Sample records for calcium transients delayed

  1. The Volumetric Rate of Calcium-rich Transients in the Local Universe

    DOE PAGES

    Frohmaier, Chris; Sullivan, Mark; Maguire, Kate; ...

    2018-05-04

    Here, we present a measurement of the volumetric rate of "calcium-rich" optical transients in the local universe, using a sample of three events from the Palomar Transient Factory (PTF). This measurement builds on a detailed study of the PTF transient detection efficiencies and uses a Monte Carlo simulation of the PTF survey. We measure the volumetric rate of calcium-rich transients to be higher than previous estimates: 1.21 -0.39 +1.13 10 -5 events yr -1Mpc -3. This is equivalent to 33%-94% of the local volumetric Type Ia supernova rate. This calcium-rich transient rate is sufficient to reproduce the observed calcium abundancesmore » in galaxy clusters, assuming an asymptotic calcium yield per calcium-rich event of ~0.05 M ⊙. As a result, we also study the PTF detection efficiency of these transients as a function of position within their candidate host galaxies. We confirm as a real physical effect previous results that suggest that calcium-rich transients prefer large physical offsets from their host galaxies.« less

  2. The Volumetric Rate of Calcium-rich Transients in the Local Universe

    NASA Astrophysics Data System (ADS)

    Frohmaier, Chris; Sullivan, Mark; Maguire, Kate; Nugent, Peter

    2018-05-01

    We present a measurement of the volumetric rate of “calcium-rich” optical transients in the local universe, using a sample of three events from the Palomar Transient Factory (PTF). This measurement builds on a detailed study of the PTF transient detection efficiencies and uses a Monte Carlo simulation of the PTF survey. We measure the volumetric rate of calcium-rich transients to be higher than previous estimates: {1.21}-0.39+1.13 × {10}-5 events yr‑1 Mpc‑3. This is equivalent to 33%–94% of the local volumetric Type Ia supernova rate. This calcium-rich transient rate is sufficient to reproduce the observed calcium abundances in galaxy clusters, assuming an asymptotic calcium yield per calcium-rich event of ∼0.05 {M}ȯ . We also study the PTF detection efficiency of these transients as a function of position within their candidate host galaxies. We confirm as a real physical effect previous results that suggest that calcium-rich transients prefer large physical offsets from their host galaxies.

  3. The Volumetric Rate of Calcium-rich Transients in the Local Universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frohmaier, Chris; Sullivan, Mark; Maguire, Kate

    Here, we present a measurement of the volumetric rate of "calcium-rich" optical transients in the local universe, using a sample of three events from the Palomar Transient Factory (PTF). This measurement builds on a detailed study of the PTF transient detection efficiencies and uses a Monte Carlo simulation of the PTF survey. We measure the volumetric rate of calcium-rich transients to be higher than previous estimates: 1.21 -0.39 +1.13 10 -5 events yr -1Mpc -3. This is equivalent to 33%-94% of the local volumetric Type Ia supernova rate. This calcium-rich transient rate is sufficient to reproduce the observed calcium abundancesmore » in galaxy clusters, assuming an asymptotic calcium yield per calcium-rich event of ~0.05 M ⊙. As a result, we also study the PTF detection efficiency of these transients as a function of position within their candidate host galaxies. We confirm as a real physical effect previous results that suggest that calcium-rich transients prefer large physical offsets from their host galaxies.« less

  4. Analysis of Spontaneous and Nerve-Evoked Calcium Transients in Intact Extraocular Muscles in Vitro

    PubMed Central

    Feng, Cheng-Yuan; Hennig, Grant W.; Corrigan, Robert D.; Smith, Terence K.; von Bartheld, Christopher S.

    2012-01-01

    Extraocular muscles (EOMs) have unique calcium handling properties, yet little is known about the dynamics of calcium events underlying ultrafast and tonic contractions in myofibers of intact EOMs. Superior oblique EOMs of juvenile chickens were dissected with their nerve attached, maintained in oxygenated Krebs buffer, and loaded with fluo-4. Spontaneous and nerve stimulation-evoked calcium transients were recorded and, following calcium imaging, some EOMs were double-labeled with rhodamine-conjugated alpha-bungarotoxin (rhBTX) to identify EOM myofiber types. EOMs showed two main types of spontaneous calcium transients, one slow type (calcium waves with 1/2max duration of 2–12 s, velocity of 25–50 μm/s) and two fast “flash-like” types (Type 1, 30–90 ms; Type 2, 90–150 ms 1/2max duration). Single pulse nerve stimulation evoked fast calcium transients identical to the fast (Type 1) calcium transients. Calcium waves were accompanied by a local myofiber contraction that followed the calcium transient wavefront. The magnitude of calcium-wave induced myofiber contraction far exceeded those of movement induced by nerve stimulation and associated fast calcium transients. Tetrodotoxin eliminated nerve-evoked transients, but not spontaneous transients. Alpha-bungarotoxin eliminated both spontaneous and nerve-evoked fast calcium transients, but not calcium waves, and caffeine increased wave activity. Calcium waves were observed in myofibers lacking spontaneous or evoked fast transients, suggestive of multiply-innervated myofibers, and this was confirmed by double-labeling with rhBTX. We propose that the abundant spontaneous calcium transients and calcium waves with localized contractions that do not depend on innervation may contribute to intrinsic generation of tonic functions of EOMs. PMID:22579493

  5. Pulsed electromagnetic fields promote the proliferation and differentiation of osteoblasts by reinforcing intracellular calcium transients.

    PubMed

    Tong, Jie; Sun, Lijun; Zhu, Bin; Fan, Yun; Ma, Xingfeng; Yu, Liyin; Zhang, Jianbao

    2017-10-01

    Pulsed electromagnetic fields (PEMF) can be used to treat bone-related diseases, but the underlying mechanism remains unclear, especially the process by which PEMFs initiate biological effects. In this study, we demonstrated the effects of PEMF on proliferation and differentiation of osteoblasts using the model of calcium transients induced by high extracellular calcium. Our results showed that PEMF can increase both the percentage of responding cells and amplitude of intracellular calcium transients induced by high extracellular calcium stimulation. Compared with corresponding extracellular calcium levels, PEMF stimulation increased proliferation and differentiation of osteoblasts and related gene expressions, such as insulin-like growth factor 1 (IGF-1), alkaline phosphatase (ALP), runt-related transcription factor 2 (Runx2), and osteocalcin (OCN), which can be completely abolished by BAPTA-AM. Moreover, PEMF did not affect proliferation and differentiation of osteoblasts if no intracellular calcium transient was present in osteoblasts during PEMF exposure. Our results revealed that PEMF affects osteoblast proliferation and differentiation through enhanced intracellular calcium transients, which provided a cue to treat bone-related diseases with PEMF. Bioelectromagnetics. 38:541-549, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. Usefulness of cardiotoxicity assessment using calcium transient in human induced pluripotent stem cell-derived cardiomyocytes.

    PubMed

    Watanabe, Hitoshi; Honda, Yayoi; Deguchi, Jiro; Yamada, Toru; Bando, Kiyoko

    2017-01-01

    Monitoring dramatic changes in intracellular calcium ion levels during cardiac contraction and relaxation, known as calcium transient, in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) would be an attractive strategy for assessing compounds on cardiac contractility. In addition, as arrhythmogenic compounds are known to induce characteristic waveform changes in hiPSC-CMs, it is expected that calcium transient would allow evaluation of not only compound-induced effects on cardiac contractility, but also compound arrhythmogenic potential. Using a combination of calcium transient in hiPSC-CMs and a fast kinetic fluorescence imaging detection system, we examined in this study changes in calcium transient waveforms induced by a series of 17 compounds that include positive/negative inotropic agents as well as cardiac ion channel activators/inhibitors. We found that all positive inotropic compounds induced an increase in peak frequency and/or peak amplitude. The effects of a negative inotropic compound could clearly be detected in the presence of a β-adrenergic receptor agonist. Furthermore, most arrhythmogenic compounds raised the ratio of peak decay time to peak rise time (D/R ratio) in calcium transient waveforms. Compound concentrations at which these parameters exceeded cutoff values correlated well with systemic exposure levels at which arrhythmias were reported to be evoked. In conclusion, we believe that peak analysis of calcium transient and determination of D/R ratio are reliable methods for assessing compounds' cardiac contractility and arrhythmogenic potential, respectively. Using these approaches would allow selection of compounds with low cardiotoxic potential at the early stage of drug discovery.

  7. A comparison of the effects of commercially available hawthorn preparations on calcium transients of isolated cardiomyocytes.

    PubMed

    Rodriguez, Michelle E; Poindexter, Brian J; Bick, Roger J; Dasgupta, Amitava

    2008-12-01

    We studied the potential cardiac effects of two alcohol extracts of commercially available hawthorn using rat cardiomyocytes and measuring calcium transients by real-time fluorescence spectrophotometry. One preparation was a blend of hawthorn flowers, leaves, and berries (extract #1), and the other (extract #2) was from a "berries-only" preparation. Fluorescent images and calcium transients were acquired concurrently. Addition of extract #1 resulted in the initiation of robust calcium transients and eventual calcium overload, while addition of extract #2 caused increased calcium sparking, initiation of calcium transients, and an increased beating rate but no calcium overload. To identify the mechanisms of increased calcium influx, adult rat cardiomyocytes were challenged with 10 microM ouabain, a Na(+),K(+)-ATPase inhibitor, and the calcium channel blocker nifedipine. The findings revealed that equal volumes of the two readily available hawthorn preparations demonstrated markedly different effects on isolated adult rat cardiomyocytes, suggesting important implications for patients who are using these preparations to supplement or even replace their prescribed cardiac medications as to which preparation(s) to use, and potential dire consequences, particularly in cardiac patients. Our study indicates that the mechanism of cardiac activity of hawthorn is via the Na(+),K(+)-ATPase and intracellular calcium concentrations are influenced.

  8. Calmodulin Activation by Calcium Transients in the Postsynaptic Density of Dendritic Spines

    PubMed Central

    Keller, Daniel X.; Franks, Kevin M.; Bartol, Thomas M.; Sejnowski, Terrence J.

    2008-01-01

    The entry of calcium into dendritic spines can trigger a sequence of biochemical reactions that begins with the activation of calmodulin (CaM) and ends with long-term changes to synaptic strengths. The degree of activation of CaM can depend on highly local elevations in the concentration of calcium and the duration of transient increases in calcium concentration. Accurate measurement of these local changes in calcium is difficult because the spaces are so small and the numbers of molecules are so low. We have therefore developed a Monte Carlo model of intracellular calcium dynamics within the spine that included calcium binding proteins, calcium transporters and ion channels activated by voltage and glutamate binding. The model reproduced optical recordings using calcium indicator dyes and showed that without the dye the free intracellular calcium concentration transient was much higher than predicted from the fluorescent signal. Excitatory postsynaptic potentials induced large, long-lasting calcium gradients across the postsynaptic density, which activated CaM. When glutamate was released at the synapse 10 ms before an action potential occurred, simulating activity patterns that strengthen hippocampal synapses, the calcium gradient and activation of CaM in the postsynaptic density were much greater than when the order was reversed, a condition that decreases synaptic strengths, suggesting a possible mechanism underlying the induction of long-term changes in synaptic strength. The spatial and temporal mechanisms for selectivity in CaM activation demonstrated here could be used in other signaling pathways. PMID:18446197

  9. Impaired mitochondria and intracellular calcium transients in the salivary glands of obese rats.

    PubMed

    Ittichaicharoen, Jitjiroj; Apaijai, Nattayaporn; Tanajak, Pongpan; Sa-Nguanmoo, Piangkwan; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2017-04-01

    Long-term consumption of a high-fat diet (HFD) causes not only obese-insulin resistance, but is also associated with mitochondrial dysfunction in several organs. However, the effect of obese-insulin resistance on salivary glands has not been investigated. We hypothesized that obese-insulin resistance induced by HFD impaired salivary gland function by reducing salivation, increasing inflammation, and fibrosis, as well as impairing mitochondrial function and calcium transient signaling. Male Wistar rats (200-220 g) were fed either a ND or an HFD (n = 8/group) for 16 weeks. At the end of week 16, salivary flow rates, metabolic parameters, and plasma oxidative stress were determined. Rats were then sacrificed and submandibular glands were removed to determine inflammation, fibrosis, apoptosis, mitochondrial function and dynamics, and intracellular calcium transient signaling. Long-term consumption of an HFD caused obese-insulin resistance and increased oxidative stress, fibrosis, inflammation, and apoptosis in the salivary glands. In addition, impaired mitochondrial function, as indicated by increased mitochondrial reactive oxygen species, mitochondrial membrane depolarization, and mitochondrial swelling in salivary glands and impaired intracellular calcium regulation, as indicated by a reduced intracellular calcium transient rising rate, decay rates, and amplitude of salivary acinar cells, were observed in HFD-fed rats. However, salivary flow rate and level of aquaporin 5 protein were not different between both groups. Although HFD consumption did not affect salivation, it caused obese-insulin resistance, leading to pathophysiological alteration of salivary glands, including impaired intracellular calcium transients, increased oxidative stress and inflammation, and salivary mitochondrial dysfunction.

  10. TRANSIENT AMORPHOUS CALCIUM PHOSPHATE IN FORMING ENAMEL

    PubMed Central

    Beniash, Elia; Metzler, Rebecca A.; Lam, Raymond S.K.; Gilbert, P.U.P.A.

    2009-01-01

    Enamel, the hardest tissue in the body, begins as a three-dimensional network of nanometer size mineral particles, suspended in a protein gel. This mineral network serves as a template for mature enamel formation. To further understand the mechanisms of enamel formation we characterized the forming enamel mineral at an early secretory stage using x-ray absorption near-edge structure (XANES) spectromicroscopy, transmission electron microscopy (TEM), FTIR microspectroscopy and polarized light microscopy. We show that the newly formed enamel mineral is amorphous calcium phosphate (ACP), which eventually transforms into apatitic crystals. Interestingly, the size, shape and spatial organization of these amorphous mineral particles and older crystals are essentially the same, indicating that the mineral morphology and organization in enamel is determined prior to its crystallization. Mineralization via transient amorphous phases has been previously reported in chiton teeth, mollusk shells, echinoderm spicules and spines, and recent reports strongly suggest the presence transient amorphous mineral in forming vertebrate bones. The present finding of transient ACP in murine tooth enamel suggests that this strategy might be universal. PMID:19217943

  11. Diffuse dispersive delay and the time convolution/attenuation of transients

    NASA Technical Reports Server (NTRS)

    Bittner, Burt J.

    1991-01-01

    Test data and analytic evaluations are presented to show that relatively poor 100 KHz shielding of 12 Db can effectively provide an electromagnetic pulse transient reduction of 100 Db. More importantly, several techniques are shown for lightning surge attenuation as an alternative to crowbar, spark gap, or power zener type clipping which simply reflects the surge. A time delay test method is shown which allows CW testing, along with a convolution program to define transient shielding effectivity where the Fourier phase characteristics of the transient are known or can be broadly estimated.

  12. Dissociation of Calcium Transients and Force Development following a Change in Stimulation Frequency in Isolated Rabbit Myocardium.

    PubMed

    Haizlip, Kaylan M; Milani-Nejad, Nima; Brunello, Lucia; Varian, Kenneth D; Slabaugh, Jessica L; Walton, Shane D; Gyorke, Sandor; Davis, Jonathan P; Biesiadecki, Brandon J; Janssen, Paul M L

    2015-01-01

    As the heart transitions from one exercise intensity to another, changes in cardiac output occur, which are modulated by alterations in force development and calcium handling. Although the steady-state force-calcium relationship at various heart rates is well investigated, regulation of these processes during transitions in heart rate is poorly understood. In isolated right ventricular muscle preparations from the rabbit, we investigated the beat-to-beat alterations in force and calcium during the transition from one stimulation frequency to another, using contractile assessments and confocal microscopy. We show that a change in steady-state conditions occurs in multiple phases: a rapid phase, which is characterized by a fast change in force production mirrored by a change in calcium transient amplitude, and a slow phase, which follows the rapid phase and occurs as the muscle proceeds to stabilize at the new frequency. This second/late phase is characterized by a quantitative dissociation between the calcium transient amplitude and developed force. Twitch timing kinetics, such as time to peak tension and 50% relaxation rate, reached steady-state well before force development and calcium transient amplitude. The dynamic relationship between force and calcium upon a switch in stimulation frequency unveils the dynamic involvement of myofilament-based properties in frequency-dependent activation.

  13. Combined use of UV-labile calcium chelators and calcium-sensitive dyes in a microscope with two light sources influencing different regions in a group of coordinated contracting cardiac myocytes

    NASA Astrophysics Data System (ADS)

    Pilarczyk, Goetz; Greulich, Karl-Otto

    1997-12-01

    The coordination of excitation in a biological system of cells such as cardiac myocytes in heart tissue has crucial influence on the function of the entire organ. This coordinated behavior can be visualized in a small group of embryonic cardiac myocytes derived from the hearts of unborn chicken. Loaded with a calcium sensitive dye the excitation can be imaged via the occurring transient rise in cytosolic calcium concentration. It can be shown that in regions with physiological or morphological restrictions the transient rise in cytosolic calcium occurs with a temporal delay compared to the ordinary array of coupled myocytes. The height of the transient rise of cytosolic calcium is related to the ability of the individual cell to participate in the coordinated contraction. The free cytosolic calcium concentration is decreased with the UV-labile calcium, chelator diazo-2. Our setup allows to decrease the free cytosolic calcium in a single cell of the contracting array of cells. This allows us to introduce mismatches in selected regions of the coordinated contraction and to visualize the effects simultaneously.

  14. Optical Method to Quantify Mechanical Contraction and Calcium Transients of Human Pluripotent Stem Cell-Derived Cardiomyocytes.

    PubMed

    Hansen, Katrina J; Favreau, John T; Gershlak, Joshua R; Laflamme, Michael A; Albrecht, Dirk R; Gaudette, Glenn R

    2017-08-01

    Differentiation of human pluripotent stem cells into cardiomyocytes (hPS-CMs) holds promise for myocardial regeneration therapies, drug discovery, and models of cardiac disease. Potential cardiotoxicities may affect hPS-CM mechanical contraction independent of calcium signaling. Herein, a method using an image capture system is described to measure hPS-CM contractility and intracellular calcium concurrently, with high spatial and temporal resolution. The image capture system rapidly alternates between brightfield and epifluorescent illumination of contracting cells. Mechanical contraction is quantified by a speckle tracking algorithm applied to brightfield image pairs, whereas calcium transients are measured by a fluorescent calcium reporter. This technique captured changes in contractile strain, calcium transients, and beat frequency of hPS-CMs over 21 days in culture, as well as acute responses to isoproterenol and Cytochalasin D. The technique described above can be applied without the need to alter the culture platform, allowing for determination of hPS-CM behavior over weeks in culture for drug discovery and myocardial regeneration applications.

  15. Transient Evolution of Nonmetallic Inclusions During Calcium Treatment of Molten Steel

    NASA Astrophysics Data System (ADS)

    Zhang, Lifeng; Liu, Yang; Zhang, Ying; Yang, Wen; Chen, Wei

    2018-06-01

    The transient evolution of nonmetallic inclusions after calcium addition in pipeline steels was investigated with a vacuum induction furnace. Samples were taken at 1, 5, 10, 15, and 20 minutes after calcium treatment in both MgO and Al2O3 crucibles. It was found that the total oxygen and the number density of inclusions were increased during calcium modification, while they were dropped to a low level in the last tapped sample. Due to the evaporation of calcium, inclusions were transferred from CaO-CaS to Al2O3-CaO-CaS, and then to Al2O3-CaO. The decomposition of CaS was highly dependent on the decrease of the total calcium and the increase of the total oxygen in the steel. Thermodynamic calculation was performed to predict the composition of inclusions considering the effect of the total oxygen and the total calcium and was validated by measurement. The relationship between the content of Al2O3 in inclusions and the ratio of the total calcium and the total oxygen in steels was measured and compared with the calculated one using thermodynamic software Factsage 7.0. The mass-transfer coefficient of the dissolved calcium in the steel was estimated in the range of 2.35 × 10-4 to 3.53 × 10-4 m/s.

  16. Delayed-onset dementia after stroke or transient ischemic attack.

    PubMed

    Mok, Vincent C T; Lam, Bonnie Y K; Wang, Zhaolu; Liu, Wenyan; Au, Lisa; Leung, Eric Y L; Chen, Sirong; Yang, Jie; Chu, Winnie C W; Lau, Alexander Y L; Chan, Anne Y Y; Shi, Lin; Fan, Florence; Ma, Sze H; Ip, Vincent; Soo, Yannie O Y; Leung, Thomas W H; Kwok, Timothy C Y; Ho, Chi L; Wong, Lawrence K S; Wong, Adrian

    2016-11-01

    Patients surviving stroke without immediate dementia are at high risk of delayed-onset dementia. Mechanisms underlying delayed-onset dementia are complex and may involve vascular and/or neurodegenerative diseases. Dementia-free patients with stroke and/or transient ischemic attack (TIA; n = 919) were studied for 3 years prospectively, excluding those who developed dementia 3 to 6 months after stroke and/or TIA. Forty subjects (4.4%) developed dementia during the study period. Imaging markers of severe small vessel disease (SVD), namely presence of ≥3 lacunes and confluent white matter changes; history of hypertension and diabetes mellitus independently predicted delayed-onset dementia after adjustment for age, gender, and education. Only 6 of 31 (19.4%) subjects with delayed cognitive decline harbored Alzheimer's disease-like Pittsburg compound B (PiB) retention. Most PiB cases (16/25, 64%) had evidence of severe SVD. Severe SVD contributes importantly to delayed-onset dementia after stroke and/or TIA. Future clinical trials aiming to prevent delayed-onset dementia after stroke and/or TIA should target this high-risk group. Copyright © 2016 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  17. Visual Stimuli Evoked Action Potentials Trigger Rapidly Propagating Dendritic Calcium Transients in the Frog Optic Tectum Layer 6 Neurons.

    PubMed

    Svirskis, Gytis; Baranauskas, Gytis; Svirskiene, Natasa; Tkatch, Tatiana

    2015-01-01

    The superior colliculus in mammals or the optic tectum in amphibians is a major visual information processing center responsible for generation of orientating responses such as saccades in monkeys or prey catching avoidance behavior in frogs. The conserved structure function of the superior colliculus the optic tectum across distant species such as frogs, birds monkeys permits to draw rather general conclusions after studying a single species. We chose the frog optic tectum because we are able to perform whole-cell voltage-clamp recordings fluorescence imaging of tectal neurons while they respond to a visual stimulus. In the optic tectum of amphibians most visual information is processed by pear-shaped neurons possessing long dendritic branches, which receive the majority of synapses originating from the retinal ganglion cells. Since the first step of the retinal input integration is performed on these dendrites, it is important to know whether this integration is enhanced by active dendritic properties. We demonstrate that rapid calcium transients coinciding with the visual stimulus evoked action potentials in the somatic recordings can be readily detected up to the fine branches of these dendrites. These transients were blocked by calcium channel blockers nifedipine CdCl2 indicating that calcium entered dendrites via voltage-activated L-type calcium channels. The high speed of calcium transient propagation, >300 μm in <10 ms, is consistent with the notion that action potentials, actively propagating along dendrites, open voltage-gated L-type calcium channels causing rapid calcium concentration transients in the dendrites. We conclude that such activation by somatic action potentials of the dendritic voltage gated calcium channels in the close vicinity to the synapses formed by axons of the retinal ganglion cells may facilitate visual information processing in the principal neurons of the frog optic tectum.

  18. Two New Calcium-rich Gap Transients in Group and Cluster Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lunnan, R.; Kasliwal, M. M.; Cao, Y.

    We present the Palomar Transient Factory discoveries and the photometric and spectroscopic observations of PTF11kmb and PTF12bho. We show that both transients have properties consistent with the class of calcium-rich gap transients, specifically lower peak luminosities and rapid evolution compared to ordinary supernovae, and a nebular spectrum dominated by [Ca ii] emission. A striking feature of both transients is their host environments: PTF12bho is an intracluster transient in the Coma Cluster, while PTF11kmb is located in a loose galaxy group, at a physical offset ~150 kpc from the most likely host galaxy. Deep Subaru imaging of PTF12bho rules out anmore » underlying host system to a limit of M R > -8.0 mag, while Hubble Space Telescope imaging of PTF11kmb reveals a marginal counterpart that, if real, could be either a background galaxy or a globular cluster. Here, we show that the offset distribution of Ca-rich gap transients is significantly more extreme than that seen for SNe Ia or even short-hard gamma-ray bursts (sGRBs). Thus, if the offsets are caused by a kick, they require higher kick velocities and/or longer merger times than sGRBs. Finally, we also show that almost all Ca-rich transients found to date are in group and cluster environments with elliptical host galaxies, indicating a very old progenitor population; the remote locations could partially be explained by these environments having the largest fraction of stars in the intragroup/intracluster light following galaxy-galaxy interactions.« less

  19. Two New Calcium-rich Gap Transients in Group and Cluster Environments

    DOE PAGES

    Lunnan, R.; Kasliwal, M. M.; Cao, Y.; ...

    2017-02-08

    We present the Palomar Transient Factory discoveries and the photometric and spectroscopic observations of PTF11kmb and PTF12bho. We show that both transients have properties consistent with the class of calcium-rich gap transients, specifically lower peak luminosities and rapid evolution compared to ordinary supernovae, and a nebular spectrum dominated by [Ca ii] emission. A striking feature of both transients is their host environments: PTF12bho is an intracluster transient in the Coma Cluster, while PTF11kmb is located in a loose galaxy group, at a physical offset ~150 kpc from the most likely host galaxy. Deep Subaru imaging of PTF12bho rules out anmore » underlying host system to a limit of M R > -8.0 mag, while Hubble Space Telescope imaging of PTF11kmb reveals a marginal counterpart that, if real, could be either a background galaxy or a globular cluster. Here, we show that the offset distribution of Ca-rich gap transients is significantly more extreme than that seen for SNe Ia or even short-hard gamma-ray bursts (sGRBs). Thus, if the offsets are caused by a kick, they require higher kick velocities and/or longer merger times than sGRBs. Finally, we also show that almost all Ca-rich transients found to date are in group and cluster environments with elliptical host galaxies, indicating a very old progenitor population; the remote locations could partially be explained by these environments having the largest fraction of stars in the intragroup/intracluster light following galaxy-galaxy interactions.« less

  20. ATP Released by Electrical Stimuli Elicits Calcium Transients and Gene Expression in Skeletal Muscle*

    PubMed Central

    Buvinic, Sonja; Almarza, Gonzalo; Bustamante, Mario; Casas, Mariana; López, Javiera; Riquelme, Manuel; Sáez, Juan Carlos; Huidobro-Toro, Juan Pablo; Jaimovich, Enrique

    2009-01-01

    ATP released from cells is known to activate plasma membrane P2X (ionotropic) or P2Y (metabotropic) receptors. In skeletal muscle cells, depolarizing stimuli induce both a fast calcium signal associated with contraction and a slow signal that regulates gene expression. Here we show that nucleotides released to the extracellular medium by electrical stimulation are partly involved in the fast component and are largely responsible for the slow signals. In rat skeletal myotubes, a tetanic stimulus (45 Hz, 400 1-ms pulses) rapidly increased extracellular levels of ATP, ADP, and AMP after 15 s to 3 min. Exogenous ATP induced an increase in intracellular free Ca2+ concentration, with an EC50 value of 7.8 ± 3.1 μm. Exogenous ADP, UTP, and UDP also promoted calcium transients. Both fast and slow calcium signals evoked by tetanic stimulation were inhibited by either 100 μm suramin or 2 units/ml apyrase. Apyrase also reduced fast and slow calcium signals evoked by tetanus (45 Hz, 400 0.3-ms pulses) in isolated mouse adult skeletal fibers. A likely candidate for the ATP release pathway is the pannexin-1 hemichannel; its blockers inhibited both calcium transients and ATP release. The dihydropyridine receptor co-precipitated with both the P2Y2 receptor and pannexin-1. As reported previously for electrical stimulation, 500 μm ATP significantly increased mRNA expression for both c-fos and interleukin 6. Our results suggest that nucleotides released during skeletal muscle activity through pannexin-1 hemichannels act through P2X and P2Y receptors to modulate both Ca2+ homeostasis and muscle physiology. PMID:19822518

  1. An integrated platform for simultaneous multi-well field potential recording and Fura-2-based calcium transient ratiometry in human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes.

    PubMed

    Rast, Georg; Weber, Jürgen; Disch, Christoph; Schuck, Elmar; Ittrich, Carina; Guth, Brian D

    2015-01-01

    Human induced pluripotent stem cell-derived cardiomyocytes are available from various sources and they are being evaluated for safety testing. Several platforms are available offering different assay principles and read-out parameters: patch-clamp and field potential recording, imaging or photometry, impedance measurement, and recording of contractile force. Routine use will establish which assay principle and which parameters best serve the intended purpose. We introduce a combination of field potential recording and calcium ratiometry from spontaneously beating cardiomyocytes as a novel assay providing a complementary read-out parameter set. Field potential recording is performed using a commercial multi-well multi-electrode array platform. Calcium ratiometry is performed using a fiber optic illumination and silicon avalanche photodetectors. Data condensation and statistical analysis are designed to enable statistical inference of differences and equivalence with regard to a solvent control. Simultaneous recording of field potentials and calcium transients from spontaneously beating monolayers was done in a nine-well format. Calcium channel blockers (e.g. nifedipine) and a blocker of calcium store release (ryanodine) can be recognized and discriminated based on the calcium transient signal. An agonist of L-type calcium channels, FPL 64176, increased and prolonged the calcium transient, whereas BAY K 8644, another L-type calcium channel agonist, had no effect. Both FPL 64176 and various calcium channel antagonists have chronotropic effects, which can be discriminated from typical "chronotropic" compounds, like (±)isoprenaline (positive) and arecaidine propargyl ester (negative), based on their effects on the calcium transient. Despite technical limitations in temporal resolution and exact matching of composite calcium transient with the field potential of a subset of cells, the combined recording platform enables a refined interpretation of the field potential

  2. Live Imaging of Calcium Dynamics during Axon Degeneration Reveals Two Functionally Distinct Phases of Calcium Influx

    PubMed Central

    Yamagishi, Yuya; Tessier-Lavigne, Marc

    2015-01-01

    Calcium is a key regulator of axon degeneration caused by trauma and disease, but its specific spatial and temporal dynamics in injured axons remain unclear. To clarify the function of calcium in axon degeneration, we observed calcium dynamics in single injured neurons in live zebrafish larvae and tested the temporal requirement for calcium in zebrafish neurons and cultured mouse DRG neurons. Using laser axotomy to induce Wallerian degeneration (WD) in zebrafish peripheral sensory axons, we monitored calcium dynamics from injury to fragmentation, revealing two stereotyped phases of axonal calcium influx. First, axotomy triggered a transient local calcium wave originating at the injury site. This initial calcium wave only disrupted mitochondria near the injury site and was not altered by expression of the protective WD slow (WldS) protein. Inducing multiple waves with additional axotomies did not change the kinetics of degeneration. In contrast, a second phase of calcium influx occurring minutes before fragmentation spread as a wave throughout the axon, entered mitochondria, and was abolished by WldS expression. In live zebrafish, chelating calcium after the first wave, but before the second wave, delayed the progress of fragmentation. In cultured DRG neurons, chelating calcium early in the process of WD did not alter degeneration, but chelating calcium late in WD delayed fragmentation. We propose that a terminal calcium wave is a key instructive component of the axon degeneration program. SIGNIFICANCE STATEMENT Axon degeneration resulting from trauma or neurodegenerative disease can cause devastating deficits in neural function. Understanding the molecular and cellular events that execute axon degeneration is essential for developing treatments to address these conditions. Calcium is known to contribute to axon degeneration, but its temporal requirements in this process have been unclear. Live calcium imaging in severed zebrafish neurons and temporally controlled

  3. The Transient Role for Calcium and Vitamin D during the Developmental Hair Follicle Cycle.

    PubMed

    Mady, Leila J; Ajibade, Dare V; Hsaio, Connie; Teichert, Arnaud; Fong, Chak; Wang, Yongmei; Christakos, Sylvia; Bikle, Daniel D

    2016-07-01

    The role for 1,25-dihydroxyvitamin D3 and/or calcium in hair follicle cycling is not clear despite their impact on keratinocyte differentiation. We found that calbindin-D9k null (knockout) pups generated from calbindin-D9k knockout females fed a vitamin D-deficient, low-calcium (0.47%) diet develop transient alopecia. The pups appear phenotypically normal until 13 days of age, after which the hair progressively sheds in a caudocephalic direction, resulting in truncal alopecia totalis by 20-23 days, with spontaneous recovery by 28 days. Histological studies showed markedly dystrophic hair follicles, loss of hair shafts with increased apoptosis, and hyperplastic epidermis during this time. Ha1 expression is lost during catagen in all mice but recovers more slowly in the knockout pups on the vitamin D-deficient, low-calcium diet. Keratin 1 expression is reduced throughout days 19-28. The expressions of involucrin, loricrin, and cathepsin L is initially increased by day 19 but subsequently falls below those of controls by day 23, as does that of desmoglein 3. Feeding the mothers a high-vitamin D/high-calcium (2%)/lactose (20%) diet lessens the phenotype, and knockout pups fostered to mothers fed a normal diet do not develop alopecia. Our results show that in calbindin-D9k knockout pups, a maternal vitamin D-deficient/low-calcium diet leads to transient noncicatricial alopecia. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  4. The distribution of calcium in toad cardiac pacemaker cells during spontaneous firing.

    PubMed

    Ju, Y K; Allen, D G

    2000-12-01

    Isolated, spontaneously active pacemaker cells from the sinus venosus region of the toad heart were loaded with the calcium indicator fluo-3. The cells were examined with a confocal microscope to investigate the distribution of calcium during spontaneous activity. Three classes of calcium-related signals were present. First, intense, localised, time-invariant signals were detected from structures distributed across the cell interior. Based on the insensitivity to saponin and the distribution in the cell, these signals appear to arise from fluo-3 located in the sarcoplasmic reticulum and the nuclear envelope. Second, spatially uniform signals from the cytoplasm were present at rest and showed spontaneous increases in [Ca2+]i which propagated along the cell. These Ca2+ transients were uniform in intensity across the diameter of the cell and we could detect no significant delay in the middle of the cell compared to the edges. However, within the nucleus the Ca2+ transient showed a clear delay compared to the cytoplasm. Third, localised, transient increases in [Ca2+]i (Ca2+ sparks) which did not propagate were also detectable. These could be detected both near the surface membrane and in the interior of the cell and reduced in magnitude and increased in duration in the presence of ryanodine. The frequency of firing of Ca2+ sparks significantly increased in the 200-ms period preceding a spontaneous Ca2+ transient. These results suggest that pacemaker cells contain sarcoplasmic reticulum which is distributed across the cell. The Ca2+ transient is uniform across the cell indicating that near-synchronous release of Ca2+ from the sarcoplasmic reticulum is achieved. Ca2+ sparks occur in pacemaker cells though their role in pacemaker function remains to be elucidated.

  5. Slowing light down by low magnetic fields: pulse delay by transient spectral hole-burning in ruby.

    PubMed

    Riesen, Hans; Rebane, Aleksander K; Szabo, Alex; Carceller, Ivana

    2012-08-13

    We report on the observation of slow light induced by transient spectral hole-burning in a solid, that is based on excited-state population storage. Experiments were conducted in the R1-line (2E←4A2 transition) of a 2.3 mm thick pink ruby (Al2O3:Cr(III) 130 ppm). Importantly, the pulse delay can be controlled by the application of a low external magnetic field B||c≤9 mT and delays of up to 11 ns with minimal pulse distortion are observed for ~55 ns Gaussian pulses. The delay corresponds to a group velocity value of ~c/1400. The experiment is very well modelled by linear spectral filter theory and the results indicate the possibility of using transient hole-burning based slow light experiments as a spectroscopic technique.

  6. One nuclear calcium transient induced by a single burst of action potentials represents the minimum signal strength in activity-dependent transcription in hippocampal neurons.

    PubMed

    Yu, Yan; Oberlaender, Kristin; Bengtson, C Peter; Bading, Hilmar

    2017-07-01

    Neurons undergo dramatic changes in their gene expression profiles in response to synaptic stimulation. The coupling of neuronal excitation to gene transcription is well studied and is mediated by signaling pathways activated by cytoplasmic and nuclear calcium transients. Despite this, the minimum synaptic activity required to induce gene expression remains unknown. To address this, we used cultured hippocampal neurons and cellular compartment analysis of temporal activity by fluorescence in situ hybridization (catFISH) that allows detection of nascent transcripts in the cell nucleus. We found that a single burst of action potentials, consisting of 24.4±5.1 action potentials during a 6.7±1.9s depolarization of 19.5±2.0mV causing a 9.3±0.9s somatic calcium transient, is sufficient to activate transcription of the immediate early gene arc (also known as Arg3.1). The total arc mRNA yield produced after a single burst-induced nuclear calcium transient was very small and, compared to unstimulated control neurons, did not lead to a significant increase in arc mRNA levels measured using quantitative reverse transcriptase PCR (qRT-PCR) of cell lysates. Significantly increased arc mRNA levels became detectable in hippocampal neurons that had undergone 5-8 consecutive burst-induced nuclear calcium transients at 0.05-0.15Hz. These results indicate that a single burst-induced nuclear calcium transient can activate gene expression and that transcription is rapidly shut off after synaptic stimulation has ceased. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Spontaneous calcium transients in human neural progenitor cells mediated by transient receptor potential channels.

    PubMed

    Morgan, Peter J; Hübner, Rayk; Rolfs, Arndt; Frech, Moritz J

    2013-09-15

    Calcium signals affect many developmental processes, including proliferation, migration, survival, and apoptosis, processes that are of particular importance in stem cells intended for cell replacement therapies. The mechanisms underlying Ca(2+) signals, therefore, have a role in determining how stem cells respond to their environment, and how these responses might be controlled in vitro. In this study, we examined the spontaneous Ca(2+) activity in human neural progenitor cells during proliferation and differentiation. Pharmacological characterization indicates that in proliferating cells, most activity is the result of transient receptor potential (TRP) channels that are sensitive to Gd(3+) and La(3+), with the more subtype selective antagonist Ruthenium red also reducing activity, suggesting the involvement of transient receptor potential vanilloid (TRPV) channels. In differentiating cells, Gd(3+) and La(3+)-sensitive TRP channels also appear to underlie the spontaneous activity; however, no sub-type-specific antagonists had any effect. Protein levels of TRPV2 and TRPV3 decreased in differentiated cells, which is demonstrated by western blot. Thus, it appears that TRP channels represent the main route of Ca(2+) entry in human neural progenitor cells (hNPCs), but the responsible channel types are subject to substitution under differentiating conditions. The level of spontaneous activity could be increased and decreased by lowering and raising the extracellular K(+) concentration. Proliferating cells in low K(+) slowed the cell cycle, with a disproportionate increased percentage of cells in G1 phase and a reduction in S phase. Taken together, these results suggest a link between external K(+) concentration, spontaneous Ca(2+) transients, and cell cycle distribution, which is able to influence the fate of stem and progenitor cells.

  8. Sea urchin spine calcite forms via a transient amorphous calcium carbonate phase.

    PubMed

    Politi, Yael; Arad, Talmon; Klein, Eugenia; Weiner, Steve; Addadi, Lia

    2004-11-12

    The skeletons of adult echinoderms comprise large single crystals of calcite with smooth convoluted fenestrated morphologies, raising many questions about how they form. By using water etching, infrared spectroscopy, electron diffraction, and environmental scanning electron microscopy, we show that sea urchin spine regeneration proceeds via the initial deposition of amorphous calcium carbonate. Because most echinoderms produce the same type of skeletal material, they probably all use this same mechanism. Deposition of transient amorphous phases as a strategy for producing single crystals with complex morphology may have interesting implications for the development of sophisticated materials.

  9. Estimating background-subtracted fluorescence transients in calcium imaging experiments: a quantitative approach.

    PubMed

    Joucla, Sébastien; Franconville, Romain; Pippow, Andreas; Kloppenburg, Peter; Pouzat, Christophe

    2013-08-01

    Calcium imaging has become a routine technique in neuroscience for subcellular to network level investigations. The fast progresses in the development of new indicators and imaging techniques call for dedicated reliable analysis methods. In particular, efficient and quantitative background fluorescence subtraction routines would be beneficial to most of the calcium imaging research field. A background-subtracted fluorescence transients estimation method that does not require any independent background measurement is therefore developed. This method is based on a fluorescence model fitted to single-trial data using a classical nonlinear regression approach. The model includes an appropriate probabilistic description of the acquisition system's noise leading to accurate confidence intervals on all quantities of interest (background fluorescence, normalized background-subtracted fluorescence time course) when background fluorescence is homogeneous. An automatic procedure detecting background inhomogeneities inside the region of interest is also developed and is shown to be efficient on simulated data. The implementation and performances of the proposed method on experimental recordings from the mouse hypothalamus are presented in details. This method, which applies to both single-cell and bulk-stained tissues recordings, should help improving the statistical comparison of fluorescence calcium signals between experiments and studies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Effect of Sulfur in Steel on Transient Evolution of Inclusions During Calcium Treatment

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Zhang, Lifeng; Zhang, Ying; Duan, Haojian; Ren, Ying; Yang, Wen

    2018-04-01

    In the current study, the effect of S content in the molten steel on inclusions during calcium treatment was studied using an induction furnace. The calcium in steel decreased from 48 to 2 ppm, and the sulfur in steel changed a little with time. When sulfur content in steel was as low as 25 ppm during calcium treatment, inclusions shifted from CaO-Al2O3-CaS to Al2O3-CaO with about 35 pct CaO. When the sulfur increased over 90 ppm, more CaS-CaO formed just after the addition of calcium, and then the CaS content decreased from over 45 pct to lower than 15 pct and inclusions were mostly Al2O3-CaO-CaS and Al2O3-CaO with a high Al2O3 content. Thermodynamic calculation predicted the variation of the composition of inclusions, indicating good agreement with the measurement, while a certain deviation existed, especially for heats with 90 and 180 ppm sulfur. A reaction model was proposed for the formation of CaO and CaS, which considered the reaction between calcium vapor bubbles in the zone and the dissolved oxygen and sulfur in the molten steel, as described by a Langmuir-type adsorption isotherm with a reaction occurring on the remaining vacant sites. The variation of transient CaS inclusions was discussed based on the thermodynamic calculation and the morphology evolution of typical inclusions containing CaS.

  11. Fast calcium transients translate the distribution and conduction of neural activity in different regions of a single sensory neuron.

    PubMed

    Purali, Nuhan

    2017-09-01

    In the present study, cytosolic calcium concentration changes were recorded in response to various forms of excitations, using the fluorescent calcium indicator dye OG-BAPTA1 together with the current or voltage clamp methods in stretch receptor neurons of crayfish. A single action potential evoked a rise in the resting calcium level in the axon and axonal hillock, whereas an impulse train or a large saturating current injection would be required to evoke an equivalent response in the dendrite region. Under voltage clamp conditions, amplitude differences between axon and dendrite responses vanished completely. The fast activation time and the modulation of the response by extracellular calcium concentration changes indicated that the evoked calcium transients might be mediated by calcium entry into the cytosol through a voltage-gated calcium channel. The decay of the responses was slow and sensitive to extracellular sodium and calcium concentrations as well as exposure to 1-10 mM NiCl 2 and 10-500 µM lanthanum. Thus, a sodium calcium exchanger and a calcium ATPase might be responsible for calcium extrusion from the cytosol. Present results indicate that the calcium indicator OG-BAPTA1 might be an efficient but indirect way of monitoring regional membrane potential differences in a single neuron.

