Resveratrol Interferes with Fura-2 Intracellular Calcium Measurements.
Kopp, Richard F; Leech, Colin A; Roe, Michael W
2014-03-01
Resveratrol, a naturally occurring polyphenol found in some fruits and especially in grapes, has been reported to provide diverse health benefits. Resveratrol's mechanism of action is the subject of many investigations, and some studies using the ratiometric calcium indicator Fura-2 suggest that it modulates cellular calcium responses. In the current study, contradictory cellular calcium responses to resveratrol applied at concentrations exceeding 10 μM were observed during in vitro imaging studies depending on the calcium indicator used, with Fura-2 indicating an increase in intracellular calcium while Fluo-4 and the calcium biosensor YC3.60 indicated no response. When cells loaded with Fura-2 were treated with 100 μM resveratrol, excitation at 340 nm resulted in a large intensity increase at 510 nm, but the expected concurrent decline with 380 nm excitation was not observed. Pre-treatment of cells with the calcium chelator BAPTA-AM did not prevent a rise in the 340/380 ratio when resveratrol was present, but it did prevent an increase in 340/380 when ATP was applied, suggesting that the resveratrol response was an artifact. Cautious data interpretation is recommended from imaging experiments using Fura-2 concurrently with resveratrol in calcium imaging experiments.
GCaMP expression in retinal ganglion cells characterized using a low-cost fundus imaging system
NASA Astrophysics Data System (ADS)
Chang, Yao-Chuan; Walston, Steven T.; Chow, Robert H.; Weiland, James D.
2017-10-01
Objective. Virus-transduced, intracellular-calcium indicators are effective reporters of neural activity, offering the advantage of cell-specific labeling. Due to the existence of an optimal time window for the expression of calcium indicators, a suitable tool for tracking GECI expression in vivo following transduction is highly desirable. Approach. We developed a noninvasive imaging approach based on a custom-modified, low-cost fundus viewing system that allowed us to monitor and characterize in vivo bright-field and fluorescence images of the mouse retina. AAV2-CAG-GCaMP6f was injected into a mouse eye. The fundus imaging system was used to measure fluorescence at several time points post injection. At defined time points, we prepared wholemount retina mounted on a transparent multielectrode array and used calcium imaging to evaluate the responsiveness of retinal ganglion cells (RGCs) to external electrical stimulation. Main results. The noninvasive fundus imaging system clearly resolves individual (RGCs and axons. RGC fluorescence intensity and the number of observable fluorescent cells show a similar rising trend from week 1 to week 3 after viral injection, indicating a consistent increase of GCaMP6f expression. Analysis of the in vivo fluorescence intensity trend and in vitro neurophysiological responsiveness shows that the slope of intensity versus days post injection can be used to estimate the optimal time for calcium imaging of RGCs in response to external electrical stimulation. Significance. The proposed fundus imaging system enables high-resolution digital fundus imaging in the mouse eye, based on off-the-shelf components. The long-term tracking experiment with in vitro calcium imaging validation demonstrates the system can serve as a powerful tool monitoring the level of genetically-encoded calcium indicator expression, further determining the optimal time window for following experiment.
Wen, Di; Nye, Katelyn; Zhou, Bo; Gilkeson, Robert C; Gupta, Amit; Ranim, Shiraz; Couturier, Spencer; Wilson, David L
2018-03-01
We have developed a technique to image coronary calcium, an excellent biomarker for atherosclerotic disease, using low cost, low radiation dual energy (DE) chest radiography, with potential for widespread screening from an already ordered exam. Our dual energy coronary calcium (DECC) processing method included automatic heart silhouette segmentation, sliding organ registration and scatter removal to create a bone-image-like, coronary calcium image with significant reduction in motion artifacts and improved calcium conspicuity compared to standard, clinically available DE processing. Experiments with a physical dynamic cardiac phantom showed that DECC processing reduced 73% of misregistration error caused by cardiac motion over a wide range of heart rates and x-ray radiation exposures. Using the functional measurement test (FMT), we determined significant image quality improvement in clinical images with DECC processing (p < 0.0001), where DECC images were chosen best in 94% of human readings. Comparing DECC images to registered and projected CT calcium images, we found good correspondence between the size and location of calcification signals. In a very preliminary coronary calcium ROC study, we used CT Agatston calcium score >50 as the gold standard for an actual positive test result. AUC performance was significantly improved from 0.73 ± 0.14 with standard DE to 0.87 ± 0.10 with DECC (p = 0.0095) for this limited set of surgical patient data biased towards heavy calcifications. The proposed DECC processing shows good potential for coronary calcium detection in DE chest radiography, giving impetus for a larger clinical evaluation. Copyright © 2018. Published by Elsevier Ltd.
Joucla, Sébastien; Franconville, Romain; Pippow, Andreas; Kloppenburg, Peter; Pouzat, Christophe
2013-08-01
Calcium imaging has become a routine technique in neuroscience for subcellular to network level investigations. The fast progresses in the development of new indicators and imaging techniques call for dedicated reliable analysis methods. In particular, efficient and quantitative background fluorescence subtraction routines would be beneficial to most of the calcium imaging research field. A background-subtracted fluorescence transients estimation method that does not require any independent background measurement is therefore developed. This method is based on a fluorescence model fitted to single-trial data using a classical nonlinear regression approach. The model includes an appropriate probabilistic description of the acquisition system's noise leading to accurate confidence intervals on all quantities of interest (background fluorescence, normalized background-subtracted fluorescence time course) when background fluorescence is homogeneous. An automatic procedure detecting background inhomogeneities inside the region of interest is also developed and is shown to be efficient on simulated data. The implementation and performances of the proposed method on experimental recordings from the mouse hypothalamus are presented in details. This method, which applies to both single-cell and bulk-stained tissues recordings, should help improving the statistical comparison of fluorescence calcium signals between experiments and studies. Copyright © 2013 Elsevier Ltd. All rights reserved.
Nguyen, Hien D; Ullmann, Jeremy F P; McLachlan, Geoffrey J; Voleti, Venkatakaushik; Li, Wenze; Hillman, Elizabeth M C; Reutens, David C; Janke, Andrew L
2018-02-01
Calcium is a ubiquitous messenger in neural signaling events. An increasing number of techniques are enabling visualization of neurological activity in animal models via luminescent proteins that bind to calcium ions. These techniques generate large volumes of spatially correlated time series. A model-based functional data analysis methodology via Gaussian mixtures is suggested for the clustering of data from such visualizations is proposed. The methodology is theoretically justified and a computationally efficient approach to estimation is suggested. An example analysis of a zebrafish imaging experiment is presented.
In vivo neuronal calcium imaging in C. elegans.
Chung, Samuel H; Sun, Lin; Gabel, Christopher V
2013-04-10
The nematode worm C. elegans is an ideal model organism for relatively simple, low cost neuronal imaging in vivo. Its small transparent body and simple, well-characterized nervous system allows identification and fluorescence imaging of any neuron within the intact animal. Simple immobilization techniques with minimal impact on the animal's physiology allow extended time-lapse imaging. The development of genetically-encoded calcium sensitive fluorophores such as cameleon and GCaMP allow in vivo imaging of neuronal calcium relating both cell physiology and neuronal activity. Numerous transgenic strains expressing these fluorophores in specific neurons are readily available or can be constructed using well-established techniques. Here, we describe detailed procedures for measuring calcium dynamics within a single neuron in vivo using both GCaMP and cameleon. We discuss advantages and disadvantages of both as well as various methods of sample preparation (animal immobilization) and image analysis. Finally, we present results from two experiments: 1) Using GCaMP to measure the sensory response of a specific neuron to an external electrical field and 2) Using cameleon to measure the physiological calcium response of a neuron to traumatic laser damage. Calcium imaging techniques such as these are used extensively in C. elegans and have been extended to measurements in freely moving animals, multiple neurons simultaneously and comparison across genetic backgrounds. C. elegans presents a robust and flexible system for in vivo neuronal imaging with advantages over other model systems in technical simplicity and cost.
Ludwar, Bjoern Ch; Evans, Colin G; Cropper, Elizabeth C
2012-07-15
It has been suggested that changes in intracellular calcium mediate the induction of a number of important forms of synaptic plasticity (e.g., homosynaptic facilitation). These hypotheses can be tested by simultaneously monitoring changes in intracellular calcium and alterations in synaptic efficacy. We demonstrate how this can be accomplished by combining calcium imaging with intracellular recording techniques. Our experiments are conducted in a buccal ganglion of the mollusc Aplysia californica. This preparation has a number of experimentally advantageous features: Ganglia can be easily removed from Aplysia and experiments use adult neurons that make normal synaptic connections and have a normal ion channel distribution. Due to the low metabolic rate of the animal and the relatively low temperatures (14-16 °C) that are natural for Aplysia, preparations are stable for long periods of time. To detect changes in intracellular free calcium we will use the cell impermeant version of Calcium Orange which is easily 'loaded' into a neuron via iontophoresis. When this long wavelength fluorescent dye binds to calcium, fluorescence intensity increases. Calcium Orange has fast kinetic properties and, unlike ratiometric dyes (e.g., Fura 2), requires no filter wheel for imaging. It is fairly photo stable and less phototoxic than other dyes (e.g., fluo-3). Like all non-ratiometric dyes, Calcium Orange indicates relative changes in calcium concentration. But, because it is not possible to account for changes in dye concentration due to loading and diffusion, it can not be calibrated to provide absolute calcium concentrations. An upright, fixed stage, compound microscope was used to image neurons with a CCD camera capable of recording around 30 frames per second. In Aplysia this temporal resolution is more than adequate to detect even a single spike induced alteration in the intracellular calcium concentration. Sharp electrodes are simultaneously used to induce and record synaptic transmission in identified pre- and postsynaptic neurons. At the conclusion of each trial, a custom script combines electrophysiology and imaging data. To ensure proper synchronization we use a light pulse from a LED mounted in the camera port of the microscope. Manipulation of presynaptic calcium levels (e.g. via intracellular EGTA injection) allows us to test specific hypotheses, concerning the role of intracellular calcium in mediating various forms of plasticity.
Ground-to-air flow visualization using Solar Calcium-K line Background-Oriented Schlieren
NASA Astrophysics Data System (ADS)
Hill, Michael A.; Haering, Edward A.
2017-01-01
The Calcium-K Eclipse Background-Oriented Schlieren experiment was performed as a proof of concept test to evaluate the effectiveness of using the solar disk as a background to perform the Background-Oriented Schlieren (BOS) method of flow visualization. A ground-based imaging system was equipped with a Calcium-K line optical etalon filter to enable the use of the chromosphere of the sun as the irregular background to be used for BOS. A US Air Force T-38 aircraft performed three supersonic runs which eclipsed the sun as viewed from the imaging system. The images were successfully post-processed using optical flow methods to qualitatively reveal the density gradients in the flow around the aircraft.
Kubitscheck, U; Pratsch, L; Passow, H; Peters, R
1995-07-01
The activity of the plasma membrane calcium pump was measured in single cells. Human red blood cell ghosts were loaded with a fluorescent calcium indicator and either caged calcium and ATP (protocol A) or caged ATP and calcium (protocol B). In a suitably modified laser scanning microscope either calcium or ATP were released by a short UV light pulse. The time-dependent fluorescence intensity of the calcium indicator was then followed in single ghosts by repetitive confocal imaging. The fluorescence intensity was converted into calcium concentration, which in turn was used to derive the kinetic parameters of the calcium pump, the Michaelis-Menten constant Km, and the maximal transport rate vmax. Km and vmax values derived in this manner were 24 +/- 14 microM and 1.0 +/- 0.6 microM/(ghost s) for protocol A, and 4 +/- 3 microM and 1.0 +/- 0.6 microM/(ghost s) for protocol B, respectively. The difference between A and B is presumably caused by calmodulin, which is inactive in the experiments with protocol A. The possibilities to extend the new method to living nucleus-containing cells transiently transfected with mutants of the plasma membrane calcium pump are discussed.
Measuring calcium dynamics in living cells with Genetically Encodable Calcium Indicators
McCombs, Janet E.
2008-01-01
Genetically encoded calcium indicators (GECIs) allow researchers to measure calcium dynamics in specific targeted locations within living cells. Such indicators enable dissection of the spatial and temporal control of calcium signaling processes. Here we review recent progress in the development of GECIs, highlighting which indicators are most appropriate for measuring calcium in specific organelles and localized domains in mammalian tissue culture cells. An overview of recent approaches that have been undertaken to ensure that the GECIs are minimally perturbed by the cellular environment is provided. Additionally, the procedures for introducing GECIs into mammalian cells, conducting calcium imaging experiments, and analyzing data are discussed. Because organelle-targeted indicators often pose an additional challenge, we underscore strategies for calibrating GECIs in these locations. PMID:18848629
NASA Astrophysics Data System (ADS)
Zhou, Bo; Wen, Di; Nye, Katelyn; Gilkeson, Robert C.; Wilson, David L.
2016-03-01
Coronary artery calcification (CAC) as assessed with CT calcium score is the best biomarker of coronary artery disease. Dual energy x-ray provides an inexpensive, low radiation-dose alternative. A two shot system (GE Revolution-XRd) is used, raw images are processed with a custom algorithm, and a coronary calcium image (DECCI) is created, similar to the bone image, but optimized for CAC visualization, not lung visualization. In this report, we developed a physicsbased, digital-phantom containing heart, lung, CAC, spine, ribs, pulmonary artery, and adipose elements, examined effects on DECCI, suggested physics-inspired algorithms to improve CAC contrast, and evaluated the correlation between CT calcium scores and a proposed DE calcium score. In simulation experiment, Beam hardening from increasing adipose thickness (2cm to 8cm) reduced Cg by 19% and 27% in 120kVp and 60kVp images, but only reduced Cg by <7% in DECCI. If a pulmonary artery moves or pulsates with blood filling between exposures, it can give rise to a significantly confounding PA signal in DECCI similar in amplitude to CAC. Observations suggest modifications to DECCI processing, which can further improve CAC contrast by a factor of 2 in clinical exams. The DE score had the best correlation with "CT mass score" among three commonly used CT scores. Results suggest that DE x-ray is a promising tool for imaging and scoring CAC, and there still remains opportunity for further DECCI processing improvements.
Ross, William N; Miyazaki, Kenichi; Popovic, Marko A; Zecevic, Dejan
2015-04-01
Dynamic calcium and voltage imaging is a major tool in modern cellular neuroscience. Since the beginning of their use over 40 years ago, there have been major improvements in indicators, microscopes, imaging systems, and computers. While cutting edge research has trended toward the use of genetically encoded calcium or voltage indicators, two-photon microscopes, and in vivo preparations, it is worth noting that some questions still may be best approached using more classical methodologies and preparations. In this review, we highlight a few examples in neurons where the combination of charge-coupled device (CCD) imaging and classical organic indicators has revealed information that has so far been more informative than results using the more modern systems. These experiments take advantage of the high frame rates, sensitivity, and spatial integration of the best CCD cameras. These cameras can respond to the faster kinetics of organic voltage and calcium indicators, which closely reflect the fast dynamics of the underlying cellular events.
Akerboom, Jasper; Carreras Calderón, Nicole; Tian, Lin; Wabnig, Sebastian; Prigge, Matthias; Tolö, Johan; Gordus, Andrew; Orger, Michael B.; Severi, Kristen E.; Macklin, John J.; Patel, Ronak; Pulver, Stefan R.; Wardill, Trevor J.; Fischer, Elisabeth; Schüler, Christina; Chen, Tsai-Wen; Sarkisyan, Karen S.; Marvin, Jonathan S.; Bargmann, Cornelia I.; Kim, Douglas S.; Kügler, Sebastian; Lagnado, Leon; Hegemann, Peter; Gottschalk, Alexander; Schreiter, Eric R.; Looger, Loren L.
2013-01-01
Genetically encoded calcium indicators (GECIs) are powerful tools for systems neuroscience. Here we describe red, single-wavelength GECIs, “RCaMPs,” engineered from circular permutation of the thermostable red fluorescent protein mRuby. High-resolution crystal structures of mRuby, the red sensor RCaMP, and the recently published red GECI R-GECO1 give insight into the chromophore environments of the Ca2+-bound state of the sensors and the engineered protein domain interfaces of the different indicators. We characterized the biophysical properties and performance of RCaMP sensors in vitro and in vivo in Caenorhabditis elegans, Drosophila larvae, and larval zebrafish. Further, we demonstrate 2-color calcium imaging both within the same cell (registering mitochondrial and somatic [Ca2+]) and between two populations of cells: neurons and astrocytes. Finally, we perform integrated optogenetics experiments, wherein neural activation via channelrhodopsin-2 (ChR2) or a red-shifted variant, and activity imaging via RCaMP or GCaMP, are conducted simultaneously, with the ChR2/RCaMP pair providing independently addressable spectral channels. Using this paradigm, we measure calcium responses of naturalistic and ChR2-evoked muscle contractions in vivo in crawling C. elegans. We systematically compare the RCaMP sensors to R-GECO1, in terms of action potential-evoked fluorescence increases in neurons, photobleaching, and photoswitching. R-GECO1 displays higher Ca2+ affinity and larger dynamic range than RCaMP, but exhibits significant photoactivation with blue and green light, suggesting that integrated channelrhodopsin-based optogenetics using R-GECO1 may be subject to artifact. Finally, we create and test blue, cyan, and yellow variants engineered from GCaMP by rational design. This engineered set of chromatic variants facilitates new experiments in functional imaging and optogenetics. PMID:23459413
Calcium (Ca2+) waves data calibration and analysis using image processing techniques
2013-01-01
Background Calcium (Ca2+) propagates within tissues serving as an important information carrier. In particular, cilia beat frequency in oviduct cells is partially regulated by Ca2+ changes. Thus, measuring the calcium density and characterizing the traveling wave plays a key role in understanding biological phenomena. However, current methods to measure propagation velocities and other wave characteristics involve several manual or time-consuming procedures. This limits the amount of information that can be extracted, and the statistical quality of the analysis. Results Our work provides a framework based on image processing procedures that enables a fast, automatic and robust characterization of data from two-filter fluorescence Ca2+ experiments. We calculate the mean velocity of the wave-front, and use theoretical models to extract meaningful parameters like wave amplitude, decay rate and time of excitation. Conclusions Measurements done by different operators showed a high degree of reproducibility. This framework is also extended to a single filter fluorescence experiments, allowing higher sampling rates, and thus an increased accuracy in velocity measurements. PMID:23679062
Theory, Image Simulation, and Data Analysis of Chemical Release Experiments
NASA Technical Reports Server (NTRS)
Wescott, Eugene M.
1994-01-01
The final phase of Grant NAG6-1 involved analysis of physics of chemical releases in the upper atmosphere and analysis of data obtained on previous NASA sponsored chemical release rocket experiments. Several lines of investigation of past chemical release experiments and computer simulations have been proceeding in parallel. This report summarizes the work performed and the resulting publications. The following topics are addressed: analysis of the 1987 Greenland rocket experiments; calculation of emission rates for barium, strontium, and calcium; the CRIT 1 and 2 experiments (Collisional Ionization Cross Section experiments); image calibration using background stars; rapid ray motions in ionospheric plasma clouds; and the NOONCUSP rocket experiments.
2008-09-01
T47D control cells with the highest sustained levels of intracellular calcium in the live cell imaging experiments (Figure 9). Membrane blebbing is a...classic hallmark, and early indicator of apoptosis. No membrane blebbing was observed in T47D/PMCA2 cells during the live cell imaging studies. 10
Calcium-Responsive Liposomes via a Synthetic Lipid Switch.
Lou, Jinchao; Carr, Adam J; Watson, Alexa J; Mattern-Schain, Samuel I; Best, Michael D
2018-03-07
Liposomal drug delivery would benefit from enhanced control over content release. Here, we report a novel avenue for triggering release driven by chemical composition using liposomes sensitized to calcium-a target chosen due to its key roles in biology and disease. To demonstrate this principle, we synthesized calcium-responsive lipid switch 1, designed to undergo conformational changes upon calcium binding. The conformational change perturbs membrane integrity, thereby promoting cargo release. This was shown through fluorescence-based release assays via dose-dependent response depending on the percentage of 1 in liposomes, with minimal background leakage in controls. DLS experiments indicated dramatic changes in particle size upon treatment of liposomes containing 1 with calcium. In a comparison of ten naturally occurring metal cations, calcium provided the greatest release. Finally, STEM images showed significant changes in liposome morphology upon treatment of liposomes containing 1 with calcium. These results showcase lipid switches driven by molecular recognition principles as an exciting avenue for controlling membrane properties. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Calcium measurements with electron probe X-ray and electron energy loss analysis.
LeFurgey, A; Ingram, P
1990-03-01
This paper presents a broad survey of the rationale for electron probe X-ray microanalysis (EPXMA) and the various methods for obtaining qualitative and quantitative information on the distribution and amount of elements, particularly calcium, in cryopreserved cells and tissues. Essential in an introductory consideration of microanalysis in biological cryosections is the physical basis for the instrumentation, fundamentals of X-ray spectrometry, and various analytical modes such as static probing and X-ray imaging. Some common artifacts are beam damage and contamination. Inherent pitfalls of energy dispersive X-ray systems include Si escape peaks, doublets, background, and detector calibration shifts. Quantitative calcium analysis of thin cryosections is carried out in real time using a multiple least squares fitting program on filtered X-ray spectra and normalizing the calcium peak to a portion of the continuum. Recent work includes the development of an X-ray imaging system where quantitative data can be retrieved off-line. The minimum detectable concentration of calcium in biological cryosections is approximately 300 mumole kg dry weight with a spatial resolution of approximately 100 A. The application of electron energy loss (EELS) techniques to the detection of calcium offers the potential for greater sensitivity and spatial resolution in measurement and imaging. Determination of mass thickness with EELS can facilitate accurate calculation of wet weight concentrations from frozen hydrated and freeze-dried specimens. Calcium has multiple effects on cell metabolism, membrane transport and permeability and, thus, on overall cell physiology or pathophysiology. Cells can be rapidly frozen for EPXMA during basal or altered functional conditions to delineate the location and amount of calcium within cells and the changes in location and concentration of cations or anions accompanying calcium redistribution. Recent experiments in our laboratory document that EPXMA in combination with other biochemical and electrophysiological techniques can be used to study, for example, sodium and calcium compartmentation in cultured cardiac cells. Such analyses can also be used to clarify the role of calcium in anoxic renal cell injury and to evaluate proposed ionic defects in cells of individuals with cystic fibrosis.
High-yield in vitro recordings from neurons functionally characterized in vivo.
Weiler, Simon; Bauer, Joel; Hübener, Mark; Bonhoeffer, Tobias; Rose, Tobias; Scheuss, Volker
2018-06-01
In vivo two-photon calcium imaging provides detailed information about the activity and response properties of individual neurons. However, in vitro methods are often required to study the underlying neuronal connectivity and physiology at the cellular and synaptic levels at high resolution. This protocol provides a fast and reliable workflow for combining the two approaches by characterizing the response properties of individual neurons in mice in vivo using genetically encoded calcium indicators (GECIs), followed by retrieval of the same neurons in brain slices for further analysis in vitro (e.g., circuit mapping). In this approach, a reference frame is provided by fluorescent-bead tracks and sparsely transduced neurons expressing a structural marker in order to re-identify the same neurons. The use of GECIs provides a substantial advancement over previous approaches by allowing for repeated in vivo imaging. This opens the possibility of directly correlating experience-dependent changes in neuronal activity and feature selectivity with changes in neuronal connectivity and physiology. This protocol requires expertise both in in vivo two-photon calcium imaging and in vitro electrophysiology. It takes 3 weeks or more to complete, depending on the time allotted for repeated in vivo imaging of neuronal activity.
Heavy metal cations permeate the TRPV6 epithelial cation channel.
Kovacs, Gergely; Danko, Tamas; Bergeron, Marc J; Balazs, Bernadett; Suzuki, Yoshiro; Zsembery, Akos; Hediger, Matthias A
2011-01-01
TRPV6 belongs to the vanilloid family of the transient receptor potential channel (TRP) superfamily. This calcium-selective channel is highly expressed in the duodenum and the placenta, being responsible for calcium absorption in the body and fetus. Previous observations have suggested that TRPV6 is not only permeable to calcium but also to other divalent cations in epithelial tissues. In this study, we tested whether TRPV6 is indeed also permeable to cations such as zinc and cadmium. We found that the basal intracellular calcium concentration was higher in HEK293 cells transfected with hTRPV6 than in non-transfected cells, and that this difference almost disappeared in nominally calcium-free solution. Live cell imaging experiments with Fura-2 and NewPort Green DCF showed that overexpression of human TRPV6 increased the permeability for Ca(2+), Ba(2+), Sr(2+), Mn(2+), Zn(2+), Cd(2+), and interestingly also for La(3+) and Gd(3+). These results were confirmed using the patch clamp technique. (45)Ca uptake experiments showed that cadmium, lanthanum and gadolinium were also highly efficient inhibitors of TRPV6-mediated calcium influx at higher micromolar concentrations. Our results suggest that TRPV6 is not only involved in calcium transport but also in the transport of other divalent cations, including heavy metal ions, which may have toxicological implications. Copyright © 2010 Elsevier Ltd. All rights reserved.
A method to investigate the diffusion properties of nuclear calcium.
Queisser, Gillian; Wittum, Gabriel
2011-10-01
Modeling biophysical processes in general requires knowledge about underlying biological parameters. The quality of simulation results is strongly influenced by the accuracy of these parameters, hence the identification of parameter values that the model includes is a major part of simulating biophysical processes. In many cases, secondary data can be gathered by experimental setups, which are exploitable by mathematical inverse modeling techniques. Here we describe a method for parameter identification of diffusion properties of calcium in the nuclei of rat hippocampal neurons. The method is based on a Gauss-Newton method for solving a least-squares minimization problem and was formulated in such a way that it is ideally implementable in the simulation platform uG. Making use of independently published space- and time-dependent calcium imaging data, generated from laser-assisted calcium uncaging experiments, here we could identify the diffusion properties of nuclear calcium and were able to validate a previously published model that describes nuclear calcium dynamics as a diffusion process.
Akerboom, Jasper; Rivera, Jonathan D Vélez; Guilbe, María M Rodríguez; Malavé, Elisa C Alfaro; Hernandez, Hector H; Tian, Lin; Hires, S Andrew; Marvin, Jonathan S; Looger, Loren L; Schreiter, Eric R
2009-03-06
The genetically encoded calcium indicator GCaMP2 shows promise for neural network activity imaging, but is currently limited by low signal-to-noise ratio. We describe x-ray crystal structures as well as solution biophysical and spectroscopic characterization of GCaMP2 in the calcium-free dark state, and in two calcium-bound bright states: a monomeric form that dominates at intracellular concentrations observed during imaging experiments and an unexpected domain-swapped dimer with decreased fluorescence. This series of structures provides insight into the mechanism of Ca2+-induced fluorescence change. Upon calcium binding, the calmodulin (CaM) domain wraps around the M13 peptide, creating a new domain interface between CaM and the circularly permuted enhanced green fluorescent protein domain. Residues from CaM alter the chemical environment of the circularly permuted enhanced green fluorescent protein chromophore and, together with flexible inter-domain linkers, block solvent access to the chromophore. Guided by the crystal structures, we engineered a series of GCaMP2 point mutants to probe the mechanism of GCaMP2 function and characterized one mutant with significantly improved signal-to-noise. The mutation is located at a domain interface and its effect on sensor function could not have been predicted in the absence of structural data.
Perry, Jacob L.; Ramachandran, Nina K.; Utama, Budi; Hyser, Joseph M.
2015-01-01
Calcium signaling is a ubiquitous and versatile process involved in nearly every cellular process, and exploitation of host calcium signals is a common strategy used by viruses to facilitate replication and cause disease. Small molecule fluorescent calcium dyes have been used by many to examine changes in host cell calcium signaling and calcium channel activation during virus infections, but disadvantages of these dyes, including poor loading and poor long-term retention, complicate analysis of calcium imaging in virus-infected cells due to changes in cell physiology and membrane integrity. The recent expansion of genetically-encoded calcium indicators (GECIs), including blue and red-shifted color variants and variants with calcium affinities appropriate for calcium storage organelles like the endoplasmic reticulum (ER), make the use of GECIs an attractive alternative for calcium imaging in the context of virus infections. Here we describe the development and testing of cell lines stably expressing both green cytoplasmic (GCaMP5G and GCaMP6s) and red ER-targeted (RCEPIAer) GECIs. Using three viruses (rotavirus, poliovirus and respiratory syncytial virus) previously shown to disrupt host calcium homeostasis, we show the GECI cell lines can be used to detect simultaneous cytoplasmic and ER calcium signals. Further, we demonstrate the GECI expression has sufficient stability to enable long-term confocal imaging of both cytoplasmic and ER calcium during the course of virus infections. PMID:26344758
FISSA: A neuropil decontamination toolbox for calcium imaging signals.
Keemink, Sander W; Lowe, Scott C; Pakan, Janelle M P; Dylda, Evelyn; van Rossum, Mark C W; Rochefort, Nathalie L
2018-02-22
In vivo calcium imaging has become a method of choice to image neuronal population activity throughout the nervous system. These experiments generate large sequences of images. Their analysis is computationally intensive and typically involves motion correction, image segmentation into regions of interest (ROIs), and extraction of fluorescence traces from each ROI. Out of focus fluorescence from surrounding neuropil and other cells can strongly contaminate the signal assigned to a given ROI. In this study, we introduce the FISSA toolbox (Fast Image Signal Separation Analysis) for neuropil decontamination. Given pre-defined ROIs, the FISSA toolbox automatically extracts the surrounding local neuropil and performs blind-source separation with non-negative matrix factorization. Using both simulated and in vivo data, we show that this toolbox performs similarly or better than existing published methods. FISSA requires only little RAM, and allows for fast processing of large datasets even on a standard laptop. The FISSA toolbox is available in Python, with an option for MATLAB format outputs, and can easily be integrated into existing workflows. It is available from Github and the standard Python repositories.
Muir, Dylan R; Kampa, Björn M
2014-01-01
Two-photon calcium imaging of neuronal responses is an increasingly accessible technology for probing population responses in cortex at single cell resolution, and with reasonable and improving temporal resolution. However, analysis of two-photon data is usually performed using ad-hoc solutions. To date, no publicly available software exists for straightforward analysis of stimulus-triggered two-photon imaging experiments. In addition, the increasing data rates of two-photon acquisition systems imply increasing cost of computing hardware required for in-memory analysis. Here we present a Matlab toolbox, FocusStack, for simple and efficient analysis of two-photon calcium imaging stacks on consumer-level hardware, with minimal memory footprint. We also present a Matlab toolbox, StimServer, for generation and sequencing of visual stimuli, designed to be triggered over a network link from a two-photon acquisition system. FocusStack is compatible out of the box with several existing two-photon acquisition systems, and is simple to adapt to arbitrary binary file formats. Analysis tools such as stack alignment for movement correction, automated cell detection and peri-stimulus time histograms are already provided, and further tools can be easily incorporated. Both packages are available as publicly-accessible source-code repositories.
Muir, Dylan R.; Kampa, Björn M.
2015-01-01
Two-photon calcium imaging of neuronal responses is an increasingly accessible technology for probing population responses in cortex at single cell resolution, and with reasonable and improving temporal resolution. However, analysis of two-photon data is usually performed using ad-hoc solutions. To date, no publicly available software exists for straightforward analysis of stimulus-triggered two-photon imaging experiments. In addition, the increasing data rates of two-photon acquisition systems imply increasing cost of computing hardware required for in-memory analysis. Here we present a Matlab toolbox, FocusStack, for simple and efficient analysis of two-photon calcium imaging stacks on consumer-level hardware, with minimal memory footprint. We also present a Matlab toolbox, StimServer, for generation and sequencing of visual stimuli, designed to be triggered over a network link from a two-photon acquisition system. FocusStack is compatible out of the box with several existing two-photon acquisition systems, and is simple to adapt to arbitrary binary file formats. Analysis tools such as stack alignment for movement correction, automated cell detection and peri-stimulus time histograms are already provided, and further tools can be easily incorporated. Both packages are available as publicly-accessible source-code repositories1. PMID:25653614
Breast Microcalcification Detection Using Super-Resolution Ultrasound Image Reconstruction
2010-09-01
microcalcifications often occur as one of two types: calcium oxalate dihydrate or calcium hydroxyapatite. Their sizes range approximately from 0.1 mm to 0.5 mm...super-resolution imaging, ultrasound imaging, wave equation. 1. INTRODUCTION Microcalcifications, tiny specks of mineral deposits ( calcium ), are the
Grases, Felix; Rodriguez, Adrian; Costa-Bauza, Antonia
2015-09-01
The main aim of the current study was to evaluate the effectiveness of mixtures of magnesium, citrate and phytate as calcium oxalate crystallization inhibitors. A turbidimetric assay in synthetic urine was performed to obtain induction times for calcium oxalate crystallization in the absence and presence of different mixtures of inhibitors. The morphology of calcium oxalate crystals in the absence or presence of inhibitors and mixtures of the inhibitors was evaluated in 2 crystallization experiments at low and high calcium oxalate supersaturation. The crystals formed were examined using scanning electron microscopy. Examination of crystallization induction times revealed clear inhibitory effects of magnesium, citrate and phytate on calcium oxalate crystallization, supporting usefulness in the treatment and prevention of calcium oxalate nephrolithiasis. Significant synergistic effects between magnesium and phytate were observed. Scanning electron microscopy images revealed that phytate is a powerful crystal growth inhibitor of calcium oxalate, totally preventing the formation of trihydrate and monohydrate. In addition to crystallization inhibition capacity, citrate and magnesium avoided calcium oxalate crystallization by decreasing its supersaturation. The synergistic effect between magnesium and phytate on calcium oxalate crystallization suggests that a combination of these 2 compounds may be highly useful as antilithiasis therapy. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Calcium-based biomaterials for diagnosis, treatment, and theranostics.
Qi, Chao; Lin, Jing; Fu, Lian-Hua; Huang, Peng
2018-01-22
Calcium-based (CaXs) biomaterials including calcium phosphates, calcium carbonates, calcium silicate and calcium fluoride have been widely utilized in the biomedical field owing to their excellent biocompatibility and biodegradability. In recent years, CaXs biomaterials have been strategically integrated with imaging contrast agents and therapeutic agents for various molecular imaging modalities including fluorescence imaging, magnetic resonance imaging, ultrasound imaging or multimodal imaging, as well as for various therapeutic approaches including chemotherapy, gene therapy, hyperthermia therapy, photodynamic therapy, radiation therapy, or combination therapy, even imaging-guided therapy. Compared with other inorganic biomaterials such as silica-, carbon-, and gold-based biomaterials, CaXs biomaterials can dissolve into nontoxic ions and participate in the normal metabolism of organisms. Thus, they offer safer clinical solutions for disease theranostics. This review focuses on the state-of-the-art progress in CaXs biomaterials, which covers from their categories, characteristics and preparation methods to their bioapplications including diagnosis, treatment, and theranostics. Moreover, the current trends and key problems as well as the future prospects and challenges of CaXs biomaterials are also discussed at the end.
Subcellular targeting of nine calcium-dependent protein kinase isoforms from Arabidopsis
NASA Technical Reports Server (NTRS)
Dammann, Christian; Ichida, Audrey; Hong, Bimei; Romanowsky, Shawn M.; Hrabak, Estelle M.; Harmon, Alice C.; Pickard, Barbara G.; Harper, Jeffrey F.; Evans, M. L. (Principal Investigator)
2003-01-01
Calcium-dependent protein kinases (CDPKs) are specific to plants and some protists. Their activation by calcium makes them important switches for the transduction of intracellular calcium signals. Here, we identify the subcellular targeting potentials for nine CDPK isoforms from Arabidopsis, as determined by expression of green fluorescent protein (GFP) fusions in transgenic plants. Subcellular locations were determined by fluorescence microscopy in cells near the root tip. Isoforms AtCPK3-GFP and AtCPK4-GFP showed a nuclear and cytosolic distribution similar to that of free GFP. Membrane fractionation experiments confirmed that these isoforms were primarily soluble. A membrane association was observed for AtCPKs 1, 7, 8, 9, 16, 21, and 28, based on imaging and membrane fractionation experiments. This correlates with the presence of potential N-terminal acylation sites, consistent with acylation as an important factor in membrane association. All but one of the membrane-associated isoforms targeted exclusively to the plasma membrane. The exception was AtCPK1-GFP, which targeted to peroxisomes, as determined by covisualization with a peroxisome marker. Peroxisome targeting of AtCPK1-GFP was disrupted by a deletion of two potential N-terminal acylation sites. The observation of a peroxisome-located CDPK suggests a mechanism for calcium regulation of peroxisomal functions involved in oxidative stress and lipid metabolism.
Imaging extracellular calcium in endolymph
NASA Astrophysics Data System (ADS)
Strimbu, C. Elliott; Fridberger, Anders
2018-05-01
Hair cell mechanoelectrical transduction and adaptation are believed to be regulated by extracellular calcium. However, the majority of experiments addressing calcium's role have been performed on reduced preparations in conditions that do not mimic those present in vivo. We used confocal microscopy and a low affinity (kd ˜11 µM) ratiometric fluorescent indicator to measure the extracellular calcium concentration in scala media in an in vitro preparation of the guinea pig cochlea. Microelectrodes were used to measure the cochlear microphonic potential during acoustic stimulation. The mean calcium concentration is significantly higher in the tectorial membrane (TM) than the surrounding endolymph, suggesting that the membrane acts as a calcium sink. We also observe calcium hot spots along the underside of the TM, near the outer hair cell bundles and near Hensens stripe close to the inner hair cell bundle. This suggests that the local calcium concentration near the hair bundles exceeds 100 µM, significantly higher than the bulk endolymph. These results were corroborated with fluorescence correlation spectroscopy using a second calcium sensitive dye, Oregon Green 488-BAPTA. Following a brief exposure to loud sound, TM calcium drops dramatically and shows recovery on a similar timescale as the microphonic potential. Our results suggest that the extracellular calcium concentration near the hair bundles is much higher than previously believed and may also serve as a partial control parameter for temporary threshold shifts.
Fluorescence lifetime imaging of calcium flux in neurons in response to pulsed infrared light
NASA Astrophysics Data System (ADS)
Walsh, Alex J.; Sedelnikova, Anna; Tolstykh, Gleb P.; Ibey, Bennett L.; Beier, Hope T.
2017-02-01
Pulsed infrared light can excite action potentials in neurons; yet, the fundamental mechanism underlying this phenomenon is unknown. Previous work has observed a rise in intracellular calcium concentration following infrared exposure, but the source of the calcium and mechanism of release is unknown. Here, we used fluorescence lifetime imaging of Oregon Green BAPTA-1 to study intracellular calcium dynamics in primary rat hippocampal neurons in response to infrared light exposure. The fluorescence lifetime of Oregon Green BAPTA-1 is longer when bound to calcium, and allows robust measurement of intracellular free calcium concentrations. First, a fluorescence lifetime calcium calibration curve for Oregon Green BAPTA-1 was determined in solutions. The normalized amplitude of the short and long lifetimes was calibrated to calcium concentration. Then, neurons were incubated in Oregon Green BAPTA-1 and exposed to pulses of infrared light (0-1 J/cm2; 0-5 ms; 1869 nm). Fluorescence lifetime images were acquired prior to, during, and after the infrared exposure. Fluorescence lifetime images, 64x64 pixels, were acquired at 12 or 24 ms for frame rates of 83 and 42 Hz, respectively. Accurate α1 approximations were achieved in images with low photon counts by computing an α1 index value from the relative probability of the observed decay events. Results show infrared light exposure increases intracellular calcium in neurons. Altogether, this study demonstrates accurate fluorescence lifetime component analysis from low-photon count data for improved imaging speed.
2011-01-01
Ureolytically-driven calcium carbonate precipitation is the basis for a promising in-situ remediation method for sequestration of divalent radionuclide and trace metal ions. It has also been proposed for use in geotechnical engineering for soil strengthening applications. Monitoring the occurrence, spatial distribution, and temporal evolution of calcium carbonate precipitation in the subsurface is critical for evaluating the performance of this technology and for developing the predictive models needed for engineering application. In this study, we conducted laboratory column experiments using natural sediment and groundwater to evaluate the utility of geophysical (complex resistivity and seismic) sensing methods, dynamic synchrotron x-ray computed tomography (micro-CT), and reactive transport modeling for tracking ureolytically-driven calcium carbonate precipitation processes under site relevant conditions. Reactive transport modeling with TOUGHREACT successfully simulated the changes of the major chemical components during urea hydrolysis. Even at the relatively low level of urea hydrolysis observed in the experiments, the simulations predicted an enhanced calcium carbonate precipitation rate that was 3-4 times greater than the baseline level. Reactive transport modeling results, geophysical monitoring data and micro-CT imaging correlated well with reaction processes validated by geochemical data. In particular, increases in ionic strength of the pore fluid during urea hydrolysis predicted by geochemical modeling were successfully captured by electrical conductivity measurements and confirmed by geochemical data. The low level of urea hydrolysis and calcium carbonate precipitation suggested by the model and geochemical data was corroborated by minor changes in seismic P-wave velocity measurements and micro-CT imaging; the latter provided direct evidence of sparsely distributed calcium carbonate precipitation. Ion exchange processes promoted through NH4+ production during urea hydrolysis were incorporated in the model and captured critical changes in the major metal species. The electrical phase increases were potentially due to ion exchange processes that modified charge structure at mineral/water interfaces. Our study revealed the potential of geophysical monitoring for geochemical changes during urea hydrolysis and the advantages of combining multiple approaches to understand complex biogeochemical processes in the subsurface. PMID:21943229
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akerboom, Jasper; Velez Rivera, Jonathan D.; Rodriguez Guilbe, María M.
The genetically encoded calcium indicator GCaMP2 shows promise for neural network activity imaging, but is currently limited by low signal-to-noise ratio. We describe x-ray crystal structures as well as solution biophysical and spectroscopic characterization of GCaMP2 in the calcium-free dark state, and in two calcium-bound bright states: a monomeric form that dominates at intracellular concentrations observed during imaging experiments and an unexpected domain-swapped dimer with decreased fluorescence. This series of structures provides insight into the mechanism of Ca{sup 2+}-induced fluorescence change. Upon calcium binding, the calmodulin (CaM) domain wraps around the M13 peptide, creating a new domain interface between CaMmore » and the circularly permuted enhanced green fluorescent protein domain. Residues from CaM alter the chemical environment of the circularly permuted enhanced green fluorescent protein chromophore and, together with flexible inter-domain linkers, block solvent access to the chromophore. Guided by the crystal structures, we engineered a series of GCaMP2 point mutants to probe the mechanism of GCaMP2 function and characterized one mutant with significantly improved signal-to-noise. The mutation is located at a domain interface and its effect on sensor function could not have been predicted in the absence of structural data.« less
Multiphoton Intravital Calcium Imaging.
Cheetham, Claire E J
2018-06-26
Multiphoton intravital calcium imaging is a powerful technique that enables high-resolution longitudinal monitoring of cellular and subcellular activity hundreds of microns deep in the living organism. This unit addresses the application of 2-photon microscopy to imaging of genetically encoded calcium indicators (GECIs) in the mouse brain. The protocols in this unit enable real-time intravital imaging of intracellular calcium concentration simultaneously in hundreds of neurons, or at the resolution of single synapses, as mice respond to sensory stimuli or perform behavioral tasks. Protocols are presented for implantation of a cranial imaging window to provide optical access to the brain and for 2-photon image acquisition. Protocols for implantation of both open skull and thinned skull windows for single or multi-session imaging are described. © 2018 by John Wiley & Sons, Inc. © 2018 John Wiley & Sons, Inc.
NASA Astrophysics Data System (ADS)
Chakrabarti, Priyadarshini; Rana, Santanu; Bandopadhyay, Sreejata; Naik, Dattatraya G.; Sarkar, Sagartirtha; Basu, Parthiba
2015-07-01
Little information is available regarding the adverse effects of pesticides on natural honey bee populations. This study highlights the detrimental effects of pesticides on honey bee olfaction through behavioural studies, scanning electron microscopic imaging of antennal sensillae and confocal microscopic studies of honey bee brains for calcium ions on Apis cerana, a native Indian honey bee species. There was a significant decrease in proboscis extension response and biologically active free calcium ions and adverse changes in antennal sensillae in pesticide exposed field honey bee populations compared to morphometrically similar honey bees sampled from low/no pesticide sites. Controlled laboratory experiments corroborated these findings. This study reports for the first time the changes in antennal sensillae, expression of Calpain 1(an important calcium binding protein) and resting state free calcium in brains of honey bees exposed to pesticide stress.
Chakrabarti, Priyadarshini; Rana, Santanu; Bandopadhyay, Sreejata; Naik, Dattatraya G.; Sarkar, Sagartirtha; Basu, Parthiba
2015-01-01
Little information is available regarding the adverse effects of pesticides on natural honey bee populations. This study highlights the detrimental effects of pesticides on honey bee olfaction through behavioural studies, scanning electron microscopic imaging of antennal sensillae and confocal microscopic studies of honey bee brains for calcium ions on Apis cerana, a native Indian honey bee species. There was a significant decrease in proboscis extension response and biologically active free calcium ions and adverse changes in antennal sensillae in pesticide exposed field honey bee populations compared to morphometrically similar honey bees sampled from low/no pesticide sites. Controlled laboratory experiments corroborated these findings. This study reports for the first time the changes in antennal sensillae, expression of Calpain 1(an important calcium binding protein) and resting state free calcium in brains of honey bees exposed to pesticide stress. PMID:26212690
An image-domain, contrast material extraction method for Dual-Energy CT
Lambert, Jack W.; Sun, Yuxin; Gould, Robert G.; Ohliger, Michael A.; Li, Zhixi; Yeh, Benjamin M.
2016-01-01
Objectives Conventional material decomposition techniques for dual-energy CT (DECT) assume mass or volume conservation, where the CT number of each voxel is fully assigned to predefined materials. We present an image-domain contrast material extraction process (CMEP) method that preferentially extracts contrast-producing materials while leaving the remaining image intact. Materials and Methods Image processing freeware (Fiji) is used to perform consecutive arithmetic operations on a dual-energy ratio map to generate masks, which are then applied to the original images to generate material-specific images. First, a low-energy image is divided by a high-energy image to generate a ratio map. The ratio map is then split into material-specific masks. Ratio intervals known to correspond to particular materials (e.g. iodine, calcium) are assigned a multiplier of 1, while ratio values in between these intervals are assigned linear gradients from 0 to 1. The masks are then multiplied by an original CT image to produce material-specific images. The method was tested quantitatively at Dual-Source (DSCT) and Rapid kVp-Switching CT (RSCT) with phantoms using pure and mixed formulations of tungsten, calcium and iodine. Errors were evaluated by comparing the known material concentrations with those derived from the CMEP material-specific images. Further qualitative evaluation was performed in vivo at RSCT with a rabbit model using identical CMEP parameters to the phantom. Orally administered tungsten, vascularly administered iodine, and skeletal calcium were used as the three contrast materials. Results All five material combinations; tungsten, iodine and calcium, and mixtures of tungsten-calcium and iodine-calcium, showed distinct dual-energy ratios, largely independent of material concentration at both DSCT and RSCT. The CMEP was successful in both phantoms and in vivo. For pure contrast materials in the phantom, the maximum error between the known and CMEP-derived material concentrations was 0.9 mg/mL, 24.9 mg/mL and 0.4 mg/mL for iodine, calcium and tungsten respectively. Mixtures of iodine and calcium showed the highest discrepancies, which reflected the sensitivity of iodine to the image-type chosen for the extraction of the final material-specific image. The rabbit model was able to clearly show the three extracted material phases, vascular iodine, oral tungsten and skeletal calcium. Some skeletal calcium was misassigned to the extracted iodine image, however this did not impede the depiction of the vasculature. Conclusions The CMEP is a straightforward, image domain approach to extract material signal at dual-energy CT. It has particular value for separation of experimental high-Z contrast elements from conventional iodine contrast or calcium, even when the exact attenuation coefficient profiles of desired contrast materials may be unknown. The CMEP is readily implemented in the image-domain within freeware, and can be adapted for use with images from multiple vendors. PMID:27875338
King, Justin R; Ullah, Aman; Bak, Ellen; Jafri, M Saleet; Kabbani, Nadine
2018-06-01
The pharmacological targeting of the α 7 nicotinic acetylcholine receptor ( α 7) is a promising strategy in the development of new drugs for neurologic diseases. Because α 7 receptors regulate cellular calcium, we investigated how the prototypical type II-positive allosteric modulator PNU120596 affects α 7-mediated calcium signaling. Live imaging experiments show that PNU120596 augments ryanodine receptor-driven calcium-induced calcium release (CICR), inositol-induced calcium release (IICR), and phospholipase C activation by the α 7 receptor. Both influx of calcium through the α 7 nicotinic acetylcholine receptor (nAChR) channel as well as the binding of intracellular G proteins were involved in the effect of PNU120596 on intracellular calcium. This is evidenced by the findings that chelation of extracellular calcium, expression of α 7 D44A or α 7 345-348A mutant subunits, or blockade of calcium store release compromised the ability of PNU120596 to increase intracellular calcium transients generated by α 7 ligand activation. Spatiotemporal stochastic modeling of calcium transient responses corroborates these results and indicates that α 7 receptor activation enables calcium microdomains locally and to lesser extent in the distant cytosol. From the model, allosteric modulation of the receptor activates CICR locally via ryanodine receptors and augments IICR through enhanced calcium influx due to prolonged α 7 nAChR opening. These findings provide a new mechanistic framework for understanding the effect of α 7 receptor allosteric modulation on both local and global calcium dynamics. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.
Zhou, Bo; Wen, Di; Nye, Katelyn; Gilkeson, Robert C; Eck, Brendan; Jordan, David; Wilson, David L
2017-10-01
We have demonstrated the ability to identify coronary calcium, a reliable biomarker of coronary artery disease, using nongated, 2-shot, dual energy (DE) chest x-ray imaging. Here we will use digital simulations, backed up by measurements, to characterize DE calcium signals and the role of potential confounds such as beam hardening, x-ray scatter, cardiac motion, and pulmonary artery pulsation. For the DE calcium signal, we will consider quantification, as compared to CT calcium score, and visualization. We created stylized and anatomical digital 3D phantoms including heart, lung, coronary calcium, spine, ribs, pulmonary artery, and adipose. We simulated high and low kVp x-ray acquisitions with x-ray spectra, energy dependent attenuation, scatter, ideal detector, and automatic exposure control (AEC). Phantoms allowed us to vary adipose thickness, cardiac motion, etc. We used specialized dual energy coronary calcium (DECC) processing that includes corrections for scatter and beam hardening. Beam hardening over a wide range of adipose thickness (0-30 cm) reduced the change in intensity of a coronary artery calcification (ΔI CAC ) by < 3% in DECC images. Scatter correction errors of ±50% affected the calcium signal (ΔI CAC ) in DECC images ±9%. If a simulated pulmonary artery fills with blood between exposures, it can give rise to a residual signal in DECC images, explaining pulmonary artery visibility in some clinical images. Residual misregistration can be mostly compensated by integrating signals in an enlarged region encompassing registration artifacts. DECC calcium score compared favorably to CT mass and volume scores over a number of phantom perturbations. Simulations indicate that proper DECC processing can faithfully recover coronary calcium signals. Beam hardening, errors in scatter estimation, cardiac motion, calcium residual misregistration etc., are all manageable. Simulations are valuable as we continue to optimize DE coronary calcium image processing and quantitative analysis. © 2017 American Association of Physicists in Medicine.
Fast Calcium Imaging with Optical Sectioning via HiLo Microscopy.
Lauterbach, Marcel A; Ronzitti, Emiliano; Sternberg, Jenna R; Wyart, Claire; Emiliani, Valentina
2015-01-01
Imaging intracellular calcium concentration via reporters that change their fluorescence properties upon binding of calcium, referred to as calcium imaging, has revolutionized our way to probe neuronal activity non-invasively. To reach neurons densely located deep in the tissue, optical sectioning at high rate of acquisition is necessary but difficult to achieve in a cost effective manner. Here we implement an accessible solution relying on HiLo microscopy to provide robust optical sectioning with a high frame rate in vivo. We show that large calcium signals can be recorded from dense neuronal populations at high acquisition rates. We quantify the optical sectioning capabilities and demonstrate the benefits of HiLo microscopy compared to wide-field microscopy for calcium imaging and 3D reconstruction. We apply HiLo microscopy to functional calcium imaging at 100 frames per second deep in biological tissues. This approach enables us to discriminate neuronal activity of motor neurons from different depths in the spinal cord of zebrafish embryos. We observe distinct time courses of calcium signals in somata and axons. We show that our method enables to remove large fluctuations of the background fluorescence. All together our setup can be implemented to provide efficient optical sectioning in vivo at low cost on a wide range of existing microscopes.
Fast Calcium Imaging with Optical Sectioning via HiLo Microscopy
Sternberg, Jenna R.; Wyart, Claire; Emiliani, Valentina
2015-01-01
Imaging intracellular calcium concentration via reporters that change their fluorescence properties upon binding of calcium, referred to as calcium imaging, has revolutionized our way to probe neuronal activity non-invasively. To reach neurons densely located deep in the tissue, optical sectioning at high rate of acquisition is necessary but difficult to achieve in a cost effective manner. Here we implement an accessible solution relying on HiLo microscopy to provide robust optical sectioning with a high frame rate in vivo. We show that large calcium signals can be recorded from dense neuronal populations at high acquisition rates. We quantify the optical sectioning capabilities and demonstrate the benefits of HiLo microscopy compared to wide-field microscopy for calcium imaging and 3D reconstruction. We apply HiLo microscopy to functional calcium imaging at 100 frames per second deep in biological tissues. This approach enables us to discriminate neuronal activity of motor neurons from different depths in the spinal cord of zebrafish embryos. We observe distinct time courses of calcium signals in somata and axons. We show that our method enables to remove large fluctuations of the background fluorescence. All together our setup can be implemented to provide efficient optical sectioning in vivo at low cost on a wide range of existing microscopes. PMID:26625116
Cadetti, Lucia; Bryson, Eric J.; Ciccone, Cory A.; Rabl, Katalin; Thoreson, Wallace B.
2008-01-01
We examined the contribution of calcium-induced calcium release (CICR) to synaptic transmission from rod photoreceptor terminals. Whole-cell recording and confocal calcium imaging experiments were conducted on rods with intact synaptic terminals in a retinal slice preparation from salamander. Low concentrations of ryanodine stimulated calcium increases in rod terminals, consistent with the presence of ryanodine receptors. Application of strong depolarizing steps (−70 to −10 mV) exceeding 200 ms or longer in duration evoked a wave of calcium that spread across the synaptic terminals of voltage-clamped rods. This secondary calcium increase was blocked by high concentrations of ryanodine, indicating it was due to CICR. Ryanodine (50 μM) had no significant effect on rod calcium current (Ica) although it slightly diminished rod light-evoked voltage responses. Bath application of 50 μM ryanodine strongly inhibited light-evoked currents in horizontal cells. Whether applied extracellularly or delivered into the rod cell through the patch pipette, ryanodine (50 μM) also inhibited excitatory post-synaptic currents (EPSCs) evoked in horizontal cells by depolarizing steps applied to rods. Ryanodine caused a preferential reduction in the later portions of EPSCs evoked by depolarizing steps of 200 ms or longer. These results indicate that CICR enhances calcium increases in rod terminals evoked by sustained depolarization, which in turn acts to boost synaptic exocytosis from rods. PMID:16819987
Waadt, Rainer; Krebs, Melanie; Kudla, Jörg; Schumacher, Karin
2017-10-01
Calcium signals occur in specific spatio-temporal patterns in response to various stimuli and are coordinated with, for example, hormonal signals, for physiological and developmental adaptations. Quantification of calcium together with other signalling molecules is required for correlative analyses and to decipher downstream calcium-decoding mechanisms. Simultaneous in vivo imaging of calcium and abscisic acid has been performed here to investigate the interdependence of the respective signalling processes in Arabidopsis thaliana roots. Advanced ratiometric genetically encoded calcium indicators have been generated and in vivo calcium calibration protocols were established to determine absolute calcium concentration changes in response to auxin and ATP. In roots, abscisic acid induced long-term basal calcium concentration increases, while auxin triggered rapid signals in the elongation zone. The advanced ratiometric calcium indicator R-GECO1-mTurquoise exhibited an increased calcium signal resolution compared to commonly used Förster resonance energy transfer-based indicators. Quantitative calcium measurements in Arabidopsis root tips using R-GECO1-mTurquoise revealed detailed maps of absolute calcium concentration changes in response to auxin and ATP. Calcium calibration protocols using R-GECO1-mTurquoise enabled high-resolution quantitative imaging of resting cytosolic calcium concentrations and their dynamic changes that revealed distinct hormonal and ATP responses in roots. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Petrou, Terry; Olsen, Hervør L.; Thrasivoulou, Christopher; Masters, John R.; Ashmore, Jonathan F.
2017-01-01
Free intracellular calcium ([Ca2+]i), in addition to being an important second messenger, is a key regulator of many cellular processes including cell membrane potential, proliferation, and apoptosis. In many cases, the mobilization of [Ca2+]i is controlled by intracellular store activation and calcium influx. We have investigated the effect of several ion channel modulators, which have been used to treat a range of human diseases, on [Ca2+]i release, by ratiometric calcium imaging. We show that six such modulators [amiodarone (Ami), dofetilide, furosemide (Fur), minoxidil (Min), loxapine (Lox), and Nicorandil] initiate release of [Ca2+]i in prostate and breast cancer cell lines, PC3 and MCF7, respectively. Whole-cell currents in PC3 cells were inhibited by the compounds tested in patch-clamp experiments in a concentration-dependent manner. In all cases [Ca2+]i was increased by modulator concentrations comparable to those used clinically. The increase in [Ca2+]i in response to Ami, Fur, Lox, and Min was reduced significantly (P < 0.01) when the external calcium was reduced to nM concentration by chelation with EGTA. The data suggest that many ion channel regulators mobilize [Ca2+]i. We suggest a mechanism whereby calcium-induced calcium release is implicated; such a mechanism may be important for understanding the action of these compounds. PMID:27980039
Resolution Properties of a Calcium Tungstate (CaWO4) Screen Coupled to a CMOS Imaging Detector
NASA Astrophysics Data System (ADS)
Koukou, Vaia; Martini, Niki; Valais, Ioannis; Bakas, Athanasios; Kalyvas, Nektarios; Lavdas, Eleftherios; Fountos, George; Kandarakis, Ioannis; Michail, Christos
2017-11-01
The aim of the current work was to assess the resolution properties of a calcium tungstate (CaWO4) screen (screen coating thickness: 50.09 mg/cm2, actual thickness: 167.2 μm) coupled to a high resolution complementary metal oxide semiconductor (CMOS) digital imaging sensor. A 2.7x3.6 cm2 CaWO4 sample was extracted from an Agfa Curix universal screen and was coupled directly with the active area of the active pixel sensor (APS) CMOS sensor. Experiments were performed following the new IEC 62220-1-1:2015 International Standard, using an RQA-5 beam quality. Resolution was assessed in terms of the Modulation Transfer Function (MTF), using the slanted-edge method. The CaWO4/CMOS detector configuration was found with linear response, in the exposure range under investigation. The final MTF was obtained through averaging the oversampled edge spread function (ESF), using a custom-made software developed by our team, according to the IEC 62220-1-1:2015. Considering the renewed interest in calcium tungstate for various applications, along with the resolution results of this work, CaWO4 could be also considered for use in X-ray imaging devices such as charged-coupled devices (CCD) and CMOS.
Candeo, Alessia; Doccula, Fabrizio G; Valentini, Gianluca; Bassi, Andrea; Costa, Alex
2017-07-01
Calcium oscillations play a role in the regulation of the development of tip-growing plant cells. Using optical microscopy, calcium oscillations have been observed in a few systems (e.g. pollen tubes, fungal hyphae and algal rhizoids). High-resolution, non-phototoxic and rapid imaging methods are required to study the calcium oscillation in root hairs. We show that light sheet fluorescence microscopy is optimal to image growing root hairs of Arabidopsis thaliana and to follow their oscillatory tip-focused calcium gradient. We describe a protocol for performing live imaging of root hairs in seedlings expressing the cytosol-localized ratiometric calcium indicator Yellow Cameleon 3.6. Using this protocol, we measured the calcium gradient in a large number of root hairs. We characterized their calcium oscillations and correlated them with the rate of hair growth. The method was then used to screen the effect of auxin on the properties of the growing root hairs. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.
Calcium Imaging of AM Dyes Following Prolonged Incubation in Acute Neuronal Tissue
Morley, John W.; Tapson, Jonathan; Breen, Paul P.; van Schaik, André
2016-01-01
Calcium-imaging is a sensitive method for monitoring calcium dynamics during neuronal activity. As intracellular calcium concentration is correlated to physiological and pathophysiological activity of neurons, calcium imaging with fluorescent indicators is one of the most commonly used techniques in neuroscience today. Current methodologies for loading calcium dyes into the tissue require prolonged incubation time (45–150 min), in addition to dissection and recovery time after the slicing procedure. This prolonged incubation curtails experimental time, as tissue is typically maintained for 6–8 hours after slicing. Using a recently introduced recovery chamber that extends the viability of acute brain slices to more than 24 hours, we tested the effectiveness of calcium AM staining following long incubation periods post cell loading and its impact on the functional properties of calcium signals in acute brain slices and wholemount retinae. We show that calcium dyes remain within cells and are fully functional >24 hours after loading. Moreover, the calcium dynamics recorded >24 hrs were similar to the calcium signals recorded in fresh tissue that was incubated for <4 hrs. These results indicate that long exposure of calcium AM dyes to the intracellular cytoplasm did not alter the intracellular calcium concentration, the functional range of the dye or viability of the neurons. This data extends our previous work showing that a custom recovery chamber can extend the viability of neuronal tissue, and reliable data for both electrophysiology and imaging can be obtained >24hrs after dissection. These methods will not only extend experimental time for those using acute neuronal tissue, but also may reduce the number of animals required to complete experimental goals. PMID:27183102
Preparation and preclinical evaluation of 68Ga-DOTA-amlodipine for L-type calcium channel imaging.
Firuzyar, Tahereh; Jalilian, Amir Reza; Aboudzadeh, Mohammad Reza; Sadeghpour, Hossein; Shafiee-Ardestani, Mahdi; Khalaj, Ali
2016-01-01
In order to develop a possible tracer for L-type calcium channel imaging, we here report the development of a Ga-68 amlodipine derivative for possible PET imaging. Amlodipine DOTA conjugate was synthesized, characterized and went through calcium channel blockade, toxicity, apoptosis/necrosis tests. [ 68 Ga] DOTA AMLO was prepared at optimized conditions followed by stability tests, partition coefficient determination and biodistribution studies using tissue counting and co incidence imaging up to 2 h. [ 68 Ga] DOTA AMLO was prepared at pH 4-5 in 7-10 min at 95°C in high radiochemical purity (>99%, radio thin layer chromatography; specific activity: 1.9-2.1 GBq/mmol) and was stable up to 4 h with a log P of -0.94. Calcium channel rich tissues including myocardium, and tissues with smooth muscle cells such as colon, intestine, and lungs demonstrated significant uptake. Co incidence images supported the biodistribution data up to 2 h. The complex can be a candidate for further positron emission tomography imaging for L type calcium channels.
Non-rigid estimation of cell motion in calcium time-lapse images
NASA Astrophysics Data System (ADS)
Hachi, Siham; Lucumi Moreno, Edinson; Desmet, An-Sofie; Vanden Berghe, Pieter; Fleming, Ronan M. T.
2016-03-01
Calcium imaging is a widely used technique in neuroscience permitting the simultaneous monitoring of electro- physiological activity of hundreds of neurons at single cell resolution. Identification of neuronal activity requires rapid and reliable image analysis techniques, especially when neurons fire and move simultaneously over time. Traditionally, image segmentation is performed to extract individual neurons in the first frame of a calcium sequence. Thereafter, the mean intensity is calculated from the same region of interest in each frame to infer calcium signals. However, when cells move, deform and fire, this segmentation on its own generates artefacts and therefore biased neuronal activity. Therefore, there is a pressing need to develop a more efficient cell tracking technique. We hereby present a novel vision-based cell tracking scheme using a thin-plate spline deformable model. The thin-plate spline warping is based on control points detected using the Fast from Accelerated Segment Test descriptor and tracked using the Lucas-Kanade optical flow. Our method is able to track neurons in calcium time-series, even when there are large changes in intensity, such as during a firing event. The robustness and efficiency of the proposed approach is validated on real calcium time-lapse images of a neuronal population.
Pan-neuronal calcium imaging with cellular resolution in freely swimming zebrafish.
Kim, Dal Hyung; Kim, Jungsoo; Marques, João C; Grama, Abhinav; Hildebrand, David G C; Gu, Wenchao; Li, Jennifer M; Robson, Drew N
2017-11-01
Calcium imaging with cellular resolution typically requires an animal to be tethered under a microscope, which substantially restricts the range of behaviors that can be studied. To expand the behavioral repertoire amenable to imaging, we have developed a tracking microscope that enables whole-brain calcium imaging with cellular resolution in freely swimming larval zebrafish. This microscope uses infrared imaging to track a target animal in a behavior arena. On the basis of the predicted trajectory of the animal, we applied optimal control theory to a motorized stage system to cancel brain motion in three dimensions. We combined this motion-cancellation system with differential illumination focal filtering, a variant of HiLo microscopy, which enabled us to image the brain of a freely swimming larval zebrafish for more than an hour. This work expands the repertoire of natural behaviors that can be studied with cellular-resolution calcium imaging to potentially include spatial navigation, social behavior, feeding and reward.
Takahashi, Masahiro; Kimura, Fumiko; Umezawa, Tatsuya; Watanabe, Yusuke; Ogawa, Harumi
2016-01-01
Adaptive statistical iterative reconstruction (ASIR) has been used to reduce radiation dose in cardiac computed tomography. However, change of image parameters by ASIR as compared to filtered back projection (FBP) may influence quantification of coronary calcium. To investigate the influence of ASIR on calcium quantification in comparison to FBP. In 352 patients, CT images were reconstructed using FBP alone, FBP combined with ASIR 30%, 50%, 70%, and ASIR 100% based on the same raw data. Image noise, plaque density, Agatston scores and calcium volumes were compared among the techniques. Image noise, Agatston score, and calcium volume decreased significantly with ASIR compared to FBP (each P < 0.001). Use of ASIR reduced Agatston score by 10.5% to 31.0%. In calcified plaques both of patients and a phantom, ASIR decreased maximum CT values and calcified plaque size. In comparison to FBP, adaptive statistical iterative reconstruction (ASIR) may significantly decrease Agatston scores and calcium volumes. Copyright © 2016 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.
Calcium is one of the most important minerals for the growth, maintenance, and reproduction of the human ... body, are continually being re-formed and incorporate calcium into their structure. Calcium is essential for the ...
Preparation and preclinical evaluation of 68Ga-DOTA-amlodipine for L-type calcium channel imaging
Firuzyar, Tahereh; Jalilian, Amir Reza; Aboudzadeh, Mohammad Reza; Sadeghpour, Hossein; Shafiee-Ardestani, Mahdi; Khalaj, Ali
2016-01-01
Aim: In order to develop a possible tracer for L-type calcium channel imaging, we here report the development of a Ga-68 amlodipine derivative for possible PET imaging. Materials and Methods: Amlodipine DOTA conjugate was synthesized, characterized and went through calcium channel blockade, toxicity, apoptosis/necrosis tests. [68Ga] DOTA AMLO was prepared at optimized conditions followed by stability tests, partition coefficient determination and biodistribution studies using tissue counting and co incidence imaging up to 2 h. Results: [68Ga] DOTA AMLO was prepared at pH 4–5 in 7–10 min at 95°C in high radiochemical purity (>99%, radio thin layer chromatography; specific activity: 1.9–2.1 GBq/mmol) and was stable up to 4 h with a log P of −0.94. Calcium channel rich tissues including myocardium, and tissues with smooth muscle cells such as colon, intestine, and lungs demonstrated significant uptake. Co incidence images supported the biodistribution data up to 2 h. Conclusions: The complex can be a candidate for further positron emission tomography imaging for L type calcium channels. PMID:27833311
Generative Adversarial Networks for Noise Reduction in Low-Dose CT.
Wolterink, Jelmer M; Leiner, Tim; Viergever, Max A; Isgum, Ivana
2017-12-01
Noise is inherent to low-dose CT acquisition. We propose to train a convolutional neural network (CNN) jointly with an adversarial CNN to estimate routine-dose CT images from low-dose CT images and hence reduce noise. A generator CNN was trained to transform low-dose CT images into routine-dose CT images using voxelwise loss minimization. An adversarial discriminator CNN was simultaneously trained to distinguish the output of the generator from routine-dose CT images. The performance of this discriminator was used as an adversarial loss for the generator. Experiments were performed using CT images of an anthropomorphic phantom containing calcium inserts, as well as patient non-contrast-enhanced cardiac CT images. The phantom and patients were scanned at 20% and 100% routine clinical dose. Three training strategies were compared: the first used only voxelwise loss, the second combined voxelwise loss and adversarial loss, and the third used only adversarial loss. The results showed that training with only voxelwise loss resulted in the highest peak signal-to-noise ratio with respect to reference routine-dose images. However, CNNs trained with adversarial loss captured image statistics of routine-dose images better. Noise reduction improved quantification of low-density calcified inserts in phantom CT images and allowed coronary calcium scoring in low-dose patient CT images with high noise levels. Testing took less than 10 s per CT volume. CNN-based low-dose CT noise reduction in the image domain is feasible. Training with an adversarial network improves the CNNs ability to generate images with an appearance similar to that of reference routine-dose CT images.
Simultaneous Denoising, Deconvolution, and Demixing of Calcium Imaging Data
Pnevmatikakis, Eftychios A.; Soudry, Daniel; Gao, Yuanjun; Machado, Timothy A.; Merel, Josh; Pfau, David; Reardon, Thomas; Mu, Yu; Lacefield, Clay; Yang, Weijian; Ahrens, Misha; Bruno, Randy; Jessell, Thomas M.; Peterka, Darcy S.; Yuste, Rafael; Paninski, Liam
2016-01-01
SUMMARY We present a modular approach for analyzing calcium imaging recordings of large neuronal ensembles. Our goal is to simultaneously identify the locations of the neurons, demix spatially overlapping components, and denoise and deconvolve the spiking activity from the slow dynamics of the calcium indicator. Our approach relies on a constrained nonnegative matrix factorization that expresses the spatiotemporal fluorescence activity as the product of a spatial matrix that encodes the spatial footprint of each neuron in the optical field and a temporal matrix that characterizes the calcium concentration of each neuron over time. This framework is combined with a novel constrained deconvolution approach that extracts estimates of neural activity from fluorescence traces, to create a spatiotemporal processing algorithm that requires minimal parameter tuning. We demonstrate the general applicability of our method by applying it to in vitro and in vivo multineuronal imaging data, whole-brain light-sheet imaging data, and dendritic imaging data. PMID:26774160
Getting enough calcium to keep bones from thinning throughout a person's life may be made more difficult if that person has ... as a tendency toward kidney stones, for avoiding calcium-rich food sources. Calcium deficiency also effects the ...
Collot, Mayeul; Loukou, Christina; Yakovlev, Aleksey V; Wilms, Christian D; Li, Dongdong; Evrard, Alexis; Zamaleeva, Alsu; Bourdieu, Laurent; Léger, Jean-François; Ropert, Nicole; Eilers, Jens; Oheim, Martin; Feltz, Anne; Mallet, Jean-Maurice
2012-09-12
We designed Calcium Rubies, a family of functionalizable BAPTA-based red-fluorescent calcium (Ca(2+)) indicators as new tools for biological Ca(2+) imaging. The specificity of this Ca(2+)-indicator family is its side arm, attached on the ethylene glycol bridge that allows coupling the indicator to various groups while leaving open the possibility of aromatic substitutions on the BAPTA core for tuning the Ca(2+)-binding affinity. Using this possibility we now synthesize and characterize three different CaRubies with affinities between 3 and 22 μM. Their long excitation and emission wavelengths (peaks at 586/604 nm) allow their use in otherwise challenging multicolor experiments, e.g., when combining Ca(2+) uncaging or optogenetic stimulation with Ca(2+) imaging in cells expressing fluorescent proteins. We illustrate this capacity by the detection of Ca(2+) transients evoked by blue light in cultured astrocytes expressing CatCh, a light-sensitive Ca(2+)-translocating channelrhodopsin linked to yellow fluorescent protein. Using time-correlated single-photon counting, we measured fluorescence lifetimes for all CaRubies and demonstrate a 10-fold increase in the average lifetime upon Ca(2+) chelation. Since only the fluorescence quantum yield but not the absorbance of the CaRubies is Ca(2+)-dependent, calibrated two-photon fluorescence excitation measurements of absolute Ca(2+) concentrations are feasible.
Discrimination of clinically significant calcium salts using MARS spectral CT
NASA Astrophysics Data System (ADS)
Kirkbride, T. E.; Raja, A.; Mueller, K.; Bateman, C. J.; Becce, F.; Anderson, N.
2017-03-01
Calcium compounds within tissues are usually a sign of pathology, and calcium crystal type is often a pointer to the diagnosis. There are clinical advantages in being able to determine the quantity and type of calcifications non-invasively in cardiovascular, genitourinary and musculoskeletal disorders, and treatment differs depending on the crystal type and quantity. The problem arises when trying to distinguish between different calcium compounds within the same image due to their similar attenuation properties. There are spectroscopic differences between calcium salts at very low energies. As calcium oxalate and calcium hydroxyapatite can co-exist in breast and musculoskeletal pathologies of the breast, we wished to determine whether Spectral CT could distinguish between them in the same image at clinical X-ray energy ranges. Energy thresholds of 15, 22, 29 and 36keV and tube voltages of 50, 80 and 110kVp were chosen, and images were analysed to determine the percentage difference in the attenuation coefficients of calcium hydroxyapatite samples at concentrations of 54.3, 211.7, 808.5 and 1169.3mg/ml, and calcium oxalate at a concentration of 2000 mg/ml. The two lower concentrations of calcium hydroxyapatite were distinguishable from calcium oxalate at all energies and all tube voltages, whereas the ability to discriminate oxalate from hydroxyapatite at higher concentrations was dependent on the threshold energy but only mildly dependent on the tube voltage used. Spectral CT shows promise for distinguishing clinically important calcium salts.
Strong, Averey D; Daniels, Richard L
2017-08-02
The tumor-derived GL261 cell line is used as a model for studying glioblastoma and other high-grade gliomas, and can be cultured adherently or as free-floating aggregates known as neurospheres. These different culture conditions give rise to distinct phenotypes, with increased tumorigenicity displayed by neurosphere-cultured cells. An important technique for understanding GL261 pathobiology is live cell fluorescent imaging of intracellular calcium. However, live cell imaging of GL261 neurospheres presents a technical challenge, as experimental manipulations where drugs are added to the extracellular media cause the cells to move during analysis. Here we present a method to immobilize GL261 neurospheres with low melting point agarose for calcium imaging using the fluorescent calcium sensor fura-2. GL261 cells were obtained from the NCI-Frederick Cancer Research Tumor Repository and cultured as adherent cells or induced to form neurospheres by placing freshly trypsinized cells into serum-free media containing fibroblast growth factor 2, epidermal growth factor, and B-27 supplement. Prior to experiments, adherent cells were loaded with fura-2 and cultured on 8-well chamber slides. Non-adherent neurospheres were first loaded with fura-2, placed in droplets onto an 8-well chamber slide, and finally covered with a thin layer of low melting point agarose to immobilize the cells. Ratiometric pseudocolored images were obtained during treatment with ATP, capsaicin, or vehicle control. Cells were marked as responsive if fluorescence levels increased more than 30% above baseline. Differences between treatment groups were tested using Student's t-tests and one-way ANOVA. We found that cellular responses to pharmacological treatments differ based on cellular phenotype. Adherent cells and neurospheres both responded to ATP with a rise in intracellular calcium. Notably, capsaicin treatment led to robust responses in GL261 neurospheres but not adherent cells. We demonstrate the use of low melting point agarose for immobilizing GL261 cells, a method that is broadly applicable to any cell type cultured in suspension, including acutely trypsinized cells and primary tumor cells. Our results indicate that it is important to consider GL261 phenotype (adherent or neurosphere) when interpreting data regarding physiological responses to experimental compounds.
Mao, Songshou; Child, Janis; Carson, Sivi; Liu, Steve C K; Oudiz, Ronald J; Budoff, Matthew J
2003-03-01
To estimate the sensitivity to find small coronary artery calcium lesions with use of different slice widths with electron beam tomography. Two studies were performed. Study 1 utilized double scanning of a stationary cork phantom with three different slice thickness (1.5, 3, and 6 mm). Fifty different calcific lesions (all <20 mm2 in area) fitted in 10 cork coronary arteries were utilized. The calcium foci area, peak value and score were measured and compared. In group 2, 30 patients underwent coronary artery calcium (CAC) screen studies. Each patient was scanned with both 3-mm and 6-mm scan widths in a same study time. Lesions with < 20 mm2 of area of CAC were measured on both 3-mm and 6-mm images. The mean and peak Hounsfield unit measure, and Agatston score were compared between both images. In the cork study, the sensitivity to detect small calcium foci were 96% (48/50), 82% (41/50), and 34% (17/50) in images with 1.5-, 3-, and 6-mm slice thickness, respectively. There is a smaller value in mass, and calcium volume in 6-mm images than 1.5-mm and 3-mm images ( P< 0.001). There was no significant difference between the true value and measured value from 1.5-mm and 3-mm images. In the human study, 18 (30%) of 60 CAC lesions with an area < 20 mm2 defined on 3 mm images were not visible on 6-mm images. Sensitivity of small lesions (P< 5 mm2) was 48% using 6-mm slices. There was a smaller value in CAC area, mean and peak Hounsfield units and score measured from 6-mm images, as compared with 3 mm slices ( P< 0.05). Thinner slice imaging has a higher sensitivity to detect small calcium focus. There was no significant change in score between 3 mm and 1.5 mm on the cork phantom study. However, the use of 6-mm slices should be discouraged, as this protocol both underestimates calcific mass and misses a significant number of calcific lesions in both a phantom and human study.
NASA Astrophysics Data System (ADS)
Uttenweiler, Dietmar; Wojciechowski, Reinhold; Makabe, Makoto; Veigel, Claudia; Fink, Rainer H.
1994-12-01
Fast photometric measurements and video-imaging of fluorescent indicators both are powerful tools in measuring the intracellular free calcium concentration of muscle and many other cells. as photometric systems yield a high temporal resolution, calcium imaging systems have high spatial but significantly reduced temporal resolution. Therefore we have developed an integrated system combining both methods and based mostly on standard components. As a common, sensitive Ca2+- indicator we used the fluorescent probe Fura-2, which is alternatingly excited for ratio measurements at 340/380 nm. We used a commercially available dual excitation photometric system (OSP-3; Olympus) for attaching a CCD-camera and a frame grabber board. To achieve the synchronization we had to design circuitries for external triggering, synchronization and accurate control of the filter changer, which we added to the system. Additionally, the software for a triggered image acquisition was developed. With this integrated setup one can easily switch between the fast photometric mode (ratio frequency 100 Hz) and the imaging mode (ratio frequency 4.17 Hz). The calcium images are correlated with the 25 times faster spot measurements and are analyzed by means of image processing. With this combined system we study release and uptake of calcium ions of normal and diseased skeletal muscle from mdx mice. Such a system will also be important for other cellular studies in which fluorescence indicators are used to monitor similar time dependent alterations as well as changes in cellular distributions of calcium.
Hansen, Katrina J; Favreau, John T; Gershlak, Joshua R; Laflamme, Michael A; Albrecht, Dirk R; Gaudette, Glenn R
2017-08-01
Differentiation of human pluripotent stem cells into cardiomyocytes (hPS-CMs) holds promise for myocardial regeneration therapies, drug discovery, and models of cardiac disease. Potential cardiotoxicities may affect hPS-CM mechanical contraction independent of calcium signaling. Herein, a method using an image capture system is described to measure hPS-CM contractility and intracellular calcium concurrently, with high spatial and temporal resolution. The image capture system rapidly alternates between brightfield and epifluorescent illumination of contracting cells. Mechanical contraction is quantified by a speckle tracking algorithm applied to brightfield image pairs, whereas calcium transients are measured by a fluorescent calcium reporter. This technique captured changes in contractile strain, calcium transients, and beat frequency of hPS-CMs over 21 days in culture, as well as acute responses to isoproterenol and Cytochalasin D. The technique described above can be applied without the need to alter the culture platform, allowing for determination of hPS-CM behavior over weeks in culture for drug discovery and myocardial regeneration applications.
McLean, Alan M.; Socher, Elke; Varnavski, Oleg; Clark, Travis B.
2014-01-01
We report detailed photophysical studies on the two-photon fluorescence processes of the solvatochromic fluorophore 4-DMN as a conjugate of the important calmodulin (CaM) and the associated CaM-binding peptide M13. Strong two-photon fluorescence enhancement has been observed which is associated with calcium binding. It is found that the two-photon absorption cross-section is strongly dependent on the local environment surrounding the 4-DMN fluorophore in the CaM conjugates, providing sensitivity between sites of fluorophore attachment. Utilizing time-resolved measurements, the emission dynamics of 4-DMN under various environmental (solvent) conditions are analyzed. In addition, anisotropy measurements reveal that the 4-DMN-S38C-CaM system has restricted rotation in the calcium-bound calmodulin. To establish the utility for cellular imaging, two-photon fluorescence microscopy studies were also carried out with the 4-DMN-modified M13 peptide in cells. Together, these studies provide strong evidence that 4-DMN is a useful probe in two-photon imaging, with advantageous properties for cellular experiments. PMID:24245815
Mustafi, Devkumar; Fan, Xiaobing; Peng, Bo; Foxley, Sean; Palgen, Jeremy; Newstead, Gillian M.
