van Kempen, Bob J H; Ferket, Bart S; Steyerberg, Ewout W; Max, Wendy; Myriam Hunink, M G; Fleischmann, Kirsten E
2016-01-15
High sensitivity CRP (hsCRP), coronary artery calcification on CT (CT calcium), carotid artery intima media thickness on ultrasound (cIMT) and ankle-brachial index (ABI) improve prediction of cardiovascular disease (CVD) risk, but the benefit of screening with these novel risk markers in the U.S. population is unclear. A microsimulation model evaluating lifelong cost-effectiveness for individuals aged 40-85 at intermediate risk of CVD, using 2003-2004 NHANES-III (N=3736), Framingham Heart Study, U.S. Vital Statistics, meta-analyses of independent predictive effects of the four novel risk markers and treatment effects was constructed. Using both an intention-to-treat (assumes adherence <100% and incorporates disutility from taking daily medications) and an as-treated (100% adherence and no disutility) analysis, quality adjusted life years (QALYs), lifetime costs (2014 US $), and incremental cost-effectiveness ratios (ICER in $/QALY gained) of screening with hsCRP, CT coronary calcium, cIMT and ABI were established compared with current practice, full adherence to current guidelines, and ubiquitous statin therapy. In the intention-to-treat analysis in men, screening with CT calcium was cost effective ($32,900/QALY) compared with current practice. In women, screening with hsCRP was cost effective ($32,467/QALY). In the as-treated analysis, statin therapy was both more effective and less costly than all other strategies for both men and women. When a substantial disutility from taking daily medication is assumed, screening men with CT coronary calcium is likely to be cost-effective whereas screening with hsCRP has value in women. The individual perceived disutility for taking daily medication should play a key role in the decision. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Evidence of dietary calcium and vitamin D inadequacies in a population of dental patients.
Pehowich, Daniel J; Pehowich, Enid D
2016-12-01
To determine the dietary calcium and vitamin D intake of a cohort of dental patients identified as being at risk of inadequacy based on a 24-hour food recall. A retrospective chart analysis was carried out on 5-day food record and nutrient analyses of 670 dental patients aged 18 to 82 years obtained over a 10-year period. All patients had scored poorly on a 24-hour food recall survey during their initial examination. The overall mean and median calcium and vitamin D intakes of the patients were significantly lower than the current estimated needs for the general population. Although calcium intake did not change over the 10-year period, vitamin D consumption decreased. The greatest dietary intake inadequacies for both calcium and vitamin D were seen in both male and female patients over age 50 years. A 24-Hour Food Recall Questionnaire may be an effective means for the oral health professional to screen patients for calcium and vitamin D and other nutrient inadequacies. Screening for potential dietary inadequacies of calcium and vitamin D may identify patients potentially at risk for poor bone health. Our results indicate that the dental health professional can obtain evidence necessary to change patient dietary behavior and thus contribute to successful treatment outcomes. Copyright © 2016 Elsevier Inc. All rights reserved.
Resolution Properties of a Calcium Tungstate (CaWO4) Screen Coupled to a CMOS Imaging Detector
NASA Astrophysics Data System (ADS)
Koukou, Vaia; Martini, Niki; Valais, Ioannis; Bakas, Athanasios; Kalyvas, Nektarios; Lavdas, Eleftherios; Fountos, George; Kandarakis, Ioannis; Michail, Christos
2017-11-01
The aim of the current work was to assess the resolution properties of a calcium tungstate (CaWO4) screen (screen coating thickness: 50.09 mg/cm2, actual thickness: 167.2 μm) coupled to a high resolution complementary metal oxide semiconductor (CMOS) digital imaging sensor. A 2.7x3.6 cm2 CaWO4 sample was extracted from an Agfa Curix universal screen and was coupled directly with the active area of the active pixel sensor (APS) CMOS sensor. Experiments were performed following the new IEC 62220-1-1:2015 International Standard, using an RQA-5 beam quality. Resolution was assessed in terms of the Modulation Transfer Function (MTF), using the slanted-edge method. The CaWO4/CMOS detector configuration was found with linear response, in the exposure range under investigation. The final MTF was obtained through averaging the oversampled edge spread function (ESF), using a custom-made software developed by our team, according to the IEC 62220-1-1:2015. Considering the renewed interest in calcium tungstate for various applications, along with the resolution results of this work, CaWO4 could be also considered for use in X-ray imaging devices such as charged-coupled devices (CCD) and CMOS.
Lee, Seung Y; González-Flores, Diego; Ohms, Jonas; Trost, Tim; Dau, Holger; Zaharieva, Ivelina; Kurz, Philipp
2014-12-01
A mild screen-printing method was developed to coat conductive oxide surfaces (here: fluorine-doped tin oxide) with micrometer-thick layers of presynthesized calcium manganese oxide (Ca-birnessite) particles. After optimization steps concerning the printing process and layer thickness, electrodes were obtained that could be used as corrosion-stable water-oxidizing anodes at pH 7 to yield current densities of 1 mA cm(-2) at an overpotential of less than 500 mV. Analyses of the electrode coatings of optimal thickness (≈10 μm) indicated that composition, oxide phase, and morphology of the synthetic Ca-birnessite particles were hardly affected by the screen-printing procedure. However, a more detailed analysis by X-ray absorption spectroscopy revealed small modifications of both the Mn redox state and the structure at the atomic level, which could affect functional properties such as proton conductivity. Furthermore, the versatile new screen-printing method was used for a comparative study of various transition-metal oxides concerning electrochemical water oxidation under "artificial leaf conditions" (neutral pH, fairly low overpotential and current density), for which a general activity ranking of RuO2 >Co3 O4 ≈(Ca)MnOx ≈NiO was observed. Within the group of screened manganese oxides, Ca-birnessite performed better than "Mn-only materials" such as Mn2 O3 and MnO2 . © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bazopoulou, Daphne; Chaudhury, Amrita R; Pantazis, Alexandros; Chronis, Nikos
2017-08-24
Discovery of molecular targets or compounds that alter neuronal function can lead to therapeutic advances that ameliorate age-related neurodegenerative pathologies. Currently, there is a lack of in vivo screening technologies for the discovery of compounds that affect the age-dependent neuronal physiology. Here, we present a high-throughput, microfluidic-based assay for automated manipulation and on-chip monitoring and analysis of stimulus-evoked calcium responses of intact C. elegans at various life stages. First, we successfully applied our technology to quantify the effects of aging and age-related genetic and chemical factors in the calcium transients of the ASH sensory neuron. We then performed a large-scale screen of a library of 107 FDA-approved compounds to identify hits that prevented the age-dependent functional deterioration of ASH. The robust performance of our assay makes it a valuable tool for future high-throughput applications based on in vivo functional imaging.
Systematic Identification of MCU Modulators by Orthogonal Interspecies Chemical Screening.
Arduino, Daniela M; Wettmarshausen, Jennifer; Vais, Horia; Navas-Navarro, Paloma; Cheng, Yiming; Leimpek, Anja; Ma, Zhongming; Delrio-Lorenzo, Alba; Giordano, Andrea; Garcia-Perez, Cecilia; Médard, Guillaume; Kuster, Bernhard; García-Sancho, Javier; Mokranjac, Dejana; Foskett, J Kevin; Alonso, M Teresa; Perocchi, Fabiana
2017-08-17
The mitochondrial calcium uniporter complex is essential for calcium (Ca 2+ ) uptake into mitochondria of all mammalian tissues, where it regulates bioenergetics, cell death, and Ca 2+ signal transduction. Despite its involvement in several human diseases, we currently lack pharmacological agents for targeting uniporter activity. Here we introduce a high-throughput assay that selects for human MCU-specific small-molecule modulators in primary drug screens. Using isolated yeast mitochondria, reconstituted with human MCU, its essential regulator EMRE, and aequorin, and exploiting a D-lactate- and mannitol/sucrose-based bioenergetic shunt that greatly minimizes false-positive hits, we identify mitoxantrone out of more than 600 clinically approved drugs as a direct selective inhibitor of human MCU. We validate mitoxantrone in orthogonal mammalian cell-based assays, demonstrating that our screening approach is an effective and robust tool for MCU-specific drug discovery and, more generally, for the identification of compounds that target mitochondrial functions. Copyright © 2017 Elsevier Inc. All rights reserved.
Phage display selection of peptides that target calcium-binding proteins.
Vetter, Stefan W
2013-01-01
Phage display allows to rapidly identify peptide sequences with binding affinity towards target proteins, for example, calcium-binding proteins (CBPs). Phage technology allows screening of 10(9) or more independent peptide sequences and can identify CBP binding peptides within 2 weeks. Adjusting of screening conditions allows selecting CBPs binding peptides that are either calcium-dependent or independent. Obtained peptide sequences can be used to identify CBP target proteins based on sequence homology or to quickly obtain peptide-based CBP inhibitors to modulate CBP-target interactions. The protocol described here uses a commercially available phage display library, in which random 12-mer peptides are displayed on filamentous M13 phages. The library was screened against the calcium-binding protein S100B.
A Neuron-Based Screening Platform for Optimizing Genetically-Encoded Calcium Indicators
Schreiter, Eric R.; Hasseman, Jeremy P.; Tsegaye, Getahun; Fosque, Benjamin F.; Behnam, Reza; Shields, Brenda C.; Ramirez, Melissa; Kimmel, Bruce E.; Kerr, Rex A.; Jayaraman, Vivek; Looger, Loren L.; Svoboda, Karel; Kim, Douglas S.
2013-01-01
Fluorescent protein-based sensors for detecting neuronal activity have been developed largely based on non-neuronal screening systems. However, the dynamics of neuronal state variables (e.g., voltage, calcium, etc.) are typically very rapid compared to those of non-excitable cells. We developed an electrical stimulation and fluorescence imaging platform based on dissociated rat primary neuronal cultures. We describe its use in testing genetically-encoded calcium indicators (GECIs). Efficient neuronal GECI expression was achieved using lentiviruses containing a neuronal-selective gene promoter. Action potentials (APs) and thus neuronal calcium levels were quantitatively controlled by electrical field stimulation, and fluorescence images were recorded. Images were segmented to extract fluorescence signals corresponding to individual GECI-expressing neurons, which improved sensitivity over full-field measurements. We demonstrate the superiority of screening GECIs in neurons compared with solution measurements. Neuronal screening was useful for efficient identification of variants with both improved response kinetics and high signal amplitudes. This platform can be used to screen many types of sensors with cellular resolution under realistic conditions where neuronal state variables are in relevant ranges with respect to timing and amplitude. PMID:24155972
Stationary digital chest tomosynthesis for coronary artery calcium scoring
NASA Astrophysics Data System (ADS)
Wu, Gongting; Wang, Jiong; Potuzko, Marci; Harman, Allison; Pearce, Caleb; Shan, Jing; Lee, Yueh Z.; Zhou, Otto; Lu, Jianping
2016-03-01
The coronary artery calcium score (CACS) measures the buildup of calcium on the coronary artery wall and has been shown to be an important predictor of the risk of coronary artery diseases (CAD). Currently CACS is measured using CT, though the relatively high cost and high radiation dose has limited its adoption as a routine screening procedure. Digital Chest Tomosynthesis (DCT), a low dose and low cost alternative to CT, and has been shown to achieve 90% of sensitivity of CT in lung disease screening. However commercial DCT requires long scanning time and cannot be adapted for high resolution gated cardiac imaging, necessary for CACS. The stationary DCT system (s- DCT), developed in our lab, has the potential to significantly shorten the scanning time and enables high resolution cardiac gated imaging. Here we report the preliminary results of using s-DCT to estimate the CACS. A phantom heart model was developed and scanned by the s-DCT system and a clinical CT in a phantom model with realistic coronary calcifications. The adapted fan-beam volume reconstruction (AFVR) method, developed specifically for stationary tomosynthesis systems, is used to obtain high resolution tomosynthesis images. A trained cardiologist segmented out the calcifications and the CACS was obtained. We observed a strong correlation between the tomosynthesis derived CACS and CT CACS (r2 = 0.88). Our results shows s-DCT imaging has the potential to estimate CACS, thus providing a possible low cost and low dose imaging protocol for screening and monitoring CAD.
Sukumaran, Pramod; Löf, Christoffer; Kemppainen, Kati; Kankaanpää, Pasi; Pulli, Ilari; Näsman, Johnny; Viitanen, Tero; Törnquist, Kid
2012-01-01
Mammalian non-selective transient receptor potential cation channels (TRPCs) are important in the regulation of cellular calcium homeostasis. In thyroid cells, including rat thyroid FRTL-5 cells, calcium regulates a multitude of processes. RT-PCR screening of FRTL-5 cells revealed the presence of TRPC2 channels only. Knockdown of TRPC2 using shRNA (shTRPC2) resulted in decreased ATP-evoked calcium peak amplitude and inward current. In calcium-free buffer, there was no difference in the ATP-evoked calcium peak amplitude between control cells and shTRPC2 cells. Store-operated calcium entry was indistinguishable between the two cell lines. Basal calcium entry was enhanced in shTRPC2 cells, whereas the level of PKCβ1 and PKCδ, the activity of sarco/endoplasmic reticulum Ca2+-ATPase, and the calcium content in the endoplasmic reticulum were decreased. Stromal interaction molecule (STIM) 2, but not STIM1, was arranged in puncta in resting shTRPC2 cells but not in control cells. Phosphorylation site Orai1 S27A/S30A mutant and non-functional Orai1 R91W attenuated basal calcium entry in shTRPC2 cells. Knockdown of PKCδ with siRNA increased STIM2 punctum formation and enhanced basal calcium entry but decreased sarco/endoplasmic reticulum Ca2+-ATPase activity in wild-type cells. Transfection of a truncated, non-conducting mutant of TRPC2 evoked similar results. Thus, TRPC2 functions as a major regulator of calcium homeostasis in rat thyroid cells. PMID:23144458
Screening of a thiamine-auxotrophic yeast for alpha-ketoglutaric acid overproduction.
Zhou, Jingwen; Zhou, Haiyan; Du, Guocheng; Liu, Liming; Chen, Jian
2010-09-01
To obtain a thiamine-auxotrophic yeast strain that overproduces alpha-ketoglutaric acid (alpha-KG) from glycerol and to investigate nutrient effects on alpha-KG production. Yeast strain WSH-Z06, a thiamine auxotroph that gave high yields of alpha-KG from glycerol, was obtained by screening for ampicillin/kanamycin resistance and thiamine auxotrophy. The strain was identified as Yarrowia lipolytica based on physiological, chemical, and phylogenetic analysis. The ability of the strain to convert glycerol to alpha-KG was analysed by investigating the effects of nutritional factors, including thiamine, riboflavin, nitrogen sources, and calcium ion. Thiamine and calcium ion concentration had the greatest effect on alpha-KG accumulation. Under optimal conditions, a yield of 39.2 g l(-1)alpha-KG was obtained from 100 g l(-1) glycerol, with 16.84 g l(-1) pyruvate as a by-product. The current work provides a method for screening for an alpha-KG overproducer. Nutrients have a significant impact on alpha-KG production in the yeast strain presented here. The alpha-KG-overproducing yeast strain Y. lipolytica WSH-Z06 is a promising parent strain for further metabolic engineering to lower by-product accumulation and accelerate glycerol utilization.
Chin, Kathleen; Appel, Lawrence J.; Michos, Erin D.
2017-01-01
While the function of vitamin D in regulating calcium homeostasis is well established, there has been growing interest in its role in the prevention of numerous chronic diseases, including cardiovascular disease (CVD). There is mounting epidemiological evidence suggesting that vitamin D deficiency is linked to increased CVD risk. However, the results of previous vitamin D supplementation trials have yielded mixed results in regards to cardiovascular health, and the results of on-going large-scale randomized controlled trials are not yet available. Further complicating the issue, calcium supplementation, which is often prescribed concurrently with vitamin D, has been associated with increased CVD risk in some (but not all) studies. Thus, it is currently unclear whether vitamin D supplements, particularly for those that are deficient, can help prevent the development of CVD. In addition, there has not been uniform consensus regarding the threshold of 25-hydroxyvitamin D levels that constitutes “sufficiency” across organizational guidelines. This review will provide an update on the most recent evidence regarding the effects of vitamin D and calcium supplements on CVD clinical outcomes, summarize ongoing vitamin D trials, and discuss the current but remarkably disparate recommendations regarding vitamin D deficiency screening and supplementation. PMID:28127710
Increased lead levels in pregnancy among immigrant women.
Alba, Amanda; Carleton, Lindsay; Dinkel, Laura; Ruppe, Rebekah
2012-01-01
Antepartum lead screening typically involves identification of current environmental or occupational risk and pica habits. However, for foreign-born women who have immigrated to the United States, distant exposure years prior may be a more significant factor contributing to elevated lead levels. Because lead can be stored in bone for decades and mobilized to the blood when calcium needs increase in pregnancy, women and their children can be at risk for lead-related complications like anemia, gestational hypertension, preterm labor, low birth weight, and developmental delays without any identifiable current exposure. Midwives and other women's health clinicians must carefully evaluate the history of every woman under their care, individualizing screening and treatment to identify risk and provide timely intervention. © 2012 by the American College of Nurse-Midwives.
Alkaline phosphatase as a screening test for osteomalacia.
Chinoy, Muhammad Amin; Javed, Muhammad Imran; Khan, Alamzeb; Sadruddin, Nooruddin
2011-01-01
Vitamin D deficiency remains common in children and adults in Pakistan despite adequate sunlight exposure. Diagnosis in adults is usually delayed and is made following pathological fractures that result in significant morbidity. The objective of this study was to see whether Serum Alkaline Phosphatase levels could be used as a screening test for osteomalacia. The Study was conducted at Fatima Hospital, Baqai Medical University, Gadap, Karachi, between July 2002 and June 2005. Serum calcium levels are commonly used to screen patients suspected of osteomalacia, and raised serum alkaline phosphatase (SALP) is considered a diagnostic finding. We used SALP to screen patients who presented with back or non-specific aches and pain of more than six months duration. Three hundred thirty-four (334) patients were screened of which 116 (35%) had raised SALP. Osteomalacia was diagnosed in 92 (79.3%) of these 116 either by plain radiographs, bone biopsy or isotope bone scan. Fifty-four (53.4%) of the 101 cases had a normal level of serum calcium. Osteomalacia is likely to be missed if only serum calcium is used to screen patients. Serum Alkaline Phosphate should be used as the preferred method for screening these patients.
In Vitro Screen for Cyanide Antidotes
1993-05-13
each others actions in the in yiro screen. Known cyanide antidotes (e.g., pyruvate, mercaptopyruvate, alpha - ketoglutarate , naloxone and flunarizine...generation, cytosolic-free calcium ) and inhibition of certain enzymes (catalase, superoxide dismutase and cytochrome oxidase) was evaluated for 39...cyanide, and for this reason other biochemical actions of cyanide [elevated cytosolic calcium (3), peroxide generation (4) and inhibition of
Impact of calcium on N1 influenza neuraminidase dynamics and binding free energy.
Lawrenz, Morgan; Wereszczynski, Jeff; Amaro, Rommie; Walker, Ross; Roitberg, Adrian; McCammon, J Andrew
2010-08-15
The highly pathogenic influenza strains H5N1 and H1N1 are currently treated with inhibitors of the viral surface protein neuraminidase (N1). Crystal structures of N1 indicate a conserved, high affinity calcium binding site located near the active site. The specific role of this calcium in the enzyme mechanism is unknown, though it has been shown to be important for enzymatic activity and thermostability. We report molecular dynamics (MD) simulations of calcium-bound and calcium-free N1 complexes with the inhibitor oseltamivir (marketed as the drug Tamiflu), independently using both the AMBER FF99SB and GROMOS96 force fields, to give structural insight into calcium stabilization of key framework residues. Y347, which demonstrates similar sampling patterns in the simulations of both force fields, is implicated as an important N1 residue that can "clamp" the ligand into a favorable binding pose. Free energy perturbation and thermodynamic integration calculations, using two different force fields, support the importance of Y347 and indicate a +3 to +5 kcal/mol change in the binding free energy of oseltamivir in the absence of calcium. With the important role of structure-based drug design for neuraminidase inhibitors and the growing literature on emerging strains and subtypes, inclusion of this calcium for active site stability is particularly crucial for computational efforts such as homology modeling, virtual screening, and free energy methods. 2010 Wiley-Liss, Inc.
Measurement of urinary calcium using AT89C51RD2 microcontroller.
Neelamegam, P; Jamaludeen, A; Rajendran, A; Raghunathan, R
2009-04-01
A simple and inexpensive absorption technique for determination of calcium ion in urine samples is developed, comprising a light emitting diode (650 nm) as the light source and photodiode as the detector with AT89C51RD2 microcontroller. The design of the system and details of interface, calibration, and procedure of operation are explained in this paper. Software is developed to monitor sample processing and to display the results in liquid crystal display screen. With 15 microl sample volume, a linear output is obtained in the range of 2.5-7.5 mM calcium with a detection limit of 0.06 mM. Interferences from other cations such as monovalent ion and divalent ion are investigated in the expected range, which are normally present in clinical samples, and absorption changes over the pH range of 3-12 are also determined. This system has been demonstrated successfully for the successive assay of calcium in urine samples, with the results comparing well to those achieved and in good agreement with values obtained with the current clinical spectrophotometric method at 95% of confidence level.
Lu, Van B.; Puhl, Henry L.
2013-01-01
Recent studies propose that N-arachidonyl glycine (NAGly), a carboxylic analogue of anandamide, is an endogenous ligand of the Gαi/o protein–coupled receptor 18 (GPR18). However, a high-throughput β-arrestin–based screen failed to detect activation of GPR18 by NAGly (Yin et al., 2009; JBC, 18:12328). To address this inconsistency, this study investigated GPR18 coupling in a native neuronal system with endogenous signaling pathways and effectors. GPR18 was heterologously expressed in rat sympathetic neurons, and the modulation of N-type (Cav2.2) calcium channels was examined. Proper expression and trafficking of receptor were confirmed by the “rim-like” fluorescence of fluorescently tagged receptor and the positive staining of external hemagglutinin-tagged GPR18-expressing cells. Application of NAGly on GPR18-expressing neurons did not inhibit calcium currents but instead potentiated currents in a voltage-dependent manner, similar to what has previously been reported (Guo et al., 2008; J Neurophysiol, 100:1147). Other proposed agonists of GPR18, including anandamide and abnormal cannabidiol, also failed to induce inhibition of calcium currents. Mutants of GPR18, designed to constitutively activate receptors, did not tonically inhibit calcium currents, indicating a lack of GPR18 activation or coupling to endogenous G proteins. Other downstream effectors of Gαi/o-coupled receptors, G protein–coupled inwardly rectifying potassium channels and adenylate cyclase, were not modulated by GPR18 signaling. Furthermore, GPR18 did not couple to other G proteins tested: Gαs, Gαz, and Gα15. These results suggest NAGly is not an agonist for GPR18 or that GPR18 signaling involves noncanonical pathways not examined in these studies. PMID:23104136
Kodak T-Mat G film in rotational panoramic radiography.
Ponce, A Z; McDavid, W D; Lundeen, R C; Morris, C R
1986-06-01
Panoramic radiographs were taken of a tissue-equivalent phantom to evaluate T-Mat G and Ortho G films in combination with rare earth screens. The radiographs were compared to radiographs made with high-speed calcium tungstate screens and Kodak XRP film. The reduction in the amount of radiation necessary for the use of rare earth screens (50% to 70%) was accomplished by lowering the mA and adding filtration. All evaluated films were diagnostically acceptable. There was a marked preference of the T-Mat radiographs over the Ortho G radiographs and a slight preference over radiographs made with the standard calcium-tungstate screen-film system.
Artimovich, Elena; Jackson, Russell K; Kilander, Michaela B C; Lin, Yu-Chih; Nestor, Michael W
2017-10-16
Intracellular calcium is an important ion involved in the regulation and modulation of many neuronal functions. From regulating cell cycle and proliferation to initiating signaling cascades and regulating presynaptic neurotransmitter release, the concentration and timing of calcium activity governs the function and fate of neurons. Changes in calcium transients can be used in high-throughput screening applications as a basic measure of neuronal maturity, especially in developing or immature neuronal cultures derived from stem cells. Using human induced pluripotent stem cell derived neurons and dissociated mouse cortical neurons combined with the calcium indicator Fluo-4, we demonstrate that PeakCaller reduces type I and type II error in automated peak calling when compared to the oft-used PeakFinder algorithm under both basal and pharmacologically induced conditions. Here we describe PeakCaller, a novel MATLAB script and graphical user interface for the quantification of intracellular calcium transients in neuronal cultures. PeakCaller allows the user to set peak parameters and smoothing algorithms to best fit their data set. This new analysis script will allow for automation of calcium measurements and is a powerful software tool for researchers interested in high-throughput measurements of intracellular calcium.
Screening the CIP potato collection for response to in-season calcium application
USDA-ARS?s Scientific Manuscript database
Potato growers in many parts of the US now routinely use in-season calcium to improve production and tuber quality. Our recent studies have shown that native potatoes grown in the Peruvian Highlands also respond positively to calcium application resulting in increased yield and tuber size. However, ...
Nutritional rickets around the world: an update.
Creo, Ana L; Thacher, Tom D; Pettifor, John M; Strand, Mark A; Fischer, Philip R
2017-05-01
Worldwide, nutritional rickets continues to be an evolving problem with several causes. This paper provides an updated literature review characterising the prevalence, aetiology, pathophysiology and treatment of nutritional rickets worldwide. A systematic review of articles on nutritional rickets from various geographical regions was undertaken. For each region, key information was extracted, including prevalence, cause of rickets specific to the region, methods of confirming the diagnosis and current treatment and preventive measures. Calcium deficiency continues to be a major cause of rickets in Africa and Asia. Vitamin D deficiency rickets is perhaps increasing in the Americas, Europe and parts of the Middle East. There continues to be a distinct presentation of calcium-predominant versus vitamin D predominant rickets, although there are overlapping features. More careful diagnosis of rickets and reporting of 25-OHD concentrations has improved accurate knowledge of rickets prevalence and better delineated the cause. Nutritional rickets continues to be an evolving and multi-factorial problem worldwide. It is on a spectrum, ranging from isolated vitamin D deficiency to isolated calcium deficiency. Specific areas which require emphasis include a consistent community approach to screening and diagnosis, vitamin D supplementation of infants and at-risk children, prevention of maternal vitamin D deficiency and the provision of calcium in areas with low calcium diets.
Calcium Modulation of Plant Plasma Membrane-Bound Atpase Activities
NASA Technical Reports Server (NTRS)
Caldwell, C.
1983-01-01
The kinetic properties of barley enzyme are discussed and compared with those of other plants. Possibilities for calcium transport in the plasma membrane by proton pump and ATPase-dependent calcium pumps are explored. Topics covered include the ph phase of the enzyme; high affinity of barley for calcium; temperature dependence, activation enthalpy, and the types of ATPase catalytic sites. Attention is given to lipids which are both screened and bound by calcium. Studies show that barley has a calmodulin activated ATPase that is found in the presence of magnesium and calcium.
Optimized ratiometric calcium sensors for functional in vivo imaging of neurons and T lymphocytes.
Thestrup, Thomas; Litzlbauer, Julia; Bartholomäus, Ingo; Mues, Marsilius; Russo, Luigi; Dana, Hod; Kovalchuk, Yuri; Liang, Yajie; Kalamakis, Georgios; Laukat, Yvonne; Becker, Stefan; Witte, Gregor; Geiger, Anselm; Allen, Taylor; Rome, Lawrence C; Chen, Tsai-Wen; Kim, Douglas S; Garaschuk, Olga; Griesinger, Christian; Griesbeck, Oliver
2014-02-01
The quality of genetically encoded calcium indicators (GECIs) has improved dramatically in recent years, but high-performing ratiometric indicators are still rare. Here we describe a series of fluorescence resonance energy transfer (FRET)-based calcium biosensors with a reduced number of calcium binding sites per sensor. These 'Twitch' sensors are based on the C-terminal domain of Opsanus troponin C. Their FRET responses were optimized by a large-scale functional screen in bacterial colonies, refined by a secondary screen in rat hippocampal neuron cultures. We tested the in vivo performance of the most sensitive variants in the brain and lymph nodes of mice. The sensitivity of the Twitch sensors matched that of synthetic calcium dyes and allowed visualization of tonic action potential firing in neurons and high resolution functional tracking of T lymphocytes. Given their ratiometric readout, their brightness, large dynamic range and linear response properties, Twitch sensors represent versatile tools for neuroscience and immunology.
USDA-ARS?s Scientific Manuscript database
The physiological role and mechanism of nutrient storage within vacuoles of specific cell types is poorly understood. Transcript profiles from "Arabidopsis thaliana" leaf cells differing in calcium concentration ([Ca], epidermis <10 mM versus mesophyll >60 mM) were compared using a microarray screen...
Erxleben, C; Hermann, A
2001-03-16
Invertebrate skeletal muscle contraction is regulated by calcium influx through voltage-dependent calcium channels in the sarcolemmal membrane. In present study we investigated the effects of nitric oxide (NO) donors on calcium currents of single skeletal muscle fibres from the marine isopod, Idotea baltica, using two-electrode voltage clamp recording techniques. The NO donors, S-nitrosocysteine, S-nitroso-N-acetyl-penicillamine or hydroxylamine reversibly increased calcium inward currents in a time dependent manner. The increase of the current was prevented by methylene blue. Our experiments suggest that NO increases calcium inward currents. NO, by acting on calcium ion channels in the sarcolemmal membrane, therefore, may directly be involved in the modulation of muscle contraction.
NASA Astrophysics Data System (ADS)
Roux, Stanley; Porterfield, D. Marshall; Haque, Aeraj Ul; Bushart, Thomas
The vector of gravity sets the direction of polarized development of single spore cells of the fern Ceratopteris richardii after light initiates their germination. Gravity also sets the direction of a trans-cell calcium current, which enters the cell along its bottom and exits it from its top. The direction of this current predicts the subsequent direction of spore development, and blocking this current with calcium channel blockers randomizes the direction of subsequent development. Recently the laboratory of D. Marshall Porterfield (Purdue University) developed a microchip device that can measure the direction and magnitude of the trans-spore calcium current in real time. Our laboratory in collaboration with Porterfield's recently found that this current inverts rapidly when the cells are turned upside down and that the magnitude of the current rises and falls with the magnitude of the g-force when these cells are tested in parabolic flight on the DC-9 aircraft. We assume that the gravity-directed entry of calcium into these cells is through calcium channels and its exit is through calcium pumps. Here we report our studies of a calcium pump that is highly expressed in the spores during the period when gravity is setting the direction of the calcium current, and we describe pharmacological tests of the relative importance of calcium pumps in maintaining the calcium current and in controlling the direction of subsequent spore development. We found that inhibitors that block the activity of calcium pumps also greatly depress the trans-cell current, but, surprisingly, have little effect on the ability of gravity to set the direction of spore development. These results, in combination with earlier findings, indicate that the gravity-directed opening of calcium channels along the bottom of spore cells plays a more important role in directing subsequent spore development than the activity of calcium pumps, despite the importance of these pumps in maintaining the trans-cell calcium current. Supported by NASA grants NAG2-1586 and NAG10-295 to S. J. R.
Calcium currents in a fast-twitch skeletal muscle of the rat.
Donaldson, P L; Beam, K G
1983-10-01
Slow ionic currents were measured in the rat omohyoid muscle with the three-microelectrode voltage-clamp technique. Sodium and delayed rectifier potassium currents were blocked pharmacologically. Under these conditions, depolarizing test pulses elicited an early outward current, followed by a transient slow inward current, followed in turn by a late outward current. The early outward current appeared to be a residual delayed rectifier current. The slow inward current was identified as a calcium current on the basis that (a) its magnitude depended on extracellular calcium concentration, (b) it was blocked by the addition of the divalent cations cadmium or nickel, and reduced in magnitude by the addition of manganese or cobalt, and (c) barium was able to replace calcium as an inward current carrier. The threshold potential for inward calcium current was around -20 mV in 10mM extracellular calcium and about -35 mV in 2 mM calcium. Currents were net inward over part of their time course for potentials up to at least +30 mV. At temperatures of 20-26 degrees C, the peak inward current (at approximately 0 mV) was 139 +/- 14 microA/cm2 (mean +/- SD), increasing to 226 +/- 28 microA/cm2 at temperatures of 27-37 degrees C. The late outward current exhibited considerable fiber-to-fiber variability. In some fibers it was primarily a time-independent, nonlinear leakage current. In other fibers it was primarily a time-independent, nonlinear leakage current. In other fibers it appeared to be the sum of both leak and a slowly activated outward current. The rate of activation of inward calcium current was strongly temperature dependent. For example, in a representative fiber, the time-to-peak inward current for a +10-mV test pulse decreased from approximately 250 ms at 20 degrees C to 100 ms at 30 degrees C. At 37 degrees C, the time-to-peak current was typically approximately 25 ms. The earliest phase of activation was difficult to quantify because the ionic current was partially obscured by nonlinear charge movement. Nonetheless, at physiological temperatures, the rate of calcium channel activation in rat skeletal muscle is about five times faster than activation of calcium channels in frog muscle. This pathway may be an important source of calcium entry in mammalian muscle.
He, Chao; Tian, Chaochao; Li, Gang; Mei, Yahe; Zhang, Quanguo; Jiao, Youzhou
2018-01-01
A coproduction tests of quaternary (Q) phase(6CaO·4Al2O3·MgO·SiO2) -3CaO·3Al2O3·CaSO4 cement clinker and an experimental study on the relationship between the mineral production capability and the physiochemical properties are conducted in a two-stage multiphase reaction test bed with Changguang coal. X-ray diffractometer (XRD) analyses are performed on the coproduction clinker samples. The results demonstrate that, with the reduction in particle sizes of the coal powder and the additives and expanded screening level differences between them, both the proportion of Q phase and the mass of 3CaO·3Al2O3·CaSO4 in the clinker increase accordingly. When mixed coal powder particles are prepared through reducing particle sizes and expanding screening level differences between coal powder and additives, the additives CaO and MgO are more likely to be enclosed by coal powder to form globular polymerized particles. In addition, this preparation aids in polymerization and promotes even distribution of CaO, MgO and coal minerals, thus facilitating clinker mineral formation reactions of inorganic substances in the mixed coal powder. Target minerals, such as 2CaO·SiO2 and Q phase, are found in both industrial high-calcium limestone and low-calcium limestone coproduction clinker samples. A diffraction peak of free CaO is also evident in both samples. Compared with a coproduction clinker sample of high-calcium limestone, that of low-calcium limestone exhibits higher diffraction peaks for 2CaO·SiO2 and Q phase. With the current state of the art, it is not yet the optimum choice to substitute CaCO3 for CaO in Q-phase cement clinker coproduction. Before the technology matures and gains practical application, further study on the form and the mixing process of calcium-based additives for cement clinker coproduction will be required.
Tian, Chaochao; Li, Gang; Mei, Yahe; Zhang, Quanguo; Jiao, Youzhou
2018-01-01
A coproduction tests of quaternary (Q) phase(6CaO·4Al2O3·MgO·SiO2) -3CaO·3Al2O3·CaSO4 cement clinker and an experimental study on the relationship between the mineral production capability and the physiochemical properties are conducted in a two-stage multiphase reaction test bed with Changguang coal. X-ray diffractometer (XRD) analyses are performed on the coproduction clinker samples. The results demonstrate that, with the reduction in particle sizes of the coal powder and the additives and expanded screening level differences between them, both the proportion of Q phase and the mass of 3CaO·3Al2O3·CaSO4 in the clinker increase accordingly. When mixed coal powder particles are prepared through reducing particle sizes and expanding screening level differences between coal powder and additives, the additives CaO and MgO are more likely to be enclosed by coal powder to form globular polymerized particles. In addition, this preparation aids in polymerization and promotes even distribution of CaO, MgO and coal minerals, thus facilitating clinker mineral formation reactions of inorganic substances in the mixed coal powder. Target minerals, such as 2CaO·SiO2 and Q phase, are found in both industrial high-calcium limestone and low-calcium limestone coproduction clinker samples. A diffraction peak of free CaO is also evident in both samples. Compared with a coproduction clinker sample of high-calcium limestone, that of low-calcium limestone exhibits higher diffraction peaks for 2CaO·SiO2 and Q phase. With the current state of the art, it is not yet the optimum choice to substitute CaCO3 for CaO in Q-phase cement clinker coproduction. Before the technology matures and gains practical application, further study on the form and the mixing process of calcium-based additives for cement clinker coproduction will be required. PMID:29634732
Lamb, G D; Walsh, T
1987-01-01
1. The Vaseline-gap technique was used to record slow calcium currents and asymmetric charge movement in single fibres of fast-twitch muscles (extensor digitorum longus (e.d.l.) and sternomastoid) and slow-twitch muscles (soleus) from rat and rabbit, at a holding potential of -90 mV. 2. The slow calcium current in soleus fibres was about one-third of the size of the current in e.d.l. fibres, but was very similar otherwise. In both e.d.l. and soleus fibres, the dihydropyridine (DHP), nifedipine, suppressed the calcium current entirely. 3. In these normally polarized fibres, nifedipine suppressed only part (qns) of the asymmetric charge movement. The proportion of qns suppressed by various concentrations of nifedipine was linearly related to the associated reduction of the calcium current. Half-maximal suppression of both parameters was obtained with about 0.5 microM-nifedipine. The calcium current and the qns component of the charge movement also were suppressed over the same time course by nifedipine. Another DHP calcium antagonist, (+)PN200/110, was indistinguishable from nifedipine in its effects of suppressing calcium currents and qns. 4. In all muscle types, the total amount of qns in each fibre was linearly related to the size of the calcium current (in the absence of DHP). On average, qns was 3.3 times larger in e.d.l. fibres than in soleus fibres. 5. In contrast to the other dihydropyridines, (-)bay K8644, a calcium channel agonist, did not suppress any asymmetric charge movement. 6. The potential dependence of the slow calcium current implied a minimum gating charge of about five or six electronic charges. The movement of qns occurred over a more negative potential range than the change in calcium conductance. 7. Experiments on the binding of (+)PN200/110 indicated that e.d.l. muscles had between about 2 and 3 times more specific DHP binding sites than did soleus muscle. 8. These results point to a close relationship between slow calcium channels, the qns component of the charge movement and DHP binding sites, in both fast- and slow-twitch mammalian muscle. qns appears to be part of the gating current of the T-system calcium channels. PMID:2451745
Shulha, Jennifer A; Sviggum, Cortney B; O'Meara, John G; Berg, Melody L
2014-01-01
Appropriate calcium and vitamin D intake for the prevention of osteoporosis represents an important component of osteoporosis prevention education (OPE). We sought to assess the presence and quality of OPE among osteoporotic and at-risk inpatients. Prospective chart review plus cross-sectional interview. One academic tertiary referral medical center in Rochester, Minnesota. Adults admitted to an inpatient medicine service who were determined to be at risk for osteoporosis based on an investigator-developed screening tool or previously diagnosed with osteoporosis. Four hundred sixtyfour patients were screened, 192 patients were approached for participation, and 150 patients consented to be interviewed for the study. Source of OPE, rates of appropriate calcium intake and supplementation. OPE from a health care provider was reported by 31.3% of patients, with only one patient reporting education from a pharmacist. Self OPE and no OPE were received by 29.3% and 39.3% of patients, respectively. Appropriate overall calcium intake was found in 30.7% of patients, and only 21.3% of patients were taking an appropriate calcium salt. Patients with osteoporosis and risk factors for osteoporosis lack adequate education from health care providers regarding appropriate intake of dietary and supplemental calcium and vitamin D. A particular deficit was noted in pharmacist-provided education. Specific education targeting elemental calcium amounts, salt selection, and vitamin D intake should be provided to increase the presence of appropriate overall calcium consumption.
Immobilization of pectin depolymerising polygalacturonase using different polymers.
Ur Rehman, Haneef; Aman, Afsheen; Nawaz, Muhammad Asif; Karim, Asad; Ghani, Maria; Baloch, Abdul Hameed; Ul Qader, Shah Ali
2016-01-01
Polygalacturonase catalyses the hydrolysis of pectin substances and widely has been used in food and textile industries. In current study, different polymers such as calcium alginate beads, polyacrylamide gel and agar-agar matrix were screened for the immobilization of polygalacturonase through entrapment technique. Polyacrylamide gel was found to be most promising one and gave maximum (89%) immobilization yield as compared to agar-agar (80%) and calcium alginate beads (46%). The polymers increased the reaction time of polygalacturonase and polymers entrapped polygalacturonases showed maximum pectinolytic activity after 10 min of reaction as compared to free polygalacturonase which performed maximum activity after 5.0 min of reaction time. The temperature of polygalacturonase for maximum enzymatic activity was increased from 45°C to 50°C and 55°C when it was immobilized within agar-agar and calcium alginate beads, respectively. The optimum pH (pH 10) of polygalacturonase was remained same when it was immobilized within polyacrylamide gel and calcium alginate beads, but changed from pH 10 to pH 9.0 after entrapment within agar-agar. Thermal stability of polygalacturonase was improved after immobilization and immobilized polygalacturonases showed higher tolerance against different temperatures as compared to free enzyme. Polymers entrapped polygalacturonases showed good reusability and retained more than 80% of their initial activity during 2nd cycles. Copyright © 2015 Elsevier B.V. All rights reserved.
Oh, Wan-Suk; Jeong, Pan-Young; Joo, Hyoe-Jin; Lee, Jeong-Eui; Moon, Yil-Seong; Cheon, Hyang-Mi; Kim, Jung-Ho; Lee, Yong-Uk; Shim, Yhong-Hee; Paik, Young-Ki
2009-11-11
The pinewood nematode (PWN), Bursaphelenchus xylophilus, is a mycophagous and phytophagous pathogen responsible for the current widespread epidemic of the pine wilt disease, which has become a major threat to pine forests throughout the world. Despite the availability of several preventive trunk-injection agents, no therapeutic trunk-injection agent for eradication of PWN currently exists. In the characterization of basic physiological properties of B. xylophilus YB-1 isolates, we established a high-throughput screening (HTS) method that identifies potential hits within approximately 7 h. Using this HTS method, we screened 206 compounds with known activities, mostly antifungal, for antinematodal activities and identified HWY-4213 (1-n-undecyl-2-[2-fluorphenyl] methyl-3,4-dihydro-6,7-dimethoxy-isoquinolinium chloride), a highly water-soluble protoberberine derivative, as a potent nematicidal and antifungal agent. When tested on 4 year-old pinewood seedlings that were infected with YB-1 isolates, HWY-4213 exhibited a potent therapeutic nematicidal activity. Further tests of screening 39 Caenorhabditis elegans mutants deficient in channel proteins and B. xylophilus sensitivity to Ca(2+) channel blockers suggested that HWY-4213 targets the calcium channel proteins. Our study marks a technical breakthrough by developing a novel HTS method that leads to the discovery HWY-4213 as a dual-acting antinematodal and antifungal compound.
Shambharkar, Prashant B.; Bittinger, Mark; Latario, Brian; Xiong, ZhaoHui; Bandyopadhyay, Somnath; Davis, Vanessa; Lin, Victor; Yang, Yi; Valdez, Reginald; Labow, Mark A.
2015-01-01
Intracellular calcium signaling is critical for initiating and sustaining diverse cellular functions including transcription, synaptic signaling, muscle contraction, apoptosis and fertilization. Trans-membrane 203 (TMEM203) was identified here in cDNA overexpression screens for proteins capable of modulating intracellular calcium levels using activation of a calcium/calcineurin regulated transcription factor as an indicator. Overexpression of TMEM203 resulted in a reduction of Endoplasmic Reticulum (ER) calcium stores and elevation in basal cytoplasmic calcium levels. TMEM203 protein was localized to the ER and found associated with a number of ER proteins which regulate ER calcium entry and efflux. Mouse Embryonic Fibroblasts (MEFs) derived from Tmem203 deficient mice had reduced ER calcium stores and altered calcium homeostasis. Tmem203 deficient mice were viable though male knockout mice were infertile and exhibited a severe block in spermiogenesis and spermiation. Expression profiling studies showed significant alternations in expression of calcium channels and pumps in testes and concurrently Tmem203 deficient spermatocytes demonstrated significantly altered calcium handling. Thus Tmem203 is an evolutionarily conserved regulator of cellular calcium homeostasis, is required for spermatogenesis and provides a causal link between intracellular calcium regulation and spermiogenesis. PMID:25996873
Shen, Wen; Slaughter, Malcolm M
1998-01-01
Glutamate suppressed high-voltage-activated barium currents (IBa,HVA) in tiger salamander retinal ganglion cells. Both ionotropic (iGluR) and metabotropic (mGluR) receptors contributed to this calcium channel inhibition. Trans-ACPD (1-aminocyclopentane-trans-1S,3R-dicarboxylic acid), a broad-spectrum metabotropic glutamate receptor agonist, suppressed a dihydropyridine-sensitive barium current. Kainate, an ionotropic glutamate receptor agonist, reduced an ω-conotoxin GVIA-sensitive current. The relative effectiveness of selective agonists indicated that the predominant metabotropic receptor was the L-2-amino-4-phosphonobutyrate (l-AP4)-sensitive, group III receptor. This receptor reversed the action of forskolin, but this was not responsible for calcium channel suppression. l-AP4 raised internal calcium concentration. Antagonists of phospholipase C, inositol trisphosphate (IP3) receptors and ryanodine receptors inhibited the action of metabotropic agonists, indicating that group III receptor transduction was linked to this pathway. The action of kainate was partially suppressed by BAPTA, by calmodulin antagonists and by blockers of calmodulin-dependent phosphatase. Suppression by kainate of the calcium channel current was more rapid when calcium was the charge carrier, instead of barium. The results indicate that calcium influx through kainate-sensitive glutamate receptors can activate calmodulin, which stimulates phosphatases that may directly suppress voltage-sensitive calcium channels. Thus, ionotropic and metabotropic glutamate receptors inhibit distinct calcium channels. They could act synergistically, since both increase internal calcium. These pathways provide negative feedback that can reduce calcium influx when ganglion cells are depolarized. PMID:9660896
Candeo, Alessia; Doccula, Fabrizio G; Valentini, Gianluca; Bassi, Andrea; Costa, Alex
2017-07-01
Calcium oscillations play a role in the regulation of the development of tip-growing plant cells. Using optical microscopy, calcium oscillations have been observed in a few systems (e.g. pollen tubes, fungal hyphae and algal rhizoids). High-resolution, non-phototoxic and rapid imaging methods are required to study the calcium oscillation in root hairs. We show that light sheet fluorescence microscopy is optimal to image growing root hairs of Arabidopsis thaliana and to follow their oscillatory tip-focused calcium gradient. We describe a protocol for performing live imaging of root hairs in seedlings expressing the cytosol-localized ratiometric calcium indicator Yellow Cameleon 3.6. Using this protocol, we measured the calcium gradient in a large number of root hairs. We characterized their calcium oscillations and correlated them with the rate of hair growth. The method was then used to screen the effect of auxin on the properties of the growing root hairs. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.
Tuluc, Petronel; Flucher, Bernhard E
2011-12-01
Voltage-gated calcium channels are multi-subunit protein complexes that specifically allow calcium ions to enter the cell in response to membrane depolarization. But, for many years it seemed that the skeletal muscle calcium channel Ca(V)1.1 is the exception. The classical splice variant Ca(V)1.1a activates slowly, has a very small current amplitude and poor voltage sensitivity. In fact adult muscle fibers work perfectly well even in the absence of calcium influx. Recently a new splice variant of the skeletal muscle calcium channel Ca(V)1.1e has been characterized. The lack of the 19 amino acid exon 29 in this splice variant results in a rapidly activating calcium channel with high current amplitude and good voltage sensitivity. Ca(V)1.1e is the dominant channel in embryonic muscle, where the expression of this high calcium-conducting Ca(V)1.1 isoform readily explains developmental processes depending on L-type calcium currents. Moreover, the availability of these two structurally similar but functionally distinct channel variants facilitates the analysis of the molecular mechanisms underlying the unique current properties of the classical Ca(V)1.1a channel.
Intestinal absorption and renal reabsorption of calcium throughout postnatal development
Beggs, Megan R
2017-01-01
Calcium is vital for many physiological functions including bone mineralization. Postnatal deposition of calcium into bone is greatest in infancy and continues through childhood and adolescence until peek mineral density is reached in early adulthood. Thereafter, bone mineral density remains static until it eventually declines in later life. A positive calcium balance, i.e. more calcium absorbed than excreted, is crucial to bone deposition during growth and thus to peek bone mineral density. Dietary calcium is absorbed from the intestine into the blood. It is then filtered by the renal glomerulus and either reabsorbed by the tubule or excreted in the urine. Calcium can be (re)absorbed across intestinal and renal epithelia via both transcellular and paracellular pathways. Current evidence suggests that significant intestinal and renal calcium transport changes occur throughout development. However, the molecular details of these alterations are incompletely delineated. Here we first briefly review the current model of calcium transport in the intestine and renal tubule in the adult. Then, we describe what is known with regard to calcium handling through postnatal development, and how alterations may aid in mediating a positive calcium balance. The role of transcellular and paracellular calcium transport pathways and the contribution of specific intestinal and tubular segments vary with age. However, the current literature highlights knowledge gaps in how specifically intestinal and renal calcium (re)absorption occurs early in postnatal development. Future research should clarify the specific changes in calcium transport throughout early postnatal development including mediators of these alterations enabling appropriate bone mineralization. Impact statement This mini review outlines the current state of knowledge pertaining to the molecules and mechanisms maintaining a positive calcium balance throughout postnatal development. This process is essential to achieving optimal bone mineral density in early adulthood, thereby lowering the lifetime risk of osteoporosis. PMID:28346014
Synaptic calcium regulation in hair cells of the chicken basilar papilla.
Im, Gi Jung; Moskowitz, Howard S; Lehar, Mohammed; Hiel, Hakim; Fuchs, Paul Albert
2014-12-10
Cholinergic inhibition of hair cells occurs by activation of calcium-dependent potassium channels. A near-membrane postsynaptic cistern has been proposed to serve as a store from which calcium is released to supplement influx through the ionotropic ACh receptor. However, the time and voltage dependence of acetylcholine (ACh)-evoked potassium currents reveal a more complex relationship between calcium entry and release from stores. The present work uses voltage steps to regulate calcium influx during the application of ACh to hair cells in the chicken basilar papilla. When calcium influx was terminated at positive membrane potential, the ACh-evoked potassium current decayed exponentially over ∼100 ms. However, at negative membrane potentials, this current exhibited a secondary rise in amplitude that could be eliminated by dihydropyridine block of the voltage-gated calcium channels of the hair cell. Calcium entering through voltage-gated channels may transit through the postsynaptic cistern, since ryanodine and sarcoendoplasmic reticulum calcium-ATPase blockers altered the time course and magnitude of this secondary, voltage-dependent contribution to ACh-evoked potassium current. Serial section electron microscopy showed that efferent and afferent synaptic structures are juxtaposed, supporting the possibility that voltage-gated influx at afferent ribbon synapses influences calcium homeostasis during long-lasting cholinergic inhibition. In contrast, spontaneous postsynaptic currents ("minis") resulting from stochastic efferent release of ACh were made briefer by ryanodine, supporting the hypothesis that the synaptic cistern serves primarily as a calcium barrier and sink during low-level synaptic activity. Hypolemmal cisterns such as that at the efferent synapse of the hair cell can play a dynamic role in segregating near-membrane calcium for short-term and long-term signaling. Copyright © 2014 the authors 0270-6474/14/3416688-10$15.00/0.
Synaptic Calcium Regulation in Hair Cells of the Chicken Basilar Papilla
Im, Gi Jung; Moskowitz, Howard S.; Lehar, Mohammed; Hiel, Hakim
2014-01-01
Cholinergic inhibition of hair cells occurs by activation of calcium-dependent potassium channels. A near-membrane postsynaptic cistern has been proposed to serve as a store from which calcium is released to supplement influx through the ionotropic ACh receptor. However, the time and voltage dependence of acetylcholine (ACh)-evoked potassium currents reveal a more complex relationship between calcium entry and release from stores. The present work uses voltage steps to regulate calcium influx during the application of ACh to hair cells in the chicken basilar papilla. When calcium influx was terminated at positive membrane potential, the ACh-evoked potassium current decayed exponentially over ∼100 ms. However, at negative membrane potentials, this current exhibited a secondary rise in amplitude that could be eliminated by dihydropyridine block of the voltage-gated calcium channels of the hair cell. Calcium entering through voltage-gated channels may transit through the postsynaptic cistern, since ryanodine and sarcoendoplasmic reticulum calcium-ATPase blockers altered the time course and magnitude of this secondary, voltage-dependent contribution to ACh-evoked potassium current. Serial section electron microscopy showed that efferent and afferent synaptic structures are juxtaposed, supporting the possibility that voltage-gated influx at afferent ribbon synapses influences calcium homeostasis during long-lasting cholinergic inhibition. In contrast, spontaneous postsynaptic currents (“minis”) resulting from stochastic efferent release of ACh were made briefer by ryanodine, supporting the hypothesis that the synaptic cistern serves primarily as a calcium barrier and sink during low-level synaptic activity. Hypolemmal cisterns such as that at the efferent synapse of the hair cell can play a dynamic role in segregating near-membrane calcium for short-term and long-term signaling. PMID:25505321
Rojas, Eduardo; Taylor, Robert E.; Atwater, Illani; Bezanilla, Francisco
1969-01-01
Isolated axons from the squid, Dosidicus gigas, were internally perfused with potassium fluoride solutions. Membrane currents were measured following step changes of membrane potential in a voltage-clamp arrangement with external isosmotic solution changes in the order: potassium-free artificial seawater; potassium chloride; potassium chloride containing 10, 25, 40 or 50, mM calcium or magnesium; and potassium-free artificial seawater. The following results suggest that the currents measured under voltage clamp with potassium outside and inside can be separated into two components and that one of them, the predominant one, is carried through the potassium system. (a) Outward currents in isosmotic potassium were strongly and reversibly reduced by tetraethylammonium chloride. (b) Without calcium or magnesium a progressive increase in the nontime-dependent component of the currents (leakage) occurred. (c) The restoration of calcium or magnesium within 15–30 min decreases this leakage. (d) With 50 mM divalent ions the steady-state current-voltage curve was nonlinear with negative resistance as observed in intact axons in isosmotic potassium. (e) The time-dependent components of the membrane currents were not clearly affected by calcium or magnesium. These results show a strong dependence of the leakage currents on external calcium or magnesium concentration but provide no support for the involvement of calcium or magnesium in the kinetics of the potassium system. PMID:5823216
Rojas, E; Taylor, R E; Atwater, I; Bezanilla, F
1969-10-01
Isolated axons from the squid, Dosidicus gigas, were internally perfused with potassium fluoride solutions. Membrane currents were measured following step changes of membrane potential in a voltage-clamp arrangement with external isosmotic solution changes in the order: potassium-free artificial seawater; potassium chloride; potassium chloride containing 10, 25, 40 or 50, mM calcium or magnesium; and potassium-free artificial seawater. The following results suggest that the currents measured under voltage clamp with potassium outside and inside can be separated into two components and that one of them, the predominant one, is carried through the potassium system. (a) Outward currents in isosmotic potassium were strongly and reversibly reduced by tetraethylammonium chloride. (b) Without calcium or magnesium a progressive increase in the nontime-dependent component of the currents (leakage) occurred. (c) The restoration of calcium or magnesium within 15-30 min decreases this leakage. (d) With 50 mM divalent ions the steady-state current-voltage curve was nonlinear with negative resistance as observed in intact axons in isosmotic potassium. (e) The time-dependent components of the membrane currents were not clearly affected by calcium or magnesium. These results show a strong dependence of the leakage currents on external calcium or magnesium concentration but provide no support for the involvement of calcium or magnesium in the kinetics of the potassium system.
Nguyen, Vu H
2017-06-01
To determine the implications of the reviewed literature in population health improvement. A review of the literature was conducted with the search of four databases: PubMed, PsycINFO, ERIC, and Google Scholar. Search terms entered into these databases were 'osteoporosis community'. After a thorough review of all search results, 11 studies were found to be community osteoporosis screening services, and descriptions of each study's participants and location, details and descriptions of each study's community osteoporosis screening service, and effectiveness on outcome measure(s) for each study's objective were reviewed and examined to determine their implications on population health. Nine of the 11 studies on community osteoporosis screening services were conducted at community pharmacy settings, and all studies included participants that were all or mostly older women, with only three studies that included men as participants. In addition to osteoporosis screening, all studies included osteoporosis education and/or counseling with the exception of one study. Various outcome measures were assessed in these studies, and with the exception of osteoporosis treatment adherence, weight-bearing exercise and osteoporosis-specified quality of life, community osteoporosis screening services showed positive outcomes in increasing osteoporosis awareness, osteoporosis knowledge, osteoporosis risk identification, calcium intake, service satisfaction, primary care physician perspective, and financial sustainability. In particular, community osteoporosis screening services are helpful in identifying those with osteoporosis or are at moderate risk to high risk, and they are effective in increasing outcomes that help prevent osteoporotic fractures, such as osteoporosis medication prescription and calcium intake. Furthermore, participants feel satisfied in partaking in community osteoporosis screening services, primary care physicians do believe that they are useful, and they are financially stable as they earn profit net gains. Community osteoporosis screening services provide a cost-effective approach towards preventing osteoporotic fractures for population health, particularly in identifying osteoporosis or high risk of the disease in populations. This review determined preventive measures for osteoporotic fractures, such as increased calcium intake and osteoporosis medication prescriptions, resulting in decreased osteoporotic fractures and increased population health improvement.
Chen, Yao-Chang; Kao, Yu-Hsun; Huang, Chun-Feng; Cheng, Chen-Chuan; Chen, Yi-Jen; Chen, Shih-Ann
2010-04-01
Heat stress-induced responses change the ionic currents and calcium homeostasis. However, the molecular insights into the heat stress responses on calcium homeostasis remain unclear. The purposes of this study were to examine the mechanisms of heat stress responses on calcium handling and electrophysiological characteristics in atrial myocytes. We used indo-1 fluorimetric ratio technique and whole-cell patch clamp to investigate the intracellular calcium, action potentials, and ionic currents in isolated rabbit single atrial cardiomyocytes with or without (control) exposure to heat stress (43 degrees C, 15 min) 5+/-1 h before experiments. The expressions of sarcoplasmic reticulum ATPase (SERCA2a), and Na(+)-Ca(2+) exchanger (NCX) in the control and heat stress-treated atrial myocytes were evaluated by Western blot and real-time PCR. As compared with control myocytes, the heat stress-treated myocytes had larger sarcoplasmic reticulum calcium content and larger intracellular calcium transient with a shorter decay portion. Heat stress-treated myocytes also had larger L-type calcium currents, transient outward potassium currents, but smaller NCX currents. Heat stress responses increased the protein expressions, SERCA2a, NCX, and heat shock protein. However, heat stress responses did not change the RNA expression of SERCA2a and NCX. In conclusion, heat stress responses change calcium handling through protein but not RNA regulation. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
Inhibitory effect of aniracetam on N-type calcium current in acutely isolated rat neuronal cells.
Koike, H; Saito, H; Matsuki, N
1993-04-01
Effects of aniracetam on whole-cell calcium currents were studied in acutely isolated neuronal cells from postnatal rat ventromedial hypothalamus. There were three types of inward calcium currents, one low-threshold transient current and two high-threshold sustained currents. The nicardipine sensitive L-type current was activated at -20 mV or more depolarized potentials, and the omega-conotoxin sensitive N-type current was recorded at more positive potentials than the L-type. Aniracetam inhibited the N-type current in a dose-dependent manner without affecting the other two types of calcium currents. The effect appeared soon after the addition and lasted for several minutes during washing. Since the N-type current is thought to regulate the release of transmitters, the inhibitory effect may contribute to the nootropic property of aniracetam by modifying the neurotransmission.
Utility and prevalence of imaging for underlying cancer in unprovoked pulmonary embolism.
Homewood, R; Medford, A R
2015-01-01
Current guidelines state that patients over 40 years of age with a first unprovoked pulmonary embolism should be offered limited screening for possible cancer and considered for intensive screening (abdomino-pelvic computed tomography and mammography), despite no evidence for the latter. The aim of this study was to evaluate the clinical utility and cost of intensive screening in routine clinical practice. Methods All patients diagnosed with a first unprovoked pulmonary embolism between January 2014 and June 2014 in a single large UK teaching hospital were included. The information management department searched for patients with an International Classification of Diseases 10 discharge diagnosis of pulmonary embolism and limited to 'acute pulmonary embolism with/without cor pulmonale'. Only patients with unprovoked pulmonary embolism were included. Patients with chronic medical conditions predisposing to pulmonary embolism were excluded. NHS costs were obtained from the Trust Finance Department. These costs were used to generate the costs of limited versus intensive screening, and then scaled up using adult population census information and assuming the same incidence of idiopathic pulmonary embolism to estimate the annual NHS cost of intensive screening. Results Ninety-two patients were diagnosed with pulmonary embolism, and 25 met the inclusion criteria. Clinical examination was often incomplete (84%). Limited screening was often missed (urinalysis 100%, serum calcium 64%). Intensive screening was performed in the majority of cases (68%, all abdomino-pelvic computed tomography with no cancer detected) with an £88 excess cost per patient. Conclusion Intensive screening in first unprovoked pulmonary embolism has a low yield, is costly and should not replace thorough clinical examination and basic screening.
Dinday, Matthew T.
2015-01-01
Abstract Mutations in a voltage-gated sodium channel (SCN1A) result in Dravet Syndrome (DS), a catastrophic childhood epilepsy. Zebrafish with a mutation in scn1Lab recapitulate salient phenotypes associated with DS, including seizures, early fatality, and resistance to antiepileptic drugs. To discover new drug candidates for the treatment of DS, we screened a chemical library of ∼1000 compounds and identified 4 compounds that rescued the behavioral seizure component, including 1 compound (dimethadione) that suppressed associated electrographic seizure activity. Fenfluramine, but not huperzine A, also showed antiepileptic activity in our zebrafish assays. The effectiveness of compounds that block neuronal calcium current (dimethadione) or enhance serotonin signaling (fenfluramine) in our zebrafish model suggests that these may be important therapeutic targets in patients with DS. Over 150 compounds resulting in fatality were also identified. We conclude that the combination of behavioral and electrophysiological assays provide a convenient, sensitive, and rapid basis for phenotype-based drug screening in zebrafish mimicking a genetic form of epilepsy. PMID:26465006
Rivet, M; Cognard, C; Raymond, G
1989-01-01
The slow inward calcium current and the contractile response were simultaneously recorded in voltage clamped (whole cell patch clamp recording) rat myoballs in primary culture. The shape of the contraction(T)/potential(V) relationship and the application of the inorganic calcium channel blocker cadmium (1.5 mM), which suppresses a part of the contractile activity, demonstrate the existence of two components of contraction. One of them is related to the slow calcium current.
Calcium-dependent inactivation of calcium channels in cochlear hair cells of the chicken.
Lee, Seunghwan; Briklin, Olga; Hiel, Hakim; Fuchs, Paul
2007-09-15
Voltage-gated calcium channels support both spontaneous and sound-evoked neurotransmitter release from ribbon synapses of cochlear hair cells. A variety of regulatory mechanisms must cooperate to ensure the appropriate level of activity in the restricted pool of synaptic calcium channels ( approximately 100) available to each synaptic ribbon. One potential feedback mechanism, calcium-dependent inactivation (CDI) of voltage-gated, L-type calcium channels, can be modulated by calmodulin-like calcium-binding proteins. CDI of voltage-gated calcium current was studied in hair cells of the chicken's basilar papilla (analogous to the mammalian cochlea) after blocking the predominant potassium conductances. For inactivating currents produced by 2.5 s steps to the peak of the current-voltage relation (1 mm EGTA internal calcium buffer), single exponential fits yielded an average decay time constant of 1.92 +/- 0.18 s (mean +/- s.e.m., n = 12) at 20-22 degrees C, while recovery occurred with a half-time of approximately 10 s. Inactivation produced no change in reversal potential, arguing that the observed relaxation did not result from alternative processes such as calcium accumulation or activation of residual potassium currents. Substitution of external calcium with barium greatly reduced inactivation, while inhibition of endoplasmic calcium pumps with t-benzohydroquinone (BHQ) or thapsigargin made inactivation occur faster and to a greater extent. Raising external calcium 10-fold (from 2 to 20 mm) increased peak current 3-fold, but did not alter the extent or time course of CDI. However, increasing levels of internal calcium buffer consistently reduced the rate and extent of inactivation. With 1 mm EGTA buffering and in 2 mm external calcium, the available pool of calcium channels was half-inactivated near the resting membrane potential (-50 mV). CDI may be further regulated by calmodulin-like calcium-binding proteins (CaBPs). mRNAs for several CaBPs are expressed in chicken cochlear tissue, and antibodies to CaBP4 label hair cells, but not supporting cells, equivalent to the pattern seen in mammalian cochlea. Thus, molecular mechanisms that underlie CDI appeared to be conserved across vertebrate species, may provide a means to adjust calcium channel open probability, and could serve to maintain the set-point for spontaneous release from the ribbon synapse.
Occult urolithiasis in asymptomatic primary hyperparathyroidism.
Tay, Yu-Kwang Donovan; Liu, Minghao; Bandeira, Leonardo; Bucovsky, Mariana; Lee, James A; Silverberg, Shonni J; Walker, Marcella D
2018-05-01
Recent international guidelines suggest renal imaging to detect occult urolithiasis in all patients with asymptomatic primary hyperparathyroidism (PHPT), but data regarding their prevalence and associated risk factors are limited. We evaluated the prevalence and risk factors for occult urolithiasis. Cross-sectional analysis of 96 asymptomatic PHPT patients from a university hospital in the United States with and without occult nephrolithiasis. Occult urolithiasis was identified in 21% of patients. Stone formers had 47% higher 24-hour urinary calcium excretion (p = 0.002). Although available in only a subset of patients (n = 28), activated vitamin D [1,25(OH) 2 D] was 29% higher (p = 0.02) in stone formers. There was no difference in demographics, BMI, calcium or vitamin D intake, other biochemistries, renal function, BMD, or fractures. Receiver operating characteristic curves indicated that urinary calcium excretion and 1,25(OH) 2 D had an area under the curve of 0.724 (p = 0.003) and 0.750 (p = 0.04), respectively. A urinary calcium threshold of >211mg/day provided a sensitivity of 84.2% and a specificity of 55.3% while a 1,25(OH) 2 D threshold of >91pg/mL provided a sensitivity and specificity of 62.5% and 90.0% respectively for the presence of stones. Occult urolithiasis is present in about one-fifth of patients with asymptomatic PHPT and is associated with higher urinary calcium and 1,25(OH) 2 D. Given that most patients will not have occult urolithiasis, targeted imaging in those most likely to have occult stones rather than screening all asymptomatic PHPT patients may be useful. The higher sensitivity of urinary calcium versus 1,25(OH) 2 D suggests screening those with higher urinary calcium may be an appropriate approach.
Mejean, Simon; Bouvier, Erik; Bataille, Vincent; Seknadji, Patrick; Fourchy, Dominique; Tabet, Jean-Yves; Lairez, Olivier; Cormier, Bertrand
2016-10-15
Mitral annular calcium (MAC) is a common finding in older patients referred for transcatheter aortic valve implantation (TAVI). Multidetector computed tomography (MDCT) allows fine quantification of the calcific deposits. Our objective was to estimate the prevalence of MAC and associated mitral stenosis (MS) in patients referred for TAVI using MDCT. A cohort of 346 consecutive patients referred for TAVI evaluation was screened by MDCT for MAC: 174 had MAC (50%). Of these patients, 165 patients (95%) had mitral valve area (MVA) assessable by MDCT planimetry (age 83.8 ± 5.9 years). Median mitral calcium volume and MVA were 545 mm 3 (193 to 1,253 mm 3 ) and 234 mm 2 (187 to 297 mm 2 ), respectively. The MS was very severe, severe, and moderate in 2%, 22%, and 10% patients, respectively. By multivariate analysis, MVA was independently correlated to mitral calcium volume, aortic annular area, and some specific patterns of mitral leaflet calcium. Based on these findings, a formula was elaborated to predict the presence of a significant MS. In conclusion, MDCT allows detailed assessment of MAC in TAVI populations, demonstrating a high prevalence. Mitral analysis should become routine during MDCT screening before TAVI as it may alter therapeutic strategy. Copyright © 2016 Elsevier Inc. All rights reserved.
Huang, Yu-Sen; Huang, Kuo-How; Chang, Chin-Chen; Liu, Kao-Lang
2011-03-01
A 45-year-old woman had an asymptomatic abnormality on a screening abdominal radiograph. The radiopaque mass in her right upper abdomen was surrounded by numerous "pearls" and resembled an abalone on the supine abdominal radiograph. We advised an additional upright abdominal radiograph, which showed a calcium fluid level. We also clarified the location of the cystic lesion at the right floating kidney, which changed its location between the supine and upright positions. Computed tomography of the abdomen revealed a right renal cyst with a calcium-fluid interface owing to the milk of calcium. The patient was then followed up without additional investigation or the need for intervention. Copyright © 2011 Elsevier Inc. All rights reserved.
Klingler, W; Pfenninger, E
2016-05-01
Pharmacotherapy is a key component of anesthesiology and intensive care medicine. The individual genetic profile influences not only the effect of pharmaceuticals but can also completely alter the mode of action. New technologies for genetic screening (e.g. next generation sequencing) and increasing knowledge of molecular pathways foster the disclosure of pharmacogenetic syndromes, which are classified as rare diseases. Taking into account the high genetic variability in humans and over 8000 known rare diseases, up to 20 % of the population may be affected. In summary, rare diseases are not rare. Most pharmacogenetic syndromes lead to a weakening or loss of pharmacological action. In contrast, malignant hyperthermia (MH), which is the most relevant pharmacogenetic syndrome for anesthesia, is characterized by a pharmacologically induced overactivation of calcium metabolism in skeletal muscle. Volatile anesthetic agents and succinylcholine trigger life-threatening hypermetabolic crises. Emergency treatment is based on inhibition of the calcium release channel of the sarcoplasmic reticulum by dantrolene. After an adverse pharmacological event patients must be informed and a clarification consultation must be carried out during which the hereditory character of MH is explained. The patient should be referred to a specialist MH center where a predisposition can be diagnosed by the functional in vitro contracture test from a muscle biopsy. Additional molecular genetic investigations can yield mutations in the genes for calcium-regulating proteins in skeletal muscle, e.g. ryanodine receptor 1 (RyR1) and calcium voltage-gated channel subunit alpha 1S (CACNA1S). Currently, an association to MH has only been shown for 35 mutations out of more than 400 known and probably hundreds of unknown genetic variations. Furthermore, MH predisposition is not excluded by negative mutation screening. For anesthesiological patient safety it is crucial to identify individuals at risk and warn genetic relatives; however, the legal requirements of the Patients Rights Act and the Human Genetic Examination Act must be strictly adhered to. Specific features of insurance and employment law must be respected under consideration of the Human Genetic Examination Act.
Add-ons in IVF programme – Hype or Hope?
Datta, AK; Campbell, S; Deval, B; Nargund, G
2015-01-01
A series of new technologies and adjuvant therapies have been advocated in order to improve the success of IVF treatment. Dehydro-epiandrostenedione, growth hormones, Coenzyme Q 10, calcium ionosphores, immune therapy, heparin, low-dose aspirin, and vasodilators are among commonly prescribed pharmacological adjuvants. New technologies that are proposed to improve IVF outcomes include advanced sperm selection procedures, time- lapse embryo monitoring, preimplantation genetic screening, assisted hatching endometrial injury or embryo-glue. This review looked into current evidence to justify the use of these co-interventions and whether some of them can still be offered while awaiting more robust evidence to con rm or refute their role. PMID:27729969
Hu, Juan; Pang, Wen-Sheng; Han, Jing; Zhang, Kuan; Zhang, Ji-Zhou; Chen, Li-Dian
2018-12-01
Stroke is a disease of the leading causes of mortality and disability across the world, but the benefits of drugs curative effects look less compelling, intracellular calcium overload is considered to be a key pathologic factor for ischemic stroke. Gualou Guizhi decoction (GLGZD), a classical Chinese medicine compound prescription, it has been used to human clinical therapy of sequela of cerebral ischemia stroke for 10 years. This work investigated the GLGZD improved prescription against intracellular calcium overload could decreased the concentration of [Ca 2+ ] i in cortex and striatum neurone of MCAO rats. GLGZD contains Trichosanthin and various small molecular that they are the potential active ingredients directed against NR2A, NR2B, FKBP12 and Calnodulin target proteins/enzyme have been screened by computer simulation. "Multicomponent systems" is capable to create pharmacological superposition effects. The Chinese medicine compound prescriptions could be considered as promising sources of candidates for discovery new agents.
Macková, Katarina; Zahradníková, Alexandra; Hoťka, Matej; Hoffmannová, Barbora; Zahradník, Ivan; Zahradníková, Alexandra
2017-12-01
Developing cardiac myocytes undergo substantial structural and functional changes transforming the mechanism of excitation-contraction coupling from the embryonic form, based on calcium influx through sarcolemmal DHPR calcium channels, to the adult form, relying on local calcium release through RYR calcium channels of sarcoplasmic reticulum stimulated by calcium influx. We characterized day-by-day the postnatal development of the structure of sarcolemma, using techniques of confocal fluorescence microscopy, and the development of the calcium current, measured by the whole-cell patch-clamp in isolated rat ventricular myocytes. We characterized the appearance and expansion of the t-tubule system and compared it with the appearance and progress of the calcium current inactivation induced by the release of calcium ions from sarcoplasmic reticulum as structural and functional measures of direct DHPR-RYR interaction. The release-dependent inactivation of calcium current preceded the development of the t-tubular system by several days, indicating formation of the first DHPR-RYR couplons at the surface sarcolemma and their later spreading close to contractile myofibrils with the growing t-tubules. Large variability of both of the measured parameters among individual myocytes indicates uneven maturation of myocytes within the growing myocardium.
1981-01-01
Taking advantage of the fact that nerve terminal mitochondria swell and sequester calcium during repetitive nerve stimulation, we here confirm that this change is caused by calcium influx into the nerve and use this fact to show that botulinum toxin abolishes such calcium influx. The optimal paradigm for producing the mitochondrial changes in normal nerves worked out to be 5 min of stimulation at 25 Hz in frog Ringer's solution containing five time more calcium than normal. Applying this same stimulation paradigm to botulinum-intoxicated nerves produced no mitochondrial changes at all. Only when intoxicated nerves were stimulated in 4-aminopyridine (which grossly exaggerates calcium currents in normal nerves) or when they were soaked in black widow spider venom (which is a nerve-specific calcium ionophore) could nerve mitochondria be induced to swell and accumulate calcium. These results indicate that nerve mitochondria are not damaged directly by the toxin and point instead to a primary inhibition of the normal depolarization- evoked calcium currents that accompany nerve activity. Because these currents normally provide the calcium that triggers transmitter secretion from the nerve, this demonstration of their inhibition helps to explain how botulinum toxin paralyzes. PMID:6259176
Biophysically realistic minimal model of dopamine neuron
NASA Astrophysics Data System (ADS)
Oprisan, Sorinel
2008-03-01
We proposed and studied a new biophysically relevant computational model of dopaminergic neurons. Midbrain dopamine neurons are involved in motivation and the control of movement, and have been implicated in various pathologies such as Parkinson's disease, schizophrenia, and drug abuse. The model we developed is a single-compartment Hodgkin-Huxley (HH)-type parallel conductance membrane model. The model captures the essential mechanisms underlying the slow oscillatory potentials and plateau potential oscillations. The main currents involved are: 1) a voltage-dependent fast calcium current, 2) a small conductance potassium current that is modulated by the cytosolic concentration of calcium, and 3) a slow voltage-activated potassium current. We developed multidimensional bifurcation diagrams and extracted the effective domains of sustained oscillations. The model includes a calcium balance due to the fundamental importance of calcium influx as proved by simultaneous electrophysiological and calcium imaging procedure. Although there are significant evidences to suggest a partially electrogenic calcium pump, all previous models considered only elecrtogenic pumps. We investigated the effect of the electrogenic calcium pump on the bifurcation diagram of the model and compared our findings against the experimental results.
Kopljar, Ivan; Hermans, An N; Teisman, Ard; Gallacher, David J; Lu, Hua Rong
Calcium-based screening of hiPS-CMs is a useful preclinical safety evaluation platform with the ability to generate robust signals that facilitates high-throughput screening and data analysis. However, due to the potential inherent toxicities, it is important to understand potential effects of different calcium-sensitive dyes on the hiPS-CMs model. We compared three calcium-sensitive fluorescence dyes (Cal520, ACTOne and Calcium 5) for their impact on the variability, the beating properties and the pharmacological responses of hiPS-CMs using the Hamamatsu FDSS/μCell imaging platform. Direct effects of three dyes on the electrophysiological properties of hiPS-CMs were evaluated with the multi-electrode array (MEA) Axion Maestro platform. We propose a specific experimental protocol for each dye which gives the most optimal assay conditions to minimize variability and possible adverse effects. We showed that Cal520 had the smallest effect on hiPS-CMs together with the longest-lasting stable amplitude signal (up to 4 h). Although all dyes had a (minor) acute effect on hiPS-CMs, in the form of reduced beat rate and prolonged field potential duration, the selection of the dye did not influence the pharmacological response of four cardioactive drugs (dofetilide, moxifloxacin, nimodipine and isoprenaline). In conclusion, we have documented that different calcium sensitive dyes have only minor direct (acute) effects on hiPS-CMs with Cal520 showing the least effects and the longest lasting signal amplitude. Importantly, drug-induced pharmacological responses in hiPS-CMs were comparable between the three dyes. These findings should help further improve the robustness of the hiPS-CMs-based calcium transient assay as a predictive, preclinical cardiac safety evaluation tool. Copyright © 2018 Elsevier Inc. All rights reserved.
Aboul-Ela, Ezzat I
2002-04-26
The protective effect of calcium given orally by gavage with two doses (40 and 80mg/kg body weight) was evaluated against clastogenecity induced by lead acetate with two concentrations (200 and 400mg/kg diet) on bone marrow and spermatocyte cells of mice in vivo. The parameter screened was percentage of chromosomal aberrations with and without gaps and sperm abnormalities. Statistical analyses indicated the protection efficacy of calcium with the high dose rather than the other in both types of mouse cells. The observation from the laboratory tests, dealing that lead acetate can be considered as an environmental genotoxic material. We recommended that it must be administered of calcium (as calcium chloride) as a protective agent to reduce the genotoxic effect of lead in the somatic and germ cells.
Callamaras, N; Sun, X P; Ivorra, I; Parker, I
1998-09-01
1. The mechanisms underlying hemispheric asymmetry of the inositol 1, 4,5-trisphosphate (InsP3)-calcium signalling pathway in Xenopus oocytes were examined by fluorescence imaging of calcium signals and recording calcium-activated Cl- currents (ICl,Ca) evoked by intracellular calcium injections and photorelease of InsP3. 2. The maximal ICl,Ca evoked by strong photorelease of InsP3 was 8 times greater in the animal than the vegetal hemisphere, but the average threshold amounts of InsP3 required to evoke detectable currents were similar in each hemisphere. 3. Currents evoked by injections of calcium were about 2.5 times greater near the animal pole than near the vegetal pole, whereas fluorescence signals evoked by injections were similar in each hemisphere. 4. Calcium waves were evoked by photolysis flashes of similar strengths in both hemispheres of albino oocytes, but peak calcium levels evoked by supramaximal stimuli were 70 % greater in the animal hemisphere. 5. Elementary calcium release events (puffs) in the animal hemisphere had amplitudes about double that in the vegetal hemisphere, and more often involved coupled release from adjacent sites. Calcium release sites were more closely packed in the animal hemisphere, with a mean spacing of about 1.5 micro m compared with 2.25 micro m in the vegetal hemisphere. 6. The larger amplitude of currents mediated by InsP3 in the animal hemisphere, therefore, involves an increased flux of calcium at individual release units, a more dense packing of release units and a higher density of Cl- channels.
Callamaras, Nick; Sun, Xiao-Ping; Ivorra, Isabel; Parker, Ian
1998-01-01
The mechanisms underlying hemispheric asymmetry of the inositol 1,4,5-trisphosphate (InsP3)-calcium signalling pathway in Xenopus oocytes were examined by fluorescence imaging of calcium signals and recording calcium-activated Cl− currents (ICl,Ca) evoked by intracellular calcium injections and photorelease of InsP3. The maximal ICl,Ca evoked by strong photorelease of InsP3 was 8 times greater in the animal than the vegetal hemisphere, but the average threshold amounts of InsP3 required to evoke detectable currents were similar in each hemisphere. Currents evoked by injections of calcium were about 2.5 times greater near the animal pole than near the vegetal pole, whereas fluorescence signals evoked by injections were similar in each hemisphere. Calcium waves were evoked by photolysis flashes of similar strengths in both hemispheres of albino oocytes, but peak calcium levels evoked by supramaximal stimuli were 70% greater in the animal hemisphere. Elementary calcium release events (puffs) in the animal hemisphere had amplitudes about double that in the vegetal hemisphere, and more often involved coupled release from adjacent sites. Calcium release sites were more closely packed in the animal hemisphere, with a mean spacing of about 1.5 μm compared with 2.25 μm in the vegetal hemisphere. The larger amplitude of currents mediated by InsP3 in the animal hemisphere, therefore, involves an increased flux of calcium at individual release units, a more dense packing of release units and a higher density of Cl− channels. PMID:9706018
Calcium Intake: A Lifelong Proposition.
ERIC Educational Resources Information Center
Amschler, Denise H.
1985-01-01
This article reviews the current problem of low calcium intake in the United States among all age groups, the role of calcium in the formation and maintenance of bone mass, and major factors influencing absorption. Osteoporosis is discussed, and current recommendations for Recommended Dietary allowance are provided. (Author/MT)
Is excess calcium harmful to health?
Daly, Robin M; Ebeling, Peter R
2010-05-01
Most current guidelines recommend that older adults and the elderly strive for a total calcium intake (diet and supplements) of 1,000 to 1,300 mg/day to prevent osteoporosis and fractures. Traditionally, calcium supplements have been considered safe, effective and well tolerated, but their safety has recently been questioned due to potential adverse effects on vascular disease which may increase mortality. For example, the findings from a meta-analysis of randomized controlled trials (currently published in abstract form only) revealed that the use of calcium supplements was associated with an ~30% increased risk of myocardial infarction. If high levels of calcium are harmful to health, this may alter current public health recommendations with regard to the use of calcium supplements for preventing osteoporosis. In this review, we provide an overview of the latest information from human observational and prospective studies, randomized controlled trials and meta-analyses related to the effects of calcium supplementation on vascular disease and related risk factors, including blood pressure, lipid and lipoprotein levels and vascular calcification.
Is Excess Calcium Harmful to Health?
Daly, Robin M.; Ebeling, Peter R.
2010-01-01
Most current guidelines recommend that older adults and the elderly strive for a total calcium intake (diet and supplements) of 1,000 to 1,300 mg/day to prevent osteoporosis and fractures. Traditionally, calcium supplements have been considered safe, effective and well tolerated, but their safety has recently been questioned due to potential adverse effects on vascular disease which may increase mortality. For example, the findings from a meta-analysis of randomized controlled trials (currently published in abstract form only) revealed that the use of calcium supplements was associated with an ~30% increased risk of myocardial infarction. If high levels of calcium are harmful to health, this may alter current public health recommendations with regard to the use of calcium supplements for preventing osteoporosis. In this review, we provide an overview of the latest information from human observational and prospective studies, randomized controlled trials and meta-analyses related to the effects of calcium supplementation on vascular disease and related risk factors, including blood pressure, lipid and lipoprotein levels and vascular calcification. PMID:22254038
Contributions of two types of calcium channels to synaptic transmission and plasticity.
Edmonds, B; Klein, M; Dale, N; Kandel, E R
1990-11-23
In Aplysia sensory and motor neurons in culture, the contributions of the major classes of calcium current can be selectively examined while transmitter release and its modulation are examined. A slowly inactivating, dihydropyridine-sensitive calcium current does not contribute either to normal synaptic transmission or to any of three different forms of plasticity: presynaptic inhibition, homosynaptic depression, and presynaptic facilitation. This current does contribute, however, to a fourth form of plasticity--modulation of transmitter release by tonic depolarization of the sensory neuron. By contrast, a second calcium current, which is rapidly inactivating and dihydropyridine-insensitive, contributes to release elicited by the transient depolarization of an action potential and to the other three forms of plasticity.
Calcium and vitamin D intake and biochemical tests in short-stature children and adolescents.
Bueno, A L; Czepielewski, M A; Raimundo, F V
2010-11-01
Growth is highly dependent on the absorption of nutrients. Inadequate calcium and vitamin D intake may compromise bone mineralization and growth. There is a great deal of concern regarding calcium and vitamin D intake, as well as biochemical changes in children and adolescents, which led us to investigate calcium and vitamin D levels during growth. Fifty-eight children and adolescents with short stature (z-score <3 s.d.) were evaluated from September 2005 to February 2007. Blood biochemical analyses and 24-h urine tests were performed and were used to evaluate calcium, phosphorus, creatinine, sodium, alkaline phosphatase, parathyroid hormone (PTH) and 25(OH)D levels. Dietary inquiries, repeated three times, were used to estimate the actual intake of these substances. A reduced calcium (608.6 mg/day) and vitamin D (72.5 IU/day) intake was observed. Calcium excretion in 24-h urine (56 mg/24 h) and calcium excretion by weight (2.0 mg/24 h/kg) showed scores that were below normal. A negative correlation between PTH and both dietary vitamin D (r=-0.46; P<0.01) and calcium intake (r =-0.41; P<0.001) was observed. The low calcium and vitamin D intake observed in short-stature children and adolescents was associated with biochemical results, and suggested that PTH and calcium excretion may be useful screening tests for evaluating dietary calcium and vitamin D.
