demonstrate that ROS-mediated oxidative modification of Akt1 contributes to synaptic dysfunction in AD, seen as loss of activity-dependent protein translation that is essential for synaptic plasticity and maintenance. Therapeutic strategies promoting Akt1-mTOR signaling at synapses may provide novel target(s) for disease-modifying therapy in AD. Antioxid. Redox Signal. 27, 1269-1280.
Spike Train Auto-Structure Impacts Post-Synaptic Firing and Timing-Based Plasticity
Scheller, Bertram; Castellano, Marta; Vicente, Raul; Pipa, Gordon
2011-01-01
Cortical neurons are typically driven by several thousand synapses. The precise spatiotemporal pattern formed by these inputs can modulate the response of a post-synaptic cell. In this work, we explore how the temporal structure of pre-synaptic inhibitory and excitatory inputs impact the post-synaptic firing of a conductance-based integrate and fire neuron. Both the excitatory and inhibitory input was modeled by renewal gamma processes with varying shape factors for modeling regular and temporally random Poisson activity. We demonstrate that the temporal structure of mutually independent inputs affects the post-synaptic firing, while the strength of the effect depends on the firing rates of both the excitatory and inhibitory inputs. In a second step, we explore the effect of temporal structure of mutually independent inputs on a simple version of Hebbian learning, i.e., hard bound spike-timing-dependent plasticity. We explore both the equilibrium weight distribution and the speed of the transient weight dynamics for different mutually independent gamma processes. We find that both the equilibrium distribution of the synaptic weights and the speed of synaptic changes are modulated by the temporal structure of the input. Finally, we highlight that the sensitivity of both the post-synaptic firing as well as the spike-timing-dependent plasticity on the auto-structure of the input of a neuron could be used to modulate the learning rate of synaptic modification. PMID:22203800
Glycine Receptor Activation Impairs ATP-Induced Calcium Transients in Cultured Cortical Astrocytes
Morais, Tatiana P.; Coelho, David; Vaz, Sandra H.; Sebastião, Ana M.; Valente, Cláudia A.
2018-01-01
In central nervous system, glycine receptor (GlyR) is mostly expressed in the spinal cord and brainstem, but glycinergic transmission related elements have also been identified in the brain. Astrocytes are active elements at the tripartite synapse, being responsible for the maintenance of brain homeostasis and for the fine-tuning of synaptic activity. These cells communicate, spontaneously or in response to a stimulus, by elevations in their cytosolic calcium (calcium transients, Ca2+T) that can be propagated to other cells. How these Ca2+T are negatively modulated is yet poorly understood. In this work, we evaluated GlyR expression and its role on calcium signaling modulation in rat brain astrocytes. We first proved that GlyR, predominantly subunits α2 and β, was expressed in brain astrocytes and its localization was confirmed in the cytoplasm and astrocytic processes by immunohistochemistry assays. Calcium imaging experiments in cultured astrocytes showed that glycine (500 μM), a GlyR agonist, caused a concentration-dependent reduction in ATP-induced Ca2+T, an effect abolished by the GlyR antagonist, strychnine (0.8 μM), as well as by nocodazole (1 μM), known to impair GlyR anchorage to the plasma membrane. This effect was mimicked by activation of GABAAR, another Cl--permeable channel. In summary, we demonstrated that GlyR activation in astrocytes mediates an inhibitory effect upon ATP induced Ca2+T, which most probably involves changes in membrane permeability to Cl- and requires GlyR anchorage at the plasma membrane. GlyR in astrocytes may thus be part of a mechanism to modulate astrocyte-to-neuron communication. PMID:29386993
Combining microfluidics, optogenetics and calcium imaging to study neuronal communication in vitro.
Renault, Renaud; Sukenik, Nirit; Descroix, Stéphanie; Malaquin, Laurent; Viovy, Jean-Louis; Peyrin, Jean-Michel; Bottani, Samuel; Monceau, Pascal; Moses, Elisha; Vignes, Maéva
2015-01-01
In this paper we report the combination of microfluidics, optogenetics and calcium imaging as a cheap and convenient platform to study synaptic communication between neuronal populations in vitro. We first show that Calcium Orange indicator is compatible in vitro with a commonly used Channelrhodopsine-2 (ChR2) variant, as standard calcium imaging conditions did not alter significantly the activity of transduced cultures of rodent primary neurons. A fast, robust and scalable process for micro-chip fabrication was developed in parallel to build micro-compartmented cultures. Coupling optical fibers to each micro-compartment allowed for the independent control of ChR2 activation in the different populations without crosstalk. By analyzing the post-stimuli activity across the different populations, we finally show how this platform can be used to evaluate quantitatively the effective connectivity between connected neuronal populations.
Schreck, Mary; Petralia, Ronald S.; Wang, Ya-Xian; Zhang, Qiuxiang
2017-01-01
In sensory hair cells of auditory and vestibular organs, the ribbon synapse is required for the precise encoding of a wide range of complex stimuli. Hair cells have a unique presynaptic structure, the synaptic ribbon, which organizes both synaptic vesicles and calcium channels at the active zone. Previous work has shown that hair-cell ribbon size is correlated with differences in postsynaptic activity. However, additional variability in postsynapse size presents a challenge to determining the specific role of ribbon size in sensory encoding. To selectively assess the impact of ribbon size on synapse function, we examined hair cells in transgenic zebrafish that have enlarged ribbons, without postsynaptic alterations. Morphologically, we found that enlarged ribbons had more associated vesicles and reduced presynaptic calcium-channel clustering. Functionally, hair cells with enlarged ribbons had larger global and ribbon-localized calcium currents. Afferent neuron recordings revealed that hair cells with enlarged ribbons resulted in reduced spontaneous spike rates. Additionally, despite larger presynaptic calcium signals, we observed fewer evoked spikes with longer latencies from stimulus onset. Together, our work indicates that hair-cell ribbon size influences the spontaneous spiking and the precise encoding of stimulus onset in afferent neurons. SIGNIFICANCE STATEMENT Numerous studies support that hair-cell ribbon size corresponds with functional sensitivity differences in afferent neurons and, in the case of inner hair cells of the cochlea, vulnerability to damage from noise trauma. Yet it is unclear whether ribbon size directly influences sensory encoding. Our study reveals that ribbon enlargement results in increased ribbon-localized calcium signals, yet reduces afferent spontaneous activity and disrupts the timing of stimulus onset, a distinct aspect of auditory and vestibular encoding. These observations suggest that varying ribbon size alone can influence sensory encoding, and give further insight into how hair cells transduce signals that cover a wide dynamic range of stimuli. PMID:28546313
Roles of somatic A-type K(+) channels in the synaptic plasticity of hippocampal neurons.
Yang, Yoon-Sil; Kim, Kyeong-Deok; Eun, Su-Yong; Jung, Sung-Cherl
2014-06-01
In the mammalian brain, information encoding and storage have been explained by revealing the cellular and molecular mechanisms of synaptic plasticity at various levels in the central nervous system, including the hippocampus and the cerebral cortices. The modulatory mechanisms of synaptic excitability that are correlated with neuronal tasks are fundamental factors for synaptic plasticity, and they are dependent on intracellular Ca(2+)-mediated signaling. In the present review, the A-type K(+) (IA) channel, one of the voltage-dependent cation channels, is considered as a key player in the modulation of Ca(2+) influx through synaptic NMDA receptors and their correlated signaling pathways. The cellular functions of IA channels indicate that they possibly play as integral parts of synaptic and somatic complexes, completing the initiation and stabilization of memory.
Pedretti, G; Milo, V; Ambrogio, S; Carboni, R; Bianchi, S; Calderoni, A; Ramaswamy, N; Spinelli, A S; Ielmini, D
2017-07-13
Brain-inspired computation can revolutionize information technology by introducing machines capable of recognizing patterns (images, speech, video) and interacting with the external world in a cognitive, humanlike way. Achieving this goal requires first to gain a detailed understanding of the brain operation, and second to identify a scalable microelectronic technology capable of reproducing some of the inherent functions of the human brain, such as the high synaptic connectivity (~10 4 ) and the peculiar time-dependent synaptic plasticity. Here we demonstrate unsupervised learning and tracking in a spiking neural network with memristive synapses, where synaptic weights are updated via brain-inspired spike timing dependent plasticity (STDP). The synaptic conductance is updated by the local time-dependent superposition of pre- and post-synaptic spikes within a hybrid one-transistor/one-resistor (1T1R) memristive synapse. Only 2 synaptic states, namely the low resistance state (LRS) and the high resistance state (HRS), are sufficient to learn and recognize patterns. Unsupervised learning of a static pattern and tracking of a dynamic pattern of up to 4 × 4 pixels are demonstrated, paving the way for intelligent hardware technology with up-scaled memristive neural networks.
NASA Astrophysics Data System (ADS)
Yan, Xiaodong; Tian, He; Xie, Yujun; Kostelec, Andrew; Zhao, Huan; Cha, Judy J.; Tice, Jesse; Wang, Han
Modulatory input-dependent plasticity is a well-known type of hetero-synaptic response where the release of neuromodulators can alter the efficacy of neurotransmission in a nearby chemical synapse. Solid-state devices that can mimic such phenomenon are desirable for enhancing the functionality and reconfigurability of neuromorphic electronics. In this work, we demonstrated a tunable artificial synaptic device concept based on the properties of graphene and tin oxide that can mimic the modulatory input-dependent plasticity. By using graphene as the contact electrode, a third electrode terminal can be used to modulate the conductive filament formation in the vertical tin oxide based resistive memory device. The resulting synaptic characteristics of this device, in terms of the profile of synaptic weight change and the spike-timing-dependent-plasticity, is tunable with the bias at the modulating terminal. Furthermore, the synaptic response can be reconfigured between excitatory and inhibitory modes by this modulating bias. The operation mechanism of the device is studied with combined experimental and theoretical analysis. The device is attractive for application in neuromorphic electronics. This work is supported by ARO and NG-ION2 at USC.
Lyons, Lisa C; Gardner, Jacob S; Lentsch, Cassidy T; Gandour, Catherine E; Krishnan, Harini C; Noakes, Eric J
2017-01-01
In addition to protein synthesis, protein degradation or protein cleavage may be necessary for intermediate (ITM) and long-term memory (LTM) to remove molecular constraints, facilitate persistent kinase activity and modulate synaptic plasticity. Calpains, a family of conserved calcium dependent cysteine proteases, modulate synaptic function through protein cleavage. We used the marine mollusk Aplysia californica to investigate the in vivo role of calpains during intermediate and long-term operant memory formation using the learning that food is inedible (LFI) paradigm. A single LFI training session, in which the animal associates a specific netted seaweed with the failure to swallow, generates short (30min), intermediate (4-6h) and long-term (24h) memory. Using the calpain inhibitors calpeptin and MDL-28170, we found that ITM requires calpain activity for induction and consolidation similar to the previously reported requirements for persistent protein kinase C activity in intermediate-term LFI memory. The induction of LTM also required calpain activity. In contrast to ITM, calpain activity was not necessary for the molecular consolidation of LTM. Surprisingly, six hours after LFI training we found that calpain activity was necessary for LTM, although this is a time at which neither persistent PKC activity nor protein synthesis is required for the maintenance of long-term LFI memory. These results demonstrate that calpains function in multiple roles in vivo during associative memory formation. Copyright © 2016 Elsevier Inc. All rights reserved.
Activity Induces Fmr1-Sensitive Synaptic Capture of Anterograde Circulating Neuropeptide Vesicles
Cavolo, Samantha L.; Bulgari, Dinara; Deitcher, David L.
2016-01-01
Synaptic neuropeptide and neurotrophin stores are maintained by constitutive bidirectional capture of dense-core vesicles (DCVs) as they circulate in and out of the nerve terminal. Activity increases DCV capture to rapidly replenish synaptic neuropeptide stores following release. However, it is not known whether this is due to enhanced bidirectional capture. Here experiments at the Drosophila neuromuscular junction, where DCVs contain neuropeptides and a bone morphogenic protein, show that activity-dependent replenishment of synaptic neuropeptides following release is evident after inhibiting the retrograde transport with the dynactin disruptor mycalolide B or photobleaching DCVs entering a synaptic bouton by retrograde transport. In contrast, photobleaching anterograde transport vesicles entering a bouton inhibits neuropeptide replenishment after activity. Furthermore, tracking of individual DCVs moving through boutons shows that activity selectively increases capture of DCVs undergoing anterograde transport. Finally, upregulating fragile X mental retardation 1 protein (Fmr1, also called FMRP) acts independently of futsch/MAP-1B to abolish activity-dependent, but not constitutive, capture. Fmr1 also reduces presynaptic neuropeptide stores without affecting activity-independent delivery and evoked release. Therefore, presynaptic motoneuron neuropeptide storage is increased by a vesicle capture mechanism that is distinguished from constitutive bidirectional capture by activity dependence, anterograde selectivity, and Fmr1 sensitivity. These results show that activity recruits a separate mechanism than used at rest to stimulate additional synaptic capture of DCVs for future release of neuropeptides and neurotrophins. SIGNIFICANCE STATEMENT Synaptic release of neuropeptides and neurotrophins depends on presynaptic accumulation of dense-core vesicles (DCVs). At rest, DCVs are captured bidirectionally as they circulate through Drosophila motoneuron terminals by anterograde and retrograde transport. Here we show that activity stimulates further synaptic capture that is distinguished from basal capture by its selectivity for anterograde DCVs and its inhibition by overexpression of the fragile X retardation protein Fmr1. Fmr1 dramatically lowers DCV numbers in synaptic boutons. Therefore, activity-dependent anterograde capture is a major determinant of presynaptic peptide stores. PMID:27852784
Schwarz, Karin; Schmitz, Frank
2017-03-20
Synaptic ribbons are needed for fast and continuous exocytosis in ribbon synapses. RIBEYE is a main protein component of synaptic ribbons and is necessary to build the synaptic ribbon. RIBEYE consists of a unique A-domain and a carboxyterminal B-domain, which binds NAD(H). Within the presynaptic terminal, the synaptic ribbons are in physical contact with large numbers of synaptic vesicle (SV)s. How this physical contact between ribbons and synaptic vesicles is established at a molecular level is not well understood. In the present study, we demonstrate that the RIBEYE(B)-domain can directly interact with lipid components of SVs using two different sedimentation assays with liposomes of defined chemical composition. Similar binding results were obtained with a SV-containing membrane fraction. The binding of liposomes to RIBEYE(B) depends upon the presence of a small amount of lysophospholipids present in the liposomes. Interestingly, binding of liposomes to RIBEYE(B) depends on NAD(H) in a redox-sensitive manner. The binding is enhanced by NADH, the reduced form, and is inhibited by NAD + , the oxidized form. Lipid-mediated attachment of vesicles is probably part of a multi-step process that also involves additional, protein-dependent processes. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.
Cdk5-dependent phosphorylation of liprinα1 mediates neuronal activity-dependent synapse development
Huang, Huiqian; Lin, Xiaochen; Liang, Zhuoyi; Zhao, Teng; Du, Shengwang; Loy, Michael M. T.; Lai, Kwok-On; Fu, Amy K. Y.
2017-01-01
The experience-dependent modulation of brain circuitry depends on dynamic changes in synaptic connections that are guided by neuronal activity. In particular, postsynaptic maturation requires changes in dendritic spine morphology, the targeting of postsynaptic proteins, and the insertion of synaptic neurotransmitter receptors. Thus, it is critical to understand how neuronal activity controls postsynaptic maturation. Here we report that the scaffold protein liprinα1 and its phosphorylation by cyclin-dependent kinase 5 (Cdk5) are critical for the maturation of excitatory synapses through regulation of the synaptic localization of the major postsynaptic organizer postsynaptic density (PSD)-95. Whereas Cdk5 phosphorylates liprinα1 at Thr701, this phosphorylation decreases in neurons in response to neuronal activity. Blockade of liprinα1 phosphorylation enhances the structural and functional maturation of excitatory synapses. Nanoscale superresolution imaging reveals that inhibition of liprinα1 phosphorylation increases the colocalization of liprinα1 with PSD-95. Furthermore, disruption of liprinα1 phosphorylation by a small interfering peptide, siLIP, promotes the synaptic localization of PSD-95 and enhances synaptic strength in vivo. Our findings collectively demonstrate that the Cdk5-dependent phosphorylation of liprinα1 is important for the postsynaptic organization during activity-dependent synapse development. PMID:28760951
Wang, Runchun M.; Hamilton, Tara J.; Tapson, Jonathan C.; van Schaik, André
2015-01-01
We present a neuromorphic implementation of multiple synaptic plasticity learning rules, which include both Spike Timing Dependent Plasticity (STDP) and Spike Timing Dependent Delay Plasticity (STDDP). We present a fully digital implementation as well as a mixed-signal implementation, both of which use a novel dynamic-assignment time-multiplexing approach and support up to 226 (64M) synaptic plasticity elements. Rather than implementing dedicated synapses for particular types of synaptic plasticity, we implemented a more generic synaptic plasticity adaptor array that is separate from the neurons in the neural network. Each adaptor performs synaptic plasticity according to the arrival times of the pre- and post-synaptic spikes assigned to it, and sends out a weighted or delayed pre-synaptic spike to the post-synaptic neuron in the neural network. This strategy provides great flexibility for building complex large-scale neural networks, as a neural network can be configured for multiple synaptic plasticity rules without changing its structure. We validate the proposed neuromorphic implementations with measurement results and illustrate that the circuits are capable of performing both STDP and STDDP. We argue that it is practical to scale the work presented here up to 236 (64G) synaptic adaptors on a current high-end FPGA platform. PMID:26041985
Karim, Sajjad; Mirza, Zeenat; Ansari, Shakeel A; Rasool, Mahmood; Iqbal, Zafar; Sohrab, Sayed S; Kamal, Mohammad A; Abuzenadah, Adel M; Al-Qahtani, Mohammed H
2014-01-01
Alzheimer's disease (AD) is a common neurodegenerative disorder primarily affecting memory and thinking ability; caused by progressive degeneration and death of nerve cells. In this study, we integrated multiple dataset retrieved from the National Center for Biotechnology Information's Gene Expression Omnibus database, and took a systems-biology approach to compare and distinguish the molecular network based synaptic dysregulation associated with AD in particular and neurodegenerative diseases in general. We first identified 832 differentially expressed genes using cut off P value <0.5 and fold change > 2, followed by gene ontology study to identify genes associated with synapse (n=95) [membrane associated guanylate kinase, 2, amyloid beta precursor protein, neurotrophic tyrosine kinase, receptor, type 2], synapse part [γ-aminobutyric acid A receptor, γ1], synaptic vesicle [glutamate receptor, ionotropic, α-amino-3-hydroxy-5- methyl-4-isoxazole propionic acid receptor 2, synaptoporin], pre- and post-synaptic density [neuronal calcium sensor 1, glutamate receptor, metabotropic 3]. We integrated these data with known pathways using Ingenuity Pathway Analysis tool and found following synapse associated pathways to be most affected; γ-aminobutyric acid receptor signaling, synaptic long term potentiation/depression, nuclear factor-erythroid 2-related factor 2-mediated oxidative stress response, huntington's disease signaling and Reelin signaling in neurons. In conclusion, synaptic dysfunction is tightly associated with the development and progression of neurodegenerative diseases like AD.
King, Justin R; Nordman, Jacob C; Bridges, Samuel P; Lin, Ming-Kuan; Kabbani, Nadine
2015-08-14
α7 nicotinic acetylcholine receptors (nAChRs) play an important role in synaptic transmission and inflammation. In response to ligands, this receptor channel opens to conduct cations into the cell but desensitizes rapidly. In recent studies we show that α7 nAChRs bind signaling proteins such as heterotrimeric GTP-binding proteins (G proteins). Here, we demonstrate that direct coupling of α7 nAChRs to G proteins enables a downstream calcium signaling response that can persist beyond the expected time course of channel activation. This process depends on a G protein-binding cluster (GPBC) in the M3-M4 loop of the receptor. A mutation of the GPBC in the α7 nAChR (α7345-348A) abolishes interaction with Gαq as well as Gβγ while having no effect on receptor synthesis, cell-surface trafficking, or α-bungarotoxin binding. Expression of α7345-348A, however, did significantly attenuate the α7 nAChR-induced Gαq calcium signaling response as evidenced by a decrease in PLC-β activation and IP3R-mediated calcium store release in the presence of the α7 selective agonist choline. Taken together, the data provides new evidence for the existence of a GPBC in nAChRs serving to promote intracellular signaling. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
From in silico astrocyte cell models to neuron-astrocyte network models: A review.
Oschmann, Franziska; Berry, Hugues; Obermayer, Klaus; Lenk, Kerstin
2018-01-01
The idea that astrocytes may be active partners in synaptic information processing has recently emerged from abundant experimental reports. Because of their spatial proximity to neurons and their bidirectional communication with them, astrocytes are now considered as an important third element of the synapse. Astrocytes integrate and process synaptic information and by doing so generate cytosolic calcium signals that are believed to reflect neuronal transmitter release. Moreover, they regulate neuronal information transmission by releasing gliotransmitters into the synaptic cleft affecting both pre- and postsynaptic receptors. Concurrent with the first experimental reports of the astrocytic impact on neural network dynamics, computational models describing astrocytic functions have been developed. In this review, we give an overview over the published computational models of astrocytic functions, from single-cell dynamics to the tripartite synapse level and network models of astrocytes and neurons. Copyright © 2017 Elsevier Inc. All rights reserved.
Cash, S; Dan, Y; Poo, M M; Zucker, R
1996-04-01
Synaptic activity is known to modulate neuronal connectivity in the nervous system. At developing Xenopus neuromuscular synapses in culture, repetitive postsynaptic application of ACh near the synapse leads to immediate and persistent synaptic depression, which was shown to be caused by reduction of presynaptic evoked transmitter release. However, little depression was found when ACh was applied to the muscle 20 microns or further from the synapse. Fluorescence imaging of cytosolic Ca2+ ([Ca2+]i) showed that each ACh pulse induced a transient elevation of myocyte [Ca2+]i that spread approximately 20 microns. Local photoactivated release of Ca2+ from the caged Ca2+ chelators nitr-5 or nitrophen in the postsynaptic cell was sufficient to induce persistent synaptic depression. These results support a model in which localized Ca2+ influx into the postsynaptic myocyte initiates transsynaptic retrograde modulation of presynaptic secretion mechanisms.
Ahmad, Faraz; Singh, Kunal; Das, Debajyoti; Gowaikar, Ruturaj; Shaw, Eisha; Ramachandran, Arathy; Rupanagudi, Khader Valli; Kommaddi, Reddy Peera; Bennett, David A.
2017-01-01
Abstract Aims: Synaptic deficits are known to underlie the cognitive dysfunction seen in Alzheimer's disease (AD). Generation of reactive oxygen species (ROS) by β-amyloid has also been implicated in AD pathogenesis. However, it is unclear whether ROS contributes to synaptic dysfunction seen in AD pathogenesis and, therefore, we examined whether altered redox signaling could contribute to synaptic deficits in AD. Results: Activity dependent but not basal translation was impaired in synaptoneurosomes from 1-month old presymptomatic APPSwe/PS1ΔE9 (APP/PS1) mice, and this deficit was sustained till middle age (MA, 9–10 months). ROS generation leads to oxidative modification of Akt1 in the synapse and consequent reduction in Akt1-mechanistic target of rapamycin (mTOR) signaling, leading to deficiency in activity-dependent protein translation. Moreover, we found a similar loss of activity-dependent protein translation in synaptoneurosomes from postmortem AD brains. Innovation: Loss of activity-dependent protein translation occurs presymptomatically early in the pathogenesis of AD. This is caused by ROS-mediated loss of pAkt1, leading to reduced synaptic Akt1-mTOR signaling and is rescued by overexpression of Akt1. ROS-mediated damage is restricted to the synaptosomes, indicating selectivity. Conclusions: We demonstrate that ROS-mediated oxidative modification of Akt1 contributes to synaptic dysfunction in AD, seen as loss of activity-dependent protein translation that is essential for synaptic plasticity and maintenance. Therapeutic strategies promoting Akt1-mTOR signaling at synapses may provide novel target(s) for disease-modifying therapy in AD. Antioxid. Redox Signal. 27, 1269–1280. PMID:28264587
Takeda, Atsushi; Suzuki, Miki; Tamano, Haruna; Takada, Shunsuke; Ide, Kazuki; Oku, Naoto
2012-03-01
Glucocorticoid-glutamatergic interactions have been proposed as a potential model to explain stress-mediated impairment of cognition. However, it is unknown whether glucocorticoid-zincergic interactions are involved in this impairment. Histochemically reactive zinc (Zn(2+)) is co-released with glutamate from zincergic neurons. In the present study, involvement of synaptic Zn(2+) in stress-induced attenuation of CA1 LTP was examined in hippocampal slices from young rats after exposure to tail suspension stress for 30s, which significantly increased serum corticosterone. Stress-induced attenuation of CA1 LTP was ameliorated by administration of clioquinol, a membrane permeable zinc chelator, to rats prior to exposure to stress, implying that the reduction of synaptic Zn(2+) by clioquinol participates in this amelioration. To pursue the involvement of corticosterone-mediated Zn(2+) signal in the attenuated CA1 LTP by stress, dynamics of synaptic Zn(2+) was checked in hippocampal slices exposed to corticosterone. Corticosterone increased extracellular Zn(2+) levels measured with ZnAF-2 dose-dependently, as well as the intracellular Ca(2+) levels measured with calcium orange AM, suggesting that corticosterone excites zincergic neurons in the hippocampus and increases Zn(2+) release from the neuron terminals. Intracellular Zn(2+) levels measured with ZnAF-2DA were also increased dose-dependently, but not in the coexistence of CaEDTA, a membrane-impermeable zinc chelator, suggesting that intracellular Zn(2+) levels is increased by the influx of extracellular Zn(2+). Furthermore, corticosterone-induced attenuation of CA1 LTP was abolished in the coexistence of CaEDTA. The present study suggests that corticosterone-mediated increase in postsynaptic Zn(2+) signal in the cytosolic compartment is involved in the attenuation of CA1 LTP after exposure to acute stress. Copyright © 2012 Elsevier Ltd. All rights reserved.
Frequency-selective augmenting responses by short-term synaptic depression in cat neocortex
Houweling, Arthur R; Bazhenov, Maxim; Timofeev, Igor; Grenier, François; Steriade, Mircea; Sejnowski, Terrence J
2002-01-01
Thalamic stimulation at frequencies between 5 and 15 Hz elicits incremental or ‘augmenting’ cortical responses. Augmenting responses can also be evoked in cortical slices and isolated cortical slabs in vivo. Here we show that a realistic network model of cortical pyramidal cells and interneurones including short-term plasticity of inhibitory and excitatory synapses replicates the main features of augmenting responses as obtained in isolated slabs in vivo. Repetitive stimulation of synaptic inputs at frequencies around 10 Hz produced postsynaptic potentials that grew in size and carried an increasing number of action potentials resulting from the depression of inhibitory synaptic currents. Frequency selectivity was obtained through the relatively weak depression of inhibitory synapses at low frequencies, and strong depression of excitatory synapses together with activation of a calcium-activated potassium current at high frequencies. This network resonance is a consequence of short-term synaptic plasticity in a network of neurones without intrinsic resonances. These results suggest that short-term plasticity of cortical synapses could shape the dynamics of synchronized oscillations in the brain. PMID:12122156
CASK and CaMKII function in the mushroom body α'/β' neurons during Drosophila memory formation.
Malik, Bilal R; Gillespie, John Michael; Hodge, James J L
2013-01-01
Ca(2+)/CaM serine/threonine kinase II (CaMKII) is a central molecule in mechanisms of synaptic plasticity and memory. A vital feature of CaMKII in plasticity is its ability to switch to a calcium (Ca(2+)) independent constitutively active state after autophosphorylation at threonine 287 (T287). A second pair of sites, T306 T307 in the calmodulin (CaM) binding region once autophosphorylated, prevent subsequent CaM binding and inactivates the kinase during synaptic plasticity and memory. Recently a synaptic molecule called Ca(2+)/CaM-dependent serine protein kinase (CASK) has been shown to control both sets of CaMKII autophosphorylation events and hence is well poised to be a key regulator of memory. We show deletion of full length CASK or just its CaMK-like and L27 domains disrupts middle-term memory (MTM) and long-term memory (LTM), with CASK function in the α'/β' subset of mushroom body neurons being required for memory. Likewise directly changing the levels of CaMKII autophosphorylation in these neurons removed MTM and LTM. The requirement of CASK and CaMKII autophosphorylation was not developmental as their manipulation just in the adult α'/β' neurons was sufficient to remove memory. Overexpression of CASK or CaMKII in the α'/β' neurons also occluded MTM and LTM. Overexpression of either Drosophila or human CASK in the α'/β' neurons of the CASK mutant completely rescued memory, confirming that CASK signaling in α'/β' neurons is necessary and sufficient for Drosophila memory formation and that the neuronal function of CASK is conserved between Drosophila and human. At the cellular level CaMKII overexpression in the α'/β' neurons increased activity dependent Ca(2+) responses while reduction of CaMKII decreased it. Likewise reducing CASK or directly expressing a phosphomimetic CaMKII T287D transgene in the α'/β' similarly decreased Ca(2+) signaling. Our results are consistent with CASK regulating CaMKII autophosphorylation in a pathway required for memory formation that involves activity dependent changes in Ca(2+) signaling in the α'/β' neurons.
Langer, Julia; Gerkau, Niklas J; Derouiche, Amin; Kleinhans, Christian; Moshrefi-Ravasdjani, Behrouz; Fredrich, Michaela; Kafitz, Karl W; Seifert, Gerald; Steinhäuser, Christian; Rose, Christine R
2017-02-01
Perivascular endfeet of astrocytes are highly polarized compartments that ensheath blood vessels and contribute to the blood-brain barrier. They experience calcium transients with neuronal activity, a phenomenon involved in neurovascular coupling. Endfeet also mediate the uptake of glucose from the blood, a process stimulated in active brain regions. Here, we demonstrate in mouse hippocampal tissue slices that endfeet undergo sodium signaling upon stimulation of glutamatergic synaptic activity. Glutamate-induced endfeet sodium transients were diminished by TFB-TBOA, suggesting that they were generated by sodium-dependent glutamate uptake. With local agonist application, they could be restricted to endfeet and immunohistochemical analysis revealed prominent expression of glutamate transporters GLAST and GLT-1 localized towards the neuropil vs. the vascular side of endfeet. Endfeet sodium signals spread at an apparent maximum velocity of ∼120 µm/s and directly propagated from stimulated into neighboring endfeet; this spread was omitted in Cx30/Cx43 double-deficient mice. Sodium transients resulted in elevation of intracellular magnesium, indicating a decrease in intracellular ATP. In summary, our results establish that excitatory synaptic activity and stimulation of glutamate uptake in astrocytes trigger transient sodium increases in perivascular endfeet which rapidly spread through gap junctions into neighboring endfeet and cause a reduction of intracellular ATP. The newly discovered endfeet sodium signaling thereby represents a fast, long-lived and inter-cellularly acting indicator of synaptic activity at the blood-brain barrier, which likely constitutes an important component of neuro-metabolic coupling in the brain. GLIA 2017;65:293-308. © 2016 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knepper, S.M.
1985-01-01
Norepinephrine-(NE) and calcium ionophore A23187-stimulated phosphoinositide (PIn) metabolism in rat brain slices was studied under varying calcium conditions. Tissue was labelled with /sup 3/H-myo-inositol and /sup 3/H-inositol phosphates (IPn), products of PIn metabolism were measured. In the absence of media calcium the response to NE was decreased while that to A23187 was little affected A23187 can release calcium from intracellular stores. Basal and stimulated accumulation of /sup 3/H-IPn was reversibly antagonized with EGTA by addition of calcium. Using calcium buffers, approximately 10/sup -7/ M free calcium was required to support hydrolysis. Free intracellular calcium is maintained at approximately this level.more » Thus calcium is required for PIn hydrolysis but appears to play a permissive role, basal levels being sufficient to support metabolism. Conformationally-defined (rigid) and -restricted (semi-rigid) analogs of the most stable conformations of amphetamine, antiperiplanar (exo) and gauche (endo), were utilized to probe the conformational requirements of vesicular NE transport. Analogs tested were 2-aminotetralin (2AT), 3-methyltetrahydroisoquinoline, anti- and syn-9-aminobenzobicyclo(2.2.1)heptene, and endo and exo conformers of 2-aminobenzobicyclo(2.2.1)heptene and 2-aminobenzobicyclo(2.2.2)octene.« less
NGL-2 Deletion Leads to Autistic-like Behaviors Responsive to NMDAR Modulation.
Um, Seung Min; Ha, Seungmin; Lee, Hyejin; Kim, Jihye; Kim, Kyungdeok; Shin, Wangyong; Cho, Yi Sul; Roh, Junyeop Daniel; Kang, Jaeseung; Yoo, Taesun; Noh, Young Woo; Choi, Yeonsoo; Bae, Yong Chul; Kim, Eunjoon
2018-06-26
Netrin-G ligand 2 (NGL-2)/LRRC4, implicated in autism spectrum disorders and schizophrenia, is a leucine-rich repeat-containing postsynaptic adhesion molecule that interacts intracellularly with the excitatory postsynaptic scaffolding protein PSD-95 and trans-synaptically with the presynaptic adhesion molecule netrin-G2. Functionally, NGL-2 regulates excitatory synapse development and synaptic transmission. However, whether it regulates synaptic plasticity and disease-related specific behaviors is not known. Here, we report that mice lacking NGL-2 (Lrrc4 -/- mice) show suppressed N-Methyl-D-aspartate receptor (NMDAR)-dependent synaptic plasticity in the hippocampus. NGL-2 associates with NMDARs through both PSD-95-dependent and -independent mechanisms. Moreover, Lrrc4 -/- mice display mild social interaction deficits and repetitive behaviors that are rapidly improved by pharmacological NMDAR activation. These results suggest that NGL-2 promotes synaptic stabilization of NMDARs, regulates NMDAR-dependent synaptic plasticity, and prevents autistic-like behaviors from developing in mice, supporting the hypothesis that NMDAR dysfunction contributes to autism spectrum disorders. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Induction of dendritic spines by β2-containing nicotinic receptors.
Lozada, Adrian F; Wang, Xulong; Gounko, Natalia V; Massey, Kerri A; Duan, Jingjing; Liu, Zhaoping; Berg, Darwin K
2012-06-13
Glutamatergic synapses are located mostly on dendritic spines in the adult nervous system. The spines serve as postsynaptic compartments, containing components that mediate and control the synaptic signal. Early in development, when glutamatergic synapses are initially forming, waves of excitatory activity pass through many parts of the nervous system and are driven in part by a class of heteropentameric β2-containing nicotinic acetylcholine receptors (β2*-nAChRs). These β2*-nAChRs are widely distributed and, when activated, can depolarize the membrane and elevate intracellular calcium levels in neurons. We show here that β2*-nAChRs are essential for acquisition of normal numbers of dendritic spines during development. Mice constitutively lacking the β2-nAChR gene have fewer dendritic spines than do age-matched wild-type mice at all times examined. Activation of β2*-nAChRs by nicotine either in vivo or in organotypic slice culture quickly elevates the number of spines. RNA interference studies both in vivo and in organotypic culture demonstrate that the β2*-nAChRs act in a cell-autonomous manner to increase the number of spines. The increase depends on intracellular calcium and activation of calcium, calmodulin-dependent protein kinase II. Absence of β2*-nAChRs in vivo causes a disproportionate number of glutamatergic synapses to be localized on dendritic shafts, rather than on spines as occurs in wild type. This shift in synapse location is found both in the hippocampus and cortex, indicating the breadth of the effect. Because spine synapses differ from shaft synapses in their signaling capabilities, the shift observed is likely to have significant consequences for network function.
Model-Free Reconstruction of Excitatory Neuronal Connectivity from Calcium Imaging Signals
Stetter, Olav; Battaglia, Demian; Soriano, Jordi; Geisel, Theo
2012-01-01
A systematic assessment of global neural network connectivity through direct electrophysiological assays has remained technically infeasible, even in simpler systems like dissociated neuronal cultures. We introduce an improved algorithmic approach based on Transfer Entropy to reconstruct structural connectivity from network activity monitored through calcium imaging. We focus in this study on the inference of excitatory synaptic links. Based on information theory, our method requires no prior assumptions on the statistics of neuronal firing and neuronal connections. The performance of our algorithm is benchmarked on surrogate time series of calcium fluorescence generated by the simulated dynamics of a network with known ground-truth topology. We find that the functional network topology revealed by Transfer Entropy depends qualitatively on the time-dependent dynamic state of the network (bursting or non-bursting). Thus by conditioning with respect to the global mean activity, we improve the performance of our method. This allows us to focus the analysis to specific dynamical regimes of the network in which the inferred functional connectivity is shaped by monosynaptic excitatory connections, rather than by collective synchrony. Our method can discriminate between actual causal influences between neurons and spurious non-causal correlations due to light scattering artifacts, which inherently affect the quality of fluorescence imaging. Compared to other reconstruction strategies such as cross-correlation or Granger Causality methods, our method based on improved Transfer Entropy is remarkably more accurate. In particular, it provides a good estimation of the excitatory network clustering coefficient, allowing for discrimination between weakly and strongly clustered topologies. Finally, we demonstrate the applicability of our method to analyses of real recordings of in vitro disinhibited cortical cultures where we suggest that excitatory connections are characterized by an elevated level of clustering compared to a random graph (although not extreme) and can be markedly non-local. PMID:22927808
Kim, Yujin; Hsu, Ching-Lung; Cembrowski, Mark S; Mensh, Brett D; Spruston, Nelson
2015-01-01
Dendritic integration of synaptic inputs mediates rapid neural computation as well as longer-lasting plasticity. Several channel types can mediate dendritically initiated spikes (dSpikes), which may impact information processing and storage across multiple timescales; however, the roles of different channels in the rapid vs long-term effects of dSpikes are unknown. We show here that dSpikes mediated by Nav channels (blocked by a low concentration of TTX) are required for long-term potentiation (LTP) in the distal apical dendrites of hippocampal pyramidal neurons. Furthermore, imaging, simulations, and buffering experiments all support a model whereby fast Nav channel-mediated dSpikes (Na-dSpikes) contribute to LTP induction by promoting large, transient, localized increases in intracellular calcium concentration near the calcium-conducting pores of NMDAR and L-type Cav channels. Thus, in addition to contributing to rapid neural processing, Na-dSpikes are likely to contribute to memory formation via their role in long-lasting synaptic plasticity. DOI: http://dx.doi.org/10.7554/eLife.06414.001 PMID:26247712
Guerrier, Claire; Holcman, David
2016-10-18
Binding of molecules, ions or proteins to small target sites is a generic step of cell activation. This process relies on rare stochastic events where a particle located in a large bulk has to find small and often hidden targets. We present here a hybrid discrete-continuum model that takes into account a stochastic regime governed by rare events and a continuous regime in the bulk. The rare discrete binding events are modeled by a Markov chain for the encounter of small targets by few Brownian particles, for which the arrival time is Poissonian. The large ensemble of particles is described by mass action laws. We use this novel model to predict the time distribution of vesicular release at neuronal synapses. Vesicular release is triggered by the binding of few calcium ions that can originate either from the synaptic bulk or from the entry through calcium channels. We report here that the distribution of release time is bimodal although it is triggered by a single fast action potential. While the first peak follows a stimulation, the second corresponds to the random arrival over much longer time of ions located in the synaptic terminal to small binding vesicular targets. To conclude, the present multiscale stochastic modeling approach allows studying cellular events based on integrating discrete molecular events over several time scales.
Sharing is Caring: The Role of Actin/Myosin-V in Synaptic Vesicle Transport between Synapses in vivo
NASA Astrophysics Data System (ADS)
Gramlich, Michael
Inter-synaptic vesicle sharing is an important but not well understood process of pre-synaptic function. Further, the molecular mechanisms that underlie this inter-synaptic exchange are not well known, and whether this inter-synaptic vesicle sharing is regulated by neural activity remains largely unexplored. I address these questions by studying CA1/CA3 Hippocampal neurons at the single synaptic vesicle level. Using high-resolution tracking of individual vesicles that have recently undergone endocytosis, I observe long-distance axonal transport of synaptic vesicles is partly mediated by the actin network. Further, the actin-dependent transport is predominantly carried out by Myosin-V. I develop a correlated-motion analysis to characterize the mechanics of how actin and Myosin-V affect vesicle transport. Lastly, I also observe that vesicle exit rates from the synapse to the axon and long-distance vesicle transport are both regulated by activity, but Myosin-V does not appear to mediate the activity dependence. These observations highlight the roles of the axonal actin network, and Myosin-V in particular, in regulating inter-synaptic vesicle exchange.
Isolation of Synaptosomes, Synaptic Plasma Membranes, and Synaptic Junctional Complexes.