2015-01-01
Calcium oxalate (CaOX) crystals and calcium hydroxyapatite (CaHA) crystals were commonly associated with breast benign and malignant lesions, respectively. In this research, CaOX (n = 6) and CaHA (n = 6) crystals in air-bubble-free agarose phantom were studied and characterized by using MRI at 9.4 Tesla scanner. Calcium micro-crystals sizes ranged from 200 – 500 microns were made with either 99% pure CaOX or CaHA powder and embedded in agar to mimic the dimensions and calcium content of breast microcalcifications in vivo. MRI data were acquired with high spatial resolution T2-weighted (T2W) images and gradient echo images with five different echo times (TEs). The crystals areas were determined by setting the threshold relative to agarose signal. The ratio of crystals areas were calculated by the measurements from gradient echo images divided by T2W images. Then the ratios as a function of TE were fitted with the radical function. The results showed that the blooming artifacts due to magnetic susceptibility between agar and CaHA crystals were more than twice as large as the susceptibility in CaOX crystals (p < 0.05). In addition, larger bright rings were observed on gradient echo images around CaHA crystals compared to CaOX crystals. Our results suggest that MRI may provide useful information regarding breast microcalcifications by evaluating the apparent area of crystals ratios obtained between gradient echo and T2W images. PMID:26392170
Ma, Hongtao; Harris, Samuel; Rahmani, Redi; Lacefield, Clay O.; Zhao, Mingrui; Daniel, Andy G. S.; Zhou, Zhiping; Bruno, Randy M.; Berwick, Jason; Schwartz, Theodore H.
2014-01-01
Abstract. In vivo calcium imaging is an incredibly powerful technique that provides simultaneous information on fast neuronal events, such as action potentials and subthreshold synaptic activity, as well as slower events that occur in the glia and surrounding neuropil. Bulk-loading methods that involve multiple injections can be used for single-cell as well as wide-field imaging studies. However, multiple injections result in inhomogeneous loading as well as multiple sites of potential cortical injury. We used convection-enhanced delivery to create smooth, continuous loading of a large area of the cortical surface through a solitary injection site and demonstrated the efficacy of the technique using confocal microscopy imaging of single cells and physiological responses to single-trial events of spontaneous activity, somatosensory-evoked potentials, and epileptiform events. Combinations of calcium imaging with voltage-sensitive dye and intrinsic signal imaging demonstrate the utility of this technique in neurovascular coupling investigations. Convection-enhanced loading of calcium dyes may be a useful technique to advance the study of cortical processing when widespread loading of a wide-field imaging is required. PMID:25525611
Ma, Hongtao; Harris, Samuel; Rahmani, Redi; Lacefield, Clay O; Zhao, Mingrui; Daniel, Andy G S; Zhou, Zhiping; Bruno, Randy M; Berwick, Jason; Schwartz, Theodore H
2014-07-24
In vivo calcium imaging is an incredibly powerful technique that provides simultaneous information on fast neuronal events, such as action potentials and subthreshold synaptic activity, as well as slower events that occur in the glia and surrounding neuropil. Bulk-loading methods that involve multiple injections can be used for single-cell as well as wide-field imaging studies. However, multiple injections result in inhomogeneous loading as well as multiple sites of potential cortical injury. We used convection-enhanced delivery to create smooth, continuous loading of a large area of the cortical surface through a solitary injection site and demonstrated the efficacy of the technique using confocal microscopy imaging of single cells and physiological responses to single-trial events of spontaneous activity, somatosensory-evoked potentials, and epileptiform events. Combinations of calcium imaging with voltage-sensitive dye and intrinsic signal imaging demonstrate the utility of this technique in neurovascular coupling investigations. Convection-enhanced loading of calcium dyes may be a useful technique to advance the study of cortical processing when widespread loading of a wide-field imaging is required.
NASA Astrophysics Data System (ADS)
Mai, Fu-Der; Chen, Li-You; Ling, Yong-Chien; Chen, Bo-Jung; Wu, Un-In; Chang, Hung-Ming
2010-05-01
Excessive calcium influx in chemosensitive neurons of area postrema (AP) is detrimental for sympathetic activation and participates in the disruption of cardiovascular activities. Since total sleep deprivation (TSD) is a stressful condition known to harm the cardiovascular function, the present study is aimed to determine whether the in vivo calcium expression in AP would significantly alter following TSD by the use of time-of-flight secondary ion mass spectrometry (TOF-SIMS) and calretinin (a specific calcium sensor protein in AP neurons) immunohistochemistry. The results indicated that in normal rats, the calcium intensity was estimated to be 0.5 × 10 5 at m/ z 40.08. However, following TSD, the intensity for calcium ions was greatly increased to 1.2 × 10 5. Molecular imaging revealed that after TSD, various strongly expressed calcium signals were distributed throughout AP with clear identified profiles instead of randomly scattered within this region in normal rats. Immunohistochemical staining corresponded well with ionic image in which a majority of calcium-enriched gathering co-localized with calretinin positive neurons. The functional significance of TSD-induced calcium augmentation was demonstrated by increased heart rate and mean arterial pressure, clinical markers for cardiovascular dysfunction. Considering AP-mediated sympathetic activation is important for cardiovascular regulation, exaggerated calcium influx in AP would render this neurocircuitry more vulnerable to over-excitation, which might serve as the underlying mechanism for the development of TSD-relevant cardiovascular deficiency.
Onimaru, Hiroshi; Dutschmann, Mathias
2012-01-01
The parafacial respiratory group (pFRG) is thought to be involved in respiratory rhythm generation in neonates. This subgroup expresses the transcription factor, Phox2b, and contains intrinsically CO(2) sensitive neurons. Calcium imaging has been widely used for analysis of neuronal activity at the cellular and network level. In the present study, we applied calcium imaging to analyze neuronal activity of the most-rostral pFRG in an in vitro brainstem-spinal cord preparation from neonatal rats. We detected strong pre-inspiratory neuron activity in the most rostral pFRG, suggesting that significant numbers of pre-inspiratory neurons are localized in the ventrolateral medulla near the rostral end of the medulla. We show that usage of calcium imaging would be very useful for analysis of neuronal activity over different time scales, and discuss the advantages and disadvantages of this method.
Volumetric Two-photon Imaging of Neurons Using Stereoscopy (vTwINS)
Song, Alexander; Charles, Adam S.; Koay, Sue Ann; Gauthier, Jeff L.; Thiberge, Stephan Y.; Pillow, Jonathan W.; Tank, David W.
2017-01-01
Two-photon laser scanning microscopy of calcium dynamics using fluorescent indicators is a widely used imaging method for large scale recording of neural activity in vivo. Here we introduce volumetric Two-photon Imaging of Neurons using Stereoscopy (vTwINS), a volumetric calcium imaging method that employs an elongated, V-shaped point spread function to image a 3D brain volume. Single neurons project to spatially displaced “image pairs” in the resulting 2D image, and the separation distance between images is proportional to depth in the volume. To demix the fluorescence time series of individual neurons, we introduce a novel orthogonal matching pursuit algorithm that also infers source locations within the 3D volume. We illustrate vTwINS by imaging neural population activity in mouse primary visual cortex and hippocampus. Our results demonstrate that vTwINS provides an effective method for volumetric two-photon calcium imaging that increases the number of neurons recorded while maintaining a high frame-rate. PMID:28319111
Photoacoustic imaging of teeth for dentine imaging and enamel characterization
NASA Astrophysics Data System (ADS)
Periyasamy, Vijitha; Rangaraj, Mani; Pramanik, Manojit
2018-02-01
Early detection of dental caries, cracks and lesions is needed to prevent complicated root canal treatment and tooth extraction procedures. Resolution of clinically used x-ray imaging is low, hence optical imaging techniques such as optical coherence tomography, fluorescence imaging, and Raman imaging are widely experimented for imaging dental structures. Photoacoustic effect is used in photon induced photoacoustic streaming technique to debride the root canal. In this study, the extracted teeth were imaged using photoacoustic tomography system at 1064 nm. The degradation of enamel and dentine is an indicator of onset of dental caries. Photoacoustic microscopy (PAM) was used to study the tooth enamel. Images were acquired using acoustic resolution PAM system. This was done to identify microscopic cracks and dental lesion at different anatomical sites (crown and cementum). The PAM tooth profile is an indicator of calcium distribution which is essential for demineralization studies.
Classification of calcium in intravascular OCT images for the purpose of intervention planning
NASA Astrophysics Data System (ADS)
Shalev, Ronny; Bezerra, Hiram G.; Ray, Soumya; Prabhu, David; Wilson, David L.
2016-03-01
The presence of extensive calcification is a primary concern when planning and implementing a vascular percutaneous intervention such as stenting. If the balloon does not expand, the interventionalist must blindly apply high balloon pressure, use an atherectomy device, or abort the procedure. As part of a project to determine the ability of Intravascular Optical Coherence Tomography (IVOCT) to aid intervention planning, we developed a method for automatic classification of calcium in coronary IVOCT images. We developed an approach where plaque texture is modeled by the joint probability distribution of a bank of filter responses where the filter bank was chosen to reflect the qualitative characteristics of the calcium. This distribution is represented by the frequency histogram of filter response cluster centers. The trained algorithm was evaluated on independent ex-vivo image data accurately labeled using registered 3D microscopic cryo-image data which was used as ground truth. In this study, regions for extraction of sub-images (SI's) were selected by experts to include calcium, fibrous, or lipid tissues. We manually optimized algorithm parameters such as choice of filter bank, size of the dictionary, etc. Splitting samples into training and testing data, we achieved 5-fold cross validation calcium classification with F1 score of 93.7+/-2.7% with recall of >=89% and a precision of >=97% in this scenario with admittedly selective data. The automated algorithm performed in close-to-real-time (2.6 seconds per frame) suggesting possible on-line use. This promising preliminary study indicates that computational IVOCT might automatically identify calcium in IVOCT coronary artery images.
Development of a Radiolabeled Amlodipine Analog for L-type Calcium Channel Imaging.
Firouzyar, Tahereh; Jalilian, Amir Reza; Aboudzadeh, Mohammad Reza; Sadeghpour, Hossein; Pooladi, Mehrban; Shafiee-Ardestani, Mahdi; Khalaj, Ali
2017-01-01
The non-invasive imaging and quantification of L-type calcium channels (also known as dihydropyridine channels) in living tissues is of great interest in diagnosis of congestive heart failure, myocardial hypertrophy, irritable bowel syndrome etc. Technetium-99m labeled amlodipine conjugate ([99mTc]-DTPA-AMLO) was prepared starting freshly eluted (<1 h) 99mTechnetium pertechnetate (86.5 MBq) and conjugated DTPAAMLO at pH 5 in 30 min at room temperature in high radiochemical purity (>99%, RTLC; specific activity: 55-60 GBq/mmol). The calcium channel blockade activity (CCBA) and apoptosis/necrosis assay of DTPA-amlodipine conjugate evaluations were performed for the conjugate. Log P, stability, bio-distribution and imaging studies were performed for the tracer followed by biodistribution studies as well as imaging. The conjugate demonstrated low toxicity on MCF-7 cells and CCBA (at µm level) compared to the amlodipine. The tracer was stable up to 4 h in final production and presence of human serum and log P (-0.49) was consistent with a water soluble complex. The tracer was excreted through kidneys and liver as expected for dihydropyridines; excluding excretory organs, calcium channel rich smooth muscle cells; including colon, intestine and lungs which demonstrated significant uptake. SPECT images supported the bio-distribution data up to 4 h. significant uptake of [99mTc]-DTPA-AMLO was obtained in calcium channel rich organs. The complex can be a candidate for further SPECT imaging for L-type calcium channels. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
NASA Astrophysics Data System (ADS)
Chan, James; Awasthi, Samir; Izu, Leighton; Mao, Ziliang; Jian, Zhong; Landas, Trevor; Lerner, Aaron; Shimkunas, Rafael; Woldeyesus, Rahwa; Bossuyt, Julie; Wood, Brittani; Chen, Yi-Je; Matthews, Dennis; Lieu, Deborah; Chiamvimonvat, Nipavan; Lam, Kit; Chen-Izu, Ye
2016-11-01
The objective of this study was to develop a method for simultaneously measuring the calcium and contraction dynamics of single, live cardiomyocytes at high spatial resolutions. Such measurements are important to investigate local calcium release and the mechanical response at the sarcomere level (i.e. the basic unit of contraction), which have important implications in cardiac dysfunction and arrhythmias in conditions such as hypertension, atrial fibrillation, and myocardial infarction. Here, we describe a multimodal second harmonic generation (SHG) and two photon fluorescence (2PF) microscopy technique that is used to simultaneously measure subsarcomere calcium and contraction events at high spatial and temporal resolutions. The method takes advantage of the label-free nature of SHG for imaging the sarcomeres and the high spatial colocalization of the SHG signal and the fluorescence signal excited from calcium indicators. This microscope was used to measure calcium sparks and waves and associated contractions in subcellular microdomains, leading to the generation of subcellular strain. We anticipate this new imaging tool will play an important role in studying mechanical stress-induced heart disease.
A Low Affinity GCaMP3 Variant (GCaMPer) for Imaging the Endoplasmic Reticulum Calcium Store.
Henderson, Mark J; Baldwin, Heather A; Werley, Christopher A; Boccardo, Stefano; Whitaker, Leslie R; Yan, Xiaokang; Holt, Graham T; Schreiter, Eric R; Looger, Loren L; Cohen, Adam E; Kim, Douglas S; Harvey, Brandon K
2015-01-01
Endoplasmic reticulum calcium homeostasis is critical for cellular functions and is disrupted in diverse pathologies including neurodegeneration and cardiovascular disease. Owing to the high concentration of calcium within the ER, studying this subcellular compartment requires tools that are optimized for these conditions. To develop a single-fluorophore genetically encoded calcium indicator for this organelle, we targeted a low affinity variant of GCaMP3 to the ER lumen (GCaMPer (10.19)). A set of viral vectors was constructed to express GCaMPer in human neuroblastoma cells, rat primary cortical neurons, and human induced pluripotent stem cell-derived cardiomyocytes. We observed dynamic changes in GCaMPer (10.19) fluorescence in response to pharmacologic manipulations of the ER calcium store. Additionally, periodic calcium efflux from the ER was observed during spontaneous beating of cardiomyocytes. GCaMPer (10.19) has utility in imaging ER calcium in living cells and providing insight into luminal calcium dynamics under physiologic and pathologic states.
Reilly, Douglas K.; Lawler, Daniel E.; Albrecht, Dirk R.; Srinivasan, Jagan
2017-01-01
The use of calcium indicators has greatly enhanced our understanding of neural dynamics and regulation. The nematode Caenorhabditis elegans, with its completely mapped nervous system and transparent anatomy, presents an ideal model for understanding real-time neural dynamics using calcium indicators. In combination with microfluidic technologies and experimental designs, calcium-imaging studies using these indicators are performed in both free-moving and trapped animals. However, most previous studies utilizing trapping devices, such as the olfactory chip described in Chronis et al., have devices designed for use in the more common hermaphrodite, as the less common male is both morphologically and structurally dissimilar. An adapted olfactory chip was designed and fabricated for increased efficiency in male neuronal imaging with using young adult animals. A turn was incorporated into the worm loading port to rotate the animals and to allow for the separation of the individual neurons within a bilateral pair in 2D imaging. Worms are exposed to a controlled flow of odorant within the microfluidic device, as described in previous hermaphrodite studies. Calcium transients are then analyzed using the open-source software ImageJ. The procedure described herein should allow for an increased amount of male-based C. elegans calcium imaging studies, deepening our understanding of the mechanisms of sex-specific neuronal signaling. PMID:28930991
Coronary calcium visualization using dual energy chest radiography with sliding organ registration
NASA Astrophysics Data System (ADS)
Wen, Di; Nye, Katelyn; Zhou, Bo; Gilkeson, Robert C.; Wilson, David L.
2016-03-01
Coronary artery calcification (CAC) is the lead biomarker for atherosclerotic heart disease. We are developing a new technique to image CAC using ubiquitously ordered, low cost, low radiation dual energy (DE) chest radiography (using the two-shot GE Revolution XRd system). In this paper, we proposed a novel image processing method (CorCalDx) based on sliding organ registration to create a bone-image-like, coronary calcium image (CCI) that significantly reduces motion artifacts and improves CAC conspicuity. Experiments on images of a physical dynamic cardiac phantom showed that CorCalDx reduced 73% of the motion artifact area as compared to standard DE over a range of heart rates up to 90 bpm and varying x-ray radiation exposures. Residual motion artifact in the phantom CCI is greatly suppressed in gray level and area (0.88% of the heart area). In a Functional Measurement Test (FMT) with 20 clinical exams, image quality improvement of CorCalDx against standard DE (measured from -10 to +10) was significantly suggested (p<0.0001) by three radiologists for cardiac motion artifacts (7.2+/-2.1) and cardiac anatomy visibility (6.1+/-3.5). CorCalDx was always chosen best in every image tested. In preliminary assessments of 12 patients with 18 calcifications, 90% of motion artifact regions in standard DE results were removed in CorCalDx results, with 100% sensitivity of calcification detection, showing great potential of CorCalDx to improve CAC detection and grading in DE chest radiography.
NASA Astrophysics Data System (ADS)
Ringuette, Dene; Jeffrey, Melanie A.; Carlen, Peter L.; Levi, Ofer
2016-03-01
Dysfunction of the vascular endothelium has been implicated in the development of epilepsy. To better understand the relation between vascular function and seizure and provide a foundation for interpreting results from functional imaging in chronic disease models, we investigate the relationship between intracellular calcium dynamics and local cerebral blood flow and blood oxygen saturation during acute seizure-like events and pharmacological seizure rescue. To probe the relation between the aforementioned physiological markers in an acute model of epilepsy in rats, we integrated three different optical modalities together with electrophysiological recordings: Laser speckle contrast imaging (LSCI) was used to study changes in flow speeds, Intrinsic optical signal imaging (IOSI) was used to monitor changes in oxygenated, de-oxygenated, and total hemoglobin concentration, and Calcium-sensitive dye imaging was used to monitor intracellular calcium dynamics. We designed a dedicated cortical flow chamber to remove superficial blood and dye resulting from the injection procedure, which reduced spurious artifacts. The near infrared light used for IOSI and LSCI was delivered via a light pipe integrated with the flow chamber to minimize the effect of fluid surface movement on illumination stability. Calcium-sensitive dye was injected via a glass electrode used for recording the local field potential. Our system allowed us to observe and correlate increases in intracellular calcium, blood flow and blood volume during seizure-like events and provide a quantitative analysis of neurovascular coupling changes associated with seizure rescue via injection of an anti-convulsive agent.
In vivo optoacoustic monitoring of calcium activity in the brain (Conference Presentation)
NASA Astrophysics Data System (ADS)
Deán-Ben, Xose Luís.; Gottschalk, Sven; Sela, Gali; Lauri, Antonella; Kneipp, Moritz; Ntziachristos, Vasilis; Westmeyer, Gil G.; Shoham, Shy; Razansky, Daniel
2017-03-01
Non-invasive observation of spatio-temporal neural activity of large neural populations distributed over the entire brain of complex organisms is a longstanding goal of neuroscience [1,2]. Recently, genetically encoded calcium indicators (GECIs) have revolutionized neuroimaging by enabling mapping the activity of entire neuronal populations in vivo [3]. Visualization of these powerful sensors with fluorescence microscopy has however been limited to superficial regions while deep brain areas have so far remained unreachable [4]. We have developed a volumetric multispectral optoacoustic tomography platform for imaging neural activation deep in scattering brains [5]. The developed methodology can render 100 volumetric frames per second across scalable fields of view ranging between 50-1000 mm3 with respective spatial resolution of 35-150µm. Experiments performed in immobilized and freely swimming larvae and in adult zebrafish brains expressing the genetically-encoded calcium indicator GCaMP5G demonstrated, for the first time, the fundamental ability to directly track neural dynamics using optoacoustics while overcoming the depth barrier of optical imaging in scattering brains [6]. It was further possible to monitor calcium transients in a scattering brain of a living adult transgenic zebrafish expressing GCaMP5G calcium indicator [7]. Fast changes in optoacoustic traces associated to GCaMP5G activity were detectable in the presence of other strongly absorbing endogenous chromophores, such as hemoglobin. The results indicate that the optoacoustic signal traces generally follow the GCaMP5G fluorescence dynamics and further enable overcoming the longstanding optical-diffusion penetration barrier associated to scattering in biological tissues [6]. The new functional optoacoustic neuroimaging method can visualize neural activity at penetration depths and spatio-temporal resolution scales not covered with the existing neuroimaging techniques. Thus, in addition to the well-established capacity of optoacoustics to resolve vascular anatomy and multiple hemodynamic parameters deep in scattering tissues, the newly developed methodology offers unprecedented capabilities for functional whole brain observations of fast calcium dynamics.
Transformation of Cortex-wide Emergent Properties during Motor Learning.
Makino, Hiroshi; Ren, Chi; Liu, Haixin; Kim, An Na; Kondapaneni, Neehar; Liu, Xin; Kuzum, Duygu; Komiyama, Takaki
2017-05-17
Learning involves a transformation of brain-wide operation dynamics. However, our understanding of learning-related changes in macroscopic dynamics is limited. Here, we monitored cortex-wide activity of the mouse brain using wide-field calcium imaging while the mouse learned a motor task over weeks. Over learning, the sequential activity across cortical modules became temporally more compressed, and its trial-by-trial variability decreased. Moreover, a new flow of activity emerged during learning, originating from premotor cortex (M2), and M2 became predictive of the activity of many other modules. Inactivation experiments showed that M2 is critical for the post-learning dynamics in the cortex-wide activity. Furthermore, two-photon calcium imaging revealed that M2 ensemble activity also showed earlier activity onset and reduced variability with learning, which was accompanied by changes in the activity-movement relationship. These results reveal newly emergent properties of macroscopic cortical dynamics during motor learning and highlight the importance of M2 in controlling learned movements. Copyright © 2017 Elsevier Inc. All rights reserved.
Michel, K; Michaelis, M; Mazzuoli, G; Mueller, K; Vanden Berghe, P; Schemann, M
2011-12-15
Slow changes in [Ca(2+)](i) reflect increased neuronal activity. Our study demonstrates that single-trial fast [Ca(2+)](i) imaging (≥200 Hz sampling rate) revealed peaks each of which are associated with single spike discharge recorded by consecutive voltage-sensitive dye (VSD) imaging in enteric neurones and nerve fibres. Fast [Ca(2+)](i) imaging also revealed subthreshold fast excitatory postsynaptic potentials. Nicotine-evoked [Ca(2+)](i) peaks were reduced by -conotoxin and blocked by ruthenium red or tetrodotoxin. Fast [Ca(2+)](i) imaging can be used to directly record single action potentials in enteric neurones. [Ca(2+)](i) peaks required opening of voltage-gated sodium and calcium channels as well as Ca(2+) release from intracellular stores.
Fine spatiotemporal activity in contracting myometrium revealed by motion-corrected calcium imaging.
Loftus, Fiona C; Shmygol, Anatoly; Richardson, Magnus J E
2014-10-15
Successful childbirth depends on the occurrence of precisely coordinated uterine contractions during labour. Calcium indicator fluorescence imaging is one of the main techniques for investigating the mechanisms governing this physiological process and its pathologies. The effective spatiotemporal resolution of calcium signals is, however, limited by the motion of contracting tissue: structures of interest in the order of microns can move over a hundred times their width during a contraction. The simultaneous changes in local intensity and tissue configuration make motion tracking a non-trivial problem in image analysis and confound many of the standard techniques. This paper presents a method that tracks local motion throughout the tissue and allows for the almost complete removal of motion artefacts. This provides a stabilized calcium signal down to a pixel resolution, which, for the data examined, is in the order of a few microns. As a byproduct of image stabilization, a complete kinematic description of the contraction-relaxation cycle is also obtained. This contains novel information about the mechanical response of the tissue, such as the identification of a characteristic length scale, in the order of 40-50 μm, below which tissue motion is homogeneous. Applied to our data, we illustrate that the method allows for analyses of calcium dynamics in contracting myometrium in unprecedented spatiotemporal detail. Additionally, we use the kinematics of tissue motion to compare calcium signals at the subcellular level and local contractile motion. The computer code used is provided in a freely modifiable form and has potential applicability to in vivo calcium imaging of neural tissue, as well as other smooth muscle tissue. © 2014 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
Fine spatiotemporal activity in contracting myometrium revealed by motion-corrected calcium imaging
Loftus, Fiona C; Shmygol, Anatoly; Richardson, Magnus J E
2014-01-01
Successful childbirth depends on the occurrence of precisely coordinated uterine contractions during labour. Calcium indicator fluorescence imaging is one of the main techniques for investigating the mechanisms governing this physiological process and its pathologies. The effective spatiotemporal resolution of calcium signals is, however, limited by the motion of contracting tissue: structures of interest in the order of microns can move over a hundred times their width during a contraction. The simultaneous changes in local intensity and tissue configuration make motion tracking a non-trivial problem in image analysis and confound many of the standard techniques. This paper presents a method that tracks local motion throughout the tissue and allows for the almost complete removal of motion artefacts. This provides a stabilized calcium signal down to a pixel resolution, which, for the data examined, is in the order of a few microns. As a byproduct of image stabilization, a complete kinematic description of the contraction–relaxation cycle is also obtained. This contains novel information about the mechanical response of the tissue, such as the identification of a characteristic length scale, in the order of 40–50 μm, below which tissue motion is homogeneous. Applied to our data, we illustrate that the method allows for analyses of calcium dynamics in contracting myometrium in unprecedented spatiotemporal detail. Additionally, we use the kinematics of tissue motion to compare calcium signals at the subcellular level and local contractile motion. The computer code used is provided in a freely modifiable form and has potential applicability to in vivo calcium imaging of neural tissue, as well as other smooth muscle tissue. PMID:25085893
NASA Astrophysics Data System (ADS)
Ibsch, M.; Anken, R.; Rahmann, H.
Inner ear otolith formation in fish is supposed to be performed by the molecular release of proteinacious precursor material from the sensory epithelia, followed by an undirected and diffuse precipitation of calcium carbonate (which is mainly responsible for the functionally important weight of otoliths). Previous experiments have shown, however, that otolith formation in terms of provision both of the protein matrix and of calcium is regulated by a (likely neuronal) feedback mechanism. This regulating mechanism effects a symmetrical crystallisation of the corresponding otoliths in the inner ears of both sides of the head, which is necessary for a correct graviperception and for maintenance of postural control; thus, asymmetrical otoliths can induce kinetoses (e.g., space motion sickness) both in human and fish. On the background of an obviously directed incorporation of calcium into otoliths, the site of origin of the otoliths's inorganic components such as calcium still remains obscure. Therefore, ultrastructural and element analytical investigations were undertaken to screen the calcium distribution within the macular epithelial region using fish as model system. Electron spectroscopic imaging (ESI) and electron energy loss spectra (EELS) revealed discrete calcium-precipitations in the extracellular space of the otolithic membrane as well as within the lumina of the epithelial sensory cells. The calcium particles were accumulated at the macular tight junctions and seemed to be distributed in an ascending intracellular and a descending extracellular gradient towards the otolith. Further distinct calcium containing crystals covered the peripheral proteinacious layer of the otolith. The remaining endolymphatic space of the otocyst was lacking calcium precipitates. Overall, the present results indicate that the apical region of the macular epithelium is involved in the controlled release of calcium. This finding is in complete agreement with a study using calcium-tracers (Beier et al., this issue). This work was financially supported by the German Aerospace Center (DLR) e.V. (FKZ: 50 WB 9997).
Green fluorescent genetically encoded calcium indicator based on calmodulin/M13-peptide from fungi.
Barykina, Natalia V; Subach, Oksana M; Piatkevich, Kiryl D; Jung, Erica E; Malyshev, Aleksey Y; Smirnov, Ivan V; Bogorodskiy, Andrey O; Borshchevskiy, Valentin I; Varizhuk, Anna M; Pozmogova, Galina E; Boyden, Edward S; Anokhin, Konstantin V; Enikolopov, Grigori N; Subach, Fedor V
2017-01-01
Currently available genetically encoded calcium indicators (GECIs) utilize calmodulins (CaMs) or troponin C from metazoa such as mammals, birds, and teleosts, as calcium-binding domains. The amino acid sequences of the metazoan calcium-binding domains are highly conserved, which may limit the range of the GECI key parameters and cause undesired interactions with the intracellular environment in mammalian cells. Here we have used fungi, evolutionary distinct organisms, to derive CaM and its binding partner domains and design new GECI with improved properties. We applied iterative rounds of molecular evolution to develop FGCaMP, a novel green calcium indicator. It includes the circularly permuted version of the enhanced green fluorescent protein (EGFP) sandwiched between the fungal CaM and a fragment of CaM-dependent kinase. FGCaMP is an excitation-ratiometric indicator that has a positive and an inverted fluorescence response to calcium ions when excited at 488 and 405 nm, respectively. Compared with the GCaMP6s indicator in vitro, FGCaMP has a similar brightness at 488 nm excitation, 7-fold higher brightness at 405 nm excitation, and 1.3-fold faster calcium ion dissociation kinetics. Using site-directed mutagenesis, we generated variants of FGCaMP with improved binding affinity to calcium ions and increased the magnitude of FGCaMP fluorescence response to low calcium ion concentrations. Using FGCaMP, we have successfully visualized calcium transients in cultured mammalian cells. In contrast to the limited mobility of GCaMP6s and G-GECO1.2 indicators, FGCaMP exhibits practically 100% molecular mobility at physiological concentrations of calcium ion in mammalian cells, as determined by photobleaching experiments with fluorescence recovery. We have successfully monitored the calcium dynamics during spontaneous activity of neuronal cultures using FGCaMP and utilized whole-cell patch clamp recordings to further characterize its behavior in neurons. Finally, we used FGCaMP in vivo to perform structural and functional imaging of zebrafish using wide-field, confocal, and light-sheet microscopy.
Development of a thresholding algorithm for calcium classification at multiple CT energies
NASA Astrophysics Data System (ADS)
Ng, LY.; Alssabbagh, M.; Tajuddin, A. A.; Shuaib, I. L.; Zainon, R.
2017-05-01
The objective of this study was to develop a thresholding method for calcium classification with different concentration using single-energy computed tomography. Five different concentrations of calcium chloride were filled in PMMA tubes and placed inside a water-filled PMMA phantom (diameter 10 cm). The phantom was scanned at 70, 80, 100, 120 and 140 kV using a SECT. CARE DOSE 4D was used and the slice thickness was set to 1 mm for all energies. ImageJ software inspired by the National Institute of Health (NIH) was used to measure the CT numbers for each calcium concentration from the CT images. The results were compared with a developed algorithm for verification. The percentage differences between the measured CT numbers obtained from the developed algorithm and the ImageJ show similar results. The multi-thresholding algorithm was found to be able to distinguish different concentrations of calcium chloride. However, it was unable to detect low concentrations of calcium chloride and iron (III) nitrate with CT numbers between 25 HU and 65 HU. The developed thresholding method used in this study may help to differentiate between calcium plaques and other types of plaques in blood vessels as it is proven to have a good ability to detect the high concentration of the calcium chloride. However, the algorithm needs to be improved to solve the limitations of detecting calcium chloride solution which has a similar CT number with iron (III) nitrate solution.
Direct Imaging of ER Calcium with Targeted-Esterase Induced Dye Loading (TED)
Samtleben, Samira; Jaepel, Juliane; Fecher, Caroline; Andreska, Thomas; Rehberg, Markus; Blum, Robert
2013-01-01
Visualization of calcium dynamics is important to understand the role of calcium in cell physiology. To examine calcium dynamics, synthetic fluorescent Ca2+ indictors have become popular. Here we demonstrate TED (= targeted-esterase induced dye loading), a method to improve the release of Ca2+ indicator dyes in the ER lumen of different cell types. To date, TED was used in cell lines, glial cells, and neurons in vitro. TED bases on efficient, recombinant targeting of a high carboxylesterase activity to the ER lumen using vector-constructs that express Carboxylesterases (CES). The latest TED vectors contain a core element of CES2 fused to a red fluorescent protein, thus enabling simultaneous two-color imaging. The dynamics of free calcium in the ER are imaged in one color, while the corresponding ER structure appears in red. At the beginning of the procedure, cells are transduced with a lentivirus. Subsequently, the infected cells are seeded on coverslips to finally enable live cell imaging. Then, living cells are incubated with the acetoxymethyl ester (AM-ester) form of low-affinity Ca2+ indicators, for instance Fluo5N-AM, Mag-Fluo4-AM, or Mag-Fura2-AM. The esterase activity in the ER cleaves off hydrophobic side chains from the AM form of the Ca2+ indicator and a hydrophilic fluorescent dye/Ca2+ complex is formed and trapped in the ER lumen. After dye loading, the cells are analyzed at an inverted confocal laser scanning microscope. Cells are continuously perfused with Ringer-like solutions and the ER calcium dynamics are directly visualized by time-lapse imaging. Calcium release from the ER is identified by a decrease in fluorescence intensity in regions of interest, whereas the refilling of the ER calcium store produces an increase in fluorescence intensity. Finally, the change in fluorescent intensity over time is determined by calculation of ΔF/F0. PMID:23685703
Direct imaging of ER calcium with targeted-esterase induced dye loading (TED).
Samtleben, Samira; Jaepel, Juliane; Fecher, Caroline; Andreska, Thomas; Rehberg, Markus; Blum, Robert
2013-05-07
Visualization of calcium dynamics is important to understand the role of calcium in cell physiology. To examine calcium dynamics, synthetic fluorescent Ca(2+) indictors have become popular. Here we demonstrate TED (= targeted-esterase induced dye loading), a method to improve the release of Ca(2+) indicator dyes in the ER lumen of different cell types. To date, TED was used in cell lines, glial cells, and neurons in vitro. TED bases on efficient, recombinant targeting of a high carboxylesterase activity to the ER lumen using vector-constructs that express Carboxylesterases (CES). The latest TED vectors contain a core element of CES2 fused to a red fluorescent protein, thus enabling simultaneous two-color imaging. The dynamics of free calcium in the ER are imaged in one color, while the corresponding ER structure appears in red. At the beginning of the procedure, cells are transduced with a lentivirus. Subsequently, the infected cells are seeded on coverslips to finally enable live cell imaging. Then, living cells are incubated with the acetoxymethyl ester (AM-ester) form of low-affinity Ca(2+) indicators, for instance Fluo5N-AM, Mag-Fluo4-AM, or Mag-Fura2-AM. The esterase activity in the ER cleaves off hydrophobic side chains from the AM form of the Ca(2+) indicator and a hydrophilic fluorescent dye/Ca(2+) complex is formed and trapped in the ER lumen. After dye loading, the cells are analyzed at an inverted confocal laser scanning microscope. Cells are continuously perfused with Ringer-like solutions and the ER calcium dynamics are directly visualized by time-lapse imaging. Calcium release from the ER is identified by a decrease in fluorescence intensity in regions of interest, whereas the refilling of the ER calcium store produces an increase in fluorescence intensity. Finally, the change in fluorescent intensity over time is determined by calculation of ΔF/F0.
Overview of the magnetic properties experiments on the Mars Exploration Rovers
NASA Astrophysics Data System (ADS)
Madsen, M. B.; Goetz, W.; Bertelsen, P.; Binau, C. S.; Folkmann, F.; Gunnlaugsson, H. P.; Hjøllum, J.; Hviid, S. F.; Jensen, J.; Kinch, K. M.; Leer, K.; Madsen, D. E.; Merrison, J.; Olsen, M.; Arneson, H. M.; Bell, J. F.; Gellert, R.; Herkenhoff, K. E.; Johnson, J. R.; Johnson, M. J.; Klingelhöfer, G.; McCartney, E.; Ming, D. W.; Morris, R. V.; Proton, J. B.; Rodionov, D.; Sims, M.; Squyres, S. W.; Wdowiak, T.; Yen, A. S.
2009-06-01
The Mars Exploration Rovers have accumulated airborne dust on different types of permanent magnets. Images of these magnets document the dynamics of dust capture and removal over time. The strongly magnetic subset of airborne dust appears dark brown to black in Panoramic Camera (Pancam) images, while the weakly magnetic one is bright red. Images returned by the Microscopic Imager reveal the formation of magnetic chains diagnostic of magnetite-rich grains with substantial magnetization (>8 Am2 kg-1). On the basis of Mössbauer spectra the dust contains magnetite, olivine, pyroxene, and nanophase oxides in varying proportions, depending on wind regime and landing site. The dust contains a larger amount of ferric iron (Fe3+/Fetot ˜ 0.6) than rocks in the Gusev plains (˜0.1-0.2) or average Gusev soil (˜0.3). Alpha Particle X-Ray Spectrometer data of the dust show that some of the iron in magnetite is substituted by titanium and chromium. The good correlation of the amount of calcium and sulfur in the dust may be caused by the presence of a calcium sulfate related phase. The overall mineralogical composition points to a basaltic origin of the airborne dust, although some alteration has taken place as indicated by the large degree of oxidation.
Overview of the magnetic properties experiments on the Mars Exploration Rovers
Madsen, M.B.; Goetz, W.; Bertelsen, P.; Binau, C.S.; Folkmann, F.; Gunnlaugsson, H.P.; Hjollum, J.I.; Hviid, S.F.; Jensen, J.; Kinch, K.M.; Leer, K.; Madsen, D.E.; Merrison, J.; Olsen, M.; Arneson, H.M.; Bell, J.F.; Gellert, Ralf; Herkenhoff, K. E.; Johnson, J. R.; Johnson, M.J.; Klingelhofer, G.; McCartney, E.; Ming, D. W.; Morris, R.V.; Proton, J.B.; Rodionov, D.; Sims, M.; Squyres, S. W.; Wdowiak, T.; Yen, A. S.
2009-01-01
The Mars Exploration Rovers have accumulated airborne dust on different types of permanent magnets. Images of these magnets document the dynamics of dust capture and removal over time. The strongly magnetic subset of airborne dust appears dark brown to black in Panoramic Camera (Pancam) images, while the weakly magnetic one is bright red. Images returned by the Microscopic Imager reveal the formation of magnetic chains diagnostic of magnetite-rich grains with substantial magnetization (>8 Am2 kg-1). On the basis of M??ssbauer spectra the dust contains magnetite, olivine, pyroxene, and nanophase oxides in varying proportions, depending on wind regime and landing site. The dust contains a larger amount of ferric iron (Fe3+/Fe tot ??? 0.6) than rocks in the Gusev plains (???0.1-0.2) or average Gusev soil (???0.3). Alpha Particle X-Ray Spectrometer data of the dust show that some of the iron in magnetite is substituted by titanium and chromium. The good correlation of the amount of calcium and sulfur in the dust may be caused by the presence of a calcium sulfate related phase. The overall mineralogical composition points to a basaltic origin of the airborne dust, although some alteration has taken place as indicated by the large degree of oxidation. Copyright 2009 by the American Geophysical Union.
Lamont, Matthew G; Weber, John T
2015-06-01
The waddles (wdl) mouse is characterized by a namesake "side-to-side" waddling gait due to a homozygous mutation of the Car8 gene. This mutation results in non-functional copies of the protein carbonic anhydrase type 8. Rota-rod testing was conducted to characterize the wdl mutations' effect on motor output. Results indicated that younger homozygotes outperformed their older cohorts, an effect not seen in previous studies. Heterozygotes, which were thought to be free of motor impairment, displayed motor learning deficiencies when compared with wild type performance. Acute cerebellar slices were then utilized for fluorescent calcium imaging experiments, which revealed significant alterations in cerebellar granule cell somatic calcium signaling when exposed to glutamate. The contribution of GABAergic signaling to these alterations was also verified using bath application of bicuculline. Changes in somatic calcium signals were found to be applicable to an in vivo scenario by comparing group responses to electrical stimulation of afferent mossy fiber projections. Finally, intracellular calcium store function was also found to be altered by the wdl mutation when slices were treated with thapsigargin. These findings, taken together with previous work on the wdl mouse, indicate a widespread disruption in cerebellar circuitry hampering proper neuronal communication. Copyright © 2015 Elsevier B.V. All rights reserved.
Inference of neuronal network spike dynamics and topology from calcium imaging data
Lütcke, Henry; Gerhard, Felipe; Zenke, Friedemann; Gerstner, Wulfram; Helmchen, Fritjof
2013-01-01
Two-photon calcium imaging enables functional analysis of neuronal circuits by inferring action potential (AP) occurrence (“spike trains”) from cellular fluorescence signals. It remains unclear how experimental parameters such as signal-to-noise ratio (SNR) and acquisition rate affect spike inference and whether additional information about network structure can be extracted. Here we present a simulation framework for quantitatively assessing how well spike dynamics and network topology can be inferred from noisy calcium imaging data. For simulated AP-evoked calcium transients in neocortical pyramidal cells, we analyzed the quality of spike inference as a function of SNR and data acquisition rate using a recently introduced peeling algorithm. Given experimentally attainable values of SNR and acquisition rate, neural spike trains could be reconstructed accurately and with up to millisecond precision. We then applied statistical neuronal network models to explore how remaining uncertainties in spike inference affect estimates of network connectivity and topological features of network organization. We define the experimental conditions suitable for inferring whether the network has a scale-free structure and determine how well hub neurons can be identified. Our findings provide a benchmark for future calcium imaging studies that aim to reliably infer neuronal network properties. PMID:24399936
Combining microfluidics, optogenetics and calcium imaging to study neuronal communication in vitro.
Renault, Renaud; Sukenik, Nirit; Descroix, Stéphanie; Malaquin, Laurent; Viovy, Jean-Louis; Peyrin, Jean-Michel; Bottani, Samuel; Monceau, Pascal; Moses, Elisha; Vignes, Maéva
2015-01-01
In this paper we report the combination of microfluidics, optogenetics and calcium imaging as a cheap and convenient platform to study synaptic communication between neuronal populations in vitro. We first show that Calcium Orange indicator is compatible in vitro with a commonly used Channelrhodopsine-2 (ChR2) variant, as standard calcium imaging conditions did not alter significantly the activity of transduced cultures of rodent primary neurons. A fast, robust and scalable process for micro-chip fabrication was developed in parallel to build micro-compartmented cultures. Coupling optical fibers to each micro-compartment allowed for the independent control of ChR2 activation in the different populations without crosstalk. By analyzing the post-stimuli activity across the different populations, we finally show how this platform can be used to evaluate quantitatively the effective connectivity between connected neuronal populations.
Yu, Xuan; Wang, Xin-Pei; Yan, Xiao-Jin; Jiang, Jing-Fei; Lei, Fan; Xing, Dong-Ming; Guo, Yue-Ying; Du, Li-Jun
2017-08-09
To explore the anti-nociceptive effect of patchouli alcohol (PA), the essential oil isolated from Pogostemon cablin (Blanco) Bent, and determine the mechanism in molecular levels. The acetic acid-induced writhing test and formalin-induced plantar injection test in mice were employed to confifirm the effect in vivo. Intracellular calcium ion was imaged to verify PA on mu-opioid receptor (MOR). Cyclooxygenase 2 (COX2) and MOR of mouse brain were expressed for determination of PA's target. Cellular experiments were carried out to find out COX2 and MOR expression induced by PA. PA significantly reduced latency period of visceral pain and writhing induced by acetic acid saline solution (P<0.01) and allodynia after intra-plantar formalin (P<0.01) in mice. PA also up-regulated COX2 mRNA and protein (P<0.05) with a down-regulation of MOR (P<0.05) both in in vivo and in vitro experiments, which devote to the analgesic effect of PA. A decrease in the intracellular calcium level (P<0.05) induced by PA may play an important role in its anti-nociceptive effect. PA showed the characters of enhancing the MOR expression and reducing the intracellular calcium ion similar to opioid effect. Both COX2 and MOR are involved in the mechanism of PA's anti-nociceptive effect, and the up-regulation of the receptor expression and the inhibition of intracellular calcium are a new perspective to PA's effect on MOR.
Calcium-dependent molecular fMRI using a magnetic nanosensor.
Okada, Satoshi; Bartelle, Benjamin B; Li, Nan; Breton-Provencher, Vincent; Lee, Jiyoung J; Rodriguez, Elisenda; Melican, James; Sur, Mriganka; Jasanoff, Alan
2018-06-01
Calcium ions are ubiquitous signalling molecules in all multicellular organisms, where they mediate diverse aspects of intracellular and extracellular communication over widely varying temporal and spatial scales 1 . Though techniques to map calcium-related activity at a high resolution by optical means are well established, there is currently no reliable method to measure calcium dynamics over large volumes in intact tissue 2 . Here, we address this need by introducing a family of magnetic calcium-responsive nanoparticles (MaCaReNas) that can be detected by magnetic resonance imaging (MRI). MaCaReNas respond within seconds to [Ca 2+ ] changes in the 0.1-1.0 mM range, suitable for monitoring extracellular calcium signalling processes in the brain. We show that the probes permit the repeated detection of brain activation in response to diverse stimuli in vivo. MaCaReNas thus provide a tool for calcium-activity mapping in deep tissue and offer a precedent for the development of further nanoparticle-based sensors for dynamic molecular imaging with MRI.
Calcium-dependent molecular fMRI using a magnetic nanosensor
NASA Astrophysics Data System (ADS)
Okada, Satoshi; Bartelle, Benjamin B.; Li, Nan; Breton-Provencher, Vincent; Lee, Jiyoung J.; Rodriguez, Elisenda; Melican, James; Sur, Mriganka; Jasanoff, Alan
2018-06-01
Calcium ions are ubiquitous signalling molecules in all multicellular organisms, where they mediate diverse aspects of intracellular and extracellular communication over widely varying temporal and spatial scales1. Though techniques to map calcium-related activity at a high resolution by optical means are well established, there is currently no reliable method to measure calcium dynamics over large volumes in intact tissue2. Here, we address this need by introducing a family of magnetic calcium-responsive nanoparticles (MaCaReNas) that can be detected by magnetic resonance imaging (MRI). MaCaReNas respond within seconds to [Ca2+] changes in the 0.1-1.0 mM range, suitable for monitoring extracellular calcium signalling processes in the brain. We show that the probes permit the repeated detection of brain activation in response to diverse stimuli in vivo. MaCaReNas thus provide a tool for calcium-activity mapping in deep tissue and offer a precedent for the development of further nanoparticle-based sensors for dynamic molecular imaging with MRI.
Tada, Mayumi; Takeuchi, Atsuya; Hashizume, Miki; Kitamura, Kazuo; Kano, Masanobu
2014-01-01
Calcium imaging of individual neurons is widely used for monitoring their activity in vitro and in vivo. Synthetic fluorescent calcium indicator dyes are commonly used, but the resulting calcium signals sometimes suffer from a low signal-to-noise ratio (SNR). Therefore, it is difficult to detect signals caused by single action potentials (APs) particularly from neurons in vivo. Here we showed that a recently developed calcium indicator dye, Cal-520, is sufficiently sensitive to reliably detect single APs both in vitro and in vivo. In neocortical neurons, calcium signals were linearly correlated with the number of APs, and the SNR was > 6 for in vitro slice preparations and > 1.6 for in vivo anesthetised mice. In cerebellar Purkinje cells, dendritic calcium transients evoked by climbing fiber inputs were clearly observed in anesthetised mice with a high SNR and fast decay time. These characteristics of Cal-520 are a great advantage over those of Oregon Green BAPTA-1, the most commonly used calcium indicator dye, for monitoring the activity of individual neurons both in vitro and in vivo. PMID:24405482
Functional imaging of glucose-evoked rat islet activities using transient intrinsic optical signals
NASA Astrophysics Data System (ADS)
Yao, Xin-Cheng; Cui, Wan-Xing; Li, Yi-Chao; Zhang, Wei; Lu, Rong-Wen; Thompson, Anthony; Amthor, Franklin; Wang, Xu-Jing
2012-05-01
We demonstrate intrinsic optical signal (IOS) imaging of intact rat islet, which consists of many endocrine cells working together. A near-infrared digital microscope was employed for optical monitoring of islet activities evoked by glucose stimulation. Dynamic NIR images revealed transient IOS responses in the islet activated by low-dose (2.75 mM) and high-dose (5.5 mM) glucose stimuli. Comparative experiments and quantitative analysis indicated that both glucose metabolism and calcium/insulin dynamics might contribute to the observed IOS responses. Further investigation of the IOS imaging technology may provide a high resolution method for ex vivo functional examination of the islet, which is important for advanced study of diabetes associated islet dysfunctions and for improved quality control of donor islets for transplantation.
Large-scale imaging of cortical network activity with calcium indicators.
Ikegaya, Yuji; Le Bon-Jego, Morgane; Yuste, Rafael
2005-06-01
Bulk loading of calcium indicators has provided a unique opportunity to reconstruct the activity of cortical networks with single-cell resolution. Here we describe the detailed methods of bulk loading of AM dyes we developed and have been improving for imaging with a spinning disk confocal microscope.
Warren, L M; Mackenzie, A; Dance, D R; Young, K C
2013-04-07
Aluminium is often used as a substitute material for calcifications in phantom measurements in mammography. Additionally, calcium oxalate, hydroxyapatite and aluminium are used in simulation studies. This assumes that these materials have similar attenuation properties to calcification, and this assumption is examined in this work. Sliced mastectomy samples containing calcification were imaged at ×5 magnification using a digital specimen cabinet. Images of the individual calcifications were extracted, and the diameter and contrast of each calculated. The thicknesses of aluminium required to achieve the same contrast as each calcification when imaged under the same conditions were calculated using measurements of the contrast of aluminium foils. As hydroxyapatite and calcium oxalate are also used to simulate calcifications, the equivalent aluminium thicknesses of these materials were also calculated using tabulated attenuation coefficients. On average the equivalent aluminium thickness was 0.85 times the calcification diameter. For calcium oxalate and hydroxyapatite, the equivalent aluminium thicknesses were 1.01 and 2.19 times the thickness of these materials respectively. Aluminium and calcium oxalate are suitable substitute materials for calcifications. Hydroxyapatite is much more attenuating than the calcifications and aluminium. Using solid hydroxyapatite as a substitute for calcification of the same size would lead to excessive contrast in the mammographic image.
Martin, Corinna; Jablonka, Sibylle
2018-01-01
Local and spontaneous calcium signals play important roles in neurons and neuronal networks. Spontaneous or cell-autonomous calcium signals may be difficult to assess because they appear in an unpredictable spatiotemporal pattern and in very small neuronal loci of axons or dendrites. We developed an open source bioinformatics tool for an unbiased assessment of calcium signals in x,y-t imaging series. The tool bases its algorithm on a continuous wavelet transform-guided peak detection to identify calcium signal candidates. The highly sensitive calcium event definition is based on identification of peaks in 1D data through analysis of a 2D wavelet transform surface. For spatial analysis, the tool uses a grid to separate the x,y-image field in independently analyzed grid windows. A document containing a graphical summary of the data is automatically created and displays the loci of activity for a wide range of signal intensities. Furthermore, the number of activity events is summed up to create an estimated total activity value, which can be used to compare different experimental situations, such as calcium activity before or after an experimental treatment. All traces and data of active loci become documented. The tool can also compute the signal variance in a sliding window to visualize activity-dependent signal fluctuations. We applied the calcium signal detector to monitor activity states of cultured mouse neurons. Our data show that both the total activity value and the variance area created by a sliding window can distinguish experimental manipulations of neuronal activity states. Notably, the tool is powerful enough to compute local calcium events and ‘signal-close-to-noise’ activity in small loci of distal neurites of neurons, which remain during pharmacological blockade of neuronal activity with inhibitors such as tetrodotoxin, to block action potential firing, or inhibitors of ionotropic glutamate receptors. The tool can also offer information about local homeostatic calcium activity events in neurites. PMID:29601577
Sornborger, Andrew; Broder, Josef; Majumder, Anirban; Srinivasamoorthy, Ganesh; Porter, Erika; Reagin, Sean S; Keith, Charles; Lauderdale, James D
2008-09-01
Ratiometric fluorescent indicators are used for making quantitative measurements of a variety of physiological variables. Their utility is often limited by noise. This is the second in a series of papers describing statistical methods for denoising ratiometric data with the aim of obtaining improved quantitative estimates of variables of interest. Here, we outline a statistical optimization method that is designed for the analysis of ratiometric imaging data in which multiple measurements have been taken of systems responding to the same stimulation protocol. This method takes advantage of correlated information across multiple datasets for objectively detecting and estimating ratiometric signals. We demonstrate our method by showing results of its application on multiple, ratiometric calcium imaging experiments.
Dual energy micro CT SkyScan 1173 for the characterization of urinary stone
NASA Astrophysics Data System (ADS)
Fitri, L. A.; Asyana, V.; Ridwan, T.; Anwary, F.; Soekersi, H.; Latief, F. D. E.; Haryanto, F.
2016-03-01
Knowledge of the composition of urinary stones is an essential part to determine suitable treatments for patients. The aim of this research is to characterize the urinary stones by using dual energy micro CT SkyScan 11173. This technique combines high-energy and low- energy scanning during a single acquisition. Six human urinary stones were scanned in vitro using 80 kV and 120 kV micro CT SkyScan 1173. Projected images were produced by micro CT SkyScan 1173 and then reconstructed using NRecon (in-house software from SkyScan) to obtain a complete 3D image. The urinary stone images were analysed using CT analyser to obtain information of internal structure and Hounsfield Unit (HU) values to determine the information regarding the composition of the urinary stones, respectively. HU values obtained from some regions of interest in the same slice are compared to a reference HU. The analysis shows information of the composition of the six scanned stones obtained. The six stones consist of stone number 1 (calcium+cystine), number 2 (calcium+struvite), number 3 (calcium+cystine+struvite), number 4 (calcium), number 5 (calcium+cystine+struvite), and number 6 (calcium+uric acid). This shows that dual energy micro CT SkyScan 1173 was able to characterize the composition of the urinary stone.
In vivo alterations in calcium buffering capacity in transgenic mouse model of synucleinopathy.
Reznichenko, Lidia; Cheng, Qun; Nizar, Krystal; Gratiy, Sergey L; Saisan, Payam A; Rockenstein, Edward M; González, Tanya; Patrick, Christina; Spencer, Brian; Desplats, Paula; Dale, Anders M; Devor, Anna; Masliah, Eliezer
2012-07-18
Abnormal accumulation of α-synuclein is centrally involved in the pathogenesis of many disorders with Parkinsonism and dementia. Previous in vitro studies suggest that α-synuclein dysregulates intracellular calcium. However, it is unclear whether these alterations occur in vivo. For this reason, we investigated calcium dynamics in transgenic mice expressing human WT α-synuclein using two-photon microscopy. We imaged spontaneous and stimulus-induced neuronal activity in the barrel cortex. Transgenic mice exhibited augmented, long-lasting calcium transients characterized by considerable deviation from the exponential decay. The most evident pathology was observed in response to a repetitive stimulation in which subsequent stimuli were presented before relaxation of calcium signal to the baseline. These alterations were detected in the absence of significant increase in neuronal spiking response compared with age-matched controls, supporting the possibility that α-synuclein promoted alterations in calcium dynamics via interference with intracellular buffering mechanisms. The characteristic shape of calcium decay and augmented response during repetitive stimulation can serve as in vivo imaging biomarkers in this model of neurodegeneration, to monitor progression of the disease and screen candidate treatment strategies.
Atanasijevic, Tatjana; Shusteff, Maxim; Fam, Peter; Jasanoff, Alan
2006-01-01
We describe a family of calcium indicators for magnetic resonance imaging (MRI), formed by combining a powerful iron oxide nanoparticle-based contrast mechanism with the versatile calcium-sensing protein calmodulin and its targets. Calcium-dependent protein–protein interactions drive particle clustering and produce up to 5-fold changes in T2 relaxivity, an indication of the sensors' potency. A variant based on conjugates of wild-type calmodulin and the peptide M13 reports concentration changes near 1 μM Ca2+, suitable for detection of elevated intracellular calcium levels. The midpoint and cooperativity of the response can be tuned by mutating the protein domains that actuate the sensor. Robust MRI signal changes are achieved even at nanomolar particle concentrations (<1 μM in calmodulin) that are unlikely to buffer calcium levels. When combined with technologies for cellular delivery of nanoparticulate agents, these sensors and their derivatives may be useful for functional molecular imaging of biological signaling networks in live, opaque specimens. PMID:17003117
Atanasijevic, Tatjana; Shusteff, Maxim; Fam, Peter; Jasanoff, Alan
2006-10-03
We describe a family of calcium indicators for magnetic resonance imaging (MRI), formed by combining a powerful iron oxide nanoparticle-based contrast mechanism with the versatile calcium-sensing protein calmodulin and its targets. Calcium-dependent protein-protein interactions drive particle clustering and produce up to 5-fold changes in T2 relaxivity, an indication of the sensors' potency. A variant based on conjugates of wild-type calmodulin and the peptide M13 reports concentration changes near 1 microM Ca(2+), suitable for detection of elevated intracellular calcium levels. The midpoint and cooperativity of the response can be tuned by mutating the protein domains that actuate the sensor. Robust MRI signal changes are achieved even at nanomolar particle concentrations (<1 microM in calmodulin) that are unlikely to buffer calcium levels. When combined with technologies for cellular delivery of nanoparticulate agents, these sensors and their derivatives may be useful for functional molecular imaging of biological signaling networks in live, opaque specimens.
Imaging of human differentiated 3D neural aggregates using light sheet fluorescence microscopy.
Gualda, Emilio J; Simão, Daniel; Pinto, Catarina; Alves, Paula M; Brito, Catarina
2014-01-01
The development of three dimensional (3D) cell cultures represents a big step for the better understanding of cell behavior and disease in a more natural like environment, providing not only single but multiple cell type interactions in a complex 3D matrix, highly resembling physiological conditions. Light sheet fluorescence microscopy (LSFM) is becoming an excellent tool for fast imaging of such 3D biological structures. We demonstrate the potential of this technique for the imaging of human differentiated 3D neural aggregates in fixed and live samples, namely calcium imaging and cell death processes, showing the power of imaging modality compared with traditional microscopy. The combination of light sheet microscopy and 3D neural cultures will open the door to more challenging experiments involving drug testing at large scale as well as a better understanding of relevant biological processes in a more realistic environment.
Cellular resolution functional imaging in behaving rats using voluntary head restraint
Scott, Benjamin B.; Brody, Carlos D.; Tank, David W.
2013-01-01
SUMMARY High-throughput operant conditioning systems for rodents provide efficient training on sophisticated behavioral tasks. Combining these systems with technologies for cellular resolution functional imaging would provide a powerful approach to study neural dynamics during behavior. Here we describe an integrated two-photon microscope and behavioral apparatus that allows cellular resolution functional imaging of cortical regions during epochs of voluntary head restraint. Rats were trained to initiate periods of restraint up to 8 seconds in duration, which provided the mechanical stability necessary for in vivo imaging while allowing free movement between behavioral trials. A mechanical registration system repositioned the head to within a few microns, allowing the same neuronal populations to be imaged on each trial. In proof-of-principle experiments, calcium dependent fluorescence transients were recorded from GCaMP-labeled cortical neurons. In contrast to previous methods for head restraint, this system can also be incorporated into high-throughput operant conditioning systems. PMID:24055015
Imaging of human differentiated 3D neural aggregates using light sheet fluorescence microscopy
Gualda, Emilio J.; Simão, Daniel; Pinto, Catarina; Alves, Paula M.; Brito, Catarina
2014-01-01
The development of three dimensional (3D) cell cultures represents a big step for the better understanding of cell behavior and disease in a more natural like environment, providing not only single but multiple cell type interactions in a complex 3D matrix, highly resembling physiological conditions. Light sheet fluorescence microscopy (LSFM) is becoming an excellent tool for fast imaging of such 3D biological structures. We demonstrate the potential of this technique for the imaging of human differentiated 3D neural aggregates in fixed and live samples, namely calcium imaging and cell death processes, showing the power of imaging modality compared with traditional microscopy. The combination of light sheet microscopy and 3D neural cultures will open the door to more challenging experiments involving drug testing at large scale as well as a better understanding of relevant biological processes in a more realistic environment. PMID:25161607
Fast Kinetics of Calcium Signaling and Sensor Design
Tang, Shen; Reddish, Florence; Zhuo, You; Yang, Jenny J.
2015-01-01
Fast calcium signaling is regulated by numerous calcium channels exhibiting high spatiotemporal profiles which are currently measured by fluorescent calcium sensors. There is still a strong need to improve the kinetics of genetically encoded calcium indicators (sensors) to capture calcium dynamics in the millisecond time frame. In this review, we summarize several major fast calcium signaling pathways and discuss the recent developments and application of genetically encoded calcium indicators to detect these pathways. A new class of genetically encoded calcium indicators designed with site-directed mutagenesis on the surface of beta-barrel fluorescent proteins to form a pentagonal bipyramidal-like calcium binding domain dramatically accelerates calcium binding kinetics. Furthermore, novel genetically encoded calcium indicators with significantly increased fluorescent lifetime change are advantageous in deep-field imaging with high light-scattering and notable morphology change. PMID:26151819
[Myofibroblasts and afferent signalling in the urinary bladder. A concept].
Neuhaus, J; Scholler, U; Freick, K; Schwalenberg, T; Heinrich, M; Horn, L C; Stolzenburg, J U
2008-09-01
Afferent signal transduction in the urinary bladder is still not clearly understood. An increasing body of evidence supports the view of complex interactions between urothelium, suburothelial myofibroblasts, and sensory nerves. Bladder tissue from tumour patients was used in this study. Methods included confocal immunofluorescence, polymerase chain reaction, calcium imaging, and fluorescence recovery after photobleaching (FRAP).Myofibroblasts express muscarinic and purinergic receptors. They show constitutive spontaneous activity in calcium imaging, which completely depends on extracellular calcium. Stimulation with carbachol and ATP-evoked intracellular calcium transients also depend on extracellular calcium. The intensive coupling between the cells is significantly diminished by incubation with TGF-beta 1. Myofibroblasts form an important cellular element within the afferent signalling of the urinary bladder. They possess all features required to take part in the complex interactions with urothelial cells and sensory nerves. Modulation of their function by cytokines may provide a pathomechanism for bladder dysfunction.
Domenichini, Florence; Terrié, Elodie; Arnault, Patricia; Harnois, Thomas; Magaud, Christophe; Bois, Patrick; Constantin, Bruno; Coronas, Valérie
2018-05-01
The subventricular zone (SVZ) is the major stem cell niche in the brain of adult mammals. Within this region, neural stem cells (NSC) proliferate, self-renew and give birth to neurons and glial cells. Previous studies underlined enrichment in calcium signaling-related transcripts in adult NSC. Because of their ability to mobilize sustained calcium influxes in response to a wide range of extracellular factors, store-operated channels (SOC) appear to be, among calcium channels, relevant candidates to induce calcium signaling in NSC whose cellular activities are continuously adapted to physiological signals from the microenvironment. By Reverse Transcription Polymerase Chain Reaction (RT-PCR), Western blotting and immunocytochemistry experiments, we demonstrate that SVZ cells express molecular actors known to build up SOC, namely transient receptor potential canonical 1 (TRPC1) and Orai1, as well as their activator stromal interaction molecule 1 (STIM1). Calcium imaging reveals that SVZ cells display store-operated calcium entries. Pharmacological blockade of SOC with SKF-96365 or YM-58483 (also called BTP2) decreases proliferation, impairs self-renewal by shifting the type of SVZ stem cell division from symmetric proliferative to asymmetric, thereby reducing the stem cell population. Brain section immunostainings show that TRPC1, Orai1, and STIM1 are expressed in vivo, in SOX2-positive SVZ NSC. Injection of SKF-96365 in brain lateral ventricle diminishes SVZ cell proliferation and reduces the ability of SVZ cells to form neurospheres in vitro. The present study combining in vitro and in vivo approaches uncovers a major role for SOC in the control of SVZ NSC population and opens new fields of investigation for stem cell biology in health and disease. Stem Cells 2018;36:761-774. © AlphaMed Press 2018.
Uzelac, Ilija; Ji, Yanyan C.; Hornung, Daniel; Schröder-Scheteling, Johannes; Luther, Stefan; Gray, Richard A.; Cherry, Elizabeth M.; Fenton, Flavio H.
2017-01-01
Rationale: Discordant alternans, a phenomenon in which the action potential duration (APDs) and/or intracellular calcium transient durations (CaDs) in different spatial regions of cardiac tissue are out of phase, present a dynamical instability for complex spatial dispersion that can be associated with long-QT syndrome (LQTS) and the initiation of reentrant arrhythmias. Because the use of numerical simulations to investigate arrhythmic effects, such as acquired LQTS by drugs is beginning to be studied by the FDA, it is crucial to validate mathematical models that may be used during this process. Objective: In this study, we characterized with high spatio-temporal resolution the development of discordant alternans patterns in transmembrane voltage (Vm) and intracellular calcium concentration ([Cai]+2) as a function of pacing period in rabbit hearts. Then we compared the dynamics to that of the latest state-of-the-art model for ventricular action potentials and calcium transients to better understand the underlying mechanisms of discordant alternans and compared the experimental data to the mathematical models representing Vm and [Cai]+2 dynamics. Methods and Results: We performed simultaneous dual optical mapping imaging of Vm and [Cai]+2 in Langendorff-perfused rabbit hearts with higher spatial resolutions compared with previous studies. The rabbit hearts developed discordant alternans through decreased pacing period protocols and we quantified the presence of multiple nodal points along the direction of wave propagation, both in APD and CaD, and compared these findings with results from theoretical models. In experiments, the nodal lines of CaD alternans have a steeper slope than those of APD alternans, but not as steep as predicted by numerical simulations in rabbit models. We further quantified several additional discrepancies between models and experiments. Conclusions: Alternans in CaD have nodal lines that are about an order of magnitude steeper compared to those of APD alternans. Current action potential models lack the necessary coupling between voltage and calcium compared to experiments and fail to reproduce some key dynamics such as, voltage amplitude alternans, smooth development of calcium alternans in time, conduction velocity and the steepness of the nodal lines of APD and CaD. PMID:29104543
Automatic coronary calcium scoring using noncontrast and contrast CT images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Guanyu, E-mail: yang.list@seu.edu.cn; Chen, Yang; Shu, Huazhong
Purpose: Calcium scoring is widely used to assess the risk of coronary heart disease (CHD). Accurate coronary artery calcification detection in noncontrast CT image is a prerequisite step for coronary calcium scoring. Currently, calcified lesions in the coronary arteries are manually identified by radiologists in clinical practice. Thus, in this paper, a fully automatic calcium scoring method was developed to alleviate the work load of the radiologists or cardiologists. Methods: The challenge of automatic coronary calcification detection is to discriminate the calcification in the coronary arteries from the calcification in the other tissues. Since the anatomy of coronary arteries ismore » difficult to be observed in the noncontrast CT images, the contrast CT image of the same patient is used to extract the regions of the aorta, heart, and coronary arteries. Then, a patient-specific region-of-interest (ROI) is generated in the noncontrast CT image according to the segmentation results in the contrast CT image. This patient-specific ROI focuses on the regions in the neighborhood of coronary arteries for calcification detection, which can eliminate the calcifications in the surrounding tissues. A support vector machine classifier is applied finally to refine the results by removing possible image noise. Furthermore, the calcified lesions in the noncontrast images belonging to the different main coronary arteries are identified automatically using the labeling results of the extracted coronary arteries. Results: Forty datasets from four different CT machine vendors were used to evaluate their algorithm, which were provided by the MICCAI 2014 Coronary Calcium Scoring (orCaScore) Challenge. The sensitivity and positive predictive value for the volume of detected calcifications are 0.989 and 0.948. Only one patient out of 40 patients had been assigned to the wrong risk category defined according to Agatston scores (0, 1–100, 101–300, >300) by comparing with the ground truth. Conclusions: The calcified lesions in the noncontrast CT images can be detected automatically by using the segmentation results of the aorta, heart, and coronary arteries obtained in the contrast CT images with a very high accuracy.« less
Video-rate volumetric functional imaging of the brain at synaptic resolution.
Lu, Rongwen; Sun, Wenzhi; Liang, Yajie; Kerlin, Aaron; Bierfeld, Jens; Seelig, Johannes D; Wilson, Daniel E; Scholl, Benjamin; Mohar, Boaz; Tanimoto, Masashi; Koyama, Minoru; Fitzpatrick, David; Orger, Michael B; Ji, Na
2017-04-01
Neurons and neural networks often extend hundreds of micrometers in three dimensions. Capturing the calcium transients associated with their activity requires volume imaging methods with subsecond temporal resolution. Such speed is a challenge for conventional two-photon laser-scanning microscopy, because it depends on serial focal scanning in 3D and indicators with limited brightness. Here we present an optical module that is easily integrated into standard two-photon laser-scanning microscopes to generate an axially elongated Bessel focus, which when scanned in 2D turns frame rate into volume rate. We demonstrated the power of this approach in enabling discoveries for neurobiology by imaging the calcium dynamics of volumes of neurons and synapses in fruit flies, zebrafish larvae, mice and ferrets in vivo. Calcium signals in objects as small as dendritic spines could be resolved at video rates, provided that the samples were sparsely labeled to limit overlap in their axially projected images.
Tomek, Jakub; Novak, Ondrej; Syka, Josef
2013-07-01
Two-Photon Processor (TPP) is a versatile, ready-to-use, and freely available software package in MATLAB to process data from in vivo two-photon calcium imaging. TPP includes routines to search for cell bodies in full-frame (Search for Neural Cells Accelerated; SeNeCA) and line-scan acquisition, routines for calcium signal calculations, filtering, spike-mining, and routines to construct parametric fields. Searching for somata in artificial in vivo data, our algorithm achieved better performance than human annotators. SeNeCA copes well with uneven background brightness and in-plane motion artifacts, the major problems in simple segmentation methods. In the fast mode, artificial in vivo images with a resolution of 256 × 256 pixels containing ≈ 100 neurons can be processed at a rate up to 175 frames per second (tested on Intel i7, 8 threads, magnetic hard disk drive). This speed of a segmentation algorithm could bring new possibilities into the field of in vivo optophysiology. With such a short latency (down to 5-6 ms on an ordinary personal computer) and using some contemporary optogenetic tools, it will allow experiments in which a control program can continuously evaluate the occurrence of a particular spatial pattern of activity (a possible correlate of memory or cognition) and subsequently inhibit/stimulate the entire area of the circuit or inhibit/stimulate a different part of the neuronal system. TPP will be freely available on our public web site. Similar all-in-one and freely available software has not yet been published.
Use of fly ash in diets of cage and floor broilers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pharr, C.L.; Andrews, L.D.
1980-09-01
Three experiments were conducted to compare limestone to fly ash from a coal-fired generator station as a calcium source for broilers. In experiment 1, 5 male and 5 female broiler chicks were placed in each of 32 cages. Sixteen cages of birds were fed a ration with limestone supplying 30% of the total calcium and 16 cages were fed a ration with 30% of the total calcium supplied by fly ash. The total calcium and phosphorus levels of the rations were 1.0% and .5%, respectively. In this experiment no significant difference was found for 8-week body weight between diets wheremore » the added calcium was from limestone or fly ash. In experiment 2 a group of 40 male and 40 female cage reared broilers and 40 male and 40 female floor reared broilers were fed a basal diet of limestone providing 33% of the total calcium. Three diets with increasing fly ash levels were fed to three cage groups of 40 male and 40 female broilers providing 33, 46, and 45% of the total calcium of .9, 1.1, and 1.8%, respectively. Broilers fed the highest fly ash level weighed significantly less at 8 weeks than the caged controls but did not differ from the other treatments. Bone breaking strength as measured by the Allo Kramer Shear Press was similar between the basal and low level fly ash group and increased with higher fly ash levels. In experiment 3 four groups of 40 male broilers in cages were fed limestone diets with graded levels of limestone for the calcium source. Another four groups of 40 caged male broilers were fed fly ash diets with equivalent graded levels of fly ash for the calcium source. Both limestone and fly ash diets provided .17, .34, .51, and .68% calcium of a total calcium content of .28, .45, .62, and .79%, respectively.« less
Pavitt, Christopher W; Harron, Katie; Lindsay, Alistair C; Zielke, Sayeh; Ray, Robin; Gordon, Daniel; Rubens, Michael B; Padley, Simon P; Nicol, Edward D
2016-05-01
We validate a novel CT coronary angiography (CCTA) coronary calcium scoring system. Calcium was quantified on CCTA images using a new patient-specific attenuation threshold: mean + 2SD of intra-coronary contrast density (HU). Using 335 patient data sets a conversion factor (CF) for predicting CACS from CCTA scores (CCTAS) was derived and validated in a separate cohort (n = 168). Bland-Altman analysis and weighted kappa for MESA centiles and Agatston risk groupings were calculated. Multivariable linear regression yielded a CF: CACS = (1.185 × CCTAS) + (0.002 × CCTAS × attenuation threshold). When applied to CCTA data sets there was excellent correlation (r = 0.95; p < 0.0001) and agreement (mean difference -10.4 [95% limits of agreement -258.9 to 238.1]) with traditional calcium scores. Agreement was better for calcium scores below 500; however, MESA percentile agreement was better for high risk patients. Risk stratification was excellent (Agatston groups k = 0.88 and MESA centiles k = 0.91). Eliminating the dedicated CACS scan decreased patient radiation exposure by approximately one-third. CCTA calcium scores can accurately predict CACS using a simple, individualized, semiautomated approach reducing acquisition time and radiation exposure when evaluating patients for CAD. This method is not affected by the ROI location, imaging protocol, or tube voltage strengthening its clinical applicability. • Coronary calcium scores can be reliably determined on contrast-enhanced cardiac CT • This score can accurately risk stratify patients • Elimination of a dedicated calcium scan reduces patient radiation by a third.
Gravimetric Determination of Calcium as Calcium Carbonate Hydrate.
ERIC Educational Resources Information Center
Henrickson, Charles H.; Robinson, Paul R.
1979-01-01
The gravimetric determination of calcium as calcium carbonate is described. This experiment is suitable for undergraduate quantitative analysis laboratories. It is less expensive than determination of chloride as silver chloride. (BB)
Voltage imaging to understand connections and functions of neuronal circuits.
Antic, Srdjan D; Empson, Ruth M; Knöpfel, Thomas
2016-07-01
Understanding of the cellular mechanisms underlying brain functions such as cognition and emotions requires monitoring of membrane voltage at the cellular, circuit, and system levels. Seminal voltage-sensitive dye and calcium-sensitive dye imaging studies have demonstrated parallel detection of electrical activity across populations of interconnected neurons in a variety of preparations. A game-changing advance made in recent years has been the conceptualization and development of optogenetic tools, including genetically encoded indicators of voltage (GEVIs) or calcium (GECIs) and genetically encoded light-gated ion channels (actuators, e.g., channelrhodopsin2). Compared with low-molecular-weight calcium and voltage indicators (dyes), the optogenetic imaging approaches are 1) cell type specific, 2) less invasive, 3) able to relate activity and anatomy, and 4) facilitate long-term recordings of individual cells' activities over weeks, thereby allowing direct monitoring of the emergence of learned behaviors and underlying circuit mechanisms. We highlight the potential of novel approaches based on GEVIs and compare those to calcium imaging approaches. We also discuss how novel approaches based on GEVIs (and GECIs) coupled with genetically encoded actuators will promote progress in our knowledge of brain circuits and systems. Copyright © 2016 the American Physiological Society.
Voltage imaging to understand connections and functions of neuronal circuits
Antic, Srdjan D.; Empson, Ruth M.
2016-01-01
Understanding of the cellular mechanisms underlying brain functions such as cognition and emotions requires monitoring of membrane voltage at the cellular, circuit, and system levels. Seminal voltage-sensitive dye and calcium-sensitive dye imaging studies have demonstrated parallel detection of electrical activity across populations of interconnected neurons in a variety of preparations. A game-changing advance made in recent years has been the conceptualization and development of optogenetic tools, including genetically encoded indicators of voltage (GEVIs) or calcium (GECIs) and genetically encoded light-gated ion channels (actuators, e.g., channelrhodopsin2). Compared with low-molecular-weight calcium and voltage indicators (dyes), the optogenetic imaging approaches are 1) cell type specific, 2) less invasive, 3) able to relate activity and anatomy, and 4) facilitate long-term recordings of individual cells' activities over weeks, thereby allowing direct monitoring of the emergence of learned behaviors and underlying circuit mechanisms. We highlight the potential of novel approaches based on GEVIs and compare those to calcium imaging approaches. We also discuss how novel approaches based on GEVIs (and GECIs) coupled with genetically encoded actuators will promote progress in our knowledge of brain circuits and systems. PMID:27075539
Calcium transport into the cells of the sea urchin larva in relation to spicule formation
Vidavsky, Netta; Addadi, Sefi; Schertel, Andreas; Ben-Ezra, David; Shpigel, Muki; Addadi, Lia; Weiner, Steve
2016-01-01
We investigated the manner in which the sea urchin larva takes up calcium from its body cavity into the primary mesenchymal cells (PMCs) that are responsible for spicule formation. We used the membrane-impermeable fluorescent dye calcein and alexa-dextran, with or without a calcium channel inhibitor, and imaged the larvae in vivo with selective-plane illumination microscopy. Both fluorescent molecules are taken up from the body cavity into the PMCs and ectoderm cells, where the two labels are predominantly colocalized in particles, whereas the calcium-binding calcein label is mainly excluded from the endoderm and is concentrated in the spicules. The presence of vesicles and vacuoles inside the PMCs that have openings through the plasma membrane directly to the body cavity was documented using high-resolution cryo-focused ion beam-SEM serial imaging. Some of the vesicles and vacuoles are interconnected to form large networks. We suggest that these vacuolar networks are involved in direct sea water uptake. We conclude that the calcium pathway from the body cavity into cells involves nonspecific endocytosis of sea water with its calcium. PMID:27791140
Calcium transport into the cells of the sea urchin larva in relation to spicule formation.
Vidavsky, Netta; Addadi, Sefi; Schertel, Andreas; Ben-Ezra, David; Shpigel, Muki; Addadi, Lia; Weiner, Steve
2016-10-24
We investigated the manner in which the sea urchin larva takes up calcium from its body cavity into the primary mesenchymal cells (PMCs) that are responsible for spicule formation. We used the membrane-impermeable fluorescent dye calcein and alexa-dextran, with or without a calcium channel inhibitor, and imaged the larvae in vivo with selective-plane illumination microscopy. Both fluorescent molecules are taken up from the body cavity into the PMCs and ectoderm cells, where the two labels are predominantly colocalized in particles, whereas the calcium-binding calcein label is mainly excluded from the endoderm and is concentrated in the spicules. The presence of vesicles and vacuoles inside the PMCs that have openings through the plasma membrane directly to the body cavity was documented using high-resolution cryo-focused ion beam-SEM serial imaging. Some of the vesicles and vacuoles are interconnected to form large networks. We suggest that these vacuolar networks are involved in direct sea water uptake. We conclude that the calcium pathway from the body cavity into cells involves nonspecific endocytosis of sea water with its calcium.
Baheza, Richard A.; Welch, E. Brian; Gochberg, Daniel F.; Sanders, Melinda; Harvey, Sara; Gore, John C.; Yankeelov, Thomas E.
2015-01-01
Purpose: To develop and evaluate a new method for detecting calcium deposits using their characteristic magnetic susceptibility effects on magnetic resonance (MR) images at high fields and demonstrate its potential in practice for detecting breast microcalcifications. Methods: Characteristic dipole signatures of calcium deposits were detected in magnetic resonance phase images by computing the cross-correlation between the acquired data and a library of templates containing simulated phase patterns of spherical deposits. The influence of signal-to-noise ratio and various other MR parameters on the results were assessed using simulations and validated experimentally. The method was tested experimentally for detection of calcium fragments within gel phantoms and calcium-like inhomogeneities within chicken tissue at 7 T with optimized MR acquisition parameters. The method was also evaluated for detection of simulated microcalcifications, modeled from biopsy samples of malignant breast cancer, inserted in silico into breast magnetic resonance imaging (MRIs) of healthy subjects at 7 T. For both assessments of calcium fragments in phantoms and biopsy-based simulated microcalcifications in breast MRIs, receiver operator characteristic curve analyses were performed to determine the cross-correlation index cutoff, for achieving optimal sensitivity and specificity, and the area under the curve (AUC), for measuring the method’s performance. Results: The method detected calcium fragments with sizes of 0.14–0.79 mm, 1 mm calcium-like deposits, and simulated microcalcifications with sizes of 0.4–1.0 mm in images with voxel sizes between (0.2 mm)3 and (0.6 mm)3. In images acquired at 7 T with voxel sizes of (0.2 mm)3–(0.4 mm)3, calcium fragments (size 0.3–0.4 mm) were detected with a sensitivity, specificity, and AUC of 78%–90%, 51%–68%, and 0.77%–0.88%, respectively. In images acquired with a human 7 T scanner, acquisition times below 12 min, and voxel sizes of (0.4 mm)3–(0.6 mm)3, simulated microcalcifications with sizes of 0.6–1.0 mm were detected with a sensitivity, specificity, and AUC of 75%–87%, 54%–87%, and 0.76%–0.90%, respectively. However, different microcalcification shapes were indistinguishable. Conclusions: The new method is promising for detecting relatively large microcalcifications (i.e., 0.6–0.9 mm) within the breast at 7 T in reasonable times. Detection of smaller deposits at high field may be possible with higher spatial resolution, but such images require relatively long scan times. Although mammography can detect and distinguish the shape of smaller microcalcifications with superior sensitivity and specificity, this alternative method does not expose tissue to ionizing radiation, is not affected by breast density, and can be combined with other MRI methods (e.g., dynamic contrast-enhanced MRI and diffusion weighted MRI), to potentially improve diagnostic performance. PMID:25735297
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baheza, Richard A.; Welch, E. Brian; Gochberg, Daniel F.