Calcium-dependent inactivation of calcium channels in cochlear hair cells of the chicken
Lee, Seunghwan; Briklin, Olga; Hiel, Hakim; Fuchs, Paul
2007-01-01
Voltage-gated calcium channels support both spontaneous and sound-evoked neurotransmitter release from ribbon synapses of cochlear hair cells. A variety of regulatory mechanisms must cooperate to ensure the appropriate level of activity in the restricted pool of synaptic calcium channels (∼100) available to each synaptic ribbon. One potential feedback mechanism, calcium-dependent inactivation (CDI) of voltage-gated, L-type calcium channels, can be modulated by calmodulin-like calcium-binding proteins. CDI of voltage-gated calcium current was studied in hair cells of the chicken's basilar papilla (analogous to the mammalian cochlea) after blocking the predominant potassium conductances. For inactivating currents produced by 2.5 s steps to the peak of the current–voltage relation (1 mm EGTA internal calcium buffer), single exponential fits yielded an average decay time constant of 1.92 ± 0.18 s (mean ±s.e.m., n = 12) at 20–22°C, while recovery occurred with a half-time of ∼10 s. Inactivation produced no change in reversal potential, arguing that the observed relaxation did not result from alternative processes such as calcium accumulation or activation of residual potassium currents. Substitution of external calcium with barium greatly reduced inactivation, while inhibition of endoplasmic calcium pumps with t-benzohydroquinone (BHQ) or thapsigargin made inactivation occur faster and to a greater extent. Raising external calcium 10-fold (from 2 to 20 mm) increased peak current 3-fold, but did not alter the extent or time course of CDI. However, increasing levels of internal calcium buffer consistently reduced the rate and extent of inactivation. With 1 mm EGTA buffering and in 2 mm external calcium, the available pool of calcium channels was half-inactivated near the resting membrane potential (−50 mV). CDI may be further regulated by calmodulin-like calcium-binding proteins (CaBPs). mRNAs for several CaBPs are expressed in chicken cochlear tissue, and antibodies to CaBP4 label hair cells, but not supporting cells, equivalent to the pattern seen in mammalian cochlea. Thus, molecular mechanisms that underlie CDI appeared to be conserved across vertebrate species, may provide a means to adjust calcium channel open probability, and could serve to maintain the set-point for spontaneous release from the ribbon synapse. PMID:17656437
Charlesworth, P; Pocock, G; Richards, C D
1994-01-01
1. The calcium channel currents of bovine adrenal chromaffin cells were characterized using a variety of voltage pulse protocols and selective channel blockers before examination of their modulation by anaesthetic agents. 2. All the anaesthetics studied (halothane, methoxyflurane, etomidate and methohexitone) inhibited the calcium channel currents in a concentration-dependent manner and increased the rate of current decay. 3. The anaesthetics did not shift the current-voltage relation nor did they change the voltage for half-maximal channel activation derived from analysis of the voltage dependence of the tail currents. None of the anaesthetics appeared to alter the time constant of tail current decay. 4. To complement earlier studies of the inhibitory actions of anaesthetics on K(+)-evoked catecholamine secretion and the associated Ca2+ uptake, the IC50 values for etomidate and methohexitone were determined using a biochemical assay. The IC50 values for anaesthetic inhibition of calcium channel currents corresponded closely with those for inhibition of K(+)-evoked calcium uptake and catecholamine secretion. 5. The inhibitory effect of the volatile anaesthetics and etomidate is best explained by dual action: a reduction in the probability of channel opening coupled with an increase in the rate of channel inactivation. Methohexitone appeared to inhibit the currents by a use-dependent slow block. PMID:7707224
In vivo alterations in calcium buffering capacity in transgenic mouse model of synucleinopathy.
Reznichenko, Lidia; Cheng, Qun; Nizar, Krystal; Gratiy, Sergey L; Saisan, Payam A; Rockenstein, Edward M; González, Tanya; Patrick, Christina; Spencer, Brian; Desplats, Paula; Dale, Anders M; Devor, Anna; Masliah, Eliezer
2012-07-18
Abnormal accumulation of α-synuclein is centrally involved in the pathogenesis of many disorders with Parkinsonism and dementia. Previous in vitro studies suggest that α-synuclein dysregulates intracellular calcium. However, it is unclear whether these alterations occur in vivo. For this reason, we investigated calcium dynamics in transgenic mice expressing human WT α-synuclein using two-photon microscopy. We imaged spontaneous and stimulus-induced neuronal activity in the barrel cortex. Transgenic mice exhibited augmented, long-lasting calcium transients characterized by considerable deviation from the exponential decay. The most evident pathology was observed in response to a repetitive stimulation in which subsequent stimuli were presented before relaxation of calcium signal to the baseline. These alterations were detected in the absence of significant increase in neuronal spiking response compared with age-matched controls, supporting the possibility that α-synuclein promoted alterations in calcium dynamics via interference with intracellular buffering mechanisms. The characteristic shape of calcium decay and augmented response during repetitive stimulation can serve as in vivo imaging biomarkers in this model of neurodegeneration, to monitor progression of the disease and screen candidate treatment strategies.
Kim, Yoon Kyung; Sung, Yon Mi; Cho, So Hyun; Park, Young Nam; Choi, Hye-Young
2014-12-01
Coronary artery calcification (CAC) is frequently detected on low-dose CT (LDCT) of the thorax. Concurrent assessment of CAC and lung cancer screening using LDCT is beneficial in terms of cost and radiation dose reduction. The aim of our study was to evaluate the reliability of visual ranking of positive CAC on LDCT compared to Agatston score (AS) on electrocardiogram (ECG)-gated calcium scoring CT. We studied 576 patients who were consecutively registered for health screening and undergoing both LDCT and ECG-gated calcium scoring CT. We excluded subjects with an AS of zero. The final study cohort included 117 patients with CAC (97 men; mean age, 53.4 ± 8.5). AS was used as the gold standard (mean score 166.0; range 0.4-3,719.3). Two board-certified radiologists and two radiology residents participated in an observer performance study. Visual ranking of CAC was performed according to four categories (1-10, 11-100, 101-400, and 401 or higher) for coronary artery disease risk stratification. Weighted kappa statistics were used to measure the degree of reliability on visual ranking of CAC on LDCT. The degree of reliability on visual ranking of CAC on LDCT compared to ECG-gated calcium scoring CT was excellent for board-certified radiologists and good for radiology residents. A high degree of association was observed with 71.6% of visual rankings in the same category as the Agatston category and 98.9% varying by no more than one category. Visual ranking of positive CAC on LDCT is reliable for predicting AS rank categorization.
Namkung, Wan; Yao, Zhen; Finkbeiner, Walter E.; Verkman, A. S.
2011-01-01
TMEM16A (ANO1) is a calcium-activated chloride channel (CaCC) expressed in secretory epithelia, smooth muscle, and other tissues. Cell-based functional screening of ∼110,000 compounds revealed compounds that activated TMEM16A CaCC conductance without increasing cytoplasmic Ca2+. By patch-clamp, N-aroylaminothiazole “activators” (Eact) strongly increased Cl− current at 0 Ca2+, whereas tetrazolylbenzamide “potentiators” (Fact) were not active at 0 Ca2+ but reduced the EC50 for Ca2+-dependent TMEM16A activation. Of 682 analogs tested, the most potent activator (Eact) and potentiator (Fact) produced large and more sustained CaCC Cl− currents than general agonists of Ca2+ signaling, with EC50 3–6 μM and Cl− conductance comparable to that induced transiently by Ca2+-elevating purinergic agonists. Analogs of activators were identified that fully inhibited TMEM16A Cl− conductance, providing further evidence for direct TMEM16A binding. The TMEM16A activators increased CaCC conductance in human salivary and airway submucosal gland epithelial cells, and IL-4 treated bronchial cells, and stimulated submucosal gland secretion in human bronchi and smooth muscle contraction in mouse intestine. Small-molecule, TMEM16A-targeted activators may be useful for drug therapy of cystic fibrosis, dry mouth, and gastrointestinal hypomotility disorders, and for pharmacological dissection of TMEM16A function.—Namkung, W., Yao, Z., Finkbeiner, W. E., Verkman, A. S. Small-molecule activators of TMEM16A, a calcium-activated chloride channel, stimulate epithelial chloride secretion and intestinal contraction. PMID:21836025
Properties of the calcium-activated chloride current in heart.
Zygmunt, A C; Gibbons, W R
1992-03-01
We used the whole cell patch clamp technique to study transient outward currents of single rabbit atrial cells. A large transient current, IA, was blocked by 4-aminopyridine (4AP) and/or by depolarized holding potentials. After block of IA, a smaller transient current remained. It was completely blocked by nisoldipine, cadmium, ryanodine, or caffeine, which indicates that all of the 4AP-resistant current is activated by the calcium transient that causes contraction. Neither calcium-activated potassium current nor calcium-activated nonspecific cation current appeared to contribute to the 4AP-resistant transient current. The transient current disappeared when ECl was made equal to the pulse potential; it was present in potassium-free internal and external solutions. It was blocked by the anion transport blockers SITS and DIDS, and the reversal potential of instantaneous current-voltage relations varied with extracellular chloride as predicted for a chloride-selective conductance. We concluded that the 4AP-resistant transient outward current of atrial cells is produced by a calcium-activated chloride current like the current ICl(Ca) of ventricular cells (1991. Circulation Research. 68:424-437). ICl(Ca) in atrial cells demonstrated outward rectification, even when intracellular chloride concentration was higher than extracellular. When ICa was inactivated or allowed to recover from inactivation, amplitudes of ICl(Ca) and ICa were closely correlated. The results were consistent with the view that ICl(Ca) does not undergo independent inactivation. Tentatively, we propose that ICl(Ca) is transient because it is activated by an intracellular calcium transient. Lowering extracellular sodium increased the peak outward transient current. The current was insensitive to the choice of sodium substitute. Because a recently identified time-independent, adrenergically activated chloride current in heart is reduced in low sodium, these data suggest that the two chloride currents are produced by different populations of channels.
Patel, V. F.; Sarai, J.
2014-01-01
The present study was aimed at investigating the effect of hydrotrope and surfactant on poor solubility of atorvastatin calcium. Excipients screening followed by factorial design was performed to study effect of excipients and manufacturing methods on solubility of drug. Three independent factors (carrier, surfactant and manufacturing method) were evaluated at two levels using solubility as a dependant variable. Solid-state characterisation was performed using Fourier transform infrared spectroscopy and differential scanning calorimetry. Optimised complex were incorporated into orally disintegrating micro tablets and in vitro dissolution test was performed. Nicotinamide, Plasdone and sodium dodecyl sulphate were emerged as promising excipients from excipient screening. General regression analysis revealed only the type of carrier has significantly enhanced (P<0.05) the solubility of drug while other factors were found to be nonsignificant. Ratio optimisation trial revealed that drug to nicotinamide ratio is more critical in enhancing the solubility of drug (40 fold increases in solubility compared to pure drug) in comparison to drug-surfactant ratio; however the presence of surfactant deemed essential. Significantly higher rate and extent of dissolution was observed from solid dispersion complex and tablets compared to dissolution of pure drug (P<0.05). Study revealed hydrotrope and surfactant have synergistic effect on solubility and dissolution of atorvastatin calcium and this can be explored further. PMID:25593381
Cadetti, Lucia; Bryson, Eric J.; Ciccone, Cory A.; Rabl, Katalin; Thoreson, Wallace B.
2008-01-01
We examined the contribution of calcium-induced calcium release (CICR) to synaptic transmission from rod photoreceptor terminals. Whole-cell recording and confocal calcium imaging experiments were conducted on rods with intact synaptic terminals in a retinal slice preparation from salamander. Low concentrations of ryanodine stimulated calcium increases in rod terminals, consistent with the presence of ryanodine receptors. Application of strong depolarizing steps (−70 to −10 mV) exceeding 200 ms or longer in duration evoked a wave of calcium that spread across the synaptic terminals of voltage-clamped rods. This secondary calcium increase was blocked by high concentrations of ryanodine, indicating it was due to CICR. Ryanodine (50 μM) had no significant effect on rod calcium current (Ica) although it slightly diminished rod light-evoked voltage responses. Bath application of 50 μM ryanodine strongly inhibited light-evoked currents in horizontal cells. Whether applied extracellularly or delivered into the rod cell through the patch pipette, ryanodine (50 μM) also inhibited excitatory post-synaptic currents (EPSCs) evoked in horizontal cells by depolarizing steps applied to rods. Ryanodine caused a preferential reduction in the later portions of EPSCs evoked by depolarizing steps of 200 ms or longer. These results indicate that CICR enhances calcium increases in rod terminals evoked by sustained depolarization, which in turn acts to boost synaptic exocytosis from rods. PMID:16819987
Novel interactive partners of neuroligin 3: new aspects for pathogenesis of autism.
Shen, Chen; Huo, Li-rong; Zhao, Xin-liang; Wang, Pei-rong; Zhong, Nanbert
2015-05-01
Autism is a neurodevelopmental disorder with a strong genetic predisposition. Neurolign 3 (NLGN3) as a postsynaptic transmembrane protein, functions in both neuron synaptogenesis and glia-neuron communications. Previously, a gain of function mutation (R451C) in NLGN3 was identified in autistic patients, which illustrates the involvement of NLGN3 in autism pathogenesis. As proper synaptic targeting and functioning are controlled by intracellular protein interactions, in the current study, we tried to discover the intracellular regulation network in which NLGN3 might be involved by a yeast two-hybrid-based interactor identification. Fifty-one protein candidate partners were identified after screening a human fetal complementary DNA (cDNA) library with an intracellular fragment of NLGN3. The interactions of NLGN3 with a subset of candidates, including EEF1A1, FLNA, ITPRIP, CYP11A1, MT-CO2, GPR175, ACOT2, and QPRT, were further validated in human neuroblastoma cells or brain tissues. Furthermore, our study suggested that NLGN3 was functioning in cytosolic calcium balance and participating in calcium-regulated cellular processes. Our findings of novel NLGN3 binding partners provide evidences of involvement of NLGN3 in multiple biological pathways, especially calcium regulating and mitochondrial function, thus suggesting further significance. This new data not only leads to a better understanding of the physiological functions of NLGN3, but also provide new aspects for pathogenesis of autism.
Carosati, Emanuele; Budriesi, Roberta; Ioan, Pierfranco; Ugenti, Maria P; Frosini, Maria; Fusi, Fabio; Corda, Gaetano; Cosimelli, Barbara; Spinelli, Domenico; Chiarini, Alberto; Cruciani, Gabriele
2008-09-25
With the effort to discover new chemotypes blocking L-type calcium channels (LTCCs), ligand-based virtual screening was applied with a specific interest toward the diltiazem binding site. Roughly 50000 commercially available compounds served as a database for screening. The filtering through predicted pharmacokinetic properties and structural requirements reduced the initial database to a few compounds for which the similarity was calculated toward two template molecules, diltiazem and 4-chloro-Ncyclopropyl- N-(4-piperidinyl)benzene-sulfonamide, the most interesting hit of a previous screening experiment. For 18 compounds, inotropic and chronotropic activity as well as the vasorelaxant effect on guinea pig were studied "in vitro", and for the most promising, binding studies to the diltiazem site were carried out. The procedure yielded several hits, confirming in silico techniques to be useful for finding new chemotypes. In particular, N-[2-(dimethylamino)ethyl]-3-hydroxy-2-naphthamide, N,Ndimethyl- N'-(2-pyridin-3-ylquinolin-4-yl)ethane-1,2-diamine, 2-[(4-chlorophenyl)(pyridin-2-yl)methoxy]- N,N-dimethylethanamine (carbinoxamine), and 7-[2-(diethylamino)ethoxy]-2H-chromen-2-one revealed interesting activity and binding to the benzothiazepine site.
Calcium intake trends and health consequences from childhood through adulthood.
Nicklas, Theresa A
2003-10-01
Issues involving low calcium intake and dairy product consumption are currently the focus of much debate and discussion at both the scientific and lay community levels. In this review, we examine the following major areas of interest: (1). the role of calcium intake and dairy product consumption in chronic diseases, (2). nutritional qualities of milk and other dairy products, (3). trends in calcium intake and dairy product consumption, (4). current status of calcium intakes and dairy product consumption in children, (5). tracking of calcium intake and diary product consumption, (6). the impact of school meal participation on calcium intake and dairy product consumption, (7). concerns related to calcium-fortified foods and beverages and (8). factors influencing children's milk consumption. To date, the findings indicate that calcium intake and dairy product consumption have beneficial roles in a variety of chronic diseases; dairy products provide an abundant source of vitamins and minerals; calcium intakes of children have increased over time, yet intakes are not meeting the current adequate intake (AI) calcium recommendations; dairy consumption has decreased, and soft drink consumption and, possibly, consumption of calcium-fortified products have increased; consumption of dairy products have a positive nutritional impact on diets of children, particularly from school meals, and there are many factors which influence children's milk consumption, all of which need to be considered in our efforts to promote adequate calcium intakes by children. Based on this review, areas that need immediate attention and future research imperatives are summarized in an effort to further our understanding on what we already know and what we need to know to promote healthier eating habits early in life.
Spatially resolving density-dependent screening around a single charged atom in graphene
NASA Astrophysics Data System (ADS)
Wong, Dillon; Corsetti, Fabiano; Wang, Yang; Brar, Victor W.; Tsai, Hsin-Zon; Wu, Qiong; Kawakami, Roland K.; Zettl, Alex; Mostofi, Arash A.; Lischner, Johannes; Crommie, Michael F.
2017-05-01
Electrons in two-dimensional graphene sheets behave as interacting chiral Dirac fermions and have unique screening properties due to their symmetry and reduced dimensionality. By using a combination of scanning tunneling spectroscopy measurements and theoretical modeling we have characterized how graphene's massless charge carriers screen individual charged calcium atoms. A backgated graphene device configuration has allowed us to directly visualize how the screening length for this system can be tuned with carrier density. Our results provide insight into electron-impurity and electron-electron interactions in a relativistic setting with important consequences for other graphene-based electronic devices.
Flow-driven pattern formation in the calcium-oxalate system.
Bohner, Bíborka; Endrődi, Balázs; Horváth, Dezső; Tóth, Ágota
2016-04-28
The precipitation reaction of calcium oxalate is studied experimentally in the presence of spatial gradients by controlled flow of calcium into oxalate solution. The density difference between the reactants leads to strong convection in the form of a gravity current that drives the spatiotemporal pattern formation. The phase diagram of the system is constructed, the evolving precipitate patterns are analyzed and quantitatively characterized by their diameters and the average height of the gravity flow. The compact structures of calcium oxalate monohydrate produced at low flow rates are replaced by the thermodynamically unstable calcium oxalate dihydrate favored in the presence of a strong gravity current.
Purali, Nuhan
2017-09-01
In the present study, cytosolic calcium concentration changes were recorded in response to various forms of excitations, using the fluorescent calcium indicator dye OG-BAPTA1 together with the current or voltage clamp methods in stretch receptor neurons of crayfish. A single action potential evoked a rise in the resting calcium level in the axon and axonal hillock, whereas an impulse train or a large saturating current injection would be required to evoke an equivalent response in the dendrite region. Under voltage clamp conditions, amplitude differences between axon and dendrite responses vanished completely. The fast activation time and the modulation of the response by extracellular calcium concentration changes indicated that the evoked calcium transients might be mediated by calcium entry into the cytosol through a voltage-gated calcium channel. The decay of the responses was slow and sensitive to extracellular sodium and calcium concentrations as well as exposure to 1-10 mM NiCl 2 and 10-500 µM lanthanum. Thus, a sodium calcium exchanger and a calcium ATPase might be responsible for calcium extrusion from the cytosol. Present results indicate that the calcium indicator OG-BAPTA1 might be an efficient but indirect way of monitoring regional membrane potential differences in a single neuron.
Amyotrophic lateral sclerosis immunoglobulins increase Ca2+ currents in a motoneuron cell line.
Mosier, D R; Baldelli, P; Delbono, O; Smith, R G; Alexianu, M E; Appel, S H; Stefani, E
1995-01-01
The sporadic form of amyotrophic lateral sclerosis (ALS) is an idiopathic and eventually lethal disorder causing progressive degeneration of cortical and spinal motoneurons. Recent studies have shown that the majority of patients with sporadic ALS have serum antibodies that bind to purified L-type voltage-gated calcium channels and that antibody titer correlates with the rate of disease progression. Furthermore, antibodies purified from ALS patient sera have been found to alter the physiologic function of voltage-gated calcium channels in nonmotoneuron cell types. Using whole-cell patch-clamp techniques, immunoglobulins purified from sera of 5 of 6 patients with sporadic ALS are now shown to increase calcium currents in a hybrid motoneuron cell line, VSC4.1. These calcium currents are blocked by the polyamine funnel-web spider toxin FTX, which has previously been shown to block Ca2+ currents and evoked transmitter release at mammalian motoneuron terminals. These data provide additional evidence linking ALS to an autoimmune process and suggest that antibody-induced increases in calcium entry through voltage-gated calcium channels may occur in motoneurons in this disease, with possible deleterious effects in susceptible neurons.
Glutamate modulation of GABA transport in retinal horizontal cells of the skate
Kreitzer, Matthew A; Andersen, Kristen A; Malchow, Robert Paul
2003-01-01
Transport of the amino acid GABA into neurons and glia plays a key role in regulating the effects of GABA in the vertebrate retina. We have examined the modulation of GABA-elicited transport currents of retinal horizontal cells by glutamate, the likely neurotransmitter of vertebrate photoreceptors. Enzymatically isolated external horizontal cells of skate were examined using whole-cell voltage-clamp techniques. GABA (1 mm) elicited an inward current that was completely suppressed by the GABA transport inhibitors tiagabine (10 μm) and SKF89976-A (100 μm), but was unaffected by 100 μm picrotoxin. Prior application of 100 μm glutamate significantly reduced the GABA-elicited current. Glutamate depressed the GABA dose-response curve without shifting the curve laterally or altering the voltage dependence of the current. The ionotropic glutamate receptor agonists kainate and AMPA also reduced the GABA-elicited current, and the effects of glutamate and kainate were abolished by the ionotropic glutamate receptor antagonist 6-cyano-7-nitroquinoxaline. NMDA neither elicited a current nor modified the GABA-induced current, and metabotropic glutamate analogues were also without effect. Inhibition of the GABA-elicited current by glutamate and kainate was reduced when extracellular calcium was removed and when recording pipettes contained high concentrations of the calcium chelator BAPTA. Caffeine (5 mm) and thapsigargin (2 nm), agents known to alter intracellular calcium levels, also reduced the GABA-elicited current, but increases in calcium induced by depolarization alone did not. Our data suggest that glutamate regulates GABA transport in retinal horizontal cells through a calcium-dependent process, and imply a close physical relationship between calcium-permeable glutamate receptors and GABA transporters in these cells. PMID:12562999
2006-01-01
associated micronutrients , and risk of prostate cancer. Epidemiol. Rev. 2001a: 23: 82-86. Chan J., and Giovannucci E. Dairy products, calcium, and...118. Chan J., and Giovannucci E. Vegetables, fruits, associated micronutrients , and risk of prostate cancer. Epidemiol. Rev. 2001a: 23: 82-86...Chan J., and Giovannucci E. Dairy products, calcium, and vitamin D, and risk of prostate cancer. Epidemiol. Rev. 2001b: 23: 87-92. Cohen J.H., Kristal
Huang, Shih-Yu; Chen, Yao-Chang; Kao, Yu-Hsun; Hsieh, Ming-Hsiung; Lin, Yung-Kuo; Chen, Shih-Ann; Chen, Yi-Jen
2017-07-12
Chronic kidney disease (CKD) increases the occurrence of atrial fibrillation and pulmonary vein (PV) arrhythmogenesis. Calcium dysregulation and reactive oxygen species (ROS) enhance PV arrhythmogenic activity. The purposes of this study were to investigate whether CKD modulates PV electrical activity through dysregulation of calcium homeostasis and ROS. Biochemical and electrocardiographic studies were conducted in rabbits with and without CKD (induced by 150 mg/kg per day neomycin sulfate and 500 mg/kg per day cefazolin). Confocal microscopy with fluorescence and a whole-cell patch clamp were applied to study calcium homeostasis and electrical activities in control and CKD isolated single PV cardiomyocytes with or without treatment with H89 (1 μmol/L, a protein kinase A inhibitor) and MPG (N-[2-mercaptopropionyl]glycine; 100 μmol/L, a ROS scavenger). The ROS in mitochondria and cytosol were evaluated via intracellular dye fluorescence and lipid peroxidation. CKD rabbits had excessive atrial premature captures over those of control rabbits. Compared with the control, CKD PV cardiomyocytes had a faster beating rate and larger calcium transient amplitudes, sarcoplasmic reticulum calcium contents, sodium/calcium exchanger currents, and late sodium currents but smaller L-type calcium current densities. CKD PV cardiomyocytes had a higher frequency and longer duration of calcium sparks and more ROS in the mitochondria and cytosol than did controls. Moreover, H89 suppressed all calcium sparks in CKD PV cardiomyocytes, and H89- and MPG-treated CKD PV cardiomyocytes had similar calcium transients compared with control PV cardiomyocytes. CKD increases PV arrhythmogenesis with enhanced calcium-handling abnormalities through activation of protein kinase A and ROS. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
Luxardi, Guillaume; Reid, Brian; Maillard, Pauline; Zhao, Min
2014-07-24
Breaching of the cell membrane is one of the earliest and most common causes of cell injury, tissue damage, and disease. If the compromise in cell membrane is not repaired quickly, irreversible cell damage, cell death and defective organ functions will result. It is therefore fundamentally important to efficiently repair damage to the cell membrane. While the molecular aspects of single cell wound healing are starting to be deciphered, its bio-physical counterpart has been poorly investigated. Using Xenopus laevis oocytes as a model for single cell wound healing, we describe the temporal and spatial dynamics of the wound electric current circuitry and the temporal dynamics of cell membrane potential variation. In addition, we show the role of calcium influx in controlling electric current circuitry and cell membrane potential variations. (i) Upon wounding a single cell: an inward electric current appears at the wound center while an outward electric current is observed at its sides, illustrating the wound electric current circuitry; the cell membrane is depolarized; calcium flows into the cell. (ii) During cell membrane re-sealing: the wound center current density is maintained for a few minutes before decreasing; the cell membrane gradually re-polarizes; calcium flow into the cell drops. (iii) In conclusion, calcium influx is required for the formation and maintenance of the wound electric current circuitry, for cell membrane re-polarization and for wound healing.
Wojtas, Magdalena; Hołubowicz, Rafał; Poznar, Monika; Maciejewska, Marta; Ożyhar, Andrzej; Dobryszycki, Piotr
2015-10-27
Starmaker (Stm) is an intrinsically disordered protein (IDP) involved in otolith biomineralization in Danio rerio. Stm controls calcium carbonate crystal formation in vivo and in vitro. Phosphorylation of Stm affects its biomineralization properties. This study examined the effects of calcium ions and phosphorylation on the structure of Stm. We have shown that CK2 kinase phosphorylates 25 or 26 residues in Stm. Furthermore, we have demonstrated that Stm's affinity for calcium binding is dependent on its phosphorylation state. Phosphorylated Stm (StmP) has an estimated 30 ± 1 calcium binding sites per protein molecule with a dissociation constant (KD) of 61 ± 4 μM, while the unphosphorylated protein has 28 ± 3 sites and a KD of 210 ± 22 μM. Calcium ion binding induces a compaction of the Stm molecule, causing a significant decrease in its hydrodynamic radius and the formation of a secondary structure. The screening effect of Na(+) ions on calcium binding was also observed. Analysis of the hydrodynamic properties of Stm and StmP showed that Stm and StmP molecules adopt the structure of native coil-like proteins.
Hyperthyroidism-associated hypercalcemic crisis: A case report and review of the literature.
Chen, Ke; Xie, Yanhong; Zhao, Liling; Mo, Zhaohui
2017-01-01
Hyperthyroidism is one of the major clinical causes of hypercalcaemia, however, hyperthyroidism-related hypercalcemic crisis is rare, only 1 case have been reported. The potential mechanisms are still not too clear. It may be related that thyroid hormone stimulate bone turnover, elevate serum calcium, increase urinary and fecal calcium excretion. A 58-year-old female patient was found to have Graves' disease, a marked elevated serum calcium level (adjusted serum calcium: 3.74 mmol/L), and reduced parathyroid hormone level. She was diagnosed as hyperthyroidism-associated hypercalcemic crisis. Treatment with methimazole to correct the hyperthyroidism and treatment of the patient's hypercalcaemia was achieved by physiological saline, salmon calcitonin and furosemide. After treatment for hypercalcaemia and hyperthyroidism, her symptoms and serum calcium levels quickly returned to normal. hyperthyroid-associated hypercalcaemia crisis is rare, however, the diagnosis should pay attention to screening for other diseases caused by hypercalcemia. Timely treatment of hypercalcaemia is a critical step for rapidly control of symptoms, and treatment of hyperthyroidism is beneficial to relief the symptoms and maintain the blood calcium level.
Robinson, M L; Winters-Stone, K; Gabel, K; Dolny, D
2007-08-01
One hundred and fourteen girls were measured for calcaneus QUS (stiffness index score), calcium intake, weight, and total hours spent in physical activity (moderate to high-impact activities and low to no-impact activities). Multiple regression analysis indicated that hours spent in moderate to high-impact activities, current calcium intake, and weight significantly predicted SI. To determine the influence of modifiable lifestyle factors on adolescent girls' bone health measured by calcaneus quantitative ultrasound (QUS). One hundred and fourteen girls, ages 14-18 (15.97 +/- .7), enrolled in high school physical education classes, were measured for calcaneus QUS (stiffness index score), height, weight, current calcium intake from 2-3 day food records, and estimated total hours spent in physical activity from kindergarten to present. Cumulative physical activity hours were separated into two classifications (according to their estimated strain from ground reaction force): moderate to high-impact activities and low to no-impact activities. Pearson correlations between stiffness index (SI) and age, height, weight, current calcium intake, and hours spent in moderate to high-impact versus low to no-impact activities indicated a positive relationships between SI and weight (r = .259, p = .005), current calcium intake (r = .286, p = .002), and hours spent in moderate to high-impact activities (r = .451, p < .001). Multiple regression between SI and the above independent variables indicated that collectively, hours spent in moderate to high-impact activities, current calcium intake, and weight (r (2) = .363, p = <.001) significantly predicted SI. Our data indicate that moderate to high-impact activities, current calcium intake, and weight positively influence bone properties of the calcaneus in adolescent girls.
Colonna, William; Brehm-Stecher, Byron; Shetty, Kalidas; Pometto, Anthony
2017-12-01
This study focused on advancing a rapid turbidimetric bioassay to screen antimicrobials using specific cocktails of targeted foodborne bacterial pathogens. Specifically, to show the relevance of this rapid screening tool, the antimicrobial potential of generally recognized as safe calcium diacetate (DAX) and blends with cranberry (NC) and oregano (OX) natural extracts was evaluated. Furthermore, the same extracts were evaluated against beneficial lactic acid bacteria. The targeted foodborne pathogens evaluated were Escherichia coli O157:H7, Salmonella spp., Listeria monocytogenes, and Staphylococcus aureus using optimized initial cocktails (∼10 8 colony-forming unit/mL) containing strains isolated from human food outbreaks. Of all extracts evaluated, 0.51% (w/v) DAX in ethanol was the most effective against all four pathogens. However, DAX when reduced to 0.26% and with added blends from ethanol extractions consisting of DAX:OX (3:1), slightly outperformed or was equal to same levels of DAX alone. Subculture of wells in which no growth occurred after 1 week indicated that all water and ethanol extracts were bacteriostatic against the pathogens tested. All the targeted antimicrobials had no effect on the probiotic organism Lactobacillus plantarum. The use of such rapid screening methods combined with the use of multistrain cocktails of targeted foodborne pathogens from outbreaks will allow rapid large-scale screening of antimicrobials and enable further detailed studies in targeted model food systems.
Kamba, Abdullahi Shafiu; Ismail, Maznah; Ibrahim, Tengku Azmi Tengku; Zakaria, Zuki Abu Bakar
2014-01-01
Currently, there has been extensive research interest for inorganic nanocrystals such as calcium phosphate, iron oxide, silicone, carbon nanotube and layered double hydroxide as a drug delivery system especially in cancer therapy. However, toxicological screening of such particles is paramount importance before use as delivery carrier. In this study we examine the biocompatibility of CaCO3 nanocrystal on NIH 3T3 cell line. Transmission and field emission scanning electron microscopy (TEM and FESEM) were used for the characterisation of CaCO3 nanocrystals. Cytotoxicity and genotoxic effect of calcium carbonate nanocrystals in cultured mouse embryonic fibroblast NIH 3T3 cell line using various bioassays including MTT, and Neutral red/Trypan blue double-staining assays. LDH, BrdU and reactive oxygen species were used for toxicity analysis. Cellular morphology was examined by scanning electron microscopy (SEM) and confocal fluorescence microscope. The outcome of the analyses revealed a clear rod-shaped aragonite polymorph of calcium carbonate nanocrystal. The analysed cytotoxic and genotoxicity of CaCO3 nanocrystal on NIH 3T3 cells using different bioassays revealed no significance differences as compared to control. A slight decrease in cell viability was noticed when the cells were exposed to higher concentrations of 200 to 400 µg/ml, while increase in ROS generation and LDH released at 200 and 400 µg/ml was observed. The study has shown that CaCO3 nanocrystal is biocompatible and non toxic to NIH 3T3 fibroblast cells. The analysed results offer a promising potential of CaCO3 nanocrystal for the development of intracellular drugs, genes and other macromolecule delivery systems.
Sueitt, A P E; Yamada-Ferraz, T M; Oliveira, A F; Botta, C M R; Fadini, P S; Nascimento, M R L; Faria, B M; Mozeto, A A
2015-07-01
This study aimed to analyze laboratory and field data to assess the ecotoxicological risks of calcium nitrate exposure to freshwater tropical biota. Short-term laboratorial tests resulted in estimated EC₅₀ values of 76.72 (67.32-86.12)mg N-NO₃₋ L(-1) for C. silvestrii and 296.46 (277.16-315.76) mg N-NO₃₋ L(-1) for C. xanthus. Long-term laboratorial tests generated IC₂₅ values of 5.05 (4.35-5.75) and 28.73 (26.30-31.15) mg N-NO₃₋ L(-1) for C. silvestrii and C. xanthus, respectively. The results from in situ mesocosm experiments performed in the Ibirité reservoir (a tropical eutrophic urban water body located in SE Brazil) indicated that C. silvestrii and C. xanthus were not under severe deleterious acute impact due to the treatment because the higher nitrate concentrations determined were 5.2 mg N-NO₃₋ L(-1) (t=24 h; sediment-water interface) and 17.5 mg N-NO₃₋ L(-1) (t=600 h; interstitial water). However, an abrupt decrease in the densities of Cyanophyceae members and other benthic taxa was observed. In summary, the present work contributes greatly to the toxicity data linked to two taxonomically distinct organisms that have never been screened for calcium nitrate sensitivity. Furthermore, considering the problem of the management and restoration of eutrophic environments, our study reports a comprehensive field assessment that allows the elucidation of the possible toxic impacts caused by the addition of calcium nitrate (a remediation technique) on aquatic and benthic organisms as well as the implications on the aquatic ecosystem as a whole, which may greatly allow expanding the current knowledgebase on the topic. Copyright © 2015 Elsevier Inc. All rights reserved.
A human intermediate conductance calcium-activated potassium channel.
Ishii, T M; Silvia, C; Hirschberg, B; Bond, C T; Adelman, J P; Maylie, J
1997-10-14
An intermediate conductance calcium-activated potassium channel, hIK1, was cloned from human pancreas. The predicted amino acid sequence is related to, but distinct from, the small conductance calcium-activated potassium channel subfamily, which is approximately 50% conserved. hIK1 mRNA was detected in peripheral tissues but not in brain. Expression of hIK1 in Xenopus oocytes gave rise to inwardly rectifying potassium currents, which were activated by submicromolar concentrations of intracellular calcium (K0.5 = 0.3 microM). Although the K0.5 for calcium was similar to that of small conductance calcium-activated potassium channels, the slope factor derived from the Hill equation was significantly reduced (1.7 vs. 3. 5). Single-channel current amplitudes reflected the macroscopic inward rectification and revealed a conductance level of 39 pS in the inward direction. hIK1 currents were reversibly blocked by charybdotoxin (Ki = 2.5 nM) and clotrimazole (Ki = 24.8 nM) but were minimally affected by apamin (100 nM), iberiotoxin (50 nM), or ketoconazole (10 microM). These biophysical and pharmacological properties are consistent with native intermediate conductance calcium-activated potassium channels, including the erythrocyte Gardos channel.
A human intermediate conductance calcium-activated potassium channel
Ishii, Takahiro M.; Silvia, Christopher; Hirschberg, Birgit; Bond, Chris T.; Adelman, John P.; Maylie, James
1997-01-01
An intermediate conductance calcium-activated potassium channel, hIK1, was cloned from human pancreas. The predicted amino acid sequence is related to, but distinct from, the small conductance calcium-activated potassium channel subfamily, which is ≈50% conserved. hIK1 mRNA was detected in peripheral tissues but not in brain. Expression of hIK1 in Xenopus oocytes gave rise to inwardly rectifying potassium currents, which were activated by submicromolar concentrations of intracellular calcium (K0.5 = 0.3 μM). Although the K0.5 for calcium was similar to that of small conductance calcium-activated potassium channels, the slope factor derived from the Hill equation was significantly reduced (1.7 vs. 3.5). Single-channel current amplitudes reflected the macroscopic inward rectification and revealed a conductance level of 39 pS in the inward direction. hIK1 currents were reversibly blocked by charybdotoxin (Ki = 2.5 nM) and clotrimazole (Ki = 24.8 nM) but were minimally affected by apamin (100 nM), iberiotoxin (50 nM), or ketoconazole (10 μM). These biophysical and pharmacological properties are consistent with native intermediate conductance calcium-activated potassium channels, including the erythrocyte Gardos channel. PMID:9326665
Genç, Özgür; Dickman, Dion K; Ma, Wenpei; Tong, Amy; Fetter, Richard D; Davis, Graeme W
2017-01-01
Presynaptic homeostatic plasticity (PHP) controls synaptic transmission in organisms from Drosophila to human and is hypothesized to be relevant to the cause of human disease. However, the underlying molecular mechanisms of PHP are just emerging and direct disease associations remain obscure. In a forward genetic screen for mutations that block PHP we identified mctp (Multiple C2 Domain Proteins with Two Transmembrane Regions). Here we show that MCTP localizes to the membranes of the endoplasmic reticulum (ER) that elaborate throughout the soma, dendrites, axon and presynaptic terminal. Then, we demonstrate that MCTP functions downstream of presynaptic calcium influx with separable activities to stabilize baseline transmission, short-term release dynamics and PHP. Notably, PHP specifically requires the calcium coordinating residues in each of the three C2 domains of MCTP. Thus, we propose MCTP as a novel, ER-localized calcium sensor and a source of calcium-dependent feedback for the homeostatic stabilization of neurotransmission. DOI: http://dx.doi.org/10.7554/eLife.22904.001 PMID:28485711
Calcium score of coronary artery stratifies the risk of obstructive coronary artery diseases.
Ibrahim, O; Oteh, M; Anwar, I R; Che Hassan, H H; Choor, C K; Hamzaini, A H; Rahman, M M
2013-01-01
Coronary heart disease is a major health problem in Malaysia with high morbidity and mortality. Common primary screening tool of cardiovascular risk stratification is exercise treadmill test (ETT). This communication is to determine the performance of coronary artery calcium score a new method to stratify the presence of obstructive coronary artery disease (CAD) in comparison to traditional ETT in patients having coronary artery diseases. Patients between 30 to 60 years old attended the ETT to screen for ischemic heart disease were recruited for Agatston coronary artery calcium score (CACS) of multi-sliced computed tomography (MSCT). Subsequently all patients underwent a full MSCT coronary angiography. The major determinant was the state of CAD whether obstructive (50% stenosis or more) or non-obstructive (less than 50% stenosis). All patients diagnosed with obstructive CAD on MSCT coronary angiogram were subjected to invasive coronary angiogram (ICA) to confirm the findings and planned the need for revascularization. The CACS was 100% sensitivity and 97.5% specificity in detecting obstructive CAD at the optimal cut-off value of 106.5 and above. The positive predictive value (PPV) at CACS ≥ 106 was 71.4% and the negative predictive value (NPV) was consistent at 100%. Compare to ETT, the CACS discriminative value and diagnostic performance was much better (PPV 71.4% vs. 45.5%), respectively. CACS can be a good diagnostic screening tool in patients suspected of CAD, and particularly within the non-diagnostic ETT subgroup with low to moderate cardiovascular risks.
Calcium dependent current recordings in Xenopus laevis oocytes in microgravity
NASA Astrophysics Data System (ADS)
Wuest, Simon L.; Roesch, Christian; Ille, Fabian; Egli, Marcel
2017-12-01
Mechanical unloading by microgravity (or weightlessness) conditions triggers profound adaptation processes at the cellular and organ levels. Among other mechanisms, mechanosensitive ion channels are thought to play a key role in allowing cells to transduce mechanical forces. Previous experiments performed under microgravity have shown that gravity affects the gating properties of ion channels. Here, a method is described to record a calcium-dependent current in native Xenopus laevis oocytes under microgravity conditions during a parabolic flight. A 3-voltage-step protocol was applied to provoke a calcium-dependent current. This current increased with extracellular calcium concentration and could be reduced by applying extracellular gadolinium. The custom-made ;OoClamp; hardware was validated by comparing the results of the 3-voltage-step protocol to results obtained with a well-established two-electrode voltage clamp (TEVC). In the context of the 2nd Swiss Parabolic Flight Campaign, we tested the OoClamp and the method. The setup and experiment protocol worked well in parabolic flight. A tendency that the calcium-dependent current was smaller under microgravity than under 1 g condition could be observed. However, a conclusive statement was not possible due to the small size of the data base that could be gathered.
Mitochondrial Targets for Pharmacological Intervention in Human Disease
2015-01-01
Over the past several years, mitochondrial dysfunction has been linked to an increasing number of human illnesses, making mitochondrial proteins (MPs) an ever more appealing target for therapeutic intervention. With 20% of the mitochondrial proteome (312 of an estimated 1500 MPs) having known interactions with small molecules, MPs appear to be highly targetable. Yet, despite these targeted proteins functioning in a range of biological processes (including induction of apoptosis, calcium homeostasis, and metabolism), very few of the compounds targeting MPs find clinical use. Recent work has greatly expanded the number of proteins known to localize to the mitochondria and has generated a considerable increase in MP 3D structures available in public databases, allowing experimental screening and in silico prediction of mitochondrial drug targets on an unprecedented scale. Here, we summarize the current literature on clinically active drugs that target MPs, with a focus on how existing drug targets are distributed across biochemical pathways and organelle substructures. Also, we examine current strategies for mitochondrial drug discovery, focusing on genetic, proteomic, and chemogenomic assays, and relevant model systems. As cell models and screening techniques improve, MPs appear poised to emerge as relevant targets for a wide range of complex human diseases, an eventuality that can be expedited through systematic analysis of MP function. PMID:25367773
Calcium/calmodulin-dependent serine protein kinase CASK modulates the L-type calcium current.
Nafzger, Sabine; Rougier, Jean-Sebastien
2017-01-01
The L-type voltage-gated calcium channel Ca v 1.2 mediates the calcium influx into cells upon membrane depolarization. The list of cardiopathies associated to Ca v 1.2 dysfunctions highlights the importance of this channel in cardiac physiology. Calcium/calmodulin-dependent serine protein kinase (CASK), expressed in cardiac cells, has been identified as a regulator of Ca v 2.2 channels in neurons, but no experiments have been performed to investigate its role in Ca v 1.2 regulation. Full length or the distal C-terminal truncated of the pore-forming Ca v 1.2 channel (Ca v 1.2α1c), both present in cardiac cells, were expressed in TsA-201 cells. In addition, a shRNA silencer, or scramble as negative control, of CASK was co-transfected in order to silence CASK endogenously expressed. Three days post-transfection, the barium current was increased only for the truncated form without alteration of the steady state activation and inactivation biophysical properties. The calcium current, however, was increased after CASK silencing with both types of Ca v 1.2α1c subunits suggesting that, in absence of calcium, the distal C-terminal counteracts the CASK effect. Biochemistry experiments did not reveals neither an alteration of Ca v 1.2 channel protein expression after CASK silencing nor an interaction between Ca v 1.2α1c subunits and CASK. Nevertheless, after CASK silencing, single calcium channel recordings have shown an increase of the voltage-gated calcium channel Ca v 1.2 open probability explaining the increase of the whole-cell current. This study suggests CASK as a novel regulator of Ca v 1.2 via a modulation of the voltage-gated calcium channel Ca v 1.2 open probability. Copyright © 2016 Elsevier Ltd. All rights reserved.
Maleckar, Mary M; Edwards, Andrew G; Louch, William E; Lines, Glenn T
2017-01-01
Excitation-contraction coupling in cardiac myocytes requires calcium influx through L-type calcium channels in the sarcolemma, which gates calcium release through sarcoplasmic reticulum ryanodine receptors in a process known as calcium-induced calcium release, producing a myoplasmic calcium transient and enabling cardiomyocyte contraction. The spatio-temporal dynamics of calcium release, buffering, and reuptake into the sarcoplasmic reticulum play a central role in excitation-contraction coupling in both normal and diseased cardiac myocytes. However, further quantitative understanding of these cells' calcium machinery and the study of mechanisms that underlie both normal cardiac function and calcium-dependent etiologies in heart disease requires accurate knowledge of cardiac ultrastructure, protein distribution and subcellular function. As current imaging techniques are limited in spatial resolution, limiting insight into changes in calcium handling, computational models of excitation-contraction coupling have been increasingly employed to probe these structure-function relationships. This review will focus on the development of structural models of cardiac calcium dynamics at the subcellular level, orienting the reader broadly towards the development of models of subcellular calcium handling in cardiomyocytes. Specific focus will be given to progress in recent years in terms of multi-scale modeling employing resolved spatial models of subcellular calcium machinery. A review of the state-of-the-art will be followed by a review of emergent insights into calcium-dependent etiologies in heart disease and, finally, we will offer a perspective on future directions for related computational modeling and simulation efforts.
Clarke, Stephen G.; Scarnati, Matthew S.
2016-01-01
At chemical synapses, presynaptic action potentials (APs) activate voltage-gated calcium channels, allowing calcium to enter and trigger neurotransmitter release. The duration, peak amplitude, and shape of the AP falling phase alter calcium entry, which can affect neurotransmitter release significantly. In many neurons, APs do not immediately return to the resting potential, but instead exhibit a period of depolarization or hyperpolarization referred to as an afterpotential. We hypothesized that presynaptic afterpotentials should alter neurotransmitter release by affecting the electrical driving force for calcium entry and calcium channel gating. In support of this, presynaptic calcium entry is affected by afterpotentials after standard instant voltage jumps. Here, we used the mouse calyx of Held synapse, which allows simultaneous presynaptic and postsynaptic patch-clamp recording, to show that the postsynaptic response is affected significantly by presynaptic afterpotentials after voltage jumps. We therefore tested the effects of presynaptic afterpotentials using simultaneous presynaptic and postsynaptic recordings and AP waveforms or real APs. Surprisingly, presynaptic afterpotentials after AP stimuli did not alter calcium channel responses or neurotransmitter release appreciably. We show that the AP repolarization time course causes afterpotential-induced changes in calcium driving force and changes in calcium channel gating to effectively cancel each other out. This mechanism, in which electrical driving force is balanced by channel gating, prevents changes in calcium influx from occurring at the end of the AP and therefore acts to stabilize synaptic transmission. In addition, this mechanism can act to stabilize neurotransmitter release when the presynaptic resting potential changes. SIGNIFICANCE STATEMENT The shape of presynaptic action potentials (APs), particularly the falling phase, affects calcium entry and small changes in calcium influx can produce large changes in postsynaptic responses. We hypothesized that afterpotentials, which often follow APs, affect calcium entry and neurotransmitter release. We tested this in calyx of Held nerve terminals, which allow simultaneous recording of presynaptic calcium currents and postsynaptic responses. Surprisingly, presynaptic afterpotentials did not alter calcium current or neurotransmitter release. We show that the AP falling phase causes afterpotential-induced changes in electrical driving force and calcium channel gating to cancel each other out. This mechanism regulates calcium entry at the end of APs and therefore stabilizes synaptic transmission. This also stabilizes responses when the presynaptic resting potential changes. PMID:27911759
Clarke, Stephen G; Scarnati, Matthew S; Paradiso, Kenneth G
2016-11-09
At chemical synapses, presynaptic action potentials (APs) activate voltage-gated calcium channels, allowing calcium to enter and trigger neurotransmitter release. The duration, peak amplitude, and shape of the AP falling phase alter calcium entry, which can affect neurotransmitter release significantly. In many neurons, APs do not immediately return to the resting potential, but instead exhibit a period of depolarization or hyperpolarization referred to as an afterpotential. We hypothesized that presynaptic afterpotentials should alter neurotransmitter release by affecting the electrical driving force for calcium entry and calcium channel gating. In support of this, presynaptic calcium entry is affected by afterpotentials after standard instant voltage jumps. Here, we used the mouse calyx of Held synapse, which allows simultaneous presynaptic and postsynaptic patch-clamp recording, to show that the postsynaptic response is affected significantly by presynaptic afterpotentials after voltage jumps. We therefore tested the effects of presynaptic afterpotentials using simultaneous presynaptic and postsynaptic recordings and AP waveforms or real APs. Surprisingly, presynaptic afterpotentials after AP stimuli did not alter calcium channel responses or neurotransmitter release appreciably. We show that the AP repolarization time course causes afterpotential-induced changes in calcium driving force and changes in calcium channel gating to effectively cancel each other out. This mechanism, in which electrical driving force is balanced by channel gating, prevents changes in calcium influx from occurring at the end of the AP and therefore acts to stabilize synaptic transmission. In addition, this mechanism can act to stabilize neurotransmitter release when the presynaptic resting potential changes. The shape of presynaptic action potentials (APs), particularly the falling phase, affects calcium entry and small changes in calcium influx can produce large changes in postsynaptic responses. We hypothesized that afterpotentials, which often follow APs, affect calcium entry and neurotransmitter release. We tested this in calyx of Held nerve terminals, which allow simultaneous recording of presynaptic calcium currents and postsynaptic responses. Surprisingly, presynaptic afterpotentials did not alter calcium current or neurotransmitter release. We show that the AP falling phase causes afterpotential-induced changes in electrical driving force and calcium channel gating to cancel each other out. This mechanism regulates calcium entry at the end of APs and therefore stabilizes synaptic transmission. This also stabilizes responses when the presynaptic resting potential changes. Copyright © 2016 the authors 0270-6474/16/3611559-14$15.00/0.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bohner, Bíborka; Endrődi, Balázs; Tóth, Ágota, E-mail: atoth@chem.u-szeged.hu
The precipitation reaction of calcium oxalate is studied experimentally in the presence of spatial gradients by controlled flow of calcium into oxalate solution. The density difference between the reactants leads to strong convection in the form of a gravity current that drives the spatiotemporal pattern formation. The phase diagram of the system is constructed, the evolving precipitate patterns are analyzed and quantitatively characterized by their diameters and the average height of the gravity flow. The compact structures of calcium oxalate monohydrate produced at low flow rates are replaced by the thermodynamically unstable calcium oxalate dihydrate favored in the presence ofmore » a strong gravity current.« less
Predicting changes in cardiac myocyte contractility during early drug discovery with in vitro assays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morton, M.J., E-mail: michael.morton@astrazeneca.com; Armstrong, D.; Abi Gerges, N.
2014-09-01
Cardiovascular-related adverse drug effects are a major concern for the pharmaceutical industry. Activity of an investigational drug at the L-type calcium channel could manifest in a number of ways, including changes in cardiac contractility. The aim of this study was to define which of the two assay technologies – radioligand-binding or automated electrophysiology – was most predictive of contractility effects in an in vitro myocyte contractility assay. The activity of reference and proprietary compounds at the L-type calcium channel was measured by radioligand-binding assays, conventional patch-clamp, automated electrophysiology, and by measurement of contractility in canine isolated cardiac myocytes. Activity inmore » the radioligand-binding assay at the L-type Ca channel phenylalkylamine binding site was most predictive of an inotropic effect in the canine cardiac myocyte assay. The sensitivity was 73%, specificity 83% and predictivity 78%. The radioligand-binding assay may be run at a single test concentration and potency estimated. The least predictive assay was automated electrophysiology which showed a significant bias when compared with other assay formats. Given the importance of the L-type calcium channel, not just in cardiac function, but also in other organ systems, a screening strategy emerges whereby single concentration ligand-binding can be performed early in the discovery process with sufficient predictivity, throughput and turnaround time to influence chemical design and address a significant safety-related liability, at relatively low cost. - Highlights: • The L-type calcium channel is a significant safety liability during drug discovery. • Radioligand-binding to the L-type calcium channel can be measured in vitro. • The assay can be run at a single test concentration as part of a screening cascade. • This measurement is highly predictive of changes in cardiac myocyte contractility.« less
Secreted CLCA1 modulates TMEM16A to activate Ca(2+)-dependent chloride currents in human cells.
Sala-Rabanal, Monica; Yurtsever, Zeynep; Nichols, Colin G; Brett, Tom J
2015-03-17
Calcium-activated chloride channel regulator 1 (CLCA1) activates calcium-dependent chloride currents; neither the target, nor mechanism, is known. We demonstrate that secreted CLCA1 activates calcium-dependent chloride currents in HEK293T cells in a paracrine fashion, and endogenous TMEM16A/Anoctamin1 conducts the currents. Exposure to exogenous CLCA1 increases cell surface levels of TMEM16A and cellular binding experiments indicate CLCA1 engages TMEM16A on the surface of these cells. Altogether, our data suggest that CLCA1 stabilizes TMEM16A on the cell surface, thus increasing surface expression, which results in increased calcium-dependent chloride currents. Our results identify the first Cl(-) channel target of the CLCA family of proteins and establish CLCA1 as the first secreted direct modifier of TMEM16A activity, delineating a unique mechanism to increase currents. These results suggest cooperative roles for CLCA and TMEM16 proteins in influencing the physiology of multiple tissues, and the pathology of multiple diseases, including asthma, COPD, cystic fibrosis, and certain cancers.
Divalent Cation Control of Flagellar Motility in African Trypanosomes
NASA Astrophysics Data System (ADS)
Westergard, Anna M.; Hutchings, Nathan R.
2005-03-01
Changes in calcium concentration have been shown to dynamically affect flagellar motility in several eukaryotic systems. The African trypanosome is a monoflagellated protozoan parasite and the etiological agent of sleeping sickness. Although cell motility has been implicated in disease progression, very little is currently known about biochemical control of the trypanosome flagellum. In this study, we assess the effects of extracellular changes in calcium and nickel concentration on trypanosome flagellar movement. Using a flow through chamber, we determine the relative changes in motility in individual trypanosomes in response to various concentrations of calcium and nickel, respectively. Extracellular concentrations of calcium and nickel (as low as 100 micromolar) significantly inhibit trypanosome cell motility. The effects are reversible, as indicated by the recovery of motion after removal of the calcium or nickel from the chamber. We are currently investigating the specific changes in flagellar oscillation and coordination that result from calcium and nickel, respectively. These results verify the presence of a calcium-responsive signaling mechanism(s) that regulates flagellar beat in trypanosomes.
Gravity-directed calcium current in germinating spores of Ceratopteris richardii
NASA Technical Reports Server (NTRS)
Chatterjee, A.; Porterfield, D. M.; Smith, P. S.; Roux, S. J.
2000-01-01
Gravity directs the early polar development in single cells of Ceratopteris richardii Brogn. It acts over a limited period of time during which it irreversibly determines the axis of the spore cell's development. A self-referencing calcium selective electrode was utilized to record the net movement of calcium across the cell membrane at different positions around the periphery of the spore during the period in which gravity orients the polarity of the spore. A movement of calcium into the cell along the bottom and out of the cell along the top was detected. This movement was specific, polarized, and strongest in a direction that opposed the vector of gravity. Treatment with nifedipine, a calcium-channel blocker, diminished the calcium current and caused the cell to lose its responsiveness to the orienting influence of gravity. Results shown suggest that calcium plays a crucial role in the ability of a single cell to respond to gravity and in the subsequent establishment of its polarity.
Artificial recharge to a freshwater-sensitive brackish-water sand aquifer, Norfolk, Virginia
Brown, Donald L.; Silvey, William Dudley
1977-01-01
Fresh water was injected into a brackish-water sand for storage and retrieval. The initial injection rate of 400 gpm decreased to 70 gpm during test 3. The specific capacity of the well decreased also, from 15.4 to 0.93 gpm. Current-meter surveys indicated uniform reduction in hydraulic conductivity of all contributing zones in the aquifer. Hydraulic and chemical data indicate this was caused by dispersion of the interstitial clay upon introduction of the calcium bicarbonate water into the sodium chloride bearing sand aquifer. The clay dispersion also caused particulate rearrangement and clogging of well screen. A pre-flush of 0.2 N calcium chloride solution injected in front of the fresh water at the start of test 4 stabilized the clay. However, it did not reverse the particulate clogging that permanently reduced permeability and caused sanding during redevelopment. Clogging can be prevented by stabilization of the clay using commercially available trivalent aluminum compounds. Test 1 and test 2 showed that 85 percent of the water injected can be recovered, and the water meets U.S. Public Health Standards. Storage of fresh water in a brackish-water aquifer appears feasible provided proper control measures are used. (Woodard-USGS)
Calcium permeable AMPA receptors and autoreceptors in external tufted cells of rat olfactory bulb
Ma, Jie; Lowe, Graeme
2007-01-01
Glomeruli are functional units of the olfactory bulb responsible for early processing of odor information encoded by single olfactory receptor genes. Glomerular neural circuitry includes numerous external tufted (ET) cells whose rhythmic burst firing may mediate synchronization of bulbar activity with the inhalation cycle. Bursting is entrained by glutamatergic input from olfactory nerve terminals, so specific properties of ionotropic glutamate receptors on ET cells are likely to be important determinants of olfactory processing. Particularly intriguing is recent evidence that α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors of juxta-glomerular neurons may permeate calcium. This could provide a novel pathway for regulating ET cell signaling. We tested the hypothesis that ET cells express functional calcium-permeable AMPA receptors. In rat olfactory bulb slices, excitatory postsynaptic currents (EPSCs) in ET cells were evoked by olfactory nerve shock, and by uncaging glutamate. We found attenuation of AMPA/kainate EPSCs by 1-naphthyl acetyl-spermine (NAS), an open-channel blocker specific for calcium permeable AMPA receptors. Cyclothiazide strongly potentiated EPSCs, indicating a major contribution from AMPA receptors. The current-voltage (I-V) relation of uncaging EPSCs showed weak inward rectification which was lost after > ~ 10 min of whole-cell dialysis, and was absent in NAS. In kainate-stimulated slices, Co2+ ions permeated cells of the glomerular layer. Large AMPA EPSCs were accompanied by fluorescence signals in fluo-4 loaded cells, suggesting calcium permeation. Depolarizing pulses evoked slow tail currents with pharmacology consistent with involvement of calcium permeable AMPA autoreceptors. Tail currents were abolished by Cd2+ and NBQX, and were sensitive to NAS block. Glutamate autoreceptors were confirmed by uncaging intracellular calcium to evoke a large inward current. Our results provide evidence that calcium permeable AMPA receptors reside on ET cells, and are divided into at least two functionally distinct pools – postsynaptic receptors at olfactory nerve synaptic terminals, and autoreceptors sensitive to glutamate released from dendrodendritic synapses. PMID:17156930
Qu, Liang; Wang, Yuan; Zhang, Hai-Tao; Li, Nan; Wang, Qiang; Yang, Qian; Gao, Guo-Dong; Wang, Xue-Lian
2014-07-11
Voltage gated calcium channels (VGCC) are sensitive to oxidative stress, and their activation or inactivation can impact cell death. Although these channels have been extensively studied in expression systems, their role in the brain, particularly in the substantia nigra pars compacta (SNc), remain controversial. In this study, we assessed 6-hydroxydopamine (6-OHDA) induced transformation of firing pattern and functional changes of calcium channels in SNc dopaminergic neurons. Application of 6-OHDA (0.5-2mM) evoked a dose-dependent, desensitizing inward current and intracellular free calcium concentration ([Ca(2+)]i) rise. In voltage clamp, ω-conotoxin-sensitive Ca(2+) current modulation mediated by 6-OHDA reflected an altered sensitivity. Furthermore, we found that 6-OHDA modulated Ca(2+) currents through PKA pathway. These results provided evidence for the potential role of VGCCs and PKA involved in oxidative stress in degeneration of SNc neurons in Parkinson's disease (PD). Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
[The peculiarities of calcium metabolism regulation in different periods of growth and development].
Moĭsa, S S; Nozdrachev, A D
2014-01-01
The review contains literature data about calcium metabolism regulation in different periods of growth and development. The analyses of retrospective and current sources of information about the regulation of calcium homeostasis under the theory of functional systems, the regulation of calcium metabolism in prenatal and postnatal periods of the development, the significance of calcium metabolism disturbances in the development of pathological conditions were showed.
Restricting calcium currents is required for correct fiber type specification in skeletal muscle
Sultana, Nasreen; Dienes, Beatrix; Benedetti, Ariane; Tuluc, Petronel; Szentesi, Peter; Sztretye, Monika; Rainer, Johannes; Hess, Michael W.; Schwarzer, Christoph; Obermair, Gerald J.; Csernoch, Laszlo
2016-01-01
ABSTRACT Skeletal muscle excitation-contraction (EC) coupling is independent of calcium influx. In fact, alternative splicing of the voltage-gated calcium channel CaV1.1 actively suppresses calcium currents in mature muscle. Whether this is necessary for normal development and function of muscle is not known. However, splicing defects that cause aberrant expression of the calcium-conducting developmental CaV1.1e splice variant correlate with muscle weakness in myotonic dystrophy. Here, we deleted CaV1.1 (Cacna1s) exon 29 in mice. These mice displayed normal overall motor performance, although grip force and voluntary running were reduced. Continued expression of the developmental CaV1.1e splice variant in adult mice caused increased calcium influx during EC coupling, altered calcium homeostasis, and spontaneous calcium sparklets in isolated muscle fibers. Contractile force was reduced and endurance enhanced. Key regulators of fiber type specification were dysregulated and the fiber type composition was shifted toward slower fibers. However, oxidative enzyme activity and mitochondrial content declined. These findings indicate that limiting calcium influx during skeletal muscle EC coupling is important for the secondary function of the calcium signal in the activity-dependent regulation of fiber type composition and to prevent muscle disease. PMID:26965373
xCT expression reduces the early cell cycle requirement for calcium signaling
Lastro, Michele; Kourtidis, Antonis; Farley, Kate; Conklin, Douglas S.
2009-01-01
Calcium has long been recognized as an important regulator of cell cycle transitions although the mechanisms are largely unknown. A functional genomic screen has identified genes involved in the regulation of early cell cycle progression by calcium. These genes when overexpressed confer the ability to bypass the G1/S arrest induced by Ca2+- channel antagonists in mouse fibroblasts. Overexpression of the cystine-glutamate exchanger, xCT, had the greatest ability to evade calcium antagonist-induced cell cycle arrest. xCT carries out the rate limiting step of glutathione synthesis in many cell types and is responsible for the uptake of cystine in most human cancer cell lines. Functional analysis indicates that the cystine uptake activity of xCT overcomes the G1/S arrest induced by Ca2+- channel antagonists by bypassing the requirement for calcium signaling. Since cells overexpressing xCT were found to have increased levels and activity of the AP-1 transcription factor in G1, redox stimulation of AP-1 activity accounts for the observed growth of these cells in the presence of calcium channel antagonists. These results suggest that reduced calcium signaling impairs AP-1 activation and that xCT expression may directly affect cell proliferation. PMID:18054200
Review of calcium methodologies.
Zak, B; Epstein, E; Baginski, E S
1975-01-01
A review of calcium methodologies for serum has been described. The analytical systems developed over the past century have been classified as to type beginning with gravimetry and extending to isotope dilution-mass spectrometry by covering all of the commonly used technics which have evolved during that period. Screening and referee procedures are discussed along with comparative sensitivities encountered between atomic absorption spectrophotometry and molecular absorption spectrophotometry. A procedure involving a simple direct reaction for serum calcium using cresolphthalein complexone is recommended in which high blanks are minimized by repressing the ionization of the color reagent on lowering the dielectric constant characteristics of the mixture with dimethylsulfoxide. Reaction characteristics, errors which can be encountered, normal ranges and an interpretative resume are included in its discussion.
Takeuchi, Kinya; Fukuda, Atsuo; Kanayama, Naohiro
2004-01-01
Amniotic fluid contains a significant level of urinary trypsin inhibitor (UTI). Previously, we reported that UTI inhibits calcium influx of myometrium and it is effective in preventing uterine contraction. This study examined the effects of UTI upon potassium channels, which is important for membrane excitability. Whole-cell patch-clamp recordings were performed in fibroblasts derived from human fetal skin. Potassium currents were recorded and the effects of exogenous UTI and/or cadmium determined. Tetraethylammonium sensitive potassium currents were elicited by step or ramp stimulations at depolarized membrane potentials (over +30 mV). Administration of 1 micro M UTI significantly increased these potassium currents by 16.9%. When calcium channels were blocked by the administration of cadmium, UTI increased the rest of the potassium currents by 4.8%. This indicates that UTI increased calcium-dependent potassium currents by 94.8% but only increased voltage-dependent potassium currents by 4.8%. Urinary trypsin inhibitor is a physiological substance of fetal origin that modulates calcium-dependent and voltage-dependent potassium channels. These data suggest that UTI is capable of regulating the membrane properties of the fetal and myometrial cells in contact with amniotic fluid.
Cavβ2 transcription start site variants modulate calcium handling in newborn rat cardiomyocytes.
Moreno, Cristian; Hermosilla, Tamara; Morales, Danna; Encina, Matías; Torres-Díaz, Leandro; Díaz, Pablo; Sarmiento, Daniela; Simon, Felipe; Varela, Diego
2015-12-01
In the heart, the main pathway for calcium influx is mediated by L-type calcium channels, a multi-subunit complex composed of the pore-forming subunit CaV1.2 and the auxiliary subunits CaVα2δ1 and CaVβ2. To date, five distinct CaVβ2 transcriptional start site (TSS) variants (CaVβ2a-e) varying only in the composition and length of the N-terminal domain have been described, each of them granting distinct biophysical properties to the L-type current. However, the physiological role of these variants in Ca(2+) handling in the native tissue has not been explored. Our results show that four of these variants are present in neonatal rat cardiomyocytes. The contribution of those CaVβ2 TSS variants on endogenous L-type current and Ca(2+) handling was explored by adenoviral-mediated overexpression of each CaVβ2 variant in cultured newborn rat cardiomyocytes. As expected, all CaVβ2 TSS variants increased L-type current density and produced distinctive changes on L-type calcium channel (LTCC) current activation and inactivation kinetics. The characteristics of the induced calcium transients were dependent on the TSS variant overexpressed. Moreover, the amplitude of the calcium transients varied depending on the subunit involved, being higher in cardiomyocytes transduced with CaVβ2a and smaller in CaVβ2d. Interestingly, the contribution of Ca(2+) influx and Ca(2+) release on total calcium transients, as well as the sarcoplasmic calcium content, was found to be TSS-variant-dependent. Remarkably, determination of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) messenger RNA (mRNA) abundance and cell size change indicates that CaVβ2 TSS variants modulate the cardiomyocyte hypertrophic state. In summary, we demonstrate that expression of individual CaVβ2 TSS variants regulates calcium handling in cardiomyocytes and, consequently, has significant repercussion in the development of hypertrophy.
Cellular Mechanisms of Myocardial Depression in Porcine Septic Shock.
Jarkovska, Dagmar; Markova, Michaela; Horak, Jan; Nalos, Lukas; Benes, Jan; Al-Obeidallah, Mahmoud; Tuma, Zdenek; Sviglerova, Jitka; Kuncova, Jitka; Matejovic, Martin; Stengl, Milan
2018-01-01
The complex pathogenesis of sepsis and septic shock involves myocardial depression, the pathophysiology of which, however, remains unclear. In this study, cellular mechanisms of myocardial depression were addressed in a clinically relevant, large animal (porcine) model of sepsis and septic shock. Sepsis was induced by fecal peritonitis in eight anesthetized, mechanically ventilated, and instrumented pigs of both sexes and continued for 24 h. In eight control pigs, an identical experiment but without sepsis induction was performed. In vitro analysis of cardiac function included measurements of action potentials and contractions in the right ventricle trabeculae, measurements of sarcomeric contractions, calcium transients and calcium current in isolated cardiac myocytes, and analysis of mitochondrial respiration by ultrasensitive oxygraphy. Increased values of modified sequential organ failure assessment score and serum lactate levels documented the development of sepsis/septic shock, accompanied by hyperdynamic circulation with high heart rate, increased cardiac output, peripheral vasodilation, and decreased stroke volume. In septic trabeculae, action potential duration was shortened and contraction force reduced. In septic cardiac myocytes, sarcomeric contractions, calcium transients, and L-type calcium current were all suppressed. Similar relaxation trajectory of the intracellular calcium-cell length phase-plane diagram indicated unchanged calcium responsiveness of myofilaments. Mitochondrial respiration was diminished through inhibition of Complex II and Complex IV. Defective calcium handling with reduced calcium current and transients, together with inhibition of mitochondrial respiration, appears to represent the dominant cellular mechanisms of myocardial depression in porcine septic shock.
Chen, Yi-Cun; Zhu, Wei; Zhong, Shu-Ping; Zheng, Fu-Chun; Gao, Fen-Fei; Zhang, Yan-Mei; Xu, Han; Zheng, Yan-Shan; Shi, Gang-Gang
2015-01-01
BACKGROUND AND PURPOSE Calcium antagonists play an important role in clinical practice. However, most of them have serious side effects. We have synthesized a series of novel calcium antagonists, quaternary ammonium salt derivatives of haloperidol with N-p-methoxybenzyl (X1), N-m-methoxybenzyl (X2) and N-o-methoxybenzyl (X3) groups. The objective of this study was to investigate the bioactivity of these novel calcium antagonists, especially the vasodilation activity and cardiac side-effects. The possible working mechanisms of these haloperidol derivatives were also explored. EXPERIMENTAL APPROACH Novel calcium antagonists were synthesized by amination. Compounds were screened for their activity of vasodilation on isolated thoracic aortic ring of rats. Their cardiac side effects were explored. The patch-clamp, confocal laser microscopy and the computer-fitting molecular docking experiments were employed to investigate the possible working mechanisms of these calcium antagonists. RESULTS The novel calcium antagonists, X1, X2 and X3 showed stronger vasodilation effect and less cardiac side effect than that of classical calcium antagonists. They blocked L-type calcium channels with an potent effect order of X1 > X2 > X3. Consistently, X1, X2 and X3 interacted with different regions of Ca2+-CaM-CaV1.2 with an affinity order of X1 > X2 > X3. CONCLUSIONS The new halopedidol derivatives X1, X2 and X3 are novel calcium antagonists with stronger vasodilation effect and less cardiac side effect. They could have wide clinical application. PMID:26544729
Fatehi, M; Rowan, E G; Harvey, A L; Moya, E; Blagbrough, I S
1997-02-01
FTX-3.3 is the proposed structure of a calcium-channel blocking toxin that has been isolated from the funnel web spider (Agelenopsis aperta). The effects of FTX-3.3 and one of its analogues, sFTX-3.3, on acetylcholine release, on presynaptic currents at mouse motor nerve terminals and on whole-cell sodium currents in SK.N.SH cells (a human neuroblastoma cell line) have been studied. FTX-3.3 (10-30 microM) and sFTX-3.3 (100-300 microM) reversibly reduced release of acetylcholine by approximately 70-90% and 40-60%, respectively. FTX-3.3 (10 microM) blocked the fast component of presynaptic calcium currents by approximately 60%. sFTX-3.3 (100 microM) reduced the duration of the slow component of presynaptic calcium currents by about 50% of the control and also reduced presynaptic sodium current by approximately 20% of the control. sFTX-3.3 (100 microM) reduced whole-cell sodium current recorded from SK.N.SH cells by approximately 15%, whereas FTX-3.3, even at 200 microM, did not affect this current. Since the only difference in chemical structures of these toxins is that sFTX-3.3 has an amide function which is absent in FTX-3.3, the amide function may be responsible for the reduced potency and selectivity of sFTX-3.3. This study also provides further support for the existence of P-type calcium channels at mouse motor nerve terminals.
Genome-wide association study of coronary and aortic calcification in lung cancer screening CT
NASA Astrophysics Data System (ADS)
de Vos, Bob D.; van Setten, Jessica; de Jong, Pim A.; Mali, Willem P.; Oudkerk, Matthijs; Viergever, Max A.; Išgum, Ivana
2016-03-01
Arterial calcification has been related to cardiovascular disease (CVD) and osteoporosis. However, little is known about the role of genetics and exact pathways leading to arterial calcification and its relation to bone density changes indicating osteoporosis. In this study, we conducted a genome-wide association study of arterial calcification burden, followed by a look-up of known single nucleotide polymorphisms (SNPs) for coronary artery disease (CAD) and myocardial infarction (MI), and bone mineral density (BMD) to test for a shared genetic basis between the traits. The study included a subcohort of the Dutch-Belgian lung cancer screening trial comprised of 2,561 participants. Participants underwent baseline CT screening in one of two hospitals participating in the trial. Low-dose chest CT images were acquired without contrast enhancement and without ECG-synchronization. In these images coronary and aortic calcifications were identified automatically. Subsequently, the detected calcifications were quantified using coronary artery calcium Agatston and volume scores. Genotype data was available for these participants. A genome-wide association study was conducted on 10,220,814 SNPs using a linear regression model. To reduce multiple testing burden, known CAD/MI and BMD SNPs were specifically tested (45 SNPs from the CARDIoGRAMplusC4D consortium and 60 SNPS from the GEFOS consortium). No novel significant SNPs were found. Significant enrichment for CAD/MI SNPs was observed in testing Agatston and coronary artery calcium volume scores. Moreover, a significant enrichment of BMD SNPs was shown in aortic calcium volume scores. This may indicate genetic relation of BMD SNPs and arterial calcification burden.
Calcium-binding proteins and development
NASA Technical Reports Server (NTRS)
Beckingham, K.; Lu, A. Q.; Andruss, B. F.; McIntire, L. V. (Principal Investigator)
1998-01-01
The known roles for calcium-binding proteins in developmental signaling pathways are reviewed. Current information on the calcium-binding characteristics of three classes of cell-surface developmental signaling proteins (EGF-domain proteins, cadherins and integrins) is presented together with an overview of the intracellular pathways downstream of these surface receptors. The developmental roles delineated to date for the universal intracellular calcium sensor, calmodulin, and its targets, and for calcium-binding regulators of the cytoskeleton are also reviewed.
Fast Kinetics of Calcium Signaling and Sensor Design
Tang, Shen; Reddish, Florence; Zhuo, You; Yang, Jenny J.
2015-01-01
Fast calcium signaling is regulated by numerous calcium channels exhibiting high spatiotemporal profiles which are currently measured by fluorescent calcium sensors. There is still a strong need to improve the kinetics of genetically encoded calcium indicators (sensors) to capture calcium dynamics in the millisecond time frame. In this review, we summarize several major fast calcium signaling pathways and discuss the recent developments and application of genetically encoded calcium indicators to detect these pathways. A new class of genetically encoded calcium indicators designed with site-directed mutagenesis on the surface of beta-barrel fluorescent proteins to form a pentagonal bipyramidal-like calcium binding domain dramatically accelerates calcium binding kinetics. Furthermore, novel genetically encoded calcium indicators with significantly increased fluorescent lifetime change are advantageous in deep-field imaging with high light-scattering and notable morphology change. PMID:26151819
Single channel recording of a mitochondrial calcium uniporter.
Wu, Guangyan; Li, Shunjin; Zong, Guangning; Liu, Xiaofen; Fei, Shuang; Shen, Linda; Guan, Xiangchen; Yang, Xue; Shen, Yuequan
2018-01-29
Mitochondrial calcium uniporter (MCU) is the pore-forming subunit of the entire uniporter complex and plays an important role in mitochondrial calcium uptake. However, the single channel recording of MCU remains controversial. Here, we expressed and purified different MCU proteins and then reconstituted them into planar lipid bilayers for single channel recording. We showed that MCU alone from Pyronema omphalodes (pMCU) is active with prominent single channel Ca 2+ currents. In sharp contrast, MCU alone from Homo sapiens (hMCU) is inactive. The essential MCU regulator (EMRE) activates hMCU, and therefore, the complex (hMCU-hEMRE) shows prominent single channel Ca 2+ currents. These single channel currents are sensitive to the specific MCU inhibitor Ruthenium Red. Our results clearly demonstrate that active MCU can conduct large amounts of calcium into the mitochondria. Copyright © 2018 Elsevier Inc. All rights reserved.
Périmenis, P; Wémeau, J-L; Vantyghem, M-C
2005-12-01
The frequency of hypercalciuria is increasing in western countries with an incidence of nephrolithiasis which can reach 13%. Hypercalciuria appears as an alteration of the calcium transport system (kidney, bowel, bone) which is regulated by calcitriol and parathormone. The aim of this review was to screen etiologies of hypercalciuria taking into account recent genetic advances (calcium epithelial channel and calcium sensing receptor). Hypercalciuria may be favored by nutritional causes (diet rich in calcium, sodium, carbohydrates, proteins, poor in phosphates and potassium). It may also be related to an increase in calcium absorption (vitamin D excess, primary hyperparathyroidism, sarcoidosis, lymphoma, estrogens, and certain genetic causes), an increase in osteoresorption (bone metastasis, myeloma, Paget, hyperthyroidism, immobilization, hypercortisolism and corticosteroid therapy), or a decrease of kidney tubular resorption (diuretics, Cacci and Ricci, acromegally, Bartter, familial dominant hypocalcemia, Fanconi, Dent, familial hypomagnesemia-hypercalciuria syndrome, type 1 distal tubular acidosis, pseudohypoaldosteronism, diabetes). If no cause is identified, persistence of hypercalciuria after instituting a correct diet is defined as idiopathic hypercalciuria. Treatment of the cause is essential in secondary hypercalciuria, in addition to diet (low sodium intake, normocalcic diet, hydration), associated with thiazide diuretics and biphosphonates if necessary.
Tee, Zhao Kang; Jahim, Jamaliah Md; Tan, Jian Ping; Kim, Byung Hong
2017-06-01
Calcium carbonate was evaluated as a replacement for the base during the fermentation of glycerol by a highly productive strain of 1,3-propanediol (PDO), viz., Clostridium butyricum JKT37. Due to its high specific growth rate (µ max =0.53h -1 ), 40g/L of glycerol was completely converted into 19.6g/L of PDO in merely 7h of batch fermentation, leaving only acetate and butyrate as the by-products. The accumulation of these volatile fatty acids was circumvented with the addition of calcium carbonate as the pH neutraliser before the fermentation was inoculated. An optimal amount of 15g/L of calcium carbonate was statistically determined from screening with various glycerol concentrations (20-120g/L). By substituting potassium hydroxide with calcium carbonate as the pH neutraliser for fermentation in a bioreactor, a similar yield (Y PDO/glycerol =0.6mol/mol) with a constant pH was achieved at the end of the fermentation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Richhariya, Shlesha; Jayakumar, Siddharth; Abruzzi, Katharine; Rosbash, Michael; Hasan, Gaiti
2017-02-14
Transcriptional regulation by Store-operated Calcium Entry (SOCE) is well studied in non-excitable cells. However, the role of SOCE has been poorly documented in neuronal cells with more complicated calcium dynamics. Previous reports demonstrated a requirement for SOCE in neurons that regulate Drosophila flight bouts. We refine this requirement temporally to the early pupal stage and use RNA-sequencing to identify SOCE mediated gene expression changes in the developing Drosophila pupal nervous system. Down regulation of dStim, the endoplasmic reticular calcium sensor and a principal component of SOCE in the nervous system, altered the expression of 131 genes including Ral, a small GTPase. Disruption of Ral function in neurons impaired flight, whereas ectopic expression of Ral in SOCE-compromised neurons restored flight. Through live imaging of calcium transients from cultured pupal neurons, we confirmed that Ral does not participate in SOCE, but acts downstream of it. These results identify neuronal SOCE as a mechanism that regulates expression of specific genes during development of the pupal nervous system and emphasizes the relevance of SOCE-regulated gene expression to flight circuit maturation.
Singh, Kamaljit; Singh, Kawaljit; Trappanese, Danielle M; Moreland, Robert S
2012-08-01
A series of novel N-3 substituted 3,4-dihydropyrimidin-2(1H)-ones derivatives bearing diaminophosphinyl, phosphonate and phosphorous containing heterocycles were obtained from 3,4-dihydropyrimidinones (DHPMs) in a regioselective manner through an efficient reaction protocol, tolerant to substitutional variation at the key diversity positions around the DHPM core. None of the representative compounds screened for calcium channel blocking activity was found to have significant activity compared to nifedipine. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
SNF1-related protein kinases 2 are negatively regulated by a plant-specific calcium sensor.
Bucholc, Maria; Ciesielski, Arkadiusz; Goch, Grażyna; Anielska-Mazur, Anna; Kulik, Anna; Krzywińska, Ewa; Dobrowolska, Grażyna
2011-02-04
SNF1-related protein kinases 2 (SnRK2s) are plant-specific enzymes involved in environmental stress signaling and abscisic acid-regulated plant development. Here, we report that SnRK2s interact with and are regulated by a plant-specific calcium-binding protein. We screened a Nicotiana plumbaginifolia Matchmaker cDNA library for proteins interacting with Nicotiana tabacum osmotic stress-activated protein kinase (NtOSAK), a member of the SnRK2 family. A putative EF-hand calcium-binding protein was identified as a molecular partner of NtOSAK. To determine whether the identified protein interacts only with NtOSAK or with other SnRK2s as well, we studied the interaction of an Arabidopsis thaliana orthologue of the calcium-binding protein with selected Arabidopsis SnRK2s using a two-hybrid system. All kinases studied interacted with the protein. The interactions were confirmed by bimolecular fluorescence complementation assay, indicating that the binding occurs in planta, exclusively in the cytoplasm. Calcium binding properties of the protein were analyzed by fluorescence spectroscopy using Tb(3+) as a spectroscopic probe. The calcium binding constant, determined by the protein fluorescence titration, was 2.5 ± 0.9 × 10(5) M(-1). The CD spectrum indicated that the secondary structure of the protein changes significantly in the presence of calcium, suggesting its possible function as a calcium sensor in plant cells. In vitro studies revealed that the activity of SnRK2 kinases analyzed is inhibited in a calcium-dependent manner by the identified calcium sensor, which we named SCS (SnRK2-interacting calcium sensor). Our results suggest that SCS is involved in response to abscisic acid during seed germination most probably by negative regulation of SnRK2s activity.
Hou, Jennifer H.; Kralj, Joel M.; Douglass, Adam D.; Engert, Florian; Cohen, Adam E.
2014-01-01
The cardiac action potential (AP) and the consequent cytosolic Ca2+ transient are key indicators of cardiac function. Natural developmental processes, as well as many drugs and pathologies change the waveform, propagation, or variability (between cells or over time) of these parameters. Here we apply a genetically encoded dual-function calcium and voltage reporter (CaViar) to study the development of the zebrafish heart in vivo between 1.5 and 4 days post fertilization (dpf). We developed a high-sensitivity spinning disk confocal microscope and associated software for simultaneous three-dimensional optical mapping of voltage and calcium. We produced a transgenic zebrafish line expressing CaViar under control of the heart-specific cmlc2 promoter, and applied ion channel blockers at a series of developmental stages to map the maturation of the action potential in vivo. Early in development, the AP initiated via a calcium current through L-type calcium channels. Between 90 and 102 h post fertilization (hpf), the ventricular AP switched to a sodium-driven upswing, while the atrial AP remained calcium driven. In the adult zebrafish heart, a sodium current drives the AP in both the atrium and ventricle. Simultaneous voltage and calcium imaging with genetically encoded reporters provides a new approach for monitoring cardiac development, and the effects of drugs on cardiac function. PMID:25309445
Hou, Jennifer H; Kralj, Joel M; Douglass, Adam D; Engert, Florian; Cohen, Adam E
2014-01-01
The cardiac action potential (AP) and the consequent cytosolic Ca(2+) transient are key indicators of cardiac function. Natural developmental processes, as well as many drugs and pathologies change the waveform, propagation, or variability (between cells or over time) of these parameters. Here we apply a genetically encoded dual-function calcium and voltage reporter (CaViar) to study the development of the zebrafish heart in vivo between 1.5 and 4 days post fertilization (dpf). We developed a high-sensitivity spinning disk confocal microscope and associated software for simultaneous three-dimensional optical mapping of voltage and calcium. We produced a transgenic zebrafish line expressing CaViar under control of the heart-specific cmlc2 promoter, and applied ion channel blockers at a series of developmental stages to map the maturation of the action potential in vivo. Early in development, the AP initiated via a calcium current through L-type calcium channels. Between 90 and 102 h post fertilization (hpf), the ventricular AP switched to a sodium-driven upswing, while the atrial AP remained calcium driven. In the adult zebrafish heart, a sodium current drives the AP in both the atrium and ventricle. Simultaneous voltage and calcium imaging with genetically encoded reporters provides a new approach for monitoring cardiac development, and the effects of drugs on cardiac function.
Gangidi, R R; Metzger, L E
2006-11-01
The purpose of this study was to determine if the ionic calcium content of skim milk could be determined using molecular probes and front-face fluorescence spectroscopy. Current methods for determining ionic calcium are not sensitive, overestimate ionic calcium, or require complex procedures. Molecular probes designed specifically for measuring ionic calcium could potentially be used to determine the ionic calcium content of skim milk. The goal of the current study was to develop foundation methods for future studies to determine ionic calcium directly in skim milk and other dairy products with molecular probes and fluorescence spectroscopy. In this study, the effect of pH on calcium-sensitive fluorescent probe (Rhod-5N and Fluo-5N) performance using various concentrations of skim milk was determined. The pH of diluted skim milk (1.9 to 8.9% skim milk), was adjusted to either 6.2 or 7.0, after which the samples were analyzed with fluorescent probes (1 microM) and front-face fluorescence spectroscopy. The ionic calcium content of each sample was also determined using a calcium ion-selective electrode. The results demonstrated that the ionic calcium content of each sample was highly correlated (R2 > 0.989) with the fluorescence intensities of the probe-calcium adduct using simple linear regression. Higher than suggested ionic calcium contents of 1,207 and 1,973 microM were determined with the probes (Fluo-5N and Rhod-5N) in diluted skim milk with pH 7.0 and 6.2, respectively. The fluorescence intensity of the probe-calcium adduct decreased with a decrease in pH for the same ionic calcium concentration. This study demonstrates that Fluo-5N and Rhod-5N can be used to determine the ionic-calcium content of diluted milk with front-face fluorescence spectroscopy. Furthermore, these probes may also have the potential to determine the ionic calcium content of undiluted skim milk.