  12. Single-shot transient absorption spectroscopy with a 45  ps pump-probe time delay range.

    PubMed

    Wilson, Kelly S; Wong, Cathy Y

    2018-02-01

    We report a single-shot transient absorption apparatus that successfully uses a tilted pump pulse to spatially encode a 45 ps pump-probe time delay. The time delay range is significantly improved over other reported instruments by using a spatial light modulator to flatten the intensity of the excitation field at the sample position. The full time delay range of the instrument is demonstrated by measuring a long-lived dye. A signal-to-noise ratio of >35 is attained in 8 s. This advance will enable the measurement of excited state dynamics of systems that are not at structural equilibrium.

  13. Glycine Receptor Activation Impairs ATP-Induced Calcium Transients in Cultured Cortical Astrocytes

    PubMed Central

    Morais, Tatiana P.; Coelho, David; Vaz, Sandra H.; Sebastião, Ana M.; Valente, Cláudia A.

    2018-01-01

    In central nervous system, glycine receptor (GlyR) is mostly expressed in the spinal cord and brainstem, but glycinergic transmission related elements have also been identified in the brain. Astrocytes are active elements at the tripartite synapse, being responsible for the maintenance of brain homeostasis and for the fine-tuning of synaptic activity. These cells communicate, spontaneously or in response to a stimulus, by elevations in their cytosolic calcium (calcium transients, Ca2+T) that can be propagated to other cells. How these Ca2+T are negatively modulated is yet poorly understood. In this work, we evaluated GlyR expression and its role on calcium signaling modulation in rat brain astrocytes. We first proved that GlyR, predominantly subunits α2 and β, was expressed in brain astrocytes and its localization was confirmed in the cytoplasm and astrocytic processes by immunohistochemistry assays. Calcium imaging experiments in cultured astrocytes showed that glycine (500 μM), a GlyR agonist, caused a concentration-dependent reduction in ATP-induced Ca2+T, an effect abolished by the GlyR antagonist, strychnine (0.8 μM), as well as by nocodazole (1 μM), known to impair GlyR anchorage to the plasma membrane. This effect was mimicked by activation of GABAAR, another Cl--permeable channel. In summary, we demonstrated that GlyR activation in astrocytes mediates an inhibitory effect upon ATP induced Ca2+T, which most probably involves changes in membrane permeability to Cl- and requires GlyR anchorage at the plasma membrane. GlyR in astrocytes may thus be part of a mechanism to modulate astrocyte-to-neuron communication. PMID:29386993

  14. PRECISION TIME-DELAY CIRCUIT

    DOEpatents

    Creveling, R.

    1959-03-17

    A tine-delay circuit which produces a delay time in d. The circuit a capacitor, an te back resistance, connected serially with the anode of the diode going to ground. At the start of the time delay a negative stepfunction is applied to the series circuit and initiates a half-cycle transient oscillatory voltage terminated by a transient oscillatory voltage of substantially higher frequency. The output of the delay circuit is taken at the junction of the inductor and diode where a sudden voltage rise appears after the initiation of the higher frequency transient oscillations.

  15. NOTE: Total body-calcium measurements: comparison of two delayed-gamma neutron activation facilities

    NASA Astrophysics Data System (ADS)

    Ma, R.; Ellis, K. J.; Yasumura, S.; Shypailo, R. J.; Pierson, R. N., Jr.

    1999-06-01

    This study compares two independently calibrated delayed-gamma neutron activation (DGNA) facilities, one at the Brookhaven National Laboratory (BNL), Upton, New York, and the other at the Children's Nutrition Research Center (CNRC), Houston, Texas that measure total body calcium (TBCa). A set of BNL phantoms was sent to CNRC for neutron activation analysis, and a set of CNRC phantoms was measured at BNL. Both facilities showed high precision (<2%), and the results were in good agreement, within 5%.

  16. Psilocybin dose-dependently causes delayed, transient headaches in healthy volunteers

    PubMed Central

    Johnson, Matthew W.; Sewell, R. Andrew; Griffiths, Roland R.

    2011-01-01

    Background Psilocybin is a well-characterized classic hallucinogen (psychedelic) with a long history of religious use by indigenous cultures, and nonmedical use in modern societies. Although psilocybin is structurally related to migraine medications, and case studies suggest that psilocybin may be efficacious in treatment of cluster headache, little is known about the relationship between psilocybin and headache. Methods This double-blind study examined a broad range of psilocybin doses (0, 5, 10, 20, and 30 mg/70 kg) on headache in 18 healthy participants. Results Psilocybin frequently caused headache, the incidence, duration, and severity of which increased in a dose-dependent manner. All headaches had delayed onset, were transient, and lasted no more than a day after psilocybin administration. Conclusions Possible mechanisms for these observations are discussed, and include induction of delayed headache through nitric oxide release. These data suggest that headache is an adverse event to be expected with the nonmedical use of psilocybin-containing mushrooms as well as the administration of psilocybin in human research. Headaches were neither severe nor disabling, and should not present a barrier to future psilocybin research. PMID:22129843

  17. Psilocybin dose-dependently causes delayed, transient headaches in healthy volunteers.

    PubMed

    Johnson, Matthew W; Sewell, R Andrew; Griffiths, Roland R

    2012-06-01

    Psilocybin is a well-characterized classic hallucinogen (psychedelic) with a long history of religious use by indigenous cultures, and nonmedical use in modern societies. Although psilocybin is structurally related to migraine medications, and case studies suggest that psilocybin may be efficacious in treatment of cluster headache, little is known about the relationship between psilocybin and headache. This double-blind study examined a broad range of psilocybin doses (0, 5, 10, 20, and 30 mg/70 kg) on headache in 18 healthy participants. Psilocybin frequently caused headache, the incidence, duration, and severity of which increased in a dose-dependent manner. All headaches had delayed onset, were transient, and lasted no more than a day after psilocybin administration. Possible mechanisms for these observations are discussed, and include induction of delayed headache through nitric oxide release. These data suggest that headache is an adverse event to be expected with the nonmedical use of psilocybin-containing mushrooms as well as the administration of psilocybin in human research. Headaches were neither severe nor disabling, and should not present a barrier to future psilocybin research. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  18. Cameleon calcium indicator reports cytoplasmic calcium dynamics in Arabidopsis guard cells

    NASA Technical Reports Server (NTRS)

    Allen, G. J.; Kwak, J. M.; Chu, S. P.; Llopis, J.; Tsien, R. Y.; Harper, J. F.; Schroeder, J. I.; Evans, M. L. (Principal Investigator)

    1999-01-01

    Cytoplasmic free calcium ([Ca2+]cyt) acts as a stimulus-induced second messenger in plant cells and multiple signal transduction pathways regulate [Ca2+]cyt in stomatal guard cells. Measuring [Ca2+]cyt in guard cells has previously required loading of calcium-sensitive dyes using invasive and technically difficult micro-injection techniques. To circumvent these problems, we have constitutively expressed the pH-independent, green fluorescent protein-based calcium indicator yellow cameleon 2.1 in Arabidopsis thaliana (Miyawaki et al. 1999; Proc. Natl. Acad. Sci. USA 96, 2135-2140). This yellow cameleon calcium indicator was expressed in guard cells and accumulated predominantly in the cytoplasm. Fluorescence ratio imaging of yellow cameleon 2.1 allowed time-dependent measurements of [Ca2+]cyt in Arabidopsis guard cells. Application of extracellular calcium or the hormone abscisic acid (ABA) induced repetitive [Ca2+]cyt transients in guard cells. [Ca2+]cyt changes could be semi-quantitatively determined following correction of the calibration procedure for chloroplast autofluorescence. Extracellular calcium induced repetitive [Ca2+]cyt transients with peak values of up to approximately 1.5 microM, whereas ABA-induced [Ca2+]cyt transients had peak values up to approximately 0.6 microM. These values are similar to stimulus-induced [Ca2+]cyt changes previously reported in plant cells using ratiometric dyes or aequorin. In some guard cells perfused with low extracellular KCl concentrations, spontaneous calcium transients were observed. As yellow cameleon 2.1 was expressed in all guard cells, [Ca2+]cyt was measured independently in the two guard cells of single stomates for the first time. ABA-induced, calcium-induced or spontaneous [Ca2+]cyt increases were not necessarily synchronized in the two guard cells. Overall, these data demonstrate that that GFP-based cameleon calcium indicators are suitable to measure [Ca2+]cyt changes in guard cells and enable the pattern of [Ca

  19. Sustained and transient calcium currents in horizontal cells of the white bass retina.

    PubMed

    Sullivan, J M; Lasater, E M

    1992-01-01

    Calcium currents were recorded from cultured horizontal cells (HCs) isolated from adult white bass retinas, using the whole-cell patch-clamp technique. Ca2+ currents were enhanced using 10 mM extracellular Ca2+, while Na+ and K+ currents were pharmacologically suppressed. Two components of the Ca2+ current, one transient, the other sustained, were found. The large transient component of the Ca2+ current, which has not been seen before in HCs, is similar, but not identical, to the T-type Ca2+ current described previously in a variety of preparations. The sustained component of the Ca2+ current is similar, but not identical, to the L-type current described in other preparations. FTX, a factor isolated from the venom of the funnel-web spider, Agelenopsis aperta, preferentially and irreversibly blocks the sustained component of the Ca2+ current at very dilute concentrations. The sustained component of the Ca2+ current inactivates slowly, over the course of 15-60 s, in some HCs. This inactivation of the sustained Ca2+ current, when present, is primarily voltage dependent rather than Ca2+ dependent.

  20. Impact of calcium-sensitive dyes on the beating properties and pharmacological responses of human iPS-derived cardiomyocytes using the calcium transient assay.

    PubMed

    Kopljar, Ivan; Hermans, An N; Teisman, Ard; Gallacher, David J; Lu, Hua Rong

    Calcium-based screening of hiPS-CMs is a useful preclinical safety evaluation platform with the ability to generate robust signals that facilitates high-throughput screening and data analysis. However, due to the potential inherent toxicities, it is important to understand potential effects of different calcium-sensitive dyes on the hiPS-CMs model. We compared three calcium-sensitive fluorescence dyes (Cal520, ACTOne and Calcium 5) for their impact on the variability, the beating properties and the pharmacological responses of hiPS-CMs using the Hamamatsu FDSS/μCell imaging platform. Direct effects of three dyes on the electrophysiological properties of hiPS-CMs were evaluated with the multi-electrode array (MEA) Axion Maestro platform. We propose a specific experimental protocol for each dye which gives the most optimal assay conditions to minimize variability and possible adverse effects. We showed that Cal520 had the smallest effect on hiPS-CMs together with the longest-lasting stable amplitude signal (up to 4 h). Although all dyes had a (minor) acute effect on hiPS-CMs, in the form of reduced beat rate and prolonged field potential duration, the selection of the dye did not influence the pharmacological response of four cardioactive drugs (dofetilide, moxifloxacin, nimodipine and isoprenaline). In conclusion, we have documented that different calcium sensitive dyes have only minor direct (acute) effects on hiPS-CMs with Cal520 showing the least effects and the longest lasting signal amplitude. Importantly, drug-induced pharmacological responses in hiPS-CMs were comparable between the three dyes. These findings should help further improve the robustness of the hiPS-CMs-based calcium transient assay as a predictive, preclinical cardiac safety evaluation tool. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Calcium-sensitive and insensitive transient outward current in rabbit ventricular myocytes.

    PubMed Central

    Hiraoka, M; Kawano, S

    1989-01-01

    1. A suction pipette whole-cell voltage-clamp technique was used to record membrane currents and potentials of isolated ventricular myocytes from rabbit hearts. 2. Transient outward current (Ito) was activated by voltage steps positive to -20 mV, increasing in amplitude with further depolarization to reach a maximum around +70 mV. The current attained its peak within 10 ms and then it inactivated for 100-200 ms. 3. A large portion of Ito still remained after the calcium current (ICa) was blocked when depolarizing pulses were applied at a frequency of 0.1 Hz or less. Therefore, this current component is referred to as calcium-insensitive Ito or It. 4. It showed voltage- and time-dependent inactivation similar to that observed in Purkinje fibres and other cardiac preparations. 5. The reversal potential of It depended on external K+ concentration, [K+]o, with a slope of 32 mV per 10-fold change in the presence of a normal [Na+]o (143 mM), while the slope was 48 mV per 10-fold change in low [Na+]o (1.0 mM). 6. It was completely inhibited by 2-4 mM-4-aminopyridine. Ito in the presence of ICa was also partially blocked by 4-aminopyridine and the remainder was abolished by 5 mM-caffeine. 7. The calcium-insensitive and caffeine-sensitive Ito differed in their decay rates as well as in their recovery time courses. The former was predominantly available at a slow pulsing rate, while the latter increased its amplitude with high-frequency depolarization. 8. The caffeine-sensitive Ito was inhibited by a blockade of ICa, by replacing Ca2+ with Sr2+, by external application of ryanodine and by internal application of EGTA. This indicates that the current is calcium-sensitive and is dependent on increased myoplasmic Ca2+ through Ca2+ influx via the sarcolemma and Ca2+ release from the sarcoplasmic reticulum. The current is therefore designated as IK, Ca. 9. The physiological functions of IK, Ca and It are indicated by their contribution to ventricular repolarization at fast and

  2. Yeast respond to hypotonic shock with a calcium pulse

    NASA Technical Reports Server (NTRS)

    Batiza, A. F.; Schulz, T.; Masson, P. H.

    1996-01-01

    We have used the transgenic AEQUORIN calcium reporter system to monitor the cytosolic calcium ([Ca2+]cyt) response of Saccharomyces cerevisiae to hypotonic shock. Such a shock generates an almost immediate and transient rise in [Ca2+]cyt which is eliminated by gadolinium, a blocker of stretch-activated channels. In addition, this transient rise in [Ca2+]cyt is initially insensitive to 1,2-bis-(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA), an extracellular calcium chelator. However, BAPTA abruptly attenuates the maintenance of that transient rise. These data show that hypotonic shock generates a stretch-activated channel-dependent calcium pulse in yeast. They also suggest that the immediate calcium influx is primarily generated from intracellular stores, and that a sustained increase in [Ca2+]cyt depends upon extracellular calcium.

  3. Transient osteoporosis of the hip with a contralateral delayed involvement: a case report

    PubMed Central

    Iannò, Bruno; De Gori, Marco; Familiari, Filippo; Pugliese, Teresa; Gasparini, Giorgio

    2017-01-01

    Summary We describe a case of non-simultaneous bilateral hip pain with bone marrow edema occurring in an adult male, with the contralateral hip being involved 12 years later after the onset of symptoms. On the basis of clinical and imaging findings, together with a complete resolution after conservative management, a post-hoc diagnosis of metachronous bilateral transient osteoporosis of the hip (TOH) was made. Non-simultaneous bilateral presentation of TOH is exceptional, and contralateral involvement with a 12-year delay has never been previously described. PMID:28740530

  4. Sustained and transient calcium currents in horizontal cells of the white bass retina

    PubMed Central

    1992-01-01

    Calcium currents were recorded from cultured horizontal cells (HCs) isolated from adult white bass retinas, using the whole-cell patch- clamp technique. Ca2+ currents were enhanced using 10 mM extracellular Ca2+, while Na+ and K+ currents were pharmacologically suppressed. Two components of the Ca2+ current, one transient, the other sustained, were found. The large transient component of the Ca2+ current, which has not been seen before in HCs, is similar, but not identical, to the T-type Ca2+ current described previously in a variety of preparations. The sustained component of the Ca2+ current is similar, but not identical, to the L-type current described in other preparations. FTX, a factor isolated from the venom of the funnel-web spider, Agelenopsis aperta, preferentially and irreversibly blocks the sustained component of the Ca2+ current at very dilute concentrations. The sustained component of the Ca2+ current inactivates slowly, over the course of 15- 60 s, in some HCs. This inactivation of the sustained Ca2+ current, when present, is primarily voltage dependent rather than Ca2+ dependent. PMID:1371309

  5. Roles of calcium and pH in activation of eggs of the medaka fish, Oryzias latipes

    PubMed Central

    1983-01-01

    Unfertilized eggs of the medaka fish (Oryzias latipes) were injected with pH-buffered calcium buffers. Medaka egg activation is accompanied by a transient increase in cytoplasmic free calcium (Gilkey, J. C., L. F. Jaffe, E. B. Ridgway, and G. T. Reynolds, 1978, J. Cell Biol., 76:448-466). The calcium buffer injections demonstrated that (a) the threshold free calcium required to elicit the calcium transient and activate the egg is between 1.7 and 5.1 microM at pH 7.0, well below the 30 microM reached during the transient, and (b) buffers which hold free calcium below threshold prevent activation of the buffered region in subsequently fertilized eggs. Therefore an increase in free calcium is necessary and sufficient to elicit the calcium transient, and the calcium transient is necessary to activate the egg. Further, these results are additional proof that the calcium transient is initiated and propagated through the cytoplasm by a mechanism of calcium- stimulated calcium release. Finally, a normal calcium transient must propagate through the entire cytoplasm to ensure normal development. Unfertilized eggs were injected with pH buffers to produce short-term, localized changes in cytoplasmic pH. The eggs were then fertilized at various times after injection. In other experiments, unfertilized and fertilized eggs were exposed to media containing either NH4Cl or CO2 to produce longer term, global changes in cytoplasmic pH. These treatments neither activated the eggs nor interfered with the normal development of fertilized eggs, suggesting that even if a natural change in cytoplasmic pH is induced by activation, it has no role in medaka egg development. The injected pH buffers altered the rate of propagation of the calcium transient through the cytoplasm, suggesting that the threshold free calcium required to trigger calcium-stimulated calcium release might be pH dependent. The results of injection of pH-buffered calcium buffers support this conjecture: for a tenfold

  6. Properties of the calcium-activated chloride current in heart.

    PubMed

    Zygmunt, A C; Gibbons, W R

    1992-03-01

    We used the whole cell patch clamp technique to study transient outward currents of single rabbit atrial cells. A large transient current, IA, was blocked by 4-aminopyridine (4AP) and/or by depolarized holding potentials. After block of IA, a smaller transient current remained. It was completely blocked by nisoldipine, cadmium, ryanodine, or caffeine, which indicates that all of the 4AP-resistant current is activated by the calcium transient that causes contraction. Neither calcium-activated potassium current nor calcium-activated nonspecific cation current appeared to contribute to the 4AP-resistant transient current. The transient current disappeared when ECl was made equal to the pulse potential; it was present in potassium-free internal and external solutions. It was blocked by the anion transport blockers SITS and DIDS, and the reversal potential of instantaneous current-voltage relations varied with extracellular chloride as predicted for a chloride-selective conductance. We concluded that the 4AP-resistant transient outward current of atrial cells is produced by a calcium-activated chloride current like the current ICl(Ca) of ventricular cells (1991. Circulation Research. 68:424-437). ICl(Ca) in atrial cells demonstrated outward rectification, even when intracellular chloride concentration was higher than extracellular. When ICa was inactivated or allowed to recover from inactivation, amplitudes of ICl(Ca) and ICa were closely correlated. The results were consistent with the view that ICl(Ca) does not undergo independent inactivation. Tentatively, we propose that ICl(Ca) is transient because it is activated by an intracellular calcium transient. Lowering extracellular sodium increased the peak outward transient current. The current was insensitive to the choice of sodium substitute. Because a recently identified time-independent, adrenergically activated chloride current in heart is reduced in low sodium, these data suggest that the two chloride currents are

  7. Air bubble contact with endothelial cells in vitro induces calcium influx and IP3-dependent release of calcium stores

    PubMed Central

    Sobolewski, Peter; Kandel, Judith; Klinger, Alexandra L.

    2011-01-01

    Gas embolism is a serious complication of decompression events and clinical procedures, but the mechanism of resulting injury remains unclear. Previous work has demonstrated that contact between air microbubbles and endothelial cells causes a rapid intracellular calcium transient and can lead to cell death. Here we examined the mechanism responsible for the calcium rise. Single air microbubbles (50–150 μm), trapped at the tip of a micropipette, were micromanipulated into contact with individual human umbilical vein endothelial cells (HUVECs) loaded with Fluo-4 (a fluorescent calcium indicator). Changes in intracellular calcium were then recorded via epifluorescence microscopy. First, we confirmed that HUVECs rapidly respond to air bubble contact with a calcium transient. Next, we examined the involvement of extracellular calcium influx by conducting experiments in low calcium buffer, which markedly attenuated the response, or by pretreating cells with stretch-activated channel blockers (gadolinium chloride or ruthenium red), which abolished the response. Finally, we tested the role of intracellular calcium release by pretreating cells with an inositol 1,4,5-trisphosphate (IP3) receptor blocker (xestospongin C) or phospholipase C inhibitor (neomycin sulfate), which eliminated the response in 64% and 67% of cases, respectively. Collectively, our results lead us to conclude that air bubble contact with endothelial cells causes an influx of calcium through a stretch-activated channel, such as a transient receptor potential vanilloid family member, triggering the release of calcium from intracellular stores via the IP3 pathway. PMID:21633077

  8. Parvalbumin overexpression alters immune-mediated increases in intracellular calcium, and delays disease onset in a transgenic model of familial amyotrophic lateral sclerosis

    NASA Technical Reports Server (NTRS)

    Beers, D. R.; Ho, B. K.; Siklos, L.; Alexianu, M. E.; Mosier, D. R.; Mohamed, A. H.; Otsuka, Y.; Kozovska, M. E.; McAlhany, R. E.; Smith, R. G.; hide

    2001-01-01

    Intracellular calcium is increased in vulnerable spinal motoneurons in immune-mediated as well as transgenic models of amyotrophic lateral sclerosis (ALS). To determine whether intracellular calcium levels are influenced by the calcium-binding protein parvalbumin, we developed transgenic mice overexpressing parvalbumin in spinal motoneurons. ALS immunoglobulins increased intracellular calcium and spontaneous transmitter release at motoneuron terminals in control animals, but not in parvalbumin overexpressing transgenic mice. Parvalbumin transgenic mice interbred with mutant SOD1 (mSOD1) transgenic mice, an animal model of familial ALS, had significantly reduced motoneuron loss, and had delayed disease onset (17%) and prolonged survival (11%) when compared with mice with only the mSOD1 transgene. These results affirm the importance of the calcium binding protein parvalbumin in altering calcium homeostasis in motoneurons. The increased motoneuron parvalbumin can significantly attenuate the immune-mediated increases in calcium and to a lesser extent compensate for the mSOD1-mediated 'toxic-gain-of-function' in transgenic mice.

  9. Canonical Transient Receptor Potential Channel 2 (TRPC2) as a Major Regulator of Calcium Homeostasis in Rat Thyroid FRTL-5 Cells

    PubMed Central

    Sukumaran, Pramod; Löf, Christoffer; Kemppainen, Kati; Kankaanpää, Pasi; Pulli, Ilari; Näsman, Johnny; Viitanen, Tero; Törnquist, Kid

    2012-01-01

    Mammalian non-selective transient receptor potential cation channels (TRPCs) are important in the regulation of cellular calcium homeostasis. In thyroid cells, including rat thyroid FRTL-5 cells, calcium regulates a multitude of processes. RT-PCR screening of FRTL-5 cells revealed the presence of TRPC2 channels only. Knockdown of TRPC2 using shRNA (shTRPC2) resulted in decreased ATP-evoked calcium peak amplitude and inward current. In calcium-free buffer, there was no difference in the ATP-evoked calcium peak amplitude between control cells and shTRPC2 cells. Store-operated calcium entry was indistinguishable between the two cell lines. Basal calcium entry was enhanced in shTRPC2 cells, whereas the level of PKCβ1 and PKCδ, the activity of sarco/endoplasmic reticulum Ca2+-ATPase, and the calcium content in the endoplasmic reticulum were decreased. Stromal interaction molecule (STIM) 2, but not STIM1, was arranged in puncta in resting shTRPC2 cells but not in control cells. Phosphorylation site Orai1 S27A/S30A mutant and non-functional Orai1 R91W attenuated basal calcium entry in shTRPC2 cells. Knockdown of PKCδ with siRNA increased STIM2 punctum formation and enhanced basal calcium entry but decreased sarco/endoplasmic reticulum Ca2+-ATPase activity in wild-type cells. Transfection of a truncated, non-conducting mutant of TRPC2 evoked similar results. Thus, TRPC2 functions as a major regulator of calcium homeostasis in rat thyroid cells. PMID:23144458

  10. Cell-type-specific modelling of intracellular calcium signalling: a urothelial cell model.

    PubMed

    Appleby, Peter A; Shabir, Saqib; Southgate, Jennifer; Walker, Dawn

    2013-09-06

    Calcium signalling plays a central role in regulating a wide variety of cell processes. A number of calcium signalling models exist in the literature that are capable of reproducing a variety of experimentally observed calcium transients. These models have been used to examine in more detail the mechanisms underlying calcium transients, but very rarely has a model been directly linked to a particular cell type and experimentally verified. It is important to show that this can be achieved within the general theoretical framework adopted by these models. Here, we develop a framework designed specifically for modelling cytosolic calcium transients in urothelial cells. Where possible, we draw upon existing calcium signalling models, integrating descriptions of components known to be important in this cell type from a number of studies in the literature. We then add descriptions of several additional pathways that play a specific role in urothelial cell signalling, including an explicit ionic influx term and an active pumping mechanism that drives the cytosolic calcium concentration to a target equilibrium. The resulting one-pool model of endoplasmic reticulum (ER)-dependent calcium signalling relates the cytosolic, extracellular and ER calcium concentrations and can generate a wide range of calcium transients, including spikes, bursts, oscillations and sustained elevations in the cytosolic calcium concentration. Using single-variate robustness and multivariate sensitivity analyses, we quantify how varying each of the parameters of the model leads to changes in key features of the calcium transient, such as initial peak amplitude and the frequency of bursting or spiking, and in the transitions between bursting- and plateau-dominated modes. We also show that, novel to our urothelial cell model, the ionic and purinergic P2Y pathways make distinct contributions to the calcium transient. We then validate the model using human bladder epithelial cells grown in monolayer cell

  11. Effects of zinc oxide-eugenol and calcium hydroxide/ iodoform on delaying root resorption in primary molars without successors.

    PubMed

    Lin, Bichen; Zhao, Yuming; Yang, Jie; Wang, Wenjun; Ge, Li-hong

    2014-01-01

    The purpose of this study was to compare the effects of zinc oxide-eugenol (ZOE) and calcium hydroxide/iodoform paste (Vitapex), as root canal filling materials in pulpectomy, on delaying the root resorption of primary molars without permanent successors. Animal models without permanent successors were surgically established in beagle dogs. Root resorption was observed via periapical radiographs. The onset of root resorption of primary mandibular molars without successors occurred later (p<0.05) than physiologic resorption. ZOE pulpectomy clearly delayed the root resorption of primary molars without permanent successors (p<0.05), whereas resorption of primary molars with Vitapex pulpectomy started at almost the same time as physiologic resorption. Compared with Vitapex, ZOE was a more effective root canal filling material in delaying the root resorption of primary molars.

  12. iPTF15eqv: Multiwavelength Exposé of a Peculiar Calcium-rich Transient

    NASA Astrophysics Data System (ADS)

    Milisavljevic, Dan; Patnaude, Daniel J.; Raymond, John C.; Drout, Maria R.; Margutti, Raffaella; Kamble, Atish; Chornock, Ryan; Guillochon, James; Sanders, Nathan E.; Parrent, Jerod T.; Lovisari, Lorenzo; Chilingarian, Igor V.; Challis, Peter; Kirshner, Robert P.; Penny, Matthew T.; Itagaki, Koichi; Eldridge, J. J.; Moriya, Takashi J.

    2017-09-01

    The progenitor systems of the class of “Ca-rich transients” is a key open issue in time domain astrophysics. These intriguing objects exhibit unusually strong calcium line emissions months after explosion, fall within an intermediate luminosity range, are often found at large projected distances from their host galaxies, and may play a vital role in enriching galaxies and the intergalactic medium. Here we present multiwavelength observations of iPTF15eqv in NGC 3430, which exhibits a unique combination of properties that bridge those observed in Ca-rich transients and SNe Ib/c. iPTF15eqv has among the highest [Ca II]/[O I] emission line ratios observed to date, yet is more luminous and decays more slowly than other Ca-rich transients. Optical and near-infrared photometry and spectroscopy reveal signatures consistent with the supernova explosion of a ≲ 10 {M}⊙ star that was stripped of its H-rich envelope via binary interaction. Distinct chemical abundances and ejecta kinematics suggest that the core collapse occurred through electron-capture processes. Deep limits on possible radio emission made with the Jansky Very Large Array imply a clean environment (n ≲ 0.1 cm-3) within a radius of ˜ {10}17 cm. Chandra X-ray Observatory observations rule out alternative scenarios involving the tidal disruption of a white dwarf (WD) by a black hole, for masses >100 M ⊙. Our results challenge the notion that spectroscopically classified Ca-rich transients only originate from WD progenitor systems, complicate the view that they are all associated with large ejection velocities, and indicate that their chemical abundances may vary widely between events.

  13. TRPM2 channel deficiency prevents delayed cytosolic Zn2+ accumulation and CA1 pyramidal neuronal death after transient global ischemia

    PubMed Central

    Ye, M; Yang, W; Ainscough, J F; Hu, X-P; Li, X; Sedo, A; Zhang, X-H; Zhang, X; Chen, Z; Li, X-M; Beech, D J; Sivaprasadarao, A; Luo, J-H; Jiang, L-H

    2014-01-01

    Transient ischemia is a leading cause of cognitive dysfunction. Postischemic ROS generation and an increase in the cytosolic Zn2+ level ([Zn2+]c) are critical in delayed CA1 pyramidal neuronal death, but the underlying mechanisms are not fully understood. Here we investigated the role of ROS-sensitive TRPM2 (transient receptor potential melastatin-related 2) channel. Using in vivo and in vitro models of ischemia–reperfusion, we showed that genetic knockout of TRPM2 strongly prohibited the delayed increase in the [Zn2+]c, ROS generation, CA1 pyramidal neuronal death and postischemic memory impairment. Time-lapse imaging revealed that TRPM2 deficiency had no effect on the ischemia-induced increase in the [Zn2+]c but abolished the cytosolic Zn2+ accumulation during reperfusion as well as ROS-elicited increases in the [Zn2+]c. These results provide the first evidence to show a critical role for TRPM2 channel activation during reperfusion in the delayed increase in the [Zn2+]c and CA1 pyramidal neuronal death and identify TRPM2 as a key molecule signaling ROS generation to postischemic brain injury. PMID:25429618

  14. Shear stress-induced calcium transients in endothelial cells from human umbilical cord veins.

    PubMed Central

    Schwarz, G; Callewaert, G; Droogmans, G; Nilius, B

    1992-01-01

    1. Changes of the free cytosolic Ca2+ concentration induced by shear stress were measured in Fura-2 acetoxymethyl ester-loaded endothelial cells from human umbilical cord veins. 2. We were able to induce Ca2+ transients in almost every cell by blowing a stream of physiological solution onto a single endothelial cell thereby inducing shear stress between 0 and 50 dyn cm-2. The Ca2+ response could be graded by varying the shear stress, and reached a half-maximal value at a shear stress of 30 dyn cm-2. 3. The shear stress responses critically depended on the extracellular Ca2+ concentration and were absent in a Ca(2+)-free solution. Repetitive application of short pulses of shear stress induced cumulative effects because of the slow decay of the shear stress Ca2+ responses (time constants 82.3 +/- 17.8 s from twenty-five cells). Application of a depolarizing high potassium solution to reduce the driving force for Ca2+ entry decreased the Ca2+ transients in some of the cells. 4. Application of shear stress in the presence of other divalent cations, such as nickel, cobalt or barium, always produced substantial changes in the ratio of the 390/360 nm fluorescence signal, indicating influx of these cations and subsequent quenching of the Fura-2 fluorescence. 5. Shear stress responses in the presence of 10 mM Ca2+ were completely blocked by application of 1 mM La3+. 6. Incubation of the cells with the phorbol ester 12-O-tetradecanoyl phorbol-13-acetate (TPA) did not alter the shear stress response, but completely blocked histamine-induced Ca2+ transients. 7. Small submaximal shear stress potentiated the Ca2+ transients induced by histamine. 8. We conclude that shear stress-dependent Ca2+ signals are induced by an influx of calcium that is not modulated via protein kinase C and not activated by membrane depolarization. The influx pathway is also permeable to divalent cations such as Ni2+, Co2+ and Ba2+, but is blocked by La3+. PMID:1338792

  15. Novel features on the regulation by mitochondria of calcium and secretion transients in chromaffin cells challenged with acetylcholine at 37°C

    PubMed Central

    Caricati‐Neto, Afonso; Padín, Juan‐Fernando; Silva‐Junior, Edilson‐Dantas; Fernández‐Morales, José‐Carlos; de Diego, Antonio‐Miguel G.; Jurkiewicz, Aron; García, Antonio G.

    2013-01-01

    Abstract From experiments performed at room temperature, we know that the buffering of Ca2+ by mitochondria contributes to the shaping of the bulk cytosolic calcium transient ([Ca2+]c) and secretion transients of chromaffin cells stimulated with depolarizing pulses. We also know that the mitochondrial Ca2+ transporters and the release of catecholamine are faster at 37°C with respect to room temperature. Therefore, we planned this investigation to gain further insight into the contribution of mitochondrial Ca2+ buffering to the shaping of [Ca2+]c and catecholamine release transients, using some novel experimental conditions that have not been yet explored namely: (1) perifusion of bovine chromaffin cells (BCCs) with saline at 37°C and their repeated challenging with the physiological neurotransmitter acetylcholine (ACh); (2) separate blockade of mitochondrial Ca2+ uniporter (mCUP) with Ru360 or the mitochondrial Na+/Ca2+ exchanger (mNCX) with CGP37157; (3) full blockade of the mitochondrial Ca2+ cycling (mCC) by the simultaneous inhibition of the mCUP and the mNCX. Ru360 caused a pronounced delay of [Ca2+]c clearance and augmented secretion. In contrast, CGP37157 only caused a tiny delay of [Ca2+]c clearance and a mild decrease in secretion. The mCC resulting in continued Ca2+ uptake and its release back into the cytosol was interrupted by combined Ru360 + CGP37157 (Ru/CGP), the protonophore carbonyl cyanide‐p‐trifluoromethoxyphenylhydrazone, or combined oligomycin + rotenone (O/R); these three treatments caused a mild but sustained elevation of basal [Ca2+]c that, however, was not accompanied by a parallel increase in basal secretion. Nevertheless, all treatments caused a pronounced augmentation of ACh‐induced secretion, with minor changes of the ACh‐induced [Ca2+]c transients. Combined Ru/CGP did not alter the resting membrane potential in current‐clamped cells. Additionally, Ru/CGP did not increase basal [Ca2+]c near subplasmalemmal sites and caused a

  16. Synergistic Effect of Transient Receptor Potential Antagonist and Amiloride against Maitotoxin Induced Calcium Increase and Cytotoxicity in Human Neuronal Stem Cells.

    PubMed

    Boente-Juncal, Andrea; Vale, Carmen; Alfonso, Amparo; Botana, Luis M

    2018-05-16

    Maitotoxins (MTX) are among the most potent marine toxins identified to date causing cell death trough massive calcium influx. However, the exact mechanism for the MTX-induced calcium entry and cytotoxicity is still unknown. In this work, the effect of MTX-1 on the cytosolic free calcium concentration and cellular viability of human neuronal stem cells was evaluated. MTX elicited a concentration-dependent decrease in cell viability which was already evident after 1 h of treatment with 0.25 nM MTX; however, at a concentration of 0.1 nM, the toxin did not cause cell death even after 14 days of exposure. Moreover, the toxin caused a concentration dependent rise in the cytosolic calcium concentration which was maximal at toxin concentrations of 1 nM and dependent on the presence of extracellular calcium on the bathing solution. Several pharmacological approaches were employed to evaluate the role of canonical transient potential receptor channels (TRPC) on the MTX effects. The results presented here lead to the identification of the TRPC4 channels as contributors to the MTX effects in human neuronal cells. Both, the calcium increase and the cytotoxicity of MTX were either fully (for the calcium increase) or partially (in the case of cytotoxicity) reverted by the blockade of canonical TRPC4 receptors with the selective antagonist ML204. Furthermore, the sodium proton exchanger blocker amiloride also partially inhibited the calcium rise and the cell death elicited by MTX while the combination of amiloride and ML204 fully prevented both the cytotoxicity and the calcium rise elicited by the toxin.

  17. Delay in seeking medical help following Transient Ischemic Attack (TIA) or "mini-stroke": a qualitative study.

    PubMed

    Mc Sharry, Jennifer; Baxter, Alison; Wallace, Louise M; Kenton, Anthony; Turner, Andrew; French, David P

    2014-01-01

    Prompt treatment following Transient Ischemic Attack (TIA) can reduce the risk of subsequent stroke and disability. However, many patients delay in making contact with medical services. This study aimed to explore TIA patients' accounts of delay between symptom onset and contacting medical services including how decisions to contact services were made and the factors discussed in relation to delay. Twenty interviews were conducted with TIA patients in England. Using a previous systematic review as an initial framework, interview data were organised into categories of symptom recognition, presence of others and type of care sought. A thematic analysis was then conducted to explore descriptions of care-seeking relevant to each category. Delay in contacting medical services varied from less than an hour to eight days. Awareness of typical stroke symptoms could lead to urgent action when more severe TIA symptoms were present but could lead to delay when experienced symptoms were less severe. The role of friends and family varied widely from deciding on and enacting care-seeking decisions to simply providing transport to the GP practice. When family or friends played a greater role, and both made and enacted care-seeking decisions, delays were often shorter, even when patients themselves failed to identify symptoms. Healthcare professionals also impacted on patients' care-seeking with greater delays in seeking further care for the same episode described when patients perceived a lack of urgency during initial healthcare interactions. This study provides new information on patients' decisions to contact medical services following TIA and identifies overlapping factors that can lead to delay in receiving appropriate treatment. While recognition of symptoms may contribute to delay in contacting medical services, additional factors, including full responsibility being taken by others and initial healthcare interactions, can over-ride or undermine the importance of patients

  18. Sustained and transient oscillations and chaos induced by delayed antiviral immune response in an immunosuppressive infection model.

    PubMed

    Shu, Hongying; Wang, Lin; Watmough, James

    2014-01-01

    Sustained and transient oscillations are frequently observed in clinical data for immune responses in viral infections such as human immunodeficiency virus, hepatitis B virus, and hepatitis C virus. To account for these oscillations, we incorporate the time lag needed for the expansion of immune cells into an immunosuppressive infection model. It is shown that the delayed antiviral immune response can induce sustained periodic oscillations, transient oscillations and even sustained aperiodic oscillations (chaos). Both local and global Hopf bifurcation theorems are applied to show the existence of periodic solutions, which are illustrated by bifurcation diagrams and numerical simulations. Two types of bistability are shown to be possible: (i) a stable equilibrium can coexist with another stable equilibrium, and (ii) a stable equilibrium can coexist with a stable periodic solution.

  19. Amyotrophic lateral sclerosis immunoglobulins increase intracellular calcium in a motoneuron cell line.

    PubMed

    Colom, L V; Alexianu, M E; Mosier, D R; Smith, R G; Appel, S H

    1997-08-01

    A hybrid motoneuron cell line (VSC4.1) was used as a model system to study the relationship between alterations in intracellular calcium and subsequent cell death induced by immunoglobulin fractions purified from sera of patients with ALS. Using fluo-3 fluorescence imaging, immunoglobulins from 8 of 10 patients with ALS were found to induce transient increases in intracellular calcium ([Ca2+]i) in differentiated VSC4.1 cells. These transient [Ca2+]i increases required extracellular calcium entry through voltage-gated calcium channels sensitive to synthetic FTX and to high concentrations (>1 microM) of omega-agatoxin IVa. The incidence of transient [Ca2+]i increases induced by ALS immunoglobulins correlated with the extent of cytotoxicity induced by the same ALS immunoglobulins in parallel cultures of VSC4.1 cells. Furthermore, manipulations which blocked transient [Ca2+]i increases (addition of synthetic FTX or omega-agatoxin IVa) also inhibited the cytotoxic effects of ALS immunoglobulins. No transient calcium increases were observed in VSC4.1 cells following addition of immunoglobulins from 7 neurologic disease control patients. However, transient [Ca2+]i increases were observed following addition of immunoglobulins from 4 of 5 patients with myasthenia gravis (MG). The [Ca2+]i changes induced by MG immunoglobulins were not blocked by s-FTX, suggesting that they result from a different mechanism than those induced by ALS immunoglobulins. These results suggest that immunoglobulins from patients with ALS can induce transient increases in intracellular calcium in a motoneuron cell line, which may represent early events in the cascade of processes leading to injury and death of susceptible cells.

  20. Enhanced Mitochondrial Transient Receptor Potential Channel, Canonical Type 3-Mediated Calcium Handling in the Vasculature From Hypertensive Rats.

    PubMed

    Wang, Bin; Xiong, Shiqiang; Lin, Shaoyang; Xia, Weijie; Li, Qiang; Zhao, Zhigang; Wei, Xing; Lu, Zongshi; Wei, Xiao; Gao, Peng; Liu, Daoyan; Zhu, Zhiming

    2017-07-15

    Mitochondrial Ca 2+ homeostasis is fundamental to the regulation of mitochondrial reactive oxygen species (ROS) generation and adenosine triphosphate production. Recently, transient receptor potential channel, canonical type 3 (TRPC3), has been shown to localize to the mitochondria and to play a role in maintaining mitochondrial calcium homeostasis. Inhibition of TRPC3 attenuates vascular calcium influx in spontaneously hypertensive rats (SHRs). However, it remains elusive whether mitochondrial TRPC3 participates in hypertension by increasing mitochondrial calcium handling and ROS production. In this study we demonstrated increased TRPC3 expression in purified mitochondria in the vasculature from SHRs, which facilitates enhanced mitochondrial calcium uptake and ROS generation compared with Wistar-Kyoto rats. Furthermore, inhibition of TRPC3 by its specific inhibitor, Pyr3, significantly decreased the vascular mitochondrial ROS production and H 2 O 2 synthesis and increased adenosine triphosphate content. Administration of telmisartan can improve these abnormalities. This beneficial effect was associated with improvement of the mitochondrial respiratory function through recovering the activity of pyruvate dehydrogenase in the vasculature of SHRs. In vivo, chronic administration of telmisartan suppressed TRPC3-mediated excessive mitochondrial ROS generation and vasoconstriction in the vasculature of SHRs. More importantly, TRPC3 knockout mice exhibited significantly ameliorated hypertension through reduction of angiotensin II-induced mitochondrial ROS generation. Together, we give experimental evidence for a potential mechanism by which enhanced TRPC3 activity at the cytoplasmic and mitochondrial levels contributes to redox signaling and calcium dysregulation in the vasculature from SHRs. Angiotensin II or telmisartan can regulate [Ca 2+ ] mito , ROS production, and mitochondrial energy metabolism through targeting TRPC3. © 2017 The Authors. Published on behalf of

  1. Calcium currents in a fast-twitch skeletal muscle of the rat.

    PubMed

    Donaldson, P L; Beam, K G

    1983-10-01

    Slow ionic currents were measured in the rat omohyoid muscle with the three-microelectrode voltage-clamp technique. Sodium and delayed rectifier potassium currents were blocked pharmacologically. Under these conditions, depolarizing test pulses elicited an early outward current, followed by a transient slow inward current, followed in turn by a late outward current. The early outward current appeared to be a residual delayed rectifier current. The slow inward current was identified as a calcium current on the basis that (a) its magnitude depended on extracellular calcium concentration, (b) it was blocked by the addition of the divalent cations cadmium or nickel, and reduced in magnitude by the addition of manganese or cobalt, and (c) barium was able to replace calcium as an inward current carrier. The threshold potential for inward calcium current was around -20 mV in 10mM extracellular calcium and about -35 mV in 2 mM calcium. Currents were net inward over part of their time course for potentials up to at least +30 mV. At temperatures of 20-26 degrees C, the peak inward current (at approximately 0 mV) was 139 +/- 14 microA/cm2 (mean +/- SD), increasing to 226 +/- 28 microA/cm2 at temperatures of 27-37 degrees C. The late outward current exhibited considerable fiber-to-fiber variability. In some fibers it was primarily a time-independent, nonlinear leakage current. In other fibers it was primarily a time-independent, nonlinear leakage current. In other fibers it appeared to be the sum of both leak and a slowly activated outward current. The rate of activation of inward calcium current was strongly temperature dependent. For example, in a representative fiber, the time-to-peak inward current for a +10-mV test pulse decreased from approximately 250 ms at 20 degrees C to 100 ms at 30 degrees C. At 37 degrees C, the time-to-peak current was typically approximately 25 ms. The earliest phase of activation was difficult to quantify because the ionic current was partially

  2. General anesthesia selectively disrupts astrocyte calcium signaling in the awake mouse cortex

    PubMed Central

    Thrane, Alexander Stanley; Zeppenfeld, Douglas; Lou, Nanhong; Xu, Qiwu; Nagelhus, Erlend Arnulf; Nedergaard, Maiken

    2012-01-01

    Calcium signaling represents the principle pathway by which astrocytes respond to neuronal activity. General anesthetics are routinely used in clinical practice to induce a sleep-like state, allowing otherwise painful procedures to be performed. Anesthetic drugs are thought to mainly target neurons in the brain and act by suppressing synaptic activity. However, the direct effect of general anesthesia on astrocyte signaling in awake animals has not previously been addressed. This is a critical issue, because calcium signaling may represent an essential mechanism through which astrocytes can modulate synaptic activity. In our study, we performed calcium imaging in awake head-restrained mice and found that three commonly used anesthetic combinations (ketamine/xylazine, isoflurane, and urethane) markedly suppressed calcium transients in neocortical astrocytes. Additionally, all three anesthetics masked potentially important features of the astrocyte calcium signals, such as synchronized widespread transients that appeared to be associated with arousal in awake animals. Notably, anesthesia affected calcium transients in both processes and soma and depressed spontaneous signals, as well as calcium responses, evoked by whisker stimulation or agonist application. We show that these calcium transients are inositol 1,4,5-triphosphate type 2 receptor (IP3R2)-dependent but resistant to a local blockade of glutamatergic or purinergic signaling. Finally, we found that doses of anesthesia insufficient to affect neuronal responses to whisker stimulation selectively suppressed astrocyte calcium signals. Taken together, these data suggest that general anesthesia may suppress astrocyte calcium signals independently of neuronal activity. We propose that these glial effects may constitute a nonneuronal mechanism for sedative action of anesthetic drugs. PMID:23112168

  3. Delay in Seeking Medical Help following Transient Ischemic Attack (TIA) or “Mini-Stroke”: A Qualitative Study

    PubMed Central

    Mc Sharry, Jennifer; Baxter, Alison; Wallace, Louise M.; Kenton, Anthony; Turner, Andrew; French, David P.