Purpose: To develop and evaluate a new method for detecting calcium deposits using their characteristic magnetic susceptibility effects on magnetic resonance (MR) images at high fields and demonstrate its potential in practice for detecting breast microcalcifications. Methods: Characteristic dipole signatures of calcium deposits were detected in magnetic resonance phase images by computing the cross-correlation between the acquired data and a library of templates containing simulated phase patterns of spherical deposits. The influence of signal-to-noise ratio and various other MR parameters on the results were assessed using simulations and validated experimentally. The method was tested experimentally for detection of calcium fragmentsmore » within gel phantoms and calcium-like inhomogeneities within chicken tissue at 7 T with optimized MR acquisition parameters. The method was also evaluated for detection of simulated microcalcifications, modeled from biopsy samples of malignant breast cancer, inserted in silico into breast magnetic resonance imaging (MRIs) of healthy subjects at 7 T. For both assessments of calcium fragments in phantoms and biopsy-based simulated microcalcifications in breast MRIs, receiver operator characteristic curve analyses were performed to determine the cross-correlation index cutoff, for achieving optimal sensitivity and specificity, and the area under the curve (AUC), for measuring the method’s performance. Results: The method detected calcium fragments with sizes of 0.14–0.79 mm, 1 mm calcium-like deposits, and simulated microcalcifications with sizes of 0.4–1.0 mm in images with voxel sizes between (0.2 mm){sup 3} and (0.6 mm){sup 3}. In images acquired at 7 T with voxel sizes of (0.2 mm){sup 3}–(0.4 mm){sup 3}, calcium fragments (size 0.3–0.4 mm) were detected with a sensitivity, specificity, and AUC of 78%–90%, 51%–68%, and 0.77%–0.88%, respectively. In images acquired with a human 7 T scanner, acquisition times below 12 min, and voxel sizes of (0.4 mm){sup 3}–(0.6 mm){sup 3}, simulated microcalcifications with sizes of 0.6–1.0 mm were detected with a sensitivity, specificity, and AUC of 75%–87%, 54%–87%, and 0.76%–0.90%, respectively. However, different microcalcification shapes were indistinguishable. Conclusions: The new method is promising for detecting relatively large microcalcifications (i.e., 0.6–0.9 mm) within the breast at 7 T in reasonable times. Detection of smaller deposits at high field may be possible with higher spatial resolution, but such images require relatively long scan times. Although mammography can detect and distinguish the shape of smaller microcalcifications with superior sensitivity and specificity, this alternative method does not expose tissue to ionizing radiation, is not affected by breast density, and can be combined with other MRI methods (e.g., dynamic contrast-enhanced MRI and diffusion weighted MRI), to potentially improve diagnostic performance.« less
2013-01-01
Background Calcium deficiency is a global public-health problem. Although the initial stage of calcium deficiency can lead to metabolic alterations or potential pathological changes, calcium deficiency is difficult to diagnose accurately. Moreover, the details of the molecular mechanism of calcium deficiency remain somewhat elusive. To accurately assess and provide appropriate nutritional intervention, we carried out a global analysis of metabolic alterations in response to calcium deficiency. Methods The metabolic alterations associated with calcium deficiency were first investigated in a rat model, using urinary metabonomics based on ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry and multivariate statistical analysis. Correlations between dietary calcium intake and the biomarkers identified from the rat model were further analyzed to confirm the potential application of these biomarkers in humans. Results Urinary metabolic-profiling analysis could preliminarily distinguish between calcium-deficient and non-deficient rats after a 2-week low-calcium diet. We established an integrated metabonomics strategy for identifying reliable biomarkers of calcium deficiency using a time-course analysis of discriminating metabolites in a low-calcium diet experiment, repeating the low-calcium diet experiment and performing a calcium-supplement experiment. In total, 27 biomarkers were identified, including glycine, oxoglutaric acid, pyrophosphoric acid, sebacic acid, pseudouridine, indoxyl sulfate, taurine, and phenylacetylglycine. The integrated urinary metabonomics analysis, which combined biomarkers with regular trends of change (types A, B, and C), could accurately assess calcium-deficient rats at different stages and clarify the dynamic pathophysiological changes and molecular mechanism of calcium deficiency in detail. Significant correlations between calcium intake and two biomarkers, pseudouridine (Pearson correlation, r = 0.53, P = 0.0001) and citrate (Pearson correlation, r = -0.43, P = 0.001), were further confirmed in 70 women. Conclusions To our knowledge, this is the first report of reliable biomarkers of calcium deficiency, which were identified using an integrated strategy. The identified biomarkers give new insights into the pathophysiological changes and molecular mechanisms of calcium deficiency. The correlations between calcium intake and two of the biomarkers provide a rationale or potential for further assessment and elucidation of the metabolic responses of calcium deficiency in humans. PMID:23537001
Calcium homeostasis in intraerythrocytic malaria parasites.
Garcia, C R; Dluzewski, A R; Catalani, L H; Burting, R; Hoyland, J; Mason, W T
1996-12-01
The fluorescent indicator, fura-2, AM, was used to measure free calcium concentrations in the intraerythrocytic malaria parasites of Plasmodium chabaudi and Plasmodium falciparum. In both species the free cytosolic calcium concentration was maintained at low levels (between 40 and 100 nM throughout the maturation process. Digital image analysis of the indicator fluorescence was performed on parasites and evaluated with the aid of a calibration of the calcium response, based on permeabilized parasites, exposed to calcium buffers. This again revealed that free calcium concentrations in the intact parasite are maintained at a predetermined level, regardless of the free calcium in the surrounding milieu. Both species of parasites are thus capable of regulating their internal free calcium levels with high precision, presumably by means of calcium pump ATPases. A small but significant elevation of the cytosolic free calcium concentration by the tumor promoter, thapsigargin, may be taken to reflect the presence of calcium stores in the endoplasmic reticulum in P. falciparum.
Calcium carbonate nucleation in an alkaline lake surface water, Pyramid Lake, Nevada, USA
Reddy, Michael M.; Hoch, Anthony
2012-01-01
Calcium concentration and calcite supersaturation (Ω) needed for calcium carbonate nucleation and crystal growth in Pyramid Lake (PL) surface water were determined during August of 1997, 2000, and 2001. PL surface water has Ω values of 10-16. Notwithstanding high Ω, calcium carbonate growth did not occur on aragonite single crystals suspended PL surface water for several months. However, calcium solution addition to PL surface-water samples caused reproducible calcium carbonate mineral nucleation and crystal growth. Mean PL surface-water calcium concentration at nucleation was 2.33 mM (n = 10), a value about nine times higher than the ambient PL surface-water calcium concentration (0.26 mM); mean Ω at nucleation (109 with a standard deviation of 8) is about eight times the PL surface-water Ω. Calcium concentration and Ω regulated the calcium carbonate formation in PL nucleation experiments and surface water. Unfiltered samples nucleated at lower Ω than filtered samples. Calcium concentration and Ω at nucleation for experiments in the presence of added particles were within one standard deviation of the mean for all samples. Calcium carbonate formation rates followed a simple rate expression of the form, rate (mM/min) = A (Ω) + B. The best fit rate equation "Rate (Δ mM/Δ min) = -0.0026 Ω + 0.0175 (r = 0.904, n = 10)" was statistically significant at greater than the 0.01 confidence level and gives, after rearrangement, Ω at zero rate of 6.7. Nucleation in PL surface water and morphology of calcium carbonate particles formed in PL nucleation experiments and in PL surface-water samples suggest crystal growth inhibition by multiple substances present in PL surface water mediates PL calcium carbonate formation, but there is insufficient information to determine the chemical nature of all inhibitors.
Calcium Carbonate Nucleation in an Alkaline Lake Surface Water, Pyramid Lake, Nevada, USA
Reddy, M.M.; Hoch, A.
2012-01-01
Calcium concentration and calcite supersaturation (??) needed for calcium carbonate nucleation and crystal growth in Pyramid Lake (PL) surface water were determined during August of 1997, 2000, and 2001. PL surface water has ?? values of 10-16. Notwithstanding high ??, calcium carbonate growth did not occur on aragonite single crystals suspended PL surface water for several months. However, calcium solution addition to PL surface-water samples caused reproducible calcium carbonate mineral nucleation and crystal growth. Mean PL surface-water calcium concentration at nucleation was 2.33 mM (n = 10), a value about nine times higher than the ambient PL surface-water calcium concentration (0.26 mM); mean ?? at nucleation (109 with a standard deviation of 8) is about eight times the PL surface-water ??. Calcium concentration and ?? regulated the calcium carbonate formation in PL nucleation experiments and surface water. Unfiltered samples nucleated at lower ?? than filtered samples. Calcium concentration and ?? at nucleation for experiments in the presence of added particles were within one standard deviation of the mean for all samples. Calcium carbonate formation rates followed a simple rate expression of the form, rate (mM/min) = A (??) + B. The best fit rate equation "Rate (?? mM/?? min) = -0.0026 ?? + 0.0175 (r = 0.904, n = 10)" was statistically significant at greater than the 0.01 confidence level and gives, after rearrangement, ?? at zero rate of 6.7. Nucleation in PL surface water and morphology of calcium carbonate particles formed in PL nucleation experiments and in PL surface-water samples suggest crystal growth inhibition by multiple substances present in PL surface water mediates PL calcium carbonate formation, but there is insufficient information to determine the chemical nature of all inhibitors. ?? 2011 U.S. Government.
Assessment of calcium scoring performance in cardiac computed tomography.
Ulzheimer, Stefan; Kalender, Willi A
2003-03-01
Electron beam tomography (EBT) has been used for cardiac diagnosis and the quantitative assessment of coronary calcium since the late 1980s. The introduction of mechanical multi-slice spiral CT (MSCT) scanners with shorter rotation times opened new possibilities of cardiac imaging with conventional CT scanners. The purpose of this work was to qualitatively and quantitatively evaluate the performance for EBT and MSCT for the task of coronary artery calcium imaging as a function of acquisition protocol, heart rate, spiral reconstruction algorithm (where applicable) and calcium scoring method. A cardiac CT semi-anthropomorphic phantom was designed and manufactured for the investigation of all relevant image quality parameters in cardiac CT. This phantom includes various test objects, some of which can be moved within the anthropomorphic phantom in a manner that mimics realistic heart motion. These tools were used to qualitatively and quantitatively demonstrate the accuracy of coronary calcium imaging using typical protocols for an electron beam (Evolution C-150XP, Imatron, South San Francisco, Calif.) and a 0.5-s four-slice spiral CT scanner (Sensation 4, Siemens, Erlangen, Germany). A special focus was put on the method of quantifying coronary calcium, and three scoring systems were evaluated (Agatston, volume, and mass scoring). Good reproducibility in coronary calcium scoring is always the result of a combination of high temporal and spatial resolution; consequently, thin-slice protocols in combination with retrospective gating on MSCT scanners yielded the best results. The Agatston score was found to be the least reproducible scoring method. The hydroxyapatite mass, being better reproducible and comparable on different scanners and being a physical quantitative measure, appears to be the method of choice for future clinical studies. The hydroxyapatite mass is highly correlated to the Agatston score. The introduced phantoms can be used to quantitatively assess the performance characteristics of, for example, different scanners, reconstruction algorithms, and quantification methods in cardiac CT. This is especially important for quantitative tasks, such as the determination of the amount of calcium in the coronary arteries, to achieve high and constant quality in this field.
Yamagishi, Yuya; Tessier-Lavigne, Marc
2015-01-01
Calcium is a key regulator of axon degeneration caused by trauma and disease, but its specific spatial and temporal dynamics in injured axons remain unclear. To clarify the function of calcium in axon degeneration, we observed calcium dynamics in single injured neurons in live zebrafish larvae and tested the temporal requirement for calcium in zebrafish neurons and cultured mouse DRG neurons. Using laser axotomy to induce Wallerian degeneration (WD) in zebrafish peripheral sensory axons, we monitored calcium dynamics from injury to fragmentation, revealing two stereotyped phases of axonal calcium influx. First, axotomy triggered a transient local calcium wave originating at the injury site. This initial calcium wave only disrupted mitochondria near the injury site and was not altered by expression of the protective WD slow (WldS) protein. Inducing multiple waves with additional axotomies did not change the kinetics of degeneration. In contrast, a second phase of calcium influx occurring minutes before fragmentation spread as a wave throughout the axon, entered mitochondria, and was abolished by WldS expression. In live zebrafish, chelating calcium after the first wave, but before the second wave, delayed the progress of fragmentation. In cultured DRG neurons, chelating calcium early in the process of WD did not alter degeneration, but chelating calcium late in WD delayed fragmentation. We propose that a terminal calcium wave is a key instructive component of the axon degeneration program. SIGNIFICANCE STATEMENT Axon degeneration resulting from trauma or neurodegenerative disease can cause devastating deficits in neural function. Understanding the molecular and cellular events that execute axon degeneration is essential for developing treatments to address these conditions. Calcium is known to contribute to axon degeneration, but its temporal requirements in this process have been unclear. Live calcium imaging in severed zebrafish neurons and temporally controlled pharmacological treatments in both zebrafish and cultured mouse sensory neurons revealed that axonal calcium influx late in the degeneration process regulates axon fragmentation. These findings suggest that temporal considerations will be crucial for developing treatments for diseases associated with axon degeneration. PMID:26558774
Mechanics regulates ATP-stimulated collective calcium response in fibroblast cells
Lembong, Josephine; Sabass, Benedikt; Sun, Bo; Rogers, Matthew E.; Stone, Howard A.
2015-01-01
Cells constantly sense their chemical and mechanical environments. We study the effect of mechanics on the ATP-induced collective calcium response of fibroblast cells in experiments that mimic various tissue environments. We find that closely packed two-dimensional cell cultures on a soft polyacrylamide gel (Young's modulus E = 690 Pa) contain more cells exhibiting calcium oscillations than cultures on a rigid substrate (E = 36 000 Pa). Calcium responses of cells on soft substrates show a slower decay of calcium level relative to those on rigid substrates. Actin enhancement and disruption experiments for the cell cultures allow us to conclude that actin filaments determine the collective Ca2+ oscillatory behaviour in the culture. Inhibition of gap junctions results in a decrease of the oscillation period and reduced correlation of calcium responses, which suggests additional complexity of signalling upon cell–cell contact. Moreover, the frequency of calcium oscillations is independent of the rigidity of the substrate but depends on ATP concentration. We compare our results with those from similar experiments on individual cells. Overall, our observations show that collective chemical signalling in cell cultures via calcium depends critically on the mechanical environment. PMID:26063818
Imaging Large Cohorts of Single Ion Channels and Their Activity
Hiersemenzel, Katia; Brown, Euan R.; Duncan, Rory R.
2013-01-01
As calcium is the most important signaling molecule in neurons and secretory cells, amongst many other cell types, it follows that an understanding of calcium channels and their regulation of exocytosis is of vital importance. Calcium imaging using calcium dyes such as Fluo3, or FRET-based dyes that have been used widely has provided invaluable information, which combined with modeling has estimated the subtypes of channels responsible for triggering the exocytotic machinery as well as inferences about the relative distances away from vesicle fusion sites these molecules adopt. Importantly, new super-resolution microscopy techniques, combined with novel Ca2+ indicators and imaginative imaging approaches can now define directly the nano-scale locations of very large cohorts of single channel molecules in relation to single vesicles. With combinations of these techniques the activity of individual channels can be visualized and quantified using novel Ca2+ indicators. Fluorescently labeled specific channel toxins can also be used to localize endogenous assembled channel tetramers. Fluorescence lifetime imaging microscopy and other single-photon-resolution spectroscopic approaches offer the possibility to quantify protein–protein interactions between populations of channels and the SNARE protein machinery for the first time. Together with simultaneous electrophysiology, this battery of quantitative imaging techniques has the potential to provide unprecedented detail describing the locations, dynamic behaviors, interactions, and conductance activities of many thousands of channel molecules and vesicles in living cells. PMID:24027557
Jang, Min Jee; Nam, Yoonkey
2015-01-01
Abstract. Optical recording facilitates monitoring the activity of a large neural network at the cellular scale, but the analysis and interpretation of the collected data remain challenging. Here, we present a MATLAB-based toolbox, named NeuroCa, for the automated processing and quantitative analysis of large-scale calcium imaging data. Our tool includes several computational algorithms to extract the calcium spike trains of individual neurons from the calcium imaging data in an automatic fashion. Two algorithms were developed to decompose the imaging data into the activity of individual cells and subsequently detect calcium spikes from each neuronal signal. Applying our method to dense networks in dissociated cultures, we were able to obtain the calcium spike trains of ∼1000 neurons in a few minutes. Further analyses using these data permitted the quantification of neuronal responses to chemical stimuli as well as functional mapping of spatiotemporal patterns in neuronal firing within the spontaneous, synchronous activity of a large network. These results demonstrate that our method not only automates time-consuming, labor-intensive tasks in the analysis of neural data obtained using optical recording techniques but also provides a systematic way to visualize and quantify the collective dynamics of a network in terms of its cellular elements. PMID:26229973
Visualizing Calcium Flux in Freely Moving Nematode Embryos.
Ardiel, Evan L; Kumar, Abhishek; Marbach, Joseph; Christensen, Ryan; Gupta, Rishi; Duncan, William; Daniels, Jonathan S; Stuurman, Nico; Colón-Ramos, Daniel; Shroff, Hari
2017-05-09
The lack of physiological recordings from Caenorhabditis elegans embryos stands in stark contrast to the comprehensive anatomical and gene expression datasets already available. Using light-sheet fluorescence microscopy to address the challenges associated with functional imaging at this developmental stage, we recorded calcium dynamics in muscles and neurons and developed analysis strategies to relate activity and movement. In muscles, we found that the initiation of twitching was associated with a spreading calcium wave in a dorsal muscle bundle. Correlated activity in muscle bundles was linked with early twitching and eventual coordinated movement. To identify neuronal correlates of behavior, we monitored brainwide activity with subcellular resolution and identified a particularly active cell associated with muscle contractions. Finally, imaging neurons of a well-defined adult motor circuit, we found that reversals in the eggshell correlated with calcium transients in AVA interneurons. Published by Elsevier Inc.
A Neuron-Based Screening Platform for Optimizing Genetically-Encoded Calcium Indicators
Schreiter, Eric R.; Hasseman, Jeremy P.; Tsegaye, Getahun; Fosque, Benjamin F.; Behnam, Reza; Shields, Brenda C.; Ramirez, Melissa; Kimmel, Bruce E.; Kerr, Rex A.; Jayaraman, Vivek; Looger, Loren L.; Svoboda, Karel; Kim, Douglas S.
2013-01-01
Fluorescent protein-based sensors for detecting neuronal activity have been developed largely based on non-neuronal screening systems. However, the dynamics of neuronal state variables (e.g., voltage, calcium, etc.) are typically very rapid compared to those of non-excitable cells. We developed an electrical stimulation and fluorescence imaging platform based on dissociated rat primary neuronal cultures. We describe its use in testing genetically-encoded calcium indicators (GECIs). Efficient neuronal GECI expression was achieved using lentiviruses containing a neuronal-selective gene promoter. Action potentials (APs) and thus neuronal calcium levels were quantitatively controlled by electrical field stimulation, and fluorescence images were recorded. Images were segmented to extract fluorescence signals corresponding to individual GECI-expressing neurons, which improved sensitivity over full-field measurements. We demonstrate the superiority of screening GECIs in neurons compared with solution measurements. Neuronal screening was useful for efficient identification of variants with both improved response kinetics and high signal amplitudes. This platform can be used to screen many types of sensors with cellular resolution under realistic conditions where neuronal state variables are in relevant ranges with respect to timing and amplitude. PMID:24155972
Dual-slit confocal light sheet microscopy for in vivo whole-brain imaging of zebrafish
Yang, Zhe; Mei, Li; Xia, Fei; Luo, Qingming; Fu, Ling; Gong, Hui
2015-01-01
In vivo functional imaging at single-neuron resolution is an important approach to visualize biological processes in neuroscience. Light sheet microscopy (LSM) is a cutting edge in vivo imaging technique that provides micron-scale spatial resolution at high frame rate. Due to the scattering and absorption of tissue, however, conventional LSM is inadequate to resolve cells because of the attenuated signal to noise ratio (SNR). Using dual-beam illumination and confocal dual-slit detection, here a dual-slit confocal LSM is demonstrated to obtain the SNR enhanced images with frame rate twice as high as line confocal LSM method. Through theoretical calculations and experiments, the correlation between the slit’s width and SNR was determined to optimize the image quality. In vivo whole brain structural imaging stacks and the functional imaging sequences of single slice were obtained for analysis of calcium activities at single-cell resolution. A two-fold increase in imaging speed of conventional confocal LSM makes it possible to capture the sequence of the neurons’ activities and help reveal the potential functional connections in the whole zebrafish’s brain. PMID:26137381
Sensitive red protein calcium indicators for imaging neural activity
Dana, Hod; Mohar, Boaz; Sun, Yi; Narayan, Sujatha; Gordus, Andrew; Hasseman, Jeremy P; Tsegaye, Getahun; Holt, Graham T; Hu, Amy; Walpita, Deepika; Patel, Ronak; Macklin, John J; Bargmann, Cornelia I; Ahrens, Misha B; Schreiter, Eric R; Jayaraman, Vivek; Looger, Loren L; Svoboda, Karel; Kim, Douglas S
2016-01-01
Genetically encoded calcium indicators (GECIs) allow measurement of activity in large populations of neurons and in small neuronal compartments, over times of milliseconds to months. Although GFP-based GECIs are widely used for in vivo neurophysiology, GECIs with red-shifted excitation and emission spectra have advantages for in vivo imaging because of reduced scattering and absorption in tissue, and a consequent reduction in phototoxicity. However, current red GECIs are inferior to the state-of-the-art GFP-based GCaMP6 indicators for detecting and quantifying neural activity. Here we present improved red GECIs based on mRuby (jRCaMP1a, b) and mApple (jRGECO1a), with sensitivity comparable to GCaMP6. We characterized the performance of the new red GECIs in cultured neurons and in mouse, Drosophila, zebrafish and C. elegans in vivo. Red GECIs facilitate deep-tissue imaging, dual-color imaging together with GFP-based reporters, and the use of optogenetics in combination with calcium imaging. DOI: http://dx.doi.org/10.7554/eLife.12727.001 PMID:27011354
NASA Astrophysics Data System (ADS)
Takaya, K.; Okabe, M.; Sawataishi, M.; Takashima, H.; Yoshida, T.
2003-01-01
Ion microscopy (IM) of air-dried or freeze-dried cryostat and semi-thin cryosections has provided ion images of elements and organic substances in wide areas of the tissue. For reproducible ion images by a shorter time of exposure to the primary ion beam, fresh frozen dried ultrathin sections were prepared by freezing the tissue in propane chilled with liquid nitrogen, cryocut at 60 nm, mounted on grids and silicon wafer pieces, and freeze-dried. Rat Cowper gland and sciatic nerve, bone marrow of the rat administered of lithium carbonate, tree frog and African toad spleen and buffy coat of atopic dermatitis patients were examined. Fine structures and ion images of the corresponding areas in the same or neighboring sections were observed by transmission electron microscopy (TEM) followed by sector type and time-of-flight type IM. Cells in the buffy coat contained larger amounts of potassium and magnesium while plasma had larger amounts of sodium and calcium. However, in the tissues, lithium, sodium, magnesium, calcium and potassium were distributed in the cell and calcium showed a granular appearance. A granular cell of the tree frog spleen contained sodium and potassium over the cell and magnesium and calcium were confined to granules.
Myoga, Michael H; Beierlein, Michael; Regehr, Wade G
2009-06-17
Somatic spiking is known to regulate dendritic signaling and associative synaptic plasticity in many types of large neurons, but it is unclear whether somatic action potentials play similar roles in small neurons. Here we ask whether somatic action potentials can also influence dendritic signaling in an electrically compact neuron, the cerebellar stellate cell (SC). Experiments were conducted in rat brain slices using a combination of imaging and electrophysiology. We find that somatic action potentials elevate dendritic calcium levels in SCs. There was little attenuation of calcium signals with distance from the soma in SCs from postnatal day 17 (P17)-P19 rats, which had dendrites that averaged 60 microm in length, and in short SC dendrites from P30-P33 rats. Somatic action potentials evoke dendritic calcium increases that are not affected by blocking dendritic sodium channels. This indicates that dendritic signals in SCs do not rely on dendritic sodium channels, which differs from many types of large neurons, in which dendritic sodium channels and backpropagating action potentials allow somatic spikes to control dendritic calcium signaling. Despite the lack of active backpropagating action potentials, we find that trains of somatic action potentials elevate dendritic calcium sufficiently to release endocannabinoids and retrogradely suppress parallel fiber to SC synapses in P17-P19 rats. Prolonged SC firing at physiologically realistic frequencies produces retrograde suppression when combined with low-level group I metabotropic glutamate receptor activation. Somatic spiking also interacts with synaptic stimulation to promote associative plasticity. These findings indicate that in small neurons the passive spread of potential within dendrites can allow somatic spiking to regulate dendritic calcium signaling and synaptic plasticity.
Bisphenol A stimulates human prostate cancer cell migration via remodelling of calcium signalling.
Derouiche, Sandra; Warnier, Marine; Mariot, Pascal; Gosset, Pierre; Mauroy, Brigitte; Bonnal, Jean-Louis; Slomianny, Christian; Delcourt, Philippe; Prevarskaya, Natalia; Roudbaraki, Morad
2013-12-01
Bisphenol A (BPA), the principal constituent of reusable water bottles, metal cans, and plastic food containers, has been shown to be involved in human prostate cancer (PCa) cell proliferation. The aim of the present study was to explore the effect of BPA on PCa cell migration and the pathways involved in these processes. Using the transwell technique, we clearly show for the first time that the pre-treatment of the cells with BPA (1-10 nM) induces human PCa cell migration. Using a calcium imaging technique, we show that BPA pre-treatment induces an amplification of Store-Operated Calcium Entry (SOCE) in LNCaP cells. RT-PCR and Western blot experiments allowed the identification of the ion channel proteins which are up-regulated by BPA pre-treatments. These include the Orai1 protein, which is known as an important SOCE actor in various cell systems, including human PCa cells. Using a siRNA strategy, we observed that BPA-induced amplification of SOCE was Orai1-dependent. Interestingly, the BPA-induced PCa cell migration was suppressed when the calcium entry was impaired by the use of SOCE inhibitors (SKF96365, BTP2), or when the extracellular calcium was chelated. Taken together, the results presented here show that BPA induces PCa cells migration via a modulation of the ion channel protein expression involved in calcium entry and in cancer cell migration. The present data provide novel insights into the molecular mechanisms involved in the effects of an environmental factor on cancer cells and suggest both the necessity of preventive measures and the possibility of targeting ion channels in the treatment of PCa cell metastasis.
Measuring coronary calcium on CT images adjusted for attenuation differences.
Nelson, Jennifer Clark; Kronmal, Richard A; Carr, J Jeffrey; McNitt-Gray, Michael F; Wong, Nathan D; Loria, Catherine M; Goldin, Jonathan G; Williams, O Dale; Detrano, Robert
2005-05-01
To quantify scanner and participant variability in attenuation values for computed tomographic (CT) images assessed for coronary calcium and define a method for standardizing attenuation values and calibrating calcium measurements. Institutional review board approval and participant informed consent were obtained at all study sites. An image attenuation adjustment method involving the use of available calibration phantom data to define standard attenuation values was developed. The method was applied to images from two population-based multicenter studies: the Coronary Artery Risk Development in Young Adults study (3041 participants) and the Multi-Ethnic Study of Atherosclerosis (6814 participants). To quantify the variability in attenuation, analysis of variance techniques were used to compare the CT numbers of standardized torso phantom regions across study sites, and multivariate linear regression models of participant-specific calibration phantom attenuation values that included participant age, race, sex, body mass index (BMI), smoking status, and site as covariates were developed. To assess the effect of the calibration method on calcium measurements, Pearson correlation coefficients between unadjusted and attenuation-adjusted calcium measurements were computed. Multivariate models were used to examine the effect of sex, race, BMI, smoking status, unadjusted score, and site on Agatston score adjustments. Mean attenuation values (CT numbers) of a standard calibration phantom scanned beneath participants varied significantly according to scanner and participant BMI (P < .001 for both). Values were lowest for Siemens multi-detector row CT scanners (110.0 HU), followed by GE-Imatron electron-beam (116.0 HU) and GE LightSpeed multi-detector row scanners (121.5 HU). Values were also lower for morbidly obese (BMI, > or =40.0 kg/m(2)) participants (108.9 HU), followed by obese (BMI, 30.0-39.9 kg/m(2)) (114.8 HU), overweight (BMI, 25.0-29.9 kg/m(2)) (118.5 HU), and normal-weight or underweight (BMI, <25.0 kg/m(2)) (120.1 HU) participants. Agatston score calibration adjustments ranged from -650 to 1071 (mean, -8 +/- 50 [standard deviation]) and increased with Agatston score (P < .001). The direction and magnitude of adjustment varied significantly according to scanner and BMI (P < .001 for both) and were consistent with phantom attenuation results in that calibration resulted in score decreases for images with higher phantom attenuation values. Image attenuation values vary by scanner and participant body size, producing calcium score differences that are not due to true calcium burden disparities. Use of calibration phantoms to adjust attenuation values and calibrate calcium measurements in research studies and clinical practice may improve the comparability of such measurements between persons scanned with different scanners and within persons over time.
The central uplift of Ritchey crater, Mars
NASA Astrophysics Data System (ADS)
Ding, Ning; Bray, Veronica J.; McEwen, Alfred S.; Mattson, Sarah S.; Okubo, Chris H.; Chojnacki, Matthew; Tornabene, Livio L.
2015-05-01
Ritchey crater is a ∼79 km diameter complex crater near the boundary between Hesperian ridged plains and Noachian highland terrain on Mars (28.8°S, 309.0°E) that formed after the Noachian. High Resolution Imaging Science Experiment (HiRISE) images of the central peak reveal fractured massive bedrock and megabreccia with large clasts. Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) spectral analysis reveals low calcium pyroxene (LCP), olivine (OL), hydrated silicates (phyllosilicates) and a possible identification of plagioclase bedrock. We mapped the Ritchey crater central uplift into ten units, with 4 main groups from oldest and originally deepest to youngest: (1) megabreccia with large clasts rich in LCP and OL, and with alteration to phyllosilicates; (2) massive bedrock with bright and dark regions rich in LCP or OL, respectively; (3) LCP and OL-rich impactites draped over the central uplift; and (4) aeolian deposits. We interpret the primitive martian crust as igneous rocks rich in LCP, OL, and probably plagioclase, as previously observed in eastern Valles Marineris. We do not observe high-calcium pyroxene (HCP) rich bedrock as seen in Argyre or western Valles Marineris. The association of phyllosilicates with deep megabreccia could be from impact-induced alteration, either as a result of the Richey impact, or alteration of pre-existing impactites from Argyre basin and other large impacts that preceded the Ritchey impact, or both.
The central uplift of Ritchey crater, Mars
Ding, Ning; Bray, Veronica J.; McEwen, Alfred S.; Mattson, Sarah S.; Okubo, Chris H.; Chojnacki, Matthew; Tornabene, Livio L.
2015-01-01
Ritchey crater is a ∼79 km diameter complex crater near the boundary between Hesperian ridged plains and Noachian highland terrain on Mars (28.8°S, 309.0°E) that formed after the Noachian. High Resolution Imaging Science Experiment (HiRISE) images of the central peak reveal fractured massive bedrock and megabreccia with large clasts. Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) spectral analysis reveals low calcium pyroxene (LCP), olivine (OL), hydrated silicates (phyllosilicates) and a possible identification of plagioclase bedrock. We mapped the Ritchey crater central uplift into ten units, with 4 main groups from oldest and originally deepest to youngest: (1) megabreccia with large clasts rich in LCP and OL, and with alteration to phyllosilicates; (2) massive bedrock with bright and dark regions rich in LCP or OL, respectively; (3) LCP and OL-rich impactites draped over the central uplift; and (4) aeolian deposits. We interpret the primitive martian crust as igneous rocks rich in LCP, OL, and probably plagioclase, as previously observed in eastern Valles Marineris. We do not observe high-calcium pyroxene (HCP) rich bedrock as seen in Argyre or western Valles Marineris. The association of phyllosilicates with deep megabreccia could be from impact-induced alteration, either as a result of the Richey impact, or alteration of pre-existing impactites from Argyre basin and other large impacts that preceded the Ritchey impact, or both.
Calcium transport into the cells of the sea urchin larva in relation to spicule formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vidavsky, Netta; Addadi, Sefi; Schertel, Andreas
We investigated the manner in which the sea urchin larva takes up calcium from its body cavity into the primary mesenchymal cells (PMCs) that are responsible for spicule formation. We used the membrane-impermeable fluorescent dye calcein and alexa-dextran, with or without a calcium channel inhibitor, and imaged the larvae in vivo with selective-plane illumination microscopy. Both fluorescent molecules are taken up from the body cavity into the PMCs and ectoderm cells, where the two labels are predominantly colocalized in particles, whereas the calcium-binding calcein label is mainly excluded from the endoderm and is concentrated in the spicules. The presence ofmore » vesicles and vacuoles inside the PMCs that have openings through the plasma membrane directly to the body cavity was documented using high-resolution cryo-focused ion beam-SEM serial imaging. Some of the vesicles and vacuoles are interconnected to form large networks. We suggest that these vacuolar networks are involved in direct sea water uptake. We conclude that the calcium pathway from the body cavity into cells involves nonspecific endocytosis of sea water with its calcium.« less
Calcium transport into the cells of the sea urchin larva in relation to spicule formation
Vidavsky, Netta; Addadi, Sefi; Schertel, Andreas; ...
2016-10-24
We investigated the manner in which the sea urchin larva takes up calcium from its body cavity into the primary mesenchymal cells (PMCs) that are responsible for spicule formation. We used the membrane-impermeable fluorescent dye calcein and alexa-dextran, with or without a calcium channel inhibitor, and imaged the larvae in vivo with selective-plane illumination microscopy. Both fluorescent molecules are taken up from the body cavity into the PMCs and ectoderm cells, where the two labels are predominantly colocalized in particles, whereas the calcium-binding calcein label is mainly excluded from the endoderm and is concentrated in the spicules. The presence ofmore » vesicles and vacuoles inside the PMCs that have openings through the plasma membrane directly to the body cavity was documented using high-resolution cryo-focused ion beam-SEM serial imaging. Some of the vesicles and vacuoles are interconnected to form large networks. We suggest that these vacuolar networks are involved in direct sea water uptake. We conclude that the calcium pathway from the body cavity into cells involves nonspecific endocytosis of sea water with its calcium.« less
Synthesis of fluorapatite–hydroxyapatite nanoparticles and toxicity investigations
Montazeri, N; Jahandideh, R; Biazar, Esmaeil
2011-01-01
In this study, calcium phosphate nanoparticles with two phases, fluorapatite (FA; Ca10(PO4)6F2) and hydroxyapatite (HA; Ca10(PO4)6(OH)2), were prepared using the solgel method. Ethyl phosphate, hydrated calcium nitrate, and ammonium fluoride were used, respectively, as P, Ca, and F precursors with a Ca:P ratio of 1:72. Powders obtained from the sol-gel process were studied after they were dried at 80°C and heat treated at 550°C. The degree of crystallinity, particle and crystallite size, powder morphology, chemical structure, and phase analysis were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and Zetasizer experiments. The results of XRD analysis and FTIR showed the presence of hydroxyapatite and fluorapatite phases. The sizes of the crystallites estimated from XRD patterns using the Scherrer equation and the crystallinity of the hydroxyapatite phase were about 20 nm and 70%, respectively. Transmission electron microscope and SEM images and Zetasizer experiments showed an average size of 100 nm. The in vitro behavior of powder was investigated with mouse fibroblast cells. The results of these experiments indicated that the powders were biocompatibile and would not cause toxic reactions. These compounds could be applied for hard-tissue engineering. PMID:21499417
Thick, Dark Veins at Garden City, Mars
2015-11-11
These images from the Chemistry and Camera (ChemCam) instrument on NASA's Curiosity Mars rover indicate similarly dark material, but with very different chemistries, in mineral veins at "Garden City." Each of the side-by-side circular images covers an area about 2 inches (5 centimeters) in diameter. The images were taken by ChemCam's Remote Micro-Imager. Researchers used ChemCam's laser, telescope and spectrometers to examine the chemistry of material in these veins. While both of these veins are dark, their chemistries are very different, indicating that they were formed by different fluids. One common aspect of the chemistry in the dark material is an iron content higher than nearby bedrock. Thus the dark appearance may be result of similar iron content. The dark maerial in the vein on the left is enriched in calcium and contains calcium fluorine. The dark material in the vein on the right is enriched in magnesium, but not in calcium or calcium fluorine. Thus, the veins were formed by different fluids that deposited minerals in rock fractures. The Remote Micro-Imager took the image on the left on March 27, 2015, during the 938th Martian day, or sol, of Curiosity's work on Mars. The next day, it took the image on the right. A broader view of the prominent mineral veins at Garden City is at PIA19161. ChemCam is one of 10 instruments in Curiosity's science payload. The U.S. Department of Energy's Los Alamos National Laboratory, in Los Alamos, New Mexico, developed ChemCam in partnership with scientists and engineers funded by the French national space agency (CNES), the University of Toulouse and the French national research agency (CNRS). More information about ChemCam is available at http://www.msl-chemcam.com. http://photojournal.jpl.nasa.gov/catalog/PIA19924
A simple microfluidic device for live cell imaging of Arabidopsis cotyledons, leaves, and seedlings.
Vang, Shia; Seitz, Kati; Krysan, Patrick J
2018-06-01
One of the challenges of performing live-cell imaging in plants is establishing a system for securing the sample during imaging that allows for the rapid addition of treatments. Here we report how a commercially available device called a HybriWell ™ can be repurposed to create an imaging chamber suitable for Arabidopsis seedlings, cotyledons and leaves. Liquid in the imaging chamber can be rapidly exchanged to introduce chemical treatments via microfluidic passive pumping. When used in conjunction with fluorescent biosensors, this system can facilitate live-cell imaging studies of signal transduction pathways triggered by different treatments. As a demonstration, we show how the HybriWell can be used to monitor flg22-induced calcium transients using the R-GECO1 calcium indicator in detached Arabidopsis leaves.
NASA Technical Reports Server (NTRS)
Silver, Geri; Etlinger, Joseph D.
1985-01-01
The effects of calcium on the synthesis and the degradation of individual myofibrillar proteins were investigated using primary chick-leg skeletal muscle cultures labeled with S-35-methionine (for protein accumulation experiments) or Ca(2+)-45 (for calcium efflux experiments). It was found that the turnover of individual contractile proteins is regulated nonuniformly by a calcium-dependent mechanism involving lysosomes. The results also indicate that contractile proteins are released from the myofibril before their breakdown to amino acids.
Close-up View of Homestake Vein
2011-12-07
This close-up view of a mineral vein called Homestake comes from the microscopic imager on NASA Mars Exploration Rover Opportunity; the vein is found to be rich in calcium and sulfur, possibly the calcium-sulfate mineral gypsum.
NASA Technical Reports Server (NTRS)
Nielsen, Kjeld Flemming; Lind, M. David
1992-01-01
Experiment A0139A on the Long Duration Exposure Facility (LDEF) carried four large containers into orbit five years with crystal growth solutions for lead sulfide, calcium carbonate, and TTF-TCNQ. Although temperature data was lost, the experimental program had been working since the valves in all containers had been opened. All four experiments produced crystals of varying quality. The calcium carbonate crystals had the best appearance. The TTF-TCNQ crystals were packed together near the valve openings of the container. When taken apart, the single crystals showed some unusual morphological properties. X ray investigations as well as conductivity measurements on long duration space grown TTF-TCNQ crystals will be presented. Comparisons will be made with our previous space solution growth experiments. The TTF-TCNQ crystals are no longer of the highest interest, so this activity has been terminated in favor of calcium carbonate and calcium phosphate crystallizations.
Two-photon calcium imaging from head-fixed Drosophila during optomotor walking behavior.
Seelig, Johannes D; Chiappe, M Eugenia; Lott, Gus K; Dutta, Anirban; Osborne, Jason E; Reiser, Michael B; Jayaraman, Vivek
2010-07-01
Drosophila melanogaster is a model organism rich in genetic tools to manipulate and identify neural circuits involved in specific behaviors. Here we present a technique for two-photon calcium imaging in the central brain of head-fixed Drosophila walking on an air-supported ball. The ball's motion is tracked at high resolution and can be treated as a proxy for the fly's own movements. We used the genetically encoded calcium sensor, GCaMP3.0, to record from important elements of the motion-processing pathway, the horizontal-system lobula plate tangential cells (LPTCs) in the fly optic lobe. We presented motion stimuli to the tethered fly and found that calcium transients in horizontal-system neurons correlated with robust optomotor behavior during walking. Our technique allows both behavior and physiology in identified neurons to be monitored in a genetic model organism with an extensive repertoire of walking behaviors.
Calcification detection of abdominal aorta in CT images and 3D visualization in VR devices.
Garcia-Berna, Jose A; Sanchez-Gomez, Juan M; Hermanns, Judith; Garcia-Mateos, Gines; Fernandez-Aleman, Jose L
2016-08-01
Automatic calcification detection in abdominal aorta consists of a set of computer vision techniques to quantify the amount of calcium that is found around this artery. Knowing that information, it is possible to perform statistical studies that relate vascular diseases with the presence of calcium in these structures. To facilitate the detection in CT images, a contrast is usually injected into the circulatory system of the patients to distinguish the aorta from other body tissues and organs. This contrast increases the absorption of X-rays by human blood, making it easier the measurement of calcifications. Based on this idea, a new system capable of detecting and tracking the aorta artery has been developed with an estimation of the calcium found surrounding the aorta. Besides, the system is complemented with a 3D visualization mode of the image set which is designed for the new generation of immersive VR devices.
ERIC Educational Resources Information Center
Bazzi, Ali; Kreuz, Bette; Fischer, Jeffrey
2004-01-01
An experiment for determination of calcium in cereal using two-increment standard addition method in conjunction with flame atomic absorption spectroscopy (FAAS) is demonstrated. The experiment is intended to introduce students to the principles of atomic absorption spectroscopy giving them hands on experience using quantitative methods of…
Investigate The Role Of Cells To Cell Adhesion During Wound Healing
NASA Astrophysics Data System (ADS)
Montes, D. R.; Rodriguez, A. J.; Uyoh, E.; Antwi, P.; Olusegun, S.; Murray, P.
2017-12-01
Improvements in wound healing can save living organism and cut misery in health care centers and on the military battlefield. Microscopic examination of how Madin-Darby Canine Kidney (MDCK) epithelial cells respond to wounds under various treatments that block general calcium absorption and e-cadherin mechanics may yield novel wound treatment insights. We used MDCK cells as our tissue model for this experiment.Each tissue was grown on mattek dishes at high, middle, and low densities. Next, we incubated the tissue at 37 degrees celsius overnight. The next day, we wounded the MDCK tissue by scratching them with a 21G1 ½(38.1 mm) syringe needle. Before the scratch we took an image of the tissues. With the tissue wound we made a time-lapse movie of about 3 hours long with a interval of 1 min. Afterward, we compared each MDCK tissue by adding a calcium chelator named EGTA. As so, this will sequester calcium use as well to block e-cadherin mechanics. We then looked at the relationship between a wounded tissue and a healthy tissue. As such, wound dynamics can be observed. We asked ourselves, will EGTA prevent wound closure?
Carr, Lynn; Bardet, Sylvia M; Arnaud-Cormos, Delia; Leveque, Philippe; O'Connor, Rodney P
2018-02-01
Cytosolic, synthetic chemical calcium indicators are typically used to visualise the rapid increase in intracellular calcium ion concentration that follows nanosecond pulsed electric field (nsPEF) application. This study looks at the application of genetically encoded calcium indicators (GECIs) to investigate the spatiotemporal nature of nsPEF-induced calcium signals using fluorescent live cell imaging. Calcium responses to 44kV/cm, 10ns pulses were observed in U87-MG cells expressing either a plasma membrane targeted GECI (GCaMP5-G), or one cytosolically expressed (GCaMP6-S), and compared to the response of cells loaded with cytosolic or plasma membrane targeted chemical calcium indicators. Application of 100 pulses, to cells containing plasma membrane targeted indicators, revealed a wave of calcium across the cell initiating at the cathode side. A similar spatial wave was not observed with cytosolic indicators with mobile calcium buffering properties. The speed of the wave was related to pulse application frequency and it was not propagated by calcium induced calcium release. Copyright © 2017 Elsevier B.V. All rights reserved.
The Plasma Membrane Calcium Pump
NASA Technical Reports Server (NTRS)
Rasmussen, H.
1983-01-01
Three aspect of cellular calcium metabolism in animal cells was discussed including the importance of the plasma membrane in calcium homeostasis, experiments dealing with the actual mechanism of the calcium pump, and the function of the pump in relationship to the mitochondria and to the function of calmodulin in the intact cell.
Attempt to model laboratory-scale diffusion and retardation data.
Hölttä, P; Siitari-Kauppi, M; Hakanen, M; Tukiainen, V
2001-02-01
Different approaches for measuring the interaction between radionuclides and rock matrix are needed to test the compatibility of experimental retardation parameters and transport models used in assessing the safety of the underground repositories for the spent nuclear fuel. In this work, the retardation of sodium, calcium and strontium was studied on mica gneiss, unaltered, moderately altered and strongly altered tonalite using dynamic fracture column method. In-diffusion of calcium into rock cubes was determined to predict retardation in columns. In-diffusion of calcium into moderately and strongly altered tonalite was interpreted using a numerical code FTRANS. The code was able to interprete in-diffusion of weakly sorbing calcium into the saturated porous matrix. Elution curves of calcium for the moderately and strongly altered tonalite fracture columns were explained adequately using FTRANS code and parameters obtained from in-diffusion calculations. In this paper, mass distribution ratio values of sodium, calcium and strontium for intact rock are compared to values, previously obtained for crushed rock from batch and crushed rock column experiments. Kd values obtained from fracture column experiments were one order of magnitude lower than Kd values from batch experiments.
Varieties of reentrant dynamics
NASA Astrophysics Data System (ADS)
Campanari, Lucas; You, Min Ju; Langfield, Peter; Glass, Leon; Shrier, Alvin
2017-04-01
Experiments were carried out in monolayer tissue cultures of embryonic chick heart cells imaged using a calcium sensitive fluorescent dye. The cells were grown in annular geometries and in annular geometries with an isthmus connecting antipodal region of the annulus. We observed a large number of spatially different patterns of propagation consisting of one or more circulating waves. As well, we also observed rhythms in which rotors embedded in the annuli generated propagating pulses. These results demonstrate that many different patterns of excitation can be present in cardiac tissue with simple geometries.
CALCIUM. Photography of the Experiment Ops
2014-08-22
ISS040-E-104588 (22 Aug. 2014) --- In the International Space Station’s Rassvet Mini-Research Module 1 (MRM-1), Russian cosmonaut Maxim Suraev, Expedition 40 flight engineer, performs a session of the Calcium experiment, which examines the causes of the loss of bone density that occurs in a weightless environment. For this study, Russian researchers are looking at the solubility of calcium phosphates and human bone samples in water in space.
Experiment 305: Pathophysiology of Mineral Loss During Space Flight
NASA Technical Reports Server (NTRS)
Arnaud, Claude D.; Cann, Christopher E.
1995-01-01
The objective of this SLS-2 experiment was to determine the pathophysiology of mineral loss during space flight. This was to be accomplished by (1) determining the concentrations of blood minerals and of calciotropic hormones (parathyroid hormone-PTH, vitamin D metabolites) before, during, and after a 14 day shuttle flight, and (2) determining, by calcium kinetic analysis (using stable calcium isotopes), the influence of space flight on intestinal calcium absorption .
Kasprowicz, Richard; Rand, Emma; O'Toole, Peter J; Signoret, Nathalie
2018-05-22
Cell-to-cell communication engages signaling and spatiotemporal reorganization events driven by highly context-dependent and dynamic intercellular interactions, which are difficult to capture within heterogeneous primary cell cultures. Here, we present a straightforward correlative imaging approach utilizing commonly available instrumentation to sample large numbers of cell-cell interaction events, allowing qualitative and quantitative characterization of rare functioning cell-conjugates based on calcium signals. We applied this approach to examine a previously uncharacterized immunological synapse, investigating autologous human blood CD4 + T cells and monocyte-derived macrophages (MDMs) forming functional conjugates in vitro. Populations of signaling conjugates were visualized, tracked and analyzed by combining live imaging, calcium recording and multivariate statistical analysis. Correlative immunofluorescence was added to quantify endogenous molecular recruitments at the cell-cell junction. By analyzing a large number of rare conjugates, we were able to define calcium signatures associated with different states of CD4 + T cell-MDM interactions. Quantitative image analysis of immunostained conjugates detected the propensity of endogenous T cell surface markers and intracellular organelles to polarize towards cell-cell junctions with high and sustained calcium signaling profiles, hence defining immunological synapses. Overall, we developed a broadly applicable approach enabling detailed single cell- and population-based investigations of rare cell-cell communication events with primary cells.
Evidence for a Regulatory Role of Calcium in Gravitropism
NASA Technical Reports Server (NTRS)
Roux, S. J.
1983-01-01
Experiments conducted to determine the cellular basis of gravitropism, the phenomenon of calcium migration following gravitropic stimulation, and the preferential accumulation of calcium in cells are described. Results of autoradiographic studies of cross sections of oat, and the pryoantimony precipitation of calcium in situ are discussed. It was found that the movement of calcium during gravimetric stimulation is a redistribution of calcium from the vacuolar regions into the cells walls. This movement requires precipitation of a calcium ATPase. The control of calcium ATPase by calmodulin and whether chlorpromazine is binding to calmodulin in plants are considered.
Fast online deconvolution of calcium imaging data
Zhou, Pengcheng; Paninski, Liam
2017-01-01
Fluorescent calcium indicators are a popular means for observing the spiking activity of large neuronal populations, but extracting the activity of each neuron from raw fluorescence calcium imaging data is a nontrivial problem. We present a fast online active set method to solve this sparse non-negative deconvolution problem. Importantly, the algorithm 3progresses through each time series sequentially from beginning to end, thus enabling real-time online estimation of neural activity during the imaging session. Our algorithm is a generalization of the pool adjacent violators algorithm (PAVA) for isotonic regression and inherits its linear-time computational complexity. We gain remarkable increases in processing speed: more than one order of magnitude compared to currently employed state of the art convex solvers relying on interior point methods. Unlike these approaches, our method can exploit warm starts; therefore optimizing model hyperparameters only requires a handful of passes through the data. A minor modification can further improve the quality of activity inference by imposing a constraint on the minimum spike size. The algorithm enables real-time simultaneous deconvolution of O(105) traces of whole-brain larval zebrafish imaging data on a laptop. PMID:28291787
Martial, Franck P.; Hartell, Nicholas A.
2012-01-01
Confocal microscopy is routinely used for high-resolution fluorescence imaging of biological specimens. Most standard confocal systems scan a laser across a specimen and collect emitted light passing through a single pinhole to produce an optical section of the sample. Sequential scanning on a point-by-point basis limits the speed of image acquisition and even the fastest commercial instruments struggle to resolve the temporal dynamics of rapid cellular events such as calcium signals. Various approaches have been introduced that increase the speed of confocal imaging. Nipkov disk microscopes, for example, use arrays of pinholes or slits on a spinning disk to achieve parallel scanning which significantly increases the speed of acquisition. Here we report the development of a microscope module that utilises a digital micromirror device as a spatial light modulator to provide programmable confocal optical sectioning with a single camera, at high spatial and axial resolution at speeds limited by the frame rate of the camera. The digital micromirror acts as a solid state Nipkov disk but with the added ability to change the pinholes size and separation and to control the light intensity on a mirror-by-mirror basis. The use of an arrangement of concave and convex mirrors in the emission pathway instead of lenses overcomes the astigmatism inherent with DMD devices, increases light collection efficiency and ensures image collection is achromatic so that images are perfectly aligned at different wavelengths. Combined with non-laser light sources, this allows low cost, high-speed, multi-wavelength image acquisition without the need for complex wavelength-dependent image alignment. The micromirror can also be used for programmable illumination allowing spatially defined photoactivation of fluorescent proteins. We demonstrate the use of this system for high-speed calcium imaging using both a single wavelength calcium indicator and a genetically encoded, ratiometric, calcium sensor. PMID:22937130
Martial, Franck P; Hartell, Nicholas A
2012-01-01
Confocal microscopy is routinely used for high-resolution fluorescence imaging of biological specimens. Most standard confocal systems scan a laser across a specimen and collect emitted light passing through a single pinhole to produce an optical section of the sample. Sequential scanning on a point-by-point basis limits the speed of image acquisition and even the fastest commercial instruments struggle to resolve the temporal dynamics of rapid cellular events such as calcium signals. Various approaches have been introduced that increase the speed of confocal imaging. Nipkov disk microscopes, for example, use arrays of pinholes or slits on a spinning disk to achieve parallel scanning which significantly increases the speed of acquisition. Here we report the development of a microscope module that utilises a digital micromirror device as a spatial light modulator to provide programmable confocal optical sectioning with a single camera, at high spatial and axial resolution at speeds limited by the frame rate of the camera. The digital micromirror acts as a solid state Nipkov disk but with the added ability to change the pinholes size and separation and to control the light intensity on a mirror-by-mirror basis. The use of an arrangement of concave and convex mirrors in the emission pathway instead of lenses overcomes the astigmatism inherent with DMD devices, increases light collection efficiency and ensures image collection is achromatic so that images are perfectly aligned at different wavelengths. Combined with non-laser light sources, this allows low cost, high-speed, multi-wavelength image acquisition without the need for complex wavelength-dependent image alignment. The micromirror can also be used for programmable illumination allowing spatially defined photoactivation of fluorescent proteins. We demonstrate the use of this system for high-speed calcium imaging using both a single wavelength calcium indicator and a genetically encoded, ratiometric, calcium sensor.
Inhibition of Prostate Cancer Skeletal Metastases by Targeting Cathepsin K
2009-05-01
micro synthetic calcium phosphate thin films coated onto the culture vessels. As a parallel study, a 96-well plate which contained dentin slice...bone resorption in vitro. (A) Representative images of resorption pits on dentin slices or synthetic calcium phosphate thin films are shown. Left...Osteologic Bone cell culture system (BD Bioscience) that consist of sub-micro synthetic calcium phosphate thin films coated on to the culture vessels and
McCollough, Cynthia H; Ulzheimer, Stefan; Halliburton, Sandra S; Shanneik, Kaiss; White, Richard D; Kalender, Willi A
2007-05-01
To develop a consensus standard for quantification of coronary artery calcium (CAC). A standard for CAC quantification was developed by a multi-institutional, multimanufacturer international consortium of cardiac radiologists, medical physicists, and industry representatives. This report specifically describes the standardization of scan acquisition and reconstruction parameters, the use of patient size-specific tube current values to achieve a prescribed image noise, and the use of the calcium mass score to eliminate scanner- and patient size-based variations. An anthropomorphic phantom containing calibration inserts and additional phantom rings were used to simulate small, medium-size, and large patients. The three phantoms were scanned by using the recommended protocols for various computed tomography (CT) systems to determine the calibration factors that relate measured CT numbers to calcium hydroxyapatite density and to determine the tube current values that yield comparable noise values. Calculation of the calcium mass score was standardized, and the variance in Agatston, volume, and mass scores was compared among CT systems. Use of the recommended scanning parameters resulted in similar noise for small, medium-size, and large phantoms with all multi-detector row CT scanners. Volume scores had greater interscanner variance than did Agatston and calcium mass scores. Use of a fixed calcium hydroxyapatite density threshold (100 mg/cm(3)), as compared with use of a fixed CT number threshold (130 HU), reduced interscanner variability in Agatston and calcium mass scores. With use of a density segmentation threshold, the calcium mass score had the smallest variance as a function of patient size. Standardized quantification of CAC yielded comparable image noise, spatial resolution, and mass scores among different patient sizes and different CT systems and facilitated reduced radiation dose for small and medium-size patients.
Supramolecular structure of the casein micelle.
McMahon, D J; Oommen, B S
2008-05-01
The supramolecular structure of colloidal casein micelles in milk was investigated by using a sample preparation protocol based on adsorption of proteins onto a poly-l-lysine and parlodion-coated copper grid, staining of proteins and calcium phosphate by uranyl oxalate, instantaneous freezing, and drying under a high vacuum. High-resolution transmission electron microscopy stereo-images were obtained showing the interior structure of casein micelles. On the basis of our interpretation of these images, an interlocked lattice model was developed in which both casein-calcium phosphate aggregates and casein polymer chains act together to maintain casein micelle integrity. The caseins form linear and branched chains (2 to 5 proteins long) interlocked by the casein-stabilized calcium phosphate nanoclusters. This model suggests that stabilization of calcium phosphate nanoclusters by phosphoserine domains of alpha(s1)-, alpha(s2)-, or beta-casein, or their combination, would orient their hydrophobic domains outward, allowing interaction and binding to other casein molecules. Other interactions between the caseins, such as calcium bridging, could also occur and further stabilize the supramolecule. The combination of having an interlocked lattice structure and multiple interactions results in an open, sponge-like colloidal supramolecule that is resistant to spatial changes and disintegration. Hydrophobic interactions between caseins surrounding a calcium phosphate nanocluster would prevent complete dissociation of casein micelles when the calcium phosphate nanoclusters are solubilized. Likewise, calcium bridging and other electrostatic interactions between caseins would prevent dissociation of the casein micelles into casein-calcium phosphate nanocluster aggregates when milk is cooled or urea is added to milk, and hydrophobic interactions are reduced. The appearance of both polymer chains and small aggregate particles during milk synthesis would also be expected based on this interlocked lattice model of casein micelles, and its supramolecule structure thus exhibits the principles of self-aggregation, interdependence, and diversity observed in nature.
Calcium Sulfate Characterized by Chemcam/Curiousity at Gale Crater, Mars
NASA Technical Reports Server (NTRS)
Nachon, M.; Clegg, S. M.; Mangold, N.; Schroeder, S.; Kah, L. C.; Dromart, G.; Ollila, A.; Johnson, J. R; Oehler, D. Z.; Bridges, J. C.;
2014-01-01
Onboard the Mars Science Laboratory (MSL) Curiosity rover, the ChemCam instrument consists of : (1) a Laser-Induced Breakdown Spectrometer (LIBS) for elemental analysis of the targets and (2) a Remote Micro Imager (RMI), for the imaging context of laser analysis. Within the Gale crater, Curiosity traveled from Bradbury Landing through the Rocknest region and into Yellowknife Bay (YB). In the latter, abundant light-toned fracture-fill material occur. ChemCam analysis demonstrates that those fracture fills consist of calcium sulfates.[
Imaging calcium carbonate distribution in human sweat pore in vivo using nonlinear microscopy
NASA Astrophysics Data System (ADS)
Chen, Xueqin; Gasecka, Alicja; Formanek, Florian; Galey, Jean-Baptiste; Rigneault, Hervé
2015-03-01
Nonlinear microscopies, including two-photon excited autofluorescence (TPEF) and coherent anti-Stokes Raman scattering (CARS), were used to study individual human sweat pore morphology and topically applied antiperspirant salt penetration inside sweat pore, in vivo on human palms. Sweat pore inner morphology in vivo was imaged up to the depth of 100 μm by TPEF microscopy. The 3D penetration and distribution of "in situ calcium carbonate" (isCC), an antiperspirant salt model, was investigated using CARS microscopy.
Yoshida, Eriko; Terada, Shin-Ichiro; Tanaka, Yasuyo H; Kobayashi, Kenta; Ohkura, Masamichi; Nakai, Junichi; Matsuzaki, Masanori
2018-05-29
In vivo wide-field imaging of neural activity with a high spatio-temporal resolution is a challenge in modern neuroscience. Although two-photon imaging is very powerful, high-speed imaging of the activity of individual synapses is mostly limited to a field of approximately 200 µm on a side. Wide-field one-photon epifluorescence imaging can reveal neuronal activity over a field of ≥1 mm 2 at a high speed, but is not able to resolve a single synapse. Here, to achieve a high spatio-temporal resolution, we combine an 8 K ultra-high-definition camera with spinning-disk one-photon confocal microscopy. This combination allowed us to image a 1 mm 2 field with a pixel resolution of 0.21 µm at 60 fps. When we imaged motor cortical layer 1 in a behaving head-restrained mouse, calcium transients were detected in presynaptic boutons of thalamocortical axons sparsely labeled with GCaMP6s, although their density was lower than when two-photon imaging was used. The effects of out-of-focus fluorescence changes on calcium transients in individual boutons appeared minimal. Axonal boutons with highly correlated activity were detected over the 1 mm 2 field, and were probably distributed on multiple axonal arbors originating from the same thalamic neuron. This new microscopy with an 8 K ultra-high-definition camera should serve to clarify the activity and plasticity of widely distributed cortical synapses.
Interactions between calcium precipitation and the polyphosphate-accumulating bacteria metabolism.
Barat, R; Montoya, T; Borrás, L; Ferrer, J; Seco, A
2008-07-01
A sequencing batch reactor that is operated for biological phosphorus removal has been operated under different influent calcium concentrations to study the precipitation process and the possible effects of phosphorus precipitation in the biological phosphorus removal process. Four experiments were carried out under different influent calcium concentrations ranging from 10 to 90 g Ca m(-3). The experimental results and the equilibrium study, which are based on the saturation index calculation, confirm that the process controlling the calcium behaviour is the calcium phosphate precipitation. This precipitation takes place at two stages: initially, precipitation of the amorphous calcium phosphate, and later crystallization of hydroxyapatite. Also the accumulation of phosphorus precipitated was observed when the influent calcium concentration was increased. In all the experiments, the influent wastewater ratio P/COD was kept constant. It has been observed that, at high calcium concentration, the ratio between phosphate release and acetate uptake (P(rel)/Ac(uptake)) decreases. Changes in the polyphosphate-accumulating organism (PAO) population and in the glycogen-accumulating organism (GAO) population during the experimental period were ruled out by means of fluorescence in situ hybridization. These results could suggest that PAO are able to change their metabolic pathways based on external conditions, such as influent calcium concentration. The accumulation of phosphorus precipitated as calcium phosphate at high influent calcium concentration throughout the experimental period confirmed that phosphate precipitation is a process that can affect the PAO metabolism.
Dolenšek, Jurij; Špelič, Denis; Klemen, Maša Skelin; Žalik, Borut; Gosak, Marko; Rupnik, Marjan Slak; Stožer, Andraž
2015-10-28
Beta cells in the pancreatic islets of Langerhans are precise biological sensors for glucose and play a central role in balancing the organism between catabolic and anabolic needs. A hallmark of the beta cell response to glucose are oscillatory changes of membrane potential that are tightly coupled with oscillatory changes in intracellular calcium concentration which, in turn, elicit oscillations of insulin secretion. Both membrane potential and calcium changes spread from one beta cell to the other in a wave-like manner. In order to assess the properties of the abovementioned responses to physiological and pathological stimuli, the main challenge remains how to effectively measure membrane potential and calcium changes at the same time with high spatial and temporal resolution, and also in as many cells as possible. To date, the most wide-spread approach has employed the electrophysiological patch-clamp method to monitor membrane potential changes. Inherently, this technique has many advantages, such as a direct contact with the cell and a high temporal resolution. However, it allows one to assess information from a single cell only. In some instances, this technique has been used in conjunction with CCD camera-based imaging, offering the opportunity to simultaneously monitor membrane potential and calcium changes, but not in the same cells and not with a reliable cellular or subcellular spatial resolution. Recently, a novel family of highly-sensitive membrane potential reporter dyes in combination with high temporal and spatial confocal calcium imaging allows for simultaneously detecting membrane potential and calcium changes in many cells at a time. Since the signals yielded from both types of reporter dyes are inherently noisy, we have developed complex methods of data denoising that permit for visualization and pixel-wise analysis of signals. Combining the experimental approach of high-resolution imaging with the advanced analysis of noisy data enables novel physiological insights and reassessment of current concepts in unprecedented detail.
Transport of calcium ions through a bulk membrane by use of a dynamic combinatorial library.
Saggiomo, Vittorio; Lüning, Ulrich
2009-07-07
In a bulk membrane transport experiment, a dynamic combinatorial library (DCL) has been used to transport calcium ions; the calcium ions amplify the formation of a macrocyclic carrier which results in transport.
NASA Technical Reports Server (NTRS)
Chu, J.
1971-01-01
The effects of a very low calcium diet, with variable high and low protein intake, on the dynamics of calcium metabolism and the mechanism of calciuretics, are examined. The experiment, using male subjects, was designed to study the role of intestinal calcium absorption on urinary calcium excretion, and the rate of production of endogeneously secreted calcium in the gastrointestinal tract. The study showed an average of 70% fractional absorption rate during very low calcium intake, and that a decrease in renal tubular reabsorption of calcium is responsible for calciuretic effects of high protein intake. The study also indicates that there is a tendency to develop osteoporosis after long periods of low calcium intake, especially with a concurrent high protein intake.
Community-based benchmarking improves spike rate inference from two-photon calcium imaging data.
Berens, Philipp; Freeman, Jeremy; Deneux, Thomas; Chenkov, Nikolay; McColgan, Thomas; Speiser, Artur; Macke, Jakob H; Turaga, Srinivas C; Mineault, Patrick; Rupprecht, Peter; Gerhard, Stephan; Friedrich, Rainer W; Friedrich, Johannes; Paninski, Liam; Pachitariu, Marius; Harris, Kenneth D; Bolte, Ben; Machado, Timothy A; Ringach, Dario; Stone, Jasmine; Rogerson, Luke E; Sofroniew, Nicolas J; Reimer, Jacob; Froudarakis, Emmanouil; Euler, Thomas; Román Rosón, Miroslav; Theis, Lucas; Tolias, Andreas S; Bethge, Matthias
2018-05-01
In recent years, two-photon calcium imaging has become a standard tool to probe the function of neural circuits and to study computations in neuronal populations. However, the acquired signal is only an indirect measurement of neural activity due to the comparatively slow dynamics of fluorescent calcium indicators. Different algorithms for estimating spike rates from noisy calcium measurements have been proposed in the past, but it is an open question how far performance can be improved. Here, we report the results of the spikefinder challenge, launched to catalyze the development of new spike rate inference algorithms through crowd-sourcing. We present ten of the submitted algorithms which show improved performance compared to previously evaluated methods. Interestingly, the top-performing algorithms are based on a wide range of principles from deep neural networks to generative models, yet provide highly correlated estimates of the neural activity. The competition shows that benchmark challenges can drive algorithmic developments in neuroscience.
Measuring and Modeling Sonoporation Dynamics in Mammalian Cells via Calcium Imaging
NASA Astrophysics Data System (ADS)
Kumon, R. E.; Parikh, P.; Sabens, D.; Aehle, M.; Kourennyi, D.; Deng, C. X.
2007-05-01
In this study, calcium imaging via the fluorescent indicator Fura-2 is used to characterize the sonoporation of Chinese Hamster Ovarian (CHO) cells in the presence of Optison™ microbubbles. Evolution of the calcium concentration within cells is determined from real-time fluorescence intensity measurements before, during, and after exposure to a 1 MHz ultrasound tone burst (0.2 s, 0.45 MPa). To relate microscopic sonoporation parameters to the measurements, an analytical model that includes sonoporation and plasma membrane transport is developed, assuming rapid mixing (uniform spatial distribution) in the cell. Fitting the measured data to the model provides estimated values for the poration area as a function of poration relaxation rate as well as plasma membrane pump and leakage rates. A modified compartment model that includes the effects of sonoporation, buffering proteins, and transport across the plasma membrane, endoplasmic reticulum, and mitochondria is also investigated. Numerical 3solutions of this model show a variety of behaviors for the calcium dynamics of the cell.
Calcium silicates synthesised from industrial residues with the ability for CO2 sequestration.
Morales-Flórez, Victor; Santos, Alberto; López, Antonio; Moriña, Isabel; Esquivias, Luis
2014-12-01
This work explored several synthesis routes to obtain calcium silicates from different calcium-rich and silica-rich industrial residues. Larnite, wollastonite and calcium silicate chloride were successfully synthesised with moderate heat treatments below standard temperatures. These procedures help to not only conserve natural resources, but also to reduce the energy requirements and CO2 emissions. In addition, these silicates have been successfully tested as carbon dioxide sequesters, to enhance the viability of CO2 mineral sequestration technologies using calcium-rich industrial by-products as sequestration agents. Two different carbon sequestration experiments were performed under ambient conditions. Static experiments revealed carbonation efficiencies close to 100% and real-time resolved experiments characterised the dynamic behaviour and ability of these samples to reduce the CO2 concentration within a mixture of gases. The CO2 concentration was reduced up to 70%, with a carbon fixation dynamic ratio of 3.2 mg CO2 per g of sequestration agent and minute. Our results confirm the suitability of the proposed synthesis routes to synthesise different calcium silicates recycling industrial residues, being therefore energetically more efficient and environmentally friendly procedures for the cement industry. © The Author(s) 2014.
Cao, Caijun; Nie, Liming; Lou, Cunguang; Xing, Da
2010-09-07
Imaging of renal calculi is important for patients who suffered a urinary calculus prior to treatment. The available imaging techniques include plain x-ray, ultrasound scan, intravenous urogram, computed tomography, etc. However, the visualization of a uric acid calculus (radiolucent calculi) is difficult and often impossible by the above imaging methods. In this paper, a new detection method based on microwave-induced thermoacoustic tomography was developed to detect the renal calculi. Thermoacoustic images of calcium oxalate and uric acid calculus were compared with their x-ray images. The microwave absorption differences among the calcium oxalate calculus, uric acid calculus and normal kidney tissue could be evaluated by the amplitude of the thermoacoustic signals. The calculi hidden in the swine kidney were clearly imaged with excellent contrast and resolution in the three orthogonal thermoacoustic images. The results indicate that thermoacoustic imaging may be developed as a complementary method for detecting renal calculi, and its low cost and effective feature shows high potential for clinical applications.
Tibau, Elisenda; Valencia, Miguel; Soriano, Jordi
2013-01-01
Neuronal networks in vitro are prominent systems to study the development of connections in living neuronal networks and the interplay between connectivity, activity and function. These cultured networks show a rich spontaneous activity that evolves concurrently with the connectivity of the underlying network. In this work we monitor the development of neuronal cultures, and record their activity using calcium fluorescence imaging. We use spectral analysis to characterize global dynamical and structural traits of the neuronal cultures. We first observe that the power spectrum can be used as a signature of the state of the network, for instance when inhibition is active or silent, as well as a measure of the network's connectivity strength. Second, the power spectrum identifies prominent developmental changes in the network such as GABAA switch. And third, the analysis of the spatial distribution of the spectral density, in experiments with a controlled disintegration of the network through CNQX, an AMPA-glutamate receptor antagonist in excitatory neurons, reveals the existence of communities of strongly connected, highly active neurons that display synchronous oscillations. Our work illustrates the interest of spectral analysis for the study of in vitro networks, and its potential use as a network-state indicator, for instance to compare healthy and diseased neuronal networks.
Venkateshwaran, Muthusubramanian; Cosme, Ana; Han, Lu; Banba, Mari; Satyshur, Kenneth A.; Schleiff, Enrico; Parniske, Martin; Imaizumi-Anraku, Haruko; Ané, Jean-Michel
2012-01-01
Arbuscular mycorrhiza and the rhizobia-legume symbiosis are two major root endosymbioses that facilitate plant nutrition. In Lotus japonicus, two symbiotic cation channels, CASTOR and POLLUX, are indispensable for the induction of nuclear calcium spiking, one of the earliest plant responses to symbiotic partner recognition. During recent evolution, a single amino acid substitution in DOES NOT MAKE INFECTIONS1 (DMI1), the POLLUX putative ortholog in the closely related Medicago truncatula, rendered the channel solo sufficient for symbiosis; castor, pollux, and castor pollux double mutants of L. japonicus were rescued by DMI1 alone, while both Lj-CASTOR and Lj-POLLUX were required for rescuing a dmi1 mutant of M. truncatula. Experimental replacement of the critical serine by an alanine in the selectivity filter of Lj-POLLUX conferred a symbiotic performance indistinguishable from DMI1. Electrophysiological characterization of DMI1 and Lj-CASTOR (wild-type and mutants) by planar lipid bilayer experiments combined with calcium imaging in Human Embryonic Kidney-293 cells expressing DMI1 (the wild type and mutants) suggest that the serine-to-alanine substitution conferred reduced conductance with a long open state to DMI1 and improved its efficiency in mediating calcium oscillations. We propose that this single amino acid replacement in the selectivity filter made DMI1 solo sufficient for symbiosis, thus explaining the selective advantage of this allele at the mechanistic level. PMID:22706284
Mizuno, Shuichi
2005-02-01
Chondrocytes in articular cartilage are exposed to hydrostatic pressure and distortional stress during weight bearing and joint loading. Because these stresses occur simultaneously in articular cartilage, the mechanism of mechanosignal transduction due to hydrostatic pressure alone in chondrocytes is not clear. In this study, we attempted to characterize the change in intracellular calcium concentration ([Ca2+]i) in response to the application of hydrostatic fluid pressure (HFP) to cultured bovine articular chondrocytes isolated from defined surface (SZ) and middle zones (MZ) by using a fluorescent indicator (X-rhod-1 AM), a novel custom-made pressure-proof optical chamber, and laser confocal microscopy. Critical methodology implemented in this experiment involved application of high levels of HFP to the cells and the use of a novel imaging apparatus to measure the peak [Ca2+]i in individual cells. The peak [Ca2+]i in MZ cells cultured for 5 days showed a significant twofold increase after the application of HFP at constant 0.5 MPa for 5 min. The peak [Ca2+]i in SZ cells was lower (43%) than that of MZ cells. The peak was suppressed with an inhibitor of dantrolene, gadolinium, or a calcium ion-free buffer, but not with verapamil. This study indicated that the increase in [Ca2+]i in chondrocytes to HFP is dependent on the zonal origin. HFP stimulates calcium mobilization and stretch-activated channels.
Calcium imaging of neural circuits with extended depth-of-field light-sheet microscopy
Quirin, Sean; Vladimirov, Nikita; Yang, Chao-Tsung; Peterka, Darcy S.; Yuste, Rafael; Ahrens, Misha B.
2016-01-01
Increasing the volumetric imaging speed of light-sheet microscopy will improve its ability to detect fast changes in neural activity. Here, a system is introduced for brain-wide imaging of neural activity in the larval zebrafish by coupling structured illumination with cubic phase extended depth-of-field (EDoF) pupil encoding. This microscope enables faster light-sheet imaging and facilitates arbitrary plane scanning—removing constraints on acquisition speed, alignment tolerances, and physical motion near the sample. The usefulness of this method is demonstrated by performing multi-plane calcium imaging in the fish brain with a 416 × 832 × 160 µm field of view at 33 Hz. The optomotor response behavior of the zebrafish is monitored at high speeds, and time-locked correlations of neuronal activity are resolved across its brain. PMID:26974063
Glycine Receptor Activation Impairs ATP-Induced Calcium Transients in Cultured Cortical Astrocytes
Morais, Tatiana P.; Coelho, David; Vaz, Sandra H.; Sebastião, Ana M.; Valente, Cláudia A.
2018-01-01
In central nervous system, glycine receptor (GlyR) is mostly expressed in the spinal cord and brainstem, but glycinergic transmission related elements have also been identified in the brain. Astrocytes are active elements at the tripartite synapse, being responsible for the maintenance of brain homeostasis and for the fine-tuning of synaptic activity. These cells communicate, spontaneously or in response to a stimulus, by elevations in their cytosolic calcium (calcium transients, Ca2+T) that can be propagated to other cells. How these Ca2+T are negatively modulated is yet poorly understood. In this work, we evaluated GlyR expression and its role on calcium signaling modulation in rat brain astrocytes. We first proved that GlyR, predominantly subunits α2 and β, was expressed in brain astrocytes and its localization was confirmed in the cytoplasm and astrocytic processes by immunohistochemistry assays. Calcium imaging experiments in cultured astrocytes showed that glycine (500 μM), a GlyR agonist, caused a concentration-dependent reduction in ATP-induced Ca2+T, an effect abolished by the GlyR antagonist, strychnine (0.8 μM), as well as by nocodazole (1 μM), known to impair GlyR anchorage to the plasma membrane. This effect was mimicked by activation of GABAAR, another Cl--permeable channel. In summary, we demonstrated that GlyR activation in astrocytes mediates an inhibitory effect upon ATP induced Ca2+T, which most probably involves changes in membrane permeability to Cl- and requires GlyR anchorage at the plasma membrane. GlyR in astrocytes may thus be part of a mechanism to modulate astrocyte-to-neuron communication. PMID:29386993
NASA Astrophysics Data System (ADS)
Morgan, Thomas T.
Organically doped calcium phosphosilicate nanoparticles (CPSNPs) were developed and characterized, driven by the need for non-toxic vectors for drug delivery and fluorescence biological imaging applications. In particular, advancement in drug delivery for the chemotherapeutic treatment of cancers is required to increase drug efficacy and improve patient quality of life. Additionally, brighter and more photostable fluorophores are needed to meet demands for improved sensitivity and experimental diversity, which may lead to improvements in early detection of solid tumors and advancement in understanding of biological processes. A literature survey on the state of the field for nanoparticle based biological fluorescence imaging and drug delivery is presented in Chapter 1. Chapter 2 focuses on the characterization techniques used in this work. The development and optical characterization of 20-40 nm diameter, citrate functionalized Cy3 amidite doped calcium phosphosilicate nanoparticles (Cy3 CPSNPs) for in vitro fluorescence imaging is outlined in Chapters 3 and 4, respectively. In particular, sodium citrate was used to functionalize the surface and provide electrosteric dispersion of these particles. CPSNPs stabilized with sodium citrate routinely exhibited highly negative zeta potentials greater than -25 mV in magnitude. Furthermore, the fluorescence quantum yield of the encapsulated fluorophore was improved by more than 4.5-fold when compared to the unencapsulated dye. The bioimaging and drug delivery capability of CPSNPs was explored. Cy3 CPSNPs dissolved quickly in the acidic environment experienced during endocytosis, releasing the encapsulated fluorophore. This is consistent with solution phase experiments that show the particles are dissolved at pH 5. CPSNPs loaded with fluorescein and a hydrophobic growth inhibitor, ceramide C6, proved the ability to simultaneously image and delivery of the hydrophobic drug to cells in vitro. Chapter 5 examined the colloidal stability of citrate and polyethylene glycol (PEG) functionalized CPSNPs in 70 volume % ethanol/30% water, both experimentally using TEM and theoretically using DLVO and polymeric steric dispersion theories. There are three basic mechanisms for colloidal stability for macroscopic suspensions (i.e., for particulate diameters down to ˜100nm), metastable electrostatic in which some finite degree of agglomeration continuously takes place because a finite energy barrier against agglomeration; and electrosteric and steric mechanisms in which infinitely high potential energy barriers toward agglomeration are present leading to thermodynamically stable suspensions. One of the fundamental issues addressed in this chapter was whether the mechanisms of electrosteric or steric dispersion, based on relatively large adsorbed polyelectrolytes for macroscopic size particulates, scales with particles in the range of ˜40 nm diameter such that a small, charged organic molecule such as citrate provides the thermodynamic colloidal stability of electrosteric mechanisms as suggested by preliminary theoretical calculations. The particle diameter-number distributions for as-prepared and after drying (at 25°C) and redispersion were used as metrics for thermodynamic colloidal stability. How efficiently particles redispersed after drying and reintroduction into the 70:30 ethanol:water solvent was used as the primary metric for whether the metastable electrostatic mechanism or thermodynamically stable electrosteric or steric approaches were responsible for the robust dispersion experimentally observed in the colloids. These experiments found that, even with the thin electrosteric layer provided by the adsorbed citrate, particles were electrosterically dispersed, and were unagglomerated when dried under argon and redispersed. Preliminary work outlining the synthesis and characterization of silver core, calcium phosphosilicate shell nanoparticles for surface plasmon coupled emission and metal enhanced fluorescence applications is discussed in Chapter 6. Thin (2-5 nm) calcium phosphosilicate shells were formed around agglomerated silver cores in the presence of 8-Methoxypyrene-1,3,6-trisulfonic acid trisodium salt (MPTS). Calcium phosphosilicate shells were consistently formed after 72 hours in the presence of 5x10-5 M CaCl2, 3x10 -5 M Na2HPO4, 3x10-6 M Na 2SiO3, and silver core nanoparticles prepared by citrate reduction in aqueous solution. However, the particles synthesized were agglomerated, resulting in a loss of the plasmon resonance peak, and the shells prepared were not thick enough to provide sufficient separation of the fluorophore from the surface to prevent quenching and allow plasmon resonance enhanced fluorescence. (Abstract shortened by UMI.)
Densitometric and biochemical values of broiler tibias at different ages.
Barreiro, F R; Sagula, A L; Junqueira, O M; Pereira, G T; Baraldi-Artoni, S M
2009-12-01
The objective of this experiment was to determine the normal values of bone radiographic density (BRD) by using the optical densitometry in radiographic images and the biochemical values represented by serum calcium, ash percentage, and minerals (calcium, phosphorus, and magnesium) from tibia ash of Cobb broilers at 8, 22, and 43 d of age. A total of 14 broilers were used for densitometric analysis, and 15 were used for biochemical dosages. The BRD values increased (P < 0.05) with age and in all tibia regions (proximal epiphysis, diaphysis, and distal epiphysis), concluding that growth was a determinative factor for bone performance, demanding a higher BRD during broiler development. Tibia proximal epiphysis presented higher BRD values in relation to the other bone regions (P < 0.05), as a result of a possible biomechanical adaptation to ligaments and tension of the muscle tendons at this region, allowing the support of the muscle mass increase. The serum calcium values were kept constant, as a result of the appropriate nutritional levels of the diet that supported the animal homeostasis. The bone ash and mineral percentage increased (P < 0.05) at 22 d of age, due to the higher mineral requirement in this age. The correlation between bone densitometry and the invasive techniques showed that the bone densitometry can substitute the determination of mineral percentage in the ash. This experiment presented normal values of the noninvasive and invasive methods more used in aviculture, allowing us to compare, subsequently, pathological and physiological values or results of broilers fed with different diets.
NASA Technical Reports Server (NTRS)
Nielsen, Kjeld Flemming; Lind, M. David
1991-01-01
Experiment AO139A on the Long Duration Exposure Facility (LDEF) carried four large containers into orbit for five years with crystal growth solutions for lead sulfide, calcium carbonate, and tetra thiafulvalene- tetra cyanoquino methane (TTF-TCNQ). The LDEF was in excellent condition after the long orbital stay, and although the temperature data was lost, the experiment program had been working since the valves in all containers were opened. All four experiments produced crystals; however, they were of varying quality. The calcium carbonate crystals had the best appearance. The TTF-TCNQ crystals were packed together near the valve openings of the container. When taken apart, the single crystals showed some unusual morphological properties. X-ray investigations as well as conductivity measurements on the long duration space grown TTF-TCNQ crystals are presented, and pictures of the calcium carbonate are shown. Comparisons are made with previous space solution growth experiments on the European Spacelab Mission and the Apollo-Soyuz Test Project.