Michaelis, Mary L; Jiang, Lei; Michaelis, Elias K
2017-01-01
Isolation of synaptic nerve terminals or synaptosomes provides an opportunity to study the process of neurotransmission at many levels and with a variety of approaches. For example, structural features of the synaptic terminals and the organelles within them, such as synaptic vesicles and mitochondria, have been elucidated with electron microscopy. The postsynaptic membranes are joined to the presynaptic "active zone" of transmitter release through cell adhesion molecules and remain attached throughout the isolation of synaptosomes. These "post synaptic densities" or "PSDs" contain the receptors for the transmitters released from the nerve terminals and can easily be seen with electron microscopy. Biochemical and cell biological studies with synaptosomes have revealed which proteins and lipids are most actively involved in synaptic release of neurotransmitters. The functional properties of the nerve terminals, such as responses to depolarization and the uptake or release of signaling molecules, have also been characterized through the use of fluorescent dyes, tagged transmitters, and transporter substrates. In addition, isolated synaptosomes can serve as the starting material for the isolation of relatively pure synaptic plasma membranes (SPMs) that are devoid of organelles from the internal environment of the nerve terminal, such as mitochondria and synaptic vesicles. The isolated SPMs can reseal and form vesicular structures in which transport of ions such as sodium and calcium, as well as solutes such as neurotransmitters can be studied. The PSDs also remain associated with the presynaptic membranes during isolation of SPM fractions, making it possible to isolate the synaptic junctional complexes (SJCs) devoid of the rest of the plasma membranes of the nerve terminals and postsynaptic membrane components. Isolated SJCs can be used to identify the proteins that constitute this highly specialized region of neurons. In this chapter, we describe the steps involved in isolating synaptosomes, SPMs, and SJCs from brain so that these preparations can be used with new technological advances to address many as yet unanswered questions about the synapse and its remarkable activities in neuronal cell communication.
Zhang, Xiaobing
2015-01-01
We employ transgenic mice with selective expression of tdTomato or cre recombinase together with optogenetics to investigate whether hypothalamic arcuate (ARC) dopamine/tyrosine hydroxylase (TH) neurons interact with other ARC neurons, how they respond to hypothalamic neuropeptides, and to test whether these cells constitute a single homogeneous population. Immunostaining with dopamine and TH antisera was used to corroborate targeted transgene expression. Using whole-cell recording on a large number of neurons (n = 483), two types of neurons with different electrophysiological properties were identified in the dorsomedial ARC where 94% of TH neurons contained immunoreactive dopamine: bursting and nonbursting neurons. In contrast to rat, the regular oscillations of mouse bursting neurons depend on a mechanism involving both T-type calcium and A-type potassium channel activation, but are independent of gap junction coupling. Optogenetic stimulation using cre recombinase-dependent ChIEF-AAV-DJ expressed in ARC TH neurons evoked postsynaptic GABA currents in the majority of neighboring dopamine and nondopamine neurons, suggesting for the first time substantial synaptic projections from ARC TH cells to other ARC neurons. Numerous met-enkephalin (mENK) and dynorphin-immunoreactive boutons appeared to contact ARC TH neurons. mENK inhibited both types of TH neuron through G-protein coupled inwardly rectifying potassium currents mediated by δ and μ opioid receptors. Dynorphin-A inhibited both bursting and nonbursting TH neurons by activating κ receptors. Oxytocin excited both bursting and nonbursting neurons. These results reveal a complexity of TH neurons that communicate extensively with neurons within the ARC. SIGNIFICANCE STATEMENT Here, we show that the great majority of mouse hypothalamic arcuate nucleus (ARC) neurons that synthesize TH in the dorsomedial ARC also contain immunoreactive dopamine, and show either bursting or nonbursting electrical activity. Unlike rats, the mechanism underlying bursting was not dependent on gap junctions but required T-type calcium and A-type potassium channel activation. Neuropeptides dynorphin and met-enkephalin inhibited dopamine neurons, whereas oxytocin excited them. Most ventrolateral ARC TH cells did not contain dopamine and did not show bursting electrical activity. TH-containing neurons appeared to release synaptic GABA within the ARC onto dopamine neurons and unidentified neurons, suggesting that the cells not only control pituitary hormones but also may modulate nearby neurons. PMID:26558770
Calcium-dependent regulation of SNARE-mediated membrane fusion by calmodulin.
Di Giovanni, Jerome; Iborra, Cécile; Maulet, Yves; Lévêque, Christian; El Far, Oussama; Seagar, Michael
2010-07-30
Neuroexocytosis requires SNARE proteins, which assemble into trans complexes at the synaptic vesicle/plasma membrane interface and mediate bilayer fusion. Ca(2+) sensitivity is thought to be conferred by synaptotagmin, although the ubiquitous Ca(2+)-effector calmodulin has also been implicated in SNARE-dependent membrane fusion. To examine the molecular mechanisms involved, we examined the direct action of calmodulin and synaptotagmin in vitro, using fluorescence resonance energy transfer to assay lipid mixing between target- and vesicle-SNARE liposomes. Ca(2+)/calmodulin inhibited SNARE assembly and membrane fusion by binding to two distinct motifs located in the membrane-proximal regions of VAMP2 (K(D) = 500 nm) and syntaxin 1 (K(D) = 2 microm). In contrast, fusion was increased by full-length synaptotagmin 1 anchored in vesicle-SNARE liposomes. When synaptotagmin and calmodulin were combined, synaptotagmin overcame the inhibitory effects of calmodulin. Furthermore, synaptotagmin displaced calmodulin binding to target-SNAREs. These findings suggest that two distinct Ca(2+) sensors act antagonistically in SNARE-mediated fusion.
Drago, Ilaria; Davis, Ronald L
2016-09-06
The uptake of cytoplasmic calcium into mitochondria is critical for a variety of physiological processes, including calcium buffering, metabolism, and cell survival. Here, we demonstrate that inhibiting the mitochondrial calcium uniporter in the Drosophila mushroom body neurons (MBn)-a brain region critical for olfactory memory formation-causes memory impairment without altering the capacity to learn. Inhibiting uniporter activity only during pupation impaired adult memory, whereas the same inhibition during adulthood was without effect. The behavioral impairment was associated with structural defects in MBn, including a decrease in synaptic vesicles and an increased length in the axons of the αβ MBn. Our results reveal an in vivo developmental role for the mitochondrial uniporter complex in establishing the necessary structural and functional neuronal substrates for normal memory formation in the adult organism. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Hausrat, Torben J.; Muhia, Mary; Gerrow, Kimberly; Thomas, Philip; Hirdes, Wiebke; Tsukita, Sachiko; Heisler, Frank F.; Herich, Lena; Dubroqua, Sylvain; Breiden, Petra; Feldon, Joram; Schwarz, Jürgen R; Yee, Benjamin K.; Smart, Trevor G.; Triller, Antoine; Kneussel, Matthias
2015-01-01
Neurotransmitter receptor density is a major variable in regulating synaptic strength. Receptors rapidly exchange between synapses and intracellular storage pools through endocytic recycling. In addition, lateral diffusion and confinement exchanges surface membrane receptors between synaptic and extrasynaptic sites. However, the signals that regulate this transition are currently unknown. GABAA receptors containing α5-subunits (GABAAR-α5) concentrate extrasynaptically through radixin (Rdx)-mediated anchorage at the actin cytoskeleton. Here we report a novel mechanism that regulates adjustable plasma membrane receptor pools in the control of synaptic receptor density. RhoA/ROCK signalling regulates an activity-dependent Rdx phosphorylation switch that uncouples GABAAR-α5 from its extrasynaptic anchor, thereby enriching synaptic receptor numbers. Thus, the unphosphorylated form of Rdx alters mIPSCs. Rdx gene knockout impairs reversal learning and short-term memory, and Rdx phosphorylation in wild-type mice exhibits experience-dependent changes when exposed to novel environments. Our data suggest an additional mode of synaptic plasticity, in which extrasynaptic receptor reservoirs supply synaptic GABAARs. PMID:25891999
Gupta, Varun K.; Pech, Ulrike; Fulterer, Andreas; Ender, Anatoli; Mauermann, Stephan F.; Andlauer, Till F. M.; Beuschel, Christine; Thriene, Kerstin; Quentin, Christine; Schwärzel, Martin; Mielke, Thorsten; Madeo, Frank; Dengjel, Joern; Fiala, André; Sigrist, Stephan J.
2016-01-01
Memories are assumed to be formed by sets of synapses changing their structural or functional performance. The efficacy of forming new memories declines with advancing age, but the synaptic changes underlying age-induced memory impairment remain poorly understood. Recently, we found spermidine feeding to specifically suppress age-dependent impairments in forming olfactory memories, providing a mean to search for synaptic changes involved in age-dependent memory impairment. Here, we show that a specific synaptic compartment, the presynaptic active zone (AZ), increases the size of its ultrastructural elaboration and releases significantly more synaptic vesicles with advancing age. These age-induced AZ changes, however, were fully suppressed by spermidine feeding. A genetically enforced enlargement of AZ scaffolds (four gene-copies of BRP) impaired memory formation in young animals. Thus, in the Drosophila nervous system, aging AZs seem to steer towards the upper limit of their operational range, limiting synaptic plasticity and contributing to impairment of memory formation. Spermidine feeding suppresses age-dependent memory impairment by counteracting these age-dependent changes directly at the synapse. PMID:27684064
2010-01-01
The downstream regulatory element antagonist modulator (DREAM), a multifunctional Ca2+-binding protein, binds specifically to DNA and several nucleoproteins regulating gene expression and with proteins outside the nucleus to regulate membrane excitability or calcium homeostasis. DREAM is highly expressed in the central nervous system including the hippocampus and cortex; however, the roles of DREAM in hippocampal synaptic transmission and plasticity have not been investigated. Taking advantage of transgenic mice overexpressing a Ca2+-insensitive DREAM mutant (TgDREAM), we used integrative methods including electrophysiology, biochemistry, immunostaining, and behavior tests to study the function of DREAM in synaptic transmission, long-term plasticity and fear memory in hippocampal CA1 region. We found that NMDA receptor but not AMPA receptor-mediated current was decreased in TgDREAM mice. Moreover, synaptic plasticity, such as long-term depression (LTD) but not long-term potentiation (LTP), was impaired in TgDREAM mice. Biochemical experiments found that DREAM interacts with PSD-95 and may inhibit NMDA receptor function through this interaction. Contextual fear memory was significantly impaired in TgDREAM mice. By contrast, sensory responses to noxious stimuli were not affected. Our results demonstrate that DREAM plays a novel role in postsynaptic modulation of the NMDA receptor, and contributes to synaptic plasticity and behavioral memory. PMID:20205763
Mecp2 Mediates Experience-Dependent Transcriptional Upregulation of Ryanodine Receptor Type-3.
Torres, Rodrigo F; Hidalgo, Cecilia; Kerr, Bredford
2017-01-01
Mecp2 is a DNA methylation reader that plays a critical role in experience-dependent plasticity. Increasing evidence supports a role for epigenetic modifications in activity-induced gene expression. Hence, candidate genes related to such phenomena are of great interest. Ryanodine receptors are intracellular calcium channels that contribute to hippocampal synaptic plasticity, dendritic spine remodeling, and participate in learning and memory processes. Here we exposed mice to the enriched environment (EE) paradigm, which through increased stimulation induces experience dependent-plasticity, to explore a role for methyl-cytosines, and Mecp2 in directing Ryanodine receptor 3 ( Ryr3 ) transcriptional activity. EE induced a hippocampal-specific increase in the methylation of discrete cytosines located at a Ryr3 isoform promoter; chromatin immunoprecipitation experiments revealed that EE increased Mecp2 binding to this Ryr3 isoform promoter. Interestingly, the experimental paradigm induced robust Ryr3 upregulation, accompanied by miR132 -dependent suppression of p250GAP , a pathway driving synaptogenesis. In contrast to WT mice, Mecp2-null mice showed diminished levels of Ryr3 and displayed impaired EE-induced Ryr3 upregulation, compromising miR132 dependent suppression of p250GAP and experience-dependent structural plasticity. Based on these results, we propose that Mecp2 acts as a transcriptional activator of Ryr3 , contributing to experience-dependent plasticity.
Chay, Andrew; Zamparo, Ilaria; Koschinski, Andreas; Zaccolo, Manuela; Blackwell, Kim T.
2016-01-01
Norepinephrine, a neuromodulator that activates β-adrenergic receptors (βARs), facilitates learning and memory as well as the induction of synaptic plasticity in the hippocampus. Several forms of long-term potentiation (LTP) at the Schaffer collateral CA1 synapse require stimulation of both βARs and N-methyl-D-aspartate receptors (NMDARs). To understand the mechanisms mediating the interactions between βAR and NMDAR signaling pathways, we combined FRET imaging of cAMP in hippocampal neuron cultures with spatial mechanistic modeling of signaling pathways in the CA1 pyramidal neuron. Previous work implied that cAMP is synergistically produced in the presence of the βAR agonist isoproterenol and intracellular calcium. In contrast, we show that when application of isoproterenol precedes application of NMDA by several minutes, as is typical of βAR-facilitated LTP experiments, the average amplitude of the cAMP response to NMDA is attenuated compared with the response to NMDA alone. Models simulations suggest that, although the negative feedback loop formed by cAMP, cAMP-dependent protein kinase (PKA), and type 4 phosphodiesterase may be involved in attenuating the cAMP response to NMDA, it is insufficient to explain the range of experimental observations. Instead, attenuation of the cAMP response requires mechanisms upstream of adenylyl cyclase. Our model demonstrates that Gs-to-Gi switching due to PKA phosphorylation of βARs as well as Gi inhibition of type 1 adenylyl cyclase may underlie the experimental observations. This suggests that signaling by β-adrenergic receptors depends on temporal pattern of stimulation, and that switching may represent a novel mechanism for recruiting kinases involved in synaptic plasticity and memory. PMID:26901880
Multiple vesicle recycling pathways in central synapses and their impact on neurotransmission
Kavalali, Ege T
2007-01-01
Short-term synaptic depression during repetitive activity is a common property of most synapses. Multiple mechanisms contribute to this rapid depression in neurotransmission including a decrease in vesicle fusion probability, inactivation of voltage-gated Ca2+ channels or use-dependent inhibition of release machinery by presynaptic receptors. In addition, synaptic depression can arise from a rapid reduction in the number of vesicles available for release. This reduction can be countered by two sources. One source is replenishment from a set of reserve vesicles. The second source is the reuse of vesicles that have undergone exocytosis and endocytosis. If the synaptic vesicle reuse is fast enough then it can replenish vesicles during a brief burst of action potentials and play a substantial role in regulating the rate of synaptic depression. In the last 5 years, we have examined the impact of synaptic vesicle reuse on neurotransmission using fluorescence imaging of synaptic vesicle trafficking in combination with electrophysiological detection of short-term synaptic plasticity. These studies have revealed that synaptic vesicle reuse shapes the kinetics of short-term synaptic depression in a frequency-dependent manner. In addition, synaptic vesicle recycling helps maintain the level of neurotransmission at steady state. Moreover, our studies showed that synaptic vesicle reuse is a highly plastic process as it varies widely among synapses and can adapt to changes in chronic activity levels. PMID:17690145
Beyond the Channel: Metabotropic Signaling by Nicotinic Receptors.
Kabbani, Nadine; Nichols, Robert A
2018-04-01
The α7 nicotinic acetylcholine receptor (nAChR) is a ligand-gated ion channel (LGIC) that plays an important role in cellular calcium signaling and contributes to several neurological diseases. Agonist binding to the α7 nAChR induces fast channel activation followed by inactivation and prolonged desensitization while triggering long-lasting calcium signaling. These activities foster neurotransmitter release, synaptic plasticity, and somatodendritic regulation in the brain. We discuss here the ability of α7 nAChRs to operate in ionotropic (α7 i ) and metabotropic (α7 m ) modes, leading to calcium-induced calcium release (CICR) and G protein-associated inositol trisphosphate (IP 3 )-induced calcium release (IICR), respectively. Metabotropic activity extends the spatial and temporal aspects of calcium signaling by the α7 channel beyond its ionotropic limits, persisting into the desensitized state. Delineation of the ionotropic and metabotropic properties of the α7 nAChR will provide definitive indicators of moment-to-moment receptor functional status that will, in turn, spearhead new drug development. Copyright © 2018 Elsevier Ltd. All rights reserved.
Dysfunction of the CaV2.1 calcium channel in cerebellar ataxias
Rajakulendran, Sanjeev; Schorge, Stephanie; Kullmann, Dimitri M
2010-01-01
Mutations in the CACNA1A gene are associated with episodic ataxia type 2 (EA2) and spinocerebellar ataxia type 6 (SCA6). CACNA1A encodes the α-subunit of the P/Q-type calcium channel or CaV2.1, which is highly enriched in the cerebellum. It is one of the main channels linked to synaptic transmission throughout the human central nervous system. Here, we compare recent advances in the understanding of the genetic changes that underlie EA2 and SCA6 and what these new findings suggest about the mechanism of the disease. PMID:20948794
Liu, Dong-Dong; Lu, Jun-Mei; Zhao, Qian-Ru; Hu, Changlong; Mei, Yan-Ai
2016-06-29
Growth differentiation factor-15 (GDF-15) has been implicated in ischemic brain injury and synapse development, but its involvement in modulating neuronal excitability and synaptic transmission remain poorly understood. In this study, we investigated the effects of GDF-15 on non-evoked miniature excitatory post-synaptic currents (mEPSCs) and neurotransmitter release in the medial prefrontal cortex (mPFC) in mice. Incubation of mPFC slices with GDF-15 for 60 min significantly increased the frequency of mEPSCs without effect on their amplitude. GDF-15 also significantly elevated presynaptic glutamate release, as shown by HPLC. These effects were blocked by dual TGF-β type I receptor (TβRI) and TGF-β type II receptor (TβRII) antagonists, but not by a TβRI antagonist alone. Meanwhile, GDF-15 enhanced pERK level, and inhibition of MAPK/ERK activity attenuated the GDF-15-induced increases in mEPSC and glutamate release. Blocking T-type calcium channels reduced the GDF-15 induced up-regulation of synaptic transmission. Membrane-protein extraction and use of an intracellular protein-transport inhibitor showed that GDF-15 promoted CaV3.1 and CaV3.3 α-subunit expression by trafficking to the membrane. These results confirm previous findings in cerebellar granule neurons, in which GDF-15 induces its neurobiological effects via TβRII and activation of the ERK pathway, providing novel insights into the mechanism of GDF-15 function in cortical neurons.
González-Inchauspe, Carlota; Urbano, Francisco J; Di Guilmi, Mariano N; Uchitel, Osvaldo D
2017-03-08
Acid-sensing ion channels (ASICs) regulate synaptic activities and play important roles in neurodegenerative diseases. We found that these channels can be activated in neurons of the medial nucleus of the trapezoid body (MNTB) of the auditory system in the CNS. A drop in extracellular pH induces transient inward ASIC currents (I ASIC s) in postsynaptic MNTB neurons from wild-type mice. The inhibition of I ASIC s by psalmotoxin-1 (PcTx1) and the absence of these currents in knock-out mice for ASIC-1a subunit (ASIC1a -/- ) suggest that homomeric ASIC-1as are mediating these currents in MNTB neurons. Furthermore, we detect ASIC1a-dependent currents during synaptic transmission, suggesting an acidification of the synaptic cleft due to the corelease of neurotransmitter and H + from synaptic vesicles. These currents are capable of eliciting action potentials in the absence of glutamatergic currents. A significant characteristic of these homomeric ASIC-1as is their permeability to Ca 2+ Activation of ASIC-1a in MNTB neurons by exogenous H + induces an increase in intracellular Ca 2+ Furthermore, the activation of postsynaptic ASIC-1as during high-frequency stimulation (HFS) of the presynaptic nerve terminal leads to a PcTx1-sensitive increase in intracellular Ca 2+ in MNTB neurons, which is independent of glutamate receptors and is absent in neurons from ASIC1a -/- mice. During HFS, the lack of functional ASICs in synaptic transmission results in an enhanced short-term depression of glutamatergic EPSCs. These results strongly support the hypothesis of protons as neurotransmitters and demonstrate that presynaptic released protons modulate synaptic transmission by activating ASIC-1as at the calyx of Held-MNTB synapse. SIGNIFICANCE STATEMENT The manuscript demonstrates that postsynaptic neurons of the medial nucleus of the trapezoid body at the mouse calyx of Held synapse express functional homomeric Acid-sensing ion channel-1a (ASIC-1as) that can be activated by protons (coreleased with neurotransmitter from acidified synaptic vesicles). These ASIC-1as contribute to the generation of postsynaptic currents and, more relevant, to calcium influx, which could be involved in the modulation of presynaptic transmitter release. Inhibition or deletion of ASIC-1a leads to enhanced short-term depression, demonstrating that they are concerned with short-term plasticity of the synapse. ASICs represent a widespread communication system with unique properties. We expect that our experiments will have an impact in the neurobiology field and will spread in areas related to neuronal plasticity. Copyright © 2017 the authors 0270-6474/17/372589-11$15.00/0.
Zhang, Xiao-min; Yan, Xun-yi; Zhang, Bin; Yang, Qian; Ye, Mao; Cao, Wei; Qiang, Wen-bin; Zhu, Li-jun; Du, Yong-lan; Xu, Xing-xing; Wang, Jia-sheng; Xu, Fei; Lu, Wei; Qiu, Shuang; Yang, Wei; Luo, Jian-hong
2015-01-01
The N-methyl-D-aspartate receptor (NMDAR) in adult forebrain is a heterotetramer mainly composed of two GluN1 subunits and two GluN2A and/or GluN2B subunits. The synaptic expression and relative numbers of GluN2A- and GluN2B-containing NMDARs play critical roles in controlling Ca2+-dependent signaling and synaptic plasticity. Previous studies have suggested that the synaptic trafficking of NMDAR subtypes is differentially regulated, but the precise molecular mechanism is not yet clear. In this study, we demonstrated that Bip, an endoplasmic reticulum (ER) chaperone, selectively interacted with GluN2A and mediated the neuronal activity-induced assembly and synaptic incorporation of the GluN2A-containing NMDAR from dendritic ER. Furthermore, the GluN2A-specific synaptic trafficking was effectively disrupted by peptides interrupting the interaction between Bip and GluN2A. Interestingly, fear conditioning in mice was disrupted by intraperitoneal injection of the interfering peptide before training. In summary, we have uncovered a novel mechanism for the activity-dependent supply of synaptic GluN2A-containing NMDARs, and demonstrated its relevance to memory formation. PMID:26088419
Moriguchi, Shigeki; Tanaka, Tomoya; Narahashi, Toshio; Fukunaga, Kohji
2013-10-01
Sunifiram is a novel pyrrolidone nootropic drug structurally related to piracetam, which was developed for neurodegenerative disorder like Alzheimer's disease. Sunifiram is known to enhance cognitive function in some behavioral experiments such as Morris water maze task. To address question whether sunifiram affects N-methyl-D-aspartate receptor (NMDAR)-dependent synaptic function in the hippocampal CA1 region, we assessed the effects of sunifiram on NMDAR-dependent long-term potentiation (LTP) by electrophysiology and on phosphorylation of synaptic proteins by immunoblotting analysis. In mouse hippocampal slices, sunifiram at 10-100 nM significantly enhanced LTP in a bell-shaped dose-response relationship which peaked at 10 nM. The enhancement of LTP by sunifiram treatment was inhibited by 7-chloro-kynurenic acid (7-ClKN), an antagonist for glycine-binding site of NMDAR, but not by ifenprodil, an inhibitor for polyamine site of NMDAR. The enhancement of LTP by sunifilam was associated with an increase in phosphorylation of α-amino-3-hydroxy-5-methylisozazole-4-propionate receptor (AMPAR) through activation of calcium/calmodulin-dependent protein kinase II (CaMKII) and an increase in phosphorylation of NMDAR through activation of protein kinase Cα (PKCα). Sunifiram treatments at 1-1000 nM increased the slope of field excitatory postsynaptic potentials (fEPSPs) in a dose-dependent manner. The enhancement was associated with an increase in phosphorylation of AMPAR receptor through activation of CaMKII. Interestingly, under the basal condition, sunifiram treatments increased PKCα (Ser-657) and Src family (Tyr-416) activities with the same bell-shaped dose-response curve as that of LTP peaking at 10 nM. The increase in phosphorylation of PKCα (Ser-657) and Src (Tyr-416) induced by sunifiram was inhibited by 7-ClKN treatment. The LTP enhancement by sunifiram was significantly inhibited by PP2, a Src family inhibitor. Finally, when pretreated with a high concentration of glycine (300 μM), sunifiram treatments failed to potentiate LTP in the CA1 region. Taken together, sunifiram stimulates the glycine-binding site of NMDAR with concomitant PKCα activation through Src kinase. Enhancement of PKCα activity triggers to potentiate hippocampal LTP through CaMKII activation. Copyright © 2013 Wiley Periodicals, Inc.
Baxendale, Sarah; Holdsworth, Celia J.; Meza Santoscoy, Paola L.; Harrison, Michael R. M.; Fox, James; Parkin, Caroline A.; Ingham, Philip W.; Cunliffe, Vincent T.
2012-01-01
SUMMARY The availability of animal models of epileptic seizures provides opportunities to identify novel anticonvulsants for the treatment of people with epilepsy. We found that exposure of 2-day-old zebrafish embryos to the convulsant agent pentylenetetrazole (PTZ) rapidly induces the expression of synaptic-activity-regulated genes in the CNS, and elicited vigorous episodes of calcium (Ca2+) flux in muscle cells as well as intense locomotor activity. We then screened a library of ∼2000 known bioactive small molecules and identified 46 compounds that suppressed PTZ-inducedtranscription of the synaptic-activity-regulated gene fos in 2-day-old (2 dpf) zebrafish embryos. Further analysis of a subset of these compounds, which included compounds with known and newly identified anticonvulsant properties, revealed that they exhibited concentration-dependent inhibition of both locomotor activity and PTZ-induced fos transcription, confirming their anticonvulsant characteristics. We conclude that this in situ hybridisation assay for fos transcription in the zebrafish embryonic CNS is a robust, high-throughput in vivo indicator of the neural response to convulsant treatment and lends itself well to chemical screening applications. Moreover, our results demonstrate that suppression of PTZ-induced fos expression provides a sensitive means of identifying compounds with anticonvulsant activities. PMID:22730455
CaMKII knockdown affects both early and late phases of olfactory long-term memory in the honeybee.
Scholl, Christina; Kübert, Natalie; Muenz, Thomas S; Rössler, Wolfgang
2015-12-01
Honeybees are able to solve complex learning tasks and memorize learned information for long time periods. The molecular mechanisms mediating long-term memory (LTM) in the honeybee Apis mellifera are, to a large part, still unknown. We approached this question by investigating the potential function of the calcium/calmodulin-dependent protein kinase II (CaMKII), an enzyme known as a 'molecular memory switch' in vertebrates. CaMKII is able to switch to a calcium-independent constitutively active state, providing a mechanism for a molecular memory and has further been shown to play an essential role in structural synaptic plasticity. Using a combination of knockdown by RNA interference and pharmacological manipulation, we disrupted the function of CaMKII during olfactory learning and memory formation. We found that learning, memory acquisition and mid-term memory were not affected, but all manipulations consistently resulted in an impaired LTM. Both early LTM (24 h after learning) and late LTM (72 h after learning) were significantly disrupted, indicating the necessity of CaMKII in two successive stages of LTM formation in the honeybee. © 2015. Published by The Company of Biologists Ltd.
Marty, V N; Vlkolinsky, R; Minassian, N; Cohen, T; Nelson, G A; Spigelman, I
2014-12-01
The evaluation of potential health risks associated with neuronal exposure to space radiation is critical for future long duration space travel. The purpose of this study was to evaluate and compare the effects of low-dose proton and high-energy charged particle (HZE) radiation on electrophysiological parameters of the granule cells in the dentate gyrus (DG) of the hippocampus and its associated functional consequences. We examined excitatory and inhibitory neurotransmission in DG granule cells (DGCs) in dorsal hippocampal slices from male C57BL/6 mice at 3 months after whole body irradiation with accelerated proton, silicon or iron particles. Multielectrode arrays were used to investigate evoked field synaptic potentials, an extracellular measurement of synaptic excitability in the perforant path to DG synaptic pathway. Whole-cell patch clamp recordings were used to measure miniature excitatory postsynaptic currents (mEPSCs) and miniature inhibitory postsynaptic currents (mIPSCs) in DGCs. Exposure to proton radiation increased synaptic excitability and produced dose-dependent decreases in amplitude and charge transfer of mIPSCs, without affecting the expression of γ-aminobutyric acid type A receptor α2, β3 and γ2 subunits determined by Western blotting. Exposure to silicon radiation had no significant effects on synaptic excitability, mEPSCs or mIPSCs of DGCs. Exposure to iron radiation had no effect on synaptic excitability and mIPSCs, but significantly increased mEPSC frequency at 1 Gy, without changes in mEPSC kinetics, suggesting a presynaptic mechanism. Overall, the data suggest that proton and HZE exposure results in radiation dose- and species-dependent long-lasting alterations in synaptic neurotransmission, which could cause radiation-induced impairment of hippocampal-dependent cognitive functions.
Activity-Dependence of Synaptic Vesicle Dynamics
Forte, Luca A.
2017-01-01
The proper function of synapses relies on efficient recycling of synaptic vesicles. The small size of synaptic boutons has hampered efforts to define the dynamical states of vesicles during recycling. Moreover, whether vesicle motion during recycling is regulated by neural activity remains largely unknown. We combined nanoscale-resolution tracking of individual synaptic vesicles in cultured hippocampal neurons from rats of both sexes with advanced motion analyses to demonstrate that the majority of recently endocytosed vesicles undergo sequences of transient dynamical states including epochs of directed, diffusional, and stalled motion. We observed that vesicle motion is modulated in an activity-dependent manner, with dynamical changes apparent in ∼20% of observed boutons. Within this subpopulation of boutons, 35% of observed vesicles exhibited acceleration and 65% exhibited deceleration, accompanied by corresponding changes in directed motion. Individual vesicles observed in the remaining ∼80% of boutons did not exhibit apparent dynamical changes in response to stimulation. More quantitative transient motion analyses revealed that the overall reduction of vesicle mobility, and specifically of the directed motion component, is the predominant activity-evoked change across the entire bouton population. Activity-dependent modulation of vesicle mobility may represent an important mechanism controlling vesicle availability and neurotransmitter release. SIGNIFICANCE STATEMENT Mechanisms governing synaptic vesicle dynamics during recycling remain poorly understood. Using nanoscale resolution tracking of individual synaptic vesicles in hippocampal synapses and advanced motion analysis tools we demonstrate that synaptic vesicles undergo complex sets of dynamical states that include epochs of directed, diffusive, and stalled motion. Most importantly, our analyses revealed that vesicle motion is modulated in an activity-dependent manner apparent as the reduction in overall vesicle mobility in response to stimulation. These results define the vesicle dynamical states during recycling and reveal their activity-dependent modulation. Our study thus provides fundamental new insights into the principles governing synaptic function. PMID:28954868
Sears, James C.; Broadie, Kendal
2018-01-01
Fragile X syndrome (FXS) is the leading monogenic cause of autism and intellectual disability. The disease arises through loss of fragile X mental retardation protein (FMRP), which normally exhibits peak expression levels in early-use critical periods, and is required for activity-dependent synaptic remodeling during this transient developmental window. FMRP canonically binds mRNA to repress protein translation, with targets that regulate cytoskeleton dynamics, membrane trafficking, and trans-synaptic signaling. We focus here on recent advances emerging in these three areas from the Drosophila disease model. In the well-characterized central brain mushroom body (MB) olfactory learning/memory circuit, FMRP is required for activity-dependent synaptic remodeling of projection neurons innervating the MB calyx, with function tightly restricted to an early-use critical period. FMRP loss is phenocopied by conditional removal of FMRP only during this critical period, and rescued by FMRP conditional expression only during this critical period. Consistent with FXS hyperexcitation, FMRP loss defects are phenocopied by heightened sensory experience and targeted optogenetic hyperexcitation during this critical period. FMRP binds mRNA encoding Drosophila ESCRTIII core component Shrub (human CHMP4 homolog) to restrict Shrub translation in an activity-dependent mechanism only during this same critical period. Shrub mediates endosomal membrane trafficking, and perturbing Shrub expression is known to interfere with neuronal process pruning. Consistently, FMRP loss and Shrub overexpression targeted to projection neurons similarly causes endosomal membrane trafficking defects within synaptic boutons, and genetic reduction of Shrub strikingly rescues Drosophila FXS model defects. In parallel work on the well-characterized giant fiber (GF) circuit, FMRP limits iontophoretic dye loading into central interneurons, demonstrating an FMRP role controlling core neuronal properties through the activity-dependent repression of translation. In the well-characterized Drosophila neuromuscular junction (NMJ) model, developmental synaptogenesis and activity-dependent synaptic remodeling both require extracellular matrix metalloproteinase (MMP) enzymes interacting with the heparan sulfate proteoglycan (HSPG) glypican dally-like protein (Dlp) to restrict trans-synaptic Wnt signaling, with FXS synaptogenic defects alleviated by both MMP and HSPG reduction. This new mechanistic axis spanning from activity to FMRP to HSPG-dependent MMP regulation modulates activity-dependent synaptogenesis. We discuss future directions for these mechanisms, and intersecting research priorities for FMRP in glial and signaling interactions. PMID:29375303
Activity Induces Fmr1-Sensitive Synaptic Capture of Anterograde Circulating Neuropeptide Vesicles.
Cavolo, Samantha L; Bulgari, Dinara; Deitcher, David L; Levitan, Edwin S
2016-11-16
Synaptic neuropeptide and neurotrophin stores are maintained by constitutive bidirectional capture of dense-core vesicles (DCVs) as they circulate in and out of the nerve terminal. Activity increases DCV capture to rapidly replenish synaptic neuropeptide stores following release. However, it is not known whether this is due to enhanced bidirectional capture. Here experiments at the Drosophila neuromuscular junction, where DCVs contain neuropeptides and a bone morphogenic protein, show that activity-dependent replenishment of synaptic neuropeptides following release is evident after inhibiting the retrograde transport with the dynactin disruptor mycalolide B or photobleaching DCVs entering a synaptic bouton by retrograde transport. In contrast, photobleaching anterograde transport vesicles entering a bouton inhibits neuropeptide replenishment after activity. Furthermore, tracking of individual DCVs moving through boutons shows that activity selectively increases capture of DCVs undergoing anterograde transport. Finally, upregulating fragile X mental retardation 1 protein (Fmr1, also called FMRP) acts independently of futsch/MAP-1B to abolish activity-dependent, but not constitutive, capture. Fmr1 also reduces presynaptic neuropeptide stores without affecting activity-independent delivery and evoked release. Therefore, presynaptic motoneuron neuropeptide storage is increased by a vesicle capture mechanism that is distinguished from constitutive bidirectional capture by activity dependence, anterograde selectivity, and Fmr1 sensitivity. These results show that activity recruits a separate mechanism than used at rest to stimulate additional synaptic capture of DCVs for future release of neuropeptides and neurotrophins. Synaptic release of neuropeptides and neurotrophins depends on presynaptic accumulation of dense-core vesicles (DCVs). At rest, DCVs are captured bidirectionally as they circulate through Drosophila motoneuron terminals by anterograde and retrograde transport. Here we show that activity stimulates further synaptic capture that is distinguished from basal capture by its selectivity for anterograde DCVs and its inhibition by overexpression of the fragile X retardation protein Fmr1. Fmr1 dramatically lowers DCV numbers in synaptic boutons. Therefore, activity-dependent anterograde capture is a major determinant of presynaptic peptide stores. Copyright © 2016 the authors 0270-6474/16/3611781-07$15.00/0.
Varga, Andrew W; Yuan, Li-Lian; Anderson, Anne E; Schrader, Laura A; Wu, Gang-Yi; Gatchel, Jennifer R; Johnston, Daniel; Sweatt, J David
2004-04-07
Calcium-calmodulin-dependent kinase II (CaMKII) has a long history of involvement in synaptic plasticity, yet little focus has been given to potassium channels as CaMKII targets despite their importance in repolarizing EPSPs and action potentials and regulating neuronal membrane excitability. We now show that Kv4.2 acts as a substrate for CaMKII in vitro and have identified CaMKII phosphorylation sites as Ser438 and Ser459. To test whether CaMKII phosphorylation of Kv4.2 affects channel biophysics, we expressed wild-type or mutant Kv4.2 and the K(+) channel interacting protein, KChIP3, with or without a constitutively active form of CaMKII in Xenopus oocytes and measured the voltage dependence of activation and inactivation in each of these conditions. CaMKII phosphorylation had no effect on channel biophysical properties. However, we found that levels of Kv4.2 protein are increased with CaMKII phosphorylation in transfected COS cells, an effect attributable to direct channel phosphorylation based on site-directed mutagenesis studies. We also obtained corroborating physiological data showing increased surface A-type channel expression as revealed by increases in peak K(+) current amplitudes with CaMKII phosphorylation. Furthermore, endogenous A-currents in hippocampal pyramidal neurons were increased in amplitude after introduction of constitutively active CaMKII, which results in a decrease in neuronal excitability in response to current injections. Thus CaMKII can directly modulate neuronal excitability by increasing cell-surface expression of A-type K(+) channels.
Lazarevic, Vesna; Fieńko, Sandra; Andres-Alonso, Maria; Anni, Daniela; Ivanova, Daniela; Montenegro-Venegas, Carolina; Gundelfinger, Eckart D.; Cousin, Michael A.; Fejtova, Anna
2017-01-01
Despite the central role of amyloid β (Aβ) peptide in the etiopathogenesis of Alzheimer’s disease (AD), its physiological function in healthy brain is still debated. It is well established that elevated levels of Aβ induce synaptic depression and dismantling, connected with neurotoxicity and neuronal loss. Growing evidence suggests a positive regulatory effect of Aβ on synaptic function and cognition; however the exact cellular and molecular correlates are still unclear. In this work, we tested the effect of physiological concentrations of Aβ species of endogenous origin on neurotransmitter release in rat cortical and hippocampal neurons grown in dissociated cultures. Modulation of production and degradation of the endogenous Aβ species as well as applications of the synthetic rodent Aβ40 and Aβ42 affected efficacy of neurotransmitter release from individual presynapses. Low picomolar Aβ40 and Aβ42 increased, while Aβ depletion or application of low micromolar concentration decreased synaptic vesicle recycling, showing a hormetic effect of Aβ on neurotransmitter release. These Aβ-mediated modulations required functional alpha7 acetylcholine receptors as well as extracellular and intracellular calcium, involved regulation of CDK5 and calcineurin signaling and increased recycling of synaptic vesicles. These data indicate that Aβ regulates neurotransmitter release from presynapse and suggest that failure of the normal physiological function of Aβ in the fine-tuning of SV cycling could disrupt synaptic function and homeostasis, which would, eventually, lead to cognitive decline and neurodegeneration. PMID:28785201
Surface dynamics of voltage-gated ion channels.
Heine, Martin; Ciuraszkiewicz, Anna; Voigt, Andreas; Heck, Jennifer; Bikbaev, Arthur
2016-07-03
Neurons encode information in fast changes of the membrane potential, and thus electrical membrane properties are critically important for the integration and processing of synaptic inputs by a neuron. These electrical properties are largely determined by ion channels embedded in the membrane. The distribution of most ion channels in the membrane is not spatially uniform: they undergo activity-driven changes in the range of minutes to days. Even in the range of milliseconds, the composition and topology of ion channels are not static but engage in highly dynamic processes including stochastic or activity-dependent transient association of the pore-forming and auxiliary subunits, lateral diffusion, as well as clustering of different channels. In this review we briefly discuss the potential impact of mobile sodium, calcium and potassium ion channels and the functional significance of this for individual neurons and neuronal networks.
Surface dynamics of voltage-gated ion channels
Heine, Martin; Ciuraszkiewicz, Anna; Voigt, Andreas; Heck, Jennifer; Bikbaev, Arthur
2016-01-01
ABSTRACT Neurons encode information in fast changes of the membrane potential, and thus electrical membrane properties are critically important for the integration and processing of synaptic inputs by a neuron. These electrical properties are largely determined by ion channels embedded in the membrane. The distribution of most ion channels in the membrane is not spatially uniform: they undergo activity-driven changes in the range of minutes to days. Even in the range of milliseconds, the composition and topology of ion channels are not static but engage in highly dynamic processes including stochastic or activity-dependent transient association of the pore-forming and auxiliary subunits, lateral diffusion, as well as clustering of different channels. In this review we briefly discuss the potential impact of mobile sodium, calcium and potassium ion channels and the functional significance of this for individual neurons and neuronal networks. PMID:26891382
Adaptations in Locus Coeruleus Induced by Post-Traumatic Stress Disorder
2013-11-01
optogenetics, channelrhodopsin-2, fear conditioning, pacemaking , calcium, synaptic plasticity, corticotropin-releasing factor (CRF), endoplasmic...neurons revealed tonic, pacemaking activity was accompanied by an underlying membrane potential oscillation that was sensitive to the dihydropyridine...prominent, opening of these channels was not necessary to sustain normal pacemaking at rest. However, these channels help support LC spiking during
ERIC Educational Resources Information Center
Bonsi, Paola; De Persis, Cristiano; Calabresi, Paolo; Bernardi, Giorgio; Pisani, Antonio
2004-01-01
Current evidence appoints a central role to cholinergic interneurons in modulating striatal function. Recently, a long-term potentiation (LTP) of synaptic transmission has been reported to occur in these neurons. The relationship between the pattern of cortico/thalamostriatal fibers stimulation, the consequent changes in the intracellular calcium…
Neurogranin restores amyloid β-mediated synaptic transmission and long-term potentiation deficits.