Da Silva, Camila Lacerda; De Oliveira, Erick Prado; De Sousa, Maysa Vieira; Pimentel, Gustavo D
2016-01-01
It is known that behavioral disorders and altered food intake are linked to ballet dancers. Thus, the aim of the present study was to investigate the body composition, dietetic profile, self-perceived body image and social desirability in professional ballet dancers. This study was conducted from April to October 2010 in athletes screened for nutritional evaluation. Anthropometric, dietary, social desirability and self-perceived body image evaluation were performed to attend the aim of study. We found that ballet dancers are highly trained and eutrophic, although female dancers had higher adiposity and fat intake than male dancers. In addition, it was observed low consumption of calcium, dietary fiber, potassium, magnesium and vitamin A. Moreover, 30% of male ballet dancers have a strong desire for social acceptance. When the body image was evaluated by Body Shape Questionnaire (BSQ), was reported that 40% of the ballet female dancers have of moderate to severe alteration in body image and 20% of male dancers had slight alteration. Furthermore, the Drawings and Silhouettes Scale showed that 80% of male dancers wish to have a smaller or larger silhouette than the current self-perceived and 60% of the female dancers would like to have a silhouette lower than the self-perceive as current. Collectively, our results shown that most of the dancers were eutrophic, but female athletes have higher adiposity and present strong desire for a different shape of current. Furthermore, was found increased fat intake in female group; however, deficiencies in consumption of dietary fiber, calcium, potassium, magnesium and vitamin A were found in both gender.
40 CFR 180.547 - Prohexadione calcium; tolerances for residues.
Code of Federal Regulations, 2010 CFR
2010-07-01
... byproducts, except kidney 0.05 Grass, forage 1 0.10 Grass, hay 1 0.10 Grass, seed screenings 1 3.5 Grass... kidney 0.05 1Registration is limited to grass grown for seed. (b) Section 18 emergency exemptions...
40 CFR 180.547 - Prohexadione calcium; tolerances for residues.
Code of Federal Regulations, 2011 CFR
2011-07-01
... byproducts, except kidney 0.05 Grass, forage 1 0.10 Grass, hay 1 0.10 Grass, seed screenings 1 3.5 Grass... kidney 0.05 1Registration is limited to grass grown for seed. (b) Section 18 emergency exemptions...
The Vitamin D nuclear receptor (VDR) is a selective, ligand-inducible transcription factor involved in numerous biological processes such as cell proliferation, differentiation, detoxification, calcium homeostasis, neurodevelopment, immune system regulation, cardiovascular functi...
Potumarthi, Ravichandra; Subhakar, Ch; Pavani, A; Jetty, Annapurna
2008-04-01
Calcium-alginate immobilization method for the production of alkaline protease by Bacillus licheniformis NCIM-2042 was optimized statistically. Four variables, such as sodium-alginate concentration, calcium chloride concentration, inoculum size and agitation speed were optimized by 2(4) full factorial central composite design and subsequent analysis and model validation by a second-order regression equation. Eleven carbon, 11 organic nitrogen and seven inorganic nitrogen sources were screened by two-level Plackett-Burman design for maximum alkaline protease production by using optimized immobilized conditions. The levels of four variables, such as Na-alginate 2.78%; CaCl(2), 2.15%; inoculum size, 8.10% and agitation, 139 rpm were found to be optimum for maximal production of protease. Glucose, soybean meal and ammonium sulfate were resulted in maximum protease production at 644 U/ml, 720 U/ml, and 806 U/ml when screened for carbon, organic nitrogen and inorganic nitrogen sources, respectively, using optimized immobilization conditions. Repeated fed batch mode of operation, using optimized immobilized conditions, resulted in continuous operation for 12 cycles without disintegration of beads. Cross-sectional scanning electron microscope images have shown the growth pattern of B. licheniformis in Ca-alginate immobilized beads.
Fioretti, B; Catacuzzeno, L; Sforna, L; Gerke-Duncan, M B; van den Maagdenberg, A M J M; Franciolini, F; Connor, M; Pietrobon, D
2011-01-01
Abstract Familial hemiplegic migraine type-1 (FHM1), a monogenic subtype of migraine with aura, is caused by gain-of-function mutations in CaV2.1 (P/Q-type) calcium channels. The consequences of FHM1 mutations on the trigeminovascular pathway that generates migraine headache remain largely unexplored. Here we studied the calcium currents and excitability properties of two subpopulations of small-diameter trigeminal ganglion (TG) neurons from adult wild-type (WT) and R192Q FHM1 knockin (KI) mice: capsaicin-sensitive neurons without T-type calcium currents (CS) and capsaicin-insensitive neurons characterized by the expression of T-type calcium currents (CI-T). Small TG neurons retrogradely labelled from the dura are mostly CS neurons, while CI-T neurons were not present in the labelled population. CS and CI-T neurons express CaV2.1 channels with different activation properties, and the CaV2.1 channels are differently affected by the FHM1 mutation in the two TG neuron subtypes. In CI-T neurons from FHM1 KI mice there was a larger P/Q-type current density following mild depolarizations, a larger action potential (AP)-evoked calcium current and a longer AP duration when compared to CI-T neurons from WT mice. In striking contrast, the P/Q-type current density, voltage dependence and kinetics were not altered by the FHM1 mutation in CS neurons. The excitability properties of mutant CS neurons were also unaltered. Congruently, the FHM1 mutation did not alter depolarization-evoked CGRP release from the dura mater, while CGRP release from the trigeminal ganglion was larger in KI compared to WT mice. Our findings suggest that the facilitation of peripheral mechanisms of CGRP action, such as dural vasodilatation and nociceptor sensitization at the meninges, does not contribute to the generation of headache in FHM1. PMID:22005682
Wen, Di; Nye, Katelyn; Zhou, Bo; Gilkeson, Robert C; Gupta, Amit; Ranim, Shiraz; Couturier, Spencer; Wilson, David L
2018-03-01
We have developed a technique to image coronary calcium, an excellent biomarker for atherosclerotic disease, using low cost, low radiation dual energy (DE) chest radiography, with potential for widespread screening from an already ordered exam. Our dual energy coronary calcium (DECC) processing method included automatic heart silhouette segmentation, sliding organ registration and scatter removal to create a bone-image-like, coronary calcium image with significant reduction in motion artifacts and improved calcium conspicuity compared to standard, clinically available DE processing. Experiments with a physical dynamic cardiac phantom showed that DECC processing reduced 73% of misregistration error caused by cardiac motion over a wide range of heart rates and x-ray radiation exposures. Using the functional measurement test (FMT), we determined significant image quality improvement in clinical images with DECC processing (p < 0.0001), where DECC images were chosen best in 94% of human readings. Comparing DECC images to registered and projected CT calcium images, we found good correspondence between the size and location of calcification signals. In a very preliminary coronary calcium ROC study, we used CT Agatston calcium score >50 as the gold standard for an actual positive test result. AUC performance was significantly improved from 0.73 ± 0.14 with standard DE to 0.87 ± 0.10 with DECC (p = 0.0095) for this limited set of surgical patient data biased towards heavy calcifications. The proposed DECC processing shows good potential for coronary calcium detection in DE chest radiography, giving impetus for a larger clinical evaluation. Copyright © 2018. Published by Elsevier Ltd.
Neumann, Verena
2016-01-01
A biophysical model of the excitation-contraction pathway, which has previously been validated for slow-twitch and fast-twitch skeletal muscles, is employed to investigate key biophysical processes leading to peripheral muscle fatigue. Special emphasis hereby is on investigating how the model's original parameter sets can be interpolated such that realistic behaviour with respect to contraction time and fatigue progression can be obtained for a continuous distribution of the model's parameters across the muscle units, as found for the functional properties of muscles. The parameters are divided into 5 groups describing (i) the sarcoplasmatic reticulum calcium pump rate, (ii) the cross-bridge dynamics rates, (iii) the ryanodine receptor calcium current, (iv) the rates of binding of magnesium and calcium ions to parvalbumin and corresponding dissociations, and (v) the remaining processes. The simulations reveal that the first two parameter groups are sensitive to contraction time but not fatigue, the third parameter group affects both considered properties, and the fourth parameter group is only sensitive to fatigue progression. Hence, within the scope of the underlying model, further experimental studies should investigate parvalbumin dynamics and the ryanodine receptor calcium current to enhance the understanding of peripheral muscle fatigue. PMID:27980606
Calcium channels in solitary retinal ganglion cells from post-natal rat.
Karschin, A; Lipton, S A
1989-01-01
1. Calcium currents from identified, post-natal retinal ganglion cell neurones from rat were studied with whole-cell and single-channel patch-clamp techniques. Na+ and K+ currents were suppressed with pharmacological agents, allowing isolation of current carried by either 10 mM-Ca2+ or Ba2- during whole-cell recordings. For cell-attached patch recordings, the recording pipette contained 96-110 mM-BaCl2 while the bath solution consisted of isotonic potassium aspartate in order to zero the neuronal membrane potential. 2. A transient component, present in approximately one-third of the whole-cell recordings resembles closely the T-type calcium current observed previously in other tissues. This component activates at low voltages (-40 to -50 mV from holding potentials negative to -80 mV), inactivates with a time constant of 10-30 ms at 35 degrees C, and is carried equally well by Ba2+ or Ca2+. In single-channel recordings small (8 pS) channels are observed whose aggregate microscopic kinetics correspond well to the macroscopic current obtained during whole-cell measurements. 3. During whole-cell recordings, a more prolonged component activates in all retinal ganglion cells at -40 to -20 mV from a holding potential of -90 mV. This component is substantially larger when equimolar Ba2+ replaces Ca2+ as the charge carrier, and is sensitive to the dihydropyridine agonist Bay K8644 (5 microM) and antagonists nifedipine (1-10 microM) and nimodipine (1-10 microM). Thus, the dihydropyridine pharmacology of this prolonged component resembles that of the L-type calcium current found in dorsal root ganglion neurones and in heart cells. Also reminiscent of the L-current, the prolonged component in this preparation is less inactivated at depolarized holding potentials (-60 to -40 mV) than the transient component. In cell-attached recordings, large (20 pS) channels are observed with activation properties similar to those of the prolonged portion of the whole-cell current. 4. omega-Conotoxin fraction GVIA (omega-CgTX VIA), a peptide from the venom of the snail Conus geographus, produces a readily reversible blockade of all components of the calcium current in these central mammalian neurones. This finding is in contrast to that of other preparations in which this toxin is responsible for an ephemeral block of T-current but a long-lasting block of other components of calcium current. 5. In summary, at least two components of calcium current with discrete underlying unitary events are present in post-natal retinal ganglion cells from rat. One component closely resembles the T or transient current observed in other cell types.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:2559971
Liu, Gang; Li, Si Qi; Hu, Ping Ping; Tong, Xiao Yong
2018-05-01
Sarco(endo)plasmic reticulum calcium adenosine triphosphatase is responsible for transporting cytosolic calcium into the sarcoplasmic reticulum and endoplasmic reticulum to maintain calcium homeostasis. Sarco(endo)plasmic reticulum calcium adenosine triphosphatase is the dominant isoform expressed in cardiac tissue, which is regulated by endogenous protein inhibitors, post-translational modifications, hormones as well as microRNAs. Dysfunction of sarco(endo)plasmic reticulum calcium adenosine triphosphatase is associated with heart failure, which makes sarco(endo)plasmic reticulum calcium adenosine triphosphatase a promising target for heart failure therapy. This review summarizes current approaches to ameliorate sarco(endo)plasmic reticulum calcium adenosine triphosphatase function and focuses on phospholamban, an endogenous inhibitor of sarco(endo)plasmic reticulum calcium adenosine triphosphatase, pharmacological tools and gene therapies.
Uday, Suma; Högler, Wolfgang
2017-08-01
Nutritional rickets and osteomalacia are common in dark-skinned and migrant populations. Their global incidence is rising due to changing population demographics, failing prevention policies and missing implementation strategies. The calcium deprivation spectrum has hypocalcaemic (seizures, tetany and dilated cardiomyopathy) and late hypophosphataemic (rickets, osteomalacia and muscle weakness) complications. This article reviews sustainable prevention strategies and identifies areas for future research. The global rickets consensus recognises the equal contribution of vitamin D and dietary calcium in the causation of calcium deprivation and provides a three stage categorisation for sufficiency, insufficiency and deficiency. For rickets prevention, 400 IU daily is recommended for all infants from birth and 600 IU in pregnancy, alongside monitoring in antenatal and child health surveillance programmes. High-risk populations require lifelong supplementation and food fortification with vitamin D or calcium. Future research should identify the true prevalence of rickets and osteomalacia, their role in bone fragility and infant mortality, and best screening and public health prevention tools.
Voltage-Gated Calcium Channels
NASA Astrophysics Data System (ADS)
Zamponi, Gerald Werner
Voltage Gated Calcium Channels is the first comprehensive book in the calcium channel field, encompassing over thirty years of progress towards our understanding of calcium channel structure, function, regulation, physiology, pharmacology, and genetics. This book balances contributions from many of the leading authorities in the calcium channel field with fresh perspectives from risings stars in the area, taking into account the most recent literature and concepts. This is the only all-encompassing calcium channel book currently available, and is an essential resource for academic researchers at all levels in the areas neuroscience, biophysics, and cardiovascular sciences, as well as to researchers in the drug discovery area.
Martins da Silva, Sarah J.; Brown, Sean G.; Sutton, Keith; King, Louise V.; Ruso, Halil; Gray, David W.; Wyatt, Paul G.; Kelly, Mark C.; Barratt, Christopher L.R.; Hope, Anthony G.
2017-01-01
Abstract STUDY QUESTION Can pharma drug discovery approaches be utilized to transform investigation into novel therapeutics for male infertility? SUMMARY ANSWER High-throughput screening (HTS) is a viable approach to much-needed drug discovery for male factor infertility. WHAT IS KNOWN ALREADY There is both huge demand and a genuine clinical need for new treatment options for infertile men. However, the time, effort and resources required for drug discovery are currently exorbitant, due to the unique challenges of the cellular, physical and functional properties of human spermatozoa and a lack of appropriate assay platform. STUDY DESIGN, SIZE, DURATION Spermatozoa were obtained from healthy volunteer research donors and subfertile patients undergoing IVF/ICSI at a hospital-assisted reproductive techniques clinic between January 2012 and November 2016. PARTICIPANTS/MATERIALS, SETTING, METHODS A HTS assay was developed and validated using intracellular calcium ([Ca2+]i) as a surrogate for motility in human spermatozoa. Calcium fluorescence was detected using a Flexstation microplate reader (384-well platform) and compared with responses evoked by progesterone, a compound known to modify a number of biologically relevant behaviours in human spermatozoa. Hit compounds identified following single point drug screen (10 μM) of an ion channel-focussed library assembled by the University of Dundee Drug Discovery Unit were rescreened to ensure potency using standard 10 point half-logarithm concentration curves, and tested for purity and integrity using liquid chromatography and mass spectrometry. Hit compounds were grouped by structure activity relationships and five representative compounds then further investigated for direct effects on spermatozoa, using computer-assisted sperm assessment, sperm penetration assay and whole-cell patch clamping. MAIN RESULTS AND THE ROLE OF CHANCE Of the 3242 ion channel library ligands screened, 384 compounds (11.8%) elicited a statistically significant increase in calcium fluorescence, with greater than 3× median absolute deviation above the baseline. Seventy-four compounds eliciting ≥50% increase in fluorescence in the primary screen were rescreened and evaluated further, resulting in 48 hit compounds that produced a concentration-dependent increase in [Ca2+]i. Sperm penetration studies confirmed in vitro exposure to two hit compounds (A and B) resulted in significant improvement in functional motility in spermatozoa from healthy volunteer donors (A: 1 cm penetration index 2.54, 2 cm penetration index 2.49; P < 0.005 and B: 1 cm penetration index 2.1, 2 cm penetration index 2.6; P < 0.005), but crucially, also in patient samples from those undergoing fertility treatment (A: 1 cm penetration index 2.4; P = 0.009, 2 cm penetration index 3.6; P = 0.02 and B: 1 cm penetration index 2.2; P = 0.0004, 2 cm penetration index 3.6; P = 0.002). This was primarily as a result of direct or indirect CatSper channel action, supported by evidence from electrophysiology studies of individual sperm. LIMITATIONS, REASONS FOR CAUTION Increase and fluxes in [Ca2+]i are fundamental to the regulation of sperm motility and function, including acrosome reaction. The use of calcium signalling as a surrogate for sperm motility is acknowledged as a potential limitation in this study. WIDER IMPLICATIONS OF THE FINDINGS We conclude that HTS can robustly, efficiently, identify novel compounds that increase [Ca2+]i in human spermatozoa and functionally modify motility, and propose its use as a cornerstone to build and transform much-needed drug discovery for male infertility. STUDY FUNDING/COMPETING INTEREST(S) The majority of the data were obtained using funding from TENOVUS Scotland and Chief Scientist Office NRS Fellowship. Additional funding was provided by NHS Tayside, MRC project grants (MR/K013343/1, MR/012492/1) and University of Abertay. The authors declare that there is no conflict of interest. TRAIL REGISTRATION NUMBER N/A. PMID:28333338
Martins da Silva, Sarah J; Brown, Sean G; Sutton, Keith; King, Louise V; Ruso, Halil; Gray, David W; Wyatt, Paul G; Kelly, Mark C; Barratt, Christopher L R; Hope, Anthony G
2017-05-01
Can pharma drug discovery approaches be utilized to transform investigation into novel therapeutics for male infertility? High-throughput screening (HTS) is a viable approach to much-needed drug discovery for male factor infertility. There is both huge demand and a genuine clinical need for new treatment options for infertile men. However, the time, effort and resources required for drug discovery are currently exorbitant, due to the unique challenges of the cellular, physical and functional properties of human spermatozoa and a lack of appropriate assay platform. Spermatozoa were obtained from healthy volunteer research donors and subfertile patients undergoing IVF/ICSI at a hospital-assisted reproductive techniques clinic between January 2012 and November 2016. A HTS assay was developed and validated using intracellular calcium ([Ca2+]i) as a surrogate for motility in human spermatozoa. Calcium fluorescence was detected using a Flexstation microplate reader (384-well platform) and compared with responses evoked by progesterone, a compound known to modify a number of biologically relevant behaviours in human spermatozoa. Hit compounds identified following single point drug screen (10 μM) of an ion channel-focussed library assembled by the University of Dundee Drug Discovery Unit were rescreened to ensure potency using standard 10 point half-logarithm concentration curves, and tested for purity and integrity using liquid chromatography and mass spectrometry. Hit compounds were grouped by structure activity relationships and five representative compounds then further investigated for direct effects on spermatozoa, using computer-assisted sperm assessment, sperm penetration assay and whole-cell patch clamping. Of the 3242 ion channel library ligands screened, 384 compounds (11.8%) elicited a statistically significant increase in calcium fluorescence, with greater than 3× median absolute deviation above the baseline. Seventy-four compounds eliciting ≥50% increase in fluorescence in the primary screen were rescreened and evaluated further, resulting in 48 hit compounds that produced a concentration-dependent increase in [Ca2+]i. Sperm penetration studies confirmed in vitro exposure to two hit compounds (A and B) resulted in significant improvement in functional motility in spermatozoa from healthy volunteer donors (A: 1 cm penetration index 2.54, 2 cm penetration index 2.49; P < 0.005 and B: 1 cm penetration index 2.1, 2 cm penetration index 2.6; P < 0.005), but crucially, also in patient samples from those undergoing fertility treatment (A: 1 cm penetration index 2.4; P = 0.009, 2 cm penetration index 3.6; P = 0.02 and B: 1 cm penetration index 2.2; P = 0.0004, 2 cm penetration index 3.6; P = 0.002). This was primarily as a result of direct or indirect CatSper channel action, supported by evidence from electrophysiology studies of individual sperm. Increase and fluxes in [Ca2+]i are fundamental to the regulation of sperm motility and function, including acrosome reaction. The use of calcium signalling as a surrogate for sperm motility is acknowledged as a potential limitation in this study. We conclude that HTS can robustly, efficiently, identify novel compounds that increase [Ca2+]i in human spermatozoa and functionally modify motility, and propose its use as a cornerstone to build and transform much-needed drug discovery for male infertility. The majority of the data were obtained using funding from TENOVUS Scotland and Chief Scientist Office NRS Fellowship. Additional funding was provided by NHS Tayside, MRC project grants (MR/K013343/1, MR/012492/1) and University of Abertay. The authors declare that there is no conflict of interest. N/A. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology.
Discovery and Development of Calcium Channel Blockers
Godfraind, Théophile
2017-01-01
In the mid 1960s, experimental work on molecules under screening as coronary dilators allowed the discovery of the mechanism of calcium entry blockade by drugs later named calcium channel blockers. This paper summarizes scientific research on these small molecules interacting directly with L-type voltage-operated calcium channels. It also reports on experimental approaches translated into understanding of their therapeutic actions. The importance of calcium in muscle contraction was discovered by Sidney Ringer who reported this fact in 1883. Interest in the intracellular role of calcium arose 60 years later out of Kamada (Japan) and Heibrunn (USA) experiments in the early 1940s. Studies on pharmacology of calcium function were initiated in the mid 1960s and their therapeutic applications globally occurred in the the 1980s. The first part of this report deals with basic pharmacology in the cardiovascular system particularly in isolated arteries. In the section entitled from calcium antagonists to calcium channel blockers, it is recalled that drugs of a series of diphenylpiperazines screened in vivo on coronary bed precontracted by angiotensin were initially named calcium antagonists on the basis of their effect in depolarized arteries contracted by calcium. Studies on arteries contracted by catecholamines showed that the vasorelaxation resulted from blockade of calcium entry. Radiochemical and electrophysiological studies performed with dihydropyridines allowed their cellular targets to be identified with L-type voltage-operated calcium channels. The modulated receptor theory helped the understanding of their variation in affinity dependent on arterial cell membrane potential and promoted the terminology calcium channel blocker (CCB) of which the various chemical families are introduced in the paper. In the section entitled tissue selectivity of CCBs, it is shown that characteristics of the drug, properties of the tissue, and of the stimuli are important factors of their action. The high sensitivity of hypertensive animals is explained by the partial depolarization of their arteries. It is noted that they are arteriolar dilators and that they cannot be simply considered as vasodilators. The second part of this report provides key information about clinical usefulness of CCBs. A section is devoted to the controversy on their safety closed by the Allhat trial (2002). Sections are dedicated to their effect in cardiac ischemia, in cardiac arrhythmias, in atherosclerosis, in hypertension, and its complications. CCBs appear as the most commonly used for the treatment of cardiovascular diseases. As far as hypertension is concerned, globally the prevalence in adults aged 25 years and over was around 40% in 2008. Usefulness of CCBs is discussed on the basis of large clinical trials. At therapeutic dosage, they reduce the elevated blood pressure of hypertensive patients but don't change blood pressure of normotensive subjects, as was observed in animals. Those active on both L- and T-type channels are efficient in nephropathy. Alteration of cognitive function is a complication of hypertension recognized nowadays as eventually leading to dementia. This question is discussed together with the efficacy of CCBs in cognitive pathology. In the section entitled beyond the cardiovascular system, CCBs actions in migraine, neuropathic pain, and subarachnoid hemorrhage are reported. The final conclusions refer to long-term effects discovered in experimental animals that have not yet been clearly reported as being important in human pharmacotherapy. PMID:28611661
Erxleben, Christian; Rathmayer, Werner
1997-01-01
Single-channel currents through calcium channels in muscle of a marine crustacean, the isopod Idotea baltica, were investigated in cell-attached patches. Inward barium currents were strongly voltage-dependent, and the channels were closed at the cell's resting membrane potential. The open probability (Po) increased e-fold for an 8.2 mV (±2.4, n = 13) depolarization. Channel openings were mainly brief (<0.3 ms) and evenly distributed throughout 100-ms pulses. Averaged, quasimacroscopic currents showed fast activation and deactivation and did not inactivate during 100-ms test pulses. Similarly, channel activity persisted at steadily depolarized holding potentials. With 200 mM Ba2+ as charge carrier, the average slope conductance from the unitary currents between +30 and +80 mV, was 20 pS (±2.6, n = 12). The proportion of long openings, which were very infrequent under control conditions, was greatly increased by preincubation of the muscle fibers with the calcium channel agonist, the dihydropyridine Bay K8644 (10–100 μM). Properties of these currents resemble those through the L-type calcium channels of mammalian nerve, smooth muscle, and cardiac muscle cells. PMID:9089439
Wilson, Clayton E; Kruyt, Moyo C; de Bruijn, Joost D; van Blitterswijk, Clemens A; Oner, F Cumhur; Verbout, Abraham J; Dhert, Wouter J A
2006-01-01
This study presents a new screening model for evaluating the influence of multiple conditions on the initial process of bone formation in the posterior lumbar spine of a large animal. This model uses cages designed for placement on the decorticated transverse process of the goat lumbar spine. Five conduction channels per cage, each be defined by a different material treatment, are open to both the underlying bone and overlying soft tissue. The model was validated in ten adult Dutch milk goats, with each animal implanted with two cages containing a total of ten calcium phosphate material treatments according to a randomized complete block design. The ten calcium phosphate ceramic materials were created through a combination of material chemistry (BCP, TCP, HA), sintering temperature (low, medium, high), calcination and surface roughness treatments. To monitor the bone formation over time, fluorochrome markers were administered at 3, 5 and 7 weeks and the animals were sacrificed at 9 weeks after implantation. Bone formation in the conduction channels was investigated by histology and histomorphometry of non-decalcified sections using traditional light and epifluorescent microscopy. According to both observed and measured bone formation parameters, materials were ranked in order of increasing magnitude as follows: low sintering temperature BCP (rough and smooth) approximately medium sintering temperature BCP approximately = TCP > calcined low sintering temperature HA > non-calcined low sintering temperature HA > high sintering temperature BCP (rough and smooth) > high sintering temperature HA (calcined and non-calcined). These results agree closely with those obtained in previous studies of osteoconduction and bioactivity of ceramics thereby validating the screening model presented in this study.
NASA Astrophysics Data System (ADS)
Ibsch, M.; Anken, R.; Rahmann, H.
Inner ear otolith formation in fish is supposed to be performed by the molecular release of proteinacious precursor material from the sensory epithelia, followed by an undirected and diffuse precipitation of calcium carbonate (which is mainly responsible for the functionally important weight of otoliths). Previous experiments have shown, however, that otolith formation in terms of provision both of the protein matrix and of calcium is regulated by a (likely neuronal) feedback mechanism. This regulating mechanism effects a symmetrical crystallisation of the corresponding otoliths in the inner ears of both sides of the head, which is necessary for a correct graviperception and for maintenance of postural control; thus, asymmetrical otoliths can induce kinetoses (e.g., space motion sickness) both in human and fish. On the background of an obviously directed incorporation of calcium into otoliths, the site of origin of the otoliths's inorganic components such as calcium still remains obscure. Therefore, ultrastructural and element analytical investigations were undertaken to screen the calcium distribution within the macular epithelial region using fish as model system. Electron spectroscopic imaging (ESI) and electron energy loss spectra (EELS) revealed discrete calcium-precipitations in the extracellular space of the otolithic membrane as well as within the lumina of the epithelial sensory cells. The calcium particles were accumulated at the macular tight junctions and seemed to be distributed in an ascending intracellular and a descending extracellular gradient towards the otolith. Further distinct calcium containing crystals covered the peripheral proteinacious layer of the otolith. The remaining endolymphatic space of the otocyst was lacking calcium precipitates. Overall, the present results indicate that the apical region of the macular epithelium is involved in the controlled release of calcium. This finding is in complete agreement with a study using calcium-tracers (Beier et al., this issue). This work was financially supported by the German Aerospace Center (DLR) e.V. (FKZ: 50 WB 9997).
Swart, Tara; Hurley, Michael J
2016-12-01
Parkinson's disease is a disabling hypokinetic neurological movement disorder in which the aetiology is unknown in the majority of cases. Current pharmacological treatments, though effective at restoring movement, are only symptomatic and do nothing to slow disease progression. Electrophysiological, epidemiological and neuropathological studies have implicated Ca V 1.3 subtype calcium channels in the pathogenesis of the disorder, and drugs with some selectivity for this ion channel (brain-penetrant dihydropyridine calcium channel blockers) are neuroprotective in animal models of the disease. Dihydropyridines have been safely used for decades to treat hypertension and other cardiovascular disorders. A phase II clinical trial found that isradipine was safely tolerated by patients with Parkinson's disease, and a phase III trial is currently underway to determine whether treatment with isradipine is neuroprotective and therefore able to slow the progression of Parkinson's disease. This manuscript reviews the current information about the use of dihydropyridines as therapy for Parkinson's disease and discusses the possible mechanism of action of these drugs, highlighting Ca V 1.3 calcium channels as a potential therapeutic target for neuroprotection in Parkinson's disease.
Tao, Meng-Hua; Dai, Qi; Chen, Shande; Freudenheim, Jo L; Rohan, Thomas; Wakelee, Heather; Datta, Mridul; Wactawski-Wende, Jean
2017-08-01
Magnesium and calcium are antagonistic in many physiologic processes. However, few studies have investigated the associations of supplemental calcium with lung cancer risk taking this antagonism into account. We evaluated the effect of calcium and vitamin D supplementation on lung cancer incidence and explored whether the ratio of baseline calcium to magnesium (Ca:Mg) intake modifies the association in the Women's Health Initiative (WHI) calcium plus vitamin D supplementation (CaD) trial. The intervention phase of the WHI CaD was a double-blinded, randomized, placebo-controlled trial in 36,382 postmenopausal women aged 50-79 years, recruited at 40U.S. centers. Post-intervention follow-up continued among 29,862 (86%) of the surviving participants. Risk of lung cancer in association with CaD supplementation was evaluated using proportional hazard regression models. After 11 years' cumulative follow-up, there were 207 lung cancers (incidence 0.11% per year) in the supplement arm and 241 (0.12%) in the placebo arm (hazard ratio (HR) for the intervention, 0.91; 95% confidence interval (CI), 0.71-1.17). Subgroup analyses suggested that the HR for lung cancer varied by baseline Ca:Mg intake ratio among women who were current smokers at enrollment (p=0.04 for interaction). Over the entire follow-up period, calcium and vitamin D supplementation did not reduce lung cancer incidence among postmenopausal women. In exploratory analyses, an interaction was found for the baseline Ca:Mg intake ratio on lung cancer among current smokers at the trial entry. This findings need to be further studied for the role of calcium with magnesium in lung carcinogenesis in current smokers. Copyright © 2017 Elsevier B.V. All rights reserved.
Kim, Yonghwan; Koo, Bong-Seong; Lee, Hyeon-Cheol; Yoon, Youngdae
2015-03-01
Isomaltulose, also known as palatinose, is produced by sucrose isomerase and has been highlighted as a sugar substitute due to a number of advantageous properties. For the massive production of isomaltulose, high resistance to sucrose and stability of sucrose isomerase as well as sucrose conversion yields would be critical factors. We describe a series of screening procedures to isolate the mutant strain of Serratia sp. possessing enhanced isomaltulose production with improved stability. The new Serratia sp. isolated from a series of screening procedures allowed us to produce isomaltulose from 60% sucrose solution, with over 90% conversion yield. Moreover, when this strain was immobilized in calcium alginate beads and placed in a medium containing 60% sucrose, it showed over 70% sucrose conversion yields for 30 cycles of repeated-batch reactions. Thus, improved conversion activity and stability of the newly isolated Serratia sp. strain in the present study would be highly valuable for industries related to isomaltulose production.
Lorenz, Carmen; Lesimple, Pierre; Bukowiecki, Raul; Zink, Annika; Inak, Gizem; Mlody, Barbara; Singh, Manvendra; Semtner, Marcus; Mah, Nancy; Auré, Karine; Leong, Megan; Zabiegalov, Oleksandr; Lyras, Ekaterini-Maria; Pfiffer, Vanessa; Fauler, Beatrix; Eichhorst, Jenny; Wiesner, Burkhard; Huebner, Norbert; Priller, Josef; Mielke, Thorsten; Meierhofer, David; Izsvák, Zsuzsanna; Meier, Jochen C; Bouillaud, Frédéric; Adjaye, James; Schuelke, Markus; Wanker, Erich E; Lombès, Anne; Prigione, Alessandro
2017-05-04
Mitochondrial DNA (mtDNA) mutations frequently cause neurological diseases. Modeling of these defects has been difficult because of the challenges associated with engineering mtDNA. We show here that neural progenitor cells (NPCs) derived from human induced pluripotent stem cells (iPSCs) retain the parental mtDNA profile and exhibit a metabolic switch toward oxidative phosphorylation. NPCs derived in this way from patients carrying a deleterious homoplasmic mutation in the mitochondrial gene MT-ATP6 (m.9185T>C) showed defective ATP production and abnormally high mitochondrial membrane potential (MMP), plus altered calcium homeostasis, which represents a potential cause of neural impairment. High-content screening of FDA-approved drugs using the MMP phenotype highlighted avanafil, which we found was able to partially rescue the calcium defect in patient NPCs and differentiated neurons. Overall, our results show that iPSC-derived NPCs provide an effective model for drug screening to target mtDNA disorders that affect the nervous system. Copyright © 2016 Elsevier Inc. All rights reserved.
Tang, Bo; Luo, Dong; Yang, Jie; Xu, Xiao-Yan; Zhu, Bing-Lin; Wang, Xue-Feng; Yan, Zhen; Chen, Guo-Jun
2015-01-01
Layer I neurons in the prefrontal cortex (PFC) exhibit extensive synaptic connections with deep layer neurons, implying their important role in the neural circuit. Study demonstrates that activation of nicotinic acetylcholine receptors (nAChRs) increases excitatory neurotransmission in this layer. Here we found that nicotine selectively increased the amplitude of AMPA receptor (AMPAR)-mediated current and AMPA/NMDA ratio, while without effect on NMDA receptor-mediated current. The augmentation of AMPAR current by nicotine was inhibited by a selective α7-nAChR antagonist methyllycaconitine (MLA) and intracellular calcium chelator BAPTA. In addition, nicotinic effect on mEPSC or paired-pulse ratio was also prevented by MLA. Moreover, an enhanced inward rectification of AMPAR current by nicotine suggested a functional role of calcium permeable and GluA1 containing AMPAR. Consistently, nicotine enhancement of AMPAR current was inhibited by a selective calcium-permeable AMPAR inhibitor IEM-1460. Finally, the intracellular inclusion of synthetic peptide designed to block GluA1 subunit of AMPAR at CAMKII, PKC or PKA phosphorylation site, as well as corresponding kinase inhibitor, blocked nicotinic augmentation of AMPA/NMDA ratio. These results have revealed that nicotine increases AMPAR current by modulating the phosphorylation state of GluA1 which is dependent on α7-nAChR and intracellular calcium. PMID:26370265
Devaraju, P; Yu, J; Eddins, D; Mellado-Lagarde, M M; Earls, L R; Westmoreland, J J; Quarato, G; Green, D R; Zakharenko, S S
2017-09-01
Hemizygous deletion of a 1.5- to 3-megabase region on chromosome 22 causes 22q11.2 deletion syndrome (22q11DS), which constitutes one of the strongest genetic risks for schizophrenia. Mouse models of 22q11DS have abnormal short-term synaptic plasticity that contributes to working-memory deficiencies similar to those in schizophrenia. We screened mutant mice carrying hemizygous deletions of 22q11DS genes and identified haploinsufficiency of Mrpl40 (mitochondrial large ribosomal subunit protein 40) as a contributor to abnormal short-term potentiation (STP), a major form of short-term synaptic plasticity. Two-photon imaging of the genetically encoded fluorescent calcium indicator GCaMP6, expressed in presynaptic cytosol or mitochondria, showed that Mrpl40 haploinsufficiency deregulates STP via impaired calcium extrusion from the mitochondrial matrix through the mitochondrial permeability transition pore. This led to abnormally high cytosolic calcium transients in presynaptic terminals and deficient working memory but did not affect long-term spatial memory. Thus, we propose that mitochondrial calcium deregulation is a novel pathogenic mechanism of cognitive deficiencies in schizophrenia.
Kadu, Pawan J; Kushare, Sachin S; Thacker, Dhaval D; Gattani, Surendra G
2011-02-01
The aim of the present study was to formulate a self-emulsifying drug delivery system of atorvastatin calcium and its characterization including in vitro and in vivo potential. The solubility of atorvastatin calcium was determined in various vehicles such as Captex 355, Captex 355 EP/NF, Ethyl oleate, Capmul MCM, Capmul PG-8, Gelucire 44/14, Tween 80, Tween 20, and PEG 400. Pseudoternary phase diagrams were plotted on the basis of solubility data of drug in various components to evaluate the microemulsification region. Formulation development and screening was carried out based on results obtained from phase diagrams and characteristics of resultant microemulsion. Prepared formulations were tested for microemulsifying properties and evaluated for clarity, precipitation, viscosity determination, drug content and in vitro dissolution. The optimized formulation further evaluated for particle size distribution, zeta potential, stability studies and in vivo potential. In vivo performance of the optimized formulation was evaluated using a Triton-induced hypercholesterolemia model in male Albino Wistar rats. The formulation significantly reduced serum lipid levels as compared with atorvastatin calcium. Thus studies illustrated the potential use for the delivery of hydrophobic drug such as atorvastatin calcium by oral route.
Richhariya, Shlesha; Jayakumar, Siddharth; Abruzzi, Katharine; Rosbash, Michael; Hasan, Gaiti
2017-01-01
Transcriptional regulation by Store-operated Calcium Entry (SOCE) is well studied in non-excitable cells. However, the role of SOCE has been poorly documented in neuronal cells with more complicated calcium dynamics. Previous reports demonstrated a requirement for SOCE in neurons that regulate Drosophila flight bouts. We refine this requirement temporally to the early pupal stage and use RNA-sequencing to identify SOCE mediated gene expression changes in the developing Drosophila pupal nervous system. Down regulation of dStim, the endoplasmic reticular calcium sensor and a principal component of SOCE in the nervous system, altered the expression of 131 genes including Ral, a small GTPase. Disruption of Ral function in neurons impaired flight, whereas ectopic expression of Ral in SOCE-compromised neurons restored flight. Through live imaging of calcium transients from cultured pupal neurons, we confirmed that Ral does not participate in SOCE, but acts downstream of it. These results identify neuronal SOCE as a mechanism that regulates expression of specific genes during development of the pupal nervous system and emphasizes the relevance of SOCE-regulated gene expression to flight circuit maturation. PMID:28195208
Parry, David A.; Poulter, James A.; Logan, Clare V.; Brookes, Steven J.; Jafri, Hussain; Ferguson, Christopher H.; Anwari, Babra M.; Rashid, Yasmin; Zhao, Haiqing; Johnson, Colin A.; Inglehearn, Chris F.; Mighell, Alan J.
2013-01-01
A combination of autozygosity mapping and exome sequencing identified a null mutation in SLC24A4 in a family with hypomineralized amelogenesis imperfect a (AI), a condition in which tooth enamel formation fails. SLC24A4 encodes a calcium transporter upregulated in ameloblasts during the maturation stage of amelogenesis. Screening of further AI families identified a missense mutation in the ion-binding site of SLC24A4 expected to severely diminish or abolish the ion transport function of the protein. Furthermore, examination of previously generated Slc24a4 null mice identified a severe defect in tooth enamel that reflects impaired amelogenesis. These findings support a key role for SLC24A4 in calcium transport during enamel formation. PMID:23375655
Parallel stochastic simulation of macroscopic calcium currents.
González-Vélez, Virginia; González-Vélez, Horacio
2007-06-01
This work introduces MACACO, a macroscopic calcium currents simulator. It provides a parameter-sweep framework which computes macroscopic Ca(2+) currents from the individual aggregation of unitary currents, using a stochastic model for L-type Ca(2+) channels. MACACO uses a simplified 3-state Markov model to simulate the response of each Ca(2+) channel to different voltage inputs to the cell. In order to provide an accurate systematic view for the stochastic nature of the calcium channels, MACACO is composed of an experiment generator, a central simulation engine and a post-processing script component. Due to the computational complexity of the problem and the dimensions of the parameter space, the MACACO simulation engine employs a grid-enabled task farm. Having been designed as a computational biology tool, MACACO heavily borrows from the way cell physiologists conduct and report their experimental work.
Choi, Kee-Hyun; Rhim, Hyewhon
2010-01-25
Low voltage-activated T-type calcium channels are involved in the regulation of the neuronal excitability, and could be subject to many antipsychotic drugs. The effects of clozapine, an atypical antipsychotic drug, on recombinant Ca(v)3.1 T-type calcium channels heterologously expressed in human embryonic kidney 293 cells were examined using whole-cell patch-clamp recordings. At a standard holding potential of -100 mV, clozapine inhibited Ca(v)3.1 currents with an IC(50) value of 23.7+/-1.3 microM in a use-dependent manner. However, 10 microM clozapine inhibited more than 50% of the Ca(v)3.1 currents in recordings at a more physiologically relevant holding potential of -75 mV. Clozapine caused a significant hyperpolarizing shift in the steady-state inactivation curve of the Ca(v)3.1 channels, which is presumably the main mechanism accounting for the inhibition of the Ca(v)3.1 currents. In addition, clozapine slowed Ca(v)3.1 deactivation and inactivation kinetics but not activation kinetics. Clozapine-induced changes in deactivation and inactivation rates of the Ca(v)3.1 channel gating would likely facilitate calcium influx via Ca(v)3.1 T-type calcium channels. Thus, clozapine may exert its therapeutic and/or side effects by altering cell's excitability and firing properties through actions on T-type calcium channels.
Yuill, Kathryn H; Al Kury, Lina T; Howarth, Frank Christopher
2015-01-01
Cardiovascular complications are common in patients with Diabetes mellitus (DM). In addition to changes in cardiac muscle inotropy, electrical abnormalities are also commonly observed in these patients. We have previously shown that spontaneous cellular electrical activity is altered in atrioventricular nodal (AVN) myocytes, isolated from the streptozotocin (STZ) rat model of type-1 DM. In this study, utilizing the same model, we have characterized the changes in L-type calcium channel activity in single AVN myocytes. Ionic currents were recorded from AVN myocytes isolated from the hearts of control rats and from those with STZ-induced diabetes. Patch-clamp recordings were used to assess the changes in cellular electrical activity in individual myocytes. Type-1 DM significantly altered the cellular characteristics of L-type calcium current. A reduction in peak ICaL density was observed, with no corresponding changes in the activation parameters of the current. L-type calcium channel current also exhibited faster time-dependent inactivation in AVN myocytes from diabetic rats. A negative shift in the voltage dependence of inactivation was also evident, and a slowing of restitution parameters. These findings demonstrate that experimentally induced type-1 DM significantly alters AVN L-type calcium channel cellular electrophysiology. These changes in ion channel activity may contribute to the abnormalities in cardiac electrical function that are associated with high mortality levels in patients with DM. PMID:26603460
Moreno, H; Rudy, B; Llinás, R
1997-12-09
Human epithelial kidney cells (HEK) were prepared to coexpress alpha1A, alpha2delta with different beta calcium channel subunits and green fluorescence protein. To compare the calcium currents observed in these cells with the native neuronal currents, electrophysiological and pharmacological tools were used conjointly. Whole-cell current recordings of human epithelial kidney alpha1A-transfected cells showed small inactivating currents in 80 mM Ba2+ that were relatively insensitive to calcium blockers. Coexpression of alpha1A, betaIb, and alpha2delta produced a robust inactivating current detected in 10 mM Ba2+, reversibly blockable with low concentration of omega-agatoxin IVA (omega-Aga IVA) or synthetic funnel-web spider toxin (sFTX). Barium currents were also supported by alpha1A, beta2a, alpha2delta subunits, which demonstrated the slowest inactivation and were relatively insensitive to omega-Aga IVA and sFTX. Coexpression of beta3 with the same combination as above produced inactivating currents also insensitive to low concentration of omega-Aga IVA and sFTX. These data indicate that the combination alpha1A, betaIb, alpha2delta best resembles P-type channels given the rate of inactivation and the high sensitivity to omega-Aga IVA and sFTX. More importantly, the specificity of the channel blocker is highly influenced by the beta subunit associated with the alpha1A subunit.
Harvey, Nicholas C; Biver, Emmanuel; Kaufman, Jean-Marc; Bauer, Jürgen; Branco, Jaime; Brandi, Maria Luisa; Bruyère, Olivier; Coxam, Veronique; Cruz-Jentoft, Alfonso; Czerwinski, Edward; Dimai, Hans; Fardellone, Patrice; Landi, Francesco; Reginster, Jean-Yves; Dawson-Hughes, Bess; Kanis, John A; Rizzoli, Rene; Cooper, Cyrus
2017-01-01
The place of calcium supplementation, with or without concomitant vitamin D supplementation, has been much debated in terms of both efficacy and safety. There have been numerous trials and meta-analyses of supplementation for fracture reduction, and associations with risk of myocardial infarction have been suggested in recent years. In this report, the product of an expert consensus meeting of the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO) and the International Foundation for Osteoporosis (IOF), we review the evidence for the value of calcium supplementation, with or without vitamin D supplementation, for healthy musculoskeletal ageing. We conclude that: 1) calcium and vitamin D supplementation leads to a modest reduction in fracture risk, although population-level intervention has not been shown to be an effective public health strategy; 2) supplementation with calcium alone for fracture reduction is not supported by the literature; 3) side effects of calcium supplementation include renal stones and gastrointestinal symptoms; 4) vitamin D supplementation, rather than calcium supplementation, may reduce falls risk; and 5) assertions of increased cardiovascular risk consequent on calcium supplementation are not convincingly supported by current evidence. In conclusion, we recommend, on the basis of the current evidence, that calcium supplementation, with concomitant vitamin D supplementation, is supported for patients at high risk of calcium and vitamin D insufficiency, and in those who are receiving treatment for osteoporosis. PMID:27761590
Harvey, N C; Biver, E; Kaufman, J-M; Bauer, J; Branco, J; Brandi, M L; Bruyère, O; Coxam, V; Cruz-Jentoft, A; Czerwinski, E; Dimai, H; Fardellone, P; Landi, F; Reginster, J-Y; Dawson-Hughes, B; Kanis, J A; Rizzoli, R; Cooper, C
2017-02-01
The place of calcium supplementation, with or without concomitant vitamin D supplementation, has been much debated in terms of both efficacy and safety. There have been numerous trials and meta-analyses of supplementation for fracture reduction, and associations with risk of myocardial infarction have been suggested in recent years. In this report, the product of an expert consensus meeting of the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO) and the International Foundation for Osteoporosis (IOF), we review the evidence for the value of calcium supplementation, with or without vitamin D supplementation, for healthy musculoskeletal ageing. We conclude that (1) calcium and vitamin D supplementation leads to a modest reduction in fracture risk, although population-level intervention has not been shown to be an effective public health strategy; (2) supplementation with calcium alone for fracture reduction is not supported by the literature; (3) side effects of calcium supplementation include renal stones and gastrointestinal symptoms; (4) vitamin D supplementation, rather than calcium supplementation, may reduce falls risk; and (5) assertions of increased cardiovascular risk consequent to calcium supplementation are not convincingly supported by current evidence. In conclusion, we recommend, on the basis of the current evidence, that calcium supplementation, with concomitant vitamin D supplementation, is supported for patients at high risk of calcium and vitamin D insufficiency, and in those who are receiving treatment for osteoporosis.
Calcium current in isolated neonatal rat ventricular myocytes.
Cohen, N M; Lederer, W J
1987-01-01
1. Calcium currents (ICa) from neonatal rat ventricular heart muscle cells grown in primary culture were examined using the 'whole-cell' voltage-clamp technique (Hamill, Marty, Neher, Sakmann & Sigworth, 1981). Examination of ICa was limited to one calcium channel type, 'L' type (Nilius, Hess, Lansman & Tsien, 1985), by appropriate voltage protocols. 2. We measured transient and steady-state components of ICa, and could generally describe ICa in terms of the steady-state activation (d infinity) and inactivation (f infinity) parameters. 3. We observed that the reduction of ICa by the calcium channel antagonist D600 can be explained by both a shift of d infinity to more positive potentials as well as a slight reduction of ICa conductance. D600 did not significantly alter either the rate of inactivation of ICa or the voltage dependence of f infinity. 4. The calcium channel modulator BAY K8644 shifted both d infinity and f infinity to more negative potentials. Additionally, BAY K8644 increased the rate of inactivation at potentials between +5 and +55 mV. Furthermore, BAY K8644 also increased ICa conductance, a change consistent with a promotion of 'mode 2' calcium channel activity (Hess, Lansman & Tsien, 1984). 5. We conclude that, as predicted by d infinity and f infinity, there is a significant steady-state component of ICa ('window current') at plateau potentials in neonatal rat heart cells. Modulation of the steady-state and transient components of ICa by various agents can be attributed both to specific alterations in d infinity and f infinity and to more complicated alterations in the mode of calcium channel activity. PMID:2451004
DOE Office of Scientific and Technical Information (OSTI.GOV)
Magno, Aaron L.; Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, Western Australia 6009; Ingley, Evan
Highlights: {yields} A yeast two-hybrid screen revealed testin bound to the calcium-sensing receptor. {yields} The second zinc finger of LIM domain 1 of testin is critical for interaction. {yields} Testin bound to a region of the receptor tail important for cell signalling. {yields} Testin and receptor interaction was confirmed in mammalian (HEK293) cells. {yields} Overexpression of testin enhanced receptor-mediated Rho signalling in HEK293 cells. -- Abstract: The calcium-sensing receptor (CaR) plays an integral role in calcium homeostasis and the regulation of other cellular functions including cell proliferation and cytoskeletal organisation. The multifunctional nature of the CaR is manifested through ligand-dependentmore » stimulation of different signalling pathways that are also regulated by partner binding proteins. Following a yeast two-hybrid library screen using the intracellular tail of the CaR as bait, we identified several novel binding partners including the focal adhesion protein, testin. Testin has not previously been shown to interact with cell surface receptors. The sites of interaction between the CaR and testin were mapped to the membrane proximal region of the receptor tail and the second zinc-finger of LIM domain 1 of testin, the integrity of which was found to be critical for the CaR-testin interaction. The CaR-testin association was confirmed in HEK293 cells by coimmunoprecipitation and confocal microscopy studies. Ectopic expression of testin in HEK293 cells stably expressing the CaR enhanced CaR-stimulated Rho activity but had no effect on CaR-stimulated ERK signalling. These results suggest an interplay between the CaR and testin in the regulation of CaR-mediated Rho signalling with possible effects on the cytoskeleton.« less
Karimi, Zahra; Dehkordi, Mahnaz Aliakbari; Alipour, Ahmad; Mohtashami, Tayebeh
2018-03-01
Premenstrual syndrome (PMS) consists of repetitious physical and psychological symptoms. The symptoms occur during the luteal phase of the menstrual period and cease when the menstrual period starts. This study included pre-test and post-test experiments between a control group and a test group. The statistical population involved 40 females, chosen based on multistage cluster sampling. The participants were then divided into four groups to undergo treatment with calcium supplement plus vitamin D together with cognitive behavioral therapy (CBT), and were screened with the Premenstrual Syndrome Screening Test (PSST). The pre-test and post-test scores in the PSST, the General Health Questionnaire (GHQ-28), and Bell's Adjustment Inventory (BAI) were used as assessment tools (p < .05). According to the parameters of PMS symptoms, when evaluating the pre-test and post-test scores, the overall score of each individual in the experimental group was improved and a significant effect for the combination of calcium supplement plus vitamin D together with CBT was observed in comparison to the post-test control group. A comparison of multivariate analysis of covariance (MANCOVA) results collected from the pre-test and post-test scores revealed that the method of treatment was beneficial for PMS, adjustment, and general health. © 2018 The Institute of Psychology, Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.
van Sonsbeek, Gerda R; van der Kolk, Johannes H; van Leeuwen, Johannes P T M; Everts, Hendrik; Marais, Johan; Schaftenaar, Willem
2013-09-01
The aim of the current study was to assess the effect of oral calcium and cholecalciferol supplementation on several parameters of calcium status in plasma and urine of captive Asian (Elephas maximus; n=10) and African elephants (Loxodonta africana; n=6) and to detect potential species differences. Calcium and cholecalciferol supplementation were investigated in a feeding trial using a crossover design consisting of five periods of 28 days each in summer. From days 28-56 (period 2), elephants were fed the Ca-supplemented diet and from days 84-112, elephants were fed the cholecalciferol-supplemented diet (period 4). The control diet was fed during the other periods and was based on their regular ration, and the study was repeated similarly during winter. Periods 1, 3, and 5 were regarded as washout periods. This study revealed species-specific differences with reference to calcium and cholecalciferol supplementation. Asian elephants showed a significant increase in mean plasma total calcium concentration following calcium supplementation during summer, suggesting summer-associated subclinical hypocalcemia in Western Europe. During winter, no effect was seen after oral calcium supplementation, but a significant increase was seen both in mean plasma, total, and ionized calcium concentrations after cholecalciferol supplementation in Asian elephants. In contrast, evidence of subclinical hypocalcemia could be demonstrated neither in summer nor in winter in African elephants, although 28 days of cholecalciferol supplementation during winter reversed the decrease in plasma 1,25(OH)2-cholecalciferol and was followed by a significant increase in mean plasma total calcium concentration. Preliminary findings indicate that the advisable permanent daily intake for calcium in Asian elephants and cholecalciferol in both elephant species at least during winter might be higher than current guidelines. It is strongly recommended to monitor blood calcium concentrations and, if available, blood parathyroid hormone levels to adjust the nutritional supplementation for each individual elephant.
Hypocalcemia in acute pancreatitis revisited
Ahmed, Armin; Azim, Afzal; Gurjar, Mohan; Baronia, Arvind Kumar
2016-01-01
Hypocalcemia is a frequent finding in acute pancreatitis. Severe hypocalcemia can present with neurological as well as cardiovascular manifestations. Correction of hypocalcemia by parenteral calcium infusion remains a controversial topic as intracellular calcium overload is the central mechanism of acinar cell injury in pancreatitis. The current article deals with the art and science of calcium correction in pancreatitis patients. PMID:27076730
P-type calcium channels in rat neocortical neurones.
Brown, A M; Sayer, R J; Schwindt, P C; Crill, W E
1994-01-01
1. The high threshold, voltage-activated (HVA) calcium current was recorded from acutely isolated rat neocortical pyramidal neurones using the whole-cell patch technique to examine the effect of agents that block P-type calcium channels and to compare their effects to those of omega-conotoxin GVIA (omega-CgTX) and nifedipine. 2. When applied at a saturating concentration (100 nM) the peptide toxins omega-Aga-IVA and synthetic omega-Aga-IVA blocked 31.5 and 33.0% of the HVA current respectively. 3. A saturating concentration of nifedipine (10 microM) inhibited 48.2% of the omega-Aga-IVA-sensitive current, whereas saturating concentrations of both omega-Aga-IVA (100 nM) and omega-CgTX (10 microM) blocked separate specific components of the HVA current. 4. Partially purified funnel web spider toxin (FTX) at a dilution of 1:1000 blocked 81.4% of the HVA current and occluded the inhibitory effect of omega-Aga-IVA. Synthetic FTX 3.3 arginine polyamine (sFTX) at a concentration of 1 mM blocked 61.2% of the HVA current rapidly and reversibly. The effects of sFTX were partially occluded by pre-application of omega-Aga-IVA. We conclude that neither FTX nor sFTX blocked a specific component of the HVA current in these cells. 5. In view of the specificity of omega-Aga-IVA for P-type calcium channels in other preparations and for a specific component of the HVA current in dissociated neocortical neurones we conclude that about 30% of the HVA current in these neurones flow through P-channels. PMID:7517449
P-type calcium channels in rat neocortical neurones.
Brown, A M; Sayer, R J; Schwindt, P C; Crill, W E
1994-03-01
1. The high threshold, voltage-activated (HVA) calcium current was recorded from acutely isolated rat neocortical pyramidal neurones using the whole-cell patch technique to examine the effect of agents that block P-type calcium channels and to compare their effects to those of omega-conotoxin GVIA (omega-CgTX) and nifedipine. 2. When applied at a saturating concentration (100 nM) the peptide toxins omega-Aga-IVA and synthetic omega-Aga-IVA blocked 31.5 and 33.0% of the HVA current respectively. 3. A saturating concentration of nifedipine (10 microM) inhibited 48.2% of the omega-Aga-IVA-sensitive current, whereas saturating concentrations of both omega-Aga-IVA (100 nM) and omega-CgTX (10 microM) blocked separate specific components of the HVA current. 4. Partially purified funnel web spider toxin (FTX) at a dilution of 1:1000 blocked 81.4% of the HVA current and occluded the inhibitory effect of omega-Aga-IVA. Synthetic FTX 3.3 arginine polyamine (sFTX) at a concentration of 1 mM blocked 61.2% of the HVA current rapidly and reversibly. The effects of sFTX were partially occluded by pre-application of omega-Aga-IVA. We conclude that neither FTX nor sFTX blocked a specific component of the HVA current in these cells. 5. In view of the specificity of omega-Aga-IVA for P-type calcium channels in other preparations and for a specific component of the HVA current in dissociated neocortical neurones we conclude that about 30% of the HVA current in these neurones flow through P-channels.
Geib, Sandrine; Sandoz, Guillaume; Mabrouk, Kamel; Matavel, Alessandra; Marchot, Pascale; Hoshi, Toshinori; Villaz, Michel; Ronjat, Michel; Miquelis, Raymond; Lévêque, Christian; de Waard, Michel
2002-01-01
Native high-voltage-gated calcium channels are multi-subunit complexes comprising a pore-forming subunit Ca(v) and at least two auxiliary subunits alpha(2)delta and beta. The beta subunit facilitates cell-surface expression of the channel and contributes significantly to its biophysical properties. In spite of its importance, detailed structural and functional studies are hampered by the limited availability of native beta subunit. Here, we report the purification of a recombinant calcium-channel beta(4) subunit from bacterial extracts by using a polyhistidine tag. The purified protein is fully functional since it binds on the alpha1 interaction domain, its main Ca(v)-binding site, and regulates the activity of P/Q calcium channel expressed in Xenopus oocytes in a similar way to the beta(4) subunit produced by cRNA injection. We took advantage of the functionality of the purified material to (i) develop an efficient surface-plasmon resonance assay of the interaction between two calcium channel subunits and (ii) measure, for the first time, the affinity of the recombinant His-beta(4) subunit for the full-length Ca(v)2.1 channel. The availability of this purified material and the development of a surface-plasmon resonance assay opens two immediate research perspectives: (i) drug screening programmes applied to the Ca(v)/beta interaction and (ii) crystallographic studies of the calcium-channel beta(4) subunit. PMID:11988102
Plasticity of calcium-permeable AMPA glutamate receptors in Pro-opiomelanocortin neurons.
Suyama, Shigetomo; Ralevski, Alexandra; Liu, Zhong-Wu; Dietrich, Marcelo O; Yada, Toshihiko; Simonds, Stephanie E; Cowley, Michael A; Gao, Xiao-Bing; Diano, Sabrina; Horvath, Tamas L
2017-08-01
POMC neurons integrate metabolic signals from the periphery. Here, we show in mice that food deprivation induces a linear current-voltage relationship of AMPAR-mediated excitatory postsynaptic currents (EPSCs) in POMC neurons. Inhibition of EPSCs by IEM-1460, an antagonist of calcium-permeable (Cp) AMPARs, diminished EPSC amplitude in the fed but not in the fasted state, suggesting entry of GluR2 subunits into the AMPA receptor complex during food deprivation. Accordingly, removal of extracellular calcium from ACSF decreased the amplitude of mEPSCs in the fed but not the fasted state. Ten days of high-fat diet exposure, which was accompanied by elevated leptin levels and increased POMC neuronal activity, resulted in increased expression of Cp-AMPARs on POMC neurons. Altogether, our results show that entry of calcium via Cp-AMPARs is inherent to activation of POMC neurons, which may underlie a vulnerability of these neurons to calcium overload while activated in a sustained manner during over-nutrition.
Fong, Jeremy; Khan, Aliya
2012-01-01
Abstract Objective To provide family physicians with an evidence-based approach to the diagnosis and management of hypocalcemia. Quality of evidence MEDLINE and EMBASE articles from 2000 to 2010 were searched, with a focus on the diagnosis and management of hypocalcemia. Levels of evidence (I to III) were cited where appropriate, with most studies providing level II or III evidence. References of pertinent papers were also searched for relevant articles. Main message Chronic hypocalcemia is commonly due to inadequate levels of parathyroid hormone or vitamin D, or due to resistance to these hormones. Treatment focuses on oral calcium and vitamin D supplements, as well as magnesium if deficiency is present. Treatment can be further intensified with thiazide diuretics, phosphate binders, and a low-salt and low-phosphorus diet when treating hypocalcemia secondary to hypoparathyroidism. Acute and life-threatening calcium deficit requires treatment with intravenous calcium. The current treatment recommendations are largely based on expert clinical opinion and published case reports, as adequately controlled clinical trial data are not currently available. Complications of current therapies for hypoparathyroidism include hypercalciuria, nephrocalcinosis, renal impairment, and soft tissue calcification. Current therapy is limited by serum calcium fluctuations. Although these complications are well recognized, the effects of therapy on overall well-being, mood, cognition, and quality of life, as well as the risk of complications, have not been adequately studied. Conclusion Family physicians play a crucial role in educating patients about the long-term management and complications of hypocalcemia. Currently, management is suboptimal and marked by fluctuations in serum calcium and a lack of approved parathyroid hormone replacement therapy for hypoparathyroidism. PMID:22439169
Application of Calcium Phosphate Materials in Dentistry
Al-Sanabani, Jabr S.; Al-Sanabani, Fadhel A.
2013-01-01
Calcium phosphate materials are similar to bone in composition and in having bioactive and osteoconductive properties. Calcium phosphate materials in different forms, as cements, composites, and coatings, are used in many medical and dental applications. This paper reviews the applications of these materials in dentistry. It presents a brief history, dental applications, and methods for improving their mechanical properties. Notable research is highlighted regarding (1) application of calcium phosphate into various fields in dentistry; (2) improving mechanical properties of calcium phosphate; (3) biomimetic process and functionally graded materials. This paper deals with most common types of the calcium phosphate materials such as hydroxyapatite and tricalcium phosphate which are currently used in dental and medical fields. PMID:23878541
Qiao, Jingda; Zou, Xiaolu; Lai, Duo; Yan, Ying; Wang, Qi; Li, Weicong; Deng, Shengwen; Xu, Hanhong; Gu, Huaiyu
2014-07-01
Azadirachtin is a botanical pesticide, which possesses conspicuous biological actions such as insecticidal, anthelmintic, antifeedancy, antimalarial effects as well as insect growth regulation. Deterrent for chemoreceptor functions appears to be the main mechanism involved in the potent biological actions of Azadirachtin, although the cytotoxicity and subtle changes to skeletal muscle physiology may also contribute to its insecticide responses. In order to discover the effects of Azadirachtin on the central nervous system (CNS), patch-clamp recording was applied to Drosophila melanogaster, which has been widely used in neurological research. Here, we describe the electrophysiological properties of a local neuron located in the suboesophageal ganglion region of D. melanogaster using the whole brain. The patch-clamp recordings suggested that Azadirachtin modulates the properties of cholinergic miniature excitatory postsynaptic current (mEPSC) and calcium currents, which play important roles in neural activity of the CNS. The frequency of mEPSC and the peak amplitude of the calcium currents significantly decreased after application of Azadirachtin. Our study indicates that Azadirachtin can interfere with the insect's CNS via inhibition of excitatory cholinergic transmission and partly blocking the calcium channel. © 2013 Society of Chemical Industry.
Disruption of Calcium Homeostasis during Exercise as a Mediator of Bone Metabolism
2014-10-01
2013. We met the goal of having 14 women and 14 men complete EXP1. Progress on EXP1: Enrolled Screen Withdrew Randomized Withdrew Completed Failure...Before After Randomized Randomized Women 18 2 1 15 1 14 Men 22 2 3 17 3 14 Total 40 4 4 32 4 28 Reasons for withdrawals: Screening failures...Prepare annual progress report in Q4 This was accomplished. • Data from EXP1 As planned, 14 women and 14 men completed EXP1. The characteristics of
Chloride channel blockade relaxes airway smooth muscle and potentiates relaxation by β-agonists
Yim, Peter; Rinderspacher, Alison; Fu, Xiao Wen; Zhang, Yi; Landry, Donald W.; Emala, Charles W.
2014-01-01
Severe bronchospasm refractory to β-agonists continues to cause significant morbidity and mortality in asthmatic patients. We questioned whether chloride channels/transporters are novel targets for the relaxation of airway smooth muscle (ASM). We have screened a library of compounds, derivatives of anthranilic and indanyloxyacetic acid, that were originally developed to antagonize chloride channels in the kidney. We hypothesized that members of this library would be novel calcium-activated chloride channel blockers for the airway. The initial screen of this compound library identified 4 of 20 compounds that relaxed a tetraethylammonium chloride-induced contraction in guinea pig tracheal rings. The two most effective compounds, compounds 1 and 13, were further studied for their potential to either prevent the initiation of or relax the maintenance phase of an acetylcholine (ACh)-induced contraction or to potentiate β-agonist-mediated relaxation. Both relaxed an established ACh-induced contraction in human and guinea pig ex vivo ASM. In contrast, the prevention of an ACh-induced contraction required copretreatment with the sodium-potassium-chloride cotransporter blocker bumetanide. The combination of compound 13 and bumetanide also potentiated relaxation by the β-agonist isoproterenol in guinea pig tracheal rings. Compounds 1 and 13 hyperpolarized the plasma cell membrane of human ASM cells and blocked spontaneous transient inward currents, a measure of chloride currents in these cells. These functional and electrophysiological data suggest that modulating ASM chloride flux is a novel therapeutic target in asthma and other bronchoconstrictive diseases. PMID:24879056
Harris, Kate; Aylott, Mike; Cui, Yi; Louttit, James B; McMahon, Nicholas C; Sridhar, Arun
2013-08-01
Human-induced pluripotent stem cell cardiomyocytes (hiPSC-CMs) are a potential source to develop assays for predictive electrophysiological safety screening. Published studies show that the relevant physiology and pharmacology exist but does not show the translation between stem cell cardiomyocyte assays and other preclinical safety screening assays, which is crucial for drug discovery and safety scientists and the regulators. Our studies are the first to show the pharmacology of ion channel blockade and compare them with existing functional cardiac electrophysiology studies. Ten compounds (a mixture of pure hERG [E-4031 and Cisapride], hERG and sodium [Flecainide, Mexiletine, Quinidine, and Terfenadine], calcium channel blockers [Nifedipine and Verapamil], and two proprietary compounds [GSK A and B]) were tested, and results from hiPSC-CMs studied on multielectrode arrays (MEA) were compared with other preclincial models and clinical drug concentrations and effects using integrated risk assessment plots. All ion channel blockers produced (1) functional effects on repolarization and depolarization around the IC25 and IC50 values and (2) excessive blockade of hERG and/or blockade of sodium current precipitated arrhythmias. Our MEA data show that hiPSC-CMs demonstrate relevant pharmacology and show excellent correlations to current functional cardiac electrophysiological studies. Based on these results, MEA assays using iPSC-CMs offer a reliable, cost effective, and surrogate to preclinical in vitro testing, in addition to the 3Rs (refine, reduce, and replace animals in research) benefit.
Calcium and bone health in children: a review.
Stallings, V A
1997-01-01
The recent national survey shows that dietary calcium intake is variable in children and adolescents, with about half consuming less than the intake recommended by the Recommended Dietary Allowances or the National Institutes of Health Consensus Panel on Optimal Calcium Intake. Osteoporosis is a major disease in adults, resulting in 1.5 million fractures and over $10 billion in medical expenditures annually. Osteoporosis is of growing interest in the research, public health, and health consumer-lay communities and to the many primary care and specialty physicians and other health care professionals who work directly with patients with osteoporosis. Treatment of osteoporosis to prevent fracture is improving with newly introduced medications and approaches, but it is not as effective as needed. Effective prevention strategies are critical to decreasing the morbidity and mortality of the disease. Peak bone mass, obtained during childhood and adolescent growth, is one of the major determinants for the risk of developing osteoporosis and fracture. Genetic potential, gender, ethnic origins, nutritional factors such as calcium and vitamin D intake, growth patterns, and physical activity influence the accretion of bone mineral during childhood and determine the peak bone mass. Randomized, placebo-controlled intervention trials conducted in healthy children who are consuming amounts of dietary calcium in accordance with the US recommendations show that bone mass can be increased by calcium supplementation. Retrospective studies in adults suggest that childhood calcium intake is associated with risk of later osteoporosis and fracture. In addition, common childhood clinical conditions, such as low calcium intake related to lactose intolerance or the use of glucocorticoid medications for chronic illness, are risk factors for the development of osteoporosis in childhood, not just in adulthood. An approach for physicians and other pediatric care providers for screening children for low dietary calcium intake, low bone density, and other osteoporosis risk factors using dual-energy X-ray absorptiometry and the use of calcium supplementation in clinical care are presented.
Zebrafish CaV2.1 Calcium Channels Are Tailored for Fast Synchronous Neuromuscular Transmission
Naranjo, David; Wen, Hua; Brehm, Paul
2015-01-01
The CaV2.2 (N-type) and CaV2.1 (P/Q-type) voltage-dependent calcium channels are prevalent throughout the nervous system where they mediate synaptic transmission, but the basis for the selective presence at individual synapses still remains an open question. The CaV2.1 channels have been proposed to respond more effectively to brief action potentials (APs), an idea supported by computational modeling. However, the side-by-side comparison of CaV2.1 and CaV2.2 kinetics in intact neurons failed to reveal differences. As an alternative means for direct functional comparison we expressed zebrafish CaV2.1 and CaV2.2 α-subunits, along with their accessory subunits, in HEK293 cells. HEK cells lack calcium currents, thereby circumventing the need for pharmacological inhibition of mixed calcium channel isoforms present in neurons. HEK cells also have a simplified morphology compared to neurons, which improves voltage control. Our measurements revealed faster kinetics and shallower voltage-dependence of activation and deactivation for CaV2.1. Additionally, recordings of calcium current in response to a command waveform based on the motorneuron AP show, directly, more effective activation of CaV2.1. Analysis of calcium currents associated with the AP waveform indicate an approximately fourfold greater open probability (PO) for CaV2.1. The efficient activation of CaV2.1 channels during APs may contribute to the highly reliable transmission at zebrafish neuromuscular junctions. PMID:25650925
Off Label Antiviral Therapeutics for Henipaviruses: New Light Through Old Windows
Aljofan, Mohamad; Lo, Michael K.; Rota, Paul A.; Michalski, Wojtek P.; Mungall, Bruce A.
2010-01-01
Hendra and Nipah viruses are recently emerged zoonotic paramyxoviruses for which there is no vaccine or protective therapy available. While a number of experimental therapeutics and vaccines have recently been reported, all of these will require lengthy approval processes, limiting their usefulness in the short term. To address the urgent need for henipavirus therapeutics, a number of currently licensed pharmaceuticals have been evaluated for off label efficacy against henipavirus replication in vitro. Initially it was observed that compounds which released intracellular calcium stores induced a potent inhibition of henipaviruses replication, prompting the evaluation of known drugs with a similar effect on calcium mobilisation. Of the eight compounds randomly selected based on existing literature, seven inhibited virus replication in the micromolar range while the remaining compound also inhibited virus replication but only at millimolar concentrations. Pretreatment experiments with various calcium chelators, channel antagonists or endoplasmic reticulum release inhibitors supported a calcium mediated mechanism of action for five of these compounds. The mechanism of antiviral action for the remaining three compounds is currently unknown. Additionally, a number of other modulators of calcium flux, including calcium channel and calmodulin antagonists also exhibited potent antiviral activity in vitro providing a broad range of potential therapeutic options for the treatment of henipavirus infections. Importantly, as many of these compounds are currently licensed drugs, regulatory approval should be a much more streamlined process, with the caveat that appropriate in vivo efficacy can be demonstrated in animal models. PMID:20668647
Distribution of L-type calcium channels in rat thalamic neurones.
Budde, T; Munsch, T; Pape, H C
1998-02-01
One major pathway for calcium entry into neurones is through voltage-activated calcium channels. The distribution of calcium channels over the membrane surface is important for their contribution to neuronal function. Electrophysiological recordings from thalamic cells in situ and after acute isolation demonstrated the presence of high-voltage activated calcium currents. The use of specific L-type calcium channel agonists and antagonists of the dihydropyridine type revealed an about 40% contribution of L-type channels to the total high-voltage-activated calcium current. In order to localize L-type calcium channels in thalamic neurones, fluorescent dihydropyridines were used. They were combined with the fluorescent dye RH414, which allowed the use of a ratio technique and thereby the determination of channel density. The distribution of L-type channels was analysed in the three main thalamic cell types: thalamocortical relay cells, local interneurones and reticular thalamic neurones. While channel density was highest in the soma and decreased significantly in the dendritic region, channels appeared to be clustered differentially in the three types of cells. In thalamocortical cells, L-type channels were clustered in high density around the base of dendrites, while they were more evenly distributed on the soma of interneurones. Reticular thalamic neurones exhibited high density of L-type channels in more central somatic regions. The differential localization of L-type calcium channels found in this study implies their predominate involvement in the regulation of somatic and proximal dendritic calcium-dependent processes, which may be of importance for specific thalamic functions, such as those mediating the transition from rhythmic burst activity during sleep to single spike activity during wakefulness or regulating the relay of visual information.
Alteration of Motor Network Function Following Injury
2012-10-01
mechanisms from neuromodulator- dependent corre- lations of mRNA and conductance levels. Ion channel conductances are correlated across channel types...de- pendent on intracellular calcium signaling mechanisms that depend on the release of intracellular calcium stores. Because relatively rapid changes...changes in K current mag- nitudes are independently regulated by distinct mechanisms . Compensatory increases in IKCa are calcium- dependent and due, at
Early effects of carbachol on the morphology of motor endplates of mammalian skeletal muscle fibers.
Voigt, Tilman
2010-03-01
Long-term disturbance of the calcium homeostasis of motor endplates (MEPs) causes necrosis of muscle fibers. The onset of morphological changes in response to this disturbance, particularly in relation to the fiber type, is presently unknown. Omohyoid muscles of mice were incubated for 1-30 minutes in 0.1 mM carbachol, an acetylcholine agonist that causes an inward calcium current. In these muscles, the structural changes of the sarcomeres and the MEP sarcoplasm were evaluated at the light- and electron-microscopic level. Predominantly in type I fibers, carbachol incubation resulted in strong contractures of the sarcomeres underlying the MEPs. Owing to these contractures, the usual beret-like form of the MEP-associated sarcoplasm was deformed into a mushroom-like body. Consequently, the squeezed MEPs partially overlapped the adjacent muscle fiber segments. There are no signs of contractures below the MEPs if muscles were incubated in carbachol in calcium-free Tyrode's solution. Carbachol induced inward calcium current and produced fiber-type-specific contractures. This finding points to differences in the handling of calcium in MEPs. Possible mechanisms for these fiber-type-specific differences caused by carbachol-induced calcium entry are assessed.
Calcium phosphate coatings on magnesium alloys for biomedical applications: a review.
Shadanbaz, Shaylin; Dias, George J
2012-01-01
Magnesium has been suggested as a revolutionary biodegradable metal for use as an orthopaedic material. As a biocompatible and degradable metal, it has several advantages over the permanent metallic materials currently in use, including eliminating the effects of stress shielding, improving biocompatibility concerns in vivo and improving degradation properties, removing the requirement of a second surgery for implant removal. The rapid degradation of magnesium, however, is a double-edged sword as it is necessary to control the corrosion rates of the materials to match the rates of bone healing. In response, calcium phosphate coatings have been suggested as a means to control these corrosion rates. The potential calcium phosphate phases and their coating techniques on substrates are numerous and can provide several different properties for different applications. The reactivity and low melting point of magnesium, however, require specific parameters for calcium phosphate coatings to be successful. Within this review, an overview of the different calcium phosphate phases, their properties and their behaviour in vitro and in vivo has been provided, followed by the current coating techniques used for calcium phosphates that may be or may have been adapted for magnesium substrates. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Dietary Calcium Intake and Calcium Supplementation in Hungarian Patients with Osteoporosis
Szamosujvári, Pál; Dombai, Péter; Csóré, Katalin; Mikófalvi, Kinga; Steindl, Tímea; Streicher, Ildikó; Tarsoly, Júlia; Zajzon, Gergely; Somogyi, Péter; Szamosújvári, Pál; Lakatos, Péter
2013-01-01
Purpose. Adequate calcium intake is the basis of osteoporosis therapy—when this proves insufficient, even specific antiosteoporotic agents cannot exert their actions properly. Methods. Our representative survey analyzed the dietary intake and supplementation of calcium in 8033 Hungarian female and male (mean age: 68 years) (68.01 (CI95: 67.81–68.21)) patients with osteoporosis. Results. Mean intake from dietary sources was 665 ± 7.9 mg (68.01 (CI95: 67.81–68.21)) daily. A significant positive relationship could be detected between total dietary calcium intake and lumbar spine BMD (P = 0.045), whereas such correlation could not be demonstrated with femoral T-score. Milk consumption positively correlated with femur (P = 0.041), but not with lumbar BMD. The ingestion of one liter of milk daily increased the T-score by 0.133. Average intake from supplementation was 558 ± 6.2 mg (68.01 (CI95: 67.81–68.21)) daily. The cumulative dose of calcium—from both dietary intake and supplementation—was significantly associated with lumbar (r = 0.024, P = 0.049), but not with femur BMD (r = 0.021, P = 0.107). The currently recommended 1000–1500 mg total daily calcium intake was achieved in 34.5% of patients only. It was lower than recommended in 47.8% of the cases and substantially higher in 17.7% of subjects. Conclusions. We conclude that calcium intake in Hungarian osteoporotic patients is much lower than the current recommendation, while routinely applied calcium supplementation will result in inappropriately high calcium intake in numerous patients. PMID:23737777
Meredith, Rhiannon M.; van Ooyen, Arjen
2012-01-01
CA1 pyramidal neurons receive hundreds of synaptic inputs at different distances from the soma. Distance-dependent synaptic scaling enables distal and proximal synapses to influence the somatic membrane equally, a phenomenon called “synaptic democracy”. How this is established is unclear. The backpropagating action potential (BAP) is hypothesised to provide distance-dependent information to synapses, allowing synaptic strengths to scale accordingly. Experimental measurements show that a BAP evoked by current injection at the soma causes calcium currents in the apical shaft whose amplitudes decay with distance from the soma. However, in vivo action potentials are not induced by somatic current injection but by synaptic inputs along the dendrites, which creates a different excitable state of the dendrites. Due to technical limitations, it is not possible to study experimentally whether distance information can also be provided by synaptically-evoked BAPs. Therefore we adapted a realistic morphological and electrophysiological model to measure BAP-induced voltage and calcium signals in spines after Schaffer collateral synapse stimulation. We show that peak calcium concentration is highly correlated with soma-synapse distance under a number of physiologically-realistic suprathreshold stimulation regimes and for a range of dendritic morphologies. Peak calcium levels also predicted the attenuation of the EPSP across the dendritic tree. Furthermore, we show that peak calcium can be used to set up a synaptic democracy in a homeostatic manner, whereby synapses regulate their synaptic strength on the basis of the difference between peak calcium and a uniform target value. We conclude that information derived from synaptically-generated BAPs can indicate synapse location and can subsequently be utilised to implement a synaptic democracy. PMID:22719238
Expression of the P/Q (Cav2.1) calcium channel in nodose sensory neurons and arterial baroreceptors.
Tatalovic, Milos; Glazebrook, Patricia A; Kunze, Diana L
2012-06-27
The predominant calcium current in nodose sensory neurons, including the subpopulation of baroreceptor neurons, is the N-type channel, Cav2.2. It is also the primary calcium channel responsible for transmitter release at their presynaptic terminals in the nucleus of the solitary tract in the brainstem. The P/Q channel, Cav2.1, the other major calcium channel responsible for transmitter release at mammalian synapses, represents only 15-20% of total calcium current in the general population of sensory neurons and makes a minor contribution to transmitter release at the presynaptic terminal. In the present study we identified a subpopulation of the largest nodose neurons (capacitance>50pF) in which, surprisingly, Cav2.1 represents over 50% of the total calcium current, differing from the remainder of the population. Consistent with these electrophysiological data, anti-Cav2.1 antibody labeling was more membrane delimited in a subgroup of the large neurons in slices of nodose ganglia. Data reported in other synapses in the central nervous system assign different roles in synaptic information transfer to the P/Q-type versus N-type calcium channels. The study raises the possibility that the P/Q channel which has been associated with high fidelity transmission at other central synapses serves a similar function in this group of large myelinated sensory afferents, including arterial baroreceptors where a high frequency regular discharge pattern signals the pressure pulse. This contrasts to the irregular lower frequency discharge of the unmyelinated fibers that make up the majority of the sensory population and that utilize the N-type channel in synaptic transmission. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Identification of a Novel EF-Loop in the N-terminus of TRPM2 Channel Involved in Calcium Sensitivity
Luo, Yuhuan; Yu, Xiafei; Ma, Cheng; Luo, Jianhong; Yang, Wei
2018-01-01
As an oxidative stress sensor, transient receptor potential melastatin 2 (TRPM2) channel is involved in many physiological and pathological processes including warmth sensing, ischemia injury, inflammatory diseases and diabetes. Intracellular calcium is critical for TRPM2 channel activation and the IQ-like motif in the N-terminus has been shown to be important by mediating calmodulin binding. Sequence analysis predicted two potential EF-loops in the N-terminus of TRPM2. Site-directed mutagenesis combining with functional assay showed that substitution with alanine of several residues, most of which are conserved in the typical EF-loop, including D267, D278, D288, and E298 dramatically reduced TRPM2 channel currents. By further changing the charges or side chain length of these conserved residues, our results indicate that the negative charge of D267 and the side chain length of D278 are critical for calcium-induced TRPM2 channel activation. G272I mutation also dramatically reduced the channel currents, suggesting that this site is critical for calcium-induced TRPM2 channel activation. Furthermore, D267A mutant dramatically reduced the currents induced by calcium alone compared with that by ADPR, indicating that D267 residue in D267–D278 motif is the most important site for calcium sensitivity of TRPM2. In addition, inside-out recordings showed that mutations at D267, G272, D278, and E298 had no effect on single-channel conductance. Taken together, our data indicate that D267–D278 motif in the N-terminus as a novel EF-loop is critical for calcium-induced TRPM2 channel activation.
Premixed calcium silicate cement for endodontic applications
Persson, Cecilia; Engqvist, Håkan
2011-01-01
Calcium silicate-based materials (also called MTA) are increasingly being used in endodontic applications. However, the handling properties of MTA are not optimal when it comes to injectability and cohesion. Premixing the cements using glycerol avoids these issues. However, there is a lack of data on the effect of common cement variables on important properties of premixed cements for endodontic applications. In this study, the effects of liquid-to-powder ratio, amount of radiopacifier and amount of calcium sulfate (added to control the setting time) were screened using a statistical model. In the second part of the study, the liquid-to-powder ratio was optimized for cements containing three different amounts of radiopacifier. Finally, the effect of using glycerol rather than water was evaluated in terms of radiopacity. The setting time was found to increase with the amount of radiopacifier when the liquid-to-powder ratio was fixed. This was likely due to the higher density of the radiopacifier in comparison to the calcium silicate, which gave a higher liquid-to-powder ratio in terms of volume. Using glycerol rather than water to mix the cements led to a decrease in radiopacity of the cement. In conclusion, we were able to produce premixed calcium silicate cements with acceptable properties for use in endodontic applications. PMID:23507729
Persson, Cecilia; Engqvist, Håkan
2011-01-01
Calcium silicate-based materials (also called MTA) are increasingly being used in endodontic applications. However, the handling properties of MTA are not optimal when it comes to injectability and cohesion. Premixing the cements using glycerol avoids these issues. However, there is a lack of data on the effect of common cement variables on important properties of premixed cements for endodontic applications. In this study, the effects of liquid-to-powder ratio, amount of radiopacifier and amount of calcium sulfate (added to control the setting time) were screened using a statistical model. In the second part of the study, the liquid-to-powder ratio was optimized for cements containing three different amounts of radiopacifier. Finally, the effect of using glycerol rather than water was evaluated in terms of radiopacity. The setting time was found to increase with the amount of radiopacifier when the liquid-to-powder ratio was fixed. This was likely due to the higher density of the radiopacifier in comparison to the calcium silicate, which gave a higher liquid-to-powder ratio in terms of volume. Using glycerol rather than water to mix the cements led to a decrease in radiopacity of the cement. In conclusion, we were able to produce premixed calcium silicate cements with acceptable properties for use in endodontic applications.
Vitamin D deficiency in HIV-infected postmenopausal Hispanic and African-American women
Stein, E. M.; McMahon, D. J.; Shu, A.; Zhang, C. A.; Ferris, D. C.; Colon, I.; Dobkin, J. F.; Hammer, S. M.; Shane, E.