Alfonso, A; Cabado, A G; Vieytes, M R; Botana, L M
2000-01-01
The aim of this work was to study the relationship between intracellular alkalinization, calcium fluxes and histamine release in rat mast cells. Intracellular alkalinization was induced by nigericin, a monovalent cation ionophore, and by NH4Cl (ammonium chloride). Calcium cytosolic and intracellular pH were measured by fluorescence digital imaging using Fura-2-AM and BCECF-AM.In rat mast cells, nigericin and NH4Cl induce a dose-dependent intracellular alkalinization, a dose-dependent increase in intracellular calcium levels by releasing calcium from intracellular pools, and an activation of capacitative calcium influx.The increase in both intracellular calcium and pH activates exocytosis (histamine release) in the absence of external calcium. Under the same conditions, thapsigargin does not activate exocytosis, the main difference being that thapsigargin does not alkalinize the cytosol.After alkalinization, histamine release is intracellular-calcium dependent. With 2.5 mM EGTA and thapsigargin the cell response decreases by 62%.The cytosolic alkalinization, in addition to the calcium increase it is enough signal to elicit the exocytotic process in rat mast cells. PMID:10952669
NASA Technical Reports Server (NTRS)
Hepler, P.
1983-01-01
Although the mechanism of calcium regulation is not understood, there is evidence that calcium plays a role in mitosis. Experiments conducted show that: (1) the spindle apparatus contains a highly developed membrane system that has many characteristics of sarcoplasmic reticulum of muscle; (2) this membrane system contains calcium; and (3) there are ionic fluxes occurring during mitosis which can be seen by a variety of fluorescence probes. Whether the process of mitosis can be modulated by experimentally modulating calcium is discussed.
Gravitaxis and graviperception in flagellates.
Hader, D-P; Lebert, M; Richter, P; Ntefidou, M
2003-01-01
There is strong evidence that gravitactic orientation in flagellates and ciliates is mediated by an active physiological gravireceptor rather than by passive alignment of the cells in the water column. In flagellates the threshold for graviorientation was found to be at 0.12 x g on a slow rotating centrifuge during the IML-2 mission on the Shuttle Columbia and a subsequent parabolic rocket flight (TEXUS). During the IML-2 mission no adaptation to microgravity was observed over the duration of the space flight, while gravitaxis was lost in a terrestrial closed environmental system over the period of almost two years. Sedimenting statoliths are not likely to be involved in graviperception because of the small size of the cells and their rotation around the longitudinal axis during forward locomotion. Instead the whole cytoplasmic content of the cell, being heavier than the surrounding aqueous medium (1.05 g/ml), exerts a pressure on the lower membrane. This force activates stretch-sensitive calcium specific ion channels which can be inhibited by the addition of gadolinium which therefore abolishes gravitaxis. The channels seem to mainly allow calcium ions to pass since gravitaxis is blocked by the addition of the calcium ionophore A23187 and by vanadate which blocks the Ca-ATPase in the cytoplasmic membrane. Recently, a gene for a mechanosensitive channel, originally sequenced for Saccharomyces, was identified in Euglena by PCR. The increase in intracellular free calcium during reorientation can be visualized by the fluorophore Calcium Crimson using laser excitation and image intensification. This result was confirmed during recent parabolic flights. The gated calcium changes the membrane potential across the membrane which may be the trigger for the reorientation of the flagellum. cAMP plays a role as a secondary messenger. Photosynthetic flagellates are suitable candidates for life support systems since they absorb CO2 and produce oxygen. Preliminary experiments are discussed. c2003 COSPAR. Published by Elsevier Ltd. All rights reserved.
Warren, Sean C.; Margineanu, Anca; Katan, Matilda; Dunsby, Chris; French, Paul M. W.
2015-01-01
Multiplexed imaging of Förster Resonance Energy Transfer (FRET)-based biosensors potentially presents a powerful approach to monitoring the spatio-temporal correlation of signalling pathways within a single live cell. Here, we discuss the potential of homo-FRET based biosensors to facilitate multiplexed imaging. We demonstrate that the homo-FRET between pleckstrin homology domains of Akt (Akt-PH) labelled with mCherry may be used to monitor 3′-phosphoinositide accumulation in live cells and show how global analysis of time resolved fluorescence anisotropy measurements can be used to quantify this accumulation. We further present multiplexed imaging readouts of calcium concentration, using fluorescence lifetime measurements of TN-L15-a CFP/YFP based hetero-FRET calcium biosensor-with 3′-phosphoinositide accumulation. PMID:26133241
NoRMCorre: An online algorithm for piecewise rigid motion correction of calcium imaging data.
Pnevmatikakis, Eftychios A; Giovannucci, Andrea
2017-11-01
Motion correction is a challenging pre-processing problem that arises early in the analysis pipeline of calcium imaging data sequences. The motion artifacts in two-photon microscopy recordings can be non-rigid, arising from the finite time of raster scanning and non-uniform deformations of the brain medium. We introduce an algorithm for fast Non-Rigid Motion Correction (NoRMCorre) based on template matching. NoRMCorre operates by splitting the field of view (FOV) into overlapping spatial patches along all directions. The patches are registered at a sub-pixel resolution for rigid translation against a regularly updated template. The estimated alignments are subsequently up-sampled to create a smooth motion field for each frame that can efficiently approximate non-rigid artifacts in a piecewise-rigid manner. Existing approaches either do not scale well in terms of computational performance or are targeted to non-rigid artifacts arising just from the finite speed of raster scanning, and thus cannot correct for non-rigid motion observable in datasets from a large FOV. NoRMCorre can be run in an online mode resulting in comparable to or even faster than real time motion registration of streaming data. We evaluate its performance with simple yet intuitive metrics and compare against other non-rigid registration methods on simulated data and in vivo two-photon calcium imaging datasets. Open source Matlab and Python code is also made available. The proposed method and accompanying code can be useful for solving large scale image registration problems in calcium imaging, especially in the presence of non-rigid deformations. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
Teshima, R; Ikebuchi, H; Terao, T; Miyagawa, T; Arata, Y; Nakanishi, M
1990-09-17
A digital imaging fluorescence microscope was used to study the effect of a protein kinase inhibitor staurosporine on the antigen-dependent calcium signals in an individual rat basophilic leukemia cell (RBL-2H3). Although dose dependency of staurosporine was different from one cell to another, staurosporine inhibited, at low concentration, the calcium influx from the external medium into RBL-2H3 cells. At high concentration, however, it inhibited both the removal of calcium ion from internal stores and the calcium influx from the external medium. These results indicated that staurosporine is necessary for the inhibition of the calcium influx from the external medium and that a protein kinase (possibly protein kinase C) is involved in the calcium influx from the external medium into the cytoplasm.
Mironov, S L
2008-01-01
Respiration in vertebrates is generated by a compact network which is located in the lower brainstem but cellular mechanisms which underlie persistent oscillatory activity of the respiratory network are yet unknown. Using two-photon imaging and patch-clamp recordings in functional brainstem preparations of mice containing pre-Bötzinger complex (preBötC), we examined the actions of metabotropic glutamate receptors (mGluR1/5) on the respiratory patterns. The agonist DHPG potentiated and antagonist LY367385 depressed respiration-related activities. In the inspiratory neurons, we observed rhythmic activation of non-selective channels which had a conductance of 24 pS. Their activity was enhanced with membrane depolarization and after elevation of calcium from the cytoplasmic side of the membrane. They were activated by a non-hydrolysable PIP2 analogue and blocked by flufenamate, ATP4− and Gd3+. All these properties correspond well to those of TRPM4 channels. Calcium imaging of functional slices revealed rhythmic transients in small clusters of neurons present in a network. Calcium transients in the soma were preceded by the waves in dendrites which were dependent on mGluR activation. Initiation and propagation of waves required calcium influx and calcium release from internal stores. Calcium waves activated TPRM4-like channels in the soma and promoted generation of inspiratory bursts. Simulations of activity of neurons communicated via dendritic calcium waves showed emerging activity within neuronal clusters and its synchronization between the clusters. The experimental and theoretical data provide a subcellular basis for a recently proposed group-pacemaker hypothesis and describe a novel mechanism of rhythm generation in neuronal networks. PMID:18308826
Mechanically induced intercellular calcium communication in confined endothelial structures.
Junkin, Michael; Lu, Yi; Long, Juexuan; Deymier, Pierre A; Hoying, James B; Wong, Pak Kin
2013-03-01
Calcium signaling in the diverse vascular structures is regulated by a wide range of mechanical and biochemical factors to maintain essential physiological functions of the vasculature. To properly transmit information, the intercellular calcium communication mechanism must be robust against various conditions in the cellular microenvironment. Using plasma lithography geometric confinement, we investigate mechanically induced calcium wave propagation in networks of human umbilical vein endothelial cells organized. Endothelial cell networks with confined architectures were stimulated at the single cell level, including using capacitive force probes. Calcium wave propagation in the network was observed using fluorescence calcium imaging. We show that mechanically induced calcium signaling in the endothelial networks is dynamically regulated against a wide range of probing forces and repeated stimulations. The calcium wave is able to propagate consistently in various dimensions from monolayers to individual cell chains, and in different topologies from linear patterns to cell junctions. Our results reveal that calcium signaling provides a robust mechanism for cell-cell communication in networks of endothelial cells despite the diversity of the microenvironmental inputs and complexity of vascular structures. Copyright © 2012 Elsevier Ltd. All rights reserved.
Otsu, Yo; Marcaggi, Païkan; Feltz, Anne; Isope, Philippe; Kollo, Mihaly; Nusser, Zoltan; Mathieu, Benjamin; Kano, Masanobu; Tsujita, Mika; Sakimura, Kenji; Dieudonné, Stéphane
2014-01-01
Summary In cerebellar Purkinje cell dendrites, heterosynaptic calcium signaling induced by the proximal climbing fiber (CF) input controls plasticity at distal parallel fiber (PF) synapses. The substrate and regulation of this long-range dendritic calcium signaling are poorly understood. Using high-speed calcium imaging, we examine the role of active dendritic conductances. Under basal conditions, CF stimulation evokes T-type calcium signaling displaying sharp proximodistal decrement. Combined mGluR1 receptor activation and depolarization, two activity-dependent signals, unlock P/Q calcium spikes initiation and propagation, mediating efficient CF signaling at distal sites. These spikes are initiated in proximal smooth dendrites, independently from somatic sodium action potentials, and evoke high-frequency bursts of all-or-none fast-rising calcium transients in PF spines. Gradual calcium spike burst unlocking arises from increasing inactivation of mGluR1-modulated low-threshold A-type potassium channels located in distal dendrites. Evidence for graded activity-dependent CF calcium signaling at PF synapses refines current views on cerebellar supervised learning rules. PMID:25220810
Otsu, Yo; Marcaggi, Païkan; Feltz, Anne; Isope, Philippe; Kollo, Mihaly; Nusser, Zoltan; Mathieu, Benjamin; Kano, Masanobu; Tsujita, Mika; Sakimura, Kenji; Dieudonné, Stéphane
2014-10-01
In cerebellar Purkinje cell dendrites, heterosynaptic calcium signaling induced by the proximal climbing fiber (CF) input controls plasticity at distal parallel fiber (PF) synapses. The substrate and regulation of this long-range dendritic calcium signaling are poorly understood. Using high-speed calcium imaging, we examine the role of active dendritic conductances. Under basal conditions, CF stimulation evokes T-type calcium signaling displaying sharp proximodistal decrement. Combined mGluR1 receptor activation and depolarization, two activity-dependent signals, unlock P/Q calcium spikes initiation and propagation, mediating efficient CF signaling at distal sites. These spikes are initiated in proximal smooth dendrites, independently from somatic sodium action potentials, and evoke high-frequency bursts of all-or-none fast-rising calcium transients in PF spines. Gradual calcium spike burst unlocking arises from increasing inactivation of mGluR1-modulated low-threshold A-type potassium channels located in distal dendrites. Evidence for graded activity-dependent CF calcium signaling at PF synapses refines current views on cerebellar supervised learning rules. Copyright © 2014 Elsevier Inc. All rights reserved.
Yeo, H; Doyle, T; Saynor, R; Smith, G H
1986-01-01
After observations of cloudiness in the perfusion circuit at open intracardiac operations, laboratory experiments showed a precipitate in a Hartmann's solution (compound sodium lactate solution, Ringer-lactate) and sodium bicarbonate based priming fluid used for cardiopulmonary bypass. The precipitate was found to consist of calcium carbonate crystals. The crystals were not dissolved by adding plasma proteins, nor were they sufficiently cleared from the extracorporeal circuit by a 40 microns filter in the arterial line. The crystals may embolise in microvascular beds and thus be a cause of postoperative morbidity. The practice of adding sodium bicarbonate to the pump prime may be unnecessary. Images PMID:3010485
Calcium Sulfate Characterized by ChemCam/Curiosity at Gale Crater, Mars
NASA Technical Reports Server (NTRS)
Nachon, M.; Clegg, S. N.; Mangold, N.; Schroeder, S.; Kah, L. C.; Dromart, G.; Ollila, A.; Johnson, J. R.; Oehler, D. Z.; Bridges, J. C.;
2014-01-01
Onboard the Mars Science Laboratory (MSL) Curiosity rover, the ChemCam instrument consists of :(1) a Laser-Induced Breakdown Spectrometer (LIBS) for elemental analysis of the targets [1;2] and (2) a Remote Micro Imager (RMI), for the imaging context of laser analysis [3]. Within the Gale crater, Curiosity traveled from Bradbury Landing through the Rocknest region and into Yellowknife Bay (YB). In the latter, abundant light-toned fracture-fill material were seen [4;5]. ChemCam analysis demonstrate that those fracture fills consist of calcium sulfates [6].
Wang, Ya-Li; Wang, Jian-Gang; Guo, Fang-Li; Gao, Xia-Huan; Zhao, Dan-Dan; Zhang, Lin; Wang, Jian-Zhi; Lu, Cheng-Biao
2017-09-01
Intracellular calcium is a key factor in most cellular processes, including cell growth, differentiation, proliferation and neurotransmitter release. Dopamine (DA) mediates synaptic transmission by regulating the intracellular calcium content. It is not clear, however, which specific subunit of the DA receptor contributes to DA modulation of intracellular calcium content changes. Through the traditional technique of Fura-2 calcium imaging, this study demonstrated that the DA can induce transient calcium in cultured hippocampal neurons and that this response can be mimicked by a selective dopamine receptor 4 (DR4) agonist PD168077 (PD). PD-induced calcium transience can be blocked by a calcium chelator, such as BAPTA-AM, or by pre-treatment of neurons with thapsigargin, a IP 3 receptor antagonist, or a micromolar concentration of ryanodine, a ryanodine receptor (RyR) antagonist. However PD-induced calcium transience cannot be blocked by pre-treatment of neurons with a free-calcium medium or a cocktail of NMDA receptor, L-type calcium channel and alpha7 nicotinic acetylcholine receptor blockers. These results indicate that the calcium response induced by DR4 activation is mainly through activation of IP 3 receptor in internal stores, which is likely to contribute to the DA modulation of synaptic transmission and cognitive function. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Guo, Xiaoxuan; Wang, Zhiqiang; Wu, Jin; Wang, Jian; Zhu, Ying-Jie; Sham, Tsun-Kong
2015-04-01
Imaging is one of the most direct and ideal ways to track drug loading distributions in drug carriers on the molecular level, which will facilitate the optimization of drug carriers and drug loading capacities. Herein, we report the mapping of an individual mesoporous calcium silicate hydrate (CSH) microsphere before and after the loading of ibuprofen (IBU) and the interactions between drug carriers and drug molecules simultaneously by scanning transmission X-ray microscopy (STXM). Nanoscaled X-ray absorption near edge structure (XANES) spectroscopy clearly indicates that IBU is bonded to calcium and silicate sites via carboxylic acid groups. More importantly, STXM has been successfully used to determine the absolute thickness of IBU, revealing its distribution in the CSH microsphere.Imaging is one of the most direct and ideal ways to track drug loading distributions in drug carriers on the molecular level, which will facilitate the optimization of drug carriers and drug loading capacities. Herein, we report the mapping of an individual mesoporous calcium silicate hydrate (CSH) microsphere before and after the loading of ibuprofen (IBU) and the interactions between drug carriers and drug molecules simultaneously by scanning transmission X-ray microscopy (STXM). Nanoscaled X-ray absorption near edge structure (XANES) spectroscopy clearly indicates that IBU is bonded to calcium and silicate sites via carboxylic acid groups. More importantly, STXM has been successfully used to determine the absolute thickness of IBU, revealing its distribution in the CSH microsphere. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07471h
Imaging light responses of foveal ganglion cells in the living macaque eye.
Yin, Lu; Masella, Benjamin; Dalkara, Deniz; Zhang, Jie; Flannery, John G; Schaffer, David V; Williams, David R; Merigan, William H
2014-05-07
The fovea dominates primate vision, and its anatomy and perceptual abilities are well studied, but its physiology has been little explored because of limitations of current physiological methods. In this study, we adapted a novel in vivo imaging method, originally developed in mouse retina, to explore foveal physiology in the macaque, which permits the repeated imaging of the functional response of many retinal ganglion cells (RGCs) simultaneously. A genetically encoded calcium indicator, G-CaMP5, was inserted into foveal RGCs, followed by calcium imaging of the displacement of foveal RGCs from their receptive fields, and their intensity-response functions. The spatial offset of foveal RGCs from their cone inputs makes this method especially appropriate for fovea by permitting imaging of RGC responses without excessive light adaptation of cones. This new method will permit the tracking of visual development, progression of retinal disease, or therapeutic interventions, such as insertion of visual prostheses.
ERIC Educational Resources Information Center
Lessard, George M.
1980-01-01
Described is an experiment used in an undergraduate biochemistry laboratory involving inducing rickets in chicks and correlating the disease to a reduction in vitamin D-dependent calcium binding protein. Techniques involved are hormone induction, protein isolation, and radioisotope methodology. (Author/DS)
Sensitivity Profile for Orientation Selectivity in the Visual Cortex of Goggle-Reared Mice
Yoshida, Takamasa; Ozawa, Katsuya; Tanaka, Shigeru
2012-01-01
It has been widely accepted that ocular dominance in the responses of visual cortical neurons can change depending on visual experience in a postnatal period. However, experience-dependent plasticity for orientation selectivity, which is another important response property of visual cortical neurons, is not yet fully understood. To address this issue, using intrinsic signal imaging and two-photon calcium imaging we attempted to observe the alteration of orientation selectivity in the visual cortex of juvenile and adult mice reared with head-mounted goggles, through which animals can experience only the vertical orientation. After one week of goggle rearing, the density of neurons optimally responding to the exposed orientation increased, while that responding to unexposed orientations decreased. These changes can be interpreted as a reallocation of preferred orientations among visually responsive neurons. Our obtained sensitivity profile for orientation selectivity showed a marked peak at 5 weeks and sustained elevation at 12 weeks and later. These features indicate the existence of a critical period between 4 and 7 weeks and residual orientation plasticity in adult mice. The presence of a dip in the sensitivity profile at 10 weeks suggests that different mechanisms are involved in orientation plasticity in childhood and adulthood. PMID:22792390
Plant Calcium Content: Ready to Remodel
Yang, Jian; Punshon, Tracy; Guerinot, Mary Lou; Hirschi, Kendal D.
2012-01-01
By identifying the relationship between calcium location in the plant cell and nutrient bioavailability, the plant characteristics leading to maximal calcium absorption by humans can be identified. Knowledge of plant cellular and molecular targets controlling calcium location in plants is emerging. These insights should allow for better strategies for increasing the nutritional content of foods. In particular, the use of preparation-free elemental imaging technologies such as synchrotron X-ray fluorescence (SXRF) microscopy in plant biology may allow researchers to understand the relationship between subcellular location and nutrient bioavailability. These approaches may lead to better strategies for altering the location of calcium within the plant to maximize its absorption from fruits and vegetables. These modified foods could be part of a diet for children and adults identified as at-risk for low calcium intake or absorption with the ultimate goal of decreasing the incidence and severity of inadequate bone mineralization. PMID:23016135
Evidence for calcium soaps in human hair shaft revealed by sub-micrometer X-ray fluorescence
NASA Astrophysics Data System (ADS)
Briki, F.; Mérigoux, C.; Sarrot-Reynauld, F.; Salomé, M.; Fayard, B.; Susini, J.; Doucet, J.
2003-03-01
New information about calcium status in human scalp hair shaft, deduced from X-ray microfluorescence imaging, including its distribution over the hair section, the existence of one or several binding-types and its variation between people, is presented. The existence of two different calcium types is inferred. The first one corresponds to atoms (or ions) easily removable by hydrochloric acid, located in the cortex (granules), in the cuticle zone and also in the core of the medulla, which are identified as calcium soaps cy comparison with X-ray diffraction and IR spectromicroscopy data. The second type consists of non-easily removable calcium atoms (or ions) that are located in the medulla wall, probably also the cuticle, and rather uniformly in the cortex; these calcium atoms may be involved in Ca^{2+}-binding proteins, their concentration is fairly constant from one subject to another.
Kaestner, Lars; Tabellion, Wiebke; Lipp, Peter; Bernhardt, Ingolf
2004-12-01
Prostaglandin E(2) (PGE(2)) is released from platelets when they are activated. Using fluorescence imaging and the patch-clamp technique, we provide evidence that PGE(2) at physiological concentrations (10(-10) M) activates calcium rises mediated by calcium influx through a non-selective cation-channel in human red blood cells. The extent of calcium increase varied between cells with a total of 45% of the cells responding. It is well known that calcium increases elicited the calcium-activated potassium channel (Gardos channel) in the red cell membrane. Previously, it was shown that the Gardos channel activation results in potassium efflux and shrinkage of the cells. Therefore, we conclude that the PGE(2) responses of red blood cells described here reveal a direct and active participation of erythrocytes in blood clot formation.
Gravity, calcium, and bone - Update, 1989
NASA Technical Reports Server (NTRS)
Arnaud, Sara B.; Morey-Holton, Emily
1990-01-01
Recent results obtained on skeletal adaptation, calcium metabolism, and bone browth during short-term flights and ground simulated-microgravity experiments are presented. Results demonstrate that two principal components of calcium metabolism respond within days to changes in body position and to weightlessness: the calcium endocrine system and bone characteristics. Furthermore, results of recent studies imply that bone biomechanics are more severely affected by spaceflight exposures than is the bone mass.
Gravity, Calcium, And Bone: Update, 1989
NASA Technical Reports Server (NTRS)
Arnaud, Sara B.; Morey-Holton, Emily
1992-01-01
Report reviews short-term flight and ground-based experiments on effects of 1 g and 0 g on skeletal adaptation, calcium metabolism, and growth processes. Results indicate two principal components of calcium metabolism-calcium endocrine system and bone - respond within days to changes in orientation of body in gravitation and to weightlessness. Effects of spaceflight or bed rest on biomechanics of bones more severe than on total body bone mass.
Rodriguez, Michelle E; Poindexter, Brian J; Bick, Roger J; Dasgupta, Amitava
2008-12-01
We studied the potential cardiac effects of two alcohol extracts of commercially available hawthorn using rat cardiomyocytes and measuring calcium transients by real-time fluorescence spectrophotometry. One preparation was a blend of hawthorn flowers, leaves, and berries (extract #1), and the other (extract #2) was from a "berries-only" preparation. Fluorescent images and calcium transients were acquired concurrently. Addition of extract #1 resulted in the initiation of robust calcium transients and eventual calcium overload, while addition of extract #2 caused increased calcium sparking, initiation of calcium transients, and an increased beating rate but no calcium overload. To identify the mechanisms of increased calcium influx, adult rat cardiomyocytes were challenged with 10 microM ouabain, a Na(+),K(+)-ATPase inhibitor, and the calcium channel blocker nifedipine. The findings revealed that equal volumes of the two readily available hawthorn preparations demonstrated markedly different effects on isolated adult rat cardiomyocytes, suggesting important implications for patients who are using these preparations to supplement or even replace their prescribed cardiac medications as to which preparation(s) to use, and potential dire consequences, particularly in cardiac patients. Our study indicates that the mechanism of cardiac activity of hawthorn is via the Na(+),K(+)-ATPase and intracellular calcium concentrations are influenced.
Physiological Role of Gap-Junctional Hemichannels
Quist, Arjan Pieter; Rhee, Seung Keun; Lin, Hai; Lal, Ratneshwar
2000-01-01
Hemichannels in the overlapping regions of apposing cells plasma membranes join to form gap junctions and provide an intercellular communication pathway. Hemichannels are also present in the nonjunctional regions of individual cells and their activity is gated by several agents, including calcium. However, their physiological roles are unknown. Using techniques of atomic force microscopy (AFM), fluorescent dye uptake assay, and laser confocal immunofluorescence imaging, we have examined the extracellular calcium-dependent modulation of cell volume. In response to a change in the extracellular physiological calcium concentration (1.8 to ≤1.6 mM) in an otherwise isosmotic condition, real-time AFM imaging revealed a significant and reversible increase in the volume of cells expressing gap-junctional proteins (connexins). Volume change did not occur in cells that were not expressing connexins. However, after the transient or stable transfection of connexin43, volume change did occur. The volume increase was accompanied by cytochalasin D-sensitive higher cell stiffness, which helped maintain cell integrity. These cellular physical changes were prevented by gap-junctional blockers, oleamide and β-glycyrrhetinic acid, or were reversed by returning extracellular calcium to the normal level. We conclude that nongap-junctional hemichannels regulate cell volume in response to the change in extracellular physiological calcium in an otherwise isosmotic situation. PMID:10704454
NASA Astrophysics Data System (ADS)
Geniusz, Malwina; ZajÄ c, Marek
2016-09-01
Intraocular lens (IOL) is an artificial lens implanted into the eye in order to restore correct vision after the removal of natural lens cloudy due to cataract. The IOL prolonged stay in the eyeball causes the creation of different changes on the surface and inside the implant mainly in form of small-size local defects such as vacuoles and calcium deposites. Their presence worsens the imaging properties of the eye mainly due to occurence of scattered light thus deteriorating the vision quality of patients after cataract surgery. It is very difficult to study influence the effects of these changes on image quality in real patients. To avoid these difficulties two other possibilities were chosen: the analysis of the image obtained in an optomechanical eye model with artificially aged IOL as well as numerical calculation of the image characteristics while the eye lens is burdened with adequately modeled defects. In experiments the optomechanical model of an eye consisting of a glass "cornea", chamber filled with liquid where the IOL under investigation was inserted and a high resulution CCC detector serving as a "retina" was used. The Modulation Transfer Function (MTF) of such "eye" was evaluated on the basis of image of an edge. Experiments show that there is significant connection between ageing defects and decrease in MTF parameters. Numerical part was performed with a computer programme for optical imaging analysis (OpticStudio Professional, Zemax Professional from Radiant Zemax, LLC). On the basis of Atchison eye model with lens burdened with defects Modulation Transfer Functio was calculated. Particular parameters of defects used in a numerical model were based on own measurements. Numerical simulation also show significant connection between ageing defects and decrease of MTF parameters. With this technique the influence of types, density and distribution of local defect in the IOL on the retinal image quality can be evaluated quickly without the need of performing very difficult and even dangereous experiments on real human patients.
Relative quantification of membrane-associated calcium in red spruce mesophyll cells
Catherine H. Borer; Paul Schaberg; Jonathan R. Cumming
1997-01-01
We describe a method for localizing and comparing relative amounts of plasma membrane-associated calcium ions (mCa) in complex tissues and verify the procedure for mesophyll cells of red spruce (Picea rubens Sarg.) needles. This technique incorporates epifluorescence microscopy using the fluorescent probe chlorotetracycline (CTC) with computer image...
Visualization of Plasticity in Fear-Evoked Calcium Signals in Midbrain Dopamine Neurons
ERIC Educational Resources Information Center
Gore, Bryan B.; Soden, Marta E.; Zweifel, Larry S.
2014-01-01
Dopamine is broadly implicated in fear-related processes, yet we know very little about signaling dynamics in these neurons during active fear conditioning. We describe the direct imaging of calcium signals of dopamine neurons during Pavlovian fear conditioning using fiber-optic confocal microscopy coupled with the genetically encoded calcium…
NASA Astrophysics Data System (ADS)
Restrepo, Simon; Basler, Konrad
2016-08-01
Calcium signalling is a highly versatile cellular communication system that modulates basic functions such as cell contractility, essential steps of animal development such as fertilization and higher-order processes such as memory. We probed the function of calcium signalling in Drosophila wing imaginal discs through a combination of ex vivo and in vivo imaging and genetic analysis. Here we discover that wing discs display slow, long-range intercellular calcium waves (ICWs) when mechanically stressed in vivo or cultured ex vivo. These slow imaginal disc intercellular calcium waves (SIDICs) are mediated by the inositol-3-phosphate receptor, the endoplasmic reticulum (ER) calcium pump SERCA and the key gap junction component Inx2. The knockdown of genes required for SIDIC formation and propagation negatively affects wing disc recovery after mechanical injury. Our results reveal a role for ICWs in wing disc homoeostasis and highlight the utility of the wing disc as a model for calcium signalling studies.
Erxleben, C; Hermann, A
2001-03-16
Invertebrate skeletal muscle contraction is regulated by calcium influx through voltage-dependent calcium channels in the sarcolemmal membrane. In present study we investigated the effects of nitric oxide (NO) donors on calcium currents of single skeletal muscle fibres from the marine isopod, Idotea baltica, using two-electrode voltage clamp recording techniques. The NO donors, S-nitrosocysteine, S-nitroso-N-acetyl-penicillamine or hydroxylamine reversibly increased calcium inward currents in a time dependent manner. The increase of the current was prevented by methylene blue. Our experiments suggest that NO increases calcium inward currents. NO, by acting on calcium ion channels in the sarcolemmal membrane, therefore, may directly be involved in the modulation of muscle contraction.
Chemical-garden formation, morphology, and composition. II. Chemical gardens in microgravity.
Cartwright, Julyan H E; Escribano, Bruno; Sainz-Díaz, C Ignacio; Stodieck, Louis S
2011-04-05
We studied the growth of metal-ion silicate chemical gardens under Earth gravity (1 g) and microgravity (μg) conditions. Identical sets of reaction chambers from an automated system (the Silicate Garden Habitat or SGHab) were used in both cases. The μg experiment was performed on board the International Space Station (ISS) within a temperature-controlled setup that provided still and video images of the experiment downlinked to the ground. Calcium chloride, manganese chloride, cobalt chloride, and nickel sulfate were used as seed salts in sodium silicate solutions of several concentrations. The formation and growth of osmotic envelopes and microtubes was much slower under μg conditions. In 1 g, buoyancy forces caused tubes to grow upward, whereas a random orientation for tube growth was found under μg conditions.
Calcium as a signal integrator in developing epithelial tissues.
Brodskiy, Pavel A; Zartman, Jeremiah J
2018-05-16
Decoding how tissue properties emerge across multiple spatial and temporal scales from the integration of local signals is a grand challenge in quantitative biology. For example, the collective behavior of epithelial cells is critical for shaping developing embryos. Understanding how epithelial cells interpret a diverse range of local signals to coordinate tissue-level processes requires a systems-level understanding of development. Integration of multiple signaling pathways that specify cell signaling information requires second messengers such as calcium ions. Increasingly, specific roles have been uncovered for calcium signaling throughout development. Calcium signaling regulates many processes including division, migration, death, and differentiation. However, the pleiotropic and ubiquitous nature of calcium signaling implies that many additional functions remain to be discovered. Here we review a selection of recent studies to highlight important insights into how multiple signals are transduced by calcium transients in developing epithelial tissues. Quantitative imaging and computational modeling have provided important insights into how calcium signaling integration occurs. Reverse-engineering the conserved features of signal integration mediated by calcium signaling will enable novel approaches in regenerative medicine and synthetic control of morphogenesis.
Li, Xinjian; Cao, Vania Y; Zhang, Wenyu; Mastwal, Surjeet S; Liu, Qing; Otte, Stephani; Wang, Kuan Hong
2017-11-01
In vivo optical imaging of neural activity provides important insights into brain functions at the single-cell level. Cranial windows and virally delivered calcium indicators are commonly used for imaging cortical activity through two-photon microscopes in head-fixed animals. Recently, head-mounted one-photon microscopes have been developed for freely behaving animals. However, minimizing tissue damage from the virus injection procedure and maintaining window clarity for imaging can be technically challenging. We used a wide-diameter glass pipette at the cortical surface for infusing the viral calcium reporter AAV-GCaMP6 into the cortex. After infusion, the scalp skin over the implanted optical window was sutured to facilitate postoperative recovery. The sutured scalp was removed approximately two weeks later and a miniature microscope was attached above the window to image neuronal activity in freely moving mice. We found that cortical surface virus infusion efficiently labeled neurons in superficial layers, and scalp skin suturing helped to maintain the long-term clarity of optical windows. As a result, several hundred neurons could be recorded in freely moving animals. Compared to intracortical virus injection and open-scalp postoperative recovery, our methods minimized tissue damage and dura overgrowth underneath the optical window, and significantly increased the experimental success rate and the yield of identified neurons. Our improved cranial surgery technique allows for high-yield calcium imaging of cortical neurons with head-mounted microscopes in freely behaving animals. This technique may be beneficial for other optical applications such as two-photon microscopy, multi-site imaging, and optogenetic modulation. Published by Elsevier B.V.
Maleckar, Mary M; Edwards, Andrew G; Louch, William E; Lines, Glenn T
2017-01-01
Excitation-contraction coupling in cardiac myocytes requires calcium influx through L-type calcium channels in the sarcolemma, which gates calcium release through sarcoplasmic reticulum ryanodine receptors in a process known as calcium-induced calcium release, producing a myoplasmic calcium transient and enabling cardiomyocyte contraction. The spatio-temporal dynamics of calcium release, buffering, and reuptake into the sarcoplasmic reticulum play a central role in excitation-contraction coupling in both normal and diseased cardiac myocytes. However, further quantitative understanding of these cells' calcium machinery and the study of mechanisms that underlie both normal cardiac function and calcium-dependent etiologies in heart disease requires accurate knowledge of cardiac ultrastructure, protein distribution and subcellular function. As current imaging techniques are limited in spatial resolution, limiting insight into changes in calcium handling, computational models of excitation-contraction coupling have been increasingly employed to probe these structure-function relationships. This review will focus on the development of structural models of cardiac calcium dynamics at the subcellular level, orienting the reader broadly towards the development of models of subcellular calcium handling in cardiomyocytes. Specific focus will be given to progress in recent years in terms of multi-scale modeling employing resolved spatial models of subcellular calcium machinery. A review of the state-of-the-art will be followed by a review of emergent insights into calcium-dependent etiologies in heart disease and, finally, we will offer a perspective on future directions for related computational modeling and simulation efforts.
Calcium-regulated in vivo protein phosphorylation in Zea mays L. root tips
NASA Technical Reports Server (NTRS)
Raghothama, K. G.; Reddy, A. S.; Friedmann, M.; Poovaiah, B. W.
1987-01-01
Calcium dependent protein phosphorylation was studied in corn (Zea mays L.) root tips. Prior to in vivo protein phosphorylation experiments, the effect of calcium, ethyleneglycol-bis-(beta-aminoethyl ether)-N-N' -tetraacetic acid (EGTA) and calcium ionophore (A-23187) on phosphorus uptake was studied. Calcium increased phosphorus uptake, whereas EGTA and A-23187 decreased it. Consequently, phosphorus concentration in the media was adjusted so as to attain similar uptake in different treatments. Phosphoproteins were analyzed by two-dimensional gel electrophoresis. Distinct changes in phosphorylation were observed following altered calcium levels. Calcium depletion in root tips with EGTA and A-23187 decreased protein phosphorylation. However, replenishment of calcium following EGTA and ionophore pretreatment enhanced phosphorylation of proteins. Preloading of the root tips with 32P in the presence of EGTA and A-23187 followed by a ten minute calcium treatment, resulted in increased phosphorylation indicating the involvement of calcium, calcium and calmodulin-dependent kinases. Calmodulin antagonist W-7 was effective in inhibiting calcium-promoted phosphorylation. These studies suggest a physiological role for calcium-dependent phosphorylation in calcium-mediated processes in plants.
The effect of pigeon yolk sac fluid on the growth behavior of calcium carbonate crystals.
Song, Juan; Cheng, Haixia; Shen, Xinyu; Tong, Hua
2015-03-01
Previous experiments have proved that thermodynamically unstable calcium carbonate vaterite can exist for long periods in the yolk sac of a pigeon embryo. The aim of this article was to demonstrate the effect of in vitro mineralization of yolk sac fluid on calcium carbonate by direct precipitation. Experiments were conducted using pigeon yolk sac fluid and using lecithin extracted from pigeon yolk sac fluid as a control to investigate the regulating effects of the organic components in the embryo on the formation of the calcium carbonate precipitate. Multiple characterization methods were employed to study the various morphological patterns, sizes, crystal growth, and crystal phase transformations of the calcium carbonate precipitates as regulated by the yolk sac fluid extracted at different stages of incubation. The experimental results demonstrate that as the incubation proceeds towards the later stages, the composition and environmental features of the yolk sac fluid become more favorable for the formation of relatively unstable calcium carbonate phases with high energies of the vaterite state. The experiments conducted with extracted lecithin as the template for crystal growth yielded similar results. A large amount of organic molecules with polar functional groups carried by the yolk sac fluid have strong effects and can both initially induce the crystallization and regulate the aggregation of calcium carbonate. Furthermore, this regulation process is found to be closely related to the lecithin contained in yolk sac fluid. These observations confirm the changes in yolk sac fluid composition during incubation have significant effects on the production of vaterite, which implicates the calcium transport during embryo growth. © 2015 Poultry Science Association Inc.
Banciu, Adela; Banciu, Daniel Dumitru; Mustaciosu, Cosmin Catalin; Radu, Mihai; Cretoiu, Dragos; Xiao, Junjie; Cretoiu, Sanda Maria; Suciu, Nicolae; Radu, Beatrice Mihaela
2018-05-09
Voltage-gated calcium channels and estrogen receptors are essential players in uterine physiology, and their association with different calcium signaling pathways contributes to healthy and pathological conditions of the uterine myometrium. Among the properties of the various cell subtypes present in human uterine myometrium, there is increasing evidence that calcium oscillations in telocytes (TCs) contribute to contractile activity and pregnancy. Our study aimed to evaluate the effects of beta-estradiol on voltage-gated calcium channels and estrogen receptors in TCs from human uterine myometrium and to understand their role in pregnancy. For this purpose, we employed patch-clamp recordings, ratiometric Fura-2-based calcium imaging analysis, and qRT-PCR techniques for the analysis of cultured human myometrial TCs derived from pregnant and non-pregnant uterine samples. In human myometrial TCs from both non-pregnant and pregnant uterus, we evidenced by qRT-PCR the presence of genes encoding for voltage-gated calcium channels (Cav3.1, Ca3.2, Cav3.3, Cav2.1), estrogen receptors (ESR1, ESR2, GPR30), and nuclear receptor coactivator 3 (NCOA3). Pregnancy significantly upregulated Cav3.1 and downregulated Cav3.2, Cav3.3, ESR1, ESR2, and NCOA3, compared to the non-pregnant condition. Beta-estradiol treatment (24 h, 10, 100, 1000 nM) downregulated Cav3.2, Cav3.3, Cav1.2, ESR1, ESR2, GRP30, and NCOA3 in TCs from human pregnant uterine myometrium. We also confirmed the functional expression of voltage-gated calcium channels by patch-clamp recordings and calcium imaging analysis of TCs from pregnant human myometrium by perfusing with BAY K8644, which induced calcium influx through these channels. Additionally, we demonstrated that beta-estradiol (1000 nM) antagonized the effect of BAY K8644 (2.5 or 5 µM) in the same preparations. In conclusion, we evidenced the presence of voltage-gated calcium channels and estrogen receptors in TCs from non-pregnant and pregnant human uterine myometrium and their gene expression regulation by beta-estradiol in pregnant conditions. Further exploration of the calcium signaling in TCs and its modulation by estrogen hormones will contribute to the understanding of labor and pregnancy mechanisms and to the development of effective strategies to reduce the risk of premature birth.
Analysis of Spontaneous and Nerve-Evoked Calcium Transients in Intact Extraocular Muscles in Vitro
Feng, Cheng-Yuan; Hennig, Grant W.; Corrigan, Robert D.; Smith, Terence K.; von Bartheld, Christopher S.
2012-01-01
Extraocular muscles (EOMs) have unique calcium handling properties, yet little is known about the dynamics of calcium events underlying ultrafast and tonic contractions in myofibers of intact EOMs. Superior oblique EOMs of juvenile chickens were dissected with their nerve attached, maintained in oxygenated Krebs buffer, and loaded with fluo-4. Spontaneous and nerve stimulation-evoked calcium transients were recorded and, following calcium imaging, some EOMs were double-labeled with rhodamine-conjugated alpha-bungarotoxin (rhBTX) to identify EOM myofiber types. EOMs showed two main types of spontaneous calcium transients, one slow type (calcium waves with 1/2max duration of 2–12 s, velocity of 25–50 μm/s) and two fast “flash-like” types (Type 1, 30–90 ms; Type 2, 90–150 ms 1/2max duration). Single pulse nerve stimulation evoked fast calcium transients identical to the fast (Type 1) calcium transients. Calcium waves were accompanied by a local myofiber contraction that followed the calcium transient wavefront. The magnitude of calcium-wave induced myofiber contraction far exceeded those of movement induced by nerve stimulation and associated fast calcium transients. Tetrodotoxin eliminated nerve-evoked transients, but not spontaneous transients. Alpha-bungarotoxin eliminated both spontaneous and nerve-evoked fast calcium transients, but not calcium waves, and caffeine increased wave activity. Calcium waves were observed in myofibers lacking spontaneous or evoked fast transients, suggestive of multiply-innervated myofibers, and this was confirmed by double-labeling with rhBTX. We propose that the abundant spontaneous calcium transients and calcium waves with localized contractions that do not depend on innervation may contribute to intrinsic generation of tonic functions of EOMs. PMID:22579493
Diagram of Calcium Movement in the Human Body
NASA Technical Reports Server (NTRS)
2002-01-01
This diagram shows the normal pathways of calcium movement in the body and indicates changes (green arrows) seen during preliminary space flight experiments. Calcium plays a central role because 1) it gives strength and structure to bone and 2) all types of cells require it to function normally. To better understand how and why weightlessness induces bone loss, astronauts have participated in a study of calcium kinetics -- that is, the movement of calcium through the body, including absorption from food, and its role in the formation and breakdown of bone.
Development of calcium bodies in Hylonsicus riparius (Crustacea: Isopoda).
Vittori, Miloš; Khurshed, Mohammed; Picavet, Daisy I; van Noorden, Cornelis J F; Štrus, Jasna
2018-03-01
Calcium bodies are internal epithelial sacs found in terrestrial isopods of the family Trichoniscidae that contain a mineralized extracellular matrix that is deposited and resorbed in relation to the molt cycle. Calcium bodies in several trichoniscids are filled with bacteria, the function of which is currently unknown. The woodlouse Hyloniscus riparius differs from other trichoniscids in that it possesses two different pairs of calcium bodies, the posterior pair being filled with bacteria and the anterior pair being devoid of bacteria. We explored the development of these organs and bacterial colonization of their lumen during the postmarsupial development with the use of optical clearing and whole-body confocal imaging of larval and juvenile stages. Our results show that calcium bodies are formed as invaginations of the epidermis in the region of intersegmental membranes during the postmarsupial development. The anterior pair of calcium bodies is generated during the first postmarsupial manca stage, whereas the posterior calcium bodies first appear in juveniles and are immediately colonized by bacteria, likely through a connection between the calcium body lumen and the body surface. Mineral is deposited in calcium bodies as soon as they are present. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pilarczyk, Goetz; Greulich, Karl-Otto
1997-12-01
The coordination of excitation in a biological system of cells such as cardiac myocytes in heart tissue has crucial influence on the function of the entire organ. This coordinated behavior can be visualized in a small group of embryonic cardiac myocytes derived from the hearts of unborn chicken. Loaded with a calcium sensitive dye the excitation can be imaged via the occurring transient rise in cytosolic calcium concentration. It can be shown that in regions with physiological or morphological restrictions the transient rise in cytosolic calcium occurs with a temporal delay compared to the ordinary array of coupled myocytes. The height of the transient rise of cytosolic calcium is related to the ability of the individual cell to participate in the coordinated contraction. The free cytosolic calcium concentration is decreased with the UV-labile calcium, chelator diazo-2. Our setup allows to decrease the free cytosolic calcium in a single cell of the contracting array of cells. This allows us to introduce mismatches in selected regions of the coordinated contraction and to visualize the effects simultaneously.
Jaffe, Lionel F
2008-04-12
Waves through living systems are best characterized by their speeds at 20 degrees C. These speeds vary from those of calcium action potentials to those of ultraslow ones which move at 1-10 and/or 10-20 nm s(-1). All such waves are known or inferred to be calcium waves. The two classes of calcium waves which include ones with important morphogenetic effects are slow waves that move at 0.2-2 microm s(-1) and ultraslow ones. Both may be propagated by cycles in which the entry of calcium through the plasma membrane induces subsurface contraction. This contraction opens nearby stretch-sensitive calcium channels. Calcium entry through these channels propagates the calcium wave. Many slow waves are seen as waves of indentation. Some are considered to act via cellular peristalsis; for example, those which seem to drive the germ plasm to the vegetal pole of the Xenopus egg. Other good examples of morphogenetic slow waves are ones through fertilizing maize eggs, through developing barnacle eggs and through axolotl embryos during neural induction. Good examples of ultraslow morphogenetic waves are ones during inversion in developing Volvox embryos and across developing Drosophila eye discs. Morphogenetic waves may be best pursued by imaging their calcium with aequorins.
Campagnola, Luke; Kratz, Megan B; Manis, Paul B
2014-01-01
The complexity of modern neurophysiology experiments requires specialized software to coordinate multiple acquisition devices and analyze the collected data. We have developed ACQ4, an open-source software platform for performing data acquisition and analysis in experimental neurophysiology. This software integrates the tasks of acquiring, managing, and analyzing experimental data. ACQ4 has been used primarily for standard patch-clamp electrophysiology, laser scanning photostimulation, multiphoton microscopy, intrinsic imaging, and calcium imaging. The system is highly modular, which facilitates the addition of new devices and functionality. The modules included with ACQ4 provide for rapid construction of acquisition protocols, live video display, and customizable analysis tools. Position-aware data collection allows automated construction of image mosaics and registration of images with 3-dimensional anatomical atlases. ACQ4 uses free and open-source tools including Python, NumPy/SciPy for numerical computation, PyQt for the user interface, and PyQtGraph for scientific graphics. Supported hardware includes cameras, patch clamp amplifiers, scanning mirrors, lasers, shutters, Pockels cells, motorized stages, and more. ACQ4 is available for download at http://www.acq4.org.
Effects of calcium leaching on diffusion properties of hardened and altered cement pastes
NASA Astrophysics Data System (ADS)
Kurumisawa, Kiyofumi; Haga, Kazuko; Hayashi, Daisuke; Owada, Hitoshi
2017-06-01
It is very important to predict alterations in the concrete used for fabricating disposal containers for radioactive waste. Therefore, it is necessary to understand the alteration of cementitious materials caused by calcium leaching when they are in contact with ground water in the long term. To evaluate the long-term transport characteristics of cementitious materials, the microstructural behavior of these materials should be considered. However, many predictive models of transport characteristics focus on the pore structure, while only few such models consider both, the spatial distribution of calcium silicate hydrate (C-S-H), portlandite, and the pore spaces. This study focused on the spatial distribution of these cement phases. The auto-correlation function of each phase of cementitious materials was calculated from two-dimensional backscattered electron imaging, and the three-dimensional spatial image of the cementitious material was produced using these auto-correlation functions. An attempt was made to estimate the diffusion coefficient of chloride from the three-dimensional spatial image. The estimated diffusion coefficient of the altered sample from the three-dimensional spatial image was found to be comparable to the measured value. This demonstrated that it is possible to predict the diffusion coefficient of the altered cement paste by using the proposed model.
St. John’s Wort enhances the synaptic activity of the nucleus of the solitary tract
Vance, Katie M.; Ribnicky, David M.; Hermann, Gerlinda E.; Rogers, Richard C.
2014-01-01
Objective St. John’s Wort extract, which is commonly used to treat depression, inhibits the reuptake of several neurotransmitters, including glutamate, serotonin, norepinephrine, and dopamine. Glutamatergic visceral vagal afferents synapse upon neurons of the solitary tract (NST); thus, we evaluated whether St. John’s Wort extract modulates glutamatergic neurotransmission within the NST. Materials and Methods We used live cell calcium imaging to evaluate whether St. John’s Wort and its isolated components hypericin and hyperforin increase the excitability of pre-labeled vagal afferent terminals synapsing upon the NST. We used voltage-clamp recordings of spontaneous miniature excitatory postsynaptic currents (mEPSCs) to evaluate whether St. John’s Wort alters glutamate release from vagal afferents onto NST neurons. Results Our imaging data show that St. John’s Wort (50 μg/mL) increased the intracellular calcium levels of stimulated vagal afferent terminals compared to the bath control. This increase in presynaptic vagal afferent calcium by the extract coincides with an increase in neurotransmitter release within the nucleus of the solitary tract, as the frequency of mEPSCs is significantly higher in the presence of the extract compared to the control. Finally, our imaging data show that hyperforin, a known component of St. John’s Wort extract, also significantly increases terminal calcium levels. Conclusion These data suggest that St. John’s Wort extract can significantly increase the probability of glutamate release from vagal afferents onto the NST by increasing presynaptic calcium. The in vitro vagal afferent synapse with NST neurons is an ideal model system to examine the mechanism of action of botanical agents on glutamatergic neurotransmission. PMID:24985104
Ganesan, Vishnu; De, Shubha; Shkumat, Nicholas; Marchini, Giovanni; Monga, Manoj
2018-02-01
Preoperative determination of uric acid stones from computerized tomography imaging would be of tremendous clinical use. We sought to design a software algorithm that could apply data from noncontrast computerized tomography to predict the presence of uric acid stones. Patients with pure uric acid and calcium oxalate stones were identified from our stone registry. Only stones greater than 4 mm which were clearly traceable from initial computerized tomography to final composition were included in analysis. A semiautomated computer algorithm was used to process image data. Average and maximum HU, eccentricity (deviation from a circle) and kurtosis (peakedness vs flatness) were automatically generated. These parameters were examined in several mathematical models to predict the presence of uric acid stones. A total of 100 patients, of whom 52 had calcium oxalate and 48 had uric acid stones, were included in the final analysis. Uric acid stones were significantly larger (12.2 vs 9.0 mm, p = 0.03) but calcium oxalate stones had higher mean attenuation (457 vs 315 HU, p = 0.001) and maximum attenuation (918 vs 553 HU, p <0.001). Kurtosis was significantly higher in each axis for calcium oxalate stones (each p <0.001). A composite algorithm using attenuation distribution pattern, average attenuation and stone size had overall 89% sensitivity, 91% specificity, 91% positive predictive value and 89% negative predictive value to predict uric acid stones. A combination of stone size, attenuation intensity and attenuation pattern from conventional computerized tomography can distinguish uric acid stones from calcium oxalate stones with high sensitivity and specificity. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Calcium Apatite Deposition Disease: Diagnosis and Treatment
2016-01-01
Calcium apatite deposition disease (CADD) is a common entity characterized by deposition of calcium apatite crystals within and around connective tissues, usually in a periarticular location. CADD most frequently involves the rotator cuff. However, it can theoretically occur in almost any location in the musculoskeletal system, and many different locations of CADD have been described. When CADD presents in an unexpected location it can pose a diagnostic challenge, particularly when associated with pain or swelling, and can be confused with other pathologic processes, such as infection or malignancy. However, CADD has typical imaging characteristics that usually allows for a correct diagnosis to be made without additional imaging or laboratory workup, even when presenting in unusual locations. This is a review of the common and uncommon presentations of CADD in the appendicular and axial skeleton as well as an updated review of pathophysiology of CADD and current treatments. PMID:28042481
Occult urolithiasis in asymptomatic primary hyperparathyroidism.
Tay, Yu-Kwang Donovan; Liu, Minghao; Bandeira, Leonardo; Bucovsky, Mariana; Lee, James A; Silverberg, Shonni J; Walker, Marcella D
2018-05-01
Recent international guidelines suggest renal imaging to detect occult urolithiasis in all patients with asymptomatic primary hyperparathyroidism (PHPT), but data regarding their prevalence and associated risk factors are limited. We evaluated the prevalence and risk factors for occult urolithiasis. Cross-sectional analysis of 96 asymptomatic PHPT patients from a university hospital in the United States with and without occult nephrolithiasis. Occult urolithiasis was identified in 21% of patients. Stone formers had 47% higher 24-hour urinary calcium excretion (p = 0.002). Although available in only a subset of patients (n = 28), activated vitamin D [1,25(OH) 2 D] was 29% higher (p = 0.02) in stone formers. There was no difference in demographics, BMI, calcium or vitamin D intake, other biochemistries, renal function, BMD, or fractures. Receiver operating characteristic curves indicated that urinary calcium excretion and 1,25(OH) 2 D had an area under the curve of 0.724 (p = 0.003) and 0.750 (p = 0.04), respectively. A urinary calcium threshold of >211mg/day provided a sensitivity of 84.2% and a specificity of 55.3% while a 1,25(OH) 2 D threshold of >91pg/mL provided a sensitivity and specificity of 62.5% and 90.0% respectively for the presence of stones. Occult urolithiasis is present in about one-fifth of patients with asymptomatic PHPT and is associated with higher urinary calcium and 1,25(OH) 2 D. Given that most patients will not have occult urolithiasis, targeted imaging in those most likely to have occult stones rather than screening all asymptomatic PHPT patients may be useful. The higher sensitivity of urinary calcium versus 1,25(OH) 2 D suggests screening those with higher urinary calcium may be an appropriate approach.
Persson, Karin; Rekling, Jens C
2011-01-01
Abstract The brainstem contains rhythm and pattern forming circuits, which drive cranial and spinal motor pools to produce respiratory and other motor patterns. Here we used calcium imaging combined with nerve recordings in newborn mice to reveal spontaneous population activity in the ventral brainstem and in the facial nucleus. In Fluo-8 AM loaded brainstem–spinal cord preparations, respiratory activity on cervical nerves was synchronized with calcium signals at the ventrolateral brainstem surface. Individual ventrolateral neurons at the level of the parafacial respiratory group showed perfect or partial synchrony with respiratory nerve bursts. In brainstem–spinal cord preparations, cut at the level of the mid-facial nucleus, calcium signals were recorded in the dorsal, lateral and medial facial subnuclei during respiratory activity. Strong activity initiated in the dorsal subnucleus, followed by activity in lateral and medial subnuclei. Whole-cell recordings from facial motoneurons showed weak respiratory drives, and electrical field potential recordings confirmed respiratory drive to particularly the dorsal and lateral subnuclei. Putative facial premotoneurons showed respiratory-related calcium signals, and were predominantly located dorsomedial to the facial nucleus. A novel motor activity on facial, cervical and thoracic nerves was synchronized with calcium signals at the ventromedial brainstem extending from the level of the facial nucleus to the medulla–spinal cord border. Cervical dorsal root stimulation induced similar ventromedial activity. The medial facial subnucleus showed calcium signals synchronized with this novel motor activity on cervical nerves, and cervical dorsal root stimulation induced similar medial facial subnucleus activity. In conclusion, the dorsal and lateral facial subnuclei are strongly respiratory-modulated, and the brainstem contains a novel pattern forming circuit that drives the medial facial subnucleus and cervical motor pools. PMID:21486812
Stone size limits the use of Hounsfield units for prediction of calcium oxalate stone composition.
Stewart, Gregory; Johnson, Lewis; Ganesh, Halemane; Davenport, Daniel; Smelser, Woodson; Crispen, Paul; Venkatesh, Ramakrishna
2015-02-01
To evaluate the role of stone size in predicting urinary calculus composition using Hounsfield units on noncontrasted computed tomography (CT) scan. A retrospective review was performed for all patients who underwent ureteroscopy or percutaneous nephrolithotomy during a 1-year period, had a stone analysis performed, and had CT imaging available for review. All CT scans were reviewed by a board-certified radiologist. Variables evaluated included age, sex, body mass index, stone size, stone location, Hounsfield units (HUs), and stone composition. We identified a total of 91 patients (41 men and 50 women) with CT imaging and stone analysis available for review. Stone analysis showed 41 calcium oxalate monohydrate (CaOxMH), 13 calcium oxalate dihydrate, 29 calcium phosphate, 5 uric acid, 2 struvite, and 1 cystine stone. Average age was 46 years, and average body mass index was 32 kg/m2. Measured HUs varied significantly with size for CaOxMH and calcium oxalate dihydrate stones (P values <.05), but not for calcium phosphate stones (P = .126). Using a CaOxMH identification value of 700-1000 HUs, 28 of 41 stone compositions (68%) would not have been correctly identified, including all 10 (100%) small (<5 mm) stones, 13 of 22 (59%) medium (5-10 mm) stones, and 5 of 9 large (>10 mm) stones (55%). For calcium stones, the ability of CT HUs to predict stone composition was limited, likely due to the mixed stone composition. Within a cohort of CaOxMH stone formers, measured HUs varied linearly with stone size. All stones <5 mm were below thresholds for CaOxMH composition. Copyright © 2015 Elsevier Inc. All rights reserved.
Gardner, J D; Conlon, T P; Kleveman, H L; Adams, T D; Ondetti, M A
1975-01-01
COOH-terminal octapeptide of cholecystokinin (CCK-octapeptide) and the cholinergic agent carbamylcholine each produced a fourfold stimulation of calcium outflux in guinea pig isolated pancreatic acinar cells. Neither agent altered calcium influx. Stimulation of calcium outflux was rapid and specific, was abolished by reducing the incubation temperature to 4 degrees C, and was a saturable function of the secretagogue concentration. The concentrations of CCK-octapeptide and carbamylcholine that produced half-maximal stimulation of calcium outflux were 3.1 x 10(-10) M and 4.9 x 10(-5) M, respectively. The cholinergic antagonist antropine competitively inhibited carbamylcholine stimulation of calcium outflux but did not alter stimulation produced by CCK-octapeptide. Stimulation of calcium outflux by maximal concentrations of carbamycholine plus CCK-octapeptide was the same as that produced by a maximal concentration of either agent alone.Calcium outflux became refractory to stimulation by secretagogues, and incubation with either CCK-ostapeptide or carbamylcholine produced a refractoriness to both agents. The relative potencies with CCK and its related fragments stimulated calcium outflux were CCK-octapeptide greater than heptapeptide greater than CCK greater than hexapeptide = gastrin. Secretin, glucagon, and vasoactive intestinal peptide, at concentrations as high as 10(-5) M, failed to alter calcium outflux and did not affect stimulation by CCK-octapeptide or by carbamycholine. Images PMID:1150877
ERIC Educational Resources Information Center
Smith, Robert L.; Popham, Ronald E.
1983-01-01
Presents an experiment in thermometric titration used in an analytic chemistry-chemical instrumentation course, consisting of two titrations, one a mixture of calcium and magnesium, the other of calcium, magnesium, and barium ions. Provides equipment and solutions list/specifications, graphs, and discussion of results. (JM)
Calcium activation of frog slow muscle fibres
Costantin, L. L.; Podolsky, R. J.; Tice, Lois W.
1967-01-01
1. Skinned muscle fibres were prepared from the tonus bundle of the frog iliofibularis muscle and the contractile response elicited by applied calcium ions was studied. The fibre type was determined by electron microscopy. 2. Fast fibres shortened many times more rapidly than slow fibres, indicating that the slow contraction of slow fibres is an inherent property of the contractile mechanism. 3. The extent of spread of contraction following local calcium application was much greater in slow than in fast fibres, a difference which is consistent with the relative sparsity of the sarcoplasmic reticulum in slow fibres. 4. The ability of the sarcoplasmic reticulum of slow fibres to accumulate calcium was demonstrated by the in situ immobilization of calcium when oxalate solutions were added to the skinned fibre. ImagesPlate 1Plate 2Plate 3Plate 4Plate 5AB PMID:6030519
Atmospheric Science Data Center
2013-04-22
... were acquired by the Multi-angle Imaging SpectroRadiometer (MISR) during October and November 2003. The two images represent about 310 ... obtain calcium from the seawater and carbon dioxide from cell respiration, and bring these products into the internal tissues of the ...
Kuzum, Duygu; Takano, Hajime; Shim, Euijae; Reed, Jason C; Juul, Halvor; Richardson, Andrew G.; de Vries, Julius; Bink, Hank; Dichter, Marc A.; Lucas, Timothy H.; Coulter, Douglas A.; Cubukcu, Ertugrul; Litt, Brian
2014-01-01
Calcium imaging is a versatile experimental approach capable of resolving single neurons with single-cell spatial resolution in the brain. Electrophysiological recordings provide high temporal, but limited spatial resolution, due to the geometrical inaccessibility of the brain. An approach that integrates the advantages of both techniques could provide new insights into functions of neural circuits. Here, we report a transparent, flexible neural electrode technology based on graphene, which enables simultaneous optical imaging and electrophysiological recording. We demonstrate that hippocampal slices can be imaged through transparent graphene electrodes by both confocal and two-photon microscopy without causing any light-induced artifacts in the electrical recordings. Graphene electrodes record high frequency bursting activity and slow synaptic potentials that are hard to resolve by multi-cellular calcium imaging. This transparent electrode technology may pave the way for high spatio-temporal resolution electrooptic mapping of the dynamic neuronal activity. PMID:25327632
Calcium neuroimaging in behaving zebrafish larvae using a turn-key light field camera
NASA Astrophysics Data System (ADS)
Cruz Perez, Carlos; Lauri, Antonella; Symvoulidis, Panagiotis; Cappetta, Michele; Erdmann, Arne; Westmeyer, Gil Gregor
2015-09-01
Reconstructing a three-dimensional scene from multiple simultaneously acquired perspectives (the light field) is an elegant scanless imaging concept that can exceed the temporal resolution of currently available scanning-based imaging methods for capturing fast cellular processes. We tested the performance of commercially available light field cameras on a fluorescent microscopy setup for monitoring calcium activity in the brain of awake and behaving reporter zebrafish larvae. The plenoptic imaging system could volumetrically resolve diverse neuronal response profiles throughout the zebrafish brain upon stimulation with an aversive odorant. Behavioral responses of the reporter fish could be captured simultaneously together with depth-resolved neuronal activity. Overall, our assessment showed that with some optimizations for fluorescence microscopy applications, commercial light field cameras have the potential of becoming an attractive alternative to custom-built systems to accelerate molecular imaging research on cellular dynamics.
Calcium neuroimaging in behaving zebrafish larvae using a turn-key light field camera.
Perez, Carlos Cruz; Lauri, Antonella; Symvoulidis, Panagiotis; Cappetta, Michele; Erdmann, Arne; Westmeyer, Gil Gregor
2015-09-01
Reconstructing a three-dimensional scene from multiple simultaneously acquired perspectives (the light field) is an elegant scanless imaging concept that can exceed the temporal resolution of currently available scanning-based imaging methods for capturing fast cellular processes. We tested the performance of commercially available light field cameras on a fluorescent microscopy setup for monitoring calcium activity in the brain of awake and behaving reporter zebrafish larvae. The plenoptic imaging system could volumetrically resolve diverse neuronal response profiles throughout the zebrafish brain upon stimulation with an aversive odorant. Behavioral responses of the reporter fish could be captured simultaneously together with depth-resolved neuronal activity. Overall, our assessment showed that with some optimizations for fluorescence microscopy applications, commercial light field cameras have the potential of becoming an attractive alternative to custom-built systems to accelerate molecular imaging research on cellular dynamics.
Jayasinghe, Isuru D; Munro, Michelle; Baddeley, David; Launikonis, Bradley S; Soeller, Christian
2014-10-06
Localization microscopy is a fairly recently introduced super-resolution fluorescence imaging modality capable of achieving nanometre-scale resolution. We have applied the dSTORM variation of this method to image intracellular molecular assemblies in skeletal muscle fibres which are large cells that critically rely on nanoscale signalling domains, the triads. Immunofluorescence staining in fixed adult rat skeletal muscle sections revealed clear differences between fast- and slow-twitch fibres in the molecular organization of ryanodine receptors (RyRs; the primary calcium release channels) within triads. With the improved resolution offered by dSTORM, abutting arrays of RyRs in transverse view of fast fibres were observed in contrast to the fragmented distribution on slow-twitch muscle that were approximately 1.8 times shorter and consisted of approximately 1.6 times fewer receptors. To the best of our knowledge, for the first time, we have quantified the nanometre-scale spatial association between triadic proteins using multi-colour super-resolution, an analysis difficult to conduct with electron microscopy. Our findings confirm that junctophilin-1 (JPH1), which tethers the sarcoplasmic reticulum ((SR) intracellular calcium store) to the tubular (t-) system at triads, was present throughout the RyR array, whereas JPH2 was contained within much smaller nanodomains. Similar imaging of the primary SR calcium buffer, calsequestrin (CSQ), detected less overlap of the triad with CSQ in slow-twitch muscle supporting greater spatial heterogeneity in the luminal Ca2+ buffering when compared with fast twitch muscle. Taken together, these nanoscale differences can explain the fundamentally different physiologies of fast- and slow-twitch muscle. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Jayasinghe, Isuru D.; Munro, Michelle; Baddeley, David; Launikonis, Bradley S.; Soeller, Christian
2014-01-01
Localization microscopy is a fairly recently introduced super-resolution fluorescence imaging modality capable of achieving nanometre-scale resolution. We have applied the dSTORM variation of this method to image intracellular molecular assemblies in skeletal muscle fibres which are large cells that critically rely on nanoscale signalling domains, the triads. Immunofluorescence staining in fixed adult rat skeletal muscle sections revealed clear differences between fast- and slow-twitch fibres in the molecular organization of ryanodine receptors (RyRs; the primary calcium release channels) within triads. With the improved resolution offered by dSTORM, abutting arrays of RyRs in transverse view of fast fibres were observed in contrast to the fragmented distribution on slow-twitch muscle that were approximately 1.8 times shorter and consisted of approximately 1.6 times fewer receptors. To the best of our knowledge, for the first time, we have quantified the nanometre-scale spatial association between triadic proteins using multi-colour super-resolution, an analysis difficult to conduct with electron microscopy. Our findings confirm that junctophilin-1 (JPH1), which tethers the sarcoplasmic reticulum ((SR) intracellular calcium store) to the tubular (t-) system at triads, was present throughout the RyR array, whereas JPH2 was contained within much smaller nanodomains. Similar imaging of the primary SR calcium buffer, calsequestrin (CSQ), detected less overlap of the triad with CSQ in slow-twitch muscle supporting greater spatial heterogeneity in the luminal Ca2+ buffering when compared with fast twitch muscle. Taken together, these nanoscale differences can explain the fundamentally different physiologies of fast- and slow-twitch muscle. PMID:25100314
ERIC Educational Resources Information Center
Garvey, Sarah L.; Shahmohammadi, Golbon; McLain, Derek R.; Dietz, Mark L.
2015-01-01
A laboratory experiment is described in which students compare two methods for the determination of the calcium content of commercial dietary supplement tablets. In a two-week sequence, the sample tablets are first analyzed via complexometric titration with ethylenediaminetetraacetic acid and then, following ion exchange of the calcium ion present…
False positives in Biolog EcoPlates™ and MT2 MicroPlates™ caused by calcium.
Pierce, Melissa L; Ward, J Evan; Dobbs, Fred C
2014-02-01
Biolog MicroPlates(TM) (e.g. EcoPlate(TM), MT2 MicroPlate(TM), GN MicroPlate(TM)) are useful tools for characterizing microbial communities, providing community-level physiological profiles to terrestrial and aquatic ecologists. The more recently designed Biolog EcoPlates have been used frequently in aquatic ecology with success. This study, however, reveals one major problem when using EcoPlates to evaluate samples within an estuarine or seawater matrix. At concentrations greater than 100 parts per million, the cation calcium begins to interfere with the microplate chemistry, causing false positive readings. Experiments, in which multiple treatments of natural and artificial seawater were tested, as well as calcium-addition experiments, demonstrate that calcium inhibits complete dissolution of the minimal growth medium in wells. Future studies involving Biolog EcoPlates and MicroPlates should take this effect into account, and the dilution of samples is strongly recommended to diminish the "calcium effect." Copyright © 2013 Elsevier B.V. All rights reserved.
Yang, Jiao-lan; Chen, Dong-qing; Li, Shu-min; Yue, Yin-ling; Jin, Xin; Zhao, Bing-cheng; Ying, Bo
2010-02-05
The fluorosis derived from coal burning is a very serious problem in China. By using fluorine-fixing technology during coal burning we are able to reduce the release of fluorides in coal at the source in order to reduce pollution to the surrounding environment by coal burning pollutants as well as decrease the intake and accumulating amounts of fluorine in the human body. The aim of this study was to conduct a pilot experiment on calcium-based fluorine-fixing material efficiency during coal burning to demonstrate and promote the technology based on laboratory research. A proper amount of calcium-based fluorine sorbent was added into high-fluorine coal to form briquettes so that the fluorine in high-fluorine coal can be fixed in coal slag and its release into atmosphere reduced. We determined figures on various components in briquettes and fluorine in coal slag as well as the concentrations of indoor air pollutants, including fluoride, sulfur dioxide and respirable particulate matter (RPM), and evaluated the fluorine-fixing efficiency of calcium-based fluorine sorbents and the levels of indoor air pollutants. Pilot experiments on fluorine-fixing efficiency during coal burning as well as its demonstration and promotion were carried out separately in Guiding and Longli Counties of Guizhou Province, two areas with coal burning fluorosis problems. If the calcium-based fluorine sorbent mixed coal was made into honeycomb briquettes the average fluorine-fixing ratio in the pilot experiment was 71.8%. If the burning calcium-based fluorine-fixing bitumite was made into a coalball, the average of fluorine-fixing ratio was 77.3%. The concentration of fluoride, sulfur dioxide and PM10 of indoor air were decreased significantly. There was a 10% increase in the cost of briquettes due to the addition of calcium-based fluorine sorbent. The preparation process of calcium-based fluorine-fixing briquette is simple yet highly flammable and it is applicable to regions with abundant bitumite coal. As a small scale application, villagers may make fluorine-fixing coalballs or briquettes by themselves, achieving the optimum fluorine-fixing efficiency and reducing indoor air pollutants providing environmental and social benefits.
NASA Technical Reports Server (NTRS)
2002-01-01
Satellites provide a view from space of changes on the Earth's surface. This series of images from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) aboard the Orbview-2 satellite shows the dramatic change in the color of Lake Michigan during the summer. The bright color that appears in late summer is probably caused by calcium carbonate-chalk-in the water. Lake Michigan always has a lot of calcium carbonate in it because the floor of the lake is limestone. During most of the year the calcium carbonate remains dissolved in the cold water, but at the end of summer the lake warms up, lowering the solubility of calcium carbonate. As a result, the calcium carbonate precipitates out of the water, forming clouds of very small solid particles that appear as bright swirls from above. The phenomenon is appropriately called a whiting event. A similar event occured in 1999, but appears to have started later and subsided earlier. It is also possible that a bloom of the algae Microcystis is responsible for the color change, but unlikely because of Lake Michigan's depth and size. Microcystis blooms have occured in other lakes in the region, however. On the shore of the lake it is possible to see the cities of Chicago, Illinois, and Milwaukee, Wisconsin. Both appear as clusters of gray-brown pixels. Image courtesy the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE
NASA Technical Reports Server (NTRS)
Reiss-Bubenheim, Debra; Navarro, B. J.; Souza, Kenneth A. (Technical Monitor)
1994-01-01
This educational outreach activity provided students with information about ARC's role in conducting life sciences research in space. Students were introduced to the scientific method while conducting a plant experiment that was correlated to the flight animal experiment. Students made daily observations, collected data and reported on their findings. This classroom experiment providing a hands-on learning opportunity about terrestrial and space biology in which exposed the students to new fields of study for future endeavors.
Biophysically realistic minimal model of dopamine neuron
NASA Astrophysics Data System (ADS)
Oprisan, Sorinel
2008-03-01
We proposed and studied a new biophysically relevant computational model of dopaminergic neurons. Midbrain dopamine neurons are involved in motivation and the control of movement, and have been implicated in various pathologies such as Parkinson's disease, schizophrenia, and drug abuse. The model we developed is a single-compartment Hodgkin-Huxley (HH)-type parallel conductance membrane model. The model captures the essential mechanisms underlying the slow oscillatory potentials and plateau potential oscillations. The main currents involved are: 1) a voltage-dependent fast calcium current, 2) a small conductance potassium current that is modulated by the cytosolic concentration of calcium, and 3) a slow voltage-activated potassium current. We developed multidimensional bifurcation diagrams and extracted the effective domains of sustained oscillations. The model includes a calcium balance due to the fundamental importance of calcium influx as proved by simultaneous electrophysiological and calcium imaging procedure. Although there are significant evidences to suggest a partially electrogenic calcium pump, all previous models considered only elecrtogenic pumps. We investigated the effect of the electrogenic calcium pump on the bifurcation diagram of the model and compared our findings against the experimental results.
NASA Technical Reports Server (NTRS)
Reiss-Bubenheim, D.; Navarro, B.J.; Morey-Holton, E.; Dalton, Bonnie P. (Technical Monitor)
1994-01-01
This NASA-sponsored educational outreach activity provided local students with information about Ames Research Center's (ARC) role in conducting life sciences research in space. Students were introduced to the scientific method while conducting a plant experiment that correlated with the Spacelab Life Sciences-2 (SLS-2) flight animal experiment of Dr. Emily Morey-Holton entitled "Bone, Calcium and Spaceflight". Students made daily observations, collected data and reported on their findings. Students also had the opportunity to witness the STS-58 landing at Edwards Air Force Base in southern California and attended a briefing given by the Payload Commander, Dr. Rhea Seddon at ARC last month. This classroom experiment providing a hands-on learning opportunity about terrestrial and space biology and, hopefully, introduced the students to new fields of study for future endeavors.
Effect of low gravity on calcium metabolism and bone formation (L-7)
NASA Technical Reports Server (NTRS)
Suda, Tatsuo
1993-01-01
Recently, attention has been focused on the disorders of bone and calcium metabolism during space flight. The skeletal system has evolved on the Earth under 1-g. Space flights under low gravity appear to cause substantial changes in bone and calcium homeostasis of the animals adapted to 1-g. A space experiment for the First Materials Processing Test (FMPT) was proposed to examine the effects of low gravity on calcium metabolism and bone formation using chick embryos loaded in a space shuttle. This space experiment was proposed based on the following two experimental findings. First, it has been reported that bone density decreases significantly during prolonged space flight. The data obtained from the US Skylab and the U.S.S.R. Salyut-6 cosmonauts have also documented that the degree of bone loss is related to the duration of space flight. Second, the US-Soviet joints space experiment demonstrated that the decrease in bone density under low gravity appears to be due to the decrease in bone formation rather than the increase in bone resorption. The purpose of our space experiment is, therefore, to investigate further the mechanisms of bone growth under low gravity using fertilized chick embryos.
Characterization of crystalline structures in Opuntia ficus-indica.
Contreras-Padilla, Margarita; Rivera-Muñoz, Eric M; Gutiérrez-Cortez, Elsa; del López, Alicia Real; Rodríguez-García, Mario Enrique
2015-01-01
This research studies the crystalline compounds present in nopal (Opuntia ficus-indica) cladodes. The identification of the crystalline structures was performed using X-ray diffraction, scanning electron microscopy, mass spectrometry, and Fourier transform infrared spectroscopy. The crystalline structures identified were calcium carbonate (calcite) [CaCO3], calcium-magnesium bicarbonate [CaMg(CO3)2], magnesium oxide [MgO], calcium oxalate monohydrate [Ca(C2O4)•(H2O)], potassium peroxydiphosphate [K4P2O8] and potassium chloride [KCl]. The SEM images indicate that calcite crystals grow to dipyramidal, octahedral-like, prismatic, and flower-like structures; meanwhile, calcium-magnesium bicarbonate structures show rhombohedral exfoliation and calcium oxalate monohydrate is present in a drusenoid morphology. These calcium carbonate compounds have a great importance for humans because their bioavailability. This is the first report about the identification and structural analysis of calcium carbonate and calcium-magnesium bicarbonate in nopal cladodes, as well as the presence of magnesium oxide, potassium peroxydiphosphate and potassium chloride in these plants. The significance of the study of the inorganic components of these cactus plants is related with the increasing interest in the potential use of Opuntia as a raw material of products for the food, pharmaceutical, and cosmetic industries.
Westerik, Nieke; Scholten, Elke; Corredig, Milena
2015-06-15
Protein microparticles were formed through emulsification of 25% (w/w) whey protein isolate (WPI) solutions containing various concentrations of calcium (0.0-400.0mM) in an oil phase stabilized by polyglycerol polyricinoleate (PGPR). The emulsions were heated (at 80°C) and the microparticles subsequently re-dispersed in an aqueous phase. Light microscopy and scanning electron microscopy (SEM) images revealed that control particles and those prepared with 7.4mM calcium were spherical and smooth. Particles prepared with 15.0mM calcium gained an irregular, cauliflower-like structure, and at concentrations larger than 30.0mM, shells formed and the particles were no longer spherical. These results describe, for the first time, the potential of modulating the properties of dense whey protein particles by using calcium, and may be used as structuring agents for the design of functional food matrices with increased protein and calcium content. Copyright © 2015. Published by Elsevier Ltd.
Jiang, Ruotian; Haustein, Martin D.; Sofroniew, Michael V.; Khakh, Baljit S.
2014-01-01
Astrocytes display spontaneous intracellular Ca2+ concentration fluctuations ([Ca2+]i) and in several settings respond to neuronal excitation with enhanced [Ca2+]i signals. It has been proposed that astrocytes in turn regulate neurons and blood vessels through calcium-dependent mechanisms, such as the release of signaling molecules. However, [Ca2+]i imaging in entire astrocytes has only recently become feasible with genetically encoded calcium indicators (GECIs) such as the GCaMP series. The use of GECIs in astrocytes now provides opportunities to study astrocyte [Ca2+]i signals in detail within model microcircuits such as the striatum, which is the largest nucleus of the basal ganglia. In the present report, detailed surgical methods to express GECIs in astrocytes in vivo, and confocal imaging approaches to record [Ca2+]i signals in striatal astrocytes in situ, are described. We highlight precautions, necessary controls and tests to determine if GECI expression is selective for astrocytes and to evaluate signs of overt astrocyte reactivity. We also describe brain slice and imaging conditions in detail that permit reliable [Ca2+]i imaging in striatal astrocytes in situ. The use of these approaches revealed the entire territories of single striatal astrocytes and spontaneous [Ca2+]i signals within their somata, branches and branchlets. The further use and expansion of these approaches in the striatum will allow for the detailed study of astrocyte [Ca2+]i signals in the striatal microcircuitry. PMID:25490346
Jiang, Ruotian; Haustein, Martin D; Sofroniew, Michael V; Khakh, Baljit S
2014-11-19
Astrocytes display spontaneous intracellular Ca(2+) concentration fluctuations ([Ca(2+)]i) and in several settings respond to neuronal excitation with enhanced [Ca(2+)]i signals. It has been proposed that astrocytes in turn regulate neurons and blood vessels through calcium-dependent mechanisms, such as the release of signaling molecules. However, [Ca(2+)]i imaging in entire astrocytes has only recently become feasible with genetically encoded calcium indicators (GECIs) such as the GCaMP series. The use of GECIs in astrocytes now provides opportunities to study astrocyte [Ca(2+)]i signals in detail within model microcircuits such as the striatum, which is the largest nucleus of the basal ganglia. In the present report, detailed surgical methods to express GECIs in astrocytes in vivo, and confocal imaging approaches to record [Ca(2+)]i signals in striatal astrocytes in situ, are described. We highlight precautions, necessary controls and tests to determine if GECI expression is selective for astrocytes and to evaluate signs of overt astrocyte reactivity. We also describe brain slice and imaging conditions in detail that permit reliable [Ca(2+)]i imaging in striatal astrocytes in situ. The use of these approaches revealed the entire territories of single striatal astrocytes and spontaneous [Ca(2+)]i signals within their somata, branches and branchlets. The further use and expansion of these approaches in the striatum will allow for the detailed study of astrocyte [Ca(2+)]i signals in the striatal microcircuitry.
Stationary digital chest tomosynthesis for coronary artery calcium scoring
NASA Astrophysics Data System (ADS)
Wu, Gongting; Wang, Jiong; Potuzko, Marci; Harman, Allison; Pearce, Caleb; Shan, Jing; Lee, Yueh Z.; Zhou, Otto; Lu, Jianping
2016-03-01
The coronary artery calcium score (CACS) measures the buildup of calcium on the coronary artery wall and has been shown to be an important predictor of the risk of coronary artery diseases (CAD). Currently CACS is measured using CT, though the relatively high cost and high radiation dose has limited its adoption as a routine screening procedure. Digital Chest Tomosynthesis (DCT), a low dose and low cost alternative to CT, and has been shown to achieve 90% of sensitivity of CT in lung disease screening. However commercial DCT requires long scanning time and cannot be adapted for high resolution gated cardiac imaging, necessary for CACS. The stationary DCT system (s- DCT), developed in our lab, has the potential to significantly shorten the scanning time and enables high resolution cardiac gated imaging. Here we report the preliminary results of using s-DCT to estimate the CACS. A phantom heart model was developed and scanned by the s-DCT system and a clinical CT in a phantom model with realistic coronary calcifications. The adapted fan-beam volume reconstruction (AFVR) method, developed specifically for stationary tomosynthesis systems, is used to obtain high resolution tomosynthesis images. A trained cardiologist segmented out the calcifications and the CACS was obtained. We observed a strong correlation between the tomosynthesis derived CACS and CT CACS (r2 = 0.88). Our results shows s-DCT imaging has the potential to estimate CACS, thus providing a possible low cost and low dose imaging protocol for screening and monitoring CAD.
2002-07-31
This diagram shows the normal pathways of calcium movement in the body and indicates changes (green arrows) seen during preliminary space flight experiments. Calcium plays a central role because 1) it gives strength and structure to bone and 2) all types of cells require it to function normally. To better understand how and why weightlessness induces bone loss, astronauts have participated in a study of calcium kinetics -- that is, the movement of calcium through the body, including absorption from food, and its role in the formation and breakdown of bone.
Preparation and properties of calcium oxide from eggshells via calcination
NASA Astrophysics Data System (ADS)
Tangboriboon, N.; Kunanuruksapong, R.; Sirivat, A.