    2014-01-01

    Background Prompt treatment following Transient Ischemic Attack (TIA) can reduce the risk of subsequent stroke and disability. However, many patients delay in making contact with medical services. This study aimed to explore TIA patients' accounts of delay between symptom onset and contacting medical services including how decisions to contact services were made and the factors discussed in relation to delay. Methods Twenty interviews were conducted with TIA patients in England. Using a previous systematic review as an initial framework, interview data were organised into categories of symptom recognition, presence of others and type of care sought. A thematic analysis was then conducted to explore descriptions of care-seeking relevant to each category. Results Delay in contacting medical services varied from less than an hour to eight days. Awareness of typical stroke symptoms could lead to urgent action when more severe TIA symptoms were present but could lead to delay when experienced symptoms were less severe. The role of friends and family varied widely from deciding on and enacting care-seeking decisions to simply providing transport to the GP practice. When family or friends played a greater role, and both made and enacted care-seeking decisions, delays were often shorter, even when patients themselves failed to identify symptoms. Healthcare professionals also impacted on patients' care-seeking with greater delays in seeking further care for the same episode described when patients perceived a lack of urgency during initial healthcare interactions. Conclusions This study provides new information on patients' decisions to contact medical services following TIA and identifies overlapping factors that can lead to delay in receiving appropriate treatment. While recognition of symptoms may contribute to delay in contacting medical services, additional factors, including full responsibility being taken by others and initial healthcare interactions, can over

  4. Sodium entry through endothelial store-operated calcium entry channels: regulation by Orai1

    PubMed Central

    Xu, Ningyong; Cioffi, Donna L.; Alexeyev, Mikhail; Rich, Thomas C.

    2014-01-01

    Orai1 interacts with transient receptor potential protein of the canonical subfamily (TRPC4) and contributes to calcium selectivity of the endothelial cell store-operated calcium entry current (ISOC). Orai1 silencing increases sodium permeability and decreases membrane-associated calcium, although it is not known whether Orai1 is an important determinant of cytosolic sodium transitions. We test the hypothesis that, upon activation of store-operated calcium entry channels, Orai1 is a critical determinant of cytosolic sodium transitions. Activation of store-operated calcium entry channels transiently increased cytosolic calcium and sodium, characteristic of release from an intracellular store. The sodium response occurred more abruptly and returned to baseline more rapidly than did the transient calcium rise. Extracellular choline substitution for sodium did not inhibit the response, although 2-aminoethoxydiphenyl borate and YM-58483 reduced it by ∼50%. After this transient response, cytosolic sodium continued to increase due to influx through activated store-operated calcium entry channels. The magnitude of this sustained increase in cytosolic sodium was greater when experiments were conducted in low extracellular calcium and when Orai1 expression was silenced; these two interventions were not additive, suggesting a common mechanism. 2-Aminoethoxydiphenyl borate and YM-58483 inhibited the sustained increase in cytosolic sodium, only in the presence of Orai1. These studies demonstrate that sodium permeates activated store-operated calcium entry channels, resulting in an increase in cytosolic sodium; the magnitude of this response is determined by Orai1. PMID:25428882

  5. INDUCIBLE TRANSIENT CENTRAL RETINAL ARTERY VASOSPASM: A CASE REPORT.

    PubMed

    Mishulin, Aleksey; Ghandi, Sachin; Apple, Daniel; Lin, Xihui; Hu, Jonathan; Abrams, Gary W

    2017-09-27

    To report a case of inducible transient central retinal artery vasospasm with associated imaging. Observational case report. A 51-year-old man presented for outpatient follow-up for recurrent inducible transient vision loss in his right eye. He experienced an episode during examination and was found to have central retinal artery vasospasm. Fundus photography and fluorescein angiography obtained during his vasospastic attack confirmed retinal arterial vasospasm. Treatment with a calcium-channel blocker (nifedipine) has been effective in preventing recurrent attacks. Idiopathic primary vasospasm is a rare cause of transient vision loss that is difficult to confirm because of the transient nature. We obtained imaging showing the initiation and resolution of the vasospastic event. The patient was then successfully treated with a calcium-channel blocker.

  6. Dynamic modulation of spike timing-dependent calcium influx during corticostriatal upstates

    PubMed Central

    Evans, R. C.; Maniar, Y. M.

    2013-01-01

    The striatum of the basal ganglia demonstrates distinctive upstate and downstate membrane potential oscillations during slow-wave sleep and under anesthetic. The upstates generate calcium transients in the dendrites, and the amplitude of these calcium transients depends strongly on the timing of the action potential (AP) within the upstate. Calcium is essential for synaptic plasticity in the striatum, and these large calcium transients during the upstates may control which synapses undergo plastic changes. To investigate the mechanisms that underlie the relationship between calcium and AP timing, we have developed a realistic biophysical model of a medium spiny neuron (MSN). We have implemented sophisticated calcium dynamics including calcium diffusion, buffering, and pump extrusion, which accurately replicate published data. Using this model, we found that either the slow inactivation of dendritic sodium channels (NaSI) or the calcium inactivation of voltage-gated calcium channels (CDI) can cause high calcium corresponding to early APs and lower calcium corresponding to later APs. We found that only CDI can account for the experimental observation that sensitivity to AP timing is dependent on NMDA receptors. Additional simulations demonstrated a mechanism by which MSNs can dynamically modulate their sensitivity to AP timing and show that sensitivity to specifically timed pre- and postsynaptic pairings (as in spike timing-dependent plasticity protocols) is altered by the timing of the pairing within the upstate. These findings have implications for synaptic plasticity in vivo during sleep when the upstate-downstate pattern is prominent in the striatum. PMID:23843436

  7. Transient current interruption mechanism in a magnetically delayed vacuum switch

    NASA Technical Reports Server (NTRS)

    Morris, Gibson, Jr.; Dougal, Roger A.

    1993-01-01

    The capacity of a magnetically delayed vacuum switch to conduct current depends on the density of plasma injected into the switch. Exceeding the current capacity results in the switch entering a lossy mode of operation characterized by a transient interruption of the main current (opening behavior) and a rapid increase of voltage across the vacuum gap. Streak and framing photographs of the discharge indicate that a decrease of luminosity near the middle of the gap preceeds the transition to the opening phase. The zone of low luminosity propagates toward the cathode. This evidence suggests that the mechanism causing the opening phase is erosion of the background plasma in a manner similar to that in a plasma-opening switch. The resulting ion depletion forces a space-charge-limited conduction mode. The switch inductance maintains a high discharge current even during the space-charge-limited conduction phase, thus producing high internal fields. The high accelerating voltage, in turn, produces electron and ion beams that heat the electrode surfaces. As a result of the heating, jets of electrode vapor issue from the electrodes, either cathode or anode, depending on the selection of electrode materials.

  8. Estradiol coupling to human monocyte nitric oxide release is dependent on intracellular calcium transients: evidence for an estrogen surface receptor.

    PubMed

    Stefano, G B; Prevot, V; Beauvillain, J C; Fimiani, C; Welters, I; Cadet, P; Breton, C; Pestel, J; Salzet, M; Bilfinger, T V

    1999-10-01

    We tested the hypothesis that estrogen acutely stimulates constitutive NO synthase (cNOS) activity in human peripheral monocytes by acting on an estrogen surface receptor. NO release was measured in real time with an amperometric probe. 17beta-estradiol exposure to monocytes stimulated NO release within seconds in a concentration-dependent manner, whereas 17alpha-estradiol had no effect. 17beta-estradiol conjugated to BSA (E2-BSA) also stimulated NO release, suggesting mediation by a membrane surface receptor. Tamoxifen, an estrogen receptor inhibitor, antagonized the action of both 17beta-estradiol and E2-BSA, whereas ICI 182,780, a selective inhibitor of the nuclear estrogen receptor, had no effect. We further showed, using a dual emission microfluorometry in a calcium-free medium, that the 17beta-estradiol-stimulated release of monocyte NO was dependent on the initial stimulation of intracellular calcium transients in a tamoxifen-sensitive process. Leeching out the intracellular calcium stores abolished the effect of 17beta-estradiol on NO release. RT-PCR analysis of RNA obtained from the cells revealed a strong estrogen receptor-alpha amplification signal and a weak beta signal. Taken together, a physiological dose of estrogen acutely stimulates NO release from human monocytes via the activation of an estrogen surface receptor that is coupled to increases in intracellular calcium.

  9. Genetically Encoded Calcium Indicators For Studying Long-Term Calcium Dynamics During Apoptosis

    PubMed Central

    Garcia, M. Iveth; Chen, Jessica J.; Boehning, Darren

    2017-01-01

    Intracellular calcium release is essential for regulating almost all cellular functions. Specific spatio-temporal patterns of cytosolic calcium elevations are critical determinants of cell fate in response to pro-apoptotic cellular stressors. As the apoptotic program can take hours or days, measurement of long-term calcium dynamics are essential for understanding the mechanistic role of calcium in apoptotic cell death. Due to the technical limitations of using calcium-sensitive dyes to measure cytosolic calcium little is known about long-term calcium dynamics in living cells after treatment with apoptosis-inducing drugs. Genetically encoded calcium indicators could potentially overcome some of the limitations of calcium-sensitive dyes. Here, we compared the performance of the genetically encoded calcium indicators GCaMP6s and GCaMP6f with the ratiometric dye Fura-2. GCaMP6s performed as well or better than Fura-2 in detecting agonist-induced calcium transients. We then examined the utility of GCaMP6s for continuously measuring apoptotic calcium release over the course of ten hours after treatment with staurosporine. We found that GCaMP6s was suitable for measuring apoptotic calcium release over long time courses and revealed significant heterogeneity in calcium release dynamics in individual cells challenged with staurosporine. Our results suggest GCaMP6s is an excellent indicator for monitoring long-term changes cytosolic calcium during apoptosis. PMID:28073595

  10. Superiority of Biphasic Over Monophasic Defibrillation Shocks is Attributable to Less Intracellular Calcium Transient Heterogeneity

    PubMed Central

    Hwang, Gyo-Seung; Tang, Liang; Joung, Boyoung; Morita, Norishige; Hayashi, Hideki; Karagueuzian, Hrayr S.; Weiss, James N.; Lin, Shien-Fong; Chen, Peng-Sheng

    2008-01-01

    Objectives To test the hypothesis that superiority of biphasic waveform (BW) over monophasic waveform (MW) defibrillation shocks is attributable to less intracellular calcium (Cai) transient heterogeneity. Background The mechanism by which BW shocks have a higher defibrillation efficacy than MW shocks remains unclear. Methods We simultaneously mapped epicardial membrane potential (Vm) and Cai during 6 ms MW and 3/3 ms BW shocks in 19 Langendorff-perfused rabbit ventricles. After shock, the percentage of depolarized area was plotted over time. The maximum (peak) postshock values (VmP and CaiP, respectively) were used to measure heterogeneity. Higher VmP and CaiP imply less heterogeneity. Results The defibrillation threshold was for BW and MW shocks were 288±99 V and 399±155 V, respectively (p=0.0005). Successful BW shocks had higher VmP (88±9 %) and CaiP (70±13 %) than unsuccessful MW shocks (VmP 76 %±10, p<0.001; CaiP, 57±8 %, p<0.001) of the same shock strength. In contrast, for unsuccessful BW and MW shocks of the same shock strengths, the VmP and CaiP were not significantly different. MW shocks more frequently created regions of low Cai surrounded by regions of high Cai (postshock Cai sinkholes). The defibrillation threshold for MW and BW shocks became similar after disabling the sarcoplasmic reticulum with thapsigargin and ryanodine. Conclusions The greater efficacy of BW shocks is directly related to their less heterogeneous effects on shock-induced sarcoplasmic reticulum Ca release and Cai transients. Less heterogeneous Cai transients reduces the probability of Cai sinkhole formation, thereby preventing the postshock reinitiation of VF. PMID:18755345

  11. Anti-protein aggregation is a potential target for preventing delayed neuronal death after transient ischemia.

    PubMed

    Ge, Pengfei; Luo, Yinan; Wang, Haifeng; Ling, Feng

    2009-12-01

    Brain ischemia has been an important risk factor for human being health, there is no effective medicine can be used to protect delayed neuronal injury or death secondary to blood reperfusion following ischemia. Recent discovery shows protein aggregation is an important factor resulting in ischemia-induced neuron death. Therefore, we propose the hypothesis that inhibiting protein aggregation may be an effective way to prevent delayed neuronal death after transient ischemia. At present, in vitro studies show some chemicals such as 4PBA (sodium 4-phenylbutyrate) and trehalose have the features of antagonizing protein aggregation in vitro. Moreover, polyQ-binding peptide (QBP1), geldanamycin, amino acids and amino acid derivatives have been also used in vitro to decrease aggregation and to increase protein stability. Although in vivo and systematical study should be performed to evaluate their effects of anti-protein aggregation, this enlightening us on using them to protect ischemic-induced neuronal death, and find new potential chemicals or methods which could be effective in keeping protein stable and prevent forming aggregates.

  12. Voltage-gated calcium flux mediates Escherichia coli mechanosensation.

    PubMed

    Bruni, Giancarlo N; Weekley, R Andrew; Dodd, Benjamin J T; Kralj, Joel M

    2017-08-29

    Electrically excitable cells harness voltage-coupled calcium influx to transmit intracellular signals, typically studied in neurons and cardiomyocytes. Despite intense study in higher organisms, investigations of voltage and calcium signaling in bacteria have lagged due to their small size and a lack of sensitive tools. Only recently were bacteria shown to modulate their membrane potential on the timescale of seconds, and little is known about the downstream effects from this modulation. In this paper, we report on the effects of electrophysiology in individual bacteria. A genetically encoded calcium sensor expressed in Escherichia coli revealed calcium transients in single cells. A fusion sensor that simultaneously reports voltage and calcium indicated that calcium influx is induced by voltage depolarizations, similar to metazoan action potentials. Cytoplasmic calcium levels and transients increased upon mechanical stimulation with a hydrogel, and single cells altered protein concentrations dependent on the mechanical environment. Blocking voltage and calcium flux altered mechanically induced changes in protein concentration, while inducing calcium flux reproduced these changes. Thus, voltage and calcium relay a bacterial sense of touch and alter cellular lifestyle. Although the calcium effectors remain unknown, these data open a host of new questions about E. coli , including the identity of the underlying molecular players, as well as other signals conveyed by voltage and calcium. These data also provide evidence that dynamic voltage and calcium exists as a signaling modality in the oldest domain of life, and therefore studying electrophysiology beyond canonical electrically excitable cells could yield exciting new findings.

  13. Voltage-gated calcium flux mediates Escherichia coli mechanosensation

    PubMed Central

    Weekley, R. Andrew; Dodd, Benjamin J. T.

    2017-01-01

    Electrically excitable cells harness voltage-coupled calcium influx to transmit intracellular signals, typically studied in neurons and cardiomyocytes. Despite intense study in higher organisms, investigations of voltage and calcium signaling in bacteria have lagged due to their small size and a lack of sensitive tools. Only recently were bacteria shown to modulate their membrane potential on the timescale of seconds, and little is known about the downstream effects from this modulation. In this paper, we report on the effects of electrophysiology in individual bacteria. A genetically encoded calcium sensor expressed in Escherichia coli revealed calcium transients in single cells. A fusion sensor that simultaneously reports voltage and calcium indicated that calcium influx is induced by voltage depolarizations, similar to metazoan action potentials. Cytoplasmic calcium levels and transients increased upon mechanical stimulation with a hydrogel, and single cells altered protein concentrations dependent on the mechanical environment. Blocking voltage and calcium flux altered mechanically induced changes in protein concentration, while inducing calcium flux reproduced these changes. Thus, voltage and calcium relay a bacterial sense of touch and alter cellular lifestyle. Although the calcium effectors remain unknown, these data open a host of new questions about E. coli, including the identity of the underlying molecular players, as well as other signals conveyed by voltage and calcium. These data also provide evidence that dynamic voltage and calcium exists as a signaling modality in the oldest domain of life, and therefore studying electrophysiology beyond canonical electrically excitable cells could yield exciting new findings. PMID:28808010

  14. Genetically encoded calcium indicators for studying long-term calcium dynamics during apoptosis.

    PubMed

    Garcia, M Iveth; Chen, Jessica J; Boehning, Darren

    2017-01-01

    Intracellular calcium release is essential for regulating almost all cellular functions. Specific spatio-temporal patterns of cytosolic calcium elevations are critical determinants of cell fate in response to pro-apoptotic cellular stressors. As the apoptotic program can take hours or days, measurement of long-term calcium dynamics are essential for understanding the mechanistic role of calcium in apoptotic cell death. Due to the technical limitations of using calcium-sensitive dyes to measure cytosolic calcium little is known about long-term calcium dynamics in living cells after treatment with apoptosis-inducing drugs. Genetically encoded calcium indicators could potentially overcome some of the limitations of calcium-sensitive dyes. Here, we compared the performance of the genetically encoded calcium indicators GCaMP6s and GCaMP6f with the ratiometric dye Fura-2. GCaMP6s performed as well or better than Fura-2 in detecting agonist-induced calcium transients. We then examined the utility of GCaMP6s for continuously measuring apoptotic calcium release over the course of ten hours after treatment with staurosporine. We found that GCaMP6s was suitable for measuring apoptotic calcium release over long time courses and revealed significant heterogeneity in calcium release dynamics in individual cells challenged with staurosporine. Our results suggest GCaMP6s is an excellent indicator for monitoring long-term changes cytosolic calcium during apoptosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. The Yin and Yang of Calcium Effects on Synaptic Vesicle Endocytosis

    PubMed Central

    Wu, Xin-Sheng

    2014-01-01

    A large number of studies suggest that calcium triggers and accelerates vesicle endocytosis at many synapses and non-neuronal secretory cells. However, many studies show that prolonging the duration of the stimulation train, which induces more calcium influx, slows down endocytosis; and several studies suggest that instead of triggering endocytosis, calcium actually inhibits endocytosis. Here we addressed this apparent conflict at a large nerve terminal, the calyx of Held in rat brainstem, in which recent studies suggest that transient calcium increase up to tens of micromolar concentration at the micro/nano domain triggers endocytosis. By dialyzing 0–1 μm calcium into the calyx via a whole-cell pipette, we found that slow endocytosis was inhibited by calcium dialysis in a concentration-dependent manner. Thus, prolonged, small, and global calcium increase inhibits endocytosis, whereas transient and large calcium increase at the micro/nano domain triggers endocytosis and facilitates endocytosis. This yin and yang effect of calcium may reconcile apparent conflicts regarding whether calcium accelerates or inhibits endocytosis. Whether endocytosis is fast or slow depends on the net outcome between the yin and yang effect of calcium. PMID:24523554

  16. Intersecting Roles of Protein Tyrosine Kinase and Calcium Signaling During Fertilization

    PubMed Central

    Kinsey, William H.

    2012-01-01

    The oocyte is a highly specialized cell that must respond to fertilization with a preprogrammed series of signal transduction events that establish a block to polyspermy, trigger resumption of the cell cycle and execution of a developmental program. The fertilization-induced calcium transient is a key signal that initiates the process of oocyte activation and studies over the last several years have examined the signaling pathways that act upstream and downstream of this calcium transient. Protein tyrosine kinase signaling was found to be an important component of the upstream pathways that stimulated calcium release at fertilization in oocytes from animals that fertilize externally, but a similar pathway has not been found in mammals which fertilize internally. The following review will examine the diversity of signaling in oocytes from marine invertebrates, amphibians, fish and mammals in an attempt to understand the basis for the observed differences. In addition to the pathways upstream of the fertilization-induced calcium transient, recent studies are beginning to unravel the role of protein tyrosine kinase signaling downstream of the calcium transient. The PYK2 kinase was found to respond to fertilization in the zebrafish system and seems to represent a novel component of the response of the oocyte to fertilization. The potential impact of impaired PTK signaling in oocyte quality will also be discussed. PMID:23201334

  17. Transient triggering of near and distant earthquakes

    USGS Publications Warehouse

    Gomberg, J.; Blanpied, M.L.; Beeler, N.M.

    1997-01-01

    We demonstrate qualitatively that frictional instability theory provides a context for understanding how earthquakes may be triggered by transient loads associated with seismic waves from near and distance earthquakes. We assume that earthquake triggering is a stick-slip process and test two hypotheses about the effect of transients on the timing of instabilities using a simple spring-slider model and a rate- and state-dependent friction constitutive law. A critical triggering threshold is implicit in such a model formulation. Our first hypothesis is that transient loads lead to clock advances; i.e., transients hasten the time of earthquakes that would have happened eventually due to constant background loading alone. Modeling results demonstrate that transient loads do lead to clock advances and that the triggered instabilities may occur after the transient has ceased (i.e., triggering may be delayed). These simple "clock-advance" models predict complex relationships between the triggering delay, the clock advance, and the transient characteristics. The triggering delay and the degree of clock advance both depend nonlinearly on when in the earthquake cycle the transient load is applied. This implies that the stress required to bring about failure does not depend linearly on loading time, even when the fault is loaded at a constant rate. The timing of instability also depends nonlinearly on the transient loading rate, faster rates more rapidly hastening instability. This implies that higher-frequency and/or longer-duration seismic waves should increase the amount of clock advance. These modeling results and simple calculations suggest that near (tens of kilometers) small/moderate earthquakes and remote (thousands of kilometers) earthquakes with magnitudes 2 to 3 units larger may be equally effective at triggering seismicity. Our second hypothesis is that some triggered seismicity represents earthquakes that would not have happened without the transient load (i

  18. Assay of Calcium Transients and Synapses in Rat Hippocampal Neurons by Kinetic Image Cytometry and High-Content Analysis: An In Vitro Model System for Postchemotherapy Cognitive Impairment.

    PubMed

    McDonough, Patrick M; Prigozhina, Natalie L; Basa, Ranor C B; Price, Jeffrey H

    2017-07-01

    Postchemotherapy cognitive impairment (PCCI) is commonly exhibited by cancer patients treated with a variety of chemotherapeutic agents, including the endocrine disruptor tamoxifen (TAM). The etiology of PCCI is poorly understood. Our goal was to develop high-throughput assay methods to test the effects of chemicals on neuronal function applicable to PCCI. Rat hippocampal neurons (RHNs) were plated in 96- or 384-well dishes and exposed to test compounds (forskolin [FSK], 17β-estradiol [ES]), TAM or fulvestrant [FUL], aka ICI 182,780) for 6-14 days. Kinetic Image Cytometry™ (KIC™) methods were developed to quantify spontaneously occurring intracellular calcium transients representing the activity of the neurons, and high-content analysis (HCA) methods were developed to quantify the expression, colocalization, and puncta formed by synaptic proteins (postsynaptic density protein-95 [PSD-95] and presynaptic protein Synapsin-1 [Syn-1]). As quantified by KIC, FSK increased the occurrence and synchronization of the calcium transients indicating stimulatory effects on RHN activity, whereas TAM had inhibitory effects. As quantified by HCA, FSK also increased PSD-95 puncta and PSD-95:Syn-1 colocalization, whereas ES increased the puncta of both PSD-95 and Syn-1 with little effect on colocalization. The estrogen receptor antagonist FUL also increased PSD-95 puncta. In contrast, TAM reduced Syn-1 and PSD-95:Syn-1 colocalization, consistent with its inhibitory effects on the calcium transients. Thus TAM reduced activity and synapse formation by the RHNs, which may relate to the ability of this agent to cause PCCI. The results illustrate that KIC and HCA can be used to quantify neurotoxic and neuroprotective effects of chemicals in RHNs to investigate mechanisms and potential therapeutics for PCCI.

  19. Superiority of biphasic over monophasic defibrillation shocks is attributable to less intracellular calcium transient heterogeneity.

    PubMed

    Hwang, Gyo-Seung; Tang, Liang; Joung, Boyoung; Morita, Norishige; Hayashi, Hideki; Karagueuzian, Hrayr S; Weiss, James N; Lin, Shien-Fong; Chen, Peng-Sheng

    2008-09-02

    The purpose of this study was to test the hypothesis that superiority of biphasic waveform (BW) over monophasic waveform (MW) defibrillation shocks is attributable to less intracellular calcium (Ca(i)) transient heterogeneity. The mechanism by which BW shocks have a higher defibrillation efficacy than MW shocks remains unclear. We simultaneously mapped epicardial membrane potential (Vm) and Ca(i) during 6-ms MW and 3-ms/3-ms BW shocks in 19 Langendorff-perfused rabbit ventricles. After shock, the percentage of depolarized area was plotted over time. The maximum (peak) post-shock values (VmP and Ca(i)P, respectively) were used to measure heterogeneity. Higher VmP and Ca(i)P imply less heterogeneity. The defibrillation thresholds for BW and MW shocks were 288 +/- 99 V and 399 +/- 155 V, respectively (p = 0.0005). Successful BW shocks had higher VmP (88 +/- 9%) and Ca(i)P (70 +/- 13%) than unsuccessful MW shocks (VmP 76 +/- 10%, p < 0.001; Ca(i)P 57 +/- 8%, p < 0.001) of the same shock strength. In contrast, for unsuccessful BW and MW shocks of the same shock strengths, the VmP and Ca(i)P were not significantly different. The MW shocks more frequently created regions of low Ca(i) surrounded by regions of high Ca(i) (post-shock Ca(i) sinkholes). The defibrillation threshold for MW and BW shocks became similar after disabling the sarcoplasmic reticulum (SR) with thapsigargin and ryanodine. The greater efficacy of BW shocks is directly related to their less heterogeneous effects on shock-induced SR Ca release and Ca(i) transients. Less heterogeneous Ca(i) transients reduces the probability of Ca(i) sinkhole formation, thereby preventing the post-shock reinitiation of ventricular fibrillation.

  20. Calcium Domains around Single and Clustered IP3 Receptors and Their Modulation by Buffers

    PubMed Central

    Rüdiger, S.; Nagaiah, Ch.; Warnecke, G.; Shuai, J.W.

    2010-01-01

    Abstract We study Ca2+ release through single and clustered IP3 receptor channels on the ER membrane under presence of buffer proteins. Our computational scheme couples reaction-diffusion equations and a Markovian channel model and allows our investigating the effects of buffer proteins on local calcium concentrations and channel gating. We find transient and stationary elevations of calcium concentrations around active channels and show how they determine release amplitude. Transient calcium domains occur after closing of isolated channels and constitute an important part of the channel's feedback. They cause repeated openings (bursts) and mediate increased release due to Ca2+ buffering by immobile proteins. Stationary domains occur during prolonged activity of clustered channels, where the spatial proximity of IP3Rs produces a distinct [Ca2+] scale (0.5–10 μM), which is smaller than channel pore concentrations (>100 μM) but larger than transient levels. While immobile buffer affects transient levels only, mobile buffers in general reduce both transient and stationary domains, giving rise to Ca2+ evacuation and biphasic modulation of release amplitude. Our findings explain recent experiments in oocytes and provide a general framework for the understanding of calcium signals. PMID:20655827

  1. Transient elevation of cytoplasmic calcium ion concentration at a single cell level precedes morphological changes of epidermal keratinocytes during cornification.

    PubMed

    Murata, Teruasa; Honda, Tetsuya; Egawa, Gyohei; Yamamoto, Yasuo; Ichijo, Ryo; Toyoshima, Fumiko; Dainichi, Teruki; Kabashima, Kenji

    2018-04-26

    Epidermal keratinocytes achieve sequential differentiation from basal to granular layers, and undergo a specific programmed cell death, cornification, to form an indispensable barrier of the body. Although elevation of the cytoplasmic calcium ion concentration ([Ca 2+ ] i ) is one of the factors predicted to regulate cornification, the dynamics of [Ca 2+ ] i in epidermal keratinocytes is largely unknown. Here using intravital imaging, we captured the dynamics of [Ca 2+ ] i in mouse skin. [Ca 2+ ] i was elevated in basal cells on the second time scale in three spatiotemporally distinct patterns. The transient elevation of [Ca 2+ ] i also occurred at the most apical granular layer at a single cell level, and lasted for approximately 40 min. The transient elevation of [Ca 2+ ] i at the granular layer was followed by cornification, which was completed within 10 min. This study demonstrates the tightly regulated elevation of [Ca 2+ ] i preceding the cornification of epidermal keratinocytes, providing possible clues to the mechanisms of cornification.

  2. Influence of sodium borate on the early age hydration of calcium sulfoaluminate cement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Champenois, Jean-Baptiste; Dhoury, Mélanie; Cau Dit Coumes, Céline, E-mail: celine.cau-dit-coumes@cea.fr

    Calcium sulfoaluminate (CSA) cements are potential candidates for the conditioning of radioactive wastes with high sodium borate concentrations. This work thus investigates early age hydration of two CSA cements with different gypsum contents (0 to 20%) as a function of the mixing solution composition (borate and NaOH concentrations). Gypsum plays a key role in controlling the reactivity of cement. When the mixing solution is pure water, increasing the gypsum concentration accelerates cement hydration. However, the reverse is observed when the mixing solution contains sodium borate. Until gypsum exhaustion, the pore solution pH remains constant at ~ 10.8, and a poorlymore » crystallized borate compound (ulexite) precipitates. A correlation is established between this transient precipitation and the hydration delay. Decreasing the gypsum content in the binder, or increasing the sodium content in the mixing solution, are two ways of reducing the stability of ulexite, thus decreasing the hydration delay.« less

  3. Depletion of intracellular calcium stores facilitates the influx of extracellular calcium in platelet derived growth factor stimulated A172 glioblastoma cells.

    PubMed

    Vereb, G; Szöllösi, J; Mátyus, L; Balázs, M; Hyun, W C; Feuerstein, B G

    1996-05-01

    Calcium signaling in non-excitable cells is the consequence of calcium release from intracellular stores, at times followed by entry of extracellular calcium through the plasma membrane. To study whether entry of calcium depends upon the level of saturation of intracellular stores, we measured calcium channel opening in the plasma membrane of single confluent A172 glioblastoma cells stimulated with platelet derived growth factor (PDGF) and/or bradykinin (BK). We monitored the entry of extracellular calcium by measuring manganese quenching of Indo-1 fluorescence. PDGF raised intracellular calcium concentration ([Ca2+]i) after a dose-dependent delay (tdel) and then opened calcium channels after a dose-independent delay (tch). At higher doses (> 3 nM), BK increased [Ca2+]i after a tdel approximately 0 s, and tch decreased inversely with both dose and peak [Ca2+]i. Experiments with thapsigargin (TG), BK, and PDGF indicated that BK and PDGF share intracellular Ca2+ pools that are sensitive to TG. When these stores were depleted by treatment with BK and intracellular BAPTA, tdel did not change, but tch fell to almost 0 s in PDGF stimulated cells, indicating that depletion of calcium stores affects calcium channel opening in the plasma membrane. Our data support the capacitative model for calcium channel opening and the steady-state model describing quantal Ca2+ release from intracellular stores.

  4. Pharmacological analysis of calcium transients in response to gravity vector change in Arabidopsis hypocotyls and petioles.

    NASA Astrophysics Data System (ADS)

    Toyota, M.; Furuichi, T.; Tatsumi, H.; Sokabe, M.

    Plants regulate their growth and morphology in response to gravity field known as gravitropism in general In the process of gravitropism gravity sensing will form the critical earliest event which is supposed to take place in specialized cells statocytes such as columella cells and shoot endodermal cells Although gravistimulation is assumed to be converted into certain intracellular signals the underlying transduction mechanisms have hardly been explored One of the potential candidates for the intracellular signals is an increase in the cytoplasmic free calcium concentration Ca 2 c Here we measured Ca 2 c changes induced by gravistimulation in seedlings of Arabidopsis thaliana expressing aequorin as a calcium reporter When a plate of seedlings was turned through 180 r Ca 2 c transiently increased within 50 s and decayed exponentially with a time constant of ca 60 s The amplitude of the Ca 2 c increase was independent of the angular velocity of the rotation The Ca 2 c increase was reversibly blocked by extracellularly applied potential mechanosensitive channel blockers La 3 Gd 3 or a Ca 2 chelator BAPTA indicating that it arose from Ca 2 -influx via Ca 2 -permeable channel s on the plasma membrane Furthermore the Ca 2 c increase was attenuated by actin-disrupting drugs latrunculin B cytochalasin B but not by microtuble-disrupting drugs oryzalin nocodazole indicating that the activation of

  5. Intracellular sphingosine releases calcium from lysosomes.

    PubMed

    Höglinger, Doris; Haberkant, Per; Aguilera-Romero, Auxiliadora; Riezman, Howard; Porter, Forbes D; Platt, Frances M; Galione, Antony; Schultz, Carsten

    2015-11-27

    To elucidate new functions of sphingosine (Sph), we demonstrate that the spontaneous elevation of intracellular Sph levels via caged Sph leads to a significant and transient calcium release from acidic stores that is independent of sphingosine 1-phosphate, extracellular and ER calcium levels. This photo-induced Sph-driven calcium release requires the two-pore channel 1 (TPC1) residing on endosomes and lysosomes. Further, uncaging of Sph leads to the translocation of the autophagy-relevant transcription factor EB (TFEB) to the nucleus specifically after lysosomal calcium release. We confirm that Sph accumulates in late endosomes and lysosomes of cells derived from Niemann-Pick disease type C (NPC) patients and demonstrate a greatly reduced calcium release upon Sph uncaging. We conclude that sphingosine is a positive regulator of calcium release from acidic stores and that understanding the interplay between Sph homeostasis, calcium signaling and autophagy will be crucial in developing new therapies for lipid storage disorders such as NPC.

  6. Transient-Switch-Signal Suppressor

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr.

    1995-01-01

    Circuit delays transmission of switch-opening or switch-closing signal until after preset suppression time. Used to prevent transmission of undesired momentary switch signal. Basic mode of operation simple. Beginning of switch signal initiates timing sequence. If switch signal persists after preset suppression time, circuit transmits switch signal to external circuitry. If switch signal no longer present after suppression time, switch signal deemed transient, and circuit does not pass signal on to external circuitry, as though no transient switch signal. Suppression time preset at value large enough to allow for damping of underlying pressure wave or other mechanical transient.

  7. PYK2: A Calcium-sensitive Protein Tyrosine Kinase Activated in Response to Fertilization of the Zebrafish Oocyte

    PubMed Central

    Sharma, Dipika; Kinsey, William H.

    2012-01-01

    Fertilization begins with binding and fusion of a sperm with the oocyte, a process that triggers a high amplitude calcium transient which propagates through the oocyte and stimulates a series of preprogrammed signal transduction events critical for zygote development. Identification of the pathways downstream of this calcium transient remains an important step in understanding the basis of zygote quality. The present study demonstrates that the calcium-calmodulin sensitive protein tyrosine kinase PYK2 is a target of the fertilization-induced calcium transient in the zebrafish oocyte and that it plays an important role in actin-mediated events critical for sperm incorporation. At fertilization, PYK2 was activated initially at the site of sperm-oocyte interaction and was closely associated with actin filaments forming the fertilization cone. Later PYK2 activation was evident throughout the entire oocyte cortex, however activation was most intense over the animal hemisphere. Fertilization-induced PYK2 activation could be blocked by suppressing calcium transients in the ooplasm via injection of BAPTA as a calcium chelator. PYK2 activation could be artificially induced in unfertilized oocytes by injection of IP3 at concentrations sufficient to induce calcium release. Functionally, suppression of PYK2 activity by chemical inhibition or by injection of a dominant-negative construct encoding the N-terminal ERM domain of PKY2 inhibited formation of an organized fertilization cone and reduced the frequency of successful sperm incorporation. Together, the above findings support a model in which PYK2 responds to the fertilization-induced calcium transient by promoting reorganization of the cortical actin cytoskeleton to form the fertilization cone. PMID:23084926

  8. FGF-23 dysregulates calcium homeostasis and electrophysiological properties in HL-1 atrial cells.

    PubMed

    Kao, Yu-Hsun; Chen, Yao-Chang; Lin, Yung-Kuo; Shiu, Rong-Jie; Chao, Tze-Fan; Chen, Shih-Ann; Chen, Yi-Jen

    2014-08-01

    Fibroblast growth factor (FGF)-23 is a key regulator of phosphate homeostasis. Higher FGF-23 levels are correlated with poor outcomes in cardiovascular diseases. FGF-23 can produce cardiac hypertrophy and increase intracellular calcium, which can change cardiac electrical activity. However, it is not clear whether FGF-23 possesses arrhythmogenic potential through calcium dysregulation. Therefore, the purposes of this study were to evaluate the electrophysiological effects of FGF-23 and identify the underlying mechanisms. Patch clamp, confocal microscope with Fluo-4 fluorescence, and Western blot analyses were used to evaluate the electrophysiological characteristics, calcium homeostasis and calcium regulatory proteins in HL-1 atrial myocytes with and without FGF-23 (10 and 25 ng/mL) incubation for 24 h. FGF-23 (25 ng/mL) increased L-type calcium currents, calcium transient and sarcoplasmic reticulum Ca(2+) contents in HL-1 cells. FGF-23 (25 ng/mL)-treated cells (n = 14) had greater incidences (57%, 17% and 15%, P < 0·05) of delayed afterdepolarizations than control (n = 12) and FGF-23 (10 ng/mL)-treated cells (n = 13). Compared with control cells, FGF-23 (25 ng/mL)-treated cells (n = 14) exhibited increased phosphorylation of calcium/calmodulin-dependent protein kinase IIδ and phospholamban (PLB) at threonine 17 but had similar phosphorylation extents of PLB at serine 16, total PLB and sarcoplasmic reticulum Ca(2+) -ATPase protein. Moreover, the FGF receptor inhibitor (PD173074, 10 nM), calmodulin inhibitor (W7, 5 μM) and phospholipase C inhibitor (U73122, 1 μM) attenuated the effects of FGF-23 on calcium/calmodulin-dependent protein kinase II phosphorylation. FGF-23 increases HL-1 cells arrhythmogenesis with calcium dysregulation through modulating calcium-handling proteins. © 2014 Stichting European Society for Clinical Investigation Journal Foundation.

  9. Fast-Spiking Interneurons Supply Feedforward Control of Bursting, Calcium, and Plasticity for Efficient Learning.

    PubMed

    Owen, Scott F; Berke, Joshua D; Kreitzer, Anatol C

    2018-02-08

    Fast-spiking interneurons (FSIs) are a prominent class of forebrain GABAergic cells implicated in two seemingly independent network functions: gain control and network plasticity. Little is known, however, about how these roles interact. Here, we use a combination of cell-type-specific ablation, optogenetics, electrophysiology, imaging, and behavior to describe a unified mechanism by which striatal FSIs control burst firing, calcium influx, and synaptic plasticity in neighboring medium spiny projection neurons (MSNs). In vivo silencing of FSIs increased bursting, calcium transients, and AMPA/NMDA ratios in MSNs. In a motor sequence task, FSI silencing increased the frequency of calcium transients but reduced the specificity with which transients aligned to individual task events. Consistent with this, ablation of FSIs disrupted the acquisition of striatum-dependent egocentric learning strategies. Together, our data support a model in which feedforward inhibition from FSIs temporally restricts MSN bursting and calcium-dependent synaptic plasticity to facilitate striatum-dependent sequence learning. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Intracellular sphingosine releases calcium from lysosomes

    PubMed Central

    Höglinger, Doris; Haberkant, Per; Aguilera-Romero, Auxiliadora; Riezman, Howard; Porter, Forbes D; Platt, Frances M; Galione, Antony; Schultz, Carsten

    2015-01-01

    To elucidate new functions of sphingosine (Sph), we demonstrate that the spontaneous elevation of intracellular Sph levels via caged Sph leads to a significant and transient calcium release from acidic stores that is independent of sphingosine 1-phosphate, extracellular and ER calcium levels. This photo-induced Sph-driven calcium release requires the two-pore channel 1 (TPC1) residing on endosomes and lysosomes. Further, uncaging of Sph leads to the translocation of the autophagy-relevant transcription factor EB (TFEB) to the nucleus specifically after lysosomal calcium release. We confirm that Sph accumulates in late endosomes and lysosomes of cells derived from Niemann-Pick disease type C (NPC) patients and demonstrate a greatly reduced calcium release upon Sph uncaging. We conclude that sphingosine is a positive regulator of calcium release from acidic stores and that understanding the interplay between Sph homeostasis, calcium signaling and autophagy will be crucial in developing new therapies for lipid storage disorders such as NPC. DOI: http://dx.doi.org/10.7554/eLife.10616.001 PMID:26613410

  11. Skin Barrier and Calcium.

    PubMed

    Lee, Sang Eun; Lee, Seung Hun

    2018-06-01

    Epidermal barrier formation and the maintenance of barrier homeostasis are essential to protect us from the external environments and organisms. Moreover, impaired keratinocytes differentiation and dysfunctional skin barrier can be the primary causes or aggravating factors for many inflammatory skin diseases including atopic dermatitis and psoriasis. Therefore, understanding the regulation mechanisms of keratinocytes differentiation and skin barrier homeostasis is important to understand many skin diseases and establish an effective treatment strategy. Calcium ions (Ca 2+ ) and their concentration gradient in the epidermis are essential in regulating many skin functions, including keratinocyte differentiation, skin barrier formation, and permeability barrier homeostasis. Recent studies have suggested that the intracellular Ca 2+ stores such as the endoplasmic reticulum (ER) are the major components that form the epidermal calcium gradient and the ER calcium homeostasis is crucial for regulating keratinocytes differentiation, intercellular junction formation, antimicrobial barrier, and permeability barrier homeostasis. Thus, both Ca 2+ release from intracellular stores, such as the ER and Ca 2+ influx mechanisms are important in skin barrier. In addition, growing evidences identified the functional existence and the role of many types of calcium channels which mediate calcium flux in keratinocytes. In this review, the origin of epidermal calcium gradient and their role in the formation and regulation of skin barrier are focused. We also focus on the role of ER calcium homeostasis in skin barrier. Furthermore, the distribution and role of epidermal calcium channels, including transient receptor potential channels, store-operated calcium entry channel Orai1, and voltage-gated calcium channels in skin barrier are discussed.