2011-01-01
Summary We evaluated vitamin D status in HIV+ and HIV− postmenopausal African-American (AA) and Hispanic women. Most women (74–78%) had insufficient 25-hydroxyvitamin D (25OHD) levels, regardless of HIV status. 25OHD was lower in AA women and women lacking supplement use, providing support for screening and supplementation. Among HIV+ women, 25OHD was associated with current CD4 but not type of antiretroviral therapy. Introduction To evaluate vitamin D status and factors associated with vitamin D deficiency and insufficiency in HIV-infected (HIV+) postmenopausal minority women. Methods In this cross-sectional study, 89 HIV+ and 95 HIV− postmenopausal women (33% AA and 67% Hispanic) underwent assessment of 25OHD, 1,25-dihydroxyvitamin D, parathyroid hormone, markers of bone turnover and bone mineral density by dual energy X-ray absorptiometry. Results The prevalence of low 25OHD did not differ by HIV status; the majority of both HIV+ and HIV− women (74–78%) had insufficient levels (<30 ng/ml). Regardless of HIV status, 25OHD was significantly lower in AA subjects, and higher in subjects who used both calcium and multi-vitamins. In HIV+ women on antiretroviral therapy (ART), 25OHD was directly associated with current CD4 count (r= 0.32; p<0.01) independent of age, ethnicity, BMI, or history of AIDS-defining illness. No association was observed between 1,25(OH)2D and CD4 count or between serum 25OHD, 1,25(OH)2D or PTH and type of ART. Conclusions In postmenopausal minority women, vitamin D deficiency was highly prevalent and associated with AA race and lack of supplement use, as well as lower current CD4 cell count. These results provide support for screening and repletion of vitamin D in HIV+ patients. PMID:20585939
Ase, Ariel R; Honson, Nicolette S; Zaghdane, Helmi; Pfeifer, Tom A; Séguéla, Philippe
2015-04-01
P2X4 is an ATP-gated nonselective cation channel highly permeable to calcium. There is increasing evidence that this homomeric purinoceptor, which is expressed in several neuronal and immune cell types, is involved in chronic pain and inflammation. The current paucity of unambiguous pharmacological tools available to interrogate or modulate P2X4 function led us to pursue the search for selective antagonists. In the high-throughput screen of a compound library, we identified the phenylurea BX430 (1-(2,6-dibromo-4-isopropyl-phenyl)-3-(3-pyridyl)urea, molecular weight = 413), with antagonist properties on human P2X4-mediated calcium uptake. Patch-clamp electrophysiology confirmed direct inhibition of P2X4 currents by extracellular BX430, with submicromolar potency (IC50 = 0.54 µM). BX430 is highly selective, having virtually no functional impact on all other P2X subtypes, namely, P2X1-P2X3, P2X5, and P2X7, at 10-100 times its IC50. Unexpected species differences were noticed, as BX430 is a potent antagonist of zebrafish P2X4 but has no effect on rat and mouse P2X4 orthologs. The concentration-response curve for ATP on human P2X4 in the presence of BX430 shows an insurmountable blockade, indicating a noncompetitive allosteric mechanism of action. Using a fluorescent dye uptake assay, we observed that BX430 also effectively suppresses ATP-evoked and ivermectin-potentiated membrane permeabilization induced by P2X4 pore dilation. Finally, in single-cell calcium imaging, we validated its selective inhibitory effects on native P2X4 channels at the surface of human THP-1 cells that were differentiated into macrophages. In summary, this ligand provides a novel molecular probe to assess the specific role of P2X4 in inflammatory and neuropathic conditions, where ATP signaling has been shown to be dysfunctional. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.
Allmendinger, Thomas; Kunz, Andreas S; Veyhl-Wichmann, Maike; Ergün, Süleyman; Bley, Thorsten A; Petritsch, Bernhard
2017-01-01
Background Coronary artery calcium (CAC) scoring is a widespread tool for cardiac risk assessment in asymptomatic patients and accompanying possible adverse effects, i.e. radiation exposure, should be as low as reasonably achievable. Purpose To evaluate a new iterative reconstruction (IR) algorithm for dose reduction of in vitro coronary artery calcium scoring at different tube currents. Material and Methods An anthropomorphic calcium scoring phantom was scanned in different configurations simulating slim, average-sized, and large patients. A standard calcium scoring protocol was performed on a third-generation dual-source CT at 120 kVp tube voltage. Reference tube current was 80 mAs as standard and stepwise reduced to 60, 40, 20, and 10 mAs. Images were reconstructed with weighted filtered back projection (wFBP) and a new version of an established IR kernel at different strength levels. Calcifications were quantified calculating Agatston and volume scores. Subjective image quality was visualized with scans of an ex vivo human heart. Results In general, Agatston and volume scores remained relatively stable between 80 and 40 mAs and increased at lower tube currents, particularly in the medium and large phantom. IR reduced this effect, as both Agatston and volume scores decreased with increasing levels of IR compared to wFBP (P < 0.001). Depending on selected parameters, radiation dose could be lowered by up to 86% in the large size phantom when selecting a reference tube current of 10 mAs with resulting Agatston levels close to the reference settings. Conclusion New iterative reconstruction kernels may allow for reduction in tube current for established Agatston scoring protocols and consequently for substantial reduction in radiation exposure. PMID:28607763
Saegusa, Noriko; Garg, Vivek
2013-01-01
The contribution of transient outward current (Ito) to changes in ventricular action potential (AP) repolarization induced by acidosis is unresolved, as is the indirect effect of these changes on calcium handling. To address this issue we measured intracellular pH (pHi), Ito, L-type calcium current (ICa,L), and calcium transients (CaTs) in rabbit ventricular myocytes. Intracellular acidosis [pHi 6.75 with extracellular pH (pHo) 7.4] reduced Ito by ∼50% in myocytes with both high (epicardial) and low (papillary muscle) Ito densities, with little effect on steady-state inactivation and activation. Of the two candidate α-subunits underlying Ito, human (h)Kv4.3 and hKv1.4, only hKv4.3 current was reduced by intracellular acidosis. Extracellular acidosis (pHo 6.5) shifted Ito inactivation toward less negative potentials but had negligible effect on peak current at +60 mV when initiated from −80 mV. The effects of low pHi-induced inhibition of Ito on AP repolarization were much greater in epicardial than papillary muscle myocytes and included slowing of phase 1, attenuation of the notch, and elevation of the plateau. Low pHi increased AP duration in both cell types, with the greatest lengthening occurring in epicardial myocytes. The changes in epicardial AP repolarization induced by intracellular acidosis reduced peak ICa,L, increased net calcium influx via ICa,L, and increased CaT amplitude. In summary, in contrast to low pHo, intracellular acidosis has a marked inhibitory effect on ventricular Ito, perhaps mediated by Kv4.3. By altering the trajectory of the AP repolarization, low pHi has a significant indirect effect on calcium handling, especially evident in epicardial cells. PMID:23585132
PHz current switching in calcium fluoride single crystal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwon, Ojoon; Kim, D., E-mail: kimd@postech.ac.kr; Max Planck Center for Attosecond Science, Max Planck POSTECH/Korea Res. Init., Pohang 37673
2016-05-09
We demonstrate that a current can be induced and switched in a sub-femtosecond time-scale in an insulating calcium fluoride single crystal by an intense optical field. This measurement indicates that a sizable current can be generated and also controlled by an optical field in a dielectric medium, implying the capability of rapid current switching at a rate of optical frequency, PHz (10{sup 15} Hz), which is a couple of orders of magnitude higher than that of contemporary electronic signal processing. This demonstration may serve to facilitate the development of ultrafast devices in PHz frequency.
Rapid communication between neurons and astrocytes in primary cortical cultures.
Murphy, T H; Blatter, L A; Wier, W G; Baraban, J M
1993-06-01
The identification of neurotransmitter receptors and voltage-sensitive ion channels on astrocytes (reviewed by Barres, 1991) has renewed interest in how these cells respond to neuronal activity. To investigate the physiology of neuron astrocyte signaling, we have employed primary cortical cultures that contain both neuronal and glial cells. As the neurons in these cultures exhibit synchronous spontaneous synaptic activity, we have used both calcium imaging and whole-cell recording techniques to identify physiological activity in astrocytes related to neuronal activity. Whole-cell voltage-clamp records from astrocytes revealed rapid inward currents that coincide with bursts of electrical activity in neighboring neurons. Calcium imaging studies demonstrate that these currents in astrocytes are not always associated with slowly propagating calcium waves. Inclusion of the dye Lucifer yellow within patch pipettes confirmed that astrocytes are extensively coupled to each other but not to adjacent neurons, indicating that the currents observed are not due to gap junction connections between these cell types. These currents do not reflect widespread diffusion of glutamate or potassium released during neuronal activity since a population of small, round, multipolar presumed glial cells that are not dye coupled to adjacent cells did not display electrical currents coincident with neuronal firing, even though they respond to locally applied glutamate and potassium. These findings indicate that, in addition to the relatively slow signaling conveyed by calcium waves, astrocytes also display rapid electrical responses to neuronal activity.
Joshua M. Halman; Paul G. Schaberg; Gary J. Hawley; Christopher Eagar
2008-01-01
In fall (November 2005) and winter (February 2006), we collected current-year foliage of native red spruce (Picea rubens Sarg.) growing in a reference watershed and in a watershed treated in 1999 with wollastonite (CaSiO3, a slow-release calcium source) to simulate preindustrial soil calcium concentrations (Ca-addition...
Model of Inclusion Evolution During Calcium Treatment in the Ladle Furnace
NASA Astrophysics Data System (ADS)
Tabatabaei, Yousef; Coley, Kenneth S.; Irons, Gordon A.; Sun, Stanley
2018-04-01
Calcium treatment of steel is typically employed to modify alumina inclusions to liquid calcium aluminates. However, injected calcium also reacts with the dissolved sulfur to form calcium sulfide. The current work aims to develop a kinetic model for the evolution of oxide and sulfide inclusions in Al-killed alloyed steel during Ca treatment in the ladle refining process. The model considers dissolution of the calcium from the calcium bubbles into the steel and reduction of calcium oxide in the slag to dissolved calcium. A steel-inclusion kinetic model is used for mass transfer to the inclusion interface and diffusion within the calcium aluminate phases formed on the inclusion. The inclusion-steel kinetic model is then coupled with a previously developed steel-slag kinetic model. The coupled inclusion-steel-slag kinetic model is applied to the chemical composition changes in molten steel, slag, and evolution of inclusions in the ladle. The result of calculations is found to agree well with an industrial heat for species in the steel as well as inclusions during Ca treatment.
Male osteoporosis: clinical approach and management in family practice
Goh, Lay Hoon; How, Choon How; Lau, Tang Ching
2014-01-01
In Singapore, male osteoporosis is gaining greater importance due to our ageing population. Family physicians should screen for osteoporosis in elderly men and men with risk factors or secondary causes for the condition. A bone mineral density (BMD) test is used for diagnosis. FRAX® can be used to predict the absolute ten-year fracture risk. Management includes reduction of risk factors or secondary causes, fall prevention, appropriate physical activity and a diet adequate in calcium and vitamin D. Referrals to specialists for evaluation and therapy can be considered, particularly for younger men with more severe disease. Current first-line drug treatment includes bisphosphonates and teriparatide. Testosterone increases BMD of the spine, but data on fracture risk reduction is unavailable. Public and physician education with the involvement of health authorities can create greater awareness of this silent condition, which can lead to complications, morbidity and death, if left untreated. PMID:25091882
Chemoprevention of colorectal cancer: systematic review and economic evaluation.
Cooper, K; Squires, H; Carroll, C; Papaioannou, D; Booth, A; Logan, R F; Maguire, C; Hind, D; Tappenden, P
2010-06-01
Colorectal cancer (CRC) is the third most common cancer in the UK: incidence increases with age, median age at diagnosis being over 70 years. Approximately 25% of cases occur in individuals with a family history of CRC, including 5% caused by familial adenomatous polyposis (FAP) or hereditary non-polyposis CRC (HNPCC). Most develop from adenomatous polyps arising from the intestine lining. Individuals with these polyps undergo polypectomy and are invited for endoscopic surveillance. Screening via faecal occult blood testing has been rolled out across the UK. To evaluate the clinical effectiveness and cost-effectiveness of drug and micronutrient interventions for the prevention of CRC and/or adenomatous polyps. Interventions considered include: non-steroidal anti-inflammatory drugs (NSAIDs), including aspirin and cyclo-oxygenase-2 (COX-2) inhibitors; folic acid; calcium; vitamin D and antioxidants (including vitamin A, vitamin C, vitamin E, selenium and beta-carotene). Chemoprevention was assessed in the general population, in individuals at increased risk of CRC, and in individuals with FAP or HNPCC. A systematic review identified randomised controlled trials (RCTs) assessing drug and nutritional agents for the prevention of CRC or adenomatous polyps. A separate search identified qualitative studies relating to individuals' views, attitudes and beliefs about chemoprevention. MEDLINE, MEDLINE In-Process & Other Non-Indexed Citations, EMBASE, CINAHL, the Cochrane Database of Systematic Reviews, Cochrane CENTRAL Register of Controlled Trials, DARE, NHS-EED (NHS Economic Evaluation Database), HTA database, Science Citation Index, BIOSIS previews and the Current Controlled Trials research register were searched in June 2008. Data were extracted by one reviewer and checked by a second. The synthesis methods used were systematic review and meta-analysis for RCTs and qualitative framework synthesis for qualitative studies. A health economic model was developed to assess the cost-effectiveness of chemoprevention for two populations with different levels of risk of developing CRC: the general population and an intermediate-risk population. The search identified 44 relevant RCTs and six ongoing studies. A small study of aspirin in FAP patients produced no statistically significant reduction in polyp number but a possible reduction in polyp size. There was a statistically significant 21% reduction in risk of adenoma recurrence [relative risk (RR) 0.79, 95% confidence interval (CI) 0.68 to 0.92] in an analysis of aspirin versus no aspirin in individuals with a history of adenomas or CRC. In the general population, a significant 26% reduction in CRC incidence was demonstrated in studies with a 23-year follow-up (RR 0.74, 95% CI 0.57 to 0.97). Non-aspirin NSAID use in FAP individuals produced a non-statistically significant reduction in adenoma incidence after 4 years of treatment and follow-up and reductions in polyp number and size. In individuals with a history of adenomas there was a statistically significant 34% reduction in adenoma recurrence risk (RR 0.66, 95% CI 0.60 to 0.72) and a statistically significant 55% reduction in advanced adenoma incidence (RR 0.45, 95% CI 0.35 to 0.58). No studies assessed the effect of non-aspirin NSAIDs in the general population. There were no studies of folic acid in individuals with FAP or HNPCC. There was no significant effect of folic acid versus placebo on adenoma recurrence (RR 1.16, 95% CI 0.97 to 1.39) or advanced adenoma incidence in individuals with a history of adenomas. In the general population there was no significant effect of folic acid on risk of CRC (RR 1.13, 95% CI 0.77 to 1.64), although studies were of relatively short duration. Calcium use by FAP patients produced no significant reduction in polyp number or disease progression. In individuals with a history of adenomas there was a statistically significant 18% reduction in risk of adenoma recurrence (RR 0.82, 95% CI 0.69 to 0.98) and a non-significant reduction in risk of advanced adenomas (RR 0.77, 95% CI 0.50 to 1.17). In the general population there was no significant effect of calcium on risk of CRC (RR 1.08, 95% CI 0.87 to 1.34), although studies were of relatively short duration. There were no studies of antioxidant use in individuals with FAP or HNPCC, and in individuals with a history of adenomas no statistically significant differences in relative risk of adenoma recurrence were found. In the general population there was no difference in incidence of CRC (RR 1.00, 95% CI 0.88 to 1.13) with antioxidant use compared with no antioxidant use. Twenty studies reported qualitative findings concerning chemoprevention. People are more likely to use NSAIDs if there is a strong perceived need. Perceptions of risk and benefit also influence decision-making and use. People have fewer concerns about using antioxidants or other supplements, but their perception of the benefits of these agents is less well-defined. The model analysis suggested that the most cost-effective age-range policy in the general population would be to provide chemoprevention to all individuals within the general population from age 50 to 60 years. The use of aspirin in addition to screening within the general population is likely to result in a discounted cost per life-year gained of around 10,000 pounds and a discounted cost per quality-adjusted life-year (QALY) gained of around 23,000 pounds compared with screening alone. In the intermediate-risk group the most economically viable age-range policy would be to provide chemoprevention to individuals following polypectomy aged 61 to 70 years. Calcium is likely to have a discounted cost per QALY gained of around 8000 pounds compared with screening alone. Although aspirin in addition to screening should be more effective and less costly than screening alone, under the current assumptions of benefits to harms of aspirin and calcium, aspirin is expected to be extendedly dominated by calcium. Whilst a number of studies were included in the review, the duration of follow-up was generally insufficient to detect an effect on cancer incidence. Given the uncertainties and ambiguities in the evidence base, the results of the health economic analysis should be interpreted with caution. Aspirin and celecoxib may reduce recurrence of adenomas and incidence of advanced adenomas in individuals with an increased risk of CRC and calcium may reduce recurrence of adenomas in this group. COX-2 inhibitors may decrease polyp number in patients with FAP. There is some evidence for aspirin reducing the incidence of CRC in the general population. Both aspirin and NSAIDs are associated with adverse effects so it will be important to consider the risk-benefit ratio before recommending these agents for chemoprevention. The economic analysis suggests that chemoprevention has the potential to represent a cost-effective intervention, particularly when targeted at intermediate-risk populations following polypectomy.
Almanza, Angélica; Vega, Rosario; Soto, Enrique
2003-12-24
The low voltage gain in type I hair cells implies that neurotransmitter release at their afferent synapse should be mediated by low voltage activated calcium channels, or that some peculiar mechanism should be operating in this synapse. With the patch clamp technique, we studied the characteristics of the Ca(2+) current in type I hair cells enzymatically dissociated from rat semicircular canal crista ampullaris. Calcium current in type I hair cells exhibited a slow inactivation (during 2-s depolarizing steps), was sensitive to nimodipine and was blocked by Cd(2+) and Ni(2+). This current was activated at potentials above -60 mV, had a mean half maximal activation of -36 mV, and exhibited no steady-state inactivation at holding potentials between -100 and -60 mV. This data led us to conclude that hair cell Ca(2+) current is most likely of the L type. Thus, other mechanisms participating in neurotransmitter release such as K(+) accumulation in the synaptic cleft, modulation of K(+) currents by nitric oxide, participation of a Na(+) current and possible metabotropic cascades activated by depolarization should be considered.
Calcium Balance in Chronic Kidney Disease.
Hill Gallant, Kathleen M; Spiegel, David M
2017-06-01
The kidneys play a critical role in the balance between the internal milieu and external environment. Kidney failure is known to disrupt a number of homeostatic mechanisms that control serum calcium and normal bone metabolism. However, our understanding of calcium balance throughout the stages of chronic kidney disease is limited and the concept of balance itself, especially with a cation as complex as calcium, is often misunderstood. Both negative and positive calcium balance have important implications in patients with chronic kidney disease, where negative balance may increase risk of osteoporosis and fracture and positive balance may increase risk of vascular calcification and cardiovascular events. Here, we examine the state of current knowledge about calcium balance in adults throughout the stages of chronic kidney disease and discuss recommendations for clinical strategies to maintain balance as well as future research needs in this area. Recent calcium balance studies in adult patients with chronic kidney disease show that neutral calcium balance is achieved with calcium intake near the recommended daily allowance. Increases in calcium through diet or supplements cause high positive calcium balance, which may put patients at risk for vascular calcification. However, heterogeneity in calcium balance exists among these patients. Given the available calcium balance data in this population, it appears clinically prudent to aim for recommended calcium intakes around 1000 mg/day to achieve neutral calcium balance and avoid adverse effects of either negative or positive calcium balance. Assessment of patients' dietary calcium intake could further equip clinicians to make individualized recommendations for meeting recommended intakes.
Calcium-bismuth electrodes for large-scale energy storage (liquid metal batteries)
NASA Astrophysics Data System (ADS)
Kim, Hojong; Boysen, Dane A.; Ouchi, Takanari; Sadoway, Donald R.
2013-11-01
Calcium is an attractive electrode material for use in grid-scale electrochemical energy storage due to its low electronegativity, earth abundance, and low cost. The feasibility of combining a liquid Ca-Bi positive electrode with a molten salt electrolyte for use in liquid metal batteries at 500-700 °C was investigated. Exhibiting excellent reversibility up to current densities of 200 mA cm-2, the calcium-bismuth liquid alloy system is a promising positive electrode candidate for liquid metal batteries. The measurement of low self-discharge current suggests that the solubility of calcium metal in molten salt electrolytes can be sufficiently suppressed to yield high coulombic efficiencies >98%. The mechanisms giving rise to Ca-Bi electrode overpotentials were investigated in terms of associated charge transfer and mass transport resistances. The formation of low density Ca11Bi10 intermetallics at the electrode-electrolyte interface limited the calcium deposition rate capability of the electrodes; however, the co-deposition of barium into bismuth from barium-containing molten salts suppressed Ca-Bi intermetallic formation thereby improving the discharge capacity.
Schaaf, Tory M.; Peterson, Kurt C.; Grant, Benjamin D.; Bawaskar, Prachi; Yuen, Samantha; Li, Ji; Muretta, Joseph M.; Gillispie, Gregory D.; Thomas, David D.
2017-01-01
A robust high-throughput screening (HTS) strategy has been developed to discover small-molecule effectors targeting the sarco/endoplasmic reticulum calcium ATPase (SERCA), based on a fluorescence microplate reader that records both the nanosecond decay waveform (lifetime mode) and the complete emission spectrum (spectral mode), with high precision and speed. This spectral unmixing plate reader (SUPR) was used to screen libraries of small molecules with a fluorescence resonance energy transfer (FRET) biosensor expressed in living cells. Ligand binding was detected by FRET associated with structural rearrangements of green (GFP, donor) and red (RFP, acceptor) fluorescent proteins fused to the cardiac-specific SERCA2a isoform. The results demonstrate accurate quantitation of FRET along with high precision of hit identification. Fluorescence lifetime analysis resolved SERCA’s distinct structural states, providing a method to classify small-molecule chemotypes on the basis of their structural effect on the target. The spectral analysis was also applied to flag interference by fluorescent compounds. FRET hits were further evaluated for functional effects on SERCA’s ATPase activity via both a coupled-enzyme assay and a FRET-based calcium sensor. Concentration-response curves indicated excellent correlation between FRET and function. These complementary spectral and lifetime FRET detection methods offer an attractive combination of precision, speed, and resolution for HTS. PMID:27899691
Distinguishing mechanisms for alternans in cardiac cells using constant-diastolic-interval pacing
NASA Astrophysics Data System (ADS)
Cherry, Elizabeth M.
2017-09-01
Alternans, a proarrhythmic dynamical state in which cardiac action potentials alternate between long and short durations despite a constant pacing period, traditionally has been explained at the cellular level using nonlinear dynamics principles under the assumption that the action potential duration (APD) is determined solely by the time elapsed since the end of the previous action potential, called the diastolic interval (DI). In this scenario, APDs at a steady state should be the same provided that the preceding DIs are the same. Nevertheless, experiments attempting to eliminate alternans by dynamically adjusting the timing of pacing stimuli to keep the DI constant showed that alternans persisted, contradicting the traditional theory. It is now widely known that alternans also can arise from a different mechanism associated with intracellular calcium cycling. Our goal is to determine whether intracellular calcium dynamics can explain the experimental findings regarding the persistence of alternans despite a constant DI. For this, we use mathematical models capable of producing alternans through both voltage- and calcium-mediated mechanisms. We show that for voltage-driven alternans, action potentials elicited from a constant-DI protocol are always the same. However, in the case of calcium-driven alternans, the constant-DI protocol can result in alternans. Reducing the strength of the calcium instability progressively reduces and finally eliminates constant-DI alternans. Our findings suggest that screening for the presence of alternans using a constant-DI protocol has the potential for differentiating between voltage-driven and calcium-driven alternans.
Rosanoff, Andrea; Dai, Qi; Shapses, Sue A
2016-01-01
Although much is known about magnesium, its interactions with calcium and vitamin D are less well studied. Magnesium intake is low in populations who consume modern processed-food diets. Low magnesium intake is associated with chronic diseases of global concern [e.g., cardiovascular disease (CVD), type 2 diabetes, metabolic syndrome, and skeletal disorders], as is low vitamin D status. No simple, reliable biomarker for whole-body magnesium status is currently available, which makes clinical assessment and interpretation of human magnesium research difficult. Between 1977 and 2012, US calcium intakes increased at a rate 2–2.5 times that of magnesium intakes, resulting in a dietary calcium to magnesium intake ratio of >3.0. Calcium to magnesium ratios <1.7 and >2.8 can be detrimental, and optimal ratios may be ∼2.0. Background calcium to magnesium ratios can affect studies of either mineral alone. For example, US studies (background Ca:Mg >3.0) showed benefits of high dietary or supplemental magnesium for CVD, whereas similar Chinese studies (background Ca:Mg <1.7) showed increased risks of CVD. Oral vitamin D is widely recommended in US age-sex groups with low dietary magnesium. Magnesium is a cofactor for vitamin D biosynthesis, transport, and activation; and vitamin D and magnesium studies both showed associations with several of the same chronic diseases. Research on possible magnesium and vitamin D interactions in these human diseases is currently rare. Increasing calcium to magnesium intake ratios, coupled with calcium and vitamin D supplementation coincident with suboptimal magnesium intakes, may have unknown health implications. Interactions of low magnesium status with calcium and vitamin D, especially during supplementation, require further study. PMID:26773013
McCollough, Cynthia H; Ulzheimer, Stefan; Halliburton, Sandra S; Shanneik, Kaiss; White, Richard D; Kalender, Willi A
2007-05-01
To develop a consensus standard for quantification of coronary artery calcium (CAC). A standard for CAC quantification was developed by a multi-institutional, multimanufacturer international consortium of cardiac radiologists, medical physicists, and industry representatives. This report specifically describes the standardization of scan acquisition and reconstruction parameters, the use of patient size-specific tube current values to achieve a prescribed image noise, and the use of the calcium mass score to eliminate scanner- and patient size-based variations. An anthropomorphic phantom containing calibration inserts and additional phantom rings were used to simulate small, medium-size, and large patients. The three phantoms were scanned by using the recommended protocols for various computed tomography (CT) systems to determine the calibration factors that relate measured CT numbers to calcium hydroxyapatite density and to determine the tube current values that yield comparable noise values. Calculation of the calcium mass score was standardized, and the variance in Agatston, volume, and mass scores was compared among CT systems. Use of the recommended scanning parameters resulted in similar noise for small, medium-size, and large phantoms with all multi-detector row CT scanners. Volume scores had greater interscanner variance than did Agatston and calcium mass scores. Use of a fixed calcium hydroxyapatite density threshold (100 mg/cm(3)), as compared with use of a fixed CT number threshold (130 HU), reduced interscanner variability in Agatston and calcium mass scores. With use of a density segmentation threshold, the calcium mass score had the smallest variance as a function of patient size. Standardized quantification of CAC yielded comparable image noise, spatial resolution, and mass scores among different patient sizes and different CT systems and facilitated reduced radiation dose for small and medium-size patients.
Rosanoff, Andrea; Dai, Qi; Shapses, Sue A
2016-01-01
Although much is known about magnesium, its interactions with calcium and vitamin D are less well studied. Magnesium intake is low in populations who consume modern processed-food diets. Low magnesium intake is associated with chronic diseases of global concern [e.g., cardiovascular disease (CVD), type 2 diabetes, metabolic syndrome, and skeletal disorders], as is low vitamin D status. No simple, reliable biomarker for whole-body magnesium status is currently available, which makes clinical assessment and interpretation of human magnesium research difficult. Between 1977 and 2012, US calcium intakes increased at a rate 2-2.5 times that of magnesium intakes, resulting in a dietary calcium to magnesium intake ratio of >3.0. Calcium to magnesium ratios <1.7 and >2.8 can be detrimental, and optimal ratios may be ∼2.0. Background calcium to magnesium ratios can affect studies of either mineral alone. For example, US studies (background Ca:Mg >3.0) showed benefits of high dietary or supplemental magnesium for CVD, whereas similar Chinese studies (background Ca:Mg <1.7) showed increased risks of CVD. Oral vitamin D is widely recommended in US age-sex groups with low dietary magnesium. Magnesium is a cofactor for vitamin D biosynthesis, transport, and activation; and vitamin D and magnesium studies both showed associations with several of the same chronic diseases. Research on possible magnesium and vitamin D interactions in these human diseases is currently rare. Increasing calcium to magnesium intake ratios, coupled with calcium and vitamin D supplementation coincident with suboptimal magnesium intakes, may have unknown health implications. Interactions of low magnesium status with calcium and vitamin D, especially during supplementation, require further study. © 2016 American Society for Nutrition.
Gautier, Hélène; Auger, Jacques; Legros, Christian; Lapied, Bruno
2008-01-01
Dimethyl disulfide (DMDS), a plant-derived insecticide, is a promising fumigant as a substitute for methyl bromide. To further understand the mode of action of DMDS, we examined its effect on cockroach octopaminergic neurosecretory cells, called dorsal unpaired median (DUM) neurons, using whole-cell patch-clamp technique, calcium imaging and antisense oligonucleotide strategy. At low concentration (1 microM), DMDS modified spontaneous regular spike discharge into clear bursting activity associated with a decrease of the amplitude of the afterhyperpolarization. This effect led us to suspect alterations of calcium-activated potassium currents (IKCa) and [Ca(2+)](i) changes. We showed that DMDS reduced amplitudes of both peak transient and sustained components of the total potassium current. IKCa was confirmed as a target of DMDS by using iberiotoxin, cadmium chloride, and pSlo antisense oligonucleotide. In addition, we showed that DMDS induced [Ca(2+)](i) rise in Fura-2-loaded DUM neurons. Using calcium-free solution, and (R,S)-(3,4-dihydro-6,7-dimethoxy-isoquinoline-1-yl)-2-phenyl-N,N-di-[2-(2,3,4-trimethoxy-phenyl)ethyl]-acetamide (LOE 908) [an inhibitor of transient receptor potential (TRP)gamma], we demonstrated that TRPgamma initiated calcium influx. By contrast, omega-conotoxin GVIA (an inhibitor of N-type high-voltage-activated calcium channels), did not affect the DMDS-induced [Ca(2+)](i) rise. Finally, the participation of the calcium-induced calcium release mechanism was investigated using thapsigargin, caffeine, and ryanodine. Our study revealed that DMDS-induced elevation in [Ca(2+)](i) modulated IKCa in an unexpected bell-shaped manner via intracellular calcium. In conclusion, DMDS affects multiple targets, which could be an effective way to improve pest control efficacy of fumigation.
Weyhrauch, Derek L; Ye, Dan; Boczek, Nicole J; Tester, David J; Gavrilova, Ralitza H; Patterson, Marc C; Wieben, Eric D; Ackerman, Michael J
2016-02-01
A 4-year-old boy born at 37 weeks' gestation with intrauterine growth retardation presented with developmental delay with pronounced language and gross motor delay, axial hypotonia, and dynamic hypertonia of the extremities. Investigations including the Minnesota Newborn Screen, thyroid stimulating hormone/thyroxin, and inborn errors of metabolism screening were negative. Cerebral magnetic resonance imaging and spectroscopy were normal. Genetic testing was negative for coagulopathy, Smith-Lemli-Opitz, fragile X, and Prader-Willi/Angelman syndromes. Whole genome array analysis was unremarkable. Whole exome sequencing was performed through a commercial testing laboratory to elucidate the underlying etiology for the child's presentation. A de novo mutation was hypothesized. In attempt to establish pathogenicity of our candidate variant, cellular electrophysiologic functional analysis of the putative de novo mutation was performed using patch-clamp technology. Whole exome sequencing revealed a p.P1353L variant in the CACNA1A gene, which encodes for the α1-subunit of the brain-specific P/Q-type calcium channel (CaV2.1). This presynaptic high-voltage-gated channel couples neuronal excitation to the vesicular release of neurotransmitter and is implicated in several neurologic disorders. DNA Sanger sequencing confirmed that the de novo mutation was absent in both parents and present in the child only. Electrophysiologic analysis of P1353L-CACNA1A demonstrated near complete loss of function, with a 95% reduction in peak current density. Whole exome sequencing coupled with cellular electrophysiologic functional analysis of a de novoCACNA1A missense mutation has elucidated the probable underlying pathophysiologic mechanism responsible for the child's phenotype. Genetic testing of CACNA1A in patients with congenital hypotonia and developmental delay may be warranted. Copyright © 2016. Published by Elsevier Inc.
Monitoring Endoplasmic Reticulum Calcium Homeostasis Using a Gaussia Luciferase SERCaMP.
Henderson, Mark J; Wires, Emily S; Trychta, Kathleen A; Yan, Xiaokang; Harvey, Brandon K
2015-09-06
The endoplasmic reticulum (ER) contains the highest level of intracellular calcium, with concentrations approximately 5,000-fold greater than cytoplasmic levels. Tight control over ER calcium is imperative for protein folding, modification and trafficking. Perturbations to ER calcium can result in the activation of the unfolded protein response, a three-prong ER stress response mechanism, and contribute to pathogenesis in a variety of diseases. The ability to monitor ER calcium alterations during disease onset and progression is important in principle, yet challenging in practice. Currently available methods for monitoring ER calcium, such as calcium-dependent fluorescent dyes and proteins, have provided insight into ER calcium dynamics in cells, however these tools are not well suited for in vivo studies. Our lab has demonstrated that a modification to the carboxy-terminus of Gaussia luciferase confers secretion of the reporter in response to ER calcium depletion. The methods for using a luciferase based, secreted ER calcium monitoring protein (SERCaMP) for in vitro and in vivo applications are described herein. This video highlights hepatic injections, pharmacological manipulation of GLuc-SERCaMP, blood collection and processing, and assay parameters for longitudinal monitoring of ER calcium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grasso, P.; Santa-Coloma, T.A.; Reichert, L.E. Jr.
1991-06-01
We have previously described FSH receptor-mediated influx of 45Ca++ in cultured Sertoli cells from immature rats and receptor-enriched proteoliposomes via activation of voltage-sensitive and voltage-independent calcium channels. We have further shown that this effect of FSH does not require cholera toxin- or pertussis toxin-sensitive guanine nucleotide binding protein or activation of adenylate cyclase. In the present study, we have identified regions of human FSH-beta-subunit which appear to be involved in mediating calcium influx. We screened 11 overlapping peptide amides representing the entire primary structure of hFSH-beta-subunit for their effects on 45Ca++ flux in FSH receptor-enriched proteoliposomes. hFSH-beta-(1-15) and hFSH-beta-(51-65) inducedmore » uptake of 45Ca++ in a concentration-related manner. This effect of hFSH-beta-(1-15) and hFSH-beta-(51-65) was also observed in liposomes lacking incorporated FSH receptor. Reducing membrane fluidity by incubating liposomes (containing no receptor) with hFSH-beta-(1-15) or hFSH-beta-(51-65) at temperatures lower than the transition temperatures of their constituent phospholipids resulted in no significant (P greater than 0.05) difference in 45Ca++ uptake. The effectiveness of the calcium ionophore A23187, however, was abolished. Ruthenium red, a voltage-independent calcium channel antagonist, was able to completely block uptake of 45Ca++ induced by hFSH-beta-(1-15) and hFSH-beta-(51-65) whereas nifedipine, a calcium channel blocker specific for L-type voltage-sensitive calcium channels, was without effect. These results suggest that in addition to its effect on voltage-sensitive calcium channel activity, interaction of FSH with its receptor may induce formation of transmembrane aqueous channels which also facilitate influx of extracellular calcium.« less
Jackson, Michael W; Gordon, Tom P
2010-09-30
We have recently postulated that functional autoantibodies (Abs) against L-type voltage-gated calcium channels (VGCCs) contribute to autonomic dysfunction in type 1 diabetes (T1D). Previous studies based on whole-organ assays have proven valuable in establishing the mechanism of anti-VGCC Ab activity, but are complex and unsuitable for screening large patient cohorts. In the current study, we used real-time dynamic monitoring of cell impedance to demonstrate that anti-VGCC Abs from patients with T1D inhibit the adherence of Rin A12 cells. The functional effect of the anti-VGCC Abs was mimicked by the dihydropyridine agonist, Bay K8644, and reversed by the antagonist, nicardipine, providing a pharmacological link to the whole-organ studies. IVIg neutralized the effect on cell adhesion of the anti-VGCC Abs, consistent with the presence of anti-idiotypic Abs in IVIg that may prevent the emergence of pathogenic Abs in healthy individuals. The cell impedance assay can be performed in a 96 well plate format, and represents a simple method for detecting the presence of anti-VGCC activity in patient immunoglobulin (IgG). The new cell assay should prove useful for further studies to determine the prevalence of the Ab and its association with symptoms of autonomic dysfunction in patients with T1D. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.
Shalygin, A V; Vigont, V A; Glushankova, L N; Zimina, O A; Kolesnikov, D O; Skopin, A Yu; Kaznacheeva, E V
2017-07-01
An important role in intracellular calcium signaling is played by store-operated channels activated by STIM proteins, calcium sensors of the endoplasmic reticulum. In stable STIM1 knockdown HEK S4 cells, single channels activated by depletion of intracellular calcium stores were detected by cell-attached patch-clamp technique and their electrophysiological parameters were described. Comparison of the properties of single channels in HEK293 and HEK S4 cells revealed no significant differences in their current-voltage curves, while regulation of store-operated calcium channels in these cell lines depended on the level of STIM1 expression. We can conclude that electrophysiological peculiarities of store-regulated calcium entry observed in different cells can be explained by differences in STIM1 expression.
Process for the preparation of calcium superoxide
NASA Technical Reports Server (NTRS)
Ballou, E. V.; Wood, P. C.; Wydeven, T. J.; Spitze, L. A. (Inventor)
1978-01-01
Calcium superoxide is prepared in high yields by spreading a quantity of calcium peroxide diperoxyhydrate on the surface of a container, positioning said container in a vacuum chamber on a support structure through which a coolant fluid can be circulated, partially evacuating said vacuum chamber, allowing the temperature of the diperoxyhydrate to reach the range of about 0 to about 40 C; maintaining the temperature selected for a period of time sufficient to complete the disproproriation of the diperoxyhydrate to calcium superoxide, calcium hydroxide, oxygen, and water; constantly and systematically removing the water as it is formed by sweeping the reacting material with a current of dry inert gas and/or by condensation of said water on a cold surface; backfilling the chamber with a dry inert gas; and finally, recovering the calcium superoxide produced.
Dorozhkin, Sergey V.
2011-01-01
The present overview is intended to point the readers’ attention to the important subject of calcium orthophosphates. This type of materials is of special significance for human beings, because they represent the inorganic part of major normal (bones, teeth and antlers) and pathological (i.e., those appearing due to various diseases) calcified tissues of mammals. For example, atherosclerosis results in blood vessel blockage caused by a solid composite of cholesterol with calcium orthophosphates, while dental caries and osteoporosis mean a partial decalcification of teeth and bones, respectively, that results in replacement of a less soluble and harder biological apatite by more soluble and softer calcium hydrogenphosphates. Therefore, the processes of both normal and pathological calcifications are just an in vivo crystallization of calcium orthophosphates. Similarly, dental caries and osteoporosis might be considered an in vivo dissolution of calcium orthophosphates. Thus, calcium orthophosphates hold a great significance for humankind, and in this paper, an overview on the current knowledge on this subject is provided. PMID:23507744
Effect of substrate nature on the electrochemical deposition of calcium-deficient hydroxyapatites
NASA Astrophysics Data System (ADS)
Gualdrón-Reyes, A. F.; Domínguez-Vélez, V.; Morales-Morales, J. A.; Cabanzo, R.; Meléndez, A. M.
2017-01-01
Calcium phosphates were obtained by reducing nitrate ions to produce hydroxide ions on TiO2/stainless steel and TiO2/titanium electrodes. TiO2 coatings on metallic substrates were prepared by sol-gel dip-coating method. The morphology of deposits was observed by FESEM. Chemical nature of calcium phosphate deposits was identified by Raman micro-spectroscopy and FESEM/EDS microanalysis. Electrochemical behavior of nitrate and nitrite reduction on stainless steel and titanium electrodes was studied by linear sweep voltammetry. In addition, voltammetric study of the calcium phosphate electrodeposition on both electrodes was performed. From these measurements was selected the potential to form a calcium phosphate. A catalytic current associated to nitrate reduction reaction was obtained for stainless steel electrode, leading to significant deposition of calcium phosphate. Ca/P ratio for both substrates was less than 1.67. The formation of calcium deficient hydroxyapatite was confirmed by Raman spectroscopy.
Calcium-sensitive and insensitive transient outward current in rabbit ventricular myocytes.
Hiraoka, M; Kawano, S
1989-01-01
1. A suction pipette whole-cell voltage-clamp technique was used to record membrane currents and potentials of isolated ventricular myocytes from rabbit hearts. 2. Transient outward current (Ito) was activated by voltage steps positive to -20 mV, increasing in amplitude with further depolarization to reach a maximum around +70 mV. The current attained its peak within 10 ms and then it inactivated for 100-200 ms. 3. A large portion of Ito still remained after the calcium current (ICa) was blocked when depolarizing pulses were applied at a frequency of 0.1 Hz or less. Therefore, this current component is referred to as calcium-insensitive Ito or It. 4. It showed voltage- and time-dependent inactivation similar to that observed in Purkinje fibres and other cardiac preparations. 5. The reversal potential of It depended on external K+ concentration, [K+]o, with a slope of 32 mV per 10-fold change in the presence of a normal [Na+]o (143 mM), while the slope was 48 mV per 10-fold change in low [Na+]o (1.0 mM). 6. It was completely inhibited by 2-4 mM-4-aminopyridine. Ito in the presence of ICa was also partially blocked by 4-aminopyridine and the remainder was abolished by 5 mM-caffeine. 7. The calcium-insensitive and caffeine-sensitive Ito differed in their decay rates as well as in their recovery time courses. The former was predominantly available at a slow pulsing rate, while the latter increased its amplitude with high-frequency depolarization. 8. The caffeine-sensitive Ito was inhibited by a blockade of ICa, by replacing Ca2+ with Sr2+, by external application of ryanodine and by internal application of EGTA. This indicates that the current is calcium-sensitive and is dependent on increased myoplasmic Ca2+ through Ca2+ influx via the sarcolemma and Ca2+ release from the sarcoplasmic reticulum. The current is therefore designated as IK, Ca. 9. The physiological functions of IK, Ca and It are indicated by their contribution to ventricular repolarization at fast and slow heart rates, respectively. PMID:2552080
Yan, Qingfeng; Li, Yueping; Yan, Jia; Zhao, Ying; Liu, Yunzhong; Liu, Su
2018-01-01
Heart transplantation has been applied in the clinic as an optimal solution for patients with end stage cardiac failure for a number of years. However, hypothermic preservation of the heart remains limited to 4–6 h and calcium accumulation over time is an important factor resulting in cell death. To provide longer and safer storage for donor hearts, it was demonstrated in our previous study that luteolin, a traditional Chinese medicine used to treat cardiovascular diseases, inhibits cell death and L-type calcium currents during hypothermic preservation. In the current study, the protective role of luteolin in modulating cardiomyocyte calcium cycling was further investigated. Intracellular calcium overload has already been implicated in hypothermia-induced dysfunction of cardiomyocytes. University of Wisconsin (UW) solution supplemented with 7.5, 15 or 30 µmol/l luteolin was used to preserve fresh isolated cardiomyocytes at 4°C. The results demonstrated that all three doses of luteolin supplementation attenuated calcium overload over a 6 h preservation period. Luteolin also suppressed the accumulation of important regulatory proteins and enzymes for cardiomyocyte calcium circulation, mitochondria Ca2+ uniporter and calmodulin, which are normally induced by cold storage in UW solution. Protein Kinase A activity was also suppressed in cardiomyocytes preserved in luteolin supplemented UW solution, while Ca2+-Mg2+-ATPase activity was increased. The results demonstrated that luteolin confers a cardioprotective effect through inhibiting the changes of calcium regulators during cold storage and therefore ameliorates Ca2+ overload in rat cardiomyocytes. PMID:29399124
Chen, Y; Sun, X D; Herness, S
1996-02-01
1. Taste receptor cells produce action potentials as a result of transduction mechanisms that occur when these cells are stimulated with tastants. These action potentials are thought to be key signaling events in relaying information to the central nervous system. We explored the ionic basis of action potentials from dissociated posterior rat taste cells using the patch-clamp recording technique in both voltage-clamp and current-clamp modes. 2. Action potentials were evoked by intracellular injection of depolarizing current pulses from a holding potential of -80 mV. The threshold potential for firing of action potentials was approximately -35 mV; the input resistance of these cells averaged 6.9 G omega. With long depolarizing pulses, two or three action potentials could be elicited with successive attenuation of the spike height. Afterhyperpolarizations were observed often. 3. Both sodium and calcium currents contribute to depolarizing phases of the action potential. Action potentials were blocked completely in the presence of the sodium channel blocker tetrodotoxin. Calcium contributions could be visualized as prolonged calcium plateaus when repolarizing potassium currents were blocked and barium was used as a charge carrier. 4. Outward currents were composed of sustained delayed rectifier current, transient potassium current, and calcium-activated potassium current. Transient and sustained potassium currents activated close to -30 mV and increased monotonically with further depolarization. Up to half the outward current inactivated with decay constants on the order of seconds. Sustained and transient currents displayed steep voltage dependence in conductance and inactivation curves. Half inactivation occurred at -20 +/- 3.1 mV (mean +/- SE) with a decrease of 11.2 +/- 0.5 mV per e-fold. Half maximal conductance occurred at 3.6 +/- 1.8 mV and increased 12.2 +/- 0.6 mV per e-fold. Calcium-activated potassium current was evidenced by application of apamin and the use of calcium-free bathing solution. It was most obvious at more depolarized holding potentials that inactivated much of the transient and sustained outward currents. 5. Potassium currents contribute to both the repolarization and afterhyperpolarization phases of the action potential. These currents were blocked by bath application of tetraethylammonium, which also substantially broadened the action potential. Application of 4-aminopyridine was able to selectively block transient potassium currents without affecting sustained currents. This also broadened the action potential as well as eliminated the afterhyperpolarization. 6. A second type of action potential was observed that differed in duration. These slow action potentials had t1/2 durations of 9.6 ms compared with 1.4 ms for fast action potentials. Input resistances of the two groups were indistinguishable. Approximately one-fourth of the cells eliciting action potentials were of the slow type. 7. Cells eliciting fast action potentials had large outward currents capable of producing a quick repolarization, whereas cells with slow action potentials had small outward currents by comparison. The average values of fast cells were 2,563 pA and 1.4 ms compared with 373 pA and 9.6 ms for slow cells. Current and duration values were related exponentially. No significant difference was noted for inward currents. 8. These results suggest that many taste receptor cells conduct action potentials, which may be classified broadly into two groups on the basis of action potential duration and potassium current magnitude. These groups may be related to cell turnover. The physiological role of action potentials remains to be elucidated but may be important for communication within the taste bud as well as to the afferent nerve.
Otsu, Yo; Marcaggi, Païkan; Feltz, Anne; Isope, Philippe; Kollo, Mihaly; Nusser, Zoltan; Mathieu, Benjamin; Kano, Masanobu; Tsujita, Mika; Sakimura, Kenji; Dieudonné, Stéphane
2014-01-01
Summary In cerebellar Purkinje cell dendrites, heterosynaptic calcium signaling induced by the proximal climbing fiber (CF) input controls plasticity at distal parallel fiber (PF) synapses. The substrate and regulation of this long-range dendritic calcium signaling are poorly understood. Using high-speed calcium imaging, we examine the role of active dendritic conductances. Under basal conditions, CF stimulation evokes T-type calcium signaling displaying sharp proximodistal decrement. Combined mGluR1 receptor activation and depolarization, two activity-dependent signals, unlock P/Q calcium spikes initiation and propagation, mediating efficient CF signaling at distal sites. These spikes are initiated in proximal smooth dendrites, independently from somatic sodium action potentials, and evoke high-frequency bursts of all-or-none fast-rising calcium transients in PF spines. Gradual calcium spike burst unlocking arises from increasing inactivation of mGluR1-modulated low-threshold A-type potassium channels located in distal dendrites. Evidence for graded activity-dependent CF calcium signaling at PF synapses refines current views on cerebellar supervised learning rules. PMID:25220810
Calcium Orthophosphates in Nature, Biology and Medicine
Dorozhkin, Sergey V.
2009-01-01
The present overview is intended to point the readers’ attention to the important subject of calcium orthophosphates. These materials are of the special significance because they represent the inorganic part of major normal (bones, teeth and dear antlers) and pathological (i.e. those appearing due to various diseases) calcified tissues of mammals. Due to a great chemical similarity with the biological calcified tissues, many calcium orthophosphates possess remarkable biocompatibility and bioactivity. Materials scientists use this property extensively to construct artificial bone grafts that are either entirely made of or only surface-coated with the biologically relevant calcium ortho-phosphates. For example, self-setting hydraulic cements made of calcium orthophosphates are helpful in bone repair, while titanium substitutes covered by a surface layer of calcium orthophosphates are used for hip joint endoprostheses and as tooth substitutes. Porous scaffolds made of calcium orthophosphates are very promising tools for tissue engineering applications. In addition, technical grade calcium orthophosphates are very popular mineral fertilizers. Thus ere calcium orthophosphates are of great significance for humankind and, in this paper, an overview on the current knowledge on this subject is provided.
Otsu, Yo; Marcaggi, Païkan; Feltz, Anne; Isope, Philippe; Kollo, Mihaly; Nusser, Zoltan; Mathieu, Benjamin; Kano, Masanobu; Tsujita, Mika; Sakimura, Kenji; Dieudonné, Stéphane
2014-10-01
In cerebellar Purkinje cell dendrites, heterosynaptic calcium signaling induced by the proximal climbing fiber (CF) input controls plasticity at distal parallel fiber (PF) synapses. The substrate and regulation of this long-range dendritic calcium signaling are poorly understood. Using high-speed calcium imaging, we examine the role of active dendritic conductances. Under basal conditions, CF stimulation evokes T-type calcium signaling displaying sharp proximodistal decrement. Combined mGluR1 receptor activation and depolarization, two activity-dependent signals, unlock P/Q calcium spikes initiation and propagation, mediating efficient CF signaling at distal sites. These spikes are initiated in proximal smooth dendrites, independently from somatic sodium action potentials, and evoke high-frequency bursts of all-or-none fast-rising calcium transients in PF spines. Gradual calcium spike burst unlocking arises from increasing inactivation of mGluR1-modulated low-threshold A-type potassium channels located in distal dendrites. Evidence for graded activity-dependent CF calcium signaling at PF synapses refines current views on cerebellar supervised learning rules. Copyright © 2014 Elsevier Inc. All rights reserved.
TRICHLOROETHYLENE IHIBITS VOLTAGE-SENSITIVE CALCIUM CURRENTS IN DIFFERENTIATED PC 12 CELLS.
ABSTRACT BODY: It has been demonstrated recently that volatile organic compounds (VOCs)such as toluene, perchloroethylene and trichloroethylene inhibit function of voltage-sensitive calcium channels (VSSC). Such actions are hypothesized to contribute to the acute neurotoxicity of...
Modulation of A-type potassium channels by a family of calcium sensors.
An, W F; Bowlby, M R; Betty, M; Cao, J; Ling, H P; Mendoza, G; Hinson, J W; Mattsson, K I; Strassle, B W; Trimmer, J S; Rhodes, K J
2000-02-03
In the brain and heart, rapidly inactivating (A-type) voltage-gated potassium (Kv) currents operate at subthreshold membrane potentials to control the excitability of neurons and cardiac myocytes. Although pore-forming alpha-subunits of the Kv4, or Shal-related, channel family form A-type currents in heterologous cells, these differ significantly from native A-type currents. Here we describe three Kv channel-interacting proteins (KChIPs) that bind to the cytoplasmic amino termini of Kv4 alpha-subunits. We find that expression of KChIP and Kv4 together reconstitutes several features of native A-type currents by modulating the density, inactivation kinetics and rate of recovery from inactivation of Kv4 channels in heterologous cells. All three KChIPs co-localize and co-immunoprecipitate with brain Kv4 alpha-subunits, and are thus integral components of native Kv4 channel complexes. The KChIPs have four EF-hand-like domains and bind calcium ions. As the activity and density of neuronal A-type currents tightly control responses to excitatory synaptic inputs, these KChIPs may regulate A-type currents, and hence neuronal excitability, in response to changes in intracellular calcium.
Alvarez-Laviada, Anita; Kadurin, Ivan; Senatore, Assunta; Chiesa, Roberto; Dolphin, Annette C.
2013-01-01
It has been shown recently that PrP (prion protein) and the calcium channel auxiliary α2δ subunits interact in neurons and expression systems [Senatore, Colleoni, Verderio, Restelli, Morini, Condliffe, Bertani, Mantovani, Canovi, Micotti, Forloni, Dolphin, Matteoli, Gobbi and Chiesa (2012) Neuron 74, 300–313]. In the present study we examined whether there was an effect of PrP on calcium currents. We have shown that when PrP is co-expressed with calcium channels formed from CaV2.1/β and α2δ-1 or α2δ-2, there is a consistent decrease in calcium current density. This reduction was absent when a PrP construct was used lacking its GPI (glycosylphosphatidylinositol) anchor. We have reported previously that α2δ subunits are able to form GPI-anchored proteins [Davies, Kadurin, Alvarez-Laviada, Douglas, Nieto-Rostro, Bauer, Pratt and Dolphin (2010) Proc. Natl. Acad. Sci. U.S.A. 107, 1654–1659] and show further evidence in the present paper. We have characterized recently a C-terminally truncated α2δ-1 construct, α2δ-1ΔC, and found that, despite loss of its membrane anchor, it still shows a partial ability to increase calcium currents [Kadurin, Alvarez-Laviada, Ng, Walker-Gray, D’Arco, Fadel, Pratt and Dolphin (2012) J. Biol. Chem. 1287, 33554–33566]. We now find that PrP does not inhibit CaV2.1/β currents formed with α2δ-1ΔC, rather than α2δ-1. It is possible that PrP and α2δ-1 compete for GPI-anchor intermediates or trafficking pathways, or that interaction between PrP and α2δ-1 requires association in cholesterol-rich membrane microdomains. Our additional finding that CaV2.1/β1b/α2δ-1 currents were inhibited by GPI–GFP, but not cytosolic GFP, indicates that competition for limited GPI-anchor intermediates or trafficking pathways may be involved in PrP suppression of α2δ subunit function. PMID:24329154
Addis, Russell C.; Ifkovits, Jamie L.; Pinto, Filipa; Kellam, Lori D.; Esteso, Paul; Rentschler, Stacey; Christoforou, Nicolas; Epstein, Jonathan A.; Gearhart, John D.
2013-01-01
Direct conversion of fibroblasts to induced cardiomyocytes (iCMs) has great potential for regenerative medicine. Recent publications have reported significant progress, but the evaluation of reprogramming has relied upon non-functional measures such as flow cytometry for cardiomyocyte markers or GFP expression driven by a cardiomyocyte-specific promoter. The issue is one of practicality: the most stringent measures - electrophysiology to detect cell excitation and the presence of spontaneously contracting myocytes - are not readily quantifiable in the large numbers of cells screened in reprogramming experiments. However, excitation and contraction are linked by a third functional characteristic of cardiomyocytes: the rhythmic oscillation of intracellular calcium levels. We set out to optimize direct conversion of fibroblasts to iCMs with a quantifiable calcium reporter to rapidly assess functional transdifferentiation. We constructed a reporter system in which the calcium indicator GCaMP is driven by the cardiomyocyte-specific Troponin T promoter. Using calcium activity as our primary outcome measure, we compared several published combinations of transcription factors along with novel combinations in mouse embryonic fibroblasts. The most effective combination consisted of Hand2, Nkx2.5, Gata4, Mef2c, and Tbx5 (HNGMT). This combination is >50-fold more efficient than GMT alone and produces iCMs with cardiomyocyte marker expression, robust calcium oscillation, and spontaneous beating that persists for weeks following inactivation of reprogramming factors. HNGMT is also significantly more effective than previously published factor combinations for the transdifferentiation of adult mouse cardiac fibroblasts to iCMs. Quantification of calcium function is a convenient and effective means for the identification and evaluation of cardiomyocytes generated by direct reprogramming. Using this stringent outcome measure, we conclude that HNGMT produces iCMs more efficiently than previously published methods. PMID:23591016
Molten salt applications in materials processing
NASA Astrophysics Data System (ADS)
Mishra, Brajendra; Olson, David L.
2005-02-01
The science of molten salt electrochemistry for electrowinning of reactive metals, such as calcium, and its in situ application in pyro-reduction has been described. Calcium electrowinning has been performed in a 5 10 wt% calcium oxide calcium chloride molten salt by the electrolytic dissociation of calcium oxide. This electrolysis requires the use of a porous ceramic sheath around the anode to keep the cathodically deposited calcium and the anodic gases separate. Stainless steel cathode and graphite anode have been used in the temperature range of 850 950 °C. This salt mixture is produced as a result of the direct oxide reduction (DOR) of reactive metal oxides by calcium in a calcium chloride bath. The primary purpose of this process is to recover the expensive calcium reductant and to recycle calcium chloride. Experimental data have been included to justify the suitability as well as limitations of the electrowinning process. Transport of oxygen ions through the sheath is found to be the rate controlling step. Under the constraints of the reactor design, a calcium recovery rate of approx. 150 g/h was achieved. Feasibility of a process to produce metals by pyrometallurgical reduction, using the calcium reductant produced electrolytically within the same reactor, has been shown in a hybrid process. Several processes are currently under investigation to use this electrowon calcium for in situ reduction of metal oxides.
Balasubramanian, Paramasivam; Settu, Ramki; Chen, Shen-Ming; Chen, Tse-Wei; Sharmila, Ganapathi
2018-08-15
Herein, we report a novel, disposable electrochemical sensor for the detection of nitrite ions in food samples based on the sonochemical synthesized orthorhombic CaFe 2 O 4 (CFO) clusters modified screen printed electrode. As synthesized CFO clusters were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transformer infrared spectroscopy (FT-IR), Thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and amperometry (i-t). Under optimal condition, the CFO modified electrode displayed a rapid current response to nitrite, a linear response range from 0.016 to 1921 µM associated with a low detection limit 6.6 nM. The suggested sensor also showed the excellent sensitivity of 3.712 μA μM -1 cm -2 . Furthermore, a good reproducibility, long-term stability and excellent selectivity were also attained on the proposed sensor. In addition, the practical applicability of the sensor was investigated via meat samples, tap water and drinking water, and showed desirable recovery rate, representing its possibilities for practical application. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Dimcovic, Z. M.; Eagan, T. P.; Kidane, T. K.; Brown, R. W.; Petschek, R. G.; McEnery, M. W.
2001-10-01
The opening of voltage-dependent calcium channels results in an influx of calcium ions promoting the fusion of synaptic vesicles. The fusion leads to release of neurotransmitters, which in turn allow the propagation of nerve impulses. A Monte Carlo model of the diffusion of calcium following its surge into the cell is used to estimate the probability for exocytosis. Besides the calcium absorption by fixed and mobile buffers, key ingredients are the physical size and position of the tethered vesicle and a sensing model for the interaction of the vesicle and calcium. The release probability is compared to previously published studies where the finite vesicle size was not considered. (Supported by NIH MH55747, AHA 96001250, NSF0086643, and a CWRU Presidential Research Initiative grant.)
Morotti, Andrea; Charidimou, Andreas; Phuah, Chia-Ling; Jessel, Michael J; Schwab, Kristin; Ayres, Alison M; Romero, Javier M; Viswanathan, Anand; Gurol, M Edip; Greenberg, Steven M; Anderson, Christopher D; Rosand, Jonathan; Goldstein, Joshua N
2016-11-01
Calcium is a key cofactor of the coagulation cascade and may play a role in the pathophysiology of intracerebral hemorrhage (ICH). To investigate whether a low serum calcium level is associated with an increase in the extent of bleeding in patients with ICH as measured by baseline hematoma volume and risk of hematoma expansion. Prospective cohort study of 2103 consecutive patients with primary ICH ascertained during the period between 1994 and 2015 at an academic medical center. The statistical analysis was performed in January 2016. Total calcium level was measured on admission, and hypocalcemia was defined as a serum calcium level of less than 8.4 mg/dL. Baseline and follow-up hematoma volumes, detected by noncontrast computed tomography, were measured using a computer-assisted semiautomatic analysis. Hematoma expansion was defined as an increase of more than 30% or 6 mL from baseline ICH volume. Associations between serum calcium level and baseline hematoma volume and between serum calcium level and ICH expansion were investigated in multivariable linear and logistic regression models, respectively. A total of 2123 patients with primary ICH were screened, and 2103 patients met the inclusion criteria (mean [SD] age, 72.7 [12.5] years; 54.3% male patients), of whom 229 (10.9%) had hypocalcemia on admission. Hypocalcemic patients had a higher median baseline hematoma volume than did normocalcemic patients (37 mL [IQR, 15-72 mL] vs 16 mL [IQR, 6-44 mL]; P < .001). Low calcium levels were independently associated with higher baseline ICH volume (β = -0.13, SE = .03, P < .001). A total of 1393 patients underwent follow-up noncontrast computed tomography and were included in the ICH expansion analysis. In this subgroup, a higher serum calcium level was associated with reduced risk of ICH expansion (odds ratio, 0.55 [95% CI, 0.35-0.86]; P = .01), after adjusting for other confounders. Hypocalcemia correlates with the extent of bleeding in patients with ICH. A low calcium level may be associated with a subtle coagulopathy predisposing to increased bleeding and might therefore be a promising therapeutic target for acute ICH treatment trials.
Trace element levels in drinking water and cognitive function among elderly Chinese.
Emsley, C L; Gao, S; Li, Y; Liang, C; Ji, R; Hall, K S; Cao, J; Ma, F; Wu, Y; Ying, P; Zhang, Y; Sun, S; Unverzagt, F W; Slemenda, C W; Hendrie, H C
2000-05-01
The relation between trace element levels in drinking water and cognitive function was investigated in a population-based study of elderly residents (n = 1,016) in rural China in 1996-1997. Cognitive function was measured using a Chinese translation of the Community Screening Interview for Dementia. A mixed effects model was used to evaluate the effect of each of the elements on cognitive function while adjusting for age, sex, and educational level. Several of the elements examined had a significant effect on cognitive function when they were assessed in a univariate context. However, after adjustment for other elements, many of these results were not significant. There was a significant quadratic effect for calcium and a significant zinc-cadmium interaction. Cognitive function increased with calcium level up to a certain point and then decreased as calcium continued to increase. Zinc showed a positive relation with cognitive function at low cadmium levels but a negative relation at high levels.
Transmitter release and presynaptic Ca2+ currents blocked by the spider toxin omega-Aga-IVA.
Protti, D A; Uchitel, O D
1993-12-13
Mammalian neuromuscular transmission is resistant to L and N type calcium channel blockers but very sensitive to a low molecular weight funnel web spider venom toxin, FTX, which selectively blocks P type calcium channels. To further characterize the calcium channels involved in neuromuscular transmission we studied the effect of omega Agatoxin (omega-Aga-IVA) a polypeptide P type channel blocker from the same spider venom. We show that omega-Aga-IVA is a potent and irreversible inhibitor of the presynaptic Ca2+ currents and of acetylcholine release induced by electrical stimulation or by K+ depolarization. This provides further evidences that transmitter release at the mammalian neuromuscular junction is mediated by P type Ca2+ channels.
Calcium in the prevention of postmenopausal osteoporosis: EMAS clinical guide.
Cano, Antonio; Chedraui, Peter; Goulis, Dimitrios G; Lopes, Patrice; Mishra, Gita; Mueck, Alfred; Senturk, Levent M; Simoncini, Tommaso; Stevenson, John C; Stute, Petra; Tuomikoski, Pauliina; Rees, Margaret; Lambrinoudaki, Irene
2018-01-01
Postmenopausal osteoporosis is a highly prevalent disease. Prevention through lifestyle measures includes an adequate calcium intake. Despite the guidance provided by scientific societies and governmental bodies worldwide, many issues remain unresolved. To provide evidence regarding the impact of calcium intake on the prevention of postmenopausal osteoporosis and critically appraise current guidelines. Literature review and consensus of expert opinion. The recommended daily intake of calcium varies between 700 and 1200mg of elemental calcium, depending on the endorsing source. Although calcium can be derived either from the diet or supplements, the former source is preferred. Intake below the recommended amount may increase fragility fracture risk; however, there is no consistent evidence that calcium supplementation at, or above, recommended levels reduces risk. The addition of vitamin D may minimally reduce fractures, mainly among institutionalised people. Excessive intake of calcium, defined as higher than 2000mg/day, can be potentially harmful. Some studies demonstrated harm even at lower dosages. An increased risk for cardiovascular events, urolithiasis and even fractures has been found in association with excessive calcium intake, but this issue remains unresolved. In conclusion, an adequate intake of calcium is recommended for general bone health. Excessive calcium intake seems of no benefit, and could possibly be harmful. Copyright © 2017 Elsevier B.V. All rights reserved.
Davison, B Joyce; Wiens, Kristin; Cushing, Meredith
2012-10-01
The aim of this study was to measure the impact of a patient education intervention aimed at increasing dietary intake of calcium and vitamin D in patients currently on androgen deprivation therapy (ADT) for the treatment of prostate cancer. Sixty-one participants attended a one-time dietitian-delivered group education session focusing on diet and lifestyle strategies to reduce the risk of bone loss while on ADT. Dietary intake was assessed using the diet history questionnaire at baseline and again at approximately 1 year post-intervention. Demographics, medical history (including comorbidities), awareness of developing bone loss while on ADT, and information resources utilized were recorded at baseline. Fifty-one participants completed both time points. Over one third of men did not meet minimum current clinical guidelines for calcium or vitamin D intake at baseline. Sixty-three percent of men reported they were aware that osteoporosis was a known side effect of ADT therapy. Only supplemental calcium intake was significantly increased after the intervention. Men aware of their risk of developing bone loss while on ADT reported higher baseline calcium intake (p ≤ 0.05). Men undergoing ADT for less than 1 year at the time of intervention had significantly higher total calcium intake at follow-up compared to men on ADT for longer than 1 year (p = 0.038). Nonsignificant trends indicated that calcium and vitamin D intakes changed to a greater degree in those undergoing ADT for less than 1 year as well. Total calcium and vitamin D did not change significantly as a result of the intervention. Results suggest that promotion of dietary changes may be more effective if delivered closer to the initiation of therapy.
LIGNOSULFONATE-MODIFIED CALCIUM HYDROXIDE FOR SULFUR DIOXIDE CONTROL
The article discusses the use of lignosulfonate-modified calcium hydroxide Ca(OH)2 for sulfur dioxide (SO2) control. The limestone injection multistage burner (LIMB) process is currently being developed at the U.S. EPA as a low cost retrofittable technology for controlling oxides...
The increased risk of urinary stone disease in betel quid chewers.
Allen, Siân E; Singh, Sadmeet; Robertson, William G
2006-08-01
The chewing of betel quid is a common practice in many countries of the world, particularly in Southeast Asia. The quid consists of a preparation of areca nut, betel leaf and calcium hydroxide "lime" paste ("chuna"). For the first time, we present a study that links its use to urinary stone disease. Eight patients (seven male and one female) who presented to our Stone Unit with recurrent urinary stones were included in the study. All were from the Indian subcontinent and were found to regularly chew betel. The patients underwent metabolic screening including blood, random urine and 24-h urine tests, quantitative chemical analysis of their calculi (where possible) and each completed a 7-day Diet Diary on his/her free, home diet. The study demonstrated a high incidence of hypercalciuria, a tendency to pass an alkaline urine and low urinary citrate excretion among the patients. Together these urinary risk factors increase the probability of developing both calcium phosphate-containing and calcium oxalate-containing stones. In support of this hypothesis, the patients were found to form stones consisting mainly of calcium phosphate but mixed with calcium oxalate. It is concluded that the use of calcium hydroxide "chuna" in the betel quid is the major contributor to the cause of urinary stones in its users. Moreover, the development of urinary lithiasis in such patients may be a precursor to milk-alkali syndrome in those individuals whose chewing habit is more extensive than in the patients in this study and who do not seek to decrease their habit over the long term.
Coronary artery screening by electron beam computed tomography. Facts, controversy, and future.
Wong, N D; Detrano, R C; Abrahamson, D; Tobis, J M; Gardin, J M
1995-08-01
Coronary calcium as detected by electron beam computed tomography always signifies at least some atherosclerosis, appears to be correlated with coronary risk factors, cardiac history, and overall angiographic severity of disease, but is inconsistently related to degree of atherosclerotic lesion stenosis in a given artery. Increasing evidence, however, suggests an association between coronary artery calcium, atherosclerosis, and coronary risk. But atherosclerosis is a very common condition, its prevalence increasing with age. No fully validated method for determining the quantity of coronary calcium is available, and we do not know whether the amount of calcium is a consistently accurate reflection of the amount of atherosclerosis or whether the amount of atherosclerosis reflects the degree of risk. Furthermore, the prognostic significance of coronary calcium in any given atherosclerotic lesion is not yet established. What is clear from cohort studies, however, is that at least three quarters of asymptomatic individuals, at least half of whom would have "positive" coronary calcium electron beam computed tomographic scans, will live for at least 10 years without cardiac problems of any kind. Investigation is needed to determine whether medical intervention may impact the clinical outcome of the rest of those identified with a positive scan but destined to suffer future clinical events. Despite lack of validation, this test has widespread appeal, both to the public as a means of being able to find out the condition of their coronary arteries "without injections or dye" and to hospitals and private medical groups who view this both as an innovation in cardiovascular diagnosis and as a potentially profitable diagnostic procedure.(ABSTRACT TRUNCATED AT 250 WORDS)
Peinado, Gabriel; Osorno, Tomás; Gomez, María del Pilar; Nasi, Enrico
2015-06-23
Melanopsin, the photopigment of the "circadian" receptors that regulate the biological clock and the pupillary reflex in mammals, is homologous to invertebrate rhodopsins. Evidence supporting the involvement of phosphoinositides in light-signaling has been garnered, but the downstream effectors that control the light-dependent conductance remain unknown. Microvillar photoreceptors of the primitive chordate amphioxus also express melanopsin and transduce light via phospholipase-C, apparently not acting through diacylglycerol. We therefore examined the role of calcium in activating the photoconductance, using simultaneous, high time-resolution measurements of membrane current and Ca(2+) fluorescence. The light-induced calcium rise precedes the onset of the photocurrent, making it a candidate in the activation chain. Moreover, photolysis of caged Ca elicits an inward current of similar size, time course and pharmacology as the physiological photoresponse, but with a much shorter latency. Internally released calcium thus emerges as a key messenger to trigger the opening of light-dependent channels in melanopsin-expressing microvillar photoreceptors of early chordates.
TRPV3 channels mediate strontium-induced mouse egg activation
Carvacho, Ingrid; Lee, Hoi Chang; Fissore, Rafael A.; Clapham, David E.
2014-01-01
SUMMARY In mammals, calcium influx is required for oocyte maturation and egg activation. The molecular identities of the calcium-permeant channels that underlie the initiation of embryonic development are not established. Here, we describe a Transient Receptor Potential (TRP) ion channel current activated by TRP agonists that is absent in TrpV3−/− eggs. TRPV3 current is differentially expressed during oocyte maturation, reaching a peak of maximum density and activity at metaphase of meiosis II (MII), the stage of fertilization. Selective activation of TRPV3 channels provokes egg activation by mediating massive calcium entry. Widely used to activate eggs, strontium application is known to yield normal offspring in combination with somatic cell nuclear transfer. We show that TRPV3 is required for strontium influx, as TrpV3−/− eggs failed to permeate Sr2+ or undergo strontium-induced activation. We propose that TRPV3 is the major mediator of calcium influx in mouse eggs and is a putative target for artificial egg activation. PMID:24316078
Biological and medical significance of calcium phosphates.
Dorozhkin, Sergey V; Epple, Matthias
2002-09-02
The inorganic part of hard tissues (bones and teeth) of mammals consists of calcium phosphate, mainly of apatitic structure. Similarly, most undesired calcifications (i.e. those appearing as a result of various diseases) of mammals also contain calcium phosphate. For example, atherosclerosis results in blood-vessel blockage caused by a solid composite of cholesterol with calcium phosphate. Dental caries result in a replacement of less soluble and hard apatite by more soluble and softer calcium hydrogenphosphates. Osteoporosis is a demineralization of bone. Therefore, from a chemical point of view, processes of normal (bone and teeth formation and growth) and pathological (atherosclerosis and dental calculus) calcifications are just an in vivo crystallization of calcium phosphate. Similarly, dental caries and osteoporosis can be considered to be in vivo dissolution of calcium phosphates. On the other hand, because of the chemical similarity with biological calcified tissues, all calcium phosphates are remarkably biocompatible. This property is widely used in medicine for biomaterials that are either entirely made of or coated with calcium phosphate. For example, self-setting bone cements made of calcium phosphates are helpful in bone repair and titanium substitutes covered with a surface layer of calcium phosphates are used for hip-joint endoprostheses and tooth substitutes, to facilitate the growth of bone and thereby raise the mechanical stability. Calcium phosphates have a great biological and medical significance and in this review we give an overview of the current knowledge in this subject.
Moges, Beyene; Amare, Bemnet; Yabutani, Timoki; Kassu, Afework
2014-07-04
Hypocalcaemia, defined by serum calcium level less than 8.5 mg/dl, could be caused by human immunodeficiency virus (HIV) and diarrheal diseases. In Ethiopia, while morbidities from diarrheal diseases and HIV are serious health problems, studies assessing the interactions amongst of the three do not exist. Therefore, the present study was undertaken to investigate the level of calcium among diarrheic patients with and without HIV co-infection. Consecutive diarrheic patients attending Gondar University Hospital in Ethiopia were enrolled and screened for HIV, intestinal parasites, Shigella and Salmonella. Concentration of calcium in serum was determined using an inductively coupled plasma mass spectrometer. A total of 206 diarrheic patients were included in the study (109 = HIV positive, 97 = HIV negative). Intestinal parasites and Shigella species were detected in 32.2% and 8.5% of the patients, respectively. The serum calcium levels in the patients who were found positive for Shigella species or intestinal parasites was not significantly different by the presence or absence of HIV co-infection. HIV infected diarrheic patients had significantly lower mean serum calcium levels (7.82 ± 1.23 mg/dl) than those negative for HIV (8.38 ± 1.97) (P = 0.015). The age groups 25-35 and greater than 45 years showed significantly lower mean serum calcium levels (7.77 ± 1.55 mg/dl) in comparison to the other age groups (7.84 ± 1.41 mg/dl, P = 0.009). On the other hand, females presented with significantly lower mean serum calcium levels (7.79 ± 1.60 mg/dl, P = 0.044) than males (8.26 ± 1.65 mg/dl). There is high prevalence of hypocalcaemia among diarrheic patients in northwest Ethiopia. And HIV stood out to be a major risk factor for development of hypocalcaemia among the diarrheic patients in northwest Ethiopia. Further studies are required to substantiate and characterize the mechanisms and consequences of calcium metabolism disorders among HIV infected individuals in the study area.
Permeation and gating properties of the L-type calcium channel in mouse pancreatic beta cells
1993-01-01
Ba2+ currents through L-type Ca2+ channels were recorded from cell- attached patches on mouse pancreatic beta cells. In 10 mM Ba2+, single- channel currents were recorded at -70 mV, the beta cell resting membrane potential. This suggests that Ca2+ influx at negative membrane potentials may contribute to the resting intracellular Ca2+ concentration and thus to basal insulin release. Increasing external Ba2+ increased the single-channel current amplitude and shifted the current-voltage relation to more positive potentials. This voltage shift could be modeled by assuming that divalent cations both screen and bind to surface charges located at the channel mouth. The single- channel conductance was related to the bulk Ba2+ concentration by a Langmuir isotherm with a dissociation constant (Kd(gamma)) of 5.5 mM and a maximum single-channel conductance (gamma max) of 22 pS. A closer fit to the data was obtained when the barium concentration at the membrane surface was used (Kd(gamma) = 200 mM and gamma max = 47 pS), which suggests that saturation of the concentration-conductance curve may be due to saturation of the surface Ba2+ concentration. Increasing external Ba2+ also shifted the voltage dependence of ensemble currents to positive potentials, consistent with Ba2+ screening and binding to membrane surface charge associated with gating. Ensemble currents recorded with 10 mM Ca2+ activated at more positive potentials than in 10 mM Ba2+, suggesting that external Ca2+ binds more tightly to membrane surface charge associated with gating. The perforated-patch technique was used to record whole-cell currents flowing through L-type Ca2+ channels. Inward currents in 10 mM Ba2+ had a similar voltage dependence to those recorded at a physiological Ca2+ concentration (2.6 mM). BAY-K 8644 (1 microM) increased the amplitude of the ensemble and whole-cell currents but did not alter their voltage dependence. Our results suggest that the high divalent cation solutions usually used to record single L-type Ca2+ channel activity produce a positive shift in the voltage dependence of activation (approximately 32 mV in 100 mM Ba2+). PMID:7687645
Calcium-dependent molecular fMRI using a magnetic nanosensor.
Okada, Satoshi; Bartelle, Benjamin B; Li, Nan; Breton-Provencher, Vincent; Lee, Jiyoung J; Rodriguez, Elisenda; Melican, James; Sur, Mriganka; Jasanoff, Alan
2018-06-01
Calcium ions are ubiquitous signalling molecules in all multicellular organisms, where they mediate diverse aspects of intracellular and extracellular communication over widely varying temporal and spatial scales 1 . Though techniques to map calcium-related activity at a high resolution by optical means are well established, there is currently no reliable method to measure calcium dynamics over large volumes in intact tissue 2 . Here, we address this need by introducing a family of magnetic calcium-responsive nanoparticles (MaCaReNas) that can be detected by magnetic resonance imaging (MRI). MaCaReNas respond within seconds to [Ca 2+ ] changes in the 0.1-1.0 mM range, suitable for monitoring extracellular calcium signalling processes in the brain. We show that the probes permit the repeated detection of brain activation in response to diverse stimuli in vivo. MaCaReNas thus provide a tool for calcium-activity mapping in deep tissue and offer a precedent for the development of further nanoparticle-based sensors for dynamic molecular imaging with MRI.
Dorozhkin, Sergey V
2011-01-01
The present overview is intended to point the readers' attention to the important subject of calcium orthophosphates. This type of materials is of special significance for human beings, because they represent the inorganic part of major normal (bones, teeth and antlers) and pathological (i.e., those appearing due to various diseases) calcified tissues of mammals. For example, atherosclerosis results in blood vessel blockage caused by a solid composite of cholesterol with calcium orthophosphates, while dental caries and osteoporosis mean a partial decalcification of teeth and bones, respectively, that results in replacement of a less soluble and harder biological apatite by more soluble and softer calcium hydrogenphosphates. Therefore, the processes of both normal and pathological calcifications are just an in vivo crystallization of calcium orthophosphates. Similarly, dental caries and osteoporosis might be considered an in vivo dissolution of calcium orthophosphates. Thus, calcium orthophosphates hold a great significance for humankind, and in this paper, an overview on the current knowledge on this subject is provided.
Influence of calcium on glucose biosensor response and on hydrogen peroxide detection.
Labat-Allietta, N; Thévenot, D R
1998-01-01
Of small species capable of reaching a platinum working electrode from biological samples, calcium cations have been found to inhibit significantly glucose biosensor responses. The sensitivities to glucose of sensors immersed in carbonate buffer saline solutions decreased when 0.5 mM calcium chloride was added. The degree of inhibition was proportional to the glucose response in the absence of calcium (0-17% of the normalized current). Likewise, sensor sensitivities to hydrogen peroxide decreased, in the 5-90% range, in the presence of 0.5 mM calcium. Bare Pt-lr wires show a reversible inhibition of hydrogen peroxide sensitivity. This reversible inhibition is directly related to the decrease of hydrogen peroxide oxidation rate at the platinum anode: this has been evidenced, using rotating disk electrodes, by plotting Koutecky-Levich plots. Such inhibition has been found both for free and chelated calcium cations at levels below 1 mM. Several hypotheses for possible reactions between platinum, hydrogen peroxide and calcium are discussed.
Calcium-dependent molecular fMRI using a magnetic nanosensor
NASA Astrophysics Data System (ADS)
Okada, Satoshi; Bartelle, Benjamin B.; Li, Nan; Breton-Provencher, Vincent; Lee, Jiyoung J.; Rodriguez, Elisenda; Melican, James; Sur, Mriganka; Jasanoff, Alan
2018-06-01
Calcium ions are ubiquitous signalling molecules in all multicellular organisms, where they mediate diverse aspects of intracellular and extracellular communication over widely varying temporal and spatial scales1. Though techniques to map calcium-related activity at a high resolution by optical means are well established, there is currently no reliable method to measure calcium dynamics over large volumes in intact tissue2. Here, we address this need by introducing a family of magnetic calcium-responsive nanoparticles (MaCaReNas) that can be detected by magnetic resonance imaging (MRI). MaCaReNas respond within seconds to [Ca2+] changes in the 0.1-1.0 mM range, suitable for monitoring extracellular calcium signalling processes in the brain. We show that the probes permit the repeated detection of brain activation in response to diverse stimuli in vivo. MaCaReNas thus provide a tool for calcium-activity mapping in deep tissue and offer a precedent for the development of further nanoparticle-based sensors for dynamic molecular imaging with MRI.
NASA Technical Reports Server (NTRS)
Jorgensen, Niklas Rye; Teilmann, Stefan Cuoni; Henriksen, Zanne; Civitelli, Roberto; Sorensen, Ole Helmer; Steinberg, Thomas H.
2003-01-01
The propagation of mechanically induced intercellular calcium waves (ICW) among osteoblastic cells occurs both by activation of P2Y (purinergic) receptors by extracellular nucleotides, resulting in "fast" ICW, and by gap junctional communication in cells that express connexin43 (Cx43), resulting in "slow" ICW. Human osteoblastic cells transmit intercellular calcium signals by both of these mechanisms. In the current studies we have examined the mechanism of slow gap junction-dependent ICW in osteoblastic cells. In ROS rat osteoblastic cells, gap junction-dependent ICW were inhibited by removal of extracellular calcium, plasma membrane depolarization by high extracellular potassium, and the L-type voltage-operated calcium channel inhibitor, nifedipine. In contrast, all these treatments enhanced the spread of P2 receptor-mediated ICW in UMR rat osteoblastic cells. Using UMR cells transfected to express Cx43 (UMR/Cx43) we confirmed that nifedipine sensitivity of ICW required Cx43 expression. In human osteoblastic cells, gap junction-dependent ICW also required activation of L-type calcium channels and influx of extracellular calcium.
Kaplan, Mehmet Mahsum; Sultana, Nasreen; Benedetti, Ariane; Obermair, Gerald J; Linde, Nina F; Papadopoulos, Symeon; Dayal, Anamika; Grabner, Manfred; Flucher, Bernhard E
2018-06-26
Formation of synapses between motor neurons and muscles is initiated by clustering of acetylcholine receptors (AChRs) in the center of muscle fibers prior to nerve arrival. This AChR patterning is considered to be critically dependent on calcium influx through L-type channels (Ca V 1.1). Using a genetic approach in mice, we demonstrate here that either the L-type calcium currents (LTCCs) or sarcoplasmic reticulum (SR) calcium release is necessary and sufficient to regulate AChR clustering at the onset of neuromuscular junction (NMJ) development. The combined lack of both calcium signals results in loss of AChR patterning and excessive nerve branching. In the absence of SR calcium release, the severity of synapse formation defects inversely correlates with the magnitude of LTCCs. These findings highlight the importance of activity-dependent calcium signaling in early neuromuscular junction formation and indicate that both LTCC and SR calcium release individually support proper innervation of muscle by regulating AChR patterning and motor axon outgrowth. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
ZM, Sara Zafaranchi; Khoshaman, Kazem; Masoudi, Raheleh; Hemmateenejad, Bahram; Yousefi, Reza
2017-01-01
The imbalance of the calcium homeostasis in the lenticular tissues of diabetic patients is an important risk factor for development of cataract diseases. In the current study, the impact of elevated levels of calcium ions were investigated on structure and aggregation propensity of glycated lens crystallins using gel electrophoresis and spectroscopic assessments. The glycated proteins indicated significant resistance against calcium-induced structural insults and aggregation. While, glycated crystallins revealed an increased conformational stability; a slight instability was observed for these proteins upon interaction with calcium ions. Also, in the presence of calcium, the proteolytic pattern of native crystallins was altered and that of glycated protein counterparts remained almost unchanged. According to results of this study it is suggested that the structural alteration of lens crystallins upon glycation may significantly reduce their calcium buffering capacity in eye lenses. Therefore, under chronic hyperglycemia accumulation of this cataractogenic metal ion in the lenticular tissues may subsequently culminate in activation of different pathogenic pathways, leading to development of lens opacity and cataract diseases.
Larsen, Janice K; Mitchell, Jennifer W; Best, Philip M
2002-05-01
Two distinct calcium currents are present in mammalian cardiac myocytes. Utilizing quantitative RT-PCR methods, we have analysed the expression patterns and abundance of four calcium channel alpha 1 subunit mRNAs in different regions of the rat heart and compared them to the known density of calcium currents recorded from rat atria. Our results show that Ca(V)1.2 is the most abundant of the four alpha 1 subunit transcripts in the rat heart. The Ca(V)1.2 message is more abundant in ventricle than in atria and does not vary in expression as a function of developmental age. Ca(V)2.3, Ca(V)3.1 and Ca(V)3.2 mRNAs are 10-100 times less abundant than Ca(V)1.2. Interestingly, Ca(V)2.3, Ca(V)3.1 and Ca(V)3.2 are expressed in both atria and ventricle. The abundance of atrial Ca(V)3.1 mRNA does not change significantly during development and remains high in older animals. In contrast, levels of atrial Ca(V)3.2 mRNA are high in embryonic tissue and at 3- and 4-weeks postnatal but become undetectable at 5 weeks. Expression of atrial Ca(V)2.3 mRNA is highest at 4-weeks postnatal and then declines gradually. We have previously documented that the LVA calcium current density is highest within 4-5 weeks after birth and then declines gradually reaching less than 30% of its maximal value at 12-14 weeks. The complex relationship between atrial LVA current density and the abundance of Ca(V)2.3, Ca(V)3.1 and Ca(V)3.2 mRNA suggests that their contribution to the cardiac LVA current may vary as a function of postnatal age. Copyright 2002 Academic Press.
Yue, Jingxia; Zhang, Yi; Li, Xuemin; Gong, Shan; Tao, Jin; Jiang, Xinghong
2014-11-01
G protein-coupled receptor 30 (GPR30) is a seven transmembrane domain G protein coupled receptor. In our study, GPR30 expression was found in trigeminal ganglia (TG) in mice, detected by RT-PCR and western blotting. We examined the effects of GPR30 activation on T-type calcium channels using GPR30-specific compound 1 (G-1), a GPR30-selective agonist, in TG neurons and demonstrated that G-1 induced an increase in T-type calcium channel currents (T-currents) in TGs. Intracellular infusion of GDP-β-S and pre-treatment of the neurons with cholera toxin (CTX) blocked the effects of G-1, suggesting that the G(s)-protein was involved. Intracellular application of the protein kinase A (PKA) inhibitor PKI 6-22 or pretreatment of the neurons with H89 abolished G-1 -induced enhancement of T-currents in TG neurons. However, incubation with PKC inhibitor elicited no such effects. In conclusion, our study shows that activation of GPR30 by G-1 increases T-currents via the CTX-sensitive and PKA-dependent pathway.