Kaleka, Kanwardeep Singh; Gerges, Nashaat Z
2016-03-01
Amyloid β (Aβ) is widely considered one of the early causes of cognitive deficits observed in Alzheimer's disease. Many of the deficits caused by Aβ are attributed to its disruption of synaptic function represented by its blockade of long-term potentiation (LTP) and its induction of synaptic depression. Identifying pathways that reverse these synaptic deficits may open the door to new therapeutic targets. In this study, we explored the possibility that Neurogranin (Ng)-a postsynaptic calmodulin (CaM) targeting protein that enhances synaptic function-may rescue Aβ-mediated deficits in synaptic function. Our results show that Ng is able to reverse synaptic depression and LTP deficits induced by Aβ. Furthermore, Ng's restoration of synaptic transmission is through the insertion of GluA1-containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid glutamate receptors (AMPARs). These restorative effects of Ng are dependent on the interaction of Ng and CaM and CaM-dependent activation of CaMKII. Overall, this study identifies a novel mechanism to rescue synaptic deficits induced by Aβ oligomers. It also suggests Ng and CaM signaling as potential therapeutic targets for Alzheimer's disease as well as important tools to further explore the pathophysiology underlying the disease. Copyright © 2015 Elsevier Inc. All rights reserved.
Molina, Anthony J A; Verzi, Michael P; Birnbaum, Andrea D; Yamoah, Ebenezer N; Hammar, Katherine; Smith, Peter J S; Malchow, Robert Paul
2004-01-01
Self-referencing H+-selective microelectrodes were used to measure extracellular H+ fluxes from horizontal cells isolated from the skate retina. A standing H+ flux was detected from quiescent cells, indicating a higher concentration of free hydrogen ions near the extracellular surface of the cell as compared to the surrounding solution. The standing H+ flux was reduced by removal of extracellular sodium or application of 5-(N-ethyl-N-isopropyl) amiloride (EIPA), suggesting activity of a Na+–H+ exchanger. Glutamate decreased H+ flux, lowering the concentration of free hydrogen ions around the cell. AMPA/kainate receptor agonists mimicked the response, and the AMPA/kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) eliminated the effects of glutamate and kainate. Metabotropic glutamate agonists were without effect. Glutamate-induced alterations in H+ flux required extracellular calcium, and were abolished when cells were bathed in an alkaline Ringer solution. Increasing intracellular calcium by photolysis of the caged calcium compound NP-EGTA also altered extracellular H+ flux. Immunocytochemical localization of the plasmalemma Ca2+–H+-ATPase (PMCA pump) revealed intense labelling within the outer plexiform layer and on isolated horizontal cells. Our results suggest that glutamate modulation of H+ flux arises from calcium entry into cells with subsequent activation of the plasmalemma Ca2+–H+-ATPase. These neurotransmitter-induced changes in extracellular pH have the potential to play a modulatory role in synaptic processing in the outer retina. However, our findings argue against the hypothesis that hydrogen ions released by horizontal cells normally act as the inhibitory feedback neurotransmitter onto photoreceptor synaptic terminals to create the surround portion of the centre-surround receptive fields of retinal neurones. PMID:15272044
Loss of Tsc1 in vivo impairs hippocampal mGluR-LTD and increases excitatory synaptic function.
Bateup, Helen S; Takasaki, Kevin T; Saulnier, Jessica L; Denefrio, Cassandra L; Sabatini, Bernardo L
2011-06-15
The autism spectrum disorder tuberous sclerosis complex (TSC) is caused by mutations in the Tsc1 or Tsc2 genes, whose protein products form a heterodimeric complex that negatively regulates mammalian target of rapamycin-dependent protein translation. Although several forms of synaptic plasticity, including metabotropic glutamate receptor (mGluR)-dependent long-term depression (LTD), depend on protein translation at the time of induction, it is unknown whether these forms of plasticity require signaling through the Tsc1/2 complex. To examine this possibility, we postnatally deleted Tsc1 in vivo in a subset of hippocampal CA1 neurons using viral delivery of Cre recombinase in mice. We found that hippocampal mGluR-LTD was abolished by loss of Tsc1, whereas a protein synthesis-independent form of NMDA receptor-dependent LTD was preserved. Additionally, AMPA and NMDA receptor-mediated EPSCs and miniature spontaneous EPSC frequency were enhanced in Tsc1 KO neurons. These changes in synaptic function occurred in the absence of alterations in spine density, morphology, or presynaptic release probability. Our findings indicate that signaling through Tsc1/2 is required for the expression of specific forms of hippocampal synaptic plasticity as well as the maintenance of normal excitatory synaptic strength. Furthermore, these data suggest that perturbations of synaptic signaling may contribute to the pathogenesis of TSC.
Angulo, M C; Parra, P; Dieudonné, S
1998-03-01
Voltage-gated calcium channels form a complex family of distinct molecular entities which participate in multiple neuronal functions. In cerebellar Purkinje cells these channels contribute to the characteristic electrophysiological pattern of complex spikes, first described in birds and later in mammals. A specific calcium channel, the P-type channel, has been shown to mediate the majority of the voltage-gated calcium flux in mammalian Purkinje cells. P-type channels play an essential role in synaptic transmission of mammalian cerebellum. It is unclear whether the P-type calcium channel is present in birds. Studies in chick synaptosomal preparations show that the pharmacological profile of calcium channels is complex and suggest a minimal expression of the P-type channel in avian central nervous system. In the present work, we studied voltage-gated calcium channels in dissociated chick cerebellar Purkinje cells to examine the presence of different calcium channel types. Purkinje cells were used because, in mammals, they express predominantly P-type channels and because the morphology of these cells is thought to be phylogenetically conserved. We found that omega-conotoxin GVIA (omega-CgTx GVIA), a specific antagonist of N-type calcium channel, rather than the synthetic funnel-web spider toxin (sFTX), a P-type channel antagonist, blocks the majority of the barium current flowing through calcium channels in chick Purkinje neurons.
Kristián, Tibor; Weatherby, Tina M; Bates, Timothy E; Fiskum, Gary
2002-12-01
Calcium overload of neural cell mitochondria plays a key role in excitotoxic and ischemic brain injury. This study tested the hypothesis that brain mitochondria consist of subpopulations with differential sensitivity to calcium-induced inner membrane permeability transition, and that this sensitivity is greatly reduced by physiological levels of adenine nucleotides. Isolated non-synaptosomal rat brain mitochondria were incubated in a potassium-based medium in the absence or presence of ATP or ADP. Measurements were made of medium and intramitochondrial free calcium, light scattering, mitochondrial ultrastructure, and the elemental composition of electron-opaque deposits within mitochondria treated with calcium. In the absence of adenine nucleotides, calcium induced a partial decrease in light scattering, accompanied by three distinct ultrastructural morphologies, including large-amplitude swelling, matrix vacuolization and a normal appearance. In the presence of ATP or ADP the mitochondrial calcium uptake capacity was greatly enhanced and calcium induced an increase rather than a decrease in mitochondrial light scattering. Approximately 10% of the mitochondria appeared damaged and the rest contained electron-dense precipitates that contained calcium, as determined by electron-energy loss spectroscopy. These results indicate that brain mitochondria are heterogeneous in their response to calcium. In the absence of adenine nucleotides, approximately 20% of the mitochondrial population exhibit morphological alterations consistent with activation of the permeability transition, but less than 10% exhibit evidence of osmotic swelling and membrane disruption in the presence of ATP or ADP.
Zugaib, João; Leão, Ricardo M
2017-04-01
Neurons from the dorsal cochlear nucleus (DCN) present endocannabinoid (EC) dependent short-term synaptic plasticity in the form of depolarization-induced suppression of excitation (DSE). Postsynaptic calcium influx promotes EC synthesis and depression of neurotransmission. ECs can be degraded by a hydrolytic and an oxidative pathway, the latter via the enzyme cyclooxygenase 2 (COX-2). Hyperactivity in the DCN is related to the development of tinnitus, which can be induced by high doses of salicylate, a COX-2 inhibitor. Since EC-dependent plasticity in the DCN can affect its excitation-inhibition balance, we investigated the impact of inhibitors of both oxidative and hydrolytic EC metabolism on the DSE from the synapses between the parallel fibers and cartwheel neurons (PF-CW) in the DCN. We found that inhibitors of COX-2 (ibuprofen and indomethacin) did not alter DSE at the PF-CW synapse. Salicylate also did not alter DSE. However, we found that inhibitors of the hydrolytic pathway did not affect DSE magnitude, but surprisingly speeded DSE decay. We conclude that oxidative EC degradation in the PF-CW synapse is not relevant for termination of DSE and are probably not important for controlling this form of synaptic plasticity in the DCN PF-CW synapse. The lack of effect on DSE of high doses of salicylate also suggests that it is not acting by increasing DSE in the PF-CWC synapse. However, the counter intuitive effect of the hydrolytic inhibitors shows that increasing EC on this synapse have more complex effects on DSE. © 2016 Wiley Periodicals, Inc.
Nitric Oxide Is an Activity-Dependent Regulator of Target Neuron Intrinsic Excitability
Steinert, Joern R.; Robinson, Susan W.; Tong, Huaxia; Haustein, Martin D.; Kopp-Scheinpflug, Cornelia; Forsythe, Ian D.
2011-01-01
Summary Activity-dependent changes in synaptic strength are well established as mediating long-term plasticity underlying learning and memory, but modulation of target neuron excitability could complement changes in synaptic strength and regulate network activity. It is thought that homeostatic mechanisms match intrinsic excitability to the incoming synaptic drive, but evidence for involvement of voltage-gated conductances is sparse. Here, we show that glutamatergic synaptic activity modulates target neuron excitability and switches the basis of action potential repolarization from Kv3 to Kv2 potassium channel dominance, thereby adjusting neuronal signaling between low and high activity states, respectively. This nitric oxide-mediated signaling dramatically increases Kv2 currents in both the auditory brain stem and hippocampus (>3-fold) transforming synaptic integration and information transmission but with only modest changes in action potential waveform. We conclude that nitric oxide is a homeostatic regulator, tuning neuronal excitability to the recent history of excitatory synaptic inputs over intervals of minutes to hours. PMID:21791288
Xi, Yuan-Di; Ding, Juan; Han, Jing; Zhang, Dan-Di; Liu, Jin-Meng; Feng, Ling-Li; Xiao, Rong
2015-05-01
Synaptic damage is the key factor of cognitive impairment. The purpose of this study was to understand the effect of soybean isoflavone (SIF) on synaptic damage induced by β-amyloid peptide 1-42 (Aβ1-42) in rats. Adult male Wistar rats were randomly divided into control, Aβ1-42, SIF, and SIF + Aβ1-42 (SIF pretreatment) groups according to body weight. SIF was treated orally by gavage in SIF and SIF + Aβ1-42 groups. After 14 days pretreatment with SIF or vehicle, Aβ1-42 was injected into the lateral cerebral ventricle of rats in Aβ1-42 and SIF + Aβ1-42 groups using miniosmotic pump. The level of Aβ1-42 and the expression of N-methyl-D-aspartic-acid receptor (NMDAR) were observed by immunohistochemistry. Reverse transcriptase polymerase chain reaction was used to detect the mRNA levels of NMDAR, calmodulin (CaM), calcium/CaM-dependent protein kinase II (CaMKII), cAMP-response element binding protein (CREB), and brain-derived neurotrophic factor (BDNF). The results showed that Aβ1-42 down-regulated mRNA and protein expression of the NR1 and NR2B subunits of NMDAR, SIF pretreatment could reverse these changes. The mRNA expression of CaM, CaMKII, CREB, and BDNF were down-regulated by Aβ1-42, but they were all regulated by SIF pretreatment. These results suggest that SIF pretreatment could antagonize the neuron damage in rats induced by Aβ1-42, and its mechanism might be associated with the NMDA receptor and CaM/CaMKII/CREB/BDNF signaling pathway, which are the synaptic plasticity-related molecules.
Proteomic analysis of PSD-93 knockout mice following the induction of ischemic cerebral injury.
Rong, Rong; Yang, Hui; Rong, Liangqun; Wei, Xiue; Li, Qingjie; Liu, Xiaomei; Gao, Hong; Xu, Yun; Zhang, Qingxiu
2016-03-01
Postsynaptic density protein-93 (PSD-93) is enriched in the postsynaptic density and is involved in N-methyl-d-aspartate receptor (NMDAR) triggered neurotoxicity through PSD-93/NMDAR/nNOS signaling pathway. In the present study, we found that PSD-93 deficiency reduced infarcted volume and neurological deficits induced by transient middle cerebral artery occlusion (tMCAO) in the mice. To identify novel targets of PSD-93 related neurotoxicity, we applied isobaric tags for relative and absolute quantitative (iTRAQ) labeling and combined this labeling with on-line two-dimensional LC/MS/MS technology to elucidate the changes in protein expression in PSD-93 knockout mice following tMCAO. The proteomic data set consisted of 1892 proteins. Compared to control group, differences in expression levels in ischemic group >1.5-fold and <0.66-fold were considered as differential expression. A total of 104 unique proteins with differential abundance levels were identified, among which 17 proteins were selected for further validation. Gene ontology analysis using UniProt database revealed that these differentially expressed proteins are involved in diverse function such as synaptic transmission, neuronal neurotransmitter and ion transport, modification of organelle membrane components. Moreover, network analysis revealed that the interacting proteins were involved in the transport of synaptic vesicles, the integrity of synaptic membranes and the activation of the ionotropic glutamate receptors NMDAR1 and NMDAR2B. Finally, RT-PCR and Western blot analysis showed that SynGAP, syntaxin-1A, protein kinase C β, and voltage-dependent L-type calcium channels were inhibited by ischemia-reperfusion. Identification of these proteins provides valuable clues to elucidate the mechanisms underlying the actions of PSD-93 in ischemia-reperfusion induced neurotoxicity. Copyright © 2015 Elsevier Inc. All rights reserved.
Kim, Jong Wan; Ha, Gyoung Yim; Jung, Yong Wook
2014-09-01
N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methylisoxazole-4-propinoic acid (AMPA) receptors bound to postsynaptic density-95 (PSD-95) and α isoform of calcium/calmodulin-dependent protein kinase II (αCaMKII) is fundamentally involved in the regulation of working memory. The aim of present study was to investigate the alterations of NMDA and AMPA receptors responsible for hippocampal synaptic dysfunction and selective neuronal cell death after chronic renal failure (CRF) which may be associated with impairment of working memory. Altered interactions between NMDA and AMPA receptors and PSD-95 and αCaMKII were analyzed in the cornu ammonis (CA) 1 and CA3/dentate gyrus (DG) subfields of the uremic rat hippocampi using the immunoblotting and immunoprecipitation methods. Uremia induced by CRF produced necrotic cell death and decreased neuronal nucleoli protein levels in the hippocampal CA1 subfield, but not in the CA3/DG subfields. The CA1 subfields of CRF rats exhibited significant decreases and increases, respectively, in the expressions of PSD-95/NR2B and αCaMKII/NR2A synaptic complex. Moreover, increased phosphorylation of glutamate receptor type 1 (GluR1) AMPA receptor at ser831 was observed in the CA1 subfield after CRF. These hippocampal CA1 neuronal vulnerability may be responsible for memory dysfunction after CRF as mediated by an increase in NR2A-containing NMDA receptors bound to αCaMKII and subsequent activation of GluR1-containing AMPA receptors caused by the phosphorylation of GluR1 at ser831.
Wishart, Thomas M; Rooney, Timothy M; Lamont, Douglas J; Wright, Ann K; Morton, A Jennifer; Jackson, Mandy; Freeman, Marc R; Gillingwater, Thomas H
2012-01-01
Degeneration of synaptic and axonal compartments of neurons is an early event contributing to the pathogenesis of many neurodegenerative diseases, but the underlying molecular mechanisms remain unclear. Here, we demonstrate the effectiveness of a novel "top-down" approach for identifying proteins and functional pathways regulating neurodegeneration in distal compartments of neurons. A series of comparative quantitative proteomic screens on synapse-enriched fractions isolated from the mouse brain following injury identified dynamic perturbations occurring within the proteome during both initiation and onset phases of degeneration. In silico analyses highlighted significant clustering of proteins contributing to functional pathways regulating synaptic transmission and neurite development. Molecular markers of degeneration were conserved in injury and disease, with comparable responses observed in synapse-enriched fractions isolated from mouse models of Huntington's disease (HD) and spinocerebellar ataxia type 5. An initial screen targeting thirteen degeneration-associated proteins using mutant Drosophila lines revealed six potential regulators of synaptic and axonal degeneration in vivo. Mutations in CALB2, ROCK2, DNAJC5/CSP, and HIBCH partially delayed injury-induced neurodegeneration. Conversely, mutations in DNAJC6 and ALDHA1 led to spontaneous degeneration of distal axons and synapses. A more detailed genetic analysis of DNAJC5/CSP mutants confirmed that loss of DNAJC5/CSP was neuroprotective, robustly delaying degeneration in axonal and synaptic compartments. Our study has identified conserved molecular responses occurring within synapse-enriched fractions of the mouse brain during the early stages of neurodegeneration, focused on functional networks modulating synaptic transmission and incorporating molecular chaperones, cytoskeletal modifiers, and calcium-binding proteins. We propose that the proteins and functional pathways identified in the current study represent attractive targets for developing therapeutics aimed at modulating synaptic and axonal stability and neurodegeneration in vivo.
Rosenkranz, J. Amiel
2012-01-01
The amygdala has a fundamental role in driving affective behaviors in response to sensory cues. To accomplish this, neurons of the lateral nucleus (LAT) must integrate a large number of synaptic inputs. A wide range of factors influence synaptic integration, including membrane potential, voltage-gated ion channels and GABAergic inhibition. However, little is known about how these factors modulate integration of synaptic inputs in LAT neurons in vivo. The purpose of this study was to determine the voltage-dependent factors that modify in vivo integration of synaptic inputs in the soma of LAT neurons. In vivo intracellular recordings from anesthetized rats were used to measure post-synaptic potentials (PSPs) and clusters of PSPs across a range of membrane potentials. These studies found that the relationship between membrane potential and PSP clusters was sublinear, due to a reduction of cluster amplitude and area at depolarized membrane potentials. In combination with intracellular delivery of pharmacological agents, it was found that the voltage-dependent suppression of PSP clusters was sensitive to tetraethylammonium (TEA), but not cesium or a blocker of fast GABAergic inhibition. These findings indicate that integration of PSPs in LAT neurons in vivo is strongly modified by somatic membrane potential, likely through voltage-dependent TEA-sensitive potassium channels. Conditions that lead to a shift in membrane potential, or a modulation of the number or function of these ion channels will lead to a more uniform capacity for integration across voltages, and perhaps greatly facilitate amygdala-dependent behaviors. PMID:22989917
He, Zhi; Lu, Qing; Xu, Xulin; Huang, Lin; Chen, Jianguo; Guo, Lianjun
2009-01-28
Our previous work has demonstrated that DDPH (1-(2, 6-dimethylphenoxy)-2-(3, 4-dimethoxyphenylethylamino) propane hydrochloride), a competitive alpha(1)-adrenoceptor antagonist, could improve cognitive deficits, reduce histopathological damage and facilitate synaptic plasticity in vivo possibly via increasing NR2B (NMDA receptor 2B) expression and antioxidation of DDPH itself. The present study further evaluated effects of DDPH on OGD (Oxygen and glucose deprivation)-induced neuronal damage in rat primary hippocampal cells. The addition of DDPH to the cultured cells 12 h before OGD for 4 h significantly reduced neuronal damage as determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and LDH (lactate dehydrogenase) release experiments. The effects of DDPH on intracellular calcium concentration were explored by Fura-2 based calcium imaging techniques and results showed that DDPH at the dosages of 5 microM and 10 microM suppressed the increase of intracellular calcium ([Ca(2+)](i)) stimulated by 50 mM KCl in Ca(2+)-containing extracellular solutions. However, DDPH couldn't suppress the increase of [Ca(2+)](i) induced by both 50 microM glutamate in Ca(2+)-containing extracellular solutions and 20 microM ATP (Adenosine Triphosphate) in Ca(2+)-free solution. These results indicated that DDPH prevented [Ca(2+)](i) overload in hippocampal neurons by blocking Ca(2+) influx (voltage-dependent calcium channel) but not Ca(2+) mobilization from the intracellular Ca(2+) store in endoplasm reticulum (ER). We also demonstrated that DDPH could decrease glutamate release when hippocampal cells were subjected to OGD. These observations demonstrated that DDPH protected hippocampal neurons against OGD-induced damage by preventing the Ca(2+) influx and decreasing glutamate release.
Xiao, P; Staubli, U; Kessler, M; Lynch, G
1991-10-01
Aniracetam reversibly increased synaptic responses mediated by the AMPA but not the NMDA subclass of glutamate receptors in hippocampus and was considerably more potent than structurally similar nootropics. The drug had greater effects on field excitatory postsynaptic potentials (EPSPs) in the dentate gyrus and CA1 region than it did in the CA3 region, suggesting that it differentiates between variants of the AMPA receptor. Ligand binding to glutamate receptors in synaptosomal membrane fractions was minimally changed by aniracetam. Finally, the percent facilitation produced by aniracetam in the CA1 region was not reduced by any of three treatments (4-aminopyridine, changes in extracellular calcium concentrations, paired-pulse stimulation) that affect release but, in accord with a previous report, was substantially decreased by long-term potentiation. These results support the conclusion that aniracetam selectively increases the conductance of a subgroup of synaptic AMPA receptors in hippocampus and suggest that receptor changes underlie the expression of long-term potentiation.
Characterization of auditory synaptic inputs to gerbil perirhinal cortex
Kotak, Vibhakar C.; Mowery, Todd M.; Sanes, Dan H.
2015-01-01
The representation of acoustic cues involves regions downstream from the auditory cortex (ACx). One such area, the perirhinal cortex (PRh), processes sensory signals containing mnemonic information. Therefore, our goal was to assess whether PRh receives auditory inputs from the auditory thalamus (MG) and ACx in an auditory thalamocortical brain slice preparation and characterize these afferent-driven synaptic properties. When the MG or ACx was electrically stimulated, synaptic responses were recorded from the PRh neurons. Blockade of type A gamma-aminobutyric acid (GABA-A) receptors dramatically increased the amplitude of evoked excitatory potentials. Stimulation of the MG or ACx also evoked calcium transients in most PRh neurons. Separately, when fluoro ruby was injected in ACx in vivo, anterogradely labeled axons and terminals were observed in the PRh. Collectively, these data show that the PRh integrates auditory information from the MG and ACx and that auditory driven inhibition dominates the postsynaptic responses in a non-sensory cortical region downstream from the ACx. PMID:26321918
Gilbert, Jessica R.; Symmonds, Mkael; Hanna, Michael G.; Dolan, Raymond J.; Friston, Karl J.; Moran, Rosalyn J.
2016-01-01
Clinical assessments of brain function rely upon visual inspection of electroencephalographic waveform abnormalities in tandem with functional magnetic resonance imaging. However, no current technology proffers in vivo assessments of activity at synapses, receptors and ion-channels, the basis of neuronal communication. Using dynamic causal modeling we compared electrophysiological responses from two patients with distinct monogenic ion channelopathies and a large cohort of healthy controls to demonstrate the feasibility of assaying synaptic-level channel communication non-invasively. Synaptic channel abnormality was identified in both patients (100% sensitivity) with assay specificity above 89%, furnishing estimates of neurotransmitter and voltage-gated ion throughput of sodium, calcium, chloride and potassium. This performance indicates a potential novel application as an adjunct for clinical assessments in neurological and psychiatric settings. More broadly, these findings indicate that biophysical models of synaptic channels can be estimated non-invasively, having important implications for advancing human neuroimaging to the level of non-invasive ion channel assays. PMID:26342528
Sub-micron opto-chemical probes for studying living neurons
NASA Astrophysics Data System (ADS)
Hossein-Zadeh, M.; Delgado, J.; Schweizer, F.; Lieberman, R.
2017-02-01
We have fabricated sub-micron opto-chemical probes for pH, oxygen and calcium monitoring and demonstrated their application in intracellular and extracellular monitoring of neurons (cortical neuronal cultures and acute hippocampal slices). Using these probes, we have measured extracellular pH in the stratum radiatum of the CA1 region of mouse hippocampus upon stimulation of presynaptic Schaffer collateral axons. Synaptic transmission was monitored using standard electrophysiological techniques. We find that the local pH transiently changes in response to synaptic stimulation. In addition, the geometry of the functionalized region on the probe combined with high sensitivity imaging enables simultaneous monitoring of spatially adjacent but distinct compartments. As proof of concept we impaled cultured neurons with the probe measured calcium and pH inside as well as directly outside of neurons as we changed the pH and calcium concentration in the physiological solution in the perfusion chamber. As such these probes can be used to study the impact of the environment on both cellular and extra-cellular space. Additionally as the chemical properties of the surrounding medium can be controlled and monitored with high precision, these probes enable differential measurement of the target parameter referenced to a stable bath. This approach eliminates the uncertainties associated with non-chemical fluctuations in the fluorescent emission and result in a self-calibrated opto-chemical probe. We have also demonstrated multifunctional probes that are capable of measuring up to three parameters in the extracellular space in brain slices.
Astroglial Metabolic Networks Sustain Hippocampal Synaptic Transmission
NASA Astrophysics Data System (ADS)
Rouach, Nathalie; Koulakoff, Annette; Abudara, Veronica; Willecke, Klaus; Giaume, Christian
2008-12-01
Astrocytes provide metabolic substrates to neurons in an activity-dependent manner. However, the molecular mechanisms involved in this function, as well as its role in synaptic transmission, remain unclear. Here, we show that the gap-junction subunit proteins connexin 43 and 30 allow intercellular trafficking of glucose and its metabolites through astroglial networks. This trafficking is regulated by glutamatergic synaptic activity mediated by AMPA receptors. In the absence of extracellular glucose, the delivery of glucose or lactate to astrocytes sustains glutamatergic synaptic transmission and epileptiform activity only when they are connected by gap junctions. These results indicate that astroglial gap junctions provide an activity-dependent intercellular pathway for the delivery of energetic metabolites from blood vessels to distal neurons.
Astroglial metabolic networks sustain hippocampal synaptic transmission.
Rouach, Nathalie; Koulakoff, Annette; Abudara, Veronica; Willecke, Klaus; Giaume, Christian
2008-12-05
Astrocytes provide metabolic substrates to neurons in an activity-dependent manner. However, the molecular mechanisms involved in this function, as well as its role in synaptic transmission, remain unclear. Here, we show that the gap-junction subunit proteins connexin 43 and 30 allow intercellular trafficking of glucose and its metabolites through astroglial networks. This trafficking is regulated by glutamatergic synaptic activity mediated by AMPA receptors. In the absence of extracellular glucose, the delivery of glucose or lactate to astrocytes sustains glutamatergic synaptic transmission and epileptiform activity only when they are connected by gap junctions. These results indicate that astroglial gap junctions provide an activity-dependent intercellular pathway for the delivery of energetic metabolites from blood vessels to distal neurons.
Mixed protonic and electronic conductors hybrid oxide synaptic transistors
NASA Astrophysics Data System (ADS)
Fu, Yang Ming; Zhu, Li Qiang; Wen, Juan; Xiao, Hui; Liu, Rui
2017-05-01
Mixed ionic and electronic conductor hybrid devices have attracted widespread attention in the field of brain-inspired neuromorphic systems. Here, mixed protonic and electronic conductor (MPEC) hybrid indium-tungsten-oxide (IWO) synaptic transistors gated by nanogranular phosphorosilicate glass (PSG) based electrolytes were obtained. Unique field-configurable proton self-modulation behaviors were observed on the MPEC hybrid transistor with extremely strong interfacial electric-double-layer effects. Temporally coupled synaptic plasticities were demonstrated on the MPEC hybrid IWO synaptic transistor, including depolarization/hyperpolarization, synaptic facilitation and depression, facilitation-stead/depression-stead behaviors, spiking rate dependent plasticity, and high-pass/low-pass synaptic filtering behaviors. MPEC hybrid synaptic transistors may find potential applications in neuron-inspired platforms.
Reciprocal and activity-dependent regulation of surface AMPA and NMDA receptors in cultured neurons
Li, Guo Hua; Jackson, Michael F; Orser, Beverley A; MacDonald, John F
2010-01-01
Activation of NMDA receptors (NMDARs) can modulate excitatory synaptic transmission in the central nervous system by dynamically altering the number of synaptic AMPA receptors (AMPARs). The surface expression of NMDARs themselves is also subject to modulation in an activity-dependent manner. In addition to NMDAR-induced changes in AMPAR expression, AMPARs have also been found to regulate their own surface expression, independently of NMDARs. However, whether or not AMPARs and NMDARs might reciprocally regulate their surface expression has not previously been systematically explored. We utilized surface biotinylation assays and stimulation protocols intended to selectively stimulate various glutamate receptor subpopulations (e.g. AMPARs vs NMDARs; synaptic vs extrasynaptic). We reveal that activation of synaptic NMDARs increases the surface expression of both NMDAR and AMPAR subunits, while activation of extrasynaptic NMDAR produces the opposite effect. Surprisingly, we find that selective activation of AMPARs reduces the surface expression of not only AMPARs but also of NMDARs. These results suggest that both AMPARs and NMDARs at synaptic sites are subject to modulation by multiple signalling pathways in an activity-dependent way. PMID:21383896
Synaptic activity regulates AMPA receptor trafficking through different recycling pathways
Zheng, Ning; Jeyifous, Okunola; Munro, Charlotte; Montgomery, Johanna M; Green, William N
2015-01-01
Changes in glutamatergic synaptic strength in brain are dependent on AMPA-type glutamate receptor (AMPAR) recycling, which is assumed to occur through a single local pathway. In this study, we present evidence that AMPAR recycling occurs through different pathways regulated by synaptic activity. Without synaptic stimulation, most AMPARs recycled in dynamin-independent endosomes containing the GTPase, Arf6. Few AMPARs recycled in dynamin-dependent endosomes labeled by transferrin receptors (TfRs). AMPAR recycling was blocked by alterations in the GTPase, TC10, which co-localized with Arf6 endosomes. TC10 mutants that reduced AMPAR recycling had no effect on increased AMPAR levels with long-term potentiation (LTP) and little effect on decreased AMPAR levels with long-term depression. However, internalized AMPAR levels in TfR-containing recycling endosomes increased after LTP, indicating increased AMPAR recycling through the dynamin-dependent pathway with synaptic plasticity. LTP-induced AMPAR endocytosis is inconsistent with local recycling as a source of increased surface receptors, suggesting AMPARs are trafficked from other sites. DOI: http://dx.doi.org/10.7554/eLife.06878.001 PMID:25970033
Role of motor cortex NMDA receptors in learning-dependent synaptic plasticity of behaving mice
Hasan, Mazahir T.; Hernández-González, Samuel; Dogbevia, Godwin; Treviño, Mario; Bertocchi, Ilaria; Gruart, Agnès; Delgado-García, José M.
2013-01-01
The primary motor cortex has an important role in the precise execution of learned motor responses. During motor learning, synaptic efficacy between sensory and primary motor cortical neurons is enhanced, possibly involving long-term potentiation and N-methyl-D-aspartate (NMDA)-specific glutamate receptor function. To investigate whether NMDA receptor in the primary motor cortex can act as a coincidence detector for activity-dependent changes in synaptic strength and associative learning, here we generate mice with deletion of the Grin1 gene, encoding the essential NMDA receptor subunit 1 (GluN1), specifically in the primary motor cortex. The loss of NMDA receptor function impairs primary motor cortex long-term potentiation in vivo. Importantly, it impairs the synaptic efficacy between the primary somatosensory and primary motor cortices and significantly reduces classically conditioned eyeblink responses. Furthermore, compared with wild-type littermates, mice lacking primary motor cortex show slower learning in Skinner-box tasks. Thus, primary motor cortex NMDA receptors are necessary for activity-dependent synaptic strengthening and associative learning. PMID:23978820
Lien, Anthony D.; Scanziani, Massimo
2011-01-01
Relating the functional properties of neurons in an intact organism with their cellular and synaptic characteristics is necessary for a mechanistic understanding of brain function. However, while the functional properties of cortical neurons (e.g., tuning to sensory stimuli) are necessarily determined in vivo, detailed cellular and synaptic analysis relies on in vitro techniques. Here we describe an approach that combines in vivo calcium imaging (for functional characterization) with photo-activation of fluorescent proteins (for neuron labeling), thereby allowing targeted in vitro recording of multiple neurons with known functional properties. We expressed photo-activatable GFP rendered non-diffusible through fusion with a histone protein (H2B–PAGFP) in the mouse visual cortex to rapidly photo-label constellations of neurons in vivo at cellular and sub-cellular resolution using two-photon excitation. This photo-labeling method was compatible with two-photon calcium imaging of neuronal responses to visual stimuli, allowing us to label constellations of neurons with specific functional properties. Photo-labeled neurons were easily identified in vitro in acute brain slices and could be targeted for whole-cell recording. We also demonstrate that in vitro and in vivo image stacks of the same photo-labeled neurons could be registered to one another, allowing the exact in vivo response properties of individual neurons recorded in vitro to be known. The ability to perform in vitro recordings from neurons with known functional properties opens up exciting new possibilities for dissecting the cellular, synaptic, and circuit mechanisms that underlie neuronal function in vivo. PMID:22144948
NASA Astrophysics Data System (ADS)
Yamagata, Atsushi; Yoshida, Tomoyuki; Sato, Yusuke; Goto-Ito, Sakurako; Uemura, Takeshi; Maeda, Asami; Shiroshima, Tomoko; Iwasawa-Okamoto, Shiho; Mori, Hisashi; Mishina, Masayoshi; Fukai, Shuya
2015-04-01
Synapse formation is triggered through trans-synaptic interaction between pairs of pre- and postsynaptic adhesion molecules, the specificity of which depends on splice inserts known as `splice-insert signaling codes'. Receptor protein tyrosine phosphatase δ (PTPδ) can bidirectionally induce pre- and postsynaptic differentiation of neurons by trans-synaptically binding to interleukin-1 receptor accessory protein (IL-1RAcP) and IL-1RAcP-like-1 (IL1RAPL1) in a splicing-dependent manner. Here, we report crystal structures of PTPδ in complex with IL1RAPL1 and IL-1RAcP. The first immunoglobulin-like (Ig) domain of IL1RAPL1 directly recognizes the first splice insert, which is critical for binding to IL1RAPL1. The second splice insert functions as an adjustable linker that positions the Ig2 and Ig3 domains of PTPδ for simultaneously interacting with the Ig1 domain of IL1RAPL1 or IL-1RAcP. We further identified the IL1RAPL1-specific interaction, which appears coupled to the first-splice-insert-mediated interaction. Our results thus reveal the decoding mechanism of splice-insert signaling codes for synaptic differentiation induced by trans-synaptic adhesion between PTPδ and IL1RAPL1/IL-1RAcP.
Self-Organization of Microcircuits in Networks of Spiking Neurons with Plastic Synapses.
Ocker, Gabriel Koch; Litwin-Kumar, Ashok; Doiron, Brent
2015-08-01
The synaptic connectivity of cortical networks features an overrepresentation of certain wiring motifs compared to simple random-network models. This structure is shaped, in part, by synaptic plasticity that promotes or suppresses connections between neurons depending on their joint spiking activity. Frequently, theoretical studies focus on how feedforward inputs drive plasticity to create this network structure. We study the complementary scenario of self-organized structure in a recurrent network, with spike timing-dependent plasticity driven by spontaneous dynamics. We develop a self-consistent theory for the evolution of network structure by combining fast spiking covariance with a slow evolution of synaptic weights. Through a finite-size expansion of network dynamics we obtain a low-dimensional set of nonlinear differential equations for the evolution of two-synapse connectivity motifs. With this theory in hand, we explore how the form of the plasticity rule drives the evolution of microcircuits in cortical networks. When potentiation and depression are in approximate balance, synaptic dynamics depend on weighted divergent, convergent, and chain motifs. For additive, Hebbian STDP these motif interactions create instabilities in synaptic dynamics that either promote or suppress the initial network structure. Our work provides a consistent theoretical framework for studying how spiking activity in recurrent networks interacts with synaptic plasticity to determine network structure.
Self-Organization of Microcircuits in Networks of Spiking Neurons with Plastic Synapses
Ocker, Gabriel Koch; Litwin-Kumar, Ashok; Doiron, Brent
2015-01-01
The synaptic connectivity of cortical networks features an overrepresentation of certain wiring motifs compared to simple random-network models. This structure is shaped, in part, by synaptic plasticity that promotes or suppresses connections between neurons depending on their joint spiking activity. Frequently, theoretical studies focus on how feedforward inputs drive plasticity to create this network structure. We study the complementary scenario of self-organized structure in a recurrent network, with spike timing-dependent plasticity driven by spontaneous dynamics. We develop a self-consistent theory for the evolution of network structure by combining fast spiking covariance with a slow evolution of synaptic weights. Through a finite-size expansion of network dynamics we obtain a low-dimensional set of nonlinear differential equations for the evolution of two-synapse connectivity motifs. With this theory in hand, we explore how the form of the plasticity rule drives the evolution of microcircuits in cortical networks. When potentiation and depression are in approximate balance, synaptic dynamics depend on weighted divergent, convergent, and chain motifs. For additive, Hebbian STDP these motif interactions create instabilities in synaptic dynamics that either promote or suppress the initial network structure. Our work provides a consistent theoretical framework for studying how spiking activity in recurrent networks interacts with synaptic plasticity to determine network structure. PMID:26291697
Chen, Rongfa; Zhang, Tao; Kuang, Liting; Chen, Zhen; Ran, Dongzhi; Niu, Yang; Xu, Kangqing; Gu, Huaiyu
2015-01-01
. Sevoflurane, one of the most used general anesthetics, is widely used in clinical practice all over the world. Previous studies indicated that sevoflurane could induce neuron apoptosis and neural deficit causing query in the safety of anesthesia using sevoflurane. The present study was designed to investigate the effects of sevoflurane on electrophysiology in Drosophila pupa whose excitatory neurotransmitter is acetylcholine early after sevoflurane exposure using whole brain recording technique. Wide types of Drosophila (canton-s flies) were allocated to control and sevoflurane groups randomly. Sevoflurane groups (1% sevoflurane; 2% sevoflurane; 3% sevoflurane) were exposed to sevoflurane and the exposure lasted 5 hours, respectively. All flies were subjected to electrophysiology experiment using patch clamp 24 hours after exposure. The results showed that, 24 hours after sevoflurane exposure, frequency but not the amplitude of miniature excitatory postsynaptic currents (mEPSCs) was significantly reduced (P < 0.05). Furthermore, we explored the underlying mechanism and found that calcium currents density, which partially regulated the frequency of mEPSCs, was significantly reduced after sevoflurane exposure (P < 0.05). All these suggested that sevoflurane could alter the mEPSCs that are related to synaptic plasticity partially through modulating calcium channel early after sevoflurane exposure.
Myopic (HD-PTP, PTPN23) selectively regulates synaptic neuropeptide release.
Bulgari, Dinara; Jha, Anupma; Deitcher, David L; Levitan, Edwin S
2018-02-13
Neurotransmission is mediated by synaptic exocytosis of neuropeptide-containing dense-core vesicles (DCVs) and small-molecule transmitter-containing small synaptic vesicles (SSVs). Exocytosis of both vesicle types depends on Ca 2+ and shared secretory proteins. Here, we show that increasing or decreasing expression of Myopic (mop, HD-PTP, PTPN23), a Bro1 domain-containing pseudophosphatase implicated in neuronal development and neuropeptide gene expression, increases synaptic neuropeptide stores at the Drosophila neuromuscular junction (NMJ). This occurs without altering DCV content or transport, but synaptic DCV number and age are increased. The effect on synaptic neuropeptide stores is accounted for by inhibition of activity-induced Ca 2+ -dependent neuropeptide release. cAMP-evoked Ca 2+ -independent synaptic neuropeptide release also requires optimal Myopic expression, showing that Myopic affects the DCV secretory machinery shared by cAMP and Ca 2+ pathways. Presynaptic Myopic is abundant at early endosomes, but interaction with the endosomal sorting complex required for transport III (ESCRT III) protein (CHMP4/Shrub) that mediates Myopic's effect on neuron pruning is not required for control of neuropeptide release. Remarkably, in contrast to the effect on DCVs, Myopic does not affect release from SSVs. Therefore, Myopic selectively regulates synaptic DCV exocytosis that mediates peptidergic transmission at the NMJ.
Pannexin 1 regulates bidirectional hippocampal synaptic plasticity in adult mice.
Ardiles, Alvaro O; Flores-Muñoz, Carolina; Toro-Ayala, Gabriela; Cárdenas, Ana M; Palacios, Adrian G; Muñoz, Pablo; Fuenzalida, Marco; Sáez, Juan C; Martínez, Agustín D
2014-01-01
The threshold for bidirectional modification of synaptic plasticity is known to be controlled by several factors, including the balance between protein phosphorylation and dephosphorylation, postsynaptic free Ca(2+) concentration and NMDA receptor (NMDAR) composition of GluN2 subunits. Pannexin 1 (Panx1), a member of the integral membrane protein family, has been shown to form non-selective channels and to regulate the induction of synaptic plasticity as well as hippocampal-dependent learning. Although Panx1 channels have been suggested to play a role in excitatory long-term potentiation (LTP), it remains unknown whether these channels also modulate long-term depression (LTD) or the balance between both types of synaptic plasticity. To study how Panx1 contributes to excitatory synaptic efficacy, we examined the age-dependent effects of eliminating or blocking Panx1 channels on excitatory synaptic plasticity within the CA1 region of the mouse hippocampus. By using different protocols to induce bidirectional synaptic plasticity, Panx1 channel blockade or lack of Panx1 were found to enhance LTP, whereas both conditions precluded the induction of LTD in adults, but not in young animals. These findings suggest that Panx1 channels restrain the sliding threshold for the induction of synaptic plasticity and underlying brain mechanisms of learning and memory.