  12. Experience-dependent increase in spine calcium evoked by backpropagating action potentials in layer 2/3 pyramidal neurons in rat somatosensory cortex.

    PubMed

    Krieger, Patrik

    2009-11-01

    In spines on basal dendrites of layer 2/3 pyramidal neurons in somatosensory barrel cortex, calcium transients evoked by back-propagating action potentials (bAPs) were investigated (i) along the length of the basal dendrite, (ii) with postnatal development and (iii) with sensory deprivation during postnatal development. Layer 2/3 pyramidal neurons were investigated at three different ages. At all ages [postnatal day (P)8, P14, P21] the bAP-evoked calcium transient amplitude increased with distance from the soma with a peak at around 50 microm, followed by a gradual decline in amplitude. The effect of sensory deprivation on the bAP-evoked calcium was investigated using two different protocols. When all whiskers on one side of the rat snout were trimmed daily from P8 to P20-24 there was no difference in the bAP-evoked calcium transient between cells in the contralateral hemisphere, lacking sensory input from the whisker, and cells in the ipsilateral barrel cortex, with intact whisker activation. When, however, only the D-row whiskers on one side were trimmed the distribution of bAP-evoked calcium transients in spines was shifted towards larger amplitudes in cells located in the deprived D-column. In conclusion, (i) the bAP-evoked calcium transient gradient along the dendrite length is established at P8, (ii) the calcium transient increases in amplitude with age and (iii) this increase is enhanced in layer 2/3 pyramidal neurons located in a sensory-deprived barrel column that is bordered by non-deprived barrel columns.

  13. Effects of cyclic phosphatidic acid on delayed neuronal death following transient ischemia in rat hippocampal CA1.

    PubMed

    Gotoh, Mari; Hotta, Harumi; Murakami-Murofushi, Kimiko

    2010-12-15

    Cyclic phosphatidic acid (cPA) is a lipid mediator that elicits a neurotrophin-like action in embryonic hippocampal neurons in vitro. In this study, we investigated the effects of cPA and 2-O-carba-oleoyl-cPA (2ccPA), a metabolically stabilized cPA derivative, on ischemia-induced delayed neuronal death in the rat hippocampal CA1 region. Transient occlusion for 8 min of bilateral carotid arteries besides permanent ligation of bilateral vertebral arteries was performed and morphological changes of the neurons were examined histologically 5 days after occlusion. cPA or 2ccPA was continuously administered for 5 days by means of an osmotic pump that was implanted subcutaneously before occlusion. Five days after occlusion, delayed neuronal death occurred in approximately 85% of the CA1 hippocampal neurons in the 0.2-2% bovine serum albumin vehicle control group. However, administration of cPA significantly increased the number of undamaged neurons in a dose-dependent manner. At the most effective concentration (18 μg/kg/5d), the number of undamaged neurons was increased to 4 times of that in the vehicle control group. 2ccPA also showed a neuroprotective effect, but it was less potent than that of natural cPA. These results indicate that systemic administration of both cPA and 2ccPA can protect neurons from ischemia-induced delayed neuronal death in the hippocampus. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Controlled environment life support system: Calcium-related leaf injuries on plants

    NASA Technical Reports Server (NTRS)

    Tibbitts, T. W.

    1986-01-01

    Calcium related injuries to plants grown in controlled environments under conditions which maximize plant growth rates are described. Procedures to encourage movement of calcium into developing leaves of lettuce plants were investigated. The time course and pattern of calcium accumulation was determined to develop effective control procedures for this injury, termed tipburn. Procedures investigated were: (1) increasing the relative humidity to saturation during the dark period and altering root temperatures, (2) maximizing water stress during light and minimizing water stress during dark periods, (3) shortening the light-dark cycle lengths in combination with elevated moisture levels during the dark cycles, (4) reducing nutrient concentrations and (5) vibrating the plants. Saturated humidities at night increased the rate of growth and the large fluctuation in plant water potential encouraged calcium movement to the young leaves and delayed tipburn. Root temperature regulation between 15 and 26 C was not effective in preventing tipburn. Attempts to modulate water stress produced little variation, but no difference in tipburn development. Variations in light-dark cycle lengths also had no effect on calcium concentrations within developing leaves and no variation in tipburn development. Low concentrations of nutrient solution delayed tipburn, presumably because of greater calcium transport in the low concentration plants. Shaking of the plants did not prevent tipburn, but did delay it slightly.

  15. Inhibition of presynaptic calcium transients in cortical inputs to the dorsolateral striatum by metabotropic GABAB and mGlu2/3 receptors

    PubMed Central

    Kupferschmidt, David A; Lovinger, David M

    2015-01-01

    Cortical inputs to the dorsolateral striatum (DLS) are dynamically regulated during skill learning and habit formation, and are dysregulated in disorders characterized by impaired action control. Therefore, a mechanistic investigation of the processes regulating corticostriatal transmission is key to understanding DLS-associated circuit function, behaviour and pathology. Presynaptic GABAB and group II metabotropic glutamate (mGlu2/3) receptors exert marked inhibitory control over corticostriatal glutamate release in the DLS, yet the signalling pathways through which they do so are unclear. We developed a novel approach using the genetically encoded calcium (Ca2+) indicator GCaMP6 to assess presynaptic Ca2+ in corticostriatal projections to the DLS. Using simultaneous photometric presynaptic Ca2+ and striatal field potential recordings, we report that relative to P/Q-type Ca2+ channels, N-type channels preferentially contributed to evoked presynaptic Ca2+ influx in motor cortex projections to, and excitatory transmission in, the DLS. Activation of GABAB or mGlu2/3 receptors inhibited both evoked presynaptic Ca2+ transients and striatal field potentials. mGlu2/3 receptor-mediated depression did not require functional N-type Ca2+ channels, but was attenuated by blockade of P/Q-type channels. These findings reveal presynaptic mechanisms of inhibitory modulation of corticostriatal function that probably contribute to the selection and shaping of behavioural repertoires. Key points Plastic changes at cortical inputs to the dorsolateral striatum (DLS) underlie skill learning and habit formation, so characterizing the mechanisms by which these inputs are regulated is important for understanding the neural basis of action control. We developed a novel approach using the genetically encoded calcium (Ca2+) indicator GCaMP6 and brain slice photometry to assess evoked presynaptic Ca2+ transients in cortical inputs to the DLS and study their regulation by GABAB and mGlu2

  16. Simultaneous Quantification of Spatially Discordant Alternans in Voltage and Intracellular Calcium in Langendorff-Perfused Rabbit Hearts and Inconsistencies with Models of Cardiac Action Potentials and Ca Transients

    PubMed Central

    Uzelac, Ilija; Ji, Yanyan C.; Hornung, Daniel; Schröder-Scheteling, Johannes; Luther, Stefan; Gray, Richard A.; Cherry, Elizabeth M.; Fenton, Flavio H.

    2017-01-01

    Rationale: Discordant alternans, a phenomenon in which the action potential duration (APDs) and/or intracellular calcium transient durations (CaDs) in different spatial regions of cardiac tissue are out of phase, present a dynamical instability for complex spatial dispersion that can be associated with long-QT syndrome (LQTS) and the initiation of reentrant arrhythmias. Because the use of numerical simulations to investigate arrhythmic effects, such as acquired LQTS by drugs is beginning to be studied by the FDA, it is crucial to validate mathematical models that may be used during this process. Objective: In this study, we characterized with high spatio-temporal resolution the development of discordant alternans patterns in transmembrane voltage (Vm) and intracellular calcium concentration ([Cai]+2) as a function of pacing period in rabbit hearts. Then we compared the dynamics to that of the latest state-of-the-art model for ventricular action potentials and calcium transients to better understand the underlying mechanisms of discordant alternans and compared the experimental data to the mathematical models representing Vm and [Cai]+2 dynamics. Methods and Results: We performed simultaneous dual optical mapping imaging of Vm and [Cai]+2 in Langendorff-perfused rabbit hearts with higher spatial resolutions compared with previous studies. The rabbit hearts developed discordant alternans through decreased pacing period protocols and we quantified the presence of multiple nodal points along the direction of wave propagation, both in APD and CaD, and compared these findings with results from theoretical models. In experiments, the nodal lines of CaD alternans have a steeper slope than those of APD alternans, but not as steep as predicted by numerical simulations in rabbit models. We further quantified several additional discrepancies between models and experiments. Conclusions: Alternans in CaD have nodal lines that are about an order of magnitude steeper compared to

  17. Heat stress responses modulate calcium regulations and electrophysiological characteristics in atrial myocytes.

    PubMed

    Chen, Yao-Chang; Kao, Yu-Hsun; Huang, Chun-Feng; Cheng, Chen-Chuan; Chen, Yi-Jen; Chen, Shih-Ann

    2010-04-01

    Heat stress-induced responses change the ionic currents and calcium homeostasis. However, the molecular insights into the heat stress responses on calcium homeostasis remain unclear. The purposes of this study were to examine the mechanisms of heat stress responses on calcium handling and electrophysiological characteristics in atrial myocytes. We used indo-1 fluorimetric ratio technique and whole-cell patch clamp to investigate the intracellular calcium, action potentials, and ionic currents in isolated rabbit single atrial cardiomyocytes with or without (control) exposure to heat stress (43 degrees C, 15 min) 5+/-1 h before experiments. The expressions of sarcoplasmic reticulum ATPase (SERCA2a), and Na(+)-Ca(2+) exchanger (NCX) in the control and heat stress-treated atrial myocytes were evaluated by Western blot and real-time PCR. As compared with control myocytes, the heat stress-treated myocytes had larger sarcoplasmic reticulum calcium content and larger intracellular calcium transient with a shorter decay portion. Heat stress-treated myocytes also had larger L-type calcium currents, transient outward potassium currents, but smaller NCX currents. Heat stress responses increased the protein expressions, SERCA2a, NCX, and heat shock protein. However, heat stress responses did not change the RNA expression of SERCA2a and NCX. In conclusion, heat stress responses change calcium handling through protein but not RNA regulation. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  18. Nonlinear femtosecond pump-probe spectroscopy using a power-encoded soliton delay line.

    PubMed

    Saint-Jalm, Sarah; Andresen, Esben Ravn; Bendahmane, Abdelkrim; Kudlinski, Alexandre; Rigneault, Hervé

    2016-01-01

    We show femtosecond time-resolved nonlinear pump-probe spectroscopy using a fiber soliton as the probe pulse. Furthermore, we exploit soliton dynamics to record an entire transient trace with a power-encoded delay sweep. The power-encoded delay line takes advantage of the dependency of the soliton trajectory in the (λ,z) space upon input power; the difference in accumulated group delay between trajectories converts a fast power sweep into a fast delay sweep. We demonstrate the concept by performing transient absorption spectroscopy in a test sample and validate it against a conventional pump-probe setup.

  19. Numerical analysis of the effect of T-tubule location on calcium transient in ventricular myocytes.

    PubMed

    George, Uduak Z; Wang, Jun; Yu, Zeyun

    2014-01-01

    Intracellular calcium (Ca2+) signaling in cardiac myocytes is vital for proper functioning of the heart. Understanding the intracellular Ca2+ dynamics would give an insight into the functions of normal and diseased hearts. In the current study, spatiotemporal Ca2+ dynamics is investigated in ventricular myocytes by considering Ca2+ release and re-uptake via sarcolemma and transverse tubules (T-tubules), Ca2+ diffusion and buffering in the cytosol, and the blockade of Ca2+ activities associated with the sarcoplasmic reticulum. This study is carried out using a three dimensional (3D) geometric model of a branch of T-tubule extracted from the electron microscopy (EM) images of a partial ventricular myocyte. Mathematical modeling is done by using a system of partial differential equations involving Ca2+, buffers, and membrane channels. Numerical simulation results suggest that a lack of T-tubule structure at the vicinity of the cell surface could increase the peak time of Ca2+ concentration in myocytes. The results also show that T-tubules and mobile buffers play an important role in the regulation of Ca2+ transient in ventricular myocytes.

  20. Calcium transient in presynaptic terminal of squid giant synapse: detection with aequorin.

    PubMed

    Llinás, R; Blinks, J R; Nicholson, C

    1972-06-09

    Microinjection of aequorin, a bioluminescent protein sensitive tocalcium, into the presynaptic terminal of the squid giant synapse demnonstrated an increase in intracellular calcium ion concentration during repetitive synaptic transmission. Although no light flashes synchronous with individual presynaptic : tion potentials were detected, the results are considered consistent with the hypothesis that entry of calcium into the presynaptic terminal triggers release of e synaptic transmitter substance.

  1. Ionotropic and Metabotropic Mechanisms of Allosteric Modulation of α7 Nicotinic Receptor Intracellular Calcium.

    PubMed

    King, Justin R; Ullah, Aman; Bak, Ellen; Jafri, M Saleet; Kabbani, Nadine

    2018-06-01

    The pharmacological targeting of the α 7 nicotinic acetylcholine receptor ( α 7) is a promising strategy in the development of new drugs for neurologic diseases. Because α 7 receptors regulate cellular calcium, we investigated how the prototypical type II-positive allosteric modulator PNU120596 affects α 7-mediated calcium signaling. Live imaging experiments show that PNU120596 augments ryanodine receptor-driven calcium-induced calcium release (CICR), inositol-induced calcium release (IICR), and phospholipase C activation by the α 7 receptor. Both influx of calcium through the α 7 nicotinic acetylcholine receptor (nAChR) channel as well as the binding of intracellular G proteins were involved in the effect of PNU120596 on intracellular calcium. This is evidenced by the findings that chelation of extracellular calcium, expression of α 7 D44A or α 7 345-348A mutant subunits, or blockade of calcium store release compromised the ability of PNU120596 to increase intracellular calcium transients generated by α 7 ligand activation. Spatiotemporal stochastic modeling of calcium transient responses corroborates these results and indicates that α 7 receptor activation enables calcium microdomains locally and to lesser extent in the distant cytosol. From the model, allosteric modulation of the receptor activates CICR locally via ryanodine receptors and augments IICR through enhanced calcium influx due to prolonged α 7 nAChR opening. These findings provide a new mechanistic framework for understanding the effect of α 7 receptor allosteric modulation on both local and global calcium dynamics. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  2. Calcium-mediated actin reset (CaAR) mediates acute cell adaptations.

    PubMed

    Wales, Pauline; Schuberth, Christian E; Aufschnaiter, Roland; Fels, Johannes; García-Aguilar, Ireth; Janning, Annette; Dlugos, Christopher P; Schäfer-Herte, Marco; Klingner, Christoph; Wälte, Mike; Kuhlmann, Julian; Menis, Ekaterina; Hockaday Kang, Laura; Maier, Kerstin C; Hou, Wenya; Russo, Antonella; Higgs, Henry N; Pavenstädt, Hermann; Vogl, Thomas; Roth, Johannes; Qualmann, Britta; Kessels, Michael M; Martin, Dietmar E; Mulder, Bela; Wedlich-Söldner, Roland

    2016-12-06

    Actin has well established functions in cellular morphogenesis. However, it is not well understood how the various actin assemblies in a cell are kept in a dynamic equilibrium, in particular when cells have to respond to acute signals. Here, we characterize a rapid and transient actin reset in response to increased intracellular calcium levels. Within seconds of calcium influx, the formin INF2 stimulates filament polymerization at the endoplasmic reticulum (ER), while cortical actin is disassembled. The reaction is then reversed within a few minutes. This Calcium-mediated actin reset (CaAR) occurs in a wide range of mammalian cell types and in response to many physiological cues. CaAR leads to transient immobilization of organelles, drives reorganization of actin during cell cortex repair, cell spreading and wound healing, and induces long-lasting changes in gene expression. Our findings suggest that CaAR acts as fundamental facilitator of cellular adaptations in response to acute signals and stress.

  3. Calcium current in isolated neonatal rat ventricular myocytes.

    PubMed Central

    Cohen, N M; Lederer, W J

    1987-01-01

    1. Calcium currents (ICa) from neonatal rat ventricular heart muscle cells grown in primary culture were examined using the 'whole-cell' voltage-clamp technique (Hamill, Marty, Neher, Sakmann & Sigworth, 1981). Examination of ICa was limited to one calcium channel type, 'L' type (Nilius, Hess, Lansman & Tsien, 1985), by appropriate voltage protocols. 2. We measured transient and steady-state components of ICa, and could generally describe ICa in terms of the steady-state activation (d infinity) and inactivation (f infinity) parameters. 3. We observed that the reduction of ICa by the calcium channel antagonist D600 can be explained by both a shift of d infinity to more positive potentials as well as a slight reduction of ICa conductance. D600 did not significantly alter either the rate of inactivation of ICa or the voltage dependence of f infinity. 4. The calcium channel modulator BAY K8644 shifted both d infinity and f infinity to more negative potentials. Additionally, BAY K8644 increased the rate of inactivation at potentials between +5 and +55 mV. Furthermore, BAY K8644 also increased ICa conductance, a change consistent with a promotion of 'mode 2' calcium channel activity (Hess, Lansman & Tsien, 1984). 5. We conclude that, as predicted by d infinity and f infinity, there is a significant steady-state component of ICa ('window current') at plateau potentials in neonatal rat heart cells. Modulation of the steady-state and transient components of ICa by various agents can be attributed both to specific alterations in d infinity and f infinity and to more complicated alterations in the mode of calcium channel activity. PMID:2451004

  4. Identification of a Calcium Signalling Pathway of S-[6]-Gingerol in HuH-7 Cells.

    PubMed

    Li, Xiao-Hong; McGrath, Kristine C Y; Tran, Van H; Li, Yi-Ming; Mandadi, Sravan; Duke, Colin C; Heather, Alison K; Roufogalis, Basil D

    2013-01-01

    Calcium signals in hepatocytes control cell growth, proliferation, and death. Members of the transient receptor potential (TRP) cation channel superfamily are candidate calcium influx channels. NF κ B activation strictly depends on calcium influx and often induces antiapoptotic genes favouring cell survival. Previously, we reported that S-[6]-gingerol is an efficacious agonist of the transient receptor potential cation channel subfamily V member 1 (TRPV1) in neurones. In this study, we tested the effect of S-[6]-gingerol on HuH-7 cells using the Fluo-4 calcium assay, RT-qPCR, transient cell transfection, and luciferase measurements. We found that S-[6]-gingerol induced a transient rise in [Ca(2+)] i in HuH-7 cells. The increase in [Ca(2+)] i induced by S-[6]-gingerol was abolished by preincubation with EGTA and was also inhibited by the TRPV1 channel antagonist capsazepine. Expression of TRPV1 in HuH-7 cells was confirmed by mRNA analysis as well as a test for increase of [Ca(2+)] i by TRPV1 agonist capsaicin and its inhibition by capsazepine. We found that S-[6]-gingerol induced rapid NF κ B activation through TRPV1 in HuH-7 cells. Furthermore, S-[6]-gingerol-induced NF κ B activation was dependent on the calcium gradient and TRPV1. The rapid NF κ B activation by S-[6]-gingerol was associated with an increase in mRNA levels of NF κ B-target genes: cIAP-2, XIAP, and Bcl-2 that encode antiapoptotic proteins.

  5. Visualization of Calcium Dynamics in Kidney Proximal Tubules

    PubMed Central

    Szebényi, Kornélia; Füredi, András; Kolacsek, Orsolya; Csohány, Rózsa; Prókai, Ágnes; Kis-Petik, Katalin; Szabó, Attila; Bősze, Zsuzsanna; Bender, Balázs; Tóvári, József; Enyedi, Ágnes; Orbán, Tamás I.

    2015-01-01

    Intrarenal changes in cytoplasmic calcium levels have a key role in determining pathologic and pharmacologic responses in major kidney diseases. However, cell-specific delivery of calcium-sensitive probes in vivo remains problematic. We generated a transgenic rat stably expressing the green fluorescent protein-calmodulin–based genetically encoded calcium indicator (GCaMP2) predominantly in the kidney proximal tubules. The transposon-based method used allowed the generation of homozygous transgenic rats containing one copy of the transgene per allele with a defined insertion pattern, without genetic or phenotypic alterations. We applied in vitro confocal and in vivo two-photon microscopy to examine basal calcium levels and ligand- and drug-induced alterations in these levels in proximal tubular epithelial cells. Notably, renal ischemia induced a transient increase in cellular calcium, and reperfusion resulted in a secondary calcium load, which was significantly decreased by systemic administration of specific blockers of the angiotensin receptor and the Na-Ca exchanger. The parallel examination of in vivo cellular calcium dynamics and renal circulation by fluorescent probes opens new possibilities for physiologic and pharmacologic investigations. PMID:25788535

  6. Early and late components of EEG delay activity correlate differently with scene working memory performance

    PubMed Central

    Ng, Kenneth; Reichert, Chelsea P.

    2017-01-01

    Sustained and elevated activity during the working memory delay period has long been considered the primary neural correlate for maintaining information over short time intervals. This idea has recently been reinterpreted in light of findings generated from multiple neural recording modalities and levels of analysis. To further investigate the sustained or transient nature of activity, the temporal-spectral evolution (TSE) of delay period activity was examined in humans with high density EEG during performance of a Sternberg working memory paradigm with a relatively long six second delay and with novel scenes as stimuli. Multiple analyses were conducted using different trial window durations and different baseline periods for TSE computation. Sensor level analyses revealed transient rather than sustained activity during delay periods. Specifically, the consistent finding among the analyses was that high amplitude activity encompassing the theta range was found early in the first three seconds of the delay period. These increases in activity early in the delay period correlated positively with subsequent ability to distinguish new from old probe scenes. Source level signal estimation implicated a right parietal region of transient early delay activity that correlated positively with working memory ability. This pattern of results adds to recent evidence that transient rather than sustained delay period activity supports visual working memory performance. The findings are discussed in relation to synchronous and desynchronous intra- and inter-regional neural transmission, and choosing an optimal baseline for expressing temporal-spectral delay activity change. PMID:29016657

  7. On the structure of amorphous calcium carbonate--a detailed study by solid-state NMR spectroscopy.

    PubMed

    Nebel, Holger; Neumann, Markus; Mayer, Christian; Epple, Matthias

    2008-09-01

    The calcium carbonate phases calcite, aragonite, vaterite, monohydrocalcite (calcium carbonate monohydrate), and ikaite (calcium carbonate hexahydrate) were studied by solid-state NMR spectroscopy ( (1)H and (13)C). Further model compounds were sodium hydrogencarbonate, potassium hydrogencarbonate, and calcium hydroxide. With the help of these data, the structure of synthetically prepared additive-free amorphous calcium carbonate (ACC) was analyzed. ACC contains molecular water (as H 2O), a small amount of mobile hydroxide, and no hydrogencarbonate. This supports the concept of ACC as a transient precursor in the formation of calcium carbonate biominerals.

  8. The removal of myoplasmic free calcium following calcium release in frog skeletal muscle.

    PubMed Central

    Melzer, W; Ríos, E; Schneider, M F

    1986-01-01

    Transient changes in intracellular free calcium concentration (delta [Ca2+]) in response to pulse depolarizations were monitored in isolated segments of single frog skeletal muscle fibres cut at both ends and voltage clamped at a holding potential of -90 mV in a double-Vaseline-gap chamber. Calcium transients were monitored optically using the metallochromic indicator dye Antipyrylazo III (APIII), which entered the fibre by diffusion from the solution applied to the cut ends. Optical artifacts due to fibre movement were minimized or eliminated by stretching the fibres to sarcomere lengths at which there was little or no overlap of thick and thin contractile filaments. Remaining movement-independent optical changes intrinsic to the fibre and unrelated to the dye were monitored at 850 nm, where free and dye-bound APIII have no absorbance. These 850 nm signals scaled by lambda -1.2 were used to remove intrinsic components from the signals at 700 or 720 nm, wave-lengths at which the APIII absorbance increases when calcium is bound. The corrected 700 or 720 nm signals were used to calculate delta [Ca2+]. The decay of delta [Ca2+] following fibre repolarization at the termination of a depolarizing pulse was well described by a single exponential plus a constant. The exponential rate constant for the decay of delta [Ca2+] decreased and the final 'steady' level that delta [Ca2+] appeared to be approaching increased with increasing amplitude and/or duration of the depolarizing pulse. Both the decreasing decay rate and the build up of the 'steady' level can be accounted for using a two-component model for the removal of free calcium from the myoplasm. One component consists of a set number of a single type of saturable calcium binding site in the myoplasm. The second component is a non-saturable, first-order uptake mechanism operating in parallel with the saturable binding sites. The removal model parameter values were adjusted to fit simultaneously the decay of delta [Ca2

  9. Amorphous Calcium Carbonate in Biomineralization: Stable and Precursor Phases

    NASA Astrophysics Data System (ADS)

    Weiner, S.

    2003-12-01

    The biological formation of the crystalline polymorphs of calcium carbonate, aragonite and calcite, is widespread. The less stable polymorphs, vaterite and monohydrocalcite are also formed by some organisms. Surprisingly, the highly unstable phase, amorphous calcium carbonate (ACC), is formed by a variety of organisms from different phyla. Most of these are stable at least within the lifetime of the organism. The stable forms all have a stoichiometry of CaCO3.H2O. Despite the fact that they do not diffract X-rays. Studies of their short range order by EXAFS, reveal species specific variations in the number and distances of atoms that surround the calcium ion. Proteins extracted from stable biogenic ACC are able to stabilize the phase in vitro. ACC has also been identified as a transient precursor phase during the formation of the calcitic larval spicule of the sea urchin and the formation of the larval shell of a bivalve. The transient form has little or no water associated with the CaCO3. Preliminary EXAFS data suggest that the short range order of the sea urchin spicule transient ACC resembles calcite. Proteins extracted from these spicules are able to stabilize ACC provided Mg is present in the solution. As the mollusks and the echinoderms are on two different branches of the animal phylogenetic tree, it is conceivable that the strategy of using ACC as a precursor phase at least for larval mineralization may be widespread. It has yet to be shown that it is used by adults of either phylum. The manner in which organisms precipitate, stabilize and destabilize if necessary, this highly metastable phase of calcium carbonate presents many fascinating and enigmatic questions, whose solutions could well contribute to a better understanding of basic processes in biomineralization. For more details and references, see Addadi, L., Raz, S. and Weiner, S. (2003). Taking advantage of disorder: Amorphous calcium carbonate and its roles in biomineralization. Adv. Mat.15, 959-970.

  10. Emerin plays a crucial role in nuclear invagination and in the nuclear calcium transient

    PubMed Central

    Shimojima, Masaya; Yuasa, Shinsuke; Motoda, Chikaaki; Yozu, Gakuto; Nagai, Toshihiro; Ito, Shogo; Lachmann, Mark; Kashimura, Shin; Takei, Makoto; Kusumoto, Dai; Kunitomi, Akira; Hayashiji, Nozomi; Seki, Tomohisa; Tohyama, Shugo; Hashimoto, Hisayuki; Kodaira, Masaki; Egashira, Toru; Hayashi, Kenshi; Nakanishi, Chiaki; Sakata, Kenji; Yamagishi, Masakazu; Fukuda, Keiichi

    2017-01-01

    Alteration of the nuclear Ca2+ transient is an early event in cardiac remodeling. Regulation of the nuclear Ca2+ transient is partly independent of the cytosolic Ca2+ transient in cardiomyocytes. One nuclear membrane protein, emerin, is encoded by EMD, and an EMD mutation causes Emery-Dreifuss muscular dystrophy (EDMD). It remains unclear whether emerin is involved in nuclear Ca2+ homeostasis. The aim of this study is to elucidate the role of emerin in rat cardiomyocytes by means of hypertrophic stimuli and in EDMD induced pluripotent stem (iPS) cell-derived cardiomyocytes in terms of nuclear structure and the Ca2+ transient. The cardiac hypertrophic stimuli increased the nuclear area, decreased nuclear invagination, and increased the half-decay time of the nuclear Ca2+ transient in cardiomyocytes. Emd knockdown cardiomyocytes showed similar properties after hypertrophic stimuli. The EDMD-iPS cell-derived cardiomyocytes showed increased nuclear area, decreased nuclear invagination, and increased half-decay time of the nuclear Ca2+ transient. An autopsied heart from a patient with EDMD also showed increased nuclear area and decreased nuclear invagination. These data suggest that Emerin plays a crucial role in nuclear structure and in the nuclear Ca2+ transient. Thus, emerin and the nuclear Ca2+ transient are possible therapeutic targets in heart failure and EDMD. PMID:28290476

  11. Calcium-mediated actin reset (CaAR) mediates acute cell adaptations

    PubMed Central

    Wales, Pauline; Schuberth, Christian E; Aufschnaiter, Roland; Fels, Johannes; García-Aguilar, Ireth; Janning, Annette; Dlugos, Christopher P; Schäfer-Herte, Marco; Klingner, Christoph; Wälte, Mike; Kuhlmann, Julian; Menis, Ekaterina; Hockaday Kang, Laura; Maier, Kerstin C; Hou, Wenya; Russo, Antonella; Higgs, Henry N; Pavenstädt, Hermann; Vogl, Thomas; Roth, Johannes; Qualmann, Britta; Kessels, Michael M; Martin, Dietmar E; Mulder, Bela; Wedlich-Söldner, Roland

    2016-01-01

    Actin has well established functions in cellular morphogenesis. However, it is not well understood how the various actin assemblies in a cell are kept in a dynamic equilibrium, in particular when cells have to respond to acute signals. Here, we characterize a rapid and transient actin reset in response to increased intracellular calcium levels. Within seconds of calcium influx, the formin INF2 stimulates filament polymerization at the endoplasmic reticulum (ER), while cortical actin is disassembled. The reaction is then reversed within a few minutes. This Calcium-mediated actin reset (CaAR) occurs in a wide range of mammalian cell types and in response to many physiological cues. CaAR leads to transient immobilization of organelles, drives reorganization of actin during cell cortex repair, cell spreading and wound healing, and induces long-lasting changes in gene expression. Our findings suggest that CaAR acts as fundamental facilitator of cellular adaptations in response to acute signals and stress. DOI: http://dx.doi.org/10.7554/eLife.19850.001 PMID:27919320

  12. An open source tool for automatic spatiotemporal assessment of calcium transients and local ‘signal-close-to-noise’ activity in calcium imaging data

    PubMed Central

    Martin, Corinna; Jablonka, Sibylle

    2018-01-01

    Local and spontaneous calcium signals play important roles in neurons and neuronal networks. Spontaneous or cell-autonomous calcium signals may be difficult to assess because they appear in an unpredictable spatiotemporal pattern and in very small neuronal loci of axons or dendrites. We developed an open source bioinformatics tool for an unbiased assessment of calcium signals in x,y-t imaging series. The tool bases its algorithm on a continuous wavelet transform-guided peak detection to identify calcium signal candidates. The highly sensitive calcium event definition is based on identification of peaks in 1D data through analysis of a 2D wavelet transform surface. For spatial analysis, the tool uses a grid to separate the x,y-image field in independently analyzed grid windows. A document containing a graphical summary of the data is automatically created and displays the loci of activity for a wide range of signal intensities. Furthermore, the number of activity events is summed up to create an estimated total activity value, which can be used to compare different experimental situations, such as calcium activity before or after an experimental treatment. All traces and data of active loci become documented. The tool can also compute the signal variance in a sliding window to visualize activity-dependent signal fluctuations. We applied the calcium signal detector to monitor activity states of cultured mouse neurons. Our data show that both the total activity value and the variance area created by a sliding window can distinguish experimental manipulations of neuronal activity states. Notably, the tool is powerful enough to compute local calcium events and ‘signal-close-to-noise’ activity in small loci of distal neurites of neurons, which remain during pharmacological blockade of neuronal activity with inhibitors such as tetrodotoxin, to block action potential firing, or inhibitors of ionotropic glutamate receptors. The tool can also offer information about

  13. Calcium as a signal integrator in developing epithelial tissues.

    PubMed

    Brodskiy, Pavel A; Zartman, Jeremiah J

    2018-05-16

    Decoding how tissue properties emerge across multiple spatial and temporal scales from the integration of local signals is a grand challenge in quantitative biology. For example, the collective behavior of epithelial cells is critical for shaping developing embryos. Understanding how epithelial cells interpret a diverse range of local signals to coordinate tissue-level processes requires a systems-level understanding of development. Integration of multiple signaling pathways that specify cell signaling information requires second messengers such as calcium ions. Increasingly, specific roles have been uncovered for calcium signaling throughout development. Calcium signaling regulates many processes including division, migration, death, and differentiation. However, the pleiotropic and ubiquitous nature of calcium signaling implies that many additional functions remain to be discovered. Here we review a selection of recent studies to highlight important insights into how multiple signals are transduced by calcium transients in developing epithelial tissues. Quantitative imaging and computational modeling have provided important insights into how calcium signaling integration occurs. Reverse-engineering the conserved features of signal integration mediated by calcium signaling will enable novel approaches in regenerative medicine and synthetic control of morphogenesis.

  14. Transient features in nanosecond pulsed electric fields differentially modulate mitochondria and viability.

    PubMed

    Beebe, Stephen J; Chen, Yeong-Jer; Sain, Nova M; Schoenbach, Karl H; Xiao, Shu

    2012-01-01

    It is hypothesized that high frequency components of nanosecond pulsed electric fields (nsPEFs), determined by transient pulse features, are important for maximizing electric field interactions with intracellular structures. For monopolar square wave pulses, these transient features are determined by the rapid rise and fall of the pulsed electric fields. To determine effects on mitochondria membranes and plasma membranes, N1-S1 hepatocellular carcinoma cells were exposed to single 600 ns pulses with varying electric fields (0-80 kV/cm) and short (15 ns) or long (150 ns) rise and fall times. Plasma membrane effects were evaluated using Fluo-4 to determine calcium influx, the only measurable source of increases in intracellular calcium. Mitochondria membrane effects were evaluated using tetramethylrhodamine ethyl ester (TMRE) to determine mitochondria membrane potentials (ΔΨm). Single pulses with short rise and fall times caused electric field-dependent increases in calcium influx, dissipation of ΔΨm and cell death. Pulses with long rise and fall times exhibited electric field-dependent increases in calcium influx, but diminished effects on dissipation of ΔΨm and viability. Results indicate that high frequency components have significant differential impact on mitochondria membranes, which determines cell death, but lesser variances on plasma membranes, which allows calcium influxes, a primary determinant for dissipation of ΔΨm and cell death.

  15. Cutaneous and subcutaneous complications of calcium infusions.

    PubMed

    Roberts, J R

    1977-01-01

    Five infants with hypocalcemia experienced complications after treatment with calcium gluconate intravenously. Inadvertent soft tissue extravasation resulted in erythema, subcutaneous calcification, tissue necrosis, skin slough, and transient radial nerve damage with wrist drop, the latter previously unreported. The soft tissue lesions may be mistaken for cellulitis, abscess, calcified hematoma, or osteomyelitis, resulting in unnecessary antibiotic therapy or surgical intervention. Initially, no clinical abnormality may be apparent. The lesions appear from days to weeks following extravasation. Radiographs are initially negative but soft calcification appears in one to three weeks. Follow-up x-ray films show complete resorption of the calcium over several months. Skin sloughs heal in four to six weeks without skin grafting. Extreme care in the parenteral use of calcium gluconate and conservative treatment of the complications is advocated.

  16. Cavβ2 transcription start site variants modulate calcium handling in newborn rat cardiomyocytes.

    PubMed

    Moreno, Cristian; Hermosilla, Tamara; Morales, Danna; Encina, Matías; Torres-Díaz, Leandro; Díaz, Pablo; Sarmiento, Daniela; Simon, Felipe; Varela, Diego

    2015-12-01

    In the heart, the main pathway for calcium influx is mediated by L-type calcium channels, a multi-subunit complex composed of the pore-forming subunit CaV1.2 and the auxiliary subunits CaVα2δ1 and CaVβ2. To date, five distinct CaVβ2 transcriptional start site (TSS) variants (CaVβ2a-e) varying only in the composition and length of the N-terminal domain have been described, each of them granting distinct biophysical properties to the L-type current. However, the physiological role of these variants in Ca(2+) handling in the native tissue has not been explored. Our results show that four of these variants are present in neonatal rat cardiomyocytes. The contribution of those CaVβ2 TSS variants on endogenous L-type current and Ca(2+) handling was explored by adenoviral-mediated overexpression of each CaVβ2 variant in cultured newborn rat cardiomyocytes. As expected, all CaVβ2 TSS variants increased L-type current density and produced distinctive changes on L-type calcium channel (LTCC) current activation and inactivation kinetics. The characteristics of the induced calcium transients were dependent on the TSS variant overexpressed. Moreover, the amplitude of the calcium transients varied depending on the subunit involved, being higher in cardiomyocytes transduced with CaVβ2a and smaller in CaVβ2d. Interestingly, the contribution of Ca(2+) influx and Ca(2+) release on total calcium transients, as well as the sarcoplasmic calcium content, was found to be TSS-variant-dependent. Remarkably, determination of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) messenger RNA (mRNA) abundance and cell size change indicates that CaVβ2 TSS variants modulate the cardiomyocyte hypertrophic state. In summary, we demonstrate that expression of individual CaVβ2 TSS variants regulates calcium handling in cardiomyocytes and, consequently, has significant repercussion in the development of hypertrophy.

  17. PeakCaller: an automated graphical interface for the quantification of intracellular calcium obtained by high-content screening.

    PubMed

    Artimovich, Elena; Jackson, Russell K; Kilander, Michaela B C; Lin, Yu-Chih; Nestor, Michael W

    2017-10-16

    Intracellular calcium is an important ion involved in the regulation and modulation of many neuronal functions. From regulating cell cycle and proliferation to initiating signaling cascades and regulating presynaptic neurotransmitter release, the concentration and timing of calcium activity governs the function and fate of neurons. Changes in calcium transients can be used in high-throughput screening applications as a basic measure of neuronal maturity, especially in developing or immature neuronal cultures derived from stem cells. Using human induced pluripotent stem cell derived neurons and dissociated mouse cortical neurons combined with the calcium indicator Fluo-4, we demonstrate that PeakCaller reduces type I and type II error in automated peak calling when compared to the oft-used PeakFinder algorithm under both basal and pharmacologically induced conditions. Here we describe PeakCaller, a novel MATLAB script and graphical user interface for the quantification of intracellular calcium transients in neuronal cultures. PeakCaller allows the user to set peak parameters and smoothing algorithms to best fit their data set. This new analysis script will allow for automation of calcium measurements and is a powerful software tool for researchers interested in high-throughput measurements of intracellular calcium.

  18. Glutamate Receptor-Like Channel3.3 Is Involved in Mediating Glutathione-Triggered Cytosolic Calcium Transients, Transcriptional Changes, and Innate Immunity Responses in Arabidopsis1[W][OA

    PubMed Central

    Li, Feng; Wang, Jing; Ma, Chunli; Zhao, Yongxiu; Wang, Yingchun; Hasi, Agula; Qi, Zhi

    2013-01-01

    The tripeptide reduced glutathione (GSH; γ-glutamate [Glu]-cysteine [Cys]-glycine) is a major endogenous antioxidant in both animal and plant cells. It also functions as a neurotransmitter mediating communication among neurons in the central nervous system of animals through modulating specific ionotropic Glu receptors (GLRs) in the membrane. Little is known about such signaling roles in plant cells. Here, we report that transient rises in cytosolic calcium triggered by exogenous GSH in Arabidopsis (Arabidopsis thaliana) leaves were sensitive to GLR antagonists and abolished in loss-of-function atglr3.3 mutants. Like the GSH biosynthesis-defective mutant PHYTOALEXIN DEFICIENT2, atglr3.3 showed enhanced susceptibility to the bacterial pathogen Pseudomonas syringae pv tomato DC3000. Pathogen-induced defense marker gene expression was also decreased in atglr3.3 mutants. Twenty-seven percent of genes that were rapidly responsive to GSH treatment of seedlings were defense genes, most of which were dependent on functional AtGLR3.3, while GSH suppressed pathogen propagation through the AtGLR3.3-dependent pathway. Eight previously identified putative AtGLR3.3 ligands, GSH, oxidized glutathione, alanine, asparagine, Cys, Glu, glycine, and serine, all elicited the AtGLR3.3-dependent cytosolic calcium transients, but only GSH and Cys induced the defense response, with the Glu-induced AtGLR3.3-dependent transcription response being much less apparent than that triggered by GSH. Together, these observations suggest that AtGLR3.3 is required for several signaling effects mediated by extracellular GSH, even though these effects may not be causally related. PMID:23656893

  19. Developmental delay and failure to thrive in a 7-month-old baby boy with spontaneous transient Graves' thyrotoxicosis: a case report.

    PubMed

    Yatsuga, Shuichi; Saikusa, Tomoko; Sasaki, Takako; Ushijima, Kikumi; Kitamura, Miyuki; Nishioka, Junko; Koga, Yasutoshi

    2016-08-10

    Thyroid dysfunction can induce developmental delay and failure to thrive in infancy. Congenital hypothyroidism is one of the common causes of these symptoms in infancy. By contrast, hyperthyroidism is a rare cause of these symptoms in infancy. A 7-month-old Japanese baby boy was examined for developmental delay and failure to thrive. Blood tests were performed, which showed low levels of thyroid-stimulating hormone (<0.01 μU/mL) and high levels of free thyroxine (2.14 pg/mL). He was referred to our hospital at 8 months of age. His height was 64 cm (-2.7 standard deviation) and his weight was 6085 g (-2.5 standard deviation). No goiter was detected on examination. His thyrotropin receptor antibody was slightly high (3.9 IU/L), whereas thyroid stimulating antibody, anti-thyroglobulin antibody, and thyroid peroxidase antibody were within normal range. These blood findings indicated hyperthyroidism, most likely Graves' disease. His free thyroxine level decreased in the first month after our examination. No increased vascularity of his thyroid gland was noted. The technetium uptake of his thyroid gland in scintigraphy was relatively increased compared to the intake of his salivary gland. We elected to observe rather than treat with anti-thyroid medications. We have to rule out spontaneous transient Graves' thyrotoxicosis when babies have symptoms of developmental delay and fail to thrive.

  20. Effect of Noopept on Dynamics of Intracellular Calcium in Neurons of Cultured Rat Hippocampal Slices.

    PubMed

    Kolbaev, S N; Aleksandrova, O P; Sharonova, I N; Skrebitsky, V G

    2018-01-01

    A neuroprotective and nootropic drug Noopept increased the frequency of spontaneous calcium transients in neurons of CA1 radial layer in cultured rat hippocampal slices. In contrast, the drug exerted no significant effect on intracellular calcium concentration and its dynamics in neurons of hippocampal CA1 pyramidal layer.