2012-12-01
Duck eggs are one of the most versatile cooking ingredients in which residue eggshells are discarded. Raw duck eggshells were calcined at temperatures between 300 to 900 °C, for 1, 3, and 5 h. Both the raw and calcined duck eggshells were characterized by FTIR, STA, XRD, XRF, TEM, BET, a particle size analyzer, and an impedance analyzer. The proper calcination conditions are: 900 °C and 1 h, yielding calcium oxide with a purity of 99.06 % w/w. The calcium carbonate of the rhombohedral form (CaCO3) transforms completely into the calcium oxide or lime of the face centered cubic form (CaO) at 900 °C, as shown by XRD diffraction patterns. The transmission electron microscopy (TEM) images of the calcium oxide reveal a moderately good dispersion of nearly uniform particles. The calcium oxide has a white color, a spherical shape, high porosity, and narrow particles size distribution. The percentage of ceramic yield of the calcium oxide is 53.53, as measured by STA (TG-DTA-DTG). The calcium oxide has a N2 adsorption-desorption isotherm indicating the meso-porosity range. The dielectric constant and the electrical conductivity of the calcined calcium oxide are 35 and 1:0×10-6(Ω·m)-1, respectively, at the frequency of 500 Hz.
Scelfo, G M; Flegal, A R
2000-01-01
Intercalibrated measurements of lead in calcium supplements indicate the importance of rigorous analytical techniques to accurately quantify contaminant exposures in complex matrices. Without such techniques, measurements of lead concentrations in calcium supplements may be either erroneously low, by as much as 50%, or below the detection limit needed for new public health criteria. In this study, we determined the lead content of 136 brands of supplements that were purchased in 1996. The calcium in the products was derived from natural sources (bonemeal, dolomite, or oyster shell) or was synthesized and/or refined (chelated and nonchelated calcium). The dried products were acid digested and analyzed for lead by high resolution-inductively coupled plasma-mass spectrometry. The method's limit of quantitation averaged 0.06 microg/g, with a coefficient of variation of 1.7% and a 90-100% lead recovery of a bonemeal standard reference material. Two-thirds of those calcium supplements failed to meet the 1999 California criteria for acceptable lead levels (1.5 microg/daily dose of calcium) in consumer products. The nonchelated synthesized and/or refined calcium products, specifically antacids and infant formulas, had the lowest lead concentrations, ranging from nondetectable to 2.9 microg Pb/g calcium, and had the largest proportion of brands meeting the new criteria (85% of the antacids and 100% of the infant formulas). Images Figure 1 Figure 2 PMID:10753088
Efficient receptive field tiling in primate V1
Nauhaus, Ian; Nielsen, Kristina J.; Callaway, Edward M.
2017-01-01
The primary visual cortex (V1) encodes a diverse set of visual features, including orientation, ocular dominance (OD) and spatial frequency (SF), whose joint organization must be precisely structured to optimize coverage within the retinotopic map. Prior experiments have only identified efficient coverage based on orthogonal maps. Here, we used two-photon calcium imaging to reveal an alternative arrangement for OD and SF maps in macaque V1; their gradients run parallel but with unique spatial periods, whereby low SF regions coincide with monocular regions. Next, we mapped receptive fields and find surprisingly precise micro-retinotopy that yields a smaller point-image and requires more efficient inter-map geometry, thus underscoring the significance of map relationships. While smooth retinotopy is constraining, studies suggest that it improves both wiring economy and the V1 population code read downstream. Altogether, these data indicate that connectivity within V1 is finely tuned and precise at the level of individual neurons. PMID:27499086
Hild, Nora; Fuhrer, Roland; Mohn, Dirk; Bubenhofer, Stephanie B; Grass, Robert N; Luechinger, Norman A; Feldman, Kirill; Dora, Claudio; Stark, Wendelin J
2012-10-01
Polyethylene is widely used as a component of implants in medicine. Composites made of high-density polyethylene (HDPE) containing different amounts of amorphous calcium phosphate nanoparticles were investigated concerning their in vitro biomedical performance. The nanoparticles were produced by flame spray synthesis and extruded with HDPE, the latter complying with Food and Drug Administration regulations. Mechanical properties such as Young's modulus and contact angle as well as in vitro biomineralization of the nanocomposites hot-pressed into thin films were evaluated. The deposition of a hydroxyapatite layer occurred upon immersion in simulated body fluid. Additionally, a cell culture study with human mesenchymal stem cells for six weeks allowed a primary assessment of the cytocompatibility. Viability assays (alamarBlue and lactate dehydrogenase detection) proved the absence of cytotoxic effects of the scaffolds. Microscopic images after hematoxylin and eosin staining confirmed typical growth and morphology. A preliminary experiment analyzed the alkaline phosphatase activity after two weeks. These findings motivate further investigations on bioactive HDPE in bone tissue engineering.
Uchitel, O D; Protti, D A; Sanchez, V; Cherksey, B D; Sugimori, M; Llinás, R
1992-01-01
We have studied the effect of the purified toxin from the funnel-web spider venom (FTX) and its synthetic analog (sFTX) on transmitter release and presynaptic currents at the mouse neuromuscular junction. FTX specifically blocks the omega-conotoxin- and dihydropyridine-insensitive P-type voltage-dependent Ca2+ channel (VDCC) in cerebellar Purkinje cells. Mammalian neuromuscular transmission, which is insensitive to N- or L-type Ca2+ channel blockers, was effectively abolished by FTX and sFTX. These substances blocked the muscle contraction and the neurotransmitter release evoked by nerve stimulation. Moreover, presynaptic Ca2+ currents recorded extracellularly from the interior of the perineural sheaths of nerves innervating the mouse levator auris muscle were specifically blocked by both natural toxin and synthetic analogue. In a parallel set of experiments, K(+)-induced Ca45 uptake by brain synaptosomes was also shown to be blocked or greatly diminished by FTX and sFTX. These results indicate that the predominant VDCC in the motor nerve terminals, and possibly in a significant percentage of brain synapses, is the P-type channel. Images PMID:1348859
Recycling of ash from mezcal industry: a renewable source of lime.
Chávez-Guerrero, L; Flores, J; Kharissov, B I
2010-10-01
Agave bagasse is a byproduct generated in the mezcal industry. Normally it is burned to reduce its volume, then a byproduct is generated in the form of residual ash, which can contaminate the water in rivers and lakes near the production places called "mezcaleras". This report details measurements of the Agave Salmiana fiber transformation after the burning process. The wasted ash was heated at 950°C, and then hydrolyzed. The compounds were indentified using the X-ray diffraction. The images obtained by scanning electron microscope showed all the morphological transformations of the lime through the whole process. Thermal, elemental and morphological characterization of the agave bagasse were done. Experiments showed that 16% of ash was produced in the burning process of agave bagasse (450°C), and 66% of the ash remains after heating (950°C) in the form of calcium oxide. The results show an important renewable source of calcium compounds, due to the high production of agave based beverages in México. Copyright © 2010 Elsevier Ltd. All rights reserved.
Kim, Yujin; Hsu, Ching-Lung; Cembrowski, Mark S; Mensh, Brett D; Spruston, Nelson
2015-01-01
Dendritic integration of synaptic inputs mediates rapid neural computation as well as longer-lasting plasticity. Several channel types can mediate dendritically initiated spikes (dSpikes), which may impact information processing and storage across multiple timescales; however, the roles of different channels in the rapid vs long-term effects of dSpikes are unknown. We show here that dSpikes mediated by Nav channels (blocked by a low concentration of TTX) are required for long-term potentiation (LTP) in the distal apical dendrites of hippocampal pyramidal neurons. Furthermore, imaging, simulations, and buffering experiments all support a model whereby fast Nav channel-mediated dSpikes (Na-dSpikes) contribute to LTP induction by promoting large, transient, localized increases in intracellular calcium concentration near the calcium-conducting pores of NMDAR and L-type Cav channels. Thus, in addition to contributing to rapid neural processing, Na-dSpikes are likely to contribute to memory formation via their role in long-lasting synaptic plasticity. DOI: http://dx.doi.org/10.7554/eLife.06414.001 PMID:26247712
Tsukamoto, Akira; Higashiyama, Satoru; Yoshida, Kenji; Watanabe, Yoshiaki; Furukawa, Katsuko S; Ushida, Takashi
2011-12-01
An increase in cytoplasmic calcium (Ca(2+) increase) is a second messenger that is often observed under ultrasound irradiation. We hypothesize that cavitation is a physical mechanism that underlies the increase in Ca(2+) in these experiments. To control the presence of cavitation, the wave type was controlled in a sonication chamber. One wave type largely contained a traveling wave (wave type A) while the other wave type largely contained a standing wave (wave type B). Fast Fourier transform (FFT) analysis of a sound field produced by the wave types ascertained that stable cavitation was present only under wave type A ultrasound irradiation. Under the two controlled wave types, the increase in Ca(2+) in L929 fibroblasts was observed with fluorescence imaging. Under wave type A ultrasound irradiation, an increase in Ca(2+) was observed; however, no increase in Ca(2+) was observed under wave type B ultrasound irradiation. We conclude that stable cavitation is involved in the increase of Ca(2+) in cells subjected to pulsed ultrasound. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lu, Hongbin; Chen, Can; Wang, Zhanwen; Qu, Jin; Xu, Daqi; Wu, Tianding; Cao, Yong; Zhou, Jingyong; Zheng, Cheng; Hu, Jianzhong
2015-09-01
Tendon attaches to bone through a functionally graded fibrocartilage zone, including uncalcified fibrocartilage (UF), tidemark (TM) and calcified fibrocartilage (CF). This transition zone plays a pivotal role in relaxing load transfer between tendon and bone, and serves as a boundary between otherwise structurally and functionally distinct tissue types. Calcium and zinc are believed to play important roles in the normal growth, mineralization, and repair of the fibrocartilage zone of bone-tendon junction (BTJ). However, spatial distributions of calcium and zinc at the fibrocartilage zone of BTJ and their distribution-function relationship are not totally understood. Thus, synchrotron radiation-based micro X-ray fluorescence analysis (SR-μXRF) in combination with backscattered electron imaging (BEI) was employed to characterize the distributions of calcium and zinc at the fibrocartilage zone of rabbit patella-patellar tendon complex (PPTC). For the first time, the unique distributions of calcium and zinc at the fibrocartilage zone of the PPTC were clearly mapped by this method. The distributions of calcium and zinc at the fibrocartilage zone of the PPTC were inhomogeneous. A significant accumulation of zinc was exhibited in the transition region between UF and CF. The highest zinc content (3.17 times of that of patellar tendon) was found in the TM of fibrocartilage zone. The calcium content began to increase near the TM and increased exponentially across the calcified fibrocartilage region towards the patella. The highest calcium content (43.14 times of that of patellar tendon) was in the transitional zone of calcified fibrocartilage region and the patella, approximately 69 μm from the location with the highest zinc content. This study indicated, for the first time, that there is a differential distribution of calcium and zinc at the fibrocartilage zone of PPTC. These observations reveal new insights into region-dependent changes across the fibrocartilage zone of BTJ and will serve as critical benchmark parameters for current efforts in BTJ repair.
In vivo imaging of neural activity
Yang, Weijian; Yuste, Rafael
2017-01-01
Since the introduction of calcium imaging to monitor neuronal activity with single-cell resolution, optical imaging methods have revolutionized neuroscience by enabling systematic recordings of neuronal circuits in living animals. The plethora of methods for functional neural imaging can be daunting to the nonexpert to navigate. Here we review advanced microscopy techniques for in vivo functional imaging and offer guidelines for which technologies are best suited for particular applications. PMID:28362436
Kwan, Alex C; Dietz, Shelby B; Zhong, Guisheng; Harris-Warrick, Ronald M; Webb, Watt W
2010-12-01
In rhythmic neural circuits, a neuron often fires action potentials with a constant phase to the rhythm, a timing relationship that can be functionally significant. To characterize these phase preferences in a large-scale, cell type-specific manner, we adapted multitaper coherence analysis for two-photon calcium imaging. Analysis of simulated data showed that coherence is a simple and robust measure of rhythmicity for calcium imaging data. When applied to the neonatal mouse hindlimb spinal locomotor network, the phase relationships between peak activity of >1,000 ventral spinal interneurons and motor output were characterized. Most interneurons showed rhythmic activity that was coherent and in phase with the ipsilateral motor output during fictive locomotion. The phase distributions of two genetically identified classes of interneurons were distinct from the ensemble population and from each other. There was no obvious spatial clustering of interneurons with similar phase preferences. Together, these results suggest that cell type, not neighboring neuron activity, is a better indicator of an interneuron's response during fictive locomotion. The ability to measure the phase preferences of many neurons with cell type and spatial information should be widely applicable for studying other rhythmic neural circuits.
Fritzsche, Marco; Fernandes, Ricardo A; Colin-York, Huw; Santos, Ana M; Lee, Steven F; Lagerholm, B Christoffer; Davis, Simon J; Eggeling, Christian
2015-11-13
Detecting intracellular calcium signaling with fluorescent calcium indicator dyes is often coupled with microscopy techniques to follow the activation state of non-excitable cells, including lymphocytes. However, the analysis of global intracellular calcium responses both at the single-cell level and in large ensembles simultaneously has yet to be automated. Here, we present a new software package, CalQuo (Calcium Quantification), which allows the automated analysis and simultaneous monitoring of global fluorescent calcium reporter-based signaling responses in up to 1000 single cells per experiment, at temporal resolutions of sub-seconds to seconds. CalQuo quantifies the number and fraction of responding cells, the temporal dependence of calcium signaling and provides global and individual calcium-reporter fluorescence intensity profiles. We demonstrate the utility of the new method by comparing the calcium-based signaling responses of genetically manipulated human lymphocytic cell lines.
Rowe, D J; Ko, S; Tom, X M; Silverstein, S J; Richards, D W
1999-09-01
Vitamin C or ascorbate is important in wound healing due to its essential role in collagen synthesis. To study wound healing in the periodontium, cells adherent to expanded polytetrafluoroethylene (ePTFE) augmentation membranes, recovered from edentulous ridge augmentation procedures, have been established in culture in our laboratories. The objective of this study was to determine whether treatment of these cells with a calcium ascorbate, which contains vitamin C metabolites (metabolite-supplemented ascorbate), would increase the production of collagenous protein and mineralized tissue in vitro, as compared to unsupplemented calcium ascorbate (ascorbate). Cells derived from ePTFE membranes were cultured with beta-glycerophosphate and the test agents for 2 to 5 weeks, and the surface areas of the cell cultures occupied by mineralized nodules were measured using computerized image analysis. One experiment tested the effects of calcium threonate, one of the vitamin C metabolites in metabolite-supplemented ascorbate. Incorporation of radioactive proline and glycine was used as a measure of total protein (radioactivity precipitated by trichloracetic acid) and collagenase-digestible protein (radioactivity released by collagenase digestion.) Co-localization of collagen and fibronectin was examined by immunofluorescence. In vitro treatment of these cells with metabolite-supplemented ascorbate increased the area of the cell cultures occupied by mineralized nodules after 5 weeks. Cell cultures treated with metabolite-supplemented ascorbate also exhibited significant increases in total protein. The increase in collagenous proteins in these cultures accounted for 85% of the increase in total protein. The greatest difference between treatment groups was observed in the cell-associated fraction containing the extracellular matrix. The additional collagen exhibited normal co-distribution with fibronectin. In cultures treated with ascorbate spiked with calcium threonate, the area of mineralized tissue was significantly greater than in ascorbate-treated cultures, but was less than that observed in cultures treated with metabolite-supplemented ascorbate. In vitro treatment with ascorbate containing vitamin C metabolites enhanced the formation of mineralized nodules and collagenous proteins. Calcium threonate may be one of the metabolites influencing the mineralization process. Identifying factors which facilitate the formation of mineralized tissue has significant clinical ramifications in terms of wound healing and bone regeneration.
CALCIUM BINDING TO INTESTINAL MEMBRANES
Oschman, James L.; Wall, Betty J.
1972-01-01
Flame photometry reveals that glutaraldehyde and buffer solutions in routine use for electron microscopy contain varying amounts of calcium. The presence of electron-opaque deposits adjacent to membranes in a variety of tissues can be correlated with the presence of calcium in the fixative. In insect intestine (midgut), deposits occur adjacent to apical and lateral plasma membranes. The deposits are particularly evident in tissues fixed in glutaraldehyde without postosmication. They are also observed in osmicated tissue if calcium is added to wash and osmium solutions. Deposits are absent when calcium-free fixatives are used, but are present when traces of CaCl2 (as low as 5 x 10-5 M) are added. The deposits occur at regular intervals along junctional membranes, providing images strikingly similar to those obtained by other workers who have used pyroantimonate in an effort to localize sodium. Other divalent cations (Mg++, Sr++, Ba++, Mn++, Fe++) appear to substitute for calcium, while sodium, potassium, lanthanum, and mercury do not. After postfixing with osmium with calcium added, the deposits can be resolved as patches along the inner leaflet of apical and lateral plasma membranes. The dense regions may thus localize membrane constituents that bind calcium. The results are discussed in relation to the role of calcium in control of cell-to-cell communication, intestinal calcium uptake, and the pyroantimonate technique for ion localization. PMID:4569411
Molinari, S; Battini, R; Ferrari, S; Pozzi, L; Killcross, A S; Robbins, T W; Jouvenceau, A; Billard, J M; Dutar, P; Lamour, Y; Baker, W A; Cox, H; Emson, P C
1996-01-01
The influx of calcium into the postsynaptic neuron is likely to be an important event in memory formation. Among the mechanisms that nerve cells may use to alter the time course or size of a spike of intracellular calcium are cytosolic calcium binding or "buffering" proteins. To consider the role in memory formation of one of these proteins, calbindin D28K, which is abundant in many neurons, including the CA1 pyramidal cells of the hippocampus, transgenic mice deficient in calbindin D28K have been created. These mice show selective impairments in spatial learning paradigms and fail to maintain long-term potentiation. These results suggest a role for calbindin D28K protein in temporally extending a neuronal calcium signal, allowing the activation of calcium-dependent intracellular signaling pathways underlying memory function. Images Fig. 1 PMID:8755597
High dietary calcium intake does not counteract disuse-induced bone loss
NASA Astrophysics Data System (ADS)
Baecker, N.; Boese, A.; Smith, S. M.; Heer, M.
Reduction of mechanical stress on bone inhibits osteoblast-mediated bone formation, increases osteoclast-mediated bone resorption, and leads to what has been called disuse osteoporosis. Prolonged therapeutic bed rest, immobilization and space flight are common causes of disuse osteoporosis. There are sufficient data supporting the use of calcium in combination with vitamin D in the prevention and treatment of postmenopausal osteoporosis. In our study we examined the potential of high dietary calcium intake as a nutrition therapy for disuse-induced bone loss during head-down bed rest in healthy young men. In 2 identical metabolic ward, head-down bed rest (HDBR) experiments (crossover design), we studied the effect of high dietary calcium intake (2000 mg/d) in comparison to the recommended calcium intake of 1000 mg/d on markers of bone turnover. Experiment A (EA) was a 6-day randomized, controlled HDBR study. Experiment B (EB) was a 14-day randomized, controlled HDBR study. In both experiments, the test subjects stayed under well-controlled environmental conditions in our metabolic ward. Subjects' diets in the relevant study phases (HDBR versus Ambulatory Control) of EA and EB were identical except for the calcium intake. The subjects obtained 2000 mg/d Calcium in EA and 2000 mg/d in EB. Blood was drawn at baseline, before entering the relevant intervention period, on day 5 in study EA, and on days 6, 11 and 14 in study EB. Serum calcium, bone formation markers - Procollagen-I-C-Propeptide (PICP) and bone alkaline phosphatase (bAP) were analyzed in serum. 24h-urine was collected throughout the studies for determination of the excretion of calcium (UCaV) and a bone resorption marker, C-terminal telopeptide of collagen type I (UCTX). In both studies, serum calcium levels were unchanged. PICP tended to decrease in EA (p=0.08). In EB PICP decreased significantly over time (p=0.003) in both the control and HDBR periods, and tended to further decrease in the HDBR period (p=0.06). While HDBR did not affect bAP in both EA and EB, bAP decreased significantly over time in both groups of EB (p<0.001). UCaV significantly increased during HDBR in EA (p=0.002) and EB (p=0.004) compared to the ambulatory controls. UCTX significantly increased on the second day of HDBR by 18% (p<0.001) in EA and by 27% (p=0.03) in EB. We conclude from these results that doubling dietary calcium intake from the recommended level of 1000 mg/d to 2000 mg/d does not prevent the decrease in bone formation activity and the increase of bone resorption activity in disuse-induced bone loss.
Asmat, Tauseef M; Tenenbaum, Tobias; Jonsson, Ann-Beth; Schwerk, Christian; Schroten, Horst
2014-01-01
The pili and outer membrane proteins of Neisseria meningitidis (meningococci) facilitate bacterial adhesion and invasion into host cells. In this context expression of meningococcal PilC1 protein has been reported to play a crucial role. Intracellular calcium mobilization has been implicated as an important signaling event during internalization of several bacterial pathogens. Here we employed time lapse calcium-imaging and demonstrated that PilC1 of meningococci triggered a significant increase in cytoplasmic calcium in human brain microvascular endothelial cells, whereas PilC1-deficient meningococci could not initiate this signaling process. The increase in cytosolic calcium in response to PilC1-expressing meningococci was due to efflux of calcium from host intracellular stores as demonstrated by using 2-APB, which inhibits the release of calcium from the endoplasmic reticulum. Moreover, pre-treatment of host cells with U73122 (phospholipase C inhibitor) abolished the cytosolic calcium increase caused by PilC1-expressing meningococci demonstrating that active phospholipase C (PLC) is required to induce calcium transients in host cells. Furthermore, the role of cytosolic calcium on meningococcal adherence and internalization was documented by gentamicin protection assay and double immunofluorescence (DIF) staining. Results indicated that chelation of intracellular calcium by using BAPTA-AM significantly impaired PilC1-mediated meningococcal adherence to and invasion into host endothelial cells. However, buffering of extracellular calcium by BAPTA or EGTA demonstrated no significant effect on meningococcal adherence to and invasion into host cells. Taken together, these results indicate that meningococci induce calcium release from intracellular stores of host endothelial cells via PilC1 and cytoplasmic calcium concentrations play a critical role during PilC1 mediated meningococcal adherence to and subsequent invasion into host endothelial cells.
He, Zhi; Lu, Qing; Xu, Xulin; Huang, Lin; Chen, Jianguo; Guo, Lianjun
2009-01-28
Our previous work has demonstrated that DDPH (1-(2, 6-dimethylphenoxy)-2-(3, 4-dimethoxyphenylethylamino) propane hydrochloride), a competitive alpha(1)-adrenoceptor antagonist, could improve cognitive deficits, reduce histopathological damage and facilitate synaptic plasticity in vivo possibly via increasing NR2B (NMDA receptor 2B) expression and antioxidation of DDPH itself. The present study further evaluated effects of DDPH on OGD (Oxygen and glucose deprivation)-induced neuronal damage in rat primary hippocampal cells. The addition of DDPH to the cultured cells 12 h before OGD for 4 h significantly reduced neuronal damage as determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and LDH (lactate dehydrogenase) release experiments. The effects of DDPH on intracellular calcium concentration were explored by Fura-2 based calcium imaging techniques and results showed that DDPH at the dosages of 5 microM and 10 microM suppressed the increase of intracellular calcium ([Ca(2+)](i)) stimulated by 50 mM KCl in Ca(2+)-containing extracellular solutions. However, DDPH couldn't suppress the increase of [Ca(2+)](i) induced by both 50 microM glutamate in Ca(2+)-containing extracellular solutions and 20 microM ATP (Adenosine Triphosphate) in Ca(2+)-free solution. These results indicated that DDPH prevented [Ca(2+)](i) overload in hippocampal neurons by blocking Ca(2+) influx (voltage-dependent calcium channel) but not Ca(2+) mobilization from the intracellular Ca(2+) store in endoplasm reticulum (ER). We also demonstrated that DDPH could decrease glutamate release when hippocampal cells were subjected to OGD. These observations demonstrated that DDPH protected hippocampal neurons against OGD-induced damage by preventing the Ca(2+) influx and decreasing glutamate release.
Louhivuori, Lauri M; Bart, Genevieve; Larsson, Kim P; Louhivuori, Verna; Näsman, Johnny; Nordström, Tommy; Koivisto, Ari-Pekka; Akerman, Karl E O
2009-10-01
TRPA1 and TRPM8 are transient receptor potential (TRP) channels involved in sensory perception. TRPA1 is a non-selective calcium permeable channel activated by irritants and proalgesic agents. TRPM8 reacts to chemical cooling agents such as menthol. The human neuroblastoma cell line IMR-32 undergoes a remarkable differentiation in response to treatment with 5-bromo-2-deoxyuridine. The cells acquire a neuronal morphology with increased expression of N-type voltage gated calcium channels and neurotransmitters. Here we show using RT-PCR, that mRNA for TRPA1 and TRPM8 are strongly upregulated in differentiating IMR-32 cells. Using whole cell patch clamp recordings, we demonstrate that activators of these channels, wasabi, allyl-isothiocyanate (AITC) and menthol activate membrane currents in differentiated cells. Calcium imaging experiments demonstrated that AITC mediated elevation of intracellular calcium levels were attenuated by ruthenium red, spermine, and HC-030031 as well as by siRNA directed against the channel. This indicates that the detected mRNA level correlate with the presence of functional channels of both types in the membrane of differentiated cells. Although the differentiated IMR-32 cells responded to cooling many of the cells showing this response did not respond to TRPA1/TRPM8 channel activators (60% and 90% for AITC and menthol respectively). Conversely many of the cells responding to these activators did not respond to cooling (30%). This suggests that these channels have also other functions than cold perception in these cells. Furthermore, our results suggest that IMR-32 cells have sensory characteristics and can be used to study native TRPA1 and TRPM8 channel function as well as developmental expression. Copyright 2009 Wiley-Liss, Inc.
The complex nature of calcium cation interactions with phospholipid bilayers
Melcrová, Adéla; Pokorna, Sarka; Pullanchery, Saranya; Kohagen, Miriam; Jurkiewicz, Piotr; Hof, Martin; Jungwirth, Pavel; Cremer, Paul S.; Cwiklik, Lukasz
2016-01-01
Understanding interactions of calcium with lipid membranes at the molecular level is of great importance in light of their involvement in calcium signaling, association of proteins with cellular membranes, and membrane fusion. We quantify these interactions in detail by employing a combination of spectroscopic methods with atomistic molecular dynamics simulations. Namely, time-resolved fluorescent spectroscopy of lipid vesicles and vibrational sum frequency spectroscopy of lipid monolayers are used to characterize local binding sites of calcium in zwitterionic and anionic model lipid assemblies, while dynamic light scattering and zeta potential measurements are employed for macroscopic characterization of lipid vesicles in calcium-containing environments. To gain additional atomic-level information, the experiments are complemented by molecular simulations that utilize an accurate force field for calcium ions with scaled charges effectively accounting for electronic polarization effects. We demonstrate that lipid membranes have substantial calcium-binding capacity, with several types of binding sites present. Significantly, the binding mode depends on calcium concentration with important implications for calcium buffering, synaptic plasticity, and protein-membrane association. PMID:27905555
The complex nature of calcium cation interactions with phospholipid bilayers
NASA Astrophysics Data System (ADS)
Melcrová, Adéla; Pokorna, Sarka; Pullanchery, Saranya; Kohagen, Miriam; Jurkiewicz, Piotr; Hof, Martin; Jungwirth, Pavel; Cremer, Paul S.; Cwiklik, Lukasz
2016-12-01
Understanding interactions of calcium with lipid membranes at the molecular level is of great importance in light of their involvement in calcium signaling, association of proteins with cellular membranes, and membrane fusion. We quantify these interactions in detail by employing a combination of spectroscopic methods with atomistic molecular dynamics simulations. Namely, time-resolved fluorescent spectroscopy of lipid vesicles and vibrational sum frequency spectroscopy of lipid monolayers are used to characterize local binding sites of calcium in zwitterionic and anionic model lipid assemblies, while dynamic light scattering and zeta potential measurements are employed for macroscopic characterization of lipid vesicles in calcium-containing environments. To gain additional atomic-level information, the experiments are complemented by molecular simulations that utilize an accurate force field for calcium ions with scaled charges effectively accounting for electronic polarization effects. We demonstrate that lipid membranes have substantial calcium-binding capacity, with several types of binding sites present. Significantly, the binding mode depends on calcium concentration with important implications for calcium buffering, synaptic plasticity, and protein-membrane association.
Calcium channel blocker overdose: experience with amlodipine.
Ghosh, Supradip; Sircar, Mrinal
2008-10-01
Amlodipine overdose is only scarcely reported from India. We report two cases of near fatal Amlodipine overdose managed in our ICU with fluid, vasopressors, calcium infusion and Glucagon. Literature is reviewed and other treatment modalities discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moester, Martiene J.C.; Schoeman, Monique A.E.; Oudshoorn, Ineke B.
2014-01-03
Highlights: •We validate a simple and fast method of quantification of in vitro mineralization. •Fluorescently labeled agents can detect calcium deposits in the mineralized matrix of cell cultures. •Fluorescent signals of the probes correlated with Alizarin Red S staining. -- Abstract: Alizarin Red S staining is the standard method to indicate and quantify matrix mineralization during differentiation of osteoblast cultures. KS483 cells are multipotent mouse mesenchymal progenitor cells that can differentiate into chondrocytes, adipocytes and osteoblasts and are a well-characterized model for the study of bone formation. Matrix mineralization is the last step of differentiation of bone cells and ismore » therefore a very important outcome measure in bone research. Fluorescently labelled calcium chelating agents, e.g. BoneTag and OsteoSense, are currently used for in vivo imaging of bone. The aim of the present study was to validate these probes for fast and simple detection and quantification of in vitro matrix mineralization by KS483 cells and thus enabling high-throughput screening experiments. KS483 cells were cultured under osteogenic conditions in the presence of compounds that either stimulate or inhibit osteoblast differentiation and thereby matrix mineralization. After 21 days of differentiation, fluorescence of stained cultures was quantified with a near-infrared imager and compared to Alizarin Red S quantification. Fluorescence of both probes closely correlated to Alizarin Red S staining in both inhibiting and stimulating conditions. In addition, both compounds displayed specificity for mineralized nodules. We therefore conclude that this method of quantification of bone mineralization using fluorescent compounds is a good alternative for the Alizarin Red S staining.« less
Protein-specific localization of a rhodamine-based calcium-sensor in living cells.
Best, Marcel; Porth, Isabel; Hauke, Sebastian; Braun, Felix; Herten, Dirk-Peter; Wombacher, Richard
2016-06-28
A small synthetic calcium sensor that can be site-specifically coupled to proteins in living cells by utilizing the bio-orthogonal HaloTag labeling strategy is presented. We synthesized an iodo-derivatized BAPTA chelator with a tetramethyl rhodamine fluorophore that allows further modification by Sonogashira cross-coupling. The presented calcium sensitive dye shows a 200-fold increase in fluorescence upon calcium binding. The derivatization with an aliphatic linker bearing a terminal haloalkane-function by Sonogashira cross-coupling allows the localization of the calcium sensor to Halo fusion proteins which we successfully demonstrate in in vitro and in vivo experiments. The herein reported highly sensitive tetramethyl rhodamine based calcium indicator, which can be selectively localized to proteins, is a powerful tool to determine changes in calcium levels inside living cells with spatiotemporal resolution.
Ganote, C. E.; Sims, M. A.
1984-01-01
Hypothermia during calcium-free perfusion of hearts protects them from injury caused by subsequent calcium repletion at 37 C (calcium paradox). Injury to calcium-free hearts is also associated with contracture caused by anoxia, 2,4-dinitrophenol (DNP), or caffeine. This study was done for the purpose of determining whether hypothermia during calcium-free perfusions protects hearts from contracture-associated injury. Langendorff-perfused rat hearts were studied in four experimental groups: I) Anoxia: Thirty minutes of anoxic perfusion at 37 C was followed by thirty minutes of anoxic calcium-free perfusion at 37-18 C. II) Calcium paradox: Five minutes of calcium-free perfusion at 37-18 C was followed by calcium repletion at 37 C. III, IVa) Caffeine or DNP: Five minutes of calcium-free perfusion at 37-18 C was followed by addition of 10 mM caffeine or 1 mM DNP in calcium-free medium at 37 C or, IVb) 1 mM DNP in calcium-free medium at 22 C. Injury was assessed by measurement of serial releases of creatine kinase (CK) in effluents and by cellular morphology. The results show that progressive hypothermia to 22 C during calcium-free perfusion periods produced a progressive reduction of CK release and morphologic evidence of injury due to anoxia, caffeine, or DNP, which closely paralleled protection of hearts from the calcium paradox. Protection from injury in all experimental groups was associated with preservation of sarcolemmal membrane integrity and prevention of cell separations at intercalated disk junctions. It is proposed that weakening of intercalated disks occurs during calcium-free perfusions and may be a cause of mechanical fragility of the sarcolemma. Hypothermia may protect hearts from contracture-associated injury by preserving the integrity of intercalated disk junctions during periods of extracellular calcium depletion. Images Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 PMID:6742111
Baldwin, T J; Knutton, S; Sellers, L; Hernandez, H A; Aitken, A; Williams, P H
1992-01-01
A protein toxin of approximately 120,000 Da secreted by nonhemolytic enteroaggregative Escherichia coli strains cross-reacted in Western blots (immunoblots) with antibodies raised against the C-terminal region of E. coli hemolysin. Treatment of HEp-2 cells with enteroaggregative E. coli or culture supernatants caused elevation of intracellular calcium and stimulated calcium-dependent protein phosphorylation. Images PMID:1563799
Vincent, Thomas R.; Canham, James; Toyota, Masatsugu; Avramova, Marieta; Mugford, Sam T.; Gilroy, Simon; Miller, Anthony J.; Hogenhout, Saskia; Sanders, Dale
2017-01-01
Calcium ions are predicted to be key signaling entities during biotic interactions, with calcium signaling forming an established part of the plant defense response to microbial elicitors and to wounding caused by chewing insects, eliciting systemic calcium signals in plants. However, the role of calcium in vivo during biotic stress is still unclear. This protocol describes the use of a genetically-encoded calcium sensor to detect calcium signals in plants during feeding by a hemipteran pest. Hemipterans such as aphids pierce a small number of cells with specialized, elongated sucking mouthparts, making them the ideal tool to study calcium dynamics when a plant is faced with a biotic stress, which is distinct from a wounding response. In addition, fluorescent biosensors are revolutionizing the measurement of signaling molecules in vivo in both animals and plants. Expressing a GFP-based calcium biosensor, GCaMP3, in the model plant Arabidopsis thaliana allows for the real-time imaging of plant calcium dynamics during insect feeding, with a high spatial and temporal resolution. A repeatable and robust assay has been developed using the fluorescence microscopy of detached GCaMP3 leaves, allowing for the continuous measurement of cytosolic calcium dynamics before, during, and after insect feeding. This reveals a highly-localized rapid calcium elevation around the aphid feeding site that occurs within a few minutes. The protocol can be adapted to other biotic stresses, such as additional insect species, while the use of Arabidopsis thaliana allows for the rapid generation of mutants to facilitate the molecular analysis of the phenomenon. PMID:28829425
NASA Astrophysics Data System (ADS)
Wu, Jing; Ferns, Gordon; Giles, John; Lewis, Emma
2012-02-01
Inter- and intra- observer variability is a problem often faced when an expert or observer is tasked with assessing the severity of a disease. This issue is keenly felt in coronary calcium scoring of patients suffering from atherosclerosis where in clinical practice, the observer must identify firstly the presence, followed by the location of candidate calcified plaques found within the coronary arteries that may prevent oxygenated blood flow to the heart muscle. This can be challenging for a human observer as it is difficult to differentiate calcified plaques that are located in the coronary arteries from those found in surrounding anatomy such as the mitral valve or pericardium. The inclusion or exclusion of false positive or true positive calcified plaques respectively will alter the patient calcium score incorrectly, thus leading to the possibility of incorrect treatment prescription. In addition to the benefits to scoring accuracy, the use of fast, low dose multi-slice CT imaging to perform the cardiac scan is capable of acquiring the entire heart within a single breath hold. Thus exposing the patient to lower radiation dose, which for a progressive disease such as atherosclerosis where multiple scans may be required, is beneficial to their health. Presented here is a fully automated method for calcium scoring using both the traditional Agatston method, as well as the Volume scoring method. Elimination of the unwanted regions of the cardiac image slices such as lungs, ribs, and vertebrae is carried out using adaptive heart isolation. Such regions cannot contain calcified plaques but can be of a similar intensity and their removal will aid detection. Removal of both the ascending and descending aortas, as they contain clinical insignificant plaques, is necessary before the final calcium scores are calculated and examined against ground truth scores of three averaged expert observer results. The results presented here are intended to show the requirement and feasibility for an automated scoring method that reduces the subjectivity and reproducibility error inherent with manual clinical calcium scoring.
USDA-ARS?s Scientific Manuscript database
Experiments were carried out to evaluate, using in vitro and in situ techniques, the effects of three inclusion levels of calcium oxide (0, 5, and 10 g/kg of sugarcane fresh matter) and four exposure times (0, 24, 48, and 72 h) of sugarcane to calcium oxide on the chemical composition and digestive ...
Graveland, J; Berends, A E
1997-01-01
The calcium demand of egg-laying birds is much higher than in other vertebrates during reproduction. We showed elsewhere that a low level of calcium availability can greatly affect the eggshell quality and reproduction of free-living passerines. However, there are few data on calcium demand and calcium intake in relation to egg laying and behaviour and egg-laying performance under conditions of calcium shortage in nondomesticated birds. We examined these aspects in an experiment with captive great tits, Parus major, on a diet deficient in calcium, with or without snail shells as an additional calcium source. More than 90% of the calcium intake for egg production took place during the egg-laying period. Females ingested about 1.7 times as much calcium as they deposited in eggshells. Removing the snail shells after the first egg resulted in eggshell defects and interruptions of laying after 1-3 d. Females without snail shells doubled their searching effort and started to burrow in the soil and to eat sand, small stones, and their own eggs. Most calcium was consumed in the evening, probably to supplement the calcium available from the medullary bone with an additional calcium source in the gut during eggshell formation. The results demonstrated that eggshell formation requires accurate timing of the calcium intake and that obtaining sufficient calcium is time-consuming, even in calcium-rich environments. These factors pertaining to calcium intake greatly affect the ability of birds to collect sufficient calcium for eggshell formation in calcium-poor areas.
New calcium-selective smart contrast agents for magnetic resonance imaging.
Verma, Kirti Dhingra; Forgács, Attila; Uh, Hyounsoo; Beyerlein, Michael; Maier, Martin E; Petoud, Stéphane; Botta, Mauro; Logothetis, Nikos K
2013-12-23
Calcium plays a vital role in the human body and especially in the central nervous system. Precise maintenance of Ca(2+) levels is very crucial for normal cell physiology and health. The deregulation of calcium homeostasis can lead to neuronal cell death and brain damage. To study this functional role played by Ca(2+) in the brain noninvasively by using magnetic resonance imaging, we have synthesized a new set of Ca(2+) -sensitive smart contrast agents (CAs). The agents were found to be highly selective to Ca(2+) in the presence of other competitive anions and cations in buffer and in physiological fluids. The structure of CAs comprises Gd(3+)-DO3A (DO3A=1,4,7-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecane) coupled to a Ca(2+) chelator o-amino phenol-N,N,O-triacetate (APTRA). The agents are designed to sense Ca(2+) present in extracellular fluid of the brain where its concentration is relatively high, that is, 1.2-0.8 mM. The determined dissociation constant of the CAs to Ca(2+) falls in the range required to sense and report changes in extracellular Ca(2+) levels followed by an increase in neural activity. In buffer, with the addition of Ca(2+) the increase in relaxivity ranged from 100-157%, the highest ever known for any T1-based Ca(2+)-sensitive smart CA. The CAs were analyzed extensively by the measurement of luminescence lifetime measurement on Tb(3+) analogues, nuclear magnetic relaxation dispersion (NMRD), and (17)O NMR transverse relaxation and shift experiments. The results obtained confirmed that the large relaxivity enhancement observed upon Ca(2+) addition is due to the increase of the hydration state of the complexes together with the slowing down of the molecular rotation and the retention of a significant contribution of the water molecules of the second sphere of hydration. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
[Prevention of ventricular fibrillation with the aid of protopine in animal experiments].
Burtsev, V N; Dormidontov, E N; Saliaev, V N
1978-04-01
The anti-arrhythmic activity of protopin, quinidine and novocainamide infused intravenously as a preventive and relieving measure was studied in acute experiments on rats with calcium chloride and aconitic arrhythmia. In myocardial fibrillation induced by calcium chloride the contents in the rat heart of adrenalin, noradrenaline, dopa and dopamine were studied by spectrofluorimetry before and after the use of protopin. It was established that in the size of its minimum effective doses which arrest or prevent calcium chloride and aconitic arrhythmias in rats protopin is two to three times more potent than quinidine and novocainamide. The mechanism of the anti-arrhythmic effect of protopin in calcium chloride and aconitic arrhythmias is complex and is due to the suppression of the foci of heterotopic stimulation, decrease in excitability of the myocardial cells and normalization of the catecholamine content in the myocardium.
Grases, F; Costa-Bauzá, A
1999-01-01
The extraordinary capacity of phytate (myo-inositol hexaphosphate), a substance present in blood, urine, interstitial and intracellular fluids, to inhibit crystallization of calcium salts (oxalate and phosphate) is discussed. Its role in preventing calcium renal stone formation is specifically presented and discussed. "In vitro" and "in vivo" experiments, as well as clinical studies clearly demonstrated that phytate plays an important role as a crystallization inhibitor of calcium salts in biological fluids and becomes a clear alternative in the treatment of calcium oxalate renal lithiasis.
Neural network fusion: a novel CT-MR aortic aneurysm image segmentation method
NASA Astrophysics Data System (ADS)
Wang, Duo; Zhang, Rui; Zhu, Jin; Teng, Zhongzhao; Huang, Yuan; Spiga, Filippo; Du, Michael Hong-Fei; Gillard, Jonathan H.; Lu, Qingsheng; Liò, Pietro
2018-03-01
Medical imaging examination on patients usually involves more than one imaging modalities, such as Computed Tomography (CT), Magnetic Resonance (MR) and Positron Emission Tomography(PET) imaging. Multimodal imaging allows examiners to benefit from the advantage of each modalities. For example, for Abdominal Aortic Aneurysm, CT imaging shows calcium deposits in the aorta clearly while MR imaging distinguishes thrombus and soft tissues better.1 Analysing and segmenting both CT and MR images to combine the results will greatly help radiologists and doctors to treat the disease. In this work, we present methods on using deep neural network models to perform such multi-modal medical image segmentation. As CT image and MR image of the abdominal area cannot be well registered due to non-affine deformations, a naive approach is to train CT and MR segmentation network separately. However, such approach is time-consuming and resource-inefficient. We propose a new approach to fuse the high-level part of the CT and MR network together, hypothesizing that neurons recognizing the high level concepts of Aortic Aneurysm can be shared across multiple modalities. Such network is able to be trained end-to-end with non-registered CT and MR image using shorter training time. Moreover network fusion allows a shared representation of Aorta in both CT and MR images to be learnt. Through experiments we discovered that for parts of Aorta showing similar aneurysm conditions, their neural presentations in neural network has shorter distances. Such distances on the feature level is helpful for registering CT and MR image.
Calcium/Vitamin D Supplementation and Coronary Artery Calcification
Manson, JoAnn E.; Allison, Matthew A.; Carr, J. Jeffrey; Langer, Robert D.; Cochrane, Barbara B.; Hendrix, Susan L.; Hsia, Judith; Hunt, Julie R.; Lewis, Cora E.; Margolis, Karen L.; Robinson, Jennifer G.; Rodabough, Rebecca J.; Thomas, Asha M.
2010-01-01
Objectives Coronary artery calcified plaque is a marker for atheromatous plaque burden and predicts future risk of cardiovascular events. The relationship between calcium plus vitamin D supplementation and coronary artery calcium (CAC) has not been previously assessed in a randomized trial setting. We compared coronary artery calcium scores among women randomized to calcium/vitamin D supplementation versus placebo following trial completion. Methods In an ancillary substudy of women randomized to calcium carbonate (1000 mg of elemental calcium daily) plus vitamin D3 (400 IU daily) versus placebo, nested within the Women’s Health Initiative trial of estrogen among women with hysterectomy, we measured CAC with cardiac computed tomography in 754 women aged 50–59 years at randomization. Imaging for CAC was performed at 28 of 40 centers following a mean of 7 years of treatment and scans were read centrally. Coronary artery calcium scores were measured by a central reading center with masking to randomization assignments. Results Post-trial CAC measurements were similar in women randomized to calcium/vitamin D supplementation (calcium/D) and those receiving placebo. The mean CAC score was 91.6 for calcium/D and 100.5 for placebo (rank test p-value=0.74). After adjustment for coronary risk factors, multivariate odds ratios for increasing CAC score cutpoints (CAC >0, ≥10, and ≥100) for calcium/D vs placebo were 0.92 (95% confidence interval, 0.64–1.34), 1.29 (0.88–1.87), and 0.90 (0.56–1.44), respectively. Corresponding odds ratios among women with >50% adherence to study pills and for higher levels of CAC (>300), were similar. Conclusions Treatment with moderate doses of calcium plus vitamin D3 did not appear to alter coronary artery calcified plaque burden among postmenopausal women. PMID:20551849
Hydrostatic Pressure–Induced Release of Stored Calcium in Cultured Rat Optic Nerve Head Astrocytes
Mandal, Amritlal; Delamere, Nicholas A.
2010-01-01
Purpose. Elevated intraocular pressure is associated with glaucomatous optic nerve damage. Other investigators have shown functional changes in optic nerve head astrocytes subjected to elevated hydrostatic pressure (HP) for 1 to 5 days. Recently, the authors reported ERK1/2, p90RSK and NHE1 phosphorylation after 2 hours. Here they examine calcium responses at the onset of HP to determine what precedes ERK1/2 phosphorylation. Methods. Cytoplasmic calcium concentration ([Ca2+]i) was measured in cultured rat optic nerve astrocytes loaded with fura-2. The cells were placed in a closed imaging chamber and subjected to an HP increase of 15 mm Hg. Protein phosphorylation was detected by Western blot analysis. Results. The increase of HP caused an immediate slow increase in [Ca2+]i. The response persisted in calcium-free solution and when nickel chloride (4 mM) was added to suppress channel-mediated calcium entry. Previous depletion of the ER calcium stores by cyclopiazonic acid abolished the HP-induced calcium level increase. The HP-induced increase persisted in cells exposed to xestospongin C, an inhibitor of IP3R-mediated calcium release. In contrast, ryanodine receptor (RyR) antagonist ruthenium red (10 μM) or dantrolene (25 μM) inhibited the HP-induced calcium increase. The HP-induced calcium increase was abolished when ryanodine-sensitive calcium stores were pre-depleted with caffeine (3 mM). HP caused ERK1/2 phosphorylation. The magnitude of the ERK1/2 phosphorylation response was reduced by ruthenium red and dantrolene. Conclusions. Increasing HP causes calcium release from a ryanodine-sensitive cytoplasmic store and subsequent ERK1/2 activation. Calcium store release appears to be a required early step in the initial astrocyte response to an HP increase. PMID:20071675
Rajagopal, Vijay; Bass, Gregory; Ghosh, Shouryadipta; Hunt, Hilary; Walker, Cameron; Hanssen, Eric; Crampin, Edmund; Soeller, Christian
2018-04-18
With the advent of three-dimensional (3D) imaging technologies such as electron tomography, serial-block-face scanning electron microscopy and confocal microscopy, the scientific community has unprecedented access to large datasets at sub-micrometer resolution that characterize the architectural remodeling that accompanies changes in cardiomyocyte function in health and disease. However, these datasets have been under-utilized for investigating the role of cellular architecture remodeling in cardiomyocyte function. The purpose of this protocol is to outline how to create an accurate finite element model of a cardiomyocyte using high resolution electron microscopy and confocal microscopy images. A detailed and accurate model of cellular architecture has significant potential to provide new insights into cardiomyocyte biology, more than experiments alone can garner. The power of this method lies in its ability to computationally fuse information from two disparate imaging modalities of cardiomyocyte ultrastructure to develop one unified and detailed model of the cardiomyocyte. This protocol outlines steps to integrate electron tomography and confocal microscopy images of adult male Wistar (name for a specific breed of albino rat) rat cardiomyocytes to develop a half-sarcomere finite element model of the cardiomyocyte. The procedure generates a 3D finite element model that contains an accurate, high-resolution depiction (on the order of ~35 nm) of the distribution of mitochondria, myofibrils and ryanodine receptor clusters that release the necessary calcium for cardiomyocyte contraction from the sarcoplasmic reticular network (SR) into the myofibril and cytosolic compartment. The model generated here as an illustration does not incorporate details of the transverse-tubule architecture or the sarcoplasmic reticular network and is therefore a minimal model of the cardiomyocyte. Nevertheless, the model can already be applied in simulation-based investigations into the role of cell structure in calcium signaling and mitochondrial bioenergetics, which is illustrated and discussed using two case studies that are presented following the detailed protocol.
Begemann, Philipp G C; van Stevendaal, Udo; Koester, Ralph; Mahnken, Andreas H; Koops, Andreas; Adam, Gerhard; Grass, Michael; Nolte-Ernsting, Claus
2007-08-01
A calcium-scoring phantom with hydroxyapatite-filled cylindrical holes (0.5 to 4 mm) was used. High-resolution scans were performed for an accuracy baseline. The phantom was mounted to a moving heart phantom. Non-moving data with the implementation of an ECG-signal were acquired for different pitches (0.2/0.3), heart rates (60/80/95 bpm) and collimations (16 x 0.75/16 x 1.5 mm). Images were reconstructed with a cone-beam multi-cycle algorithm at a standard thickness/increment of 3 mm/1.5 mm and the thinnest possible thickness (0.8/0.4 and 2/1). Subsequently, ECG-gated moving calcium-scoring phantom data were acquired. The calcium volume and Agatston score were measured. The temporal resolution and reconstruction cycles were calculated. High-resolution scans determine the calcium volume with a high accuracy (mean overestimation, 0.8%). In the non-moving measurements, the volume underestimation ranged from about 6% (16 x 0.75 mm; 0.8/0.4 mm) to nearly 25% (16 x 1.5 mm; 3/1.5 mm). Moving scans showed increased measurement errors depending on the reconstructed RR interval, collimation, pitch, heart rate and gantry rotation time. Also, a correlation with the temporal resolution could be found. The reliability of calcium-scoring results can be improved with the use of a narrower collimation, a lower pitch and the reconstruction of thinner images, resulting in higher patient doses. The choice of the correct cardiac phase within the RR interval is essential to minimize measurement errors.
Cortical Circuit Activity Evokes Rapid Astrocyte Calcium Signals on a Similar Timescale to Neurons.
Stobart, Jillian L; Ferrari, Kim David; Barrett, Matthew J P; Glück, Chaim; Stobart, Michael J; Zuend, Marc; Weber, Bruno
2018-05-16
Sensory stimulation evokes intracellular calcium signals in astrocytes; however, the timing of these signals is disputed. Here, we used novel combinations of genetically encoded calcium indicators for concurrent two-photon imaging of cortical astrocytes and neurons in awake mice during whisker deflection. We identified calcium responses in both astrocyte processes and endfeet that rapidly followed neuronal events (∼120 ms after). These fast astrocyte responses were largely independent of IP 3 R2-mediated signaling and known neuromodulator activity (acetylcholine, serotonin, and norepinephrine), suggesting that they are evoked by local synaptic activity. The existence of such rapid signals implies that astrocytes are fast enough to play a role in synaptic modulation and neurovascular coupling. VIDEO ABSTRACT. Copyright © 2018 Elsevier Inc. All rights reserved.
Gardzinski, Peter; Lee, David W K; Fei, Guang-He; Hui, Kwokyin; Huang, Guan J; Sun, Hong-Shuo; Feng, Zhong-Ping
2007-01-01
Synaptic vesicles aggregate at the presynaptic terminal during synapse formation via mechanisms that are poorly understood. Here we have investigated the role of the putative calcium sensor synaptotagmin I in vesicle aggregation during the formation of soma–soma synapses between identified partner cells using a simple in vitro synapse model in the mollusc Lymnaea stagnalis. Immunocytochemistry, optical imaging and electrophysiological recording techniques were used to monitor synapse formation and vesicle localization. Within 6 h, contact between appropriate synaptic partner cells up-regulated global synaptotagmin I expression, and induced a localized aggregation of synaptotagmin I at the contact site. Cell contacts between non-synaptic partner cells did not affect synaptotagmin I expression. Application of an human immunodeficiency virus type-1 transactivator (HIV-1 TAT)-tagged peptide corresponding to loop 3 of the synaptotagmin I C2A domain prevented synaptic vesicle aggregation and synapse formation. By contrast, a TAT-tagged peptide containing the calcium-binding motif of the C2B domain did not affect synaptic vesicle aggregation or synapse formation. Calcium imaging with Fura-2 demonstrated that TAT–C2 peptides did not alter either basal or evoked intracellular calcium levels. These results demonstrate that contact with an appropriate target cell is necessary to initiate synaptic vesicle aggregation during nascent synapse formation and that the initial aggregation of synaptic vesicles is dependent on loop 3 of the C2A domain of synaptotagmin I. PMID:17317745
Calcium carbonate scale control, effect of material and inhibitors.
Macadam, J; Parsons, S A
2004-01-01
This paper focuses on developing a reproducible method for reducing calcium carbonate scale formation on heated surfaces where scaling can cause serious problems. It is known that calcium carbonate precipitation is sensitive to impurity ions, such as iron and zinc, even at trace concentration levels. In this paper two sets of experiments are reported. The first experiments were undertaken to investigate the effect of zinc, copper and iron dosing on CaCO3 nucleation and precipitation. Results from the experiments showed that the most effective inhibitor of CaCO3 precipitation was zinc and the effect was linked to dose levels and temperature. Copper and iron had little effect on precipitation in the dose range investigated. The second trial was undertaken to translate the precipitation data to scale formation. These tests were undertaken at 70 degrees C. 5 mg x L(-1) zinc dose reduced the scale formation by 35%. The effect of iron on calcium carbonate scaling rate was not significant. The physical nature of the material on which the scale is formed also influences the scaling. The scaling experiment was also used to investigate the effect of different surface material (stainless steel, copper and aluminium) on CaCO3 scale formation. Copper surface scaled the most.
High-pressure Phase Relation In The MgAl2O4-Mg2SiO4 System
NASA Astrophysics Data System (ADS)
Kojitani, H.; Hisatomi, R.; Akaogi, M.
2005-12-01
High-pressure and high-temperature experiments indicate that high-pressure phases of oceanic basalts contain Al-rich phases. MgAl2O4 with calcium ferrite-type crystal structure is considered as a main component of such the Al-rich phases. Since the calcium ferrite-type MgAl2O4 can be synthesized at only the maximum pressure of a Kawai-type high-pressure apparatus with tungsten carbide (WC) anvils, the amount of a synthesized sample is very limited. Therefore, the crystal structure of the calcium ferrite-type MgAl2O4 has been hardly known in detail due to these difficulties in sample synthesis. In our high-pressure experiments in the MgO-Al2O3-SiO2 system, it was shown that Mg2SiO4 component could be dissolved in the MgAl2O4 calcium ferrite. In this study, we tried to synthesize a single phase MgAl2O4 calcium ferrite sample and to make the Rietveld refinement of the XRD pattern of the sample. The high-pressure phase relations in the MgAl2O4-Mg2SiO4 system were studied to know the stability field of the MgAl2O4-Mg2SiO4 calcium ferrite solid solutions. Lattice parameters-composition relation of the MgAl2O4-Mg2SiO4 calcium ferrite solid solutions was also determined. High-pressure and high-temperature experiments were performed by using a Kawai-type high-pressure apparatus at Gakushuin University. WC anvils with truncated edge length of 1.5 mm were used. Heating was made by a Re heater. Temperature was measured by a Pt/Pt-13%Rh thermocouple. Starting materials for the phase relation experiments were the mixture of MgO, Al2O3 and SiO2 with bulk compositions of MgAl2O4:Mg2SiO4 = 90:10, 78:22, 70:30 and 50:50. The starting materials were held at 21-27 GPa and 1600 °C for 3 hours and then were recovered by the quenching method. The MgAl2O4 calcium ferrite sample for the Rietveld analysis was prepared by heating MgAl2O4 spinel at 27 GPa and about 2200 °C for one hour. Powder X-ray diffraction (XRD) profiles of obtained samples were measured by using a X-ray diffractometer at Gakushuin University (RINT 2500V, Cr Kα, 45 kV, 250 mA). Composition analysis of the recovered samples was made using SEM-DES. The RIETAN-2000 program was used to perform the Rietveld refinement. The results of the high-pressure phase relation experiments show that stability field of single phase of MgAl2O4-Mg2SiO4 solid solutions spreads at lower pressure than that of pure MgAl2O4 calcium ferrite. The lowest pressure at which the calcium ferrite solid solution can be synthesized is about 23 GPa. The maximum solubility of Mg2SiO4 component is about 35%. Lattice parameters of pure MgAl2O4 calcium ferrite were determined as a = 9.9495(6) Å, b = 8.6466(5) Å, c = 2.7901(2) Å ( Pbnm space group) by the Rietveld refinement. Obtained atomic positions for calcium ferrite-type MgAl2O4 are very similar to those of CaFe2O4 calcium ferrite. Lattice parameters of MgAl2O4-Mg2SiO4 calcium ferrite solid solutions with various compositions indicate that c-axis does not change with the composition and that a- and b-axes have a linear increase and decrease trend with increasing Mg2SiO4 component, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodríguez Guilbe, María M.; Protein Research and Development Center, University of Puerto Rico; Alfaro Malavé, Elisa C.
The genetically encoded fluorescent calcium-indicator protein GCaMP2 was crystallized in the calcium-saturated form. X-ray diffraction data were collected to 2.0 Å resolution and the structure was solved by molecular replacement. Fluorescent proteins and their engineered variants have played an important role in the study of biology. The genetically encoded calcium-indicator protein GCaMP2 comprises a circularly permuted fluorescent protein coupled to the calcium-binding protein calmodulin and a calmodulin target peptide, M13, derived from the intracellular calmodulin target myosin light-chain kinase and has been used to image calcium transients in vivo. To aid rational efforts to engineer improved variants of GCaMP2, thismore » protein was crystallized in the calcium-saturated form. X-ray diffraction data were collected to 2.0 Å resolution. The crystals belong to space group C2, with unit-cell parameters a = 126.1, b = 47.1, c = 68.8 Å, β = 100.5° and one GCaMP2 molecule in the asymmetric unit. The structure was phased by molecular replacement and refinement is currently under way.« less
Active action potential propagation but not initiation in thalamic interneuron dendrites
Casale, Amanda E.; McCormick, David A.
2012-01-01
Inhibitory interneurons of the dorsal lateral geniculate nucleus of the thalamus modulate the activity of thalamocortical cells in response to excitatory input through the release of inhibitory neurotransmitter from both axons and dendrites. The exact mechanisms by which release can occur from dendrites are, however, not well understood. Recent experiments using calcium imaging have suggested that Na/K based action potentials can evoke calcium transients in dendrites via local active conductances, making the back-propagating action potential a candidate for dendritic neurotransmitter release. In this study, we employed high temporal and spatial resolution voltage-sensitive dye imaging to assess the characteristics of dendritic voltage deflections in response to Na/K action potentials in interneurons of the mouse dorsal lateral geniculate nucleus. We found that trains or single action potentials elicited by somatic current injection or local synaptic stimulation led to action potentials that rapidly and actively back-propagated throughout the entire dendritic arbor and into the fine filiform dendritic appendages known to release GABAergic vesicles. Action potentials always appeared first in the soma or proximal dendrite in response to somatic current injection or local synaptic stimulation, and the rapid back-propagation into the dendritic arbor depended upon voltage-gated sodium and TEA-sensitive potassium channels. Our results indicate that thalamic interneuron dendrites integrate synaptic inputs that initiate action potentials, most likely in the axon initial segment, that then back-propagate with high-fidelity into the dendrites, resulting in a nearly synchronous release of GABA from both axonal and dendritic compartments. PMID:22171033
Calcium ion binding to a soil fulvic acid using a donnan potential model
Marinsky, J.A.; Mathuthu, A.; Ephraim, J.H.; Reddy, M.M.
1999-01-01
Calcium ion binding to a soil fulvic acid (Armadale Bh Horizon) was evaluated over a range of calcium ion concentrations, from pH 3.8 to 7.3, using potentiometric titrations and calcium ion electrode measurements. Fulvic acid concentration was constant (100 milligrams per liter) and calcium ion concentration varied up to 8 X 10-4 moles per liter. Experiments discussed here included: (1) titrations of fulvic acid-calcium ion containing solutions with sodium hydroxide; and (2) titrations of fully neutralized fulvic acid with calcium chloride solutions. Apparent binding constants (expressed as the logarithm of the value, log ??app) vary with solution pH, calcium ion concentration, degree of acid dissociation, and ionic strength (from log ??app = 2.5 to 3.9) and are similar to those reported by others. Fulvic acid charge, and the associated Donnan Potential, influences calcium ion-fulvic acid ion pair formation. A Donnan Potential corrrection term allowed calculation of intrinsic calcium ion-fulvic acid binding constants. Intrinsic binding constants vary from 1.2 to 2.5 (the average value is about log??= 1.6) and are similar to, but somewhat higher than, stability constants for calcium ion-carboxylic acid monodentate complexes. ?? by Oldenbourg Wissenschaftsverlag, Mu??nchen.
A spectral X-ray CT simulation study for quantitative determination of iron
NASA Astrophysics Data System (ADS)
Su, Ting; Kaftandjian, Valérie; Duvauchelle, Philippe; Zhu, Yuemin
2018-06-01
Iron is an essential element in the human body and disorders in iron such as iron deficiency or overload can cause serious diseases. This paper aims to explore the ability of spectral X-ray CT to quantitatively separate iron from calcium and potassium and to investigate the influence of different acquisition parameters on material decomposition performance. We simulated spectral X-ray CT imaging of a PMMA phantom filled with iron, calcium, and potassium solutions at various concentrations (15-200 mg/cc). Different acquisition parameters were considered, such as the number of energy bins (6, 10, 15, 20, 30, 60) and exposure factor per projection (0.025, 0.1, 1, 10, 100 mA s). Based on the simulation data, we investigated the performance of two regularized material decomposition approaches: projection domain method and image domain method. It was found that the former method discriminated iron from calcium, potassium and water in all cases and tended to benefit from lower number of energy bins for lower exposure factor acquisition. The latter method succeeded in iron determination only when the number of energy bins equals 60, and in this case, the contrast-to-noise ratios of the decomposed iron images are higher than those obtained using the projection domain method. The results demonstrate that both methods are able to discriminate and quantify iron from calcium, potassium and water under certain conditions. Their performances vary with the acquisition parameters of spectral CT. One can use one method or the other to benefit better performance according to the data available.
ACQ4: an open-source software platform for data acquisition and analysis in neurophysiology research
Campagnola, Luke; Kratz, Megan B.; Manis, Paul B.
2014-01-01
The complexity of modern neurophysiology experiments requires specialized software to coordinate multiple acquisition devices and analyze the collected data. We have developed ACQ4, an open-source software platform for performing data acquisition and analysis in experimental neurophysiology. This software integrates the tasks of acquiring, managing, and analyzing experimental data. ACQ4 has been used primarily for standard patch-clamp electrophysiology, laser scanning photostimulation, multiphoton microscopy, intrinsic imaging, and calcium imaging. The system is highly modular, which facilitates the addition of new devices and functionality. The modules included with ACQ4 provide for rapid construction of acquisition protocols, live video display, and customizable analysis tools. Position-aware data collection allows automated construction of image mosaics and registration of images with 3-dimensional anatomical atlases. ACQ4 uses free and open-source tools including Python, NumPy/SciPy for numerical computation, PyQt for the user interface, and PyQtGraph for scientific graphics. Supported hardware includes cameras, patch clamp amplifiers, scanning mirrors, lasers, shutters, Pockels cells, motorized stages, and more. ACQ4 is available for download at http://www.acq4.org. PMID:24523692
Boron in Calcium Sulfate Vein at Catabola, Mars
2016-12-13
The highest concentration of boron measured on Mars, as of late 2016, is in this mineral vein, called "Catabola," examined with the Chemistry and Camera (ChemCam) instrument on NASA's Curiosity rover on Aug, 25, 2016, during Sol 1441 of the mission. This two-part illustration shows the context of the erosion-resistant, raised vein, in an image from Curiosity's Mast Camera (Mastcam), and a detailed inset image from ChemCam's remote micro-imager. The inset includes indicators of the boron content measured at 10 points along the vein that were analyzed with ChemCam's laser-firing spectrometer. The vein's main component is calcium sulfate. The highest boron content identified is less than one-tenth of one percent. The heights of the orange bars at each point indicate relative abundance of boron, compared with boron content at other points. The scale bar for the inset is 9.2 millimeters, or about 0.36 inch. The ChemCam image is enhanced with color information from Mastcam. http://photojournal.jpl.nasa.gov/catalog/PIA21251
Miri, Andrew; Daie, Kayvon; Burdine, Rebecca D.; Aksay, Emre
2011-01-01
The advent of methods for optical imaging of large-scale neural activity at cellular resolution in behaving animals presents the problem of identifying behavior-encoding cells within the resulting image time series. Rapid and precise identification of cells with particular neural encoding would facilitate targeted activity measurements and perturbations useful in characterizing the operating principles of neural circuits. Here we report a regression-based approach to semiautomatically identify neurons that is based on the correlation of fluorescence time series with quantitative measurements of behavior. The approach is illustrated with a novel preparation allowing synchronous eye tracking and two-photon laser scanning fluorescence imaging of calcium changes in populations of hindbrain neurons during spontaneous eye movement in the larval zebrafish. Putative velocity-to-position oculomotor integrator neurons were identified that showed a broad spatial distribution and diversity of encoding. Optical identification of integrator neurons was confirmed with targeted loose-patch electrical recording and laser ablation. The general regression-based approach we demonstrate should be widely applicable to calcium imaging time series in behaving animals. PMID:21084686
Ebina, Teppei; Masamizu, Yoshito; Tanaka, Yasuhiro R; Watakabe, Akiya; Hirakawa, Reiko; Hirayama, Yuka; Hira, Riichiro; Terada, Shin-Ichiro; Koketsu, Daisuke; Hikosaka, Kazuo; Mizukami, Hiroaki; Nambu, Atsushi; Sasaki, Erika; Yamamori, Tetsuo; Matsuzaki, Masanori
2018-05-14
Two-photon imaging in behaving animals has revealed neuronal activities related to behavioral and cognitive function at single-cell resolution. However, marmosets have posed a challenge due to limited success in training on motor tasks. Here we report the development of protocols to train head-fixed common marmosets to perform upper-limb movement tasks and simultaneously perform two-photon imaging. After 2-5 months of training sessions, head-fixed marmosets can control a manipulandum to move a cursor to a target on a screen. We conduct two-photon calcium imaging of layer 2/3 neurons in the motor cortex during this motor task performance, and detect task-relevant activity from multiple neurons at cellular and subcellular resolutions. In a two-target reaching task, some neurons show direction-selective activity over the training days. In a short-term force-field adaptation task, some neurons change their activity when the force field is on. Two-photon calcium imaging in behaving marmosets may become a fundamental technique for determining the spatial organization of the cortical dynamics underlying action and cognition.
The Determination of Calcium in Dietary Supplement Tablets by Ion-Exchange.
ERIC Educational Resources Information Center
Dietz, Mark L.
1986-01-01
An experimental simple ion-exchange experiment in which the amount of calcium present in dietary supplement tablets has been developed is described and some typical student results for several brands of tablets are presented. (JN)
Simultaneous imaging of neural activity in three dimensions
Quirin, Sean; Jackson, Jesse; Peterka, Darcy S.; Yuste, Rafael
2014-01-01
We introduce a scanless optical method to image neuronal activity in three dimensions simultaneously. Using a spatial light modulator and a custom-designed phase mask, we illuminate and collect light simultaneously from different focal planes and perform calcium imaging of neuronal activity in vitro and in vivo. This method, combining structured illumination with volume projection imaging, could be used as a technological platform for brain activity mapping. PMID:24772066
NASA Astrophysics Data System (ADS)
Wu, Jing; Ferns, Gordon; Giles, John; Lewis, Emma
2012-03-01
Inter- and intra- observer variability is a problem often faced when an expert or observer is tasked with assessing the severity of a disease. This issue is keenly felt in coronary calcium scoring of patients suffering from atherosclerosis where in clinical practice, the observer must identify firstly the presence, followed by the location of candidate calcified plaques found within the coronary arteries that may prevent oxygenated blood flow to the heart muscle. However, it can be difficult for a human observer to differentiate calcified plaques that are located in the coronary arteries from those found in surrounding anatomy such as the mitral valve or pericardium. In addition to the benefits to scoring accuracy, the use of fast, low dose multi-slice CT imaging to perform the cardiac scan is capable of acquiring the entire heart within a single breath hold. Thus exposing the patient to lower radiation dose, which for a progressive disease such as atherosclerosis where multiple scans may be required, is beneficial to their health. Presented here is a fully automated method for calcium scoring using both the traditional Agatston method, as well as the volume scoring method. Elimination of the unwanted regions of the cardiac image slices such as lungs, ribs, and vertebrae is carried out using adaptive heart isolation. Such regions cannot contain calcified plaques but can be of a similar intensity and their removal will aid detection. Removal of both the ascending and descending aortas, as they contain clinical insignificant plaques, is necessary before the final calcium scores are calculated and examined against ground truth scores of three averaged expert observer results. The results presented here are intended to show the feasibility and requirement for an automated scoring method to reduce the subjectivity and reproducibility error inherent with manual clinical calcium scoring.
High-dose calcium stimulation test in a case of insulinoma masquerading as hysteria.
Nakamura, Yoshio; Doi, Ryuichiro; Kohno, Yasuhiro; Shimono, Dai; Kuwamura, Naomitsu; Inoue, Koichi; Koshiyama, Hiroyuki; Imamura, Masayuki
2002-11-01
It is reported that some cases with insulinoma present with neuropsychiatric symptoms and are often misdiagnosed as psychosis. Here we report a case of insulinoma masquerading as hysteria, whose final diagnosis could be made using high-dose calcium stimulation test. A 28-yr-old woman was referred presenting with substupor, mutism, mannerism, restlessness, and incoherence. Laboratory examinations revealed hypoglycemia (33 mg/dL) and detectable insulin levels (9.7 microU/mL), suggesting the diagnosis of insulinoma. However, neither imaging studies nor selective arterial calcium injection (SACI) test with a conventional dose of calcium (0.025 mEq/kg) indicated the tumor. High-dose calcium injection (0.05 mEq/kg) evoked insulin secretion when injected into superior mesenteric artery. A solitary tumor in the head of the pancreas was resected, and her plasma glucose returned to normal. Postoperatively, iv injection of secretin resulted in a normal response of insulin, which was not found preoperatively. This case suggests the usefulness of the SACI test with high-dose of calcium in the case of insulinoma when the standard dose fails to detect such a tumor.
Eles, James R; Vazquez, Alberto L; Kozai, Takashi D Y; Cui, X Tracy
2018-08-01
Implantable electrode devices enable long-term electrophysiological recordings for brain-machine interfaces and basic neuroscience research. Implantation of these devices, however, leads to neuronal damage and progressive neural degeneration that can lead to device failure. The present study uses in vivo two-photon microscopy to study the calcium activity and morphology of neurons before, during, and one month after electrode implantation to determine how implantation trauma injures neurons. We show that implantation leads to prolonged, elevated calcium levels in neurons within 150 μm of the electrode interface. These neurons show signs of mechanical distortion and mechanoporation after implantation, suggesting that calcium influx is related to mechanical trauma. Further, calcium-laden neurites develop signs of axonal injury at 1-3 h post-insert. Over the first month after implantation, physiological neuronal calcium activity increases, suggesting that neurons may be recovering. By defining the mechanisms of neuron damage after electrode implantation, our results suggest new directions for therapies to improve electrode longevity. Copyright © 2018 Elsevier Ltd. All rights reserved.
Saturation spectroscopy of calcium atomic vapor in hot quartz cells with cold windows
NASA Astrophysics Data System (ADS)
Vilshanskaya, E. V.; Saakyan, S. A.; Sautenkov, V. A.; Murashkin, D. A.; Zelener, B. B.; Zelener, B. V.
2018-01-01
Saturation spectroscopy of calcium atomic vapor was performed in hot quartz cells with cold windows. The Doppler-free absorption resonances with spectral width near 50 MHz were observed. For these experiments and future applications long-lived quartz cells with buffer gas were designed and made. A cooling laser for calcium magneto-optical trap will be frequency locked to the saturation resonances in the long-lived cells.
Low-power laser effects at the single-cell level: a confocal microscopy study
NASA Astrophysics Data System (ADS)
Alexandratou, Eleni; Yova, Dido M.; Atlamazoglou, Vassilis; Handris, Panagiotis; Kletsas, Dimitris; Loukas, Spyros
2000-11-01
Confocal microscopy was used for irradiation and observation of the same area of interest, allowing the imaging of low power laser effects in subcellular components and functions, at the single cell level. Coverslips cultures of human fetal foreskin fibroblasts (HFFF2) were placed in a small incubation chamber for in vivo microscopic observation. Cells were stimulated by the 647 nm line of the Argon- Krypton laser of the confocal microscope (0.1 mW/cm2). Membrane permeability, mitochondrial membrane potential ((delta) Psim), intracellular pHi, calcium alterations and nuclear chromatin accessibility were monitored, at different times after irradiation, using specific fluorescent vital probes. Images were stored to the computer and quantitative evaluation was performed using image- processing software. After irradiation, influx and efflux of the appropriate dyes monitored changes in cell membrane permeability. Laser irradiation caused alkalizatoin of the cytosolic pHi and increase of the mitochondrial membrane potential ((delta) Psim). Temporary global Ca2+ responses were also observed. No such effects were noted in microscopic fields other than the irradiated ones. No toxic effects were observed, during time course of the experiment.
Ethanol increases affinity of protein kinase C for phosphatidylserine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chin, J.H.
1986-03-01
Protein kinase C is a calcium-dependent enzyme that requires phospholipid for its activation. It is present in relatively high concentration in the brain and may be involved in neuronal function. The present experiments test whether the membrane disorder induced by ethanol affects the activity of kinase C by changing its interaction with membrane lipid. Fractions rich in kinase C were purified from rat brain cytosol by DEAE-cellulose chromatography and Sephadex G-200 gel filtration. Enzyme activity was assayed by measuring the phosphorylation of histone H1. As expected, phosphatidylserine activated the enzyme, and the stimulation was further increased by the addition ofmore » calcium and/or diacylglycerol. At low concentration of free calcium (0.5-1..mu..M), ethanol (800 mM0 enhanced kinase C activity if the presence of phospholipid. similar results were observed in the absence of calcium. Double reciprocal plots of the data showed that ethanol increased the affinity of the enzyme for phosphatidylserine without affecting the V/sub max. The stimulation of kinase C activity by ethanol was not observed at high calcium concentrations. These experiments suggest that ethanol may activated protein kinase C at physiological levels of calcium by facilitating its transfer into the hydrophobic membrane environment.« less
General anesthesia selectively disrupts astrocyte calcium signaling in the awake mouse cortex
Thrane, Alexander Stanley; Zeppenfeld, Douglas; Lou, Nanhong; Xu, Qiwu; Nagelhus, Erlend Arnulf; Nedergaard, Maiken
2012-01-01
Calcium signaling represents the principle pathway by which astrocytes respond to neuronal activity. General anesthetics are routinely used in clinical practice to induce a sleep-like state, allowing otherwise painful procedures to be performed. Anesthetic drugs are thought to mainly target neurons in the brain and act by suppressing synaptic activity. However, the direct effect of general anesthesia on astrocyte signaling in awake animals has not previously been addressed. This is a critical issue, because calcium signaling may represent an essential mechanism through which astrocytes can modulate synaptic activity. In our study, we performed calcium imaging in awake head-restrained mice and found that three commonly used anesthetic combinations (ketamine/xylazine, isoflurane, and urethane) markedly suppressed calcium transients in neocortical astrocytes. Additionally, all three anesthetics masked potentially important features of the astrocyte calcium signals, such as synchronized widespread transients that appeared to be associated with arousal in awake animals. Notably, anesthesia affected calcium transients in both processes and soma and depressed spontaneous signals, as well as calcium responses, evoked by whisker stimulation or agonist application. We show that these calcium transients are inositol 1,4,5-triphosphate type 2 receptor (IP3R2)-dependent but resistant to a local blockade of glutamatergic or purinergic signaling. Finally, we found that doses of anesthesia insufficient to affect neuronal responses to whisker stimulation selectively suppressed astrocyte calcium signals. Taken together, these data suggest that general anesthesia may suppress astrocyte calcium signals independently of neuronal activity. We propose that these glial effects may constitute a nonneuronal mechanism for sedative action of anesthetic drugs. PMID:23112168
Callamaras, N; Sun, X P; Ivorra, I; Parker, I
1998-09-01
1. The mechanisms underlying hemispheric asymmetry of the inositol 1, 4,5-trisphosphate (InsP3)-calcium signalling pathway in Xenopus oocytes were examined by fluorescence imaging of calcium signals and recording calcium-activated Cl- currents (ICl,Ca) evoked by intracellular calcium injections and photorelease of InsP3. 2. The maximal ICl,Ca evoked by strong photorelease of InsP3 was 8 times greater in the animal than the vegetal hemisphere, but the average threshold amounts of InsP3 required to evoke detectable currents were similar in each hemisphere. 3. Currents evoked by injections of calcium were about 2.5 times greater near the animal pole than near the vegetal pole, whereas fluorescence signals evoked by injections were similar in each hemisphere. 4. Calcium waves were evoked by photolysis flashes of similar strengths in both hemispheres of albino oocytes, but peak calcium levels evoked by supramaximal stimuli were 70 % greater in the animal hemisphere. 5. Elementary calcium release events (puffs) in the animal hemisphere had amplitudes about double that in the vegetal hemisphere, and more often involved coupled release from adjacent sites. Calcium release sites were more closely packed in the animal hemisphere, with a mean spacing of about 1.5 micro m compared with 2.25 micro m in the vegetal hemisphere. 6. The larger amplitude of currents mediated by InsP3 in the animal hemisphere, therefore, involves an increased flux of calcium at individual release units, a more dense packing of release units and a higher density of Cl- channels.
Callamaras, Nick; Sun, Xiao-Ping; Ivorra, Isabel; Parker, Ian
1998-01-01
The mechanisms underlying hemispheric asymmetry of the inositol 1,4,5-trisphosphate (InsP3)-calcium signalling pathway in Xenopus oocytes were examined by fluorescence imaging of calcium signals and recording calcium-activated Cl− currents (ICl,Ca) evoked by intracellular calcium injections and photorelease of InsP3. The maximal ICl,Ca evoked by strong photorelease of InsP3 was 8 times greater in the animal than the vegetal hemisphere, but the average threshold amounts of InsP3 required to evoke detectable currents were similar in each hemisphere. Currents evoked by injections of calcium were about 2.5 times greater near the animal pole than near the vegetal pole, whereas fluorescence signals evoked by injections were similar in each hemisphere. Calcium waves were evoked by photolysis flashes of similar strengths in both hemispheres of albino oocytes, but peak calcium levels evoked by supramaximal stimuli were 70% greater in the animal hemisphere. Elementary calcium release events (puffs) in the animal hemisphere had amplitudes about double that in the vegetal hemisphere, and more often involved coupled release from adjacent sites. Calcium release sites were more closely packed in the animal hemisphere, with a mean spacing of about 1.5 μm compared with 2.25 μm in the vegetal hemisphere. The larger amplitude of currents mediated by InsP3 in the animal hemisphere, therefore, involves an increased flux of calcium at individual release units, a more dense packing of release units and a higher density of Cl− channels. PMID:9706018
Sambudi, Nonni Soraya; Kim, Minjeong G; Park, Seung Bin
2016-03-01
The electrospun fibers consist of backbone fibers and nano-branch network are synthesized by loading of ellipsoidal calcium carbonate in the mixture of chitosan/poly(vinyl alcohol) (PVA) followed by electrospinning. The synthesized ellipsoidal calcium carbonate is in submicron size (730.7±152.4 nm for long axis and 212.6±51.3 nm for short axis). The electrospun backbone fibers experience an increasing in diameter by loading of calcium carbonate from 71.5±23.4 nm to 281.9±51.2 nm. The diameters of branch fibers in the web-network range from 15 nm to 65 nm with most distributions of fibers are in 30-35 nm. Calcium carbonate acts as reinforcing agent to improve the mechanical properties of fibers. The optimum value of Young's modulus is found at the incorporation of 3 wt.% of calcium carbonate in chitosan/PVA fibers, which is enhanced from 15.7±3 MPa to 432.4±94.3 MPa. On the other hand, the ultimate stress of fibers experiences a decrease. This result shows that the fiber network undergoes changes from flexible to more stiff by the inclusion of calcium carbonate. The thermal analysis results show that the crystallinity of polymer is changed by the existence of calcium carbonate in the fiber network. The immersion of fibers in simulated body fluid (SBF) results in the formation of apatite on the surface of fibers. Copyright © 2015 Elsevier B.V. All rights reserved.
Novel botanical drug DA-9803 prevents deficits in Alzheimer's mouse models.
Pagnier, Guillaume J; Kastanenka, Ksenia V; Sohn, Miwon; Choi, Sangzin; Choi, Song-Hyen; Soh, HyeYeon; Bacskai, Brian J
2018-01-29
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by deposition of amyloid plaques and disruption of neural circuitry, leading to cognitive decline. Animal models of AD deposit senile plaques and exhibit structural and functional deficits in neurons and neural networks. An effective treatment would prevent or restore these deficits, including calcium dyshomeostasis observed with in-vivo imaging. We examined the effects of DA-9803, a multimodal botanical drug, in 5XFAD and APP/PS1 transgenic mice which underwent daily oral treatment with 30 or 100 mg/kg DA-9803 or vehicle alone. Behavioral testing and longitudinal imaging of amyloid deposits and intracellular calcium in neurons with multiphoton microscopy was performed. Chronic administration of DA-9803 restored behavioral deficits in 5XFAD mice and reduced amyloid-β levels. DA-9803 also prevented progressive amyloid plaque deposition in APP/PS1 mice. Elevated calcium, detected in a subset of neurons before the treatment, was restored and served as a functional indicator of treatment efficacy in addition to the behavioral readout. In contrast, mice treated with vehicle alone continued to progressively accumulate amyloid plaques and calcium overload. In summary, treatment with DA-9803 prevented structural and functional outcome measures in mouse models of AD. Thus, DA-9803 shows promise as a novel therapeutic approach for Alzheimer's disease.