Development of calcium bodies in Hylonsicus riparius (Crustacea: Isopoda).
Vittori, Miloš; Khurshed, Mohammed; Picavet, Daisy I; van Noorden, Cornelis J F; Štrus, Jasna
2018-03-01
Calcium bodies are internal epithelial sacs found in terrestrial isopods of the family Trichoniscidae that contain a mineralized extracellular matrix that is deposited and resorbed in relation to the molt cycle. Calcium bodies in several trichoniscids are filled with bacteria, the function of which is currently unknown. The woodlouse Hyloniscus riparius differs from other trichoniscids in that it possesses two different pairs of calcium bodies, the posterior pair being filled with bacteria and the anterior pair being devoid of bacteria. We explored the development of these organs and bacterial colonization of their lumen during the postmarsupial development with the use of optical clearing and whole-body confocal imaging of larval and juvenile stages. Our results show that calcium bodies are formed as invaginations of the epidermis in the region of intersegmental membranes during the postmarsupial development. The anterior pair of calcium bodies is generated during the first postmarsupial manca stage, whereas the posterior calcium bodies first appear in juveniles and are immediately colonized by bacteria, likely through a connection between the calcium body lumen and the body surface. Mineral is deposited in calcium bodies as soon as they are present. Copyright © 2018 Elsevier Ltd. All rights reserved.
Resveratrol Interferes with Fura-2 Intracellular Calcium Measurements.
Kopp, Richard F; Leech, Colin A; Roe, Michael W
2014-03-01
Resveratrol, a naturally occurring polyphenol found in some fruits and especially in grapes, has been reported to provide diverse health benefits. Resveratrol's mechanism of action is the subject of many investigations, and some studies using the ratiometric calcium indicator Fura-2 suggest that it modulates cellular calcium responses. In the current study, contradictory cellular calcium responses to resveratrol applied at concentrations exceeding 10 μM were observed during in vitro imaging studies depending on the calcium indicator used, with Fura-2 indicating an increase in intracellular calcium while Fluo-4 and the calcium biosensor YC3.60 indicated no response. When cells loaded with Fura-2 were treated with 100 μM resveratrol, excitation at 340 nm resulted in a large intensity increase at 510 nm, but the expected concurrent decline with 380 nm excitation was not observed. Pre-treatment of cells with the calcium chelator BAPTA-AM did not prevent a rise in the 340/380 ratio when resveratrol was present, but it did prevent an increase in 340/380 when ATP was applied, suggesting that the resveratrol response was an artifact. Cautious data interpretation is recommended from imaging experiments using Fura-2 concurrently with resveratrol in calcium imaging experiments.
Floating dosage forms to prolong gastro-retention--the characterisation of calcium alginate beads.
Stops, Frances; Fell, John T; Collett, John H; Martini, Luigi G
2008-02-28
Floating calcium alginate beads, designed to improve drug bioavailability from oral preparations compared with that from many commercially available and modified release products, have been investigated as a possible gastro-retentive dosage form. A model drug, riboflavin, was also incorporated into the formula. The aims of the current work were (a) to obtain information regarding the structure, floating ability and changes that occurred when the dosage form was placed in aqueous media, (b) to investigate riboflavin release from the calcium alginate beads in physiologically relevant media prior to in vivo investigations. Physical properties of the calcium alginate beads were investigated. Using SEM and ESEM, externally the calcium alginate beads were spherical in shape, and internally, air filled cavities were present thereby enabling floatation of the beads. The calcium alginate beads remained buoyant for times in excess of 13h, and the density of the calcium alginate beads was <1.000gcm(-3). Riboflavin release from the calcium alginate beads showed that riboflavin release was slow in acidic media, whilst in more alkali media, riboflavin release was more rapid. The characterisation studies showed that the calcium alginate beads could be considered as a potential gastro-retentive dosage form.
Electrochemical investigation of lead-calcium alloys in sulphuric acid
NASA Astrophysics Data System (ADS)
Bass, K.; Ellis, S. R.; Johnson, M.; Hampson, N. A.
The hydrogen evolution reaction from, and the cycle life (Pb /ar PbSO 4) of, a series of lead-calcium alloys (0 - 0.2 wt.% Ca) in sulphuric acid hav The exchange current density and Tafel slope for the H.R.E. increase with Ca content up to 0.05 wt.% then decrease to a value approaching that of pure The observed results are explained by: (i) preferential adsorption of calcium ions at the electrode surface; (ii) incorporation of Ca, to form a supersaturated solution, with alloys containing < 0.075 wt.% Ca; (iii) formation of an insoluble, non-conducting layer of calcium sulphate on the high content alloy.
Aspects of Solvent Chemistry for Calcium Hydroxide Medicaments
Athanassiadis, Basil
2017-01-01
Calcium hydroxide pastes have been used in endodontics since 1947. Most current calcium hydroxide endodontic pastes use water as the vehicle, which limits the dissolution of calcium hydroxide that can be achieved and, thereby, the maximum pH that can be achieved within the root canal system. Using polyethylene glycol as a solvent, rather than water, can achieve an increase in hydroxyl ions release compared to water or saline. By adopting non-aqueous solvents such as the polyethylene glycols (PEG), greater dissolution and faster hydroxyl ion release can be achieved, leading to enhanced antimicrobial actions, and other improvements in performance and biocompatibility. PMID:29065542
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menes, F.; Dirian, G.; Roth, E.
1962-01-01
The method of counter-current electromigration in molten salts was applied to CaBr/sub 2/ with an alkali metal bromide added to the cathode compartment. Enrichments on Ca/sup 46/ greater than a factor of two were obtained at the anode. The mass effect was found to be about 0.06. An estimation of the cost of energy for a process based on this method was made. (auth)
Serum calcium and incident diabetes: an observational study and meta-analysis.
Sing, C W; Cheng, V K F; Ho, D K C; Kung, A W C; Cheung, B M Y; Wong, I C K; Tan, K C B; Salas-Salvadó, J; Becerra-Tomas, N; Cheung, C L
2016-05-01
The study aimed to prospectively evaluate if serum calcium is related to diabetes incidence in Hong Kong Chinese. The results showed that serum calcium has a significant association with increased risk of diabetes. The result of meta-analysis reinforced our findings. This study aimed to evaluate the association of serum calcium, including serum total calcium and albumin-corrected calcium, with incident diabetes in Hong Kong Chinese. We conducted a retrospective cohort study in 6096 participants aged 20 or above and free of diabetes at baseline. Serum calcium was measured at baseline. Incident diabetes was determined from several electronic databases. We also searched relevant databases for studies on serum calcium and incident diabetes and conducted a meta-analysis using fixed-effect modeling. During 59,130.9 person-years of follow-up, 631 participants developed diabetes. Serum total calcium and albumin-corrected calcium were associated with incident diabetes in the unadjusted model. After adjusting for demographic and clinical variables, the association remained significant only for serum total calcium (hazard ratio (HR), 1.32 (95 % confidence interval (CI), 1.02-1.70), highest vs. lowest quartile). In a meta-analysis of four studies including the current study, both serum total calcium (pooled risk ratio (RR), 1.38 (95 % CI, 1.15-1.65); I (2) = 5 %, comparing extreme quantiles) and albumin-corrected calcium (pooled RR, 1.29 (95 % CI, 1.03-1.61); I (2) = 0 %, comparing extreme quantiles) were associated with incident diabetes. Penalized regression splines showed that the association of incident diabetes with serum total calcium and albumin-correlated calcium was non-linear and linear, respectively. Elevated serum calcium concentration is associated with incident diabetes. The mechanism underlying this association warrants further investigation.
García-Delgado, Neivys; Velasco, Myrian; Sánchez-Soto, Carmen; Díaz-García, Carlos Manlio; Hiriart, Marcia
2018-01-01
Pancreatic beta cells during the first month of development acquire functional maturity, allowing them to respond to variations in extracellular glucose concentration by secreting insulin. Changes in ionic channel activity are important for this maturation. Within the voltage-gated calcium channels (VGCC), the most studied channels are high-voltage-activated (HVA), principally L-type; while low-voltage-activated (LVA) channels have been poorly studied in native beta cells. We analyzed the changes in the expression and activity of VGCC during the postnatal development in rat beta cells. We observed that the percentage of detection of T-type current increased with the stage of development. T-type calcium current density in adult cells was higher than in neonatal and P20 beta cells. Mean HVA current density also increased with age. Calcium current behavior in P20 beta cells was heterogeneous; almost half of the cells had HVA current densities higher than the adult cells, and this was independent of the presence of T-type current. We detected the presence of α1G, α1H, and α1I subunits of LVA channels at all ages. The Cav 3.1 subunit (α1G) was the most expressed. T-type channel blockers mibefradil and TTA-A2 significantly inhibited insulin secretion at 5.6 mM glucose, which suggests a physiological role for T-type channels at basal glucose conditions. Both, nifedipine and TTA-A2, drastically decreased the beta-cell subpopulation that secretes more insulin, in both basal and stimulating glucose conditions. We conclude that changes in expression and activity of VGCC during the development play an important role in physiological maturation of beta cells. PMID:29556214
Pavenstädt, H.; Gloy, J.; Leipziger, J.; Klär, B.; Pfeilschifter, J.; Schollmeyer, P.; Greger, R.
1993-01-01
1. The effects of extracellular ATP on contraction, membrane voltage (Vm), ion currents and intracellular calcium activity [Ca2+]i were studied in rat mesangial cells (MC) in primary culture. 2. Addition of extracellular ATP (10(-5) and 10(-4) M) to MC led to a cell contraction which was independent of extracellular calcium. 3. Membrane voltage (Vm) and ion currents were measured with the nystatin patch clamp technique. ATP induced a concentration-dependent transient depolarization of Vm (ED50: 2 x 10(-6) M). During the transient depolarization ion currents were monitored simultaneously and showed an increase of the inward- and outward current. 4. In a buffer with a reduced extracellular chloride concentration (from 145 to 30 mM) ATP induced a depolarization augmented to -4 +/- 4 mV. 5. ATP-gamma-S and 2-methylthio-ATP depolarized Vm to the same extent as ATP, whereas alpha,beta-methylene-ATP (all 10(-5) M) had no effect on Vm. 6. The Ca2+ ionophore, A23187, depolarized Vm transiently from -51 +/- 2 to -28 +/- 4 mV and caused an increase of the inward current. 7. The intracellular calcium activity [Ca2+]i was measured with the fura-2 technique. ATP stimulated a concentration-dependent increase of [Ca2+]i (ED50: 5 x 10(-6) M). The increase of [Ca2+]i was biphasic with an initial peak followed by a sustained plateau. 8. The [Ca2+]i peak was still present in an extracellular Ca(2+)-free buffer, whereas the plateau was abolished. Verapamil (10(-4) M) did not inhibit the [Ca2+]i increase induced by ATP.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 1 PMID:7691366
Zhang, Xuan; Li, Honglin; Zhang, Huiran; Liu, Yani; Huo, Lifang; Jia, Zhanfeng; Xue, Yucong; Sun, Xiaorun; Zhang, Wei
2017-07-01
Natural flavonoids are ubiquitous in dietary plants and vegetables and have been proposed to have antiviral, antioxidant, cardiovascular protective and anticancer effects. Transmembrane member 16A (TMEM16A)-encoded Ca 2+ -activated Cl - channels play a variety of physiological roles in many organs and tissues. Overexpression of TMEM16A is also believed to be associated with cancer progression. Therefore, inhibition of TMEM16A current may be a potential target for cancer therapy. In this study, we screened a broad spectrum of flavonoids for their inhibitory activities on TMEM16A currents. A whole-cell patch technique was used to record the currents. The BrdU assay and transwell technique were used to investigate cell proliferation and migration. At a concentration of 100 μM, 10 of 20 compounds caused significant (>50%) inhibition of TMEM16A currents. The four most potent compounds - luteolin, galangin, quercetin and fisetin - had IC 50 values ranging from 4.5 to 15 μM). To examine the physiological relevance of these findings, we also studied the effects of these flavonoids on endogenous TMEM16A currents in addition to cell proliferation and migration in LA795 cancer cells. Among the flavonoids tested, we detected a highly significant correlation between TMEM16A current inhibition and cell proliferation or reduction of migration. This study demonstrates that flavonoids inhibit TMEM16A currents and suggests that flavonoids could have anticancer effects via this mechanism. © 2017 The British Pharmacological Society.
Power, John M; Sah, Pankaj
2008-03-19
Acetylcholine (ACh) is an important modulator of learning, memory, and synaptic plasticity in the basolateral amygdala (BLA) and other brain regions. Activation of muscarinic acetylcholine receptors (mAChRs) suppresses a variety of potassium currents, including sI(AHP), the calcium-activated potassium conductance primarily responsible for the slow afterhyperpolarization (AHP) that follows a train of action potentials. Muscarinic stimulation also produces inositol 1,4,5-trisphosphate (IP(3)), releasing calcium from intracellular stores. Here, we show using whole-cell patch-clamp recordings and high-speed fluorescence imaging that focal application of mAChR agonists evokes large rises in cytosolic calcium in the soma and proximal dendrites in rat BLA projection neurons that are often associated with activation of an outward current that hyperpolarizes the cell. This hyperpolarization results from activation of small conductance calcium-activated potassium (SK) channels, secondary to the release of calcium from intracellular stores. Unlike bath application of cholinergic agonists, which always suppressed the AHP, focal application of ACh often evoked a paradoxical enhancement of the AHP and spike-frequency adaptation. This enhancement was correlated with amplification of the action potential-evoked calcium response and resulted from the activation of SK channels. When SK channels were blocked, cholinergic stimulation always reduced the AHP and spike-frequency adaptation. Conversely, suppression of the sI(AHP) by the beta-adrenoreceptor agonist, isoprenaline, potentiated the cholinergic enhancement of the AHP. These results suggest that competition between cholinergic suppression of the sI(AHP) and cholinergic activation of the SK channels shapes the AHP and spike-frequency adaptation.
Grases, Felix; Rodriguez, Adrian; Costa-Bauza, Antonia
2015-09-01
The main aim of the current study was to evaluate the effectiveness of mixtures of magnesium, citrate and phytate as calcium oxalate crystallization inhibitors. A turbidimetric assay in synthetic urine was performed to obtain induction times for calcium oxalate crystallization in the absence and presence of different mixtures of inhibitors. The morphology of calcium oxalate crystals in the absence or presence of inhibitors and mixtures of the inhibitors was evaluated in 2 crystallization experiments at low and high calcium oxalate supersaturation. The crystals formed were examined using scanning electron microscopy. Examination of crystallization induction times revealed clear inhibitory effects of magnesium, citrate and phytate on calcium oxalate crystallization, supporting usefulness in the treatment and prevention of calcium oxalate nephrolithiasis. Significant synergistic effects between magnesium and phytate were observed. Scanning electron microscopy images revealed that phytate is a powerful crystal growth inhibitor of calcium oxalate, totally preventing the formation of trihydrate and monohydrate. In addition to crystallization inhibition capacity, citrate and magnesium avoided calcium oxalate crystallization by decreasing its supersaturation. The synergistic effect between magnesium and phytate on calcium oxalate crystallization suggests that a combination of these 2 compounds may be highly useful as antilithiasis therapy. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Formate oxidation-driven calcium carbonate precipitation by Methylocystis parvus OBBP.
Ganendra, Giovanni; De Muynck, Willem; Ho, Adrian; Arvaniti, Eleni Charalampous; Hosseinkhani, Baharak; Ramos, Jose Angel; Rahier, Hubert; Boon, Nico
2014-08-01
Microbially induced carbonate precipitation (MICP) applied in the construction industry poses several disadvantages such asammonia release to the air and nitric acid production. An alternative MICP from calcium formate by Methylocystis parvus OBBP is presented here to overcome these disadvantages. To induce calcium carbonate precipitation, M. parvus was incubated at different calcium formate concentrations and starting culture densities. Up to 91.4% ± 1.6% of the initial calcium was precipitated in the methane-amended cultures compared to 35.1% ± 11.9% when methane was not added. Because the bacteria could only utilize methane for growth, higher culture densities and subsequently calcium removals were exhibited in the cultures when methane was added. A higher calcium carbonate precipitate yield was obtained when higher culture densities were used but not necessarily when more calcium formate was added. This was mainly due to salt inhibition of the bacterial activity at a high calcium formate concentration. A maximum 0.67 ± 0.03 g of CaCO3 g of Ca(CHOOH)2(-1) calcium carbonate precipitate yield was obtained when a culture of 10(9) cells ml(-1) and 5 g of calcium formate liter(-)1 were used. Compared to the current strategy employing biogenic urea degradation as the basis for MICP, our approach presents significant improvements in the environmental sustainability of the application in the construction industry.
Formate Oxidation-Driven Calcium Carbonate Precipitation by Methylocystis parvus OBBP
Ganendra, Giovanni; De Muynck, Willem; Ho, Adrian; Arvaniti, Eleni Charalampous; Hosseinkhani, Baharak; Ramos, Jose Angel; Rahier, Hubert
2014-01-01
Microbially induced carbonate precipitation (MICP) applied in the construction industry poses several disadvantages such as ammonia release to the air and nitric acid production. An alternative MICP from calcium formate by Methylocystis parvus OBBP is presented here to overcome these disadvantages. To induce calcium carbonate precipitation, M. parvus was incubated at different calcium formate concentrations and starting culture densities. Up to 91.4% ± 1.6% of the initial calcium was precipitated in the methane-amended cultures compared to 35.1% ± 11.9% when methane was not added. Because the bacteria could only utilize methane for growth, higher culture densities and subsequently calcium removals were exhibited in the cultures when methane was added. A higher calcium carbonate precipitate yield was obtained when higher culture densities were used but not necessarily when more calcium formate was added. This was mainly due to salt inhibition of the bacterial activity at a high calcium formate concentration. A maximum 0.67 ± 0.03 g of CaCO3 g of Ca(CHOOH)2−1 calcium carbonate precipitate yield was obtained when a culture of 109 cells ml−1 and 5 g of calcium formate liter−1 were used. Compared to the current strategy employing biogenic urea degradation as the basis for MICP, our approach presents significant improvements in the environmental sustainability of the application in the construction industry. PMID:24837386
Fournier, F; Charpentier, G; Lahyani, A; Bruner, J; Czternasty, G; Marlot, D; Ronco, G; Villa, P; Brule, G
1993-01-01
P-type calcium channels are expressed in Xenopus oocytes after injection of rat cerebellar mRNA. The FTX and omega-Aga-IVa toxins extracted from Agelenopsis aperta venom are known to inhibit the activity of this channel. The present results demonstrate that 8RN-DAGal is also a antagonist of P-type calcium channels. The inhibition of the current, obtained with Ba2+, as charge carrier, is voltage dependent.
Prebiotics and the absorption of minerals: a review of experimental and human data
USDA-ARS?s Scientific Manuscript database
Dietary factors, including calcium and vitamin D intake, absorption, and status, lifestyle factors including physical activity, and genetics interact to determine peak bone mass. The current recommended dietary intake of calcium (adequate intake, AI) of 1300 mg/day in the United States for adolescen...
Code of Federal Regulations, 2011 CFR
2011-07-01
... best practicable control technology currently available (BPT): Subpart AD—Calcium Carbonate Milk of... SOURCE CATEGORY Calcium Carbonate Production Subcategory § 415.302 Effluent limitations guidelines... point source subject to this subpart and using the milk of lime process must achieve the following...
Tosti, Elisabetta; Gallo, Alessandra; Silvestre, Francesco
2011-01-01
Electrophysiological techniques were used to study the role of ion currents in the ascidian Ciona intestinalis oocyte plasma membrane during different stages of growth, meiosis, fertilization and early development. Three stages of immature oocytes were discriminated in the ovary, with the germinal vesicle showing specific different features of growth and maturation. Stage-A (pre-vitellogenic) oocytes exhibited the highest L-type calcium current activity and were incompetent for meiosis resumption. Stage-B (vitellogenic) oocytes showed a progressive disappearance of calcium currents and the first appearance of sodium currents that remained high during the maturation process, up to the post-vitellogenic stage-C oocytes. The latter had acquired meiotic competence, undergoing spontaneous in vitro maturation and interacting with the spermatozoon. However, fertilized oocytes did not produce normal larvae, suggesting that cytoplasmic maturation may affect embryo development. In mature oocytes at the metaphase I stage, sodium currents were present and remained high up to the zygote stage. Oocytes fertilized in the absence of sodium showed significant reduction of the fertilization current amplitude and high development of anomalous "rosette" embryos. Current amplitudes became negligible in embryos at the 2- and 4-cell stage, whereas resumption of all the current activities occurred at the 8-cell embryo. Taken together, these results suggest: (i) an involvement of L-type calcium currents in initial oocyte meiotic progression and growth; (ii) a role of sodium currents at fertilization; (iii) a role of the fertilization current in ensuring normal embryo development. Copyright © 2011 Wiley Periodicals, Inc.
Calcium Currents Are Enhanced by α2δ-1 Lacking Its Membrane Anchor*
Kadurin, Ivan; Alvarez-Laviada, Anita; Ng, Shu Fun Josephine; Walker-Gray, Ryan; D'Arco, Marianna; Fadel, Michael G.; Pratt, Wendy S.; Dolphin, Annette C.
2012-01-01
The accessory α2δ subunits of voltage-gated calcium channels are membrane-anchored proteins, which are highly glycosylated, possess multiple disulfide bonds, and are post-translationally cleaved into α2 and δ. All α2δ subunits have a C-terminal hydrophobic, potentially trans-membrane domain and were described as type I transmembrane proteins, but we found evidence that they can be glycosylphosphatidylinositol-anchored. To probe further the function of membrane anchoring in α2δ subunits, we have now examined the properties of α2δ-1 constructs truncated at their putative glycosylphosphatidylinositol anchor site, located before the C-terminal hydrophobic domain (α2δ-1ΔC-term). We find that the majority of α2δ-1ΔC-term is soluble and secreted into the medium, but unexpectedly, some of the protein remains associated with detergent-resistant membranes, also termed lipid rafts, and is extrinsically bound to the plasma membrane. Furthermore, heterologous co-expression of α2δ-1ΔC-term with CaV2.1/β1b results in a substantial enhancement of the calcium channel currents, albeit less than that produced by wild-type α2δ-1. These results call into question the role of membrane anchoring of α2δ subunits for calcium current enhancement. PMID:22869375
Rivet, M; Bois, P; Cognard, C; Raymond, G
1990-10-01
The effect of the anticonvulsant diphenylhydantoin (phenytoin) was tested on the inward calcium currents of whole-cell patch-clamped cells from rat and human muscles and from frog atrium. A concentration of 10 microM phenytoin was required to obtain a threshold inhibitory effect and, even with high concentrations (100 microM), the inhibition was not complete. In skeletal muscle (rat and human cells in culture), phenytoin (30 microM) exerted a more potent effect on the high-threshold calcium current (ICa,L inhibition: 53 +/- 6% mean +/- SDn-1) rather than on the low-threshold one (ICa,T inhibition: 16 +/- 10%). Similar results were obtained on dissociated frog atrial cells. These data are to be contrasted with those previously reported on neuronal cells, where specific inhibition of ICa,T was reported. Thus, the action of phenytoin appears to be different in muscle and nerve so that phenytoin does not appear to be a specific inhibitor of ICa,T.
Taylor, R W; Goulding, A
1998-06-01
To assess the validity of a short calcium food frequency questionnaire (FFQ) for use in young children. Calcium intake from an estimated 4 d diet record (4DDR) was compared with the calcium intake from a 35 item FFQ specifically designed to assess habitual calcium intake and previously validated for adult women. Forty-one girls and 26 boys aged 3-6 y recruited by advertisement for studies of nutrition and bone health. Mean (s.d.) calcium intakes were 798 mg (271) and 942 mg (419) for the 4DDR and FFQ respectively, (r = 0.52). Mean difference (s.d. of difference) in calcium intake between the two methods was 144 mg (355), showing that the FFQ may estimate calcium intakes 565 mg below to 854 mg above diet record values. 84% of subjects when classified by the 4DDR fell into the same or adjacent quartiles when classified by the FFQ. Only two subjects were classified in extreme quartiles for the two methods. The FFQ correctly identified 68% of children with recorded intakes less than 800 mg. The short calcium FFQ tended to overestimate actual calcium intakes in young children, and would not be appropriate for determining calcium intake of individuals. However, the FFQ demonstrated good ability to classify subjects into extremes of calcium intake. Moreover, the predictive value of the FFQ in identifying children with intakes below the current recommended intake of 800 mg was reasonably high (79%).
First-principles simulations of doping-dependent mesoscale screening of adatoms in graphene
NASA Astrophysics Data System (ADS)
Mostofi, Arash; Corsetti, Fabiano; Wong, Dillon; Crommie, Michael; Lischner, Johannes
Adsorbed atoms and molecules play an important role in controlling and tuning the functional properties of 2D materials. Understanding and predicting this phenomenon from theory is challenging because of the need to capture both the local chemistry of the adsorbate-substrate interaction and its complex interplay with the long-range screening response of the substrate. To address this challenge, we have developed a first-principles multi-scale approach that combines linear-scaling density-functional theory, continuum screening theory and large-scale tight-binding simulations. Focussing on the case of a calcium adatom on graphene, we draw comparison between the effect of (i) non-linearity, (ii) intraband and interband transitions, and (iii) the exchange-correlation potential, thus providing insight into the relative importance of these different factors on the screening response. We also determine the charge transfer from the adatom to the graphene substrate (the key parameter used in continuum screening models), showing it to be significantly larger than previous estimates. AM and FC acknowledge support of the EPSRC under Grant EP/J015059/1, and JL under Grant EP/N005244/1.
Zamponi, Gerald W.; Striessnig, Joerg; Koschak, Alexandra
2015-01-01
Voltage-gated calcium channels are required for many key functions in the body. In this review, the different subtypes of voltage-gated calcium channels are described and their physiologic roles and pharmacology are outlined. We describe the current uses of drugs interacting with the different calcium channel subtypes and subunits, as well as specific areas in which there is strong potential for future drug development. Current therapeutic agents include drugs targeting L-type CaV1.2 calcium channels, particularly 1,4-dihydropyridines, which are widely used in the treatment of hypertension. T-type (CaV3) channels are a target of ethosuximide, widely used in absence epilepsy. The auxiliary subunit α2δ-1 is the therapeutic target of the gabapentinoid drugs, which are of value in certain epilepsies and chronic neuropathic pain. The limited use of intrathecal ziconotide, a peptide blocker of N-type (CaV2.2) calcium channels, as a treatment of intractable pain, gives an indication that these channels represent excellent drug targets for various pain conditions. We describe how selectivity for different subtypes of calcium channels (e.g., CaV1.2 and CaV1.3 L-type channels) may be achieved in the future by exploiting differences between channel isoforms in terms of sequence and biophysical properties, variation in splicing in different target tissues, and differences in the properties of the target tissues themselves in terms of membrane potential or firing frequency. Thus, use-dependent blockers of the different isoforms could selectively block calcium channels in particular pathologies, such as nociceptive neurons in pain states or in epileptic brain circuits. Of important future potential are selective CaV1.3 blockers for neuropsychiatric diseases, neuroprotection in Parkinson’s disease, and resistant hypertension. In addition, selective or nonselective T-type channel blockers are considered potential therapeutic targets in epilepsy, pain, obesity, sleep, and anxiety. Use-dependent N-type calcium channel blockers are likely to be of therapeutic use in chronic pain conditions. Thus, more selective calcium channel blockers hold promise for therapeutic intervention. PMID:26362469
Patel, Rufi Murad; Varma, Siddhartha; Suragimath, Girish; Zope, Sameer
2016-07-01
In oral diagnostics there is a great challenge to determine biomarkers for screening and evaluating the disease activity. Biomarkers can also serve as a useful tool to measure the efficacy of the therapy. To evaluate and compare the levels of salivary calcium, phosphorous, alkaline phosphatase and pH levels in periodontally healthy subjects and patients with gingivitis and periodontitis. The present study consisted of 150 subjects aged between 20-45 years who were divided into three groups; periodontally healthy, gingivitis and chronic periodontitis. Prior to the clinical examination the demographic details, relevant information of the subject, gingival index, plaque index, Oral Hygiene Index (OHI) and pH were recorded. Biochemical assay of saliva i.e., inorganic calcium, phosphorous and alkaline phosphatase were estimated by colorimetric method. ANOVA and Tukey's test were applied for statistical analysis. The mean levels of biomarkers studied were; inorganic calcium (12.55μg/dl), phosphorous (14.50μg/dl), alkaline phosphatase (49.62μg/dl) and pH (11.65). There was a gradual increase in these levels as the condition progressed from health to gingivitis or periodontitis which was statistically significant at p<0.001. Based on these results, it can be concluded that, the biomarkers like salivary calcium, phosphorous, alkaline phosphatase and pH can be considered for evaluating the diagnosis and prognosis of periodontal tissues in disease and health.
Lv, Ling; Huang, Bing; Zhao, Qiping; Zhao, Zongping; Dong, Hui; Zhu, Shunhai; Chen, Ting; Yan, Ming; Han, Hongyu
2018-04-23
Eimeria tenella is an obligate intracellular apicomplexan protozoan parasite that has a complex life-cycle. Calcium ions, through various calcium-dependent protein kinases (CDPKs), regulate key events in parasite growth and development, including protein secretion, movement, differentiation, and invasion of and escape from host cells. In this study, we identified proteins that interact with EtCDPK4 to lay a foundation for clarifying the role of CDPKs in calcium channels. Eimeria tenella merozoites were collected to construct a yeast two-hybrid (Y2H) cDNA library. The Y2H system was used to identify proteins that interact with EtCDPK4. One of interacting proteins was confirmed using bimolecular fluorescence complementation and co-immunoprecipitation in vivo. Co-localization of proteins was performed using immunofluorescence assays. Eight proteins that interact with EtCDPK4 were identified using the Y2H system. One of the proteins, E. tenella serine protease inhibitor 1 (EtSerpin), was further confirmed. In this study, we screened for proteins that interact with EtCDPK4. An interaction between EtSerpin and EtCDPK4 was identified that may contribute to the invasion and development of E. tenella in host cells.
Ben-Tabou De-Leon, Shlomo; Blotnick, Edna; Nussinovitch, Itzhak
2003-10-01
Decrease in extracellular osmolarity ([Os]e) results in stimulation of hormone secretion from pituitary cells. Different mechanisms can account for this stimulation of hormone secretion. In this study we examined the possibility that hyposmolarity directly modulates voltage-gated calcium influx in pituitary cells. The effects of hyposmolarity on L-type (IL) and T-type (IT) calcium currents in pituitary cells were investigated by using two hyposmotic stimuli, moderate (18-22% decrease in [Os]e) and strong (31-32% decrease in [Os]e). Exposure to moderate hyposmotic stimuli resulted in three response types in IL (a decrease, a biphasic effect, and an increase in IL) and in increase in IT. Exposure to strong hyposmotic stimuli resulted only in increases in both IL and IT. Similarly, in intact pituitary cells (perforated patch method), exposure to either moderate or strong hyposmotic stimuli resulted only in increases in both IL and IT. Thus it appears that the main effect of decrease in [Os]e is increase in calcium channel currents. This increase was differential (IL were more sensitive than IT) and voltage independent. In addition, we show that these hyposmotic effects cannot be explained by activation of an anionic conductance or by an increase in cell membrane surface area. In conclusion, this study shows that hyposmotic swelling of pituitary cells can directly modulate voltage-gated calcium influx. This hyposmotic modulation of IL and IT may contribute to the previously reported hyposmotic stimulation of hormone secretion. The mechanisms underlying these hyposmotic effects and their possible physiological relevance are discussed.
L-type calcium channels refine the neural population code of sound level
Grimsley, Calum Alex; Green, David Brian
2016-01-01
The coding of sound level by ensembles of neurons improves the accuracy with which listeners identify how loud a sound is. In the auditory system, the rate at which neurons fire in response to changes in sound level is shaped by local networks. Voltage-gated conductances alter local output by regulating neuronal firing, but their role in modulating responses to sound level is unclear. We tested the effects of L-type calcium channels (CaL: CaV1.1–1.4) on sound-level coding in the central nucleus of the inferior colliculus (ICC) in the auditory midbrain. We characterized the contribution of CaL to the total calcium current in brain slices and then examined its effects on rate-level functions (RLFs) in vivo using single-unit recordings in awake mice. CaL is a high-threshold current and comprises ∼50% of the total calcium current in ICC neurons. In vivo, CaL activates at sound levels that evoke high firing rates. In RLFs that increase monotonically with sound level, CaL boosts spike rates at high sound levels and increases the maximum firing rate achieved. In different populations of RLFs that change nonmonotonically with sound level, CaL either suppresses or enhances firing at sound levels that evoke maximum firing. CaL multiplies the gain of monotonic RLFs with dynamic range and divides the gain of nonmonotonic RLFs with the width of the RLF. These results suggest that a single broad class of calcium channels activates enhancing and suppressing local circuits to regulate the sensitivity of neuronal populations to sound level. PMID:27605536
Protective effects of isorhynchophylline on cardiac arrhythmias in rats and guinea pigs.
Gan, Runtao; Dong, Guo; Yu, Jiangbo; Wang, Xu; Fu, Songbin; Yang, Shusen
2011-09-01
As one important constituent extracted from a traditional Chinese medicine, Uncaria Rhynchophylla Miq Jacks, isorhynchophylline has been used to treat hypertension, epilepsy, headache, and other illnesses. Whether isorhynchophylline protects hearts against cardiac arrhythmias is still incompletely investigated. This study was therefore aimed to examine the preventive effects of isorhynchophylline on heart arrhythmias in guinea pigs and rats and then explore their electrophysiological mechanisms. In vivo, ouabain and calcium chloride were used to establish experimental arrhythmic models in guinea pigs and rats. In vitro, the whole-cell patch-lamp technique was used to study the effect of isorhynchophylline on action potential duration and calcium channels in acutely isolated guinea pig and rat cardiomyocytes. The dose of ouabain required to induce cardiac arrhythmias was much larger in guinea pigs administered with isorhynchophylline. Additionally, the onset time of cardiac arrhythmias induced by calcium chloride was prolonged, and the duration was shortened in rats pretreated with isorhynchophylline. The further study showed that isorhynchophylline could significantly decrease action potential duration and inhibit calcium currents in isolated guinea pig and rat cardiomyocytes in a dose-dependent manner. In summary, isorhynchophylline played a remarkably preventive role in cardiac arrhythmias through the inhibition of calcium currents in rats and guinea pigs. © Georg Thieme Verlag KG Stuttgart · New York.
Zahanich, Ihor; Graf, Eva M; Heubach, Jürgen F; Hempel, Ute; Boxberger, Sabine; Ravens, Ursula
2005-09-01
We used the patch-clamp technique and RT-PCR to study the molecular and functional expression of VOCCs in undifferentiated hMSCs and in cells undergoing osteogenic differentiation. L-type Ca2+ channel blocker nifedipine did not influence alkaline phosphatase activity, calcium, and phosphate accumulation of hMSCs during osteogenic differentiation. This study suggests that osteogenic differentiation of hMSCs does not require L-type Ca2+ channel function. During osteogenic differentiation, mesenchymal stem cells from human bone marrow (hMSCs) must adopt the calcium handling of terminally differentiated osteoblasts. There is evidence that voltage-operated calcium channels (VOCCs), including L-type calcium channels, are involved in regulation of osteoblast function. We therefore studied whether VOCCs play a critical role during osteogenic differentiation of hMSCs. Osteogenic differentiation was induced in hMSCs cultured in maintenance medium (MM) by addition of ascorbate, beta-glycerophosphate, and dexamethasone (ODM) and was assessed by measuring alkaline phosphatase activity, expression of osteopontin, osteoprotegerin, RANKL, and mineralization. Expression of Ca2+ channel alpha1 subunits was shown by semiquantitative or single cell RT-PCR. Voltage-activated calcium currents of hMSCs were measured with the whole cell voltage-clamp technique. mRNA for the pore-forming alpha1C and alpha1G subunits of the L-type and T-type Ca2+ channels, respectively, was found in comparable amounts in cells cultured in MM or ODM. The limitation of L-type Ca2+ currents to a subpopulation of hMSCs was confirmed by single cell RT-PCR, where mRNA for the alpha1C subunits was detectable in only 50% of the cells cultured in MM. Dihydropyridine-sensitive L-type Ca2+ currents were found in 13% of cells cultured in MM and in 12% of the cells cultured in ODM. Under MM and ODM culture conditions, the cells positive for L-type Ca2+ currents were significantly larger than cells without Ca2+ currents as deduced from membrane capacitance; thus, current densities were comparable. Addition of the L-type Ca2+ channel blocker nifedipine to the culture media did not influence alkaline phosphatase activity and the extent of mineralization. These results suggest that, in the majority of hMSCs, Ca2+ entry through the plasma membrane is mediated by some channels other than VOCCs, and blockade of the L-type Ca2+ channels does not affect early osteogenic differentiation of hMSCs.
Effect of parathyroid hormone on transport by toad and turtle bladder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabatini, S.; Kurtzman, N.A.
1987-01-01
The authors recently demonstrated that parathyroid hormone (PTH) inhibited both vasopressin- and cyclic AMP-stimulated water transport in the toad bladder. This was associated with an increase in calcium uptake by isolated epithelial cells. They postulated that PTH exerts its action on H/sub 2/O transport by directly stimulating calcium uptake. The current study was designed to compare the effects of PTH and the calcium ionophore, A23187, on H/sub 2/O and Na transport and H..mu.. secretion in toad and turtle bladders. In toad bladder, PTH and A23187 decreased arginine vasopressin (AVP)-stimulated H/sub 2/O flow and short-circuit current (SCC) after 60 min serosalmore » incubation. In turtle bladder A23187 decreased SCC to 79.3 +/- 3.6% of base line (P < 0.05), and significantly decreased RSCC as well. PTH had no effect on SCC or H/sup +/ secretion in turtle bladders. Both PTH and A23187 increased /sup 45/Ca uptake in toad bladder epithelial cells; only A23187 increased /sup 45/Ca uptake in the turtle bladder. The different action of PTH in these two membranes, compared with that of the calcium ionophore, illustrates the selectivity of PTH on membrane transport. PTH increases calcium uptake and decreases transport only in a hormone-sensitive epithelium, whereas the ionophore works in virtually all living membranes. The mode of action of these two agents to increase calcium uptake is, therefore likely different.« less
Machado, Ana; Maneiras, Rui; Bordalo, Adriano A; Mesquita, Raquel B R
2018-08-15
The use of saliva for diagnose and surveillance of systemic illnesses, and general health has been arousing great interest worldwide, emerging as a highly desirable goal in healthcare. The collection is non-invasive, stress-free, inexpensive, and simple representing a major asset. Glucose, calcium, and magnesium concentration are three major parameters evaluated in clinical context due to their essential role in a wide range of biochemical reactions, and consequently many health disorders. In this work, a spectrophotometric sequential injection method is described for the fast screening of glucose, calcium, and magnesium in saliva samples. The glucose determination reaction involves the oxidation of the aldehyde functional group present in glucose with simultaneous reduction of 3,5-dinitrosalicylic acid (DNS) to 3-amino, 5-nitrosalicylic acid under alkaline conditions, followed by the development of colour. The determination of both metals is based on their reaction with cresolphtalein complexone (CPC), and the interference of calcium in the magnesium determination minimized by ethylene glycol-bis[β-aminoethyl ether]-N,N,N',N'-tetraacetic acid (EGTA). The developed multi-parametric method enabled dynamic ranges of 50 - 300 mg/dL for glucose, 0.1 - 2 mg/dL for calcium, and 0.1 - 0.5 mg/dL for magnesium. Determination rates of 28, 60, 52 h -1 were achieved for glucose, calcium, and magnesium, respectively. Less than 300 µL of saliva is required for the multi-parametric determination due to saliva viscosity and inherent necessity of dilution prior to analysis. RSDs lower than 5% were obtained, and the results agreed with those obtained by reference methods, while recovery tests confirmed its accuracy. Copyright © 2018 Elsevier B.V. All rights reserved.
Regulation of transepithelial ion transport by intracellular calcium ions.
Cuthbert, A W
1985-01-01
A photodynamic effect of erythrosine B on the basolateral surface of rat colon epithelium under short circuit conditions is described. The resulting irreversible increase in short circuit current was the result of electrogenic chloride secretion. The effect was dependent upon oxygen and calcium ions, and is probably due to the generation of singlet oxygen which then permeabilises the membranes to calcium. Half maximal activation of secretion in permeabilised preparations occurred at an external calcium concentration of 1 microM. In tight sodium transporting epithelia increased Cai reduces SCC, possibly by a direct effect on apical sodium permeability. In toad urinary bladder SCC fell in response to conditions outlined above for rat colon.
Rosenthal, Ann K; Ryan, Lawrence M
2014-05-01
Calcium crystal arthritis is often unrecognized, poorly managed, and few effective therapies are available. The most common types of calcium crystals causing musculoskeletal syndromes are calcium pyrophosphate (CPP) and basic calcium phosphate (BCP). Associated syndromes have different clinical presentations and divergent management strategies. Acute CPP arthritis is treated similarly to acute gouty arthritis, whereas chronic CPP and BCP arthropathy may respond to strategies used for osteoarthritis. Calcific tendonitis is treated with a variety of interventions designed to dissolve BCP crystals. A better understanding of the causes and larger well-planned trials of current therapies will lead to improved care. Copyright © 2014 Elsevier Inc. All rights reserved.
Targeting Cellular Calcium Homeostasis to Prevent Cytokine-Mediated Beta Cell Death.
Clark, Amy L; Kanekura, Kohsuke; Lavagnino, Zeno; Spears, Larry D; Abreu, Damien; Mahadevan, Jana; Yagi, Takuya; Semenkovich, Clay F; Piston, David W; Urano, Fumihiko
2017-07-17
Pro-inflammatory cytokines are important mediators of islet inflammation, leading to beta cell death in type 1 diabetes. Although alterations in both endoplasmic reticulum (ER) and cytosolic free calcium levels are known to play a role in cytokine-mediated beta cell death, there are currently no treatments targeting cellular calcium homeostasis to combat type 1 diabetes. Here we show that modulation of cellular calcium homeostasis can mitigate cytokine- and ER stress-mediated beta cell death. The calcium modulating compounds, dantrolene and sitagliptin, both prevent cytokine and ER stress-induced activation of the pro-apoptotic calcium-dependent enzyme, calpain, and partly suppress beta cell death in INS1E cells and human primary islets. These agents are also able to restore cytokine-mediated suppression of functional ER calcium release. In addition, sitagliptin preserves function of the ER calcium pump, sarco-endoplasmic reticulum Ca 2+ -ATPase (SERCA), and decreases levels of the pro-apoptotic protein thioredoxin-interacting protein (TXNIP). Supporting the role of TXNIP in cytokine-mediated cell death, knock down of TXNIP in INS1-E cells prevents cytokine-mediated beta cell death. Our findings demonstrate that modulation of dynamic cellular calcium homeostasis and TXNIP suppression present viable pharmacologic targets to prevent cytokine-mediated beta cell loss in diabetes.
Effects of calcium intake on the cardiovascular system in postmenopausal women.
Challoumas, D; Cobbold, C; Dimitrakakis, G
2013-11-01
The use of calcium supplements for the prevention of complications of osteoporosis has significantly increased during the last years. The effects of calcium intake in postmenopausal women on cardiovascular parameters such as blood pressure, serum lipids and cardiovascular events are controversial. Even though transient beneficial effects of calcium supplementation have been reported, especially in women with low dietary calcium intake, their long-term outcomes are inconclusive. Only a very few studies investigating serum lipids in postmenopausal women have been described and these showed significant increases in high-density lipoprotein and high-density lipoprotein to low-density lipoprotein ratio. With regards to cardiovascular events in this population group adverse effects have been reported on the rates of myocardial infarction and stroke with increased calcium intake by some authors, however, others described no effects or even beneficial outcomes. We present a review of the current literature which provides a balanced summary of the possible beneficial and adverse effects of calcium intake in postmenopausal women on cardiovascular parameters. Taking into account the modest effect of calcium supplementation in reducing fracture rates, a reassessment of the role, benefits and adverse effects of calcium supplements should be conducted in postmenopausal women. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
PREPARATION OF URANIUM HEXAFLUORIDE
Lawroski, S.; Jonke, A.A.; Steunenberg, R.K.
1959-10-01
A process is described for preparing uranium hexafluoride from carbonate- leach uranium ore concentrate. The briquetted, crushed, and screened concentrate is reacted with hydrogen fluoride in a fluidized bed, and the uranium tetrafluoride formed is mixed with a solid diluent, such as calcium fluoride. This mixture is fluorinated with fluorine and an inert diluent gas, also in a fluidized bed, and the uranium hexafluoride obtained is finally purified by fractional distillation.
Angulo, M C; Parra, P; Dieudonné, S
1998-03-01
Voltage-gated calcium channels form a complex family of distinct molecular entities which participate in multiple neuronal functions. In cerebellar Purkinje cells these channels contribute to the characteristic electrophysiological pattern of complex spikes, first described in birds and later in mammals. A specific calcium channel, the P-type channel, has been shown to mediate the majority of the voltage-gated calcium flux in mammalian Purkinje cells. P-type channels play an essential role in synaptic transmission of mammalian cerebellum. It is unclear whether the P-type calcium channel is present in birds. Studies in chick synaptosomal preparations show that the pharmacological profile of calcium channels is complex and suggest a minimal expression of the P-type channel in avian central nervous system. In the present work, we studied voltage-gated calcium channels in dissociated chick cerebellar Purkinje cells to examine the presence of different calcium channel types. Purkinje cells were used because, in mammals, they express predominantly P-type channels and because the morphology of these cells is thought to be phylogenetically conserved. We found that omega-conotoxin GVIA (omega-CgTx GVIA), a specific antagonist of N-type calcium channel, rather than the synthetic funnel-web spider toxin (sFTX), a P-type channel antagonist, blocks the majority of the barium current flowing through calcium channels in chick Purkinje neurons.
Calcium and aluminum impacts on sugar maple physiology in a northern hardwood forest
Joshua M. Halman; Paul G. Schaberg; Gary J. Hawley; Linda H. Pardo; Timothy J. Fahey
2013-01-01
Forests of northeastern North America have been exposed to anthropogenic acidic inputs for decades, resulting in altered cation relations and disruptions to associated physiological processes in multiple tree species, including sugar maple (Acer saccharum Marsh.). In the current study, the impacts of calcium (Ca) and aluminum (Al) additions on mature...
USDA-ARS?s Scientific Manuscript database
Although consuming dietary protein above current recommendations during energy deficit enhances blood lipid profiles and preserves lean body mass, concerns have been raised regarding effects of high-protein diets on bone health. To determine whether calcium homeostasis and bone turnover are affected...
USDA-ARS?s Scientific Manuscript database
Objective – To evaluate the mineral content including calcium, phosphorus, zinc, iron, copper, manganese, and selenium of canine commercial pet foods and compare them to current AAFCO recommendations for adult maintenance. Design - Descriptive study. Sample – Forty-five over the counter dry canine p...
Protti, D A; Uchitel, O D
1997-08-01
The identity of the voltage-dependent calcium channels (VDCC), which trigger the Ca2+-gated K+ currents (IK(Ca)) in mammalian motor nerve terminals, was investigated by means of perineurial recordings. The effects of Ca2+ chelators with different binding kinetics on the activation of IK(Ca) were also examined. The calcium channel blockers of the P/Q family, omega-agatoxin IVA (omega-Aga-IVA) and funnel-web spider toxin (FTX), have been shown to exert a strong blocking effect on IK(Ca). In contrast, nitrendipine and omega-conotoxin GVIA (omega-CgTx) did not affect the Ca2+-activated K+ currents. The intracellular action of the fast Ca2+ buffers BAPTA and DM-BAPTA prevented the activation of the IK(Ca), while the slow Ca2+ buffer EGTA was ineffective at blocking it. These data indicate that P/Q-type VDCC mediate the Ca2+ influx which activates IK(Ca). The spatial association between Ca2+ and Ca2+-gated K+ channels is discussed, on the basis of the differential effects of the fast and slow Ca2+ chelators.
Block of high-threshold calcium channels by the synthetic polyamines sFTX-3.3 and FTX-3.3.
Norris, T M; Moya, E; Blagbrough, I S; Adams, M E
1996-10-01
A polyamine component of Agelenopsis aperta spider venom designated FTX is reported to be a selective antagonist of P-type calcium channels in the mammalian brain. Consequently, this component has frequently been used as a pharmacological tool to determine the presence, distribution, and function of P-type channels in physiological systems. We describe antagonism of calcium channels by the synthesized polyamine FTX-3.3, which has the proposed structure of natural FTX. We also examined a corresponding polyamine amide, sFTX-3.3. These polyamines are critically evaluated for antagonism of three high-threshold calcium channel subtypes in rat neurons through the use of the whole-cell patch-clamp technique. FTX-3.3 (IC50 = approximately 0.13 mM) is approximately twice as potent as sFTX-3.3 (IC50 = approximately 0.24 mM) against P-type channels and approximately 3-fold more potent against N-type channels (FTX-3.3, IC50 = approximately 0.24 mM; sFTX-3.3, IC50 = approximately 0.70 mM). Both polyamines also block L-type calcium channels with similar potencies. sFTX-3.3 (1 mM) and FTX-3.3 (0.5 mM) typically block 50% and 65% of Bay K8644-enhanced L-type current, respectively. Antagonism of each calcium channel subtype is voltage dependent, with less inhibition of Ba2+ currents at more-positive potentials. These data show that both sFTX-3.3 and FTX-3.3 antagonize P-, N-, and L-type calcium channels in mammalian Purkinje and superior cervical ganglia neurons with similar IC50 values.
Dieting attitudes and behavior in urban high school students: implications for calcium intake.
Barr, S I
1995-06-01
Adolescence is a time of rapid gain in bone density which may be influenced by calcium intake. This study assessed whether dieting concerns, known to be prevalent in adolescent girls, were associated with the calcium intake of adolescents of varying ethnicity. Students (n = 856) completed an instrument which assessed current weight, desired weight, height, age, ethnicity, calcium intake using a food frequency questionnaire, dieting concerns using the Eating Attitudes Test dieting subscale (DS), taste enjoyment of dairy products, and type of milk consumed. Among 782 students with useable responses, most girls (69.1%) wanted to lose weight and most boys (54.2%) wanted to gain weight. Asian girls had lower body mass index (BMI) than Caucasians (19.3 +/- 2.1 vs 20.8 +/- 2.6 kg/m2, p < 0.05), but desired BMI did not vary by ethnicity in either girls or boys. Asian girls also had lower DS scores than Caucasians, but the difference was not significant with current BMI as a covariate. Girls' DS scores were higher than those of boys (6.3 +/- 6.5 vs 2.3 +/- 3.2, p < 0.001), and estimated calcium intakes were lower (815 +/- 528 vs 1149 +/- 701 mg/day, p < 0.001); however, DS scores were not associated with calcium intake for either sex. Especially among girls, dieting and body size concerns were associated with taste enjoyment of certain dairy products, and with the type, but not the amount, of milk consumed. Girls using skim milk had higher DS scores than those using low-fat or whole milk. In this non-clinical sample, greater concern about dieting and body size did not directly compromise calcium intake but was associated with the type of milk used.
Katz, E; Ferro, P A; Cherksey, B D; Sugimori, M; Llinás, R; Uchitel, O D
1995-01-01
1. The effects of the calcium channel blockers, funnel-web spider toxin (FTX), omega-agatoxin IVA (omega-Aga IVA) and omega-conotoxin GVIA (omega-CgTX), were tested on transmitter release and presynaptic currents in frog motor nerve endings. 2. Evoked transmitter release was blocked by FTX (IC50 = 0.02 microliter ml-1) and omega-CgTX (1 microM) but was not affected by omega-Aga IVA (0.5 microM). When FTX (0.1 microliter ml-1) was assayed on spontaneous release either in normal Ringer solution or in low Ca(2+)-high Mg2+ solution, it was found not to affect miniature endplate potential (MEPP) amplitude but to increase MEPP frequency by approximately 2-fold in both conditions. 3. Presynaptic calcium currents (ICa), measured by the perineurial technique in the presence of 10 mM tetraethylammonium chloride (TEA) and 200 microM BaCl2 to block K+ currents, were blocked by omega-CgTX (5 microM), partially blocked by FTX (1 microliter ml-1) and not affected by omega-Aga IVA (0.5 microM). 4. The presynaptic calcium-activated potassium current (IK(Ca)) measured by the perineurial technique in the presence of 0.5 microM 3,4-aminopyridine (DAP) to block voltage-dependent K+ currents, was strongly affected by charybdotoxin (ChTX) (300 nM) and completely abolished by BaCl2 (200 microM). This current was also blocked by omega-CgTX (5 microM) and by CdCl2 (200 microM) but was not affected by FTX (1 microliter ml-1). The blockade by omega-CgTX could not be reversed by elevating [Ca]o to 10 mM. 5. The results suggest that in frog synaptic terminals two omega-CgTX-sensitive populations might coexist. The transmitter release process seems to be mediated by calcium influx through a omega-CgTX- and FTX-sensitive population. PMID:7473230
Katz, E; Ferro, P A; Cherksey, B D; Sugimori, M; Llinás, R; Uchitel, O D
1995-08-01
1. The effects of the calcium channel blockers, funnel-web spider toxin (FTX), omega-agatoxin IVA (omega-Aga IVA) and omega-conotoxin GVIA (omega-CgTX), were tested on transmitter release and presynaptic currents in frog motor nerve endings. 2. Evoked transmitter release was blocked by FTX (IC50 = 0.02 microliter ml-1) and omega-CgTX (1 microM) but was not affected by omega-Aga IVA (0.5 microM). When FTX (0.1 microliter ml-1) was assayed on spontaneous release either in normal Ringer solution or in low Ca(2+)-high Mg2+ solution, it was found not to affect miniature endplate potential (MEPP) amplitude but to increase MEPP frequency by approximately 2-fold in both conditions. 3. Presynaptic calcium currents (ICa), measured by the perineurial technique in the presence of 10 mM tetraethylammonium chloride (TEA) and 200 microM BaCl2 to block K+ currents, were blocked by omega-CgTX (5 microM), partially blocked by FTX (1 microliter ml-1) and not affected by omega-Aga IVA (0.5 microM). 4. The presynaptic calcium-activated potassium current (IK(Ca)) measured by the perineurial technique in the presence of 0.5 microM 3,4-aminopyridine (DAP) to block voltage-dependent K+ currents, was strongly affected by charybdotoxin (ChTX) (300 nM) and completely abolished by BaCl2 (200 microM). This current was also blocked by omega-CgTX (5 microM) and by CdCl2 (200 microM) but was not affected by FTX (1 microliter ml-1). The blockade by omega-CgTX could not be reversed by elevating [Ca]o to 10 mM. 5. The results suggest that in frog synaptic terminals two omega-CgTX-sensitive populations might coexist. The transmitter release process seems to be mediated by calcium influx through a omega-CgTX- and FTX-sensitive population.
Veganism and osteoporosis: a review of the current literature.
Smith, Annabelle M
2006-10-01
The purpose of this review is to examine the current literature regarding calcium and Vitamin D deficiencies in vegan diets and the possible relationship to low bone mineral density and incidence for fracture. Prominent databases were searched for original research publications providing data capable of answering these questions: (i) Do vegans have lower-than-recommended levels of calcium/Vitamin D? (ii) Do vegans have lower bone mineral density than their non-vegan counterparts? (iii) Are vegans at a greater risk for fractures than non-vegans? The findings gathered consistently support the hypothesis that vegans do have lower bone mineral density than their non-vegan counterparts. However, the evidence regarding calcium, Vitamin D and fracture incidence is inconclusive. More research is needed to definitively answer these questions and to address the effects of such deficiencies on the medical and socioeconomic aspects of life.
Good, T A; Murphy, R M
1996-12-24
beta-Amyloid peptide (A beta), one of the primary protein components of senile plaques found in Alzheimer disease, is believed to be toxic to neurons by a mechanism that may involve loss of intracellular calcium regulation. We have previously shown that A beta blocks the fast-inactivating potassium (A) current. In this work, we show, through the use of a mathematical model, that the A beta-mediated block of the A current could result in increased intracellular calcium levels and increased membrane excitability, both of which have been observed in vitro upon acute exposure to A beta. Simulation results are compared with experimental data from the literature; the simulations quantitatively capture the observed concentration dependence of the neuronal response and the level of increase in intracellular calcium.
Sodium entry through endothelial store-operated calcium entry channels: regulation by Orai1
Xu, Ningyong; Cioffi, Donna L.; Alexeyev, Mikhail; Rich, Thomas C.
2014-01-01
Orai1 interacts with transient receptor potential protein of the canonical subfamily (TRPC4) and contributes to calcium selectivity of the endothelial cell store-operated calcium entry current (ISOC). Orai1 silencing increases sodium permeability and decreases membrane-associated calcium, although it is not known whether Orai1 is an important determinant of cytosolic sodium transitions. We test the hypothesis that, upon activation of store-operated calcium entry channels, Orai1 is a critical determinant of cytosolic sodium transitions. Activation of store-operated calcium entry channels transiently increased cytosolic calcium and sodium, characteristic of release from an intracellular store. The sodium response occurred more abruptly and returned to baseline more rapidly than did the transient calcium rise. Extracellular choline substitution for sodium did not inhibit the response, although 2-aminoethoxydiphenyl borate and YM-58483 reduced it by ∼50%. After this transient response, cytosolic sodium continued to increase due to influx through activated store-operated calcium entry channels. The magnitude of this sustained increase in cytosolic sodium was greater when experiments were conducted in low extracellular calcium and when Orai1 expression was silenced; these two interventions were not additive, suggesting a common mechanism. 2-Aminoethoxydiphenyl borate and YM-58483 inhibited the sustained increase in cytosolic sodium, only in the presence of Orai1. These studies demonstrate that sodium permeates activated store-operated calcium entry channels, resulting in an increase in cytosolic sodium; the magnitude of this response is determined by Orai1. PMID:25428882
Identification and classification of silks using infrared spectroscopy
Boulet-Audet, Maxime; Vollrath, Fritz; Holland, Chris
2015-01-01
ABSTRACT Lepidopteran silks number in the thousands and display a vast diversity of structures, properties and industrial potential. To map this remarkable biochemical diversity, we present an identification and screening method based on the infrared spectra of native silk feedstock and cocoons. Multivariate analysis of over 1214 infrared spectra obtained from 35 species allowed us to group silks into distinct hierarchies and a classification that agrees well with current phylogenetic data and taxonomies. This approach also provides information on the relative content of sericin, calcium oxalate, phenolic compounds, poly-alanine and poly(alanine-glycine) β-sheets. It emerged that the domesticated mulberry silkmoth Bombyx mori represents an outlier compared with other silkmoth taxa in terms of spectral properties. Interestingly, Epiphora bauhiniae was found to contain the highest amount of β-sheets reported to date for any wild silkmoth. We conclude that our approach provides a new route to determine cocoon chemical composition and in turn a novel, biological as well as material, classification of silks. PMID:26347557
Printing Smart Designs of Light Emitting Devices with Maintained Textile Properties.
Verboven, Inge; Stryckers, Jeroen; Mecnika, Viktorija; Vandevenne, Glen; Jose, Manoj; Deferme, Wim
2018-02-13
To maintain typical textile properties, smart designs of light emitting devices are printed directly onto textile substrates. A first approach shows improved designs for alternating current powder electroluminescence (ACPEL) devices. A configuration with the following build-up, starting from the textile substrate, was applied using the screen printing technique: silver (10 µm)/barium titanate (10 µm)/zinc-oxide (10 µm) and poly(3,4-ethylenedioxythiophene)poly(styrenesulfonate) (10 µm). Textile properties such as flexibility, drapability and air permeability are preserved by implementing a pixel-like design of the printed layers. Another route is the application of organic light emitting devices (OLEDs) fabricated out of following layers, also starting from the textile substrate: polyurethane or acrylate (10-20 µm) as smoothing layer/silver (200 nm)/poly(3,4-ethylenedioxythiophene)poly(styrenesulfonate) (35 nm)/super yellow (80 nm)/calcium/aluminum (12/17 nm). Their very thin nm-range layer thickness, preserving the flexibility and drapability of the substrate, and their low working voltage, makes these devices the possible future in light-emitting wearables.
A Monte Carlo Simulation of Vesicle Exocytosis in the Buffered Diffusion of Calcium Channel Currents
NASA Astrophysics Data System (ADS)
Dimcovic, Z.; Eagan, T. P.; Brown, R. W.; Petschek, R. G.; Eppell, S. J.; Yunker, A. M. R.; Sharp, A. H.; McEnery, M. W.
2001-04-01
The voltage-dependent opening of calcium channels results in an influx of calcium ions that leads to the fusion of synaptic vesicles with the cell membrane, resulting in the release of neurotransmitters. This allows nerve impulses to be transmitted from one neuron to another. A Monte Carlo model of the three-dimensional diffusion of calcium following a channel opening is employed to estimate the space and time dependence of the calcium density. The effects of fixed and mobile calcium buffers are included, and a tethered nearby vesicle is considered. The importance of the size and location of the vesicle is studied. When the vesicle is ignored, these results are compared with the analytical calculations of Naraghi and Neher and the Monte Carlo calculations of Bennett et al. The finite-vesicle-size analysis offers new insights into the process of neurosecretion. Support: NIH MH55747, AHA 96001250, NSF 0086643, and CWRU Presidential Research Initiative grants.
Interaction of zinc with dental mineral.
Ingram, G S; Horay, C P; Stead, W J
1992-01-01
As some currently available toothpastes contain zinc compounds, the reaction of zinc with dental mineral and its effect on crystal growth rates were studied using three synthetic calcium-deficient hydroxyapatites (HAP) as being representative of dental mineral. Zinc was readily acquired by all HAP samples in the absence of added calcium, the amount adsorbed being proportional to the HAP surface area; about 9 mumol Zn/m2 was adsorbed at high zinc concentrations. As zinc was acquired, calcium was released, consistent with 1:1 Ca:Zn exchange. Soluble calcium reduced zinc uptake and similarly, calcium post-treatment released zinc. Pretreatment of HAP with 0.5 mM zinc reduced its subsequent ability to undergo seeded crystal growth, as did extracts of a toothpaste containing 0.5% zinc citrate, even in the presence of saliva. The reverse reaction, i.e. displacement of adsorbed zinc by salivary levels of calcium, however, indicates the mechanism by which zinc can reduce calculus formation in vivo by inhibiting plaque mineralisation without adversely affecting the anti-caries effects of fluoride.
González-Flores, Diego; Zaharieva, Ivelina; Heidkamp, Jonathan; Chernev, Petko; Martínez-Moreno, Elías; Pasquini, Chiara; Mohammadi, Mohammad Reza; Klingan, Katharina; Gernet, Ulrich; Fischer, Anna; Dau, Holger
2016-02-19
Water-oxidizing calcium-manganese oxides, which mimic the inorganic core of the biological catalyst, were synthesized and structurally characterized by X-ray absorption spectroscopy at the manganese and calcium K edges. The amorphous, birnesite-type oxides are obtained through a simple protocol that involves electrodeposition followed by active-site creation through annealing at moderate temperatures. Calcium ions are inessential, but tune the electrocatalytic properties. For increasing calcium/manganese molar ratios, both Tafel slopes and exchange current densities decrease gradually, resulting in optimal catalytic performance at calcium/manganese molar ratios of close to 10 %. Tracking UV/Vis absorption changes during electrochemical operation suggests that inactive oxides reach their highest, all-Mn(IV) oxidation state at comparably low electrode potentials. The ability to undergo redox transitions and the presence of a minor fraction of Mn(III) ions at catalytic potentials is identified as a prerequisite for catalytic activity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tao, Jin; Wang, Hongyi; Zhou, Hong; Li, Shengnan
2005-10-28
The saponin monomer 13 of dwarf lilyturf tuber (DT-13), one of the saponin monomers of dwarf lilyturf tuber, has been found to have potent cardioprotective effects. In order to investigate the effects of DT-13 on L-type calcium currents (I(Ca,L)), exploring the mechanisms of DT-13's cardioprotective effects in the condition of pathophysiology, we directly measured the I(Ca,L) during hypoxia in the adult rat cardiac myocytes exposed to DT-13 using standard whole-cell patch-clamp recording technique. Our previous results showed that DT-13 exerted decreasing effects on the I(Ca,L) of the single adult rat cardiac myocytes. In the condition of hypoxia, the current density was inhibited by about 29% after exposure of the cells to DT-13 (0.1 micromol L(-1)) for 10 min, from 6.96+/-1.05 pA/pF to 4.38+/-0.35 pA/pF (n=5, P<0.05). This I(Ca,L)-inhibiting action of DT-13 was concentration-dependent and showed no frequency-dependence. DT-13 up-shifted the current-voltage (I-V) curve. Steady-state activation of I(Ca,L) was not affected markedly, and the half activation potential (V(0.5)) in the presence of DT-13 (0.1 micromol L(-1)) was also not significantly different. DT-13 at 0.1 micromol L(-1) markedly accelerated the voltage-dependent steady-state inactivation of calcium current and shifted the steady-state inactivation curve of I(Ca,L) to the left. In combination with previous reports, these results suggest that there might be a close relationship between the cardioprotective effects of DT-13 and L-type calcium channels in the condition of hypoxia.
Modulation of CaV2.1 channels by neuronal calcium sensor-1 induces short-term synaptic facilitation.
Yan, Jin; Leal, Karina; Magupalli, Venkat G; Nanou, Evanthia; Martinez, Gilbert Q; Scheuer, Todd; Catterall, William A
2014-11-01
Facilitation and inactivation of P/Q-type Ca2+ currents mediated by Ca2+/calmodulin binding to Ca(V)2.1 channels contribute to facilitation and rapid depression of synaptic transmission, respectively. Other calcium sensor proteins displace calmodulin from its binding site and differentially modulate P/Q-type Ca2 + currents, resulting in diverse patterns of short-term synaptic plasticity. Neuronal calcium sensor-1 (NCS-1, frequenin) has been shown to enhance synaptic facilitation, but the underlying mechanism is unclear. We report here that NCS-1 directly interacts with IQ-like motif and calmodulin-binding domain in the C-terminal domain of Ca(V)2.1 channel. NCS-1 reduces Ca2 +-dependent inactivation of P/Q-type Ca2+ current through interaction with the IQ-like motif and calmodulin-binding domain without affecting peak current or activation kinetics. Expression of NCS-1 in presynaptic superior cervical ganglion neurons has no effect on synaptic transmission, eliminating effects of this calcium sensor protein on endogenous N-type Ca2+ currents and the endogenous neurotransmitter release machinery. However, in superior cervical ganglion neurons expressing wild-type Ca(V)2.1 channels, co-expression of NCS-1 induces facilitation of synaptic transmission in response to paired pulses and trains of depolarizing stimuli, and this effect is lost in Ca(V)2.1 channels with mutations in the IQ-like motif and calmodulin-binding domain. These results reveal that NCS-1 directly modulates Ca(V)2.1 channels to induce short-term synaptic facilitation and further demonstrate that CaS proteins are crucial in fine-tuning short-term synaptic plasticity.
Zhang, Haiying; Li, Ning; Li, Kun; Li, Peng
2014-12-01
Renal calculi formation is one of the most common urological disorders. Urinary stone disease is a common disease, which affects 10‑12% of the population in industrialized countries. In males, the highest prevalence of the disease occurs between the age of 20 and 40 years, while in females, the highest incidence of the disease occurs later. Previous studies have shown that long‑term exposure to oxalate is toxic to renal epithelial cells and results in oxidative stress. In the present study, a methanolic extract of aerial parts of Urtica dioica was screened for antiurolithiatic activity against ethylene glycol and ammonium chloride‑induced calcium oxalate renal stones in male rats. In the control rats, ethylene glycol and ammonium chloride administration was observed to cause an increase in urinary calcium, oxalate and creatinine levels, as well as an increase in renal calcium and oxalate deposition. Histopathological observations revealed calcium oxalate microcrystal deposits in the kidney sections of the rats treated with ethylene glycol and ammonium chloride, indicating the induction of lithiasis. In the test rats, treatment with the methanolic extract of Urtica dioica was found to decrease the elevated levels of urinary calcium, oxalate and creatinine, and significantly decrease the renal deposition of calcium and oxalate. Furthermore, renal histological observations revealed a significant reduction in calcium oxalate crystal deposition in the test rats. Phytochemical analysis of the Urtica dioica extract was also performed using liquid chromatography‑electrospray ionization tandem mass spectrometry and high-performance liquid chromatography with photodiode array detection, to determine the chemical composition of the extract. The eight chemical constituents identified in the extract were protocatechuic acid, salicylic acid, luteolin, gossypetin, rutin, kaempferol‑3‑O‑rutinoside, kaempferol‑3‑O‑glucoside and chlorogenic acid. In conclusion, the results of the present study suggest that Urtica dioica has strong antiurolithiatic activity and may have potential as a natural therapeutic agent for various urological disorders.
Addis, Russell C; Ifkovits, Jamie L; Pinto, Filipa; Kellam, Lori D; Esteso, Paul; Rentschler, Stacey; Christoforou, Nicolas; Epstein, Jonathan A; Gearhart, John D
2013-07-01
Direct conversion of fibroblasts to induced cardiomyocytes (iCMs) has great potential for regenerative medicine. Recent publications have reported significant progress, but the evaluation of reprogramming has relied upon non-functional measures such as flow cytometry for cardiomyocyte markers or GFP expression driven by a cardiomyocyte-specific promoter. The issue is one of practicality: the most stringent measures - electrophysiology to detect cell excitation and the presence of spontaneously contracting myocytes - are not readily quantifiable in the large numbers of cells screened in reprogramming experiments. However, excitation and contraction are linked by a third functional characteristic of cardiomyocytes: the rhythmic oscillation of intracellular calcium levels. We set out to optimize direct conversion of fibroblasts to iCMs with a quantifiable calcium reporter to rapidly assess functional transdifferentiation. We constructed a reporter system in which the calcium indicator GCaMP is driven by the cardiomyocyte-specific Troponin T promoter. Using calcium activity as our primary outcome measure, we compared several published combinations of transcription factors along with novel combinations in mouse embryonic fibroblasts. The most effective combination consisted of Hand2, Nkx2.5, Gata4, Mef2c, and Tbx5 (HNGMT). This combination is >50-fold more efficient than GMT alone and produces iCMs with cardiomyocyte marker expression, robust calcium oscillation, and spontaneous beating that persist for weeks following inactivation of reprogramming factors. HNGMT is also significantly more effective than previously published factor combinations for the transdifferentiation of adult mouse cardiac fibroblasts to iCMs. Quantification of calcium function is a convenient and effective means for the identification and evaluation of cardiomyocytes generated by direct reprogramming. Using this stringent outcome measure, we conclude that HNGMT produces iCMs more efficiently than previously published methods. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.
Vezir, Özden; Çömelekoğlu, Ülkü; Sucu, Nehir; Yalın, Ali Erdinç; Yılmaz, Şakir Necat; Yalın, Serap; Söğüt, Fatma; Yaman, Selma; Kibar, Kezban; Akkapulu, Merih; Koç, Meryem İlkay; Seçer, Didem
2017-08-01
In this study, we aimed to investigate the role of ATP-sensitive potassium (K ATP ) channel, Na + /K + -ATPase activity, and intracellular calcium levels on the vasodilatory effect of N-acetylcysteine (NAC) in thoracic aorta by using electrophysiological and molecular techniques. Rat thoracic aorta ring preparations and cultured thoracic aorta cells were divided into four groups as control, 2mM NAC, 5mM NAC, and 10mM NAC. Thoracic aorta rings were isolated from rats for measurements of relaxation responses and Na + /K + -ATPase activity. In the cultured thoracic aorta cells, we measured the currents of K ATP channel, the concentration of intracellular calcium and mRNA expression level of K ATP channel subunits (KCNJ8, KCNJ11, ABCC8 and ABCC9). The relaxation rate significantly increased in all NAC groups compared to control. Similarly, Na + /K + - ATPase activity also significantly decreased in NAC groups. Outward K ATP channel current significantly increased in all NAC groups compared to the control group. Intracellular calcium concentration decreased significantly in all groups with compared control. mRNA expression level of ABCC8 subunit significantly increased in all NAC groups compared to the control group. Pearson correlation analysis showed that relaxation rate was significantly associated with K ATP current, intracellular calcium concentration, Na + /K + -ATPase activity and mRNA expression level of ABCC8 subunit. Our findings suggest that NAC relaxes vascular smooth muscle cells through a direct effect on K ATP channels, by increasing outward K+ flux, partly by increasing mRNA expression of K ATP subunit ABCC8, by decreasing in intracellular calcium and by decreasing in Na + /K + -ATPase activity. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
A uniquely adaptable pore is consistent with NALCN being an ion sensor
Senatore, Adriano; Spafford, J. David
2013-01-01
NALCN is an intriguing, orphan ion channel among the 4x6TM family of related voltage-gated cation channels, sharing a common architecture of four homologous domains consisting of six transmembrane helices, separated by three cytoplasmic linkers and delimited by N and C-terminal ends. NALCN is one of the shortest 4x6TM family members, lacking much of the variation that provides the diverse palate of gating features, and tissue specific adaptations of sodium and calcium channels. NALCN’s most distinctive feature is that that it possesses a highly adaptable pore with a calcium-like EEEE selectivity filter in radially symmetrical animals and a more sodium-like EEKE or EKEE selectivity filter in bilaterally symmetrical animals including vertebrates. Two lineages of animals evolved alternative calcium-like EEEE and sodium-like EEKE / EKEE pores, spliced to regulate NALCN functions in differing cellular environments, such as muscle (heart and skeletal) and secretory tissue (brain and glands), respectively. A highly adaptable pore in an otherwise conserved ion channel in the 4x6TM channel family is not consistent with a role for NALCN in directly gating a significant ion conductance that can be either sodium ions or calcium ions. NALCN was proposed to be an expressible Gd3+-sensitive, NMDG+-impermeant, non-selective and ohmic leak conductance in HEK-293T cells, but we were unable to distinguish these reported currents from leaky patch currents (ILP) in control HEK-293T cells. We suggest that NALCN functions as a sensor for the much larger UNC80/UNC79 complex, in a manner consistent with the coupling mechanism known for other weakly or non-conducting 4x6TM channel sensor proteins such as Nax or Cav1.1. We propose that NALCN serves as a variable sensor that responds to calcium or sodium ion flux, depending on whether the total cellular current density is generated more from calcium-selective or sodium-selective channels. PMID:23442378
A uniquely adaptable pore is consistent with NALCN being an ion sensor.
Senatore, Adriano; Spafford, J David
2013-01-01
NALCN is an intriguing, orphan ion channel among the 4x6TM family of related voltage-gated cation channels, sharing a common architecture of four homologous domains consisting of six transmembrane helices, separated by three cytoplasmic linkers and delimited by N and C-terminal ends. NALCN is one of the shortest 4x6TM family members, lacking much of the variation that provides the diverse palate of gating features, and tissue specific adaptations of sodium and calcium channels. NALCN's most distinctive feature is that that it possesses a highly adaptable pore with a calcium-like EEEE selectivity filter in radially symmetrical animals and a more sodium-like EEKE or EKEE selectivity filter in bilaterally symmetrical animals including vertebrates. Two lineages of animals evolved alternative calcium-like EEEE and sodium-like EEKE / EKEE pores, spliced to regulate NALCN functions in differing cellular environments, such as muscle (heart and skeletal) and secretory tissue (brain and glands), respectively. A highly adaptable pore in an otherwise conserved ion channel in the 4x6TM channel family is not consistent with a role for NALCN in directly gating a significant ion conductance that can be either sodium ions or calcium ions. NALCN was proposed to be an expressible Gd ( 3+) -sensitive, NMDG (+) -impermeant, non-selective and ohmic leak conductance in HEK-293T cells, but we were unable to distinguish these reported currents from leaky patch currents (ILP) in control HEK-293T cells. We suggest that NALCN functions as a sensor for the much larger UNC80/UNC79 complex, in a manner consistent with the coupling mechanism known for other weakly or non-conducting 4x6TM channel sensor proteins such as Nax or Cav 1.1. We propose that NALCN serves as a variable sensor that responds to calcium or sodium ion flux, depending on whether the total cellular current density is generated more from calcium-selective or sodium-selective channels.
Reduction of orthophosphates loss in agricultural soil by nano calcium sulfate.
Chen, Dong; Szostak, Paul; Wei, Zongsu; Xiao, Ruiyang
2016-01-01
Nutrient loss from soil, especially phosphorous (P) from farmlands to natural water bodies via surface runoff or infiltration, have caused significant eutrophication problems. This is because dissolved orthophosphates are usually the limiting nutrient for algal blooms. Currently, available techniques to control eutrophication are surprisingly scarce. Calcium sulfate or gypsum is a common soil amendment and has a strong complexation to orthophosphates. The results showed that calcium sulfate reduced the amount of water extractable P (WEP) through soil incubation tests, suggesting less P loss from farmlands. A greater decrease in WEP occurred with a greater dosage of calcium sulfate. Compared to conventional coarse calcium sulfate, nano calcium sulfate further reduced WEP by providing a much greater specific surface area, higher solubility, better contact with the fertilizer and the soil particles, and superior dispersibility. The enhancement of the nano calcium sulfate for WEP reduction is more apparent for a pellet- than a powdered- fertilizer. At the dosage of Ca/P weight ratio of 2.8, the WEP decreased by 31±5% with the nano calcium sulfate compared to 20±5% decrease with the coarse calcium sulfate when the pellet fertilizer was used. Computation of the chemical equilibrium speciation shows that calcium hydroxyapatite has the lowest solubility. However, other mineral phases such as hydroxydicalcium phosphate, dicalcium phosphate dihydrate, octacalcium phosphate, and tricalcium phosphate might form preceding to calcium hydroxyapatite. Since calcium sulfate is the major product of the flue gas desulfurization (FGD) process, this study demonstrates a potential beneficial reuse and reduction of the solid FGD waste. Copyright © 2015 Elsevier B.V. All rights reserved.
BIN1 is reduced and Cav1.2 trafficking is impaired in human failing cardiomyocytes.
Hong, Ting-Ting; Smyth, James W; Chu, Kevin Y; Vogan, Jacob M; Fong, Tina S; Jensen, Brian C; Fang, Kun; Halushka, Marc K; Russell, Stuart D; Colecraft, Henry; Hoopes, Charles W; Ocorr, Karen; Chi, Neil C; Shaw, Robin M
2012-05-01
Heart failure is a growing epidemic, and a typical aspect of heart failure pathophysiology is altered calcium transients. Normal cardiac calcium transients are initiated by Cav1.2 channels at cardiac T tubules. Bridging integrator 1 (BIN1) is a membrane scaffolding protein that causes Cav1.2 to traffic to T tubules in healthy hearts. The mechanisms of Cav1.2 trafficking in heart failure are not known. To study BIN1 expression and its effect on Cav1.2 trafficking in failing hearts. Intact myocardium and freshly isolated cardiomyocytes from nonfailing and end-stage failing human hearts were used to study BIN1 expression and Cav1.2 localization. To confirm Cav1.2 surface expression dependence on BIN1, patch-clamp recordings were performed of Cav1.2 current in cell lines with and without trafficking-competent BIN1. Also, in adult mouse cardiomyocytes, surface Cav1.2 and calcium transients were studied after small hairpin RNA-mediated knockdown of BIN1. For a functional readout in intact heart, calcium transients and cardiac contractility were analyzed in a zebrafish model with morpholino-mediated knockdown of BIN1. BIN1 expression is significantly decreased in failing cardiomyocytes at both mRNA (30% down) and protein (36% down) levels. Peripheral Cav1.2 is reduced to 42% by imaging, and a biochemical T-tubule fraction of Cav1.2 is reduced to 68%. The total calcium current is reduced to 41% in a cell line expressing a nontrafficking BIN1 mutant. In mouse cardiomyocytes, BIN1 knockdown decreases surface Cav1.2 and impairs calcium transients. In zebrafish hearts, BIN1 knockdown causes a 75% reduction in calcium transients and severe ventricular contractile dysfunction. The data indicate that BIN1 is significantly reduced in human heart failure, and this reduction impairs Cav1.2 trafficking, calcium transients, and contractility. Copyright © 2012 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
BIN1 is Reduced and Cav1.2 Trafficking is Impaired in Human Failing Cardiomyocytes
Hong, Ting-Ting; Smyth, James W.; Chu, Kevin Y.; Vogan, Jacob M.; Fong, Tina S.; Jensen, Brian C.; Fang, Kun; Halushka, Marc K.; Russell, Stuart D.; Colecraft, Henry; Hoopes, Charles W.; Ocorr, Karen; Chi, Neil C.; Shaw, Robin M.
2011-01-01
Background Heart failure is a growing epidemic and a typical aspect of heart failure pathophysiology is altered calcium transients. Normal cardiac calcium transients are initiated by Cav1.2 channels at cardiac T-tubules. BIN1 is a membrane scaffolding protein that causes Cav1.2 to traffic to T-tubules in healthy hearts. The mechanisms of Cav1.2 trafficking in heart failure are not known. Objective To study BIN1 expression and its effect on Cav1.2 trafficking in failing hearts. Methods Intact myocardium and freshly isolated cardiomyocytes from non-failing and end-stage failing human hearts were used to study BIN1 expression and Cav1.2 localization. To confirm Cav1.2 surface expression dependence on BIN1, patch clamp recordings were performed of Cav1.2 current in cell lines with and without trafficking competent BIN1. Also, in adult mouse cardiomyocytes, surface Cav1.2 and calcium transients were studied after shRNA mediated knockdown of BIN1. For a functional readout in intact heart, calcium transients and cardiac contractility were analyzed in a zebrafish model with morpholino mediated knockdown of BIN1. Results BIN1 expression is significantly decreased in failing cardiomyocytes at both mRNA (30% down) and protein (36% down) levels. Peripheral Cav1.2 is reduced 42% by imaging and biochemical T-tubule fraction of Cav1.2 is reduced 68%. Total calcium current is reduced 41% in a cell line expressing non-trafficking BIN1 mutant. In mouse cardiomyocytes, BIN1 knockdown decreases surface Cav1.2 and impairs calcium transients. In zebrafish hearts, BIN1 knockdown causes a 75% reduction in calcium transients and severe ventricular contractile dysfunction. Conclusions The data indicate that BIN1 is significantly reduced in human heart failure, and this reduction impairs Cav1.2 trafficking, calcium transients, and contractility. PMID:22138472
Masurkar, Arjun V.; Chen, Wei R.
2011-01-01
The olfactory glomerulus is the locus of information transfer between olfactory sensory neurons and output neurons of the olfactory bulb. Juxtaglomerular cells (JGCs) may influence intraglomerular processing by firing plateau potentials that support multiple spikes. It is unclear what inward currents mediate this firing pattern. In previous work, we characterized potassium currents of JGCs. We focus here on the inward currents using whole cell current clamp and voltage recording in a rat in vitro slice preparation, as well as computer simulation. We first showed that sodium current was not required to mediate plateau potentials. Voltage clamp characterization of calcium current (ICa) determined that ICa consisted of a slow activating, rapidly inactivating (τ10%–90% rise 6–8ms, τinactivation 38–77ms) component Icat1, similar to T-type currents, and a sustained (τinactivation≫500ms) component Icat2, likely composed of L-type and P/Q-type currents. We used computer simulation to test their roles in plateau potential firing. We robustly modeled Icat1 and Icat2 to Hodgkin-Huxley schemes (m3h and m2, respectively) and simulated a JGC plateau potential with 6 conductances: calcium currents as above, potassium currents from our prior study (A-type Ikt1, D-type Ikt2, delayed rectifier Ikt3), and a fast sodium current (INa). We demonstrated that Icat1 was required for mediating the plateau potential, unlike INa and Icat2, and its τinactivation determined plateau duration. We also found that Ikt1 dictated plateau potential shape more than Ikt2 and Ikt3. The influence of these two transient and opposing conductances suggests a unique mechanism of plateau potential physiology. PMID:21704681
The calcium current of Helix neuron
1978-01-01
Calcium current, Ica, was studied in isolated nerve cell bodies of Helix aspersa after suppression of Na+ and K+ currents. The suction pipette method described in the preceding paper was used. Ica rises to a peak value and then subsides exponentially and has a null potential of 150 mV or more and a relationship with [Ca2+]o that is hyperbolic over a small range of [Ca2+]o's. When [Ca2+]i is increased, Ica is reduced disproportionately, but the effect is not hyperbolic. Ica is blocked by extracellular Ni2+, La3+, Cd2+, and Co2+ and is greater when Ba2+ and Sr2+ carry the current. Saturation and blockage are described by a Langmuir adsorption relationship similar to that found in Balanus. Thus, the calcium conductance probably contains a site which binds the ions referred to. The site also appears to be voltage-dependent. Activation and inactivation of Ica are described by first order kinetics, and there is evidence that the processes are coupled. For example, inactivation is delayed slightly in its onset and tau inactivation depends upon the method of study. However, the currents are described equally well by either a noncoupled Hodgkin-Huxley mh scheme or a coupled reaction. Facilitation of Ica by prepulses was not observed. For times up to 50 ms, currents even at small depolarizations were accounted for by suitable adjustment of the activation and inactivation rate constants. PMID:660160
Rose, Angela M; Williams, Rachel A; Rengers, Brooke; Kennel, Julie A; Gunther, Carolyn
2018-04-01
Average intake of calcium among college students is below the recommended intake, and knowledge surrounding the attitudinal and behavioral factors that influence milk and dairy intake, a primary food source of calcium, is limited. The purpose of this study was to evaluate college students' attitudes and behaviors concerning milk and dairy consumption and their association with calcium intake. Participants were 1,730 undergraduate students who completed an online survey (SurveyMonkey) as part of baseline data collection for a social marketing dairy campaign. The online survey assessed attitudes and behaviors concerning milk and dairy intake, and calcium intake. Questions about milk- and dairy-related attitudes and behaviors were grouped into 14 factors using factor analysis. Predictors of calcium intake were then evaluated. Median calcium intake across all participants was 928.6 mg/day, with males consuming higher calcium intakes than females ( P < 0.001). Adjusted for gender, calcium intakes were most strongly (and positively) correlated with associating milk with specific eating occasions and availability (i.e., storing calcium-rich foods in one's dorm or apartment) (both P < 0.001). Other correlates of calcium intake included: positive-viewing milk as healthy ( P = 0.039), having family members who drink milk) ( P = 0.039), and taking calcium supplements ( P = 0.056); and negative-parent rules concerning milk ( P = 0.031) and viewing milk in dining halls negatively ( P = 0.05). Calcium intakes among college students enrolled in the current study was below the recommended dietary allowance of 1,000 mg/day, reinforcing the need for dietary interventions in this target population, especially females. Practitioners and researchers should consider the factors found here to impact calcium intake, particularly associating milk with specific eating occasions (e.g., milk with breakfast) and having calcium-rich foods available in the dorm room or apartment, as intervention strategies in future efforts aimed at promoting milk and dairy foods and beverages for improved calcium intake in college students.