  1. Characterization of a calcium/calmodulin-regulated SR/CAMTA gene family during tomato fruit development and ripening

    PubMed Central

    2012-01-01

    Background Fruit ripening is a complicated development process affected by a variety of external and internal cues. It is well established that calcium treatment delays fruit ripening and senescence. However, the underlying molecular mechanisms remain unclear. Results Previous studies have shown that calcium/calmodulin-regulated SR/CAMTAs are important for modulation of disease resistance, cold sensitivity and wounding response in vegetative tissues. To study the possible roles of this gene family in fruit development and ripening, we cloned seven SR/CAMTAs, designated as SlSRs, from tomato, a model fruit-bearing crop. All seven genes encode polypeptides with a conserved DNA-binding domain and a calmodulin-binding site. Calmodulin specifically binds to the putative targeting site in a calcium-dependent manner. All SlSRs were highly yet differentially expressed during fruit development and ripening. Most notably, the expression of SlSR2 was scarcely detected at the mature green and breaker stages, two critical stages of fruit development and ripening; and SlSR3L and SlSR4 were expressed exclusively in fruit tissues. During the developmental span from 10 to 50 days post anthesis, the expression profiles of all seven SlSRs were dramatically altered in ripening mutant rin compared with wildtype fruit. By contrast, only minor alterations were noted for ripening mutant nor and Nr fruit. In addition, ethylene treatment of mature green wildtype fruit transiently stimulated expression of all SlSRs within one to two hours. Conclusions This study indicates that SlSR expression is influenced by both the Rin-mediated developmental network and ethylene signaling. The results suggest that calcium signaling is involved in the regulation of fruit development and ripening through calcium/calmodulin/SlSR interactions. PMID:22330838

  2. Controlling pulse delay by light and low magnetic fields: slow light in emerald induced by transient spectral hole-burning.

    PubMed

    Rajan, Rajitha Papukutty; Riesen, Hans; Rebane, Aleksander

    2013-11-15

    Slow light based on transient spectral hole-burning is reported for emerald, Be(3)Al(2)Si(6)O(18):Cr(3+). Experiments were conducted in π polarization on the R(1)(± 3/2) line (E2 ← A(2)4) at 2.2 K in zero field and low magnetic fields B||c. The hole width was strongly dependent on B||c, and this allowed us to smoothly tune the pulse delay from 40 to 154 ns between zero field and B||c = 15.2 mT. The latter corresponds to a group velocity of 16 km/s. Slow light in conjunction with a linear filter theory can be used as a powerful and accurate technique in time-resolved spectroscopy, e.g., to determine spectral hole-widths as a function of time.

  3. The calcium-frequency response in the rat ventricular myocyte: an experimental and modelling study.

    PubMed

    Gattoni, Sara; Røe, Åsmund Treu; Frisk, Michael; Louch, William E; Niederer, Steven A; Smith, Nicolas P

    2016-08-01

    In the majority of species, including humans, increased heart rate increases cardiac contractility. This change is known as the force-frequency response (FFR). The majority of mammals have a positive force-frequency relationship (FFR). In rat the FFR is controversial. We derive a species- and temperature-specific data-driven model of the rat ventricular myocyte. As a measure of the FFR, we test the effects of changes in frequency and extracellular calcium on the calcium-frequency response (CFR) in our model and three altered models. The results show a biphasic peak calcium-frequency response, due to biphasic behaviour of the ryanodine receptor and the combined effect of the rapid calmodulin buffer and the frequency-dependent increase in diastolic calcium. Alterations to the model reveal that inclusion of Ca(2+) /calmodulin-dependent protein kinase II (CAMKII)-mediated L-type channel and transient outward K(+) current activity enhances the positive magnitude calcium-frequency response, and the absence of CAMKII-mediated increase in activity of the sarco/endoplasmic reticulum Ca(2+) -ATPase induces a negative magnitude calcium-frequency response. An increase in heart rate affects the strength of cardiac contraction by altering the Ca(2+) transient as a response to physiological demands. This is described by the force-frequency response (FFR), a change in developed force with pacing frequency. The majority of mammals, including humans, have a positive FFR, and cardiac contraction strength increases with heart rate. However, the rat and mouse are exceptions, with the majority of studies reporting a negative FFR, while others report either a biphasic or a positive FFR. Understanding the differences in the FFR between humans and rats is fundamental to interpreting rat-based experimental findings in the context of human physiology. We have developed a novel model of rat ventricular electrophysiology and calcium dynamics, derived predominantly from experimental data

  4. A Diffusible Signal from Arbuscular Mycorrhizal Fungi Elicits a Transient Cytosolic Calcium Elevation in Host Plant Cells1[W

    PubMed Central

    Navazio, Lorella; Moscatiello, Roberto; Genre, Andrea; Novero, Mara; Baldan, Barbara; Bonfante, Paola; Mariani, Paola

    2007-01-01

    The implication of calcium as intracellular messenger in the arbuscular mycorrhizal (AM) symbiosis has not yet been directly demonstrated, although often envisaged. We used soybean (Glycine max) cell cultures stably expressing the bioluminescent Ca2+ indicator aequorin to detect intracellular Ca2+ changes in response to the culture medium of spores of Gigaspora margarita germinating in the absence of the plant partner. Rapid and transient elevations in cytosolic free Ca2+ were recorded, indicating that diffusible molecules released by the mycorrhizal fungus are perceived by host plant cells through a Ca2+-mediated signaling. Similar responses were also triggered by two Glomus isolates. The fungal molecules active in generating the Ca2+ transient were constitutively released in the medium, and the induced Ca2+ signature was not modified by the coculture of germinating spores with plant cells. Even ungerminated spores were able to generate the signaling molecules, as proven when the germination was blocked by a low temperature. The fungal molecules were found to be stable to heat treatment, of small molecular mass (<3 kD), and, on the basis of extraction with an organic solvent, partially lipophilic. Evidence for the specificity of such an early fungal signal to the AM symbiosis is suggested by the lack of a Ca2+ response in cultured cells of the nonhost plant Arabidopsis (Arabidopsis thaliana) and by the up-regulation in soybean cells of genes related to Medicago truncatula DMI1, DMI2, and DMI3 and considered essential for the establishment of the AM symbiosis. PMID:17142489

  5. TRPA1 channel mediates organophosphate-induced delayed neuropathy

    PubMed Central

    Ding, Qiang; Fang, Sui; Chen, Xueqin; Wang, Youxin; Li, Jian; Tian, Fuyun; Xu, Xiang; Attali, Bernard; Xie, Xin; Gao, Zhaobing

    2017-01-01

    The organophosphate-induced delayed neuropathy (OPIDN), often leads to paresthesias, ataxia and paralysis, occurs in the late-stage of acute poisoning or after repeated exposures to organophosphate (OP) insecticides or nerve agents, and may contribute to the Gulf War Syndrome. The acute phase of OP poisoning is often attributed to acetylcholinesterase inhibition. However, the underlying mechanism for the delayed neuropathy remains unknown and no treatment is available. Here we demonstrate that TRPA1 channel (Transient receptor potential cation channel, member A1) mediates OPIDN. A variety of OPs, exemplified by malathion, activates TRPA1 but not other neuronal TRP channels. Malathion increases the intracellular calcium levels and upregulates the excitability of mouse dorsal root ganglion neurons in vitro. Mice with repeated exposures to malathion also develop local tissue nerve injuries and pain-related behaviors, which resembles OPIDN. Both the neuropathological changes and the nocifensive behaviors can be attenuated by treatment of TRPA1 antagonist HC030031 or abolished by knockout of Trpa1 gene. In the classic hens OPIDN model, malathion causes nerve injuries and ataxia to a similar level as the positive inducer tri-ortho-cresyl phosphate (TOCP), which also activates TRPA1 channel. Treatment with HC030031 reduces the damages caused by malathion or tri-ortho-cresyl phosphate. Duloxetine and Ketotifen, two commercially available drugs exhibiting TRPA1 inhibitory activity, show neuroprotective effects against OPIDN and might be used in emergency situations. The current study suggests TRPA1 is the major mediator of OPIDN and targeting TRPA1 is an effective way for the treatment of OPIDN. PMID:28894590

  6. The temporal profile of the reaction of microglia, astrocytes, and macrophages in the delayed onset paraplegia after transient spinal cord ischemia in rabbits.

    PubMed

    Matsumoto, Satoshi; Matsumoto, Mishiya; Yamashita, Atsuo; Ohtake, Kazunobu; Ishida, Kazuyoshi; Morimoto, Yasuhiro; Sakabe, Takefumi

    2003-06-01

    In the present study, we sought to elucidate the temporal profile of the reaction of microglia, astrocytes, and macrophages in the progression of delayed onset motor dysfunction after spinal cord ischemia (15 min) in rabbits. At 2, 4, 8, 12, 24, and 48 h after reperfusion (9 animals in each), hind limb motor function was assessed, and the lumbar spinal cord was histologically examined. Delayed motor dysfunction was observed in most animals at 48 h after ischemia, which could be predicted by a poor recovery of segmental spinal cord evoked potentials at 15 min of reperfusion. In the gray matter of the lumbar spinal cord, both microglia and astrocytes were activated early (2 h) after reperfusion. Microglia were diffusely activated and engulfed motor neurons irrespective of the recovery of segmental spinal cord evoked potentials. In contrast, early astrocytic activation was confined to the area where neurons started to show degeneration. Macrophages were first detected at 8 h after reperfusion and mainly surrounded the infarction area later. Although the precise roles of the activation of microglia, astrocytes, and macrophages are to be further determined, the results indicate that understanding functional changes of astrocytes may be important in the mechanism of delayed onset motor dysfunction including paraplegia. Microglia and macrophages play a role in removing tissue debris after transient spinal cord ischemia. Disturbance of astrocytic defense mechanism, breakdown of the blood-spinal cord barrier, or both seemed to be involved in the development of delayed motor dysfunction.

  7. Calcium signaling in neuronal cells exposed to the munitions compound Cyclotrimethylenetrinitramine (RDX).

    PubMed

    Ehrich, Marion; Wu, Xiaohua; Werre, Stephen R; Major, Michael A; McCain, Wilfred C; Reddy, Gunda

    2009-01-01

    Cyclotrimethylenetrinitramine (RDX) has been used extensively as an explosive in military munitions. Mechanisms for seizure production, seen in past animal studies, have not been described. Increased calcium levels contribute to excitotoxicity, so in this study neuroblastoma cells are loaded with calcium-indicating dye before application of 1.5 microM to 7.5 mM RDX, with fluorescence recorded for 30 cycles of 11 seconds each. The lowest concentration of RDX increases calcium fluorescence significantly above baseline for cycles 2 to 8; millimolar concentrations increase calcium fluorescence significantly above baseline for cycles 2 to 30. Increases in calcium, like those of 200 nM carbachol, are prevented with 10 mM of calcium chelator ethylene glycol-bis(beta-aminoethyl ether)-N,N,N,N tetra-acetic acid (EGTA, tetrasodium salt). Calcium channel blocker verapamil (20 microM), Ca(2+)-ATPase inhibitor thapsigargin (5 microM), and general membrane stabilizer lidocaine (10 mM) partially attenuate carbachol- and RDX-induced increases in calcium, suggesting that RDX transiently increases intracellular calcium by multiple mechanisms.

  8. Substance P modulates localized calcium transients and membrane current responses in murine colonic myocytes

    PubMed Central

    Bayguinov, Orline; Hagen, Brian; Sanders, Kenton M

    2003-01-01

    Neurokinins contribute to the neural regulation of gastrointestinal (GI) smooth muscles. We studied responses of murine colonic smooth muscle cells to substance P (SP) and NK1 and NK2 agonists using confocal microscopy and the patch clamp technique. Colonic myocytes generated localized Ca2+ transients that were coupled to spontaneous transient outward currents (STOCs). SP (10−10 M) increased Ca2+ transients and STOCs. Higher concentrations of SP (10−6 M) increased basal Ca2+ and inhibited Ca2+ transients and STOCs. Effects of SP were due to increased Ca2+ entry via L-type Ca2+ channels, and were mediated by protein kinase C (PKC). Nifedipine (10−6 M) and the PKC inhibitor, GF 109203X (10−6 M) reduced L-type Ca2+ current and blocked the effects of SP. SP responses depended upon parallel stimulation of NK1 and NK2 receptors. NK1 agonist ([Sar9,Met(O2)11]-substance P; SSP) and NK2 agonists (neurokinin A (NKA) or GR-64349) did not mimic the effects of SP alone, but NK1 and NK2 agonists were effective when added in combination (10−10–10−6 M). Consistent with this, either an NK1-specific antagonist (GR-82334; 10−7 M) or an NK2-specific antagonist (MEN 10,627; 10−7 M) blocked responses to SP (10−6 M). Ryanodine (10−5 M) blocked the increase in Ca2+ transients and STOCs in response to SP (10−10 M). Our findings show that low concentrations of SP, via PKC-dependent enhancement of L-type Ca2+ current and recruitment of ryanodine receptors, stimulate Ca2+ transients. At higher concentrations of SP (10−6 M), basal Ca2+ increases and spontaneous Ca2+ transients and STOCs are inhibited. PMID:12711623

  9. Effects of intracellular injection of calcium buffers on light adaptation in Limulus ventral photoreceptors

    PubMed Central

    1975-01-01

    The calcium sequestering agent, EGTA, was injected into Limulus ventral photoreceptors. Before injection, the inward membrane current induced by a long stimulus had a large initial transient which declined to a smaller plateau. Iontophoretic injection of EGTA tended to prevent the decline from transient to plateau. Before injection the plateau response was a nonlinear function of light intensity. After EGTA injection the response-intensity curves tended to become linear. Before injection, bright lights lowered the sensitivity as determined with subsequent test flashes. EGTA injection decreased the light-induced changes in sensitivity. Ca-EGTA buffers having different levels of free calcium were pressure-injected into ventral photoreceptors; the higher the level of free calcium, the lower the sensitivity measured after injection. The effects of inotophoretic injection of EGTA were not mimicked by injection or similar amounts of sulfate and the effects of pressure injection of EGTA buffer solutions were not mimicked by injection of similar volumes of pH buffer or mannitol. The data are consistent with the hypothesis that light adaptation is mediated by a rise of the intracellular free calcium concentration. PMID:810540

  10. Visualizing Calcium Flux in Freely Moving Nematode Embryos.

    PubMed

    Ardiel, Evan L; Kumar, Abhishek; Marbach, Joseph; Christensen, Ryan; Gupta, Rishi; Duncan, William; Daniels, Jonathan S; Stuurman, Nico; Colón-Ramos, Daniel; Shroff, Hari

    2017-05-09

    The lack of physiological recordings from Caenorhabditis elegans embryos stands in stark contrast to the comprehensive anatomical and gene expression datasets already available. Using light-sheet fluorescence microscopy to address the challenges associated with functional imaging at this developmental stage, we recorded calcium dynamics in muscles and neurons and developed analysis strategies to relate activity and movement. In muscles, we found that the initiation of twitching was associated with a spreading calcium wave in a dorsal muscle bundle. Correlated activity in muscle bundles was linked with early twitching and eventual coordinated movement. To identify neuronal correlates of behavior, we monitored brainwide activity with subcellular resolution and identified a particularly active cell associated with muscle contractions. Finally, imaging neurons of a well-defined adult motor circuit, we found that reversals in the eggshell correlated with calcium transients in AVA interneurons. Published by Elsevier Inc.

  11. Calcium channel blocker toxicity in dogs and cats.

    PubMed

    Hayes, Cristine L; Knight, Michael

    2012-03-01

    The widespread use and availability of calcium channel blockers in human and veterinary medicine pose a risk for inadvertent pet exposure to these medications. Clinical signs can be delayed by many hours after exposure in some cases, with hypotension and cardiac rhythm changes (bradycardia, atrioventricular block, or tachycardia) as the predominant signs. Prompt decontamination and aggressive treatment using a variety of modalities may be necessary to treat patients exposed to calcium channel blockers. The prognosis of an exposed patient depends on the severity of signs and response to treatment.

  12. Calcium spiking activity and baseline calcium levels in ROS 17/2.8 cells exposed to extremely low frequency electromagnetic fields (ELF EMF).

    PubMed

    Shahidain, R; Mullins, R D; Sisken, J E

    2001-02-01

    To determine whether extremely low frequency electromagnetic fields can alter average free cytosolic calcium ion concentrations [Ca2+]i and transient increases in [Ca2+]i in populations of ROS 17/2.8 cells. Cells loaded with the calcium-selective luminescent photoprotein, aequorin, were placed in the bottom of a sample chamber, which was inserted into the gap of a previously described air gap reactor system where they were exposed either to sinusoidal magnetic fields at a variety of frequencies and flux densities or to sham conditions. Real-time recordings of photon counts due to aequorin luminescence were obtained and data were analysed with the use of probit plots. Probit plots of data obtained from cells exposed to the various magnetic fields were virtually superimposable over the data obtained for the same cultures during pre- and post-exposure sham or no-field periods. These experiments provided no evidence for any effects of ELF EMF, either positive or negative, on either average [Ca2+]i or on transient increases in [Ca2+]i.

  13. SLO BK Potassium Channels Couple Gap Junctions to Inhibition of Calcium Signaling in Olfactory Neuron Diversification.

    PubMed

    Alqadah, Amel; Hsieh, Yi-Wen; Schumacher, Jennifer A; Wang, Xiaohong; Merrill, Sean A; Millington, Grethel; Bayne, Brittany; Jorgensen, Erik M; Chuang, Chiou-Fen

    2016-01-01

    The C. elegans AWC olfactory neuron pair communicates to specify asymmetric subtypes AWCOFF and AWCON in a stochastic manner. Intercellular communication between AWC and other neurons in a transient NSY-5 gap junction network antagonizes voltage-activated calcium channels, UNC-2 (CaV2) and EGL-19 (CaV1), in the AWCON cell, but how calcium signaling is downregulated by NSY-5 is only partly understood. Here, we show that voltage- and calcium-activated SLO BK potassium channels mediate gap junction signaling to inhibit calcium pathways for asymmetric AWC differentiation. Activation of vertebrate SLO-1 channels causes transient membrane hyperpolarization, which makes it an important negative feedback system for calcium entry through voltage-activated calcium channels. Consistent with the physiological roles of SLO-1, our genetic results suggest that slo-1 BK channels act downstream of NSY-5 gap junctions to inhibit calcium channel-mediated signaling in the specification of AWCON. We also show for the first time that slo-2 BK channels are important for AWC asymmetry and act redundantly with slo-1 to inhibit calcium signaling. In addition, nsy-5-dependent asymmetric expression of slo-1 and slo-2 in the AWCON neuron is necessary and sufficient for AWC asymmetry. SLO-1 and SLO-2 localize close to UNC-2 and EGL-19 in AWC, suggesting a role of possible functional coupling between SLO BK channels and voltage-activated calcium channels in AWC asymmetry. Furthermore, slo-1 and slo-2 regulate the localization of synaptic markers, UNC-2 and RAB-3, in AWC neurons to control AWC asymmetry. We also identify the requirement of bkip-1, which encodes a previously identified auxiliary subunit of SLO-1, for slo-1 and slo-2 function in AWC asymmetry. Together, these results provide an unprecedented molecular link between gap junctions and calcium pathways for terminal differentiation of olfactory neurons.

  14. Mathematical investigation of IP3-dependent calcium dynamics in astrocytes.

    PubMed

    Handy, Gregory; Taheri, Marsa; White, John A; Borisyuk, Alla

    2017-06-01

    We study evoked calcium dynamics in astrocytes, a major cell type in the mammalian brain. Experimental evidence has shown that such dynamics are highly variable between different trials, cells, and cell subcompartments. Here we present a qualitative analysis of a recent mathematical model of astrocyte calcium responses. We show how the major response types are generated in the model as a result of the underlying bifurcation structure. By varying key channel parameters, mimicking blockers used by experimentalists, we manipulate this underlying bifurcation structure and predict how the distributions of responses can change. We find that store-operated calcium channels, plasma membrane bound channels with little activity during calcium transients, have a surprisingly strong effect, underscoring the importance of considering these channels in both experiments and mathematical settings. Variation in the maximum flow in different calcium channels is also shown to determine the range of stable oscillations, as well as set the range of frequencies of the oscillations. Further, by conducting a randomized search through the parameter space and recording the resulting calcium responses, we create a database that can be used by experimentalists to help estimate the underlying channel distribution of their cells.

  15. Transient combustion in hybrid rockets

    NASA Astrophysics Data System (ADS)

    Karabeyoglu, Mustafa Arif

    1998-09-01

    Hybrid rockets regained interest recently as an alternative chemical propulsion system due to their advantages over the solid and liquid systems that are currently in use. Development efforts on hybrids revealed two important problem areas: (1) low frequency instabilities and (2) slow transient response. Both of these are closely related to the transient behavior which is a poorly understood aspect of hybrid operation. This thesis is mainly involved with a theoretical study of transient combustion in hybrid rockets. We follow the methodology of identifying and modeling the subsystems of the motor such as the thermal lags in the solid, boundary layer combustion and chamber gasdynamics from a dynamic point of view. We begin with the thermal lag in the solid which yield the regression rate for any given wall heat flux variation. Interesting phenomena such as overshooting during throttling and the amplification and phase lead regions in the frequency domain are discovered. Later we develop a quasi-steady transient hybrid combustion model supported with time delays for the boundary layer processes. This is integrated with the thermal lag system to obtain the thermal combustion (TC) coupled response. The TC coupled system with positive delays generated low frequency instabilities. The scaling of the instabilities are in good agreement with actual motor test data. Finally, we formulate a gasdynamic model for the hybrid chamber which successfully resolves the filling/emptying and longitudinal acoustic behavior of the motor. The TC coupled system is later integrated to the gasdynamic model to obtain the overall response (TCG coupled system) of gaseous oxidizer motors with stiff feed systems. Low frequency instabilities were also encountered for the TCG coupled system. Apart from the transient investigations, the regression rate behavior of liquefying hybrid propellants such as solid cryogenic materials are also studied. The theory is based on the possibility of enhancement

  16. The TRPM7 channel kinase regulates store-operated calcium entry.

    PubMed

    Faouzi, Malika; Kilch, Tatiana; Horgen, F David; Fleig, Andrea; Penner, Reinhold

    2017-05-15

    Pharmacological and molecular inhibition of transient receptor potential melastatin 7 (TRPM7) reduces store-operated calcium entry (SOCE). Overexpression of TRPM7 in TRPM7 -/- cells restores SOCE. TRPM7 is not a store-operated calcium channel. TRPM7 kinase rather than channel modulates SOCE. TRPM7 channel activity contributes to the maintenance of store Ca 2+ levels at rest. The transient receptor potential melastatin 7 (TRPM7) is a protein that combines an ion channel with an intrinsic kinase domain, enabling it to modulate cellular functions either by conducting ions through the pore or by phosphorylating downstream proteins via its kinase domain. In the present study, we report store-operated calcium entry (SOCE) as a novel target of TRPM7 kinase activity. TRPM7-deficient chicken DT40 B lymphocytes exhibit a strongly impaired SOCE compared to wild-type cells as a result of reduced calcium release activated calcium currents, and independently of potassium channel regulation, membrane potential changes or changes in cell-cycle distribution. Pharmacological blockade of TRPM7 with NS8593 or waixenicin A in wild-type B lymphocytes results in a significant decrease in SOCE, confirming that TRPM7 activity is acutely linked to SOCE, without TRPM7 representing a store-operated channel itself. Using kinase-deficient mutants, we find that TRPM7 regulates SOCE through its kinase domain. Furthermore, Ca 2+ influx through TRPM7 is essential for the maintenance of endoplasmic reticulum Ca 2+ concentration in resting cells, and for the refilling of Ca 2+ stores after a Ca 2+ signalling event. We conclude that the channel kinase TRPM7 and SOCE are synergistic mechanisms regulating intracellular Ca 2+ homeostasis. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  17. Transient Increased Calcium and Calcitriol Requirements After Discontinuation of Human Synthetic Parathyroid Hormone 1-34 (hPTH 1-34) Replacement Therapy in Hypoparathyroidism.

    PubMed

    Gafni, Rachel I; Guthrie, Lori C; Kelly, Marilyn H; Brillante, Beth A; Christie, C Michele; Reynolds, James C; Yovetich, Nancy A; James, Robert; Collins, Michael T

    2015-11-01

    Synthetic human PTH 1-34 (hPTH 1-34) replacement therapy in hypoparathyroidism maintains eucalcemia and converts quiescent bone to high-turnover bone. However, the skeletal and metabolic effects of drug discontinuation have not been reported. Nine subjects with hypoparathyroidism received subcutaneous injections of hPTH 1-34 two to three times daily for 19.8 to 61.3 months and then transitioned back to calcium and calcitriol. Biochemistries and bone mineral density (BMD) by dual-energy X-ray absorptiometry (DXA) were assessed at baseline, while on treatment, and at follow-up 3 to 12 months after drug discontinuation. Two subjects developed hypocalcemia when hPTH 1-34 was abruptly discontinued. Thus, to avoid hypocalcemia, subjects were slowly weaned from hPTH 1-34 over several weeks. When hPTH 1-34 was stopped, subjects were requiring two to three times pretreatment doses of calcitriol and calcium to maintain blood calcium levels. Doses were gradually reduced over many weeks until calcium levels were stable on doses similar to baseline. Bone-specific alkaline phosphatase (BSAP), N-telopeptide (NTX), and osteocalcin (OC) increased significantly with hPTH 1-34; at follow-up, BSAP and NTX had returned to baseline while OC was still slightly elevated. During treatment, BMD was unchanged at the hip and lateral spine but declined at the anterior-posterior (AP) spine, radius, and total body. During weaning, BMD increased, with the hip and lateral spine exceeding pre-hPTH 1-34 values and the whole body returning to baseline. AP spine was increased non-significantly compared to baseline at follow-up. hPTH 1-34 must be gradually weaned in hypoparathyroid patients with high doses of oral medications given to avoid hypocalcemia. The transient increased requirements accompanied by increased BMD after long-term hPTH 1-34 therapy suggest a reversal of the expanded remodeling space favoring bone formation as the skeleton returns to a low-turnover state, reminiscent of the hungry

  18. Protein kinases as mediators of fluid shear stress stimulated signal transduction in endothelial cells: a hypothesis for calcium-dependent and calcium-independent events activated by flow.

    PubMed

    Berk, B C; Corson, M A; Peterson, T E; Tseng, H

    1995-12-01

    Fluid shear stress regulates endothelial cell function, but the signal transduction mechanisms involved in mechanotransduction remain unclear. Recent findings demonstrate that several intracellular kinases are activated by mechanical forces. In particular, members of the mitogen-activated protein (MAP) kinase family are stimulated by hyperosmolarity, stretch, and stress such as heat shock. We propose a model for mechanotransduction in endothelial cells involving calcium-dependent and calcium-independent protein kinase pathways. The calcium-dependent pathway involves activation of phospholipase C, hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2), increases in intracellular calcium and stimulation of kinases such as calcium-calmodulin and C kinases (PKC). The calcium-independent pathway involves activation of a small GTP-binding protein and stimulation of calcium-independent PKC and MAP kinases. The calcium-dependent pathway mediates the rapid, transient response to fluid shear stress including activation of nitric oxide synthase (NOS) and ion transport. In contrast, the calcium-independent pathway mediates a slower response including the sustained activation of NOS and changes in cell morphology and gene expression. We propose that focal adhesion complexes link the calcium-dependent and calcium-independent pathways by regulating activity of phosphatidylinositol 4-phosphate (PIP) 5-kinase (which regulates PIP2 levels) and p125 focal adhesion kinase (FAK, which phosphorylates paxillin and interacts with cytoskeletal proteins). This model predicts that dynamic interactions between integrin molecules present in focal adhesion complexes and membrane events involved in mechanotransduction will be integrated by calcium-dependent and calcium-independent kinases to generate intracellular signals involved in the endothelial cell response to flow.

  19. Late calcium EDTA rescues hippocampal CA1 neurons from global ischemia-induced death.

    PubMed

    Calderone, Agata; Jover, Teresa; Mashiko, Toshihiro; Noh, Kyung-min; Tanaka, Hidenobu; Bennett, Michael V L; Zukin, R Suzanne

    2004-11-03

    Transient global ischemia induces a delayed rise in intracellular Zn2+, which may be mediated via glutamate receptor 2 (GluR2)-lacking AMPA receptors (AMPARs), and selective, delayed death of hippocampal CA1 neurons. The molecular mechanisms underlying Zn2+ toxicity in vivo are not well delineated. Here we show the striking finding that intraventricular injection of the high-affinity Zn2+ chelator calcium EDTA (CaEDTA) at 30 min before ischemia (early CaEDTA) or at 48-60 hr (late CaEDTA), but not 3-6 hr, after ischemia, afforded robust protection of CA1 neurons in approximately 50% (late CaEDTA) to 75% (early CaEDTA) of animals. We also show that Zn2+ acts via temporally distinct mechanisms to promote neuronal death. Early CaEDTA attenuated ischemia-induced GluR2 mRNA and protein downregulation (and, by inference, formation of Zn2+-permeable AMPARs), the delayed rise in Zn2+, and neuronal death. These findings suggest that Zn2+ acts at step(s) upstream from GluR2 gene downregulation and implicate Zn2+ in transcriptional regulation and/or GluR2 mRNA stability. Early CaEDTA also blocked mitochondrial release of cytochrome c and Smac/DIABLO (second mitochondria-derived activator of caspases/direct inhibitor of apoptosis protein-binding protein with low pI), caspase-3 activity (but not procaspase-3 cleavage), p75NTR induction, and DNA fragmentation. These findings indicate that CaEDTA preserves the functional integrity of the mitochondrial outer membrane and arrests the caspase death cascade. Late injection of CaEDTA at a time when GluR2 is downregulated and caspase is activated inhibited the delayed rise in Zn2+, p75NTR induction, DNA fragmentation, and cell death. The finding of neuroprotection by late CaEDTA administration has striking implications for intervention in the delayed neuronal death associated with global ischemia.

  20. Effects of calcium intake on the cardiovascular system in postmenopausal women.

    PubMed

    Challoumas, D; Cobbold, C; Dimitrakakis, G

    2013-11-01

    The use of calcium supplements for the prevention of complications of osteoporosis has significantly increased during the last years. The effects of calcium intake in postmenopausal women on cardiovascular parameters such as blood pressure, serum lipids and cardiovascular events are controversial. Even though transient beneficial effects of calcium supplementation have been reported, especially in women with low dietary calcium intake, their long-term outcomes are inconclusive. Only a very few studies investigating serum lipids in postmenopausal women have been described and these showed significant increases in high-density lipoprotein and high-density lipoprotein to low-density lipoprotein ratio. With regards to cardiovascular events in this population group adverse effects have been reported on the rates of myocardial infarction and stroke with increased calcium intake by some authors, however, others described no effects or even beneficial outcomes. We present a review of the current literature which provides a balanced summary of the possible beneficial and adverse effects of calcium intake in postmenopausal women on cardiovascular parameters. Taking into account the modest effect of calcium supplementation in reducing fracture rates, a reassessment of the role, benefits and adverse effects of calcium supplements should be conducted in postmenopausal women. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. Lysophosphatidylcholine-induced cytotoxicity in osteoblast-like MG-63 cells: involvement of transient receptor potential vanilloid 2 (TRPV2) channels.

    PubMed

    Fallah, Abdallah; Pierre, Rachel; Abed, Elie; Moreau, Robert

    2013-01-01

    Epidemiological studies indicate that patients suffering from atherosclerosis are predisposed to develop osteoporosis. Accordingly, atherogenic determinants such as oxidized low density lipoprotein (OxLDL) particles have been shown to alter bone cell functions. In this work, we investigated the cytotoxicity of lysophosphatidylcholine (lysoPC), a major phospholipid component generated upon LDL oxidation, on bone-forming MG-63 osteoblast-like cells. Cell viability was reduced by lysoPC in a concentration-dependent manner with a LC50 of 18.7±0.7 μM. LysoPC-induced cell death was attributed to induction of both apoptosis and necrosis. Since impairment of intracellular calcium homeostasis is often involved in mechanism of cell death, we determined the involvement of calcium in lysoPC-induced cytotoxicity. LysoPC promoted a rapid and transient increase in intracellular calcium attributed to mobilization from calcium stores, followed by a sustained influx. Intracellular calcium mobilization was associated to phospholipase C (PLC)-dependent mobilization of calcium from the endoplasmic reticulum since inhibition of PLC or calcium depletion of reticulum endoplasmic with thapsigargin prevented the calcium mobilization. The calcium influx induced by lysoPC was abolished by inhibition of transient receptor potential vanilloid (TRPV) channels with ruthenium red whereas gadolinium, which inhibits canonical TRP (TRPC) channels, was without effect. Accordingly, expression of TRPV2 and TRPV4 were shown in MG-63 cells. The addition of TRPV2 inhibitor Tranilast in the incubation medium prevent the calcium influx triggered by lysoPC and reduced lysoPC-induced cytotoxicity whereas TRPV4 inhibitor RN 1734 was without effect, which confirms the involvement of TRPV2 activation in lysoPC-induced cell death.

  2. Intact calcium signaling in adrenergic-deficient embryonic mouse hearts.

    PubMed

    Peoples, Jessica N; Taylor, David G; Katchman, Alexander N; Ebert, Steven N

    2018-01-22

    Mouse embryos that lack the ability to produce the adrenergic hormones, norepinephrine (NE) and epinephrine (EPI), due to disruption of the dopamine beta-hydroxylase (Dbh -/- ) gene inevitably perish from heart failure during mid-gestation. Since adrenergic stimulation is well-known to enhance calcium signaling in developing as well as adult myocardium, and impairments in calcium signaling are typically associated with heart failure, we hypothesized that adrenergic-deficient embryonic hearts would display deficiencies in cardiac calcium signaling relative to adrenergic-competent controls at a developmental stage immediately preceding the onset of heart failure, which first appears beginning or shortly after mouse embryonic day 10.5 (E10.5). To test this hypothesis, we used ratiometric fluorescent calcium imaging techniques to measure cytosolic calcium transients, [Ca 2+ ] i in isolated E10.5 mouse hearts. Our results show that spontaneous [Ca 2+ ] i oscillations were intact and robustly responded to a variety of stimuli including extracellular calcium (5 mM), caffeine (5 mM), and NE (100 nM) in a manner that was indistinguishable from controls. Further, we show similar patterns of distribution (via immunofluorescent histochemical staining) and activity (via patch-clamp recording techniques) for the major voltage-gated plasma membrane calcium channel responsible for the L-type calcium current, I Ca,L , in adrenergic-deficient and control embryonic cardiac cells. These results demonstrate that despite the absence of vital adrenergic hormones that consistently leads to embryonic lethality in vivo, intracellular and extracellular calcium signaling remain essentially intact and functional in embryonic mouse hearts through E10.5. These findings suggest that adrenergic stimulation is not required for the development of intracellular calcium oscillations or extracellular calcium signaling through I Ca,L and that aberrant calcium signaling does not likely contribute

  3. Calcium pump kinetics determined in single erythrocyte ghosts by microphotolysis and confocal imaging.

    PubMed

    Kubitscheck, U; Pratsch, L; Passow, H; Peters, R

    1995-07-01

    The activity of the plasma membrane calcium pump was measured in single cells. Human red blood cell ghosts were loaded with a fluorescent calcium indicator and either caged calcium and ATP (protocol A) or caged ATP and calcium (protocol B). In a suitably modified laser scanning microscope either calcium or ATP were released by a short UV light pulse. The time-dependent fluorescence intensity of the calcium indicator was then followed in single ghosts by repetitive confocal imaging. The fluorescence intensity was converted into calcium concentration, which in turn was used to derive the kinetic parameters of the calcium pump, the Michaelis-Menten constant Km, and the maximal transport rate vmax. Km and vmax values derived in this manner were 24 +/- 14 microM and 1.0 +/- 0.6 microM/(ghost s) for protocol A, and 4 +/- 3 microM and 1.0 +/- 0.6 microM/(ghost s) for protocol B, respectively. The difference between A and B is presumably caused by calmodulin, which is inactive in the experiments with protocol A. The possibilities to extend the new method to living nucleus-containing cells transiently transfected with mutants of the plasma membrane calcium pump are discussed.

  4. Shock-induced thermal wave propagation and response analysis of a viscoelastic thin plate under transient heating loads

    NASA Astrophysics Data System (ADS)

    Li, Chenlin; Guo, Huili; Tian, Xiaogeng

    2018-04-01

    This paper is devoted to the thermal shock analysis for viscoelastic materials under transient heating loads. The governing coupled equations with time-delay parameter and nonlocal scale parameter are derived based on the generalized thermo-viscoelasticity theory. The problem of a thin plate composed of viscoelastic material, subjected to a sudden temperature rise at the boundary plane, is solved by employing Laplace transformation techniques. The transient responses, i.e. temperature, displacement, stresses, heat flux as well as strain, are obtained and discussed. The effects of time-delay and nonlocal scale parameter on the transient responses are analyzed and discussed. It can be observed that: the propagation of thermal wave is dynamically smoothed and changed with the variation of time-delay; while the displacement, strain, and stress can be rapidly reduced by nonlocal scale parameter, which can be viewed as an important indicator for predicting the stiffness softening behavior for viscoelastic materials.

  5. Calcium leaching behavior of cementitious materials in hydrochloric acid solution.

    PubMed

    Yang, Huashan; Che, Yujun; Leng, Faguang

    2018-06-11

    The calcium leaching behavior of cement paste and silica fume modified calcium hydroxide paste, exposed to hydrochloric acid solution, is reported in this paper. The kinetic of degradation was assessed by the changes of pH of hydrochloric acid solution with time. The changes of compressive strength of specimens in hydrochloric acid with time were tested. Hydration products of leached specimens were also analyzed by X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric (TG), and atomic force microscope (AFM). Tests results show that there is a dynamic equilibrium in the supply and consumption of calcium hydroxide in hydrochloric acid solution, which govern the stability of hydration products such as calcium silicate hydrate (C-S-H). The decrease of compressive strength indicates that C-S-H are decomposed due to the lower concentration of calcium hydroxide in the pore solution than the equilibrium concentration of the hydration products. Furthermore, the hydration of unhydrated clinker delayed the decomposition of C-S-H in hydrochloric acid solution due to the increase of calcium hydroxide in pore solution of cementitious materials.

  6. Contributions of two types of calcium channels to synaptic transmission and plasticity.

    PubMed

    Edmonds, B; Klein, M; Dale, N; Kandel, E R

    1990-11-23

    In Aplysia sensory and motor neurons in culture, the contributions of the major classes of calcium current can be selectively examined while transmitter release and its modulation are examined. A slowly inactivating, dihydropyridine-sensitive calcium current does not contribute either to normal synaptic transmission or to any of three different forms of plasticity: presynaptic inhibition, homosynaptic depression, and presynaptic facilitation. This current does contribute, however, to a fourth form of plasticity--modulation of transmitter release by tonic depolarization of the sensory neuron. By contrast, a second calcium current, which is rapidly inactivating and dihydropyridine-insensitive, contributes to release elicited by the transient depolarization of an action potential and to the other three forms of plasticity.

  7. Effects of 1,25-dihydroxycholecalciferol on recovery and resolution of late transient neonatal hypocalcemia

    USDA-ARS?s Scientific Manuscript database

    Late transient neonatal hypocalcemia with hyperphosphatemia is potentially life-threatening. The use of 1.25 dihydroxycholecalciferol in the management of neonatal hypocalcemia is unexplored. We hypothesized adding 1.25 dihydroxycholecalciferol to intravenous continuous calcium infusion (CaI) will a...

  8. Recommendations for the Avoidance of Delayed-Onset Muscle Soreness.

    ERIC Educational Resources Information Center

    Szymanski, David J.

    2001-01-01

    Describes the possible causes of delayed-onset muscle soreness (DOMS), which include buildup of lactic acid in muscle, increased intracellular calcium concentration, increased intramuscular inflammation, and muscle fiber and connective tissue damage. Proposed methods to reduce DOMS include warming up before exercise and performing repeated bouts…

  9. A Prospective Study on Role of Supplemental Oral Calcium and Vitamin D in Prevention of Postthyroidectomy Hypocalcemia

    PubMed Central

    Ravikumar, Krishnan; Sadacharan, Dhalapathy; Muthukumar, Sankaran; Sundarram, Thalavai; Periyasamy, Selladurai; Suresh, R. V.

    2017-01-01

    Background: Postoperative transient hypocalcemia is sequelae of total thyroidectomy (TT), which is observed in up to 50% of patients. Routine oral calcium and Vitamin D supplementation have been proposed to prevent symptomatic hypocalcemia preventing morbidity and facilitating early discharge. Patients and Methods: A total of 208 patients with nontoxic benign thyroid disorders, undergoing TT, were serially randomized into four groups: Group A (no supplements were given), Group B (oral calcium – 2 g/day given), Group C (calcium and calcitriol – 1 mcg/day are given), and Group D (calcium, calcitriol, and cholecalciferol – 60,000 IU/day are given). Patients were monitored for clinical and biochemical hypocalcemia (serum calcium, [Sr. Ca] <8 mg/dl), along with serum intact parathormone (Sr. PTH) and magnesium 6 h after surgery and Sr. Ca every 24 h. Intravenous (IV) calcium infusion was started, if any of the above four groups exhibit frank hypocalcemia. Patients are followed up with Sr. Ca and Sr. PTH at 3 and 6 months. Results: All groups were age and sex matched. Hypocalcemia was observed in 72/208 (34.61%) cases. Incidence of hypocalcemia was higher in Group A (57.69%) and Group B (50%) compared to Group C (15.38%) and Group D (15.38%). Hypocalcemia necessitating IV calcium occurred in 31/208 (14.90%) patients. IV calcium requirement exceeded in Group A (26.92%) and Group B (23.07%) compared to Group C (5.76%) and Group D (3.84%). There was no statistical difference in basal levels of serum Vitamin D, calcium, magnesium, intact PTH, and 6 h after surgery. Permanent hypoparathyroidism developed in five patients on follow-up. Conclusion: Routine postoperative supplementation of oral calcium and Vitamin D will help in the prevention of postthyroidectomy transient hypocalcemia significantly. Preoperative Vitamin D levels do not predict postoperative hypocalcemia. PMID:28670529

  10. A Prospective Study on Role of Supplemental Oral Calcium and Vitamin D in Prevention of Postthyroidectomy Hypocalcemia.

    PubMed

    Ravikumar, Krishnan; Sadacharan, Dhalapathy; Muthukumar, Sankaran; Sundarram, Thalavai; Periyasamy, Selladurai; Suresh, R V

    2017-01-01

    Postoperative transient hypocalcemia is sequelae of total thyroidectomy (TT), which is observed in up to 50% of patients. Routine oral calcium and Vitamin D supplementation have been proposed to prevent symptomatic hypocalcemia preventing morbidity and facilitating early discharge. A total of 208 patients with nontoxic benign thyroid disorders, undergoing TT, were serially randomized into four groups: Group A (no supplements were given), Group B (oral calcium - 2 g/day given), Group C (calcium and calcitriol - 1 mcg/day are given), and Group D (calcium, calcitriol, and cholecalciferol - 60,000 IU/day are given). Patients were monitored for clinical and biochemical hypocalcemia (serum calcium, [Sr. Ca] <8 mg/dl), along with serum intact parathormone (Sr. PTH) and magnesium 6 h after surgery and Sr. Ca every 24 h. Intravenous (IV) calcium infusion was started, if any of the above four groups exhibit frank hypocalcemia. Patients are followed up with Sr. Ca and Sr. PTH at 3 and 6 months. All groups were age and sex matched. Hypocalcemia was observed in 72/208 (34.61%) cases. Incidence of hypocalcemia was higher in Group A (57.69%) and Group B (50%) compared to Group C (15.38%) and Group D (15.38%). Hypocalcemia necessitating IV calcium occurred in 31/208 (14.90%) patients. IV calcium requirement exceeded in Group A (26.92%) and Group B (23.07%) compared to Group C (5.76%) and Group D (3.84%). There was no statistical difference in basal levels of serum Vitamin D, calcium, magnesium, intact PTH, and 6 h after surgery. Permanent hypoparathyroidism developed in five patients on follow-up. Routine postoperative supplementation of oral calcium and Vitamin D will help in the prevention of postthyroidectomy transient hypocalcemia significantly. Preoperative Vitamin D levels do not predict postoperative hypocalcemia.

  11. Reciprocal Interaction of Dendrite Geometry and Nuclear Calcium-VEGFD Signaling Gates Memory Consolidation and Extinction.