Pannexin 1 regulates bidirectional hippocampal synaptic plasticity in adult mice
Ardiles, Alvaro O.; Flores-Muñoz, Carolina; Toro-Ayala, Gabriela; Cárdenas, Ana M.; Palacios, Adrian G.; Muñoz, Pablo; Fuenzalida, Marco; Sáez, Juan C.; Martínez, Agustín D.
2014-01-01
The threshold for bidirectional modification of synaptic plasticity is known to be controlled by several factors, including the balance between protein phosphorylation and dephosphorylation, postsynaptic free Ca2+ concentration and NMDA receptor (NMDAR) composition of GluN2 subunits. Pannexin 1 (Panx1), a member of the integral membrane protein family, has been shown to form non-selective channels and to regulate the induction of synaptic plasticity as well as hippocampal-dependent learning. Although Panx1 channels have been suggested to play a role in excitatory long-term potentiation (LTP), it remains unknown whether these channels also modulate long-term depression (LTD) or the balance between both types of synaptic plasticity. To study how Panx1 contributes to excitatory synaptic efficacy, we examined the age-dependent effects of eliminating or blocking Panx1 channels on excitatory synaptic plasticity within the CA1 region of the mouse hippocampus. By using different protocols to induce bidirectional synaptic plasticity, Panx1 channel blockade or lack of Panx1 were found to enhance LTP, whereas both conditions precluded the induction of LTD in adults, but not in young animals. These findings suggest that Panx1 channels restrain the sliding threshold for the induction of synaptic plasticity and underlying brain mechanisms of learning and memory. PMID:25360084
Garcia-Junco-Clemente, Pablo; Chow, David K; Tring, Elaine; Lazaro, Maria T; Trachtenberg, Joshua T; Golshani, Peyman
2013-11-05
De novo phosphatase and tensin homolog on chromosome ten (PTEN) mutations are a cause of sporadic autism. How single-copy loss of PTEN alters neural function is not understood. Here we report that Pten haploinsufficiency increases the expression of small-conductance calcium-activated potassium channels. The resultant augmentation of this conductance increases the amplitude of the afterspike hyperpolarization, causing a decrease in intrinsic excitability. In vivo, this change in intrinsic excitability reduces evoked firing rates of cortical pyramidal neurons but does not alter receptive field tuning. The decreased in vivo firing rate is not associated with deficits in the dendritic integration of synaptic input or with changes in dendritic complexity. These findings identify calcium-activated potassium channelopathy as a cause of cortical dysfunction in the PTEN model of autism and provide potential molecular therapeutic targets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu Guoqi; Chen Ying; Huang Yuying
2011-08-01
Parkinson's disease (PD)-like symptoms including learning deficits are inducible by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Therefore, it is possible that MPTP may disturb hippocampal memory processing by modulation of dopamine (DA)- and activity-dependent synaptic plasticity. We demonstrate here that intraperitoneal (i.p.) MPTP injection reduces the number of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra (SN) within 7 days. Subsequently, the TH expression level in SN and hippocampus and the amount of DA and its metabolite DOPAC in striatum and hippocampus decrease. DA depletion does not alter basal synaptic transmission and changes pair-pulse facilitation (PPF) of field excitatory postsynaptic potentials (fEPSPs) only atmore » the 30 ms inter-pulse interval. In addition, the induction of long-term potentiation (LTP) is impaired whereas the duration of long-term depression (LTD) becomes prolonged. Since both LTP and LTD depend critically on activation of NMDA and DA receptors, we also tested the effect of DA depletion on NMDA receptor-mediated synaptic transmission. Seven days after MPTP injection, the NMDA receptor-mediated fEPSPs are decreased by about 23%. Blocking the NMDA receptor-mediated fEPSP does not mimic the MPTP-LTP. Only co-application of D1/D5 and NMDA receptor antagonists during tetanization resembled the time course of fEPSP potentiation as observed 7 days after i.p. MPTP injection. Together, our data demonstrate that MPTP-induced degeneration of DA neurons and the subsequent hippocampal DA depletion alter NMDA receptor-mediated synaptic transmission and activity-dependent synaptic plasticity. - Highlights: > I.p. MPTP-injection mediates death of dopaminergic neurons. > I.p. MPTP-injection depletes DA and DOPAC in striatum and hippocampus. > I.p. MPTP-injection does not alter basal synaptic transmission. > Reduction of LTP and enhancement of LTD after i.p. MPTP-injection. > Attenuation of NMDA-receptors mediated fEPSPs after i.p. MPTP-injection.« less
Reelin Supplementation Enhances Cognitive Ability, Synaptic Plasticity, and Dendritic Spine Density
ERIC Educational Resources Information Center
Rogers, Justin T.; Rusiana, Ian; Trotter, Justin; Zhao, Lisa; Donaldson, Erika; Pak, Daniel T.S.; Babus, Lenard W.; Peters, Melinda; Banko, Jessica L.; Chavis, Pascale; Rebeck, G. William; Hoe, Hyang-Sook; Weeber, Edwin J.
2011-01-01
Apolipoprotein receptors belong to an evolutionarily conserved surface receptor family that has intimate roles in the modulation of synaptic plasticity and is necessary for proper hippocampal-dependent memory formation. The known lipoprotein receptor ligand Reelin is important for normal synaptic plasticity, dendritic morphology, and cognitive…
Rapid synaptic vesicle endocytosis in cone photoreceptors of salamander retina
Van Hook, Matthew J.; Thoreson, Wallace B.
2013-01-01
Following synaptic vesicle exocytosis, neurons retrieve the fused membrane by a process of endocytosis in order to provide a supply of vesicles for subsequent release and maintain the presynaptic active zone. Rod and cone photoreceptors use a specialized structure called the synaptic ribbon that enables them to sustain high rates of neurotransmitter release. They must also employ mechanisms of synaptic vesicle endocytosis capable of keeping up with release. While much is known about endocytosis at another retinal ribbon synapse, that of the goldfish Mb1 bipolar cell, less is known about endocytosis in photoreceptors. We used capacitance recording techniques to measure vesicle membrane fusion and retrieval in photoreceptors from salamander retinal slices. We found that application of brief depolarizing steps (<100 ms) to cones evoked exocytosis followed by rapid endocytosis with a time constant ~250 ms. In some cases, the capacitance trace overshot the baseline, indicating excess endocytosis. Calcium had no effect on the time constant, but enhanced excess endocytosis resulting in a faster rate of membrane retrieval. Surprisingly, endocytosis was unaffected by blockers of dynamin, suggesting that cone endocytosis is dynamin-independent. This contrasts with synaptic vesicle endocytosis in rods, which was inhibited by the dynamin inhibitor dynasore and GTPγS introduced through the patch pipette, suggesting that the two photoreceptor types employ distinct pathways for vesicle retrieval. The fast kinetics of synaptic vesicle endocytosis in photoreceptors likely enables these cells to maintain a high rate of transmitter release, allowing them to faithfully signal changes in illumination to second-order neurons. PMID:23238726
Loebrich, Sven; Djukic, Biljana; Tong, Zachary J.; Cottrell, Jeffrey R.; Turrigiano, Gina G.; Nedivi, Elly
2013-01-01
A key neuronal mechanism for adjusting excitatory synaptic strength is clathrin-mediated endocytosis of postsynaptic glutamate receptors (GluRs). The actin cytoskeleton is critical for clathrin-mediated endocytosis, yet we lack a mechanistic understanding of its interaction with the endocytic process and how it may be regulated. Here we show that F-actin in dendritic spines physically binds the synaptic nuclear envelope 1 gene product candidate plasticity gene 2 (CPG2) in a PKA-dependent manner, and that this association is required for synaptic GluR internalization. Mutating two PKA sites on CPG2 disrupts its cytoskeletal association, attenuating GluR endocytosis and affecting the efficacy of synaptic transmission in vivo. These results identify CPG2 as an F-actin binding partner that functionally mediates interaction of the spine cytoskeleton with postsynaptic endocytosis. Further, the regulation of CPG2/F-actin association by PKA provides a gateway for cellular control of synaptic receptor internalization through second messenger signaling pathways. Recent identification of human synaptic nuclear envelope 1 as a risk locus for bipolar disorder suggests that CPG2 could play a role in synaptic dysfunction underlying neuropsychiatric disease. PMID:24191017
Calcium sensitive ring-like oligomers formed by synaptotagmin
Wang, Jing; Bello, Oscar; Auclair, Sarah M.; Wang, Jing; Coleman, Jeff; Pincet, Frederic; Krishnakumar, Shyam S.; Sindelar, Charles V.; Rothman, James E.
2014-01-01
The synaptic vesicle protein synaptotagmin-1 (SYT) is required to couple calcium influx to the membrane fusion machinery. However, the structural mechanism underlying this process is unclear. Here we report an unexpected circular arrangement (ring) of SYT’s cytosolic domain (C2AB) formed on lipid monolayers in the absence of free calcium ions as revealed by electron microscopy. Rings vary in diameter from 18–43 nm, corresponding to 11–26 molecules of SYT. Continuous stacking of the SYT rings occasionally converts both lipid monolayers and bilayers into protein-coated tubes. Helical reconstruction of the SYT tubes shows that one of the C2 domains (most likely C2B, based on its biochemical properties) interacts with the membrane and is involved in ring formation, and the other C2 domain points radially outward. SYT rings are disrupted rapidly by physiological concentrations of free calcium but not by magnesium. Assuming that calcium-free SYT rings are physiologically relevant, these results suggest a simple and novel mechanism by which SYT regulates neurotransmitter release: The ring acts as a spacer to prevent the completion of the soluble N-ethylmaleimide–sensitive factor activating protein receptor (SNARE) complex assembly, thereby clamping fusion in the absence of calcium. When the ring disassembles in the presence of calcium, fusion proceeds unimpeded. PMID:25201968
Mecp2 Mediates Experience-Dependent Transcriptional Upregulation of Ryanodine Receptor Type-3
Torres, Rodrigo F.; Hidalgo, Cecilia; Kerr, Bredford
2017-01-01
Mecp2 is a DNA methylation reader that plays a critical role in experience-dependent plasticity. Increasing evidence supports a role for epigenetic modifications in activity-induced gene expression. Hence, candidate genes related to such phenomena are of great interest. Ryanodine receptors are intracellular calcium channels that contribute to hippocampal synaptic plasticity, dendritic spine remodeling, and participate in learning and memory processes. Here we exposed mice to the enriched environment (EE) paradigm, which through increased stimulation induces experience dependent-plasticity, to explore a role for methyl-cytosines, and Mecp2 in directing Ryanodine receptor 3 (Ryr3) transcriptional activity. EE induced a hippocampal-specific increase in the methylation of discrete cytosines located at a Ryr3 isoform promoter; chromatin immunoprecipitation experiments revealed that EE increased Mecp2 binding to this Ryr3 isoform promoter. Interestingly, the experimental paradigm induced robust Ryr3 upregulation, accompanied by miR132-dependent suppression of p250GAP, a pathway driving synaptogenesis. In contrast to WT mice, Mecp2-null mice showed diminished levels of Ryr3 and displayed impaired EE-induced Ryr3 upregulation, compromising miR132 dependent suppression of p250GAP and experience-dependent structural plasticity. Based on these results, we propose that Mecp2 acts as a transcriptional activator of Ryr3, contributing to experience-dependent plasticity. PMID:28659760
Nanou, Evanthia; Yan, Jin; Whitehead, Nicholas P.; Kim, Min Jeong; Froehner, Stanley C.; Scheuer, Todd; Catterall, William A.
2016-01-01
Facilitation and inactivation of P/Q-type calcium (Ca2+) currents through the regulation of voltage-gated Ca2+ (CaV) 2.1 channels by Ca2+ sensor (CaS) proteins contributes to the facilitation and rapid depression of synaptic transmission in cultured neurons that transiently express CaV2.1 channels. To examine the modulation of endogenous CaV2.1 channels by CaS proteins in native synapses, we introduced a mutation (IM-AA) into the CaS protein-binding site in the C-terminal domain of CaV2.1 channels in mice, and tested synaptic facilitation and depression in neuromuscular junction synapses that use exclusively CaV2.1 channels for Ca2+ entry that triggers synaptic transmission. Even though basal synaptic transmission was unaltered in the neuromuscular synapses in IM-AA mice, we found reduced short-term facilitation in response to paired stimuli at short interstimulus intervals in IM-AA synapses. In response to trains of action potentials, we found increased facilitation at lower frequencies (10–30 Hz) in IM-AA synapses accompanied by slowed synaptic depression, whereas synaptic facilitation was reduced at high stimulus frequencies (50–100 Hz) that would induce strong muscle contraction. As a consequence of altered regulation of CaV2.1 channels, the hindlimb tibialis anterior muscle in IM-AA mice exhibited reduced peak force in response to 50 Hz stimulation and increased muscle fatigue. The IM-AA mice also had impaired motor control, exercise capacity, and grip strength. Taken together, our results indicate that regulation of CaV2.1 channels by CaS proteins is essential for normal synaptic plasticity at the neuromuscular junction and for muscle strength, endurance, and motor coordination in mice in vivo. PMID:26755585
Nuclear Calcium Buffering Capacity Shapes Neuronal Architecture*
Mauceri, Daniela; Hagenston, Anna M.; Schramm, Kathrin; Weiss, Ursula; Bading, Hilmar
2015-01-01
Calcium-binding proteins (CaBPs) such as parvalbumin are part of the cellular calcium buffering system that determines intracellular calcium diffusion and influences the spatiotemporal dynamics of calcium signals. In neurons, CaBPs are primarily localized to the cytosol and function, for example, in nerve terminals in short-term synaptic plasticity. However, CaBPs are also expressed in the cell nucleus, suggesting that they modulate nuclear calcium signals, which are key regulators of neuronal gene expression. Here we show that the calcium buffering capacity of the cell nucleus in mouse hippocampal neurons regulates neuronal architecture by modulating the expression levels of VEGFD and the complement factor C1q-c, two nuclear calcium-regulated genes that control dendrite geometry and spine density, respectively. Increasing the levels of nuclear calcium buffers by means of expression of a nuclearly targeted form of parvalbumin fused to mCherry (PV.NLS-mC) led to a reduction in VEGFD expression and, as a result, to a decrease in total dendritic length and complexity. In contrast, mRNA levels of the synapse pruning factor C1q-c were increased in neurons expressing PV.NLS-mC, causing a reduction in the density and size of dendritic spines. Our results establish a close link between nuclear calcium buffering capacity and the transcription of genes that determine neuronal structure. They suggest that the development of cognitive deficits observed in neurological conditions associated with CaBP deregulation may reflect the loss of necessary structural features of dendrites and spines. PMID:26231212
A Markovian Entropy Measure for the Analysis of Calcium Activity Time Series.
Marken, John P; Halleran, Andrew D; Rahman, Atiqur; Odorizzi, Laura; LeFew, Michael C; Golino, Caroline A; Kemper, Peter; Saha, Margaret S
2016-01-01
Methods to analyze the dynamics of calcium activity often rely on visually distinguishable features in time series data such as spikes, waves, or oscillations. However, systems such as the developing nervous system display a complex, irregular type of calcium activity which makes the use of such methods less appropriate. Instead, for such systems there exists a class of methods (including information theoretic, power spectral, and fractal analysis approaches) which use more fundamental properties of the time series to analyze the observed calcium dynamics. We present a new analysis method in this class, the Markovian Entropy measure, which is an easily implementable calcium time series analysis method which represents the observed calcium activity as a realization of a Markov Process and describes its dynamics in terms of the level of predictability underlying the transitions between the states of the process. We applied our and other commonly used calcium analysis methods on a dataset from Xenopus laevis neural progenitors which displays irregular calcium activity and a dataset from murine synaptic neurons which displays activity time series that are well-described by visually-distinguishable features. We find that the Markovian Entropy measure is able to distinguish between biologically distinct populations in both datasets, and that it can separate biologically distinct populations to a greater extent than other methods in the dataset exhibiting irregular calcium activity. These results support the benefit of using the Markovian Entropy measure to analyze calcium dynamics, particularly for studies using time series data which do not exhibit easily distinguishable features.
BK channels are required for multisensory plasticity in the oculomotor system
Nelson, Alexandra; Faulstich, Michael; Moghadam, Setareh; Onori, Kimberly; Meredith, Andrea; du Lac, Sascha
2017-01-01
SUMMARY Neural circuits are endowed with several forms of intrinsic and synaptic plasticity that could contribute to adaptive changes in behavior, but circuit complexities have hindered linking specific cellular mechanisms with their behavioral consequences. Eye movements generated by simple brainstem circuits provide a means for relating cellular plasticity to behavioral gain control. Here we show that firing rate potentiation, a form of intrinsic plasticity mediated by reductions in BK-type calcium activated potassium currents in spontaneously firing neurons, is engaged during optokinetic reflex compensation for inner ear dysfunction. Vestibular loss triggers transient increases in postsynaptic excitability, occlusion of firing rate potentiation, and reductions in BK currents in vestibular nucleus neurons. Concurrently, adaptive increases in visually-evoked eye movements rapidly restore oculomotor function in wildtype mice but are profoundly impaired in BK channel null mice. Activity-dependent regulation of intrinsic excitability may be a general mechanism for adaptive control of behavioral output in multisensory circuits. PMID:27989457
Wakita, Masahito; Shoudai, Kiyomitsu; Oyama, Yasuo; Akaike, Norio
2017-10-01
4,5-Dichloro-2-octyl-4-isothiazolin-3-one (DCOIT) is an alternative to organotin antifoulants, such as tributyltin and triphenyltin. Since DCOIT is found in harbors, bays, and coastal areas worldwide, this chemical compound may have some impacts on ecosystems. To determine whether DCOIT possesses neurotoxic activity by modifying synaptic transmission, we examined the effects of DCOIT on synaptic transmission in a 'synaptic bouton' preparation of rat brain. DCOIT at concentrations of 0.03-1 μM increased the amplitudes of evoked synaptic currents mediated by GABA and glutamate, while it reduced the amplitudes of these currents at 3-10 μM. However, the currents elicited by exogenous applications of GABA and glutamate were not affected by DCOIT. DCOIT at 1-10 μM increased the frequency of spontaneous synaptic currents mediated by GABA. It also increased the frequency of glutamate-mediated spontaneous currents at0.3-10 μM. The frequencies of miniature synaptic currents mediated by GABA and glutamate, observed in the presence of tetrodotoxin under external Ca 2+ -free conditions, were increased by 10 μM DCOIT. With the repetitive applications of DCOIT, the frequency of miniature synaptic currents mediated by glutamate was not increased by the second and third applications of DCOIT. Voltage-dependent Ca 2+ channels were not affected by DCOIT, but DCOIT slowed the inactivation of voltage-dependent Na + channels. These results suggest that DCOIT increases Ca 2+ release from intracellular Ca 2+ stores, resulting in the facilitation of both action potential-dependent and spontaneous neurotransmission, possibly leading to neurotoxicity. Copyright © 2017 Elsevier Ltd. All rights reserved.
CASK and CaMKII function in the mushroom body α′/β′ neurons during Drosophila memory formation
Malik, Bilal R.; Gillespie, John Michael; Hodge, James J. L.
2013-01-01
Ca2+/CaM serine/threonine kinase II (CaMKII) is a central molecule in mechanisms of synaptic plasticity and memory. A vital feature of CaMKII in plasticity is its ability to switch to a calcium (Ca2+) independent constitutively active state after autophosphorylation at threonine 287 (T287). A second pair of sites, T306 T307 in the calmodulin (CaM) binding region once autophosphorylated, prevent subsequent CaM binding and inactivates the kinase during synaptic plasticity and memory. Recently a synaptic molecule called Ca2+/CaM-dependent serine protein kinase (CASK) has been shown to control both sets of CaMKII autophosphorylation events and hence is well poised to be a key regulator of memory. We show deletion of full length CASK or just its CaMK-like and L27 domains disrupts middle-term memory (MTM) and long-term memory (LTM), with CASK function in the α′/β′ subset of mushroom body neurons being required for memory. Likewise directly changing the levels of CaMKII autophosphorylation in these neurons removed MTM and LTM. The requirement of CASK and CaMKII autophosphorylation was not developmental as their manipulation just in the adult α′/β′ neurons was sufficient to remove memory. Overexpression of CASK or CaMKII in the α′/β′ neurons also occluded MTM and LTM. Overexpression of either Drosophila or human CASK in the α′/β′ neurons of the CASK mutant completely rescued memory, confirming that CASK signaling in α′/β′ neurons is necessary and sufficient for Drosophila memory formation and that the neuronal function of CASK is conserved between Drosophila and human. At the cellular level CaMKII overexpression in the α′/β′ neurons increased activity dependent Ca2+ responses while reduction of CaMKII decreased it. Likewise reducing CASK or directly expressing a phosphomimetic CaMKII T287D transgene in the α′/β′ similarly decreased Ca2+ signaling. Our results are consistent with CASK regulating CaMKII autophosphorylation in a pathway required for memory formation that involves activity dependent changes in Ca2+ signaling in the α′/β′ neurons. PMID:23543616
Maintenance of neuronal size gradient in MNTB requires sound-evoked activity.
Weatherstone, Jessica H; Kopp-Scheinpflug, Conny; Pilati, Nadia; Wang, Yuan; Forsythe, Ian D; Rubel, Edwin W; Tempel, Bruce L
2017-02-01
The medial nucleus of the trapezoid body (MNTB) is an important source of inhibition during the computation of sound location. It transmits fast and precisely timed action potentials at high frequencies; this requires an efficient calcium clearance mechanism, in which plasma membrane calcium ATPase 2 (PMCA2) is a key component. Deafwaddler ( dfw 2J ) mutant mice have a null mutation in PMCA2 causing deafness in homozygotes ( dfw 2J / dfw 2J ) and high-frequency hearing loss in heterozygotes (+/ dfw 2J ). Despite the deafness phenotype, no significant differences in MNTB volume or cell number were observed in dfw 2J homozygous mutants, suggesting that PMCA2 is not required for MNTB neuron survival. The MNTB tonotopic axis encodes high to low sound frequencies across the medial to lateral dimension. We discovered a cell size gradient along this axis: lateral neuronal somata are significantly larger than medially located somata. This size gradient is decreased in +/ dfw 2J and absent in dfw 2J / dfw 2J The lack of acoustically driven input suggests that sound-evoked activity is required for maintenance of the cell size gradient. This hypothesis was corroborated by selective elimination of auditory hair cell activity with either hair cell elimination in Pou4f3 DTR mice or inner ear tetrodotoxin (TTX) treatment. The change in soma size was reversible and recovered within 7 days of TTX treatment, suggesting that regulation of the gradient is dependent on synaptic activity and that these changes are plastic rather than permanent. NEW & NOTEWORTHY Neurons of the medial nucleus of the trapezoid body (MNTB) act as fast-spiking inhibitory interneurons within the auditory brain stem. The MNTB is topographically organized, with low sound frequencies encoded laterally and high frequencies medially. We discovered a cell size gradient along this axis: lateral neurons are larger than medial neurons. The absence of this gradient in deaf mice lacking plasma membrane calcium ATPase 2 suggests an activity-dependent, calcium-mediated mechanism that controls neuronal soma size. Copyright © 2017 the American Physiological Society.
Redox regulation of neuronal voltage-gated calcium channels.
Todorovic, Slobodan M; Jevtovic-Todorovic, Vesna
2014-08-20
Voltage-gated calcium channels are ubiquitously expressed in neurons and are key regulators of cellular excitability and synaptic transmitter release. There is accumulating evidence that multiple subtypes of voltage-gated calcium channels may be regulated by oxidation and reduction. However, the redox mechanisms involved in the regulation of channel function are not well understood. Several studies have established that both T-type and high-voltage-activated subtypes of voltage-gated calcium channel can be redox-regulated. This article reviews different mechanisms that can be involved in redox regulation of calcium channel function and their implication in neuronal function, particularly in pain pathways and thalamic oscillation. A current critical issue in the field is to decipher precise mechanisms of calcium channel modulation via redox reactions. In this review we discuss covalent post-translational modification via oxidation of cysteine molecules and chelation of trace metals, and reactions involving nitric oxide-related molecules and free radicals. Improved understanding of the roles of redox-based reactions in regulation of voltage-gated calcium channels may lead to improved understanding of novel redox mechanisms in physiological and pathological processes. Identification of redox mechanisms and sites on voltage-gated calcium channel may allow development of novel and specific ion channel therapies for unmet medical needs. Thus, it may be possible to regulate the redox state of these channels in treatment of pathological process such as epilepsy and neuropathic pain.
ERIC Educational Resources Information Center
Khoutorsky, Arkady; Spira, Micha E.
2009-01-01
Synaptic facilitation and post-tetanic potentiation (PTP) are believed to necessitate active regeneration of the release machinery and supply of synaptic vesicles to a ready-releasable site. The prevailing hypothesis assumes that synapsins play pivotal roles in these processes. Using a cholinergic synapse formed between cultured "Aplysia" neurons…
Modeling somatic and dendritic spike mediated plasticity at the single neuron and network level.
Bono, Jacopo; Clopath, Claudia
2017-09-26
Synaptic plasticity is thought to be the principal neuronal mechanism underlying learning. Models of plastic networks typically combine point neurons with spike-timing-dependent plasticity (STDP) as the learning rule. However, a point neuron does not capture the local non-linear processing of synaptic inputs allowed for by dendrites. Furthermore, experimental evidence suggests that STDP is not the only learning rule available to neurons. By implementing biophysically realistic neuron models, we study how dendrites enable multiple synaptic plasticity mechanisms to coexist in a single cell. In these models, we compare the conditions for STDP and for synaptic strengthening by local dendritic spikes. We also explore how the connectivity between two cells is affected by these plasticity rules and by different synaptic distributions. Finally, we show that how memory retention during associative learning can be prolonged in networks of neurons by including dendrites.Synaptic plasticity is the neuronal mechanism underlying learning. Here the authors construct biophysical models of pyramidal neurons that reproduce observed plasticity gradients along the dendrite and show that dendritic spike dependent LTP which is predominant in distal sections can prolong memory retention.
Theis, Anne-Kathrin; Rózsa, Balázs; Katona, Gergely; Schmitz, Dietmar; Johenning, Friedrich W
2018-01-01
The majority of excitatory synapses are located on dendritic spines of cortical glutamatergic neurons. In spines, compartmentalized Ca 2+ signals transduce electrical activity into specific long-term biochemical and structural changes. Action potentials (APs) propagate back into the dendritic tree and activate voltage gated Ca 2+ channels (VGCCs). For spines, this global mode of spine Ca 2+ signaling is a direct biochemical feedback of suprathreshold neuronal activity. We previously demonstrated that backpropagating action potentials (bAPs) result in long-term enhancement of spine VGCCs. This activity-dependent VGCC plasticity results in a large interspine variability of VGCC Ca 2+ influx. Here, we investigate how spine VGCCs affect glutamatergic synaptic transmission. We combined electrophysiology, two-photon Ca 2+ imaging and two-photon glutamate uncaging in acute brain slices from rats. T- and R-type VGCCs were the dominant depolarization-associated Ca 2+ conductances in dendritic spines of excitatory layer 2 neurons and do not affect synaptic excitatory postsynaptic potentials (EPSPs) measured at the soma. Using two-photon glutamate uncaging, we compared the properties of glutamatergic synapses of single spines that express different levels of VGCCs. While VGCCs contributed to EPSP mediated Ca 2+ influx, the amount of EPSP mediated Ca 2+ influx is not determined by spine VGCC expression. On a longer timescale, the activation of VGCCs by bAP bursts results in downregulation of spine NMDAR function.
Daroles, Laura; Gribaudo, Simona; Doulazmi, Mohamed; Scotto-Lomassese, Sophie; Dubacq, Caroline; Mandairon, Nathalie; Greer, Charles August; Didier, Anne; Trembleau, Alain; Caillé, Isabelle
2016-07-15
In the adult brain, structural plasticity allowing gain or loss of synapses remodels circuits to support learning. In fragile X syndrome, the absence of fragile X mental retardation protein (FMRP) leads to defects in plasticity and learning deficits. FMRP is a master regulator of local translation but its implication in learning-induced structural plasticity is unknown. Using an olfactory learning task requiring adult-born olfactory bulb neurons and cell-specific ablation of FMRP, we investigated whether learning shapes adult-born neuron morphology during their synaptic integration and its dependence on FMRP. We used alpha subunit of the calcium/calmodulin-dependent kinase II (αCaMKII) mutant mice with altered dendritic localization of αCaMKII messenger RNA, as well as a reporter of αCaMKII local translation to investigate the role of this FMRP messenger RNA target in learning-dependent structural plasticity. Learning induces profound changes in dendritic architecture and spine morphology of adult-born neurons that are prevented by ablation of FMRP in adult-born neurons and rescued by an metabotropic glutamate receptor 5 antagonist. Moreover, dendritically translated αCaMKII is necessary for learning and associated structural modifications and learning triggers an FMRP-dependent increase of αCaMKII dendritic translation in adult-born neurons. Our results strongly suggest that FMRP mediates structural plasticity of olfactory bulb adult-born neurons to support olfactory learning through αCaMKII local translation. This reveals a new role for FMRP-regulated dendritic local translation in learning-induced structural plasticity. This might be of clinical relevance for the understanding of critical periods disruption in autism spectrum disorder patients, among which fragile X syndrome is the primary monogenic cause. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Oschmann, Franziska; Mergenthaler, Konstantin; Jungnickel, Evelyn; Obermayer, Klaus
2017-02-01
Astrocytes integrate and process synaptic information and exhibit calcium (Ca2+) signals in response to incoming information from neighboring synapses. The generation of Ca2+ signals is mostly attributed to Ca2+ release from internal Ca2+ stores evoked by an elevated metabotropic glutamate receptor (mGluR) activity. Different experimental results associated the generation of Ca2+ signals to the activity of the glutamate transporter (GluT). The GluT itself does not influence the intracellular Ca2+ concentration, but it indirectly activates Ca2+ entry over the membrane. A closer look into Ca2+ signaling in different astrocytic compartments revealed a spatial separation of those two pathways. Ca2+ signals in the soma are mainly generated by Ca2+ release from internal Ca2+ stores (mGluR-dependent pathway). In astrocytic compartments close to the synapse most Ca2+ signals are evoked by Ca2+ entry over the plasma membrane (GluT-dependent pathway). This assumption is supported by the finding, that the volume ratio between the internal Ca2+ store and the intracellular space decreases from the soma towards the synapse. We extended a model for mGluR-dependent Ca2+ signals in astrocytes with the GluT-dependent pathway. Additionally, we included the volume ratio between the internal Ca2+ store and the intracellular compartment into the model in order to analyze Ca2+ signals either in the soma or close to the synapse. Our model results confirm the spatial separation of the mGluR- and GluT-dependent pathways along the astrocytic process. The model allows to study the binary Ca2+ response during a block of either of both pathways. Moreover, the model contributes to a better understanding of the impact of channel densities on the interaction of both pathways and on the Ca2+ signal.
Zinc signaling in the hippocampus and its relation to pathogenesis of depression.
Takeda, Atsushi
2012-06-01
Histochemically reactive zinc (Zn(2+)) is co-released with glutamate from zincergic neurons, a subclass of glutamatergic neurons. Zn(2+) serves as a signal factor in both the extracellular and intracellular compartments. Glucocorticoid-glutamatergic interactions have been proposed as a potential model to explain stress-mediated impairment of hippocampal function, i.e., cognition. However, it is unknown whether glucocorticoid-zincergic interactions are involved in this impairment. In the present study, involvement of synaptic Zn(2+) in stress-induced attenuation of CA1 LTP was examined in hippocampal slices from young rats after exposure to tail suspension stress for 30s, which significantly increased serum corticosterone. Stress-induced attenuation of CA1 LTP was ameliorated by administration of clioquinol, a membrane permeable zinc chelator, to rats prior to exposure to stress, implying that the reduction of synaptic Zn(2+) by clioquinol participates in this amelioration. To pursue the involvement of corticosterone-mediated Zn(2+) signal in the attenuated CA1 LTP by stress, dynamics of synaptic Zn(2+) was checked in hippocampal slices exposed to corticosterone. Corticosterone increased extracellular Zn(2+) levels measured with ZnAF-2 dose-dependently, as well as the intracellular Ca(2+) levels measured with calcium orange AM, suggesting that corticosterone excites zincergic neurons in the hippocampus and increases Zn(2+) release from the neuron terminals. Intracellular Zn(2+) levels measured with ZnAF-2DA were also increased dose-dependently, but not in the coexistence of CaEDTA, a membrane-impermeable zinc chelator, suggesting that intracellular Zn(2+) levels is increased by the influx of extracellular Zn(2+). Furthermore, corticosterone-induced attenuation of CA1 LTP was abolished in the coexistence of CaEDTA. The present study suggests that corticosterone-mediated increase in postsynaptic Zn(2+) signal in the cytosolic compartment is involved in the attenuation of CA1 LTP after exposure to acute stress. We propose that corticosterone-mediated increase in postsynaptic Zn(2+) signal, which is induced by acute stress, changes hippocampal function and then is possibly a risk factor under chronic stress circumstances to induce depressive symptoms. Copyright © 2012 Elsevier GmbH. All rights reserved.
Postsynaptic Synaptotagmins Mediate AMPA Receptor Exocytosis During LTP
Wu, Dick; Bacaj, Taulant; Morishita, Wade; Goswami, Debanjan; Arendt, Kristin L.; Xu, Wei; Chen, Lu; Malenka, Robert C.; Südhof, Thomas C.
2017-01-01
Strengthening of synaptic connections by NMDA-receptor-dependent long-term potentiation (LTP) shapes neural circuits and mediates learning and memory. During NMDA-receptor-dependent LTP induction, Ca2+-influx stimulates recruitment of synaptic AMPA-receptors, thereby strengthening synapses. How Ca2+ induces AMPA-receptor recruitment, however, remains unclear. Here we show that, in pyramidal neurons of the hippocampal CA1-region, blocking postsynaptic expression of both synaptotagmin-1 and synaptotagmin-7, but not of synaptotagmin-1 or synaptotagmin-7 alone, abolished LTP. LTP was rescued by wild-type but not by Ca2+-binding-deficient mutant synaptotagmin-7. Blocking postsynaptic synaptotagmin-1/7 expression did not impair basal synaptic transmission, synaptic or extrasynaptic AMPA-receptor levels, or other AMPA-receptor trafficking events. Moreover, expression of dominant-negative mutant synaptotagmin-1 that inhibited Ca2+-dependent presynaptic vesicle exocytosis also blocked Ca2+-dependent postsynaptic AMPA-receptor exocytosis, thereby abolishing LTP. Our results suggest that postsynaptic synaptotagmin-1 and synaptotagmin-7 act as redundant Ca2+-sensors for Ca2+-dependent exocytosis of AMPA-receptors during LTP, thus delineating a simple mechanism for the recruitment of AMPA-receptors that mediates LTP. PMID:28355182
Pavlopoulos, Elias; Trifilieff, Pierre; Chevaleyre, Vivien; Fioriti, Luana; Zairis, Sakellarios; Pagano, Andrew; Malleret, Gaël; Kandel, Eric R
2011-12-09
The cytoplasmic polyadenylation element-binding protein 3 (CPEB3), a regulator of local protein synthesis, is the mouse homolog of ApCPEB, a functional prion protein in Aplysia. Here, we provide evidence that CPEB3 is activated by Neuralized1, an E3 ubiquitin ligase. In hippocampal cultures, CPEB3 activated by Neuralized1-mediated ubiquitination leads both to the growth of new dendritic spines and to an increase of the GluA1 and GluA2 subunits of AMPA receptors, two CPEB3 targets essential for synaptic plasticity. Conditional overexpression of Neuralized1 similarly increases GluA1 and GluA2 and the number of spines and functional synapses in the hippocampus and is reflected in enhanced hippocampal-dependent memory and synaptic plasticity. By contrast, inhibition of Neuralized1 reduces GluA1 and GluA2 levels and impairs hippocampal-dependent memory and synaptic plasticity. These results suggest a model whereby Neuralized1-dependent ubiquitination facilitates hippocampal plasticity and hippocampal-dependent memory storage by modulating the activity of CPEB3 and CPEB3-dependent protein synthesis and synapse formation. Copyright © 2011 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Yuan, Qi; Mutoh, Hiroki; Debarbieux, Franck; Knopfel, Thomas
2004-01-01
Synapses formed by the olfactory nerve (ON) provide the source of excitatory synaptic input onto mitral cells (MC) in the olfactory bulb. These synapses, which relay odor-specific inputs, are confined to the distally tufted single primary dendrites of MCs, the first stage of central olfactory processing. Beta-adrenergic modulation of electrical…
Navakkode, Sheeja; Chew, Katherine C M; Tay, Sabrina Jia Ning; Lin, Qingshu; Behnisch, Thomas; Soong, Tuck Wah
2017-11-14
Long-term potentiation (LTP) is the persistent increase in the strength of the synapses. However, the neural networks would become saturated if there is only synaptic strenghthening. Synaptic weakening could be facilitated by active processes like long-term depression (LTD). Molecular mechanisms that facilitate the weakening of synapses and thereby stabilize the synapses are also important in learning and memory. Here we show that blockade of dopaminergic D4 receptors (D4R) promoted the formation of late-LTP and transformed early-LTP into late-LTP. This effect was dependent on protein synthesis, activation of NMDA-receptors and CaMKII. We also show that GABA A -receptor mediated mechanisms are involved in the enhancement of late-LTP. We could show that short-term plasticity and baseline synaptic transmission were unaffected by D4R inhibition. On the other hand, antagonizing D4R prevented both early and late forms of LTD, showing that activation of D4Rs triggered a dual function. Synaptic tagging experiments on LTD showed that D4Rs act as plasticity related proteins rather than the setting of synaptic tags. D4R activation by PD 168077 induced a slow-onset depression that was protein synthesis, NMDAR and CaMKII dependent. The D4 receptors, thus exert a bidirectional modulation of CA1 pyramidal neurons by restricting synaptic strengthening and facilitating synaptic weakening.
Bogen, I L; Jensen, V; Hvalby, O; Walaas, S I
2009-01-12
Inactivation of the genes encoding the neuronal, synaptic vesicle-associated proteins synapsin I and II leads to severe reductions in the number of synaptic vesicles in the CNS. We here define the postnatal developmental period during which the synapsin I and/or II proteins modulate synaptic vesicle number and function in excitatory glutamatergic synapses in mouse brain. In wild-type mice, brain levels of both synapsin I and synapsin IIb showed developmental increases during synaptogenesis from postnatal days 5-20, while synapsin IIa showed a protracted increase during postnatal days 20-30. The vesicular glutamate transporters (VGLUT) 1 and VGLUT2 showed synapsin-independent development during postnatal days 5-10, following which significant reductions were seen when synapsin-deficient brains were compared with wild-type brains following postnatal day 20. A similar, synapsin-dependent developmental profile of vesicular glutamate uptake occurred during the same age periods. Physiological analysis of the development of excitatory glutamatergic synapses, performed in the CA1 stratum radiatum of the hippocampus from the two genotypes, showed that both the synapsin-dependent part of the frequency facilitation and the synapsin-dependent delayed response enhancement were restricted to the period after postnatal day 10. Our data demonstrate that while both synaptic vesicle number and presynaptic short-term plasticity are essentially independent of synapsin I and II prior to postnatal day 10, maturation and function of excitatory synapses appear to be strongly dependent on synapsin I and II from postnatal day 20.
Ponnath, Abhilash
2010-01-01
Sensitivity to acoustic amplitude modulation in crickets differs between species and depends on carrier frequency (e.g., calling song vs. bat-ultrasound bands). Using computational tools, we explore how Ca2+-dependent mechanisms underlying selective attention can contribute to such differences in amplitude modulation sensitivity. For omega neuron 1 (ON1), selective attention is mediated by Ca2+-dependent feedback: [Ca2+]internal increases with excitation, activating a Ca2+-dependent after-hyperpolarizing current. We propose that Ca2+ removal rate and the size of the after-hyperpolarizing current can determine ON1’s temporal modulation transfer function (TMTF). This is tested using a conductance-based simulation calibrated to responses in vivo. The model shows that parameter values that simulate responses to single pulses are sufficient in simulating responses to modulated stimuli: no special modulation-sensitive mechanisms are necessary, as high and low-pass portions of the TMTF are due to Ca2+-dependent spike frequency adaptation and post-synaptic potential depression, respectively. Furthermore, variance in the two biophysical parameters is sufficient to produce TMTFs of varying bandwidth, shifting amplitude modulation sensitivity like that in different species and in response to different carrier frequencies. Thus, the hypothesis that the size of after-hyperpolarizing current and the rate of Ca2+ removal can affect amplitude modulation sensitivity is computationally validated. PMID:20559640
Diógenes, Maria José; Dias, Raquel B; Rombo, Diogo M; Vicente Miranda, Hugo; Maiolino, Francesca; Guerreiro, Patrícia; Näsström, Thomas; Franquelim, Henri G; Oliveira, Luís M A; Castanho, Miguel A R B; Lannfelt, Lars; Bergström, Joakim; Ingelsson, Martin; Quintas, Alexandre; Sebastião, Ana M; Lopes, Luísa V; Outeiro, Tiago Fleming
2012-08-22
Parkinson's disease (PD) is the most common representative of a group of disorders known as synucleinopathies, in which misfolding and aggregation of α-synuclein (a-syn) in various brain regions is the major pathological hallmark. Indeed, the motor symptoms in PD are caused by a heterogeneous degeneration of brain neurons not only in substantia nigra pars compacta but also in other extrastriatal areas of the brain. In addition to the well known motor dysfunction in PD patients, cognitive deficits and memory impairment are also an important part of the disorder, probably due to disruption of synaptic transmission and plasticity in extrastriatal areas, including the hippocampus. Here, we investigated the impact of a-syn aggregation on AMPA and NMDA receptor-mediated rat hippocampal (CA3-CA1) synaptic transmission and long-term potentiation (LTP), the neurophysiological basis for learning and memory. Our data show that prolonged exposure to a-syn oligomers, but not monomers or fibrils, increases basal synaptic transmission through NMDA receptor activation, triggering enhanced contribution of calcium-permeable AMPA receptors. Slices treated with a-syn oligomers were unable to respond with further potentiation to theta-burst stimulation, leading to impaired LTP. Prior delivery of a low-frequency train reinstated the ability to express LTP, implying that exposure to a-syn oligomers drives the increase of glutamatergic synaptic transmission, preventing further potentiation by physiological stimuli. Our novel findings provide mechanistic insight on how a-syn oligomers may trigger neuronal dysfunction and toxicity in PD and other synucleinopathies.