Direct Inhibitory Effect of Hypercalcemia on Renal Actions of Parathyroid Hormone
Beck, Nama; Singh, Harbans; Reed, Sarah W.; Davis, Bernard B.
1974-01-01
The effects of calcium on the renal actions of parathyroid hormone (PTH) were studied in vivo and in vitro. In parathyroidectomized rats, variable levels of blood calcium concentration were induced by intravenous infusion of calcium. The renal responses to the injected PTH, i.e. phosphate and cyclic AMP excretion, were compared in these animals. After PTH injection, the increases of both phosphate and cyclic AMP excretion were less in the calcium-infused animals than in the control group without calcium infusion. There was an inverse correlation between the renal responses to PTH and plasma calcium concentration of 4.2-13.5 mg/100 ml. But calcium had no effect on phosphate excretion induced by infusion of dibutyryl cyclic AMP. In the in vitro experiments, the increase of cyclic AMP concentration in response to PTH was less in renal cortical slices taken from the calcium-infused animals than in ones from the control group without calcium infusion. Calcium also inhibited the activation of renal cortical adenylate cyclase in response to PTH, but calcium had no effect on phosphodiesterase. The data indicate that calcium directly inhibits renal actions of PTH both in vivo and in vitro. Such inhibitory mechanism is probably at or before the step of PTH-dependent cyclic AMP generation in the kidney. PMID:4359938
An open source, wireless capable miniature microscope system
NASA Astrophysics Data System (ADS)
Liberti, William A., III; Perkins, L. Nathan; Leman, Daniel P.; Gardner, Timothy J.
2017-08-01
Objective. Fluorescence imaging through head-mounted microscopes in freely behaving animals is becoming a standard method to study neural circuit function. Flexible, open-source designs are needed to spur evolution of the method. Approach. We describe a miniature microscope for single-photon fluorescence imaging in freely behaving animals. The device is made from 3D printed parts and off-the-shelf components. These microscopes weigh less than 1.8 g, can be configured to image a variety of fluorophores, and can be used wirelessly or in conjunction with active commutators. Microscope control software, based in Swift for macOS, provides low-latency image processing capabilities for closed-loop, or BMI, experiments. Main results. Miniature microscopes were deployed in the songbird premotor region HVC (used as a proper name), in singing zebra finches. Individual neurons yield temporally precise patterns of calcium activity that are consistent over repeated renditions of song. Several cells were tracked over timescales of weeks and months, providing an opportunity to study learning related changes in HVC. Significance. 3D printed miniature microscopes, composed completely of consumer grade components, are a cost-effective, modular option for head-mounting imaging. These easily constructed and customizable tools provide access to cell-type specific neural ensembles over timescales of weeks.
Shemwell, B; Levendis, Y A; Simons, G A
2001-01-01
This is a laboratory study on the reduction of combustion-generated hydrochloric acid (HCl) emissions by in-furnace dry-injection of calcium-based sorbents. HCl is a hazardous gaseous pollutant emitted in significant quantities by municipal and hazardous waste incinerators, coal-fired power plants, and other industrial furnaces. Experiments were conducted in a laboratory furnace at gas temperatures of 600-1000 degrees C. HCl gas diluted with N2, and sorbent powders fluidized in a stream of air were introduced into the furnace concurrently. Chlorination of the sorbents occurred in the hot zone of the furnace at gas residence times approximately 1 s. The sorbents chosen for these experiments were calcium formate (CF), calcium magnesium acetate (CMA), calcium propionate (CP), calcium oxide (CX), and calcium carbonate (CC). Upon release of organic volatiles, sorbents calcine to CaO at approximately 700 degrees C, and react with the HCl according to the reaction CaO + 2HCl <=> CaCl2 + H2O. At the lowest temperature case examined herein, 600 degrees C, direct reaction of HCl with CaCO3 may also be expected. The effectiveness of the sorbents to capture HCl was interpreted using the "pore tree" mathematical model for heterogeneous diffusion reactions. Results show that the thin-walled, highly porous cenospheres formed from the pyrolysis and calcination of CF, CMA, and CP exhibited high relative calcium utilization at the upper temperatures of this study. Relative utilizations under these conditions reached 80%. The less costly low-porosity sorbents, calcium carbonate and calcium oxide also performed well. Calcium carbonate reached a relative utilization of 54% in the mid-temperature range, while the calcium oxide reached an 80% relative utilization at the lowest temperature examined. The data matched theoretical predictions of sorbent utilization using the mathematical model, with activation energy and pre-exponential factors for the calcination reaction of 17,000 K and 300,000 (g gas/cm2/s/atm gas), respectively. Thus, the kinetics of the calcination reaction were found to be much faster (approximately 500 times) than those of the sulfation reaction examined previously in this laboratory.
Hassani, Hakim; Raynal, Gauthier; Spie, Romain; Daudon, Michel; Vallée, Jean-Noël
2012-05-01
We evaluated the value of combining noncontrast helical computerized tomography (NCHCT) and color Doppler ultrasound in the assessment of the composition of urinary stones. In vitro, we studied 120 stones of known composition, that separate into the five main types: 18 calcium oxalate monohydrate (COM) stones, 41 calcium oxalate dihydrate (COD) stones, 24 uric acid stones, 25 calcium phosphate stones and 12 cystine calculi. Stones were characterized in terms of their Hounsfield density (HU) in NCHCT and the presence of a twinkling artifact (TA) in color Doppler ultrasound. There were statistically significant HU differences between calcium and non-calcium stones (p < 0.001), calcium oxalate stones and calcium phosphate stones (p < 0.001) and uric acid stones and cystine calculi (p < 0.001) but not between COM and COD stones (p = 0.786). Hence, the HU was a predictive factor of the composition of all types of stones, other than for COM and COD stones within the calcium oxalate class (p > 0.05). We found that the TA does not enable differentiation between calcium and non-calcium stones (p > 0.999), calcium oxalate stones and calcium phosphate stones (p = 0.15), or uric acid stones and cystine calculi (p = 0.079). However, it did reveal a significant difference between COM and COD stones (p = 0.002). The absence of a TA is a predictive factor for the presence of COM stones (p = 0.008). Hence, the association of NCHCT and Doppler enables the accurate classification of the five types of stones in vitro. Copyright © 2012 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Calcium scoring with dual-energy CT in men and women: an anthropomorphic phantom study
NASA Astrophysics Data System (ADS)
Li, Qin; Liu, Songtao; Myers, Kyle; Gavrielides, Marios A.; Zeng, Rongping; Sahiner, Berkman; Petrick, Nicholas
2016-03-01
This work aimed to quantify and compare the potential impact of gender differences on coronary artery calcium scoring with dual-energy CT. An anthropomorphic thorax phantom with four synthetic heart vessels (diameter 3-4.5 mm: female/male left main and left circumflex artery) were scanned with and without female breast plates. Ten repeat scans were acquired in both single- and dual-energy modes and reconstructed at six reconstruction settings: two slice thicknesses (3 mm, 0.6 mm) and three reconstruction algorithms (FBP, IR3, IR5). Agatston and calcium volume scores were estimated from the reconstructed data using a segmentation-based approach. Total calcium score (summation of four vessels), and male/female calcium scores (summation of male/female vessels scanned in phantom without/with breast plates) were calculated accordingly. Both Agatston and calcium volume scores were found comparable between single- and dual-energy scans (Pearson r= 0.99, p<0.05). The total calcium scores were larger for the thinner slice thickness. Among the scores obtained from the three reconstruction algorithms, FBP yielded the highest and IR5 yielded the lowest scores. The total calcium scores from the phantom without breast plates were significantly larger than those from the phantom with breast plates, and the difference increased with the stronger denoising in iterative algorithm and with thicker slices. Both gender-based anatomical differences and vessel size impacted the calcium scores. The calcium volume scores tended to be underestimated when the vessels were smaller. These findings are valuable for understanding inconsistencies between women and men in calcium scoring, and for standardizing imaging protocols for improved gender-specific calcium scoring.
Characterization of Biogenic Gas and Mineral Formation Process by Denitrification in Porous Media
NASA Astrophysics Data System (ADS)
Hall, C. A.; Kim, D.; Mahabadi, N.; van Paassen, L. A.
2017-12-01
Biologically mediated processes have been regarded and developed as an alternative approach to traditional ground improvement techniques. Denitrification has been investigated as a potential ground improvement process towards liquefaction hazard mitigation. During denitrification, microorganisms reduce nitrate to dinitrogen gas and facilitate calcium carbonate precipitation as a by-product under adequate environmental conditions. The formation of dinitrogen gas desaturates soils and allows for potential pore pressure dampening during earthquake events. While, precipitation of calcium carbonate can improve the mechanical properties by filling the voids and cementing soil particles. As a result of small changes in gas and mineral phases, the mechanical properties of soils can be significantly affected. Prior research has primarily focused on quantitative analysis of overall residual calcium carbonate mineral and biogenic gas products in lab-scale porous media. However, the distribution of these products at the pore-scale has not been well-investigated. In this research, denitrification is activated in a microfluidic chip simulating a homogenous pore structure. The denitrification process is monitored by sequential image capture, where gas and mineral phase changes are evaluated by image processing. Analysis of these images correspond with previous findings, which demonstrate that biogenic gas behaviour at the pore scale is affected by the balance between reaction, diffusion, and convection rates.
Zhou, Wei; Wang, Jingjing; Wang, Kaiyue; Huang, Bin; Niu, Lili; Li, Fei; Cai, Feiyan; Chen, Yan; Liu, Xin; Zhang, Xiaoyan; Cheng, Hankui; Kang, Lijun; Meng, Long; Zheng, Hairong
2017-05-16
Ultrasound neuro-modulation has gained increasing attention as a non-invasive method. In this paper, we present an ultrasound neuro-modulation chip, capable of initiating reversal behaviour and activating neurons of C. elegans under the stimulation of a single-shot, short-pulsed ultrasound. About 85.29% ± 6.17% of worms respond to the ultrasound stimulation exhibiting reversal behaviour. Furthermore, the worms can adapt to the ultrasound stimulation with a lower acoustic pulse duration of stimulation. In vivo calcium imaging shows that the activity of ASH, a polymodal sensory neuron in C. elegans, can be directly evoked by the ultrasound stimulation. On the other hand, AFD, a thermal sensitive neuron, cannot be activated by the ultrasound stimulation using the same parameter and the temperature elevation during the stimulation process is relatively small. Consistent with the calcium imaging results, the tax-4 mutants, which are insensitive to temperature increase, do not show a significant difference in avoidance probability compared to the wild type. Therefore, the mechanical effects induced by ultrasound are the main reason for neural and behavioural modulation of C. elegans. With the advantages of confined acoustic energy on the surface, compatible with standard calcium imaging, this neuro-modulation chip could be a powerful tool for revealing the molecular mechanisms of ultrasound neuro-modulation.
Calcium/calmodulin-dependent serine protein kinase CASK modulates the L-type calcium current.
Nafzger, Sabine; Rougier, Jean-Sebastien
2017-01-01
The L-type voltage-gated calcium channel Ca v 1.2 mediates the calcium influx into cells upon membrane depolarization. The list of cardiopathies associated to Ca v 1.2 dysfunctions highlights the importance of this channel in cardiac physiology. Calcium/calmodulin-dependent serine protein kinase (CASK), expressed in cardiac cells, has been identified as a regulator of Ca v 2.2 channels in neurons, but no experiments have been performed to investigate its role in Ca v 1.2 regulation. Full length or the distal C-terminal truncated of the pore-forming Ca v 1.2 channel (Ca v 1.2α1c), both present in cardiac cells, were expressed in TsA-201 cells. In addition, a shRNA silencer, or scramble as negative control, of CASK was co-transfected in order to silence CASK endogenously expressed. Three days post-transfection, the barium current was increased only for the truncated form without alteration of the steady state activation and inactivation biophysical properties. The calcium current, however, was increased after CASK silencing with both types of Ca v 1.2α1c subunits suggesting that, in absence of calcium, the distal C-terminal counteracts the CASK effect. Biochemistry experiments did not reveals neither an alteration of Ca v 1.2 channel protein expression after CASK silencing nor an interaction between Ca v 1.2α1c subunits and CASK. Nevertheless, after CASK silencing, single calcium channel recordings have shown an increase of the voltage-gated calcium channel Ca v 1.2 open probability explaining the increase of the whole-cell current. This study suggests CASK as a novel regulator of Ca v 1.2 via a modulation of the voltage-gated calcium channel Ca v 1.2 open probability. Copyright © 2016 Elsevier Ltd. All rights reserved.
Superresolution imaging of viral protein trafficking
Salka, Kyle; Bhuvanendran, Shivaprasad; Yang, David
2015-01-01
The endoplasmic reticulum (ER) membrane is closely apposed to the outer mitochondrial membrane (OMM), which facilitates communication between these organelles. These contacts, known as mitochondria-associated membranes (MAM), facilitate calcium signaling, lipid transfer, as well as antiviral and stress responses. How cellular proteins traffic to the MAM, are distributed therein, and interact with ER and mitochondrial proteins are subject of great interest. The human cytomegalovirus UL37 exon 1 protein or viral mitochondria-localized inhibitor of apoptosis (vMIA) is crucial for viral growth. Upon synthesis at the ER, vMIA traffics to the MAM and OMM, where it reprograms the organization and function of these compartments. vMIA significantly changes the abundance of cellular proteins at the MAM and OMM, including proteins that regulate calcium homeostasis and cell death. Through the use of superresolution imaging, we have shown that vMIA is distributed at the OMM in nanometer scale clusters. This is similar to the clusters reported for the mitochondrial calcium channel, VDAC, as well as electron transport chain, translocase of the OMM complex, and mitochondrial inner membrane organizing system components. Thus, aside from addressing how vMIA targets the MAM and regulates survival of infected cells, biochemical studies and superresolution imaging of vMIA offer insights into the formation, organization, and functioning of MAM. Here, we discuss these insights into trafficking, function, and organization of vMIA at the MAM and OMM and discuss how the use of superresolution imaging is contributing to the study of the formation and trafficking of viruses. PMID:25724304
Haedicke, Katja; Kozlova, Diana; Gräfe, Susanna; Teichgräber, Ulf; Epple, Matthias; Hilger, Ingrid
2015-03-01
Photodynamic therapy (PDT) of tumors causes skin photosensitivity as a result of unspecific accumulation behavior of the photosensitizers. PDT of tumors was improved by calcium phosphate nanoparticles conjugated with (i) Temoporfin as a photosensitizer, (ii) the RGDfK peptide for favored tumor targeting and (iii) the fluorescent dye molecule DY682-NHS for enabling near-infrared fluorescence (NIRF) optical imaging in vivo. The nanoparticles were characterized with regard to size, spectroscopic properties and uptake into CAL-27 cells. The nanoparticles had a hydrodynamic diameter of approximately 200 nm and a zeta potential of around +22mV. Their biodistribution at 24h after injection was investigated via NIRF optical imaging. After treating tumor-bearing CAL-27 mice with nanoparticle-PDT, the therapeutic efficacy was assessed by a fluorescent DY-734-annexin V probe at 2 days and 2 weeks after treatment to detect apoptosis. Additionally, the contrast agent IRDye® 800CW RGD was used to assess tumor vascularization (up to 4 weeks after PDT). After nanoparticle-PDT in mice, apoptosis in the tumor was detected after 2 days. Decreases in tumor vascularization and tumor volume were detected in the next few days. Calcium phosphate nanoparticles can be used as multifunctional tools for NIRF optical imaging, PDT and tumor targeting as they exhibited a high therapeutic efficacy, being capable of inducing apoptosis and destroying tumor vascularization. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Vereb, G; Szöllösi, J; Mátyus, L; Balázs, M; Hyun, W C; Feuerstein, B G
1996-05-01
Calcium signaling in non-excitable cells is the consequence of calcium release from intracellular stores, at times followed by entry of extracellular calcium through the plasma membrane. To study whether entry of calcium depends upon the level of saturation of intracellular stores, we measured calcium channel opening in the plasma membrane of single confluent A172 glioblastoma cells stimulated with platelet derived growth factor (PDGF) and/or bradykinin (BK). We monitored the entry of extracellular calcium by measuring manganese quenching of Indo-1 fluorescence. PDGF raised intracellular calcium concentration ([Ca2+]i) after a dose-dependent delay (tdel) and then opened calcium channels after a dose-independent delay (tch). At higher doses (> 3 nM), BK increased [Ca2+]i after a tdel approximately 0 s, and tch decreased inversely with both dose and peak [Ca2+]i. Experiments with thapsigargin (TG), BK, and PDGF indicated that BK and PDGF share intracellular Ca2+ pools that are sensitive to TG. When these stores were depleted by treatment with BK and intracellular BAPTA, tdel did not change, but tch fell to almost 0 s in PDGF stimulated cells, indicating that depletion of calcium stores affects calcium channel opening in the plasma membrane. Our data support the capacitative model for calcium channel opening and the steady-state model describing quantal Ca2+ release from intracellular stores.
Benjakul, Soottawat; Karnjanapratum, Supatra
2018-09-01
Whole wheat cracker fortified with tuna bone bio-calcium (Bio-Ca) powder was developed as health-promoting food rich in calcium. Fortification with different levels of Bi-Ca, over the range of 0-50% of whole wheat flour (w/w) on quality and sensory properties of crackers, were determined. Color, thickness, weight and textural properties of crackers varied with the different levels of Bio-Ca powder added, but it was found that up to 30% could be added without detrimental effect on sensory properties. Scanning electron microscopic images showed that the developed crackers were less porous and had a denser structure, compared to the control. Based on scanning electron microscopy-energy dispersive X-ray spectroscopic (SEM-EDX), the cracker containing Bio-Ca powder had calcium and phosphorous distribution with higher intensity, compared to the control. The fortified crackers were rich in calcium and phosphorous with higher protein content but lower fat, carbohydrate, cholesterol and energy value, compared to the control. Copyright © 2018 Elsevier Ltd. All rights reserved.
Optimized ratiometric calcium sensors for functional in vivo imaging of neurons and T lymphocytes.
Thestrup, Thomas; Litzlbauer, Julia; Bartholomäus, Ingo; Mues, Marsilius; Russo, Luigi; Dana, Hod; Kovalchuk, Yuri; Liang, Yajie; Kalamakis, Georgios; Laukat, Yvonne; Becker, Stefan; Witte, Gregor; Geiger, Anselm; Allen, Taylor; Rome, Lawrence C; Chen, Tsai-Wen; Kim, Douglas S; Garaschuk, Olga; Griesinger, Christian; Griesbeck, Oliver
2014-02-01
The quality of genetically encoded calcium indicators (GECIs) has improved dramatically in recent years, but high-performing ratiometric indicators are still rare. Here we describe a series of fluorescence resonance energy transfer (FRET)-based calcium biosensors with a reduced number of calcium binding sites per sensor. These 'Twitch' sensors are based on the C-terminal domain of Opsanus troponin C. Their FRET responses were optimized by a large-scale functional screen in bacterial colonies, refined by a secondary screen in rat hippocampal neuron cultures. We tested the in vivo performance of the most sensitive variants in the brain and lymph nodes of mice. The sensitivity of the Twitch sensors matched that of synthetic calcium dyes and allowed visualization of tonic action potential firing in neurons and high resolution functional tracking of T lymphocytes. Given their ratiometric readout, their brightness, large dynamic range and linear response properties, Twitch sensors represent versatile tools for neuroscience and immunology.
Owen, Scott F; Berke, Joshua D; Kreitzer, Anatol C
2018-02-08
Fast-spiking interneurons (FSIs) are a prominent class of forebrain GABAergic cells implicated in two seemingly independent network functions: gain control and network plasticity. Little is known, however, about how these roles interact. Here, we use a combination of cell-type-specific ablation, optogenetics, electrophysiology, imaging, and behavior to describe a unified mechanism by which striatal FSIs control burst firing, calcium influx, and synaptic plasticity in neighboring medium spiny projection neurons (MSNs). In vivo silencing of FSIs increased bursting, calcium transients, and AMPA/NMDA ratios in MSNs. In a motor sequence task, FSI silencing increased the frequency of calcium transients but reduced the specificity with which transients aligned to individual task events. Consistent with this, ablation of FSIs disrupted the acquisition of striatum-dependent egocentric learning strategies. Together, our data support a model in which feedforward inhibition from FSIs temporally restricts MSN bursting and calcium-dependent synaptic plasticity to facilitate striatum-dependent sequence learning. Copyright © 2018 Elsevier Inc. All rights reserved.
Rodríguez Guilbe, María M.; Alfaro Malavé, Elisa C.; Akerboom, Jasper; Marvin, Jonathan S.; Looger, Loren L.; Schreiter, Eric R.
2008-01-01
Fluorescent proteins and their engineered variants have played an important role in the study of biology. The genetically encoded calcium-indicator protein GCaMP2 comprises a circularly permuted fluorescent protein coupled to the calcium-binding protein calmodulin and a calmodulin target peptide, M13, derived from the intracellular calmodulin target myosin light-chain kinase and has been used to image calcium transients in vivo. To aid rational efforts to engineer improved variants of GCaMP2, this protein was crystallized in the calcium-saturated form. X-ray diffraction data were collected to 2.0 Å resolution. The crystals belong to space group C2, with unit-cell parameters a = 126.1, b = 47.1, c = 68.8 Å, β = 100.5° and one GCaMP2 molecule in the asymmetric unit. The structure was phased by molecular replacement and refinement is currently under way. PMID:18607093
Free-calcium distribution and calcium pulses in rat peripheral macrophages
NASA Astrophysics Data System (ADS)
Yu, Yanhua; Xing, Da; Tang, Yonghong; Jin, Ying
2000-10-01
With Laser Confocal Scanning Microscope (LCSM) system, three aspects of characteristics of free cytoplasmic calcium in rat peripheral macrophages are studied. One is the Ca2+ concentration in different area in the same cell. Second is the Ca2+ concentration in the same area in different dividing stage. Third is the feature of calcium pulses evoked by Kcl or pH changing. The results show that even in one cell, the evolution of the Ca2+ concentration is not the same in a different area. In the same area, the nucleolus Ca2+ concentration in division breaking stage is much higher than that in division stage. From the experiment phenomena, we conclude that Kcl itself can not evoke calcium pulses in the unexcitable macrophage, but the change of pH can trig calcium pulses in the same cells.
The organic matrix of gallstones
Sutor, D. June; Wooley, Susan E.
1974-01-01
Dissolution of gallstones consisting of cholesterol, calcium carbonate, or calcium phosphate in different solvents left an amorphous organic gel-like substance (the matrix). Matrix from cholesterol stones could be colourless but was usually orange, yellow, or brown while that from calcium carbonate and calcium phosphate stones was almost invariably coloured black or dark brown. These pigments were also shown to be organic and amorphous. The amount of matrix present and its structure varied with the texture of the crystalline material. Irrespective of their composition, laminated pieces of material yielded compact laminated matrix of the same shape as the original piece and areas of loose crystalline material gave small pieces of non-cohesive matrix. Only large cholesterol crystals which usually radiate from the stone nucleus had no associated matrix. ImagesFig 1Fig 2Fig 3Fig 4Fig 5 PMID:4854981
Mineral and nitrogen metabolic studies, experiment M071
NASA Technical Reports Server (NTRS)
Whedon, G. D.; Lutwak, L.; Rambaut, P. C.; Whittle, M. W.; Smith, M. C., Jr.; Reid, J.; Leach, C. S.; Stadler, C. R.; Sanford, D. D.
1977-01-01
The similarity between bed rest test and space flight effects on human mineral and nitrogen metabolisms indicates impairment of capable musculoskeletal functions. A pattern of urinary calcium increases and total calcium shifts suggests that calcium losses continue with time. Significant losses of nitrogen and phosphorus are associated with reduction in muscle tissue. It is concluded that capable musculoskeletal function is likely to be impaired during space flights of 1 1/2 to 3 years duration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, HyangKyu
The AMoRE (Advanced Mo based Rare process Experiment) collaboration is going to use calcium molybdate crystals to search for neutrinoless double beta decay of {sup 100}Mo isotope. In order to make the crystal, we use calcium carbonate and molybdenum oxide powders as raw materials. Therefore it is highly necessary to reduce potential sources for radioactive backgrounds such as U and Th in the powders. In this talk, we will present our studies for purification of calcium carbonate and molybdenum oxide powders.
Earthing the human body influences physiologic processes.
Sokal, Karol; Sokal, Pawel
2011-04-01
This study was designed to answer the question: Does the contact of the human organism with the Earth via a copper conductor affect physiologic processes? Subjects and experiments: Five (5) experiments are presented: experiment 1-effect of earthing on calcium-phosphate homeostasis and serum concentrations of iron (N = 84 participants); experiment 2-effect of earthing on serum concentrations of electrolytes (N = 28); experiment 3-effect of earthing on thyroid function (N = 12); experiment 4-effect of earthing on glucose concentration (N = 12); experiment 5-effect of earthing on immune response to vaccine (N = 32). Subjects were divided into two groups. One (1) group of people was earthed, while the second group remained without contact with the Earth. Blood and urine samples were examined. Earthing of an electrically insulated human organism during night rest causes lowering of serum concentrations of iron, ionized calcium, inorganic phosphorus, and reduction of renal excretion of calcium and phosphorus. Earthing during night rest decreases free tri-iodothyronine and increases free thyroxine and thyroid-stimulating hormone. The continuous earthing of the human body decreases blood glucose in patients with diabetes. Earthing decreases sodium, potassium, magnesium, iron, total protein, and albumin concentrations while the levels of transferrin, ferritin, and globulins α1, α2, β, and γ increase. These results are statistically significant. Earthing the human body influences human physiologic processes. This influence is observed during night relaxation and during physical activity. Effect of the earthing on calcium-phosphate homeostasis is the opposite of that which occurs in states of weightlessness. It also increases the activity of catabolic processes. It may be the primary factor regulating endocrine and nervous systems.
Ng, Ming Yen; Karimzad, Yasser; Menezes, Ravi J; Wintersperger, Bernd J; Li, Qin; Forero, Julian; Paul, Narinder S; Nguyen, Elsie T
2016-10-01
To evaluate the heart rate lowering effect of relaxation music in patients undergoing coronary CT angiography (CCTA), pulmonary vein CT (PVCT) and coronary calcium score CT (CCS). Patients were randomised to a control group (i.e. standard of care protocol) or to a relaxation music group (ie. standard of care protocol with music). The groups were compared for heart rate, radiation dose, image quality and dose of IV metoprolol. Both groups completed State-Trait Anxiety Inventory anxiety questionnaires to assess patient experience. One hundred and ninety-seven patients were recruited (61.9 % males); mean age 56y (19-86 y); 127 CCTA, 17 PVCT, 53 CCS. No significant difference in heart rate, radiation dose, image quality, metoprolol dose and anxiety scores. 86 % of patients enjoyed the music. 90 % of patients in the music group expressed a strong preference to have music for future examinations. The patient cohort demonstrated low anxiety levels prior to CT. Relaxation music in CCTA, PVCT and CCS does not reduce heart rate or IV metoprolol use. Patients showed low levels of anxiety indicating that anxiolytics may not have a significant role in lowering heart rate. Music can be used in cardiac CT to improve patient experience. • Relaxation music does not reduce heart rate in cardiac CT • Relaxation music does not reduce beta-blocker use in cardiac CT • Relaxation music has no effect on cardiac CT image quality • Low levels of anxiety are present in patients prior to cardiac CT • Patients enjoyed the relaxation music and this results in improved patient experience.
Rast, Georg; Weber, Jürgen; Disch, Christoph; Schuck, Elmar; Ittrich, Carina; Guth, Brian D
2015-01-01
Human induced pluripotent stem cell-derived cardiomyocytes are available from various sources and they are being evaluated for safety testing. Several platforms are available offering different assay principles and read-out parameters: patch-clamp and field potential recording, imaging or photometry, impedance measurement, and recording of contractile force. Routine use will establish which assay principle and which parameters best serve the intended purpose. We introduce a combination of field potential recording and calcium ratiometry from spontaneously beating cardiomyocytes as a novel assay providing a complementary read-out parameter set. Field potential recording is performed using a commercial multi-well multi-electrode array platform. Calcium ratiometry is performed using a fiber optic illumination and silicon avalanche photodetectors. Data condensation and statistical analysis are designed to enable statistical inference of differences and equivalence with regard to a solvent control. Simultaneous recording of field potentials and calcium transients from spontaneously beating monolayers was done in a nine-well format. Calcium channel blockers (e.g. nifedipine) and a blocker of calcium store release (ryanodine) can be recognized and discriminated based on the calcium transient signal. An agonist of L-type calcium channels, FPL 64176, increased and prolonged the calcium transient, whereas BAY K 8644, another L-type calcium channel agonist, had no effect. Both FPL 64176 and various calcium channel antagonists have chronotropic effects, which can be discriminated from typical "chronotropic" compounds, like (±)isoprenaline (positive) and arecaidine propargyl ester (negative), based on their effects on the calcium transient. Despite technical limitations in temporal resolution and exact matching of composite calcium transient with the field potential of a subset of cells, the combined recording platform enables a refined interpretation of the field potential recording and a more reliable identification of drug effects on calcium handling. Copyright © 2015 Elsevier Inc. All rights reserved.
Fluorescence Fluctuations and Equivalence Classes of Ca 2+ Imaging Experiments
Piegari, Estefanía; Lopez, Lucía; Perez Ipiña, Emiliano; Ponce Dawson, Silvina
2014-01-01
release into the cytosol through inositol 1,4,5-trisphosphate receptors (IP3Rs) plays a relevant role in numerous physiological processes. IP3R-mediated signals involve -induced -release (CICR) whereby release through one open IP3R induces the opening of other channels. IP3Rs are apparently organized in clusters. The signals can remain localized (i.e., puffs) if CICR is limited to one cluster or become waves that propagate between clusters. puffs are the building blocks of waves. Thus, there is great interest in determining puff properties, especially in view of the current controversy on the spatial distribution of activatable IP3Rs. puffs have been observed in intact cells with optical techniques proving that they are intrinsically stochastic. Obtaining a correct picture of their dynamics then entails being able to detect the whole range of puff sizes. puffs are observed using visible single-wavelength dyes, slow exogenous buffers (e.g., EGTA) to disrupt inter-cluster CICR and UV-photolyzable caged IP3. Single-wavelength dyes increase their fluorescence upon calcium binding producing images that are strongly dependent on their kinetic, transport and photophysical properties. Determining the artifacts that the imaging setting introduces is particularly relevant when trying to analyze the smallest signals. In this paper we introduce a method to estimate the expected signal-to-noise ratio of imaging experiments that use single-wavelength dyes. The method is based on the Number and Brightness technique. It involves the performance of a series of experiments and their subsequent analysis in terms of a fluorescence fluctuation model with which the model parameters are quantified. Using the model, the expected signal-to-noise ratio is then computed. Equivalence classes between different experimental conditions that produce images with similar signal-to-noise ratios can then be established. The method may also be used to estimate the smallest signals that can reliably be observed with each setting. PMID:24776736
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mehta, Vrajesh S.; Maillot, Fabien; Wang, Zheming
Phosphate addition to subsurface environments contaminated with uranium can be used as an in situ remediation approach. Batch experiments were conducted to evaluate the dependence of the extent and mechanism of uranium uptake on the pathway for reaction with calcium phosphates. At pH 4.0 and 6.0 uranium uptake occurred via autunite (Ca(UO2)(PO4)3) precipitation irrespective of the starting forms of calcium and phosphate. At pH 7.5, the uptake mechanism depended on the nature of the calcium and phosphate. When dissolved uranium, calcium, and phosphate were added simultaneously, uranium was structurally incorporated into a newly formed amorphous calcium phosphate solid. Adsorption wasmore » the dominant removal mechanism for uranium contacted with pre-formed amorphous calcium phosphate solids,. When U(VI) was added to a suspension containing amorphous calcium phosphate solids as well as dissolved calcium and phosphate, then removal occurred through precipitation (57±4 %) of autunite and adsorption (43±4 %) onto calcium phosphate. The solid phase speciation of the uranium was determined using X-ray absorption spectroscopy and laser induced fluorescence spectroscopy. Dissolved uranium, calcium, and phosphate concentrations with saturation index calculations helped identify removal mechanisms and determine thermodynamically favorable solid phases.« less
Chaplin, Nathan L.; Nieves-Cintrón, Madeline; Fresquez, Adriana M.; Navedo, Manuel F.; Amberg, Gregory C.
2015-01-01
Rationale Mitochondria are key integrators of convergent intracellular signaling pathways. Two important second messengers modulated by mitochondria are calcium and reactive oxygen species. To date, coherent mechanisms describing mitochondrial integration of calcium and oxidative signaling in arterial smooth muscle are incomplete. Objective To address and add clarity to this issue we tested the hypothesis that mitochondria regulate subplasmalemmal calcium and hydrogen peroxide microdomain signaling in cerebral arterial smooth muscle. Methods and Results Using an image-based approach we investigated the impact of mitochondrial regulation of L-type calcium channels on subcellular calcium and ROS signaling microdomains in isolated arterial smooth muscle cells. Our single cell observations were then related experimentally to intact arterial segments and to living animals. We found that subplasmalemmal mitochondrial amplification of hydrogen peroxide microdomain signaling stimulates L-type calcium channels and that this mechanism strongly impacts the functional capacity of the vasoconstrictor angiotensin II. Importantly, we also found that disrupting this mitochondrial amplification mechanism in vivo normalized arterial function and attenuated the hypertensive response to systemic endothelial dysfunction. Conclusions From these observations we conclude that mitochondrial amplification of subplasmalemmal calcium and hydrogen peroxide microdomain signaling is a fundamental mechanism regulating arterial smooth muscle function. As the principle components involved are fairly ubiquitous and positioning of mitochondria near the plasma membrane is not restricted to arterial smooth muscle, this mechanism could occur in many cell types and contribute to pathological elevations of intracellular calcium and increased oxidative stress associated with many diseases. PMID:26390880
Automated quantification of neuronal networks and single-cell calcium dynamics using calcium imaging
Patel, Tapan P.; Man, Karen; Firestein, Bonnie L.; Meaney, David F.
2017-01-01
Background Recent advances in genetically engineered calcium and membrane potential indicators provide the potential to estimate the activation dynamics of individual neurons within larger, mesoscale networks (100s–1000 +neurons). However, a fully integrated automated workflow for the analysis and visualization of neural microcircuits from high speed fluorescence imaging data is lacking. New method Here we introduce FluoroSNNAP, Fluorescence Single Neuron and Network Analysis Package. FluoroSNNAP is an open-source, interactive software developed in MATLAB for automated quantification of numerous biologically relevant features of both the calcium dynamics of single-cells and network activity patterns. FluoroSNNAP integrates and improves upon existing tools for spike detection, synchronization analysis, and inference of functional connectivity, making it most useful to experimentalists with little or no programming knowledge. Results We apply FluoroSNNAP to characterize the activity patterns of neuronal microcircuits undergoing developmental maturation in vitro. Separately, we highlight the utility of single-cell analysis for phenotyping a mixed population of neurons expressing a human mutant variant of the microtubule associated protein tau and wild-type tau. Comparison with existing method(s) We show the performance of semi-automated cell segmentation using spatiotemporal independent component analysis and significant improvement in detecting calcium transients using a template-based algorithm in comparison to peak-based or wavelet-based detection methods. Our software further enables automated analysis of microcircuits, which is an improvement over existing methods. Conclusions We expect the dissemination of this software will facilitate a comprehensive analysis of neuronal networks, promoting the rapid interrogation of circuits in health and disease. PMID:25629800
Saponaro, Federica; Faggiano, Antongiulio; Grimaldi, Franco; Borretta, Giorgio; Brandi, Maria Luisa; Minisola, Salvatore; Frasoldati, Andrea; Papini, Enrico; Scillitani, Alfredo; Banti, Chiara; Del Prete, Michela; Vescini, Fabio; Gianotti, Laura; Cavalli, Loredana; Romagnoli, Elisabetta; Colao, Annamaria; Cetani, Filomena; Marcocci, Claudio
2013-07-01
To report the Italian experience on cinacalcet use following its approval by the European Medical Agency (EMA) to control hypercalcaemia in patients with primary hyperparathyroidism (PHPT). Retrospective data collection from 100 patients with sporadic (sPHPT) and 35 with familial PHPT (fPHPT) followed in eight Italian centres between October 2008 and March 2011. Albumin-adjusted serum calcium, PTH, 25OHD, daily cinacalcet dose and adverse events were recorded during the follow-up (1-46 months). Baseline serum calcium was 2·90 ± 0·27 nmol/l in sPHPT and 2·75 ± 0·17 nmol/l in fPHPT patients (P = 0·007). The cinacalcet EMA labelling was met in 53% sPHPT and 26% fPHPT patients. High surgical risk (34%), negative preoperative imaging (19%), control of hypercalcaemia before parathyroidectomy (PTx) (24%), and refusal of PTx (19%) accounted for cinacalcet prescription in 96% of sPHPT patients. Conversely, initial treatment (34%), persistent/relapsing PHPT after surgery (31%), and refusal of PTx (14%) were the indications in 79% fPHPT patients. Cinacalcet was started at 30 mg/daily in 64% of sPHPT and 91% of fPHPT and increased until normocalcaemia was reached or side effects occurred. The final daily dose ranged between 15 and 120 mg. The majority of patients (65% of sPHPT and 80% of fPHPT) become normocalcaemic. Treatment was withdrawn in six patients because of side effects. There is a wide heterogeneity in the prescription of cinacalcet in PHPT patients in Italy and the EMA labelling is not always followed, particularly in fPHPT patients. Cinacalcet effectively reduces serum calcium in patients with either sPHPT or fPHPT. © 2012 John Wiley & Sons Ltd.
Endotrophic Calcium, Strontium, and Barium Spores of Bacillus megaterium and Bacillus cereus1
Foerster, Harold F.; Foster, J. W.
1966-01-01
Foerster, Harold F. (The University of Texas, Austin), and J. W. Foster. Endotrophic calcium, strontium, and barium spores of Bacillus megaterium and Bacillus cereus. J. Bacteriol. 91:1333–1345. 1966.—Spores were produced by washed vegetative cells suspended in deionized water supplemented with CaCl2, SrCl2, or BaCl2. Normal, refractile spores were produced in each case; a portion of the barium spores lost refractility and darkened. Thin-section electron micrographs revealed no apparent anatomical differences among the three types of spores. Analyses revealed that the different spore types were enriched specifically in the metal to which they were exposed during sporogenesis. The calcium content of the strontium and the barium spores was very small. From binary equimolar mixtures of the metal salts, endotrophic spores accumulated both metals to nearly the same extent. Viability of the barium spores was considerably less than that of the other two types. Strontium and barium spores were heat-resistant; however, calcium was essential for maximal heat resistance. Significant differences existed in the rates of germination; calcium spores germinated fastest, strontium spores were slower, and barium spores were slowest. Calcium-barium and calcium-strontium spores germinated readily. Endotrophic calcium and strontium spores germinated without the prior heat activation essential for growth spores. Chemical germination of the different metal-type spores with n-dodecylamine took place at the same relative rates as physiological germination. Heat-induced release of dipicolinic acid occurred much faster with barium and strontium spores than with calcium spores. The washed “coat fraction” from disrupted spores contained little of the spore calcium but most of the spore barium. The metal in this fraction was released by dilute acid. The demineralized coats reabsorbed calcium and barium at neutral pH. Images PMID:4956334
Lautenschläger, Janin; Prell, Tino; Ruhmer, Julia; Weidemann, Lisa; Witte, Otto W; Grosskreutz, Julian
2013-09-01
Motor neurons vulnerable to the rapidly progressive deadly neurodegenerative disease amyotrophic lateral sclerosis (ALS) inherently express low amounts of calcium binding proteins (CaBP), likely to allow physiological motor neuron firing frequency modulation. At the same time motor neurons are susceptible to AMPA receptor mediated excitotoxicity and internal calcium deregulation which is not fully understood. We analysed ER mitochondria calcium cycle (ERMCC) dynamics with subsecond resolution in G93A hSOD1 overexpressing motor neurons as a model of ALS using fluorescent calcium imaging. When comparing vulnerable motor neurons and non-motor neurons from G93A hSOD1 mice and their non-transgenic littermates, we found a decelerated cytosolic calcium clearance in the presence of G93A hSOD1. While both non-transgenic as well as G93A hSOD1 motor neurons displayed large mitochondrial calcium uptake by the mitochondrial uniporter (mUP), the mitochondrial calcium extrusion system was altered in the presence of G93A hSOD1. In addition, ER calcium uptake by the sarco-/endoplasmic reticulum ATPase (SERCA) was increased in G93A hSOD1 motor neurons. In survival assays, blocking the mitochondrial sodium calcium exchanger (mNCE) by CGP37157 as well as inhibiting SERCA by cyclopiazonic acid showed protective effects against kainate induced excitotoxicity. Thus, our study shows for the first time that the functional consequence of G93A hSOD1 overexpression in intact motor neurons is indeed a disturbance of the ER mitochondria calcium cycle, and identified two promising targets for therapeutic intervention in the pathology of ALS. Copyright © 2013 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duan, X; Arbique, G; Guild, J
Purpose: To evaluate the quantitative image quality of spectral reconstructions of phantom data from a spectral CT scanner. Methods: The spectral CT scanner (IQon Spectral CT, Philips Healthcare) is equipped with a dual-layer detector and generates conventional 80-140 kVp images and variety of spectral reconstructions, e.g., virtual monochromatic (VM) images, virtual non-contrast (VNC) images, iodine maps, and effective atomic number (Z) images. A cylindrical solid water phantom (Gammex 472, 33 cm diameter and 5 cm thick) with iodine (2.0-20.0 mg I/ml) and calcium (50-600 mg/ml) rod inserts was scanned at 120 kVp and 27 mGy CTDIvol. Spectral reconstructions were evaluatedmore » by comparing image measurements with theoretical values calculated from nominal rod compositions provided by the phantom manufacturer. The theoretical VNC was calculated using water and iodine basis material decomposition, and the theoretical Z was calculated using two common methods, the chemical formula method (Z1) and the dual-energy ratio method (Z2). Results: Beam-hardening-like artifacts between high-attenuation calcium rods (≥300 mg/ml, >800 HU) influenced quantitative measurements, so the quantitative analysis was only performed on iodine rods using the images from the scan with all the calcium rods removed. The CT numbers of the iodine rods in the VM images (50∼150 keV) were close to theoretical values with average difference of 2.4±6.9 HU. Compared with theoretical values, the average difference for iodine concentration, VNC CT number and effective Z of iodine rods were −0.10±0.38 mg/ml, −0.1±8.2 HU, 0.25±0.06 (Z1) and −0.23±0.07 (Z2). Conclusion: The results indicate that the spectral CT scanner generates quantitatively accurate spectral reconstructions at clinically relevant iodine concentrations. Beam-hardening-like artifacts still exist when high-attenuation objects are present and their impact on patient images needs further investigation. YY is an employee of Philips Healthcare.« less
Kartnaller, Vinicius; Venâncio, Fabrício; F do Rosário, Francisca; Cajaiba, João
2018-04-10
To avoid gas hydrate formation during oil and gas production, companies usually employ thermodynamic inhibitors consisting of hydroxyl compounds, such as monoethylene glycol (MEG). However, these inhibitors may cause other types of fouling during production such as inorganic salt deposits (scale). Calcium carbonate is one of the main scaling salts and is a great concern, especially for the new pre-salt wells being explored in Brazil. Hence, it is important to understand how using inhibitors to control gas hydrate formation may be interacting with the scale formation process. Multiple regression and design of experiments were used to mathematically model the calcium carbonate scaling process and its evolution in the presence of MEG. It was seen that MEG, although inducing the precipitation by increasing the supersaturation ratio, actually works as a scale inhibitor for calcium carbonate in concentrations over 40%. This effect was not due to changes in the viscosity, as suggested in the literature, but possibly to the binding of MEG to the CaCO₃ particles' surface. The interaction of the MEG inhibition effect with the system's variables was also assessed, when temperature' and calcium concentration were more relevant.
Calcium dependent current recordings in Xenopus laevis oocytes in microgravity
NASA Astrophysics Data System (ADS)
Wuest, Simon L.; Roesch, Christian; Ille, Fabian; Egli, Marcel
2017-12-01
Mechanical unloading by microgravity (or weightlessness) conditions triggers profound adaptation processes at the cellular and organ levels. Among other mechanisms, mechanosensitive ion channels are thought to play a key role in allowing cells to transduce mechanical forces. Previous experiments performed under microgravity have shown that gravity affects the gating properties of ion channels. Here, a method is described to record a calcium-dependent current in native Xenopus laevis oocytes under microgravity conditions during a parabolic flight. A 3-voltage-step protocol was applied to provoke a calcium-dependent current. This current increased with extracellular calcium concentration and could be reduced by applying extracellular gadolinium. The custom-made ;OoClamp; hardware was validated by comparing the results of the 3-voltage-step protocol to results obtained with a well-established two-electrode voltage clamp (TEVC). In the context of the 2nd Swiss Parabolic Flight Campaign, we tested the OoClamp and the method. The setup and experiment protocol worked well in parabolic flight. A tendency that the calcium-dependent current was smaller under microgravity than under 1 g condition could be observed. However, a conclusive statement was not possible due to the small size of the data base that could be gathered.
Sarhan, Maen F; Van Petegem, Filip; Ahern, Christopher A
2009-11-27
Voltage-gated sodium channels maintain the electrical cadence and stability of neurons and muscle cells by selectively controlling the transmembrane passage of their namesake ion. The degree to which these channels contribute to cellular excitability can be managed therapeutically or fine-tuned by endogenous ligands. Intracellular calcium, for instance, modulates sodium channel inactivation, the process by which sodium conductance is negatively regulated. We explored the molecular basis for this effect by investigating the interaction between the ubiquitous calcium binding protein calmodulin (CaM) and the putative sodium channel inactivation gate composed of the cytosolic linker between homologous channel domains III and IV (DIII-IV). Experiments using isothermal titration calorimetry show that CaM binds to a novel double tyrosine motif in the center of the DIII-IV linker in a calcium-dependent manner, N-terminal to a region previously reported to be a CaM binding site. An alanine scan of aromatic residues in recombinant DIII-DIV linker peptides shows that whereas multiple side chains contribute to CaM binding, two tyrosines (Tyr(1494) and Tyr(1495)) play a crucial role in binding the CaM C-lobe. The functional relevance of these observations was then ascertained through electrophysiological measurement of sodium channel inactivation gating in the presence and absence of calcium. Experiments on patch-clamped transfected tsA201 cells show that only the Y1494A mutation of the five sites tested renders sodium channel steady-state inactivation insensitive to cytosolic calcium. The results demonstrate that calcium-dependent calmodulin binding to the sodium channel inactivation gate double tyrosine motif is required for calcium regulation of the cardiac sodium channel.
Glathe, H; El Din, A; Scheuer, A
1976-01-01
The influence of calcium-cyanamide upon the microbiological activity was tested in pot experiments under controlled conditions in two Portuguese soils (sandy and loamy) after the addition of rice or wheat straw (rice straw 0.275% N, wheat straw 0.307% N). The amount of straw was equalled to 100 dz/ha, the application of calcium-cyanamide to 25, 50 and 100 kg N/ha. In the containers treated with straw the total amount of microorganisms (Koch-method) was higher in sandy than in loamy soil after 30 days, but after 70 days it was higher in loamy soil. The content of active nitrogen (NH4 + NO3) increased, when calcium-cyanamide was added, but decreased after the application of straw. After 70 days sandy soil again showed an increase of active nitrogen. Straw increased the rates of CO2-production considerably, wheat straw was superior to rice straw. Calcium-cyanamide increased the CO2-production more in sandy than in loamy soil or German loess, which was also used for this experiment. Only in the case of rice straw higher doses of calcium-cyanamide had a positive effect. After 70 days the CO2-production rose only when rice straw was applied. The dehydrogenase-activity was increased in both soils, but a superiority of wheat straw occurred in sandy soil only. The microbiological activity in the pots with straw was higher in sandy than in loamy soil, the addition of calcium-cyanamide accelerated it. Doses of 25-50 kg N/ha are sufficient generally. The period of the formation of insoluble organic N-compounds, usually connected with the application of organic matter with a wide N:C-ratio, seems to be reduced by the addition of calcium-cyanamide.
Sanchez, Susana; Bakás, Laura; Gratton, Enrico; Herlax, Vanesa
2011-01-01
α-hemolysin (HlyA) from Escherichia coli is considered as the prototype of a family of toxins called RTX (repeat in toxin), a group of proteins that share genetic and structural features. HlyA is an important virulence factor in E. coli extraintestinal infections, such as meningitis, septicemia and urinary infections. High concentrations of the toxin cause the lysis of several cells such as erythrocytes, granulocytes, monocytes, endothelial and renal epithelial cells of different species. At low concentrations it induces the production of cytokines and apoptosis. Since many of the subcytolytic effects in other cells have been reported to be triggered by the increase of intracellular calcium, we followed the calcium concentration inside the erythrocytes while incubating with sublytic concentrations of HlyA. Calcium concentration was monitored using the calcium indicator Green 1, 2-photon excitation, and fluorescence lifetime imaging microscopy (FLIM). Data were analyzed using the phasor representation. In this report, we present evidence that, at sublytic concentrations, HlyA induces an increase of calcium concentration in rabbit erythrocytes in the first 10 s. Results are discussed in relation to the difficulties of measuring calcium concentrations in erythrocytes where hemoglobin is present, the contribution of the background and the heterogeneity of the response observed in individual cells. PMID:21698153
O'Brien, P J
1986-01-01
This study tested the hypothesis that calcium-release from sarcoplasmic reticulum isolated from malignant hyperthermia swine had abnormal concentration-dependency on release modulators. Halothane stimulated half-maximal calcium-release at similar concentrations for malignant hyperthermia and control sarcoplasmic reticulum (0.10 +/- 0.04 mM). However, concentrations causing half-maximal calcium-release were lower for malignant hyperthermia sarcoplasmic reticulum (P less than 0.001) by an order of magnitude for Ca2+ (28.1 +/- 8.3 versus 1.23 +/- 0.45 nM), adenosine triphosphate (0.33 +/- 0.09 versus 0.023 +/- 0.014 mM) and caffeine (7.79 +/- 1.56 versus 0.80 +/- 0.44 mM). Half-maximal inhibition by Mg2+ occurred at threefold higher concentrations for malignant hyperthermia sarcoplasmic reticulum (0.23 +/- 0.02 versus 0.78 +/- 0.17 mM). The Ca2+-sensitivity curves for calcium-release by sarcoplasmic reticulum isolated from heterozygotes for the malignant hyperthermia-defect were indistinguishable from the averages of the curves for controls and malignant hyperthermia-homozygotes. Results of this study suggest that malignant hyperthermia is initiated due to a hypersensitive calcium-release mechanism which is inherited in an autosomal, codominant pattern and may be diagnosed using calcium-release sensitivity-tests on isolated sarcoplasmic reticulum. Images Fig. 1. PMID:3742367
INDUCIBLE TRANSIENT CENTRAL RETINAL ARTERY VASOSPASM: A CASE REPORT.
Mishulin, Aleksey; Ghandi, Sachin; Apple, Daniel; Lin, Xihui; Hu, Jonathan; Abrams, Gary W
2017-09-27
To report a case of inducible transient central retinal artery vasospasm with associated imaging. Observational case report. A 51-year-old man presented for outpatient follow-up for recurrent inducible transient vision loss in his right eye. He experienced an episode during examination and was found to have central retinal artery vasospasm. Fundus photography and fluorescein angiography obtained during his vasospastic attack confirmed retinal arterial vasospasm. Treatment with a calcium-channel blocker (nifedipine) has been effective in preventing recurrent attacks. Idiopathic primary vasospasm is a rare cause of transient vision loss that is difficult to confirm because of the transient nature. We obtained imaging showing the initiation and resolution of the vasospastic event. The patient was then successfully treated with a calcium-channel blocker.
Wagner, Alena-Svenja; Glenske, Kristina; Wolf, Verena; Fietz, Daniela; Mazurek, Sybille; Hanke, Thomas; Moritz, Andreas; Arnhold, Stefan; Wenisch, Sabine
2017-01-01
The effects of extracellular calcium on osteogenic differentiation capacity of human bone-derived mesenchymal stromal cells with special regard to connexin 43 (cx43) have been investigated by means of cell culture experiments. Mesenchymal stromal cells isolated from human cancellous bone were cultured on tissue culture plates at different calcium ion (Ca 2+ ) concentrations (1.8mmoll -1 , 10mmoll -1 , 20mmoll -1 ). Cell responses were evaluated by quantitative RT-PCR, immunofluorescence staining, and Lucifer Yellow fluorescence uptake experiments. It could be shown that increasing Ca 2+ concentrations correlate with increasing cx43 and bone sialoprotein mRNA levels as well as with enhanced cx43 fluorescence signaling and matrix mineralization of the cultures as shown by von Kossa staining. Hemichannel gating - assessed by Lucifer Yellow uptake - increases with increasing extracellular Ca 2+ concentrations suggesting that regulatory effects at the hemichannel level are calcium-dependent. Copyright © 2016 Elsevier GmbH. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhuk, I. V., E-mail: zhukiv1993@mail.ru; Rasskazova, L. A., E-mail: ly-2207@mail.ru; Korotchenko, N. M., E-mail: korotch@mail.ru
The effect of silver adding to hydroxyapatite (HA) in its solubility in physiological solution and biological activity was investigated. Samples of HA containing silver (AgHA) obtained by liquid-phase method in the conditions of microwave exposure. Solubility (C{sub Ca}{sup 2+}·10{sup 3}, mol/l) of the powders AgHA was determined by chemical methods according trilonometric titration of the calcium ions in physiological solution at 25 and 37 °C. To investigate the biological activity of the samples, a series of experiments on the formation of the calcium-phosphate layer on the surface of the SBF-solution at 37 °C for 28 days. Electronic micrographs of samplesmore » taken at the end of each 7 days of the experiment, indicate the formation of calcium-phosphate layer (CPL) in the samples, the kinetics of which is shown as a function of cumulative concentrations of calcium and magnesium ions from time.« less
Lin, Juqiang; Xu, Han; Wu, Yangzhe; Tang, Mingjie; McEwen, Gerald D; Liu, Pin; Hansen, Dane R; Gilbertson, Timothy A; Zhou, Anhong
2013-02-05
G-protein-coupled receptor 120 (GPR120) is a previously orphaned G-protein-coupled receptor that apparently functions as a sensor for dietary fat in the gustatory and digestive systems. In this study, a cDNA sequence encoding a doxycycline (Dox)-inducible mature peptide of GPR120 was inserted into an expression vector and transfected in HEK293 cells. We measured Raman spectra of single HEK293 cells as well as GPR120-expressing HEK293-GPR120 cells at a 48 h period following the additions of Dox at several concentrations. We found that the spectral intensity of HEK293-GPR120 cells is dependent upon the dose of Dox, which correlates with the accumulation of GPR120 protein in the cells. However, the amount of the fatty acid activated changes in intracellular calcium (Ca(2+)) as measured by ratiometric calcium imaging was not correlated with Dox concentration. Principal components analysis (PCA) of Raman spectra reveals that the spectra from different treatments of HEK293-GPR120 cells form distinct, completely separated clusters with the receiver operating characteristic (ROC) area of 1, while those spectra for the HEK293 cells form small overlap clusters with the ROC area of 0.836. It was also found that expression of GPR120 altered the physiochemical and biomechanical properties of the parental cell membrane surface, which was quantitated by atomic force microscopy (AFM). These findings demonstrate that the combination of Raman spectroscopy, calcium imaging, and AFM may provide new tools in noninvasive and quantitative monitoring of membrane receptor expression induced alterations in the biophysical and signaling properties of single living cells.
Jastrzębski, Jan; Kępka, Cezary; Kruk, Mariusz; Demkow, Marcin; Kalińczuk, Łukasz; Wolny, Rafał; Ciszewski, Michał; Michałowska, Ilona; Witkowski, Adam
2013-01-01
Introduction Heart rate irregularities are the major limitations of computed tomographic coronary angiography (CTCA) due to severe motion artifacts. Aim To evaluate the safety and efficacy of a lidocaine intravenous bolus in preserving good image quality by the transient suppression of premature ventricular contractions (PVC) during the CTCA scan. Material and methods The study group comprised 67 consecutive patients with sinus rhythm and numerous PVC scheduled for CTCA. Intravenous boluses of 25–50 mg lidocaine were given after calcium score assessment and immediately before CTCA. The control group comprised 67 patients with sinus rhythm without PVC matched according to the body mass index (BMI), age, sex, and calcium score. All coronary vessel segments were assessed for image quality and presence of significant stenosis. Results As compared with calcium score assessment, after administration of lidocaine and during the CTCA scan PVC were completely suppressed in 22 (40%), reduced in 10 (18%), unchanged in 18 (32%), and intensified in 5 (10%) patients. Overall, there were 32 (58%) patients with sinus rhythm during CTCA as compared with only 11 (20%) patients free from PVC during calcium score assessment (p < 0.001). Image quality in 871 coronary segments including both the study group and control patients was worse in patients with PVC (p < 0.0001). However, there was no statistically significant difference in the number of patients with at least one segment of non-diagnostic quality (6% vs. 12%, p = 0.36; respectively). Conclusions Single lidocaine bolus given prior to CTCA is safe, may temporarily eliminate or reduce the intensity of arrhythmia, and hence results in improved quality of CTCA in patients with numerous PVC. PMID:24570719
Atomic-scale analysis of cation ordering in reduced calcium titanate.
Li, Luying; Hu, Xiaokang; Jiang, Fan; Jing, Wenkui; Guo, Cong; Jia, Shuangfeng; Gao, Yihua; Wang, Jianbo
2017-11-03
The phenomenon of cation ordering is closely related to certain physical properties of complex oxides, which necessitates the search of underlying structure-property relationship at atomic resolution. Here we study the superlattices within reduced calcium titanate single crystal micro-pillars, which are unexpected from the originally proposed atomic model. Bright and dark contrasts at alternating Ti double layers perpendicular to b axis are clearly observed, but show no signs in corresponding image simulations based on the proposed atomic model. The multi-dimensional chemical analyses at atomic resolution reveal periodic lower Ti concentrations at alternating Ti double layers perpendicular to b axis. The following in-situ heating experiment shows no phase transition at the reported T c and temperature independence of the superlattices. The dimerization of the Ti-Ti bonds at neighboring double rutile-type chains within Ti puckered sheets are directly observed, which is found to be not disturbed by the cation ordering at alternating Ti double layers. The characterization of cation ordering of complex oxides from chemical and structural point of view at atomic resolution, and its reaction to temperature variations are important for further understanding their basic physical properties and exploiting potential applications.
Hyaluronan and calcium carbonate hybrid nanoparticles for colorectal cancer chemotherapy
NASA Astrophysics Data System (ADS)
Bai, Jinghui; Xu, Jian; Zhao, Jian; Zhang, Rui
2017-09-01
A hybrid drug delivery system (DDS) composed of hyaluronan and calcium carbonate (CC) was developed. By taking advantage of the tumor-targeting ability of hyaluronan and the drug-loading property of CC, the well-formed hyaluronan-CC nanoparticles were able to serve as a DDS targeting colorectal cancer with a decent drug loading content, which is beneficial in the chemotherapy of colorectal cancer. In this study, hyaluronan-CC nanoparticles smaller than 100 nm were successfully developed to load the wide-range anti-cancer drug adriamycin (Adr) to construct hyaluronan-CC/Adr nanoparticles. On the other hand, we also found that hyaluronan-CC/Adr nanoparticles can possibly increase the uptake ratio of Adr into HT29 colorectal cancer cells when compared with hyaluronan-free nanoparticles (CC/Adr) via the CD44 receptor-mediated endocytosis via competitive uptake and in vivo imaging assays. Note that both in vitro (CCK-8 assay on HT29 cells) and in vivo (anti-cancer assay on HT-29 tumor-bearing nude mice model) experiments revealed that hyaluronan-CC/Adr nanoparticles exhibited stronger anti-cancer activity than free Adr or CC/Adr nanoparticles with minimized toxic side effects and preferable cancer-suppression potential.
Laube, Norbert; Zimmermann, Diana J
2004-01-01
This study was performed to quantify the effect of a 1-week freezer storage of urine on its calcium oxalate crystallization risk. Calcium oxalate is the most common urinary stone material observed in urolithiasis patients in western and affluent countries. The BONN-Risk-Index of calcium oxalate crystallization risk in human urine is determined from a crystallization experiment performed on untreated native urine samples. We tested the influence of a 1-week freezing on the BONN-Risk-Index value as well as the effect of the sample freezing on the urinary osmolality. In vitro crystallization experiments in 49 native urine samples from stone-forming and non-stone forming individuals were performed in order to determine their calcium oxalate crystallization risk according to the BONN-Risk-Index approach. Comparison of the results derived from original sample investigations with those obtained from the thawed aliquots by statistical evaluation shows that i) no significant deviation from linearity between both results exists and ii) both results are identical by statistical means. This is valid for both, the BONN-Risk-Index and the osmolality data. The differences in the BONN-Risk-Index results of both procedures of BONN-Risk-Index determination, however, exceed the clinically acceptable difference. Thus, determination of the urinary calcium oxalate crystallization risk from thawed urine samples cannot be recommended.
NASA Astrophysics Data System (ADS)
Lee, Daniel; Leroy, César; Crevant, Charlène; Bonhomme-Coury, Laure; Babonneau, Florence; Laurencin, Danielle; Bonhomme, Christian; de Paëpe, Gaël
2017-01-01
The interfaces within bones, teeth and other hybrid biomaterials are of paramount importance but remain particularly difficult to characterize at the molecular level because both sensitive and selective techniques are mandatory. Here, it is demonstrated that unprecedented insights into calcium environments, for example the differentiation of surface and core species of hydroxyapatite nanoparticles, can be obtained using solid-state NMR, when combined with dynamic nuclear polarization. Although calcium represents an ideal NMR target here (and de facto for a large variety of calcium-derived materials), its stable NMR-active isotope, calcium-43, is a highly unreceptive probe. Using the sensitivity gains from dynamic nuclear polarization, not only could calcium-43 NMR spectra be obtained easily, but natural isotopic abundance 2D correlation experiments could be recorded for calcium-43 in short experimental time. This opens perspectives for the detailed study of interfaces in nanostructured materials of the highest biological interest as well as calcium-based nanosystems in general.
Modulation of bicarbonate secretion in rabbit duodenum: the role of calcium.
Hogan, D L; Yao, B; Isenberg, J I
1998-01-01
Surface epithelial bicarbonate secretion protects the proximal duodenum from acid peptic injury. Cyclic adenosine monophosphate and calcium serve as intracellular mediators of intestinal transport. Experiments were performed to examine whether calcium participates in duodenal bicarbonate transport. Stripped duodenal mucosa from rabbits was studied in Ussing chambers. HCO3- transport was stimulated by the calcium ionophore A23187, carbachol, vasoactive intestinal peptide, prostaglandin E2, dibutyryl-cyclic adenosine monophosphate, and electrical field stimulation. A23187 stimulated HCO3- secretion and Isc; tetrodotoxin failed to inhibit this effect. The calcium-channel blocker verapamil abolished HCO3- secretion stimulated by carbachol, vasoactive intestinal peptide, and electrical field stimulation, but failed to alter basal, prostaglandin E2- or dibutyryl-cyclic adenosine monophosphate-stimulated HCO3- secretion. Therefore, calcium is likely required during stimulation of duodenal epithelial HCO3- transport by carbachol, vasoactive intestinal peptide, and electrical field stimulation. Prostaglandin E2 and dibutyryl-cyclic adenosine monophosphate appear to activate duodenal HCO3- secretion by a calcium-independent pathway(s).
Hebenstreit, D; Ferreira, F
2005-09-01
Several studies showed that calcium-binding proteins have a fixed place in the spectrum of allergenic substances. Often the binding of a calcium ion induces conformational changes and affects immunoglobulin E-binding to the allergen. Hence, the quantitative characterization of the binding to calcium is of importance to understand both the biologic and allergenic activity of these proteins. In the present study we describe a procedure for determining the stoichiometry and dissociation constant (K(D)) of calcium-binding allergens using circular dichroism (CD) techniques. For the experiments, we used recombinant Bet v 4, a two EF-hand allergen from birch pollen. Solutions of Bet v 4 were titrated with calcium and the change in molar ellipticity at 222 nm was monitored with a CD spectropolarimeter. The determination of the binding stoichiometry as well as of the K(D) for one EF-hand (4 microM) demonstrated the applicability of the method. CD-monitored calcium-titration of protein solutions represents a fast and easy method for determining the binding characteristics of calcium-binding allergens.
Intact calcium signaling in adrenergic-deficient embryonic mouse hearts.
Peoples, Jessica N; Taylor, David G; Katchman, Alexander N; Ebert, Steven N
2018-01-22
Mouse embryos that lack the ability to produce the adrenergic hormones, norepinephrine (NE) and epinephrine (EPI), due to disruption of the dopamine beta-hydroxylase (Dbh -/- ) gene inevitably perish from heart failure during mid-gestation. Since adrenergic stimulation is well-known to enhance calcium signaling in developing as well as adult myocardium, and impairments in calcium signaling are typically associated with heart failure, we hypothesized that adrenergic-deficient embryonic hearts would display deficiencies in cardiac calcium signaling relative to adrenergic-competent controls at a developmental stage immediately preceding the onset of heart failure, which first appears beginning or shortly after mouse embryonic day 10.5 (E10.5). To test this hypothesis, we used ratiometric fluorescent calcium imaging techniques to measure cytosolic calcium transients, [Ca 2+ ] i in isolated E10.5 mouse hearts. Our results show that spontaneous [Ca 2+ ] i oscillations were intact and robustly responded to a variety of stimuli including extracellular calcium (5 mM), caffeine (5 mM), and NE (100 nM) in a manner that was indistinguishable from controls. Further, we show similar patterns of distribution (via immunofluorescent histochemical staining) and activity (via patch-clamp recording techniques) for the major voltage-gated plasma membrane calcium channel responsible for the L-type calcium current, I Ca,L , in adrenergic-deficient and control embryonic cardiac cells. These results demonstrate that despite the absence of vital adrenergic hormones that consistently leads to embryonic lethality in vivo, intracellular and extracellular calcium signaling remain essentially intact and functional in embryonic mouse hearts through E10.5. These findings suggest that adrenergic stimulation is not required for the development of intracellular calcium oscillations or extracellular calcium signaling through I Ca,L and that aberrant calcium signaling does not likely contribute to the onset of heart failure in this model. Copyright © 2017. Published by Elsevier Inc.
Vander Heide, R. S.; Altschuld, R. A.; Lamka, K. G.; Ganote, C. E.
1986-01-01
The pathogenesis of the calcium paradox has not been established. In calcium-free perfused hearts, caffeine, which releases calcium from the sarcoplasmic reticulum, causes severe myocardial injury, with creatine kinase (CK) release and contraction band necrosis similar in many respects to the calcium paradox. It has been postulated that contracture, initiated by a small rise in intracellular calcium, may cause sarcolemmal injury in both the calcium paradox and caffeine-induced myocardial injury. The present study was initiated to determine whether interventions which modulate caffeine-induced contracture will also correspondingly alter cellular injury. The effects of caffeine dose, procaine, extended calcium-free perfusion, elevated potassium, temperature, and increasing intracellular sodium on caffeine-induced contracture were examined in Langendorff-perfused adult rat hearts. Caffeine-induced contracture at 22 C increased over a dose range of 5-40 mM caffeine. Procaine, which inhibits caffeine-induced calcium release at doses between 5 and 20 mM, progressively reduced contracture caused by addition of 20 mM caffeine at 22 C. Hearts perfused with calcium-free solution containing 16 mM K+ showed a reduction in caffeine-induced contracture. Extended calcium-free perfusion (20 minutes) at temperatures from 18 to 37 C resulted in a progressive reduction of caffeine-induced contracture. Each of these interventions was also found to inhibit caffeine-induced injury at 37 C. Low temperature was found to have complex effects. Hypothermia enhanced caffeine contractures but also protected hearts from cell separations and CK release. Increasing intracellular sodium was found to enhance caffeine-induced contracture at 37 C. There was a direct correlation between measured intracellular sodium levels and the magnitude and duration of caffeine-induced contracture. These results demonstrate a direct correlation between the magnitude of contracture and myocardial injury in calcium-free hearts. It is proposed that contracture is the primary mediator of sarcolemmal membrane injury in hearts with intercalated disks weakened by prior calcium-free perfusion. Images Figure 11 PMID:3706496
Pratt, Stephen J.P.; Hernández-Ochoa, Erick O.; Lee, Rachel M.; Ory, Eleanor C.; Lyons, James S.; Joca, Humberto C.; Johnson, Ashley; Thompson, Keyata; Bailey, Patrick; Lee, Cornell J.; Mathias, Trevor; Vitolo, Michele I.; Trudeau, Matt; Stains, Joseph P.; Ward, Christopher W.; Schneider, Martin F.; Martin, Stuart S.
2018-01-01
Aggressive cellular phenotypes such as uncontrolled proliferation and increased migration capacity engender cellular transformation, malignancy and metastasis. While genetic mutations are undisputed drivers of cancer initiation and progression, it is increasingly accepted that external factors are also playing a major role. Two recently studied modulators of breast cancer are changes in the cellular mechanical microenvironment and alterations in calcium homeostasis. While many studies investigate these factors separately in breast cancer cells, very few do so in combination. This current work sets a foundation to explore mechano-calcium relationships driving malignant progression in breast cancer. Utilizing real-time imaging of an in vitro scratch assay, we were able to resolve mechanically-sensitive calcium signaling in human breast cancer cells. We observed rapid initiation of intracellular calcium elevations within seconds in cells at the immediate wound edge, followed by a time-dependent increase in calcium in cells at distances up to 500μm from the scratch wound. Calcium signaling to neighboring cells away from the wound edge returned to baseline within seconds. Calcium elevations at the wound edge however, persisted for up to 50 minutes. Rigorous quantification showed that extracellular calcium was necessary for persistent calcium elevation at the wound edge, but intercellular signal propagation was dependent on internal calcium stores. In addition, intercellular signaling required extracellular ATP and activation of P2Y2 receptors. Through comparison of scratch-induced signaling from multiple cell lines, we report drastic reductions in response from aggressively tumorigenic and metastatic cells. The real-time scratch assay established here provides quantitative data on the molecular mechanisms that support rapid scratch-induced calcium signaling in breast cancer cells. These mechanisms now provide a clear framework for investigating which short-term calcium signals promote long-term changes in cancer cell biology. PMID:29861849
NASA Astrophysics Data System (ADS)
Lu, Fa-Ke F.; Calligaris, David; Suo, Yuanzhen; Santagata, Sandro; Golby, Alexandra J.; Xie, X. Sunney; Mallory, Melissa A.; Golshan, Mehra; Dillon, Deborah A.; Agar, Nathalie Y. R.
2017-02-01
Stimulated Raman scattering (SRS) microscopy has been used for rapid label-free imaging of various biomolecules and drugs in living cells and tissues (Science, doi:10.1126/science.aaa8870). Our recent work has demonstrated that lipid and protein mapping of cancer tissue renders pathology-like images, providing essential histopathological information with subcellular resolution of the entire specimen (Cancer Research, doi: 10.1158/0008-5472.CAN-16-027). We have also established the first SRS imaging Atlas of human brain tumors (Harvard Dataverse, doi: (doi:10.7910/DVN/EZW4EK). SRS imaging of tissue could provide invaluable information for cancer diagnosis and surgical guidance in two aspects: rapid surgical pathology and quantitative biomolecular characterization. In this work, we present the use of SRS microscopy for characterization of a few essential biomolecules in breast cancer. Human breast cancer tissue specimens at the tumor core, tumor margin and normal area (5 cm away from the tumor) from surgical cases will be imaged with SRS at multiple Raman shifts, including the peaks for lipid, protein, blood (absorption), collagen, microcalcification (calcium phosphates and calcium oxalate) and carotenoids. Most of these Raman shifts have relatively strong Raman cross sections, which ensures high-quality and fast imaging. This proof-of-principle study is sought to demonstrate the feasibility and potential of SRS imaging for ambient diagnosis and surgical guidance of breast cancer.
NASA Astrophysics Data System (ADS)
Zippel, Barbara; Dynes, James J.; Obst, Martin; Lawrence, John R.; Neu, Thomas R.
2010-05-01
Tufa deposits in freshwater habitats are the result of calcium carbonate precipitation within interfacial microbial ecosystems. Calcite precipitation is influenced by the saturation index and the occurrence of extracellular polymeric substances (EPS) which are produced by a variety of microorganisms. In theory, the first important step of biologically induced calcification processes is the adsorption of calcium ions by extracellular polymeric substances (EPS) produced by cyanobacteria. In the present study we take advantage of Laser Scanning Microscopy (LSM) and combine it with Synchrotron imaging using Scanning Transmission X-ray Microscopy (STXM). STXM represents a technique that allows simultaneous analysis of inorganic and organic constituents as a scale of 50 nm. By means of STXM it is possible to differentiate between calcium carbonate phases at the Ca L-edge. Furthermore, STXM has also been used at the C K-edge to map the major biomolecules (proteins, lipids, and polysaccharides). The purpose of this study is to find out if there are differences in calcium adsorption depending on specific composition of the EPS produced by filamentous cyanobacteria isolated from a German hard water creek (Westerhöfer Bach, Harz Mountains). The goal was to elucidate the potential of biofilms constituents, including microbial cell surfaces as well as extracellular polymeric substances, in triggering the formation of calcium carbonate in tufa systems. For this purpose three filamentous cyanobacteria (Pseudanabaena sp., Leptolyngbya sp. and Nostoc sp.) were cultivated in creek-adapted as well as standard media (BG11) on polycarbonate slides. In situ EPS composition was detected by means of fluorescence lectin-binding approach (FLBA) using 23 commercially available lectins with different specificities for mono- and disaccharides and amino sugars. For CaCO3 nucleation experiments cyanobacterial biofilms grown on polycarbonate slides were deposited in NaHCO3/CaCl2 solutions supersaturated 10 times with respect to calcite for 48, 72 and 144 hours. For the STXM experiment on beamline 10-ID1 at the Canadian Light Source (CLS), the biofilm samples were scrapped off, suspended in a slurry and deposited carefully on a Si3N4 window. In order to obtain quantitative speciation maps of cyanobacterial sheath EPS, image sequences (stacks) were recorded at the C-1s (280-320 eV) and Ca-2p (340-360 eV) edges. Data analysis was done by using the software aXis2000, and energy spectra were fitted with available reference spectra. Nearly the same lectins specific for fucose, mannose, N-acetylgalactosamine and N-acetylglucosamine, as well as sialic acid bound preferentially to the EPS of cyanobacterial sheaths of Pseudanabaena sp. and Leptolyngbya sp. Surprisingly, in case of Nostoc sp. only two lectins specific for fucose, and N-acetylgalactosamine showed a clear binding to the EPS of sheaths. Qualitative, lectin-specific EPS composition was not influenced by nutrient concentrations within the medium during cultivation. In order to biochemically characterize the CaCO3 nucleation sites within the sheaths of the cyanobacteria investigated, carbon maps of the most abundant organic components were derived from C-1s image sequences. The sheaths of the cyanobacteria contained mainly polysaccharides followed by proteins, and a small amount of lipids. The highest amount of polysaccharides was detected in EPS produced by Pseudanabaena sp., whereas in Nostoc sp. only one-fifth was found. All samples investigated contained spectral signatures of Ca2+ adsorbed to EPS. Aragonite-like CaCO3 was detected in close association with the cell surface of Leptolyngbya sp. only. Highest amount of adsorbed Ca to EPS was found in Pseudanabaena sp., whereas only one-third was detected within the EPS of sheaths in Leptolyngbya sp. and Nostoc sp. Results of this combined approach show that the cyanobacteria investigated are may be involved in calcification processes to different degrees.
Calcium spikes, waves and oscillations in a large, patterned epithelial tissue
Balaji, Ramya; Bielmeier, Christina; Harz, Hartmann; Bates, Jack; Stadler, Cornelia; Hildebrand, Alexander; Classen, Anne-Kathrin
2017-01-01
While calcium signaling in excitable cells, such as muscle or neurons, is extensively characterized, calcium signaling in epithelial tissues is little understood. Specifically, the range of intercellular calcium signaling patterns elicited by tightly coupled epithelial cells and their function in the regulation of epithelial characteristics are little explored. We found that in Drosophila imaginal discs, a widely studied epithelial model organ, complex spatiotemporal calcium dynamics occur. We describe patterns that include intercellular waves traversing large tissue domains in striking oscillatory patterns as well as spikes confined to local domains of neighboring cells. The spatiotemporal characteristics of intercellular waves and oscillations arise as emergent properties of calcium mobilization within a sheet of gap-junction coupled cells and are influenced by cell size and environmental history. While the in vivo function of spikes, waves and oscillations requires further characterization, our genetic experiments suggest that core calcium signaling components guide actomyosin organization. Our study thus suggests a possible role for calcium signaling in epithelia but importantly, introduces a model epithelium enabling the dissection of cellular mechanisms supporting the initiation, transmission and regeneration of long-range intercellular calcium waves and the emergence of oscillations in a highly coupled multicellular sheet. PMID:28218282
Geiger, Anselm; Russo, Luigi; Gensch, Thomas; Thestrup, Thomas; Becker, Stefan; Hopfner, Karl-Peter; Griesinger, Christian; Witte, Gregor; Griesbeck, Oliver
2012-01-01
Genetically encoded calcium indicators have become instrumental in imaging signaling in complex tissues and neuronal circuits in vivo. Despite their importance, structure-function relationships of these sensors often remain largely uncharacterized due to their artificial and multimodular composition. Here, we describe a combination of protein engineering and kinetic, spectroscopic, and biophysical analysis of the Förster resonance energy transfer (FRET)-based calcium biosensor TN-XXL. Using fluorescence spectroscopy of engineered tyrosines, we show that two of the four calcium binding EF-hands dominate the FRET output of TN-XXL and that local conformational changes of these hands match the kinetics of FRET change. Using small-angle x-ray scattering and NMR spectroscopy, we show that TN-XXL changes from a flexible elongated to a rigid globular shape upon binding calcium, thus resulting in FRET signal output. Furthermore, we compare calcium titrations using fluorescence lifetime spectroscopy with the ratiometric approach and investigate potential non-FRET effects that may affect the fluorophores. Thus, our data characterize the biophysics of TN-XXL in detail and may form a basis for further rational engineering of FRET-based biosensors. PMID:22677394
Physical Vapor Deposition and Defect Engineering of Europium Doped Lutetium Oxide
NASA Astrophysics Data System (ADS)
Gillard, Scott James
Lutetium oxide doped with europium (Lu2O3:Eu 3+) has been established as a promising scintillator material with properties that are advantageous when compared to other scintillators such as cesium iodide doped with thallium (CsI:Tl). Due to high X-ray attenuation characteristics, Lu2O3:Eu3+ is an attractive material for use in high resolution digital X-ray imaging systems. However, challenges still remain especially in the area of light output for Lu 2O3:Eu3+. Processing by physical vapor deposition (PVD) and manipulation of oxygen defect structure was explored in order to better understand the effect on the scintillation phenomena. PVD results were obtained using high temperature radio frequency sputtering (RF) and pulsed laser deposition (PLD) systems. Characterization of light output by radial noise power spectrum density measurements revealed that high temperature RF films were superior to those obtained using PLD. Optimization of sputtered films based on light output over a range of process parameters, namely temperature, power, pressure, and substrate orientation was investigated. Parameterization of deposition conditions revealed that: 75 watts, 10.00 mtorr, and 800°C were optimum conditions for Lu2O3:Eu 3+ films. Manipulation of anionic defect structure in similar material systems has been shown to improve scintillation response. Similar methods for Lu 2O3:Eu3+ were explored for hot pressed samples of Lu2O3:Eu3+; via controlled atmosphere annealing, and use of extrinsic co-doping with calcium. The controlled atmosphere experiments established the importance of oxygen defect structure within Lu 2O3:Eu3+ and showed that fully oxidized samples were preferred for light output. The second method utilized co-doping by the addition of calcium which induced oxygen vacancies and by Frenkel equilibrium changed the oxygen interstitial population within the Lu2O 3:Eu3+ structure. The addition of calcium was investigated and revealed that scintillation was improved with a maximum response occurring at 340ppm of calcium. PVD optimization and co-doping experimental results provided a template for the use of calcium co-doped Lu2O3 :Eu3+ targets for deposition of films. Preliminary deposition results were promising and revealed that small additions (around 550 ppm) of calcium resulted in better activator efficiency. Calcium co-doped films have a predicted increase in the light yield greater than 14% when compared to analogous un-doped Lu2O3:Eu3+ films at 60keV.