Calcium Imaging of AM Dyes Following Prolonged Incubation in Acute Neuronal Tissue
Morley, John W.; Tapson, Jonathan; Breen, Paul P.; van Schaik, André
2016-01-01
Calcium-imaging is a sensitive method for monitoring calcium dynamics during neuronal activity. As intracellular calcium concentration is correlated to physiological and pathophysiological activity of neurons, calcium imaging with fluorescent indicators is one of the most commonly used techniques in neuroscience today. Current methodologies for loading calcium dyes into the tissue require prolonged incubation time (45–150 min), in addition to dissection and recovery time after the slicing procedure. This prolonged incubation curtails experimental time, as tissue is typically maintained for 6–8 hours after slicing. Using a recently introduced recovery chamber that extends the viability of acute brain slices to more than 24 hours, we tested the effectiveness of calcium AM staining following long incubation periods post cell loading and its impact on the functional properties of calcium signals in acute brain slices and wholemount retinae. We show that calcium dyes remain within cells and are fully functional >24 hours after loading. Moreover, the calcium dynamics recorded >24 hrs were similar to the calcium signals recorded in fresh tissue that was incubated for <4 hrs. These results indicate that long exposure of calcium AM dyes to the intracellular cytoplasm did not alter the intracellular calcium concentration, the functional range of the dye or viability of the neurons. This data extends our previous work showing that a custom recovery chamber can extend the viability of neuronal tissue, and reliable data for both electrophysiology and imaging can be obtained >24hrs after dissection. These methods will not only extend experimental time for those using acute neuronal tissue, but also may reduce the number of animals required to complete experimental goals. PMID:27183102
Presynaptic strontium dynamics and synaptic transmission.
Xu-Friedman, M A; Regehr, W G
1999-01-01
Strontium can replace calcium in triggering neurotransmitter release, although peak release is reduced and the duration of release is prolonged. Strontium has therefore become useful in probing release, but its mechanism of action is not well understood. Here we study the action of strontium at the granule cell to Purkinje cell synapse in mouse cerebellar slices. Presynaptic residual strontium levels were monitored with fluorescent indicators, which all responded to strontium (fura-2, calcium orange, fura-2FF, magnesium green, and mag-fura-5). When calcium was replaced by equimolar concentrations of strontium in the external bath, strontium and calcium both entered presynaptic terminals. Contaminating calcium was eliminated by including EGTA in the extracellular bath, or by loading parallel fibers with EGTA, enabling the actions of strontium to be studied in isolation. After a single stimulus, strontium reached higher peak free levels than did calcium (approximately 1.7 times greater), and decayed more slowly (half-decay time 189 ms for strontium and 32 ms for calcium). These differences in calcium and strontium dynamics are likely a consequence of greater strontium permeability through calcium channels, lower affinity of the endogenous buffer for strontium, and less efficient extrusion of strontium. Measurements of presynaptic divalent levels help to explain properties of release evoked by strontium. Parallel fiber synaptic currents triggered by strontium are smaller in amplitude and longer in duration than those triggered by calcium. In both calcium and strontium, release consists of two components, one more steeply dependent on divalent levels than the other. Strontium drives both components less effectively than does calcium, suggesting that the affinities of the sensors involved in both phases of release are lower for strontium than for calcium. Thus, the larger and slower strontium transients account for the prominent slow component of release triggered by strontium. PMID:10096899
Coleman, David T; Gray, Alana L; Stephens, Charles A; Scott, Matthew L; Cardelli, James A
2016-05-31
The tumor microenvironment, primarily composed of myofibroblasts, directly influences the progression of solid tumors. Through secretion of growth factors, extracellular matrix deposition, and contractile mechanotransduction, myofibroblasts, or cancer-associated fibroblasts (CAFs), support angiogenesis and cancer cell invasion and metastasis. The differentiation of fibroblasts to CAFs is primarily induced by TGF-β from cancer cells. To discover agents capable of blocking CAF differentiation, we developed a high content immunofluorescence-based assay to screen repurposed chemical libraries utilizing fibronectin expression as an initial CAF marker. Screening of the Prestwick chemical library and NIH Clinical Collection repurposed drug library, totaling over 1700 compounds, identified cardiac glycosides as particularly potent CAF blocking agents. Cardiac glycosides are traditionally used to regulate intracellular calcium by inhibiting the Na+/K+ ATPase to control cardiac contractility. Herein, we report that multiple cardiac glycoside compounds, including digoxin, are able to inhibit TGF-β-induced fibronectin expression at low nanomolar concentrations without undesirable cell toxicity. We found this inhibition to hold true for multiple fibroblast cell lines. Using real-time qPCR, we determined that digoxin prevented induction of multiple CAF markers. Furthermore, we report that digoxin is able to prevent TGF-β-induced fibroblast contraction of extracellular matrix, a major phenotypic consequence of CAF differentiation. Assessing the mechanism of inhibition, we found digoxin reduced SMAD promoter activity downstream of TGF-β, and we provide data that the effect is through inhibition of its known target, the Na+/K+ ATPase. These findings support a critical role for calcium signaling during CAF differentiation and highlight a novel, repurposable modality for cancer therapy.
Sustained and transient calcium currents in horizontal cells of the white bass retina.
Sullivan, J M; Lasater, E M
1992-01-01
Calcium currents were recorded from cultured horizontal cells (HCs) isolated from adult white bass retinas, using the whole-cell patch-clamp technique. Ca2+ currents were enhanced using 10 mM extracellular Ca2+, while Na+ and K+ currents were pharmacologically suppressed. Two components of the Ca2+ current, one transient, the other sustained, were found. The large transient component of the Ca2+ current, which has not been seen before in HCs, is similar, but not identical, to the T-type Ca2+ current described previously in a variety of preparations. The sustained component of the Ca2+ current is similar, but not identical, to the L-type current described in other preparations. FTX, a factor isolated from the venom of the funnel-web spider, Agelenopsis aperta, preferentially and irreversibly blocks the sustained component of the Ca2+ current at very dilute concentrations. The sustained component of the Ca2+ current inactivates slowly, over the course of 15-60 s, in some HCs. This inactivation of the sustained Ca2+ current, when present, is primarily voltage dependent rather than Ca2+ dependent.
Sustained and transient calcium currents in horizontal cells of the white bass retina
1992-01-01
Calcium currents were recorded from cultured horizontal cells (HCs) isolated from adult white bass retinas, using the whole-cell patch- clamp technique. Ca2+ currents were enhanced using 10 mM extracellular Ca2+, while Na+ and K+ currents were pharmacologically suppressed. Two components of the Ca2+ current, one transient, the other sustained, were found. The large transient component of the Ca2+ current, which has not been seen before in HCs, is similar, but not identical, to the T-type Ca2+ current described previously in a variety of preparations. The sustained component of the Ca2+ current is similar, but not identical, to the L-type current described in other preparations. FTX, a factor isolated from the venom of the funnel-web spider, Agelenopsis aperta, preferentially and irreversibly blocks the sustained component of the Ca2+ current at very dilute concentrations. The sustained component of the Ca2+ current inactivates slowly, over the course of 15- 60 s, in some HCs. This inactivation of the sustained Ca2+ current, when present, is primarily voltage dependent rather than Ca2+ dependent. PMID:1371309
Mott, Bryan T.; Eastman, Richard T.; Guha, Rajarshi; Sherlach, Katy S.; Siriwardana, Amila; Shinn, Paul; McKnight, Crystal; Michael, Sam; Lacerda-Queiroz, Norinne; Patel, Paresma R.; Khine, Pwint; Sun, Hongmao; Kasbekar, Monica; Aghdam, Nima; Fontaine, Shaun D.; Liu, Dongbo; Mierzwa, Tim; Mathews-Griner, Lesley A.; Ferrer, Marc; Renslo, Adam R.; Inglese, James; Yuan, Jing; Roepe, Paul D.; Su, Xin-zhuan; Thomas, Craig J.
2015-01-01
Drug resistance in Plasmodium parasites is a constant threat. Novel therapeutics, especially new drug combinations, must be identified at a faster rate. In response to the urgent need for new antimalarial drug combinations we screened a large collection of approved and investigational drugs, tested 13,910 drug pairs, and identified many promising antimalarial drug combinations. The activity of known antimalarial drug regimens was confirmed and a myriad of new classes of positively interacting drug pairings were discovered. Network and clustering analyses reinforced established mechanistic relationships for known drug combinations and identified several novel mechanistic hypotheses. From eleven screens comprising >4,600 combinations per parasite strain (including duplicates) we further investigated interactions between approved antimalarials, calcium homeostasis modulators, and inhibitors of phosphatidylinositide 3-kinases (PI3K) and the mammalian target of rapamycin (mTOR). These studies highlight important targets and pathways and provide promising leads for clinically actionable antimalarial therapy. PMID:26403635
Discovery of novel SERCA inhibitors by virtual screening of a large compound library.
Elam, Christopher; Lape, Michael; Deye, Joel; Zultowsky, Jodie; Stanton, David T; Paula, Stefan
2011-05-01
Two screening protocols based on recursive partitioning and computational ligand docking methodologies, respectively, were employed for virtual screens of a compound library with 345,000 entries for novel inhibitors of the enzyme sarco/endoplasmic reticulum calcium ATPase (SERCA), a potential target for cancer chemotherapy. A total of 72 compounds that were predicted to be potential inhibitors of SERCA were tested in bioassays and 17 displayed inhibitory potencies at concentrations below 100 μM. The majority of these inhibitors were composed of two phenyl rings tethered to each other by a short link of one to three atoms. Putative interactions between SERCA and the inhibitors were identified by inspection of docking-predicted poses and some of the structural features required for effective SERCA inhibition were determined by analysis of the classification pattern employed by the recursive partitioning models. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
Zivkovic, Danica; Créton, Robbert; Dohmen, René
1991-08-01
During the first four mitotic division cycles of Lymnaea stagnalis embryos, we have detected cell cycle-dependent changes in the pattern of transcellular ionic currents and membrane-bound Ca 2+ -stimulated ATPase activity. Ionic currents ranging from 0.05 to 2.50 μA/cm 2 have been measured using the vibrating probe technique. Enzyme activity was detected using Ando's cytochemical method (Ando et al. 1981) which reveals Ca 2+ /Mg 2+ ATPase localization at the ultrastructural level, and under high-stringency conditions with respect to calcium availability, it reveals Ca 2+ -stimulated ATPase. The ionic currents and Ca 2+ -stimulated ATPase localization have in common that important changes occur during the M-phase of the cell cycles. Minimal outward current at the vegetal pole coincides with metaphase/anaphase. Maximal inward current at the animal pole coincides with the onset of cytokinesis at that pole. Ca 2+ -stimulated ATPase is absent from one half of the embryo at metaphase/anaphase of the two- and four-cell stage, whereas it is present in all cells during the remaining part of the cell cycle. Since fluctuations of cytosolic free calcium concentrations appear to correlate with both karyokinesis and cytokinesis, we speculate that part of the cyclic pattern of Ca 2+ -stimulated ATPase localization and of the transcellular ionic currents reflects the elevation of cytosolic free calcium concentration during the M-phase.
Towards the Physics of Calcium Signalling in Plants
Vaz Martins, Teresa; Evans, Matthew J.; Woolfenden, Hugh C.; Morris, Richard J.
2013-01-01
Calcium is an abundant element with a wide variety of important roles within cells. Calcium ions are inter- and intra-cellular messengers that are involved in numerous signalling pathways. Fluctuating compartment-specific calcium ion concentrations can lead to localised and even plant-wide oscillations that can regulate downstream events. Understanding the mechanisms that give rise to these complex patterns that vary both in space and time can be challenging, even in cases for which individual components have been identified. Taking a systems biology approach, mathematical and computational techniques can be employed to produce models that recapitulate experimental observations and capture our current understanding of the system. Useful models make novel predictions that can be investigated and falsified experimentally. This review brings together recent work on the modelling of calcium signalling in plants, from the scale of ion channels through to plant-wide responses to external stimuli. Some in silico results that have informed later experiments are highlighted. PMID:27137393
Geng, Le; Wang, Zidun; Cui, Chang; Zhu, Yue; Shi, Jiaojiao; Wang, Jiaxian; Chen, Minglong
2018-06-15
Heart failure induced by tachycardia, the most common arrhythmia, is frequently observed in clinical practice. This study was designed to investigate the underlying mechanisms. Rapid electrical stimulation (RES) at a frequency of 3 Hz was applied on human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) for 7 days, with 8 h/day and 24 h/day set to represent short-term and long-term tachycardia, respectively. Age-matched hiPSC-CMs without electrical stimulation or with slow electrical stimulation (1 Hz) were set as no electrical stimulation (NES) control or low-frequency electrical stimulation (LES) control. Following stimulation, JC-1 staining flow cytometry analysis was performed to examine mitochondrial conditions. Apoptosis in hiPSC-CMs was evaluated using Hoechst staining and Annexin V/propidium iodide (AV/PI) staining flow cytometry analysis. Calcium transients and L-type calcium currents were recorded to evaluate calcium homeostasis. Western blotting and qPCR were performed to evaluate the protein and mRNA expression levels of apoptosis-related genes and calcium homeostasis-regulated genes. Compared to the controls, hiPSC-CMs following RES presented mitochondrial dysfunction and an increased apoptotic percentage. Amplitudes of calcium transients and L-type calcium currents were significantly decreased in hiPSC-CMs with RES. Molecular analysis demonstrated upregulated expression of Caspase3 and increased Bax/Bcl-2 ratio. Genes related to calcium re-sequence were downregulated, while phosphorylated Ca2+/calmodulin-dependent protein kinase II (CaMKII) was significantly upregulated following RES. There was no significant difference between the NES control and LES control groups in these aspects. Inhibition of CaMKII with 1 µM KN93 partly reversed these adverse effects of RES. RES on hiPSC-CMs disturbed calcium homeostasis, which led to mitochondrial stress, promoted cell apoptosis and caused electrophysiological remodeling in a time-dependent manner. CaMKII played a central role in the damages induced by RES, pharmacological inhibition of CaMKII activity partly reversed the adverse effects of RES on both structural and electrophysiological properties of cells. © 2018 The Author(s). Published by S. Karger AG, Basel.
Maehara, Akiko; Mintz, Gary S; Shimshak, Thomas M; Ricotta, Joseph J; Ramaiah, Venkatesh; Foster, Malcolm T; Davis, Thomas P; Gray, William A
2015-05-01
Endovascular treatment of calcified femoral-popliteal disease is challenging. We sought to evaluate the mechanism of lumen gain when using the JETSTREAM Atherectomy System to treat calcified peripheral artery lesions. The JETSTREAM Calcium Study was a prospective, single-arm, multicentre study to evaluate the JETSTREAM Atherectomy System for severely calcified femoral-popliteal artery lesions, i.e., patients with claudication and lesions with superficial calcium >90° and >5 mm in length as determined by intravascular ultrasound (IVUS). The 2.1 mm catheter was used in this study without distal protection. Fifty-five patients underwent angiographic screening: 26 (45%) met IVUS inclusion criteria. Angiographic calcium was moderate in eight cases and severe in 14, with no available data for four cases. Visual diameter stenosis was 86±9% pre-treatment, 37±13% post atherectomy, and 10±6% post adjunctive treatment (adjunctive PTA+stenting in eight and adjunct PTA alone in 16). IVUS showed lumen area increased from 6.6±3.7 mm2 to 10.0±3.6 mm2 (p=0.001): calcium reduction was responsible for 86±23% of the lumen increase. Although the superficial calcium arc did not change (151±70° to 146±71°, p=0.83), the arc of reverberation increased (23±20° to 65±40°, p=0.006), indicating device-related modification of calcium. Adjunctive balloon angioplasty was performed in 62% of the lesions, and stent implantation in 31%. In 11 cases with adjunctive balloon dilation, the MLA increased from 7.1 (6.4, 7.8) mm2 post atherectomy to 11.9 (10.3, 13.5) mm2 post balloon (p<0.001) without flow-limiting dissection. No major adverse events occurred up to 30 days post procedure in either the study group or the patients who were excluded from the analysis. The JETSTREAM Atherectomy System increased lumen dimensions in moderately or severely calcified femoral-popliteal lesions by removing superficial calcium without major complications.
HIV associated hypocalcaemia among diarrheic patients in northwest Ethiopia: a cross sectional study
2014-01-01
Background Hypocalcaemia, defined by serum calcium level less than 8.5 mg/dl, could be caused by human immunodeficiency virus (HIV) and diarrheal diseases. In Ethiopia, while morbidities from diarrheal diseases and HIV are serious health problems, studies assessing the interactions amongst of the three do not exist. Therefore, the present study was undertaken to investigate the level of calcium among diarrheic patients with and without HIV co-infection. Methods Consecutive diarrheic patients attending Gondar University Hospital in Ethiopia were enrolled and screened for HIV, intestinal parasites, Shigella and Salmonella. Concentration of calcium in serum was determined using an inductively coupled plasma mass spectrometer. Results A total of 206 diarrheic patients were included in the study (109 = HIV positive, 97 = HIV negative). Intestinal parasites and Shigella species were detected in 32.2% and 8.5% of the patients, respectively. The serum calcium levels in the patients who were found positive for Shigella species or intestinal parasites was not significantly different by the presence or absence of HIV co-infection. HIV infected diarrheic patients had significantly lower mean serum calcium levels (7.82 ± 1.23 mg/dl) than those negative for HIV (8.38 ± 1.97) (P = 0.015). The age groups 25–35 and greater than 45 years showed significantly lower mean serum calcium levels (7.77 ± 1.55 mg/dl) in comparison to the other age groups (7.84 ± 1.41 mg/dl, P = 0.009). On the other hand, females presented with significantly lower mean serum calcium levels (7.79 ± 1.60 mg/dl, P = 0.044) than males (8.26 ± 1.65 mg/dl). Conclusion There is high prevalence of hypocalcaemia among diarrheic patients in northwest Ethiopia. And HIV stood out to be a major risk factor for development of hypocalcaemia among the diarrheic patients in northwest Ethiopia. Further studies are required to substantiate and characterize the mechanisms and consequences of calcium metabolism disorders among HIV infected individuals in the study area. PMID:24993127
NASA Astrophysics Data System (ADS)
Fasolato, Cristina; Hoth, Markus; Matthews, Gary; Penner, Reinhold
1993-04-01
Whole-cell patch-clamp recordings of membrane currents and Fura-2 measurements of free intracellular calcium concentration ([Ca2+]_i) were used to study calcium influx through receptor-activated cation channels in rat peritoneal mast cells. Cation channels were activated by the secretagogue compound 48/80, whereas a possible concomitant Ca2+ entry through pathways activated by depletion of calcium stores was blocked by dialyzing cells with heparin. Heparin effectively suppressed the transient Ca2+ release induced by 48/80 and abrogated inositol 1,4,5-trisphosphate-induced calcium influx without affecting activation of 50-pS cation channels. There was a clear correlation between changes in [Ca2+]_i and the activity of 50-pS channels. The changes in [Ca2+]_i increased with elevation of extracellular Ca2+. At the same time, inward currents through 50-pS channels were diminished as more Ca2+ permeated. This effect was due to a decrease in slope conductance and a reduction in the open probability of the cation channels. In physiological solutions, 3.6% of the total current was carried by Ca2+. The cation channels were not only permeable to Ca2+ but also to Mn2+, as evidenced by the quench of Fura-2 fluorescence. Mn2+ current through 50-pS channels could not be resolved at the single-channel level. Our results suggest that 50-pS cation channels partially contribute to sustained increases of [Ca2+]_i in mast cells following receptor activation.
Assessment and clinical management of bone disease in adults with eating disorders: a review.
Drabkin, Anne; Rothman, Micol S; Wassenaar, Elizabeth; Mascolo, Margherita; Mehler, Philip S
2017-01-01
To review current medical literature regarding the causes and clinical management options for low bone mineral density (BMD) in adult patients with eating disorders. Low bone mineral density is a common complication of eating disorders with potentially lifelong debilitating consequences. Definitive, rigorous guidelines for screening, prevention and management are lacking. This article intends to provide a review of the literature to date and current options for prevention and treatment. Current, peer-reviewed literature was reviewed, interpreted and summarized. Any patient with lower than average BMD should weight restore and in premenopausal females, spontaneous menses should resume. Adequate vitamin D and calcium supplementation is important. Weight-bearing exercise should be avoided unless cautiously monitored by a treatment team in the setting of weight restoration. If a patient has a Z-score less than expected for age with a high fracture risk or likelihood of ongoing BMD loss, physiologic transdermal estrogen plus oral progesterone, bisphosphonates (alendronate or risedronate) or teriparatide could be considered. Other agents, such as denosumab and testosterone in men, have not been tested in eating-disordered populations and should only be trialed on an empiric basis if there is a high clinical concern for fractures or worsening bone mineral density. A rigorous peer-based approach to establish guidelines for evaluation and management of low bone mineral density is needed in this neglected subspecialty of eating disorders.
Nanoneedle transistor-based sensors for the selective detection of intracellular calcium ions.
Son, Donghee; Park, Sung Young; Kim, Byeongju; Koh, Jun Tae; Kim, Tae Hyun; An, Sangmin; Jang, Doyoung; Kim, Gyu Tae; Jhe, Wonho; Hong, Seunghun
2011-05-24
We developed a nanoneedle transistor-based sensor (NTS) for the selective detection of calcium ions inside a living cell. In this work, a single-walled carbon nanotube-based field effect transistor (swCNT-FET) was first fabricated at the end of a glass nanopipette and functionalized with Fluo-4-AM probe dye. The selective binding of calcium ions onto the dye molecules altered the charge state of the dye molecules, resulting in the change of the source-drain current of the swCNT-FET as well as the fluorescence intensity from the dye. We demonstrated the electrical and fluorescence detection of the concentration change of intracellular calcium ions inside a HeLa cell using the NTS.
L-type calcium channels refine the neural population code of sound level.
Grimsley, Calum Alex; Green, David Brian; Sivaramakrishnan, Shobhana
2016-12-01
The coding of sound level by ensembles of neurons improves the accuracy with which listeners identify how loud a sound is. In the auditory system, the rate at which neurons fire in response to changes in sound level is shaped by local networks. Voltage-gated conductances alter local output by regulating neuronal firing, but their role in modulating responses to sound level is unclear. We tested the effects of L-type calcium channels (Ca L : Ca V 1.1-1.4) on sound-level coding in the central nucleus of the inferior colliculus (ICC) in the auditory midbrain. We characterized the contribution of Ca L to the total calcium current in brain slices and then examined its effects on rate-level functions (RLFs) in vivo using single-unit recordings in awake mice. Ca L is a high-threshold current and comprises ∼50% of the total calcium current in ICC neurons. In vivo, Ca L activates at sound levels that evoke high firing rates. In RLFs that increase monotonically with sound level, Ca L boosts spike rates at high sound levels and increases the maximum firing rate achieved. In different populations of RLFs that change nonmonotonically with sound level, Ca L either suppresses or enhances firing at sound levels that evoke maximum firing. Ca L multiplies the gain of monotonic RLFs with dynamic range and divides the gain of nonmonotonic RLFs with the width of the RLF. These results suggest that a single broad class of calcium channels activates enhancing and suppressing local circuits to regulate the sensitivity of neuronal populations to sound level. Copyright © 2016 the American Physiological Society.
McLaughlin, Vallerie V; Langer, Anatoly; Tan, Mary; Clements, Philip J; Oudiz, Ronald J; Tapson, Victor F; Channick, Richard N; Rubin, Lewis J
2013-02-01
The Pulmonary Arterial Hypertension-Quality Enhancement Research Initiative (PAHQuERI) was created to help clinicians to implement a guidelines-based approach to the diagnosis and management of pulmonary arterial hypertension (PAH). Patients with PAH represent a heterogeneous population, and physician evaluation and treatment paradigms may vary considerably. Using an electronic data management system, participating physicians recorded data on diagnostic workup, disease management, and outcomes of patients with PAH. Queries were generated automatically following each follow-up visit if the tests recommended by the American College of Chest Physicians (ACCP) were not performed at least once. Of 791 patients enrolled in PAH-QuERI, 77% were women; 64% received a diagnosis . 3 months prior to enrollment; 9% were in New York Heart Association functional class I, 39% in II, 48% in III, and 5% in IV; and the median age was 55 years (interquartile range, 45-66 years). At enrollment, all ACCP-recommended tests had been performed in only 6% of patients. The automated program generated 1,530 reminders for 642 patients (81%) with validated enrollment data. The proportion of recommended tests performed was 91% for CBC count, 91% for liver function test, 50% for connective tissue disease screen, 29% for HIV screen, 88% for chest radiograph, 82% for ECG, 97% for two-dimensional echocardiogram, 83% for pulmonary function tests, 41% for oximetry, 57% for ventilation/perfusion scan, 79% for 6-min walk distance, and 90% for right-sided heart catheterization. Regarding management, 78% of patients were on disease specific therapy, and the use of these therapies tended to increase with the functional disability of the patient. One hundred seventy patients were taking calcium channel blockers, 91 specifically for PAH. Only six of 91 patients (7%) who received calcium channel blockers specifically for PAH had met the current guideline for acute vasoreactivity. When comparing reported clinical practice with ACCP guidelines-recommended strategies, a diagnostic care gap is apparent such that certain essential and recommended diagnostic tests may be underused despite the availability of detailed guidelines and reminders.
1996-01-01
OBJECTIVE: To recommend clinical practice guidelines for the assessment of people at risk for osteoporosis, and for effective diagnosis and management of the condition. OPTIONS: Screening and diagnostic methods: risk-factor assessment, clinical evaluation, measurement of bone mineral density, laboratory investigations. Prophylactic and corrective therapies: calcium and vitamin D nutritional supplementation, physical activity and fall-avoidance techniques, ovarian hormone therapy, bisphosphonate drugs, other drug therapies. Pain-management medications and techniques. OUTCOMES: Prevention of loss of bone mineral density and fracture; increased bone mass; and improved quality of life. EVIDENCE: Epidemiologic and clinical studies and reports were examined, with emphasis on recent randomized controlled trials. Clinical practice in Canada and elsewhere was surveyed. Availability of treatment products and diagnostic equipment in Canada was considered. VALUES: Cost-effective methods and products that can be adopted across Canada were considered. A high value was given to accurate assessment of fracture risk and osteoporosis, and to increasing bone mineral density, reducing fractures and fracture risk and minimizing side effects of diagnosis and treatment. BENEFITS, HARMS AND COSTS: Proper diagnosis and management of osteoporosis minimize injury and disability, improve quality of life for patients and reduce costs to society. Rationally targeted methods of screening and diagnosis are safe and cost effective. Harmful side effects and costs of recommended therapies are minimal compared with the harms and costs of untreated osteoporosis. Alternative therapies provide a range of choices for physicians and patients. RECOMMENDATIONS: Population sets at high risk should be identified and then the diagnosis confirmed through bone densitometry. Dual-energy x-ray absorptiometry is the preferred measurement technique. Radiography can be adjunct when indicated. Calcium and vitamin D nutritional supplementation should be at currently recommended levels. Patients should be counselled in fall-avoidance techniques and exercises. Immobilization should be avoided. Guidelines for management of acute pain are listed. Ovarian hormone therapy is the therapy of choice for osteoporosis prevention and treatment in postmenopausal women. Bisphosphonates are an alternative therapy for women with established osteoporosis who cannot or prefer not to take ovarian hormone therapy. PMID:8873639
The probability of quantal secretion near a single calcium channel of an active zone.
Bennett, M R; Farnell, L; Gibson, W G
2000-01-01
A Monte Carlo analysis has been made of calcium dynamics and quantal secretion at microdomains in which the calcium reaches very high concentrations over distances of <50 nm from a channel and for which calcium dynamics are dominated by diffusion. The kinetics of calcium ions in microdomains due to either the spontaneous or evoked opening of a calcium channel, both of which are stochastic events, are described in the presence of endogenous fixed and mobile buffers. Fluctuations in the number of calcium ions within 50 nm of a channel are considerable, with the standard deviation about half the mean. Within 10 nm of a channel these numbers of ions can give rise to calcium concentrations of the order of 100 microM. The temporal changes in free calcium and calcium bound to different affinity indicators in the volume of an entire varicosity or bouton following the opening of a single channel are also determined. A Monte Carlo analysis is also presented of how the dynamics of calcium ions at active zones, after the arrival of an action potential and the stochastic opening of a calcium channel, determine the probability of exocytosis from docked vesicles near the channel. The synaptic vesicles in active zones are found docked in a complex with their calcium-sensor associated proteins and a voltage-sensitive calcium channel, forming a secretory unit. The probability of quantal secretion from an isolated secretory unit has been determined for different distances of an open calcium channel from the calcium sensor within an individual unit: a threefold decrease in the probability of secretion of a quantum occurs with a doubling of the distance from 25 to 50 nm. The Monte Carlo analysis also shows that the probability of secretion of a quantum is most sensitive to the size of the single-channel current compared with its sensitivity to either the binding rates of the sites on the calcium-sensor protein or to the number of these sites that must bind a calcium ion to trigger exocytosis of a vesicle. PMID:10777721
Hernandez, L L
2017-12-01
The mammary gland regulates maternal metabolism during lactation. Numerous factors within the tissue send signals to shift nutrients to the mammary gland for milk synthesis. Serotonin is a monoamine that has been well documented to regulate several aspects of lactation among species. Maintenance of maternal calcium homeostasis during lactation is a highly evolved process that is elegantly regulated by the interaction of the mammary gland with the bone, gut, and kidney tissues. It is well documented that dietary calcium is insufficient to maintain maternal calcium concentrations during lactation, and mammals must rely on bone resorption to maintain normocalcemia. Our recent work focused on the ability of the mammary gland to function as an accessory parathyroid gland during lactation. It was demonstrated that serotonin acts to stimulate parathyroid hormone-related protein (PTHrP) in the mammary gland during lactation. The main role of mammary-derived PTHrP during mammalian lactation is to stimulate bone resorption to maintain maternal calcium homeostasis during lactation. In addition to regulating PTHrP, it was shown that serotonin appears to directly affect calcium transporters and pumps in the mammary gland. Our current working hypothesis regarding the control of calcium during lactation is as follows: serotonin directly stimulates PTHrP production in the mammary gland through interaction with the sonic hedgehog signaling pathway. Simultaneously, serotonin directly increases calcium movement into the mammary gland and, subsequently, milk. These 2 direct actions of serotonin combine to induce a transient maternal hypocalcemia required to further stimulate PTHrP production and calcium mobilization from bone. Through these 2 routes, serotonin is able to improve maternal calcium concentrations. Furthermore, we have shown that Holstein and Jersey cows appear to regulate calcium in different manners and also respond differently to serotonergic stimulation of the calcium pathway. Our data in rodents and cows indicate that serotonin and calcium are working through a unique feedback loop with PTHrP during lactation to regulate milk calcium and maternal calcium homeostasis.
Fruit Calcium: Transport and Physiology
Hocking, Bradleigh; Tyerman, Stephen D.; Burton, Rachel A.; Gilliham, Matthew
2016-01-01
Calcium has well-documented roles in plant signaling, water relations and cell wall interactions. Significant research into how calcium impacts these individual processes in various tissues has been carried out; however, the influence of calcium on fruit ripening has not been thoroughly explored. Here, we review the current state of knowledge on how calcium may impact the development, physical traits and disease susceptibility of fruit through facilitating developmental and stress response signaling, stabilizing membranes, influencing water relations and modifying cell wall properties through cross-linking of de-esterified pectins. We explore the involvement of calcium in hormone signaling integral to the physiological mechanisms behind common disorders that have been associated with fruit calcium deficiency (e.g., blossom end rot in tomatoes or bitter pit in apples). This review works toward an improved understanding of how the many roles of calcium interact to influence fruit ripening, and proposes future research directions to fill knowledge gaps. Specifically, we focus mostly on grapes and present a model that integrates existing knowledge around these various functions of calcium in fruit, which provides a basis for understanding the physiological impacts of sub-optimal calcium nutrition in grapes. Calcium accumulation and distribution in fruit is shown to be highly dependent on water delivery and cell wall interactions in the apoplasm. Localized calcium deficiencies observed in particular species or varieties can result from differences in xylem morphology, fruit water relations and pectin composition, and can cause leaky membranes, irregular cell wall softening, impaired hormonal signaling and aberrant fruit development. We propose that the role of apoplasmic calcium-pectin crosslinking, particularly in the xylem, is an understudied area that may have a key influence on fruit water relations. Furthermore, we believe that improved knowledge of the calcium-regulated signaling pathways that control ripening would assist in addressing calcium deficiency disorders and improving fruit pathogen resistance. PMID:27200042
Management of hypercalcaemic crisis in adults: Current role of renal replacement therapy.
Bentata, Yassamine; El Maghraoui, H; Benabdelhak, M; Haddiya, I
2018-06-01
Neoplasms and hematologic diseases are the predominant etiologies of hypercalcemic crisis in adults and the immediate treatment is mainly medical and symptomatic. The use of renal replacement therapy (RRT) is often necessary to correct the hypercalcemia, uremia and electrolyte disturbances related to Acute Kidney Injury (AKI). The aim of this work was to determine the etiologies and the place of RRT in treating patients with hypercalcaemic crisis. We conducted a retrospective study for 36months at the Nephrology Unit, University Hospital, Oujda, eastern of Morocco. We included all adult patients diagnosed with hypercalcemic crisis that was defined as corrected total serum calcium of >3.5mmol/l. 12 patients were collected. All patients were female and 5 patients were elderly (≥65years). Three patients had a serum calcium value of >4mmol/l and the highest calcium value was 5.8mmol/l. Electrocardiographic abnormalities were observed in 8 cases. AKI was observed in 8 cases. Three patients had chronic kidney disease on hemodialysis. Neoplasm was noted in 9 cases. All patients received venous rehydration, glucocorticoids and biphosphonates. The use of RRT with low calcium dialysate was performed in 11 cases. Three patients died during the first 24h of hospitalization. RRT must play its full role as first line treatment of hypercalcemia crisis. Improvements in hemodialysis techniques and the use of low calcium or calcium-free dialysates currently allows this therapeutic measure to be prescribed safely, and the benefit-risk balance is positive for the great benefit provided by dialysis. Copyright © 2018 Elsevier Inc. All rights reserved.
Petrou, Terry; Olsen, Hervør L.; Thrasivoulou, Christopher; Masters, John R.; Ashmore, Jonathan F.
2017-01-01
Free intracellular calcium ([Ca2+]i), in addition to being an important second messenger, is a key regulator of many cellular processes including cell membrane potential, proliferation, and apoptosis. In many cases, the mobilization of [Ca2+]i is controlled by intracellular store activation and calcium influx. We have investigated the effect of several ion channel modulators, which have been used to treat a range of human diseases, on [Ca2+]i release, by ratiometric calcium imaging. We show that six such modulators [amiodarone (Ami), dofetilide, furosemide (Fur), minoxidil (Min), loxapine (Lox), and Nicorandil] initiate release of [Ca2+]i in prostate and breast cancer cell lines, PC3 and MCF7, respectively. Whole-cell currents in PC3 cells were inhibited by the compounds tested in patch-clamp experiments in a concentration-dependent manner. In all cases [Ca2+]i was increased by modulator concentrations comparable to those used clinically. The increase in [Ca2+]i in response to Ami, Fur, Lox, and Min was reduced significantly (P < 0.01) when the external calcium was reduced to nM concentration by chelation with EGTA. The data suggest that many ion channel regulators mobilize [Ca2+]i. We suggest a mechanism whereby calcium-induced calcium release is implicated; such a mechanism may be important for understanding the action of these compounds. PMID:27980039
Thammayon, Nithipak; Wongdee, Kannikar; Lertsuwan, Kornkamon; Suntornsaratoon, Panan; Thongbunchoo, Jirawan; Krishnamra, Nateetip; Charoenphandhu, Narattaphol
2017-04-01
Na + /H + exchanger (NHE)-3 is important for intestinal absorption of nutrients and minerals, including calcium. The previous investigations have shown that the intestinal calcium absorption is also dependent on luminal nutrients, but whether aliphatic amino acids and glucose, which are abundant in the luminal fluid during a meal, similarly enhance calcium transport remains elusive. Herein, we used the in vitro Ussing chamber technique to determine epithelial electrical parameters, i.e., potential difference (PD), short-circuit current (Isc), and transepithelial resistance, as well as 45 Ca flux in the rat duodenum directly exposed on the mucosal side to glucose or various amino acids. We found that mucosal glucose exposure led to the enhanced calcium transport, PD, and Isc, all of which were insensitive to NHE3 inhibitor (100 nM tenapanor). In the absence of mucosal glucose, several amino acids (12 mM in the mucosal side), i.e., alanine, isoleucine, leucine, proline, and hydroxyproline, markedly increased the duodenal calcium transport. An inhibitor for NHE3 exposure on the mucosal side completely abolished proline- and leucine-enhanced calcium transport, but not transepithelial transport of both amino acids themselves. In conclusion, glucose and certain amino acids in the mucosal side were potent stimulators of the duodenal calcium absorption, but only amino-acid-enhanced calcium transport was NHE3-dependent.
Havlickova, B; Bíró, T; Mescalchin, A; Arenberger, P; Paus, R
2004-10-01
Human hair growth can currently be studied in vitro by the use of organ-cultured scalp hair follicles (HFs). However, simplified organotypic systems are needed for dissecting the underlying epithelial-mesenchymal interactions and as screening tools for candidate hair growth-modulatory agents. To optimize the design and culture conditions of previously published organotypic systems that imitate epithelial-mesenchymal interactions in the human HF as closely as possible. Continuous submerged organotypic 'sandwich' cultures were established. These consist of a pseudodermis (collagen I mixed with and contracted by human interfollicular dermal fibroblasts) on which one of two upper layers is placed: either a mixture of Matrigel basement membrane matrix (BD Biosciences, Bedford, MA, U.S.A.) and follicular dermal papilla fibroblasts (DPC), with outer root sheath keratinocytes (ORSK) layered on the top ('layered' system), or a mixture of Matrigel, DPC and ORSK ('mixed' system). Morphological and functional characteristics of these 'folliculoid sandwiches' were then assessed by routine histology, histomorphometry and immunohistochemistry. In both 'layered' and 'mixed' systems, the ORSK formed spheroid epithelial cell aggregates, which retained their characteristic keratin expression pattern (i.e. cytokeratin 6). In the 'mixed' sandwich model the size of the epithelial cell aggregates was smaller, but the numbers of ORSK were significantly higher than in the 'layered' model at day 14 in the culture. ORSK proliferated better in the 'mixed' than in the 'layered' sandwich system, regardless of the calcium or serum content of the media, whereas apoptosis of ORSK was lowest in the 'mixed' system in serum-free, low calcium medium. The kinetics of proliferation and apoptosis of DPC, which retained their characteristic expression of versican, were similar in both systems. However, proliferation and apoptosis of DPC were higher in the presence of serum and/or under high calcium conditions. Our results underscore the importance of structural design and medium composition for epithelial-mesenchymal interactions as they occur in the human HF. Specifically, we report a new organotypic submerged 'folliculoid sandwich' system with serum-free, low calcium medium and a mixture of interacting human DPC and ORSK, which offers several advantages over previously available assays. This system allows the standardized assessment of the effects of a test agent on the proliferation, apoptosis and key marker expression of human ORSK and DPC under substantially simplified in vitro conditions which approximate the in vivo situation.
Long, Tingting; Su, Juan; Tang, Wen; Luo, Zhongling; Liu, Shuang; Liu, Zhaoqian; Zhou, Honghao; Qi, Min; Zeng, Weiqi; Zhang, Jianglin; Chen, Xiang
2013-10-01
Intracellular free calcium is a ubiquitous second messenger regulating a multitude of normal and pathogenic cellular responses, including the development of melanoma. Upstream signaling pathways regulating the intracellular free calcium concentration ([Ca2+]i) may therefore have a significant impact on melanoma growth and metastasis. In this study, we demonstrate that the endoplasmic reticulum (ER)-associated protein calcium-modulating cyclophilin ligand (CAML) is bound to Basigin, a widely expressed integral plasma membrane glycoprotein and extracellular matrix metalloproteinase inducer (EMMPRIN, or CD147) implicated in melanoma proliferation, invasiveness, and metastasis. This interaction between CAML and Basigin was first identified using yeast two-hybrid screening and further confirmed by co-immunoprecipitation. In human A375 melanoma cells, CAML and Basigin were co-localized to the ER. Knockdown of Basigin in melanoma cells by siRNA significantly decreased resting [Ca2+]i and the [Ca2+]i increase induced by the sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) inhibitor thapsigargin (TG), indicating that the interaction between CAML and Basigin regulates ER-dependent [Ca2+]i signaling. Meanwhile upregulating the [Ca2+]i either by TG or phorbol myristate acetate (PMA) could stimulate the production of MMP-9 in A375 cells with the expression of Basigin. Our study has revealed a previously uncharacterized [Ca2+]i signaling pathway that may control melanoma invasion, and metastasis. Disruption of this pathway may be a novel therapeutic strategy for melanoma treatment. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
De Marchi, Umberto; Thevenet, Jonathan; Hermant, Aurelie; Dioum, Elhadji; Wiederkehr, Andreas
2014-01-01
Mitochondrial energy metabolism is essential for glucose-induced calcium signaling and, therefore, insulin granule exocytosis in pancreatic beta cells. Calcium signals are sensed by mitochondria acting in concert with mitochondrial substrates for the full activation of the organelle. Here we have studied glucose-induced calcium signaling and energy metabolism in INS-1E insulinoma cells and human islet beta cells. In insulin secreting cells a surprisingly large fraction of total respiration under resting conditions is ATP synthase-independent. We observe that ATP synthase-dependent respiration is markedly increased after glucose stimulation. Glucose also causes a very rapid elevation of oxidative metabolism as was followed by NAD(P)H autofluorescence. However, neither the rate of the glucose-induced increase nor the new steady-state NAD(P)H levels are significantly affected by calcium. Our findings challenge the current view, which has focused mainly on calcium-sensitive dehydrogenases as the target for the activation of mitochondrial energy metabolism. We propose a model of tight calcium-dependent regulation of oxidative metabolism and ATP synthase-dependent respiration in beta cell mitochondria. Coordinated activation of matrix dehydrogenases and respiratory chain activity by calcium allows the respiratory rate to change severalfold with only small or no alterations of the NAD(P)H/NAD(P)+ ratio. PMID:24554722
Tzeng, Huei-Ping; Fan, Jinping; Vallejo, Jesus G.; Dong, Jian Wen; Chen, Xiongwen; Houser, Steven R.; Mann, Douglas L.
2013-01-01
HMGB1 released from necrotic cells or macrophages functions as a late inflammatory mediator, and has been shown to induce cardiovascular collapse during sepsis. Thus far, however, the effect(s) of HMGB1 in the heart are not known. We determined the effects of HMGB1 on isolated feline cardiac myocytes by measuring sarcomere shortening in contracting cardiac myocytes, intracellular Ca2+ transients using fluo-3, and L-type calcium currents using whole cell perforate configuration of the patch clamp technique. Treatment of isolated myocytes with HMGB1 (100 ng/ml) resulted in a 70% decrease in sarcomere shortening and a 50% decrease in the height of the peak Ca++ transient within 5 min (p <0.01). The immediate negative inotropic effects HMGB1 on cell contractility and calcium homeostasis were partially reversible upon washout of HMGB1. A significant inhibition of the inward L-type calcium currents also was documented by the patch clamp technique. HMGB1 induced the PKCε translocation and a PKC inhibitor significantly attenuated the negative inotropic effects of HMGB1. These studies show for the first time that HMGB1 impairs sarcomere shortening by decreasing calcium availability in cardiac myocytes through modulating membrane calcium influx, and suggest that HMGB1 maybe act as a novel myocardial depressant factor during cardiac injury. PMID:18223193
Current challenges and future directions for bacterial self-healing concrete.
Lee, Yun Suk; Park, Woojun
2018-04-01
Microbially induced calcium carbonate precipitation (MICP) has been widely explored and applied in the field of environmental engineering over the last decade. Calcium carbonate is naturally precipitated as a byproduct of various microbial metabolic activities. This biological process was brought into practical use to restore construction materials, strengthen and remediate soil, and sequester carbon. MICP has also been extensively examined for applications in self-healing concrete. Biogenic crack repair helps mitigate the high maintenance costs of concrete in an eco-friendly manner. In this process, calcium carbonate precipitation (CCP)-capable bacteria and nutrients are embedded inside the concrete. These bacteria are expected to increase the durability of the concrete by precipitating calcium carbonate in situ to heal cracks that develop in the concrete. However, several challenges exist with respect to embedding such bacteria; harsh conditions in concrete matrices are unsuitable for bacterial life, including high alkalinity (pH up to 13), high temperatures during manufacturing processes, and limited oxygen supply. Additionally, many biological factors, including the optimum conditions for MICP, the molecular mechanisms involved in MICP, the specific microorganisms suitable for application in concrete, the survival characteristics of the microorganisms embedded in concrete, and the amount of MICP in concrete, remain unclear. In this paper, metabolic pathways that result in conditions favorable for calcium carbonate precipitation, current and potential applications in concrete, and the remaining biological challenges are reviewed.
Utilization of Routine Primary Care Services Among Dancers.
Alimena, Stephanie; Air, Mary E; Gribbin, Caitlin; Manejias, Elizabeth
2016-01-01
This study examines the current utilization of primary and preventive health care services among dancers in order to assess their self-reported primary care needs. Participants were 37 dancers from a variety of dance backgrounds who presented for a free dancer health screening in a large US metropolitan area (30 females, 7 males; mean age: 27.5 ± 7.4 years; age range: 19 to 49 years; mean years of professional dancing: 6.4 ± 5.4 years). Dancers were screened for use of primary care, mental health, and women's health resources using the Health Screen for Professional Dancers developed by the Task Force on Dancer Health. Most dancers had health insurance (62.2%), but within the last 2 years, only approximately half of them (54.1%) reported having a physical examination by a physician. Within the last year, 54.1% of dancers had had a dental check-up, and 56.7% of female dancers received gynecologic care. Thirty percent of female participants indicated irregular menstrual cycles, 16.7% had never been to a gynecologist, and 16.7% were taking birth control. Utilization of calcium and vitamin D supplementation was 27.0% and 29.7%, respectively, and 73.0% were interested in nutritional counseling. A high rate of psychological fatigue and sleep deprivation was found (35.1%), along with a concomitant high rate of self-reported need for mental health counseling (29.7%). Cigarette and recreational drug use was low (5.4% and 5.4%); however, 32.4% engaged in binge drinking within the last year (based on the CDC definition). These findings indicate that dancers infrequently access primary care services, despite high self-reported need for nutritional, mental, and menstrual health counseling and treatment. More studies are warranted to understand dancers' primary health care seeking behavior.
Barr, R J; Stewart, A; Torgerson, D J; Reid, D M
2010-04-01
Randomised control trial of osteoporosis screening in 4,800 women aged 45-54 years was carried out. Screened group observed an increase of 7.9% in hormone replacement therapy (HRT) use (p < 0.001), 15% in other osteoporosis treatments (p < 0.001) and a 25.9% reduction in fracture risk compared with control. Screening for osteoporosis significantly increases treatment use and reduces fracture incidence. Population screening programmes can identify menopausal women with low bone mineral density (BMD) and elevated risk of future fracture but require to be proven effective by a randomised control trial. A total of 4,800 women, 45-54 years, were randomised in equal numbers to screening or no screening (control) groups. Following screening, those in the lowest quartile of BMD were advised to consider HRT. Nine years later, the effect of screening on the uptake of treatment and the incidence of fractures were assessed by postal questionnaire. Categorical differences were assessed using chi(2) test. Cox regression was used to assess hazard ratio (HR). Of the screened and the control groups, 52.4% vs 44.5%, respectively, reported taking HRT (p < 0.001). In addition, 36.6% of the screened vs 21.6% of the control groups reported the use of vitamin D, calcium, alendronate, etidronate or raloxifene (p < 0.001). In a per protocol analysis of verified incident fractures, a 25.9% reduction in risk of fractures (of any site) in the screened group was observed (HR = 0.741, 95% CI = 0.551-0.998 adjusted age, weight and height). Screening for osteoporosis as assessed by low bone density significantly increases the use of HRT and other treatments for osteoporosis and reduces fracture incidence.
Murali, Swetha S; Napier, Ian A; Mohammadi, Sarasa A; Alewood, Paul F; Lewis, Richard J; Christie, MacDonald J
2015-03-01
Changes in ion channel function and expression are characteristic of neuropathic pain. Voltage-gated calcium channels (VGCCs) are integral for neurotransmission and membrane excitability, but relatively little is known about changes in their expression after nerve injury. In this study, we investigate whether peripheral nerve ligation is followed by changes in the density and proportion of high-voltage-activated (HVA) VGCC current subtypes in dorsal root ganglion (DRG) neurons, the contribution of presynaptic N-type calcium channels in evoked excitatory postsynaptic currents (EPSCs) recorded from dorsal horn neurons in the spinal cord, and the changes in expression of mRNA encoding VGCC subunits in DRG neurons. Using C57BL/6 mice [8- to 11-wk-old males (n = 91)] for partial sciatic nerve ligation or sham surgery, we performed whole cell patch-clamp recordings on isolated DRG neurons and dorsal horn neurons and measured the expression of all VGCC subunits with RT-PCR in DRG neurons. After nerve injury, the density of P/Q-type current was reduced overall in DRG neurons. There was an increase in the percentage of N-type and a decrease in that of P/Q-type current in medium- to large-diameter neurons. No changes were found in the contribution of presynaptic N-type calcium channels in evoked EPSCs recorded from dorsal horn neurons. The α2δ-1 subunit was upregulated by 1.7-fold and γ-3, γ-2, and β-4 subunits were all downregulated 1.7-fold in injured neurons compared with sham-operated neurons. This comprehensive characterization of HVA VGCC subtypes in mouse DRG neurons after nerve injury revealed changes in N- and P/Q-type current proportions only in medium- to large-diameter neurons. Copyright © 2015 the American Physiological Society.
Rhee, Sung W; Stimers, Joseph R; Wang, Wenze; Pang, Li
2009-05-01
In different rodent models of hypertension, vascular voltage-gated L-type calcium channel (Ca(L)) current and vascular tone is increased because of increased expression of the noncardiac form of the Ca(L) (Ca(v)1.2). The objective of this study was to develop a small interfering RNA (siRNA) expression system against the noncardiac form of Ca(v)1.2 to reduce its expression in vascular smooth muscle cells (VSMCs). siRNAs expressing plasmids and appropriate controls were constructed and first screened in human embryonic kidney (HEK) 293 cells cotransfected with a rat Ca(v)1.2 expression vector. The most effective gene silencing was achieved with a modified mir-30a-based short hairpin RNA (shRNAmir) driven by the cytomegalovirus promoter. In A7r5 cells, a vascular smooth muscle cell line, two copies of shRNAmir driven by a chimeric VSMC-specific enhancer/promoter reduced endogenous Ca(v)1.2 expression by 61% and decreased the Ca(L) current carried by barium by 47%. Moreover, the chimeric vascular smooth muscle-specific enhancer/promoter displayed almost no activity in non-VSMCs (PC-12 and HEK 293). Because the proposed siRNA was designed to only target the noncardiac form of Ca(v)1.2, it did not affect the Ca(L) expression and function in cultured cardiomyocytes, even when driven by a stronger cytomegalovirus promoter. In conclusion, vascular Ca(v)1.2 expression and function were effectively reduced by VSMC-specific delivery of the noncardiac form of Ca(v)1.2 siRNA without similarly affecting cardiac Ca(L) expression and function. When coupled with a viral vector, this molecular intervention in vivo may provide a novel long-term vascular-specific gene therapy for hypertension.
Rhee, Sung W.; Stimers, Joseph R.; Wang, Wenze; Pang, Li
2009-01-01
In different rodent models of hypertension, vascular voltage-gated L-type calcium channel (CaL) current and vascular tone is increased because of increased expression of the noncardiac form of the CaL (Cav1.2). The objective of this study was to develop a small interfering RNA (siRNA) expression system against the noncardiac form of Cav1.2 to reduce its expression in vascular smooth muscle cells (VSMCs). siRNAs expressing plasmids and appropriate controls were constructed and first screened in human embryonic kidney (HEK) 293 cells cotransfected with a rat Cav1.2 expression vector. The most effective gene silencing was achieved with a modified mir-30a-based short hairpin RNA (shRNAmir) driven by the cytomegalovirus promoter. In A7r5 cells, a vascular smooth muscle cell line, two copies of shRNAmir driven by a chimeric VSMC-specific enhancer/promoter reduced endogenous Cav1.2 expression by 61% and decreased the CaL current carried by barium by 47%. Moreover, the chimeric vascular smooth muscle-specific enhancer/promoter displayed almost no activity in non-VSMCs (PC-12 and HEK 293). Because the proposed siRNA was designed to only target the noncardiac form of Cav1.2, it did not affect the CaL expression and function in cultured cardiomyocytes, even when driven by a stronger cytomegalovirus promoter. In conclusion, vascular Cav1.2 expression and function were effectively reduced by VSMC-specific delivery of the noncardiac form of Cav1.2 siRNA without similarly affecting cardiac CaL expression and function. When coupled with a viral vector, this molecular intervention in vivo may provide a novel long-term vascular-specific gene therapy for hypertension. PMID:19244098
Arispe, N; Rojas, E; Pollard, H B
1993-01-01
Amyloid beta protein (A beta P) is the 40- to 42-residue polypeptide implicated in the pathogenesis of Alzheimer disease. We have incorporated this peptide into phosphatidylserine liposomes and then fused the liposomes with a planar bilayer. When incorporated into bilayers the A beta P forms channels, which generate linear current-voltage relationships in symmetrical solutions. A permeability ratio, PK/PCl, of 11 for the open A beta P channel was estimated from the reversal potential of the channel current in asymmetrical KCl solutions. The permeability sequence for different cations, estimated from the reversal potential of the A beta P-channel current for each system of asymmetrical solutions, is Pcs > PLi > PCa > or = PK > PNa. A beta P-channel current (either CS+ or Ca2+ as charge carriers) is blocked reversibly by tromethamine (millimolar range) and irreversibly by Al3+ (micromolar range). The inhibition of the A beta P-channel current by these two substances depends on transmembrane potential, suggesting that the mechanism of blockade involves direct interaction between tromethamine (or Al3+) and sites within the A beta P channel. Hitherto, A beta P has been presumed to be neurotoxic. On the basis of the present data we suggest that the channel activity of the polypeptide may be responsible for some or all of its neurotoxic effects. We further propose that a useful strategy for drug discovery for treatment of Alzheimer disease may include screening compounds for their ability to block or otherwise modify A beta P channels. PMID:8380642
Ceres, Marc; Quinn, Gwendolyn P; Loscalzo, Matthew; Rice, David
2018-02-01
To describe the current state of cancer screening and uptake for lesbian, gay, bisexual, and transgender (LGBT) persons and to propose cancer screening considerations for LGBT persons. Current and historic published literature on cancer screening and LGBT cancer screening; published national guidelines. Despite known cancer risks for members of the LGBT community, cancer screening rates are often low, and there are gaps in screening recommendations for LGBT persons. We propose evidence-based cancer screening considerations derived from the current literature and extant cancer screening recommendations. The oncology nurse plays a key role in supporting patient preventive care and screening uptake through assessment, counseling, education, advocacy, and intervention. As oncology nurses become expert in the culturally competent care of LGBT persons, they can contribute to the improvement of quality of care and overall well-being of this health care disparity population. Copyright © 2017 Elsevier Inc. All rights reserved.
Aluminum Citrate Prevents Renal Injury from Calcium Oxalate Crystal Deposition
Besenhofer, Lauren M.; Cain, Marie C.; Dunning, Cody
2012-01-01
Calcium oxalate monohydrate crystals are responsible for the kidney injury associated with exposure to ethylene glycol or severe hyperoxaluria. Current treatment strategies target the formation of calcium oxalate but not its interaction with kidney tissue. Because aluminum citrate blocks calcium oxalate binding and toxicity in human kidney cells, it may provide a different therapeutic approach to calcium oxalate-induced injury. Here, we tested the effects of aluminum citrate and sodium citrate in a Wistar rat model of acute high-dose ethylene glycol exposure. Aluminum citrate, but not sodium citrate, attenuated increases in urea nitrogen, creatinine, and the ratio of kidney to body weight in ethylene glycol–treated rats. Compared with ethylene glycol alone, the addition of aluminum citrate significantly increased the urinary excretion of both crystalline calcium and crystalline oxalate and decreased the deposition of crystals in renal tissue. In vitro, aluminum citrate interacted directly with oxalate crystals to inhibit their uptake by proximal tubule cells. These results suggest that treating with aluminum citrate attenuates renal injury in rats with severe ethylene glycol toxicity, apparently by inhibiting calcium oxalate’s interaction with, and retention by, the kidney epithelium. PMID:23138489
Creation of a genetic calcium channel blocker by targeted gem gene transfer in the heart.
Murata, Mitsushige; Cingolani, Eugenio; McDonald, Amy D; Donahue, J Kevin; Marbán, Eduardo
2004-08-20
Calcium channel blockers are among the most commonly used therapeutic drugs. Nevertheless, the utility of calcium channel blockers for heart disease is limited because of the potent vasodilatory effect that causes hypotension, and other side effects attributable to blockade of noncardiac channels. Therefore, focal calcium channel blockade by gene transfer is highly desirable. With a view to creating a focally applicable genetic calcium channel blocker, we overexpressed the ras-related small G-protein Gem in the heart by somatic gene transfer. Adenovirus-mediated delivery of Gem markedly decreased L-type calcium current density in ventricular myocytes, resulting in the abbreviation of action potential duration. Furthermore, transduction of Gem resulted in a significant shortening of the electrocardiographic QTc interval and reduction of left ventricular systolic function. Focal delivery of Gem to the atrioventricular (AV) node significantly slowed AV nodal conduction (prolongation of PR and AH intervals), which was effective in the reduction of heart rate during atrial fibrillation. Thus, these results indicate that gene transfer of Gem functions as a genetic calcium channel blocker, the local application of which can effectively modulate cardiac electrical and contractile function.
Fibromodulin modulates myoblast differentiation by controlling calcium channel.
Lee, Eun Ju; Nam, Joo Hyun; Choi, Inho
2018-06-16
Fibromodulin (FMOD) is a proteoglycan present in extracellular matrix (ECM). Based on our previous findings that FMOD controls myoblast differentiation by regulating the gene expressions of collagen type I alpha 1 (COL1α1) and integral membrane protein 2 A (Itm2a), we undertook this study to investigate relationships between FMOD and calcium channels and to understand further the mechanism by which they control myoblast differentiation. Gene expression studies and luciferase reporter assays showed FMOD affected calcium channel gene expressions by regulating calcium channel gene promoter, and patch-clamp experiments showed both L- and T-type calcium channel currents were almost undetectable in FMOD knocked down cells. In addition, gene knock-down studies demonstrated the COL1α1 and Itm2a genes both regulate the expressions of calcium channel genes. Studies using a cardiotoxin-induced mouse muscle injury model demonstrated calcium channels play important roles in the regeneration of muscle tissue, possibly by promoting the differentiation of muscle stem cells (MSCs). Summarizing, the study demonstrates ECM components secreted by myoblasts during differentiation provide an essential environment for muscle differentiation and regeneration. Copyright © 2018 Elsevier Inc. All rights reserved.
Safety assessment of the calcium-binding protein, apoaequorin, expressed by Escherichia coli.
Moran, Daniel L; Tetteh, Afua O; Goodman, Richard E; Underwood, Mark Y
2014-07-01
Calcium-binding proteins are ubiquitous modulators of cellular activity and function. Cells possess numerous calcium-binding proteins that regulate calcium concentration in the cytosol by buffering excess free calcium ion. Disturbances in intracellular calcium homeostasis are at the heart of many age-related conditions making these proteins targets for therapeutic intervention. A calcium-binding protein, apoaequorin, has shown potential utility in a broad spectrum of applications for human health and well-being. Large-scale recombinant production of the protein has been successful; enabling further research and development and commercialization efforts. Previous work reported a 90-day subchronic toxicity test that demonstrated this protein has no toxicity by oral exposure in Sprague-Dawley rodents. The current study assesses the allergenic potential of the purified protein using bioinformatic analysis and simulated gastric digestion. The results from the bioinformatics searches with the apoaequorin sequence show the protein is not a known allergen and not likely to cross-react with known allergens. Apoaequorin is easily digested by pepsin, a characteristic commonly exhibited by many non-allergenic dietary proteins. From these data, there is no added concern of safety due to unusual stability of the protein by ingestion. Copyright © 2014 Elsevier Inc. All rights reserved.
Self-Setting Calcium Orthophosphate Formulations
Dorozhkin, Sergey V.
2013-01-01
In early 1980s, researchers discovered self-setting calcium orthophosphate cements, which are bioactive and biodegradable grafting bioceramics in the form of a powder and a liquid. After mixing, both phases form pastes, which set and harden forming either a non-stoichiometric calcium deficient hydroxyapatite or brushite. Since both of them are remarkably biocompartible, bioresorbable and osteoconductive, self-setting calcium orthophosphate formulations appear to be promising bioceramics for bone grafting. Furthermore, such formulations possess excellent molding capabilities, easy manipulation and nearly perfect adaptation to the complex shapes of bone defects, followed by gradual bioresorption and new bone formation. In addition, reinforced formulations have been introduced, which might be described as calcium orthophosphate concretes. The discovery of self-setting properties opened up a new era in the medical application of calcium orthophosphates and many commercial trademarks have been introduced as a result. Currently such formulations are widely used as synthetic bone grafts, with several advantages, such as pourability and injectability. Moreover, their low-temperature setting reactions and intrinsic porosity allow loading by drugs, biomolecules and even cells for tissue engineering purposes. In this review, an insight into the self-setting calcium orthophosphate formulations, as excellent bioceramics suitable for both dental and bone grafting applications, has been provided. PMID:24956191
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodríguez Guilbe, María M.; Protein Research and Development Center, University of Puerto Rico; Alfaro Malavé, Elisa C.
The genetically encoded fluorescent calcium-indicator protein GCaMP2 was crystallized in the calcium-saturated form. X-ray diffraction data were collected to 2.0 Å resolution and the structure was solved by molecular replacement. Fluorescent proteins and their engineered variants have played an important role in the study of biology. The genetically encoded calcium-indicator protein GCaMP2 comprises a circularly permuted fluorescent protein coupled to the calcium-binding protein calmodulin and a calmodulin target peptide, M13, derived from the intracellular calmodulin target myosin light-chain kinase and has been used to image calcium transients in vivo. To aid rational efforts to engineer improved variants of GCaMP2, thismore » protein was crystallized in the calcium-saturated form. X-ray diffraction data were collected to 2.0 Å resolution. The crystals belong to space group C2, with unit-cell parameters a = 126.1, b = 47.1, c = 68.8 Å, β = 100.5° and one GCaMP2 molecule in the asymmetric unit. The structure was phased by molecular replacement and refinement is currently under way.« less
Khamseekaew, Juthamas; Kumfu, Sirinart; Chattipakorn, Siriporn C; Chattipakorn, Nipon
2016-08-01
Iron overload cardiomyopathy occurs in a rare primary form (ie, hemochromatosis) and a very common secondary form in a host of hemoglobinopathies (eg, thalassemia, sickle cell anemia) of substantial and growing global prevalence, which have transformed iron overload cardiomyopathy into a worldwide epidemic. Intracellular calcium ([Ca(2+)]i) is known to be a critical regulator of myocardial function, in which it plays a key role in maintaining cardiac excitation-contraction coupling. It has been proposed that a disturbance in cardiac calcium regulation is a major contributor to left ventricular dysfunction in iron overload cardiomyopathy. This review comprehensively summarizes reports concerned with the effects of iron overload on cardiac calcium regulation, including alteration in the intracellular calcium level, voltage-gated calcium channel function, and calcium cycling protein activity. Consistent reports, as well as inconsistent findings, from both in vitro and in vivo studies, are presented and discussed. The understanding of these mechanisms has provided important new pathophysiological insights and has led to the development of novel therapeutic and preventive strategies for patients with iron overload cardiomyopathy that are currently in clinical trials. Copyright © 2016 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.
Prevalence of rickets-like bone deformities in rural Gambian children.
Jones, Helen L; Jammeh, Lamin; Owens, Stephen; Fulford, Anthony J; Moore, Sophie E; Pettifor, John M; Prentice, Ann
2015-08-01
The aim of this study was to estimate the burden of childhood rickets-like bone deformity in a rural region of West Africa where rickets has been reported in association with a low calcium intake. A population-based survey of children aged 0.5-17.9 years living in the province of West Kiang, The Gambia was conducted in 2007. 6221 children, 92% of those recorded in a recent census, were screened for physical signs of rickets by a trained survey team with clinical referral of suspected cases. Several objective measures were tested as potential screening tools. The prevalence of bone deformity in children <18.0 years was 3.3%. The prevalence was greater in males (M = 4.3%, F = 2.3%, p < 0.001) and in children <5.0 years (5.7%, M = 8.3%, F = 2.9%). Knock-knee was more common (58%) than bow-leg (31%) or windswept deformity (9%). Of the 196 examined clinically, 36 were confirmed to have a deformity outside normal variation (47% knock-knee, 53% bow-leg), resulting in more conservative prevalence estimates of bone deformity: 0.6% for children <18.0 years (M = 0.9%, F = 0.2%), 1.5% for children < 5.0 years (M = 2.3%, F = 0.6%). Three of these children (9% of those with clinically-confirmed deformity, 0.05% of those screened) had active rickets on X-ray at the time of medical examination. This emphasises the difficulties in comparing prevalence estimates of rickets-like bone deformities from population surveys and clinic-based studies. Interpopliteal distance showed promise as an objective screening measure for bow-leg deformity. In conclusion, this population survey in a rural region of West Africa with a low calcium diet has demonstrated a significant burden of rickets-like bone deformity, whether based on physical signs under survey conditions or after clinical examination, especially in boys < 5.0 years. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Montessori, M L; Scheele, W H; Netelenbos, J C; Kerkhoff, J F; Bakker, K
1997-01-01
The purpose of this open, prospective, controlled, randomized trial was to study the effect of intermittent, cyclic etidronate on the bone mass of osteoporotic postmenopausal women with or without fractures. Eligible subjects were asymptomatic women less than 75 years old who had been amenorrhoeic for at least 1 year. Those with secondary osteoporosis were excluded. Subjects also had to be ambulant with a bone mineral density (BMD) of the lumbar spine > 1 SD below that of age matched controls (Z-score < -1 SD). Eighty patients were enrolled, of whom 65 were recruited through a screening programme conducted in the practices of two general practitioners. The remaining patients were from other referrals. The subjects were randomized to two groups of 40 women. Treatment regimens were as follows. The etidronate group was treated with etidronate 400 mg once daily for 14 days followed by 76 days of 500 mg of elementary calcium once daily; this cycle was repeated every 3 months. The calcium group took 500 mg of elementary calcium once daily. The groups were not different in age, height, weight, time since menopause. BMD at baseline and prevalent vertebral fractures. In 50 patients (28 in the etidronate group and 22 in the calcium group) no vertebral fractures were present (67%). Sixty-four patients (35 in the etidronate group and 29 in the calcium group) completed the 3 years of the study. In the etidronate group the mean BMD of the lumbar spine, femoral neck, trochanter and Ward's triangle increased by 5.7%, 1.4%, 7.1% and 10.9% from baseline values respectively (p < 0.05 at all sites except for the femoral neck). In the calcium group no significant changes from baseline were found at any time point at any site after 3 years, except for the femoral neck, where BMD at 156 weeks decreased significantly by 3% (p < 0.003). In 3 patients, all in the calcium group, six new fractures were found. There were no serious adverse effects. We conclude that intermittent, cyclic treatment with etidronate causes a significant increase in the BMD of the lumbar spine and the proximal femur in osteopenic postmenopausal women, and that treatment is safe and has no serious adverse effects.
Kisaalita, William
2012-01-01
It has been demonstrated that neuronal cells cultured on traditional flat surfaces may exhibit exaggerated voltage gated calcium channel (VGCC) functionality. To gain a better understanding of this phenomenon, primary neuronal cells harvested from mice superior cervical ganglion (SCG) were cultured on two dimensional (2D) flat surfaces and in three dimensional (3D) synthetic poly-L-lactic acid (PLLA) and polystyrene (PS) polymer scaffolds. These 2D- and 3D-cultured cells were compared to cells in freshly dissected SCG tissues, with respect to intracellular calcium increase in response to high K+ depolarization. The calcium increases were identical for 3D-cultured and freshly dissected, but significantly higher for 2D-cultured cells. This finding established the physiological relevance of 3D-cultured cells. To shed light on the mechanism behind the exaggerated 2D-cultured cells’ functionality, transcriptase expression and related membrane protein distributions (caveolin-1) were obtained. Our results support the view that exaggerated VGCC functionality from 2D cultured SCG cells is possibly due to differences in membrane architecture, characterized by uniquely organized caveolar lipid rafts. The practical implication of use of 3D-cultured cells in preclinical drug discovery studies is that such platforms would be more effective in eliminating false positive hits and as such improve the overall yield from screening campaigns. PMID:23049767
Recovery of copper from PVC multiwire cable waste by steam gasification.
Zabłocka-Malicka, Monika; Rutkowski, Piotr; Szczepaniak, Włodzimierz
2015-12-01
Screened multiwire, PVC insulated tinned copper cable was gasified with steam at high temperature (HTSG) under atmospheric pressure for recovery of cooper. Gases from the process were additionally equilibrated at 850°C on the bed of calcined clay granules and more than 98% of C+H content in the cable was transformed to non-condensing species. Granules prepared from local clay were generally resistant for chlorination, there was also almost no deposition of metals, Cu and Sn, on the catalytic bed. It was found that 28% of chlorine reacted to form CaCl2, 71% was retained in aqueous condensate and only 0.6% was absorbed in alkaline scrubber. More than 99% of calcium existed in the process solid residue as a mixture of calcium chloride and calcium oxide/hydroxide. PVC and other hydrocarbon constituents were completely removed from the cable sample. Copper was preserved in original form and volatilization of copper species appeared insignificant. Tin was alloying with copper and its volatilization was less than 1%. Fractionation and speciation of metals, chlorine and calcium were discussed on the basis of equilibrium model calculated with HSC Chemistry software. High temperature steam gasification prevents direct use of the air and steam/water is in the process simultaneously gaseous carrier and reagent, which may be recycled together with hydrocarbon condensates. Copyright © 2015 Elsevier Ltd. All rights reserved.
Calcium homeostasis in the outer segments of retinal rods from the tiger salamander.
Lagnado, L; Cervetto, L; McNaughton, P A
1992-01-01
1. The processes regulating intracellular calcium in the outer segments of salamander rods have been investigated. The main preparation used was the isolated rod loaded with the Ca(2+)-sensitive photoprotein aequorin, from which outer segment membrane current and free [Ca2+]i could be recorded simultaneously. Two other preparations were also used: outer segment membrane current was recorded from intact, isolated rods using a suction pipette, and from detached outer segments using a whole-cell pipette. 2. Measurements of free intracellular [Ca2+] in Ringer solution were obtained from two aequorin-loaded rods. Mean [Ca2+]i in darkness was 0.41 microM, and after a bright flash [Ca2+]i fell to below detectable levels ( < 0.3 microM). No release of intracellular Ca2+ by a bright flash of light could be detected ( < 0.2 microM). 3. Application of the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX) caused an increase in the size of the light-sensitive current and a rise in [Ca2+]i, but application of IBMX either when the light-sensitive channels had been closed by a bright light or in the absence of external Ca2+ caused no detectable rise in [Ca2+]i. It is concluded that IBMX increases [Ca2+]i by opening light-sensitive channels, and does not release Ca2+ from stores within the outer segment. 4. Removal of external Na+ caused a rise in [Ca2+]i to around 2 microM and completely suppressed the light-sensitive current. 5. The Na(+)-Ca2+, K+ exchange current in aequorin-loaded rods was activated in first-order manner by internal free calcium, with a mean Michaelis constant, KCa, of 1.6 microM. 6. The KCa of the Na(+)-Ca2+, K+ exchange was increased by elevating internal [Na+]. 7. The Michaelis relation between [Ca2+]i and the activity of the Na(+)-Ca2+, K+ exchange was used to calculate the change in [Ca2+]i occurring during the response to a bright light. In aequorin-loaded rods in Ringer solution the mean change in free [Ca2+]i after a bright flash was 0.34 microM. In these rods 10% of the dark current was carried by Ca2+. 8. Most of the calcium entering the outer segment was taken up rapidly and reversibly by buffer systems. The time constant of equilibration between free and rapidly bound Ca2+ was less than 20 ms. No slow component of calcium uptake was detected. 9. Two components of calcium buffering could be distinguished in the outer segments of aequorin-loaded rods.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:1282928
Flux pinning by precipitates in the Bi-Sr-Ca-Cu-O system
Shi, Donglu
1992-01-01
A fundamental pinning mechanism has been identified in the Bi-Sr-Ca-Cu-O system. The pinning strength has been greatly increased by the introduction of calcium- and copper-rich precipitates into the sample matrix. The calcium and copper are supersaturated in the system by complete melting, and the fine calcium and copper particles precipitated during subsequent crystallization anneal to obtain the superconducting phases. The intragrain critical current density has been increased from the order of 10.sup.5 A/cm.sup.2 to 10.sup.7 A/cm.sup.2 at 5 T.
Three types of neuronal calcium channel with different calcium agonist sensitivity.
Nowycky, M C; Fox, A P; Tsien, R W
How many types of calcium channels exist in neurones? This question is fundamental to understanding how calcium entry contributes to diverse neuronal functions such as transmitter release, neurite extension, spike initiation and rhythmic firing. There is considerable evidence for the presence of more than one type of Ca conductance in neurones and other cells. However, little is known about single-channel properties of diverse neuronal Ca channels, or their responsiveness to dihydropyridines, compounds widely used as labels in Ca channel purification. Here we report evidence for the coexistence of three types of Ca channel in sensory neurones of the chick dorsal root ganglion. In addition to a large conductance channel that contributes long-lasting current at strong depolarizations (L), and a relatively tiny conductance that underlies a transient current activated at weak depolarizations (T), we find a third type of unitary activity (N) that is neither T nor L. N-type Ca channels require strongly negative potentials for complete removal of inactivation (unlike L) and strong depolarizations for activation (unlike T). The dihydropyridine Ca agonist Bay K 8644 strongly increases the opening probability of L-, but not T- or N-type channels.
CURRENT STATUS OF ADVACATE PROCESS FOR FLUE GAS DESULFURIZATION
The following report discusses current bench- and pilot-plant advances in preparation of ADVAnced siliCATE (ADVACATE) calcium silicate sorbentsfor flue gas desulfurization. It also discusses current bench- and pilot-plant advances in sorbent preparation. Fly ash was ground in a l...
Calcium-based biomaterials for diagnosis, treatment, and theranostics.
Qi, Chao; Lin, Jing; Fu, Lian-Hua; Huang, Peng
2018-01-22
Calcium-based (CaXs) biomaterials including calcium phosphates, calcium carbonates, calcium silicate and calcium fluoride have been widely utilized in the biomedical field owing to their excellent biocompatibility and biodegradability. In recent years, CaXs biomaterials have been strategically integrated with imaging contrast agents and therapeutic agents for various molecular imaging modalities including fluorescence imaging, magnetic resonance imaging, ultrasound imaging or multimodal imaging, as well as for various therapeutic approaches including chemotherapy, gene therapy, hyperthermia therapy, photodynamic therapy, radiation therapy, or combination therapy, even imaging-guided therapy. Compared with other inorganic biomaterials such as silica-, carbon-, and gold-based biomaterials, CaXs biomaterials can dissolve into nontoxic ions and participate in the normal metabolism of organisms. Thus, they offer safer clinical solutions for disease theranostics. This review focuses on the state-of-the-art progress in CaXs biomaterials, which covers from their categories, characteristics and preparation methods to their bioapplications including diagnosis, treatment, and theranostics. Moreover, the current trends and key problems as well as the future prospects and challenges of CaXs biomaterials are also discussed at the end.
Ben-Nissan, Besim; Macha, Innocent; Cazalbou, Sophie; Choi, Andy H
2016-01-01
During the last two decades although many calcium phosphate based nanomaterials have been proposed for both drug delivery, and bone regeneration, their coating applications have been somehow slow due to the problems related to their complicated synthesis methods. In order to control the efficiency of local drug delivery of a biomaterial the critical pore sizes as well as good control of the chemical composition is pertinent. A variety of calcium phosphate based nanocoated composite drug delivery systems are currently being investigated. This review aims to give an update into the advancements of calcium phosphate nanocoatings and thin film nanolaminates. In particular recent research on PLA/hydroxyapatite composite thin films and coatings into the slow drug delivery for the possible treatment of osteomyelitis is covered.
2018-01-01
BACKGROUND/OBJECTIVES Average intake of calcium among college students is below the recommended intake, and knowledge surrounding the attitudinal and behavioral factors that influence milk and dairy intake, a primary food source of calcium, is limited. The purpose of this study was to evaluate college students' attitudes and behaviors concerning milk and dairy consumption and their association with calcium intake. SUBJECTS/METHODS Participants were 1,730 undergraduate students who completed an online survey (SurveyMonkey) as part of baseline data collection for a social marketing dairy campaign. The online survey assessed attitudes and behaviors concerning milk and dairy intake, and calcium intake. Questions about milk- and dairy-related attitudes and behaviors were grouped into 14 factors using factor analysis. Predictors of calcium intake were then evaluated. RESULTS Median calcium intake across all participants was 928.6 mg/day, with males consuming higher calcium intakes than females (P < 0.001). Adjusted for gender, calcium intakes were most strongly (and positively) correlated with associating milk with specific eating occasions and availability (i.e., storing calcium-rich foods in one's dorm or apartment) (both P < 0.001). Other correlates of calcium intake included: positive-viewing milk as healthy (P = 0.039), having family members who drink milk) (P = 0.039), and taking calcium supplements (P = 0.056); and negative-parent rules concerning milk (P = 0.031) and viewing milk in dining halls negatively (P = 0.05). CONCLUSIONS Calcium intakes among college students enrolled in the current study was below the recommended dietary allowance of 1,000 mg/day, reinforcing the need for dietary interventions in this target population, especially females. Practitioners and researchers should consider the factors found here to impact calcium intake, particularly associating milk with specific eating occasions (e.g., milk with breakfast) and having calcium-rich foods available in the dorm room or apartment, as intervention strategies in future efforts aimed at promoting milk and dairy foods and beverages for improved calcium intake in college students. PMID:29629031
Han, Changho; Chatterjee, Arindam; Noetzel, Meredith J; Panarese, Joseph D; Smith, Emery; Chase, Peter; Hodder, Peter; Niswender, Colleen; Conn, P Jeffrey; Lindsley, Craig W; Stauffer, Shaun R
2015-01-15
Results from a 2012 high-throughput screen of the NIH Molecular Libraries Small Molecule Repository (MLSMR) against the human muscarinic receptor subtype 1 (M1) for positive allosteric modulators is reported. A content-rich screen utilizing an intracellular calcium mobilization triple-addition protocol allowed for assessment of all three modes of pharmacology at M1, including agonist, positive allosteric modulator, and antagonist activities in a single screening platform. We disclose a dibenzyl-2H-pyrazolo[4,3-c]quinolin-3(5H)-one hit (DBPQ, CID 915409) and examine N-benzyl pharmacophore/SAR relationships versus previously reported quinolin-3(5H)-ones and isatins, including ML137. SAR and consideration of recently reported crystal structures, homology modeling, and structure-function relationships using point mutations suggests a shared binding mode orientation at the putative common allosteric binding site directed by the pendant N-benzyl substructure. Copyright © 2014 Elsevier Ltd. All rights reserved.
Gaines, Jean M; Narrett, Matthew; Parrish, John M
2010-01-01
Osteoporosis affects approximately 26% of women and 4% of men after the age of 65 years. However, the diffusion of knowledge about osteoporosis risk factors, prevention and treatment remains low. The purpose of this longitudinal study was to investigate the value of adding initial and refresher osteoporosis education classes to a bone health screening program. A convenience sample of 376 men (n = 62) and women (n = 314) over the age of 62 years was assigned randomly to the Screening plus Education (n =193) or Screening only (n = 183) groups. Participants in both study groups demonstrated an increase in knowledge about osteoporosis, regardless of group assignment and other factors, over the two years of the study. Self-reported calcium use increased for all women and for men in the education group from baseline to year one, with a decline thereafter. There was no effect on exercise behaviors. This study points out the critical need for a more comprehensive and personalized bone health program that includes more than classroom-based education. Copyright © 2010 Mosby, Inc. All rights reserved.
Bushart, Thomas J; Cannon, Ashley E; Ul Haque, Aeraj; San Miguel, Phillip; Mostajeran, Kathy; Clark, Gregory B; Porterfield, D Marshall; Roux, Stanley J
2013-01-01
Gravity regulates the magnitude and direction of a trans-cell calcium current in germinating spores of Ceratopteris richardii. Blocking this current with nifedipine blocks the spore's downward polarity alignment, a polarization that is fixed by gravity ∼10 h after light induces the spores to germinate. RNA-seq analysis at 10 h was used to identify genes potentially important for the gravity response. The data set will be valuable for other developmental and phylogenetic studies. De novo Newbler assembly of 958 527 reads from Roche 454 sequencing was executed. The sequences were identified and analyzed using in silico methods. The roles of endomembrane Ca(2+)-ATPase pumps and apyrases in the gravity response were further tested using pharmacological agents. Transcripts related to calcium signaling and ethylene biosynthesis were identified as notable constituents of the transcriptome. Inhibiting the activity of endomembrane Ca(2+)-ATPase pumps with 2,5-di-(t-butyl)-1,4-hydroquinone diminished the trans-cell current, but increased the orientation of the polar axis to gravity. The effects of applied nucleotides and purinoceptor antagonists gave novel evidence implicating extracellular nucleotides as regulators of the gravity response in these fern spores. In addition to revealing general features of the transcriptome of germinating spores, the results highlight a number of calcium-responsive and light-receptive transcripts. Pharmacologic assays indicate endomembrane Ca(2+)-ATPases and extracellular nucleotides may play regulatory roles in the gravity response of Ceratopteris spores.
Aktuğ, Salim Levent; Durdu, Salih; Yalçın, Emine; Çavuşoğlu, Kültigin; Usta, Metin
2017-02-01
In the present work, hydroxyapatite (HAP)-based plasma electrolytic oxide (PEO) coatings were produced on zirconium at different current densities in a solution containing calcium acetate and β-calcium glycerophosphate by a single step. The phase structure, surface morphology, functional groups, thickness and roughness of the coatings were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), eddy current method and surface profilometer, respectively. The phases of cubic-zirconia, calcium zirconate and HAP were detected by XRD. The amount of HAP and calcium zirconate increased with increasing current density. The surface of the coatings was very porous and rough. Moreover, bioactivity and biocompatibility of the coatings were analyzed in vitro immersion simulated body fluid (SBF) and MTT (3-(4,5-dimethyl thiazol-2yl)-2,5-diphenyl tetrazolium bromide) assay, hemolysis assay and bacterial formation. The apatite-forming ability of the coatings was evaluated after immersion in SBF up to 28days. After immersion, the bioactivity of HAP-based coatings on zirconium was greater than the ones of uncoated zirconium and zirconium oxide-based surface. The bioactivity of PEO surface on zirconium was significantly improved under SBF conditions. The bacterial adhesion of the coatings decreased with increasing current density. The bacterial adhesion of the coating produced at 0.370A/cm 2 was minimum compared to uncoated zirconium coated at 0.260 and 0.292A/cm 2 . The hemocompatibility of HAP-based surfaces was improved by PEO. The cell attachment and proliferation of the PEO coatings were better than the one of uncoated zirconium according to MTT assay results. Copyright © 2016 Elsevier B.V. All rights reserved.
Wan, Xiaoping; Dennis, Adrienne T.; Obejero-Paz, Carlos; Overholt, Jeffrey L.; Heredia-Moya, Jorge; Kirk, Kenneth L.; Ficker, Eckhard
2011-01-01
The most common cause of cardiac side effects of pharmaco-therapy is acquired long QT syndrome, which is characterized by abnormal cardiac repolarization and most often caused by direct blockade of the cardiac potassium channel human ether a-go-go-related gene (hERG). However, little is known about therapeutic compounds that target ion channels other than hERG. We have discovered that arsenic trioxide (As2O3), a very potent antineoplastic compound for the treatment of acute promyelocytic leukemia, is proarrhythmic via two separate mechanisms: a well characterized inhibition of hERG/IKr trafficking and a poorly understood increase of cardiac calcium currents. We have analyzed the latter mechanism in the present study using biochemical and electrophysiological methods. We find that oxidative inactivation of the lipid phosphatase PTEN by As2O3 enhances cardiac calcium currents in the therapeutic concentration range via a PI3Kα-dependent increase in phosphatidylinositol 3,4,5-triphosphate (PIP3) production. In guinea pig ventricular myocytes, even a modest reduction in PTEN activity is sufficient to increase cellular PIP3 levels. Under control conditions, PIP3 levels are kept low by PTEN and do not affect calcium current amplitudes. Based on pharmacological experiments and intracellular infusion of PIP3, we propose that in guinea pig ventricular myocytes, PIP3 regulates calcium currents independently of the protein kinase Akt along a pathway that includes a secondary oxidation-sensitive target. Overall, our report describes a novel form of acquired long QT syndrome where the target modified by As2O3 is an intracellular signaling cascade. PMID:21097842
Attenuated response of L-type calcium current to nitric oxide in atrial fibrillation.