Yelamanchili, Sowmya V; Pendyala, Gurudutt; Brunk, Irene; Darna, Mahesh; Albrecht, Urs; Ahnert-Hilger, Gudrun
2006-06-09
Synaptic strength depends on the amount of neurotransmitter stored in synaptic vesicles. The vesicular transmitter content has recently been shown to be directly dependent on the expression levels of vesicular neurotransmitter transporters indicating that the transport capacity of synaptic vesicles is a critical determinant for synaptic efficacy. Using synaptic vesicles prepared from whole brain at different times of the day we now show that the amount of vesicular glutamate transporter (VGLUT) 1 undergoes strong diurnal cycling. VGLUT1 protein levels are high before the start of the light period, decline at noon, increase again before start of the dark period, and decline again at midnight. Mice kept in complete darkness showed within a 24-h period only a single peak of VGLUT1 expression in the middle of the rest phase. In contrast, mice lacking the period gene Period 2, a core component of the circadian clock, did not show any light-cycle-dependent changes of VGLUT1 levels. No other of several synaptic vesicle proteins examined underwent circadian cycling. Circadian cycling of VGLUT1 was not seen when analyzing homogenate or synaptosomes, the starting fraction for vesicle preparation. Circadian cycling of VGLUT1 was also not reflected at the mRNA level. We conclude that nerve terminals are endowed with mechanisms that regulate quantal size by changing the copy number of transporters in synaptic vesicles. A reduced amount of VGLUT1 per vesicle is probably achieved by means of selective sorting controlled by clock genes.
Orlando, Marta; Ravasenga, Tiziana; Petrini, Enrica Maria; Falqui, Andrea; Marotta, Roberto; Barberis, Andrea
2017-10-23
Both excitatory and inhibitory synaptic contacts display activity dependent dynamic changes in their efficacy that are globally termed synaptic plasticity. Although the molecular mechanisms underlying glutamatergic synaptic plasticity have been extensively investigated and described, those responsible for inhibitory synaptic plasticity are only beginning to be unveiled. In this framework, the ultrastructural changes of the inhibitory synapses during plasticity have been poorly investigated. Here we combined confocal fluorescence microscopy (CFM) with high resolution scanning electron microscopy (HRSEM) to characterize the fine structural rearrangements of post-synaptic GABA A Receptors (GABA A Rs) at the nanometric scale during the induction of inhibitory long-term potentiation (iLTP). Additional electron tomography (ET) experiments on immunolabelled hippocampal neurons allowed the visualization of synaptic contacts and confirmed the reorganization of post-synaptic GABA A R clusters in response to chemical iLTP inducing protocol. Altogether, these approaches revealed that, following the induction of inhibitory synaptic potentiation, GABA A R clusters increase in size and number at the post-synaptic membrane with no other major structural changes of the pre- and post-synaptic elements.
Atypical PKCs in Memory Maintenance: The Roles of Feedback and Redundancy
ERIC Educational Resources Information Center
Jalil, Sajiya J.; Sacktor, Todd Charlton; Shouval, Harel Z.
2015-01-01
Memories that last a lifetime are thought to be stored, at least in part, as persistent enhancement of the strength of particular synapses. The synaptic mechanism of these persistent changes, late long-term potentiation (L-LTP), depends on the state and number of specific synaptic proteins. Synaptic proteins, however, have limited dwell times due…
Heubl, Martin; Zhang, Jinwei; Pressey, Jessica C; Al Awabdh, Sana; Renner, Marianne; Gomez-Castro, Ferran; Moutkine, Imane; Eugène, Emmanuel; Russeau, Marion; Kahle, Kristopher T; Poncer, Jean Christophe; Lévi, Sabine
2017-11-24
The K + -Cl - co-transporter KCC2 (SLC12A5) tunes the efficacy of GABA A receptor-mediated transmission by regulating the intraneuronal chloride concentration [Cl - ] i . KCC2 undergoes activity-dependent regulation in both physiological and pathological conditions. The regulation of KCC2 by synaptic excitation is well documented; however, whether the transporter is regulated by synaptic inhibition is unknown. Here we report a mechanism of KCC2 regulation by GABA A receptor (GABA A R)-mediated transmission in mature hippocampal neurons. Enhancing GABA A R-mediated inhibition confines KCC2 to the plasma membrane, while antagonizing inhibition reduces KCC2 surface expression by increasing the lateral diffusion and endocytosis of the transporter. This mechanism utilizes Cl - as an intracellular secondary messenger and is dependent on phosphorylation of KCC2 at threonines 906 and 1007 by the Cl - -sensing kinase WNK1. We propose this mechanism contributes to the homeostasis of synaptic inhibition by rapidly adjusting neuronal [Cl - ] i to GABA A R activity.
Tetzlaff, Christian; Kolodziejski, Christoph; Timme, Marc; Wörgötter, Florentin
2011-01-01
Synaptic scaling is a slow process that modifies synapses, keeping the firing rate of neural circuits in specific regimes. Together with other processes, such as conventional synaptic plasticity in the form of long term depression and potentiation, synaptic scaling changes the synaptic patterns in a network, ensuring diverse, functionally relevant, stable, and input-dependent connectivity. How synaptic patterns are generated and stabilized, however, is largely unknown. Here we formally describe and analyze synaptic scaling based on results from experimental studies and demonstrate that the combination of different conventional plasticity mechanisms and synaptic scaling provides a powerful general framework for regulating network connectivity. In addition, we design several simple models that reproduce experimentally observed synaptic distributions as well as the observed synaptic modifications during sustained activity changes. These models predict that the combination of plasticity with scaling generates globally stable, input-controlled synaptic patterns, also in recurrent networks. Thus, in combination with other forms of plasticity, synaptic scaling can robustly yield neuronal circuits with high synaptic diversity, which potentially enables robust dynamic storage of complex activation patterns. This mechanism is even more pronounced when considering networks with a realistic degree of inhibition. Synaptic scaling combined with plasticity could thus be the basis for learning structured behavior even in initially random networks. PMID:22203799
Fernandes, Alda; Li, Yu-Wen
2017-09-01
Ketamine produces rapid and long-lasting antidepressant effects in depressive patients. Preclinical studies demonstrate that ketamine stimulates AMPA receptor transmission and activates BDNF/TrkB-Akt/ERK-mTOR signaling cascades, leading to a sustained increase in synaptic protein synthesis and strengthening of synaptic plasticity, a potential mechanism underlying the antidepressant effects. The purpose of this study was to develop an immunohistochemistry (IHC) assay to map the distribution of extracellular signal-regulated kinase (ERK) phosphorylation in the mouse brain in response to systemic ketamine treatment. We established a focused microwave irradiation-assisted IHC assay to detect phosphorylated (phospho) proteins including phospho-ERK, phospho- cAMP-response- element-binding protein (CREB), phospho- glutamate receptor 1 (GluR1) and phospho- calcium/calmodulin-dependent protein kinase II (CaMKII) with greater sensitivity and reproducibility in comparison to conventional IHC methods. A single dose of ketamine produced a robust, dose- and time-dependent increase in phospho-ERK immunoreactive (phospho-ERK-ir) neurons in the medial prefrontal cortex (mPFC) and the central nucleus of the amygdala. Phospho-ERK-ir neurons in the mPFC were primarily located in the prelimbic and anterior cingulate subregions with the morphology resembling pyramidal neurons. An increase in phospho-ERK-ir was also observed in the brainstem dorsal raphe nucleus and locus coeruleus. The NMDA GluN2B subtype receptor antagonist Ro 25-6981 increased phospho-ERK expression in the brain in a similar pattern as ketamine. In summary, we have established a sensitive and reliable focused microwave irradiation-assisted IHC assay, and defined the activation pattern of ERK, in response to systemic ketamine and Ro 25-6981 treatment, in brain regions that are potentially responsible for mediating the antidepressant effects. Copyright © 2017 Elsevier B.V. All rights reserved.
McPhee, Grace M; Downey, Luke A; Noble, Anthony; Stough, Con
2016-10-01
As the elderly population grows the impact of age associated cognitive decline as well as neurodegenerative diseases such as Alzheimer's disease and dementia will increase. Ageing is associated with consistent impairments in cognitive processes (e.g., processing speed, memory, executive function and learning) important for work, well-being, life satisfaction and overall participation in society. Recently, there has been increased effort to conduct research examining methods to improve cognitive function in older citizens. Cognitive training has been shown to improve performance in some cognitive domains; including memory, processing speed, executive function and attention in older adults. These cognitive changes are thought to be related to improvements in brain connectivity and neural circuitry. Bacopa monnieri has also been shown to improve specific domains of cognition, sensitive to age associated cognitive decline (particularly processing speed and memory). These Bacopa monnieri dependent improvements may be due to the increase in specific neuro-molecular mechanisms implicated in the enhancement of neural connections in the brain (i.e. synaptogenesis). In particular, a number of animal studies have shown Bacopa monnieri consumption upregulates calcium dependent kinases in the synapse and post-synaptic cell, crucial for strengthening and growing connections between neurons. These effects have been shown to occur in areas important for cognitive processes, such as the hippocampus. As Bacopa monnieri has shown neuro-molecular mechanisms that encourage synaptogenesis, while cognitive training enhances brain connectivity, Bacopa monnieri supplementation could theoretically enhance and strengthen synaptic changes acquired through cognitive training. Therefore, the current paper hypothesises that the combination of these two interventions could improve cognitive outcomes, over and above the effects of administrating these interventions independently, as an effective treatment to ameliorate age associated cognitive decline. Copyright © 2016 Elsevier Ltd. All rights reserved.
Subcellular Organization of CaMKII in Rat Hippocampal Pyramidal Neurons
Ding, Jin-Dong; Kennedy, Mary B.; Weinberg, Richard J.
2015-01-01
Calcium/calmodulin-dependent protein kinase II (CaM-KII) plays a key role in N-methyl-D-aspartate (NMDA) receptor-dependent long-term synaptic plasticity; its location is critical for signal transduction, and may provide clues that further elucidate its function. We therefore examined the subcellular localization of CaMKII in CA1 stratum radiatum of adult rat hippocampus, by using immuno-electron microscopy after chemical fixation. When tissue was fixed quickly, the concentration of CaMKIIα (assessed by pre-embedding immunogold) was significantly higher in dendritic shafts than in spine heads. However, when tissue was fixed 5 minutes after perfusion with normal saline, the density of labeling decreased in dendritic shaft while increasing in spine heads, implying rapid translocation into the spine during brief perimortem stress. Likewise, in quickly fixed tissue, CaMKII within spine heads was found at comparable concentrations in the “proximal” half (adjacent to the spine neck) and the “distal” half (containing the postsynaptic density [PSD]), whereas after delayed fixation, label density increased in the distal side of the spine head, suggesting that CaMKII within the spine head moves toward the PSD during this interval. To estimate its distribution at the synapse in vivo, we performed postembedding immunogold staining for CaMKII in quick-fixed tissue, and found that the enzyme did not concentrate primarily within the central matrix of the PSD. Instead, labeling density peaked ∼40 nm inside the postsynaptic membrane, at the cytoplasmic fringe of the PSD. Labeling within 25 nm of the postsynaptic membrane concentrated at the lateral edge of the synapse. This lateral “PSD core” pool of CaMKII may play a special role in synaptic plasticity. PMID:23749614
Slow synaptic transmission mediated by TRPV1 channels in CA3 interneurons of the hippocampus.
Eguchi, Noriomi; Hishimoto, Akitoyo; Sora, Ichiro; Mori, Masahiro
2016-03-11
Metabotropic glutamate receptors (mGluRs) modulate various neuronal functions in the central nervous system. Many studies reported that mGluRs have linkages to neuronal disorders such as schizophrenia and autism related disorders, indicating that mGluRs are involved in critical functions of the neuronal circuits. To study this possibility further, we recorded mGluR-induced synaptic responses in the interneurons of the CA3 stratum radiatum using rat hippocampal organotypic slice cultures. Electrical stimulation in the CA3 pyramidal cell layer evoked a slow inward current in the interneurons at a holding potential of -70mV in the presence of antagonists for AMPA/kainate receptors, NMDA receptors, GABAA receptors and GABAB receptors. The slow inward current was blocked in the absence of extracellular calcium, suggesting that this was a synaptic response. The slow excitatory postsynaptic current (EPSC) reversed near 0mV, reflecting an increase in a non-selective cationic conductance. The slow EPSC is mediated by group I mGluRs, as it was blocked by AP3, a group I mGluR antagonist. Neither a calcium chelator BAPTA nor a phospholipase C (PLC) inhibitor U73122 affected the slow EPSC. La(3+), a general TRP channel blocker or capsazepine, a selective TRPV1 channel antagonist significantly suppressed the slow EPSC. DHPG, a selective group I mGluRs agonist induced an inward current, which was suppressed by capsazepine. These results indicate that in the interneurons of the hippocampal CA3 stratum radiatum group I mGluRs activate TRPV1 channels independently of PLC and intracellular Ca(2+), resulting in the slow EPSC in the interneurons. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Acute Fasting Regulates Retrograde Synaptic Enhancement through a 4E-BP-Dependent Mechanism.
Kauwe, Grant; Tsurudome, Kazuya; Penney, Jay; Mori, Megumi; Gray, Lindsay; Calderon, Mario R; Elazouzzi, Fatima; Chicoine, Nicole; Sonenberg, Nahum; Haghighi, A Pejmun
2016-12-21
While beneficial effects of fasting on organismal function and health are well appreciated, we know little about the molecular details of how fasting influences synaptic function and plasticity. Our genetic and electrophysiological experiments demonstrate that acute fasting blocks retrograde synaptic enhancement that is normally triggered as a result of reduction in postsynaptic receptor function at the Drosophila larval neuromuscular junction (NMJ). This negative regulation critically depends on transcriptional enhancement of eukaryotic initiation factor 4E binding protein (4E-BP) under the control of the transcription factor Forkhead box O (Foxo). Furthermore, our findings indicate that postsynaptic 4E-BP exerts a constitutive negative input, which is counteracted by a positive regulatory input from the Target of Rapamycin (TOR). This combinatorial retrograde signaling plays a key role in regulating synaptic strength. Our results provide a mechanistic insight into how cellular stress and nutritional scarcity could acutely influence synaptic homeostasis and functional stability in neural circuits. Copyright © 2016 Elsevier Inc. All rights reserved.
Kulkarni, Abhishek; Ertekin, Deniz; Lee, Chi-Hon; Hummel, Thomas
2016-03-17
The precise recognition of appropriate synaptic partner neurons is a critical step during neural circuit assembly. However, little is known about the developmental context in which recognition specificity is important to establish synaptic contacts. We show that in the Drosophila visual system, sequential segregation of photoreceptor afferents, reflecting their birth order, lead to differential positioning of their growth cones in the early target region. By combining loss- and gain-of-function analyses we demonstrate that relative differences in the expression of the transcription factor Sequoia regulate R cell growth cone segregation. This initial growth cone positioning is consolidated via cell-adhesion molecule Capricious in R8 axons. Further, we show that the initial growth cone positioning determines synaptic layer selection through proximity-based axon-target interactions. Taken together, we demonstrate that birth order dependent pre-patterning of afferent growth cones is an essential pre-requisite for the identification of synaptic partner neurons during visual map formation in Drosophila.
Li, Yi; Zhong, Yingpeng; Zhang, Jinjian; Xu, Lei; Wang, Qing; Sun, Huajun; Tong, Hao; Cheng, Xiaoming; Miao, Xiangshui
2014-05-09
Nanoscale inorganic electronic synapses or synaptic devices, which are capable of emulating the functions of biological synapses of brain neuronal systems, are regarded as the basic building blocks for beyond-Von Neumann computing architecture, combining information storage and processing. Here, we demonstrate a Ag/AgInSbTe/Ag structure for chalcogenide memristor-based electronic synapses. The memristive characteristics with reproducible gradual resistance tuning are utilised to mimic the activity-dependent synaptic plasticity that serves as the basis of memory and learning. Bidirectional long-term Hebbian plasticity modulation is implemented by the coactivity of pre- and postsynaptic spikes, and the sign and degree are affected by assorted factors including the temporal difference, spike rate and voltage. Moreover, synaptic saturation is observed to be an adjustment of Hebbian rules to stabilise the growth of synaptic weights. Our results may contribute to the development of highly functional plastic electronic synapses and the further construction of next-generation parallel neuromorphic computing architecture.
Modulation of neuronal signal transduction and memory formation by synaptic zinc.
Sindreu, Carlos; Storm, Daniel R
2011-01-01
The physiological role of synaptic zinc has remained largely enigmatic since its initial detection in hippocampal mossy fibers over 50 years ago. The past few years have witnessed a number of studies highlighting the ability of zinc ions to regulate ion channels and intracellular signaling pathways implicated in neuroplasticity, and others that shed some light on the elusive role of synaptic zinc in learning and memory. Recent behavioral studies using knock-out mice for the synapse-specific zinc transporter ZnT-3 indicate that vesicular zinc is required for the formation of memories dependent on the hippocampus and the amygdala, two brain centers that are prominently innervated by zinc-rich fibers. A common theme emerging from this research is the activity-dependent regulation of the Erk1/2 mitogen-activated-protein kinase pathway by synaptic zinc through diverse mechanisms in neurons. Here we discuss current knowledge on how synaptic zinc may play a role in cognition through its impact on neuronal signaling.
Modulation of Neuronal Signal Transduction and Memory Formation by Synaptic Zinc
Sindreu, Carlos; Storm, Daniel R.
2011-01-01
The physiological role of synaptic zinc has remained largely enigmatic since its initial detection in hippocampal mossy fibers over 50 years ago. The past few years have witnessed a number of studies highlighting the ability of zinc ions to regulate ion channels and intracellular signaling pathways implicated in neuroplasticity, and others that shed some light on the elusive role of synaptic zinc in learning and memory. Recent behavioral studies using knock-out mice for the synapse-specific zinc transporter ZnT-3 indicate that vesicular zinc is required for the formation of memories dependent on the hippocampus and the amygdala, two brain centers that are prominently innervated by zinc-rich fibers. A common theme emerging from this research is the activity-dependent regulation of the Erk1/2 mitogen-activated-protein kinase pathway by synaptic zinc through diverse mechanisms in neurons. Here we discuss current knowledge on how synaptic zinc may play a role in cognition through its impact on neuronal signaling. PMID:22084630
Cell-specific gain modulation by synaptically released zinc in cortical circuits of audition.
Anderson, Charles T; Kumar, Manoj; Xiong, Shanshan; Tzounopoulos, Thanos
2017-09-09
In many excitatory synapses, mobile zinc is found within glutamatergic vesicles and is coreleased with glutamate. Ex vivo studies established that synaptically released (synaptic) zinc inhibits excitatory neurotransmission at lower frequencies of synaptic activity but enhances steady state synaptic responses during higher frequencies of activity. However, it remains unknown how synaptic zinc affects neuronal processing in vivo. Here, we imaged the sound-evoked neuronal activity of the primary auditory cortex in awake mice. We discovered that synaptic zinc enhanced the gain of sound-evoked responses in CaMKII-expressing principal neurons, but it reduced the gain of parvalbumin- and somatostatin-expressing interneurons. This modulation was sound intensity-dependent and, in part, NMDA receptor-independent. By establishing a previously unknown link between synaptic zinc and gain control of auditory cortical processing, our findings advance understanding about cortical synaptic mechanisms and create a new framework for approaching and interpreting the role of the auditory cortex in sound processing.
A Markovian Entropy Measure for the Analysis of Calcium Activity Time Series
Rahman, Atiqur; Odorizzi, Laura; LeFew, Michael C.; Golino, Caroline A.; Kemper, Peter; Saha, Margaret S.
2016-01-01
Methods to analyze the dynamics of calcium activity often rely on visually distinguishable features in time series data such as spikes, waves, or oscillations. However, systems such as the developing nervous system display a complex, irregular type of calcium activity which makes the use of such methods less appropriate. Instead, for such systems there exists a class of methods (including information theoretic, power spectral, and fractal analysis approaches) which use more fundamental properties of the time series to analyze the observed calcium dynamics. We present a new analysis method in this class, the Markovian Entropy measure, which is an easily implementable calcium time series analysis method which represents the observed calcium activity as a realization of a Markov Process and describes its dynamics in terms of the level of predictability underlying the transitions between the states of the process. We applied our and other commonly used calcium analysis methods on a dataset from Xenopus laevis neural progenitors which displays irregular calcium activity and a dataset from murine synaptic neurons which displays activity time series that are well-described by visually-distinguishable features. We find that the Markovian Entropy measure is able to distinguish between biologically distinct populations in both datasets, and that it can separate biologically distinct populations to a greater extent than other methods in the dataset exhibiting irregular calcium activity. These results support the benefit of using the Markovian Entropy measure to analyze calcium dynamics, particularly for studies using time series data which do not exhibit easily distinguishable features. PMID:27977764
Nuclear Calcium Buffering Capacity Shapes Neuronal Architecture.
Mauceri, Daniela; Hagenston, Anna M; Schramm, Kathrin; Weiss, Ursula; Bading, Hilmar
2015-09-18
Calcium-binding proteins (CaBPs) such as parvalbumin are part of the cellular calcium buffering system that determines intracellular calcium diffusion and influences the spatiotemporal dynamics of calcium signals. In neurons, CaBPs are primarily localized to the cytosol and function, for example, in nerve terminals in short-term synaptic plasticity. However, CaBPs are also expressed in the cell nucleus, suggesting that they modulate nuclear calcium signals, which are key regulators of neuronal gene expression. Here we show that the calcium buffering capacity of the cell nucleus in mouse hippocampal neurons regulates neuronal architecture by modulating the expression levels of VEGFD and the complement factor C1q-c, two nuclear calcium-regulated genes that control dendrite geometry and spine density, respectively. Increasing the levels of nuclear calcium buffers by means of expression of a nuclearly targeted form of parvalbumin fused to mCherry (PV.NLS-mC) led to a reduction in VEGFD expression and, as a result, to a decrease in total dendritic length and complexity. In contrast, mRNA levels of the synapse pruning factor C1q-c were increased in neurons expressing PV.NLS-mC, causing a reduction in the density and size of dendritic spines. Our results establish a close link between nuclear calcium buffering capacity and the transcription of genes that determine neuronal structure. They suggest that the development of cognitive deficits observed in neurological conditions associated with CaBP deregulation may reflect the loss of necessary structural features of dendrites and spines. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Gasperini, Robert J; Pavez, Macarena; Thompson, Adrian C; Mitchell, Camilla B; Hardy, Holly; Young, Kaylene M; Chilton, John K; Foa, Lisa
2017-10-01
The precision with which neurons form connections is crucial for the normal development and function of the nervous system. The development of neuronal circuitry in the nervous system is accomplished by axon pathfinding: a process where growth cones guide axons through the embryonic environment to connect with their appropriate synaptic partners to form functional circuits. Despite intense efforts over many years to understand how this process is regulated, the complete repertoire of molecular mechanisms that govern the growth cone cytoskeleton and hence motility, remain unresolved. A central tenet in the axon guidance field is that calcium signals regulate growth cone behaviours such as extension, turning and pausing by regulating rearrangements of the growth cone cytoskeleton. Here, we provide evidence that not only the amplitude of a calcium signal is critical for growth cone motility but also the source of calcium mobilisation. We provide an example of this idea by demonstrating that manipulation of calcium signalling via L-type voltage gated calcium channels can perturb sensory neuron motility towards a source of netrin-1. Understanding how calcium signals can be transduced to initiate cytoskeletal changes represents a significant gap in our current knowledge of the mechanisms that govern axon guidance, and consequently the formation of functional neural circuits in the developing nervous system. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.
Hanno-Iijima, Yoko; Tanaka, Masami; Iijima, Takatoshi
2015-01-01
Homeostatic synaptic plasticity, or synaptic scaling, is a mechanism that tunes neuronal transmission to compensate for prolonged, excessive changes in neuronal activity. Both excitatory and inhibitory neurons undergo homeostatic changes based on synaptic transmission strength, which could effectively contribute to a fine-tuning of circuit activity. However, gene regulation that underlies homeostatic synaptic plasticity in GABAergic (GABA, gamma aminobutyric) neurons is still poorly understood. The present study demonstrated activity-dependent dynamic scaling in which NMDA-R (N-methyl-D-aspartic acid receptor) activity regulated the expression of GABA synthetic enzymes: glutamic acid decarboxylase 65 and 67 (GAD65 and GAD67). Results revealed that activity-regulated BDNF (brain-derived neurotrophic factor) release is necessary, but not sufficient, for activity-dependent up-scaling of these GAD isoforms. Bidirectional forms of activity-dependent GAD expression require both BDNF-dependent and BDNF-independent pathways, both triggered by NMDA-R activity. Additional results indicated that these two GAD genes differ in their responsiveness to chronic changes in neuronal activity, which could be partially caused by differential dependence on BDNF. In parallel to activity-dependent bidirectional scaling in GAD expression, the present study further observed that a chronic change in neuronal activity leads to an alteration in neurotransmitter release from GABAergic neurons in a homeostatic, bidirectional fashion. Therefore, the differential expression of GAD65 and 67 during prolonged changes in neuronal activity may be implicated in some aspects of bidirectional homeostatic plasticity within mature GABAergic presynapses. PMID:26241953
Hanno-Iijima, Yoko; Tanaka, Masami; Iijima, Takatoshi
2015-01-01
Homeostatic synaptic plasticity, or synaptic scaling, is a mechanism that tunes neuronal transmission to compensate for prolonged, excessive changes in neuronal activity. Both excitatory and inhibitory neurons undergo homeostatic changes based on synaptic transmission strength, which could effectively contribute to a fine-tuning of circuit activity. However, gene regulation that underlies homeostatic synaptic plasticity in GABAergic (GABA, gamma aminobutyric) neurons is still poorly understood. The present study demonstrated activity-dependent dynamic scaling in which NMDA-R (N-methyl-D-aspartic acid receptor) activity regulated the expression of GABA synthetic enzymes: glutamic acid decarboxylase 65 and 67 (GAD65 and GAD67). Results revealed that activity-regulated BDNF (brain-derived neurotrophic factor) release is necessary, but not sufficient, for activity-dependent up-scaling of these GAD isoforms. Bidirectional forms of activity-dependent GAD expression require both BDNF-dependent and BDNF-independent pathways, both triggered by NMDA-R activity. Additional results indicated that these two GAD genes differ in their responsiveness to chronic changes in neuronal activity, which could be partially caused by differential dependence on BDNF. In parallel to activity-dependent bidirectional scaling in GAD expression, the present study further observed that a chronic change in neuronal activity leads to an alteration in neurotransmitter release from GABAergic neurons in a homeostatic, bidirectional fashion. Therefore, the differential expression of GAD65 and 67 during prolonged changes in neuronal activity may be implicated in some aspects of bidirectional homeostatic plasticity within mature GABAergic presynapses.
Cicvaric, Ana; Yang, Jiaye; Krieger, Sigurd; Khan, Deeba; Kim, Eun-Jung; Dominguez-Rodriguez, Manuel; Cabatic, Maureen; Molz, Barbara; Acevedo Aguilar, Juan Pablo; Milicevic, Radoslav; Smani, Tarik; Breuss, Johannes M; Kerjaschki, Dontscho; Pollak, Daniela D; Uhrin, Pavel; Monje, Francisco J
2016-12-01
Podoplanin is a cell-surface glycoprotein constitutively expressed in the brain and implicated in human brain tumorigenesis. The intrinsic function of podoplanin in brain neurons remains however uncharacterized. Using an established podoplanin-knockout mouse model and electrophysiological, biochemical, and behavioral approaches, we investigated the brain neuronal role of podoplanin. Ex-vivo electrophysiology showed that podoplanin deletion impairs dentate gyrus synaptic strengthening. In vivo, podoplanin deletion selectively impaired hippocampus-dependent spatial learning and memory without affecting amygdala-dependent cued fear conditioning. In vitro, neuronal overexpression of podoplanin promoted synaptic activity and neuritic outgrowth whereas podoplanin-deficient neurons exhibited stunted outgrowth and lower levels of p-Ezrin, TrkA, and CREB in response to nerve growth factor (NGF). Surface Plasmon Resonance data further indicated a physical interaction between podoplanin and NGF. This work proposes podoplanin as a novel component of the neuronal machinery underlying neuritogenesis, synaptic plasticity, and hippocampus-dependent memory functions. The existence of a relevant cross-talk between podoplanin and the NGF/TrkA signaling pathway is also for the first time proposed here, thus providing a novel molecular complex as a target for future multidisciplinary studies of the brain function in the physiology and the pathology. Key messages Podoplanin, a protein linked to the promotion of human brain tumors, is required in vivo for proper hippocampus-dependent learning and memory functions. Deletion of podoplanin selectively impairs activity-dependent synaptic strengthening at the neurogenic dentate-gyrus and hampers neuritogenesis and phospho Ezrin, TrkA and CREB protein levels upon NGF stimulation. Surface plasmon resonance data indicates a physical interaction between podoplanin and NGF. On these grounds, a relevant cross-talk between podoplanin and NGF as well as a role for podoplanin in plasticity-related brain neuronal functions is here proposed.
Krill, Jennifer L; Dawson-Scully, Ken
2016-01-01
While the mammalian brain functions within a very narrow range of oxygen concentrations and temperatures, the fruit fly, Drosophila melanogaster, has employed strategies to deal with a much wider range of acute environmental stressors. The foraging (for) gene encodes the cGMP-dependent protein kinase (PKG), has been shown to regulate thermotolerance in many stress-adapted species, including Drosophila, and could be a potential therapeutic target in the treatment of hyperthermia in mammals. Whereas previous thermotolerance studies have looked at the effects of PKG variation on Drosophila behavior or excitatory postsynaptic potentials at the neuromuscular junction (NMJ), little is known about PKG effects on presynaptic mechanisms. In this study, we characterize presynaptic calcium ([Ca2+]i) dynamics at the Drosophila larval NMJ to determine the effects of high temperature stress on synaptic transmission. We investigated the neuroprotective role of PKG modulation both genetically using RNA interference (RNAi), and pharmacologically, to determine if and how PKG affects presynaptic [Ca2+]i dynamics during hyperthermia. We found that PKG activity modulates presynaptic neuronal Ca2+ responses during acute hyperthermia, where PKG activation makes neurons more sensitive to temperature-induced failure of Ca2+ flux and PKG inhibition confers thermotolerance and maintains normal Ca2+ dynamics under the same conditions. Targeted motoneuronal knockdown of PKG using RNAi demonstrated that decreased PKG expression was sufficient to confer thermoprotection. These results demonstrate that the PKG pathway regulates presynaptic motoneuronal Ca2+ signaling to influence thermotolerance of presynaptic function during acute hyperthermia.
Cholinergic Synaptic Transmissions Were Altered after Single Sevoflurane Exposure in Drosophila Pupa
Chen, Rongfa; Zhang, Tao; Kuang, Liting; Chen, Zhen; Ran, Dongzhi; Niu, Yang; Gu, Huaiyu
2015-01-01
Purpose. Sevoflurane, one of the most used general anesthetics, is widely used in clinical practice all over the world. Previous studies indicated that sevoflurane could induce neuron apoptosis and neural deficit causing query in the safety of anesthesia using sevoflurane. The present study was designed to investigate the effects of sevoflurane on electrophysiology in Drosophila pupa whose excitatory neurotransmitter is acetylcholine early after sevoflurane exposure using whole brain recording technique. Methods. Wide types of Drosophila (canton-s flies) were allocated to control and sevoflurane groups randomly. Sevoflurane groups (1% sevoflurane; 2% sevoflurane; 3% sevoflurane) were exposed to sevoflurane and the exposure lasted 5 hours, respectively. All flies were subjected to electrophysiology experiment using patch clamp 24 hours after exposure. Results. The results showed that, 24 hours after sevoflurane exposure, frequency but not the amplitude of miniature excitatory postsynaptic currents (mEPSCs) was significantly reduced (P < 0.05). Furthermore, we explored the underlying mechanism and found that calcium currents density, which partially regulated the frequency of mEPSCs, was significantly reduced after sevoflurane exposure (P < 0.05). Conclusions. All these suggested that sevoflurane could alter the mEPSCs that are related to synaptic plasticity partially through modulating calcium channel early after sevoflurane exposure. PMID:25705662
Leao, Richardson N; Leao, Fabricio N; Walmsley, Bruce
2005-01-01
A change in the spontaneous release of neurotransmitter is a useful indicator of processes occurring within presynaptic terminals. Linear techniques (e.g. Fourier transform) have been used to analyse spontaneous synaptic events in previous studies, but such methods are inappropriate if the timing pattern is complex. We have investigated spontaneous glycinergic miniature synaptic currents (mIPSCs) in principal cells of the medial nucleus of the trapezoid body. The random versus deterministic (or periodic) nature of mIPSCs was assessed using recurrence quantification analysis. Nonlinear methods were then used to quantify any detected determinism in spontaneous release, and to test for chaotic or fractal patterns. Modelling demonstrated that this procedure is much more sensitive in detecting periodicities than conventional techniques. mIPSCs were found to exhibit periodicities that were abolished by blockade of internal calcium stores with ryanodine, suggesting calcium oscillations in the presynaptic inhibitory terminals. Analysis indicated that mIPSC occurrences were chaotic in nature. Furthermore, periodicities were less evident in congenitally deaf mice than in normal mice, indicating that appropriate neural activity during development is necessary for the expression of deterministic chaos in mIPSC patterns. We suggest that chaotic oscillations of mIPSC occurrences play a physiological role in signal processing in the auditory brainstem. PMID:16271982
Ependymin, a brain extracellular glycoprotein, and CNS plasticity.
Shashoua, V E
1991-01-01
Ependymin, a glycoprotein of the brain ECF, has been implicated in the neurochemistry of memory and neuronal regeneration. Three behavioral experiments (swimming with a float, avoidance conditioning, and classical conditioning) in the goldfish and one in the mouse (T-maze learning) indicate that ependymin has a role in the synaptic changes that take place in the consolidation step of memory formation and the activity-dependent phase of sharpening of goldfish retinotectal connections during neuronal regeneration. The ECF concentration of the protein was found to decrease after the goldfish learned to associate a light stimulus (CS) with the subsequent arrival of a shock (US): paired CS-US gave changes whereas an unpaired presentation of CS-US gave no changes relative to the unstimulated controls. Ependymin is present in ECF as a mixture of three disulfide-linked dimers of two acidic (alpha and beta) polypeptide chains (37 kDa and 31 kDa). Upon removal of its N-linked glycan fragment by N-glycosidase F, the beta chain yields gamma-ependymin (26 kDa). Determinations of the amino acid sequence of gamma-ependymin indicate that it is a unique protein with no long sequence homologies to any known polypeptide. There are, however, small segments (5-7 amino acids long) with homologies to fibronectin, laminin, and tubulin. Ependymin has the capacity to polymerize into FIP (after activation by phosphorylation) in response to events that deplete ECF calcium. FIP is insoluble in 2% SDS in 6 M urea, 10 mM Ca2+Ac2, 100% acetic acid, chloroform/methanol (2/1), saturated KCNS, and even 100% trifluoroacetic acid. FIP was found to be present in goldfish brain and to be formed as a labeled product in vivo. Ependymin's FIP-forming property was used to propose a molecular hypothesis for generating synaptic changes in response to local extracellular depletions of calcium at sites of "associating inputs." The model assumes that, following NMDA receptor stimulation, the translocated PKC that is generated activates extracellular ependymin by converting it to its phosphorylated form using presynaptically released ATP. The hypothesis was tested in studies of LTP of rat hippocampal slices at CA1. After LTP, new sites that stained with antisera to ependymin, visible at 100x, were obtained in its potentiated radiatum in the CA1 region but not in the unpotentiated CA3. Electron microscopic studies showed that the horseradish peroxidase reaction product obtained was localized at synaptic clefts and postsynaptic regions. The results suggest that FIP may be formed at extracellular and postsynaptic loci where multiple associating inputs interact at CA1.
Safari, Roghaiyeh; Salimi, Reza; Tunca, Zeliha; Ozerdem, Aysegul; Ceylan, Deniz; Sakizli, Meral
2016-06-01
Calcium signaling is important for synaptic plasticity, generation of brain rhythms, regulating neuronal excitability, data processing and cognition. Impairment in calcium homeostasis contributed to the development of psychiatric disorders such as bipolar disorder (BP). MCU is the most important calcium transporter in mitochondria inner membrane responsible for influx of Ca[Formula: see text]. MICU1 is linked with MCU and has two canonical EF hands that are vital for its activity and regulates MCU-mediated Ca[Formula: see text] influx. In the current study, we aimed to investigate the role of genetic alteration of EF hand calcium binding motifs of MICU1 on the development of BP. We examined patients with BP, first degree relatives of these patients and healthy volunteers for mutations and polymorphisms in EF hand calcium binding motifs of MICU1. The result showed no SNP/mutation in BP patients, in healthy subjects and in first degree relatives. Additionally, alignment of the EF hand calcium binding regions among species (Gallus-gallus, Canis-lupus-familiaris, Bos-taurus, Mus-musculus, Rattus-norvegicus, Pan-troglodytes, Homosapiens and Danio-rerio) showed exactly the same amino acids (DLNGDGEVDMEE and DCDGNGELSNKE) except in one of the calcium binding domain of Danio-rerio that there was only one difference; leucine instead of Methionine. Our results showed that the SNP on EF-hand Ca[Formula: see text] binding domains of MICU1 gene had no effect in phenotypic characters of BP patients.
Redox Regulation of Neuronal Voltage-Gated Calcium Channels
Jevtovic-Todorovic, Vesna
2014-01-01
Abstract Significance: Voltage-gated calcium channels are ubiquitously expressed in neurons and are key regulators of cellular excitability and synaptic transmitter release. There is accumulating evidence that multiple subtypes of voltage-gated calcium channels may be regulated by oxidation and reduction. However, the redox mechanisms involved in the regulation of channel function are not well understood. Recent Advances: Several studies have established that both T-type and high-voltage-activated subtypes of voltage-gated calcium channel can be redox-regulated. This article reviews different mechanisms that can be involved in redox regulation of calcium channel function and their implication in neuronal function, particularly in pain pathways and thalamic oscillation. Critical Issues: A current critical issue in the field is to decipher precise mechanisms of calcium channel modulation via redox reactions. In this review we discuss covalent post-translational modification via oxidation of cysteine molecules and chelation of trace metals, and reactions involving nitric oxide-related molecules and free radicals. Improved understanding of the roles of redox-based reactions in regulation of voltage-gated calcium channels may lead to improved understanding of novel redox mechanisms in physiological and pathological processes. Future Directions: Identification of redox mechanisms and sites on voltage-gated calcium channel may allow development of novel and specific ion channel therapies for unmet medical needs. Thus, it may be possible to regulate the redox state of these channels in treatment of pathological process such as epilepsy and neuropathic pain. Antioxid. Redox Signal. 21, 880–891. PMID:24161125
Shank3 Is Part of a Zinc-Sensitive Signaling System That Regulates Excitatory Synaptic Strength.
Arons, Magali H; Lee, Kevin; Thynne, Charlotte J; Kim, Sally A; Schob, Claudia; Kindler, Stefan; Montgomery, Johanna M; Garner, Craig C
2016-08-31
Shank3 is a multidomain scaffold protein localized to the postsynaptic density of excitatory synapses. Functional studies in vivo and in vitro support the concept that Shank3 is critical for synaptic plasticity and the trans-synaptic coupling between the reliability of presynaptic neurotransmitter release and postsynaptic responsiveness. However, how Shank3 regulates synaptic strength remains unclear. The C terminus of Shank3 contains a sterile alpha motif (SAM) domain that is essential for its postsynaptic localization and also binds zinc, thus raising the possibility that changing zinc levels modulate Shank3 function in dendritic spines. In support of this hypothesis, we find that zinc is a potent regulator of Shank3 activation and dynamics in rat hippocampal neurons. Moreover, we show that zinc modulation of synaptic transmission is Shank3 dependent. Interestingly, an autism spectrum disorder (ASD)-associated variant of Shank3 (Shank3(R87C)) retains its zinc sensitivity and supports zinc-dependent activation of AMPAR-mediated synaptic transmission. However, elevated zinc was unable to rescue defects in trans-synaptic signaling caused by the R87C mutation, implying that trans-synaptic increases in neurotransmitter release are not necessary for the postsynaptic effects of zinc. Together, these data suggest that Shank3 is a key component of a zinc-sensitive signaling system, regulating synaptic strength that may be impaired in ASD. Shank3 is a postsynaptic protein associated with neurodevelopmental disorders such as autism and schizophrenia. In this study, we show that Shank3 is a key component of a zinc-sensitive signaling system that regulates excitatory synaptic transmission. Intriguingly, an autism-associated mutation in Shank3 partially impairs this signaling system. Therefore, perturbation of zinc homeostasis may impair, not only synaptic functionality and plasticity, but also may lead to cognitive and behavioral abnormalities seen in patients with psychiatric disorders. Copyright © 2016 the authors 0270-6474/16/369124-11$15.00/0.