Heck, Angela; Fastenrath, Matthias; Coynel, David; Auschra, Bianca; Bickel, Horst; Freytag, Virginie; Gschwind, Leo; Hartmann, Francina; Jessen, Frank; Kaduszkiewicz, Hanna; Maier, Wolfgang; Milnik, Annette; Pentzek, Michael; Riedel-Heller, Steffi G; Spalek, Klara; Vogler, Christian; Wagner, Michael; Weyerer, Siegfried; Wolfsgruber, Steffen; de Quervain, Dominique J-F; Papassotiropoulos, Andreas
2015-10-01
Human episodic memory performance is linked to the function of specific brain regions, including the hippocampus; declines as a result of increasing age; and is markedly disturbed in Alzheimer disease (AD), an age-associated neurodegenerative disorder that primarily affects the hippocampus. Exploring the molecular underpinnings of human episodic memory is key to the understanding of hippocampus-dependent cognitive physiology and pathophysiology. To determine whether biologically defined groups of genes are enriched in episodic memory performance across age, memory encoding-related brain activity, and AD. In this multicenter collaborative study, which began in August 2008 and is ongoing, gene set enrichment analysis was done by using primary and meta-analysis data from 57 968 participants. The Swiss cohorts consisted of 3043 healthy young adults assessed for episodic memory performance. In a subgroup (n = 1119) of one of these cohorts, functional magnetic resonance imaging was used to identify gene set-dependent differences in brain activity related to episodic memory. The German Study on Aging, Cognition, and Dementia in Primary Care Patients cohort consisted of 763 elderly participants without dementia who were assessed for episodic memory performance. The International Genomics of Alzheimer's Project case-control sample consisted of 54 162 participants (17 008 patients with sporadic AD and 37 154 control participants). Analyses were conducted between January 2014 and June 2015. Gene set enrichment analysis in all samples was done using genome-wide single-nucleotide polymorphism data. Episodic memory performance in the Swiss cohort and German Study on Aging, Cognition, and Dementia in Primary Care Patients cohort was quantified by picture and verbal delayed free recall tasks. In the functional magnetic resonance imaging experiment, activation of the hippocampus during encoding of pictures served as the phenotype of interest. In the International Genomics of Alzheimer's Project sample, diagnosis of sporadic AD served as the phenotype of interest. In the discovery sample, we detected significant enrichment for genes constituting the calcium signaling pathway, especially those related to the elevation of cytosolic calcium (P = 2 × 10-4). This enrichment was replicated in 2 additional samples of healthy young individuals (P = .02 and .04, respectively) and a sample of healthy elderly participants (P = .004). Hippocampal activation (P = 4 × 10-4) and the risk for sporadic AD (P = .01) were also significantly enriched for genes related to the elevation of cytosolic calcium. By detecting consistent significant enrichment in independent cohorts of young and elderly participants, this study identified that calcium signaling plays a central role in hippocampus-dependent human memory processes in cognitive health and disease, contributing to the understanding and potential treatment of hippocampus-dependent cognitive pathology.
The isotopic composition of cosmic ray calcium
NASA Technical Reports Server (NTRS)
Krombel, K. E.; Wiedenbeck, M. E.
1985-01-01
Data from the high energy cosmic ray experiment on the international sun earth explorer 3 (ISEE-3) spacecraft have been used to study the isotopic composition of cosmic ray calcium at an energy of approx. 260 MeV/amu. The arriving calcium is found to consist of (32 + or - 6)%. A propagation model consistent with both the light and the subiron secondary element abundances was used for the interpretation of the observed calcium composition. The measured 42Ca+43Ca+44Ca abundance is consistent with the calculated secondary production, while the 40Ca abundance implies a source ratio of 40Ca/Fe = (7.0 + or - 1.7)%.
NASA Astrophysics Data System (ADS)
Martinek, Tomas; Duboué-Dijon, Elise; Timr, Štěpán; Mason, Philip E.; Baxová, Katarina; Fischer, Henry E.; Schmidt, Burkhard; Pluhařová, Eva; Jungwirth, Pavel
2018-06-01
We present a combination of force field and ab initio molecular dynamics simulations together with neutron scattering experiments with isotopic substitution that aim at characterizing ion hydration and pairing in aqueous calcium chloride and formate/acetate solutions. Benchmarking against neutron scattering data on concentrated solutions together with ion pairing free energy profiles from ab initio molecular dynamics allows us to develop an accurate calcium force field which accounts in a mean-field way for electronic polarization effects via charge rescaling. This refined calcium parameterization is directly usable for standard molecular dynamics simulations of processes involving this key biological signaling ion.
Ferrari, Luiz Fernando; Lotufo, Celina Monteiro; Araldi, Dionéia; Rodrigues, Marcos A; Macedo, Larissa P; Ferreira, Sérgio H; Parada, Carlos Amilcar
2014-12-23
The present study evaluated the role of N-methyl-D-aspartate receptors (NMDARs) expressed in the dorsal root ganglia (DRG) in the inflammatory sensitization of peripheral nociceptor terminals to mechanical stimulation. Injection of NMDA into the fifth lumbar (L5)-DRG induced hyperalgesia in the rat hind paw with a profile similar to that of intraplantar injection of prostaglandin E2 (PGE2), which was significantly attenuated by injection of the NMDAR antagonist D(-)-2-amino-5-phosphonopentanoic acid (D-AP-5) in the L5-DRG. Moreover, blockade of DRG AMPA receptors by the antagonist 6,7-dinitroquinoxaline-2,3-dione had no effect in the PGE2-induced hyperalgesia in the paw, showing specific involvement of NMDARs in this modulatory effect and suggesting that activation of NMDAR in the DRG plays an important role in the peripheral inflammatory hyperalgesia. In following experiments we observed attenuation of PGE2-induced hyperalgesia in the paw by the knockdown of NMDAR subunits NR1, NR2B, NR2D, and NR3A with antisense-oligodeoxynucleotide treatment in the DRG. Also, in vitro experiments showed that the NMDA-induced sensitization of cultured DRG neurons depends on satellite cell activation and on those same NMDAR subunits, suggesting their importance for the PGE2-induced hyperalgesia. In addition, fluorescent calcium imaging experiments in cultures of DRG cells showed induction of calcium transients by glutamate or NMDA only in satellite cells, but not in neurons. Together, the present results suggest that the mechanical inflammatory nociceptor sensitization is dependent on glutamate release at the DRG and subsequent NMDAR activation in satellite glial cells, supporting the idea that the peripheral hyperalgesia is an event modulated by a glutamatergic system in the DRG.
Homogeneity of ball milled ceramic powders: Effect of jar shape and milling conditions.
Broseghini, M; D'Incau, M; Gelisio, L; Pugno, N M; Scardi, P
2017-02-01
This paper contains data and supporting information of and complementary to the research article entitled " Effect of jar shape on high-energy planetary ball milling efficiency: simulations and experiments " (Broseghini et al.,) [1]. Calcium fluoride (CaF 2 ) was ground using two jars of different shape (cylindrical and half-moon) installed on a planetary ball-mill, exploring different operating conditions (jar-to-plate angular velocity ratio and milling time). Scanning Electron Microscopy (SEM) images and X-Ray Powder Diffraction data (XRPD) were collected to assess the effect of milling conditions on the end-product crystallite size. Due to the inhomogeneity of the end product, the Whole Powder Pattern Model (WPPM, (Scardi, 2008) [2]) analysis of XRPD data required the hypothesis of a bimodal distribution of sizes - respectively ground (fine fraction) and less-to-not ground (coarse fraction) - confirmed by SEM images and suggested by the previous literature (Abdellatief et al., 2013) [3,4]. Predominance of fine fraction clearly indicates optimal milling conditions.
Baubet, Valérie; Le Mouellic, Hervé; Campbell, Anthony K.; Lucas-Meunier, Estelle; Fossier, Philippe; Brûlet, Philippe
2000-01-01
Monitoring calcium fluxes in real time could help to understand the development, the plasticity, and the functioning of the central nervous system. In jellyfish, the chemiluminescent calcium binding aequorin protein is associated with the green fluorescent protein and a green bioluminescent signal is emitted upon Ca2+ stimulation. We decided to use this chemiluminescence resonance energy transfer between the two molecules. Calcium-sensitive bioluminescent reporter genes have been constructed by fusing green fluorescent protein and aequorin, resulting in much more light being emitted. Chemiluminescent and fluorescent activities of these fusion proteins have been assessed in mammalian cells. Cytosolic Ca2+ increases were imaged at the single-cell level with a cooled intensified charge-coupled device camera. This bifunctional reporter gene should allow the investigation of calcium activities in neuronal networks and in specific subcellular compartments in transgenic animals. PMID:10860991
Mohammed, Ali I; Gritton, Howard J; Tseng, Hua-an; Bucklin, Mark E; Yao, Zhaojie; Han, Xue
2016-02-08
Advances in neurotechnology have been integral to the investigation of neural circuit function in systems neuroscience. Recent improvements in high performance fluorescent sensors and scientific CMOS cameras enables optical imaging of neural networks at a much larger scale. While exciting technical advances demonstrate the potential of this technique, further improvement in data acquisition and analysis, especially those that allow effective processing of increasingly larger datasets, would greatly promote the application of optical imaging in systems neuroscience. Here we demonstrate the ability of wide-field imaging to capture the concurrent dynamic activity from hundreds to thousands of neurons over millimeters of brain tissue in behaving mice. This system allows the visualization of morphological details at a higher spatial resolution than has been previously achieved using similar functional imaging modalities. To analyze the expansive data sets, we developed software to facilitate rapid downstream data processing. Using this system, we show that a large fraction of anatomically distinct hippocampal neurons respond to discrete environmental stimuli associated with classical conditioning, and that the observed temporal dynamics of transient calcium signals are sufficient for exploring certain spatiotemporal features of large neural networks.
Aspects of calcium oxalate crystallization: theory, in vitro studies, and in vivo implementation.
Rodgers, A
1999-11-01
There are three main approaches to urolithiasis research: theory, basic science, and clinical implementation. Although each approach has yielded meaningful results, there does not appear to be complete synergy between them. This article examines these approaches as they pertain to urinary calcium oxalate crystallization processes. Theoretical calculations were performed to examine the role of oxalate concentration on calcium oxalate supersaturation. The effects of magnesium, citrate, and combinations thereof on calcium oxalate crystallization kinetics were examined in a mixed suspension, mixed product removal crystallizer. Finally, male volunteers were given supplements of calcium alone and binary combinations of calcium, magnesium, and citrate to investigate their effects on the urinary supersaturation of calcium oxalate. Calculations showed that oxalate is 23 times more potent than calcium in its effect on the supersaturation of calcium oxalate. In the in vitro experiments, magnesium and citrate reduced the growth and nucleation kinetics as well as the supersaturation. In combination, these two components were more effective than the individual components in reducing the growth rate and the supersaturation. All of the supplements favorably altered the kinetic and thermodynamic risk factors. Calcium was the most effective in reducing the urinary excretion of oxalate. Articulation of these three approaches is essential for the meaningful investigation and understanding of urolithiasis.
Rapid communication between neurons and astrocytes in primary cortical cultures.
Murphy, T H; Blatter, L A; Wier, W G; Baraban, J M
1993-06-01
The identification of neurotransmitter receptors and voltage-sensitive ion channels on astrocytes (reviewed by Barres, 1991) has renewed interest in how these cells respond to neuronal activity. To investigate the physiology of neuron astrocyte signaling, we have employed primary cortical cultures that contain both neuronal and glial cells. As the neurons in these cultures exhibit synchronous spontaneous synaptic activity, we have used both calcium imaging and whole-cell recording techniques to identify physiological activity in astrocytes related to neuronal activity. Whole-cell voltage-clamp records from astrocytes revealed rapid inward currents that coincide with bursts of electrical activity in neighboring neurons. Calcium imaging studies demonstrate that these currents in astrocytes are not always associated with slowly propagating calcium waves. Inclusion of the dye Lucifer yellow within patch pipettes confirmed that astrocytes are extensively coupled to each other but not to adjacent neurons, indicating that the currents observed are not due to gap junction connections between these cell types. These currents do not reflect widespread diffusion of glutamate or potassium released during neuronal activity since a population of small, round, multipolar presumed glial cells that are not dye coupled to adjacent cells did not display electrical currents coincident with neuronal firing, even though they respond to locally applied glutamate and potassium. These findings indicate that, in addition to the relatively slow signaling conveyed by calcium waves, astrocytes also display rapid electrical responses to neuronal activity.
The metabolic response to excitotoxicity - lessons from single-cell imaging.
Connolly, Niamh M C; Prehn, Jochen H M
2015-04-01
Excitotoxicity is a pathological process implicated in neuronal death during ischaemia, traumatic brain injuries and neurodegenerative diseases. Excitotoxicity is caused by excess levels of glutamate and over-activation of NMDA or calcium-permeable AMPA receptors on neuronal membranes, leading to ionic influx, energetic stress and potential neuronal death. The metabolic response of neurons to excitotoxicity is complex and plays a key role in the ability of the neuron to adapt and recover from such an insult. Single-cell imaging is a powerful experimental technique that can be used to study the neuronal metabolic response to excitotoxicity in vitro and, increasingly, in vivo. Here, we review some of the knowledge of the neuronal metabolic response to excitotoxicity gained from in vitro single-cell imaging, including calcium and ATP dynamics and their effects on mitochondrial function, along with the contribution of glucose metabolism, oxidative stress and additional neuroprotective signalling mechanisms. Future work will combine knowledge gained from single-cell imaging with data from biochemical and computational techniques to garner holistic information about the metabolic response to excitotoxicity at the whole brain level and transfer this knowledge to a clinical setting.
Resendez, Shanna L.; Jennings, Josh H.; Ung, Randall L.; Namboodiri, Vijay Mohan K.; Zhou, Zhe Charles; Otis, James M.; Nomura, Hiroshi; McHenry, Jenna A.; Kosyk, Oksana; Stuber, Garret D.
2016-01-01
Genetically encoded calcium indicators for visualizing dynamic cellular activity have greatly expanded our understanding of the brain. However, due to light scattering properties of the brain as well as the size and rigidity of traditional imaging technology, in vivo calcium imaging has been limited to superficial brain structures during head fixed behavioral tasks. This limitation can now be circumvented by utilizing miniature, integrated microscopes in conjunction with an implantable microendoscopic lens to guide light into and out of the brain, thus permitting optical access to deep brain (or superficial) neural ensembles during naturalistic behaviors. Here, we describe procedural steps to conduct such imaging studies using mice. However, we anticipate the protocol can be easily adapted for use in other small vertebrates. Successful completion of this protocol will permit cellular imaging of neuronal activity and the generation of data sets with sufficient statistical power to correlate neural activity with stimulus presentation, physiological state, and other aspects of complex behavioral tasks. This protocol takes 6–11 weeks to complete. PMID:26914316
Matsuba, Sota; Kato, Ryo; Okumura, Koichi; Sawada, Kazuaki; Hattori, Toshiaki
2018-01-01
In biochemistry, Ca 2+ and K + play essential roles to control signal transduction. Much interest has been focused on ion-imaging, which facilitates understanding of their ion flux dynamics. In this paper, we report a calcium and potassium multi-ion image sensor and its application to living cells (PC12). The multi-ion sensor had two selective plasticized poly(vinyl chloride) membranes containing ionophores. Each region on the sensor responded to only the corresponding ion. The multi-ion sensor has many advantages including not only label-free and real-time measurement but also simultaneous detection of Ca 2+ and K + . Cultured PC12 cells treated with nerve growth factor were prepared, and a practical observation for the cells was conducted with the sensor. After the PC12 cells were stimulated by acetylcholine, only the extracellular Ca 2+ concentration increased while there was no increase in the extracellular K + concentration. Through the practical observation, we demonstrated that the sensor was helpful for analyzing the cell events with changing Ca 2+ and/or K + concentration.
NASA Astrophysics Data System (ADS)
Wu, Zu-Hui; Zhu, Dan; Chen, Ji-Yao; Zhou, Lu-Wei
2012-05-01
The effects of thermal stimuli on rat basophilic leukemia mast cells were studied. The cells in calcium-contained or calcium-free buffers were thermally stimulated in the temperature range of 25-60 °C. The corresponding calcium ion concentration in cells [Ca2+]i as well as the released histamine from cells was measured with fluorescence staining methods. The ruthenium red (RR), a block of membrane calcium channels (transient receptor potential family V (TRPV)), was used in experiments. Under the stimulus of 25-50 °C, no significant difference on [Ca2+]i was found between these three groups of the cells in calcium-contained buffer without or with RR and cells in calcium-free saline, indicating that the increased calcium in cytosol did not result from the extracellular buffer but came from the intracellular calcium stores. The [Ca2+]i continuously increased under the temperature of 50-60 °C, but the RR and calcium-free saline can obviously diminish the [Ca2+]i increase at these high temperatures, reflecting that the opening of the TRPV2 channels leads to a calcium influx resulting in the [Ca2+]i increment. The histamine release also became significant in these cases. Since the released histamine is a well-known mediator for the microcirculation promotion, the histamine release from mast cells could be one of the mechanisms of thermal therapy.
Manufacturing of calcium, lithium and molybdenum targets for use in nuclear physics experiments
NASA Astrophysics Data System (ADS)
Kheswa, N. Y.; Papka, P.; Buthelezi, E. Z.; Lieder, R. M.; Neveling, R.; Newman, R. T.
2010-02-01
This paper describes methods used in the manufacturing of chemically reactive targets such as calcium ( natCa), lithium-6 ( 6Li) and molybdenum-97 ( 97Mo) for nuclear physics experiments at the iThemba LABS cyclotron facility (Faure, South Africa). Due to the chemical properties of these materials a suitable and controlled environment was established in order to minimize oxygen contamination of targets. Calcium was prepared by means of vacuum evaporation while lithium was cold rolled to a desired thickness. In the case of molybdenum, the metallic powder was melted under vacuum using an e-gun followed by cold rolling of the metal bead to a desired thickness. In addition, latest developments toward the establishment of a dedicated nuclear physics target laboratory are discussed.
NASA Astrophysics Data System (ADS)
Kantserova, N. P.; Krylov, V. V.; Lysenko, L. A.; Ushakova, N. V.; Nemova, N. N.
2017-12-01
The effects of hypomagnetic conditions and the reversal of the geomagnetic field (GMF) on intracellular Ca2+-dependent proteases (calpains) of fish and invertebrates have been studied in vivo and in vitro. It is found that the intravital exposure of examined animals to hypomagnetic conditions leads to a significant decrease in its calpain activity. The activity of preparations of calcium-dependent proteases was tested in separate experiments. It is shown that preparations of Ca2+-dependent proteases from invertebrates and fish are also inactivated substantially under effect of hypomagnetic conditions. The ambiguous results obtained in the experiments with a reversed GMF do not make it possible to discuss the biological response of calcium-dependent proteases to the reversal of the GMF.
Baltrusaitis, Jonas; Grassian, Vicki H
2012-09-13
In this study, alternating current (AC) mode atomic force microscopy (AFM) combined with phase imaging and X-ray photoelectron spectroscopy (XPS) were used to investigate the effect of nitrogen dioxide (NO2) adsorption on calcium carbonate (CaCO3) (101̅4) surfaces at 296 K in the presence of relative humidity (RH). At 70% RH, CaCO3 (101̅4) surfaces undergo rapid formation of a metastable amorphous calcium carbonate layer, which in turn serves as a substrate for recrystallization of a nonhydrated calcite phase, presumably vaterite. The adsorption of nitrogen dioxide changes the surface properties of CaCO3 (101̅4) and the mechanism for formation of new phases. In particular, the first calcite nucleation layer serves as a source of material for further island growth; when it is depleted, there is no change in total volume of nitrocalcite, Ca(NO3)2, particles formed whereas the total number of particles decreases. This indicates that these particles are mobile and coalesce. Phase imaging combined with force curve measurements reveals areas of inhomogeneous energy dissipation during the process of water adsorption in relative humidity experiments, as well as during nitrocalcite particle formation. Potential origins of the different energy dissipation modes within the sample are discussed. Finally, XPS analysis confirms that NO2 adsorbs on CaCO3 (101̅4) in the form of nitrate (NO3(-)) regardless of environmental conditions or the pretreatment of the calcite surface at different relative humidity.
Cheetham, B F
1983-01-01
Methylglyoxal bis(guanylhydrazone) completely inhibits the induction of thymidine kinase after serum stimulation of quiescent fibroblasts only if added within 3 h after serum, whereas calcium deprivation blocks this induction up to 12 h after serum stimulation. Experiments in which one of these blocks was imposed as the other was released confirmed that cells blocked by methylglyoxal bis(guanylhydrazone) are arrested at an earlier stage in G1 than cells blocked by calcium deprivation. PMID:6843551
Figueroa Velez, Dario X.; Ellefsen, Kyle L.; Hathaway, Ethan R.; Carathedathu, Mathew C.
2017-01-01
The maturation of cortical parvalbumin-positive (PV) interneurons depends on the interaction of innate and experience-dependent factors. Dark-rearing experiments suggest that visual experience determines when broad orientation selectivity emerges in visual cortical PV interneurons. Here, using neural transplantation and in vivo calcium imaging of mouse visual cortex, we investigated whether innate mechanisms contribute to the maturation of orientation selectivity in PV interneurons. First, we confirmed earlier findings showing that broad orientation selectivity emerges in PV interneurons by 2 weeks after vision onset, ∼35 d after these cells are born. Next, we assessed the functional development of transplanted PV (tPV) interneurons. Surprisingly, 25 d after transplantation (DAT) and >2 weeks after vision onset, we found that tPV interneurons have not developed broad orientation selectivity. By 35 DAT, however, broad orientation selectivity emerges in tPV interneurons. Transplantation does not alter orientation selectivity in host interneurons, suggesting that the maturation of tPV interneurons occurs independently from their endogenous counterparts. Together, these results challenge the notion that the onset of vision solely determines when PV interneurons become broadly tuned. Our results reveal that an innate cortical mechanism contributes to the emergence of broad orientation selectivity in PV interneurons. SIGNIFICANCE STATEMENT Early visual experience and innate developmental programs interact to shape cortical circuits. Visual-deprivation experiments have suggested that the onset of visual experience determines when interneurons mature in the visual cortex. Here we used neuronal transplantation and cellular imaging of visual responses to investigate the maturation of parvalbumin-positive (PV) interneurons. Our results suggest that the emergence of broad orientation selectivity in PV interneurons is innately timed. PMID:28123018
A High-Throughput Automated Microfluidic Platform for Calcium Imaging of Taste Sensing.
Hsiao, Yi-Hsing; Hsu, Chia-Hsien; Chen, Chihchen
2016-07-08
The human enteroendocrine L cell line NCI-H716, expressing taste receptors and taste signaling elements, constitutes a unique model for the studies of cellular responses to glucose, appetite regulation, gastrointestinal motility, and insulin secretion. Targeting these gut taste receptors may provide novel treatments for diabetes and obesity. However, NCI-H716 cells are cultured in suspension and tend to form multicellular aggregates, preventing high-throughput calcium imaging due to interferences caused by laborious immobilization and stimulus delivery procedures. Here, we have developed an automated microfluidic platform that is capable of trapping more than 500 single cells into microwells with a loading efficiency of 77% within two minutes, delivering multiple chemical stimuli and performing calcium imaging with enhanced spatial and temporal resolutions when compared to bath perfusion systems. Results revealed the presence of heterogeneity in cellular responses to the type, concentration, and order of applied sweet and bitter stimuli. Sucralose and denatonium benzoate elicited robust increases in the intracellular Ca(2+) concentration. However, glucose evoked a rapid elevation of intracellular Ca(2+) followed by reduced responses to subsequent glucose stimulation. Using Gymnema sylvestre as a blocking agent for the sweet taste receptor confirmed that different taste receptors were utilized for sweet and bitter tastes. This automated microfluidic platform is cost-effective, easy to fabricate and operate, and may be generally applicable for high-throughput and high-content single-cell analysis and drug screening.
Human exposure to hexachlorobenzene (HCB) has resulted in demineralization of bone with osteoporosis resulting. Experiments were undertaken to investigate the effects of HCB on the homeostatic mechanism of calcium metabolism. Fischer 344 rats were dosed with 0, 0.1, 1.0, 10.0 or ...
Downey, Peter; Zalewski, Adrian; Rubio, Gabriel R.; Liu, Jing; Homburger, Julian R.; Grunwald, Zachary; Qi, Wei; Bollensdorff, Christian; Thanaporn, Porama; Ali, Ayyaz; Riemer, Kirk; Kohl, Peter; Mochly-Rosen, Daria; Gerstenfeld, Edward; Large, Stephen; Ali, Ziad; Ashley, Euan
2016-01-01
Background Survival after sudden cardiac arrest is limited by post-arrest myocardial dysfunction but understanding of this phenomenon is constrained by lack of data from a physiological model of disease. In this study, we established an in vivo model of cardiac arrest and resuscitation, characterized the biology of the associated myocardial dysfunction, and tested novel therapeutic strategies. Methods We developed rodent models of in vivo post-arrest myocardial dysfunction using extra-corporeal membrane oxygenation (ECMO) resuscitation followed by invasive hemodynamics measurement. In post-arrest isolated cardiomyocytes, we assessed mechanical load and Ca2+ induced Ca2+ release (CICR) simultaneously using the micro-carbon-fiber technique and observed reduced function and myofilament calcium sensitivity. We used a novel-designed fiber optic catheter imaging system, and a genetically encoded calcium sensor GCaMP6f, to image CICR in vivo. Results We found potentiation of CICR in isolated cells from this ECMO model and also in cells isolated from an ischemia-reperfusion Langendorff model perfused with oxygenated blood from an arrested animal, but not when reperfused in saline. We established that CICR potentiation begins in vivo. The augmented CICR observed post-arrest was mediated by the activation of Ca2+/calmodulin kinase II (CaMKII). Increased phosphorylation of CaMKII, phospholamban and ryanodine receptor 2 (RyR2) was detected in the post-arrest period. Exogenous adrenergic activation in vivo recapitulated Ca2+ potentiation but was associated with lesser CaMKII activation. Since oxidative stress and aldehydic adduct formation were high post arrest, we tested a small molecule activator of aldehyde dehydrogenase type 2, Alda-1, which reduced oxidative stress, restored calcium and CaMKII homeostasis, and improved cardiac function and post-arrest outcome in vivo. Conclusions Cardiac arrest and reperfusion lead to CaMKII activation and calcium long-term potentiation which support cardiomyocyte contractility in the face of impaired post-ischemic myofilament calcium sensitivity. Alda-1 mitigates these effects, normalizes calcium cycling and improves outcome. PMID:27582424
Doan, Lisa V; Eydlin, Olga; Piskoun, Boris; Kline, Richard P; Recio-Pinto, Esperanza; Rosenberg, Andrew D; Blanck, Thomas J J; Xu, Fang
2014-01-01
Neuraxial local anesthetics may have neurological complications thought to be due to neurotoxicity. A primary site of action of local anesthetics is the dorsal root ganglia (DRG) neuron. Physiologic differences have been noted between young and adult DRG neurons; hence, the authors examined whether there were any differences in lidocaine-induced changes in calcium and lidocaine toxicity in neonatal and adult rat DRG neurons. DRG neurons were cultured from postnatal day 7 (P7) and adult rats. Lidocaine-induced changes in cytosolic calcium were examined with the calcium indicator Fluo-4. Cells were incubated with varying concentrations of lidocaine and examined for viability using calcein AM and ethidium homodimer-1 staining. Live imaging of caspase-3/7 activation was performed after incubation with lidocaine. The mean KCl-induced calcium transient was greater in P7 neurons (P < 0.05), and lidocaine significantly inhibited KCl-induced calcium responses in both ages (P < 0.05). Frequency distribution histograms of KCl-evoked calcium increases were more heterogeneous in P7 than in adult neurons. With lidocaine, KCl-induced calcium transients in both ages became more homogeneous but remained different between the groups. Interestingly, cell viability was decreased by lidocaine in a dose-dependent manner similarly in both ages. Lidocaine treatment also activated caspase-3/7 in a dose- and time-dependent manner similarly in both ages. Despite physiological differences in P7 and adult DRG neurons, lidocaine cytotoxicity is similar in P7 and adult DRG neurons in vitro. Differences in lidocaine- and KCl-evoked calcium responses suggest the similarity in lidocaine cytotoxicity involves other actions in addition to lidocaine-evoked effects on cytosolic calcium responses.
Doan, Lisa V.; Eydlin, Olga; Piskoun, Boris; Kline, Richard P; Recio-Pinto, Esperanza; Rosenberg, Andrew D; Blanck, Thomas JJ; Xu, Fang
2013-01-01
Background Neuraxial local anesthetics may have neurological complications thought to be due to neurotoxicity. A primary site of action for local anesthetics is the dorsal root ganglia (DRG) neuron. Physiologic differences have been noted between young and adult DRG neurons; hence, we examined whether there were differences in lidocaine-induced changes in calcium and lidocaine toxicity in neonatal and adult rat DRG neurons. Methods DRG neurons were cultured from postnatal day 7 (P7) and adult rats. Lidocaine-induced changes in cytosolic calcium were examined with the calcium indicator Fluo-4. Cells were incubated with varying concentrations of lidocaine and examined for viability using calcein AM and ethidium homodimer-1 staining. Live imaging of caspase-3/7 activation was performed after incubation with lidocaine. Results The mean KCl-induced calcium transient was greater in P7 neurons (p < 0.05), and lidocaine significantly inhibited KCl-induced calcium responses in both ages (p < 0.05). Frequency distribution histograms of KCl-evoked calcium increases were more heterogeneous in P7 than in adult neurons. With lidocaine, KCl-induced calcium transients in both ages became more homogeneous but remained different between the groups. Interestingly cell viability was decreased by lidocaine in a dose-dependent manner similarly in both ages. Lidocaine treatment also activated caspase-3/7 in a dose- and time-dependent manner similarly in both ages. Conclusions Despite physiological differences in P7 and adult DRG neurons, lidocaine cytotoxicity is similar in P7 and adult DRG neurons in vitro. Differences in lidocaine- and KCl-evoked calcium responses suggest the similarity in lidocaine cytotoxicity involves other actions in addition to lidocaine-evoked effects on cytosolic calcium responses. PMID:23851347
Shen, Huafeng; Ahearn, Thomas U; Bostick, Roberd M
2015-03-01
Calcium and vitamin D modify the molecular phenotypic profiles of colon crypts in the normal colorectal mucosa of colorectal adenoma patients, but their effects on crypt morphology (length, perimeter, and area) are unknown. We analyzed data from a previously conducted pilot, randomized, double-blind, placebo-controlled 2 × 2 factorial chemoprevention clinical trial of supplemental calcium 2000 mg/d and vitamin D3 800 IU/d, alone and in combination, versus placebo over 6 mo. Colorectal crypt length, perimeter, and area in the normal-appearing rectal mucosa were quantified by image analysis. The mean crypt length increased by 1% (P=0.92) in the calcium group, and decreased by 2% (P=0.69) and 4% (P=0.40) in the vitamin D and calcium plus vitamin D groups, respectively, relative to the placebo group. The mean crypt perimeter decreased by 2% (P=0.70) and 4% (P=0.40) in the vitamin D and calcium plus vitamin D groups, respectively, relative to the placebo group, but did not change appreciably in the calcium group. The mean crypt area decreased by 2% (P=0.74), 5% (P=0.41) and 7% (P=0.30) in the calcium, vitamin D and calcium plus vitamin D groups, respectively, relative to the placebo group. Calcium and/or vitamin D3 supplementation do not appear to appreciably change crypt morphology in the normal colorectal mucosa of sporadic adenoma patients. These results, taken together with previous findings, support the use of molecular phenotypic over morphologic pre-neoplastic biomarkers of risk for colorectal neoplasms. © 2013 Wiley Periodicals, Inc.
Hibberd, Timothy J; Travis, Lee; Wiklendt, Lukasz; Costa, Marcello; Brookes, Simon J H; Hu, Hongzhen; Keating, Damien J; Spencer, Nick J
2018-01-01
The gastrointestinal tract contains its own independent population of sensory neurons within the gut wall. These sensory neurons have been referred to as intrinsic primary afferent neurons (IPANs) and can be identified by immunoreactivity to calcitonin gene-related peptide (CGRP) in mice. A common feature of IPANs is a paucity of fast synaptic inputs observed during sharp microelectrode recordings. Whether this is observed using different recording techniques is of particular interest for understanding the physiology of these neurons and neural circuit modeling. Here, we imaged spontaneous and evoked activation of myenteric neurons in isolated whole preparations of mouse colon and correlated recordings with CGRP and nitric oxide synthase (NOS) immunoreactivity, post hoc. Calcium indicator fluo 4 was used for this purpose. Calcium responses were recorded in nerve cell bodies located 5-10 mm oral to transmural electrical nerve stimuli. A total of 618 recorded neurons were classified for CGRP or NOS immunoreactivity. Aboral electrical stimulation evoked short-latency calcium transients in the majority of myenteric neurons, including ~90% of CGRP-immunoreactive Dogiel type II neurons. Activation of Dogiel type II neurons had a time course consistent with fast synaptic transmission and was always abolished by hexamethonium (300 μM) and by low-calcium Krebs solution. The nicotinic receptor agonist 1,1-dimethyl-4-phenylpiperazinium iodide (during synaptic blockade) directly activated Dogiel type II neurons. The present study suggests that murine colonic Dogiel type II neurons receive prominent fast excitatory synaptic inputs from hexamethonium-sensitive neural pathways. NEW & NOTEWORTHY Myenteric neurons in isolated mouse colon were recorded using calcium imaging and then neurochemically defined. Short-latency calcium transients were detected in >90% of calcitonin gene-related peptide-immunoreactive neurons to electrical stimulation of hexamethonium-sensitive pathways. Putative sensory Dogiel type II calcitonin gene-related peptide-immunoreactive myenteric neurons may receive widespread fast synaptic inputs in mouse colon.
ATP Releasing Connexin 30 Hemichannels Mediate Flow-Induced Calcium Signaling in the Collecting Duct
Svenningsen, Per; Burford, James L.; Peti-Peterdi, János
2013-01-01
ATP in the renal tubular fluid is an important regulator of salt and water reabsorption via purinergic calcium signaling that involves the P2Y2 receptor, ENaC, and AQP2. Recently, we have shown that connexin (Cx) 30 hemichannels are localized to the non-junctional apical membrane of cells in the distal nephron-collecting duct (CD) and release ATP into the tubular fluid upon mechanical stimuli, leading to reduced salt and water reabsorption. Cx30−/− mice show salt-dependent elevations in BP and impaired pressure-natriuresis. Thus, we hypothesized that increased tubular flow rate leads to Cx30-dependent purinergic intracellular calcium ([Ca2+]i) signaling in the CD. Cortical CDs (CCDs) from wild type and Cx30−/− mice were freshly dissected and microperfused in vitro. Using confocal fluorescence imaging and the calcium-sensitive fluorophore pair Fluo-4 and Fura Red, we found that increasing tubular flow rate from 2 to 20 nl/min caused a significant 2.1-fold elevation in [Ca2+]i in wild type CCDs. This response was blunted in Cx30−/− CCDs ([Ca2+]i increased only 1.2-fold, p < 0.0001 vs. WT, n = 6 each). To further test our hypothesis we performed CD [Ca2+]i imaging in intact mouse kidneys in vivo using multiphoton microscopy and micropuncture delivery of the calcium-sensitive fluorophore Rhod-2. We found intrinsic, spontaneous [Ca2+]i oscillations in free-flowing CDs of wild type but not Cx30−/− mice. The [Ca2+]i oscillations were sensitive also to P2-receptor inhibition by suramin. Taken together, these data confirm that mechanosensitive Cx30 hemichannels mediate tubular ATP release and purinergic calcium signaling in the CD which mechanism plays an important role in the regulation of CD salt and water reabsorption. PMID:24137132
NASA Astrophysics Data System (ADS)
Deepa, Manchala; Sudhakar, Palagiri; Nagamadhuri, Kandula Venkata; Balakrishna Reddy, Kota; Giridhara Krishna, Thimmavajjula; Prasad, Tollamadugu Naga Venkata Krishna Vara
2015-06-01
Nanoscale materials, whose size typically falls below 100 nm, exhibit novel chemical, physical and biological properties which are different from their bulk counterparts. In the present investigation, we demonstrated that nanoscale calcium oxide particles (n-CaO) could transport through phloem tissue of groundnut unlike the corresponding bulk materials. n-CaO particles are prepared using sol-gel method. The size of the as prepared n-CaO measured (69.9 nm) using transmission electron microscopic technique (TEM). Results of the hydroponics experiment using solution culture technique revealed that foliar application of n-CaO at different concentrations (10, 50, 100, 500, 1,000 ppm) on groundnut plants confirmed the entry of calcium into leaves and stems through phloem compared to bulk source of calcium sprayed (CaO and CaNO3). After spraying of n-CaO, calcium content in roots, shoots and leaves significantly increased. Based on visual scoring of calcium deficiency correction and calcium content in plant parts, we may establish the fact that nanoscale calcium oxide particles (size 69.9 nm) could move through phloem tissue in groundnut. This is the first report on phloem transport of nanoscale calcium oxide particles in plants and this result points to the use of nanoscale calcium oxide particles as calcium source to the plants through foliar application, agricultural crops in particular, as bulk calcium application through foliar nutrition is restricted due to its non-mobility in phloem.
Sobolewski, Peter; Kandel, Judith; Klinger, Alexandra L.
2011-01-01
Gas embolism is a serious complication of decompression events and clinical procedures, but the mechanism of resulting injury remains unclear. Previous work has demonstrated that contact between air microbubbles and endothelial cells causes a rapid intracellular calcium transient and can lead to cell death. Here we examined the mechanism responsible for the calcium rise. Single air microbubbles (50–150 μm), trapped at the tip of a micropipette, were micromanipulated into contact with individual human umbilical vein endothelial cells (HUVECs) loaded with Fluo-4 (a fluorescent calcium indicator). Changes in intracellular calcium were then recorded via epifluorescence microscopy. First, we confirmed that HUVECs rapidly respond to air bubble contact with a calcium transient. Next, we examined the involvement of extracellular calcium influx by conducting experiments in low calcium buffer, which markedly attenuated the response, or by pretreating cells with stretch-activated channel blockers (gadolinium chloride or ruthenium red), which abolished the response. Finally, we tested the role of intracellular calcium release by pretreating cells with an inositol 1,4,5-trisphosphate (IP3) receptor blocker (xestospongin C) or phospholipase C inhibitor (neomycin sulfate), which eliminated the response in 64% and 67% of cases, respectively. Collectively, our results lead us to conclude that air bubble contact with endothelial cells causes an influx of calcium through a stretch-activated channel, such as a transient receptor potential vanilloid family member, triggering the release of calcium from intracellular stores via the IP3 pathway. PMID:21633077
Liu, Siyu; Barry, Elizabeth L; Baron, John A; Rutherford, Robin E; Seabrook, March E; Bostick, Roberd M
2017-02-01
APC/β-catenin pathway malfunction is a common and early event in colorectal carcinogenesis. To assess calcium and vitamin D effects on the APC/β-catenin pathway in the normal-appearing colorectal mucosa of sporadic colorectal adenoma patients, nested within a larger randomized, double-blind, placebo-controlled, partial 2 × 2 factorial chemoprevention clinical trial of supplemental calcium (1200 mg daily) and vitamin D (1000 IU daily), alone and in combination versus placebo, we assessed APC, β-catenin, and E-cadherin expression in colon crypts in normal-appearing rectal mucosa biopsies from 104 participants at baseline and 1-yr follow up using standardized, automated immunohistochemistry and quantitative image analysis. For vitamin D versus no vitamin D, the ratio of APC expression to β-catenin expression in the upper 40% (differentiation zone) of crypts (APC/β-catenin score) increased by 28% (P = 0.02), for calcium versus no calcium it increased by 1% (P = 0.88), and for vitamin D + calcium versus calcium by 35% (P = 0.01). Total E-cadherin expression increased by 7% (P = 0.35) for vitamin D versus no vitamin D, 8% (P = 0.31) for calcium versus no calcium, and 12% (P = 0.21) for vitamin D + calcium versus calcium. These results support (i) that vitamin D, alone or in combination with calcium, may modify APC, β-catenin, and E-cadherin expression in humans in directions hypothesized to reduce risk for colorectal neoplasms; (ii) vitamin D as a potential chemopreventive agent against colorectal neoplasms; and (iii) the potential of APC, β-catenin, and E-cadherin expression as treatable, pre-neoplastic risk biomarkers for colorectal neoplasms. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Xu, Pengfei; Shen, Zhiwei; Zhang, Baolin; Wang, Jun; Wu, Renhua
2016-12-01
Superparamagnetic iron oxide nanoparticles (SPIONs) as T2 contrast agents have great potential to sense calcium ion (Ca2+) using magnetic resonance imaging (MRI). Here we prepared calcium-responsive SPIONs for MRI, formed by combining poly(ethylene glycol) (PEG) and polyethylenimine (PEI) coated iron oxide nanoparticle (PEI/PEG-SPIONs) contrast agents with the straightforward calcium-sensing compound EGTA (ethylene glycol tetraacetic acid). EGTA was conjugated onto PEI/PEG-SPIONs using EDC/sulfo-NHS method. EGTA-SPIONs were characterized using TEM, XPS, DSL, TGA and SQUIID. DSL results show that the SPIONs aggregate in the presence of Ca2+. MRI analyses indicate that the water proton T2 relaxation rates in HEPES suspensions of the EGTA-SPIONs significantly increase with the calcium concentration because the SPIONs aggregate in the presence of Ca2+. The T2 values decreased 25% when Ca2+ concentration decreased from 1.2 to 0.8 mM. The aggregation of EGTA-SPIONs could be reversed by EDTA. EGTA-SPIONs have potential as smart contrast agents for Ca2+-sensitive MRI.
Richhariya, Shlesha; Jayakumar, Siddharth; Abruzzi, Katharine; Rosbash, Michael; Hasan, Gaiti
2017-02-14
Transcriptional regulation by Store-operated Calcium Entry (SOCE) is well studied in non-excitable cells. However, the role of SOCE has been poorly documented in neuronal cells with more complicated calcium dynamics. Previous reports demonstrated a requirement for SOCE in neurons that regulate Drosophila flight bouts. We refine this requirement temporally to the early pupal stage and use RNA-sequencing to identify SOCE mediated gene expression changes in the developing Drosophila pupal nervous system. Down regulation of dStim, the endoplasmic reticular calcium sensor and a principal component of SOCE in the nervous system, altered the expression of 131 genes including Ral, a small GTPase. Disruption of Ral function in neurons impaired flight, whereas ectopic expression of Ral in SOCE-compromised neurons restored flight. Through live imaging of calcium transients from cultured pupal neurons, we confirmed that Ral does not participate in SOCE, but acts downstream of it. These results identify neuronal SOCE as a mechanism that regulates expression of specific genes during development of the pupal nervous system and emphasizes the relevance of SOCE-regulated gene expression to flight circuit maturation.
Huston, Robert K; Christensen, J Mark; Alshahrani, Sultan M; Mohamed, Sumeia M; Clark, Sara M; Nason, Jeffrey A; Wu, Ying Xing
2015-01-01
Previous studies of compatibility of calcium chloride (CaCl2) and phosphates have not included particle counts in the range specified by the United States Pharmacopeia. Micro-flow imaging techniques have been shown to be comparable to light obscuration when determining particle count and size in pharmaceutical solutions. The purpose of this study was to do compatibility testing for parenteral nutrition (PN) solutions containing CaCl2 using dynamic light scattering and micro-flow imaging techniques. Solutions containing TrophAmine (Braun Medical Inc, Irvine, CA), CaCl2, and sodium phosphate (NaPhos) were compounded with and without cysteine. All solutions contained standard additives to neonatal PN solutions including dextrose, trace metals, and electrolytes. Control solutions contained no calcium or phosphate. Solutions were analyzed for particle size and particle count. Means of Z-average particle size and particle counts of controls were determined. Study solutions were compared to controls and United States Pharmacopeia (USP) Chapter 788 guidelines. The maximum amount of Phos that was compatible in solutions that contained at least 10 mmol/L of Ca in 2.5% amino acids (AA) was determined. Compatibility of these solutions was verified by performing analyses of 5 repeats of these solutions. Microscopic analyses of the repeats were also performed. Amounts of CaCl2 and NaPhos that were compatible in solutions containing 1.5%, 2%, 2.5%, and 3% AA were determined. The maximum amount of NaPhos that could be added to TrophAmine solutions of > = 2.5% AA containing at least 10 mmol/L of CaCl2 was 7.5 mmol/L. Adding 50 mg/dL of cysteine increased the amount of NaPhos that could be added to solutions containing 10 mmol/L of CaCl2 to 10 mmol/L. Calcium chloride can be added to neonatal PN solutions containing NaPhos in concentrations that can potentially provide an intravenous intake of adequate amounts of calcium and phosphorus.
Ziegler, Andreas; Hagedorn, Monica; Ahearn, Gregory A; Carefoot, Thomas H
2007-01-01
Terrestrial isopods moult first the posterior and then the anterior half of the body. During the moulting cycle they retain a significant fraction of cuticular calcium partly by storing it in sternal CaCO(3) deposits. We analysed the calcium content in whole Ligia hawaiiensis and the calcium distribution between the posterior, the anterior ventral, and the anterior dorsal cuticle during four stages of the moulting cycle. The results indicate that: (1) overall, about 80% of the calcium is retained and 20% is lost with the exuviae, (2) in premoult 68% of the calcium in the posterior cuticle is resorbed (23% moved to the anterior ventral cuticle, 17% to the anterior dorsal cuticle, and the remaining 28% to internal tissues), (3) after the posterior moult 83% of the calcium in the anterior cuticle is shifted to the posterior cuticle and possibly to internal storage sites, (4) following the anterior moult up to 54% of the calcium in the posterior cuticle is resorbed and used to mineralise the new anterior cuticle. (45)Ca-uptake experiments suggest that up to 80% of calcium lost with the anterior exuviae may be regained after its ingestion. Whole body calcium of Ligia hawaiiensis is only 0.7 times that of the fully terrestrial isopods. These terrestrial species can retain only 48% of whole body calcium, suggesting that the amount of calcium that can be retained by shifting it between the anterior and posterior integument is limited. We propose that fully terrestrial Oniscidea rely to a larger degree on other calcium sources like internal stores and uptake from the ingested exuviae.
Yan, Yuhui; Shen, Feng-Yi; Agresti, Michael; Zhang, Lin-Ling; Matloub, Hani S; LoGiudice, John A; Havlik, Robert; Li, Jifeng; Gu, Yu-Dong; Yan, Ji-Geng
2017-09-01
Peripheral nerve injury can have a devastating effect on daily life. Calcium concentrations in nerve fibers drastically increase after nerve injury, and this activates downstream processes leading to neuron death. Our previous studies showed that calcium-modulating agents decrease calcium accumulation, which aids in regeneration of injured peripheral nerves; however, the optimal therapeutic window for this application has not yet been identified. In this study, we show that calcium clearance after nerve injury is positively correlated with functional recovery in rats suffering from a crushed sciatic nerve injury. After the nerve injury, calcium accumulation increased. Peak volume is from 2 to 8 weeks post injury; calcium accumulation then gradually decreased over the following 24-week period. The compound muscle action potential (CMAP) measurement from the extensor digitorum longus muscle recovered to nearly normal levels in 24 weeks. Simultaneously, real-time polymerase chain reaction results showed that upregulation of calcium-ATPase (a membrane protein that transports calcium out of nerve fibers) mRNA peaked at 12 weeks. These results suggest that without intervention, the peak in calcium-ATPase mRNA expression in the injured nerve occurs after the peak in calcium accumulation, and CMAP recovery continues beyond 24 weeks. Immediately using calcium-modulating agents after crushed nerve injury improved functional recovery. These studies suggest that a crucial time frame in which to initiate effective clinical approaches to accelerate calcium clearance and nerve regeneration would be prior to 2 weeks post injury. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Mapping Calcium Rich Ejecta in Two Type Ia Supernovae
NASA Astrophysics Data System (ADS)
Fesen, Robert
2016-10-01
Type Ia supernovae (SNe Ia) are thermonuclear explosions of white dwarfs (WDs) in close binary systems with either a non-degenerate or WD companion. SN Ia explosion computations are quite challenging, involving a complex interplay of turbulent hydrodynamics, nuclear burning, conduction, radiative transfer in iron-group rich material and possibly magnetic fields leading to significant uncertainties. Several key questions about expansion asymmetries and the overall characteristics of SNe Ia could be resolved if one could obtain direct observations of the internal kinematics and elemental distributions of young SN Ia remnants.We propose to use WFC3/UVIS to obtain images of the normal Type Ia supernova remnant 0519-69.0 and the overluminous Type Ia supernova remnant 0509-67.5 in the LMC. The Ca II on-band F390M filter and off-band F336W and FQ422M filters will be used to determine the spatial extent and density distributions of the Ca-rich ejecta via resonance line absorption. Differences in the observed on and off band Ca II fluxes for LMC stars located behind these young 400 - 600 yr old remnants will yield calcium column density estimates for multiple lines-of-sight within these remnants. These results will be compared to the calcium distribution seen in SN 1885, a subluminous SN Ia in M31, already imaged by HST.The resulting calcium density distribution maps for both a normal and overluminous SN Ia events will provide powerful insights regarding the structure and kinematics of calcium-rich ejecta in three different type Ia subclass events, and unique empirical data with which to test current SN Ia explosion models.
Kaczmarek, B; Sionkowska, A; Kozlowska, J; Osyczka, A M
2018-02-01
Nowadays, fabrication of composite materials based on biopolymers is a rising field due to potential for bone repair and tissue engineering application. Blending of different biopolymers and incorporation of inorganic particles in the blend can lead to new materials with improved physicochemical properties and biocompatibility. In this work 3D porous structures called scaffolds based on chitosan, collagen and hyaluronic acid were obtained through the lyophilization process. Scaffolds were cross-linked by EDC/NHS. Infrared spectra for the materials were made, the percentage of swelling, scaffolds porosity and density, mechanical parameters, thermal stability were studied. Moreover, the scaffolds were used as matrixes for the calcium phosphate in situ precipitation. SEM images were taken and EDX analysis was carried out for calcium and phosphorous content determination in the scaffold. In addition, the adhesion and proliferation of human osteosarcoma SaOS-2 cells was examined on obtained scaffolds. The results showed that the properties of 3D composites cross-linked by EDC/NHS were altered after the addition of 1, 2 and 5% hyaluronic acid. Mechanical parameters, thermal stability and porosity of scaffolds were improved. Moreover, calcium and phosphorous were found in each kind of scaffold. SEM images showed that the precipitation was homogeneously carried in the whole volume of samples. Attachment of SaOS-2 cells to all modified materials was better compared to unmodified control and proliferation of these cells was markedly increased on scaffolds with precipitated calcium phosphate. Obtained materials can provide the support useful in tissue engineering and regenerative medicine. Copyright © 2017 Elsevier B.V. All rights reserved.
Network inference from functional experimental data (Conference Presentation)
NASA Astrophysics Data System (ADS)
Desrosiers, Patrick; Labrecque, Simon; Tremblay, Maxime; Bélanger, Mathieu; De Dorlodot, Bertrand; Côté, Daniel C.
2016-03-01
Functional connectivity maps of neuronal networks are critical tools to understand how neurons form circuits, how information is encoded and processed by neurons, how memory is shaped, and how these basic processes are altered under pathological conditions. Current light microscopy allows to observe calcium or electrical activity of thousands of neurons simultaneously, yet assessing comprehensive connectivity maps directly from such data remains a non-trivial analytical task. There exist simple statistical methods, such as cross-correlation and Granger causality, but they only detect linear interactions between neurons. Other more involved inference methods inspired by information theory, such as mutual information and transfer entropy, identify more accurately connections between neurons but also require more computational resources. We carried out a comparative study of common connectivity inference methods. The relative accuracy and computational cost of each method was determined via simulated fluorescence traces generated with realistic computational models of interacting neurons in networks of different topologies (clustered or non-clustered) and sizes (10-1000 neurons). To bridge the computational and experimental works, we observed the intracellular calcium activity of live hippocampal neuronal cultures infected with the fluorescent calcium marker GCaMP6f. The spontaneous activity of the networks, consisting of 50-100 neurons per field of view, was recorded from 20 to 50 Hz on a microscope controlled by a homemade software. We implemented all connectivity inference methods in the software, which rapidly loads calcium fluorescence movies, segments the images, extracts the fluorescence traces, and assesses the functional connections (with strengths and directions) between each pair of neurons. We used this software to assess, in real time, the functional connectivity from real calcium imaging data in basal conditions, under plasticity protocols, and epileptic conditions.
Allmendinger, Thomas; Kunz, Andreas S; Veyhl-Wichmann, Maike; Ergün, Süleyman; Bley, Thorsten A; Petritsch, Bernhard
2017-01-01
Background Coronary artery calcium (CAC) scoring is a widespread tool for cardiac risk assessment in asymptomatic patients and accompanying possible adverse effects, i.e. radiation exposure, should be as low as reasonably achievable. Purpose To evaluate a new iterative reconstruction (IR) algorithm for dose reduction of in vitro coronary artery calcium scoring at different tube currents. Material and Methods An anthropomorphic calcium scoring phantom was scanned in different configurations simulating slim, average-sized, and large patients. A standard calcium scoring protocol was performed on a third-generation dual-source CT at 120 kVp tube voltage. Reference tube current was 80 mAs as standard and stepwise reduced to 60, 40, 20, and 10 mAs. Images were reconstructed with weighted filtered back projection (wFBP) and a new version of an established IR kernel at different strength levels. Calcifications were quantified calculating Agatston and volume scores. Subjective image quality was visualized with scans of an ex vivo human heart. Results In general, Agatston and volume scores remained relatively stable between 80 and 40 mAs and increased at lower tube currents, particularly in the medium and large phantom. IR reduced this effect, as both Agatston and volume scores decreased with increasing levels of IR compared to wFBP (P < 0.001). Depending on selected parameters, radiation dose could be lowered by up to 86% in the large size phantom when selecting a reference tube current of 10 mAs with resulting Agatston levels close to the reference settings. Conclusion New iterative reconstruction kernels may allow for reduction in tube current for established Agatston scoring protocols and consequently for substantial reduction in radiation exposure. PMID:28607763
Liu, Guang; Badeau, Robert M; Tanimura, Akihiko; Talamo, Barbara R
2006-03-01
Mechanisms by which odorants activate signaling pathways in addition to cAMP are hard to evaluate in heterogeneous mixtures of primary olfactory neurons. We used single cell calcium imaging to analyze the response to odorant through odorant receptor (OR) U131 in the olfactory epithelial cell line Odora (Murrell and Hunter 1999), a model system with endogenous olfactory signaling pathways. Because adenylyl cyclase levels are low, agents activating cAMP formation do not elevate calcium, thus unmasking independent signaling mediated by OR via phospholipase C (PLC), inositol-1,4,5-trisphosphate (IP(3)), and its receptor. Unexpectedly, we found that extracellular calcium is required for odor-induced calcium elevation without the release of intracellular calcium, even though the latter pathway is intact and can be stimulated by ATP. Relevant signaling components of the PLC pathway and G protein isoforms are identified by western blot in Odora cells as well as in olfactory sensory neurons (OSNs), where they are localized to the ciliary zone or cell bodies and axons of OSNs by immunohistochemistry. Biotinylation studies establish that IP(3) receptors type 2 and 3 are at the cell surface in Odora cells. Thus, individual ORs are capable of elevating calcium through pathways not directly mediated by cAMP and this may provide another avenue for odorant signaling in the olfactory system.
Farkas, Michael H; Mojica, Elmer-Rico E; Patel, Minesh; Aga, Diana S; Berry, James O
2009-08-01
Tetracycline antibiotics, such as chlortetracycline (CTC) and tetracycline (TC), are introduced into agricultural lands through the application of manure as fertilizer. These compounds are phytotoxic to certain crop plants, including pinto beans (Phaseolus vulgaris), the species used for this investigation. While the mechanism of this toxicity is not yet understood, CTC is known to be a calcium chelator. We describe here a novel method to show that CTC is taken up by pinto bean plants and chelates calcium in leaves. Cameleon fusion proteins can provide qualitative and quantitative imaging of intracellular calcium levels, but current methodology requires stable transformation. Many plant species, including pinto beans, are not yet transformable using standard Agrobacterium-based protocols. To determine the role of calcium chelation in this plant, a rapid, biolistic method was developed to transiently express the cameleon protein. This method can easily be adapted to other plant systems. Our findings provide evidence that chelation of intracellular calcium by CTC is related to phytotoxic effects caused by this antibiotic in pinto beans. Root uptake of CTC and TC by pinto beans and their translocation to leaves were further verified by fluorescence spectroscopy and liquid chromatography/mass spectrometry, confirming results of the biolistic method that showed calcium chelation by tetracyclines in leaves.
Hou, Jennifer H.; Kralj, Joel M.; Douglass, Adam D.; Engert, Florian; Cohen, Adam E.
2014-01-01
The cardiac action potential (AP) and the consequent cytosolic Ca2+ transient are key indicators of cardiac function. Natural developmental processes, as well as many drugs and pathologies change the waveform, propagation, or variability (between cells or over time) of these parameters. Here we apply a genetically encoded dual-function calcium and voltage reporter (CaViar) to study the development of the zebrafish heart in vivo between 1.5 and 4 days post fertilization (dpf). We developed a high-sensitivity spinning disk confocal microscope and associated software for simultaneous three-dimensional optical mapping of voltage and calcium. We produced a transgenic zebrafish line expressing CaViar under control of the heart-specific cmlc2 promoter, and applied ion channel blockers at a series of developmental stages to map the maturation of the action potential in vivo. Early in development, the AP initiated via a calcium current through L-type calcium channels. Between 90 and 102 h post fertilization (hpf), the ventricular AP switched to a sodium-driven upswing, while the atrial AP remained calcium driven. In the adult zebrafish heart, a sodium current drives the AP in both the atrium and ventricle. Simultaneous voltage and calcium imaging with genetically encoded reporters provides a new approach for monitoring cardiac development, and the effects of drugs on cardiac function. PMID:25309445
Hou, Jennifer H; Kralj, Joel M; Douglass, Adam D; Engert, Florian; Cohen, Adam E
2014-01-01
The cardiac action potential (AP) and the consequent cytosolic Ca(2+) transient are key indicators of cardiac function. Natural developmental processes, as well as many drugs and pathologies change the waveform, propagation, or variability (between cells or over time) of these parameters. Here we apply a genetically encoded dual-function calcium and voltage reporter (CaViar) to study the development of the zebrafish heart in vivo between 1.5 and 4 days post fertilization (dpf). We developed a high-sensitivity spinning disk confocal microscope and associated software for simultaneous three-dimensional optical mapping of voltage and calcium. We produced a transgenic zebrafish line expressing CaViar under control of the heart-specific cmlc2 promoter, and applied ion channel blockers at a series of developmental stages to map the maturation of the action potential in vivo. Early in development, the AP initiated via a calcium current through L-type calcium channels. Between 90 and 102 h post fertilization (hpf), the ventricular AP switched to a sodium-driven upswing, while the atrial AP remained calcium driven. In the adult zebrafish heart, a sodium current drives the AP in both the atrium and ventricle. Simultaneous voltage and calcium imaging with genetically encoded reporters provides a new approach for monitoring cardiac development, and the effects of drugs on cardiac function.
Estimation of urinary stone composition by automated processing of CT images.
Chevreau, Grégoire; Troccaz, Jocelyne; Conort, Pierre; Renard-Penna, Raphaëlle; Mallet, Alain; Daudon, Michel; Mozer, Pierre
2009-10-01
The objective of this article was developing an automated tool for routine clinical practice to estimate urinary stone composition from CT images based on the density of all constituent voxels. A total of 118 stones for which the composition had been determined by infrared spectroscopy were placed in a helical CT scanner. A standard acquisition, low-dose and high-dose acquisitions were performed. All voxels constituting each stone were automatically selected. A dissimilarity index evaluating variations of density around each voxel was created in order to minimize partial volume effects: stone composition was established on the basis of voxel density of homogeneous zones. Stone composition was determined in 52% of cases. Sensitivities for each compound were: uric acid: 65%, struvite: 19%, cystine: 78%, carbapatite: 33.5%, calcium oxalate dihydrate: 57%, calcium oxalate monohydrate: 66.5%, brushite: 75%. Low-dose acquisition did not lower the performances (P < 0.05). This entirely automated approach eliminates manual intervention on the images by the radiologist while providing identical performances including for low-dose protocols.
Roles of calcium and pH in activation of eggs of the medaka fish, Oryzias latipes
1983-01-01
Unfertilized eggs of the medaka fish (Oryzias latipes) were injected with pH-buffered calcium buffers. Medaka egg activation is accompanied by a transient increase in cytoplasmic free calcium (Gilkey, J. C., L. F. Jaffe, E. B. Ridgway, and G. T. Reynolds, 1978, J. Cell Biol., 76:448-466). The calcium buffer injections demonstrated that (a) the threshold free calcium required to elicit the calcium transient and activate the egg is between 1.7 and 5.1 microM at pH 7.0, well below the 30 microM reached during the transient, and (b) buffers which hold free calcium below threshold prevent activation of the buffered region in subsequently fertilized eggs. Therefore an increase in free calcium is necessary and sufficient to elicit the calcium transient, and the calcium transient is necessary to activate the egg. Further, these results are additional proof that the calcium transient is initiated and propagated through the cytoplasm by a mechanism of calcium- stimulated calcium release. Finally, a normal calcium transient must propagate through the entire cytoplasm to ensure normal development. Unfertilized eggs were injected with pH buffers to produce short-term, localized changes in cytoplasmic pH. The eggs were then fertilized at various times after injection. In other experiments, unfertilized and fertilized eggs were exposed to media containing either NH4Cl or CO2 to produce longer term, global changes in cytoplasmic pH. These treatments neither activated the eggs nor interfered with the normal development of fertilized eggs, suggesting that even if a natural change in cytoplasmic pH is induced by activation, it has no role in medaka egg development. The injected pH buffers altered the rate of propagation of the calcium transient through the cytoplasm, suggesting that the threshold free calcium required to trigger calcium-stimulated calcium release might be pH dependent. The results of injection of pH-buffered calcium buffers support this conjecture: for a tenfold increase in hydrogen ion concentration, free calcium must also be raised tenfold to elicit the calcium transient. PMID:6411737
Calcium and nitrogen balance, experiment M007
NASA Technical Reports Server (NTRS)
Whedon, G. D.; Lutwak, L.; Neuman, W. F.; Lachance, P. A.
1971-01-01
The collection of data on the response of the skeletal and muscular systems to 14-day space flights was evaluated for loss of calcium, nitrogen, and other metabolically related elements. Considerable interindividual variability was demonstrated in all experimental factors that were measured. Calcium balance became less positive and urinary phosphate excretion increased substantially in flight despite a reduction in phosphate intake. Patterns of excretion of magnesium, sodium, potassium, and chloride were different for each subject, and, in part, could be correlated with changes in adrenocortical steroid production. The principal hormonal change was a striking decrease during flight in the urinary excretion of 17-hydroxycortocosteroids. Dermal losses of calcium, magnesium, sulfate, and phosphate were insignificant during all three phases.
Influence of polarized PZT on the crystal growth of calcium phosphate
NASA Astrophysics Data System (ADS)
Sun, Xiaodan; Ma, Chunlai; Wang, Yude; Li, Hengde
2002-01-01
The effects of polarization on the crystallization of calcium phosphate are studied in this work. Crystals of calcium phosphate from saturated solution of hydroxyapatite (HA, Ca 10(PO 4) 6(OH) 2) were deposited on the surfaces of ferroelectric ceramics lead zirconate titanium (Pb(Ti,Zr)O 3, PZT). The results of the experiment demonstrated the acceleration effects of polarized PZT on the crystal growth of calcium phosphate. Furthermore, it is indicated that polarization also influenced the orientation of the deposited crystals due to the growth of a layer of (0 0 2) oriented octacalcium phosphate (OCP, Ca 8H 2(PO 4) 6·5H 2O) on the negatively charged surfaces of PZT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marigomez, J.A.; Angulo, E.; Moya, J.
1986-04-01
In order to have a clear image of processes involved in copper bioaccumulation-detoxication mechanisms in the terrestrial slug, Arion ater, the authors planned a histophysiological analysis based on morphometrics and on the variations in morphological characteristics of epithelia. This study is the completion of the histochemical analysis, in which the authors suggest a close relationship between copper and calcium in the digestive gland of Arion ater. They had observed that copper was exclusively stored within calcium cells and that calcium cells secretion was more intensive at higher copper dosages and at larger bioassay times. Therefore, histophysiological analysis was necessary formore » explaining the nature of copper bioaccumulation-detoxication mechanisms.« less
Indoleamines and calcium channels influence morphogenesis in in vitro cultures of Mimosa pudica L.
Ramakrishna, Akula; Giridhar, Parvatam; Ravishankar, G A
2009-12-01
The present article reports the interplay of indoleamine neurohormones viz. serotonin, melatonin and calcium channels on shoot organogenesis in Mimosa pudica L. In vitro grown nodal segments were cultured on MS medium with B5 vitamins containing Serotonin (SER) and Melatonin (MEL) at 100 microM and indoleamine inhibitors viz. serotonin to melatonin conversion inhibitor p-chlorophenylalanine (p-CPA) at 40 microM, serotonin reuptake inhibitor (Prozac) 20 microM. In another set of experiment, calcium at 5 mM, calcium ionophore (A23187) 100 microM, and calcium channel blocker varapamil hydrochloride (1 mM) a calcium chelator EGTA (100 microM) were administered to the culture medium. The percentage of shoot multiplication, endogenous MEL and SER were monitored during shoot organogenesis. At 100 microM SER and MEL treatment 60% and 70% explants responded for shoot multiplication respectively. Medium supplemented with either SER or MEL along with calcium (5 mM) 75%-80% explants responded for organogenesis. SER or MEL along with calcium ionophore (A23187) at 100 microM 70% explants responded for shoot multiplication. p-CPA, prozac, verapamil and EGTA, shoot multiplication was reduced and endogenous pools of SER, MEL decreased by 40-70%. The results clearly demonstrated that indoleamines and calcium channels positively influenced shoot organogenesis in M. pudica L.
Heidarsson, Pétur O; Naqvi, Mohsin M; Otazo, Mariela R; Mossa, Alessandro; Kragelund, Birthe B; Cecconi, Ciro
2014-09-09
Neurodegenerative disorders are strongly linked to protein misfolding, and crucial to their explication is a detailed understanding of the underlying structural rearrangements and pathways that govern the formation of misfolded states. Here we use single-molecule optical tweezers to monitor misfolding reactions of the human neuronal calcium sensor-1, a multispecific EF-hand protein involved in neurotransmitter release and linked to severe neurological diseases. We directly observed two misfolding trajectories leading to distinct kinetically trapped misfolded conformations. Both trajectories originate from an on-pathway intermediate state and compete with native folding in a calcium-dependent manner. The relative probability of the different trajectories could be affected by modulating the relaxation rate of applied force, demonstrating an unprecedented real-time control over the free-energy landscape of a protein. Constant-force experiments in combination with hidden Markov analysis revealed the free-energy landscape of the misfolding transitions under both physiological and pathological calcium concentrations. Remarkably for a calcium sensor, we found that higher calcium concentrations increased the lifetimes of the misfolded conformations, slowing productive folding to the native state. We propose a rugged, multidimensional energy landscape for neuronal calcium sensor-1 and speculate on a direct link between protein misfolding and calcium dysregulation that could play a role in neurodegeneration.
The influence of calcium supplementation on immobilised mixed microflora for biohydrogen production
NASA Astrophysics Data System (ADS)
Lutpi, Nabilah Aminah; Shian, Wong Yee; Izhar, Tengku Nuraiti Tengku; Zainol, Noor Ainee; Kiong, Yiek Wee
2017-04-01
This study is aim to study the effect of calcium as supplement in attached growth system towards the enhancement of the hydrogen production performance. The effects of calcium ion for thermophilic biohydrogen production were studied by using a mixed culture, from palm oil mill effluent sludge and granular activated carbon (GAC) as the support material. Batch experiments were carried out at 60°C by feeding the anaerobic sludge bacteria with sucrose-containing synthetic medium at an initial pH of 5.5 under anaerobic conditions. The repeated batch cultivation process was conducted by adding different concentration of calcium at range 0.025g/L to 0.15g/L. The results showed that the calcium at 0.1 g/L was the optimal concentration to enhance the fermentative hydrogen production under thermophilic (60°C) conditions.
He, Lizhong; Li, Bin; Lu, Xiaomin; Yuan, Lingyun; Yang, Yanjuan; Yuan, Yinghui; Du, Jing; Guo, Shirong
2015-08-25
Hypoxia induces plant stress, particularly in cucumber plants under hydroponic culture. In plants, calcium is involved in stress signal transmission and growth. The ultimate goal of this study was to shed light on the mechanisms underlying the effects of exogenous calcium on the mitochondrial antioxidant system, the activity of respiratory metabolism enzymes, and ion transport in cucumber (Cucumis sativus L. cv. Jinchun No. 2) roots under hypoxic conditions. Our experiments revealed that exogenous calcium reduces the level of reactive oxygen species (ROS) and increases the activity of antioxidant enzymes in mitochondria under hypoxia. Exogenous calcium also enhances the accumulation of enzymes involved in glycolysis and the tricarboxylic acid (TCA) cycle. We utilized fluorescence and ultrastructural cytochemistry methods to observe that exogenous calcium increases the concentrations of Ca(2+) and K(+) in root cells by increasing the activity of plasma membrane (PM) H(+)-ATPase and tonoplast H(+)-ATPase and H(+)-PPase. Overall, our results suggest that hypoxic stress has an immediate and substantial effect on roots. Exogenous calcium improves metabolism and ion transport in cucumber roots, thereby increasing hypoxia tolerance in cucumber.
USDA-ARS?s Scientific Manuscript database
A laboratory experiment was conducted to evaluate and compare topical and fully mixed treatments of soybean peroxidase and calcium peroxide (SBP/CaO2) for reducing odorous volatile organic compound (VOC) emissions from swine manure slurry. The five treatments consisted of a control, the fully mixed ...
Silicon carbide/calcium aluminosilicate: A notch-insensitive ceramic-matrix composite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cady, C.M.; Mackin, T.J.; Evans, A.G.
Tension experiments performed on a 0/90 laminated silicon carbide/calcium aluminosilicate composite at room temperature establish that this material is notch insensitive. Multiple matrix cracking is determined to be the stress redistribution mechanism. This mechanism is found to provide a particularly efficient means for creating local inelastic strains, which eliminate stress concentrations.
Soares, Alcimar B; Ticianeli, José G; Soares, Letícia B M; Amaro, George
2013-01-01
High concentrations of inorganic phosphate (Pi) resulted from the hydrolysis of ATP is strongly associated to the weakness of the contractile mechanism of muscles due to its attractiveness to calcium. The majority of the experiments to study such effect are conducted in vitro. This work investigates the effects of different concentrations of Pi, induced by the injection of potassium phosphate in live animals, in the precipitation with serum calcium and the generation of calcium phosphate composites. The experiments were also designed to find out the ideal amount of potassium phosphate to induce an effective reaction. Potassium phosphate was injected in Wistar rats, randomly separated and distributed into seven groups. Group I was injected with 0.5 ml of saline solution (control) and groups II through VII were injected with 0.5, 1.5, 2.5, 5.0, 7.5 and 10.0 mg/kg of potassium phosphate, respectively. Blood collected from the inferior vena cava was submitted to biochemical analyses to measure the concentrations of calcium, Pi, urea and creatinine. The results showed that Pi, induced by the injection of potassium phosphate in live animals, causes precipitation with serum calcium, with statistically significant differences between the control and the treatment groups for doses up to 5.0 mg/kg. No statistically significant differences were found between the different doses and the concentration of urea and creatinine in the plasma. We conclude that potassium phosphate can be used to induce serum calcium precipitation in-vivo, with minor effects on other physiological variables, and the ideal dose to do so is 5.0 mg/kg. PMID:24379908
Ruiz, Sandra R; Espín, Silvia; Sánchez-Virosta, Pablo; Salminen, Juha-Pekka; Lilley, Thomas M; Eeva, Tapio
2017-04-01
Vitamin and carotenoid deficiency may impair development in free-living vertebrates, because of the importance of these micronutrients to growth, antioxidant defense and calcium regulation. Micronutrient and calcium insufficiency can be intensified by metal pollution which can interfere with nutrient homeostasis or indirectly reduce food availability. Furthermore, absorption of dietary heavy metals is dependent on food calcium and vitamin levels. We investigated the effect of calcium on plasma vitamin and carotenoid profiles and how these affected growth and survival in two passerine birds with different calcium turnover living along a metal pollution gradient. Vitamins (A, D 3 and E) and carotenoids were quantified from blood plasma of great tit (Parus major) and pied flycatcher (Ficedula hypoleuca) nestlings. Metal concentrations in soil and in feces from the same nestlings were used to assess the exposure to air pollution. Additionally, we examined the vitamin level variation between developmental stages (eggs and nestlings within the same brood). Our results showed that generally higher concentrations of vitamins and carotenoids circulate in blood of great tits than in pied flycatchers. In general, birds inhabiting the polluted zone presented lower concentrations of the studied micronutrients. Calcium supplementation and metal pollution decreased vitamin A concentration in pied flycatcher, but not in great tit, while vitamin A affected growth and survival in great tit and pied flycatcher respectively. Our results suggest that populations under exposure to metal pollution may experience increased vitamin A deficiency, and that the two passerine species, while obtaining similar micronutrients in food, respond differently to environmental disturbance of nutrients. Copyright © 2017 Elsevier Inc. All rights reserved.
Basso, Daniela; Gnatta, Elisa; Padoan, Andrea; Fogar, Paola; Furlanello, Sara; Aita, Ada; Bozzato, Dania; Zambon, Carlo-Federico; Arrigoni, Giorgio; Frasson, Chiara; Franchin, Cinzia; Moz, Stefania; Brefort, Thomas; Laufer, Thomas; Navaglia, Filippo; Pedrazzoli, Sergio; Basso, Giuseppe; Plebani, Mario
2017-10-17
Tumor genetics and escape from immune surveillance concur in the poor prognosis of PDAC. In this study an experimental model was set up to verify whether SMAD4 , deleted in about 55% PDAC and associated with poor prognosis, is involved in determining immunosuppression through Exosomes (Exo). Potential mechanisms and mediators underlying SMAD4 -dependent immunosuppression were evaluated by studying intracellular calcium (Fluo-4), Exo-miRNAs (microarray) and Exo-proteins (SILAC). Two PDAC cell lines expressing (BxPC3- SMAD4 +) or not-expressing (BxPC3) SMAD4 were used to prepare Exo-enriched conditioned media, employed in experiments with blood donors PBMCs. Exo expanded myeloid derived suppressor cells (gMDSC and mMDSC, flow cytometry) and altered intracellular calcium fluxes in an SMAD4 dependent manner. BxPC3- SMAD4 +, but mainly BxPC3 Exo, increased calcium fluxes of PBMCs ( p = 0.007) and this increased intracellular calcium trafficking characterized mMDSCs. The analysis of de-regulated Exo-miRNAs and transfection experiments revealed hsa-miR-494-3p and has-miR-1260a as potential mediators of SMAD4- associated de-regulated calcium fluxes. Eleven main biological processes were identified by the analysis of SMAD4 -associated de-regulated Exo-proteins, including translation, cell adhesion, cell signaling and glycolysis. A reverse Warburg effect was observed by treating PBMCs with PDAC-derived Exo: BxPC3 Exo induced a higher glucose consumption and lactate production than BxPC3- SMAD4 + Exo. PDAC-derived Exo from cells with , but mainly from those without SMAD4 expression, create an immunosuppressive myeloid cell background by increasing calcium fluxes and glycolysis through the transfer of SMAD4 -related differentially expressed miRNAs and proteins.
Basso, Daniela; Gnatta, Elisa; Padoan, Andrea; Fogar, Paola; Furlanello, Sara; Aita, Ada; Bozzato, Dania; Zambon, Carlo-Federico; Arrigoni, Giorgio; Frasson, Chiara; Franchin, Cinzia; Moz, Stefania; Brefort, Thomas; Laufer, Thomas; Navaglia, Filippo; Pedrazzoli, Sergio; Basso, Giuseppe; Plebani, Mario
2017-01-01
Tumor genetics and escape from immune surveillance concur in the poor prognosis of PDAC. In this study an experimental model was set up to verify whether SMAD4, deleted in about 55% PDAC and associated with poor prognosis, is involved in determining immunosuppression through Exosomes (Exo). Potential mechanisms and mediators underlying SMAD4-dependent immunosuppression were evaluated by studying intracellular calcium (Fluo-4), Exo-miRNAs (microarray) and Exo-proteins (SILAC). Two PDAC cell lines expressing (BxPC3-SMAD4+) or not-expressing (BxPC3) SMAD4 were used to prepare Exo-enriched conditioned media, employed in experiments with blood donors PBMCs. Exo expanded myeloid derived suppressor cells (gMDSC and mMDSC, flow cytometry) and altered intracellular calcium fluxes in an SMAD4 dependent manner. BxPC3-SMAD4+, but mainly BxPC3 Exo, increased calcium fluxes of PBMCs (p = 0.007) and this increased intracellular calcium trafficking characterized mMDSCs. The analysis of de-regulated Exo-miRNAs and transfection experiments revealed hsa-miR-494-3p and has-miR-1260a as potential mediators of SMAD4-associated de-regulated calcium fluxes. Eleven main biological processes were identified by the analysis of SMAD4-associated de-regulated Exo-proteins, including translation, cell adhesion, cell signaling and glycolysis. A reverse Warburg effect was observed by treating PBMCs with PDAC-derived Exo: BxPC3 Exo induced a higher glucose consumption and lactate production than BxPC3-SMAD4+ Exo. Conclusion: PDAC-derived Exo from cells with, but mainly from those without SMAD4 expression, create an immunosuppressive myeloid cell background by increasing calcium fluxes and glycolysis through the transfer of SMAD4-related differentially expressed miRNAs and proteins. PMID:29156694
NASA Astrophysics Data System (ADS)
Cohen, Noam; Schejter, Adi; Farah, Nairouz; Shoham, Shy
2016-03-01
Studying the responses of retinal ganglion cell (RGC) populations has major significance in vision research. Multiphoton imaging of optogenetic probes has recently become the leading approach for visualizing neural populations and has specific advantages for imaging retinal activity during visual stimulation, because it leads to reduced direct photoreceptor excitation. However, multiphoton retinal activity imaging is not straightforward: point-by-point scanning leads to repeated neural excitation while optical access through the rodent eye in vivo has proven highly challenging. Here, we present two enabling optical designs for multiphoton imaging of responses to visual stimuli in mouse retinas expressing calcium indicators. First, we present an imaging solution based on Scanning Line Temporal Focusing (SLITE) for rapidly imaging neuronal activity in vitro. In this design, we scan a temporally focused line rather than a point, increasing the scan speed and reducing the impact of repeated excitation, while maintaining high optical sectioning. Second, we present the first in vivo demonstration of two-photon imaging of RGC activity in the mouse retina. To obtain these cellular resolution recordings we integrated an illumination path into a correction-free imaging system designed using an optical model of the mouse eye. This system can image at multiple depths using an electronically tunable lens integrated into its optical path. The new optical designs presented here overcome a number of outstanding obstacles, allowing the study of rapid calcium- and potentially even voltage-indicator signals both in vitro and in vivo, thereby bringing us a step closer toward distributed monitoring of action potentials.
Elevated correlations in neuronal ensembles of mouse auditory cortex following parturition.
Rothschild, Gideon; Cohen, Lior; Mizrahi, Adi; Nelken, Israel
2013-07-31
The auditory cortex is malleable by experience. Previous studies of auditory plasticity have described experience-dependent changes in response profiles of single neurons or changes in global tonotopic organization. However, experience-dependent changes in the dynamics of local neural populations have remained unexplored. In this study, we examined the influence of a dramatic yet natural experience in the life of female mice, giving birth and becoming a mother on single neurons and neuronal ensembles in the primary auditory cortex (A1). Using in vivo two-photon calcium imaging and electrophysiological recordings from layer 2/3 in A1 of mothers and age-matched virgin mice, we monitored changes in the responses to a set of artificial and natural sounds. Population dynamics underwent large changes as measured by pairwise and higher-order correlations, with noise correlations increasing as much as twofold in lactating mothers. Concomitantly, changes in response properties of single neurons were modest and selective. Remarkably, despite the large changes in correlations, information about stimulus identity remained essentially the same in the two groups. Our results demonstrate changes in the correlation structure of neuronal activity as a result of a natural life event.
Sodium entry through endothelial store-operated calcium entry channels: regulation by Orai1
Xu, Ningyong; Cioffi, Donna L.; Alexeyev, Mikhail; Rich, Thomas C.
2014-01-01
Orai1 interacts with transient receptor potential protein of the canonical subfamily (TRPC4) and contributes to calcium selectivity of the endothelial cell store-operated calcium entry current (ISOC). Orai1 silencing increases sodium permeability and decreases membrane-associated calcium, although it is not known whether Orai1 is an important determinant of cytosolic sodium transitions. We test the hypothesis that, upon activation of store-operated calcium entry channels, Orai1 is a critical determinant of cytosolic sodium transitions. Activation of store-operated calcium entry channels transiently increased cytosolic calcium and sodium, characteristic of release from an intracellular store. The sodium response occurred more abruptly and returned to baseline more rapidly than did the transient calcium rise. Extracellular choline substitution for sodium did not inhibit the response, although 2-aminoethoxydiphenyl borate and YM-58483 reduced it by ∼50%. After this transient response, cytosolic sodium continued to increase due to influx through activated store-operated calcium entry channels. The magnitude of this sustained increase in cytosolic sodium was greater when experiments were conducted in low extracellular calcium and when Orai1 expression was silenced; these two interventions were not additive, suggesting a common mechanism. 2-Aminoethoxydiphenyl borate and YM-58483 inhibited the sustained increase in cytosolic sodium, only in the presence of Orai1. These studies demonstrate that sodium permeates activated store-operated calcium entry channels, resulting in an increase in cytosolic sodium; the magnitude of this response is determined by Orai1. PMID:25428882
Surface roughness and packaging tightness affect calcium lactate crystallization on Cheddar cheese.
Rajbhandari, P; Kindstedt, P S
2014-01-01
Calcium lactate crystals that sometimes form on Cheddar cheese surfaces are a significant expense to manufacturers. Researchers have identified several postmanufacture conditions such as storage temperature and packaging tightness that contribute to crystal formation. Anecdotal reports suggest that physical characteristics at the cheese surface, such as roughness, cracks, and irregularities, may also affect crystallization. The aim of this study was to evaluate the combined effects of surface roughness and packaging tightness on crystal formation in smoked Cheddar cheese. Four 20-mm-thick cross-section slices were cut perpendicular to the long axis of a retail block (~300g) of smoked Cheddar cheese using a wire cutting device. One cut surface of each slice was lightly etched with a cheese grater to create a rough, grooved surface; the opposite cut surface was left undisturbed (smooth). The 4 slices were vacuum packaged at 1, 10, 50, and 90kPa (very tight, moderately tight, loose, very loose, respectively) and stored at 1°C. Digital images were taken at 1, 4, and 8 wk following the first appearance of crystals. The area occupied by crystals and number of discrete crystal regions (DCR) were quantified by image analysis. The experiment was conducted in triplicate. Effects of storage time, packaging tightness, surface roughness, and their interactions were evaluated by repeated-measures ANOVA. Surface roughness, packaging tightness, storage time, and their 2-way interactions significantly affected crystal area and DCR number. Extremely heavy crystallization occurred on both rough and smooth surfaces when slices were packaged loosely or very loosely and on rough surfaces with moderately tight packaging. In contrast, the combination of rough surface plus very tight packaging resulted in dramatic decreases in crystal area and DCR number. The combination of smooth surface plus very tight packaging virtually eliminated crystal formation, presumably by eliminating available sites for nucleation. Cut-and-wrap operations may significantly influence the crystallization behavior of Cheddar cheeses that are saturated with respect to calcium lactate and thus predisposed to form crystals. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
X-rays are a type of radiation called electromagnetic waves. X-ray imaging creates pictures of the inside of ... different amounts of radiation. Calcium in bones absorbs x-rays the most, so bones look white. Fat ...