Rozmaritsa, Nadiia; Christ, Torsten; Van Wagoner, David R; Haase, Hannelore; Stasch, Johannes-Peter; Matschke, Klaus; Ravens, Ursula
2014-03-01
Nitric oxide (NO) synthesized by cardiomyocytes plays an important role in the regulation of cardiac function. Here, we studied the impact of NO signalling on calcium influx in human right atrial myocytes and its relation to atrial fibrillation (AF). Right atrial appendages (RAAs) were obtained from patients in sinus rhythm (SR) and AF. The biotin-switch technique was used to evaluate endogenous S-nitrosylation of the α1C subunit of L-type calcium channels. Comparing SR to AF, S-nitrosylation of Ca(2+) channels was similar. Direct effects of the NO donor S-nitroso-N-acetyl-penicillamine (SNAP) on L-type calcium current (ICa,L) were studied in cardiomyocytes with standard voltage-clamp techniques. In SR, ICa,L increased with SNAP (100 µM) by 48%, n/N = 117/56, P < 0.001. The SNAP effect on ICa,L involved activation of soluble guanylate cyclase and protein kinase A. Specific inhibition of phosphodiesterase (PDE)3 with cilostamide (1 µM) enhanced ICa,L to a similar extent as SNAP. However, when cAMP was elevated by PDE3 inhibition or β-adrenoceptor stimulation, SNAP reduced ICa,L, pointing to cGMP-cAMP cross-regulation. In AF, the stimulatory effect of SNAP on ICa,L was attenuated, while its inhibitory effect on isoprenaline- or cilostamide-stimulated current was preserved. cGMP elevation with SNAP was comparable between the SR and AF group. Moreover, the expression of PDE3 and soluble guanylate cyclase was not reduced in AF. NO exerts dual effects on ICa,L in SR with an increase of basal and inhibition of cAMP-stimulated current, and in AF NO inhibits only stimulated ICa,L. We conclude that in AF, cGMP regulation of PDE2 is preserved, but regulation of PDE3 is lost.
Nutritional Biochemistry of Space Flight
NASA Technical Reports Server (NTRS)
Smith, Scott M.
2000-01-01
Adequate nutrition is critical for maintenance of crew health during and after extended-duration space flight. The impact of weightlessness on human physiology is profound, with effects on many systems related to nutrition, including bone, muscle, hematology, fluid and electrolyte regulation. Additionally, we have much to learn regarding the impact of weightlessness on absorption, mtabolism , and excretion of nutrients, and this will ultimately determine the nutrient requirements for extended-duration space flight. Existing nutritional requirements for extended-duration space flight have been formulated based on limited flight research, and extrapolation from ground-based research. NASA's Nutritional Biochemistry Laboratory is charged with defining the nutritional requirements for space flight. This is accomplished through both operational and research projects. A nutritional status assessment program is included operationally for all International Space Station astronauts. This medical requirement includes biochemical and dietary assessments, and is completed before, during, and after the missions. This program will provide information about crew health and nutritional status, and will also provide assessments of countermeasure efficacy. Ongoing research projects include studies of calcium and bone metabolism, and iron absorption and metabolism. The calcium studies include measurements of endocrine regulation of calcium homeostasis, biochemical marker of bone metabolism, and tracer kinetic studies of calcium movement in the body. These calcium kinetic studies allow for estimation of intestinal absorption, urinary excretion, and perhaps most importantly - deposition and resorption of calcium from bone. The Calcium Kinetics experiment is currently being prepared for flight on the Space Shuttle in 2001, and potentially for subsequent Shuttle and International Space Station missions. The iron study is intended to assess whether iron absorption is down-regulated dUl1ng space flight. This is critical due to the red blood cell changes which occur, and the increase in iron storage that has been observed after space flight. The Iron Absorption and Metabolism experiment is currently planned for long-term flights on the International Space Station.
Bartoletti, Theodore M.; Huang, Wei; Akopian, Abram; Thoreson, Wallace B.; Krizaj, David
2009-01-01
Calcium is a messenger ion that controls all aspects of cone photoreceptor function, including synaptic release. The dynamic range of the cone output extends beyond the activation threshold for voltage-operated calcium entry, suggesting another calcium influx mechanism operates in cones hyperpolarized by light. We have used optical imaging and whole-cell voltage clamp to measure the contribution of store-operated Ca2+ entry (SOCE) to Ca2+ homeostasis and its role in regulation of neurotransmission at cone synapses. Mn2+ quenching of Fura-2 revealed sustained divalent cation entry in hyperpolarized cones. Ca2+ influx into cone inner segments was potentiated by hyperpolarization, facilitated by depletion of intracellular Ca2+ stores, unaffected by pharmacological manipulation of voltage-operated or cyclic nucleotide-gated Ca2+ channels and suppressed by lanthanides, 2-APB, MRS 1845 and SKF 96365. However, cation influx through store-operated channels crossed the threshold for activation of voltage-operated Ca2+ entry in a subset of cones, indicating that the operating range of inner segment signals is set by interactions between store- and voltage-operated Ca2+ channels. Exposure to MRS 1845 resulted in ∼40% reduction of light-evoked postsynaptic currents in photopic horizontal cells without affecting the light responses or voltage-operated Ca2+ currents in simultaneously recorded cones. The spatial pattern of store-operated calcium entry in cones matched immunolocalization of the store-operated sensor STIM1. These findings show that store-operated channels regulate spatial and temporal properties of Ca2+ homeostasis in vertebrate cones and demonstrate their role in generation of sustained excitatory signals across the first retinal synapse. PMID:19696927
Purinergic signalling in the enteric nervous system (An overview of current perspectives).
King, Brian F
2015-09-01
Purinergic Signalling in the Enteric Nervous System involves the regulated release of ATP (or a structurally-related nucleotide) which activates an extensive suite of membrane-inserted receptors (P2X and P2Y subtypes) on a variety of cell types in the gastrointestinal tract. P2X receptors are gated ion-channels permeable to sodium, potassium and calcium. They depolarise cells, act as a pathway for calcium influx to activate calcium-dependent processes and initiate gene transcription, interact at a molecular level as a form of self-regulation with lipids within the cell wall (e.g. PIP2) and cross-react with other membrane-inserted receptors to regulate their activity (e.g. nAChRs). P2Y receptors are metabotropic receptors that couple to G-proteins. They may release calcium ions from intracellular stores to activate calcium-dependent processes, but also may activate calcium-independent signalling pathways and influence gene transcription. Originally ATP was a candidate only for NANC neurotransmission, for inhibitory motoneurons supplying the muscularis externa of the gastrointestinal tract and bringing about the fast IJP. Purinergic signalling later included neuron-neuron signalling in the ENS, via the production of either fast or slow EPSPs. Later still, purinergic signalling included the neuro-epithelial synapse-for efferent signalling to epithelia cells participating in secretion and absorption, and afferent signalling for chemoreception and mechanoreception at the surface of the mucosa. Many aspects of purinergic signalling have since been addressed in a series of highly-focussed and authoritative reviews. In this overview however, the current focus is on key aspects of purinergic signalling where there remains uncertainty and ambiguity, with the view to stimulating further research in these areas. Copyright © 2015 Elsevier B.V. All rights reserved.
Intact calcium signaling in adrenergic-deficient embryonic mouse hearts.
Peoples, Jessica N; Taylor, David G; Katchman, Alexander N; Ebert, Steven N
2018-01-22
Mouse embryos that lack the ability to produce the adrenergic hormones, norepinephrine (NE) and epinephrine (EPI), due to disruption of the dopamine beta-hydroxylase (Dbh -/- ) gene inevitably perish from heart failure during mid-gestation. Since adrenergic stimulation is well-known to enhance calcium signaling in developing as well as adult myocardium, and impairments in calcium signaling are typically associated with heart failure, we hypothesized that adrenergic-deficient embryonic hearts would display deficiencies in cardiac calcium signaling relative to adrenergic-competent controls at a developmental stage immediately preceding the onset of heart failure, which first appears beginning or shortly after mouse embryonic day 10.5 (E10.5). To test this hypothesis, we used ratiometric fluorescent calcium imaging techniques to measure cytosolic calcium transients, [Ca 2+ ] i in isolated E10.5 mouse hearts. Our results show that spontaneous [Ca 2+ ] i oscillations were intact and robustly responded to a variety of stimuli including extracellular calcium (5 mM), caffeine (5 mM), and NE (100 nM) in a manner that was indistinguishable from controls. Further, we show similar patterns of distribution (via immunofluorescent histochemical staining) and activity (via patch-clamp recording techniques) for the major voltage-gated plasma membrane calcium channel responsible for the L-type calcium current, I Ca,L , in adrenergic-deficient and control embryonic cardiac cells. These results demonstrate that despite the absence of vital adrenergic hormones that consistently leads to embryonic lethality in vivo, intracellular and extracellular calcium signaling remain essentially intact and functional in embryonic mouse hearts through E10.5. These findings suggest that adrenergic stimulation is not required for the development of intracellular calcium oscillations or extracellular calcium signaling through I Ca,L and that aberrant calcium signaling does not likely contribute to the onset of heart failure in this model. Copyright © 2017. Published by Elsevier Inc.
Nakamura, Kazutoshi; Saito, Toshiko; Kobayashi, Ryosaku; Oshiki, Rieko; Kitamura, Kaori; Oyama, Mari; Narisawa, Sachiko; Nashimoto, Mitsue; Takahashi, Shunsuke; Takachi, Ribeka
2012-11-01
Current standard-dose calcium supplements (eg, 1000 mg/d) may increase the risk for cardiovascular events. Effectiveness of lower-dose supplements in preventing bone loss should thus be considered. This study aimed to assess whether calcium supplements of 500 or 250 mg/d effectively prevent bone loss in perimenopausal and postmenopausal Japanese women. We recruited 450 Japanese women between 50 and 75 years of age. They were randomly assigned to receive 500 mg of calcium (as calcium carbonate), 250 mg of calcium, or placebo daily. Medical examinations conducted three times over a 2-year follow-up period assessed bone mineral density (BMD) of the lumbar spine and femoral neck. One-factor repeated measures ANOVA was used for statistical tests. Subgroup analyses were also conducted. Average total daily calcium intake at baseline for the 418 subjects who underwent follow-up examinations was 493 mg/d. Intention-to-treat analysis showed less dramatic decreases in spinal BMD for the 500-mg/d calcium supplement group compared to the placebo group (1.2% difference over 2 years, p = 0.027). Per-protocol analysis (≥80% compliance) revealed that spinal BMD for the 500-mg/d and 250-mg/d calcium supplement groups decreased less than the placebo group (1.6%, p = 0.010 and 1.0%, p = 0.078, respectively), and that femoral neck BMD for the 500-mg/d calcium supplement group decreased less relative to the placebo group (1.0%, p = 0.077). A low-dose calcium supplement of 500 mg/d can effectively slow lumbar spine bone loss in perimenopausal and postmenopausal women with habitually low calcium intake, but its effect on the femoral neck is less certain. Calcium supplementation dosage should thus be reassessed. (Clinical Trials Registry number: UMIN000001176). Copyright © 2012 American Society for Bone and Mineral Research.
Pratt, Stephen J.P.; Hernández-Ochoa, Erick O.; Lee, Rachel M.; Ory, Eleanor C.; Lyons, James S.; Joca, Humberto C.; Johnson, Ashley; Thompson, Keyata; Bailey, Patrick; Lee, Cornell J.; Mathias, Trevor; Vitolo, Michele I.; Trudeau, Matt; Stains, Joseph P.; Ward, Christopher W.; Schneider, Martin F.; Martin, Stuart S.
2018-01-01
Aggressive cellular phenotypes such as uncontrolled proliferation and increased migration capacity engender cellular transformation, malignancy and metastasis. While genetic mutations are undisputed drivers of cancer initiation and progression, it is increasingly accepted that external factors are also playing a major role. Two recently studied modulators of breast cancer are changes in the cellular mechanical microenvironment and alterations in calcium homeostasis. While many studies investigate these factors separately in breast cancer cells, very few do so in combination. This current work sets a foundation to explore mechano-calcium relationships driving malignant progression in breast cancer. Utilizing real-time imaging of an in vitro scratch assay, we were able to resolve mechanically-sensitive calcium signaling in human breast cancer cells. We observed rapid initiation of intracellular calcium elevations within seconds in cells at the immediate wound edge, followed by a time-dependent increase in calcium in cells at distances up to 500μm from the scratch wound. Calcium signaling to neighboring cells away from the wound edge returned to baseline within seconds. Calcium elevations at the wound edge however, persisted for up to 50 minutes. Rigorous quantification showed that extracellular calcium was necessary for persistent calcium elevation at the wound edge, but intercellular signal propagation was dependent on internal calcium stores. In addition, intercellular signaling required extracellular ATP and activation of P2Y2 receptors. Through comparison of scratch-induced signaling from multiple cell lines, we report drastic reductions in response from aggressively tumorigenic and metastatic cells. The real-time scratch assay established here provides quantitative data on the molecular mechanisms that support rapid scratch-induced calcium signaling in breast cancer cells. These mechanisms now provide a clear framework for investigating which short-term calcium signals promote long-term changes in cancer cell biology. PMID:29861849
Lee, Geun-Shik; Byun, Hyuk-Soo; Kim, Man-Hee; Lee, Bo-Mi; Ko, Sang-Hwan; Jung, Eui-Man; Gwak, Ki-Seob; Choi, In-Gyu; Kang, Ha-Young; Jo, Hyun-Jin; Lee, Hak-Ju; Jeung, Eui-Bae
2008-11-01
The sap of Acer mono has been called 'bone-benefit-water' in Korea because of its mineral and sugar content. In particular, the calcium concentration of the sap of A. mono is 37.5 times higher than commercial spring water. In the current study, we examined whether A. mono sap could improve or prevent osteoporosis-like symptoms in a mouse model. Male mice (3 weeks old) were fed a low-calcium diet supplemented with 25, 50 or 100 % A. mono sap, commercial spring water or a high calcium-containing solution as a beverage for 7 weeks. There were no differences in weekly weight gain and food intake among all the groups. Mice that were given a low-calcium diet supplemented with commercial spring water developed osteoporosis-like symptoms. To assess the effect of sap on osteoporosis-like symptoms, we examined serum calcium concentration, and femur density and length, and carried out a histological examination. Serum calcium levels were significantly lower in mice that received a low-calcium diet supplemented with commercial spring water (the negative control group), and in the 25 % sap group compared to mice fed a normal diet, but were normal in the 50 and 100 % sap and high-calcium solution groups. Femur density and length were significantly reduced in the negative control and 25 % sap groups. These results indicate that a 50 % sap solution can mitigate osteoporosis-like symptoms induced by a low-calcium diet. We also examined the regulation of expression of calcium-processing genes in the duodenum and kidney. Duodenal TRPV6 and renal calbindin-D9k were up-regulated dose-dependently by sap, and the levels of these factors were higher than those attained in the spring water-treated control. The results demonstrate that the sap of A. mono ameliorates the low bone density induced by a low-calcium diet, most likely by increasing calcium ion absorption.
Voltage-gated currents in identified rat olfactory receptor neurons.
Trombley, P Q; Westbrook, G L
1991-02-01
Whole-cell recording techniques were used to characterize voltage-gated membrane currents in neonatal rat olfactory receptor neurons (ORNs) in cell culture. Mature ORNs were identified in culture by their characteristic bipolar morphology, by retrograde labeling techniques, and by olfactory marker protein (OMP) immunoreactivity. ORNs did not have spontaneous activity, but fired action potentials to depolarizing current pulses. Action potentials were blocked by tetrodotoxin (TTX), which contrasts with the TTX-resistant action potentials in salamander olfactory receptor cells (e.g., Firestein and Werblin, 1987). Prolonged, suprathreshold current pulses evoked only a single action potential; however, repetitive firing up to 35 Hz could be elicited by a series of brief depolarizing pulses. Under voltage clamp, the TTX-sensitive sodium current had activation and inactivation properties similar to other excitable cells. In TTX and 20 mM barium, sustained inward current were evoked by voltage steps positive to -30 mV. This current was blocked by Cd (100 microM) and by nifedipine (IC50 = 368 nM) consistent with L-type calcium channels in other neurons. No T-type calcium current was observed. Voltage steps positive to -20 mV also evoked an outward current that did not inactivate during 100-msec depolarizations. Tail current analysis of this current was consistent with a selective potassium conductance. The outward current was blocked by external tetraethylammonium but was unaffected by Cd or 4-aminopyridine (4-AP) or by removal of external calcium. A transient outward current was not observed. The 3 voltage-dependent conductances in cultured rat ORNs appear to be sufficient for 2 essential functions: action potential generation and transmitter release. As a single odorant-activated channel can trigger an action potential (e.g., Lynch and Barry, 1989), the repetitive firing seen with brief depolarizing pulses suggests that ORNs do not integrate sensory input, but rather act as high-fidelity relays such that each opening of an odorant-activated channel reaches the olfactory bulb glomeruli as an action potential.
Studies on magnetic properties of chemically synthesized crystalline calcium ferrite nanoparticles
NASA Astrophysics Data System (ADS)
Debnath, A.; Bera, A.; Chattopadhyay, K. K.; Saha, B.
2016-05-01
Spinel-type ferrites have taken a very important role for modern electronic industry. Most of these ferrites exhibit low-loss dielectric properties, high resistivity, low eddy current and also high temperature ferromagnetism. Calcium ferrite is one such important metal oxide which is environmentally safe, chemically stable, low cost and greatly abundant. This outstanding material of calcium ferrite is synthesized by a simple chemical precipitation method using NaOH as the precipitating agent. Ferric chloride anhydrous (FeCl3) and Calcium chloride dihydrate (CaCl2.2H2O) were used as iron and calcium sources respectively. The samples were heated at 200°C for 8h to obtain homogeneous powder of Calcium ferrite. The powders were characterized by using X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), Transmission electrical microscopy (TEM), and Fourier transform infrared spectroscopic (FTIR) measurements. The polycrystalline nature of the sample was confirmed by X-ray diffraction study. The magnetic properties of the sample were investigated by vibrating sample magnetometer (VSM) measurements. Magnetization curve of the prepared sample depicts that as synthesized calcium ferrite nanoparticles have saturation magnetic moment of 1.74 emu/g and the coercivity of 35.08 Oe with superparamagnetic behavior. The synthesized calcium ferrite nanoparticles with such magnetic properties will be a candidate material for different applications in electronics and exploring its functionality in the field of recently developing semiconductor device physics and spintronics.
Redox regulation of neuronal voltage-gated calcium channels.
Todorovic, Slobodan M; Jevtovic-Todorovic, Vesna
2014-08-20
Voltage-gated calcium channels are ubiquitously expressed in neurons and are key regulators of cellular excitability and synaptic transmitter release. There is accumulating evidence that multiple subtypes of voltage-gated calcium channels may be regulated by oxidation and reduction. However, the redox mechanisms involved in the regulation of channel function are not well understood. Several studies have established that both T-type and high-voltage-activated subtypes of voltage-gated calcium channel can be redox-regulated. This article reviews different mechanisms that can be involved in redox regulation of calcium channel function and their implication in neuronal function, particularly in pain pathways and thalamic oscillation. A current critical issue in the field is to decipher precise mechanisms of calcium channel modulation via redox reactions. In this review we discuss covalent post-translational modification via oxidation of cysteine molecules and chelation of trace metals, and reactions involving nitric oxide-related molecules and free radicals. Improved understanding of the roles of redox-based reactions in regulation of voltage-gated calcium channels may lead to improved understanding of novel redox mechanisms in physiological and pathological processes. Identification of redox mechanisms and sites on voltage-gated calcium channel may allow development of novel and specific ion channel therapies for unmet medical needs. Thus, it may be possible to regulate the redox state of these channels in treatment of pathological process such as epilepsy and neuropathic pain.
He, Fengping; Xu, Xin; Yuan, Shuguo; Tan, Liangqiu; Gao, Lingjun; Ma, Shaochun; Zhang, Shebin; Ma, Zhanzhong; Jiang, Wei; Liu, Fenglian; Chen, Baofeng; Zhang, Beibei; Pang, Jungang; Huang, Xiuyan; Weng, Jiaqiang
2016-01-01
Atrial fibrillation (AF) is the most common sustained arrhythmia causing high morbidity and mortality. While changing of the cellular calcium homeostasis plays a critical role in AF, the L-type calcium channel α1c protein has suggested as an important regulator of reentrant spiral dynamics and is a major component of AF-related electrical remodeling. Our computational modeling predicted that miRNA-223 may regulate the CACNA1C gene which encodes the cardiac L-type calcium channel α1c subunit. We found that oxidized low-density lipoprotein (ox-LDL) cholesterol significantly up-regulates both the expression of miRNA-223 and L-type calcium channel protein. In contrast, knockdown of miRNA-223 reduced L-type calcium channel protein expression, while genetic knockdown of endogenous miRNA-223 dampened AF vulnerability. Transfection of miRNA-223 by adenovirus-mediated expression enhanced L-type calcium currents and promoted AF in mice while co-injection of a CACNA1C-specific miR-mimic counteracted the effect. Taken together, ox-LDL, as a known factor in AF-associated remodeling, positively regulates miRNA-223 transcription and L-type calcium channel protein expression. Our results implicate a new molecular mechanism for AF in which miRNA-223 can be used as an biomarker of AF rheumatic heart disease. PMID:27488468
NASA Astrophysics Data System (ADS)
He, Fengping; Xu, Xin; Yuan, Shuguo; Tan, Liangqiu; Gao, Lingjun; Ma, Shaochun; Zhang, Shebin; Ma, Zhanzhong; Jiang, Wei; Liu, Fenglian; Chen, Baofeng; Zhang, Beibei; Pang, Jungang; Huang, Xiuyan; Weng, Jiaqiang
2016-08-01
Atrial fibrillation (AF) is the most common sustained arrhythmia causing high morbidity and mortality. While changing of the cellular calcium homeostasis plays a critical role in AF, the L-type calcium channel α1c protein has suggested as an important regulator of reentrant spiral dynamics and is a major component of AF-related electrical remodeling. Our computational modeling predicted that miRNA-223 may regulate the CACNA1C gene which encodes the cardiac L-type calcium channel α1c subunit. We found that oxidized low-density lipoprotein (ox-LDL) cholesterol significantly up-regulates both the expression of miRNA-223 and L-type calcium channel protein. In contrast, knockdown of miRNA-223 reduced L-type calcium channel protein expression, while genetic knockdown of endogenous miRNA-223 dampened AF vulnerability. Transfection of miRNA-223 by adenovirus-mediated expression enhanced L-type calcium currents and promoted AF in mice while co-injection of a CACNA1C-specific miR-mimic counteracted the effect. Taken together, ox-LDL, as a known factor in AF-associated remodeling, positively regulates miRNA-223 transcription and L-type calcium channel protein expression. Our results implicate a new molecular mechanism for AF in which miRNA-223 can be used as an biomarker of AF rheumatic heart disease.
Sharma, Arun; Marceau, Caleb; Hamaguchi, Ryoko; Burridge, Paul W; Rajarajan, Kuppusamy; Churko, Jared M; Wu, Haodi; Sallam, Karim I; Matsa, Elena; Sturzu, Anthony C; Che, Yonglu; Ebert, Antje; Diecke, Sebastian; Liang, Ping; Red-Horse, Kristy; Carette, Jan E; Wu, Sean M; Wu, Joseph C
2014-08-29
Viral myocarditis is a life-threatening illness that may lead to heart failure or cardiac arrhythmias. A major causative agent for viral myocarditis is the B3 strain of coxsackievirus, a positive-sense RNA enterovirus. However, human cardiac tissues are difficult to procure in sufficient enough quantities for studying the mechanisms of cardiac-specific viral infection. This study examined whether human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) could be used to model the pathogenic processes of coxsackievirus-induced viral myocarditis and to screen antiviral therapeutics for efficacy. hiPSC-CMs were infected with a luciferase-expressing coxsackievirus B3 strain (CVB3-Luc). Brightfield microscopy, immunofluorescence, and calcium imaging were used to characterize virally infected hiPSC-CMs for alterations in cellular morphology and calcium handling. Viral proliferation in hiPSC-CMs was quantified using bioluminescence imaging. Antiviral compounds including interferonβ1, ribavirin, pyrrolidine dithiocarbamate, and fluoxetine were tested for their capacity to abrogate CVB3-Luc proliferation in hiPSC-CMs in vitro. The ability of these compounds to reduce CVB3-Luc proliferation in hiPSC-CMs was consistent with reported drug effects in previous studies. Mechanistic analyses via gene expression profiling of hiPSC-CMs infected with CVB3-Luc revealed an activation of viral RNA and protein clearance pathways after interferonβ1 treatment. This study demonstrates that hiPSC-CMs express the coxsackievirus and adenovirus receptor, are susceptible to coxsackievirus infection, and can be used to predict antiviral drug efficacy. Our results suggest that the hiPSC-CM/CVB3-Luc assay is a sensitive platform that can screen novel antiviral therapeutics for their effectiveness in a high-throughput fashion. © 2014 American Heart Association, Inc.
D.H. DeHayes; P.G. Schaberg; G.J. Hawley; C.H. Borer; J.R. Cumming; J.R. Strimbeck
1997-01-01
We examined the pattern of seasonal variation in total foliar calcium (Ca) pools and plasma membrane-associated Ca (mCa) in mesophyll cells of current-year and 1-year-old needles of red spruce (Picea rubens Sarg.) and the relationship between mCa and total foliar Ca on an individual plant and seasonal basis. Foliar samples were collected from...
Gary J. Hawley; Paul G. Schaberg; Christopher Eagar; Catherine H. Borer
2006-01-01
Laboratory experiments have verified that acid-deposition-induced calcium (Ca) leaching reduces the foliar cold tolerance of red spruce (Picea rubens Sarg.) current-year foliage, increasing the risk of winter injury and crown deterioration. However, to date no studies have shown that ambient losses in soil Ca have resulted in increased winter injury...
2018-01-01
The current interest of the scientific community for research in the field of calcium sensing in general and on the calcium-sensing Receptor (CaR) in particular is demonstrated by the still increasing number of papers published on this topic. The extracellular calcium-sensing receptor is the best-known G-protein-coupled receptor (GPCR) able to sense external Ca2+ changes. Widely recognized as a fundamental player in systemic Ca2+ homeostasis, the CaR is ubiquitously expressed in the human body where it activates multiple signalling pathways. In this review, old and new notions regarding the mechanisms by which extracellular Ca2+ microdomains are created and the tools available to measure them are analyzed. After a survey of the main signalling pathways triggered by the CaR, a special attention is reserved for the emerging concepts regarding CaR function in the heart, CaR trafficking and pharmacology. Finally, an overview on other Ca2+ sensors is provided. PMID:29584660
Trumbo, Paula R; Ellwood, Kathleen C
2007-02-01
The labeling of health claims that meet the significant scientific agreement (SSA) standard (authorized health claims) and qualified health claims on conventional foods and dietary supplements requires premarket approval by the US Food and Drug Administration (FDA). FDA conducts an evidence-based review to determine whether there is sufficient evidence to support an authorized or qualified health claim. An evidence-based review was conducted on the human intervention and observational studies evaluating the role of supplemental calcium in reducing the risk of hypertension, pregnancy-induced hypertension, and preeclampsia. This review provides FDA's evaluation of the current scientific evidence on the role of supplemental calcium in reducing the risk of these three end points. Based on this evidence-based review, the agency concluded that the relationship between calcium and risk of hypertension is inconsistent and inconclusive, and the relationship between calcium and risk of pregnancy-induced hypertension and preeclampsia is highly unlikely.
The Long and Arduous Road to CRAC
Vig, Monika; Kinet, Jean-Pierre
2007-01-01
Store-operated calcium (SOC) entry is the major route of calcium influx in non-excitable cells, especially immune cells. The best characterized store operated current, ICRAC, is carried by calcium release activated calcium (CRAC) channels. The existence of the phenomenon of store-operated calcium influx was proposed almost two decades ago. However, in spite of rigorous research by many laboratories, the identity of the key molecules participating in the process has remained a mystery. In all these years, multiple different approaches have been adopted by countless researchers to identify the molecular players in this fundamental process. Along the way many crucial discoveries have been made, some of which have been summarized here. The last couple of years have seen significant breakthroughs in the field–identification of STIM1 as the store Ca2+ sensor and CRACM1 (Orai1) as the pore forming subunit of the CRAC channel. The field is now actively engaged in deciphering the gating mechanism of CRAC channels. We summarize here the latest progress in this direction. PMID:17517435
Rodríguez Guilbe, María M.; Alfaro Malavé, Elisa C.; Akerboom, Jasper; Marvin, Jonathan S.; Looger, Loren L.; Schreiter, Eric R.
2008-01-01
Fluorescent proteins and their engineered variants have played an important role in the study of biology. The genetically encoded calcium-indicator protein GCaMP2 comprises a circularly permuted fluorescent protein coupled to the calcium-binding protein calmodulin and a calmodulin target peptide, M13, derived from the intracellular calmodulin target myosin light-chain kinase and has been used to image calcium transients in vivo. To aid rational efforts to engineer improved variants of GCaMP2, this protein was crystallized in the calcium-saturated form. X-ray diffraction data were collected to 2.0 Å resolution. The crystals belong to space group C2, with unit-cell parameters a = 126.1, b = 47.1, c = 68.8 Å, β = 100.5° and one GCaMP2 molecule in the asymmetric unit. The structure was phased by molecular replacement and refinement is currently under way. PMID:18607093
The Effect of Substrate Stiffness on Cardiomyocyte Action Potentials.
Boothe, Sean D; Myers, Jackson D; Pok, Seokwon; Sun, Junping; Xi, Yutao; Nieto, Raymond M; Cheng, Jie; Jacot, Jeffrey G
2016-12-01
The stiffness of myocardial tissue changes significantly at birth and during neonatal development, concurrent with significant changes in contractile and electrical maturation of cardiomyocytes. Previous studies by our group have shown that cardiomyocytes generate maximum contractile force when cultured on a substrate with a stiffness approximating native cardiac tissue. However, effects of substrate stiffness on the electrophysiology and ion currents in cardiomyocytes have not been fully characterized. In this study, neonatal rat ventricular myocytes were cultured on the surface of flat polyacrylamide hydrogels with elastic moduli ranging from 1 to 25 kPa. Using whole-cell patch clamping, action potentials and L-type calcium currents were recorded. Cardiomyocytes cultured on hydrogels with a 9 kPa elastic modulus, similar to that of native myocardium, had the longest action potential duration. Additionally, the voltage at maximum calcium flux significantly decreased in cardiomyocytes on hydrogels with an elastic modulus higher than 9 kPa, and the mean inactivation voltage decreased with increasing stiffness. Interestingly, the expression of the L-type calcium channel subunit α gene and channel localization did not change with stiffness. Substrate stiffness significantly affects action potential length and calcium flux in cultured neonatal rat cardiomyocytes in a manner that may be unrelated to calcium channel expression. These results may explain functional differences in cardiomyocytes resulting from changes in the elastic modulus of the extracellular matrix, as observed during embryonic development, in ischemic regions of the heart after myocardial infarction, and during dilated cardiomyopathy.
Deposition of phosphate coatings on titanium within scaffold structure.
Trybuś, Bartłomiej; Zieliński, Andrzej; Beutner, Rene; Seramak, Tomasz; Scharnweber, Dieter
2017-01-01
Existing knowledge about the appearance, thickness, and chemical composition of phosphate coatings on titanium inside porous structures is insufficient. Such knowledge is important for the design and fabrication of porous implants. Metallic scaffolds were fabricated by selective laser melting of 316L stainless steel powder. Phosphate coatings were deposited on Ti sensors placed either outside the scaffolds or in the holes in the scaffolds. The electrochemically-assisted cathodic deposition of phosphate coatings was performed under galvanostatic conditions in an electrolyte containing the calcium and phosphate ions. The phosphate deposits were microscopically investigated; this included the performance of mass weight measurements and chemical analyses of the content of Ca2+ and 24 PO ions after the dissolution of deposits. The thicknesses of the calcium phosphate coatings were about 140 and 200 nm for isolated titanium sensors and 170 and 300 nm for titanium sensors placed inside pores. Deposition of calcium phosphate occurred inside the pores up to 150 mm below the scaffold surface. The deposits were rich in Ca, with a Ca/P ratio ranging from 2 to 2.5. Calcium phosphate coatings can be successfully deposited on a Ti surface inside a model scaffold. An increase in cathodic current results in an increase in coating thickness. Any decrease in the cathodic current inside the porous structure is slight. The calcium phosphate inside the pores has a much higher Ca/P ratio than that of stoichiometric HAp, likely due to a gradual increase in Ca fraction with distance from the surface.
A store-operated current (SOC) mediates oxytocin autocontrol in the developing rat hypothalamus.
Tobin, Vicky; Gouty, Laurie-Anne; Moos, Françoise C; Desarménien, Michel G
2006-07-01
Oxytocin (OT) and vasopressin (VP) autocontrol their secreting neurons in the supraoptic nucleus (SON) by modulating action potential firing through activation of specific metabotropic receptors. However, the mechanisms linking receptor activation to firing remain unknown. In almost all cell types, activation of plasma membrane metabotropic receptors triggers signalling cascades that induce mobilization of calcium from intracellular stores. In turn, emptying the calcium stores may evoke calcium influx through store-operated channels (SOCs), the functions of which remain largely unknown in neurons. In this study, we show that these channels play a key role in the SON, at least in the response to OT. In isolated rat SON neurons, store depletion by thapsigargin induced an influx of calcium, demonstrating the presence of SOCs in these neurons. This calcium influx was specifically inhibited by 0.2 mM 1-(2-trifluoromethylphenyl-)imidazole (TRIM). At 2 mM, this compound affected neither the resting electrophysiological properties nor the voltage-dependant inward currents. In fresh slices, TRIM (2 mM) did not affect the resting potential of SON neurons, action potential characteristics, spontaneous action potential firing or synaptic activity; this compound thus appears to be a specific blocker of SOCs in SON neurons. TRIM (0.2 mM) specifically reduced the increase in action potential firing triggered by OT but did not affect the VP-induced response. These observations demonstrate that store operated channels exist in hypothalamic neurons and specifically mediate the response to OT in the SON.
Cain, Stuart M; Tyson, John R; Jones, Karen L; Snutch, Terrance P
2015-06-01
Burst-firing in distinct subsets of thalamic relay (TR) neurons is thought to be a key requirement for the propagation of absence seizures. However, in the well-regarded Genetic Absence Epilepsy Rats from Strasbourg (GAERS) model as yet there has been no link described between burst-firing in TR neurons and spike-and-wave discharges (SWDs). GAERS ventrobasal (VB) neurons are a specific subset of TR neurons that do not normally display burst-firing during absence seizures in the GAERS model, and here, we assessed the underlying relationship of VB burst-firing with Ih and T-type calcium currents between GAERS and non-epileptic control (NEC) animals. In response to 200-ms hyperpolarizing current injections, adult epileptic but not pre-epileptic GAERS VB neurons displayed suppressed burst-firing compared to NEC. In response to longer duration 1,000-ms hyperpolarizing current injections, both pre-epileptic and epileptic GAERS VB neurons required significantly more hyperpolarizing current injection to burst-fire than those of NEC animals. The current density of the Hyperpolarization and Cyclic Nucleotide-activated (HCN) current (Ih) was found to be increased in GAERS VB neurons, and the blockade of Ih relieved the suppressed burst-firing in both pre-epileptic P15-P20 and adult animals. In support, levels of HCN-1 and HCN-3 isoform channel proteins were increased in GAERS VB thalamic tissue. T-type calcium channel whole-cell currents were found to be decreased in P7-P9 GAERS VB neurons, and also noted was a decrease in CaV3.1 mRNA and protein levels in adults. Z944, a potent T-type calcium channel blocker with anti-epileptic properties, completely abolished hyperpolarization-induced VB burst-firing in both NEC and GAERS VB neurons.
Crataegus extract blocks potassium currents in guinea pig ventricular cardiac myocytes.
Müller, A; Linke, W; Klaus, W
1999-05-01
Crataegus extract is used in cardiology for the treatment of mild to moderate heart failure (NYHA II) in Germany. However, little is known about the electrophysiological actions of Crataegus extract in the heart. Recently, it was shown that Crataegus extract prolongs the refractory period in isolated perfused hearts and increases action potential duration in guinea pig papillary muscle. It was the aim of this study to find out the mechanism of the increase in action potential duration caused by Crataegus extract. Using the patch-clamp technique, we measured the effects of Crataegus extract (10 mg/l; flavonoid content: 2.25%, total procyanidin content: 11.3 +/- 0.4%) on the inward rectifier and the delayed rectifier potassium current in isolated guinea pig ventricular myocytes. To get some insight into the mechanism underlying the positive inotropic effect of Crataegus extract, we also looked for effects on the L-type calcium current. Crataegus extract slightly blocked both the delayed and the inward rectifier potassium current. The inhibition amounted to 25% and about 15%, respectively. This amount of inhibition of these repolarising currents is sufficient to explain the prolongation of action potential duration caused by Crataegus extract. To our surprise we could not detect any influence of Crataegus extract on the L-type calcium current. In summary, our results show that Crataegus extract blocks repolarising potassium currents in ventricular myocytes. This effect is similar to the action of class III antiarrhythmic drugs and might be the basis of the antiarrhythmic effects described for Crataegus extract. Our measurements of the L-type calcium current indicate that Crataegus extract's positive inotropic effect is not caused by phosphodiesterase inhibition or a beta-sympathomimetic effect.
Eastwood, Ashley; Webster, Dianne; Taylor, Juliet; Mckay, Richard; McEwen, Alison; Sullivan, Jan; Pope-Couston, Rachel; Stone, Peter
2016-01-29
To gauge clinical opinion about the current system and possible changes as well as providing a forum for education about Non-Invasive Prenatal Testing (NIPT). A series of workshops for doctors and midwives, supported by the National Screening Unit of the Ministry of Health and the Royal Australian and New Zealand College of Obstetricians and Gynaecologists, were held in the main centres of New Zealand. Following a brief education session, a structured evaluation of current screening and future possibilities was undertaken by questionnaire. One hundred and eight maternity carers participated in 5 workshops. Over 40% identified barriers to current screening. More than 60% would support NIPT in the first trimester. The majority of carers provided their own counselling support for women. The survey has shown general enthusiasm for the introduction of publically funded NIPT into prenatal screening in New Zealand. Barriers to utilisation of the current system have been identified and enhancements to screening performance with guidelines around conditions to be screened for would be supported.
Estimation of Mineral and Trace Element Profile in Bubaline Milk Affected with Subclinical Mastitis.
Singh, Mahavir; Yadav, Poonam; Sharma, Anshu; Garg, V K; Mittal, Dinesh
2017-04-01
The milk samples from buffaloes of Murrah breed at mid lactation stage, reared at an organised dairy farm, were screened for subclinical mastitis based on bacteriological examination and somatic cell count following International Dairy Federation criteria. Milk samples from subclinical mastitis infected and healthy buffaloes were analysed to evaluate physicochemical alterations in terms of protein, fat, pH, electrical conductivity, chloride, minerals (sodium, potassium and calcium) and trace elements (iron, zinc, copper and selenium). In the present study, protein, fat, zinc, iron, calcium and selenium content was significantly lower (P < 0.001), while pH and electrical conductivity were significantly higher in mastitic milk as compared to normal milk. Concentration of electrolytes mainly sodium and chloride significantly increased with higher somatic cell count in mastitic milk and to maintain osmolality; potassium levels decreased proportionately. Correlation matrix revealed significantly positive interdependences of somatic cell count with pH, electrical conductivity, sodium and chloride. However, protein, fat, calcium and potassium were correlated negatively with elevated somatic cell count in mastitic milk. It is concluded that udder infections resulting in elevated somatic cells may alter the mineral and trace element profile of milk, and magnitude of changes may have diagnostic and prognostic value.
Moffatt, Pierre; Wazen, Rima M; Dos Santos Neves, Juliana; Nanci, Antonio
2014-12-01
Functional genomic screening of the rat enamel organ (EO) has led to the identification of a number of secreted proteins expressed during the maturation stage of amelogenesis, including amelotin (AMTN) and odontogenic ameloblast-associated (ODAM). In this study, we characterise the gene, protein and pattern of expression of a related protein called secretory calcium-binding phosphoprotein-proline-glutamine-rich 1 (SCPPPQ1). The Scpppq1 gene resides within the secretory calcium-binding phosphoprotein (Scpp) cluster. SCPPPQ1 is a highly conserved, 75-residue, secreted protein rich in proline, leucine, glutamine and phenylalanine. In silico data mining has revealed no correlation to any known sequences. Northern blotting of various rat tissues suggests that the expression of Scpppq1 is restricted to tooth and associated tissues. Immunohistochemical analyses show that the protein is expressed during the late maturation stage of amelogenesis and in the junctional epithelium where it localises to an atypical basal lamina at the cell-tooth interface. This discrete localisation suggests that SCPPPQ1, together with AMTN and ODAM, participates in structuring the basal lamina and in mediating attachment of epithelia cells to mineralised tooth surfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swaddiwudhipong, Witaya, E-mail: swaddi@hotmail.com; Mahasakpan, Pranee; Limpatanachote, Pisit
Excessive urinary calcium excretion is the major risk of urinary stone formation. Very few population studies have been performed to determine the relationship between environmental cadmium exposure and urinary stone disease. This population-based study examined an association between urinary cadmium excretion, a good biomarker of long-term cadmium exposure, and prevalence of urinary stones in persons aged 15 years and older, who lived in the 12 cadmium-contaminated villages in the Mae Sot District, Tak Province, northwestern Thailand. A total of 6748 persons were interviewed and screened for urinary cadmium and urinary stone disease in 2009. To test a correlation between urinarymore » excretion of cadmium and calcium, we measured urinary calcium content in 1492 persons, who lived in 3 villages randomly selected from the 12 contaminated villages. The rate of urinary stones significantly increased from 4.3% among persons in the lowest quartile of urinary cadmium to 11.3% in the highest quartile. An increase in stone prevalence with increasing urinary cadmium levels was similarly observed in both genders. Multiple logistic regression analysis revealed a positive association between urinary cadmium levels and stone prevalence, after adjusting for other co-variables. The urinary calcium excretion significantly increased with increasing urinary cadmium levels in both genders, after adjusting for other co-variables. Elevated calciuria induced by cadmium might increase the risk of urinary stone formation in this environmentally exposed population. - Research highlights: {yields} Excessive calciuria is the major risk of urinary stone formation. {yields} We examine cadmium-exposed persons for urinary cadmium, calcium, and stones. {yields} The rate of urinary stones increases with increasing urinary cadmium. {yields} Urinary calcium excretion increases with increasing urinary cadmium. {yields} Elevated calciuria induced by cadmium may increase the risk of urinary stones.« less
Bkaily, Ghassan; El-Bizri, Nesrine; Bui, Michel; Sukarieh, Rami; Jacques, Danielle; Fu, Michael L X
2003-03-01
The effects of methoxamine, a selective alpha1-adrenergic receptor agonist, and the autoantibody directed against the second extracellular loop of alpha1-adrenoceptors were studied on intracellular free Ca2+ levels using confocal microscopy and ionic currents using the whole-cell patch clamp technique in single cells of 10-day-old embryonic chick and 20-week-old fetal human hearts. We observed that like methoxamine, the autoantibody directed against the second extracellular loop of alpha1-adrenoreceptors significantly increased the L-type calcium current (I(Ca(L))) but had no effect on the T-type calcium current (I(Ca(T))), the delayed outward potassium current, or the fast sodium current. This effect of the autoantibody was prevented by a prestimulation of the receptors with methoxamine and vice versa. Moreover, treating the cells with prazosin, a selective alpha1-adrenergic receptor antagonist blocked the methoxamine and the autoantibody-induced increase in I(Ca(L)), respectively. In absence of prazosin, both methoxamine and the autoantibody showed a substantial enhancement in the frequency of cell contraction and that of the concomitant cytosolic and nuclear free Ca2+ variations. The subsequent addition of nifedipine, a specific L-type Ca2+ channel blocker, reversed not only the methoxamine or the autoantibody-induced effect but also completely abolished cell contraction. These results demonstrated that functional alpha1-adrenoceptors exist in both 10-day-old embryonic chick and 20-week-old human fetal hearts and that the autoantibody directed against the second extracellular loop of this type of receptors plays an important role in stimulating their activity via activation of L-type calcium channels. This loop seems to have a functional significance by being the target of alpha1-receptor agonists like methoxamine.
Szebényi, Kornélia; Füredi, András; Kolacsek, Orsolya; Pergel, Enikő; Bősze, Zsuzsanna; Bender, Balázs; Vajdovich, Péter; Tóvári, József; Homolya, László; Szakács, Gergely; Héja, László; Enyedi, Ágnes; Sarkadi, Balázs; Apáti, Ágota; Orbán, Tamás I
2015-08-03
In drug discovery, prediction of selectivity and toxicity require the evaluation of cellular calcium homeostasis. The rat is a preferred laboratory animal for pharmacology and toxicology studies, while currently no calcium indicator protein expressing rat model is available. We established a transgenic rat strain stably expressing the GCaMP2 fluorescent calcium sensor by a transposon-based methodology. Zygotes were co-injected with mRNA of transposase and a CAG-GCaMP2 expressing construct, and animals with one transgene copy were pre-selected by measuring fluorescence in blood cells. A homozygous rat strain was generated with high sensor protein expression in the heart, kidney, liver, and blood cells. No pathological alterations were found in these animals, and fluorescence measurements in cardiac tissue slices and primary cultures demonstrated the applicability of this system for studying calcium signaling. We show here that the GCaMP2 expressing rat cardiomyocytes allow the prediction of cardiotoxic drug side-effects, and provide evidence for the role of Na(+)/Ca(2+) exchanger and its beneficial pharmacological modulation in cardiac reperfusion. Our data indicate that drug-induced alterations and pathological processes can be followed by using this rat model, suggesting that transgenic rats expressing a calcium-sensitive protein provide a valuable system for pharmacological and toxicological studies.
Mortadi, A; El Melouky, A; Chahid, E; Nasrellah, H; Bakasse, M; Zradba, A; Cherkaoui, O; El Moznine, R
2018-01-01
Analyses of rheological properties and electrical conductivity (σ dc ) at direct current have been employed in order to investigate the effects of calcium oxide on the coagulation process during sludge treatment in the textile industry. In this context, rheological and electrical measurements were performed on five samples - one that contained raw sludge and the other four that were prepared from the raw sludge and different amounts of calcium oxide: 2, 3, 4, 5% (w/w). Rheological behavior of these samples was analyzed using the Herschel-Bulkley modified model. The influence of calcium oxide content on the rheological parameters such as infinite viscosity, the yield stress, the consistency coefficient, and the consistency index, are presented and discussed. The impact of the calcium oxide content on pH and conductivity were also examined. Similar behaviors have been seen in the evolution of conductivity and infinite viscosity as a function of the calcium oxide content. These latter characteristics were modeled by an equation using two power laws. This equation was able to fit very well the evolution of electrical conductivity and also the viscosity versus the percentage of calcium oxide to predict the optimal amount of calcium oxide (3%) to achieve the coagulation step during sludge treatment.
Smith, Robert A; Andrews, Kimberly S; Brooks, Durado; Fedewa, Stacey A; Manassaram-Baptiste, Deana; Saslow, Debbie; Brawley, Otis W; Wender, Richard C
2017-03-01
Answer questions and earn CME/CNE Each year, the American Cancer Society publishes a summary of its guidelines for early cancer detection, data and trends in cancer screening rates, and select issues related to cancer screening. In this issue of the journal, the authors summarize current American Cancer Society cancer screening guidelines, describe an update of their guideline for using human papillomavirus vaccination for cancer prevention, describe updates in US Preventive Services Task Force recommendations for breast and colorectal cancer screening, discuss interim findings from the UK Collaborative Trial on Ovarian Cancer Screening, and provide the latest data on utilization of cancer screening from the National Health Interview Survey. CA Cancer J Clin 2017;67:100-121. © 2017 American Cancer Society. © 2017 American Cancer Society.
Ikeda, Minami; Kobayashi, Tamaki; Arai, Shinpei; Mukai, Saki; Takezawa, Yuka; Terasawa, Fumiko; Okumura, Nobuo
2014-08-01
We examined a 6-month-old girl with inherited fibrinogen abnormality and no history of bleeding or thrombosis. Routine coagulation screening tests showed a markedly low level of plasma fibrinogen determined by functional measurement and also a low level by antigenic measurement (functional/antigenic ratio=0.295), suggesting hypodysfibrinogenemia. DNA sequence analysis was performed, and γT305A fibrinogen was synthesized in Chinese hamster ovary cells based on the results. We then functionally analyzed and compared with that of nearby recombinant γN308K fibrinogen. DNA sequence analysis revealed a heterozygous γT305A substitution (mature protein residue number). The γT305A fibrinogen indicated markedly impaired thrombin-catalyzed fibrin polymerization both in the presence or absence of 1mM calcium ion compared with that of γN308K fibrinogen. Protection of plasmin degradation in the presence of calcium ion or Gly-Pro-Arg-Pro peptide (analogue for so-called knob 'A') and factor XIIIa-catalyzed fibrinogen crosslinking demonstrated that the calcium binding sites, hole 'a' and D:D interaction sites were all markedly impaired, whereas γN308Kwas impaired at the latter two sites. Molecular modeling demonstrated that γT305 is localized at a shorter distance than γN308 from the high affinity calcium binding site and hole 'a'. Our findings suggest that γT305 might be important for construction of the overall structure of the γ module of fibrinogen. Substitution of γT305A leads to both dysfibrinogenemic and hypofibrinogenemic characterization, namely hypodysfibrinogenemia. We have already reported that recombinant γT305A fibrinogen was synthesized normally and secreted slightly, but was significantly reduced. Copyright © 2014 Elsevier Ltd. All rights reserved.
Mao, Songshou; Child, Janis; Carson, Sivi; Liu, Steve C K; Oudiz, Ronald J; Budoff, Matthew J
2003-03-01
To estimate the sensitivity to find small coronary artery calcium lesions with use of different slice widths with electron beam tomography. Two studies were performed. Study 1 utilized double scanning of a stationary cork phantom with three different slice thickness (1.5, 3, and 6 mm). Fifty different calcific lesions (all <20 mm2 in area) fitted in 10 cork coronary arteries were utilized. The calcium foci area, peak value and score were measured and compared. In group 2, 30 patients underwent coronary artery calcium (CAC) screen studies. Each patient was scanned with both 3-mm and 6-mm scan widths in a same study time. Lesions with < 20 mm2 of area of CAC were measured on both 3-mm and 6-mm images. The mean and peak Hounsfield unit measure, and Agatston score were compared between both images. In the cork study, the sensitivity to detect small calcium foci were 96% (48/50), 82% (41/50), and 34% (17/50) in images with 1.5-, 3-, and 6-mm slice thickness, respectively. There is a smaller value in mass, and calcium volume in 6-mm images than 1.5-mm and 3-mm images ( P< 0.001). There was no significant difference between the true value and measured value from 1.5-mm and 3-mm images. In the human study, 18 (30%) of 60 CAC lesions with an area < 20 mm2 defined on 3 mm images were not visible on 6-mm images. Sensitivity of small lesions (P< 5 mm2) was 48% using 6-mm slices. There was a smaller value in CAC area, mean and peak Hounsfield units and score measured from 6-mm images, as compared with 3 mm slices ( P< 0.05). Thinner slice imaging has a higher sensitivity to detect small calcium focus. There was no significant change in score between 3 mm and 1.5 mm on the cork phantom study. However, the use of 6-mm slices should be discouraged, as this protocol both underestimates calcific mass and misses a significant number of calcific lesions in both a phantom and human study.
Bioactive calcium phosphate-based glasses and ceramics and their biomedical applications: A review.
Islam, Md Towhidul; Felfel, Reda M; Abou Neel, Ensanya A; Grant, David M; Ahmed, Ifty; Hossain, Kazi M Zakir
2017-01-01
An overview of the formation of calcium phosphate under in vitro environment on the surface of a range of bioactive materials (e.g. from silicate, borate, and phosphate glasses, glass-ceramics, bioceramics to metals) based on recent literature is presented in this review. The mechanism of bone-like calcium phosphate (i.e. hydroxyapatite) formation and the test protocols that are either already in use or currently being investigated for the evaluation of the bioactivity of biomaterials are discussed. This review also highlights the effect of chemical composition and surface charge of materials, types of medium (e.g. simulated body fluid, phosphate-buffered saline and cell culture medium) and test parameters on their bioactivity performance. Finally, a brief summary of the biomedical applications of these newly formed calcium phosphate (either in the form of amorphous or apatite) is presented.
Green fluorescent genetically encoded calcium indicator based on calmodulin/M13-peptide from fungi.
Barykina, Natalia V; Subach, Oksana M; Piatkevich, Kiryl D; Jung, Erica E; Malyshev, Aleksey Y; Smirnov, Ivan V; Bogorodskiy, Andrey O; Borshchevskiy, Valentin I; Varizhuk, Anna M; Pozmogova, Galina E; Boyden, Edward S; Anokhin, Konstantin V; Enikolopov, Grigori N; Subach, Fedor V
2017-01-01
Currently available genetically encoded calcium indicators (GECIs) utilize calmodulins (CaMs) or troponin C from metazoa such as mammals, birds, and teleosts, as calcium-binding domains. The amino acid sequences of the metazoan calcium-binding domains are highly conserved, which may limit the range of the GECI key parameters and cause undesired interactions with the intracellular environment in mammalian cells. Here we have used fungi, evolutionary distinct organisms, to derive CaM and its binding partner domains and design new GECI with improved properties. We applied iterative rounds of molecular evolution to develop FGCaMP, a novel green calcium indicator. It includes the circularly permuted version of the enhanced green fluorescent protein (EGFP) sandwiched between the fungal CaM and a fragment of CaM-dependent kinase. FGCaMP is an excitation-ratiometric indicator that has a positive and an inverted fluorescence response to calcium ions when excited at 488 and 405 nm, respectively. Compared with the GCaMP6s indicator in vitro, FGCaMP has a similar brightness at 488 nm excitation, 7-fold higher brightness at 405 nm excitation, and 1.3-fold faster calcium ion dissociation kinetics. Using site-directed mutagenesis, we generated variants of FGCaMP with improved binding affinity to calcium ions and increased the magnitude of FGCaMP fluorescence response to low calcium ion concentrations. Using FGCaMP, we have successfully visualized calcium transients in cultured mammalian cells. In contrast to the limited mobility of GCaMP6s and G-GECO1.2 indicators, FGCaMP exhibits practically 100% molecular mobility at physiological concentrations of calcium ion in mammalian cells, as determined by photobleaching experiments with fluorescence recovery. We have successfully monitored the calcium dynamics during spontaneous activity of neuronal cultures using FGCaMP and utilized whole-cell patch clamp recordings to further characterize its behavior in neurons. Finally, we used FGCaMP in vivo to perform structural and functional imaging of zebrafish using wide-field, confocal, and light-sheet microscopy.
ERIC Educational Resources Information Center
Swank, Jacqueline M.; Gagnon, Joseph C.
2017-01-01
Background: Mental health screening and assessment is crucial within juvenile correctional facilities (JC). However, limited information is available about the current screening and assessment procedures specifically within JC. Objective: The purpose of the current study was to obtain information about the mental health screening and assessment…
A Critical Review of the Technical Characteristics of Current Preschool Screening Batteries
ERIC Educational Resources Information Center
Emmons, Michael R.; Alfonso, Vincent C.
2005-01-01
The current review provides a summary and evaluation of the technical characteristics of five preschool screening batteries, including the Brigance Screens, DIAL-3, ESI-R, ESP, and FirstSTEP. These norm-referenced instruments were selected on the basis of their commercial availability, description as a screening instrument, and ability to assess…
Bone health in persons with haemophilia.
Kempton, C L; Antoniucci, D M; Rodriguez-Merchan, E C
2015-09-01
As the population of patients with haemophilia (PWH) ages, healthcare providers are required to direct greater attention to age-related co-morbidities. Low bone mineral density (BMD) is one such co-morbidity where the incidence not only increases with age, but also occurs with greater frequency in PWH. To review risk factors for low BMD, and strategies to promote bone health and identify patients who would benefit from screening for osteoporosis and subsequent treatment. A narrative review of the literature was performed in MEDLINE with keywords haemophilia, bone density, osteoporosis and fracture. Reference lists of retrieved articles were also reviewed. Low BMD occurs more commonly in PWH than the general population and is most likely the result of a combination of risk factors. Steps to promote bone health include preventing haemarthrosis, encouraging regular exercise, adequate vitamin D and calcium intake, and avoiding tobacco and excessive alcohol intake. Adults 50 years of age and older with haemophilia and those younger than 50 years with a fragility fracture or increased fracture risk based on FRAX (The Fracture Risk Assessment Tool), regardless of haemophilia severity, should be screened for low BMD using dual x-ray absorptiometry (DXA). Once osteoporosis is diagnosed based on DXA, fracture risk should guide treatment. Currently, treatment is similar to those without haemophilia and most commonly includes bisphosphonates. Haemophilia care providers should promote adequate bone formation during childhood and reduce bone loss during adulthood as well as identify patients with low BMD that would benefit from therapy. © 2015 John Wiley & Sons Ltd.
Synthesis of europium- or terbium-activated calcium tungstate phosphors
NASA Astrophysics Data System (ADS)
Forgaciu, Flavia; Popovici, Elisabeth-Jeanne; Ungur, Laura; Vadan, Maria; Vasilescu, Marilena; Nazarov, Mihail
2001-06-01
Utilization of luminescent substances in various optoelectronic devices depends on their luminescent properties and sensitivity to various excitation radiation as well as on particle size distribution and crystalline structure of luminous powders. Calcium tungstate phosphors are well excited with roentgen radiation, so that they are largely used for manufacture of x-ray intensifying screens. Being sensitive to short UV-radiation as well, they could be utilized in Plasma Display Panels or in advertising signs fluorescent tubes. In order to diversify the utilization possibilities of this tungstate class, luminescent powders based on CaWO4:Eu3+ and CaWO4:Tb3+ were synthesized and characterized. As compared with the starting self-activated phosphor, larger excitation wavelength domain and emission colors from blue-to-green-to- yellow-to-red were obtained. The good UV excitability and variable luminescence color recommend these phosphors for optoelectronic device manufacture.
Muñoz, Pablo; Humeres, Alexis; Elgueta, Claudio; Kirkwood, Alfredo; Hidalgo, Cecilia; Núñez, Marco T.
2011-01-01
Iron deficiency hinders hippocampus-dependent learning processes and impairs cognitive performance, but current knowledge on the molecular mechanisms underlying the unique role of iron in neuronal function is sparse. Here, we investigated the participation of iron on calcium signal generation and ERK1/2 stimulation induced by the glutamate agonist N-methyl-d-aspartate (NMDA), and the effects of iron addition/chelation on hippocampal basal synaptic transmission and long-term potentiation (LTP). Addition of NMDA to primary hippocampal cultures elicited persistent calcium signals that required functional NMDA receptors and were independent of calcium influx through L-type calcium channels or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors; NMDA also promoted ERK1/2 phosphorylation and nuclear translocation. Iron chelation with desferrioxamine or inhibition of ryanodine receptor (RyR)-mediated calcium release with ryanodine-reduced calcium signal duration and prevented NMDA-induced ERK1/2 activation. Iron addition to hippocampal neurons readily increased the intracellular labile iron pool and stimulated reactive oxygen species production; the antioxidant N-acetylcysteine or the hydroxyl radical trapper MCI-186 prevented these responses. Iron addition to primary hippocampal cultures kept in calcium-free medium elicited calcium signals and stimulated ERK1/2 phosphorylation; RyR inhibition abolished these effects. Iron chelation decreased basal synaptic transmission in hippocampal slices, inhibited iron-induced synaptic stimulation, and impaired sustained LTP in hippocampal CA1 neurons induced by strong stimulation. In contrast, iron addition facilitated sustained LTP induction after suboptimal tetanic stimulation. Together, these results suggest that hippocampal neurons require iron to generate RyR-mediated calcium signals after NMDA receptor stimulation, which in turn promotes ERK1/2 activation, an essential step of sustained LTP. PMID:21296883
Loewen, T N; Carriere, B; Reist, J D; Halden, N M; Anderson, W G
2016-12-01
Biomineral chemistry is frequently used to infer life history events and habitat use in fishes; however, significant gaps remain in our understanding of the underlying mechanisms. Here we have taken a multidisciplinary approach to review the current understanding of element incorporation into biomineralized structures in fishes. Biominerals are primarily composed of calcium-based derivatives such as calcium carbonate found in otoliths and calcium phosphates found in scales, fins and bones. By focusing on non-essential life elements (strontium and barium) and essential life elements (calcium, zinc and magnesium), we attempt to connect several fields of study to synergise how physiology may influence biomineralization and subsequent inference of life history. Data provided in this review indicate that the presence of non-essential elements in biominerals of fish is driven primarily by hypo- and hyper-calcemic environmental conditions. The uptake kinetics between environmental calcium and its competing mimics define what is ultimately incorporated in the biomineral structure. Conversely, circannual hormonally driven variations likely influence essential life elements like zinc that are known to associate with enzyme function. Environmental temperature and pH as well as uptake kinetics for strontium and barium isotopes demonstrate the role of mass fractionation in isotope selection for uptake into fish bony structures. In consideration of calcium mobilisation, the action of osteoclast-like cells on calcium phosphates of scales, fins and bones likely plays a role in fractionation along with transport kinetics. Additional investigations into calcium mobilisation are warranted to understand differing views of strontium, and barium isotope fractionation between calcium phosphates and calcium carbonate structures in fishes. Copyright © 2016 Elsevier Inc. All rights reserved.
Kalcsits, Lee A.
2016-01-01
Calcium and potassium are essential for cell signaling, ion homeostasis and cell wall strength in plants. Unlike nutrients such as nitrogen and potassium, calcium is immobile in plants. Localized calcium deficiencies result in agricultural losses; particularly for fleshy horticultural crops in which elemental imbalances in fruit contribute to the development of physiological disorders such as bitter pit in apple and cork spot in pear. Currently, elemental analysis of plant tissue is destructive, time consuming and costly. This is a limitation for nutrition studies related to calcium in plants. Handheld portable x-ray fluorescence (XRF) can be used to non-destructively measure elemental concentrations. The main objective was to test if handheld XRF can be used for semi-quantitative calcium and potassium analysis of in-tact apple and pear. Semi-quantitative measurements for individual fruit were compared to results obtained from traditional lab analysis. Here, we observed significant correlations between handheld XRF measurements of calcium and potassium and concentrations determined using MP-AES lab analysis. Pearson correlation coefficients ranged from 0.73 and 0.97. Furthermore, measuring apple and pear using handheld XRF identified spatial variability in calcium and potassium concentrations on the surface of individual fruit. This variability may contribute to the development of localized nutritional imbalances. This highlights the importance of understanding spatial and temporal variability in elemental concentrations in plant tissue. Handheld XRF is a relatively high-throughput approach for measuring calcium and potassium in plant tissue. It can be used in conjunction with traditional lab analysis to better understand spatial and temporal patterns in calcium and potassium uptake and distribution within an organ, plant or across the landscape. PMID:27092160
[Association between dietary calcium/dairy intakes and overweight/obesity].
Chen, Yanrong; Liu, Yan; Xue, Hongmei; Bao, Yuxin; Luo, Jiao; Tian, Guo; Cheng, Guo
2016-05-01
To investigate the intakes of dietary calcium/dairy and the current prevalence of overweight and obesity among children and adolescents aged 7-15 in Longquanyi District, Chengdu, and to explore the association of dietary calcium and dairy intake with overweight/obesity. 1738 children and adolescents were recruited in the cross-sectional study using cluster random sampling method. Information on dietary calcium and dairy intakes was collected using 24-hour dietary recall and food frequency questionnaire (FFQ). Height, weight and waist circumference were measured to calculate body mass index (BMI)/waist-to-height ratio (WHtR) and body mass index standard deviation (BMI SDS). Overweight/obesity was defined based on the criteria of Working Group on Obesity in China (WGOC). Participants were grouped into 3 categories indicating lower, moderate and higher intakes of dietary calcium and dairy, respectively. The association of dietary calcium and dairy consumption with (BMI SDS) /WHtR and the prevalence of overweight/obesity was analyzed after being stratified by gender and age. The prevalence of overweight/obesity in boys and girls were 11.92%/7.04% and 8.04%/6.30%, respectively. The intake of dietary calcium and dairy in girls were much higher than that in boys (P < 0.0001). Among boys aged 7-9 years, those with higher consumption of dairy had the higher BMI SDS (P = 0.01). Among boys aged 10-12 years, those with higher consumption of dietary calcium had the lowest prevalence of overweight (P = 0.03). However, similar results were not observed among girls. Dietary calcium and dairy intakes seemed to be related to overweight/ obesity in boys, however the associations were inconsistent among different age groups. Associations between consumption of calcium, dairy and overweight/obesity were not found among girls.
Basolateral K+ channel involvement in forskolin-activated chloride secretion in human colon
McNamara, Brian; Winter, Desmond C; Cuffe, John E; O'Sullivan, Gerald C; Harvey, Brian J
1999-01-01
In this study we investigated the role of basolateral potassium transport in maintaining cAMP-activated chloride secretion in human colonic epithelium. Ion transport was quantified in isolated human colonic epithelium using the short-circuit current technique. Basolateral potassium transport was studied using nystatin permeabilization. Intracellular calcium measurements were obtained from isolated human colonic crypts using fura-2 spectrofluorescence imaging. In intact isolated colonic strips, forskolin and prostaglandin E2 (PGE2) activated an inward transmembrane current (ISC) consistent with anion secretion (for forskolin ΔISC = 63.8 ± 6.2 μA cm−2, n = 6; for PGE2 ΔISC = 34.3 ± 5.2 μA cm−2, n = 6). This current was inhibited in chloride-free Krebs solution or by inhibiting basolateral chloride uptake with bumetanide and 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS). The forskolin- and PGE2-induced chloride secretion was inhibited by basolateral exposure to barium (5 mM), tetrapentylammonium (10 μM) and tetraethylammonium (10 mM). The transepithelial current produced under an apical to serosal K+ gradient in nystatin-perforated colon is generated at the basolateral membrane by K+ transport. Forskolin failed to activate this current under conditions of high or low calcium and failed to increase the levels of intracellular calcium in isolated crypts In conclusion, we propose that potassium recycling through basolateral K+ channels is essential for cAMP-activated chloride secretion. PMID:10432355
Current statins show calcium channel blocking activity through voltage gated channels.
Ali, Niaz; Begum, Robina; Faisal, Muhammad Saleh; Khan, Aslam; Nabi, Muhammad; Shehzadi, Gulfam; Ullah, Shakir; Ali, Waqar
2016-09-21
Statins are used for treatment of hypercholestremia. Common adverse reports associated with use of statins are generalized bodyache, rhabdomyolysis, muscles weakness and gastrointestinal disorders. The current work is an attempt to explain how smooth muscles of gastrointestinal tissues are affected by the current statins (Simvastatin, atorvastatin, fluvastatin and rosuvastatin). Effects of the current statins were studied on spontaneous activity of isolated rabbits' jejunal preparations. Different molar concentrations (10(-12)-10(-2)M) of the statins were applied on spontaneously contracting rabbits' jejunal preparations. As statins relaxed spontaneous activity, so we tested the statins on KCl (80 mM) induced contractions in similar test concentrations. Positive relaxant statins were tested again through construction of Calcium Concentration Response Curves (CCRCs) in the absence and presence of the statins using verapamil, a standard calcium channel blocker. CCRCs of statins were compared with CCRCs of verapamil. Simvastatin, atorvastatin, fluvastatin and rosuvastatin relaxed the spontaneous and KCl-induced contractions. IC50 for simvastatin on spontaneous rabbit's jejunal preparations is -5.08 ± 0.1 Log 10 M. Similarly, IC50 for KCl-induced contractions is -4.25 ± 0.01 Log 10 M. Mean IC50 (Log 10 M) for atorvastatin on spontaneous rabbit's jejunal preparations and KCl-induced contractions are -5.19 ± 0.07 and -4.37 ± 0.09, respectively. Fluvastatin relaxed spontaneous activity of rabbits' jejunal preparations with an IC50 (Log 10 M) -4.5 ± 0.03. Rosuvastatin relaxed spontaneous as well as KCl (80 mM) induced contractions with respective IC50 (Log 10 M) -3.62 ± 0.04 and -4.57 ± 0.06. In case of CCRCs, tissues pre-treated with 4.6 μg/ml of simvastatin, have IC50 = -1.84 ± 0.03 [log (Ca(++)) M] vs control IC50 = -2.54 ± 0.04 [log (Ca(++)) M]. Similarly, atorvastatin, fluvastatin and rosuvastatin produced significant right shift in IC50 for CCRCs (P ≤ 0.05). In case of verapamil, IC50 for control curves is -2.45 ± 0.06 [log (Ca (++)) M], while IC50 in presence of verapamil (0.1 μM) is -1.69 ± 0.05 [log (Ca (++)) M]. Statins produced right shift in the IC50 of CCRCs. The effects of statins are like that of effects of verapamil, a standard calcium channel blocker. Our findings suggest that current statins have calcium antagonistic effects that act on voltage gated calcium channels that may provide a rationale for cause muscle weakness and gastrointestinal disorders.
Xu, Huihui; Lin, Aifen; Shao, Xiujuan; Shi, Weiwu; Zhang, Yang; Yan, Weihua
2016-12-13
Currently, clinical data for primary HPV screening alone are lacking in China. Here, we evaluate cervical cancer screening with primary HPV genotyping, as well as possible future screening strategy. Overall, high-risk HPV (hrHPV) prevalence was 18.2% among hospital-based population in Taizhou area. For cervical intraepithelial neoplasia 2 or worse (CIN2+), the sensitivity of primary hrHPV genotyping strategy and current cervical cancer screening strategy were 93.5%, and 71.1%, respectively; whereas the specificity was 17.5%, and 62.4%, respectively. Current cervical screening strategy had slightly higher positive predictive values (28.4%) for CIN2+ than hrHPV genotyping strategy (21.9%), whereas primary hrHPV genotyping strategy demonstrated higher negative predictive values (94.7%) than current cervical screening strategy (91.1%). Compared to HPV35/39/45/51/56/59/66/68 genotypes, the odds ratios (OR) for CIN2+ in HPV16/18/31/33/52/58 infection women were 3.2 (95% confidence interval [CI] 2.3-4.1). Primary hrHPV genotyping strategy provides a better predictive value than HPV16/18 genotyping alone in guiding the clinical management of the current cervical cancer screening. HPV testing without adjunctive cytology may be sufficiently sensitive for primary cervical cancer screening.
Xiao, Xiao; Qi, Weipeng; Clark, John M; Park, Yeonhwa
2017-11-01
Permethrin, a pyrethroid insecticide, was previously reported to promote adipogenesis in vitro and weight gain in vivo. The mechanism by which permethrin promotes adipogenesis/obesity, however, has not been fully explored. Intracellular calcium and endoplasmic reticulum (ER) stress have been reported to be linked with adipogenesis and obesity. Because pyrethroid insecticides have been determined to influence intracellular calcium and ER stress in vitro, the purpose of this current study was to investigate whether permethrin potentiates adipogenesis via a change in intracellular calcium, leading to endoplasmic reticulum (ER) stress in 3T3-L1 adipocytes. 3T3-L1 cells were exposed to four different concentrations of permethrin (0.01, 0.1, 1 & 10 μM) for 6 days during differentiation. Treatment of permethrin increased intracellular calcium level in a concentration-dependent manner. Similarly, permethrin treatment increased protein levels of ER stress markers in a concentration-dependent manner. These data suggest that intracellular calcium and ER stress may be involved in permethrin-induced adipogenesis of 3T3-L1 cells. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fabrication and test of inorganic/organic separators. [for silver zinc batteries
NASA Technical Reports Server (NTRS)
Smatko, J. S.
1974-01-01
Completion of testing and failure analysis of MDC 40 Ahr silver zinc cells containing largely inorganic separators was accomplished. The results showed that the wet stand and cycle life objectives of the silver zinc cell development program were accomplished. Building, testing and failure analysis of two plate cells employing three optimum separators selected on the basis of extensive screening tests, was performed. The best separator material as a result of these tests was doped calcium zirconate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asperger, R.G.
1986-09-01
A new test method is described that allows the rapid field testing of calcium carbonate scale inhibitors at 500/sup 0/F (260/sup 0/C). The method evolved from use of a full-flow test loop on a well with a mass flow rate of about 1 x 10/sup 6/ lbm/hr (126 kg/s). It is a simple, effective way to evaluate the effectiveness of inhibitors under field conditions. Five commercial formulations were chosen for field evaluation on the basis of nonflowing, laboratory screening tests at 500/sup 0/F (260/sup 0/C). Four of these formulations from different suppliers controlled calcium carbonate scale deposition as measured bymore » the test method. Two of these could dislodge recently deposited scale that had not age-hardened. Performance-profile diagrams, which were measured for these four effective inhibitors, show the concentration interrelationship between brine calcium and inhibitor concentrations at which the formulations will and will not stop scale formation in the test apparatus. With these diagrams, one formulation was chosen for testing on the full-flow brine line. The composition was tested for 6 weeks and showed a dramatic decrease in the scaling occurring at the flow-control valve. This scaling was about to force a shutdown of a major, long-term flow test being done for reservoir economic evaluations. The inhibitor stopped the scaling, and the test was performed without interruption.« less
Oyetayo, Folake Lucy; Ibitoye, Muyiwa Femi
2012-07-01
The fruit of the cherry tomato (Lycopersicon esculentum (Solanaceae)) was analysed for mineral and antinutrient composition. Phosphorus (33.04 ± 0.21 mg/100g) was the most abundant mineral in the fruit, followed by calcium (32.04 ± 0.06 mg/100 g), and potassium (11.9 ± 0.1 mg/100 g) and manganese (9.55 ± 0.28 mg/100 g) were also present in appreciable quantities. Antinutrients, including phytate, glycoside, saponin and tannin, were screened and quantified. Phytate (112.82 ± 0.1 mg/100 g), glycoside (2.33 ± 0.00 mg/100 g), saponin (1.31 ± 0.00 mg/100g) and tannin (0.21 ± 0.00 mg/100 g) were present in the fruit but phlobatanin and glycosides with steroidal rings were not found. The calculated calcium:phytate ratio of the fruits was below the critical value and the calculated [calcium] [phytate]:[zinc] molar ratio was less than the critical value. The calcium:phosphorus ratio (0.97 mg/100 g) shows the fruit to be a good source of food nutrients, while the sodium:potassium value was less than 1. Ca/P ratio below 0.5 indicates deficiency of these minerals while Na/K ratio above 1 is detrimental because of excessive sodium levels. The results of the study generally revealed the fruit to be rich in minerals but containing insufficient quantities of antinutrients to result in poor mineral bioavailability.
Thyroid C-Cell Biology and Oncogenic Transformation
Cote, Gilbert J.; Grubbs, Elizabeth G.; Hofmann, Marie-Claude
2017-01-01
The thyroid parafollicular cell, or commonly named “C-cell,” functions in serum calcium homeostasis. Elevations in serum calcium trigger release of calcitonin from the C-cell, which in turn functions to inhibit absorption of calcium by the intestine, resorption of bone by the osteoclast, and reabsorption of calcium by renal tubular cells. Oncogenic transformation of the thyroid C-cell is thought to progress through a hyperplastic process prior to malignancy with increasing levels of serum calcitonin serving as a biomarker for tumor burden. The discovery that Multiple Endocrine Neoplasia, type 2 is caused by activating mutations of the RET gene serves to highlight the RET-RAS-MAPK signaling pathway in both initiation and progression of medullary thyroid carcinoma. Thyroid C-cells are known to express RET at high levels relative to most cell types, therefore aberrant activation of this receptor is targeted primarily to the C-cell, providing one possible cause of tissue-specific oncogenesis. The role of RET signaling in normal C-cell function is unknown though calcitonin gene transcription appears to be sensitive to RET activation. Beyond RET the modeling of oncogenesis in animals and screening of human tumors for candidate gene mutations has uncovered mutation of RAS family members and inactivation of Rb1 regulatory pathway as potential mediators of C-cell transformation. A growing understanding of how RET interacts with these pathways, both in normal C-cell function and during oncogenic transformation will help in the development of novel molecular targeted therapies. PMID:26494382
Ghareeb, Doaa A; El-Rashidy, Fatma H; El-Mallawany, Sherif
2014-01-01
This study aimed to explore and validate a new juvenile osteopenic (JO) rat model then examine the efficacy of moghat (Glossostemon bruguieri) as an alternative reversal therapy for JO. Phytochemical screening analysis showed that moghat contains 5.8% alkaloids, 1.5% flavonoids and 13.2% total phenols. Juvenile osteopenia was induced in 15 days old Sprague- Dawley female rats by feeding them free Ca and vitamin D synthetic diet for 21 days. Osteopenic rats were either treated with moghat (0.8 g dried plant tissue/Kg body weight, orally), or with a reference nutritional supplements of calcium chloride (14 mg Ca/Kg) and vitamin D3 (7 IU/Kg), for extra 21 days. Both untreated and treated groups were compared to a control group that fed a regular pelleted food. Our results showed that osteopenic rats lost normal bone tissue architecture, 30 % of body mass, 54 % of bone mass and finally 93% of bone calcium mass. Furthermore, these rats showed a markedly increase in serum phosphate, PTH, alkaline phosphatase, aspartate transaminase activities and creatinine level as compared to the control group. Moghat administration was successfully reversed osteopenia by normalizing body and bone masses to the reference ranges, increased the bone calcium mass by 17 fold without any detectable side effects on liver and kidney physiological performance. Therefore, moghat could be considered as potent safe -JO- reversal extract.
New Advanced Technologies in Stem Cell Therapy
2014-11-01
6-8 wks old utrophin/dystrophin double knockout (dKO) mice, a severe animal model of DMD, have an excess of ectopic fat , calcium deposits and...tissues in skeletal muscle alter the tissue environment and induce deregulation of muscle homeostasis; however, the cellular origin of muscle fat ...as a major contributor to ectopic fat cell, calcium deposits and fibrotic tissue formation within dystrophic muscle. In the current study, we propose
ERIC Educational Resources Information Center
Ghosh, Abhinaba; Mukherjee, Bandhan; Chen, Xihua; Yuan, Qi
2017-01-01
Early odor preference learning occurs in one-week-old rodents when a novel odor is paired with a tactile stimulation mimicking maternal care. ß-Adrenoceptors and L-type calcium channels (LTCCs) in the anterior piriform cortex (aPC) are critically involved in this learning. However, whether ß-adrenoceptors interact directly with LTCCs in aPC…
Mutations in the calcium-related gene IL1RAPL1 are associated with autism.
Piton, Amélie; Michaud, Jacques L; Peng, Huashan; Aradhya, Swaroop; Gauthier, Julie; Mottron, Laurent; Champagne, Nathalie; Lafrenière, Ronald G; Hamdan, Fadi F; Joober, Ridha; Fombonne, Eric; Marineau, Claude; Cossette, Patrick; Dubé, Marie-Pierre; Haghighi, Pejmun; Drapeau, Pierre; Barker, Philip A; Carbonetto, Salvatore; Rouleau, Guy A
2008-12-15
In a systematic sequencing screen of synaptic genes on the X chromosome, we have identified an autistic female without mental retardation (MR) who carries a de novo frameshift Ile367SerfsX6 mutation in Interleukin-1 Receptor Accessory Protein-Like 1 (IL1RAPL1), a gene implicated in calcium-regulated vesicle release and dendrite differentiation. We showed that the function of the resulting truncated IL1RAPL1 protein is severely altered in hippocampal neurons, by measuring its effect on neurite outgrowth activity. We also sequenced the coding region of the close related member IL1RAPL2 and of NCS-1/FREQ, which physically interacts with IL1RAPL1, in a cohort of subjects with autism. The screening failed to identify non-synonymous variant in IL1RAPL2, whereas a rare missense (R102Q) in NCS-1/FREQ was identified in one autistic patient. Furthermore, we identified by comparative genomic hybridization a large intragenic deletion of exons 3-7 of IL1RAPL1 in three brothers with autism and/or MR. This deletion causes a frameshift and the introduction of a premature stop codon, Ala28GlufsX15, at the very beginning of the protein. All together, our results indicate that mutations in IL1RAPL1 cause a spectrum of neurological impairments ranging from MR to high functioning autism.
Development of High Capacity Enterosorbents for Aflatoxin B1 and Other Hazardous Chemicals.
Wang, Meichen; Maki, Cody R; Deng, Youjun; Tian, Yanan; Phillips, Timothy D
2017-09-18
Previously, a calcium montmorillonite clay (NovaSil) included in the diet of animals has been shown to bind aflatoxin B1 (AfB1) and reduce the symptoms of aflatoxicosis. To investigate and improve the capacity and efficacy of clay-based materials as aflatoxin sorbents, we developed and tested calcium and sodium montmorillonite clays amended with nutrients including l-carnitine and choline. Also, we determined the sorption of AfB1 by isothermal analysis and tested the ability of these amended sorbents to protect adult hydra from AfB1 toxicity. The results showed that exchanging montmorillonite clays with l-carnitine and choline inhibited swelling of the clays and increased the sorption capacity and efficacy of clay surfaces for AfB1. Results from dehydroxylated and heat-collapsed clays suggested that AfB1 was primarily adsorbed in the clay interlayer, as predicted from thermodynamic calculations and computational modeling. The hydra bioassay further indicated that the modified clays can significantly protect adult hydra from AfB1 with as low as 0.005% clay inclusion. This enterosorbent therapy may also be applied to screen hazardous chemicals such as pesticides and PAHs based on similar sorption mechanisms. Taken together, enterosorbent therapy could be delivered in nutritional supplements, foods that are vulnerable to aflatoxin contamination, flavored liquids and animal feeds during emergencies and outbreaks of acute aflatoxicosis, and as a screening model for hazardous environmental chemicals.
Oh, Myongkeun; Zhao, Shunbing; Matveev, Victor; Nadim, Farzan
2012-12-01
Although synaptic output is known to be modulated by changes in presynaptic calcium channels, additional pathways for calcium entry into the presynaptic terminal, such as non-selective channels, could contribute to modulation of short term synaptic dynamics. We address this issue using computational modeling. The neuropeptide proctolin modulates the inhibitory synapse from the lateral pyloric (LP) to the pyloric dilator (PD) neuron, two slow-wave bursting neurons in the pyloric network of the crab Cancer borealis. Proctolin enhances the strength of this synapse and also changes its dynamics. Whereas in control saline the synapse shows depression independent of the amplitude of the presynaptic LP signal, in proctolin, with high-amplitude presynaptic LP stimulation the synapse remains depressing while low-amplitude stimulation causes facilitation. We use simple calcium-dependent release models to explore two alternative mechanisms underlying these modulatory effects. In the first model, proctolin directly targets calcium channels by changing their activation kinetics which results in gradual accumulation of calcium with low-amplitude presynaptic stimulation, leading to facilitation. The second model uses the fact that proctolin is known to activate a non-specific cation current I ( MI ). In this model, we assume that the MI channels have some permeability to calcium, modeled to be a result of slow conformation change after binding calcium. This generates a gradual increase in calcium influx into the presynaptic terminals through the modulatory channel similar to that described in the first model. Each of these models can explain the modulation of the synapse by proctolin but with different consequences for network activity.
Dodgson, K; Gedge, L; Murray, D C; Coldwell, M
2009-01-01
Seven-transmembrane receptors (7TMRs) are a family of proteins of great interest as therapeutic targets because of their abundance on the cell surface, diverse effects in modulating cell behavior and success as a key class of drugs. We have evaluated the Epic label-free system for the purpose of identifying antagonists of the muscarinic M3 receptor. We compared the data generated from the label-free technology with data for the same compounds in a calcium flux assay. We have shown that this technology can be used for high throughput screening (HTS) of 7TMRs and as an orthogonal approach to enable rapid evaluation of HTS outputs. A number of compounds have been identified which were not found in a functional HTS measuring the output from a single pathway, which may offer new approaches to inhibiting responses through this receptor.
Polycystic ovary syndrome: a major unrecognized cardiovascular risk factor in women.
Alexander, Carolyn J; Tangchitnob, Edward P; Lepor, Norman E
2009-01-01
The prevalence of polycystic ovary syndrome (PCOS) is estimated to be nearly 10% among reproductive-age women. PCOS may represent the largest underappreciated segment of the female population at risk of cardiovascular disease. Clinicians providing care to women of childbearing age must recognize the presenting clues, including irregular menses, hirsutism, alopecia, hyperandrogenemia, and obesity. The pathophysiology of PCOS is complex, involving the hypothalamus-pituitary-ovarian axis, ovarian theca cell hyperplasia, hyperinsulinemia, and a multitude of other cytokine- and adipocyte-driven factors. Cardiac risk factors associated with PCOS have public health implications and should drive early screening and intervention measures. There are no consensus guidelines regarding screening for cardiovascular disease in patients with PCOS. Fasting lipid profiles and glucose examinations should be performed regularly. Carotid intimal medial thickness examinations should begin at age 30 years, and coronary calcium screening should begin at age 45 years. Treatment of the associated cardiovascular risk factors, including insulin resistance, hypertension, and dyslipidemia, should be incorporated into the routine PCOS patient wellness care program.
Polycystic ovary syndrome: a major unrecognized cardiovascular risk factor in women.
Alexander, Carolyn J; Tangchitnob, Edward P; Lepor, Norman E
2009-01-01
The prevalence of polycystic ovary syndrome (PCOS) is estimated to be nearly 10% among reproductive age women. PCOS may represent the largest underappreciated segment of the female population at risk of cardiovascular disease. Clinicians providing care to women of childbearing age must recognize the presenting clues, including irregular menses, hirsutism, alopecia, hyperandrogenemia, and obesity. The pathophysiology of PCOS is complex, involving the hypothalamus-pituitary-ovarian axis, ovarian theca cell hyperplasia, hyperinsulinemia, and a multitude of other cytokine- and adipocyte-driven factors. Cardiac risk factors associated with PCOS have public health implications and should drive early screening and intervention measures. There are no consensus guidelines regarding screening for cardiovascular disease in patients with PCOS. Fasting lipid profiles and glucose examinations should be performed regularly. Carotid intimal medial thickness examinations should begin at age 30 years, and coronary calcium screening should begin at age 45 years. Treatment of the associated cardiovascular risk factors, including insulin resistance, hypertension, and dyslipidemia, should be incorporated into the routine PCOS patient wellness care program.