Watabe, Ayako M; Nagase, Masashi; Hagiwara, Akari; Hida, Yamato; Tsuji, Megumi; Ochiai, Toshitaka; Kato, Fusao; Ohtsuka, Toshihisa
2016-01-01
Synapses of amphids defective (SAD)-A/B kinases control various steps in neuronal development and differentiation, such as axon specifications and maturation in central and peripheral nervous systems. At mature pre-synaptic terminals, SAD-B is associated with synaptic vesicles and the active zone cytomatrix; however, how SAD-B regulates neurotransmission and synaptic plasticity in vivo remains unclear. Thus, we used SAD-B knockout (KO) mice to study the function of this pre-synaptic kinase in the brain. We found that the paired-pulse ratio was significantly enhanced at Shaffer collateral synapses in the hippocampal CA1 region in SAD-B KO mice compared with wild-type littermates. We also found that the frequency of the miniature excitatory post-synaptic current was decreased in SAD-B KO mice. Moreover, synaptic depression following prolonged low-frequency synaptic stimulation was significantly enhanced in SAD-B KO mice. These results suggest that SAD-B kinase regulates vesicular release probability at pre-synaptic terminals and is involved in vesicular trafficking and/or regulation of the readily releasable pool size. Finally, we found that hippocampus-dependent contextual fear learning was significantly impaired in SAD-B KO mice. These observations suggest that SAD-B kinase plays pivotal roles in controlling vesicular release properties and regulating hippocampal function in the mature brain. Synapses of amphids defective (SAD)-A/B kinases control various steps in neuronal development and differentiation, but their roles in mature brains were only partially known. Here, we demonstrated, at mature pre-synaptic terminals, that SAD-B regulates vesicular release probability and synaptic plasticity. Moreover, hippocampus-dependent contextual fear learning was significantly impaired in SAD-B KO mice, suggesting that SAD-B kinase plays pivotal roles in controlling vesicular release properties and regulating hippocampal function in the mature brain. © 2015 International Society for Neurochemistry.
Shank3 Is Part of a Zinc-Sensitive Signaling System That Regulates Excitatory Synaptic Strength
Arons, Magali H.; Lee, Kevin; Thynne, Charlotte J.; Kim, Sally A.; Schob, Claudia; Kindler, Stefan
2016-01-01
Shank3 is a multidomain scaffold protein localized to the postsynaptic density of excitatory synapses. Functional studies in vivo and in vitro support the concept that Shank3 is critical for synaptic plasticity and the trans-synaptic coupling between the reliability of presynaptic neurotransmitter release and postsynaptic responsiveness. However, how Shank3 regulates synaptic strength remains unclear. The C terminus of Shank3 contains a sterile alpha motif (SAM) domain that is essential for its postsynaptic localization and also binds zinc, thus raising the possibility that changing zinc levels modulate Shank3 function in dendritic spines. In support of this hypothesis, we find that zinc is a potent regulator of Shank3 activation and dynamics in rat hippocampal neurons. Moreover, we show that zinc modulation of synaptic transmission is Shank3 dependent. Interestingly, an autism spectrum disorder (ASD)-associated variant of Shank3 (Shank3R87C) retains its zinc sensitivity and supports zinc-dependent activation of AMPAR-mediated synaptic transmission. However, elevated zinc was unable to rescue defects in trans-synaptic signaling caused by the R87C mutation, implying that trans-synaptic increases in neurotransmitter release are not necessary for the postsynaptic effects of zinc. Together, these data suggest that Shank3 is a key component of a zinc-sensitive signaling system, regulating synaptic strength that may be impaired in ASD. SIGNIFICANCE STATEMENT Shank3 is a postsynaptic protein associated with neurodevelopmental disorders such as autism and schizophrenia. In this study, we show that Shank3 is a key component of a zinc-sensitive signaling system that regulates excitatory synaptic transmission. Intriguingly, an autism-associated mutation in Shank3 partially impairs this signaling system. Therefore, perturbation of zinc homeostasis may impair, not only synaptic functionality and plasticity, but also may lead to cognitive and behavioral abnormalities seen in patients with psychiatric disorders. PMID:27581454
Gioia, Dominic A.; Alexander, Nancy; McCool, Brian A.
2017-01-01
Chronic exposure to alcohol produces adaptations within the basolateral amygdala (BLA) that are associated with the development of anxiety-like behaviors during withdrawal. In part, these adaptations are mediated by plasticity in glutamatergic synapses occurring through an AMPA receptor mediated form of post-synaptic facilitation in addition to a unique form of presynaptic facilitation. In comparison to the post-synaptic compartment, relatively less is understood about the mechanisms involved in the acute and chronic effects of ethanol in the presynaptic terminal. Previous research has demonstrated that glutamatergic terminals in the mouse BLA are sensitive to ethanol mediated inhibition of synaptic vesicle recycling in a strain-dependent fashion. Importantly, the strain-dependent differences in presynaptic ethanol sensitivity are in accordance with known strain-dependent differences in ethanol/anxiety interactions. In the present study, we have used a short-hairpin RNA to knockdown the expression of the presynaptic Munc13-2 protein in C57BL/6J mice, whose BLA glutamate terminals are normally ethanol-insensitive. We injected this shRNA, or a scrambled control virus, into the medial prefrontal cortex (mPFC) which sends dense projections to the BLA. Accordingly, this knockdown strategy reduces the expression of the Munc13-2 isoform in mPFC terminals within the BLA and alters presynaptic terminal function in C57BL/6J mice in a manner that phenocopies DBA/2J glutamate terminals which are normally ethanol-sensitive. Here, we provide evidence that manipulation of this single protein, Munc13-2, renders C57BL/6J terminals sensitive to ethanol mediated inhibition of synaptic vesicle recycling and post-tetanic potentiation. Furthermore, we found that this ethanol inhibition was dose dependent. Considering the important role of Munc13 proteins in synaptic plasticity, this study potentially identifies a molecular mechanism regulating the acute presynaptic effects of ethanol to the long lasting adaptations in the BLA that occur during chronic ethanol exposure. PMID:28785200
Brivaracetam augments short-term depression and slows vesicle recycling.
Yang, Xiaofeng; Bognar, Joseph; He, Tianyu; Mohammed, Mouhari; Niespodziany, Isabelle; Wolff, Christian; Esguerra, Manuel; Rothman, Steven M; Dubinsky, Janet M
2015-12-01
Brivaracetam (BRV) decreases seizure activity in a number of epilepsy models and binds to the synaptic vesicle glycoprotein 2A (SV2A) with a higher affinity than the antiepileptic drug levetiracetam (LEV). Experiments were performed to determine if BRV acted similarly to LEV to induce or augment short-term depression (STD) under high-frequency neuronal stimulation and slow synaptic vesicle recycling. Electrophysiologic field excitatory postsynaptic potential (fEPSP) recordings were made from CA1 synapses in rat hippocampal slices loaded with BRV or LEV during intrinsic activity or with BRV actively loaded during hypertonic stimulation. STD was examined in response to 5 or 40 Hz stimulus trains. Presynaptic release of FM1-43 was visualized using two-photon microscopy to assess drug effects upon synaptic vesicle mobilization. When hippocampal slices were incubated in 0.1-30 μm BRV or 30 μm-1 mm LEV for 3 h, the relative CA1 field EPSPs decreased over the course of a high-frequency train of stimuli more than for control slices. This STD was frequency- and concentration-dependent, with BRV being 100-fold more potent than LEV. The extent of STD depended on the length of the incubation time for both drugs. Pretreatment with LEV occluded the effects of BRV. Repeated hypertonic sucrose treatments and train stimulation successfully unloaded BRV from recycling vesicles and reversed BRVs effects on STD, as previously reported for LEV. At their maximal concentrations, BRV slowed FM1-43 release to a greater extent than in slices loaded with LEV during prolonged stimulation. BRV, similar to LEV, entered into recycling synaptic vesicles and produced a frequency-dependent decrement of synaptic transmission at 100-fold lower concentrations than LEV. In addition, BRV slowed synaptic vesicle mobilization more effectively than LEV, suggesting that these drugs may modify multiple functions of the synaptic vesicle protein SV2A to curb synaptic transmission and limit epileptic activity. Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.
Verhoog, Matthijs B; Mansvelder, Huibert D
2011-01-01
Throughout life, activity-dependent changes in neuronal connection strength enable the brain to refine neural circuits and learn based on experience. In line with predictions made by Hebb, synapse strength can be modified depending on the millisecond timing of action potential firing (STDP). The sign of synaptic plasticity depends on the spike order of presynaptic and postsynaptic neurons. Ionotropic neurotransmitter receptors, such as NMDA receptors and nicotinic acetylcholine receptors, are intimately involved in setting the rules for synaptic strengthening and weakening. In addition, timing rules for STDP within synapses are not fixed. They can be altered by activation of ionotropic receptors located at, or close to, synapses. Here, we will highlight studies that uncovered how network actions control and modulate timing rules for STDP by activating presynaptic ionotropic receptors. Furthermore, we will discuss how interaction between different types of ionotropic receptors may create "timing" windows during which particular timing rules lead to synaptic changes.
Flynn, Robyn; Labrie-Dion, Etienne; Bernier, Nikolas; Colicos, Michael A.; De Koninck, Paul; Zamponi, Gerald W.
2012-01-01
Background Rem2 is a small monomeric GTP-binding protein of the RGK family, whose known functions are modulation of calcium channel currents and alterations of cytoskeletal architecture. Rem2 is the only RGK protein found predominantly in the brain, where it has been linked to synaptic development. We wished to determine the effect of neuronal activity on the subcellular distribution of Rem2 and its interacting partners. Results We show that Rem2 undergoes activity-and N-Methyl-D-Aspartate Receptor (NMDAR)-dependent translocation in rat hippocampal neurons. This redistribution of Rem2, from a diffuse pattern to one that is highly punctate, is dependent on Ca2+ influx, on binding to calmodulin (CaM), and also involves an auto-inhibitory domain within the Rem2 distal C-terminus region. We found that Rem2 can bind to Ca2+/CaM-dependent protein kinase IIα (CaMKII) a in Ca2+/CaM-dependent manner. Furthermore, our data reveal a spatial and temporal correlation between NMDAR-dependent clustering of Rem2 and CaMKII in neurons, indicating co-assembly and co-trafficking in neurons. Finally, we show that inhibiting CaMKII aggregation in neurons and HEK cells reduces Rem2 clustering, and that Rem2 affects the baseline distribution of CaMKII in HEK cells. Conclusions Our data suggest a novel function for Rem2 in co-trafficking with CaMKII, and thus potentially expose a role in neuronal plasticity. PMID:22815963
Mean-field theory of a plastic network of integrate-and-fire neurons.
Chen, Chun-Chung; Jasnow, David
2010-01-01
We consider a noise-driven network of integrate-and-fire neurons. The network evolves as result of the activities of the neurons following spike-timing-dependent plasticity rules. We apply a self-consistent mean-field theory to the system to obtain the mean activity level for the system as a function of the mean synaptic weight, which predicts a first-order transition and hysteresis between a noise-dominated regime and a regime of persistent neural activity. Assuming Poisson firing statistics for the neurons, the plasticity dynamics of a synapse under the influence of the mean-field environment can be mapped to the dynamics of an asymmetric random walk in synaptic-weight space. Using a master equation for small steps, we predict a narrow distribution of synaptic weights that scales with the square root of the plasticity rate for the stationary state of the system given plausible physiological parameter values describing neural transmission and plasticity. The dependence of the distribution on the synaptic weight of the mean-field environment allows us to determine the mean synaptic weight self-consistently. The effect of fluctuations in the total synaptic conductance and plasticity step sizes are also considered. Such fluctuations result in a smoothing of the first-order transition for low number of afferent synapses per neuron and a broadening of the synaptic-weight distribution, respectively.
A Synaptic Basis for Memory Storage in the Cerebral Cortex
NASA Astrophysics Data System (ADS)
Bear, Mark F.
1996-11-01
A cardinal feature of neurons in the cerebral cortex is stimulus selectivity, and experience-dependent shifts in selectivity are a common correlate of memory formation. We have used a theoretical ``learning rule,'' devised to account for experience-dependent shifts in neuronal selectivity, to guide experiments on the elementary mechanisms of synaptic plasticity in hippocampus and neocortex. These experiments reveal that many synapses in hippocampus and neocortex are bidirectionally modifiable, that the modifications persist long enough to contribute to long-term memory storage, and that key variables governing the sign of synaptic plasticity are the amount of NMDA receptor activation and the recent history of cortical activity.
Interneuron- and GABAA receptor-specific inhibitory synaptic plasticity in cerebellar Purkinje cells
NASA Astrophysics Data System (ADS)
He, Qionger; Duguid, Ian; Clark, Beverley; Panzanelli, Patrizia; Patel, Bijal; Thomas, Philip; Fritschy, Jean-Marc; Smart, Trevor G.
2015-07-01
Inhibitory synaptic plasticity is important for shaping both neuronal excitability and network activity. Here we investigate the input and GABAA receptor subunit specificity of inhibitory synaptic plasticity by studying cerebellar interneuron-Purkinje cell (PC) synapses. Depolarizing PCs initiated a long-lasting increase in GABA-mediated synaptic currents. By stimulating individual interneurons, this plasticity was observed at somatodendritic basket cell synapses, but not at distal dendritic stellate cell synapses. Basket cell synapses predominantly express β2-subunit-containing GABAA receptors; deletion of the β2-subunit ablates this plasticity, demonstrating its reliance on GABAA receptor subunit composition. The increase in synaptic currents is dependent upon an increase in newly synthesized cell surface synaptic GABAA receptors and is abolished by preventing CaMKII phosphorylation of GABAA receptors. Our results reveal a novel GABAA receptor subunit- and input-specific form of inhibitory synaptic plasticity that regulates the temporal firing pattern of the principal output cells of the cerebellum.
Liu, Jing-Jing; Bello, Nicholas T; Pang, Zhiping P
2017-12-06
Synaptic transmission controls brain activity and behaviors, including food intake. Leptin, an adipocyte-derived hormone, acts on neurons located in the lateral hypothalamic area (LHA) to maintain energy homeostasis and regulate food intake behavior. The specific synaptic mechanisms, cell types, and neural projections mediating this effect remain unclear. In male mice, using pathway-specific retrograde tracing, whole-cell patch-clamp recordings and post hoc cell type identification, we found that leptin reduces excitatory synaptic strength onto both melanin-concentrating hormone- and orexin-expressing neurons projecting from the LHA to the ventral tegmental area (VTA), which may affect dopamine signaling and motivation for feeding. A presynaptic mechanism mediated by distinct intracellular signaling mechanisms may account for this regulation by leptin. The regulatory effects of leptin depend on intact leptin receptor signaling. Interestingly, the synaptic regulatory function of leptin in the LHA-to-VTA neuronal pathway is highly sensitive to energy states: both energy deficiency (acute fasting) and excessive energy storage (high-fat diet-induced obesity) blunt the effect of leptin. These data revealed that leptin may regulate synaptic transmission in the LHA-to-VTA neurocircuitry in an inverted "U-shape" fashion dependent on plasma glucose levels and related to metabolic states. SIGNIFICANCE STATEMENT The lateral hypothalamic area (LHA) to ventral tegmental area (VTA) projection is an important neural pathway involved in balancing whole-body energy states and reward. We found that the excitatory synaptic inputs to both orexin- and melanin-concentrating hormone expressing LHA neurons projecting to the VTA were suppressed by leptin, a peptide hormone derived from adipocytes that signals peripheral energy status to the brain. Interestingly, energy states seem to affect how leptin regulates synaptic transmission since both the depletion of energy induced by acute food deprivation and excessive storage of energy by high-fat diet feeding dampen the suppressive effect of leptin on synaptic transmission. Together, these data show that leptin regulates synaptic transmission and might be important for maintaining energy homeostasis. Copyright © 2017 the authors 0270-6474/17/3711854-13$15.00/0.
Very low concentrations of ethanol suppress excitatory synaptic transmission in rat visual cortex.
Luong, Lucas; Bannon, Nicholas M; Redenti, Andrew; Chistiakova, Marina; Volgushev, Maxim
2017-05-01
Ethanol is one of the most commonly used substances in the world. Behavioral effects of alcohol are well described, however, cellular mechanisms of its action are poorly understood. There is an apparent contradiction between measurable behavioral changes produced by low concentrations of ethanol, and lack of evidence of synaptic changes at these concentrations. Furthermore, effects of ethanol on synaptic transmission in the neocortex are poorly understood. Here, we set to determine effects of ethanol on excitatory synaptic transmission in the neocortex. We show that 1-50 mm ethanol suppresses excitatory synaptic transmission to layer 2/3 pyramidal neurons in rat visual cortex in a concentration-dependent manner. To the best of our knowledge, this is the first demonstration of the effects of very low concentrations of ethanol (from 1 mm) on synaptic transmission in the neocortex. We further show that a selective antagonist of A 1 adenosine receptors, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), blocks effects of 1-10 mm ethanol on synaptic transmission. However, the reduction in excitatory postsynaptic potential amplitude by 50 mm ethanol was not affected by DPCPX. We propose that ethanol depresses excitatory synaptic transmission in the neocortex by at least two mechanisms, engaged at different concentrations: low concentrations of ethanol reduce synaptic transmission via A 1 R-dependent mechanism and involve presynaptic changes, while higher concentrations activate additional, adenosine-independent mechanisms with predominantly postsynaptic action. Involvement of adenosine signaling in mediating effects of low concentrations of ethanol may have important implications for understanding alcohol's effects on brain function, and provide a mechanistic explanation to the interaction between alcohol and caffeine. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Wang, Xinkun; Patel, Nilam D; Hui, Dongwei; Pal, Ranu; Hafez, Mohamed M; Sayed-Ahmed, Mohamed M; Al-Yahya, Abdulaziz A; Michaelis, Elias K
2014-03-04
Extraneuronal levels of the neurotransmitter glutamate in brain rise during aging. This is thought to lead to synaptic dysfunction and neuronal injury or death. To study the effects of glutamate hyperactivity in brain, we created transgenic (Tg) mice in which the gene for glutamate dehydrogenase (Glud1) is over-expressed in neurons and in which such overexpression leads to excess synaptic release of glutamate. In this study, we analyzed whole genome expression in the hippocampus, a region important for learning and memory, of 10 day to 20 month old Glud1 and wild type (wt) mice. During development, maturation and aging, both Tg and wt exhibited decreases in the expression of genes related to neurogenesis, neuronal migration, growth, and process elongation, and increases in genes related to neuro-inflammation, voltage-gated channel activity, and regulation of synaptic transmission. Categories of genes that were differentially expressed in Tg vs. wt during development were: synaptic function, cytoskeleton, protein ubiquitination, and mitochondria; and, those differentially expressed during aging were: synaptic function, vesicle transport, calcium signaling, protein kinase activity, cytoskeleton, neuron projection, mitochondria, and protein ubiquitination. Overall, the effects of Glud1 overexpression on the hippocampus transcriptome were greater in the mature and aged than the young. Glutamate hyperactivity caused gene expression changes in the hippocampus at all ages. Some of these changes may result in premature brain aging. The identification of these genomic expression differences is important in understanding the effects of glutamate dysregulation on neuronal function during aging or in neurodegenerative diseases.
Volume Transmission in Central Dopamine and Noradrenaline Neurons and Its Astroglial Targets.
Fuxe, Kjell; Agnati, Luigi F; Marcoli, Manuela; Borroto-Escuela, Dasiel O
2015-12-01
Already in the 1960s the architecture and pharmacology of the brainstem dopamine (DA) and noradrenaline (NA) neurons with formation of vast numbers of DA and NA terminal plexa of the central nervous system (CNS) indicated that they may not only communicate via synaptic transmission. In the 1980s the theory of volume transmission (VT) was introduced as a major communication together with synaptic transmission in the CNS. VT is an extracellular and cerebrospinal fluid transmission of chemical signals like transmitters, modulators etc. moving along energy gradients making diffusion and flow of VT signals possible. VT interacts with synaptic transmission mainly through direct receptor-receptor interactions in synaptic and extrasynaptic heteroreceptor complexes and their signaling cascades. The DA and NA neurons are specialized for extrasynaptic VT at the soma-dendrtitic and terminal level. The catecholamines released target multiple DA and adrenergic subtypes on nerve cells, astroglia and microglia which are the major cell components of the trophic units building up the neural-glial networks of the CNS. DA and NA VT can modulate not only the strength of synaptic transmission but also the VT signaling of the astroglia and microglia of high relevance for neuron-glia interactions. The catecholamine VT targeting astroglia can modulate the fundamental functions of astroglia observed in neuroenergetics, in the Glymphatic system, in the central renin-angiotensin system and in the production of long-distance calcium waves. Also the astrocytic and microglial DA and adrenergic receptor subtypes mediating DA and NA VT can be significant drug targets in neurological and psychiatric disease.
Forced neuronal interactions cause poor communication.
Krzisch, Marine; Toni, Nicolas
2017-01-01
Post-natal hippocampal neurogenesis plays a role in hippocampal function, and neurons born post-natally participate to spatial memory and mood control. However, a great proportion of granule neurons generated in the post-natal hippocampus are eliminated during the first 3 weeks of their maturation, a mechanism that depends on their synaptic integration. In a recent study, we examined the possibility of enhancing the synaptic integration of neurons born post-natally, by specifically overexpressing synaptic cell adhesion molecules in these cells. Synaptic cell adhesion molecules are transmembrane proteins mediating the physical connection between pre- and post-synaptic neurons at the synapse, and their overexpression enhances synapse formation. Accordingly, we found that overexpressing synaptic adhesion molecules increased the synaptic integration and survival of newborn neurons. Surprisingly, the synaptic adhesion molecule with the strongest effect on new neurons' survival, Neuroligin-2A, decreased memory performances in a water maze task. We present here hypotheses explaining these surprising results, in the light of the current knowledge of the mechanisms of synaptic integration of new neurons in the post-natal hippocampus.
Harris, Kathryn P; Zhang, Yao V; Piccioli, Zachary D; Perrimon, Norbert; Littleton, J Troy
2016-05-25
Postsynaptic cells can induce synaptic plasticity through the release of activity-dependent retrograde signals. We previously described a Ca(2+)-dependent retrograde signaling pathway mediated by postsynaptic Synaptotagmin 4 (Syt4). To identify proteins involved in postsynaptic exocytosis, we conducted a screen for candidates that disrupted trafficking of a pHluorin-tagged Syt4 at Drosophila neuromuscular junctions (NMJs). Here we characterize one candidate, the postsynaptic t-SNARE Syntaxin 4 (Syx4). Analysis of Syx4 mutants reveals that Syx4 mediates retrograde signaling, modulating the membrane levels of Syt4 and the transsynaptic adhesion protein Neuroligin 1 (Nlg1). Syx4-dependent trafficking regulates synaptic development, including controlling synaptic bouton number and the ability to bud new varicosities in response to acute neuronal stimulation. Genetic interaction experiments demonstrate Syx4, Syt4, and Nlg1 regulate synaptic growth and plasticity through both shared and parallel signaling pathways. Our findings suggest a conserved postsynaptic SNARE machinery controls multiple aspects of retrograde signaling and cargo trafficking within the postsynaptic compartment.
Weng, Feng-Ju; Garcia, Rodrigo I; Lutzu, Stefano; Alviña, Karina; Zhang, Yuxiang; Dushko, Margaret; Ku, Taeyun; Zemoura, Khaled; Rich, David; Garcia-Dominguez, Dario; Hung, Matthew; Yelhekar, Tushar D; Sørensen, Andreas Toft; Xu, Weifeng; Chung, Kwanghun; Castillo, Pablo E; Lin, Yingxi
2018-03-07
Synaptic connections between hippocampal mossy fibers (MFs) and CA3 pyramidal neurons are essential for contextual memory encoding, but the molecular mechanisms regulating MF-CA3 synapses during memory formation and the exact nature of this regulation are poorly understood. Here we report that the activity-dependent transcription factor Npas4 selectively regulates the structure and strength of MF-CA3 synapses by restricting the number of their functional synaptic contacts without affecting the other synaptic inputs onto CA3 pyramidal neurons. Using an activity-dependent reporter, we identified CA3 pyramidal cells that were activated by contextual learning and found that MF inputs on these cells were selectively strengthened. Deletion of Npas4 prevented both contextual memory formation and this learning-induced synaptic modification. We further show that Npas4 regulates MF-CA3 synapses by controlling the expression of the polo-like kinase Plk2. Thus, Npas4 is a critical regulator of experience-dependent, structural, and functional plasticity at MF-CA3 synapses during contextual memory formation. Copyright © 2018 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Zhang, Xiaoqun; Yao, Ning; Chergui, Karima
2016-01-01
Several forms of long-term depression (LTD) of glutamatergic synaptic transmission have been identified in the dorsal striatum and in the nucleus accumbens (NAc). Such experience-dependent synaptic plasticity might play important roles in reward-related learning. The GABA[subscript A] receptor agonist muscimol was recently found to trigger a…
ERIC Educational Resources Information Center
Kim, Seonil; Pick, Joseph E.; Abera, Sinedu; Khatri, Latika; Ferreira, Danielle D. P.; Sathler, Matheus F.; Morison, Sage L.; Hofmann, Franz; Ziff, Edward B.
2016-01-01
Phosphorylation of GluA1, a subunit of AMPA receptors (AMPARs), is critical for AMPAR synaptic trafficking and control of synaptic transmission. cGMP-dependent protein kinase II (cGKII) mediates this phosphorylation, and cGKII knockout (KO) affects GluA1 phosphorylation and alters animal behavior. Notably, GluA1 phosphorylation in the KO…
Ruan, Hongyu; Yao, Wei-Dong
2017-01-25
Addictive drugs usurp neural plasticity mechanisms that normally serve reward-related learning and memory, primarily by evoking changes in glutamatergic synaptic strength in the mesocorticolimbic dopamine circuitry. Here, we show that repeated cocaine exposure in vivo does not alter synaptic strength in the mouse prefrontal cortex during an early period of withdrawal, but instead modifies a Hebbian quantitative synaptic learning rule by broadening the temporal window and lowers the induction threshold for spike-timing-dependent LTP (t-LTP). After repeated, but not single, daily cocaine injections, t-LTP in layer V pyramidal neurons is induced at +30 ms, a normally ineffective timing interval for t-LTP induction in saline-exposed mice. This cocaine-induced, extended-timing t-LTP lasts for ∼1 week after terminating cocaine and is accompanied by an increased susceptibility to potentiation by fewer pre-post spike pairs, indicating a reduced t-LTP induction threshold. Basal synaptic strength and the maximal attainable t-LTP magnitude remain unchanged after cocaine exposure. We further show that the cocaine facilitation of t-LTP induction is caused by sensitized D1-cAMP/protein kinase A dopamine signaling in pyramidal neurons, which then pathologically recruits voltage-gated l-type Ca 2+ channels that synergize with GluN2A-containing NMDA receptors to drive t-LTP at extended timing. Our results illustrate a mechanism by which cocaine, acting on a key neuromodulation pathway, modifies the coincidence detection window during Hebbian plasticity to facilitate associative synaptic potentiation in prefrontal excitatory circuits. By modifying rules that govern activity-dependent synaptic plasticity, addictive drugs can derail the experience-driven neural circuit remodeling process important for executive control of reward and addiction. It is believed that addictive drugs often render an addict's brain reward system hypersensitive, leaving the individual more susceptible to relapse. We found that repeated cocaine exposure alters a Hebbian associative synaptic learning rule that governs activity-dependent synaptic plasticity in the mouse prefrontal cortex, characterized by a broader temporal window and a lower threshold for spike-timing-dependent LTP (t-LTP), a cellular form of learning and memory. This rule change is caused by cocaine-exacerbated D1-cAMP/protein kinase A dopamine signaling in pyramidal neurons that in turn pathologically recruits l-type Ca 2+ channels to facilitate coincidence detection during t-LTP induction. Our study provides novel insights on how cocaine, even with only brief exposure, may prime neural circuits for subsequent experience-dependent remodeling that may underlie certain addictive behavior. Copyright © 2017 the authors 0270-6474/17/370986-12$15.00/0.
Identification and staining of distinct populations of secretory organelles in astrocytes.
Bezzi, Paola; Volterra, Andrea
2014-05-01
Increasing evidence indicates that astrocytes, the most abundant glial cell type in the brain, respond to an elevation in cytoplasmic calcium concentration ([Ca(2+)]i) by releasing chemical transmitters (also called gliotransmitters) via regulated exocytosis of heterogeneous classes of organelles. By this process, astrocytes exert modulatory influences on neighboring cells and are thought to participate in the control of synaptic circuits and cerebral blood flow. Studying the properties of exocytosis in astrocytes is a challenge, because the cell biological basis of this process is incompletely defined. Astrocytic exocytosis involves multiple populations of secretory vesicles, including synaptic-like microvesicles (SLMVs), dense-core granules (DCGs), and lysosomes. Here we summarize the available information for identifying individual populations of secretory organelles in astrocytes, including DCGs, SLMVs, and lysosomes, and present experimental procedures for specifically staining such populations.
Butts, Daniel A; Kanold, Patrick O; Shatz, Carla J
2007-01-01
Patterned spontaneous activity in the developing retina is necessary to drive synaptic refinement in the lateral geniculate nucleus (LGN). Using perforated patch recordings from neurons in LGN slices during the period of eye segregation, we examine how such burst-based activity can instruct this refinement. Retinogeniculate synapses have a novel learning rule that depends on the latencies between pre- and postsynaptic bursts on the order of one second: coincident bursts produce long-lasting synaptic enhancement, whereas non-overlapping bursts produce mild synaptic weakening. It is consistent with “Hebbian” development thought to exist at this synapse, and we demonstrate computationally that such a rule can robustly use retinal waves to drive eye segregation and retinotopic refinement. Thus, by measuring plasticity induced by natural activity patterns, synaptic learning rules can be linked directly to their larger role in instructing the patterning of neural connectivity. PMID:17341130
Translocation of CaMKII to dendritic microtubules supports the plasticity of local synapses
Lemieux, Mado; Labrecque, Simon; Tardif, Christian; Labrie-Dion, Étienne; LeBel, Éric
2012-01-01
The processing of excitatory synaptic inputs involves compartmentalized dendritic Ca2+ oscillations. The downstream signaling evoked by these local Ca2+ transients and their impact on local synaptic development and remodeling are unknown. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is an important decoder of Ca2+ signals and mediator of synaptic plasticity. In addition to its known accumulation at spines, we observed with live imaging the dynamic recruitment of CaMKII to dendritic subdomains adjacent to activated synapses in cultured hippocampal neurons. This localized and transient enrichment of CaMKII to dendritic sites coincided spatially and temporally with dendritic Ca2+ transients. We show that it involved an interaction with microtubular elements, required activation of the kinase, and led to localized dendritic CaMKII autophosphorylation. This process was accompanied by the adjacent remodeling of spines and synaptic AMPA receptor insertion. Replacement of endogenous CaMKII with a mutant that cannot translocate within dendrites lessened this activity-dependent synaptic plasticity. Thus, CaMKII could decode compartmental dendritic Ca2+ transients to support remodeling of local synapses. PMID:22965911
Zhu, Jinwei; Zhou, Qingqing; Shang, Yuan; Li, Hao; Peng, Mengjuan; Ke, Xiao; Weng, Zhuangfeng; Zhang, Rongguang; Huang, Xuhui; Li, Shawn S C; Feng, Guoping; Lu, Youming; Zhang, Mingjie
2017-12-26
The PSD-95/SAPAP/Shank complex functions as the major scaffold in orchestrating the formation and plasticity of the post-synaptic densities (PSDs). We previously demonstrated that the exquisitely specific SAPAP/Shank interaction is critical for Shank synaptic targeting and Shank-mediated synaptogenesis. Here, we show that the PSD-95/SAPAP interaction, SAPAP synaptic targeting, and SAPAP-mediated synaptogenesis require phosphorylation of the N-terminal repeat sequences of SAPAPs. The atomic structure of the PSD-95 guanylate kinase (GK) in complex with a phosphor-SAPAP repeat peptide, together with biochemical studies, reveals the molecular mechanism underlying the phosphorylation-dependent PSD-95/SAPAP interaction, and it also provides an explanation of a PSD-95 mutation found in patients with intellectual disabilities. Guided by the structural data, we developed potent non-phosphorylated GK inhibitory peptides capable of blocking the PSD-95/SAPAP interaction and interfering with PSD-95/SAPAP-mediated synaptic maturation and strength. These peptides are genetically encodable for investigating the functions of the PSD-95/SAPAP interaction in vivo. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Kulkarni, Abhishek; Ertekin, Deniz; Lee, Chi-Hon; Hummel, Thomas
2016-01-01
The precise recognition of appropriate synaptic partner neurons is a critical step during neural circuit assembly. However, little is known about the developmental context in which recognition specificity is important to establish synaptic contacts. We show that in the Drosophila visual system, sequential segregation of photoreceptor afferents, reflecting their birth order, lead to differential positioning of their growth cones in the early target region. By combining loss- and gain-of-function analyses we demonstrate that relative differences in the expression of the transcription factor Sequoia regulate R cell growth cone segregation. This initial growth cone positioning is consolidated via cell-adhesion molecule Capricious in R8 axons. Further, we show that the initial growth cone positioning determines synaptic layer selection through proximity-based axon-target interactions. Taken together, we demonstrate that birth order dependent pre-patterning of afferent growth cones is an essential pre-requisite for the identification of synaptic partner neurons during visual map formation in Drosophila. DOI: http://dx.doi.org/10.7554/eLife.13715.001 PMID:26987017
The synaptic maintenance problem: membrane recycling, Ca2+ homeostasis and late onset degeneration
2013-01-01
Most neurons are born with the potential to live for the entire lifespan of the organism. In addition, neurons are highly polarized cells with often long axons, extensively branched dendritic trees and many synaptic contacts. Longevity together with morphological complexity results in a formidable challenge to maintain synapses healthy and functional. This challenge is often evoked to explain adult-onset degeneration in numerous neurodegenerative disorders that result from otherwise divergent causes. However, comparably little is known about the basic cell biological mechanisms that keep normal synapses alive and functional in the first place. How the basic maintenance mechanisms are related to slow adult-onset degeneration in different diseasesis largely unclear. In this review we focus on two basic and interconnected cell biological mechanisms that are required for synaptic maintenance: endomembrane recycling and calcium (Ca2+) homeostasis. We propose that subtle defects in these homeostatic processes can lead to late onset synaptic degeneration. Moreover, the same basic mechanisms are hijacked, impaired or overstimulated in numerous neurodegenerative disorders. Understanding the pathogenesis of these disorders requires an understanding of both the initial cause of the disease and the on-going changes in basic maintenance mechanisms. Here we discuss the mechanisms that keep synapses functional over long periods of time with the emphasis on their role in slow adult-onset neurodegeneration. PMID:23829673
Mitroi, Daniel N; Deutschmann, André U; Raucamp, Maren; Karunakaran, Indulekha; Glebov, Konstantine; Hans, Michael; Walter, Jochen; Saba, Julie; Gräler, Markus; Ehninger, Dan; Sopova, Elena; Shupliakov, Oleg; Swandulla, Dieter; van Echten-Deckert, Gerhild
2016-11-24
The bioactive lipid sphingosine 1-phosphate (S1P) is a degradation product of sphingolipids that are particularly abundant in neurons. We have shown previously that neuronal S1P accumulation is toxic leading to ER-stress and an increase in intracellular calcium. To clarify the neuronal function of S1P, we generated brain-specific knockout mouse models in which S1P-lyase (SPL), the enzyme responsible for irreversible S1P cleavage was inactivated. Constitutive ablation of SPL in the brain (SPL fl/fl/Nes ) but not postnatal neuronal forebrain-restricted SPL deletion (SPL fl/fl/CaMK ) caused marked accumulation of S1P. Hence, altered presynaptic architecture including a significant decrease in number and density of synaptic vesicles, decreased expression of several presynaptic proteins, and impaired synaptic short term plasticity were observed in hippocampal neurons from SPL fl/fl/Nes mice. Accordingly, these mice displayed cognitive deficits. At the molecular level, an activation of the ubiquitin-proteasome system (UPS) was detected which resulted in a decreased expression of the deubiquitinating enzyme USP14 and several presynaptic proteins. Upon inhibition of proteasomal activity, USP14 levels, expression of presynaptic proteins and synaptic function were restored. These findings identify S1P metabolism as a novel player in modulating synaptic architecture and plasticity.
Meneses, David; Mateos, Verónica; Islas, Gustavo; Barral, Jaime
2015-09-01
Presynaptic modulation has been associated mainly with calcium channels but recent data suggests that inward rectifier potassium channels (K(IR)) also play a role. In this work we set to characterize the role of presynaptic K(IR) channels in corticostriatal synaptic transmission. We elicited synaptic potentials in striatum by stimulating cortical areas and then determined the synaptic responses of corticostriatal synapsis by using paired pulse ratio (PPR) in the presence and absence of several potassium channel blockers. Unspecific potassium channels blockers Ba(2+) and Cs(+) reduced the PPR, suggesting that these channels are presynaptically located. Further pharmacological characterization showed that application of tertiapin-Q, a specific K(IR)3 channel family blocker, also induced a reduction of PPR, suggesting that K(IR)3 channels are present at corticostriatal terminals. In contrast, exposure to Lq2, a specific K(IR)1.1 inward rectifier potassium channel, did not induce any change in PPR suggesting the absence of these channels in the presynaptic corticostriatal terminals. Our results indicate that K(IR)3 channels are functionally expressed at the corticostriatal synapses, since blockage of these channels result in PPR decrease. Our results also help to explain how synaptic activity may become sensitive to extracellular signals mediated by G-protein coupled receptors. A vast repertoire of receptors may influence neurotransmitter release in an indirect manner through regulation of K(IR)3 channels. © 2015 Wiley Periodicals, Inc.
Neuroplasticity and Calcium Signaling in Stressed Rat Amygdala
2005-02-01
kainate receptor and neuroplasticity in the amygdala. National Institute of aging, November, 2001. • He Li: GluR5 kainate receptor mediated synaptic...functions in the amygdala. National Institute of Mental Health, April, 2002. 50 " Maria F. M. Braga: Chronic Stress Causes Impairment of aI-Adrenoceptor...resistance All animal experiments were performed in accordance with of 1.5-5.0 Mf when filled with a solution containing (in our institutional guidelines
ERIC Educational Resources Information Center
Papatheodoropoulos, Costas; Kouvaros, Stylianos
2016-01-01
The ability of the ventral hippocampus (VH) for long-lasting long-term potentiation (LTP) and the mechanisms underlying its lower ability for shortlasting LTP compared with the dorsal hippocampus (DH) are unknown. Using recordings of field excitatory postsynaptic potentials (EPSPs) from the CA1 field of adult rat hippocampal slices, we found that…
Patel, Neal M.; Kinzer-Ursem, Tamara L.