    PubMed

    Hemstedt, Thekla J; Bengtson, C Peter; Ramírez, Omar; Oliveira, Ana M M; Bading, Hilmar

    2017-07-19

    Nuclear calcium is an important signaling end point in synaptic excitation-transcription coupling that is critical for long-term neuroadaptations. Here, we show that nuclear calcium acting via a target gene, VEGFD, is required for hippocampus-dependent fear memory consolidation and extinction in mice. Nuclear calcium-VEGFD signaling upholds the structural integrity and complexity of the dendritic arbor of CA1 neurons that renders those cells permissive for the efficient generation of synaptic input-evoked nuclear calcium transients driving the expression of plasticity-related genes. Therefore, the gating of memory functions rests on the reciprocally reinforcing maintenance of an intact dendrite geometry and a functional synapse-to-nucleus communication axis. In psychiatric and neurodegenerative disorders, therapeutic application of VEGFD may help to stabilize dendritic structures and network connectivity, which may prevent cognitive decline and could boost the efficacy of extinction-based exposure therapies. SIGNIFICANCE STATEMENT This study uncovers a reciprocal relationship between dendrite geometry, the ability to generate nuclear calcium transients in response to synaptic inputs, and the subsequent induction of expression of plasticity-related and dendritic structure-preserving genes. Insufficient nuclear calcium signaling in CA1 hippocampal neurons and, consequently, reduced expression of the nuclear calcium target gene VEGFD, a dendrite maintenance factor, leads to reduced-complexity basal dendrites of CA1 neurons, which severely compromises the animals' consolidation of both memory and extinction memory. The structure-protective function of VEGFD may prove beneficial in psychiatric disorders as well as neurodegenerative and aging-related conditions that are associated with loss of neuronal structures, dysfunctional excitation-transcription coupling, and cognitive decline. Copyright © 2017 the authors 0270-6474/17/376946-10$15.00/0.

  12. Redox and Activation of Protein Kinase A Dysregulates Calcium Homeostasis in Pulmonary Vein Cardiomyocytes of Chronic Kidney Disease.

    PubMed

    Huang, Shih-Yu; Chen, Yao-Chang; Kao, Yu-Hsun; Hsieh, Ming-Hsiung; Lin, Yung-Kuo; Chen, Shih-Ann; Chen, Yi-Jen

    2017-07-12

    Chronic kidney disease (CKD) increases the occurrence of atrial fibrillation and pulmonary vein (PV) arrhythmogenesis. Calcium dysregulation and reactive oxygen species (ROS) enhance PV arrhythmogenic activity. The purposes of this study were to investigate whether CKD modulates PV electrical activity through dysregulation of calcium homeostasis and ROS. Biochemical and electrocardiographic studies were conducted in rabbits with and without CKD (induced by 150 mg/kg per day neomycin sulfate and 500 mg/kg per day cefazolin). Confocal microscopy with fluorescence and a whole-cell patch clamp were applied to study calcium homeostasis and electrical activities in control and CKD isolated single PV cardiomyocytes with or without treatment with H89 (1 μmol/L, a protein kinase A inhibitor) and MPG (N-[2-mercaptopropionyl]glycine; 100 μmol/L, a ROS scavenger). The ROS in mitochondria and cytosol were evaluated via intracellular dye fluorescence and lipid peroxidation. CKD rabbits had excessive atrial premature captures over those of control rabbits. Compared with the control, CKD PV cardiomyocytes had a faster beating rate and larger calcium transient amplitudes, sarcoplasmic reticulum calcium contents, sodium/calcium exchanger currents, and late sodium currents but smaller L-type calcium current densities. CKD PV cardiomyocytes had a higher frequency and longer duration of calcium sparks and more ROS in the mitochondria and cytosol than did controls. Moreover, H89 suppressed all calcium sparks in CKD PV cardiomyocytes, and H89- and MPG-treated CKD PV cardiomyocytes had similar calcium transients compared with control PV cardiomyocytes. CKD increases PV arrhythmogenesis with enhanced calcium-handling abnormalities through activation of protein kinase A and ROS. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  13. Dysbalance of Astrocyte Calcium under Hyperammonemic Conditions

    PubMed Central

    Haack, Nicole; Dublin, Pavel; Rose, Christine R.

    2014-01-01

    Increased brain ammonium (NH4 +/NH3) plays a central role in the manifestation of hepatic encephalopathy (HE), a complex syndrome associated with neurological and psychiatric alterations, which is primarily a disorder of astrocytes. Here, we analysed the influence of NH4 +/NH3 on the calcium concentration of astrocytes in situ and studied the underlying mechanisms of NH4 +/NH3-evoked calcium changes, employing fluorescence imaging with Fura-2 in acute tissue slices derived from different regions of the mouse brain. In the hippocampal stratum radiatum, perfusion with 5 mM NH4 +/NH3 for 30 minutes caused a transient calcium increase in about 40% of astrocytes lasting about 10 minutes. Furthermore, the vast majority of astrocytes (∼90%) experienced a persistent calcium increase by ∼50 nM. This persistent increase was already evoked at concentrations of 1–2 mM NH4 +/NH3, developed within 10–20 minutes and was maintained as long as the NH4 +/NH3 was present. Qualitatively similar changes were observed in astrocytes of different neocortical regions as well as in cerebellar Bergmann glia. Inhibition of glutamine synthetase resulted in significantly larger calcium increases in response to NH4 +/NH3, indicating that glutamine accumulation was not a primary cause. Calcium increases were not mimicked by changes in intracellular pH. Pharmacological inhibition of voltage-gated sodium channels, sodium-potassium-chloride-cotransporters (NKCC), the reverse mode of sodium/calcium exchange (NCX), AMPA- or mGluR5-receptors did not dampen NH4 +/NH3-induced calcium increases. They were, however, significantly reduced by inhibition of NMDA receptors and depletion of intracellular calcium stores. Taken together, our measurements show that sustained exposure to NH4 +/NH3 causes a sustained increase in intracellular calcium in astrocytes in situ, which is partly dependent on NMDA receptor activation and on release of calcium from intracellular stores. Our study furthermore suggests

  14. Facilitation of cytosolic calcium wave propagation by local calcium uptake into the sarcoplasmic reticulum in cardiac myocytes.

    PubMed

    Maxwell, Joshua T; Blatter, Lothar A

    2012-12-01

    The widely accepted paradigm for cytosolic Ca(2+) wave propagation postulates a 'fire-diffuse-fire' mechanism where local Ca(2+)-induced Ca(2+) release (CICR) from the sarcoplasmic reticulum (SR) via ryanodine receptor (RyR) Ca(2+) release channels diffuses towards and activates neighbouring release sites, resulting in a propagating Ca(2+) wave. A recent challenge to this paradigm proposed the requirement for an intra-SR 'sensitization' Ca(2+) wave that precedes the cytosolic Ca(2+) wave and primes RyRs from the luminal side to CICR. Here, we tested this hypothesis experimentally with direct simultaneous measurements of cytosolic ([Ca(2+)](i); rhod-2) and intra-SR ([Ca(2+)](SR); fluo-5N) calcium signals during wave propagation in rabbit ventricular myocytes, using high resolution fluorescence confocal imaging. The increase in [Ca(2+)](i) at the wave front preceded depletion of the SR at each point along the calcium wave front, while during this latency period a transient increase of [Ca(2+)](SR) was observed. This transient elevation of [Ca(2+)](SR) could be identified at individual release junctions and depended on the activity of the sarco-endoplasmic reticulum Ca(2+)-ATPase (SERCA). Increased SERCA activity (β-adrenergic stimulation with 1 μM isoproterenol (isoprenaline)) decreased the latency period and increased the amplitude of the transient elevation of [Ca(2+)](SR), whereas inhibition of SERCA (3 μM cyclopiazonic acid) had the opposite effect. In conclusion, the data provide experimental evidence that local Ca(2+) uptake by SERCA into the SR facilitates the propagation of cytosolic Ca(2+) waves via luminal sensitization of the RyR, and supports a novel paradigm of a 'fire-diffuse-uptake-fire' mechanism for Ca(2+) wave propagation in cardiac myocytes.

  15. Facilitation of cytosolic calcium wave propagation by local calcium uptake into the sarcoplasmic reticulum in cardiac myocytes

    PubMed Central

    Maxwell, Joshua T; Blatter, Lothar A

    2012-01-01

    The widely accepted paradigm for cytosolic Ca2+ wave propagation postulates a ‘fire-diffuse-fire’ mechanism where local Ca2+-induced Ca2+ release (CICR) from the sarcoplasmic reticulum (SR) via ryanodine receptor (RyR) Ca2+ release channels diffuses towards and activates neighbouring release sites, resulting in a propagating Ca2+ wave. A recent challenge to this paradigm proposed the requirement for an intra-SR ‘sensitization’ Ca2+ wave that precedes the cytosolic Ca2+ wave and primes RyRs from the luminal side to CICR. Here, we tested this hypothesis experimentally with direct simultaneous measurements of cytosolic ([Ca2+]i; rhod-2) and intra-SR ([Ca2+]SR; fluo-5N) calcium signals during wave propagation in rabbit ventricular myocytes, using high resolution fluorescence confocal imaging. The increase in [Ca2+]i at the wave front preceded depletion of the SR at each point along the calcium wave front, while during this latency period a transient increase of [Ca2+]SR was observed. This transient elevation of [Ca2+]SR could be identified at individual release junctions and depended on the activity of the sarco-endoplasmic reticulum Ca2+-ATPase (SERCA). Increased SERCA activity (β-adrenergic stimulation with 1 μm isoproterenol (isoprenaline)) decreased the latency period and increased the amplitude of the transient elevation of [Ca2+]SR, whereas inhibition of SERCA (3 μm cyclopiazonic acid) had the opposite effect. In conclusion, the data provide experimental evidence that local Ca2+ uptake by SERCA into the SR facilitates the propagation of cytosolic Ca2+ waves via luminal sensitization of the RyR, and supports a novel paradigm of a ‘fire-diffuse-uptake-fire’ mechanism for Ca2+ wave propagation in cardiac myocytes. PMID:22988145

  16. The role of calcium in osteoporosis.

    PubMed

    Arnaud, C D; Sanchez, S D

    1990-01-01

    Calcium requirements may vary throughout the lifespan. During the growth years and up to age 25-30, it is important to maximize dietary intake of calcium to maintain positive calcium balance and achieve peak bone mass, thereby possibly decreasing the risk of fracture when bone is subsequently lost. The RDA for age 10-25 is 1200 mg/day. Calcium intake need not be greater than 800 mg/day during the relatively short period of time between the end of bone building and the onset of bone loss (30 to 40 years old). Starting at age 40-45, both men and women lose bone slowly, but women lose bone more rapidly around the menopause and for about 10 years after. Intestinal calcium absorption and the ability to adapt to low calcium diets are impaired in many postmenopausal women and elderly persons owing to a suspected functional or absolute decrease in the ability of the kidney to produce 1,25(OH)2D3. The bones then become more and more a source of calcium to maintain critical extracellular fluid calcium levels. Available evidence suggests that the impairments of intestinal calcium absorption observed during the menopause and aging can be overcome only by inordinately large calcium intakes (1500 to 2500 mg/day). Since this amount is difficult to derive from the diet, can cause constipation, and may not prevent trabecular bone loss, it should not be used as a substitute for sex hormone replacement. Women taking estrogen replacement should be provided the RDA for calcium of 800 mg/day at a minimum. Those who cannot or will not take estrogen should be asked to ingest at least 1000 to 1500 mg/day of calcium to delay cortical bone loss and prevent secondary hyperparathyroidism. It should be emphasized that up to 2000 mg/day of calcium is safe in teenaged children and adults. Excessive dietary intake of protein and fiber may induce significant negative calcium balance and thus increase dietary calcium requirements. It is also possible that excessive intakes of phosphate could have a

  17. Three types of neuronal calcium channel with different calcium agonist sensitivity.

    PubMed

    Nowycky, M C; Fox, A P; Tsien, R W

    How many types of calcium channels exist in neurones? This question is fundamental to understanding how calcium entry contributes to diverse neuronal functions such as transmitter release, neurite extension, spike initiation and rhythmic firing. There is considerable evidence for the presence of more than one type of Ca conductance in neurones and other cells. However, little is known about single-channel properties of diverse neuronal Ca channels, or their responsiveness to dihydropyridines, compounds widely used as labels in Ca channel purification. Here we report evidence for the coexistence of three types of Ca channel in sensory neurones of the chick dorsal root ganglion. In addition to a large conductance channel that contributes long-lasting current at strong depolarizations (L), and a relatively tiny conductance that underlies a transient current activated at weak depolarizations (T), we find a third type of unitary activity (N) that is neither T nor L. N-type Ca channels require strongly negative potentials for complete removal of inactivation (unlike L) and strong depolarizations for activation (unlike T). The dihydropyridine Ca agonist Bay K 8644 strongly increases the opening probability of L-, but not T- or N-type channels.

  18. Ultrafine particles cause cytoskeletal dysfunctions in macrophages: role of intracellular calcium

    PubMed Central

    Möller, Winfried; Brown, David M; Kreyling, Wolfgang G; Stone, Vicki

    2005-01-01

    Background Particulate air pollution is reported to cause adverse health effects in susceptible individuals. Since most of these particles are derived form combustion processes, the primary composition product is carbon with a very small diameter (ultrafine, less than 100 nm in diameter). Besides the induction of reactive oxygen species and inflammation, ultrafine particles (UFP) can cause intracellular calcium transients and suppression of defense mechanisms of alveolar macrophages, such as impaired migration or phagocytosis. Methods In this study the role of intracellular calcium transients caused by UFP was studied on cytoskeleton related functions in J774A.1 macrophages. Different types of fine and ultrafine carbon black particles (CB and ufCB, respectively), such as elemental carbon (EC90), commercial carbon (Printex 90), diesel particulate matter (DEP) and urban dust (UD), were investigated. Phagosome transport mechanisms and mechanical cytoskeletal integrity were studied by cytomagnetometry and cell viability was studied by fluorescence microscopy. Macrophages were exposed in vitro with 100 and 320 μg UFP/ml/million cells for 4 hours in serum free medium. Calcium antagonists Verapamil, BAPTA-AM and W-7 were used to block calcium channels in the membrane, to chelate intracellular calcium or to inhibit the calmodulin signaling pathways, respectively. Results Impaired phagosome transport and increased cytoskeletal stiffness occurred at EC90 and P90 concentrations of 100 μg/ml/million cells and above, but not with DEP or UD. Verapamil and W-7, but not BAPTA-AM inhibited the cytoskeletal dysfunctions caused by EC90 or P90. Additionally the presence of 5% serum or 1% bovine serum albumin (BSA) suppressed the cytoskeletal dysfunctions. Cell viability showed similar results, where co-culture of ufCB together with Verapamil, W-7, FCS or BSA produced less cell dead compared to the particles only. PMID:16202162

  19. Cytoplasmic pH influences cytoplasmic calcium in MC3T3-E1 osteoblast cells

    NASA Technical Reports Server (NTRS)

    Lin, H. S.; Hughes-Fulford, M.; Kumegawa, M.; Pitts, A. C.; Snowdowne, K. W.

    1993-01-01

    We found that the cytoplasmic concentration of calcium (Cai) of MC3T3-E1 osteoblasts was influenced by the type of pH buffer we used in the perfusing medium, suggesting that intracellular pH (pHi) might influence Cai. To study this effect, the Cai and pHi were monitored as we applied various experimental conditions known to change pHi. Exposure to NH4Cl caused a transient increase in both pHi and Cai without a change in extracellular pH (pHo). Decreasing pHo and pHi by lowering the bicarbonate concentration of the medium decreased Cai, and increasing pHi by the removal of 5% CO2 increased Cai. Clamping pHi to known values with 10 microM nigericin, a potassium proton ionophore, also influenced Cai: acid pHi lowered Cai, whereas alkaline pHi increased it. The rise in Cai appears to be very sensitive to the extracellular concentration of calcium, suggesting the existence of a pH-sensitive calcium influx mechanism. We conclude that physiologic changes in pH could modulate Cai by controlling the influx of calcium ions and could change the time course of the Cai transient associated with hormonal activation.

  20. Pseudomonas fluorescens lipopolysaccharide inhibits both delayed rectifier and transient A-type K+ channels of cultured rat cerebellar granule neurons.

    PubMed

    Mezghani-Abdelmoula, Sana; Chevalier, Sylvie; Lesouhaitier, Olivier; Orange, Nicole; Feuilloley, Marc G J; Cazin, Lionel

    2003-09-05

    Pseudomonas fluorescens is a Gram-negative bacillus closely related to the pathogen P. aeruginosa known to provoke infectious disorders in the central nervous system (CNS). The endotoxin lipopolysaccharide (LPS) expressed by the bacteria is the first infectious factor that can interact with the plasma membrane of host cells. In the present study, LPS extracted from P. fluorescens MF37 was examined for its actions on delayed rectifier and A-type K(+) channels, two of the main types of voltage-activated K(+) channels involved in the action potential firing. Current recordings were performed in cultured rat cerebellar granule neurons at days 7 or 8, using the whole-cell patch-clamp technique. A 3-h incubation with LPS (200 ng/ml) markedly depressed both the delayed rectifier (I(KV)) and transient A-type (I(A)) K(+) currents evoked by depolarizations above 0 and -40 mV, respectively. The percent decrease of I(KV) and I(A) ( approximately 30%) did not vary with membrane potential, suggesting that inhibition of both types of K(+) channels by LPS was voltage-insensitive. The endotoxin did neither modify the steady-state voltage-dependent activation properties of I(KV) and I(A) nor the steady-state inactivation of I(A). The present results suggest that, by inhibiting I(KV) and I(A), LPS applied extracellulary increases the action potential firing in cerebellar granule neurons. It is concluded that P. fluorescens MF37 may provoke in the CNS disorders associated with sever alterations of membrane ionic channel functions.

  1. Understanding spatial and temporal patterning of astrocyte calcium transients via interactions between network transport and extracellular diffusion

    NASA Astrophysics Data System (ADS)

    Shtrahman, E.; Maruyama, D.; Olariu, E.; Fink, C. G.; Zochowski, M.

    2017-02-01

    Astrocytes form interconnected networks in the brain and communicate via calcium signaling. We investigate how modes of coupling between astrocytes influence the spatio-temporal patterns of calcium signaling within astrocyte networks and specifically how these network interactions promote coordination within this group of cells. To investigate these complex phenomena, we study reduced cultured networks of astrocytes and neurons. We image the spatial temporal patterns of astrocyte calcium activity and quantify how perturbing the coupling between astrocytes influences astrocyte activity patterns. To gain insight into the pattern formation observed in these cultured networks, we compare the experimentally observed calcium activity patterns to the patterns produced by a reduced computational model, where we represent astrocytes as simple units that integrate input through two mechanisms: gap junction coupling (network transport) and chemical release (extracellular diffusion). We examine the activity patterns in the simulated astrocyte network and their dependence upon these two coupling mechanisms. We find that gap junctions and extracellular chemical release interact in astrocyte networks to modulate the spatiotemporal patterns of their calcium dynamics. We show agreement between the computational and experimental findings, which suggests that the complex global patterns can be understood as a result of simple local coupling mechanisms.

  2. Effect of the RC time on photocurrent transients and determination of charge carrier mobilities

    NASA Astrophysics Data System (ADS)

    Kniepert, Juliane; Neher, Dieter

    2017-11-01

    We present a closed analytical model to describe time dependent photocurrents upon pulsed illumination in the presence of an external RC circuit. In combination with numerical drift diffusion simulations, it is shown that the RC time has a severe influence on the shape of the transients. In particular, the maximum of the photocurrent is delayed due to a delayed recharging of the electrodes. This delay increases with the increasing RC constant. As a consequence, charge carrier mobilities determined from simple extrapolation of the initial photocurrent decay will be in general too small and feature a false dependence on the electric field. Here, we present a recipe to correct charge carrier mobilities determined from measured photocurrent transients by taking into account the RC time of the experimental set-up. We also demonstrate how the model can be used to more reliably determine the charge carrier mobility from experimental data of a typical polymer/fullerene organic solar cell. It is shown that further aspects like a finite rising time of the pulse generator and the current contribution of the slower charger carriers influence the shape of the transients and may lead to an additional underestimation of the transit time.

  3. Transient delayed facial nerve palsy after inferior alveolar nerve block anesthesia.

    PubMed

    Tzermpos, Fotios H; Cocos, Alina; Kleftogiannis, Matthaios; Zarakas, Marissa; Iatrou, Ioannis

    2012-01-01

    Facial nerve palsy, as a complication of an inferior alveolar nerve block anesthesia, is a rarely reported incident. Based on the time elapsed, from the moment of the injection to the onset of the symptoms, the paralysis could be either immediate or delayed. The purpose of this article is to report a case of delayed facial palsy as a result of inferior alveolar nerve block, which occurred 24 hours after the anesthetic administration and subsided in about 8 weeks. The pathogenesis, treatment, and results of an 8-week follow-up for a 20-year-old patient referred to a private maxillofacial clinic are presented and discussed. The patient's previous medical history was unremarkable. On clinical examination the patient exhibited generalized weakness of the left side of her face with a flat and expressionless appearance, and she was unable to close her left eye. One day before the onset of the symptoms, the patient had visited her dentist for a routine restorative procedure on the lower left first molar and an inferior alveolar block anesthesia was administered. The patient's medical history, clinical appearance, and complete examinations led to the diagnosis of delayed facial nerve palsy. Although neurologic occurrences are rare, dentists should keep in mind that certain dental procedures, such as inferior alveolar block anesthesia, could initiate facial nerve palsy. Attention should be paid during the administration of the anesthetic solution.

  4. Fasting serum CGRP levels are related to calcium concentrations, but cannot be elevated by short-term calcium/vitamin D supplementation.

    PubMed

    Hu, Fudong; Chen, Lianglong; Che, Hailan; Fang, Jun; Lv, Fenghua; Li, Hongjun; Zhang, Surong; Guo, Changlei; Yin, Honglei; Zhang, Shaoli; Zuo, Yulan

    2015-02-01

    Calcitonin gene-related peptide (CGRP) is an important cardioprotective neuropeptide. Few studies have shown that calcium supplementation may increase CGRP levels transiently. However, the relationship between CGRP and calcium is poorly known. This study was to explore the correlation between serum calcium and CGRP in coronary artery disease (CAD), and observe whether short-term calcium/vitamin D supplementation would increase fasting serum CGRP. A randomized, placebo-controlled and double-blind clinical trial, and a supplementary study for further analysis of the correlations were conducted. The results showed that the correlation between serum calcium and CGRP was positive in CAD without myocardial infarction (MI) (r = 0.487, P = 0.029), but negative in acute and healing MI (r = -0.382, P = 0.003). Moreover, we found a positive correlation between lg (amino-terminal pro-B-type natriuretic peptide, NT-proBNP) and CGRP (r = 0.312, P = 0.027), but a negative correlation between lg (NT-proBNP) and serum calcium (r = -0.316, P = 0.025) in acute and healing MI. As to the clinical trial, participants subjected to CAD but without evolving or acute MI, together with blood calcium ≤ 2.4 mmol/L, were randomized into three groups. Among the groups of placebo, caltrate (600 mg elemental calcium; 125 IU vitamin D3, per tablet) 1 tablet/d and caltrate 2 tablets/d, there were no significant differences in baseline characteristics. After short-term (5 days) treatments, the results indicated that the effect of grouping was not statistically significant (P = 0.915). In conclusion, the correlations between serum calcium and CGRP in different types of CAD are inconsistent, and the main reason may be associated with elevated natriuretic peptides after acute MI. Further, our study shows that short-term calcium/vitamin D supplementation cannot significantly increase fasting serum CGRP levels. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Steady and transient fluid shear stress stimulate NO release in osteoblasts through distinct biochemical pathways

    NASA Technical Reports Server (NTRS)

    McAllister, T. N.; Frangos, J. A.

    1999-01-01

    Fluid flow has been shown to be a potent stimulus in osteoblasts and osteocytes and may therefore play an important role in load-induced bone remodeling. The objective of this study was to investigate the characteristics of flow-activated pathways. Previously we reported that fluid flow stimulates rapid and continuous release of nitric oxide (NO) in primary rat calvarial osteoblasts. Here we demonstrate that flow-induced NO release is mediated by shear stress and that this response is distinctly biphasic. Transients in shear stress associated with the onset of flow stimulated a burst in NO production (8.2 nmol/mg of protein/h), while steady flow stimulated sustained NO production (2.2 nmol/mg of protein/h). Both G-protein inhibition and calcium chelation abolished the burst phase but had no effect on sustained production. Activation of G-proteins stimulated dose-dependent NO release in static cultures of both calvarial osteoblasts and UMR-106 osteoblast-like cells. Pertussis toxin had no effect on NO release. Calcium ionophore stimulated low levels of NO production within 15 minutes but had no effect on sustained production. Taken together, these data suggest that fluid shear stress stimulates NO release by two distinct pathways: a G-protein and calcium-dependent phase sensitive to flow transients, and a G-protein and calcium-independent pathway stimulated by sustained flow.

  6. Microscopic heat pulses induce contraction of cardiomyocytes without calcium transients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oyama, Kotaro; Mizuno, Akari; Shintani, Seine A.

    Highlights: Black-Right-Pointing-Pointer Infra-red laser beam generates microscopic heat pulses. Black-Right-Pointing-Pointer Heat pulses induce contraction of cardiomyocytes. Black-Right-Pointing-Pointer Ca{sup 2+} transients during the contraction were not detected. Black-Right-Pointing-Pointer Skinned cardiomyocytes in free Ca{sup 2+} solution also contracted. Black-Right-Pointing-Pointer Heat pulses regulated the contractions without Ca{sup 2+} dynamics. -- Abstract: It was recently demonstrated that laser irradiation can control the beating of cardiomyocytes and hearts, however, the precise mechanism remains to be clarified. Among the effects induced by laser irradiation on biological tissues, temperature change is one possible effect which can alter physiological functions. Therefore, we investigated the mechanism by which heatmore » pulses, produced by infra-red laser light under an optical microscope, induce contractions of cardiomyocytes. Here we show that microscopic heat pulses induce contraction of rat adult cardiomyocytes. The temperature increase, {Delta}T, required for inducing contraction of cardiomyocytes was dependent upon the ambient temperature; that is, {Delta}T at physiological temperature was lower than that at room temperature. Ca{sup 2+} transients, which are usually coupled to contraction, were not detected. We confirmed that the contractions of skinned cardiomyocytes were induced by the heat pulses even in free Ca{sup 2+} solution. This heat pulse-induced Ca{sup 2+}-decoupled contraction technique has the potential to stimulate heart and skeletal muscles in a manner different from the conventional electrical stimulations.« less

  7. Control of amplitude chimeras by time delay in oscillator networks

    NASA Astrophysics Data System (ADS)

    Gjurchinovski, Aleksandar; Schöll, Eckehard; Zakharova, Anna

    2017-04-01

    We investigate the influence of time-delayed coupling in a ring network of nonlocally coupled Stuart-Landau oscillators upon chimera states, i.e., space-time patterns with coexisting partially coherent and partially incoherent domains. We focus on amplitude chimeras, which exhibit incoherent behavior with respect to the amplitude rather than the phase and are transient patterns, and we show that their lifetime can be significantly enhanced by coupling delay. To characterize their transition to phase-lag synchronization (coherent traveling waves) and other coherent structures, we generalize the Kuramoto order parameter. Contrasting the results for instantaneous coupling with those for constant coupling delay, for time-varying delay, and for distributed-delay coupling, we demonstrate that the lifetime of amplitude chimera states and related partially incoherent states can be controlled, i.e., deliberately reduced or increased, depending upon the type of coupling delay.

  8. In vivo alterations in calcium buffering capacity in transgenic mouse model of synucleinopathy.

    PubMed

    Reznichenko, Lidia; Cheng, Qun; Nizar, Krystal; Gratiy, Sergey L; Saisan, Payam A; Rockenstein, Edward M; González, Tanya; Patrick, Christina; Spencer, Brian; Desplats, Paula; Dale, Anders M; Devor, Anna; Masliah, Eliezer

    2012-07-18

    Abnormal accumulation of α-synuclein is centrally involved in the pathogenesis of many disorders with Parkinsonism and dementia. Previous in vitro studies suggest that α-synuclein dysregulates intracellular calcium. However, it is unclear whether these alterations occur in vivo. For this reason, we investigated calcium dynamics in transgenic mice expressing human WT α-synuclein using two-photon microscopy. We imaged spontaneous and stimulus-induced neuronal activity in the barrel cortex. Transgenic mice exhibited augmented, long-lasting calcium transients characterized by considerable deviation from the exponential decay. The most evident pathology was observed in response to a repetitive stimulation in which subsequent stimuli were presented before relaxation of calcium signal to the baseline. These alterations were detected in the absence of significant increase in neuronal spiking response compared with age-matched controls, supporting the possibility that α-synuclein promoted alterations in calcium dynamics via interference with intracellular buffering mechanisms. The characteristic shape of calcium decay and augmented response during repetitive stimulation can serve as in vivo imaging biomarkers in this model of neurodegeneration, to monitor progression of the disease and screen candidate treatment strategies.

  9. Rapid ionic modifications during the aequorin-detected calcium transient in a skinned canine cardiac Purkinje cell

    PubMed Central

    1985-01-01

    A microprocessor-controlled system of microinjections and microaspirations has been developed to change, within approximately 1 ms, the [free Ca2+] at the outer surface of the sarcoplasmic reticulum (SR) wrapped around individual myofibrils (0.3-0.4 micron radius) of a skinned canine cardiac Purkinje cell (2.5-4.5 micron overall radius) at different phases of a Ca2+ transient. Simultaneously monitoring tension and aequorin bioluminescence provided two methods for estimating the peak myoplasmic [free Ca2+] reached during the spontaneous cyclic Ca2+ release from the SR obtained in the continuous presence of a bulk solution [free Ca2+] sufficiently high to overload the SR. These methods gave results in excellent agreement for the spontaneous Ca2+ release under a variety of conditions of pH and [free Mg2+], and of enhancement of Ca2+ release by calmodulin. Disagreement was observed, however, when the Ca2+ transient was modified during its ascending phase. The experiments also permitted quantification of the aequorin binding within the myofibrils and determination of its operational apparent affinity constant for Ca2+ at various [free Mg2+] levels. An increase of [free Ca2+] at the outer surface of the SR during the ascending phase of the Ca2+ transient induced further release of Ca2+. In contrast, an increase of [free Ca2+] during the descending phase of the Ca2+ transient did not cause further Ca2+ release. Varying [free H+], [free Mg2+], or the [Na+]/[K+] ratio had no significant effect on the Ca2+ transient during which the modification was applied, but it altered the subsequent Ca2+ transient. Therefore, Ca2+ appears to be the major, if not the only, ion controlling Ca2+ release from the SR rapidly enough to alter a Ca2+ transient during its course. PMID:3981128

  10. Transient Delayed Facial Nerve Palsy After Inferior Alveolar Nerve Block Anesthesia

    PubMed Central

    Tzermpos, Fotios H.; Cocos, Alina; Kleftogiannis, Matthaios; Zarakas, Marissa; Iatrou, Ioannis

    2012-01-01

    Facial nerve palsy, as a complication of an inferior alveolar nerve block anesthesia, is a rarely reported incident. Based on the time elapsed, from the moment of the injection to the onset of the symptoms, the paralysis could be either immediate or delayed. The purpose of this article is to report a case of delayed facial palsy as a result of inferior alveolar nerve block, which occurred 24 hours after the anesthetic administration and subsided in about 8 weeks. The pathogenesis, treatment, and results of an 8-week follow-up for a 20-year-old patient referred to a private maxillofacial clinic are presented and discussed. The patient's previous medical history was unremarkable. On clinical examination the patient exhibited generalized weakness of the left side of her face with a flat and expressionless appearance, and she was unable to close her left eye. One day before the onset of the symptoms, the patient had visited her dentist for a routine restorative procedure on the lower left first molar and an inferior alveolar block anesthesia was administered. The patient's medical history, clinical appearance, and complete examinations led to the diagnosis of delayed facial nerve palsy. Although neurologic occurrences are rare, dentists should keep in mind that certain dental procedures, such as inferior alveolar block anesthesia, could initiate facial nerve palsy. Attention should be paid during the administration of the anesthetic solution. PMID:22428971

  11. Comparison of genetically encoded calcium indicators for monitoring action potentials in mammalian brain by two-photon excitation fluorescence microscopy

    PubMed Central

    Podor, Borbala; Hu, Yi-ling; Ohkura, Masamichi; Nakai, Junichi; Croll, Roger; Fine, Alan

    2015-01-01

    Abstract. Imaging calcium transients associated with neuronal activity has yielded important insights into neural physiology. Genetically encoded calcium indicators (GECIs) offer conspicuous potential advantages for this purpose, including exquisite targeting. While the catalogue of available GECIs is steadily growing, many newly developed sensors that appear promising in vitro or in model cells appear to be less useful when expressed in mammalian neurons. We have, therefore, evaluated the performance of GECIs from two of the most promising families of sensors, G-CaMPs [Nat. Biotechnol. 19(2), 137–141 (2001)11175727] and GECOs [Science 333(6051), 1888–1891 (2011)21903779], for monitoring action potentials in rat brain. Specifically, we used two-photon excitation fluorescence microscopy to compare calcium transients detected by G-CaMP3; GCaMP6f; G-CaMP7; Green-GECO1.0, 1.1 and 1.2; Blue-GECO; Red-GECO; Rex-GECO0.9; Rex-GECO1; Carmine-GECO; Orange-GECO; and Yellow-GECO1s. After optimizing excitation wavelengths, we monitored fluorescence signals associated with increasing numbers of action potentials evoked by current injection in CA1 pyramidal neurons in rat organotypic hippocampal slices. Some GECIs, particularly Green-GECO1.2, GCaMP6f, and G-CaMP7, were able to detect single action potentials with high reliability. By virtue of greatest sensitivity and fast kinetics, G-CaMP7 may be the best currently available GECI for monitoring calcium transients in mammalian neurons. PMID:26158004

  12. Calcium-activated potassium channels in insect pacemaker neurons as unexpected target site for the novel fumigant dimethyl disulfide.

    PubMed

    Gautier, Hélène; Auger, Jacques; Legros, Christian; Lapied, Bruno

    2008-01-01

    Dimethyl disulfide (DMDS), a plant-derived insecticide, is a promising fumigant as a substitute for methyl bromide. To further understand the mode of action of DMDS, we examined its effect on cockroach octopaminergic neurosecretory cells, called dorsal unpaired median (DUM) neurons, using whole-cell patch-clamp technique, calcium imaging and antisense oligonucleotide strategy. At low concentration (1 microM), DMDS modified spontaneous regular spike discharge into clear bursting activity associated with a decrease of the amplitude of the afterhyperpolarization. This effect led us to suspect alterations of calcium-activated potassium currents (IKCa) and [Ca(2+)](i) changes. We showed that DMDS reduced amplitudes of both peak transient and sustained components of the total potassium current. IKCa was confirmed as a target of DMDS by using iberiotoxin, cadmium chloride, and pSlo antisense oligonucleotide. In addition, we showed that DMDS induced [Ca(2+)](i) rise in Fura-2-loaded DUM neurons. Using calcium-free solution, and (R,S)-(3,4-dihydro-6,7-dimethoxy-isoquinoline-1-yl)-2-phenyl-N,N-di-[2-(2,3,4-trimethoxy-phenyl)ethyl]-acetamide (LOE 908) [an inhibitor of transient receptor potential (TRP)gamma], we demonstrated that TRPgamma initiated calcium influx. By contrast, omega-conotoxin GVIA (an inhibitor of N-type high-voltage-activated calcium channels), did not affect the DMDS-induced [Ca(2+)](i) rise. Finally, the participation of the calcium-induced calcium release mechanism was investigated using thapsigargin, caffeine, and ryanodine. Our study revealed that DMDS-induced elevation in [Ca(2+)](i) modulated IKCa in an unexpected bell-shaped manner via intracellular calcium. In conclusion, DMDS affects multiple targets, which could be an effective way to improve pest control efficacy of fumigation.

  13. Spine Calcium Transients Induced by Synaptically-Evoked Action Potentials Can Predict Synapse Location and Establish Synaptic Democracy

    PubMed Central

    Meredith, Rhiannon M.; van Ooyen, Arjen

    2012-01-01

    CA1 pyramidal neurons receive hundreds of synaptic inputs at different distances from the soma. Distance-dependent synaptic scaling enables distal and proximal synapses to influence the somatic membrane equally, a phenomenon called “synaptic democracy”. How this is established is unclear. The backpropagating action potential (BAP) is hypothesised to provide distance-dependent information to synapses, allowing synaptic strengths to scale accordingly. Experimental measurements show that a BAP evoked by current injection at the soma causes calcium currents in the apical shaft whose amplitudes decay with distance from the soma. However, in vivo action potentials are not induced by somatic current injection but by synaptic inputs along the dendrites, which creates a different excitable state of the dendrites. Due to technical limitations, it is not possible to study experimentally whether distance information can also be provided by synaptically-evoked BAPs. Therefore we adapted a realistic morphological and electrophysiological model to measure BAP-induced voltage and calcium signals in spines after Schaffer collateral synapse stimulation. We show that peak calcium concentration is highly correlated with soma-synapse distance under a number of physiologically-realistic suprathreshold stimulation regimes and for a range of dendritic morphologies. Peak calcium levels also predicted the attenuation of the EPSP across the dendritic tree. Furthermore, we show that peak calcium can be used to set up a synaptic democracy in a homeostatic manner, whereby synapses regulate their synaptic strength on the basis of the difference between peak calcium and a uniform target value. We conclude that information derived from synaptically-generated BAPs can indicate synapse location and can subsequently be utilised to implement a synaptic democracy. PMID:22719238

  14. Delayed Adrenarche may be an Additional Feature of Immunoglobulin Super Family Member 1 Deficiency Syndrome.

    PubMed

    Van Hulle, Severine; Craen, Margarita; Callewaert, Bert; Joustra, Sjoerd; Oostdijk, Wilma; Losekoot, Monique; Wit, Jan Maarten; Turgeon, Marc Olivier; Bernard, Daniel J; De Schepper, Jean

    2016-03-05

    Immunoglobulin super family member 1 (IGSF1) deficiency syndrome is characterized by central hypothyroidism, delayed surge in testosterone during puberty, macro-orchidism, and in some cases, hypoprolactinemia and/or transient growth hormone (GH) deficiency. Our patient was a 19-year-old male adolescent who had been treated since the age of 9 years with GH and thyroxine for an idiopathic combined GH, thyroid-stimulating hormone (TSH), and prolactin (PRL) deficiency. His GH deficiency proved to be transient, but deficiencies of TSH and PRL persisted, and he had developed macro-orchidism since the end of puberty. Brain magnetic resonance imaging and PROP1 and POU1F1 sequencing were normal. A disharmonious puberty (delayed genital and pubic hair development, bone maturation, and pubertal growth spurt, despite normal testicular growth) was observed as well as a delayed adrenarche, as reflected by very low dehydroepiandrosterone sulfate and delayed pubarche. Direct sequencing of the IGSF1 gene revealed a novel hemizygous mutation, c.3127T>C, p.Cys1043Arg. Pathogenicity of the mutation was demonstrated in vitro. Male children with an idiopathic combined GH, PRL, and TSH deficiency, showing persistent central hypothyroidism but transient GH deficiency upon retesting at adult height, should be screened for mutations in the IGSF1 gene, especially when macro-orchidism and/or hypoprolactinemia are present. We suspect that delayed adrenarche, as a consequence of PRL deficiency, might be part of the clinical phenotype of patients with IGSF1 deficiency.

  15. Delayed Adrenarche may be an Additional Feature of Immunoglobulin Super Family Member 1 Deficiency Syndrome

    PubMed Central

    Hulle, Severine Van; Craen, Margarita; Callewaert, Bert; Joustra, Sjoerd; Oostdijk, Wilma; Losekoot, Monique; Wit, Jan Maarten; Turgeon, Marc Olivier; Bernard, Daniel J.; Schepper, Jean De

    2016-01-01

    Immunoglobulin super family member 1 (IGSF1) deficiency syndrome is characterized by central hypothyroidism, delayed surge in testosterone during puberty, macro-orchidism, and in some cases, hypoprolactinemia and/or transient growth hormone (GH) deficiency. Our patient was a 19-year-old male adolescent who had been treated since the age of 9 years with GH and thyroxine for an idiopathic combined GH, thyroid-stimulating hormone (TSH), and prolactin (PRL) deficiency. His GH deficiency proved to be transient, but deficiencies of TSH and PRL persisted, and he had developed macro-orchidism since the end of puberty. Brain magnetic resonance imaging and PROP1 and POU1F1 sequencing were normal. A disharmonious puberty (delayed genital and pubic hair development, bone maturation, and pubertal growth spurt, despite normal testicular growth) was observed as well as a delayed adrenarche, as reflected by very low dehydroepiandrosterone sulfate and delayed pubarche. Direct sequencing of the IGSF1 gene revealed a novel hemizygous mutation, c.3127T>C, p.Cys1043Arg. Pathogenicity of the mutation was demonstrated in vitro. Male children with an idiopathic combined GH, PRL, and TSH deficiency, showing persistent central hypothyroidism but transient GH deficiency upon retesting at adult height, should be screened for mutations in the IGSF1 gene, especially when macro-orchidism and/or hypoprolactinemia are present. We suspect that delayed adrenarche, as a consequence of PRL deficiency, might be part of the clinical phenotype of patients with IGSF1 deficiency. PMID:26757742

  16. Transient early neurotrophin release and delayed inflammatory cytokine release by microglia in response to PAR-2 stimulation

    PubMed Central

    2012-01-01

    Activated microglia exerts both beneficial and deleterious effects on neurons, but the signaling mechanism controlling these distinct responses remain unclear. We demonstrated that treatment of microglial cultures with the PAR-2 agonist, 2-Furoyl-LIGRLO-NH2, evoked early transient release of BDNF, while sustained PAR-2 stimulation evoked the delayed release of inflammatory cytokines (IL-1β and TNF-α) and nitric oxide. Culture medium harvested during the early phase (at 1 h) of microglial activation induced by 2-Furoyl-LIGRLO-NH2 (microglial conditioned medium, MCM) had no deleterious effects on cultured neurons, while MCM harvested during the late phase (at 72 h) promoted DNA fragmentation and apoptosis as indicated by TUNEL and annexin/PI staining. Blockade of PAR-1 during the early phase of PAR-2 stimulation enhanced BDNF release (by 11%, small but significant) while a PAR-1 agonist added during the late phase (24 h after 2-Furoyl-LIGRLO-NH2 addition) suppressed the release of cytokines and NO. The neuroprotective and neurotoxic effects of activated microglial exhibit distinct temporal profiles that are regulated by PAR-1 and PAR-2 stimulation. It may be possible to facilitate neuronal recovery and repair by appropriately timed stimulation and inhibition of microglial PAR-1 and PAR-2 receptors. PMID:22731117

  17. Transient early neurotrophin release and delayed inflammatory cytokine release by microglia in response to PAR-2 stimulation.

    PubMed

    Chen, Chen-Wen; Chen, Qian-Bo; Ouyang, Qing; Sun, Ji-Hu; Liu, Fang-Ting; Song, Dian-Wen; Yuan, Hong-Bin

    2012-06-25

    Activated microglia exerts both beneficial and deleterious effects on neurons, but the signaling mechanism controlling these distinct responses remain unclear. We demonstrated that treatment of microglial cultures with the PAR-2 agonist, 2-Furoyl-LIGRLO-NH2, evoked early transient release of BDNF, while sustained PAR-2 stimulation evoked the delayed release of inflammatory cytokines (IL-1 β and TNF-α) and nitric oxide. Culture medium harvested during the early phase (at 1 h) of microglial activation induced by 2-Furoyl-LIGRLO-NH2 (microglial conditioned medium, MCM) had no deleterious effects on cultured neurons, while MCM harvested during the late phase (at 72 h) promoted DNA fragmentation and apoptosis as indicated by TUNEL and annexin/PI staining. Blockade of PAR-1 during the early phase of PAR-2 stimulation enhanced BDNF release (by 11%, small but significant) while a PAR-1 agonist added during the late phase (24 h after 2-Furoyl-LIGRLO-NH2 addition) suppressed the release of cytokines and NO. The neuroprotective and neurotoxic effects of activated microglial exhibit distinct temporal profiles that are regulated by PAR-1 and PAR-2 stimulation. It may be possible to facilitate neuronal recovery and repair by appropriately timed stimulation and inhibition of microglial PAR-1 and PAR-2 receptors.