Rabelo, Sarita C; Filho, Rubens Maciel; Costa, Aline C
2008-01-01
Pretreatment procedures of sugarcane bagasse with lime (calcium hydroxide) or alkaline hydrogen peroxide were evaluated and compared. Analyses were performed using 2(3) factorial designs, with pretreatment time, temperature, and lime loading and hydrogen peroxide concentration as factors. The responses evaluated were the yield of total reducing sugars (TRS) and glucose released from pretreated bagasse after enzymatic hydrolysis. Experiments were performed using the bagasse, as it comes from an alcohol/sugar factory and bagasse, in the size, range from 0.248 to 1.397 mm (12-60 mesh). The results show that, when hexoses and pentoses are of interest, lime should be the pretreatment agent chosen, as high TRS yields are obtained for non-screened bagasse using 0.40 g lime/g dry biomass at 70 degrees C for 36 h. When the product of interest is glucose, the best results were obtained with lime pretreatment of screened bagasse. However, the results for alkaline peroxide and lime pretreatments of non-screened bagasse are not very different.
Screenings and vertex operators of quantum superalgebra U{sub q}(sl-caret(N|1))
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kojima, Takeo
2012-08-15
We construct the screening currents of the quantum superalgebra U{sub q}(sl-caret(N|1)) for an arbitrary level k{ne}-N+ 1. We show that these screening currents commute with the superalgebra modulo total difference. We propose bosonizations of the vertex operators by using the screening currents. We check that these vertex operators are the intertwiners among the Fock-Wakimoto representation and the typical representation for rank N Less-Than-Or-Slanted-Equal-To 4.
Wang, Jing; Zhang, Wei-Dong; Lin, Mu-Sen; Zhai, Qing-Bo; Yu, Feng
2010-08-25
The aim of the present study is to investigate the alterations of cardiac hemodynamics, sodium current (I(Na)) and L-type calcium current (I(Ca-L)) in the cardiomyopathic model of rats. The model of cardiomyopathy was established by intraperitoneal injection of L-thyroxine (0.5 mg/kg) for 10 d. The hemodynamics was measured with biological experimental system, and then I(Na) and I(Ca-L) were recorded by using whole cell patch clamp technique. The results showed that left ventricular systolic pressure (LVSP), left ventricular developed pressure (LVDP), +/-dp/dt(max) in cardiomyopathic group were significantly lower than those in the control group, while left ventricular end-diastolic pressure (LVEDP) in cardiomyopathic group was higher than that in the control group. Intraperitoneal injection of L-thyroxine significantly increased the current density of I(Na) [(-26.2+/-3.2) pA/pF vs (-21.1+/-6.3) pA/pF, P<0.01], shifted steady-state activation and inactivation curves negatively, and markedly prolonged the time constant of recovery from inactivation. On the other hand, the injection of L-thyroxine significantly increased the current density of I(Ca-L) [(-7.9+/-0.8) pA/pF vs (-5.4+/-0.6) pA/pF, P<0.01)], shifted steady-state activation and inactivation curves negatively, and obviously shortened the time constant of recovery from inactivation. In conclusion, the cardiac performance of cardiomyopathic rats is similar to that of rats with heart failure, in which the current density of I(Na) and especially the I(Ca-L) are enhanced, suggesting that calcium channel blockade and a decrease in Na(+) permeability of membrane may play an important role in the treatment of cardiomyopathy.
Osteoporosis screening is unjustifiably low in older African-American women.
Wilkins, Consuelo H.; Goldfeder, Jason S.
2004-01-01
BACKGROUND: More than one million Americans suffer osteoporotic fractures yearly, resulting in a marked increase in morbidity and mortality. Despite a decrease in bone mineral density with increasing age in all ethnic groups and both genders, preventative and therapeutics efforts in osteoporosis have been focused on caucasian and Asian women. This study assesses the osteoporosis screening practices and the frequency of low bone density in a primarily African-American population of older women. METHODS: Medical records of 252 women at risk for osteoporosis were reviewed for the diagnosis of osteoporosis, prior osteoporosis screening, prior breast cancer screening, and the use of calcium, vitamin D or estrogen. Subsequently, 128 women were assessed for risk factors for osteoporosis, and their bone mineral density was measured using a peripheral bone densitometer. RESULTS: Osteoporosis screening had been performed in 11.5% of the subjects. Of the women evaluated by peripheral bone densitometry, 44.5% of all women, 40.4% of African-American women, and 53.3% of caucasian women had abnormally low bone density measurements. The frequency of abnormal bone density increased with both increasing age and decreasing body mass index. CONCLUSIONS: Although few women in this population were previously screened for osteoporosis, low bone density occurred in African-American women at substantial rates. Increasing age and low body mass are important risk factors for low bone density in African-American women. Ethnicity should not be used as an exclusion criterion for screening for osteoporosis. PMID:15101666
Bodewei, R; Hering, S; Schubert, B; Wollenberger, A
1985-04-01
Sodium and calcium inward currents (INa and ICa) were measured in neuroblastoma X glioma hybrid cells of clones 108CC5 and 108CC15 by a single suction pipette method for internal perfusion and voltage clamp. Morphologically undifferentiated, exponentially growing cells were compared with cells differentiated by cultivation with 1 mmol/l dibutyryl cyclic AMP. Outward currents were eliminated by perfusing the cells with a K+-free solution. Voltage dependence and ion selectivity as well as steady state inactivation characteristics of INa and ICa resembled those of differentiated mouse neuroblastoma cells, clone N1E-115 (Moolenaar and Spector 1978, 1979). These parameters were identical in undifferentiated and differentiated cells of both clones. After differentiation the average density of the peak sodium and calcium currents was increased two and four-fold, respectively, in both cell lines. Our data indicate that exponentially growing, morphologically undifferentiated 108CC5 and 108CC15 neuroblastoma X glioma hybrid cells possess functional Na+ and Ca2+ channels undistinguishable from those of non-proliferating cells of these clones differentiated morphologically by treatment with dibutyryl cyclic AMP. That Na+ and Ca2+ spikes were not detected by other authors in these cells prior to morphological differentiation by dibutyryl cyclic AMP may be attributed to the fact that at the low resting membrane potential measured the Na+ and Ca2+ channels are inactivated.
Effect of protein tyrosine kinase inhibitors on the current through the Ca(V)3.1 channel.
Kurejová, Martina; Lacinová, L'ubica
2006-02-01
In the present study, we have investigated the effects of protein tyrosine kinase (PTK) inhibitors on the Ca(V)3.1 calcium channel stably transfected in HEK293 cells using the whole-cell configuration of the patch-clamp technique. We have tested two different tyrosine kinase inhibitors, genistein and tyrphostin AG213, and their inactive analogs, genistin and tyrphostin AG9. Bath application of genistein, but not genistin, decreased the T-type calcium current amplitude in a concentration-dependent manner with an IC(50) of 24.7+/-2.0 microM. This effect of genistein was accompanied by deceleration of channel activation and acceleration of channel inactivation. Intracellular application of neither genistein nor genistin had a significant effect on the calcium current. Extracellular application of 50 microM tyrphostin AG213 and its inactive analogue, tyrphostin AG9, did not affect the current through the Ca(V)3.1 channel. The effect of genistein on the channel was also not affected by the presence of catalytically active PTK, p60(c-src) inside the cell. We have concluded that genistein directly inhibited the channel. This mechanism does not involve a PTK-dependent pathway. The alteration of the channel kinetics by genistein suggests an interaction with the voltage sensor of the channel together with the channel pore occlusion.
Race and BMI modify associations of calcium and vitamin D intake with prostate cancer.
Batai, Ken; Murphy, Adam B; Ruden, Maria; Newsome, Jennifer; Shah, Ebony; Dixon, Michael A; Jacobs, Elizabeth T; Hollowell, Courtney M P; Ahaghotu, Chiledum; Kittles, Rick A
2017-01-19
African Americans have disproportionately higher burden of prostate cancer compared to European Americans. However, the cause of prostate cancer disparities is still unclear. Several roles have been proposed for calcium and vitamin D in prostate cancer pathogenesis and progression, but epidemiologic studies have been conducted mainly in European descent populations. Here we investigated the association of calcium and vitamin D intake with prostate cancer in multiethnic samples. A total of 1,657 prostate cancer patients who underwent screening and healthy controls (888 African Americans, 620 European Americans, 111 Hispanic Americans, and 38 others) from Chicago, IL and Washington, D.C. were included in this study. Calcium and vitamin D intake were evaluated using food frequency questionnaire. We performed unconditional logistic regression analyses adjusting for relevant variables. In the pooled data set, high calcium intake was significantly associated with higher odds for aggressive prostate cancer (OR Quartile 1 vs. Quartile 4 = 1.98, 95% C.I.: 1.01-3.91), while high vitamin D intake was associated with lower odds of aggressive prostate cancer (OR Quartile 1 vs. Quartile 4 = 0.38, 95% C.I.: 0.18-0.79). In African Americans, the association between high calcium intake and aggressive prostate cancer was statistically significant (OR Quartile 1 vs. Quartile 4 = 4.28, 95% C.I.: 1.70-10.80). We also observed a strong inverse association between total vitamin D intake and prostate cancer in African Americans (OR Quartile 1 vs. Quartile 4 = 0.06, 95% C.I.: 0.02-0.54). In European Americas, we did not observe any significant associations between either calcium or vitamin D intake and prostate cancer. In analyses stratifying participants based on Body Mass Index (BMI), we observed a strong positive association between calcium and aggressive prostate cancer and a strong inverse association between vitamin D intake and aggressive prostate cancer among men with low BMI (<27.8 kg/m 2 ), but not among men with high BMI (≥27.8 kg/m 2 ). Interactions of race and BMI with vitamin D intake were significant (P Interaction < 0.05). Calcium intake was positively associated with aggressive prostate cancer, while vitamin D intake exhibited an inverse relationship. However, these associations varied by race/ethnicity and BMI. The findings from this study may help develop better prostate cancer prevention and management strategies.
Molecular and biochemical evidence for the involvement of calcium/calmodulin in auxin action
NASA Technical Reports Server (NTRS)
Yang, T.; Poovaiah, B. W.
2000-01-01
The use of (35)S-labeled calmodulin (CaM) to screen a corn root cDNA expression library has led to the isolation of a CaM-binding protein, encoded by a cDNA with sequence similarity to small auxin up RNAs (SAURs), a class of early auxin-responsive genes. The cDNA designated as ZmSAUR1 (Zea mays SAURs) was expressed in Escherichia coli, and the recombinant protein was purified by CaM affinity chromatography. The CaM binding assay revealed that the recombinant protein binds to CaM in a calcium-dependent manner. Deletion analysis revealed that the CaM binding site was located at the NH(2)-terminal domain. A synthetic peptide of amino acids 20-45, corresponding to the potential CaM binding region, was used for calcium-dependent mobility shift assays. The synthetic peptide formed a stable complex with CaM only in the presence of calcium. The CaM affinity assay indicated that ZmSAUR1 binds to CaM with high affinity (K(d) approximately 15 nM) in a calcium-dependent manner. Comparison of the NH(2)-terminal portions of all of the characterized SAURs revealed that they all contain a stretch of the basic alpha-amphiphilic helix similar to the CaM binding region of ZmSAUR1. CaM binds to the two synthetic peptides from the NH(2)-terminal regions of Arabidopsis SAUR-AC1 and soybean 10A5, suggesting that this is a general phenomenon for all SAURs. Northern analysis was carried out using the total RNA isolated from auxin-treated corn coleoptile segments. ZmSAUR1 gene expression began within 10 min, increased rapidly between 10 and 60 min, and peaked around 60 min after 10 microM alpha-naphthaleneacetic acid treatment. These results indicate that ZmSAUR1 is an early auxin-responsive gene. The CaM antagonist N-(6-aminohexyl)5-chloro-1-naphthalenesulfonamide hydrochloride inhibited the auxin-induced cell elongation but not the auxin-induced expression of ZmSAUR1. This suggests that calcium/CaM do not regulate ZmSAUR1 at the transcriptional level. CaM binding to ZmSAUR1 in a calcium-dependent manner suggests that calcium/CaM regulate ZmSAUR1 at the post-translational level. Our data provide the first direct evidence for the involvement of calcium/CaM-mediated signaling in auxin-mediated signal transduction.
Cardiac Society of Australia and New Zealand Position Statement: Coronary Artery Calcium Scoring.
Liew, Gary; Chow, Clara; van Pelt, Niels; Younger, John; Jelinek, Michael; Chan, Jonathan; Hamilton-Craig, Christian
2017-12-01
Coronary Artery Calcium Scoring (CAC) is a non-invasive quantitation of coronary artery calcification using computed tomography (CT). It is a marker of atherosclerotic plaque burden and an independent predictor of future myocardial infarction and mortality. Coronary Artery Calcium Scoring provides incremental risk information beyond traditional risk calculators (eg. Framingham Risk Score). Its use for risk stratification is confined to primary prevention of cardiovascular events, and can be considered as "individualised coronary risk scoring" for those not considered to be of high or low risk. Medical practitioners should carefully counsel patients prior to CAC. Coronary Artery Calcium Scoring should only be undertaken if an alteration in therapy including embarking on pharmacotherapy is being considered based on the test result. Patient Groups to Consider Coronary Calcium Scoring: Patient Groups in Whom Coronary Calcium Scoring Should Not be Considered: Coronary Artery Calcium Scoring is not recommended for patients who are: Interpretation of CAC CAC=0 A zero score confers a very low risk of death, <1% at 10 years. CAC=1-100 Low risk, <10% CAC=101-400 Intermediate risk, 10-20% CAC=101-400 & >75th centile. Moderately high risk, 15-20% CAC >400 High risk, >20% Management Recommendations Based on CAC Optimal diet and lifestyle measures are encouraged in all risk groups and form the basis of primary prevention strategies. Patients with moderately-high or high risk based on CAC score are recommended to receive preventative medical therapy such as aspirin and statins. The evidence for pharmacotherapy is less robust in patients at intermediate levels of CAC 100-400, with modest benefit for aspirin use; though statins may be reasonable if they are above 75th centile. Aspirin and statins are generally not recommended in patients with CAC <100. Repeat CAC Testing In patients with a CAC of 0, a repeat CAC may be considered in 5 years but not sooner. In patients with positive calcium score, routine re-scanning is not currently recommended. However, an annual increase in CAC of >15% or annual increase of CAC >100 units are predictive of future myocardial infarction and mortality. Cost Effectiveness of CAC Based Primary Prevention Recommendations: There is currently no data in Australia and New Zealand that CAC is cost-effective in informing primary prevention decisions. Given the cost of testing is currently borne entirely by the patient, discussion regarding the implications of CAC results should occur before CAC is recommended and undertaken. Copyright © 2017 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.
Hou, Tao; Liu, Yanshuang; Kolba, Nikolai; Guo, Danjun; He, Hui
2017-05-12
Desalted duck egg white peptides (DPs) have been proven to promote calcium uptake in Caco-2 cells and rats treated with a calcium-deficient diet. The retinoic acid-induced bone loss model was used to evaluate the effect of DPs on calcium absorption and bone formation. Three-month-old Wistar female rats were treated with 0.9% saline, DPs (800 mg/kg), or alendronate (5 mg/kg) for three weeks immediately after retinoic acid treatment (80 mg/kg) once daily for two weeks. The model group was significantly higher in serum bone alkaline phosphatase than the other three groups ( p < 0.05), but lower in calcium absorption rate, serum osteocalcin, bone weight index, bone calcium content, bone mineral density, and bone max load. After treatment with DPs or alendronate, the absorption rate increased and some serum and bone indices recovered. The morphology results indicated bone tissue form were ameliorated and numbers of osteoclasts decreased after supplementation with DPs or alendronate. The in vitro study showed that the transient receptor potential vanilloid 6 (TRPV6) calcium channel was the main transport pathway of both DPs and Val-Ser-Glu-Glu peptitde (VSEE), which was identified from DPs. Our results indicated that DPs could be a promising alternative to current therapeutic agents for bone loss because of the promotion of calcium uptake and regulation of bone formation.
Safari, Roghaiyeh; Salimi, Reza; Tunca, Zeliha; Ozerdem, Aysegul; Ceylan, Deniz; Sakizli, Meral
2016-06-01
Calcium signaling is important for synaptic plasticity, generation of brain rhythms, regulating neuronal excitability, data processing and cognition. Impairment in calcium homeostasis contributed to the development of psychiatric disorders such as bipolar disorder (BP). MCU is the most important calcium transporter in mitochondria inner membrane responsible for influx of Ca[Formula: see text]. MICU1 is linked with MCU and has two canonical EF hands that are vital for its activity and regulates MCU-mediated Ca[Formula: see text] influx. In the current study, we aimed to investigate the role of genetic alteration of EF hand calcium binding motifs of MICU1 on the development of BP. We examined patients with BP, first degree relatives of these patients and healthy volunteers for mutations and polymorphisms in EF hand calcium binding motifs of MICU1. The result showed no SNP/mutation in BP patients, in healthy subjects and in first degree relatives. Additionally, alignment of the EF hand calcium binding regions among species (Gallus-gallus, Canis-lupus-familiaris, Bos-taurus, Mus-musculus, Rattus-norvegicus, Pan-troglodytes, Homosapiens and Danio-rerio) showed exactly the same amino acids (DLNGDGEVDMEE and DCDGNGELSNKE) except in one of the calcium binding domain of Danio-rerio that there was only one difference; leucine instead of Methionine. Our results showed that the SNP on EF-hand Ca[Formula: see text] binding domains of MICU1 gene had no effect in phenotypic characters of BP patients.
Redox Regulation of Neuronal Voltage-Gated Calcium Channels
Jevtovic-Todorovic, Vesna
2014-01-01
Abstract Significance: Voltage-gated calcium channels are ubiquitously expressed in neurons and are key regulators of cellular excitability and synaptic transmitter release. There is accumulating evidence that multiple subtypes of voltage-gated calcium channels may be regulated by oxidation and reduction. However, the redox mechanisms involved in the regulation of channel function are not well understood. Recent Advances: Several studies have established that both T-type and high-voltage-activated subtypes of voltage-gated calcium channel can be redox-regulated. This article reviews different mechanisms that can be involved in redox regulation of calcium channel function and their implication in neuronal function, particularly in pain pathways and thalamic oscillation. Critical Issues: A current critical issue in the field is to decipher precise mechanisms of calcium channel modulation via redox reactions. In this review we discuss covalent post-translational modification via oxidation of cysteine molecules and chelation of trace metals, and reactions involving nitric oxide-related molecules and free radicals. Improved understanding of the roles of redox-based reactions in regulation of voltage-gated calcium channels may lead to improved understanding of novel redox mechanisms in physiological and pathological processes. Future Directions: Identification of redox mechanisms and sites on voltage-gated calcium channel may allow development of novel and specific ion channel therapies for unmet medical needs. Thus, it may be possible to regulate the redox state of these channels in treatment of pathological process such as epilepsy and neuropathic pain. Antioxid. Redox Signal. 21, 880–891. PMID:24161125
Studies on magnetic properties of chemically synthesized crystalline calcium ferrite nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Debnath, A., E-mail: debnathanimesh@gmail.com; Bera, A.; Saha, B.
Spinel-type ferrites have taken a very important role for modern electronic industry. Most of these ferrites exhibit low-loss dielectric properties, high resistivity, low eddy current and also high temperature ferromagnetism. Calcium ferrite is one such important metal oxide which is environmentally safe, chemically stable, low cost and greatly abundant. This outstanding material of calcium ferrite is synthesized by a simple chemical precipitation method using NaOH as the precipitating agent. Ferric chloride anhydrous (FeCl{sub 3}) and Calcium chloride dihydrate (CaCl{sub 2}.2H{sub 2}O) were used as iron and calcium sources respectively. The samples were heated at 200°C for 8h to obtain homogeneousmore » powder of Calcium ferrite. The powders were characterized by using X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), Transmission electrical microscopy (TEM), and Fourier transform infrared spectroscopic (FTIR) measurements. The polycrystalline nature of the sample was confirmed by X-ray diffraction study. The magnetic properties of the sample were investigated by vibrating sample magnetometer (VSM) measurements. Magnetization curve of the prepared sample depicts that as synthesized calcium ferrite nanoparticles have saturation magnetic moment of 1.74 emu/g and the coercivity of 35.08 Oe with superparamagnetic behavior. The synthesized calcium ferrite nanoparticles with such magnetic properties will be a candidate material for different applications in electronics and exploring its functionality in the field of recently developing semiconductor device physics and spintronics.« less
False positive results using calcitonin as a screening method for medullary thyroid carcinoma.
Batista, Rafael Loch; Toscanini, Andrea Cecilia; Brandão, Lenine Garcia; Cunha-Neto, Malebranche Berardo C
2013-05-01
The role of serum calcitonin as part of the evaluation of thyroid nodules has been widely discussed in literature. However there still is no consensus of measurement of calcitonin in the initial evaluation of a patient with thyroid nodule. Problems concerning cost-benefit, lab methods, false positive and low prevalence of medullary thyroid carcinoma (MTC) are factors that limit this approach. We have illustrated two cases where serum calcitonin was used in the evaluation of thyroid nodule and rates proved to be high. A stimulation test was performed, using calcium as secretagogue, and calcitonin hyper-stimulation was confirmed, but anatomopathologic examination did not evidence medullar neoplasia. Anatomopathologic diagnosis detected Hashimoto thyroiditis in one case and adenomatous goiter plus an occult papillary thyroid carcinoma in the other one. Recommendation for routine use of serum calcitonin in the initial diagnostic evaluation of a thyroid nodule, followed by a confirming stimulation test if basal serum calcitonin is showed to be high, is the most currently recommended approach, but questions concerning cost-benefit and possibility of diagnosis error make the validity of this recommendation discussible.
Printing Smart Designs of Light Emitting Devices with Maintained Textile Properties †
Verboven, Inge; Stryckers, Jeroen; Mecnika, Viktorija; Vandevenne, Glen; Jose, Manoj
2018-01-01
To maintain typical textile properties, smart designs of light emitting devices are printed directly onto textile substrates. A first approach shows improved designs for alternating current powder electroluminescence (ACPEL) devices. A configuration with the following build-up, starting from the textile substrate, was applied using the screen printing technique: silver (10 µm)/barium titanate (10 µm)/zinc-oxide (10 µm) and poly(3,4-ethylenedioxythiophene)poly(styrenesulfonate) (10 µm). Textile properties such as flexibility, drapability and air permeability are preserved by implementing a pixel-like design of the printed layers. Another route is the application of organic light emitting devices (OLEDs) fabricated out of following layers, also starting from the textile substrate: polyurethane or acrylate (10–20 µm) as smoothing layer/silver (200 nm)/poly(3,4-ethylenedioxythiophene)poly(styrenesulfonate) (35 nm)/super yellow (80 nm)/calcium/aluminum (12/17 nm). Their very thin nm-range layer thickness, preserving the flexibility and drapability of the substrate, and their low working voltage, makes these devices the possible future in light-emitting wearables. PMID:29438276
Identification of a Potent Tryptophan-based TRPM8 Antagonist With in vivo Analgesic Activity.
Bertamino, Alessia; Iraci, Nunzio; Ostacolo, Carmine; Ambrosino, Paolo; Musella, Simona; Di Sarno, Veronica; Ciaglia, Tania; Pepe, Giacomo; Sala, Marina; Soldovieri, Maria Virginia; Mosca, Ilaria; Gonzalez-Rodriguez, Sara; Fernández-Carvajal, Asia; Ferrer-Montiel, Antonio; Novellino, Ettore; Taglialatela, Maurizio; Campiglia, Pietro; Gomez-Monterrey, Isabel M
2018-06-25
TRPM8 has been implicated in nociception and pain and is currently regarded as an attractive target for the pharmacological treatment of neuropathic pain syndromes. A series of analogues of N,N'-dibenzyl tryptamine 1, a potent TRPM8 antagonist, were prepared and screened using a fluorescence-based in vitro assay based on menthol-evoked calcium influx in TRPM8 stably-transfected HEK293 cells. The tryptophan derivative 14 was identified as a potent (IC 50 0.2±0.2 nM) and selective TRPM8 antagonist. In vivo, 14 showed significant target coverage in both an icilin-induced WDS (at 1-30 mg/kg s.c.) and oxaliplatin-induced cold allodynia (at 0.1-1 μg s.c.) mice models. Molecular modeling studies identified the putative binding mode of these antagonists, suggesting that they could influence an interaction network between the S1-4 transmembrane segments and the TRP domains of the channel subunits. The tryptophan moiety provides a new pharmacophoric scaffold for the design of highly potent modulators of TRPM8-mediated pain.
Currently the US EPA is implementing a screening program for environmental endocrine disruptors. One of the in vivo assays in the Tier 1 Screen of the Endocrine Disruptors Screening Program (EDSP) is a female pubertal assay. In this study we examined the chlorotriazine simazine, ...
[Diagnosis and treatment of pulmonary hypertension].
Román, J Sánchez; Hernández, F J García; Palma, M J Castillo; Medina, C Ocaña
2008-03-01
Pulmonary arterial hypertension is an idiopathic process or can be associated with another circumstances (connective tissue diseases, congenital heart disease, portal hypertension, exposure to appetite suppressants or another drugs or infectious agents such as HIV). Most patients are diagnosed as the result of an evaluation of symptoms, whereas others are diagnosed incidentally or during screening of asymptomatic populations at risk. We reviews systematic screening for the approach to diagnosing pulmonary arterial hypertension. A diagnostic algorithm can guide the evaluation but it can be modified according to specific clinical circumstances. The number of therapeutic options has increased.in the last years. We reviews the use of calcium-channel blockers, prostacyclin (and analogues), endothelin-receptor antagonists, and phosphodiesterase-5 inhibitors, and the use of combination therapy, and provides specific recommendations about the actual treatment.
Compatibility of Automatic Exposure Control with New Screen Phosphors in Diagnostic Roentgenography.
NASA Astrophysics Data System (ADS)
Mulvaney, James Arthur
1982-03-01
Automatic exposure control systems are used in diagnostic roentgenography to obtain proper film density for a variety of patient examinations and roentgenographic techniques. Most automatic exposure control systems have been designed for use with par speed, calcium tungstate intensifying screens. The use of screens with faster speeds and new phosphor materials has put extreme demands on present systems. The performance of a representative automatic exposure control system is investigated to determine its ability to maintain constant film density over a wide range of x-ray tube voltages and acrylic phantom thicknesses with four different intensifying screen phosphors. The effects of x-ray energy dependence, generator switching time and stored change are investigated. The system is able to maintain film density to within plus or minus 0.2 optical density units for techniques representing adult patients. A single nonadjustable tube voltage compensation circuit is adequate for the four different screen phosphors for x-ray tube voltages above sixty peak kilovolts. For techniques representing pediatric patients at high x-ray tube voltages, excess film density occurs due to stored charge in the transformer and high-voltage cables. An anticipation circuit in the automatic exposure control circuit can be modified to correct for stored charge effects. In a separate experiment the energy dependence of three different ionization chamber detectors used in automatic exposure control systems is compared directly with the energy dependence of three different screen phosphors. The data on detector sensitivity and screen speed are combined to predict the best tube voltage compensation for each combination of screen and detector.
Screening of CO2 Laser (10.6 μm) Parameters for Prevention of Enamel Erosion
Yu, Hao; de Paula Eduardo, Carlos; Meister, Jörg; Lampert, Friedrich; Attin, Thomas; Wiegand, Annette
2012-01-01
Abstract Objective: The aim of this study was to screen CO2 laser (10.6 μm) parameters to increase enamel resistance to a continuous-flow erosive challenge. Background data: A new clinical CO2 laser providing pulses of hundreds of microseconds, a range known to increase tooth acid-resistance, has been introduced in the market. Methods: Different laser parameters were tested in 12 groups (n=20) with varying fluences from 0.1 to 0.9 J/cm2, pulse durations from 80 to 400 μs and repetition rates from 180 to 700 Hz. Non-lased samples (n=30) served as controls. All samples were eroded by exposure to hydrochloric acid (pH 2.6) under continuous acid flow (60 μL/min). Calcium and phosphate release into acid was monitored colorimetrically at 30 sec intervals up to 5 min and at 1 min intervals up to a total erosion time of 15 min. Scanning electron microscopic (SEM) analysis was performed in lased samples (n=3). Data were statistically analysed by one-way ANOVA (p<0.05) and Dunnett's post-hoc tests. Results: Calcium and phosphate release were significantly reduced by a maximum of 20% over time in samples irradiated with 0.4 J/cm2 (200μs) at 450 Hz. Short-time reduction of calcium loss (≤1.5 min) could be also achieved by irradiation with 0.7 J/cm2 (300μs) at 200 and 300 Hz. Both parameters revealed surface modification. Conclusions: A set of CO2 laser parameters was found that could significantly reduce enamel mineral loss (20%) under in vitro erosive conditions. However, as all parameters also caused surface cracking, they are not recommended for clinical use. PMID:22462778
A novel organotypic 3D sweat gland model with physiological functionality
Grüdl, Sabine; Banowski, Bernhard; Giesen, Melanie; Sättler, Andrea; Proksch, Peter; Welss, Thomas; Förster, Thomas
2017-01-01
Dysregulated human eccrine sweat glands can negatively impact the quality-of-life of people suffering from disorders like hyperhidrosis. Inability of sweating can even result in serious health effects in humans affected by anhidrosis. The underlying mechanisms must be elucidated and a reliable in vitro test system for drug screening must be developed. Here we describe a novel organotypic three-dimensional (3D) sweat gland model made of primary human eccrine sweat gland cells. Initial experiments revealed that eccrine sweat gland cells in a two-dimensional (2D) culture lose typical physiological markers. To resemble the in vivo situation as close as possible, we applied the hanging drop cultivation technology regaining most of the markers when cultured in its natural spherical environment. To compare the organotypic 3D sweat gland model versus human sweat glands in vivo, we compared markers relevant for the eccrine sweat gland using transcriptomic and proteomic analysis. Comparing the marker profile, a high in vitro-in vivo correlation was shown. Carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5), muscarinic acetylcholine receptor M3 (CHRM3), Na+-K+-Cl- cotransporter 1 (NKCC1), calcium-activated chloride channel anoctamin-1 (ANO1/TMEM16A), and aquaporin-5 (AQP5) are found at significant expression levels in the 3D model. Moreover, cholinergic stimulation with acetylcholine or pilocarpine leads to calcium influx monitored in a calcium flux assay. Cholinergic stimulation cannot be achieved with the sweat gland cell line NCL-SG3 used as a sweat gland model system. Our results show clear benefits of the organotypic 3D sweat gland model versus 2D cultures in terms of the expression of essential eccrine sweat gland key regulators and in the physiological response to stimulation. Taken together, this novel organotypic 3D sweat gland model shows a good in vitro-in vivo correlation and is an appropriate alternative for screening of potential bioactives regulating the sweat mechanism. PMID:28796813
Cellular roles of neuronal calcium sensor-1 and calcium/calmodulin-dependent kinases in fungi.
Tamuli, Ranjan; Kumar, Ravi; Deka, Rekha
2011-04-01
The neuronal calcium sensor-1 (NCS-1) possesses a consensus signal for N-terminal myristoylation and four EF-hand Ca(2+)-binding sites, and mediates the effects of cytosolic Ca(2+). Minute changes in free intracellular Ca(2+) are quickly transformed into changes in the activity of several kinases including calcium/calmodulin-dependent protein kinases (Ca(2+)/CaMKs) that are involved in regulating many eukaryotic cell functions. However, our current knowledge of NCS-1 and Ca(2+)/CaMKs comes mostly from studies of the mammalian enzymes. Thus far very few fungal homologues of NCS-1 and Ca(2+)/CaMKs have been characterized and little is known about their cellular roles. In this minireview, we describe the known sequences, interactions with target proteins and cellular roles of NCS-1 and Ca(2+)/CaMKs in fungi. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The mitochondrial uniporter controls fight or flight heart rate increases.
Wu, Yuejin; Rasmussen, Tyler P; Koval, Olha M; Joiner, Mei-Ling A; Hall, Duane D; Chen, Biyi; Luczak, Elizabeth D; Wang, Qiongling; Rokita, Adam G; Wehrens, Xander H T; Song, Long-Sheng; Anderson, Mark E
2015-01-20
Heart rate increases are a fundamental adaptation to physiological stress, while inappropriate heart rate increases are resistant to current therapies. However, the metabolic mechanisms driving heart rate acceleration in cardiac pacemaker cells remain incompletely understood. The mitochondrial calcium uniporter (MCU) facilitates calcium entry into the mitochondrial matrix to stimulate metabolism. We developed mice with myocardial MCU inhibition by transgenic expression of a dominant-negative (DN) MCU. Here, we show that DN-MCU mice had normal resting heart rates but were incapable of physiological fight or flight heart rate acceleration. We found that MCU function was essential for rapidly increasing mitochondrial calcium in pacemaker cells and that MCU-enhanced oxidative phoshorylation was required to accelerate reloading of an intracellular calcium compartment before each heartbeat. Our findings show that MCU is necessary for complete physiological heart rate acceleration and suggest that MCU inhibition could reduce inappropriate heart rate increases without affecting resting heart rate.
Kazzi, Ziad N; Heyl, Alexander; Ruprecht, Johann
2012-08-01
The accidental or intentional release of plutonium or americium can cause acute and long term adverse health effects if they enter the human body by ingestion, inhalation, or injection. These effects can be prevented by rapid removal of these radionuclides by chelators such as calcium or zinc diethylenetriaminepentaacetate (calcium or zinc DTPA). These compounds have been shown to be efficacious in enhancing the elimination of members of the actinide family particularly plutonium and americium when administered intravenously or by nebulizer. The efficacy and adverse effects profile depend on several factors that include the route of internalization of the actinide, the type, and route time of administration of the chelator, and whether the calcium or zinc salt of DTPA is used. Current and future research efforts should be directed at overcoming limitations associated with the use of these complex drugs by using innovative methods that can enhance their structural and therapeutic properties.
Relationship between Calcium Score and Myocardial Scintigraphy in the Diagnosis of Coronary Disease
Siqueira, Fabio Paiva Rossini; Mesquita, Claudio Tinoco; dos Santos, Alair Augusto Sarmet M. Damas; Nacif, Marcelo Souto
2016-01-01
Half the patients with coronary artery disease present with sudden death - or acute infarction as first symptom, making early diagnosis pivotal. Myocardial perfusion scintigraphy is frequently used in the assessment of these patients, but it does not detect the disease without flow restriction, exposes the patient to high levels of radiation and is costly. On the other hand, with less radiological exposure, calcium score is directly correlated to the presence and extension of coronary atherosclerosis, and also to the risk of cardiovascular events. Even though calcium score is a tried-and-true method for stratification of asymptomatic patients, its use is still reduced in this context, since current guidelines are contradictory to its use on symptomatic diseases. The aim of this review is to identify, on patients under investigation for coronary artery disease, the main evidence of the use of calcium score associated with functional evaluation and scintigraphy. PMID:27437867
Bioactive calcium phosphate–based glasses and ceramics and their biomedical applications: A review
Islam, Md Towhidul; Felfel, Reda M; Abou Neel, Ensanya A; Grant, David M; Ahmed, Ifty; Hossain, Kazi M Zakir
2017-01-01
An overview of the formation of calcium phosphate under in vitro environment on the surface of a range of bioactive materials (e.g. from silicate, borate, and phosphate glasses, glass-ceramics, bioceramics to metals) based on recent literature is presented in this review. The mechanism of bone-like calcium phosphate (i.e. hydroxyapatite) formation and the test protocols that are either already in use or currently being investigated for the evaluation of the bioactivity of biomaterials are discussed. This review also highlights the effect of chemical composition and surface charge of materials, types of medium (e.g. simulated body fluid, phosphate-buffered saline and cell culture medium) and test parameters on their bioactivity performance. Finally, a brief summary of the biomedical applications of these newly formed calcium phosphate (either in the form of amorphous or apatite) is presented. PMID:28794848
Arctigenin exhibits relaxation effect on bronchus by affecting transmembrane flow of calcium.
Zhao, Zhenying; Yin, Yongqiang; Wang, Zengyong; Fang, Runping; Wu, Hong; Jiang, Min; Bai, Gang; Luo, Guo'an
2013-12-01
Arctigenin, a lignan extract from Arctium lappa (L.), exhibits anti-inflammation, antioxidation, vasodilator effects, etc. However, the effects of arctigenin on bronchus relaxation are not well investigated. This study aimed to investigate how arctigenin regulates bronchus tone and calcium ion (Ca(2+)) flow. Trachea strips of guinea pigs were prepared for testing the relaxation effect of arctigenin to acetylcholine, histamine, KCl, and CaCl2, respectively. Furthermore, L-type calcium channel currents were detected by patch-clamp, and intracellular Ca(2+) concentration was detected by confocal microscopy. The results showed that arctigenin exhibited relaxation effect on tracheae to different constrictors, and this was related to decreasing cytoplasmic Ca(2+) concentration by inhibiting Ca(2+) influx partly through L-type calcium channel as well as promoting Ca(2+) efflux. In summary, this study provides new insight into the mechanisms by which arctigenin exhibits relaxation effect on bronchus and suggests its potential use for airway disease therapy.
Podor, Borbala; Hu, Yi-ling; Ohkura, Masamichi; Nakai, Junichi; Croll, Roger; Fine, Alan
2015-01-01
Abstract. Imaging calcium transients associated with neuronal activity has yielded important insights into neural physiology. Genetically encoded calcium indicators (GECIs) offer conspicuous potential advantages for this purpose, including exquisite targeting. While the catalogue of available GECIs is steadily growing, many newly developed sensors that appear promising in vitro or in model cells appear to be less useful when expressed in mammalian neurons. We have, therefore, evaluated the performance of GECIs from two of the most promising families of sensors, G-CaMPs [Nat. Biotechnol. 19(2), 137–141 (2001)11175727] and GECOs [Science 333(6051), 1888–1891 (2011)21903779], for monitoring action potentials in rat brain. Specifically, we used two-photon excitation fluorescence microscopy to compare calcium transients detected by G-CaMP3; GCaMP6f; G-CaMP7; Green-GECO1.0, 1.1 and 1.2; Blue-GECO; Red-GECO; Rex-GECO0.9; Rex-GECO1; Carmine-GECO; Orange-GECO; and Yellow-GECO1s. After optimizing excitation wavelengths, we monitored fluorescence signals associated with increasing numbers of action potentials evoked by current injection in CA1 pyramidal neurons in rat organotypic hippocampal slices. Some GECIs, particularly Green-GECO1.2, GCaMP6f, and G-CaMP7, were able to detect single action potentials with high reliability. By virtue of greatest sensitivity and fast kinetics, G-CaMP7 may be the best currently available GECI for monitoring calcium transients in mammalian neurons. PMID:26158004
Fox, A P; Nowycky, M C; Tsien, R W
1987-01-01
1. Calcium currents in cultured dorsal root ganglion (d.r.g.) cells were studied with the whole-cell patch-clamp technique. Using experimental conditions that suppressed Na+ and K+ currents, and 3-10 mM-external Ca2+ or Ba2+, we distinguished three distinct types of calcium currents (L, T and N) on the basis of voltage-dependent kinetics and pharmacology. 2. Component L activates at relatively positive test potentials (t.p. greater than -10 mV) and shows little inactivation during a 200 ms depolarization. It is completely reprimed at a holding potential (h.p.) of -60 mV, and can be isolated by using a more depolarized h.p. (-40 mV) to inactivate the other two types of calcium currents. 3. Component T can be seen in isolation with weak test pulses. It begins activating at potentials more positive than -70 mV and inactivates quickly and completely during a maintained depolarization (time constant, tau approximately 20-50 ms). The current amplitude and the rate of decay increase with stronger depolarizations until both reach a maximum at approximately -40 mV. Inactivation is complete at h.p. greater than -60 mV and is progressively removed between -60 and -95 mV. 4. Component N activates at relatively strong depolarizations (t.p. greater than -20 mV) and decays with time constants ranging from 50 to 110 ms. Inactivation is removed over a very broad range of holding potentials (h.p. between -40 and -110 mV). 5. With 10 mM-EGTA in the pipette solution, substitution of Ba2+ for Ca2+ as the charge carrier does not alter the rates of activation or relaxation of any component. However, T-type channels are approximately equally permeable to Ca2+ and Ba2+, while L-type and N-type channels are both much more permeable to Ba2+. 6. Component N cannot be explained by current-dependent inactivation of L current resulting from recruitment of extra L-type channels at negative holding potentials: raising the external Ba2+ concentration to 110 mM greatly increases the amplitude of L current evoked from h.p. = -30 mV but produces little inactivation. 7. Cadmium ions (20-50 microM) virtually eliminate both N and L currents (greater than 90% block) but leave T relatively unaffected (less than 50% block). 200 microM-Cd2+ blocks all three components. 8. Nickel ions (100 microM) strongly reduce T current but leave N and L current little changed. 9. The dihydropyridine antagonist nifedipine (10 microM) inhibits L current (approximately 60% block) at a holding potential that inactivates half the L-type channels.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:2451016
Williams, Hannah L; Mansell, Steven; Alasmari, Wardah; Brown, Sean G; Wilson, Stuart M; Sutton, Keith A; Miller, Melissa R; Lishko, Polina V; Barratt, Christopher L R; Publicover, Steven J; Martins da Silva, Sarah
2015-12-01
Are significant abnormalities of CatSper function present in IVF patients with normal sperm concentration and motility and if so what is their functional significance for fertilization success? Sperm with a near absence of CatSper current failed to respond to activation of CatSper by progesterone and there was fertilization failure at IVF. In human spermatozoa, Ca(2+) influx induced by progesterone is mediated by CatSper, a sperm-specific Ca(2+) channel. A suboptimal Ca(2+) influx is significantly associated with, and more prevalent in, men with abnormal semen parameters, and is associated with reduced fertilizing capacity. However, abnormalities in CatSper current can only be assessed directly using electrophysiology. There is only one report of a CatSper-deficient man who showed no progesterone potentiated CatSper current. A CatSper 2 genetic abnormality was present but there was no information on the [Ca(2+)]i response to CatSper activation by progesterone. Additionally, the semen samples had indicating significant abnormalities (oligoasthenoteratozoospermia) multiple suboptimal functional responses in the spermatozoon. As such it cannot be concluded that impaired CatSper function alone causes infertility or that CatSper blockade is a potential safe target for contraception. Spermatozoa were obtained from donors and subfertile IVF patients attending a hospital assisted reproductive techniques clinic between January 2013 and December 2014. In total 134 IVF patients, 28 normozoospermic donors and 10 patients recalled due to a history of failed/low fertilization at IVF took part in the study. Samples were primarily screened using the Ca(2+) influx induced by progesterone and, if cell number was sufficient, samples were also assessed by hyperactivation and penetration into viscous media. A defective Ca(2+) response to progesterone was defined using the 99% confidence interval from the distribution of response amplitudes in normozoospermic donors. Samples showing a defective Ca(2+) response were further examined in order to characterize the potential CatSper abnormalities. In men where there was a consistent and robust failure of calcium signalling, a direct assessment of CatSper function was performed using electrophysiology (patch clamping), and a blood sample was obtained for genetic analysis. A total of 101/102 (99%) IVF patients and 22/23 (96%) donors exhibited a normal Ca(2+) response. The mean (± SD) normalized peak response did not differ between donors and IVF patients (2.57 ± 0.68 [n = 34 ejaculates from 23 different donors] versus 2.66 ± 0.68 [n = 102 IVF patients], P = 0.63). In recall patients, 9/10 (90%) showed a normal Ca(2+) response. Three men were initially identified with a defective Ca(2+) influx. However, only one (Patient 1) had a defective response in repeat semen samples. Electrophysiology experiments on sperm from Patient 1 showed a near absence of CatSper current and exon screening demonstrated no mutations in the coding regions of the CatSper complex. There was no increase in penetration of viscous media when the spermatozoa were stimulated with progesterone and importantly there was failed fertilization at IVF. A key limitation relates to working with a specific functional parameter (Ca(2+) influx induced by progesterone) in fresh sperm samples from donors and patients that have limited viability. Therefore, for practical, technical and logistical reasons, some men (∼ 22% of IVF patients) could not be screened. As such the incidence of significant Ca(2+) abnormalities induced by progesterone may be higher than the ∼ 1% observed here. Additionally, we used a strict definition of a defective Ca(2+) influx such that only substantial abnormalities were selected for further study. Furthermore, electrophysiology was only performed on one patient with a robust and repeatable defective calcium response. This man had negligible CatSper current but more subtle abnormalities (e.g. currents present but significantly smaller) may have been present in men with either normal or below normal Ca(2+) influx. These data add significantly to the understanding of the role of CatSper in human sperm function and its impact on male fertility. Remarkably, these findings provide the first direct evidence that CatSper is a suitable and specific target for human male contraception. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology.
Cardiac voltage gated calcium channels and their regulation by β-adrenergic signaling.
Kumari, Neema; Gaur, Himanshu; Bhargava, Anamika
2018-02-01
Voltage-gated calcium channels (VGCCs) are the predominant source of calcium influx in the heart leading to calcium-induced calcium release and ultimately excitation-contraction coupling. In the heart, VGCCs are modulated by the β-adrenergic signaling. Signaling through β-adrenergic receptors (βARs) and modulation of VGCCs by β-adrenergic signaling in the heart are critical signaling and changes to these have been significantly implicated in heart failure. However, data related to calcium channel dysfunction in heart failure is divergent and contradictory ranging from reduced function to no change in the calcium current. Many recent studies have highlighted the importance of functional and spatial microdomains in the heart and that may be the key to answer several puzzling questions. In this review, we have briefly discussed the types of VGCCs found in heart tissues, their structure, and significance in the normal and pathological condition of the heart. More importantly, we have reviewed the modulation of VGCCs by βARs in normal and pathological conditions incorporating functional and structural aspects. There are different types of βARs, each having their own significance in the functioning of the heart. Finally, we emphasize the importance of location of proteins as it relates to their function and modulation by co-signaling molecules. Its implication on the studies of heart failure is speculated. Copyright © 2017 Elsevier Inc. All rights reserved.
Szebényi, Kornélia; Füredi, András; Kolacsek, Orsolya; Pergel, Enikő; Bősze, Zsuzsanna; Bender, Balázs; Vajdovich, Péter; Tóvári, József; Homolya, László; Szakács, Gergely; Héja, László; Enyedi, Ágnes; Sarkadi, Balázs; Apáti, Ágota; Orbán, Tamás I.
2015-01-01
In drug discovery, prediction of selectivity and toxicity require the evaluation of cellular calcium homeostasis. The rat is a preferred laboratory animal for pharmacology and toxicology studies, while currently no calcium indicator protein expressing rat model is available. We established a transgenic rat strain stably expressing the GCaMP2 fluorescent calcium sensor by a transposon-based methodology. Zygotes were co-injected with mRNA of transposase and a CAG-GCaMP2 expressing construct, and animals with one transgene copy were pre-selected by measuring fluorescence in blood cells. A homozygous rat strain was generated with high sensor protein expression in the heart, kidney, liver, and blood cells. No pathological alterations were found in these animals, and fluorescence measurements in cardiac tissue slices and primary cultures demonstrated the applicability of this system for studying calcium signaling. We show here that the GCaMP2 expressing rat cardiomyocytes allow the prediction of cardiotoxic drug side-effects, and provide evidence for the role of Na+/Ca2+ exchanger and its beneficial pharmacological modulation in cardiac reperfusion. Our data indicate that drug-induced alterations and pathological processes can be followed by using this rat model, suggesting that transgenic rats expressing a calcium-sensitive protein provide a valuable system for pharmacological and toxicological studies. PMID:26234466
Gasperini, Robert J; Pavez, Macarena; Thompson, Adrian C; Mitchell, Camilla B; Hardy, Holly; Young, Kaylene M; Chilton, John K; Foa, Lisa
2017-10-01
The precision with which neurons form connections is crucial for the normal development and function of the nervous system. The development of neuronal circuitry in the nervous system is accomplished by axon pathfinding: a process where growth cones guide axons through the embryonic environment to connect with their appropriate synaptic partners to form functional circuits. Despite intense efforts over many years to understand how this process is regulated, the complete repertoire of molecular mechanisms that govern the growth cone cytoskeleton and hence motility, remain unresolved. A central tenet in the axon guidance field is that calcium signals regulate growth cone behaviours such as extension, turning and pausing by regulating rearrangements of the growth cone cytoskeleton. Here, we provide evidence that not only the amplitude of a calcium signal is critical for growth cone motility but also the source of calcium mobilisation. We provide an example of this idea by demonstrating that manipulation of calcium signalling via L-type voltage gated calcium channels can perturb sensory neuron motility towards a source of netrin-1. Understanding how calcium signals can be transduced to initiate cytoskeletal changes represents a significant gap in our current knowledge of the mechanisms that govern axon guidance, and consequently the formation of functional neural circuits in the developing nervous system. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.
Farkas, Michael H; Mojica, Elmer-Rico E; Patel, Minesh; Aga, Diana S; Berry, James O
2009-08-01
Tetracycline antibiotics, such as chlortetracycline (CTC) and tetracycline (TC), are introduced into agricultural lands through the application of manure as fertilizer. These compounds are phytotoxic to certain crop plants, including pinto beans (Phaseolus vulgaris), the species used for this investigation. While the mechanism of this toxicity is not yet understood, CTC is known to be a calcium chelator. We describe here a novel method to show that CTC is taken up by pinto bean plants and chelates calcium in leaves. Cameleon fusion proteins can provide qualitative and quantitative imaging of intracellular calcium levels, but current methodology requires stable transformation. Many plant species, including pinto beans, are not yet transformable using standard Agrobacterium-based protocols. To determine the role of calcium chelation in this plant, a rapid, biolistic method was developed to transiently express the cameleon protein. This method can easily be adapted to other plant systems. Our findings provide evidence that chelation of intracellular calcium by CTC is related to phytotoxic effects caused by this antibiotic in pinto beans. Root uptake of CTC and TC by pinto beans and their translocation to leaves were further verified by fluorescence spectroscopy and liquid chromatography/mass spectrometry, confirming results of the biolistic method that showed calcium chelation by tetracyclines in leaves.
Calcium and vitamin D for obesity: a review of randomized controlled trials.
Soares, M J; Chan She Ping-Delfos, W; Ghanbari, M H
2011-09-01
Obesity often coexists with low calcium intake and vitamin D insufficiency. There is emerging evidence of a role for these nutrients in the regulation of body weight. However, it is unclear whether increasing intakes of calcium and/or vitamin D during energy restriction, is a better strategy for weight and fat loss. We searched the literature from 2000 to date for randomized controlled trials (RCTs) on weight loss that had increased calcium or vitamin D per se, or in combination. Primary and secondary studies were included for this analysis. A total of 15 RCTs on calcium with or without vitamin D and seven on vitamin D alone met our criteria. Two studies reported that supplemental calcium significantly increased fat loss during caloric restriction by 1.8 and 2.2 kg, three found differences between 1 and 3.5 kg but were statistically nonsignificant, while nine trials were equivocal (±0.7 kg). The data on vitamin D supplementation during weight loss were too few to make firm conclusions. Current evidence from RCTs did not consistently support the contention that calcium and vitamin D accelerated weight or fat loss in obesity. There were studies that favoured the hypothesis but lacked the statistical power. There is a need for RCTs to examine the influence of vitamin D on body fat.
FGF-23 dysregulates calcium homeostasis and electrophysiological properties in HL-1 atrial cells.
Kao, Yu-Hsun; Chen, Yao-Chang; Lin, Yung-Kuo; Shiu, Rong-Jie; Chao, Tze-Fan; Chen, Shih-Ann; Chen, Yi-Jen
2014-08-01
Fibroblast growth factor (FGF)-23 is a key regulator of phosphate homeostasis. Higher FGF-23 levels are correlated with poor outcomes in cardiovascular diseases. FGF-23 can produce cardiac hypertrophy and increase intracellular calcium, which can change cardiac electrical activity. However, it is not clear whether FGF-23 possesses arrhythmogenic potential through calcium dysregulation. Therefore, the purposes of this study were to evaluate the electrophysiological effects of FGF-23 and identify the underlying mechanisms. Patch clamp, confocal microscope with Fluo-4 fluorescence, and Western blot analyses were used to evaluate the electrophysiological characteristics, calcium homeostasis and calcium regulatory proteins in HL-1 atrial myocytes with and without FGF-23 (10 and 25 ng/mL) incubation for 24 h. FGF-23 (25 ng/mL) increased L-type calcium currents, calcium transient and sarcoplasmic reticulum Ca(2+) contents in HL-1 cells. FGF-23 (25 ng/mL)-treated cells (n = 14) had greater incidences (57%, 17% and 15%, P < 0·05) of delayed afterdepolarizations than control (n = 12) and FGF-23 (10 ng/mL)-treated cells (n = 13). Compared with control cells, FGF-23 (25 ng/mL)-treated cells (n = 14) exhibited increased phosphorylation of calcium/calmodulin-dependent protein kinase IIδ and phospholamban (PLB) at threonine 17 but had similar phosphorylation extents of PLB at serine 16, total PLB and sarcoplasmic reticulum Ca(2+) -ATPase protein. Moreover, the FGF receptor inhibitor (PD173074, 10 nM), calmodulin inhibitor (W7, 5 μM) and phospholipase C inhibitor (U73122, 1 μM) attenuated the effects of FGF-23 on calcium/calmodulin-dependent protein kinase II phosphorylation. FGF-23 increases HL-1 cells arrhythmogenesis with calcium dysregulation through modulating calcium-handling proteins. © 2014 Stichting European Society for Clinical Investigation Journal Foundation.
Smith, Robert A; Andrews, Kimberly S; Brooks, Durado; Fedewa, Stacey A; Manassaram-Baptiste, Deana; Saslow, Debbie; Brawley, Otis W; Wender, Richard C
2018-05-30
Each year, the American Cancer Society publishes a summary of its guidelines for early cancer detection, data and trends in cancer screening rates from the National Health Interview Survey, and select issues related to cancer screening. In this 2018 update, we also summarize the new American Cancer Society colorectal cancer screening guideline and include a clarification in the language of the 2013 lung cancer screening guideline. CA Cancer J Clin 2018. © 2018 American Cancer Society. © 2018 American Cancer Society.
1975-01-01
The calcium sequestering agent, EGTA, was injected into Limulus ventral photoreceptors. Before injection, the inward membrane current induced by a long stimulus had a large initial transient which declined to a smaller plateau. Iontophoretic injection of EGTA tended to prevent the decline from transient to plateau. Before injection the plateau response was a nonlinear function of light intensity. After EGTA injection the response-intensity curves tended to become linear. Before injection, bright lights lowered the sensitivity as determined with subsequent test flashes. EGTA injection decreased the light-induced changes in sensitivity. Ca-EGTA buffers having different levels of free calcium were pressure-injected into ventral photoreceptors; the higher the level of free calcium, the lower the sensitivity measured after injection. The effects of inotophoretic injection of EGTA were not mimicked by injection or similar amounts of sulfate and the effects of pressure injection of EGTA buffer solutions were not mimicked by injection of similar volumes of pH buffer or mannitol. The data are consistent with the hypothesis that light adaptation is mediated by a rise of the intracellular free calcium concentration. PMID:810540
Role of calcium signaling in epithelial bicarbonate secretion.
Jung, Jinsei; Lee, Min Goo
2014-06-01
Transepithelial bicarbonate secretion plays a key role in the maintenance of fluid and protein secretion from epithelial cells and the protection of the epithelial cell surface from various pathogens. Epithelial bicarbonate secretion is mainly under the control of cAMP and calcium signaling. While the physiological roles and molecular mechanisms of cAMP-induced bicarbonate secretion are relatively well defined, those induced by calcium signaling remain poorly understood in most epithelia. The present review summarizes the current status of knowledge on the role of calcium signaling in epithelial bicarbonate secretion. Specifically, this review introduces how cytosolic calcium signaling can increase bicarbonate secretion by regulating membrane transport proteins and how it synergizes with cAMP-induced mechanisms in epithelial cells. In addition, tissue-specific variations in the pancreas, salivary glands, intestines, bile ducts, and airways are discussed. We hope that the present report will stimulate further research into this important topic. These studies will provide the basis for future medicines for a wide spectrum of epithelial disorders including cystic fibrosis, Sjögren's syndrome, and chronic pancreatitis. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Qiu, Guohong; Jiang, Kai; Ma, Meng; Wang, Dihua; Jin, Xianbo; Chen, George Z.
2007-06-01
Previous work, mainly from this research group, is re-visited on electrochemical reduction of solid metal oxides, in the form of compacted powder, in molten CaCl2, aiming at further understanding of the roles of cationic and elemental calcium. The discussion focuses on six aspects: 1.) debate on two mechanisms proposed in the literature, i. e. electro-metallothermic reduction and electro-reduction (or electro-deoxidation), for the electrolytic removal of oxygen from solid metals or metal oxides in molten CaCl2; 2.) novel metallic cavity working electrodes for electrochemical investigations of compacted metal oxide powders in high temperature molten salts assisted by a quartz sealed Ag/AgCl reference electrode (650 ºC- 950 ºC); 3.) influence of elemental calcium on the background current observed during electrolysis of solid metal oxides in molten CaCl2; 4.) electrochemical insertion/ inclusion of cationic calcium into solid metal oxides; 5.) typical features of cyclic voltammetry and chronoamperometry (potentiostatic electrolysis) of metal oxide powders in molten CaCl2; and 6.) some kinetic considerations on the electrolytic removal of oxygen.
Stewart, Sarah E; Bird, Catherina H; Tabor, Rico F; D'Angelo, Michael E; Piantavigna, Stefania; Whisstock, James C; Trapani, Joseph A; Martin, Lisandra L; Bird, Phillip I
2015-12-25
Perforin is an essential component in the cytotoxic lymphocyte-mediated cell death pathway. The traditional view holds that perforin monomers assemble into pores in the target cell membrane via a calcium-dependent process and facilitate translocation of cytotoxic proteases into the cytoplasm to induce apoptosis. Although many studies have examined the structure and role of perforin, the mechanics of pore assembly and granzyme delivery remain unclear. Here we have employed quartz crystal microbalance with dissipation monitoring (QCM-D) to investigate binding and assembly of perforin on lipid membranes, and show that perforin monomers bind to the membrane in a cooperative manner. We also found that cholesterol influences perforin binding and activity on intact cells and model membranes. Finally, contrary to current thinking, perforin efficiently binds membranes in the absence of calcium. When calcium is added to perforin already on the membrane, the QCM-D response changes significantly, indicating that perforin becomes membranolytic only after calcium binding. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Fiber-enriched double-setting calcium phosphate bone cement.
dos Santos, Luís Alberto; Carrodéguas, Raúl Garcia; Boschi, Anselmo Ortega; Fonseca de Arruda, Antônio Celso
2003-05-01
Calcium phosphate bone cements are useful in orthopedics and traumatology, their main advantages being their biocompatibility and bioactivity, which render bone tissue osteoconductive, providing in situ hardening and easy handling. However, their low mechanical strength, which, in the best of cases, is equal to the trabecular bone, and their very low toughness are disadvantages. Calcium phosphate cement compositions with mechanical properties more closely resembling those of human bone would broaden the range of applications, which is currently limited to sites subjected to low loads. This study investigated the influence of added polypropylene, nylon, and carbon fibers on the mechanical properties of double setting alpha-tricalcium phosphate-based cement, using calcium phosphate cement added to an in situ polymerizable acrylamide-based system recently developed by the authors. Although the addition of fibers was found to reduce the compression strength of the double-setting calcium phosphate cement because of increased porosity, it strongly increased the cement's toughness (J(IC)) and tensile strength. The composites developed in this work, therefore, have a potential application in shapes subjected to flexure. Copyright 2003 Wiley Periodicals, Inc.
Drug target identification in protozoan parasites.
Müller, Joachim; Hemphill, Andrew
2016-08-01
Despite the fact that diseases caused by protozoan parasites represent serious challenges for public health, animal production and welfare, only a limited panel of drugs has been marketed for clinical applications. Herein, the authors investigate two strategies, namely whole organism screening and target-based drug design. The present pharmacopoeia has resulted from whole organism screening, and the mode of action and targets of selected drugs are discussed. However, the more recent extensive genome sequencing efforts and the development of dry and wet lab genomics and proteomics that allow high-throughput screening of interactions between micromolecules and recombinant proteins has resulted in target-based drug design as the predominant focus in anti-parasitic drug development. Selected examples of target-based drug design studies are presented, and calcium-dependent protein kinases, important drug targets in apicomplexan parasites, are discussed in more detail. Despite the enormous efforts in target-based drug development, this approach has not yet generated market-ready antiprotozoal drugs. However, whole-organism screening approaches, comprising of both in vitro and in vivo investigations, should not be disregarded. The repurposing of already approved and marketed drugs could be a suitable strategy to avoid fastidious approval procedures, especially in the case of neglected or veterinary parasitoses.
Sekercioglu, Nigar; Thabane, Lehana; Díaz Martínez, Juan Pablo; Nesrallah, Gihad; Longo, Christopher J; Busse, Jason W; Akhtar-Danesh, Noori; Agarwal, Arnav; Al-Khalifah, Reem; Iorio, Alfonso; Guyatt, Gordon H
2016-01-01
Chronic kidney disease-mineral and bone disorder (CKD-MBD) has been linked to poor health outcomes, including diminished quality and length of life. This condition is characterized by high phosphate levels and requires phosphate-lowering agents-phosphate binders. The objective of this systematic review is to compare the effects of available phosphate binders on patient-important outcomes in patients with CKD-MBD. Data sources included MEDLINE and EMBASE Trials from 1996 to February 2016. We also searched the Cochrane Register of Controlled Trials up to April 2016. Teams of two reviewers, independently and in duplicate, screened titles and abstracts and potentially eligible full text reports to determine eligibility, and subsequently abstracted data and assessed risk of bias in eligible randomized controlled trials (RCTs). Eligible trials enrolled patients with CKD-MBD, randomized them to receive calcium (delivered as calcium acetate, calcium citrate or calcium carbonate), non-calcium-based phosphate binders (NCBPB) (sevelamer hydrochloride, sevelamer carbonate, lanthanum carbonate, sucroferric oxyhydroxide and ferric citrate), phosphorus restricted diet, placebo or no treatment, and reported effects on all-cause mortality, cardiovascular mortality or hospitalization at ≥4 weeks follow-up. We performed network meta-analyses (NMA) for all cause-mortality for individual agents (seven-node analysis) and conventional meta-analysis of calcium vs. NCBPBs for all-cause mortality, cardiovascular mortality and hospitalization. In the NMAs, we calculated the effect estimates for direct, indirect and network meta-analysis estimates; for both NMA and conventional meta-analysis, we pooled treatment effects as risk ratios (RR) and calculated 95% confidence intervals (CIs) using random effect models. We used the GRADE (Grading of Recommendations, Assessment, Development and Evaluation) approach to rate the quality of evidence for each paired comparison. Our search yielded 1190 citations, of which 71 RCTs were retrieved for full review and 15 proved eligible. With 13 eligible studies from a prior review, we included 28 studies with 8335 participants; 25 trials provided data for our quantitative synthesis. Results suggest higher mortality with calcium than either sevelamer (NMA RR, 1.89 [95% CI, 1.02 to 3.50], moderate quality evidence) or NCBPBs (conventional meta-analysis RR, 1.76 [95% CI, 1.21 to 2.56, moderate quality evidence). Conventional meta-analysis suggested no difference in cardiovascular mortality between calcium and NCBPBs (RR, 2.54 [95% CI, 0.67 to 9.62 low quality evidence). Our results suggest higher hospitalization, although non-significant, with calcium than NCBPBs (RR, 1.293 [95% CI, 0.94 to 1.74, moderate quality evidence). Use of calcium results in higher mortality than either sevelamer in particular and NCBPBs in general (moderate quality evidence). Our results raise questions about whether administration of calcium as an intervention for CKD- MBD remains ethical. Further research is needed to explore the effects of different types of phosphate binders, including novel agents such as iron, on quality and quantity of life. PROSPERO CRD-42016032945.
Role of N-type calcium channels in autonomic neurotransmission in guineapig isolated left atria
Serone, Adrian P; Angus, James A
1999-01-01
Calcium entry via neuronal calcium channels is essential for the process of neurotransmission. We investigated the calcium channel subtypes involved in the operation of cardiac autonomic neurotransmission by examining the effects of selective calcium channel blockers on the inotropic responses to electrical field stimulation (EFS) of driven (4 Hz) guineapig isolated left atria. In this tissue, a previous report (Hong & Chang, 1995) found no evidence for N-type channels involved in the vagal negative inotropic response and only weak involvement in sympathetic responses. The effects of cumulative concentrations of the selective N-type calcium channel blocker, ω-conotoxin GVIA (GVIA; 0.1–10 nM) and the nonselective N-, P/Q-type calcium channel blocker, ω-conotoxin MVIIC (MVIIC; 0.01–10 nM) were examined on the positive (with atropine, 1 μM present) and negative (with propranolol, 1 μM and clonidine, 1 μM present) inotropic responses to EFS (eight trains, each train four pulses per punctate stimulus). GVIA caused complete inhibition of both cardiac vagal and sympathetic inotropic responses to EFS. GVIA was equipotent at inhibiting positive (pIC50 9.29±0.08) and negative (pIC50 9.13±0.17) inotropic responses. MVIIC also mediated complete inhibition of inotropic responses to EFS and was 160 and 85 fold less potent than GVIA at inhibiting positive (pIC50 7.08±0.10) and negative (pIC50 7.20±0.14) inotropic responses, respectively. MVIIC was also equipotent at inhibiting both sympathetic and vagal responses. Our data demonstrates that N-type calcium channels account for all the calcium current required for cardiac autonomic neurotransmission in the guinea-pig isolated left atrium. PMID:10433500
Rigden, Daniel J.; Woodhead, Duncan D.; Wong, Prudence W. H.; Galperin, Michael Y.
2011-01-01
Binding of calcium ions (Ca2+) to proteins can have profound effects on their structure and function. Common roles of calcium binding include structure stabilization and regulation of activity. It is known that diverse families – EF-hands being one of at least twelve – use a Dx[DN]xDG linear motif to bind calcium in near-identical fashion. Here, four novel structural contexts for the motif are described. Existing experimental data for one of them, a thermophilic archaeal subtilisin, demonstrate for the first time a role for Dx[DN]xDG-bound calcium in protein folding. An integrin-like embedding of the motif in the blade of a β-propeller fold – here named the calcium blade – is discovered in structures of bacterial and fungal proteins. Furthermore, sensitive database searches suggest a common origin for the calcium blade in β-propeller structures of different sizes and a pan-kingdom distribution of these proteins. Factors favouring the multiple convergent evolution of the motif appear to include its general Asp-richness, the regular spacing of the Asp residues and the fact that change of Asp into Gly and vice versa can occur though a single nucleotide change. Among the known structural contexts for the Dx[DN]xDG motif, only the calcium blade and the EF-hand are currently found intracellularly in large numbers, perhaps because the higher extracellular concentration of Ca2+ allows for easier fixing of newly evolved motifs that have acquired useful functions. The analysis presented here will inform ongoing efforts toward prediction of similar calcium-binding motifs from sequence information alone. PMID:21720552
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia-Rates, Sara; Camarasa, Jordi; Sanchez-Garcia, Ana I.
2010-05-01
Previous work by our group demonstrated that homomeric alpha7 nicotinic acetylcholine receptors (nAChR) play a role in the neurotoxicity induced by 3,4-methylenedioxymethamphetamine (MDMA), as well as the binding affinity of this drug to these receptors. Here we studied the effect of MDMA on the activation of nAChR subtypes, the consequent calcium mobilization, and calpain/caspase 3 activation because prolonged Ca{sup 2+} increase could contribute to cytotoxicity. As techniques, we used fluorimetry in Fluo-4-loaded PC12 cells and electrophysiology in Xenopus oocytes. MDMA produced a rapid and sustained increase in calcium without reaching the maximum effect induced by ACh. It also concentration-dependently inhibitedmore » the response induced by ACh, nicotine, and the specific alpha7 agonist PNU 282987 with IC{sub 50} values in the low micromolar range. Similarly, MDMA induced inward currents in Xenopus oocytes transfected with human alpha7 but not with alpha4beta2 nAChR and inhibited ACh-induced currents in both receptors in a concentration-dependent manner. The calcium response was inhibited by methyllycaconitine (MLA) and alpha-bungarotoxin but not by dihydro-beta-erythroidine. These results therefore indicate that MDMA acts as a partial agonist on alpha7 nAChRs and as an antagonist on the heteromeric subtypes. Subsequently, calcium-induced Ca{sup 2+} release from the endoplasmic reticulum and entry through voltage-operated calcium channels are also implicated as proved using specific antagonists. In addition, treatment with MDMA for 24 h significantly increased basal Ca{sup 2+} levels and induced an increase in alpha-spectrin breakdown products, which indicates that calpain and caspase 3 were activated. These effects were inhibited by pretreatment with MLA. Moreover, pretreatment with MDMA induced functional upregulation of calcium responses to specific agonists of both heteromeric and alpha7 nAChR. Sustained calcium entry and calpain activation could favor the activation of Ca{sup 2+}-dependent enzymes such as protein kinase C and nitric oxide synthase, which are involved in the generation of ROS and the blockade of the dopamine transporter. This, together with caspase 3 activation, must play a role in MDMA-induced cytotoxicity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moester, Martiene J.C.; Schoeman, Monique A.E.; Oudshoorn, Ineke B.
2014-01-03
Highlights: •We validate a simple and fast method of quantification of in vitro mineralization. •Fluorescently labeled agents can detect calcium deposits in the mineralized matrix of cell cultures. •Fluorescent signals of the probes correlated with Alizarin Red S staining. -- Abstract: Alizarin Red S staining is the standard method to indicate and quantify matrix mineralization during differentiation of osteoblast cultures. KS483 cells are multipotent mouse mesenchymal progenitor cells that can differentiate into chondrocytes, adipocytes and osteoblasts and are a well-characterized model for the study of bone formation. Matrix mineralization is the last step of differentiation of bone cells and ismore » therefore a very important outcome measure in bone research. Fluorescently labelled calcium chelating agents, e.g. BoneTag and OsteoSense, are currently used for in vivo imaging of bone. The aim of the present study was to validate these probes for fast and simple detection and quantification of in vitro matrix mineralization by KS483 cells and thus enabling high-throughput screening experiments. KS483 cells were cultured under osteogenic conditions in the presence of compounds that either stimulate or inhibit osteoblast differentiation and thereby matrix mineralization. After 21 days of differentiation, fluorescence of stained cultures was quantified with a near-infrared imager and compared to Alizarin Red S quantification. Fluorescence of both probes closely correlated to Alizarin Red S staining in both inhibiting and stimulating conditions. In addition, both compounds displayed specificity for mineralized nodules. We therefore conclude that this method of quantification of bone mineralization using fluorescent compounds is a good alternative for the Alizarin Red S staining.« less
Coutelier, Marie; Blesneac, Iulia; Monteil, Arnaud; Monin, Marie-Lorraine; Ando, Kunie; Mundwiller, Emeline; Brusco, Alfredo; Le Ber, Isabelle; Anheim, Mathieu; Castrioto, Anna; Duyckaerts, Charles; Brice, Alexis; Durr, Alexandra; Lory, Philippe; Stevanin, Giovanni
2015-01-01
Hereditary cerebellar ataxias (CAs) are neurodegenerative disorders clinically characterized by a cerebellar syndrome, often accompanied by other neurological or non-neurological signs. All transmission modes have been described. In autosomal-dominant CA (ADCA), mutations in more than 30 genes are implicated, but the molecular diagnosis remains unknown in about 40% of cases. Implication of ion channels has long been an ongoing topic in the genetics of CA, and mutations in several channel genes have been recently connected to ADCA. In a large family affected by ADCA and mild pyramidal signs, we searched for the causative variant by combining linkage analysis and whole-exome sequencing. In CACNA1G, we identified a c.5144G>A mutation, causing an arginine-to-histidine (p.Arg1715His) change in the voltage sensor S4 segment of the T-type channel protein Cav3.1. Two out of 479 index subjects screened subsequently harbored the same mutation. We performed electrophysiological experiments in HEK293T cells to compare the properties of the p.Arg1715His and wild-type Cav3.1 channels. The current-voltage and the steady-state activation curves of the p.Arg1715His channel were shifted positively, whereas the inactivation curve had a higher slope factor. Computer modeling in deep cerebellar nuclei (DCN) neurons suggested that the mutation results in decreased neuronal excitability. Taken together, these data establish CACNA1G, which is highly expressed in the cerebellum, as a gene whose mutations can cause ADCA. This is consistent with the neuropathological examination, which showed severe Purkinje cell loss. Our study further extends our knowledge of the link between calcium channelopathies and CAs. PMID:26456284
Prevalence of rickets-like bone deformities in rural Gambian children
Jones, Helen L.; Jammeh, Lamin; Owens, Stephen; Fulford, Anthony J.; Moore, Sophie E.; Pettifor, John M.; Prentice, Ann
2015-01-01
The aim of this study was to estimate the burden of childhood rickets-like bone deformity in a rural region of West Africa where rickets has been reported in association with a low calcium intake. A population-based survey of children aged 0.5–17.9 years living in the province of West Kiang, The Gambia was conducted in 2007. 6221 children, 92% of those recorded in a recent census, were screened for physical signs of rickets by a trained survey team with clinical referral of suspected cases. Several objective measures were tested as potential screening tools. The prevalence of bone deformity in children < 18.0 years was 3.3%. The prevalence was greater in males (M = 4.3%, F = 2.3%, p < 0.001) and in children < 5.0 years (5.7%, M = 8.3%, F = 2.9%). Knock-knee was more common (58%) than bow-leg (31%) or windswept deformity (9%). Of the 196 examined clinically, 36 were confirmed to have a deformity outside normal variation (47% knock-knee, 53% bow-leg), resulting in more conservative prevalence estimates of bone deformity: 0.6% for children < 18.0 years (M = 0.9%, F = 0.2%), 1.5% for children < 5.0 years (M = 2.3%, F = 0.6%). Three of these children (9% of those with clinically-confirmed deformity, 0.05% of those screened) had active rickets on X-ray at the time of medical examination. This emphasises the difficulties in comparing prevalence estimates of rickets-like bone deformities from population surveys and clinic-based studies. Interpopliteal distance showed promise as an objective screening measure for bow-leg deformity. In conclusion, this population survey in a rural region of West Africa with a low calcium diet has demonstrated a significant burden of rickets-like bone deformity, whether based on physical signs under survey conditions or after clinical examination, especially in boys < 5.0 years. PMID:25871880
Liao, S B; Cheung, K H; Cheung, M P L; Wong, P F; O, W S; Tang, F
2014-05-01
In this study, we have investigated the effects of adrenomedullin on chloride and fluid secretion in the rat prostate. The presence of adrenomedullin (ADM) in rat prostate was confirmed using immunostaining, and the molecular species was determined using gel filtration chromatography coupled with an enzyme-linked assay for ADM. The effects of ADM on fluid secretion were studied by short-circuit current technique in a whole mount preparation of the prostate in an Ussing chamber. The results indicated that the ADM level was higher in the ventral than the dorso-lateral prostate and the major molecular species was the active peptide. ADM increased the short-circuit current through both the cAMP- and calcium-activated chloride channels in the ventral lobe, but only through the calcium-activated channels in the dorso-lateral lobe. These stimulatory effects were blocked by the calcitonin gene-related peptide (CGRP) receptor antagonist, hCGRP8-37. We conclude that ADM may regulate prostatic fluid secretion through the chloride channels, which may affect the composition of the seminal plasma bathing the spermatozoa and hence fertility. © 2014 American Society of Andrology and European Academy of Andrology.
Risk-based lung cancer screening may prevent more deaths than current U.S. guidelines
A study from the National Cancer Institute (NCI) offers new evidence that individualized lung cancer risk-based screening may be more effective at preventing lung cancer deaths than current U.S. Preventive Services Task Force (USPSTF) screening criteria.
Inhibition of Cav3.2 T-type Calcium Channels by Its Intracellular I-II Loop*
Monteil, Arnaud; Chausson, Patrick; Boutourlinsky, Katia; Mezghrani, Alexandre; Huc-Brandt, Sylvaine; Blesneac, Iulia; Bidaud, Isabelle; Lemmers, Céline; Leresche, Nathalie; Lambert, Régis C.; Lory, Philippe
2015-01-01
Voltage-dependent calcium channels (Cav) of the T-type family (Cav3.1, Cav3.2, and Cav3.3) are activated by low threshold membrane depolarization and contribute greatly to neuronal network excitability. Enhanced T-type channel activity, especially Cav3.2, contributes to disease states, including absence epilepsy. Interestingly, the intracellular loop connecting domains I and II (I-II loop) of Cav3.2 channels is implicated in the control of both surface expression and channel gating, indicating that this I-II loop plays an important regulatory role in T-type current. Here we describe that co-expression of this I-II loop or its proximal region (Δ1-Cav3.2; Ser423–Pro542) together with recombinant full-length Cav3.2 channel inhibited T-type current without affecting channel expression and membrane incorporation. Similar T-type current inhibition was obtained in NG 108-15 neuroblastoma cells that constitutively express Cav3.2 channels. Of interest, Δ1-Cav3.2 inhibited both Cav3.2 and Cav3.1 but not Cav3.3 currents. Efficacy of Δ1-Cav3.2 to inhibit native T-type channels was assessed in thalamic neurons using viral transduction. We describe that T-type current was significantly inhibited in the ventrobasal neurons that express Cav3.1, whereas in nucleus reticularis thalami neurons that express Cav3.2 and Cav3.3 channels, only the fast inactivating T-type current (Cav3.2 component) was significantly inhibited. Altogether, these data describe a new strategy to differentially inhibit Cav3 isoforms of the T-type calcium channels. PMID:25931121
Grossman, David C; Curry, Susan J; Owens, Douglas K; Barry, Michael J; Caughey, Aaron B; Davidson, Karina W; Doubeni, Chyke A; Epling, John W; Kemper, Alex R; Krist, Alex H; Kubik, Martha; Landefeld, Seth; Mangione, Carol M; Silverstein, Michael; Simon, Melissa A; Tseng, Chien-Wen
2018-04-17
Because of the aging population, osteoporotic fractures are an increasingly important cause of morbidity and mortality in the United States. Approximately 2 million osteoporotic fractures occurred in the United States in 2005, and annual incidence is projected to increase to more than 3 million fractures by 2025. Within 1 year of experiencing a hip fracture, many patients are unable to walk independently, more than half require assistance with activities of daily living, and 20% to 30% of patients will die. To update the 2013 US Preventive Services Task Force (USPSTF) recommendation on vitamin D supplementation, with or without calcium, to prevent fractures. The USPSTF reviewed the evidence on vitamin D, calcium, and combined supplementation for the primary prevention of fractures in community-dwelling adults (defined as not living in a nursing home or other institutional care setting). The review excluded studies conducted in populations with a known disorder related to bone metabolism (eg, osteoporosis or vitamin D deficiency), taking medications known to be associated with osteoporosis (eg, long-term steroids), or with a previous fracture. The USPSTF found inadequate evidence to estimate the benefits of vitamin D, calcium, or combined supplementation to prevent fractures in community-dwelling men and premenopausal women. The USPSTF found adequate evidence that daily supplementation with 400 IU or less of vitamin D and 1000 mg or less of calcium has no benefit for the primary prevention of fractures in community-dwelling, postmenopausal women. The USPSTF found inadequate evidence to estimate the benefits of doses greater than 400 IU of vitamin D or greater than 1000 mg of calcium to prevent fractures in community-dwelling postmenopausal women. The USPSTF found adequate evidence that supplementation with vitamin D and calcium increases the incidence of kidney stones. The USPSTF concludes that the current evidence is insufficient to assess the balance of the benefits and harms of vitamin D and calcium supplementation, alone or combined, for the primary prevention of fractures in community-dwelling, asymptomatic men and premenopausal women. (I statement) The USPSTF concludes that the current evidence is insufficient to assess the balance of the benefits and harms of daily supplementation with doses greater than 400 IU of vitamin D and greater than 1000 mg of calcium for the primary prevention of fractures in community-dwelling, postmenopausal women. (I statement) The USPSTF recommends against daily supplementation with 400 IU or less of vitamin D and 1000 mg or less of calcium for the primary prevention of fractures in community-dwelling, postmenopausal women. (D recommendation) These recommendations do not apply to persons with a history of osteoporotic fractures, increased risk for falls, or a diagnosis of osteoporosis or vitamin D deficiency.
Schreck, Mary; Petralia, Ronald S.; Wang, Ya-Xian; Zhang, Qiuxiang
2017-01-01
In sensory hair cells of auditory and vestibular organs, the ribbon synapse is required for the precise encoding of a wide range of complex stimuli. Hair cells have a unique presynaptic structure, the synaptic ribbon, which organizes both synaptic vesicles and calcium channels at the active zone. Previous work has shown that hair-cell ribbon size is correlated with differences in postsynaptic activity. However, additional variability in postsynapse size presents a challenge to determining the specific role of ribbon size in sensory encoding. To selectively assess the impact of ribbon size on synapse function, we examined hair cells in transgenic zebrafish that have enlarged ribbons, without postsynaptic alterations. Morphologically, we found that enlarged ribbons had more associated vesicles and reduced presynaptic calcium-channel clustering. Functionally, hair cells with enlarged ribbons had larger global and ribbon-localized calcium currents. Afferent neuron recordings revealed that hair cells with enlarged ribbons resulted in reduced spontaneous spike rates. Additionally, despite larger presynaptic calcium signals, we observed fewer evoked spikes with longer latencies from stimulus onset. Together, our work indicates that hair-cell ribbon size influences the spontaneous spiking and the precise encoding of stimulus onset in afferent neurons. SIGNIFICANCE STATEMENT Numerous studies support that hair-cell ribbon size corresponds with functional sensitivity differences in afferent neurons and, in the case of inner hair cells of the cochlea, vulnerability to damage from noise trauma. Yet it is unclear whether ribbon size directly influences sensory encoding. Our study reveals that ribbon enlargement results in increased ribbon-localized calcium signals, yet reduces afferent spontaneous activity and disrupts the timing of stimulus onset, a distinct aspect of auditory and vestibular encoding. These observations suggest that varying ribbon size alone can influence sensory encoding, and give further insight into how hair cells transduce signals that cover a wide dynamic range of stimuli. PMID:28546313
Dahan, Diana; Ducret, Thomas; Quignard, Jean-François; Marthan, Roger; Savineau, Jean-Pierre; Estève, Eric
2012-11-01
There is a growing body of evidence indicating that transient receptor potential (TRP) channels are implicated in calcium signaling and various cellular functions in the pulmonary vasculature. The aim of this study was to investigate the expression, functional role, and coupling to reticulum calcium channels of the type 4 vanilloid TRP subfamily (TRPV4) in the pulmonary artery from both normoxic (Nx) and chronically hypoxic (CH) rats. Activation of TRPV4 with the specific agonist 4α-phorbol-12,13-didecanoate (4α-PDD, 5 μM) increased the intracellular calcium concentration ([Ca(2+)](i)). This effect was significantly reduced by a high concentration of ryanodine (100 μM) or chronic caffeine (5 mM) that blocked ryanodine receptor (RyR) but was insensitive to xestospongin C (10 μM), an inositol trisphosphate receptor antagonist. Inhibition of RyR1 and RyR3 only with 10 μM of dantrolene did not attenuate the 4α-PDD-induced [Ca(2+)](i) increase. Western blotting experiments revealed the expression of TRPV4 and RyR2 with an increase in both receptors in pulmonary arteries from CH rats vs. Nx rats. Accordingly, the 4α-PDD-activated current, measured with patch-clamp technique, was increased in pulmonary artery smooth muscle cells (PASMC) from CH rats vs. Nx rats. 4α-PDD increased isometric tension in artery rings, and this response was also potentiated under chronic hypoxia conditions. 4α-PDD-induced calcium response, current, and contraction were all inhibited by the selective TRPV4 blocker HC-067047. Collectively, our findings provide evidence of the interplay between TRPV4 and RyR2 in the Ca(2+) release mechanism and contraction in PASMC. This study provides new insights onto the complex calcium signaling in PASMC and point out the importance of the TRPV4-RyR2 signaling pathway under hypoxic conditions that may lead to pulmonary hypertension.
Dorozhkin, Sergey V.
2009-01-01
Recent developments in biomineralization have already demonstrated that nanosized particles play an important role in the formation of hard tissues of animals. Namely, the basic inorganic building blocks of bones and teeth of mammals are nanodimensional and nanocrystalline calcium orthophosphates (in the form of apatites) of a biological origin. In mammals, tens to hundreds nanocrystals of a biological apatite were found to be combined into self-assembled structures under the control of various bioorganic matrixes. In addition, the structures of both dental enamel and bones could be mimicked by an oriented aggregation of nanosized calcium orthophosphates, determined by the biomolecules. The application and prospective use of nanodimensional and nanocrystalline calcium orthophosphates for a clinical repair of damaged bones and teeth are also known. For example, a greater viability and a better proliferation of various types of cells were detected on smaller crystals of calcium orthophosphates. Thus, the nanodimensional and nanocrystalline forms of calcium orthophosphates have a great potential to revolutionize the field of hard tissue engineering starting from bone repair and augmentation to the controlled drug delivery devices. This paper reviews current state of knowledge and recent developments of this subject starting from the synthesis and characterization to biomedical and clinical applications. More to the point, this review provides possible directions of future research and development.
Consumers’ Health-Related Motive Orientations and Reactions to Claims about Dietary Calcium
Hoefkens, Christine; Verbeke, Wim
2013-01-01
Health claims may contribute to better informed and healthier food choices and to improved industrial competitiveness by marketing foods that support healthier lifestyles in line with consumer preferences. With the more stringent European Union regulation of nutrition and health claims, insights into consumers’ health-related goal patterns and their reactions towards such claims are needed to influence the content of lawful claims. This study investigated how consumers’ explicit and implicit health-related motive orientations (HRMOs) together with the type of calcium-claim (nutrition claim, health claim and reduction of disease risk claim) influence perceived credibility and purchasing intention of calcium-enriched fruit juice. Data were collected in April 2006 through a consumer survey with 341 Belgian adults. The findings indicate that stronger implicit HRMOs (i.e., indirect benefits of calcium for personal health) are associated with higher perceived credibility, which is not (yet) translated into a higher purchasing intention. Consumers’ explicit HRMOs, which refer to direct benefits or physiological functions of calcium in the body—as legally permitted in current calcium-claims in the EU—do not associate with reactions to the claims. Independently of consumers’ HRMOs, the claim type significantly affects the perceived credibility and purchasing intention of the product. Implications for nutrition policy makers and food industries are discussed. PMID:23306190