Synergy of cAMP and calcium signaling pathways in CFTR regulation
Bozoky, Zoltan; Ahmadi, Saumel; Milman, Tal; Kim, Tae Hun; Du, Kai; Di Paola, Michelle; Pasyk, Stan; Pekhletski, Roman; Keller, Jacob P.; Bear, Christine E.; Forman-Kay, Julie D.
2017-01-01
Cystic fibrosis results from mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel, leading to defective apical chloride transport. Patients also experience overactivation of inflammatory processes, including increased calcium signaling. Many investigations have described indirect effects of calcium signaling on CFTR or other calcium-activated chloride channels; here, we investigate the direct response of CFTR to calmodulin-mediated calcium signaling. We characterize an interaction between the regulatory region of CFTR and calmodulin, the major calcium signaling molecule, and report protein kinase A (PKA)-independent CFTR activation by calmodulin. We describe the competition between calmodulin binding and PKA phosphorylation and the differential effects of this competition for wild-type CFTR and the major F508del mutant, hinting at potential therapeutic strategies. Evidence of CFTR binding to isolated calmodulin domains/lobes suggests a mechanism for the role of CFTR as a molecular hub. Together, these data provide insights into how loss of active CFTR at the membrane can have additional consequences besides impaired chloride transport. PMID:28242698
NASA Astrophysics Data System (ADS)
Shtrahman, E.; Maruyama, D.; Olariu, E.; Fink, C. G.; Zochowski, M.
2017-02-01
Astrocytes form interconnected networks in the brain and communicate via calcium signaling. We investigate how modes of coupling between astrocytes influence the spatio-temporal patterns of calcium signaling within astrocyte networks and specifically how these network interactions promote coordination within this group of cells. To investigate these complex phenomena, we study reduced cultured networks of astrocytes and neurons. We image the spatial temporal patterns of astrocyte calcium activity and quantify how perturbing the coupling between astrocytes influences astrocyte activity patterns. To gain insight into the pattern formation observed in these cultured networks, we compare the experimentally observed calcium activity patterns to the patterns produced by a reduced computational model, where we represent astrocytes as simple units that integrate input through two mechanisms: gap junction coupling (network transport) and chemical release (extracellular diffusion). We examine the activity patterns in the simulated astrocyte network and their dependence upon these two coupling mechanisms. We find that gap junctions and extracellular chemical release interact in astrocyte networks to modulate the spatiotemporal patterns of their calcium dynamics. We show agreement between the computational and experimental findings, which suggests that the complex global patterns can be understood as a result of simple local coupling mechanisms.
Manson, JoAnn E; Allison, Matthew A; Carr, J Jeffrey; Langer, Robert D; Cochrane, Barbara B; Hendrix, Susan L; Hsia, Judith; Hunt, Julie R; Lewis, Cora E; Margolis, Karen L; Robinson, Jennifer G; Rodabough, Rebecca J; Thomas, Asha M
2010-07-01
Coronary artery calcified plaque is a marker for atheromatous plaque burden and predicts future risk of cardiovascular events. The relationship between calcium plus vitamin D (calcium/D) supplementation and coronary artery calcium (CAC) has not been previously assessed in a randomized trial setting. We compared CAC scores after trial completion between women randomized to calcium/vitamin D supplementation and women randomized to placebo. In an ancillary substudy of women randomized to calcium carbonate (1,000 mg of elemental calcium daily) plus vitamin D3 (400 IU daily) or placebo, nested within the Women's Health Initiative trial of estrogen among women who underwent hysterectomy, we measured CAC with cardiac CT in 754 women aged 50 to 59 years at randomization. Imaging for CAC was performed at 28 of 40 centers after a mean of 7 years of treatment, and scans were read centrally. CAC scores were measured by a central reading center with masking to randomization assignments. Posttrial CAC measurements were similar in women randomized to calcium/D supplementation and those receiving placebo. The mean CAC score was 91.6 for women receiving calcium/D and 100.5 for women receiving placebo (rank test P value = 0.74). After adjustment for coronary risk factors, multivariate odds ratios for increasing CAC score cutpoints (CAC >0, > or =10, and > or =100) for calcium/D versus placebo were 0.92 (95% CI, 0.64-1.34), 1.29 (0.88-1.87), and 0.90 (0.56-1.44), respectively. Corresponding odds ratios among women with a 50% or higher adherence to study pills and for higher levels of CAC (>300) were similar. Treatment with moderate doses of calcium plus vitamin D3 did not seem to alter coronary artery calcified plaque burden among postmenopausal women. Whether higher or lower doses would affect this outcome remains uncertain.
Characterization of Nano-Hydroxyapatite Synthesized from Sea Shells Through Wet Chemical Method
NASA Astrophysics Data System (ADS)
Santhosh, S.; Prabu, S. Balasivanandha
2012-10-01
Nano-hydroxyapatite (HA) was synthesized by a wet chemical reaction using powdered sea shells (CaO) as starting material which was converted to calcium hydroxide (Ca(OH)2) and subsequently reacted with phosphoric acid (H3PO4). Initially raw sea shells (CaCO3) were thermally converted to amorphous calcium oxide by heat treatment. Two sets of experiments were done; in the first experiment, HA powder was dried in an electric furnace and in the second experiment, the reactants were irradiated in a domestic microwave oven followed by microwave drying. In each set of experiments, the concentrations of the reactants were decreased gradually. HA was synthesized by slow addition of phosphoric acid (H3PO4) in to calcium hydroxide (Ca(OH)2) maintaining the pH of the solution at 10 to avoid the formation of calcium deficient apatites. In both the experiments, Ca:P ratio of 1.67 was maintained for the reagents. The synthesized samples showed X-ray diffraction (XRD) patterns corresponding to hydroxyapatite. The wet chemical process with furnace drying resulted in HA particles of size 7-34 nm, whereas microwave irradiated process yielded HA particles of size 34-102 nm as evidenced from XRD analyses. The above experimental work done by wet chemical synthesis to produce HA powder from sea shells is a simple processing method at room temperature. Microwave irradiation leads to uniform crystallite sizes as evident from this study, at differing concentrations of the reactants and is a comparatively easy method to synthesize HA. The high resolution scanning electron microscopy (HRSEM)/transmission electron microscopic (TEM) analyses revealed the characteristic rod-shaped nanoparticles of HA for the present study.
Functional connectivity structure of cortical calcium dynamics in anesthetized and awake mice.
Wright, Patrick W; Brier, Lindsey M; Bauer, Adam Q; Baxter, Grant A; Kraft, Andrew W; Reisman, Matthew D; Bice, Annie R; Snyder, Abraham Z; Lee, Jin-Moo; Culver, Joseph P
2017-01-01
The interplay between hemodynamic-based markers of cortical activity (e.g. fMRI and optical intrinsic signal imaging), which are an indirect and relatively slow report of neural activity, and underlying synaptic electrical and metabolic activity through neurovascular coupling is a topic of ongoing research and debate. As application of resting state functional connectivity measures is extended further into topics such as brain development, aging and disease, the importance of understanding the fundamental physiological basis for functional connectivity will grow. Here we extend functional connectivity analysis from hemodynamic- to calcium-based imaging. Transgenic mice (n = 7) expressing a fluorescent calcium indicator (GCaMP6) driven by the Thy1 promoter in glutamatergic neurons were imaged transcranially in both anesthetized (using ketamine/xylazine) and awake states. Sequential LED illumination (λ = 454, 523, 595, 640nm) enabled concurrent imaging of both GCaMP6 fluorescence emission (corrected for hemoglobin absorption) and hemodynamics. Functional connectivity network maps were constructed for infraslow (0.009-0.08Hz), intermediate (0.08-0.4Hz), and high (0.4-4.0Hz) frequency bands. At infraslow and intermediate frequencies, commonly used in BOLD fMRI and fcOIS studies of functional connectivity and implicated in neurovascular coupling mechanisms, GCaMP6 and HbO2 functional connectivity structures were in high agreement, both qualitatively and also quantitatively through a measure of spatial similarity. The spontaneous dynamics of both contrasts had the highest correlation when the GCaMP6 signal was delayed with a ~0.6-1.5s temporal offset. Within the higher-frequency delta band, sensitive to slow wave sleep oscillations in non-REM sleep and anesthesia, we evaluate the speed with which the connectivity analysis stabilized and found that the functional connectivity maps captured putative network structure within time window lengths as short as 30 seconds. Homotopic GCaMP6 functional connectivity maps at 0.4-4.0Hz in the anesthetized states show a striking correlated and anti-correlated structure along the anterior to posterior axis. This structure is potentially explained in part by observed propagation of delta-band activity from frontal somatomotor regions to visuoparietal areas. During awake imaging, this spatio-temporal quality is altered, and a more complex and detailed functional connectivity structure is observed. The combined calcium/hemoglobin imaging technique described here will enable the dissociation of changes in ionic and hemodynamic functional structure and neurovascular coupling and provide a framework for subsequent studies of neurological disease such as stroke.
Functional connectivity structure of cortical calcium dynamics in anesthetized and awake mice
Wright, Patrick W.; Brier, Lindsey M.; Bauer, Adam Q.; Baxter, Grant A.; Kraft, Andrew W.; Reisman, Matthew D.; Bice, Annie R.; Snyder, Abraham Z.; Lee, Jin-Moo; Culver, Joseph P.
2017-01-01
The interplay between hemodynamic-based markers of cortical activity (e.g. fMRI and optical intrinsic signal imaging), which are an indirect and relatively slow report of neural activity, and underlying synaptic electrical and metabolic activity through neurovascular coupling is a topic of ongoing research and debate. As application of resting state functional connectivity measures is extended further into topics such as brain development, aging and disease, the importance of understanding the fundamental physiological basis for functional connectivity will grow. Here we extend functional connectivity analysis from hemodynamic- to calcium-based imaging. Transgenic mice (n = 7) expressing a fluorescent calcium indicator (GCaMP6) driven by the Thy1 promoter in glutamatergic neurons were imaged transcranially in both anesthetized (using ketamine/xylazine) and awake states. Sequential LED illumination (λ = 454, 523, 595, 640nm) enabled concurrent imaging of both GCaMP6 fluorescence emission (corrected for hemoglobin absorption) and hemodynamics. Functional connectivity network maps were constructed for infraslow (0.009–0.08Hz), intermediate (0.08–0.4Hz), and high (0.4–4.0Hz) frequency bands. At infraslow and intermediate frequencies, commonly used in BOLD fMRI and fcOIS studies of functional connectivity and implicated in neurovascular coupling mechanisms, GCaMP6 and HbO2 functional connectivity structures were in high agreement, both qualitatively and also quantitatively through a measure of spatial similarity. The spontaneous dynamics of both contrasts had the highest correlation when the GCaMP6 signal was delayed with a ~0.6–1.5s temporal offset. Within the higher-frequency delta band, sensitive to slow wave sleep oscillations in non-REM sleep and anesthesia, we evaluate the speed with which the connectivity analysis stabilized and found that the functional connectivity maps captured putative network structure within time window lengths as short as 30 seconds. Homotopic GCaMP6 functional connectivity maps at 0.4–4.0Hz in the anesthetized states show a striking correlated and anti-correlated structure along the anterior to posterior axis. This structure is potentially explained in part by observed propagation of delta-band activity from frontal somatomotor regions to visuoparietal areas. During awake imaging, this spatio-temporal quality is altered, and a more complex and detailed functional connectivity structure is observed. The combined calcium/hemoglobin imaging technique described here will enable the dissociation of changes in ionic and hemodynamic functional structure and neurovascular coupling and provide a framework for subsequent studies of neurological disease such as stroke. PMID:29049297
Gopalakrishnan, Subarayan Bothi; Viswanathan, Gopalan
2012-03-01
Bone deformities caused by the chronic intake of large quantities of fluoride and the beneficial effect of calcium on its control have been studied for many years, but only limited data are available on the quantitative effect of fluoride intake and the beneficial impact of calcium on fluoride-induced changes in bone at the molecular level. It is necessary to determine the degree of fluoride-induced changes in bone at different levels of fluoride intake to evaluate the optimum safe intake level of fluoride for maintaining bone health and quality. The ameliorative effect of calcium at different dose levels on minimizing fluoride-induced changes in bone is important to quantify the amount of calcium intake necessary for reducing fluoride toxicity. Thirty rabbits, 2 months old, were divided into five groups. Group I animals received 1 mg/l fluoride and 0.11% calcium diet; groups II and III received 10 mg/l fluoride and diet with 0.11% or 2.11% calcium, respectively; and groups IV and V received 150 mg/l fluoride and diet with 2.11% or 0.11% calcium, respectively. Analysis of bone density, ash content, fluoride, calcium, phosphorus, and Ca:P molar ratio levels after 6 months of treatment indicated that animals that received high fluoride with low-calcium diet showed significant detrimental changes in physicochemical properties of bone. Animals that received fluoride with high calcium intake showed notable amelioration of the impact of calcium on fluoride-induced changes in bone. The degree of fluoride-induced characteristic changes in structural properties such as crystalline size, crystallinity, and crystallographic "c"-axis length of bone apatite cells was also assessed by X-ray diffraction and Fourier transform infrared studies. X-ray images showed bone deformity changes such as transverse stress growth lines, soft tissue ossification, and calcification in different parts of bones as a result of high fluoride accumulation and the beneficial role of calcium intake on its control.
Dysbalance of Astrocyte Calcium under Hyperammonemic Conditions
Haack, Nicole; Dublin, Pavel; Rose, Christine R.
2014-01-01
Increased brain ammonium (NH4 +/NH3) plays a central role in the manifestation of hepatic encephalopathy (HE), a complex syndrome associated with neurological and psychiatric alterations, which is primarily a disorder of astrocytes. Here, we analysed the influence of NH4 +/NH3 on the calcium concentration of astrocytes in situ and studied the underlying mechanisms of NH4 +/NH3-evoked calcium changes, employing fluorescence imaging with Fura-2 in acute tissue slices derived from different regions of the mouse brain. In the hippocampal stratum radiatum, perfusion with 5 mM NH4 +/NH3 for 30 minutes caused a transient calcium increase in about 40% of astrocytes lasting about 10 minutes. Furthermore, the vast majority of astrocytes (∼90%) experienced a persistent calcium increase by ∼50 nM. This persistent increase was already evoked at concentrations of 1–2 mM NH4 +/NH3, developed within 10–20 minutes and was maintained as long as the NH4 +/NH3 was present. Qualitatively similar changes were observed in astrocytes of different neocortical regions as well as in cerebellar Bergmann glia. Inhibition of glutamine synthetase resulted in significantly larger calcium increases in response to NH4 +/NH3, indicating that glutamine accumulation was not a primary cause. Calcium increases were not mimicked by changes in intracellular pH. Pharmacological inhibition of voltage-gated sodium channels, sodium-potassium-chloride-cotransporters (NKCC), the reverse mode of sodium/calcium exchange (NCX), AMPA- or mGluR5-receptors did not dampen NH4 +/NH3-induced calcium increases. They were, however, significantly reduced by inhibition of NMDA receptors and depletion of intracellular calcium stores. Taken together, our measurements show that sustained exposure to NH4 +/NH3 causes a sustained increase in intracellular calcium in astrocytes in situ, which is partly dependent on NMDA receptor activation and on release of calcium from intracellular stores. Our study furthermore suggests that dysbalance of astrocyte calcium homeostasis under hyperammonemic conditions is a widespread phenomenon, which might contribute to the disturbance of neurotransmission during HE. PMID:25153709
NASA Technical Reports Server (NTRS)
Ballou, E. V.; Wood, P. C.; Spitze, L. A.; Wydeven, T.; Stein, R.
1977-01-01
The effects of disproportionations at lower temperatures and also of a range of reaction chamber pressures on the preparation of calcium superoxide, Ca(O2)2, from calcium peroxide diperoxyhydrate were studied. About 60% purity of product was obtained by a disproportionation procedure. The significance of features of this procedure for a prospective scale-up of the mass prepared in a single experiment is considered. The optimum pressure for product purity was determined, and the use of a molecular sieve desiccant is described.
Sledkov, A I
1997-01-01
In the experiments conducted on mice which prior to compression in a heliox environment have been injected the blockers of various types of calcium channels (flunarezine, verapramil and nifedipine) as well as bemethyl (actoprotector) and oxymethacye (antioxidant) there escaped detection of noticeable effect of these drugs on developing the high pressure nervous syndrome (HPNS). On exposure to the hyperbaric nitrogen-oxygen environment verapromil (phenylalkulamine blocker of L-type calcium channels) had a protection effect with respect to a convulsive component of the nitrogen narcosis.
Gautier, Hélène; Auger, Jacques; Legros, Christian; Lapied, Bruno
2008-01-01
Dimethyl disulfide (DMDS), a plant-derived insecticide, is a promising fumigant as a substitute for methyl bromide. To further understand the mode of action of DMDS, we examined its effect on cockroach octopaminergic neurosecretory cells, called dorsal unpaired median (DUM) neurons, using whole-cell patch-clamp technique, calcium imaging and antisense oligonucleotide strategy. At low concentration (1 microM), DMDS modified spontaneous regular spike discharge into clear bursting activity associated with a decrease of the amplitude of the afterhyperpolarization. This effect led us to suspect alterations of calcium-activated potassium currents (IKCa) and [Ca(2+)](i) changes. We showed that DMDS reduced amplitudes of both peak transient and sustained components of the total potassium current. IKCa was confirmed as a target of DMDS by using iberiotoxin, cadmium chloride, and pSlo antisense oligonucleotide. In addition, we showed that DMDS induced [Ca(2+)](i) rise in Fura-2-loaded DUM neurons. Using calcium-free solution, and (R,S)-(3,4-dihydro-6,7-dimethoxy-isoquinoline-1-yl)-2-phenyl-N,N-di-[2-(2,3,4-trimethoxy-phenyl)ethyl]-acetamide (LOE 908) [an inhibitor of transient receptor potential (TRP)gamma], we demonstrated that TRPgamma initiated calcium influx. By contrast, omega-conotoxin GVIA (an inhibitor of N-type high-voltage-activated calcium channels), did not affect the DMDS-induced [Ca(2+)](i) rise. Finally, the participation of the calcium-induced calcium release mechanism was investigated using thapsigargin, caffeine, and ryanodine. Our study revealed that DMDS-induced elevation in [Ca(2+)](i) modulated IKCa in an unexpected bell-shaped manner via intracellular calcium. In conclusion, DMDS affects multiple targets, which could be an effective way to improve pest control efficacy of fumigation.
Cryptogenic Stroke and Nonstenosing Intracranial Calcified Atherosclerosis.
Kamel, Hooman; Gialdini, Gino; Baradaran, Hediyeh; Giambrone, Ashley E; Navi, Babak B; Lerario, Michael P; Min, James K; Iadecola, Costantino; Gupta, Ajay
2017-04-01
Because some cryptogenic strokes may result from large-artery atherosclerosis that goes unrecognized as it causes <50% luminal stenosis, we compared the prevalence of nonstenosing intracranial atherosclerotic plaques ipsilateral to cryptogenic cerebral infarcts versus the unaffected side using imaging biomarkers of calcium burden. In a prospective stroke registry, we identified patients with cerebral infarction limited to the territory of one internal carotid artery (ICA). We included patients with stroke of undetermined etiology and, as controls, patients with cardioembolic stroke. We used noncontrast computed tomography to measure calcification in both intracranial ICAs, including qualitative calcium scoring and quantitative scoring utilizing the Agatston-Janowitz (AJ) calcium scoring. Within subjects, the Wilcoxon signed-rank sum test for nonparametric paired data was used to compare the calcium burden in the ICA upstream of the infarction versus the ICA on the unaffected side. We obtained 440 calcium measures from 110 ICAs in 55 patients. Among 34 patients with stroke of undetermined etiology, we found greater calcium in the ICA ipsilateral to the infarction (mean Modified Woodcock Visual Scale score, 6.7 ± 4.6) compared with the contralateral side (5.4 ± 4.1) (P = .005). Among 21 patients with cardioembolic stroke, we found no difference in calcium burden ipsilateral to the infarction (6.7 ± 5.9) versus the contralateral side (7.3 ± 6.3) (P = .13). The results were similar using quantitative calcium measurements, including the AJ calcium scores. In patients with strokes of undetermined etiology, the burden of calcified intracranial large-artery plaque was associated with downstream cerebral infarction. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Reddy, T; McLaughlin, P D; Mallinson, P I; Reagan, A C; Munk, P L; Nicolaou, S; Ouellette, H A
2015-02-01
The purpose of this study is to describe our initial clinical experience with dual-energy computed tomography (DECT) virtual non-calcium (VNC) images for the detection of bone marrow (BM) edema in patients with suspected hip fracture following trauma. Twenty-five patients presented to the emergency department at a level 1 trauma center between January 1, 2011 and January 1, 2013 with clinical suspicion of hip fracture and normal radiographs were included. All CT scans were performed on a dual-source, dual-energy CT system. VNC images were generated using prototype software and were compared to regular bone reconstructions by two musculoskeletal radiologists in consensus. Radiological and/or clinical diagnosis of fracture at 30-day follow-up was used as the reference standard. Twenty-one patients were found to have DECT-VNC signs of bone marrow edema. Eighteen of these 21 patients were true positive and three were false positive. A concordant fracture was clearly seen on bone reconstruction images in 15 of the 18 true positive cases. In three cases, DECT-VNC was positive for bone marrow edema where bone reconstruction CT images were negative. Four patients demonstrated no DECT-VNC signs of bone marrow edema: two cases were true negative, two cases were false negative. When compared with the gold standard of hip fracture determined at retrospective follow-up, the sensitivity of DECT-VNC images of the hip was 90 %, specificity was 40 %, positive predictive value was 86 %, and negative predictive value was 50 %. Our initial experience would suggest that DECT-VNC is highly sensitive but poorly specific in the diagnosis of hip fractures in patients with normal radiographs. The value of DECT-VNC primarily lies in its ability to help detect fractures which may be subtle or undetectable on bone reconstruction CT images.
Clinical, demographic, and laboratory characteristics of children with nephrolithiasis.
Sas, David J; Becton, Lauren J; Tutman, Jeffrey; Lindsay, Laura A; Wahlquist, Amy H
2016-06-01
While the incidence of pediatric kidney stones appears to be increasing, little is known about the demographic, clinical, laboratory, imaging, and management variables in this patient population. We sought to describe various characteristics of our stone-forming pediatric population. To that end, we retrospectively reviewed the charts of pediatric patients with nephrolithiasis confirmed by imaging. Data were collected on multiple variables from each patient and analyzed for trends. For body mass index (BMI) controls, data from the general pediatrics population similar to our nephrolithiasis population were used. Data on 155 pediatric nephrolithiasis patients were analyzed. Of the 54 calculi available for analysis, 98 % were calcium based. Low urine volume, elevated supersaturation of calcium phosphate, elevated supersaturation of calcium oxalate, and hypercalciuria were the most commonly identified abnormalities on analysis of 24-h urine collections. Our stone-forming population did not have a higher BMI than our general pediatrics population, making it unlikely that obesity is a risk factor for nephrolithiasis in children. More girls presented with their first stone during adolescence, suggesting a role for reproductive hormones contributing to stone risk, while boys tended to present more commonly at a younger age, though this did not reach statistical significance. These intriguing findings warrant further investigation.
Energy-resolved CT imaging with a photon-counting silicon-strip detector
NASA Astrophysics Data System (ADS)
Persson, Mats; Huber, Ben; Karlsson, Staffan; Liu, Xuejin; Chen, Han; Xu, Cheng; Yveborg, Moa; Bornefalk, Hans; Danielsson, Mats
2014-03-01
Photon-counting detectors are promising candidates for use in the next generation of x-ray CT scanners. Among the foreseen benefits are higher spatial resolution, better trade-off between noise and dose, and energy discriminating capabilities. Silicon is an attractive detector material because of its low cost, mature manufacturing process and high hole mobility. However, it is sometimes claimed to be unsuitable for use in computed tomography because of its low absorption efficiency and high fraction of Compton scatter. The purpose of this work is to demonstrate that high-quality energy-resolved CT images can nonetheless be acquired with clinically realistic exposure parameters using a photon-counting silicon-strip detector with eight energy thresholds developed in our group. We use a single detector module, consisting of a linear array of 50 0.5 × 0.4 mm detector elements, to image a phantom in a table-top lab setup. The phantom consists of a plastic cylinder with circular inserts containing water, fat and aqueous solutions of calcium, iodine and gadolinium, in different concentrations. We use basis material decomposition to obtain water, calcium, iodine and gadolinium basis images and demonstrate that these basis images can be used to separate the different materials in the inserts. We also show results showing that the detector has potential for quantitative measurements of substance concentrations.
Watanabe, Hitoshi; Honda, Yayoi; Deguchi, Jiro; Yamada, Toru; Bando, Kiyoko
2017-01-01
Monitoring dramatic changes in intracellular calcium ion levels during cardiac contraction and relaxation, known as calcium transient, in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) would be an attractive strategy for assessing compounds on cardiac contractility. In addition, as arrhythmogenic compounds are known to induce characteristic waveform changes in hiPSC-CMs, it is expected that calcium transient would allow evaluation of not only compound-induced effects on cardiac contractility, but also compound arrhythmogenic potential. Using a combination of calcium transient in hiPSC-CMs and a fast kinetic fluorescence imaging detection system, we examined in this study changes in calcium transient waveforms induced by a series of 17 compounds that include positive/negative inotropic agents as well as cardiac ion channel activators/inhibitors. We found that all positive inotropic compounds induced an increase in peak frequency and/or peak amplitude. The effects of a negative inotropic compound could clearly be detected in the presence of a β-adrenergic receptor agonist. Furthermore, most arrhythmogenic compounds raised the ratio of peak decay time to peak rise time (D/R ratio) in calcium transient waveforms. Compound concentrations at which these parameters exceeded cutoff values correlated well with systemic exposure levels at which arrhythmias were reported to be evoked. In conclusion, we believe that peak analysis of calcium transient and determination of D/R ratio are reliable methods for assessing compounds' cardiac contractility and arrhythmogenic potential, respectively. Using these approaches would allow selection of compounds with low cardiotoxic potential at the early stage of drug discovery.
Calcium in the regulation of gravitropism by light
NASA Technical Reports Server (NTRS)
Perdue, D. O.; LaFavre, A. K.; Leopold, A. C.
1988-01-01
The red light requirement for positive gravitropism in roots of corn (Zea mays cv "Merit") provides an entry for examining the participation of calcium in gravitropism. Applications of calcium chelators inhibit the light response. Calcium channel blockers (verapamil, lanthanum) can also inhibit the light response, and a calcium ionophore, A23187, can substitute for light. One can substitute for red light by treatments which have elsewhere been shown to trigger Ca2+ influx into the cytosol, e.g. heat or cold shock. Agents which are known to be agonists of the phosphatidylinositol second messenger system (serotonin, 2,4-dichlorophenoxyacetic acid, deoxycholate) can each partially substitute for the red light, and Li+ can inhibit the light effect. These experiments suggest that the induction of positive gravitropism by red light involves a rise in cytoplasmic Ca2+ concentration, and that a contribution to this end may be made by the phosphatidylinositol second messenger system.
Towards the Physics of Calcium Signalling in Plants
Vaz Martins, Teresa; Evans, Matthew J.; Woolfenden, Hugh C.; Morris, Richard J.
2013-01-01
Calcium is an abundant element with a wide variety of important roles within cells. Calcium ions are inter- and intra-cellular messengers that are involved in numerous signalling pathways. Fluctuating compartment-specific calcium ion concentrations can lead to localised and even plant-wide oscillations that can regulate downstream events. Understanding the mechanisms that give rise to these complex patterns that vary both in space and time can be challenging, even in cases for which individual components have been identified. Taking a systems biology approach, mathematical and computational techniques can be employed to produce models that recapitulate experimental observations and capture our current understanding of the system. Useful models make novel predictions that can be investigated and falsified experimentally. This review brings together recent work on the modelling of calcium signalling in plants, from the scale of ion channels through to plant-wide responses to external stimuli. Some in silico results that have informed later experiments are highlighted. PMID:27137393
Nanoscale “fluorescent stone”: Luminescent Calcium Fluoride Nanoparticles as Theranostic Platforms
Li, Zhanjun; Zhang, Yuanwei; Huang, Ling; Yang, Yuchen; Zhao, Yang; El-Banna, Ghida; Han, Gang
2016-01-01
Calcium Fluoride (CaF2) based luminescent nanoparticles exhibit unique, outstanding luminescent properties, and represent promising candidates as nanoplatforms for theranostic applications. There is an urgent need to facilitate their further development and applications in diagnostics and therapeutics as a novel class of nanotools. Here, in this critical review, we outlined the recent significant progresses made in CaF2-related nanoparticles: Firstly, their physical chemical properties, synthesis chemistry, and nanostructure fabrication are summarized. Secondly, their applications in deep tissue bio-detection, drug delivery, imaging, cell labeling, and therapy are reviewed. The exploration of CaF2-based luminescent nanoparticles as multifunctional nanoscale carriers for imaging-guided therapy is also presented. Finally, we discuss the challenges and opportunities in the development of such CaF2-based platform for future development in regard to its theranostic applications. PMID:27877242
Experiment K-6-01. Distribution and biochemistry of mineral and matrix in the femurs of rats
NASA Technical Reports Server (NTRS)
Arnaud, S.; Mechanic, G.; Buckendahl, P.; Bromage, T.; Boyde, A.; Elliott, J.; Katz, E.; Durnova, G
1990-01-01
Previous analyses of the composition of mineral and matrix in the bone of young rats following space flight has revealed deficits in calcium, phosphorus, and osteocalcin, a non-collagenous protein, without an associated decrease in collagen. To characterize the location and nature of this mineralization defect in a weight bearing long bone, the femur, researchers attempted to relate the spatial distribution of mineral in situ in the proximal, central and distal thirds of the femoral diaphysis to the biochemical composition of bone from the same area. Biochemical analyses revealed lower concentrations of calcium, phosphorus and osteocalcin but not collagen only in the central third of the diaphysis of the flight animals (F) compared to synchronous controls (S). Collagen concentration was reduced only in the proximal third of the diaphysis, where all 3 crosslinks, expressed as nM/mol collagen were higher in F than S. A new technique, x ray microtomography, with a resolution of 26 microns, was used to obtain semi-quantitative data on mineral distribution in reconstructed sections of wet whole bone. To improve the resolution of the mineral density distribution, images of the surfaces of cut sections were analyzed by backscattered electrons in a scanning electron microscope (BSE). There was good agreement between the results of the two stereochemical techniques which revealed distinct patterns of mineralization in transverse and longitudinal directions of the diaphysis. The novel methodology developed for this flight experiment shows considerable promise in elucidating the biochemical nature of what appear to be regional alterations in the mineralization of long bones of animals exposed to spaceflight.
Computer simulation studies in fluid and calcium regulation and orthostatic intolerance
NASA Technical Reports Server (NTRS)
1985-01-01
The systems analysis approach to physiological research uses mathematical models and computer simulation. Major areas of concern during prolonged space flight discussed include fluid and blood volume regulation; cardiovascular response during shuttle reentry; countermeasures for orthostatic intolerance; and calcium regulation and bone atrophy. Potential contributions of physiologic math models to future flight experiments are examined.
Nuriya, Mutsuo; Takeuchi, Miyabi; Yasui, Masato
2017-01-29
Norepinephrine (NE) levels in the cerebral cortex are regulated in two modes; the brain state is correlated with slow changes in background NE concentration, while salient stimuli induce transient NE spikes. Previous studies have revealed their diverse neuromodulatory actions; however, the modulatory role of NE on astrocytic activity has been poorly characterized thus far. In this study, we evaluated the modulatory action of background NE on astrocytic responses to subsequent stimuli, using two-photon calcium imaging of acute murine cortical brain slices. We find that subthreshold background NE significantly augments calcium responses to subsequent pulsed NE stimulation in astrocytes. This priming effect is independent of neuronal activity and is mediated by the activation of β-adrenoceptors and the downstream cAMP pathway. These results indicate that background NE primes astrocytes for subsequent calcium responses to NE stimulation and suggest a novel gliomodulatory role for brain state-dependent background NE in the cerebral cortex. Copyright © 2016 Elsevier Inc. All rights reserved.
Thai, Van Viet
2010-01-01
In this study, an injectable bone substitute (IBS) consisting of citric acid, chitosan, and hydroxyl propyl methyl cellulose (HPMC) as the liquid phase and tetra calcium phosphate (TTCP), dicalcium phosphate dihydrate (DCPD) and calcium sulfate dehydrate (CSD, CaSO4·2H2O) powders as the solid phase, were fabricated. Two groups were classified based on the percent of citric acid in the liquid phase (20, 40 wt%). In each groups, the HPMC percentage was 0, 2, and 4 wt%. An increase in compressive strength due to changes in morphology was confirmed by scanning electron microscopy images. A good conversion rate of HAp at 20% citric acid was observed in the XRD profiles. In addition, HPMC was not obviously affected by apatite formation. However, both HPMC and citric acid increased the compressive strength of IBS. The maximum compressive strength for IBS was with 40% citric acid and 4% HPMC after 14 days of incubation in 100% humidity at 37°C. PMID:20333539
NASA Astrophysics Data System (ADS)
Moreau, David; Lefort, Claire; Bardet, Sylvia M.; O'Connor, Rodney P.
2016-03-01
Infrared laser light radiation can be used to depolarize neurons and to stimulate neural activity. The absorption of infrared radiation and heating of biological tissue is thought to be the underlying mechanism of this phenomenon whereby local temperature increases in the plasma membrane of cells either directly influence membrane properties or act via temperature sensitive ion channels. Action potentials are typically measured electrically in neurons with microelectrodes, but they can also be observed using fluorescence microscopy techniques that use synthetic or genetically encoded calcium indicators. In this work, we studied the impact of infrared laser light on neuronal calcium signals to address the mechanism of these thermal effects. Cultured primary mouse hippocampal neurons expressing the genetically encoded calcium indicator GCaMP6s were used in combination with the temperature sensitive fluorophore Rhodamine B to measure calcium signals and temperature changes at the cellular level. Here we present our all-optical strategy for studying the influence of infrared laser light on neuronal activity.
Indoleamines and calcium channels influence morphogenesis in in vitro cultures of Mimosa pudica L.
Ramakrishna, Akula; Giridhar, Parvatam
2009-01-01
The present article reports the interplay of indoleamine neurohormones viz. serotonin, melatonin and calcium channels on shoot organogenesis in Mimosa pudica L. In vitro grown nodal segments were cultured on MS medium with B5 vitamins containing Serotonin (SER) and Melatonin (MEL) at 100 µM and indoleamine inhibitors viz. serotonin to melatonin conversion inhibitor p-chlorophenylalanine (p-CPA) at 40 µM, serotonin reuptake inhibitor (Prozac) 20 µM. In another set of experiment, calcium at 5 mM, calcium ionophore (A23187) 100 µM, and calcium channel blocker varapamil hydrochloride (1 mM) a calcium chelator EGTA (100 µM) were administered to the culture medium. The percentage of shoot multiplication, endogenous MEL and SER were monitored during shoot organogenesis. At 100 µM SER and MEL treatment 60% and 70% explants responded for shoot multiplication respectively. Medium supplemented with either SER or MEL along with calcium (5 mM) 75%–80% explants responded for organogenesis. SER or MEL along with calcium ionophore (A23187) at 100 µM 70% explants responded for shoot multiplication. p-CPA, prozac, verapamil and EGTA, shoot multiplication was reduced and endogenous pools of SER, MEL decreased by 40–70%. The results clearly demonstrated that indoleamines and calcium channels positively influenced shoot organogenesis in M. pudica L. PMID:20514228
Preparation and biological efficacy of haddock bone calcium tablets
NASA Astrophysics Data System (ADS)
Huo, Jiancong; Deng, Shanggui; Xie, Chao; Tong, Guozhong
2010-03-01
To investigate the possible use of waste products obtained after processing haddock, the present study prepared haddock bone calcium powder by NaOH and ethanol soaking (alkalinealcohol method) and prepared haddock bone calcium tablets using the powder in combination with appropriate excipients. The biological efficacy of the haddock bone calcium tablets was investigated using Wistar rats as an experiment model. Results show that the optimal parameters for the alkalinealcohol method are: NaOH concentration 1 mol/L, immersion time 30 h; ethanol concentration 60%, immersion time 15 h. A mixture of 2% polyvinylpyrrolidone in ethanol was used as an excipient at a ratio of 1:2 to full-cream milk powder, without the use of a disintegrating agent. This process provided satisfactory tablets in terms of rigidity and taste. Animal studies showed that the haddock bone calcium tablets at a dose of 2 g·kg-1·d-1 or 5g·kg-1·d-1 significantly increased blood calcium and phosphorus levels and bone calcium content in rats. Therefore, these tablets could be used for calcium supplementation and prevent osteoporosis. Although the reasons of high absorption in the rats fed with haddock bone calcium tablets are unclear, it is suggested that there are some factors, such as treatment with method of alkaline-alcohol or the added milk, may play positive roles in increasing absorption ratio.
Chen, Yao-Chang; Kao, Yu-Hsun; Huang, Chun-Feng; Cheng, Chen-Chuan; Chen, Yi-Jen; Chen, Shih-Ann
2010-04-01
Heat stress-induced responses change the ionic currents and calcium homeostasis. However, the molecular insights into the heat stress responses on calcium homeostasis remain unclear. The purposes of this study were to examine the mechanisms of heat stress responses on calcium handling and electrophysiological characteristics in atrial myocytes. We used indo-1 fluorimetric ratio technique and whole-cell patch clamp to investigate the intracellular calcium, action potentials, and ionic currents in isolated rabbit single atrial cardiomyocytes with or without (control) exposure to heat stress (43 degrees C, 15 min) 5+/-1 h before experiments. The expressions of sarcoplasmic reticulum ATPase (SERCA2a), and Na(+)-Ca(2+) exchanger (NCX) in the control and heat stress-treated atrial myocytes were evaluated by Western blot and real-time PCR. As compared with control myocytes, the heat stress-treated myocytes had larger sarcoplasmic reticulum calcium content and larger intracellular calcium transient with a shorter decay portion. Heat stress-treated myocytes also had larger L-type calcium currents, transient outward potassium currents, but smaller NCX currents. Heat stress responses increased the protein expressions, SERCA2a, NCX, and heat shock protein. However, heat stress responses did not change the RNA expression of SERCA2a and NCX. In conclusion, heat stress responses change calcium handling through protein but not RNA regulation. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
Calcium and ER stress mediate hepatic apoptosis after burn injury
Gauglitz, Gerd G.; Song, Juquan; Kulp, Gabriela A.; Finnerty, Celeste C.; Cox, Robert A.; Barral, José M.; Herndon, David N.; Boehning, Darren
2009-01-01
Abstract A hallmark of the disease state following severe burn injury is decreased liver function, which results in gross metabolic derangements that compromise patient survival. The underlying mechanisms leading to hepatocyte dysfunction after burn are essentially unknown. The aim of the present study was to determine the underlying mechanisms leading to hepatocyte dysfunction and apoptosis after burn. Rats were randomized to either control (no burn) or burn (60% total body surface area burn) and sacrificed at various time‐points. Liver was either perfused to isolate primary rat hepatocytes, which were used for in vitro calcium imaging, or liver was harvested and processed for immunohistology, transmission electron microscopy, mitochondrial isolation, mass spectroscopy or Western blotting to determine the hepatic response to burn injury in vivo. We found that thermal injury leads to severely depleted endoplasmic reticulum (ER) calcium stores and consequent elevated cytosolic calcium concentrations in primary hepatocytes in vitro. Burn‐induced ER calcium depletion caused depressed hepatocyte responsiveness to signalling molecules that regulate hepatic homeostasis, such as vasopressin and the purinergic agonist ATP. In vivo, thermal injury resulted in activation of the ER stress response and major alterations in mitochondrial structure and function – effects which may be mediated by increased calcium release by inositol 1,4,5‐trisphosphate receptors. Our results reveal that thermal injury leads to dramatic hepatic disturbances in calcium homeostasis and resultant ER stress leading to mitochondrial abnormalities contributing to hepatic dysfunction and apoptosis after burn injury. PMID:20141609
Leye Benoist, Fatou; Gaye Ndiaye, Fatou; Kane, Abdoul Wakhabe; Benoist, Henri Michel; Farge, Pierre
2012-02-01
To assess the effectiveness of mineral trioxide aggregate (MTA) used as an indirect pulp-capping material in human molar and premolar teeth. We conducted a clinical evaluation of 60 teeth, which underwent an indirect pulp-capping procedure with either MTA or calcium hydroxide cement (Dycal(®) ). Calcium hydroxide was compared with MTA and the thickness of the newly formed dentine was measured at regular time intervals. The follow-up was at 3 and 6 months, and dentine formation was monitored by radiological measurements on digitised images using Mesurim Pro(®) software. At 3 months, the clinical success rates of MTA and calcium hydroxide were 93% and 73%, respectively (P = 0.02). At 6 months, the success rate was 89.6% with MTA, and remained steady at 73% with calcium hydroxide (P = 0.63). The mean initial residual dentine thickness was 0.23 mm, and increased by 0.121 mm with MTA and by 0.136 mm with calcium hydroxide at 3 months. At 6 months, there was an increase of 0.235 mm with MTA and of 0.221 mm with calcium hydroxide. A higher success rate was observed in the MTA group relative to the Dycal(®) group after 3 months, which was statistically significant. After 6 months, no statistically significant difference was found in the dentine thickness between the two groups. Additional histological investigations are needed to support these findings. © 2012 FDI World Dental Federation.
Saleem, Mohammed; Meyer, Michaela C.; Breitenstein, Daniel; Galla, Hans-Joachim
2009-01-01
Abstract One of the main determinants of lung surfactant function is the complex interplay between its protein and lipid components. The lipid specificity of surfactant protein B (SP-B), however, and the protein's ability to selectively squeeze out lipids, has remained contradictory. In this work we present, for the first time to our knowledge, by means of time-of-flight secondary ion mass spectrometry chemical imaging, a direct evidence for colocalization of SP-B as well as its model peptide KL4 with negatively charged dipalmitoylphosphatidylglycerol under absolute calcium free conditions. Our results prove that protein/lipid localization depends on the miscibility of all surfactant components, which itself is influenced by subphase ionic conditions. In contrast to our earlier studies reporting SP-B/KL4 colocalization with zwitterionic dipalmitoylphosphatidylcholine, in the presence of even the smallest traces of calcium, we finally evidence an apparent reversal of protein/lipid mixing behavior upon calcium removal with ethylene diamine tetraacetic acid. In addition, scanning force microscopy measurements reveal that by depleting the subphase from calcium ions the protrusion formation ability of SP-B or KL4 is not hampered. However, in the case of KL4, distinct differences in protrusion morphology and height are visible. Our results support the idea that calcium ions act as a “miscibility switch” in surfactant model systems and probably are one of the major factors steering lipid/protein mixing behavior as well as influencing the protein's protrusion formation ability. PMID:19619464
Zhang, Jian; Lakowicz, Joseph R
2018-01-01
Near-field fluorescence (NFF) effects were employed to develop a novel near-infrared (NIR) luminescent nanoparticle (LNP) with superior brightness. The LNP is used as imaging contrast agent for cellular and small animal imaging and furthermore suggested to use for detecting voltage-sensitive calcium in living cells and animals with high sensitivity. NIR Indocyanine green (ICG) dye was conjugated with human serum albumin (HSA) followed by covalently binding to gold nanorod (AuNR). The AuNR displayed dual plasmons from transverse and longitudinal axis, and the longitudinal plasmon was localized at the NIR region which could efficiently couple with the excitation and emission of ICG dye leading to a largely enhanced NFF. The enhancement factor was measured to be about 16-fold using both ensemble and single nanoparticle spectral methods. As an imaging contrast agent, the ICG-HSA-Au complex (abbreviate as ICG-Au) was conjugated on HeLa cells and fluorescence cell images were recorded on a time-resolved confocal microscope. The emission signals of ICG-Au complexes were distinctly resolved as the individual spots that were observed over the cellular backgrounds due to their strong brightness as well as shortened lifetime. The LNPs were also tested to have a low cytotoxicity. The ICG-Au complexes were injected below the skin surface of mouse showing emission spots 5-fold brighter than those from the same amount of free ICG-HSA conjugates. Based on the observations in this research, the excitation and emission of NIR ICG dyes were found to be able to sufficiently couple with the longitudinal plasmon of AuNRs leading to a largely enhanced NFF. Using the LNP with super-brightness as a contrast agent, the ICG-Au complex could be resolved from the background in the cell and small animal imaging. The novel NIR LNP has also a great potential for detection of voltage-gated calcium concentration in the cell and living animal with a high sensitivity.
Simulation of heart infarction by laser microbeams and induction of arrhythmias by optical tweezers
NASA Astrophysics Data System (ADS)
Perner, Birgit; Monajembashi, Shamci; Rapp, Alexander; Wollweber, Leo; Greulich, Karl Otto
2004-10-01
Laser microbeam and optical tweezers were used for micromanipulation of a heart tissue model consisting of embryonic chicken cardiomyocytes and bibroblasts. Using the laser microbeam a would was created, i.e. a sort of artificial heart infarction was generated. The first steps of wound repair were observed by live cell imaging. A complete filling of teh would primarily by migrating fibroblasts but not by cardiomyocytes was detected 18 hours after wounding. In another set of experiments erythrocyte mediated force application (EMFA) by optical tweezers was applied for optomechanical manipulatoin of cardiomyocytes and fibroblasts. Here we demonstrate induction of dramatic distrubances of calcium waves in a group of synchronously beating cardiomyocytes by an optomechanical input that results in cellular deformation. Surprisingly, it was found that putatively non-excitable fibroblasts respond to this mechanical stress with calcium oscillations. The results reported here indicate that the induction of artificial heart infarction can provide insights into healing processes after mycardial injury. EMFA is capable to examine effects of myocardial overload and to provide important information about processes triggered by mechanical stress on the level of single or very few cells. As a perspective, the preseneted techniques may be used to study the influence of drugs on wound healing and coordination of beating in the heart.
Impact of Fuel Metal Impurities on the Durability of a Light-Duty Diesel Aftertreatment System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, A.; Burton, J.; McCormick, R. L.
2013-04-01
Alkali and alkaline earth metal impurities found in diesel fuels are potential poisons for diesel exhaust catalysts. A set of diesel engine production exhaust systems was aged to 150,000 miles. These exhaust systems included a diesel oxidation catalyst, selective catalytic reduction (SCR) catalyst, and diesel particulate filter (DPF). Four separate exhaust systems were aged, each with a different fuel: ultralow sulfur diesel containing no measureable metals, B20 (a common biodiesel blend) containing sodium, B20 containing potassium, and B20 containing calcium, which were selected to simulate the maximum allowable levels in B100 according to ASTM D6751. Analysis included Federal Test Proceduremore » emissions testing, bench-flow reactor testing of catalyst cores, electron probe microanalysis (EPMA), and measurement of thermo-mechanical properties of the DPFs. EPMA imaging found that the sodium and potassium penetrated into the washcoat, while calcium remained on the surface. Bench-flow reactor experiments were used to measure the standard nitrogen oxide (NOx) conversion, ammonia storage, and ammonia oxidation for each of the aged SCR catalysts. Vehicle emissions tests were conducted with each of the aged catalyst systems using a chassis dynamometer. The vehicle successfully passed the 0.2 gram/mile NOx emission standard with each of the four aged exhaust systems.« less
Role of calcium activated kinases and phosphatases in heat shock factor-1 activation.
Soncin, F; Asea, A; Zhang, X; Stevenson, M A; Calderwood, S K
2000-12-01
HSF-1 is regulated at multiple molecular levels through intra- and intermolecular protein-protein interactions as well as by post-translational modification through phosphorylation. We have found that elevating intracellular calcium ion levels by exposure to the ionophore A23187 or thapsigargin inhibits the conversion of HSF-1 from a latent cytoplasmic form to its nuclear/DNA binding form. To examine a role for calcium/calmodulin regulated enzymes in this process, we examined the ability of specific inhibitors to abrogate the effects of calcium elevation. While the inhibitor of calmodulin dependent kinase II, KCN62 enhanced activation of HSF-1 during heat shock, it failed to block the inhibitory effects of calcium increase. By contrast, the immunosuppresant drugs cyclosporin A and FK506 abolished the effects of calcium elevation on HSF-1 activation. As the biological effects of the drugs are effected through inhibition of the calcium/calmodulin regulated phosphatase calcineurin, this suggests a role for calcineurin in antagonizing HSF-1 activity. The experiments suggest the existence of phosphorylated residue(s) in HSF-1 important in one or more of the processes that lead to activation (trimerization, nuclear localization, DNA binding) and which becomes dephosphorylated due to the activation of a calcium/calmodulin/calcineurin complex.
Shriver, Z; Liu, D; Hu, Y; Sasisekharan, R
1999-02-12
The heparinases from Flavobacterium heparinum are lyases that specifically cleave heparin-like glycosaminoglycans. Previously, amino acids located in the active site of heparinase I have been identified and mapped. In an effort to further understand the mechanism by which heparinase I cleaves its polymer substrate, we sought to understand the role of calcium, as a necessary cofactor, in the enzymatic activity of heparinase I. Specifically, we undertook a series of biochemical and biophysical experiments to answer the question of whether heparinase I binds to calcium and, if so, which regions of the protein are involved in calcium binding. Using the fluorescent calcium analog terbium, we found that heparinase I tightly bound divalent and trivalent cations. Furthermore, we established that this interaction was specific for ions that closely approximate the ionic radius of calcium. Through the use of the modification reagents N-ethyl-5-phenylisoxazolium-3'-sulfonate (Woodward's reagent K) and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride, we showed that the interaction between heparinase I and calcium was essential for proper functioning of the enzyme. Preincubation with either calcium alone or calcium in the presence of heparin was able to protect the enzyme from inactivation by these modifying reagents. In addition, through mapping studies of Woodward's reagent K-modified heparinase I, we identified two putative calcium-binding sites, CB-1 (Glu207-Ala219) and CB-2 (Thr373-Arg384), in heparinase I that not only are specifically modified by Woodward's reagent K, leading to loss of enzymatic activity, but also conform to the calcium-coordinating consensus motif.
Wu, Guotao; Liu, Xinqiang; Hou, Yongfu
2010-09-01
To evaluate the effect of casein phosphopeptide-amorphous calcium phosphate tooth mousse on the remineralization of bovine incisor by circularly polarized images. Eighty bovine incisors, each with a 4 x 4 mm artificially demineralized area, were used. The samples were divided into four groups: Group A, casein phosphopeptide-amorphous calcium phosphate tooth mousse; Group B, fluoride toothpaste; Group C, casein phosphopeptide-amorphous calcium phosphate tooth mousse and fluoride toothpaste; and Group D, no treatment. Circularly polarized images were taken after the specimens were treated for 3, 6, 9, or 12 weeks, and the size of the demineralized area and the mean grey level were measured. Data analysis was done using repeated measures variance analysis. Pearson correlation coefficients were computed to evaluate the correlation between the size of the demineralized area and the mean grey level. In all four groups, the size of the demineralized area and the mean grey level declined with time. The size of the demineralized area of Group C was significantly smaller than that of Group A at the end of the third and sixth weeks (P = .039, P = .000, respectively), and the mean grey level of Group C was lower than that of Group A at the end of the 6th and 12th weeks (P = .037, P = .004, respectively). At the end of the 6th, 9th, and 12th weeks, the size of the demineralized area of Group C was smaller (P = .000, P = .005, P = .005, respectively) and the mean grey level was lower (P = .000) than those of Group B. No statistically significant correlations were detected between the size of the demineralized area and the mean grey level. Casein phosphopeptide-amorphous calcium phosphate tooth mousse can reduce the size and mean grey level of demineralized areas and promote the remineralization of bovine enamel. Combined application with fluoride toothpaste strengthens the effect.
Devaraju, P; Yu, J; Eddins, D; Mellado-Lagarde, M M; Earls, L R; Westmoreland, J J; Quarato, G; Green, D R; Zakharenko, S S
2017-09-01
Hemizygous deletion of a 1.5- to 3-megabase region on chromosome 22 causes 22q11.2 deletion syndrome (22q11DS), which constitutes one of the strongest genetic risks for schizophrenia. Mouse models of 22q11DS have abnormal short-term synaptic plasticity that contributes to working-memory deficiencies similar to those in schizophrenia. We screened mutant mice carrying hemizygous deletions of 22q11DS genes and identified haploinsufficiency of Mrpl40 (mitochondrial large ribosomal subunit protein 40) as a contributor to abnormal short-term potentiation (STP), a major form of short-term synaptic plasticity. Two-photon imaging of the genetically encoded fluorescent calcium indicator GCaMP6, expressed in presynaptic cytosol or mitochondria, showed that Mrpl40 haploinsufficiency deregulates STP via impaired calcium extrusion from the mitochondrial matrix through the mitochondrial permeability transition pore. This led to abnormally high cytosolic calcium transients in presynaptic terminals and deficient working memory but did not affect long-term spatial memory. Thus, we propose that mitochondrial calcium deregulation is a novel pathogenic mechanism of cognitive deficiencies in schizophrenia.
Richhariya, Shlesha; Jayakumar, Siddharth; Abruzzi, Katharine; Rosbash, Michael; Hasan, Gaiti
2017-01-01
Transcriptional regulation by Store-operated Calcium Entry (SOCE) is well studied in non-excitable cells. However, the role of SOCE has been poorly documented in neuronal cells with more complicated calcium dynamics. Previous reports demonstrated a requirement for SOCE in neurons that regulate Drosophila flight bouts. We refine this requirement temporally to the early pupal stage and use RNA-sequencing to identify SOCE mediated gene expression changes in the developing Drosophila pupal nervous system. Down regulation of dStim, the endoplasmic reticular calcium sensor and a principal component of SOCE in the nervous system, altered the expression of 131 genes including Ral, a small GTPase. Disruption of Ral function in neurons impaired flight, whereas ectopic expression of Ral in SOCE-compromised neurons restored flight. Through live imaging of calcium transients from cultured pupal neurons, we confirmed that Ral does not participate in SOCE, but acts downstream of it. These results identify neuronal SOCE as a mechanism that regulates expression of specific genes during development of the pupal nervous system and emphasizes the relevance of SOCE-regulated gene expression to flight circuit maturation. PMID:28195208
Courteix, D; Jaffré, C; Lespessailles, E; Benhamou, L
2005-06-01
High calcium intake combined with physical activity during childhood have been shown to improve bone mass accrual and bone mineral density. Our aim was to study the combined effect of calcium and exercise on bone gain in children. Two milk-powder products containing either 800 mg of calcium phosphate (calcium) or not (placebo) were randomly allocated to 113 healthy premenarchal girls on a daily basis for 1 year. The group was composed of 63 exercise (7.2 +/- 4 hours of exercise/week) and 50 sedentary (1.2 +/- 0.8 hours of exercise/week) children. The final experiment had 4 groups: exercise/calcium (n = 12), exercise/placebo (n = 42), sedentary/calcium (n = 10), and sedentary/placebo (n = 21). Bone mineral density (BMD) at 6 skeletal sites and body composition were determined by DXA. Bone age was calculated and the daily spontaneous calcium intake was assessed by a frequency questionnaire. All the tests were performed at baseline and 1 year by the same observer. BMD gains were significantly greater in the exercise/calcium group than in other groups at the total body (increase of 6.3 %, p < 0.05), lumbar spine (11 %, p < 0.05), femoral neck (8.2 %, p < 0.02), and Ward's triangle (9.3 %, p < 0.01). There was no difference between the other groups. These data suggest that calcium supplementation increases the effect of physical exercise on bone mineral acquisition in the period preceding puberty, and that calcium supplementation without physical activity does not improve the BMD acquisition during this period. Physical exercise that stimulates bone accretion needs a high calcium intake to be completely effective.
Optimized spray drying process for preparation of one-step calcium-alginate gel microspheres
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popeski-Dimovski, Riste
Calcium-alginate micro particles have been used extensively in drug delivery systems. Therefore we establish a one-step method for preparation of internally gelated micro particles with spherical shape and narrow size distribution. We use four types of alginate with different G/M ratio and molar weight. The size of the particles is measured using light diffraction and scanning electron microscopy. Measurements showed that with this method, micro particles with size distribution around 4 micrometers can be prepared, and SEM imaging showed that those particles are spherical in shape.
L-Amino Acids Elicit Diverse Response Patterns in Taste Sensory Cells: A Role for Multiple Receptors
Pal Choudhuri, Shreoshi; Delay, Rona J.; Delay, Eugene R.
2015-01-01
Umami, the fifth basic taste, is elicited by the L-amino acid, glutamate. A unique characteristic of umami taste is the response potentiation by 5’ ribonucleotide monophosphates, which are also capable of eliciting an umami taste. Initial reports using human embryonic kidney (HEK) cells suggested that there is one broadly tuned receptor heterodimer, T1r1+T1r3, which detects L-glutamate and all other L-amino acids. However, there is growing evidence that multiple receptors detect glutamate in the oral cavity. While much is understood about glutamate transduction, the mechanisms for detecting the tastes of other L-amino acids are less well understood. We used calcium imaging of isolated taste sensory cells and taste cell clusters from the circumvallate and foliate papillae of C57BL/6J and T1r3 knockout mice to determine if other receptors might also be involved in detection of L-amino acids. Ratiometric imaging with Fura-2 was used to study calcium responses to monopotassium L-glutamate, L-serine, L-arginine, and L-glutamine, with and without inosine 5’ monophosphate (IMP). The results of these experiments showed that the response patterns elicited by L-amino acids varied significantly across taste sensory cells. L-amino acids other than glutamate also elicited synergistic responses in a subset of taste sensory cells. Along with its role in synergism, IMP alone elicited a response in a large number of taste sensory cells. Our data indicate that synergistic and non-synergistic responses to L-amino acids and IMP are mediated by multiple receptors or possibly a receptor complex. PMID:26110622
Fibromodulin modulates myoblast differentiation by controlling calcium channel.
Lee, Eun Ju; Nam, Joo Hyun; Choi, Inho
2018-06-16
Fibromodulin (FMOD) is a proteoglycan present in extracellular matrix (ECM). Based on our previous findings that FMOD controls myoblast differentiation by regulating the gene expressions of collagen type I alpha 1 (COL1α1) and integral membrane protein 2 A (Itm2a), we undertook this study to investigate relationships between FMOD and calcium channels and to understand further the mechanism by which they control myoblast differentiation. Gene expression studies and luciferase reporter assays showed FMOD affected calcium channel gene expressions by regulating calcium channel gene promoter, and patch-clamp experiments showed both L- and T-type calcium channel currents were almost undetectable in FMOD knocked down cells. In addition, gene knock-down studies demonstrated the COL1α1 and Itm2a genes both regulate the expressions of calcium channel genes. Studies using a cardiotoxin-induced mouse muscle injury model demonstrated calcium channels play important roles in the regeneration of muscle tissue, possibly by promoting the differentiation of muscle stem cells (MSCs). Summarizing, the study demonstrates ECM components secreted by myoblasts during differentiation provide an essential environment for muscle differentiation and regeneration. Copyright © 2018 Elsevier Inc. All rights reserved.
He, Lizhong; Li, Bin; Lu, Xiaomin; Yuan, Lingyun; Yang, Yanjuan; Yuan, Yinghui; Du, Jing; Guo, Shirong
2015-01-01
Hypoxia induces plant stress, particularly in cucumber plants under hydroponic culture. In plants, calcium is involved in stress signal transmission and growth. The ultimate goal of this study was to shed light on the mechanisms underlying the effects of exogenous calcium on the mitochondrial antioxidant system, the activity of respiratory metabolism enzymes, and ion transport in cucumber (Cucumis sativus L. cv. Jinchun No. 2) roots under hypoxic conditions. Our experiments revealed that exogenous calcium reduces the level of reactive oxygen species (ROS) and increases the activity of antioxidant enzymes in mitochondria under hypoxia. Exogenous calcium also enhances the accumulation of enzymes involved in glycolysis and the tricarboxylic acid (TCA) cycle. We utilized fluorescence and ultrastructural cytochemistry methods to observe that exogenous calcium increases the concentrations of Ca2+ and K+ in root cells by increasing the activity of plasma membrane (PM) H+-ATPase and tonoplast H+-ATPase and H+-PPase. Overall, our results suggest that hypoxic stress has an immediate and substantial effect on roots. Exogenous calcium improves metabolism and ion transport in cucumber roots, thereby increasing hypoxia tolerance in cucumber. PMID:26304855
Mathematical investigation of IP3-dependent calcium dynamics in astrocytes.
Handy, Gregory; Taheri, Marsa; White, John A; Borisyuk, Alla
2017-06-01
We study evoked calcium dynamics in astrocytes, a major cell type in the mammalian brain. Experimental evidence has shown that such dynamics are highly variable between different trials, cells, and cell subcompartments. Here we present a qualitative analysis of a recent mathematical model of astrocyte calcium responses. We show how the major response types are generated in the model as a result of the underlying bifurcation structure. By varying key channel parameters, mimicking blockers used by experimentalists, we manipulate this underlying bifurcation structure and predict how the distributions of responses can change. We find that store-operated calcium channels, plasma membrane bound channels with little activity during calcium transients, have a surprisingly strong effect, underscoring the importance of considering these channels in both experiments and mathematical settings. Variation in the maximum flow in different calcium channels is also shown to determine the range of stable oscillations, as well as set the range of frequencies of the oscillations. Further, by conducting a randomized search through the parameter space and recording the resulting calcium responses, we create a database that can be used by experimentalists to help estimate the underlying channel distribution of their cells.
Kraidith, Kamonshanok; Jantarajit, Walailuk; Teerapornpuntakit, Jarinthorn; Nakkrasae, La-iad; Krishnamra, Nateetip; Charoenphandhu, Narattaphol
2009-09-01
Prolactin (PRL) is reported to stimulate calcium absorption in the rat's small intestine. However, little is known regarding its effects on the cecum, a part of the large intestine with the highest rate of intestinal calcium transport. We demonstrated herein by quantitative real-time polymerase chain reaction and Western blot analysis that the cecum could be a target organ of PRL since cecal epithelial cells strongly expressed PRL receptors. In Ussing chamber experiments, PRL enhanced the transcellular cecal calcium absorption in a biphasic dose-response manner. PRL also increased the paracellular calcium permeability and passive calcium transport in the cecum, which could be explained by the PRL-induced decrease in transepithelial resistance and increase in cation selectivity of the cecal epithelium. PRL actions in the cecum were abolished by inhibitors of phosphoinositide 3-kinase (PI3K), protein kinase C (PKC), and RhoA-associated coiled-coil forming kinase (ROCK), but not inhibitors of gene transcription and protein biosynthesis. In conclusion, PRL directly enhanced the transcellular and paracellular calcium transport in the rat cecum through the nongenomic signaling pathways involving PI3K, PKC, and ROCK.
Winland, Carissa D; Welsh, Nora; Sepulveda-Rodriguez, Alberto; Vicini, Stefano; Maguire-Zeiss, Kathleen A
2017-11-01
Neuroinflammation precedes neuronal loss in striatal neurodegenerative diseases and can be exacerbated by the release of proinflammatory molecules by microglia. These molecules can affect trafficking of AMPARs. The preferential trafficking of calcium-permeable versus impermeable AMPARs can result in disruptions of [Ca 2+ ] i and alter cellular functions. In striatal neurodegenerative diseases, changes in [Ca 2+ ] i and L-type voltage-gated calcium channels (VGCCs) have been reported. Therefore, this study sought to determine whether a proinflammatory environment alters AMPA-stimulated [Ca 2+ ] i through calcium-permeable AMPARs and/or L-type VGCCs in dopamine-2- and dopamine-1-expressing striatal spiny projection neurons (D2 and D1 SPNs) in the dorsal striatum. Mice expressing the calcium indicator protein, GCaMP in D2 or D1 SPNs, were utilized for calcium imaging. Microglial activation was assessed by morphology analyses. To induce inflammation, acute mouse striatal slices were incubated with lipopolysaccharide (LPS). Here we report that LPS treatment potentiated AMPA responses only in D2 SPNs. When a nonspecific VGCC blocker was included, we observed a decrease of AMPA-stimulated calcium fluorescence in D2 but not D1 SPNs. The remaining agonist-induced [Ca 2+ ] i was mediated by calcium-permeable AMPARs because the responses were completely blocked by a selective calcium-permeable AMPAR antagonist. We used isradipine, the highly selective L-type VGCC antagonist to determine the role of L-type VGCCs in SPNs treated with LPS. Isradipine decreased AMPA-stimulated responses selectively in D2 SPNs after LPS treatment. Our findings suggest that dorsal striatal D2 SPNs are specifically targeted in proinflammatory conditions and that L-type VGCCs and calcium-permeable AMPARs are important mediators of this effect. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Xiang, J Z; Kentish, J C
1995-03-01
The aim was to investigate whether, and how, increases in inorganic phosphate (Pi) and ADP, similar to those occurring intracellularly during early myocardial ischaemia, affect the calcium handling of the sarcoplasmic reticulum. Rat ventricular trabeculae were permeabilised with saponin. The physiological process of calcium induced calcium release (CICR) from the muscle sarcoplasmic reticulum was triggered via flash photolysis of the "caged Ca2+", nitr-5. Alternatively, calcium release was induced by rapid application of caffeine to give an estimate of sarcoplasmic reticular calcium loading. The initial rate of sarcoplasmic reticular calcium pumping was also assessed by photolysis of caged ATP at saturating [Ca2+]. Myoplasmic [Ca2+] (using fluo-3) and isometric force were measured. Pi (2-20 mM) significantly depressed the magnitude of CICR and the associated force transient. Sarcoplasmic reticular calcium loading was inhibited even more than CICR by Pi, suggesting that reduced calcium loading could account for all of the inhibitory effect of Pi on CICR and that Pi may slightly activate the calcium release mechanism. The reduced sarcoplasmic reticular calcium loading seemed to be due to a fall in the free energy of ATP hydrolysis (delta GATP) available for the calcium pump, since equal decreases in delta GATP produced by adding both Pi and ADP in various ratios caused similar falls in the calcium loading of the sarcoplasmic reticulum. The caged ATP experiments indicated that Pi (20 mM) did not affect the rate constant of sarcoplasmic reticular calcium uptake. ADP (10 mM) alone, or with 1 mM Pi, inhibited calcium loading. In spite of this, ADP (10 mM) did not alter CICR and, when 1 mM Pi was added, ADP increased CICR above control. An increase in intracellular Pi reduces sarcoplasmic reticular calcium loading and thus depresses the CICR. This could be an important contributing factor in the hypoxic or ischaemic contractile failure of the myocardium. However the detrimental effect of Pi may be offset to some extent by a stimulatory action of ADP on the calcium release mechanism of CICR.
Circulating parathyroid hormone and calcitonin in rats after spaceflight
NASA Technical Reports Server (NTRS)
Arnaud, Sara B.; Fung, Paul; Popova, Irina A.; Morey-Holton, Emily R.; Grindeland, Richard E.
1992-01-01
Parathyroid hormone and calcithonin, two major calcium-regulating hormones, were measured in the plasma of five experimental groups of rats to evaluate postflight calcium homeostasis after the 14-day Cosmos 2044 flight. Parathyroid hormone values were slightly higher in the flight animals (F) than in the appropriate cage and diet controls (S) (44 +/- 21 vs 21 +/- 4 pg/ml, P less than 0.05), but they were the same as in the vivarium controls (V), which had different housing and feeding schedules. The difference in F and V (22 +/- 11 vs 49 +/- 16 pg/ml, P less than 0.05) was most likely due to failure of circulating calcitonin in F to show the normal age-dependent increase which was demonstrated in age-matched controls in a separate experiment. Basal values for parathyroid hormone and calcitonin were unchanged after 2 wk of hindlimb suspension, a flight simulation model, in age-matched and younger rats. From a time course experiment serum calcium was higher and parathyroid hormone lower after 4 wk than in ambulatory controls. Postflight circulating levels of parathyroid hormone appear to reflect disturbances in calcium homeostasis from impaired renal function of undetermined cause, whereas levels of calcitonin reflect depression of a normal growth process.
Narusuye, Kenji; Kinugawa, Aiko; Nagahama, Tatsumi
2005-11-01
Aplysia kurodai distributed along Japan feeds well on Ulva pertusa but rejects Gelidium amansii with distinctive patterned movements of the jaws and radula. On the ventral side of the cerebral M cluster, four cell bodies of higher order neurons that send axons to the buccal ganglia are distributed (CBM neurons). We have previously shown that the dopaminergic CBM1 modulates basic feeding circuits in the buccal ganglia for rejection by firing at higher frequency after application of the aversive taste of seaweed such as Gelidium amansii. In the present experiments immunohistochemical techniques showed that the CBM3 exhibited gamma-aminobutyric acid (GABA)-like immunoreactivity. The CBM3 may be equivalent to the CBI-3 involved in changing the motor programs from rejection to ingestion in Aplysia californica. The responses of the CBM3 to taste stimulation of the lips with seaweed extracts were investigated by the use of calcium imaging. The calcium-sensitive dye, Calcium Green-1, was iontophoretically introduced into a cell body of the CBM3 using a microelectrode. Application of Ulva pertusa or Gelidium amansii extract induced different changes in fluorescence in the CBM3 cell body, indicating that taste of Ulva pertusa initially induced longer-lasting continuous spike responses at slightly higher frequency compared with that of Gelidium amansii. Considering a role of the CBM3 in the pattern selection, these results suggest that elongation of the initial firing response may be a major factor for the CBM3 to switch the buccal motor programs from rejection to ingestion after application of different tastes of seaweeds in Aplysia kurodai. (c) 2005 Wiley Periodicals, Inc.
Guettier, Jean-Marc; Kam, Anthony; Chang, Richard; Skarulis, Monica C; Cochran, Craig; Alexander, H Richard; Libutti, Steven K; Pingpank, James F; Gorden, Phillip
2009-04-01
Selective intraarterial calcium injection of the major pancreatic arteries with hepatic venous sampling [calcium arterial stimulation (CaStim)] has been used as a localizing tool for insulinomas at the National Institutes of Health (NIH) since 1989. The accuracy of this technique for localizing insulinomas was reported for all cases until 1996. The aim of the study was to assess the accuracy and track record of the CaStim over time and in the context of evolving technology and to review issues related to result interpretation and procedure complications. CaStim was the only invasive preoperative localization modality used at our center. Endoscopic ultrasound (US) was not studied. We conducted a retrospective case review at a referral center. Twenty-nine women and 16 men (mean age, 47 yr; range, 13-78) were diagnosed with an insulinoma from 1996-2008. A supervised fast was conducted to confirm the diagnosis of insulinoma. US, computed tomography (CT), magnetic resonance imaging (MRI), and CaStim were used as preoperative localization studies. Localization predicted by each preoperative test was compared to surgical localization for accuracy. We measured the accuracy of US, CT, MRI, and CaStim for localization of insulinomas preoperatively. All 45 patients had surgically proven insulinomas. Thirty-eight of 45 (84%) localized to the correct anatomical region by CaStim. In five of 45 (11%) patients, the CaStim was falsely negative. Two of 45 (4%) had false-positive localizations. The CaStim has remained vastly superior to abdominal US, CT, or MRI over time as a preoperative localizing tool for insulinomas. The utility of the CaStim for this purpose and in this setting is thus validated.
NASA Astrophysics Data System (ADS)
Thompson, Gary Lee; Roth, Caleb C.; Dalzell, Danielle R.; Kuipers, Marjorie; Ibey, Bennett L.
2014-05-01
The cellular response to subtle membrane damage following exposure to nanosecond pulsed electric fields (nsPEF) is not well understood. Recent work has shown that when cells are exposed to nsPEF, ion permeable nanopores (<2 nm) are created in the plasma membrane in contrast to larger diameter pores (>2 nm) created by longer micro- and millisecond duration pulses. Nanoporation of the plasma membrane by nsPEF has been shown to cause a transient increase in intracellular calcium concentration within milliseconds after exposure. Our research objective is to determine the impact of nsPEF on calcium-dependent structural and repair systems in mammalian cells. Chinese hamster ovary (CHO-K1) cells were exposed in the presence and absence of calcium ions in the outside buffer to either 1 or 20, 600-ns duration electrical pulses at 16.2 kV/cm, and pore size was determined using propidium iodide and calcium green. Membrane organization was observed with morphological changes and increases in FM1-43 fluorescence. Migration of lysosomes, implicated in membrane repair, was followed using confocal microscopy of red fluorescent protein-tagged LAMP1. Microtubule structure was imaged using mEmerald-tubulin. We found that at high 600-ns PEF dosage, calcium-induced membrane restructuring and microtubule depolymerization coincide with interruption of membrane repair via lysosomal exocytosis.
Thakkar, Hetal Paresh; Baser, Amit Kumar; Parmar, Mayur Prakashbhai; Patel, Ketul Harshadbhai; Ramachandra Murthy, Rayasa
2012-06-01
Vincristine-sulfate-loaded liposomes were prepared with an aim to improve stability, reduce drug leakage during systemic circulation, and increase intracellular uptake. Liposomes were prepared by the thin-film hydration method, followed by coating with calcium phosphate, using the sequential addition approach. Prepared formulations were characterized for size, zeta potential, drug-entrapment efficiency, morphology by transmission electron microscopy (TEM), in vitro drug-release profile, and in vitro cell cytotoxicity study. Effect of formulation variables, such as drug:lipid ratio as well as nature and volume of hydration media, were found to affect drug entrapment, and the concentration of calcium chloride in coating was found to affect size and coating efficiency. Size, zeta potential, and TEM images confirmed that the liposomes were effectively coated with calcium phosphate. The calcium phosphate nanoshell exhibited pH-dependent drug release, showing significantly lower release at pH 7.4, compared to the release at pH 4.5, which is the pH of the tumor interstitium. The in vitro cytotoxicity study done on the lung cancer cell line indicated that coated liposomes are more cytotoxic than plain liposomes and drug solution, indicating their potential for intracellular drug delivery. The cell-uptake study done on the lung cancer cell line indicated that calcium-phosphate-coated liposomes show higher cell uptake than uncoated liposomes.
Szentesi, Péter; Szappanos, Henrietta; Szegedi, Csaba; Gönczi, Monika; Jona, István; Cseri, Julianna; Kovács, László; Csernoch, László
2004-03-01
The effects of thymol on steps of excitation-contraction coupling were studied on fast-twitch muscles of rodents. Thymol was found to increase the depolarization-induced release of calcium from the sarcoplasmic reticulum, which could not be attributed to a decreased calcium-dependent inactivation of calcium release channels/ryanodine receptors or altered intramembrane charge movement, but rather to a more efficient coupling of depolarization to channel opening. Thymol increased ryanodine binding to heavy sarcoplasmic reticulum vesicles, with a half-activating concentration of 144 micro M and a Hill coefficient of 1.89, and the open probability of the isolated and reconstituted ryanodine receptors, from 0.09 +/- 0.03 to 0.22 +/- 0.04 at 30 micro M. At higher concentrations the drug induced long-lasting open events on a full conducting state. Elementary calcium release events imaged using laser scanning confocal microscopy in the line-scan mode were reduced in size, 0.92 +/- 0.01 vs. 0.70 +/- 0.01, but increased in duration, 56 +/- 1 vs. 79 +/- 1 ms, by 30 micro M thymol, with an increase in the relative proportion of lone embers. Higher concentrations favored long events, resembling embers in control, with duration often exceeding 500 ms. These findings provide direct experimental evidence that the opening of a single release channel will generate an ember, rather than a spark, in mammalian skeletal muscle.
Thompson, Gary Lee; Roth, Caleb C; Dalzell, Danielle R; Kuipers, Marjorie; Ibey, Bennett L
2014-05-01
The cellular response to subtle membrane damage following exposure to nanosecond pulsed electric fields (nsPEF) is not well understood. Recent work has shown that when cells are exposed to nsPEF, ion permeable nanopores (<2 nm) are created in the plasma membrane in contrast to larger diameter pores (>2 nm) created by longer micro- and millisecond duration pulses. Nanoporation of the plasma membrane by nsPEF has been shown to cause a transient increase in intracellular calcium concentration within milliseconds after exposure. Our research objective is to determine the impact of nsPEF on calcium-dependent structural and repair systems in mammalian cells. Chinese hamster ovary (CHO-K1) cells were exposed in the presence and absence of calcium ions in the outside buffer to either 1 or 20, 600-ns duration electrical pulses at 16.2 kV/cm, and pore size was determined using propidium iodide and calcium green. Membrane organization was observed with morphological changes and increases in FM1-43 fluorescence. Migration of lysosomes, implicated in membrane repair, was followed using confocal microscopy of red fluorescent protein-tagged LAMP1. Microtubule structure was imaged using mEmerald-tubulin. We found that at high 600-ns PEF dosage, calcium-induced membrane restructuring and microtubule depolymerization coincide with interruption of membrane repair via lysosomal exocytosis.
Hake fish bone as a calcium source for efficient bone mineralization.
Flammini, Lisa; Martuzzi, Francesca; Vivo, Valentina; Ghirri, Alessia; Salomi, Enrico; Bignetti, Enrico; Barocelli, Elisabetta
2016-01-01
Calcium is recognized as an essential nutritional factor for bone health. An adequate intake is important to achieve or maintain optimal bone mass in particular during growth and old age. The aim of the present study was to evaluate the efficiency of hake fish bone (HBF) as a calcium source for bone mineralization: in vitro on osteosarcoma SaOS-2 cells, cultured in Ca-free osteogenic medium (OM) and in vivo on young growing rats fed a low-calcium diet. Lithotame (L), a Ca supplement derived from Lithothamnium calcareum, was used as control. In vitro experiments showed that HBF supplementation provided bone mineralization similar to standard OM, whereas L supplementation showed lower activity. In vivo low-Ca HBF-added and L-added diet similarly affected bone deposition. Physico-chemical parameters concerning bone mineralization, such as femur breaking force, tibia density and calcium/phosphorus mineral content, had beneficial effects from both Ca supplementations, in the absence of any evident adverse effect. We conclude HBF derived from by-product from the fish industry is a good calcium supplier with comparable efficacy to L.
Mao, Gui-Lian; Xu, Xing; Zeng, Jin; Yue, Zi-Hui; Yang, Shu-Juan
2012-02-01
To approach the action mechanisms of desulfurization waste on alleviating alkali stress-induced injury of rice, a pot experiment was conducted to study the variations of leaf total calcium content, calcium distribution, plasma membrane Ca(2+)-ATPase activity, and reactive oxygen content of rice seedlings under alkali stress after the application of desulfurization waste. In the control, a few calcium particulates scattered in the cell wall and chloroplasts, while applying desulfurization waste or CaSO4 increased the calcium particulates in the plasma membrane, intercellular space, cell wall, and vacuole significantly. With the increasing application rate of desulfurization waste or CaSO4, the leaf total calcium content increased, Ca(2+)-ATPase activity in plasma membrane and tonoplast presented an increasing trend, plasma membrane relative permeability, MDA content, and O2 production rate decreased, and SOD and POD activities increased. The desulfurization waste could relieve the alkali stress to rice in some extent, and the main reactive compound in the waste could be CaSO4.
NASA Astrophysics Data System (ADS)
Chang, Kelly C.; Trayanova, Natalia A.
2016-11-01
The occurrence of atrial fibrillation (AF) is associated with progressive changes in the calcium handling system of atrial myocytes. Calcium cycling instability has been implicated as an underlying mechanism of electrical alternans observed in patients who experience AF. However, the extent to which calcium-induced alternation of electrical activity in the atria contributes to arrhythmogenesis is unknown. In this study, we investigated the effects of calcium-driven alternans (CDA) on arrhythmia susceptibility in a biophysically detailed, 3D computer model of the human atria representing electrical and structural remodeling secondary to chronic AF. We found that elevated propensity to CDA rendered the atria vulnerable to ectopy-induced arrhythmia. It also increased the complexity and persistence of arrhythmias induced by fast pacing, with unstable scroll waves meandering and frequently breaking up to produce multiple wavelets. Our results suggest that calcium-induced electrical instability may increase arrhythmia vulnerability and promote increasing disorganization of arrhythmias in the chronic AF-remodeled atria, thus playing an important role in the progression of the disease.
Spectrophotometric Titration of a Mixture of Calcium and Magnesium.
ERIC Educational Resources Information Center
Fulton, Robert; And Others
1986-01-01
Describes a spectrophotometric titration experiment which uses a manual titration spectrophotometer and manually operated buret, rather than special instrumentation. Identifies the equipment, materials, and procedures needed for the completion of the experiment. Recommends the use of this experiment in introductory quantitative analysis…
Single-Molecule Light-Sheet Imaging of Suspended T Cells.
Ponjavic, Aleks; McColl, James; Carr, Alexander R; Santos, Ana Mafalda; Kulenkampff, Klara; Lippert, Anna; Davis, Simon J; Klenerman, David; Lee, Steven F
2018-05-08
Adaptive immune responses are initiated by triggering of the T cell receptor. Single-molecule imaging based on total internal reflection fluorescence microscopy at coverslip/basal cell interfaces is commonly used to study this process. These experiments have suggested, unexpectedly, that the diffusional behavior and organization of signaling proteins and receptors may be constrained before activation. However, it is unclear to what extent the molecular behavior and cell state is affected by the imaging conditions, i.e., by the presence of a supporting surface. In this study, we implemented single-molecule light-sheet microscopy, which enables single receptors to be directly visualized at any plane in a cell to study protein dynamics and organization in live, resting T cells. The light sheet enabled the acquisition of high-quality single-molecule fluorescence images that were comparable to those of total internal reflection fluorescence microscopy. By comparing the apical and basal surfaces of surface-contacting T cells using single-molecule light-sheet microscopy, we found that most coated-glass surfaces and supported lipid bilayers profoundly affected the diffusion of membrane proteins (T cell receptor and CD45) and that all the surfaces induced calcium influx to various degrees. Our results suggest that, when studying resting T cells, surfaces are best avoided, which we achieve here by suspending cells in agarose. Copyright © 2018. Published by Elsevier Inc.