  18. Calcium signalling silencing in atrial fibrillation.

    PubMed

    Greiser, Maura

    2017-06-15

    Subcellular calcium signalling silencing is a novel and distinct cellular and molecular adaptive response to rapid cardiac activation. Calcium signalling silencing develops during short-term sustained rapid atrial activation as seen clinically during paroxysmal atrial fibrillation (AF). It is the first 'anti-arrhythmic' adaptive response in the setting of AF and appears to counteract the maladaptive changes that lead to intracellular Ca 2+ signalling instability and Ca 2+ -based arrhythmogenicity. Calcium signalling silencing results in a failed propagation of the [Ca 2+ ] i signal to the myocyte centre both in patients with AF and in a rabbit model. This adaptive mechanism leads to a substantial reduction in the expression levels of calcium release channels (ryanodine receptors, RyR2) in the sarcoplasmic reticulum, and the frequency of Ca 2+ sparks and arrhythmogenic Ca 2+ waves remains low. Less Ca 2+ release per [Ca 2+ ] i transient, increased fast Ca 2+ buffering strength, shortened action potentials and reduced L-type Ca 2+ current contribute to a substantial reduction of intracellular [Na + ]. These features of Ca 2+ signalling silencing are distinct and in contrast to the changes attributed to Ca 2+ -based arrhythmogenicity. Some features of Ca 2+ signalling silencing prevail in human AF suggesting that the Ca 2+ signalling 'phenotype' in AF is a sum of Ca 2+ stabilizing (Ca 2+ signalling silencing) and Ca 2+ destabilizing (arrhythmogenic unstable Ca 2+ signalling) factors. Calcium signalling silencing is a part of the mechanisms that contribute to the natural progression of AF and may limit the role of Ca 2+ -based arrhythmogenicity after the onset of AF. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  19. A telephone hotline for transient ischaemic attack and stroke: prospective audit of a model to improve rapid access to specialist stroke care.

    PubMed

    Kerr, Enda; Arulraj, Nolan; Scott, Maggie; McDowall, Mike; van Dijke, Margrethe; Keir, Sarah; Sandercock, Peter; Dennis, Martin

    2010-07-02

    Patients with transient ischaemic attack or stroke benefit from early diagnosis, specialist assessment, and treatment with thrombolysis, and from stroke unit care and secondary prevention. The challenge with such patients is to minimise delays and ensure that treatment is appropriate, and to provide this care with the available resources. An ongoing prospective audit of a transient ischaemic attack and stroke clinic (1 January 2005 to 30 September 2009), as part of the Scottish Stroke Care Audit, and a three month targeted audit of immediate telephone access to a specialist stroke consultant (1 February 2009 to 30 April 2009). Stroke and transient ischaemic attack services in Lothian, a region of Scotland with a population of 810,000. Delays to assessment at a rapid access transient ischaemic attack and stroke clinic; delays to appropriate treatment. In February 2007 we introduced a 24 hours a day, seven days a week hotline to a consultant, who provided immediate advice on diagnosis, investigation, and emergency treatment for patients with transient ischaemic attack or stroke, and suggested the most appropriate care pathway, which might include an early appointment in a transient ischaemic attack and stroke clinic. The introduction of the hotline was associated with an immediate and sustained reduction in delays to assessment (from 13 to three days) and treatment. The proportion of participants taking statins at the time of visiting the clinic increased from 40% before the introduction of the hotline to 60% after the hotline was in place. Also, the hotline contributed to a reduction in the delay from last event to carotid surgery, from 58 days to 21.5 days. A total of 376 calls were received during the three month audit. Of the 273 (88%) referrers who responded to our questionnaire, 257 (94%) were very satisfied with the advice given over the hotline. Although associated with some disruption to the activities of the consultants, a 24 hours a day, seven days a week

  20. Kinetics of transient electroluminescence in organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Shukla, Manju; Kumar, Pankaj; Chand, Suresh; Brahme, Nameeta; Kher, R. S.; Khokhar, M. S. K.

    2008-08-01

    Mathematical simulation on the rise and decay kinetics of transient electroluminescence (EL) in organic light emitting diodes (OLEDs) is presented. The transient EL is studied with respect to a step voltage pulse. While rising, for lower values of time, the EL intensity shows a quadratic dependence on (t - tdel), where tdel is the time delay observed in the onset of EL, and finally attains saturation at a sufficiently large time. When the applied voltage is switched off, the initial EL decay shows an exponential dependence on (t - tdec), where tdec is the time when the voltage is switched off. The simulated results are compared with the transient EL performance of a bilayer OLED based on small molecular bis(2-methyl 8-hydroxyquinoline)(triphenyl siloxy) aluminium (SAlq). Transient EL studies have been carried out at different voltage pulse amplitudes. The simulated results show good agreement with experimental data. Using these simulated results the lifetime of the excitons in SAlq has also been calculated.

  1. Metabotropic glutamate receptors activate dendritic calcium waves and TRPM channels which drive rhythmic respiratory patterns in mice

    PubMed Central

    Mironov, S L

    2008-01-01

    Respiration in vertebrates is generated by a compact network which is located in the lower brainstem but cellular mechanisms which underlie persistent oscillatory activity of the respiratory network are yet unknown. Using two-photon imaging and patch-clamp recordings in functional brainstem preparations of mice containing pre-Bötzinger complex (preBötC), we examined the actions of metabotropic glutamate receptors (mGluR1/5) on the respiratory patterns. The agonist DHPG potentiated and antagonist LY367385 depressed respiration-related activities. In the inspiratory neurons, we observed rhythmic activation of non-selective channels which had a conductance of 24 pS. Their activity was enhanced with membrane depolarization and after elevation of calcium from the cytoplasmic side of the membrane. They were activated by a non-hydrolysable PIP2 analogue and blocked by flufenamate, ATP4− and Gd3+. All these properties correspond well to those of TRPM4 channels. Calcium imaging of functional slices revealed rhythmic transients in small clusters of neurons present in a network. Calcium transients in the soma were preceded by the waves in dendrites which were dependent on mGluR activation. Initiation and propagation of waves required calcium influx and calcium release from internal stores. Calcium waves activated TPRM4-like channels in the soma and promoted generation of inspiratory bursts. Simulations of activity of neurons communicated via dendritic calcium waves showed emerging activity within neuronal clusters and its synchronization between the clusters. The experimental and theoretical data provide a subcellular basis for a recently proposed group-pacemaker hypothesis and describe a novel mechanism of rhythm generation in neuronal networks. PMID:18308826

  2. Transient Reliability of Ceramic Structures For Heat Engine Applications

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.; Jadaan, Osama M.

    2002-01-01

    The objectives of this report was to develop a methodology to predict the time-dependent reliability (probability of failure) of brittle material components subjected to transient thermomechanical loading, taking into account the change in material response with time. This methodology for computing the transient reliability in ceramic components subjected to fluctuation thermomechanical loading was developed, assuming SCG (Slow Crack Growth) as the delayed mode of failure. It takes into account the effect of varying Weibull modulus and materials with time. It was also coded into a beta version of NASA's CARES/Life code, and an example demonstrating its viability was presented.

  3. Brain aluminium accumulation and oxidative stress in the presence of calcium silicate dental cements.

    PubMed

    Demirkaya, K; Demirdöğen, B Can; Torun, Z Öncel; Erdem, O; Çırak, E; Tunca, Y M

    2017-10-01

    Mineral trioxide aggregate (MTA) is a calcium silicate dental cement used for various applications in dentistry. This study was undertaken to test whether the presence of three commercial brands of calcium silicate dental cements in the dental extraction socket of rats would affect the brain aluminium (Al) levels and oxidative stress parameters. Right upper incisor was extracted and polyethylene tubes filled with MTA Angelus, MTA Fillapex or Theracal LC, or left empty for the control group, were inserted into the extraction socket. Rats were killed 7, 30 or 60 days after operation. Brain tissues were obtained before killing. Al levels were measured by atomic absorption spectrometry. Thiobarbituric acid reactive substances (TBARS) levels, catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities were determined using spectrophotometry. A transient peak was observed in brain Al level of MTA Angelus group on day 7, while MTA Fillapex and Theracal LC groups reached highest brain Al level on day 60. Brain TBARS level, CAT, SOD and GPx activities transiently increased on day 7 and then returned to almost normal levels. This in vivo study for the first time indicated that initial washout may have occurred in MTA Angelus, while element leaching after the setting is complete may have taken place for MTA Fillapex and Theracal LC. Moreover, oxidative stress was induced and antioxidant enzymes were transiently upregulated. Further studies to search for oxidative neuronal damage should be done to completely understand the possible toxic effects of calcium silicate cements on the brain.

  4. Despite differences in cytosolic calcium regulation, lidocaine toxicity is similar in adult and neonatal rat dorsal root ganglia in vitro.

    PubMed

    Doan, Lisa V; Eydlin, Olga; Piskoun, Boris; Kline, Richard P; Recio-Pinto, Esperanza; Rosenberg, Andrew D; Blanck, Thomas J J; Xu, Fang

    2014-01-01

    Neuraxial local anesthetics may have neurological complications thought to be due to neurotoxicity. A primary site of action of local anesthetics is the dorsal root ganglia (DRG) neuron. Physiologic differences have been noted between young and adult DRG neurons; hence, the authors examined whether there were any differences in lidocaine-induced changes in calcium and lidocaine toxicity in neonatal and adult rat DRG neurons. DRG neurons were cultured from postnatal day 7 (P7) and adult rats. Lidocaine-induced changes in cytosolic calcium were examined with the calcium indicator Fluo-4. Cells were incubated with varying concentrations of lidocaine and examined for viability using calcein AM and ethidium homodimer-1 staining. Live imaging of caspase-3/7 activation was performed after incubation with lidocaine. The mean KCl-induced calcium transient was greater in P7 neurons (P < 0.05), and lidocaine significantly inhibited KCl-induced calcium responses in both ages (P < 0.05). Frequency distribution histograms of KCl-evoked calcium increases were more heterogeneous in P7 than in adult neurons. With lidocaine, KCl-induced calcium transients in both ages became more homogeneous but remained different between the groups. Interestingly, cell viability was decreased by lidocaine in a dose-dependent manner similarly in both ages. Lidocaine treatment also activated caspase-3/7 in a dose- and time-dependent manner similarly in both ages. Despite physiological differences in P7 and adult DRG neurons, lidocaine cytotoxicity is similar in P7 and adult DRG neurons in vitro. Differences in lidocaine- and KCl-evoked calcium responses suggest the similarity in lidocaine cytotoxicity involves other actions in addition to lidocaine-evoked effects on cytosolic calcium responses.

  5. Despite Differences in Cytosolic Calcium Regulation, Lidocaine Toxicity Is Similar in Adult and Neonatal Rat Dorsal Root Ganglia in Vitro

    PubMed Central

    Doan, Lisa V.; Eydlin, Olga; Piskoun, Boris; Kline, Richard P; Recio-Pinto, Esperanza; Rosenberg, Andrew D; Blanck, Thomas JJ; Xu, Fang

    2013-01-01

    Background Neuraxial local anesthetics may have neurological complications thought to be due to neurotoxicity. A primary site of action for local anesthetics is the dorsal root ganglia (DRG) neuron. Physiologic differences have been noted between young and adult DRG neurons; hence, we examined whether there were differences in lidocaine-induced changes in calcium and lidocaine toxicity in neonatal and adult rat DRG neurons. Methods DRG neurons were cultured from postnatal day 7 (P7) and adult rats. Lidocaine-induced changes in cytosolic calcium were examined with the calcium indicator Fluo-4. Cells were incubated with varying concentrations of lidocaine and examined for viability using calcein AM and ethidium homodimer-1 staining. Live imaging of caspase-3/7 activation was performed after incubation with lidocaine. Results The mean KCl-induced calcium transient was greater in P7 neurons (p < 0.05), and lidocaine significantly inhibited KCl-induced calcium responses in both ages (p < 0.05). Frequency distribution histograms of KCl-evoked calcium increases were more heterogeneous in P7 than in adult neurons. With lidocaine, KCl-induced calcium transients in both ages became more homogeneous but remained different between the groups. Interestingly cell viability was decreased by lidocaine in a dose-dependent manner similarly in both ages. Lidocaine treatment also activated caspase-3/7 in a dose- and time-dependent manner similarly in both ages. Conclusions Despite physiological differences in P7 and adult DRG neurons, lidocaine cytotoxicity is similar in P7 and adult DRG neurons in vitro. Differences in lidocaine- and KCl-evoked calcium responses suggest the similarity in lidocaine cytotoxicity involves other actions in addition to lidocaine-evoked effects on cytosolic calcium responses. PMID:23851347

  6. Amorphous calcium carbonate controls avian eggshell mineralization: A new paradigm for understanding rapid eggshell calcification.

    PubMed

    Rodríguez-Navarro, Alejandro B; Marie, Pauline; Nys, Yves; Hincke, Maxwell T; Gautron, Joel

    2015-06-01

    Avian eggshell mineralization is the fastest biogenic calcification process known in nature. How this is achieved while producing a highly crystalline material composed of large calcite columnar single crystals remains largely unknown. Here we report that eggshell mineral originates from the accumulation of flat disk-shaped amorphous calcium carbonate (ACC) particles on specific organic sites on the eggshell membrane, which are rich in proteins and sulfated proteoglycans. These structures known as mammillary cores promote the nucleation and stabilization of a amorphous calcium carbonate with calcitic short range order which predetermine the calcite composition of the mature eggshell. The amorphous nature of the precursor phase was confirmed by the diffuse scattering of X-rays and electrons. The nascent calcitic short-range order of this transient mineral phase was revealed by infrared spectroscopy and HRTEM. The ACC mineral deposited around the mammillary core sites progressively transforms directly into calcite crystals without the occurrence of any intermediate phase. Ionic speciation data suggest that the uterine fluid is equilibrated with amorphous calcium carbonate, throughout the duration of eggshell mineralization process, supporting that this mineral phase is constantly forming at the shell mineralization front. On the other hand, the transient amorphous calcium carbonate mineral deposits, as well as the calcite crystals into which they are converted, form by the ordered aggregation of nanoparticles that support the rapid mineralization of the eggshell. The results of this study alter our current understanding of avian eggshell calcification and provide new insights into the genesis and formation of calcium carbonate biominerals in vertebrates. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Calcium/calmodulin‐dependent kinase 2 mediates Epac‐induced spontaneous transient outward currents in rat vascular smooth muscle

    PubMed Central

    Humphries, Edward S. A.; Kamishima, Tomoko; Quayle, John M.

    2017-01-01

    Key points The Ca2+ and redox‐sensing enzyme Ca2+/calmodulin‐dependent kinase 2 (CaMKII) is a crucial and well‐established signalling molecule in the heart and brain.In vascular smooth muscle, which controls blood flow by contracting and relaxing in response to complex Ca2+ signals and oxidative stress, surprisingly little is known about the role of CaMKII.The vasodilator‐induced second messenger cAMP can relax vascular smooth muscle via its effector, exchange protein directly activated by cAMP (Epac), by activating spontaneous transient outward currents (STOCs) that hyperpolarize the cell membrane and reduce voltage‐dependent Ca2+ influx. How Epac activates STOCs is unknown.In the present study, we map the pathway by which Epac increases STOC activity in contractile vascular smooth muscle and show that a critical step is the activation of CaMKII.To our knowledge, this is the first report of CaMKII activation triggering cellular activity known to induce vasorelaxation. Abstract Activation of the major cAMP effector, exchange protein directly activated by cAMP (Epac), induces vascular smooth muscle relaxation by increasing the activity of ryanodine (RyR)‐sensitive release channels on the peripheral sarcoplasmic reticulum. Resultant Ca2+ sparks activate plasma membrane Ca2+‐activated K+ (BKCa) channels, evoking spontaneous transient outward currents (STOCs) that hyperpolarize the cell and reduce voltage‐dependent Ca2+ entry. In the present study, we investigate the mechanism by which Epac increases STOC activity. We show that the selective Epac activator 8‐(4‐chloro‐phenylthio)‐2′‐O‐methyladenosine‐3′, 5‐cyclic monophosphate‐AM (8‐pCPT‐AM) induces autophosphorylation (activation) of calcium/calmodulin‐dependent kinase 2 (CaMKII) and also that inhibition of CaMKII abolishes 8‐pCPT‐AM‐induced increases in STOC activity. Epac‐induced CaMKII activation is probably initiated by inositol 1,4,5‐trisphosphate (IP3)

  8. Calcium channels in solitary retinal ganglion cells from post-natal rat.

    PubMed Central

    Karschin, A; Lipton, S A

    1989-01-01

    1. Calcium currents from identified, post-natal retinal ganglion cell neurones from rat were studied with whole-cell and single-channel patch-clamp techniques. Na+ and K+ currents were suppressed with pharmacological agents, allowing isolation of current carried by either 10 mM-Ca2+ or Ba2- during whole-cell recordings. For cell-attached patch recordings, the recording pipette contained 96-110 mM-BaCl2 while the bath solution consisted of isotonic potassium aspartate in order to zero the neuronal membrane potential. 2. A transient component, present in approximately one-third of the whole-cell recordings resembles closely the T-type calcium current observed previously in other tissues. This component activates at low voltages (-40 to -50 mV from holding potentials negative to -80 mV), inactivates with a time constant of 10-30 ms at 35 degrees C, and is carried equally well by Ba2+ or Ca2+. In single-channel recordings small (8 pS) channels are observed whose aggregate microscopic kinetics correspond well to the macroscopic current obtained during whole-cell measurements. 3. During whole-cell recordings, a more prolonged component activates in all retinal ganglion cells at -40 to -20 mV from a holding potential of -90 mV. This component is substantially larger when equimolar Ba2+ replaces Ca2+ as the charge carrier, and is sensitive to the dihydropyridine agonist Bay K8644 (5 microM) and antagonists nifedipine (1-10 microM) and nimodipine (1-10 microM). Thus, the dihydropyridine pharmacology of this prolonged component resembles that of the L-type calcium current found in dorsal root ganglion neurones and in heart cells. Also reminiscent of the L-current, the prolonged component in this preparation is less inactivated at depolarized holding potentials (-60 to -40 mV) than the transient component. In cell-attached recordings, large (20 pS) channels are observed with activation properties similar to those of the prolonged portion of the whole-cell current. 4. omega

  9. Cola beverage and delayed elimination of methotrexate

    PubMed Central

    Santucci, Raoul; Levêque, Dominique; Herbrecht, Raoul

    2010-01-01

    AIMS To report a case of severe delayed methotrexate elimination attributable to consumption of a cola beverage. METHODS To investigate unexplained low urinary pH in a lymphoma patient treated with high-dose methotrexate. RESULTS Unexpected urinary acidity, despite administration of large amounts of sodium bicarbonate, could be attributed to repeated consumption of a cola beverage. It resulted in a delayed elimination of methotrexate and acute renal failure. Discontinuation of cola drinks, increase in calcium folinate rescue and in sodium bicarbonate allowed satisfactory elimination of methotrexate on day 12 after infusion and recovery from renal impairment without other severe toxicity. No other cause of delay in methotrexate elimination could be identified. CONCLUSIONS Cola beverages have a low pH due to their phosphoric acid content that is excreted by renal route. We recommend patients receiving high dose methotrexate abstain from any cola drink within 24 h before and during methotrexate administration and until complete elimination of the drug. PMID:21545633

  10. Cytosolic calcium rises and related events in ergosterol-treated Nicotiana cells.

    PubMed

    Vatsa, Parul; Chiltz, Annick; Luini, Estelle; Vandelle, Elodie; Pugin, Alain; Roblin, Gabriel

    2011-07-01

    The typical fungal membrane component ergosterol was previously shown to trigger defence responses and protect plants against pathogens. Most of the elicitors mobilize the second messenger calcium, to trigger plant defences. We checked the involvement of calcium in response to ergosterol using Nicotiana plumbaginifolia and Nicotiana tabacum cv Xanthi cells expressing apoaequorin in the cytosol. First, it was verified if ergosterol was efficient in these cells inducing modifications of proton fluxes and increased expression of defence-related genes. Then, it was shown that ergosterol induced a rapid and transient biphasic increase of free [Ca²⁺](cyt) which intensity depends on ergosterol concentration in the range 0.002-10 μM. Among sterols, this calcium mobilization was specific for ergosterol and, ergosterol-induced pH and [Ca²⁺](cyt) changes were specifically desensitized after two subsequent applications of ergosterol. Specific modulators allowed elucidating some events in the signalling pathway triggered by ergosterol. The action of BAPTA, LaCl₃, nifedipine, verapamil, neomycin, U73122 and ruthenium red suggested that the first phase was linked to calcium influx from external medium which subsequently triggered the second phase linked to calcium release from internal stores. The calcium influx and the [Ca²⁺](cyt) increase depended on upstream protein phosphorylation. The extracellular alkalinization and ROS production depended on calcium influx but, the ergosterol-induced MAPK activation was calcium-independent. ROS were not involved in cytosolic calcium rise as described in other models, indicating that ROS do not systematically participate in the amplification of calcium signalling. Interestingly, ergosterol-induced ROS production is not linked to cell death and ergosterol does not induce any calcium elevation in the nucleus. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  11. Expression of the high capacity calcium-binding domain of calreticulin increases bioavailable calcium stores in plants

    NASA Technical Reports Server (NTRS)

    Wyatt, Sarah E.; Tsou, Pei-Lan; Robertson, Dominique; Brown, C. S. (Principal Investigator)

    2002-01-01

    Modulation of cytosolic calcium levels in both plants and animals is achieved by a system of Ca2+-transport and storage pathways that include Ca2+ buffering proteins in the lumen of intracellular compartments. To date, most research has focused on the role of transporters in regulating cytosolic calcium. We used a reverse genetics approach to modulate calcium stores in the lumen of the endoplasmic reticulum. Our goals were two-fold: to use the low affinity, high capacity Ca2+ binding characteristics of the C-domain of calreticulin to selectively increase Ca2+ storage in the endoplasmic reticulum, and to determine if those alterations affected plant physiological responses to stress. The C-domain of calreticulin is a highly acidic region that binds 20-50 moles of Ca2+ per mole of protein and has been shown to be the major site of Ca2+ storage within the endoplasmic reticulum of plant cells. A 377-bp fragment encoding the C-domain and ER retention signal from the maize calreticulin gene was fused to a gene for the green fluorescent protein and expressed in Arabidopsis under the control of a heat shock promoter. Following induction on normal medium, the C-domain transformants showed delayed loss of chlorophyll after transfer to calcium depleted medium when compared to seedlings transformed with green fluorescent protein alone. Total calcium measurements showed a 9-35% increase for induced C-domain transformants compared to controls. The data suggest that ectopic expression of the calreticulin C-domain increases Ca2+ stores, and that this Ca2+ reserve can be used by the plant in times of stress.

  12. NS5806 partially restores action potential duration but fails to ameliorate calcium transient dysfunction in a computational model of canine heart failure.

    PubMed

    Maleckar, Mary M; Lines, Glenn T; Koivumäki, Jussi T; Cordeiro, Jonathan M; Calloe, Kirstine

    2014-11-01

    The study investigates how increased Ito, as mediated by the activator NS5806, affects excitation-contraction coupling in chronic heart failure (HF). We hypothesized that restoring spike-and-dome morphology of the action potential (AP) to a healthy phenotype would be insufficient to restore the intracellular Ca(2) (+) transient (CaT), due to HF-induced remodelling of Ca(2+) handling. An existing mathematical model of the canine ventricular myocyte was modified to incorporate recent experimental data from healthy and failing myocytes, resulting in models of both healthy and HF epicardial, midmyocardial, and endocardial cell variants. Affects of NS5806 were also included in HF models through its direct interaction with Kv4.3 and Kv1.4. Single-cell simulations performed in all models (control, HF, and HF + drug) and variants (epi, mid, and endo) assessed AP morphology and underlying ionic processes with a focus on calcium transients (CaT), how these were altered in HF across the ventricular wall, and the subsequent effects of varying compound concentration in HF. Heart failure model variants recapitulated a characteristic increase in AP duration (APD) in the disease. The qualitative effects of application of half-maximal effective concentration (EC50) of NS5806 on APs and CaT are heterogeneous and non-linear. Deepening in the AP notch with drug is a direct effect of the activation of Ito; both Ito and consequent alteration of IK1 kinetics cause decrease in AP plateau potential. Decreased APD50 and APD90 are both due to altered IK1. Analysis revealed that drug effects depend on transmurality. Ca(2+) transient morphology changes-increased amplitude and shorter time to peak-are due to direct increase in ICa,L and indirect larger SR Ca(2+) release subsequent to Ito activation. Downstream effects of a compound acting exclusively on sarcolemmal ion channels are difficult to predict. Remediation of APD to pre-failing state does not ameliorate dysfunction in CaT; however

  13. Effect of transient receptor potential vanilloid 6 gene silencing on the expression of calcium transport genes in chicken osteoblasts.

    PubMed

    Zhang, Jie; Deng, Yifeng; Ma, Huijie; Hou, Jiafa; Zhou, ZhenLei

    2015-03-01

    Ca2+ plays a major role in the regulation of signal transduction. Transient receptor potential vanilloid 6 is a Ca2+-selective channel that serves as an important rate-limiting step in the facilitation of Ca2+ entry into cells, but little is known about the regulation of transient receptor potential vanilloid 6 in chickens. In this study, we evaluated the effects of transient receptor potential vanilloid 6 gene interference on the expression of calbindin-D28K, Na+/Ca2+ exchangers, and plasma membrane Ca2+ ATPase 1b to investigate the mechanism underlying the regulation of transient receptor potential vanilloid 6. Three hairpin siRNA expression vectors targeting transient receptor potential vanilloid 6 (pSIREN- transient receptor potential vanilloid 6) and a negative control (pSIREN-control) were constructed and transfected into chicken osteoblasts. The mRNA and protein expression levels were evaluated by quantitative reverse transcription polymerase chain reaction and Western blot, respectively. The mRNA expression levels of transient receptor potential vanilloid 6 and calbindin-D28K were reduced by 45.7% (P<0.01) and 27.9% (P<0.01), respectively, 48 h after transfection with one of the three constructs (pSIREN- transient receptor potential vanilloid 6-3) compared with the level obtained in the untreated group. There was no significant difference in the mRNA expression levels of Na+/Ca2+ exchangers and plasma membrane Ca2+ ATPase 1b. The protein expression levels of transient receptor potential vanilloid 6 and calbindin-D28K were reduced by 40.2% (P<0.01) and 29.8% (P<0.01), respectively, 48 h after transfection with pSIREN-transient receptor potential vanilloid 6-3 compared with the level obtained in the untreated group. In conclusion, the vector-based transient receptor potential vanilloid 6-shRNA can efficiently suppress the mRNA and protein expression of transient receptor potential vanilloid 6 in chicken osteoblasts, and transient receptor potential vanilloid

  14. Phorbol ester stimulates calcium sequestration in saponized human platelets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshida, K.; Nachmias, V.T.

    1987-11-25

    When platelets are activated by agonists, calcium (Ca2+) is released from an intracellular storage site. Recent studies using fura-2 show that, after thrombin stimulation, the rise in free calcium is transient and returns to base-line levels in 2-3 min, while the transient following ADP stimulation lasts only 15-20 s. We reported previously that the phorbol ester 12,13-phorbol myristate acetate (PMA), added at nanomolar levels after thrombin, immediately accelerated the rate of return of calcium to the base line severalfold. In the present study, we used both intact and saponized platelets to determine whether this is due to stimulation of calciummore » sequestration. Using fura-2 and intact platelets, we found 1) that PMA stimulated the restoration of free Ca2+ levels after ADP as well as after thrombin, and 2) that H-7, an inhibitor of protein kinase C (Ca2+/phospholipid-dependent enzyme), slowed the return of Ca2+ to baseline levels. Using saponized platelets, we also found 3) that pretreatment of platelets with PMA before saponin treatment increased the ATP-dependent /sup 45/Ca2+ uptake 2-fold, with a half-maximal effect at 5 nm; 4) that most of the Ca2+ released by ionomycin or by myoinositol 1,4,5-trisphosphate; and 5) that a GTP-binding protein inhibitor, guanosine 5'-O-(2-thiodiphosphate), decreased basal or PMA-stimulated /sup 45/Ca2+ uptake in saponin-treated platelets. Our data suggest that activation of protein kinase C stimulates the sequestration of Ca2+ independently of cAMP or myoinositol 1,4,5-trisphosphate.« less

  15. Large-particle calcium hydroxylapatite injection for correction of facial wrinkles and depressions.

    PubMed

    Alam, Murad; Havey, Jillian; Pace, Natalie; Pongprutthipan, Marisa; Yoo, Simon

    2011-07-01

    Small-particle calcium hydroxylapatite (Radiesse, Merz, Frankfurt, Germany) is safe and effective for facial wrinkle reduction, and has medium-term persistence for this indication. There is patient demand for similar fillers that may be longer lasting. We sought to assess the safety and persistence of effect in vivo associated with use of large-particle calcium hydroxylapatite (Coaptite, Merz) for facial augmentation and wrinkle reduction. This was a case series of 3 patients injected with large-particle calcium hydroxylapatite. Large-particle calcium hydroxylapatite appears to be effective and well tolerated for correction of facial depressions, including upper mid-cheek atrophy, nasolabial creases, and HIV-associated lipoatrophy. Adverse events included erythema and edema, and transient visibility of the injection sites. Treated patients, all of whom had received small-particle calcium hydroxylapatite correction before, noted improved persistence at 6 and 15 months with the large-particle injections as compared with prior small-particle injections. This is a small case series, and there was no direct control to compare the persistence of small-particle versus large-particle correction. For facial wrinkle correction, large-particle calcium hydroxylapatite has a safety profile comparable with that of small-particle calcium hydroxylapatite. The large-particle variant may have longer persistence that may be useful in selected clinical circumstances. Copyright © 2010 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.

  16. Osteoblast response to zirconia-hybridized pyrophosphate-stabilized amorphous calcium phosphate

    PubMed Central

    Whited, Bryce M.; Skrtic, Drago; Love, Brian J.

    2006-01-01

    Calcium phosphate bioceramics, such as hydroxyapatite, have long been used as bone substitutes because of their proven biocompatibility and bone binding properties in vivo. Recently, a zirconia-hybridized pyrophosphate-stabilized amorphous calcium phosphate (Zr-ACP) has been synthesized, which is more soluble than hydroxyapatite and allows for controlled release of calcium and phosphate ions. These ions have been postulated to increase osteoblast differentiation and mineralization in vitro. The focus of this work is to elucidate the physicochemical properties of Zr-ACP and to measure cell response to Zr-ACP in vitro using a MC3T3-E1 mouse calvarial-derived osteoprogenitor cell line. Cells were cultured in osteogenic medium and mineral was added to culture at different stages in cell maturation. Culture in the presence of Zr-ACP showed significant increases in cell proliferation, alkaline phosphatase activity (ALP), and osteopontin (OPN) synthesis, whereas collagen synthesis was unaffected. In addition, calcium and phosphate ion concentrations and medium pH were found to transiently increase with the addition of Zr-ACP, and are hypothesized to be responsible for the osteogenic effect of Zr-ACP. PMID:16278876

  17. Calcium responses to synaptically activated bursts of action potentials and their synapse-independent replay in cultured networks of hippocampal neurons.

    PubMed

    Bengtson, C Peter; Kaiser, Martin; Obermayer, Joshua; Bading, Hilmar

    2013-07-01

    Both synaptic N-methyl-d-aspartate (NMDA) receptors and voltage-operated calcium channels (VOCCs) have been shown to be critical for nuclear calcium signals associated with transcriptional responses to bursts of synaptic input. However the direct contribution to nuclear calcium signals from calcium influx through NMDA receptors and VOCCs has been obscured by their concurrent roles in action potential generation and synaptic transmission. Here we compare calcium responses to synaptically induced bursts of action potentials with identical bursts devoid of any synaptic contribution generated using the pre-recorded burst as the voltage clamp command input to replay the burst in the presence of blockers of action potentials or ionotropic glutamate receptors. Synapse independent replays of bursts produced nuclear calcium responses with amplitudes around 70% of their original synaptically generated signals and were abolished by the L-type VOCC blocker, verapamil. These results identify a major direct source of nuclear calcium from local L-type VOCCs whose activation is boosted by NMDA receptor dependent depolarization. The residual component of synaptically induced nuclear calcium signals which was both VOCC independent and NMDA receptor dependent showed delayed kinetics consistent with a more distal source such as synaptic NMDA receptors or internal stores. The dual requirement of NMDA receptors and L-type VOCCs for synaptic activity-induced nuclear calcium dependent transcriptional responses most likely reflects a direct somatic calcium influx from VOCCs whose activation is amplified by synaptic NMDA receptor-mediated depolarization and whose calcium signal is boosted by a delayed input from distal calcium sources mostly likely entry through NMDA receptors and release from internal stores. This article is part of a Special Issue entitled: 12th European Symposium on Calcium. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Oocyte cryopreservation and in vitro culture affect calcium signalling during human fertilization.

    PubMed

    Nikiforaki, D; Vanden Meerschaut, F; Qian, C; De Croo, I; Lu, Y; Deroo, T; Van den Abbeel, E; Heindryckx, B; De Sutter, P

    2014-01-01

    What are the precise patterns of calcium oscillations during the fertilization of human oocytes matured either in vivo or in vitro or aged in vitro and what is the effect of cryopreservation? Human oocytes matured in vivo exhibit a specific pattern of calcium oscillations, which is affected by in vitro maturation, in vitro ageing and cryopreservation. Oscillations in cytoplasmic calcium concentration are crucial for oocyte activation and further embryonic development. While several studies have described in detail the calcium oscillation pattern during fertilization in animal models, studies with human oocytes are scarce. This was a laboratory-based study using human MII oocytes matured in vivo or in vitro either fresh or after cryopreservation with slow freezing or vitrification. Altogether, 205 human oocytes were included in the analysis. In vivo and in vitro matured human oocytes were used for this research either fresh or following vitrification/warming (V/W) and slow freezing/thawing (F/T). Human oocytes were obtained following written informed consent from patients undergoing ovarian hyperstimulation. For the calcium pattern analysis, oocytes were loaded with the ratiometric calcium indicator fluorescent dye Fura-2. Following ICSI using sperm from a single donor, intracellular calcium was measured for 16 h at 37°C under 6% CO(2). The calcium oscillation parameters were calculated for all intact oocytes that showed calcium oscillations and were analyzed using the Mann-Whitney U-test. Human in vivo MII oocytes display a specific pattern of calcium oscillations following ICSI. This pattern is significantly affected by in vitro ageing, with the calcium oscillations occurring over a longer period of time and with a lower frequency, shorter duration and higher amplitude (P < 0.05). In vitro matured oocytes from the GV and MI stage exhibit a different pattern of calcium oscillations with calcium transients being of lower frequency and shorter duration compared with

  19. Automated quantification of neuronal networks and single-cell calcium dynamics using calcium imaging

    PubMed Central

    Patel, Tapan P.; Man, Karen; Firestein, Bonnie L.; Meaney, David F.

    2017-01-01

    Background Recent advances in genetically engineered calcium and membrane potential indicators provide the potential to estimate the activation dynamics of individual neurons within larger, mesoscale networks (100s–1000 +neurons). However, a fully integrated automated workflow for the analysis and visualization of neural microcircuits from high speed fluorescence imaging data is lacking. New method Here we introduce FluoroSNNAP, Fluorescence Single Neuron and Network Analysis Package. FluoroSNNAP is an open-source, interactive software developed in MATLAB for automated quantification of numerous biologically relevant features of both the calcium dynamics of single-cells and network activity patterns. FluoroSNNAP integrates and improves upon existing tools for spike detection, synchronization analysis, and inference of functional connectivity, making it most useful to experimentalists with little or no programming knowledge. Results We apply FluoroSNNAP to characterize the activity patterns of neuronal microcircuits undergoing developmental maturation in vitro. Separately, we highlight the utility of single-cell analysis for phenotyping a mixed population of neurons expressing a human mutant variant of the microtubule associated protein tau and wild-type tau. Comparison with existing method(s) We show the performance of semi-automated cell segmentation using spatiotemporal independent component analysis and significant improvement in detecting calcium transients using a template-based algorithm in comparison to peak-based or wavelet-based detection methods. Our software further enables automated analysis of microcircuits, which is an improvement over existing methods. Conclusions We expect the dissemination of this software will facilitate a comprehensive analysis of neuronal networks, promoting the rapid interrogation of circuits in health and disease. PMID:25629800

  20. Polyamines as Possible Modulators of Gravity-induced Calcium Transport in Plants

    NASA Technical Reports Server (NTRS)

    Galston, A. W.; Slocum, R. D.

    1985-01-01

    Data from various laboratories indicate a probable relationship between calcium movement and some aspects of graviperception and tropistic bending responses. The movement of calcium in response to gravistimulation appears to be rapid, polar and opposite in direction to polar auxin transport. What might be the cause of such rapid Ca(2+) movement? Data from studies on polyamine (PA) metabolism may furnish a clue. A transient increase in the activity of ornithine decarboxylase (ODC) and titers of various PAs occurs within 60 seconds after hormonal stimulation of animal cells, followed by Ca(2+) transport out of the cells. Through the use of specific inhibitors, it was shown that the enhanced PA synthesis from ODC was essential not only for Ca(2+) transport, but also for Ca(2+) transport-dependent endocytosis and the movement of hexoses and amino acids across the plasmalemma. In plants, rapid changes in arginine decarboxylase (ADC) activity occur in response to various plant stresses. Physical stresses associated with gravisensor displacement and reorientation of a plant in the gravitational field could similarly activate ADC and that resultant increases in PA levels might initiate transient perturbations in Ca(2+) homeostasis.

  1. Delay in onset of metabolic alkalosis during regional citrate anti-coagulation in continuous renal replacement therapy with calcium-free replacement solution.

    PubMed

    See, Kay Choong; Lee, Margaret; Mukhopadhyay, Amartya

    2009-01-01

    Regional citrate anti-coagulation for continuous renal replacement therapy chelates calcium to produce the anti- coagulation effect. We hypothesise that a calcium-free replacement solution will require less citrate and produce fewer metabolic side effects. Fifty patients, in a Medical Intensive Care Unit of a tertiary teaching hospital (25 in each group), received continuous venovenous hemofiltration using either calcium-containing or calcium-free replacement solutions. Both groups had no significant differences in filter life, metabolic alkalosis, hypernatremia, hypocalcemia, and hypercalcemia. However, patients using calcium-containing solution developed metabolic alkalosis earlier, compared to patients using calcium-free solution (mean 24.6 hours,CI 0.8-48.4 vs. 37.2 hours, CI 9.4-65, P = 0.020). When calcium-containing replacement solution was used, more citrate was required (mean 280 ml/h, CI 227.2-332.8 vs. 265 ml/h, CI 203.4-326.6, P = 0.069), but less calcium was infused (mean 21.2 ml/h, CI 1.2-21.2 vs 51.6 ml/h, CI 26.8-76.4, P < or = 0.0001).

  2. Selective dopamine receptor 4 activation mediates the hippocampal neuronal calcium response via IP3 and ryanodine receptors.

    PubMed

    Wang, Ya-Li; Wang, Jian-Gang; Guo, Fang-Li; Gao, Xia-Huan; Zhao, Dan-Dan; Zhang, Lin; Wang, Jian-Zhi; Lu, Cheng-Biao

    2017-09-01

    Intracellular calcium is a key factor in most cellular processes, including cell growth, differentiation, proliferation and neurotransmitter release. Dopamine (DA) mediates synaptic transmission by regulating the intracellular calcium content. It is not clear, however, which specific subunit of the DA receptor contributes to DA modulation of intracellular calcium content changes. Through the traditional technique of Fura-2 calcium imaging, this study demonstrated that the DA can induce transient calcium in cultured hippocampal neurons and that this response can be mimicked by a selective dopamine receptor 4 (DR4) agonist PD168077 (PD). PD-induced calcium transience can be blocked by a calcium chelator, such as BAPTA-AM, or by pre-treatment of neurons with thapsigargin, a IP 3 receptor antagonist, or a micromolar concentration of ryanodine, a ryanodine receptor (RyR) antagonist. However PD-induced calcium transience cannot be blocked by pre-treatment of neurons with a free-calcium medium or a cocktail of NMDA receptor, L-type calcium channel and alpha7 nicotinic acetylcholine receptor blockers. These results indicate that the calcium response induced by DR4 activation is mainly through activation of IP 3 receptor in internal stores, which is likely to contribute to the DA modulation of synaptic transmission and cognitive function. Copyright © 2017. Published by Elsevier B.V.

  3. Comparative detection of calcium fluctuations in single female sex cells of tobacco to distinguish calcium signals triggered by in vitro fertilization.

    PubMed

    Peng, Xiong-Bo; Sun, Meng-Xiang; Yang, Hong-Yuan

    2009-08-01

    Double fertilization is a key process of sexual reproduction in higher plants. The role of calcium in the activation of female sex cells through fertilization has recently received a great deal of attention. The establishment of a Ca(2+)-imaging technique for living, single, female sex cells is a difficult but necessary prerequisite for evaluating the role of Ca(2+) in the transduction of external stimuli, including the fusion with the sperm cell, to internal cellular processes. The present study describes the use of Fluo-3 for reporting the Ca(2+) signal in isolated, single, female sex cells, egg cells and central cells, of tobacco plants. A suitable loading protocol was optimized by loading the cells at pH 5.6 with 2 microM Fluo-3 for 30 min at 30 degrees C. Under these conditions, several key factors related to in vitro fertilization were also investigated in order to test their possible effects on the [Ca(2+)](cyt) of the female sex cells. The results indicated that the bovine serum albumin-fusion system was superior to the polyethlene glycol-fusion system for detecting calcium fluctuations in female sex cells during fertilization. The central cell was fertilized with the sperm cell in bovine serum albumin; however, no evident calcium dynamic was detected, implying that a transient calcium rise might be a specific signal for egg cell fertilization.

  4. Motivational effects on the processing of delayed intentions in the anterior prefrontal cortex.

    PubMed

    Bruening, Jovita; Ludwig, Vera U; Paschke, Lena M; Walter, Henrik; Stelzel, Christine

    2018-05-15

    Delaying intentions bears the risk of interference from distracting activities during the delay interval. Motivation can increase intention retrieval success but little is known about the underlying brain mechanisms. Here, we investigated whether motivational incentives (monetary reward) modulate the processing of delayed intentions in the anterior prefrontal cortex (aPFC), known to be crucial for intention processing. Using a mixed blocked and event-related functional Magnetic Resonance Imaging design, we specifically tested whether reward affects intention processing in the aPFC in a transient or in a sustained manner and whether this is related to individual differences in retrieval success. We found a generalized effect of reward on both correct intention retrieval and ongoing task performance. Fronto-parietal regions including bilateral lateral aPFC showed sustained activity increases in rewarded compared to non-rewarded blocks as well as transient reward-related activity during the storage phase. Additionally, individual differences in reward-related performance benefits were related to the degree of transient signal increases in right lateral aPFC, specifically during intention encoding. This suggests that the ability to integrate motivational relevance into the encoding of future intentions is crucial for successful intention retrieval in addition to general increases in processing effort. Bilateral aPFC is central to these motivation-cognition interactions. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Calcium-responsive contractility during fertilization in sea urchin eggs.