2017-01-01
A number of neurological disorders arise from perturbations in biochemical signaling and protein complex formation within neurons. Normally, proteins form networks that when activated produce persistent changes in a synapse’s molecular composition. In hippocampal neurons, calcium ion (Ca2+) flux through N-methyl-D-aspartate (NMDA) receptors activates Ca2+/calmodulin signal transduction networks that either increase or decrease the strength of the neuronal synapse, phenomena known as long-term potentiation (LTP) or long-term depression (LTD), respectively. The calcium-sensor calmodulin (CaM) acts as a common activator of the networks responsible for both LTP and LTD. This is possible, in part, because CaM binding proteins are “tuned” to different Ca2+ flux signals by their unique binding and activation dynamics. Computational modeling is used to describe the binding and activation dynamics of Ca2+/CaM signal transduction and can be used to guide focused experimental studies. Although CaM binds over 100 proteins, practical limitations cause many models to include only one or two CaM-activated proteins. In this work, we view Ca2+/CaM as a limiting resource in the signal transduction pathway owing to its low abundance relative to its binding partners. With this view, we investigate the effect of competitive binding on the dynamics of CaM binding partner activation. Using an explicit model of Ca2+, CaM, and seven highly-expressed hippocampal CaM binding proteins, we find that competition for CaM binding serves as a tuning mechanism: the presence of competitors shifts and sharpens the Ca2+ frequency-dependence of CaM binding proteins. Notably, we find that simulated competition may be sufficient to recreate the in vivo frequency dependence of the CaM-dependent phosphatase calcineurin. Additionally, competition alone (without feedback mechanisms or spatial parameters) could replicate counter-intuitive experimental observations of decreased activation of Ca2+/CaM-dependent protein kinase II in knockout models of neurogranin. We conclude that competitive tuning could be an important dynamic process underlying synaptic plasticity. PMID:29107982
Stanley, Elise F
2015-01-01
At fast-transmitting presynaptic terminals Ca2+ enter through voltage gated calcium channels (CaVs) and bind to a synaptic vesicle (SV) -associated calcium sensor (SV-sensor) to gate fusion and discharge. An open CaV generates a high-concentration plume, or nanodomain of Ca2+ that dissipates precipitously with distance from the pore. At most fast synapses, such as the frog neuromuscular junction (NMJ), the SV sensors are located sufficiently close to individual CaVs to be gated by single nanodomains. However, at others, such as the mature rodent calyx of Held (calyx of Held), the physiology is more complex with evidence that CaVs that are both close and distant from the SV sensor and it is argued that release is gated primarily by the overlapping Ca2+ nanodomains from many CaVs. We devised a 'graphic modeling' method to sum Ca2+ from individual CaVs located at varying distances from the SV-sensor to determine the SV release probability and also the fraction of that probability that can be attributed to single domain gating. This method was applied first to simplified, low and high CaV density model release sites and then to published data on the contrasting frog NMJ and the rodent calyx of Held native synapses. We report 3 main predictions: the SV-sensor is positioned very close to the point at which the SV fuses with the membrane; single domain-release gating predominates even at synapses where the SV abuts a large cluster of CaVs, and even relatively remote CaVs can contribute significantly to single domain-based gating. PMID:26457441
Olypher, Andrey; Cymbalyuk, Gennady; Calabrese, Ronald L
2006-12-01
The leech heartbeat CPG is paced by the alternating bursting of pairs of mutually inhibitory heart interneurons that form elemental half-center oscillators. We explore the control of burst duration in heart interneurons using a hybrid system, where a living, pharmacologically isolated, heart interneuron is connected with artificial synapses to a model heart interneuron running in real-time, by focusing on a low-voltage-activated (LVA) calcium current I(CaS). The transition from silence to bursting in this half-center oscillator occurs when the spike frequency of the bursting interneuron declines to a critical level, f(Final), at which the inhibited interneuron escapes owing to a build-up of the hyperpolarization-activated cation current, I(h). We varied I(CaS) inactivation time constant either in the living heart interneuron or in the model heart interneuron. In both cases, varying I(CaS) inactivation time constant did not affect f(Final) of either interneuron, but in the varied interneuron, the time constant of decline of spike frequency during bursts to f(Final) and thus the burst duration varied directly and nearly linearly with I(CaS) inactivation time constant. Bursts of the opposite, nonvaried interneuron did not change. We show also that control of burst duration by I(CaS) inactivation does not require synaptic interaction by reconstituting autonomous bursting in synaptically isolated living interneurons with injected I(CaS). Therefore inactivation of LVA calcium current is critically important for setting burst duration and thus period in a heart interneuron half-center oscillator and is potentially a general intrinsic mechanism for regulating burst duration in neurons.
Functional role of ambient GABA in refining neuronal circuits early in postnatal development
Cellot, Giada; Cherubini, Enrico
2013-01-01
Early in development, γ-aminobutyric acid (GABA), the primary inhibitory neurotransmitter in the mature brain, depolarizes and excites targeted neurons by an outwardly directed flux of chloride, resulting from the peculiar balance between the cation-chloride importer NKCC1 and the extruder KCC2. The low expression of KCC2 at birth leads to accumulation of chloride inside the cell and to the equilibrium potential for chloride positive respect to the resting membrane potential. GABA exerts its action via synaptic and extrasynaptic GABAA receptors mediating phasic and tonic inhibition, respectively. Here, recent data on the contribution of “ambient” GABA to the refinement of neuronal circuits in the immature brain have been reviewed. In particular, we focus on the hippocampus, where, prior to the formation of conventional synapses, GABA released from growth cones and astrocytes in a calcium- and SNARE (soluble N-ethylmaleimide-sensitive-factor attachment protein receptor)-independent way, diffuses away to activate in a paracrine fashion extrasynaptic receptors localized on distal neurons. The transient increase in intracellular calcium following the depolarizing action of GABA leads to inhibition of DNA synthesis and cell proliferation. Tonic GABA exerts also a chemotropic action on cell migration. Later on, when synapses are formed, GABA spilled out from neighboring synapses, acting mainly on extrasynaptic α5, β2, β3, and γ containing GABAA receptor subunits, provides the membrane depolarization necessary for principal cells to reach the window where intrinsic bursts are generated. These are instrumental in triggering calcium transients associated with network-driven giant depolarizing potentials which act as coincident detector signals to enhance synaptic efficacy at emerging GABAergic and glutamatergic synapses. PMID:23964205
Learning of Precise Spike Times with Homeostatic Membrane Potential Dependent Synaptic Plasticity.
Albers, Christian; Westkott, Maren; Pawelzik, Klaus
2016-01-01
Precise spatio-temporal patterns of neuronal action potentials underly e.g. sensory representations and control of muscle activities. However, it is not known how the synaptic efficacies in the neuronal networks of the brain adapt such that they can reliably generate spikes at specific points in time. Existing activity-dependent plasticity rules like Spike-Timing-Dependent Plasticity are agnostic to the goal of learning spike times. On the other hand, the existing formal and supervised learning algorithms perform a temporally precise comparison of projected activity with the target, but there is no known biologically plausible implementation of this comparison. Here, we propose a simple and local unsupervised synaptic plasticity mechanism that is derived from the requirement of a balanced membrane potential. Since the relevant signal for synaptic change is the postsynaptic voltage rather than spike times, we call the plasticity rule Membrane Potential Dependent Plasticity (MPDP). Combining our plasticity mechanism with spike after-hyperpolarization causes a sensitivity of synaptic change to pre- and postsynaptic spike times which can reproduce Hebbian spike timing dependent plasticity for inhibitory synapses as was found in experiments. In addition, the sensitivity of MPDP to the time course of the voltage when generating a spike allows MPDP to distinguish between weak (spurious) and strong (teacher) spikes, which therefore provides a neuronal basis for the comparison of actual and target activity. For spatio-temporal input spike patterns our conceptually simple plasticity rule achieves a surprisingly high storage capacity for spike associations. The sensitivity of the MPDP to the subthreshold membrane potential during training allows robust memory retrieval after learning even in the presence of activity corrupted by noise. We propose that MPDP represents a biophysically plausible mechanism to learn temporal target activity patterns.
Learning of Precise Spike Times with Homeostatic Membrane Potential Dependent Synaptic Plasticity
Albers, Christian; Westkott, Maren; Pawelzik, Klaus
2016-01-01
Precise spatio-temporal patterns of neuronal action potentials underly e.g. sensory representations and control of muscle activities. However, it is not known how the synaptic efficacies in the neuronal networks of the brain adapt such that they can reliably generate spikes at specific points in time. Existing activity-dependent plasticity rules like Spike-Timing-Dependent Plasticity are agnostic to the goal of learning spike times. On the other hand, the existing formal and supervised learning algorithms perform a temporally precise comparison of projected activity with the target, but there is no known biologically plausible implementation of this comparison. Here, we propose a simple and local unsupervised synaptic plasticity mechanism that is derived from the requirement of a balanced membrane potential. Since the relevant signal for synaptic change is the postsynaptic voltage rather than spike times, we call the plasticity rule Membrane Potential Dependent Plasticity (MPDP). Combining our plasticity mechanism with spike after-hyperpolarization causes a sensitivity of synaptic change to pre- and postsynaptic spike times which can reproduce Hebbian spike timing dependent plasticity for inhibitory synapses as was found in experiments. In addition, the sensitivity of MPDP to the time course of the voltage when generating a spike allows MPDP to distinguish between weak (spurious) and strong (teacher) spikes, which therefore provides a neuronal basis for the comparison of actual and target activity. For spatio-temporal input spike patterns our conceptually simple plasticity rule achieves a surprisingly high storage capacity for spike associations. The sensitivity of the MPDP to the subthreshold membrane potential during training allows robust memory retrieval after learning even in the presence of activity corrupted by noise. We propose that MPDP represents a biophysically plausible mechanism to learn temporal target activity patterns. PMID:26900845
Rapid kinetics of endocytosis at rod photoreceptor synapses depends upon endocytic load and calcium.
Cork, Karlene M; Thoreson, Wallace B
2014-05-01
Release from rods is triggered by the opening of L-type Ca2+ channels that lie beneath synaptic ribbons. After exocytosis, vesicles are retrieved by compensatory endocytosis. Previous work showed that endocytosis is dynamin-dependent in rods but dynamin-independent in cones. We hypothesized that fast endocytosis in rods may also differ from cones in its dependence upon the amount of Ca2+ influx and/or endocytic load. We measured exocytosis and endocytosis from membrane capacitance (C m) changes evoked by depolarizing steps in voltage clamped rods from tiger salamander retinal slices. Similar to cones, the time constant for endocytosis in rods was quite fast, averaging <200 ms. We manipulated Ca2+ influx and the amount of vesicle release by altering the duration and voltage of depolarizing steps. Unlike cones, endocytosis kinetics in rods slowed after increasing Ca2+ channel activation with longer step durations or more strongly depolarized voltage steps. Endocytosis kinetics also slowed as Ca2+ buffering was decreased by replacing BAPTA (10 or 1 mM) with the slower Ca2+ buffer EGTA (5 or 0.5 mM) in the pipette solution. These data provide further evidence that endocytosis mechanisms differ in rods and cones and suggest that endocytosis in rods is regulated by both endocytic load and local Ca2+ levels.
Rapid kinetics of endocytosis at rod photoreceptor synapses depends upon endocytic load and calcium
CORK, KARLENE M.; THORESON, WALLACE B.
2015-01-01
Release from rods is triggered by the opening of L-type Ca2+ channels that lie beneath synaptic ribbons. After exocytosis, vesicles are retrieved by compensatory endocytosis. Previous work showed that endocytosis is dynamin-dependent in rods but dynamin-independent in cones. We hypothesized that fast endocytosis in rods may also differ from cones in its dependence upon the amount of Ca2+ influx and/or endocytic load. We measured exocytosis and endocytosis from membrane capacitance (Cm) changes evoked by depolarizing steps in voltage clamped rods from tiger salamander retinal slices. Similar to cones, the time constant for endocytosis in rods was quite fast, averaging <200 ms. We manipulated Ca2+ influx and the amount of vesicle release by altering the duration and voltage of depolarizing steps. Unlike cones, endocytosis kinetics in rods slowed after increasing Ca2+ channel activation with longer step durations or more strongly depolarized voltage steps. Endocytosis kinetics also slowed as Ca2+ buffering was decreased by replacing BAPTA (10 or 1 mM) with the slower Ca2+ buffer EGTA (5 or 0.5 mM) in the pipette solution. These data provide further evidence that endocytosis mechanisms differ in rods and cones and suggest that endocytosis in rods is regulated by both endocytic load and local Ca2+ levels. PMID:24735554
Pereira, Jacinto; Wang, Xiao-Jing
2015-01-01
Recent studies have shown that reverberation underlying mnemonic persistent activity must be slow, to ensure the stability of a working memory system and to give rise to long neural transients capable of accumulation of information over time. Is the slower the underlying process, the better? To address this question, we investigated 3 slow biophysical mechanisms that are activity-dependent and prominently present in the prefrontal cortex: Depolarization-induced suppression of inhibition (DSI), calcium-dependent nonspecific cationic current (ICAN), and short-term facilitation. Using a spiking network model for spatial working memory, we found that these processes enhance the memory accuracy by counteracting noise-induced drifts, heterogeneity-induced biases, and distractors. Furthermore, the incorporation of DSI and ICAN enlarges the range of network's parameter values required for working memory function. However, when a progressively slower process dominates the network, it becomes increasingly more difficult to erase a memory trace. We demonstrate this accuracy–flexibility tradeoff quantitatively and interpret it using a state-space analysis. Our results supports the scenario where N-methyl-d-aspartate receptor-dependent recurrent excitation is the workhorse for the maintenance of persistent activity, whereas slow synaptic or cellular processes contribute to the robustness of mnemonic function in a tradeoff that potentially can be adjusted according to behavioral demands. PMID:25253801
Subacute ibuprofen treatment rescues the synaptic and cognitive deficits in advanced-aged mice
Rogers, Justin T.; Liu, Chia-Chen; Zhao, Na; Wang, Jian; Putzke, Travis; Yang, Longyu; Shinohara, Mitsuru; Fryer, John D.; Kanekiyo, Takahisa; Bu, Guojun
2017-01-01
Aging is accompanied by increased neuroinflammation, synaptic dysfunction and cognitive deficits both in rodents and humans, yet the onset and progression of these deficits throughout the life span remain unknown. These aging-related deficits affect the quality of life and present challenges to our aging society. Here, we defined age-dependent and progressive impairments of synaptic and cognitive functions and showed that reducing astrocyte-related neuroinflammation through anti-inflammatory drug treatment in aged mice reverses these events. By comparing young (3 months), middle-aged (18 months), aged (24 months) and advanced-aged wild-type mice (30 months), we found that the levels of an astrocytic marker, GFAP, progressively increased after 18 months of age, which preceded the decreases of the synaptic marker PSD-95. Hippocampal long-term potentiation (LTP) was also suppressed in an age-dependent manner, where significant deficits were observed after 24 months of age. Fear conditioning tests demonstrated that associative memory in the context and cued conditions was decreased starting at the ages of 18 and 30 months, respectively. When the mice were tested on hidden platform water maze, spatial learning memory was significantly impaired after 24 months of age. Importantly, subacute treatment with the anti-inflammatory drug ibuprofen suppressed astrocyte activation, and restored synaptic plasticity and memory function in advanced-aged mice. These results support the critical contribution of aging-related inflammatory responses to hippocampal-dependent cognitive function and synaptic plasticity, in particular during advanced aging. Our findings provide strong evidence that suppression of neuroinflammation could be a promising treatment strategy to preserve cognition during aging. PMID:28254590
Katz, E; Ferro, P A; Cherksey, B D; Sugimori, M; Llinás, R; Uchitel, O D
1995-01-01
1. The effects of the calcium channel blockers, funnel-web spider toxin (FTX), omega-agatoxin IVA (omega-Aga IVA) and omega-conotoxin GVIA (omega-CgTX), were tested on transmitter release and presynaptic currents in frog motor nerve endings. 2. Evoked transmitter release was blocked by FTX (IC50 = 0.02 microliter ml-1) and omega-CgTX (1 microM) but was not affected by omega-Aga IVA (0.5 microM). When FTX (0.1 microliter ml-1) was assayed on spontaneous release either in normal Ringer solution or in low Ca(2+)-high Mg2+ solution, it was found not to affect miniature endplate potential (MEPP) amplitude but to increase MEPP frequency by approximately 2-fold in both conditions. 3. Presynaptic calcium currents (ICa), measured by the perineurial technique in the presence of 10 mM tetraethylammonium chloride (TEA) and 200 microM BaCl2 to block K+ currents, were blocked by omega-CgTX (5 microM), partially blocked by FTX (1 microliter ml-1) and not affected by omega-Aga IVA (0.5 microM). 4. The presynaptic calcium-activated potassium current (IK(Ca)) measured by the perineurial technique in the presence of 0.5 microM 3,4-aminopyridine (DAP) to block voltage-dependent K+ currents, was strongly affected by charybdotoxin (ChTX) (300 nM) and completely abolished by BaCl2 (200 microM). This current was also blocked by omega-CgTX (5 microM) and by CdCl2 (200 microM) but was not affected by FTX (1 microliter ml-1). The blockade by omega-CgTX could not be reversed by elevating [Ca]o to 10 mM. 5. The results suggest that in frog synaptic terminals two omega-CgTX-sensitive populations might coexist. The transmitter release process seems to be mediated by calcium influx through a omega-CgTX- and FTX-sensitive population. PMID:7473230
Katz, E; Ferro, P A; Cherksey, B D; Sugimori, M; Llinás, R; Uchitel, O D
1995-08-01
1. The effects of the calcium channel blockers, funnel-web spider toxin (FTX), omega-agatoxin IVA (omega-Aga IVA) and omega-conotoxin GVIA (omega-CgTX), were tested on transmitter release and presynaptic currents in frog motor nerve endings. 2. Evoked transmitter release was blocked by FTX (IC50 = 0.02 microliter ml-1) and omega-CgTX (1 microM) but was not affected by omega-Aga IVA (0.5 microM). When FTX (0.1 microliter ml-1) was assayed on spontaneous release either in normal Ringer solution or in low Ca(2+)-high Mg2+ solution, it was found not to affect miniature endplate potential (MEPP) amplitude but to increase MEPP frequency by approximately 2-fold in both conditions. 3. Presynaptic calcium currents (ICa), measured by the perineurial technique in the presence of 10 mM tetraethylammonium chloride (TEA) and 200 microM BaCl2 to block K+ currents, were blocked by omega-CgTX (5 microM), partially blocked by FTX (1 microliter ml-1) and not affected by omega-Aga IVA (0.5 microM). 4. The presynaptic calcium-activated potassium current (IK(Ca)) measured by the perineurial technique in the presence of 0.5 microM 3,4-aminopyridine (DAP) to block voltage-dependent K+ currents, was strongly affected by charybdotoxin (ChTX) (300 nM) and completely abolished by BaCl2 (200 microM). This current was also blocked by omega-CgTX (5 microM) and by CdCl2 (200 microM) but was not affected by FTX (1 microliter ml-1). The blockade by omega-CgTX could not be reversed by elevating [Ca]o to 10 mM. 5. The results suggest that in frog synaptic terminals two omega-CgTX-sensitive populations might coexist. The transmitter release process seems to be mediated by calcium influx through a omega-CgTX- and FTX-sensitive population.
Aristizabal, F.; Glavinovic, M. I.
2003-01-01
Tracking spectral changes of rapidly varying signals is a demanding task. In this study, we explore on Monte Carlo-simulated glutamate-activated AMPA patch and synaptic currents whether a wavelet analysis offers such a possibility. Unlike Fourier methods that determine only the frequency content of a signal, the wavelet analysis determines both the frequency and the time. This is owing to the nature of the basis functions, which are infinite for Fourier transforms (sines and cosines are infinite), but are finite for wavelet analysis (wavelets are localized waves). In agreement with previous reports, the frequency of the stationary patch current fluctuations is higher for larger currents, whereas the mean-variance plots are parabolic. The spectra of the current fluctuations and mean-variance plots are close to the theoretically predicted values. The median frequency of the synaptic and nonstationary patch currents is, however, time dependent, though at the peak of synaptic currents, the median frequency is insensitive to the number of glutamate molecules released. Such time dependence demonstrates that the “composite spectra” of the current fluctuations gathered over the whole duration of synaptic currents cannot be used to assess the mean open time or effective mean open time of AMPA channels. The current (patch or synaptic) versus median frequency plots show hysteresis. The median frequency is thus not a simple reflection of the overall receptor saturation levels and is greater during the rise phase for the same saturation level. The hysteresis is due to the higher occupancy of the doubly bound state during the rise phase and not due to the spatial spread of the saturation disk, which remains remarkably constant. Albeit time dependent, the variance of the synaptic and nonstationary patch currents can be accurately determined. Nevertheless the evaluation of the number of AMPA channels and their single current from the mean-variance plots of patch or synaptic currents is not highly accurate owing to the varying number of the activatable AMPA channels caused by desensitization. The spatial nonuniformity of open, bound, and desensitized AMPA channels, and the time dependence and spatial nonuniformity of the glutamate concentration in the synaptic cleft, further reduce the accuracy of estimates of the number of AMPA channels from synaptic currents. In conclusion, wavelet analysis of nonstationary fluctuations of patch and synaptic currents expands our ability to determine accurately the variance and frequency of current fluctuations, demonstrates the limits of applicability of techniques currently used to evaluate the single channel current and number of AMPA channels, and offers new insights into the mechanisms involved in the generation of unitary quantal events at excitatory central synapses. PMID:14507683
Aristizabal, F; Glavinovic, M I
2003-10-01
Tracking spectral changes of rapidly varying signals is a demanding task. In this study, we explore on Monte Carlo-simulated glutamate-activated AMPA patch and synaptic currents whether a wavelet analysis offers such a possibility. Unlike Fourier methods that determine only the frequency content of a signal, the wavelet analysis determines both the frequency and the time. This is owing to the nature of the basis functions, which are infinite for Fourier transforms (sines and cosines are infinite), but are finite for wavelet analysis (wavelets are localized waves). In agreement with previous reports, the frequency of the stationary patch current fluctuations is higher for larger currents, whereas the mean-variance plots are parabolic. The spectra of the current fluctuations and mean-variance plots are close to the theoretically predicted values. The median frequency of the synaptic and nonstationary patch currents is, however, time dependent, though at the peak of synaptic currents, the median frequency is insensitive to the number of glutamate molecules released. Such time dependence demonstrates that the "composite spectra" of the current fluctuations gathered over the whole duration of synaptic currents cannot be used to assess the mean open time or effective mean open time of AMPA channels. The current (patch or synaptic) versus median frequency plots show hysteresis. The median frequency is thus not a simple reflection of the overall receptor saturation levels and is greater during the rise phase for the same saturation level. The hysteresis is due to the higher occupancy of the doubly bound state during the rise phase and not due to the spatial spread of the saturation disk, which remains remarkably constant. Albeit time dependent, the variance of the synaptic and nonstationary patch currents can be accurately determined. Nevertheless the evaluation of the number of AMPA channels and their single current from the mean-variance plots of patch or synaptic currents is not highly accurate owing to the varying number of the activatable AMPA channels caused by desensitization. The spatial nonuniformity of open, bound, and desensitized AMPA channels, and the time dependence and spatial nonuniformity of the glutamate concentration in the synaptic cleft, further reduce the accuracy of estimates of the number of AMPA channels from synaptic currents. In conclusion, wavelet analysis of nonstationary fluctuations of patch and synaptic currents expands our ability to determine accurately the variance and frequency of current fluctuations, demonstrates the limits of applicability of techniques currently used to evaluate the single channel current and number of AMPA channels, and offers new insights into the mechanisms involved in the generation of unitary quantal events at excitatory central synapses.
Kojic, L; Gu, Q; Douglas, R M; Cynader, M S
2001-02-28
Both cholinergic and serotonergic modulatory projections to mammalian striate cortex have been demonstrated to be involved in the regulation of postnatal plasticity, and a striking alteration in the number and intracortical distribution of cholinergic and serotonergic receptors takes place during the critical period for cortical plasticity. As well, agonists of cholinergic and serotonergic receptors have been demonstrated to facilitate induction of long-term synaptic plasticity in visual cortical slices supporting their involvement in the control of activity-dependent plasticity. We recorded field potentials from layers 4 and 2/3 in visual cortex slices of 60--80 day old kittens after white matter stimulation, before and after a period of high frequency stimulation (HFS), in the absence or presence of either cholinergic or serotonergic agonists. At these ages, the HFS protocol alone almost never induced long-term changes of synaptic plasticity in either layers 2/3 or 4. In layer 2/3, agonist stimulation of m1 receptors facilitated induction of long-term potentiation (LTP) with HFS stimulation, while the activation of serotonergic receptors had only a modest effect. By contrast, a strong serotonin-dependent LTP facilitation and insignificant muscarinic effects were observed after HFS within layer 4. The results show that receptor-dependent laminar stratification of synaptic modifiability occurs in the cortex at these ages. This plasticity may underly a control system gating the experience-dependent changes of synaptic organization within developing visual cortex.
Marengo, J J; Hidalgo, C; Bull, R
1998-01-01
The calcium dependence of ryanodine-sensitive single calcium channels was studied after fusing with planar lipid bilayers sarcoendoplasmic reticulum vesicles isolated from excitable tissues. Native channels from mammalian or amphibian skeletal muscle displayed three different calcium dependencies, cardiac (C), mammalian skeletal (MS), and low fractional open times (low Po), as reported for channels from brain cortex. Native channels from cardiac muscle presented only the MS and C dependencies. Channels with the MS or low Po behaviors showed bell-shaped calcium dependencies, but the latter had fractional open times of <0.1 at all [Ca2+]. Channels with C calcium dependence were activated by [Ca2+] < 10 microM and were not inhibited by increasing cis [Ca2+] up to 0.5 mM. After oxidation with 2,2'-dithiodipyridine or thimerosal, channels with low Po or MS dependencies increased their activity. These channels modified their calcium dependencies sequentially, from low Po to MS and C, or from MS to C. Reduction with glutathione of channels with C dependence (native or oxidized) decreased their fractional open times in 0.5 mM cis [Ca2+], from near unity to 0.1-0.3. These results show that all native channels displayed at least two calcium dependencies regardless of their origin, and that these changed after treatment with redox reagents. PMID:9512024
Aberrant Subcellular Neuronal Calcium Regulation in Aging and Alzheimer’s Disease
Camandola, Simonetta; Mattson, Mark P.
2010-01-01
In this mini-review/opinion article we describe evidence that multiple cellular and molecular alterations in Alzheimer’s disease (AD) pathogenesis involve perturbed cellular calcium regulation, and that alterations in synaptic calcium handling may be early and pivotal events in the disease process. With advancing age neurons encounter increased oxidative stress and impaired energy metabolism, which compromise the function of proteins that control membrane excitability and subcellular calcium dynamics. Altered proteolytic cleavage of the β-amyloid precursor protein (APP) in response to the aging process in combination with genetic and environmental factors results in the production and accumulation of neurotoxic forms of amyloid β-peptide (Aβ ). Aβ undergoes a self-aggregation process and concomitantly generates reactive oxygen species that can trigger membrane-associated oxidative stress which, in turn, impairs the functions of ion-motive ATPases and glutamate and glucose transporters thereby rendering neurons vulnerable to excitotoxicity and apoptosis. Mutations in presenilin-1 that cause early-onset AD increase Aβ production, but also result in an abnormal increase in the size of endoplasmic reticulum calcium stores. Some of the events in the neurodegenerative cascade can be counteracted in animal models by manipulations that stabilize neuronal calcium homeostasis including dietary energy restriction, agonists of glucagon-like peptide 1 receptors and drugs that activate mitochondrial potassium channels. Emerging knowledge of the actions of calcium upstream and downstream of Aβ provides opportunities to develop novel preventative and therapeutic interventions for AD. PMID:20950656
Scudder, Samantha L.; Goo, Marisa S.; Cartier, Anna E.; Molteni, Alice; Schwarz, Lindsay A.; Wright, Rebecca
2014-01-01
The trafficking of AMPA receptors (AMPARs) to and from synapses is crucial for synaptic plasticity. Previous work has demonstrated that AMPARs undergo activity-dependent ubiquitination by the E3 ubiquitin ligase Nedd4-1, which promotes their internalization and degradation in lysosomes. Here, we define the molecular mechanisms involved in ubiquitination and deubiquitination of AMPARs. We report that Nedd4-1 is rapidly redistributed to dendritic spines in response to AMPAR activation and not in response to NMDA receptor (NMDAR) activation in cultured rat neurons. In contrast, NMDAR activation directly antagonizes Nedd4-1 function by promoting the deubiquitination of AMPARs. We show that NMDAR activation causes the rapid dephosphorylation and activation of the deubiquitinating enzyme (DUB) USP8. Surface AMPAR levels and synaptic strength are inversely regulated by Nedd4-1 and USP8. Strikingly, we show that homeostatic downscaling of synaptic strength is accompanied by an increase and decrease in Nedd4-1 and USP8 protein levels, respectively. Furthermore, we show that Nedd4-1 is required for homeostatic loss of surface AMPARs and downscaling of synaptic strength. This study provides the first mechanistic evidence for rapid and opposing activity-dependent control of a ubiquitin ligase and DUB at mammalian CNS synapses. We propose that the dynamic regulation of these opposing forces is critical in maintaining synapses and scaling them during homeostatic plasticity. PMID:25505317
Distributed synaptic weights in a LIF neural network and learning rules
NASA Astrophysics Data System (ADS)
Perthame, Benoît; Salort, Delphine; Wainrib, Gilles
2017-09-01
Leaky integrate-and-fire (LIF) models are mean-field limits, with a large number of neurons, used to describe neural networks. We consider inhomogeneous networks structured by a connectivity parameter (strengths of the synaptic weights) with the effect of processing the input current with different intensities. We first study the properties of the network activity depending on the distribution of synaptic weights and in particular its discrimination capacity. Then, we consider simple learning rules and determine the synaptic weight distribution it generates. We outline the role of noise as a selection principle and the capacity to memorize a learned signal.
NASA Astrophysics Data System (ADS)
Lazarevich, I. A.; Stasenko, S. V.; Kazantsev, V. B.
2017-02-01
The dynamics of a synaptic contact between neurons that forms a feedback loop through the interaction with glial cells of the brain surrounding the neurons is studied. It is shown that, depending on the character of the neuron-glial interaction, the dynamics of the signal transmission frequency in the synaptic contact can be bistable with two stable steady states or spiking with the regular generation of spikes with various amplitudes and durations. It is found that such a synaptic contact at the network level is responsible for the appearance of quasisynchronous network bursts.
RIM, Munc13, and Rab3A interplay in acrosomal exocytosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bello, Oscar D.; Zanetti, M. Natalia; Laboratorio de Biologia Reproductiva, Instituto de Histologia y Embriologia, IHEM
2012-03-10
Exocytosis is a highly regulated, multistage process consisting of multiple functionally definable stages, including recruitment, targeting, tethering, priming, and docking of secretory vesicles with the plasma membrane, followed by calcium-triggered membrane fusion. The acrosome reaction of spermatozoa is a complex, calcium-dependent regulated exocytosis. Fusion at multiple sites between the outer acrosomal membrane and the cell membrane causes the release of the acrosomal contents and the loss of the membranes surrounding the acrosome. Not much is known about the molecules that mediate membrane docking in this particular fusion model. In neurons, the formation of the ternary RIM/Munc13/Rab3A complex has been suggestedmore » as a critical component of synaptic vesicles docking. Previously, we demonstrated that Rab3A localizes to the acrosomal region in human sperm, stimulates acrosomal exocytosis, and participates in an early stage during membrane fusion. Here, we report that RIM and Munc13 are also present in human sperm and localize to the acrosomal region. Like Rab3A, RIM and Munc13 participate in a prefusion step before the efflux of intra-acrosomal calcium. By means of a functional assay using antibodies and recombinant proteins, we show that RIM, Munc13 and Rab3A interplay during acrosomal exocytosis. Finally, we report by electron transmission microscopy that sequestering RIM and Rab3A alters the docking of the acrosomal membrane to the plasma membrane during calcium-activated acrosomal exocytosis. Our results suggest that the RIM/Munc13/Rab3 A complex participates in acrosomal exocytosis and that RIM and Rab3A have central roles in membrane docking. -- Highlights: Black-Right-Pointing-Pointer RIM and Munc13 are present in human sperm and localize to the acrosomal region. Black-Right-Pointing-Pointer RIM and Munc13 are necessary for acrosomal exocytosis. Black-Right-Pointing-Pointer RIM and Munc13 participate before the acrosomal calcium efflux. Black-Right-Pointing-Pointer RIM, Munc13 and Rab3A interplay in human sperm acrosomal exocytosis. Black-Right-Pointing-Pointer RIM and Rab3A have critical roles in membrane docking.« less
The probability of quantal secretion near a single calcium channel of an active zone.
Bennett, M R; Farnell, L; Gibson, W G
2000-01-01
A Monte Carlo analysis has been made of calcium dynamics and quantal secretion at microdomains in which the calcium reaches very high concentrations over distances of <50 nm from a channel and for which calcium dynamics are dominated by diffusion. The kinetics of calcium ions in microdomains due to either the spontaneous or evoked opening of a calcium channel, both of which are stochastic events, are described in the presence of endogenous fixed and mobile buffers. Fluctuations in the number of calcium ions within 50 nm of a channel are considerable, with the standard deviation about half the mean. Within 10 nm of a channel these numbers of ions can give rise to calcium concentrations of the order of 100 microM. The temporal changes in free calcium and calcium bound to different affinity indicators in the volume of an entire varicosity or bouton following the opening of a single channel are also determined. A Monte Carlo analysis is also presented of how the dynamics of calcium ions at active zones, after the arrival of an action potential and the stochastic opening of a calcium channel, determine the probability of exocytosis from docked vesicles near the channel. The synaptic vesicles in active zones are found docked in a complex with their calcium-sensor associated proteins and a voltage-sensitive calcium channel, forming a secretory unit. The probability of quantal secretion from an isolated secretory unit has been determined for different distances of an open calcium channel from the calcium sensor within an individual unit: a threefold decrease in the probability of secretion of a quantum occurs with a doubling of the distance from 25 to 50 nm. The Monte Carlo analysis also shows that the probability of secretion of a quantum is most sensitive to the size of the single-channel current compared with its sensitivity to either the binding rates of the sites on the calcium-sensor protein or to the number of these sites that must bind a calcium ion to trigger exocytosis of a vesicle. PMID:10777721
ERIC Educational Resources Information Center
Erickson, Martha A.; Maramara, Lauren A.; Lisman, John
2010-01-01
Recent work showed that short-term memory (STM) is selectively reduced in GluR1 knockout mice. This raises the possibility that a form of synaptic modification dependent on GluR1 might underlie STM. Studies of synaptic plasticity have shown that stimuli too weak to induce long-term potentiation induce short-term potentiation (STP), a phenomenon…
Sen, Abhik; Alkon, Daniel L.; Nelson, Thomas J.
2012-01-01
Synaptic loss is the earliest pathological change in Alzheimer disease (AD) and is the pathological change most directly correlated with the degree of dementia. ApoE4 is the major genetic risk factor for the age-dependent form of AD, which accounts for 95% of cases. Here we show that in synaptic networks formed from primary hippocampal neurons in culture, apoE3, but not apoE4, prevents the loss of synaptic networks produced by amyloid β oligomers (amylospheroids). Specific activators of PKCϵ, such as 8-(2-(2-pentyl-cyclopropylmethyl)-cyclopropyl)-octanoic acid methyl ester and bryostatin 1, protected against synaptic loss by amylospheroids, whereas PKCϵ inhibitors blocked this synaptic protection and also blocked the protection by apoE3. Blocking LRP1, an apoE receptor on the neuronal membrane, also blocked the protection by apoE. ApoE3, but not apoE4, induced the synthesis of PKCϵ mRNA and expression of the PKCϵ protein. Amyloid β specifically blocked the expression of PKCϵ but had no effect on other isoforms. These results suggest that protection against synaptic loss by apoE is mediated by a novel intracellular PKCϵ pathway. This apoE pathway may account for much of the protective effect of apoE and reduced risk for the age-dependent form of AD. This finding supports the potential efficacy of newly developed therapeutics for AD. PMID:22427674
NASA Astrophysics Data System (ADS)
Baudry, Michel; Lynch, Gary
1980-04-01
Specific [3H]glutamate binding to rat hippocampal membranes and the calcium-induced increase in this binding are markedly temperature-sensitive and are inhibited by alkylating or reducing agents as well as by various protease inhibitors. N-Ethylmaleimide, chloromethyl ketone derivatives of lysine and phenylalanine, and tosylarginine methyl ester decrease the maximum number of [3H]glutamate binding sites without changing their affinity for glutamate. Preincubation of the membranes with glutamate does not protect the glutamate ``receptors'' from the suppressive effects of these agents. The proteases trypsin and α -chymotrypsin increase the maximum number of [3H]glutamate binding sites. The effects of calcium on glutamate binding are different across brain regions. Cerebellar membranes are almost insensitive whereas hippocampal and striatal membranes exhibit a strong increase in the number of binding sites after exposure to even low concentrations of calcium. These results suggest that an endogenous membrane-associated thiol protease regulates the number of [3H]glutamate binding sites in hippocampal membranes and that this is the mechanism by which calcium stimulates glutamate binding. The possibility is discussed that the postulated mechanisms participate in synaptic physiology and in particular may be related to the long-term potentiation of transmission found in hippocampus under certain conditions.
Cortical dendritic activity correlates with spindle-rich oscillations during sleep in rodents.
Seibt, Julie; Richard, Clément J; Sigl-Glöckner, Johanna; Takahashi, Naoya; Kaplan, David I; Doron, Guy; de Limoges, Denis; Bocklisch, Christina; Larkum, Matthew E
2017-09-25
How sleep influences brain plasticity is not known. In particular, why certain electroencephalographic (EEG) rhythms are linked to memory consolidation is poorly understood. Calcium activity in dendrites is known to be necessary for structural plasticity changes, but this has never been carefully examined during sleep. Here, we report that calcium activity in populations of neocortical dendrites is increased and synchronised during oscillations in the spindle range in naturally sleeping rodents. Remarkably, the same relationship is not found in cell bodies of the same neurons and throughout the cortical column. Spindles during sleep have been suggested to be important for brain development and plasticity. Our results provide evidence for a physiological link of spindles in the cortex specific to dendrites, the main site of synaptic plasticity.Different stages of sleep, marked by particular electroencephalographic (EEG) signatures, have been linked to memory consolidation, but underlying mechanisms are poorly understood. Here, the authors show that dendritic calcium synchronisation correlates with spindle-rich sleep phases.
Pilo Boyl, Pietro; Di Nardo, Alessia; Mulle, Christophe; Sassoè-Pognetto, Marco; Panzanelli, Patrizia; Mele, Andrea; Kneussel, Matthias; Costantini, Vivian; Perlas, Emerald; Massimi, Marzia; Vara, Hugo; Giustetto, Maurizio; Witke, Walter
2007-01-01
Profilins are actin binding proteins essential for regulating cytoskeletal dynamics, however, their function in the mammalian nervous system is unknown. Here, we provide evidence that in mouse brain profilin1 and profilin2 have distinct roles in regulating synaptic actin polymerization with profilin2 preferring a WAVE-complex-mediated pathway. Mice lacking profilin2 show a block in synaptic actin polymerization in response to depolarization, which is accompanied by increased synaptic excitability of glutamatergic neurons due to higher vesicle exocytosis. These alterations in neurotransmitter release correlate with a hyperactivation of the striatum and enhanced novelty-seeking behavior in profilin2 mutant mice. Our results highlight a novel, profilin2-dependent pathway, regulating synaptic physiology, neuronal excitability, and complex behavior. PMID:17541406
Narusuye, Kenji; Nagahama, Tatsumi
2002-11-01
The Japanese species Aplysia kurodai feeds well on Ulva but rejects Gelidium with distinctive rhythmic patterned movements of the jaws and radula. We have previously shown that the patterned jaw movements during the rejection of Gelidium might be caused by long-lasting suppression of the monosynaptic transmission from the multiaction MA neurons to the jaw-closing (JC) motor neurons in the buccal ganglia and that the modulation might be directly produced by some cerebral neurons. In the present paper, we have identified a pair of catecholaminergic neurons (CBM1) in bilateral cerebral M clusters. The CBM1, probably equivalent to CBI-1 in A. californica, simultaneously produced monosynaptic excitatory postsynaptic potentials (EPSPs) in the MA and JC neurons. Firing of the CBM1 reduced the size of the inhibitory postsynaptic currents (IPSCs) in the JC neuron, evoked by the MA spikes, for >100 s. Moreover, the application of dopamine mimicked the CBM1 modulatory effects and pretreatment with a D1 antagonist, SCH23390, blocked the modulatory effects induced by dopamine. It could also largely block the modulatory effects induced by the CBM1 firing. These results suggest that the CBM1 may directly modulate the synaptic transmission by releasing dopamine. Moreover, we explored the CBM1 spike activity induced by taste stimulation of the animal lips with seaweed extracts by the use of calcium imaging. The calcium-sensitive dye, Calcium Green-1, was iontophoretically loaded into a cell body of the CBM1 using a microelectrode. Application of either Ulva or Gelidium extract to the lips increased the fluorescence intensity, but the Gelidium extract always induced a larger change in fluorescence compared with the Ulva extract, although the solution used induced the maximum spike responses of the CBM1 for each of the seaweed extracts. When the firing frequency of the CBM1 activity after taste stimulation was estimated, the Gelidium extract induced a spike activity of ~30 spikes/s while the Ulva extract induced an activity of ~20 spikes/s, consistent with the effective firing frequency (>25 spikes/s) for the synaptic modulation. These results suggest that the CBM1 may be one of the cerebral neurons contributing to the modulation of the basic feeding circuits for rejection induced by the taste of seaweeds such as Gelidium.
Fragile X mental retardation protein controls ion channel expression and activity.
Ferron, Laurent
2016-10-15
Fragile X-associated disorders are a family of genetic conditions resulting from the partial or complete loss of fragile X mental retardation protein (FMRP). Among these disorders is fragile X syndrome, the most common cause of inherited intellectual disability and autism. FMRP is an RNA-binding protein involved in the control of local translation, which has pleiotropic effects, in particular on synaptic function. Analysis of the brain FMRP transcriptome has revealed hundreds of potential mRNA targets encoding postsynaptic and presynaptic proteins, including a number of ion channels. FMRP has been confirmed to bind voltage-gated potassium channels (K v 3.1 and K v 4.2) mRNAs and regulates their expression in somatodendritic compartments of neurons. Recent studies have uncovered a number of additional roles for FMRP besides RNA regulation. FMRP was shown to directly interact with, and modulate, a number of ion channel complexes. The sodium-activated potassium (Slack) channel was the first ion channel shown to directly interact with FMRP; this interaction alters the single-channel properties of the Slack channel. FMRP was also shown to interact with the auxiliary β4 subunit of the calcium-activated potassium (BK) channel; this interaction increases calcium-dependent activation of the BK channel. More recently, FMRP was shown to directly interact with the voltage-gated calcium channel, Ca v 2.2, and reduce its trafficking to the plasma membrane. Studies performed on animal models of fragile X syndrome have revealed links between modifications of ion channel activity and changes in neuronal excitability, suggesting that these modifications could contribute to the phenotypes observed in patients with fragile X-associated disorders. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Tian, Xuejun; Gala, Upasana; Zhang, Yongping; Shang, Weina; Nagarkar Jaiswal, Sonal; di Ronza, Alberto; Jaiswal, Manish; Yamamoto, Shinya; Sandoval, Hector; Duraine, Lita; Sardiello, Marco; Sillitoe, Roy V; Venkatachalam, Kartik; Fan, Hengyu; Bellen, Hugo J; Tong, Chao
2015-03-01
Autophagy helps deliver sequestered intracellular cargo to lysosomes for proteolytic degradation and thereby maintains cellular homeostasis by preventing accumulation of toxic substances in cells. In a forward mosaic screen in Drosophila designed to identify genes required for neuronal function and maintenance, we identified multiple cacophony (cac) mutant alleles. They exhibit an age-dependent accumulation of autophagic vacuoles (AVs) in photoreceptor terminals and eventually a degeneration of the terminals and surrounding glia. cac encodes an α1 subunit of a Drosophila voltage-gated calcium channel (VGCC) that is required for synaptic vesicle fusion with the plasma membrane and neurotransmitter release. Here, we show that cac mutant photoreceptor terminals accumulate AV-lysosomal fusion intermediates, suggesting that Cac is necessary for the fusion of AVs with lysosomes, a poorly defined process. Loss of another subunit of the VGCC, α2δ or straightjacket (stj), causes phenotypes very similar to those caused by the loss of cac, indicating that the VGCC is required for AV-lysosomal fusion. The role of VGCC in AV-lysosomal fusion is evolutionarily conserved, as the loss of the mouse homologues, Cacna1a and Cacna2d2, also leads to autophagic defects in mice. Moreover, we find that CACNA1A is localized to the lysosomes and that loss of lysosomal Cacna1a in cerebellar cultured neurons leads to a failure of lysosomes to fuse with endosomes and autophagosomes. Finally, we show that the lysosomal CACNA1A but not the plasma-membrane resident CACNA1A is required for lysosomal fusion. In summary, we present a model in which the VGCC plays a role in autophagy by regulating the fusion of AVs with lysosomes through its calcium channel activity and hence functions in maintaining neuronal homeostasis.
μ2-Dependent endocytosis of N-cadherin is regulated by β-catenin to facilitate neurite outgrowth.
Chen, Yi-Ting; Tai, Chin-Yin
2017-05-01
Circuit formation in the brain requires neurite outgrowth throughout development to establish synaptic contacts with target cells. Active endocytosis of several adhesion molecules facilitates the dynamic exchange of these molecules at the surface and promotes neurite outgrowth in developing neurons. The endocytosis of N-cadherin, a calcium-dependent adhesion molecule, has been implicated in the regulation of neurite outgrowth, but the mechanism remains unclear. Here, we identified that a fraction of N-cadherin internalizes through clathrin-mediated endocytosis (CME). Two tyrosine-based motifs in the cytoplasmic domain of N-cadherin recognized by the μ2 subunit of the AP-2 adaptor complex are responsible for CME of N-cadherin. Moreover, β-catenin, a core component of the N-cadherin adhesion complex, inhibits N-cadherin endocytosis by masking the 2 tyrosine-based motifs. Removal of β-catenin facilitates μ2 binding to N-cadherin, thereby increasing clathrin-mediated N-cadherin endocytosis and neurite outgrowth without affecting the steady-state level of surface N-cadherin. These results identify and characterize the mechanism controlling N-cadherin endocytosis through β-catenin-regulated μ2 binding to modulate neurite outgrowth. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Gruget, Clémence; Coleman, Jeff; Bello, Oscar; Krishnakumar, Shyam S; Perez, Eric; Rothman, James E; Pincet, Frederic; Donaldson, Stephen H
2018-05-01
Synaptotagmin-1 (Syt1) is the primary calcium sensor (Ca 2+ ) that mediates neurotransmitter release at the synapse. The tandem C2 domains (C2A and C2B) of Syt1 exhibit functionally critical, Ca 2+ -dependent interactions with the plasma membrane. With the surface forces apparatus, we directly measure the binding energy of membrane-anchored Syt1 to an anionic membrane and find that Syt1 binds with ~6 k B T in EGTA, ~10 k B T in Mg 2+ and ~18 k B T in Ca 2+ . Molecular rearrangements measured during confinement are more prevalent in Ca 2+ and Mg 2+ and suggest that Syt1 initially binds through C2B, then reorients the C2 domains into the preferred binding configuration. These results provide energetic and mechanistic details of the Syt1 Ca 2+ -activation process in synaptic transmission. © 2018 Federation of European Biochemical Societies.
Calpain modulates fear memory consolidation, retrieval and reconsolidation in the hippocampus.
Popik, Bruno; Crestani, Ana Paula; Silva, Mateus Oliveira; Quillfeldt, Jorge Alberto; de Oliveira Alvares, Lucas
2018-05-01
It has been proposed that long-lasting changes in dendritic spines provide a physical correlate for memory formation and maintenance. Spine size and shape are highly plastic, controlled by actin polymerization/depolymerization cycles. This actin dynamics are regulated by proteins such as calpain, a calcium-dependent cysteine protease that cleaves the structural cytoskeleton proteins and other targets involved in synaptic plasticity. Here, we tested whether the pharmacological inhibition of calpain in the dorsal hippocampus affects memory consolidation, retrieval and reconsolidation in rats trained in contextual fear conditioning. We first found that post-training infusion of the calpain inhibitor PD150606 impaired long-term memory consolidation, but not short-term memory. Next, we showed that pre-test infusion of the calpain inhibitor hindered memory retrieval. Finally, blocking calpain activity after memory reactivation disrupted reconsolidation. Taken together, our results show that calpain play an essential role in the hippocampus by enabling memory formation, expression and reconsolidation. Copyright © 2018 Elsevier Inc. All rights reserved.
Active zones of mammalian neuromuscular junctions: formation, density, and aging.
Nishimune, Hiroshi
2012-12-01
Presynaptic active zones are synaptic vesicle release sites that play essential roles in the function and pathology of mammalian neuromuscular junctions (NMJs). The molecular mechanisms of active zone organization use presynaptic voltage-dependent calcium channels (VDCCs) in NMJs as scaffolding proteins. VDCCs interact extracellularly with the muscle-derived synapse organizer, laminin β2 and interact intracellularly with active zone-specific proteins, such as Bassoon, CAST/Erc2/ELKS2alpha, ELKS, Piccolo, and RIMs. These molecular mechanisms are supported by studies in P/Q- and N-type VDCCs double-knockout mice, and they are consistent with the pathological conditions of Lambert-Eaton myasthenic syndrome and Pierson syndrome, which are caused by autoantibodies against VDCCs or by a laminin β2 mutation. During normal postnatal maturation, NMJs maintain the density of active zones, while NMJs triple their size. However, active zones become impaired during aging. Propitiously, muscle exercise ameliorates the active zone impairment in aged NMJs, which suggests the potential for therapeutic strategies. © 2012 New York Academy of Sciences.
Learning Modifies Odor Mixture Processing to Improve Detection of Relevant Components
Chen, Jen-Yung; Marachlian, Emiliano; Assisi, Collins; Huerta, Ramon; Smith, Brian H.
2015-01-01
Honey bees have a rich repertoire of olfactory learning behaviors, and they therefore are an excellent model to study plasticity in olfactory circuits. Recent behavioral, physiological, and molecular evidence suggested that the antennal lobe, the first relay of the olfactory system in insects and analog to the olfactory bulb in vertebrates, is involved in associative and nonassociative olfactory learning. Here we use calcium imaging to reveal how responses across antennal lobe projection neurons change after association of an input odor with appetitive reinforcement. After appetitive conditioning to 1-hexanol, the representation of an odor mixture containing 1-hexanol becomes more similar to this odor and less similar to the background odor acetophenone. We then apply computational modeling to investigate how changes in synaptic connectivity can account for the observed plasticity. Our study suggests that experience-dependent modulation of inhibitory interactions in the antennal lobe aids perception of salient odor components mixed with behaviorally irrelevant background odors. PMID:25568113
BK Channels Are Required for Multisensory Plasticity in the Oculomotor System.
Nelson, Alexandra B; Faulstich, Michael; Moghadam, Setareh; Onori, Kimberly; Meredith, Andrea; du Lac, Sascha
2017-01-04
Neural circuits are endowed with several forms of intrinsic and synaptic plasticity that could contribute to adaptive changes in behavior, but circuit complexities have hindered linking specific cellular mechanisms with their behavioral consequences. Eye movements generated by simple brainstem circuits provide a means for relating cellular plasticity to behavioral gain control. Here we show that firing rate potentiation, a form of intrinsic plasticity mediated by reductions in BK-type calcium-activated potassium currents in spontaneously firing neurons, is engaged during optokinetic reflex compensation for inner ear dysfunction. Vestibular loss triggers transient increases in postsynaptic excitability, occlusion of firing rate potentiation, and reductions in BK currents in vestibular nucleus neurons. Concurrently, adaptive increases in visually evoked eye movements rapidly restore oculomotor function in wild-type mice but are profoundly impaired in BK channel-null mice. Activity-dependent regulation of intrinsic excitability may be a general mechanism for adaptive control of behavioral output in multisensory circuits. Copyright © 2017 Elsevier Inc. All rights reserved.
Self-organised criticality via retro-synaptic signals
NASA Astrophysics Data System (ADS)
Hernandez-Urbina, Victor; Herrmann, J. Michael
2016-12-01
The brain is a complex system par excellence. In the last decade the observation of neuronal avalanches in neocortical circuits suggested the presence of self-organised criticality in brain networks. The occurrence of this type of dynamics implies several benefits to neural computation. However, the mechanisms that give rise to critical behaviour in these systems, and how they interact with other neuronal processes such as synaptic plasticity are not fully understood. In this paper, we present a long-term plasticity rule based on retro-synaptic signals that allows the system to reach a critical state in which clusters of activity are distributed as a power-law, among other observables. Our synaptic plasticity rule coexists with other synaptic mechanisms such as spike-timing-dependent plasticity, which implies that the resulting synaptic modulation captures not only the temporal correlations between spiking times of pre- and post-synaptic units, which has been suggested as requirement for learning and memory in neural systems, but also drives the system to a state of optimal neural information processing.
Rossi, Silvia; Motta, Caterina; Musella, Alessandra; Centonze, Diego
2015-09-01
Excessive glutamate-mediated synaptic transmission and secondary excitotoxicity have been proposed as key determinants of neurodegeneration in many neurological diseases. Soluble mediators of inflammation have recently gained attention owing to their ability to enhance glutamate transmission and affect synaptic sensitivity to neurotransmitters. In the complex crosstalk between soluble immunoactive molecules and synapses, the endocannabinoid system (ECS) plays a central role, exerting an indirect neuroprotective action by inhibiting cytokine-dependent synaptic alterations, and a direct neuroprotective effect by limiting glutamate transmission and excitotoxic damage. On the other hand, the endocannabinoid (eCB)-mediated control of synaptic transmission is altered by proinflammatory cytokines with consequent effects in central nervous system (CNS) disorders. In this review, we summarize the interactions, at the pre- and postsynaptic level, between major inflammatory cytokines and the ECS. In addition, the behavioral and clinical consequences of the modulation of synaptic transmission during neuroinflammation are discussed. This article is part of a Special Issue entitled 'Neuroimmunology and Synaptic Function'. Copyright © 2014 Elsevier Ltd. All rights reserved.
Verhoog, Matthijs B.; Mansvelder, Huibert D.
2011-01-01
Throughout life, activity-dependent changes in neuronal connection strength enable the brain to refine neural circuits and learn based on experience. In line with predictions made by Hebb, synapse strength can be modified depending on the millisecond timing of action potential firing (STDP). The sign of synaptic plasticity depends on the spike order of presynaptic and postsynaptic neurons. Ionotropic neurotransmitter receptors, such as NMDA receptors and nicotinic acetylcholine receptors, are intimately involved in setting the rules for synaptic strengthening and weakening. In addition, timing rules for STDP within synapses are not fixed. They can be altered by activation of ionotropic receptors located at, or close to, synapses. Here, we will highlight studies that uncovered how network actions control and modulate timing rules for STDP by activating presynaptic ionotropic receptors. Furthermore, we will discuss how interaction between different types of ionotropic receptors may create “timing” windows during which particular timing rules lead to synaptic changes. PMID:21941664
Cicvaric, Ana; Yang, Jiaye; Krieger, Sigurd; Khan, Deeba; Kim, Eun-Jung; Dominguez-Rodriguez, Manuel; Cabatic, Maureen; Molz, Barbara; Acevedo Aguilar, Juan Pablo; Milicevic, Radoslav; Smani, Tarik; Breuss, Johannes M.; Kerjaschki, Dontscho; Pollak, Daniela D.; Uhrin, Pavel; Monje, Francisco J.
2016-01-01
Abstract Introduction: Podoplanin is a cell-surface glycoprotein constitutively expressed in the brain and implicated in human brain tumorigenesis. The intrinsic function of podoplanin in brain neurons remains however uncharacterized. Materials and methods: Using an established podoplanin-knockout mouse model and electrophysiological, biochemical, and behavioral approaches, we investigated the brain neuronal role of podoplanin. Results: Ex-vivo electrophysiology showed that podoplanin deletion impairs dentate gyrus synaptic strengthening. In vivo, podoplanin deletion selectively impaired hippocampus-dependent spatial learning and memory without affecting amygdala-dependent cued fear conditioning. In vitro, neuronal overexpression of podoplanin promoted synaptic activity and neuritic outgrowth whereas podoplanin-deficient neurons exhibited stunted outgrowth and lower levels of p-Ezrin, TrkA, and CREB in response to nerve growth factor (NGF). Surface Plasmon Resonance data further indicated a physical interaction between podoplanin and NGF. Discussion: This work proposes podoplanin as a novel component of the neuronal machinery underlying neuritogenesis, synaptic plasticity, and hippocampus-dependent memory functions. The existence of a relevant cross-talk between podoplanin and the NGF/TrkA signaling pathway is also for the first time proposed here, thus providing a novel molecular complex as a target for future multidisciplinary studies of the brain function in the physiology and the pathology.Key messagesPodoplanin, a protein linked to the promotion of human brain tumors, is required in vivo for proper hippocampus-dependent learning and memory functions.Deletion of podoplanin selectively impairs activity-dependent synaptic strengthening at the neurogenic dentate-gyrus and hampers neuritogenesis and phospho Ezrin, TrkA and CREB protein levels upon NGF stimulation.Surface plasmon resonance data indicates a physical interaction between podoplanin and NGF. On these grounds, a relevant cross-talk between podoplanin and NGF as well as a role for podoplanin in plasticity-related brain neuronal functions is here proposed. PMID:27558977
Emergence of Slow Collective Oscillations in Neural Networks with Spike-Timing Dependent Plasticity
NASA Astrophysics Data System (ADS)
Mikkelsen, Kaare; Imparato, Alberto; Torcini, Alessandro
2013-05-01
The collective dynamics of excitatory pulse coupled neurons with spike-timing dependent plasticity is studied. The introduction of spike-timing dependent plasticity induces persistent irregular oscillations between strongly and weakly synchronized states, reminiscent of brain activity during slow-wave sleep. We explain the oscillations by a mechanism, the Sisyphus Effect, caused by a continuous feedback between the synaptic adjustments and the coherence in the neural firing. Due to this effect, the synaptic weights have oscillating equilibrium values, and this prevents the system from relaxing into a stationary macroscopic state.
Qi, Yingjie; Klyubin, Igor; Harney, Sarah C; Hu, NengWei; Cullen, William K; Grant, Marianne K; Steffen, Julia; Wilson, Edward N; Do Carmo, Sonia; Remy, Stefan; Fuhrmann, Martin; Ashe, Karen H; Cuello, A Claudio; Rowan, Michael J
2014-12-24
Long before synaptic loss occurs in Alzheimer's disease significant harbingers of disease may be detected at the functional level. Here we examined if synaptic long-term potentiation is selectively disrupted prior to extracellular deposition of Aß in a very complete model of Alzheimer's disease amyloidosis, the McGill-R-Thy1-APP transgenic rat. Longitudinal studies in freely behaving animals revealed an age-dependent, relatively rapid-onset and persistent inhibition of long-term potentiation without a change in baseline synaptic transmission in the CA1 area of the hippocampus. Thus the ability of a standard 200 Hz conditioning protocol to induce significant NMDA receptor-dependent short- and long-term potentiation was lost at about 3.5 months of age and this deficit persisted for at least another 2-3 months, when plaques start to appear. Consistent with in vitro evidence for a causal role of a selective reduction in NMDA receptor-mediated synaptic currents, the deficit in synaptic plasticity in vivo was associated with a reduction in the synaptic burst response to the conditioning stimulation and was overcome using stronger 400 Hz stimulation. Moreover, intracerebroventricular treatment for 3 days with an N-terminally directed monoclonal anti- human Aß antibody, McSA1, transiently reversed the impairment of synaptic plasticity. Similar brief treatment with the BACE1 inhibitor LY2886721 or the γ-secretase inhibitor MRK-560 was found to have a comparable short-lived ameliorative effect when tracked in individual rats. These findings provide strong evidence that endogenously generated human Aß selectively disrupts the induction of long-term potentiation in a manner that enables potential therapeutic options to be assessed longitudinally at the pre-plaque stage of Alzheimer's disease amyloidosis.
Characterization and Modeling of Nonfilamentary Ta/TaOx/TiO2/Ti Analog Synaptic Device
Wang, Yu-Fen; Lin, Yen-Chuan; Wang, I-Ting; Lin, Tzu-Ping; Hou, Tuo-Hung
2015-01-01
A two-terminal analog synaptic device that precisely emulates biological synaptic features is expected to be a critical component for future hardware-based neuromorphic computing. Typical synaptic devices based on filamentary resistive switching face severe limitations on the implementation of concurrent inhibitory and excitatory synapses with low conductance and state fluctuation. For overcoming these limitations, we propose a Ta/TaOx/TiO2/Ti device with superior analog synaptic features. A physical simulation based on the homogeneous (nonfilamentary) barrier modulation induced by oxygen ion migration accurately reproduces various DC and AC evolutions of synaptic states, including the spike-timing-dependent plasticity and paired-pulse facilitation. Furthermore, a physics-based compact model for facilitating circuit-level design is proposed on the basis of the general definition of memristor devices. This comprehensive experimental and theoretical study of the promising electronic synapse can facilitate realizing large-scale neuromorphic systems. PMID:25955658
MicroRNA-132 regulates recognition memory and synaptic plasticity in the perirhinal cortex
Scott, Helen L; Tamagnini, Francesco; Narduzzo, Katherine E; Howarth, Joanna L; Lee, Youn-Bok; Wong, Liang-Fong; Brown, Malcolm W; Warburton, Elizabeth C; Bashir, Zafar I; Uney, James B
2012-01-01
Evidence suggests that the acquisition of recognition memory depends upon CREB-dependent long-lasting changes in synaptic plasticity in the perirhinal cortex. The CREB-responsive microRNA miR-132 has been shown to regulate synaptic transmission and we set out to investigate a role for this microRNA in recognition memory and its underlying plasticity mechanisms. To this end we mediated the specific overexpression of miR-132 selectively in the rat perirhinal cortex and demonstrated impairment in short-term recognition memory. This functional deficit was associated with a reduction in both long-term depression and long-term potentiation. These results confirm that microRNAs are key coordinators of the intracellular pathways that mediate experience-dependent changes in the brain. In addition, these results demonstrate a role for miR-132 in the neuronal mechanisms underlying the formation of short-term recognition memory. PMID:22845676
Berk, B C; Corson, M A; Peterson, T E; Tseng, H
1995-12-01
Fluid shear stress regulates endothelial cell function, but the signal transduction mechanisms involved in mechanotransduction remain unclear. Recent findings demonstrate that several intracellular kinases are activated by mechanical forces. In particular, members of the mitogen-activated protein (MAP) kinase family are stimulated by hyperosmolarity, stretch, and stress such as heat shock. We propose a model for mechanotransduction in endothelial cells involving calcium-dependent and calcium-independent protein kinase pathways. The calcium-dependent pathway involves activation of phospholipase C, hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2), increases in intracellular calcium and stimulation of kinases such as calcium-calmodulin and C kinases (PKC). The calcium-independent pathway involves activation of a small GTP-binding protein and stimulation of calcium-independent PKC and MAP kinases. The calcium-dependent pathway mediates the rapid, transient response to fluid shear stress including activation of nitric oxide synthase (NOS) and ion transport. In contrast, the calcium-independent pathway mediates a slower response including the sustained activation of NOS and changes in cell morphology and gene expression. We propose that focal adhesion complexes link the calcium-dependent and calcium-independent pathways by regulating activity of phosphatidylinositol 4-phosphate (PIP) 5-kinase (which regulates PIP2 levels) and p125 focal adhesion kinase (FAK, which phosphorylates paxillin and interacts with cytoskeletal proteins). This model predicts that dynamic interactions between integrin molecules present in focal adhesion complexes and membrane events involved in mechanotransduction will be integrated by calcium-dependent and calcium-independent kinases to generate intracellular signals involved in the endothelial cell response to flow.
Acetyl-L-carnitine improves aged brain function.
Kobayashi, Satoru; Iwamoto, Machiko; Kon, Kazuo; Waki, Hatsue; Ando, Susumu; Tanaka, Yasukazu
2010-07-01
The effects of acetyl-L-carnitine (ALCAR), an acetyl derivative of L-carnitine, on memory and learning capacity and on brain synaptic functions of aged rats were examined. Male Fischer 344 rats were given ALCAR (100 mg/kg bodyweight) per os for 3 months and were subjected to the Hebb-Williams tasks and AKON-1 task to assess their learning capacity. Cholinergic activities were determined with synaptosomes isolated from brain cortices of the rats. Choline parameters, the high-affinity choline uptake, acetylcholine (ACh) synthesis and depolarization-evoked ACh release were all enhanced in the ALCAR group. An increment of depolarization-induced calcium ion influx into synaptosomes was also evident in rats given ALCAR. Electrophysiological studies using hippocampus slices indicated that the excitatory postsynaptic potential slope and population spike size were both increased in ALCAR-treated rats. These results indicate that ALCAR increases synaptic neurotransmission in the brain and consequently improves learning capacity in aging rats.
DiGruccio, Michael R.; Joksimovic, Srdjan; Joksovic, Pavle M.; Lunardi, Nadia; Salajegheh, Reza; Jevtovic-Todorovic, Vesna; Beenhakker, Mark P.; Goodkin, Howard P.
2015-01-01
Prevailing literature supports the idea that common general anesthetics (GAs) cause long-term cognitive changes and neurodegeneration in the developing mammalian brain, especially in the thalamus. However, the possible role of GAs in modifying ion channels that control neuronal excitability has not been taken into consideration. Here we show that rats exposed to GAs at postnatal day 7 display a lasting reduction in inhibitory synaptic transmission, an increase in excitatory synaptic transmission, and concomitant increase in the amplitude of T-type calcium currents (T-currents) in neurons of the nucleus reticularis thalami (nRT). Collectively, this plasticity of ionic currents leads to increased action potential firing in vitro and increased strength of pharmacologically induced spike and wave discharges in vivo. Selective blockade of T-currents reversed neuronal hyperexcitability in vitro and in vivo. We conclude that drugs that regulate thalamic excitability may improve the safety of GAs used during early brain development. PMID:25632125
Diffusional spread and confinement of newly exocytosed synaptic vesicle proteins
Gimber, Niclas; Tadeus, Georgi; Maritzen, Tanja; Schmoranzer, Jan; Haucke, Volker
2015-01-01
Neurotransmission relies on the calcium-triggered exocytic fusion of non-peptide neurotransmitter-containing small synaptic vesicles (SVs) with the presynaptic membrane at active zones (AZs) followed by compensatory endocytic retrieval of SV membranes. Here, we study the diffusional fate of newly exocytosed SV proteins in hippocampal neurons by high-resolution time-lapse imaging. Newly exocytosed SV proteins rapidly disperse within the first seconds post fusion until confined within the presynaptic bouton. Rapid diffusional spread and confinement is followed by slow reclustering of SV proteins at the periactive endocytic zone. Confinement within the presynaptic bouton is mediated in part by SV protein association with the clathrin-based endocytic machinery to limit diffusional spread of newly exocytosed SV proteins. These data suggest that diffusion, and axonal escape of newly exocytosed vesicle proteins, are counteracted by the clathrin-based endocytic machinery together with a presynaptic diffusion barrier. PMID:26399746
Nordman, Jacob C.; Philips, Wiktor S.; Kodama, Nathan; Clark, Sarah G.; Negro, Christopher Del; Kabbani, Nadine
2015-01-01
Cholinergic signaling plays an important role in regulating the growth and regeneration of axons in the nervous system. The α7 nicotinic receptor (α7) can drive synaptic development and plasticity in the hippocampus. Here we show that activation of α7 significantly reduces axon growth in hippocampal neurons by coupling to G protein regulated inducer of neurite outgrowth 1 (Gprin1), which targets it to the growth cone (GC). Knockdown of Gprin1 expression using RNAi is found sufficient to abolish the localization and calcium signaling of α7 at the GC. In particular, α7/Gprin1 interaction appears intimately linked to a Gαo, GAP-43, and CDC42 cytoskeletal regulatory pathway within the developing axon. These findings demonstrate that α7 regulates axon growth in hippocampal neurons, thereby likely contributing to synaptic formation in the developing brain. PMID:24350810
Diffusional spread and confinement of newly exocytosed synaptic vesicle proteins
NASA Astrophysics Data System (ADS)
Gimber, Niclas; Tadeus, Georgi; Maritzen, Tanja; Schmoranzer, Jan; Haucke, Volker
2015-09-01
Neurotransmission relies on the calcium-triggered exocytic fusion of non-peptide neurotransmitter-containing small synaptic vesicles (SVs) with the presynaptic membrane at active zones (AZs) followed by compensatory endocytic retrieval of SV membranes. Here, we study the diffusional fate of newly exocytosed SV proteins in hippocampal neurons by high-resolution time-lapse imaging. Newly exocytosed SV proteins rapidly disperse within the first seconds post fusion until confined within the presynaptic bouton. Rapid diffusional spread and confinement is followed by slow reclustering of SV proteins at the periactive endocytic zone. Confinement within the presynaptic bouton is mediated in part by SV protein association with the clathrin-based endocytic machinery to limit diffusional spread of newly exocytosed SV proteins. These data suggest that diffusion, and axonal escape of newly exocytosed vesicle proteins, are counteracted by the clathrin-based endocytic machinery together with a presynaptic diffusion barrier.
Kurz, Jonathan E; Rana, Annu; Parsons, J Travis; Churn, Severn B
2003-12-01
This study was performed to determine the effect of prolonged status epilepticus on the activity and subcellular location of a neuronally enriched, calcium-regulated enzyme, calcineurin. Brain fractions isolated from control animals and rats subjected to pilocarpine-induced status epilepticus were subjected to differential centrifugation. Specific subcellular fractions were tested for both calcineurin activity and enzyme content. Significant, status epilepticus-induced increases in calcineurin activity were found in homogenates, nuclear fractions, and crude synaptic membrane-enriched fractions isolated from both cortex and hippocampus. Additionally, significant increases in enzyme levels were observed in crude synaptic fractions as measured by Western analysis. Immunohistochemical studies revealed a status epilepticus-induced increase in calcineurin immunoreactivity in dendritic structures of pyramidal neurons of the hippocampus. The data demonstrate a status epilepticus-induced increase in calcineurin activity and concentration in the postsynaptic region of forebrain pyramidal neurons.
Nashawi, H; Bartl, T; Bartl, P; Novotny, L; Oriowo, M A; Kombian, S B
2012-09-18
Dementia, especially Alzheimer's disease, is a rapidly increasing medical condition that presents with enormous challenge for treatment. It is characterized by impairment in memory and cognitive function often accompanied by changes in synaptic transmission and plasticity in relevant brain regions such as the hippocampus. We recently synthesized TH-9, a conjugate racetam-methylxanthine compound and tested if it had potential for enhancing synaptic function and possibly, plasticity, by examining its effect on hippocampal fast excitatory synaptic transmission and plasticity. Field excitatory postsynaptic potentials (fEPSPs) were recorded in the CA1 hippocampal area of naïve juvenile male Sprague-Dawley rats using conventional electrophysiological recording techniques. TH-9 caused a concentration-dependent, long-lasting enhancement in fEPSPs. This effect was blocked by adenosine A1, acetylcholine (muscarinic and nicotinic) and glutamate (N-methyl-d-aspartate) receptor antagonists but not by a γ-aminobutyric acid receptor type B (GABA(B)) receptor antagonist. The TH-9 effect was also blocked by enhancing intracellular cyclic adenosine monophosphate and inhibiting protein kinase A. Pretreatment with TH-9 did not prevent the induction of long-term potentiation (LTP) or long-term depression (LTD). Conversely, induction of LTP or LTD completely occluded the ability of TH-9 to enhance fEPSPs. Thus, TH-9 utilizes cholinergic and adenosinergic mechanisms to cause long-lasting enhancement in fEPSPs which were occluded by LTP and LTD. TH-9 may therefore employ similar or convergent mechanisms with frequency-dependent synaptic plasticities to produce the observed long-lasting enhancement in synaptic transmission and may thus, have potential for use in improving memory. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
Marty, Vincent; Kuzmiski, J Brent; Baimoukhametova, Dinara V; Bains, Jaideep S
2011-01-01
Abstract Glutamatergic synaptic inputs onto parvocellular neurosecretory cells (PNCs) in the paraventricular nucleus of the hypothalamus (PVN) regulate the hypothalamic-pituitary-adrenal (HPA) axis responses to stress and undergo stress-dependent changes in their capacity to transmit information. In spite of their pivotal role in regulating PNCs, relatively little is known about the fundamental rules that govern transmission at these synapses. Furthermore, since salient information in the nervous system is often transmitted in bursts, it is also important to understand the short-term dynamics of glutamate transmission under basal conditions. To characterize these properties, we obtained whole-cell patch clamp recordings from PNCs in brain slices from postnatal day 21–35 male Sprague–Dawley rats and examined EPSCs. EPSCs were elicited by electrically stimulating glutamatergic afferents along the periventricular aspect. In response to a paired-pulse stimulation protocol, EPSCs generally displayed a robust short-term depression that recovered within 5 s. Similarly, trains of synaptic stimuli (5–50 Hz) resulted in a frequency-dependent depression until a near steady state was achieved. Application of inhibitors of AMPA receptor (AMPAR) desensitization or the low-affinity, competitive AMPAR antagonist failed to affect the depression due to paired-pulse and trains of synaptic stimulation indicating that this use-dependent short-term synaptic depression has a presynaptic locus of expression. We used cumulative amplitude profiles during trains of stimulation and variance–mean analysis to estimate synaptic parameters. Finally, we report that these properties contribute to hamper the efficiency with which high frequency synaptic inputs generate spikes in PNCs, indicating that these synapses operate as effective low-pass filters in basal conditions. PMID:21727221
Le Barillier, Léa; Léger, Lucienne; Luppi, Pierre-Hervé; Fort, Patrice; Malleret, Gaël; Salin, Paul-Antoine
2015-11-01
The cognitive role of melanin-concentrating hormone (MCH) neurons, a neuronal population located in the mammalian postero-lateral hypothalamus sending projections to all cortical areas, remains poorly understood. Mainly activated during paradoxical sleep (PS), MCH neurons have been implicated in sleep regulation. The genetic deletion of the only known MCH receptor in rodent leads to an impairment of hippocampal dependent forms of memory and to an alteration of hippocampal long-term synaptic plasticity. By using MCH/ataxin3 mice, a genetic model characterized by a selective deletion of MCH neurons in the adult, we investigated the role of MCH neurons in hippocampal synaptic plasticity and hippocampal-dependent forms of memory. MCH/ataxin3 mice exhibited a deficit in the early part of both long-term potentiation and depression in the CA1 area of the hippocampus. Post-tetanic potentiation (PTP) was diminished while synaptic depression induced by repetitive stimulation was enhanced suggesting an alteration of pre-synaptic forms of short-term plasticity in these mice. Behaviorally, MCH/ataxin3 mice spent more time and showed a higher level of hesitation as compared to their controls in performing a short-term memory T-maze task, displayed retardation in acquiring a reference memory task in a Morris water maze, and showed a habituation deficit in an open field task. Deletion of MCH neurons could thus alter spatial short-term memory by impairing short-term plasticity in the hippocampus. Altogether, these findings could provide a cellular mechanism by which PS may facilitate memory encoding. Via MCH neuron activation, PS could prepare the day's learning by increasing and modulating short-term synaptic plasticity in the hippocampus. © 2015 Wiley Periodicals, Inc.
Boxall, A R; Garthwaite, J
1995-05-01
AMPA receptors mediate fast, glutamatergic synaptic transmission in the central nervous system. The time-course of the associated postsynaptic current has been suggested to be determined principally by the kinetics of glutamate binding and receptor desensitization. Aniracetam and cyclothiazide are drugs capable of selectively preventing desensitization of the AMPA receptor. To investigate the relevance of desensitization to fast synaptic transmission in the cerebellum we have tested these compounds against AMPA-induced depolarizations and postsynaptic potentials using the grease-gap recording technique. Aniracetam (1 microM-5 mM) and cyclothiazide (1 microM-500 microM) both enhanced the depolarising action of AMPA (1 microM) on Purkinje cells in a concentration-dependent manner. At the highest concentrations tested, the increases over controls were approximately 600% and 800% respectively. Aniracetam also increased, in a concentration-dependent manner, the amplitude of the evoked synaptic potentials of both parallel fibre-Purkinje cell and mossy fibre-granule cell pathways, with the highest concentrations tested enhancing the potentials by approximately 60% and 75% respectively. These data suggest that, at two different synapses in the cerebellum, AMPA receptor desensitization occurs physiologically and is likely to contribute to the shape of fast synaptic currents.
Ma, Hongtao; Harris, Samuel; Rahmani, Redi; Lacefield, Clay O.; Zhao, Mingrui; Daniel, Andy G. S.; Zhou, Zhiping; Bruno, Randy M.; Berwick, Jason; Schwartz, Theodore H.
2014-01-01
Abstract. In vivo calcium imaging is an incredibly powerful technique that provides simultaneous information on fast neuronal events, such as action potentials and subthreshold synaptic activity, as well as slower events that occur in the glia and surrounding neuropil. Bulk-loading methods that involve multiple injections can be used for single-cell as well as wide-field imaging studies. However, multiple injections result in inhomogeneous loading as well as multiple sites of potential cortical injury. We used convection-enhanced delivery to create smooth, continuous loading of a large area of the cortical surface through a solitary injection site and demonstrated the efficacy of the technique using confocal microscopy imaging of single cells and physiological responses to single-trial events of spontaneous activity, somatosensory-evoked potentials, and epileptiform events. Combinations of calcium imaging with voltage-sensitive dye and intrinsic signal imaging demonstrate the utility of this technique in neurovascular coupling investigations. Convection-enhanced loading of calcium dyes may be a useful technique to advance the study of cortical processing when widespread loading of a wide-field imaging is required. PMID:25525611
Ma, Hongtao; Harris, Samuel; Rahmani, Redi; Lacefield, Clay O; Zhao, Mingrui; Daniel, Andy G S; Zhou, Zhiping; Bruno, Randy M; Berwick, Jason; Schwartz, Theodore H
2014-07-24
In vivo calcium imaging is an incredibly powerful technique that provides simultaneous information on fast neuronal events, such as action potentials and subthreshold synaptic activity, as well as slower events that occur in the glia and surrounding neuropil. Bulk-loading methods that involve multiple injections can be used for single-cell as well as wide-field imaging studies. However, multiple injections result in inhomogeneous loading as well as multiple sites of potential cortical injury. We used convection-enhanced delivery to create smooth, continuous loading of a large area of the cortical surface through a solitary injection site and demonstrated the efficacy of the technique using confocal microscopy imaging of single cells and physiological responses to single-trial events of spontaneous activity, somatosensory-evoked potentials, and epileptiform events. Combinations of calcium imaging with voltage-sensitive dye and intrinsic signal imaging demonstrate the utility of this technique in neurovascular coupling investigations. Convection-enhanced loading of calcium dyes may be a useful technique to advance the study of cortical processing when widespread loading of a wide-field imaging is required.
Qiao, Jingda; Zou, Xiaolu; Lai, Duo; Yan, Ying; Wang, Qi; Li, Weicong; Deng, Shengwen; Xu, Hanhong; Gu, Huaiyu
2014-07-01
Azadirachtin is a botanical pesticide, which possesses conspicuous biological actions such as insecticidal, anthelmintic, antifeedancy, antimalarial effects as well as insect growth regulation. Deterrent for chemoreceptor functions appears to be the main mechanism involved in the potent biological actions of Azadirachtin, although the cytotoxicity and subtle changes to skeletal muscle physiology may also contribute to its insecticide responses. In order to discover the effects of Azadirachtin on the central nervous system (CNS), patch-clamp recording was applied to Drosophila melanogaster, which has been widely used in neurological research. Here, we describe the electrophysiological properties of a local neuron located in the suboesophageal ganglion region of D. melanogaster using the whole brain. The patch-clamp recordings suggested that Azadirachtin modulates the properties of cholinergic miniature excitatory postsynaptic current (mEPSC) and calcium currents, which play important roles in neural activity of the CNS. The frequency of mEPSC and the peak amplitude of the calcium currents significantly decreased after application of Azadirachtin. Our study indicates that Azadirachtin can interfere with the insect's CNS via inhibition of excitatory cholinergic transmission and partly blocking the calcium channel. © 2013 Society of Chemical Industry.
Does Spike-Timing-Dependent Synaptic Plasticity Couple or Decouple Neurons Firing in Synchrony?
Knoblauch, Andreas; Hauser, Florian; Gewaltig, Marc-Oliver; Körner, Edgar; Palm, Günther
2012-01-01
Spike synchronization is thought to have a constructive role for feature integration, attention, associative learning, and the formation of bidirectionally connected Hebbian cell assemblies. By contrast, theoretical studies on spike-timing-dependent plasticity (STDP) report an inherently decoupling influence of spike synchronization on synaptic connections of coactivated neurons. For example, bidirectional synaptic connections as found in cortical areas could be reproduced only by assuming realistic models of STDP and rate coding. We resolve this conflict by theoretical analysis and simulation of various simple and realistic STDP models that provide a more complete characterization of conditions when STDP leads to either coupling or decoupling of neurons firing in synchrony. In particular, we show that STDP consistently couples synchronized neurons if key model parameters are matched to physiological data: First, synaptic potentiation must be significantly stronger than synaptic depression for small (positive or negative) time lags between presynaptic and postsynaptic spikes. Second, spike synchronization must be sufficiently imprecise, for example, within a time window of 5–10 ms instead of 1 ms. Third, axonal propagation delays should not be much larger than dendritic delays. Under these assumptions synchronized neurons will be strongly coupled leading to a dominance of bidirectional synaptic connections even for simple STDP models and low mean firing rates at the level of spontaneous activity. PMID:22936909
Stephenson, Jason R; Wang, Xiaohan; Perfitt, Tyler L; Parrish, Walker P; Shonesy, Brian C; Marks, Christian R; Mortlock, Douglas P; Nakagawa, Terunaga; Sutcliffe, James S; Colbran, Roger J
2017-02-22
Characterizing the functional impact of novel mutations linked to autism spectrum disorder (ASD) provides a deeper mechanistic understanding of the underlying pathophysiological mechanisms. Here we show that a de novo Glu183 to Val (E183V) mutation in the CaMKIIα catalytic domain, identified in a proband diagnosed with ASD, decreases both CaMKIIα substrate phosphorylation and regulatory autophosphorylation, and that the mutated kinase acts in a dominant-negative manner to reduce CaMKIIα-WT autophosphorylation. The E183V mutation also reduces CaMKIIα binding to established ASD-linked proteins, such as Shank3 and subunits of l-type calcium channels and NMDA receptors, and increases CaMKIIα turnover in intact cells. In cultured neurons, the E183V mutation reduces CaMKIIα targeting to dendritic spines. Moreover, neuronal expression of CaMKIIα-E183V increases dendritic arborization and decreases both dendritic spine density and excitatory synaptic transmission. Mice with a knock-in CaMKIIα-E183V mutation have lower total forebrain CaMKIIα levels, with reduced targeting to synaptic subcellular fractions. The CaMKIIα-E183V mice also display aberrant behavioral phenotypes, including hyperactivity, social interaction deficits, and increased repetitive behaviors. Together, these data suggest that CaMKIIα plays a previously unappreciated role in ASD-related synaptic and behavioral phenotypes. SIGNIFICANCE STATEMENT Many autism spectrum disorder (ASD)-linked mutations disrupt the function of synaptic proteins, but no single gene accounts for >1% of total ASD cases. The molecular networks and mechanisms that couple the primary deficits caused by these individual mutations to core behavioral symptoms of ASD remain poorly understood. Here, we provide the first characterization of a mutation in the gene encoding CaMKIIα linked to a specific neuropsychiatric disorder. Our findings demonstrate that this ASD-linked de novo CAMK2A mutation disrupts multiple CaMKII functions, induces synaptic deficits, and causes ASD-related behavioral alterations, providing novel insights into the synaptic mechanisms contributing to ASD. Copyright © 2017 the authors 0270-6474/17/372217-18$15.00/0.