    PubMed

    Stack, Christianna; Lucero, Amy J; Shuster, Charles B

    2006-04-01

    Fertilization triggers a reorganization of oocyte cytoskeleton, and in sea urchins, there is a dramatic increase in cortical F-actin. However, the role that myosin II plays during fertilization remains largely unexplored. Myosin II is localized to the cortical cytoskeleton both before and after fertilization and to examine myosin II contractility in living cells, Lytechinus pictus eggs were observed by time-lapse microscopy. Upon sperm binding, a cell surface deflection traversed the egg that was followed by and dependent on the calcium wave. The calcium-dependence of surface contractility could be reproduced in unfertilized eggs, where mobilization of intracellular calcium in unfertilized eggs under compression resulted in a marked contractile response. Lastly, inhibition of myosin II delayed absorption of the fertilization cone, suggesting that myosin II not only responds to the same signals that activate eggs but also participates in the remodeling of the cortical actomyosin cytoskeleton during the first zygotic cell cycle. (c) 2006 Wiley-Liss, Inc.

  6. Calcium-Responsive Contractility During Fertilization in Sea Urchin Eggs

    PubMed Central

    Stack, Christianna; Lucero, Amy J.; Shuster, Charles B.

    2008-01-01

    Fertilization triggers a reorganization of oocyte cytoskeleton, and in sea urchins there is a dramatic increase in cortical F-actin. However, the role that myosin II plays during fertilization remains largely unexplored. Myosin II is localized to the cortical cytoskeleton both prior to- and following fertilization, and to examine myosin II contractility in living cells, Lytechinus pictus eggs were observed by time-lapse microscopy. Upon sperm binding, a cell surface deflection traversed the egg that was followed- and dependent on the calcium wave. The calcium-dependence of surface contractility could be reproduced in unfertilized eggs, where mobilization of intracellular calcium in unfertilized eggs under compression resulted in a marked contractile response. Lastly, inhibition of myosin II delayed absorption of the fertilization cone, suggesting that myosin II not only responds to the same signals that activate eggs, but also participates in the remodeling of the cortical actomyosin cytoskeleton during the first zygotic cell cycle. PMID:16470603

  7. Low Density Lipoproteins Promote Unstable Calcium Handling Accompanied by Reduced SERCA2 and Connexin-40 Expression in Cardiomyocytes

    PubMed Central

    Cabello, Nuria; Llach, Anna; Vallmitjana, Alexander; Benítez, Raúl; Badimon, Lina; Cinca, Juan; Llorente-Cortés, Vicenta; Hove-Madsen, Leif

    2013-01-01

    The damaging effects of high plasma levels of cholesterol in the cardiovascular system are widely known, but little attention has been paid to direct effects on cardiomyocyte function. We therefore aimed at testing the hypothesis that Low Density Lipoprotein (LDL) cholesterol affects calcium dynamics and signal propagation in cultured atrial myocytes. For this purpose, mRNA and protein expression levels were determined by real time PCR and western blot analysis, respectively, and intracellular calcium was visualized in fluo-4 loaded atrial HL-1 myocyte cultures subjected to field stimulation. At low stimulation frequencies all cultures had uniform calcium transients at all tested LDL concentrations. However, 500 µg LDL/mL maximally reduced the calcium transient amplitude by 43% from 0.30±0.04 to 0.17±0.02 (p<0.05). Moreover, LDL-cholesterol dose-dependently increased the fraction of alternating and irregular beat-to-beat responses observed when the stimulation interval was shortened. This effect was linked to a concurrent reduction in SERCA2, RyR2, IP3RI and IP3RII mRNA levels. SERCA2 protein levels were also reduced by 43% at 200 µg LDL/mL (p<0.05) and SR calcium loading was reduced by 38±6% (p<0.001). By contrast, HDL-cholesterol had no significant effect on SERCA expression or SR calcium loading. LDL-cholesterol also slowed the conduction velocity of the calcium signal from 3.2+0.2 mm/s without LDL to 1.7±0.1 mm/s with 500 µg LDL/mL (p<0.05). This coincided with a reduction in Cx40 expression (by 44±3%; p<0.05 for mRNA and by 79±2%; p<0.05 for Cx40 protein at 200 µg/ml LDL) whereas the Cx-43 expression did not significantly change. In conclusion, LDL-cholesterol destabilizes calcium handling in cultured atrial myocytes subjected to rapid pacing by reducing SERCA2 and Cx40 expression and by slowing the conduction velocity of the calcium signal. PMID:23516438

  8. [Calcium and vitamin D in bone metabolism: Clinical importance for fracture treatment].

    PubMed

    Amling, M

    2015-12-01

    A balanced calcium homeostasis is of critical importance not only for bone remodeling, the physiological process of bone resorption and bone formation that constantly renews bone throughout life but also for normal fracture healing. Given that disturbances of calcium homeostasis are present in 50 % of the German population and that this might result in delayed fracture healing after correct surgical treatment, this paper focusses on calcium and vitamin D in the daily practice in orthopedics and trauma surgery. To ensure the required enteral calcium uptake the following three conditions are required: (1) sufficient calcium intake via the nutrition, (2) a 25-hydroxyvitamin D serum level > 30 µg/l and (3) the presence of sufficient gastric acidification. Given the endemic vitamin D deficiency in Germany as well as the constantly increasing number of people using proton pump inhibitors on a regular basis, it is necessary to closely connect trauma orthopedic surgery and osteological treatment. The first issue to be dealt with is to control and if needed normalize calcium homeostasis in order to allow a normal undisturbed fracture healing process after both conservative as well as operative treatment of fractures.

  9. Nuclear reactor transient analysis via a quasi-static kinetics Monte Carlo method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jo, YuGwon; Cho, Bumhee; Cho, Nam Zin, E-mail: nzcho@kaist.ac.kr

    2015-12-31

    The predictor-corrector quasi-static (PCQS) method is applied to the Monte Carlo (MC) calculation for reactor transient analysis. To solve the transient fixed-source problem of the PCQS method, fission source iteration is used and a linear approximation of fission source distributions during a macro-time step is introduced to provide delayed neutron source. The conventional particle-tracking procedure is modified to solve the transient fixed-source problem via MC calculation. The PCQS method with MC calculation is compared with the direct time-dependent method of characteristics (MOC) on a TWIGL two-group problem for verification of the computer code. Then, the results on a continuous-energy problemmore » are presented.« less

  10. A highly sensitive fluorescent indicator dye for calcium imaging of neural activity in vitro and in vivo

    PubMed Central

    Tada, Mayumi; Takeuchi, Atsuya; Hashizume, Miki; Kitamura, Kazuo; Kano, Masanobu

    2014-01-01

    Calcium imaging of individual neurons is widely used for monitoring their activity in vitro and in vivo. Synthetic fluorescent calcium indicator dyes are commonly used, but the resulting calcium signals sometimes suffer from a low signal-to-noise ratio (SNR). Therefore, it is difficult to detect signals caused by single action potentials (APs) particularly from neurons in vivo. Here we showed that a recently developed calcium indicator dye, Cal-520, is sufficiently sensitive to reliably detect single APs both in vitro and in vivo. In neocortical neurons, calcium signals were linearly correlated with the number of APs, and the SNR was > 6 for in vitro slice preparations and > 1.6 for in vivo anesthetised mice. In cerebellar Purkinje cells, dendritic calcium transients evoked by climbing fiber inputs were clearly observed in anesthetised mice with a high SNR and fast decay time. These characteristics of Cal-520 are a great advantage over those of Oregon Green BAPTA-1, the most commonly used calcium indicator dye, for monitoring the activity of individual neurons both in vitro and in vivo. PMID:24405482

  11. Isoflurane depolarizes bronchopulmonary C neurons by inhibiting transient A-type and delayed rectifier potassium channels.

    PubMed

    Zhang, Zhenxiong; Zhuang, Jianguo; Zhang, Cancan; Xu, Fadi

    2013-04-01

    Inhalation of isoflurane (ISO), a widely used volatile anesthetic, can produce clinical tachypnea. In dogs, this response is reportedly mediated by bronchopulmonary C-fibers (PCFs), but the relevant mechanisms remain unclear. Activation of transient A-type potassium current (IA) channels and delayed rectifier potassium current (IK) channels hyperpolarizes neurons, and inhibition of both channels by ISO increases neural firing. Due to the presence of these channels in the cell bodies of rat PCFs, we determined whether ISO could stimulate PCFs to produce tachypnea in anesthetized rats, and, if so, whether this response resulted from ISO-induced depolarization of the pulmonary C neurons via the inhibition of IA and IK. We recorded ventilatory responses to 5% ISO exposure in anesthetized rats before and after blocking PCF conduction and the responses of pulmonary C neurons (extracellularly recorded) to ISO exposure. ISO-induced (1mM) changes in pulmonary C neuron membrane potential and IA/IK were tested using the perforated patch clamp technique. We found that: (1) ISO inhalation evoked a brief tachypnea (∼7s) and that this response disappeared after blocking PCF conduction; (2) the ISO significantly elevated (by 138%) the firing rate of most pulmonary C neurons (17 out of 21) in the nodose ganglion; and (3) ISO perfusion depolarized the pulmonary C neurons in the vitro and inhibited both IA and IK, and this evoked-depolarization was largely diminished after blocking both IA and IK. Our results suggest that ISO is able to stimulate PCFs to elicit tachypnea in rats, at least partly, via inhibiting IA and IK, thereby depolarizing the pulmonary C neurons. Copyright © 2013. Published by Elsevier B.V.

  12. Cardiac Calcium ATPase Dimerization Measured by Cross-Linking and Fluorescence Energy Transfer.

    PubMed

    Blackwell, Daniel J; Zak, Taylor J; Robia, Seth L

    2016-09-20

    The cardiac sarco/endoplasmic reticulum calcium ATPase (SERCA) establishes the intracellular calcium gradient across the sarcoplasmic reticulum membrane. It has been proposed that SERCA forms homooligomers that increase the catalytic rate of calcium transport. We investigated SERCA dimerization in rabbit left ventricular myocytes using a photoactivatable cross-linker. Western blotting of cross-linked SERCA revealed higher-molecular-weight species consistent with SERCA oligomerization. Fluorescence resonance energy transfer measurements in cells transiently transfected with fluorescently labeled SERCA2a revealed that SERCA readily forms homodimers. These dimers formed in the absence or presence of the SERCA regulatory partner, phospholamban (PLB) and were unaltered by PLB phosphorylation or changes in calcium or ATP. Fluorescence lifetime data are compatible with a model in which PLB interacts with a SERCA homodimer in a stoichiometry of 1:2. Together, these results suggest that SERCA forms constitutive homodimers in live cells and that dimer formation is not modulated by SERCA conformational poise, PLB binding, or PLB phosphorylation. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  13. Klotho Prevents Renal Calcium Loss

    PubMed Central

    Alexander, R. Todd; Woudenberg-Vrenken, Titia E.; Buurman, Jan; Dijkman, Henry; van der Eerden, Bram C. J.; van Leeuwen, Johannes P.T.M.; Bindels, René J.

    2009-01-01

    Disturbed calcium (Ca2+) homeostasis, which is implicit to the aging phenotype of klotho-deficient mice, has been attributed to altered vitamin D metabolism, but alternative possibilities exist. We hypothesized that failed tubular Ca2+ absorption is primary, which causes increased urinary Ca2+ excretion, leading to elevated 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] and its sequelae. Here, we assessed intestinal Ca2+ absorption, bone densitometry, renal Ca2+ excretion, and renal morphology via energy-dispersive x-ray microanalysis in wild-type and klotho−/− mice. We observed elevated serum Ca2+ and fractional excretion of Ca2+ (FECa) in klotho−/− mice. Klotho−/− mice also showed intestinal Ca2+ hyperabsorption, osteopenia, and renal precipitation of calcium-phosphate. Duodenal mRNA levels of transient receptor potential vanilloid 6 (TRPV6) and calbindin-D9K increased. In the kidney, klotho−/− mice exhibited increased expression of TRPV5 and decreased expression of the sodium/calcium exchanger (NCX1) and calbindin-D28K, implying a failure to absorb Ca2+ through the distal convoluted tubule/connecting tubule (DCT/CNT) via TRPV5. Gene and protein expression of the vitamin D receptor (VDR), 25-hydroxyvitamin D-1-α-hydroxylase (1αOHase), and calbindin-D9K excluded renal vitamin D resistance. By modulating the diet, we showed that the renal Ca2+ wasting was not secondary to hypercalcemia and/or hypervitaminosis D. In summary, these findings illustrate a primary defect in tubular Ca2+ handling that contributes to the precipitation of calcium-phosphate in DCT/CNT. This highlights the importance of klotho to the prevention of renal Ca2+ loss, secondary hypervitaminosis D, osteopenia, and nephrocalcinosis. PMID:19713312

  14. Delay time in a single barrier for a movable quantum shutter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez, Alberto

    2010-05-15

    The transient solution and delay time for a {delta} potential scatterer with a movable quantum shutter is calculated by solving analytically the time-dependent Schroedinger equation. The delay time is analyzed as a function of the distance between the shutter and the potential barrier and also as a function of the distance between the potential barrier and the detector. In both cases, it is found that the delay time exhibits a dynamical behavior and that it tends to a saturation value {Delta}t{sub sat} in the limit of very short distances, which represents the maximum delay produced by the potential barrier nearmore » the interaction region. The phase time {tau}{sub {theta},} on the other hand, is not an appropriate time scale for measuring the time delay near the interaction region, except if the shutter is moved far away from the potential. The role played by the antibound state of the system on the behavior of the delay time is also discussed.« less

  15. Calcium bioavailability and kinetics of calcium ascorbate and calcium acetate in rats.

    PubMed

    Cai, Jianwei; Zhang, Qinmin; Wastney, Meryl E; Weaver, Connie M

    2004-01-01

    The objective was to investigate the bioavailability and mechanism of calcium absorption of calcium ascorbate (ASC) and calcium acetate (AC). A series of studies was performed in adult Sprague-Dawley male rats. In the first study, each group of rats (n = 10/group) was assigned to one of the five test meals labeled with (45)Ca: (i) 25 mg calcium as heated ASC or (ii) unheated ASC, (iii) 25 mg calcium as unheated AC, (iv) 3.6 mg Ca as unheated ASC, or (v) unheated AC. Femur uptake indicated better calcium bioavailability from ASC than AC at both calcium loads. A 5-min heat treatment partly reduced bioavailability of ASC. Kinetic studies were performed to further investigate the mechanism of superior calcium bioavailability from ASC. Two groups of rats (n = 10/group) received oral doses of 25 mg Ca as ASC or AC. Each dose contained 20 micro Ci (45)Ca. Two additional groups of rats (n = 10/group) received an intravenous injection (iv) of 10 micro Ci (45)Ca after receiving an unlabeled oral dose of 25 mg calcium as ASC or AC. Sequential blood samples were collected over 48 hrs. Urine and fecal samples were collected every 12 hrs for 48 hrs and were analyzed for total calcium and (45)Ca content. Total calcium and (45)Ca from serum, urine, and feces were fitted by a compartment kinetics model with saturable and nonsaturable absorption pathways by WinSAAM (Windows-based Simulation Analysis and Modeling). The difference in calcium bioavailability between the two salts was due to differences in saturable rather than passive intestinal absorption and not to endogenous secretion or calcium deposition rate. The higher bioavailability of calcium ascorbate was due to a longer transit time in the small intestine compared with ASC.

  16. Diuretics for transient tachypnoea of the newborn.

    PubMed

    Kassab, Manal; Khriesat, Wadah M; Anabrees, Jasim

    2015-11-21

    Transient tachypnoea of the newborn (TTN) results from delayed clearance of lung liquid and is a common cause of admission of full-term infants to neonatal intensive care units. The condition is particularly common after elective caesarean section. Conventional treatment involves appropriate oxygen administration and continuous positive airway pressure in some cases. Most infants receive antibiotic therapy. Hastening the clearance of lung liquid may shorten the duration of the symptoms and reduce complications. To determine whether diuretic administration reduces the duration of oxygen therapy and respiratory symptoms and shortens hospital stay in term infants presenting with transient tachypnoea of the newborn. An updated search was carried out in September 2015 of the following databases: the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library issue 9, 2015), MEDLINE via Ovid, EMBASE, PubMed, and CINAHL via OVID. We included randomised and quasi-randomised controlled trials that compared the effect of diuretics administration versus placebo or no treatment in infants of less than seven days of age, born at 37 or more weeks of gestation with the clinical picture of transient tachypnoea of the newborn. We extracted and analysed data according to the methods outlined in the latest Cochrane Handbook for Systematic Reviews of Interventions. Two review authors assessed trial quality in each potentially eligible manuscript and two review authors extracted data. Our previous systematic review included two trials enrolling a total of 100 infants with transient tachypnoea of the newborn (Wiswell 1985; Karabayir 2006). The updated search revealed no new trials. Wiswell 1985 randomised 50 infants to receive either oral furosemide (2 mg/kg body weight at time of diagnosis followed by a 1 mg/kg dose 12 hours later if the tachypnoea persisted) or placebo. Karabayir 2006 randomised 50 infants to receive either intravenous furosemide (2 mg/kg body

  17. Intracellular calcium rise is not a necessary step for the stimulated actin polymerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yassin, R.

    1986-03-01

    Stimulation of rabbit peritoneal neutrophils by many chemotactic (formyl Methionyl-Leucyl-Phenylalanine (fMLP), Leukotriene B/sub 4/ (LTB/sub 4/)) and non-chemotactic (phorbol 12-myristate, 13-acetate (PMA), platelet activating factor (PAF), and the calcium ionophore A23187) factors produces rapid and dose dependent increases in the amount of actin associated with the cytoskeleton. The stimulated increase in cytoskeletal actin does not appear to require a rise in the intracellular concentration of free calcium. The increase in cytoskeletal actin produced by A23187 is transient and does not depend on the presence of calcium in the suspending medium. In the presence of extracellular calcium, the effect of themore » ionophore is biphasic with respect to concentration. The increases in actin association with cytoskeletal produced by fMLP, LTB/sub 4/, and A23187 but not by PMA, are inhibited by hyperosmolarity and pertussis toxin pretreatment. On the other hand, the addition of hyperosmolarity or pertussis toxin has small effect on the rise in the intracellular calcium produced by A23187. The results presented here suggest that an increase in the intracellular concentration of free calcium is not necessary for the stimulated increases in cytoskeletal actin.« less

  18. Two-photon calcium imaging from head-fixed Drosophila during optomotor walking behavior.

    PubMed

    Seelig, Johannes D; Chiappe, M Eugenia; Lott, Gus K; Dutta, Anirban; Osborne, Jason E; Reiser, Michael B; Jayaraman, Vivek

    2010-07-01

    Drosophila melanogaster is a model organism rich in genetic tools to manipulate and identify neural circuits involved in specific behaviors. Here we present a technique for two-photon calcium imaging in the central brain of head-fixed Drosophila walking on an air-supported ball. The ball's motion is tracked at high resolution and can be treated as a proxy for the fly's own movements. We used the genetically encoded calcium sensor, GCaMP3.0, to record from important elements of the motion-processing pathway, the horizontal-system lobula plate tangential cells (LPTCs) in the fly optic lobe. We presented motion stimuli to the tethered fly and found that calcium transients in horizontal-system neurons correlated with robust optomotor behavior during walking. Our technique allows both behavior and physiology in identified neurons to be monitored in a genetic model organism with an extensive repertoire of walking behaviors.

  19. Amorphous surface layer versus transient amorphous precursor phase in bone - A case study investigated by solid-state NMR spectroscopy.

    PubMed

    Von Euw, Stanislas; Ajili, Widad; Chan-Chang, Tsou-Hsi-Camille; Delices, Annette; Laurent, Guillaume; Babonneau, Florence; Nassif, Nadine; Azaïs, Thierry

    2017-09-01

    The presence of an amorphous surface layer that coats a crystalline core has been proposed for many biominerals, including bone mineral. In parallel, transient amorphous precursor phases have been proposed in various biomineralization processes, including bone biomineralization. Here we propose a methodology to investigate the origin of these amorphous environments taking the bone tissue as a key example. This study relies on the investigation of a bone tissue sample and its comparison with synthetic calcium phosphate samples, including a stoichiometric apatite, an amorphous calcium phosphate sample, and two different biomimetic apatites. To reveal if the amorphous environments in bone originate from an amorphous surface layer or a transient amorphous precursor phase, a combined solid-state nuclear magnetic resonance (NMR) experiment has been used. The latter consists of a double cross polarization 1 H→ 31 P→ 1 H pulse sequence followed by a 1 H magnetization exchange pulse sequence. The presence of an amorphous surface layer has been investigated through the study of the biomimetic apatites; while the presence of a transient amorphous precursor phase in the form of amorphous calcium phosphate particles has been mimicked with the help of a physical mixture of stoichiometric apatite and amorphous calcium phosphate. The NMR results show that the amorphous and the crystalline environments detected in our bone tissue sample belong to the same particle. The presence of an amorphous surface layer that coats the apatitic core of bone apatite particles has been unambiguously confirmed, and it is certain that this amorphous surface layer has strong implication on bone tissue biogenesis and regeneration. Questions still persist on the structural organization of bone and biomimetic apatites. The existing model proposes a core/shell structure, with an amorphous surface layer coating a crystalline bulk. The accuracy of this model is still debated because amorphous calcium

  20. Activation of calcium-sensing receptor increases TRPC3 expression in rat cardiomyocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Shan-Li; Sun, Ming-Rui; Li, Ting-Ting

    Research highlights: {yields} Calcium-sensing receptor (CaR) activation stimulates TRP channels. {yields} CaR promoted transient receptor potential C3 (TRPC3) expression. {yields} Adult rat ventricular myocytes display capacitative calcium entry (CCE), which was operated by TRPCs. {yields} TRPC channels activation induced by CaR activator sustained the increased [Ca{sup 2+}]{sub i} to evoke cardiomyocytes apoptosis. -- Abstract: Transient receptor potential (TRP) channels are expressed in cardiomyocytes, which gate a type of influx of extracellular calcium, the capacitative calcium entry. TRP channels play a role in mediating Ca{sup 2+} overload in the heart. Calcium-sensing receptors (CaR) are also expressed in rat cardiac tissue andmore » promote the apoptosis of cardiomyocytes by Ca{sup 2+} overload. However, data about the link between CaR and TRP channels in rat heart are few. In this study, reverse transcriptase polymerase chain reaction (RT-PCR) and Western blotting were used to examine the expression of the TRP canonical proteins TRPC1 and TRPC3 in adult and neonatal rat cardiomyocytes. Laser scan confocal microscopy was used to detect intracellular [Ca{sup 2+}]{sub i} levels in isolated adult rat ventricular myocytes. The results showed that, in adult rat cardiomyocytes, the depletion of Ca{sup 2+} stores in the endoplasmic/sarcoplasmic reticulum (ER/SR) by thapsigargin induced a transient increase in [Ca{sup 2+}]{sub i} in the absence of [Ca{sup 2+}]{sub o} and the subsequent restoration of [Ca{sup 2+}]{sub o} sustained the increased [Ca{sup 2+}]{sub i} for a few minutes, whereas, the persisting elevation of [Ca{sup 2+}]{sub i} was reduced in the presence of the TRPC inhibitor SKF96365. The stimulation of CaR by its activator gadolinium chloride (GdCl{sub 3}) or spermine also resulted in the same effect and the duration of [Ca{sup 2+}]{sub i} increase was also shortened in the absence of [Ca{sup 2+}]{sub o}. In adult and neonatal rat cardiomyocytes, Gd

  1. Activity-Dependent Gating of Calcium Spikes by A-type K+ Channels Controls Climbing Fiber Signaling in Purkinje Cell Dendrites

    PubMed Central

    Otsu, Yo; Marcaggi, Païkan; Feltz, Anne; Isope, Philippe; Kollo, Mihaly; Nusser, Zoltan; Mathieu, Benjamin; Kano, Masanobu; Tsujita, Mika; Sakimura, Kenji; Dieudonné, Stéphane

    2014-01-01

    Summary In cerebellar Purkinje cell dendrites, heterosynaptic calcium signaling induced by the proximal climbing fiber (CF) input controls plasticity at distal parallel fiber (PF) synapses. The substrate and regulation of this long-range dendritic calcium signaling are poorly understood. Using high-speed calcium imaging, we examine the role of active dendritic conductances. Under basal conditions, CF stimulation evokes T-type calcium signaling displaying sharp proximodistal decrement. Combined mGluR1 receptor activation and depolarization, two activity-dependent signals, unlock P/Q calcium spikes initiation and propagation, mediating efficient CF signaling at distal sites. These spikes are initiated in proximal smooth dendrites, independently from somatic sodium action potentials, and evoke high-frequency bursts of all-or-none fast-rising calcium transients in PF spines. Gradual calcium spike burst unlocking arises from increasing inactivation of mGluR1-modulated low-threshold A-type potassium channels located in distal dendrites. Evidence for graded activity-dependent CF calcium signaling at PF synapses refines current views on cerebellar supervised learning rules. PMID:25220810

  2. Activity-dependent gating of calcium spikes by A-type K+ channels controls climbing fiber signaling in Purkinje cell dendrites.

    PubMed

    Otsu, Yo; Marcaggi, Païkan; Feltz, Anne; Isope, Philippe; Kollo, Mihaly; Nusser, Zoltan; Mathieu, Benjamin; Kano, Masanobu; Tsujita, Mika; Sakimura, Kenji; Dieudonné, Stéphane

    2014-10-01

    In cerebellar Purkinje cell dendrites, heterosynaptic calcium signaling induced by the proximal climbing fiber (CF) input controls plasticity at distal parallel fiber (PF) synapses. The substrate and regulation of this long-range dendritic calcium signaling are poorly understood. Using high-speed calcium imaging, we examine the role of active dendritic conductances. Under basal conditions, CF stimulation evokes T-type calcium signaling displaying sharp proximodistal decrement. Combined mGluR1 receptor activation and depolarization, two activity-dependent signals, unlock P/Q calcium spikes initiation and propagation, mediating efficient CF signaling at distal sites. These spikes are initiated in proximal smooth dendrites, independently from somatic sodium action potentials, and evoke high-frequency bursts of all-or-none fast-rising calcium transients in PF spines. Gradual calcium spike burst unlocking arises from increasing inactivation of mGluR1-modulated low-threshold A-type potassium channels located in distal dendrites. Evidence for graded activity-dependent CF calcium signaling at PF synapses refines current views on cerebellar supervised learning rules. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Delayed Luminescence and Biophotons from Biological Materials

    NASA Astrophysics Data System (ADS)

    Knoesel, Ernst; Hann, Patrick; Garzon, Maria; Pfeiffer, Erik; Lofland, Samuel

    2008-03-01

    There has recently been increased interest in the field of biophotonics, since it is a non-invasive technique. Many biological systems, such as yeast, bacteria, leaves, seeds, and algae display the unusual phenomenon of a weak, delayed luminescence on the timescale of seconds to minutes after transient illumination. It is also observed that the time decay of the biophotonic emission is not exponential, even after the delay, and that there can be oscillations in intensity with time, which depend on the duration of the illumination. Results from two types of yeast, i.e. bread yeast, and saccharomyces, as well as those from several types of algae are presented. Possible mechanisms for the source of the ultraweak photon emission are discussed.

  4. Stabilization of diastolic calcium signal via calcium pump regulation of complex local calcium releases and transient decay in a computational model of cardiac pacemaker cell with individual release channels

    PubMed Central

    Maltsev, Alexander V.; Maltsev, Victor A.; Stern, Michael D.

    2017-01-01

    Intracellular Local Ca releases (LCRs) from sarcoplasmic reticulum (SR) regulate cardiac pacemaker cell function by activation of electrogenic Na/Ca exchanger (NCX) during diastole. Prior studies demonstrated the existence of powerful compensatory mechanisms of LCR regulation via a complex local cross-talk of Ca pump, release and NCX. One major obstacle to study these mechanisms is that LCR exhibit complex Ca release propagation patterns (including merges and separations) that have not been characterized. Here we developed new terminology, classification, and computer algorithms for automatic detection of numerically simulated LCRs and examined LCR regulation by SR Ca pumping rate (Pup) that provides a major contribution to fight-or-flight response. In our simulations the faster SR Ca pumping accelerates action potential-induced Ca transient decay and quickly clears Ca under the cell membrane in diastole, preventing premature releases. Then the SR generates an earlier, more synchronized, and stronger diastolic LCR signal activating an earlier and larger inward NCX current. LCRs at higher Pup exhibit larger amplitudes and faster propagation with more collisions to each other. The LCRs overlap with Ca transient decay, causing an elevation of the average diastolic [Ca] nadir to ~200 nM (at Pup = 24 mM/s). Background Ca (in locations lacking LCRs) quickly decays to resting Ca levels (<100 nM) at high Pup, but remained elevated during slower decay at low Pup. Release propagation is facilitated at higher Pup by a larger LCR amplitude, whereas at low Pup by higher background Ca. While at low Pup LCRs show smaller amplitudes, their larger durations and sizes combined with longer transient decay stabilize integrals of diastolic Ca and NCX current signals. Thus, the local interplay of SR Ca pump and release channels regulates LCRs and Ca transient decay to insure fail-safe pacemaker cell operation within a wide range of rates. PMID:28792496

  5. Cola beverage and delayed elimination of methotrexate.

    PubMed

    Santucci, Raoul; Levêque, Dominique; Herbrecht, Raoul

    2010-11-01

    To report a case of severe delayed methotrexate elimination attributable to consumption of a cola beverage. To investigate unexplained low urinary pH in a lymphoma patient treated with high-dose methotrexate. Unexpected urinary acidity, despite administration of large amounts of sodium bicarbonate, could be attributed to repeated consumption of a cola beverage. It resulted in a delayed elimination of methotrexate and acute renal failure. Discontinuation of cola drinks, increase in calcium folinate rescue and in sodium bicarbonate allowed satisfactory elimination of methotrexate on day 12 after infusion and recovery from renal impairment without other severe toxicity. No other cause of delay in methotrexate elimination could be identified. Cola beverages have a low pH due to their phosphoric acid content that is excreted by renal route. We recommend patients receiving high dose methotrexate abstain from any cola drink within 24 h before and during methotrexate administration and until complete elimination of the drug. © 2010 The Authors. British Journal of Clinical Pharmacology © 2010 The British Pharmacological Society.

  6. Modulation of ventricular transient outward K+ current by acidosis and its effects on excitation-contraction coupling

    PubMed Central

    Saegusa, Noriko; Garg, Vivek

    2013-01-01

    The contribution of transient outward current (Ito) to changes in ventricular action potential (AP) repolarization induced by acidosis is unresolved, as is the indirect effect of these changes on calcium handling. To address this issue we measured intracellular pH (pHi), Ito, L-type calcium current (ICa,L), and calcium transients (CaTs) in rabbit ventricular myocytes. Intracellular acidosis [pHi 6.75 with extracellular pH (pHo) 7.4] reduced Ito by ∼50% in myocytes with both high (epicardial) and low (papillary muscle) Ito densities, with little effect on steady-state inactivation and activation. Of the two candidate α-subunits underlying Ito, human (h)Kv4.3 and hKv1.4, only hKv4.3 current was reduced by intracellular acidosis. Extracellular acidosis (pHo 6.5) shifted Ito inactivation toward less negative potentials but had negligible effect on peak current at +60 mV when initiated from −80 mV. The effects of low pHi-induced inhibition of Ito on AP repolarization were much greater in epicardial than papillary muscle myocytes and included slowing of phase 1, attenuation of the notch, and elevation of the plateau. Low pHi increased AP duration in both cell types, with the greatest lengthening occurring in epicardial myocytes. The changes in epicardial AP repolarization induced by intracellular acidosis reduced peak ICa,L, increased net calcium influx via ICa,L, and increased CaT amplitude. In summary, in contrast to low pHo, intracellular acidosis has a marked inhibitory effect on ventricular Ito, perhaps mediated by Kv4.3. By altering the trajectory of the AP repolarization, low pHi has a significant indirect effect on calcium handling, especially evident in epicardial cells. PMID:23585132

  7. Elemental calcium intake associated with calcium acetate/calcium carbonate in the treatment of hyperphosphatemia

    PubMed Central

    Wilson, Rosamund J; Copley, J Brian

    2017-01-01

    Background Calcium-based and non-calcium-based phosphate binders have similar efficacy in the treatment of hyperphosphatemia; however, calcium-based binders may be associated with hypercalcemia, vascular calcification, and adynamic bone disease. Scope A post hoc analysis was carried out of data from a 16-week, Phase IV study of patients with end-stage renal disease (ESRD) who switched to lanthanum carbonate monotherapy from baseline calcium acetate/calcium carbonate monotherapy. Of the intent-to-treat population (N=2520), 752 patients with recorded dose data for calcium acetate (n=551)/calcium carbonate (n=201) at baseline and lanthanum carbonate at week 16 were studied. Elemental calcium intake, serum phosphate, corrected serum calcium, and serum intact parathyroid hormone levels were analyzed. Findings Of the 551 patients with calcium acetate dose data, 271 (49.2%) had an elemental calcium intake of at least 1.5 g/day at baseline, and 142 (25.8%) had an intake of at least 2.0 g/day. Mean (95% confidence interval [CI]) serum phosphate levels were 6.1 (5.89, 6.21) mg/dL at baseline and 6.2 (6.04, 6.38) mg/dL at 16 weeks; mean (95% CI) corrected serum calcium levels were 9.3 (9.16, 9.44) mg/dL and 9.2 (9.06, 9.34) mg/dL, respectively. Of the 201 patients with calcium carbonate dose data, 117 (58.2%) had an elemental calcium intake of at least 1.5 g/day, and 76 (37.8%) had an intake of at least 2.0 g/day. Mean (95% CI) serum phosphate levels were 5.8 (5.52, 6.06) mg/dL at baseline and 5.8 (5.53, 6.05) mg/dL at week 16; mean (95% CI) corrected serum calcium levels were 9.7 (9.15, 10.25) mg/dL and 9.2 (9.06, 9.34) mg/dL, respectively. Conclusion Calcium acetate/calcium carbonate phosphate binders, taken to control serum phosphate levels, may result in high levels of elemental calcium intake. This may lead to complications related to calcium balance. PMID:28182142

  8. Modification of Alumina and Spinel Inclusions by Calcium in Liquid Steel

    NASA Astrophysics Data System (ADS)

    Verma, Neerav

    2011-12-01

    Steel Cleanliness plays a crucial role in determining steel properties such as toughness, ductility, formability, corrosion resistance and surface quality. The production of clean steel often involves the elimination or chemical and morphological modification of oxide and sulfide inclusions. Along with deteriorating the steel properties, solid inclusions can affect steel castability through nozzle clogging. Nozzle clogging occurs when solid inclusions accumulate in the caster pouring system such as the ladle shroud or submerged entry nozzle (SEN). Thus, it is important to understand how to achieve desired inclusion characteristics (shape, size and chemistry) through the steelmaking process. Among the various practices adopted in industries to counteract the effect of solid inclusions, modification of solid inclusions to liquid or partially liquid state through calcium treatment is one of the methods. Calcium can be used because it has a strong ability to form oxides and sulfides. In Al-killed steels, the most common inclusions are alumina (Al2O3) inclusions, which are solid at steelmaking temperatures. On calcium treatment, solid alumina inclusions are converted to calcium aluminates, which have liquidus temperatures lower than steelmaking temperature (1600°C) [14]. It has been found that alumina inclusions may contain some MgO and such inclusions are termed alumina magnesia spinels (Al2O3.xMgO) [18]. These spinels are more stable than alumina and it has been suggested that they might be more difficult to modify [18]. But, some authors have proposed that MgO can actually help in the liquefaction of inclusions, and have demonstrated successful modification of spinels by Ca treatment [20, 21]. In the present research, the mechanism of transformation of alumina and spinel inclusions upon calcium treatment was studied by characterizing transient evolution of inclusions. A vacuum induction was used for melting, making additions (Al, Al-Mg and CaSi2) and sampling. The

  9. Transient hypothyroidism in infants born to mothers with chronic thyroiditis--a nationwide study of twenty-three cases. The Transient Hypothyroidism Study Group.

    PubMed

    Matsuura, N; Konishi, J

    1990-06-01

    To define the difference in prognosis and the clinical features of transient neonatal hypothyroidism in infants born to mothers with chronic thyroiditis, we conducted a nationwide study of this condition. Sixteen mothers with chronic thyroiditis and twenty-three of their offspring with transient hypothyroidism were registered and reported in this paper. Five (group A) of twenty-two live infants showed physical, mental and/or psychomotor developmental delay (IQ below 80). No significant difference between TSH-binding inhibitor immunoglobulin (TBII) or thyroid-stimulation blocking antibody (TSBAb) activities in groups A and B (normal development) were noted. Moreover, there was no significant difference in thyroid function in the newborn period, ages at the start of thyroid medication or the dose and duration of treatment in the two groups. A striking difference observed between the two groups was the thyroid function of their mothers during pregnancy. In group A, four mothers were hypothyroid during pregnancy, and another mother discontinued thyroid medication in the last trimester and her baby was most delayed at the start thyroid medication. On the other hand, the mothers of only two of seventeen live cases in group B had mild hypothyroidism during pregnancy. There were two sets of siblings whose mother received inadequate treatment during the first pregnancy and adequate treatment during the second pregnancy. The psychomotor, physical and mental developmental delay were observed in their first babies. These findings suggested that maternal thyroid function during pregnancy might be an important factor in the prognosis of infants born to mothers with chronic thyroiditis.

  10. Activation of the chemosensing transient receptor potential channel A1 (TRPA1) by alkylating agents.

    PubMed

    Stenger, Bernhard; Zehfuss, Franziska; Mückter, Harald; Schmidt, Annette; Balszuweit, Frank; Schäfer, Eva; Büch, Thomas; Gudermann, Thomas; Thiermann, Horst; Steinritz, Dirk

    2015-09-01

    The transient receptor potential ankyrin 1 (TRPA1) cation channel is expressed in different tissues including skin, lung and neuronal tissue. Recent reports identified TRPA1 as a sensor for noxious substances, implicating a functional role in the molecular toxicology. TRPA1 is activated by various potentially harmful electrophilic substances. The chemical warfare agent sulfur mustard (SM) is a highly reactive alkylating agent that binds to numerous biological targets. Although SM is known for almost 200 years, detailed knowledge about the pathophysiology resulting from exposure is lacking. A specific therapy is not available. In this study, we investigated whether the alkylating agent 2-chloroethyl-ethylsulfide (CEES, a model substance for SM-promoted effects) and SM are able to activate TRPA1 channels. CEES induced a marked increase in the intracellular calcium concentration ([Ca(2+)]i) in TRPA1-expressing but not in TRPA1-negative cells. The TRP-channel blocker AP18 diminished the CEES-induced calcium influx. HEK293 cells permanently expressing TRPA1 were more sensitive toward cytotoxic effects of CEES compared with wild-type cells. At low CEES concentrations, CEES-induced cytotoxicity was prevented by AP18. Proof-of-concept experiments using SM resulted in a pronounced increase in [Ca(2+)]i in HEK293-A1-E cells. Human A549 lung epithelial cells, which express TRPA1 endogenously, reacted with a transient calcium influx in response to CEES exposure. The CEES-dependent calcium response was diminished by AP18. In summary, our results demonstrate that alkylating agents are able to activate TRPA1. Inhibition of TRPA1 counteracted cellular toxicity and could thus represent a feasible approach to mitigate SM-induced cell damage.

  11. Calcium Dynamics in Basal Dendrites of Layer 5A and 5B Pyramidal Neurons Is Tuned to the Cell-Type Specific Physiological Action Potential Discharge

    PubMed Central

    Krieger, Patrik; de Kock, Christiaan P. J.; Frick, Andreas

    2017-01-01

    Layer 5 (L5) is a major neocortical output layer containing L5A slender-tufted (L5A-st) and L5B thick-tufted (L5B-tt) pyramidal neurons. These neuron types differ in their in vivo firing patterns, connectivity and dendritic morphology amongst other features, reflecting their specific functional role within the neocortical circuits. Here, we asked whether the active properties of the basal dendrites that receive the great majority of synaptic inputs within L5 differ between these two pyramidal neuron classes. To quantify their active properties, we measured the efficacy with which action potential (AP) firing patterns backpropagate along the basal dendrites by measuring the accompanying calcium transients using two-photon laser scanning microscopy in rat somatosensory cortex slices. For these measurements we used both “artificial” three-AP patterns and more complex physiological AP patterns that were previously recorded in anesthetized rats in L5A-st and L5B-tt neurons in response to whisker stimulation. We show that AP patterns with relatively few APs (3APs) evoke a calcium response in L5B-tt, but not L5A-st, that is dependent on the temporal pattern of the three APs. With more complex in vivo recorded AP patterns, the average calcium response was similar in the proximal dendrites but with a decay along dendrites (measured up to 100 μm) of L5B-tt but not L5A-st neurons. Interestingly however, the whisker evoked AP patterns—although very different for the two cell types—evoke similar calcium responses. In conclusion, although the effectiveness with which different AP patterns evoke calcium transients vary between L5A-st and L5B-tt cell, the calcium influx appears to be tuned such that whisker-evoked calcium transients are within the same dynamic range for both cell types. PMID:28744201

  12. Inhibitory effect of aniracetam on N-type calcium current in acutely isolated rat neuronal cells.

    PubMed

    Koike, H; Saito, H; Matsuki, N

    1993-04-01

    Effects of aniracetam on whole-cell calcium currents were studied in acutely isolated neuronal cells from postnatal rat ventromedial hypothalamus. There were three types of inward calcium currents, one low-threshold transient current and two high-threshold sustained currents. The nicardipine sensitive L-type current was activated at -20 mV or more depolarized potentials, and the omega-conotoxin sensitive N-type current was recorded at more positive potentials than the L-type. Aniracetam inhibited the N-type current in a dose-dependent manner without affecting the other two types of calcium currents. The effect appeared soon after the addition and lasted for several minutes during washing. Since the N-type current is thought to regulate the release of transmitters, the inhibitory effect may contribute to the nootropic property of aniracetam by modifying the neurotransmission.

  13. Mammary-Specific Ablation of the Calcium-Sensing Receptor During Lactation Alters Maternal Calcium Metabolism, Milk Calcium Transport, and Neonatal Calcium Accrual

    PubMed Central

    Mamillapalli, Ramanaiah; VanHouten, Joshua; Dann, Pamela; Bikle, Daniel; Chang, Wenhan; Brown, Edward

    2013-01-01

    To meet the demands for milk calcium, the lactating mother adjusts systemic calcium and bone metabolism by increasing dietary calcium intake, increasing bone resorption, and reducing renal calcium excretion. As part of this adaptation, the lactating mammary gland secretes PTHrP into the maternal circulation to increase bone turnover and mobilize skeletal calcium stores. Previous data have suggested that, during lactation, the breast relies on the calcium-sensing receptor (CaSR) to coordinate PTHrP secretion and milk calcium transport with calcium availability. To test this idea genetically, we bred BLG-Cre mice with CaSR-floxed mice to ablate the CaSR specifically from mammary epithelial cells only at the onset of lactation (CaSR-cKO mice). Loss of the CaSR in the lactating mammary gland did not disrupt alveolar differentiation or milk production. However, it did increase the secretion of PTHrP into milk and decreased the transport of calcium from the circulation into milk. CaSR-cKO mice did not show accelerated bone resorption, but they did have a decrease in bone formation. Loss of the mammary gland CaSR resulted in hypercalcemia, decreased PTH secretion, and increased renal calcium excretion in lactating mothers. Finally, loss of the mammary gland CaSR resulted in decreased calcium accrual by suckling neonates, likely due to the combination of increased milk PTHrP and decreased milk calcium. These results demonstrate that the mammary gland CaSR coordinates maternal bone and calcium metabolism, calcium transport into milk, and neonatal calcium accrual during lactation. PMID:23782944

  14. Altered mechanical properties of titin immunoglobulin domain 27 in the presence of calcium.

    PubMed

    DuVall, Michael M; Gifford, Jessica L; Amrein, Matthias; Herzog, Walter

    2013-04-01

    Titin (connectin) based passive force regulation has been an important physiological mechanism to adjust to varying muscle stretch conditions. Upon stretch, titin behaves as a spring capable of modulating its elastic response in accordance with changes in muscle biochemistry. One such mechanism has been the calcium-dependent stiffening of titin domains that renders the spring inherently more resistant to stretch. This transient titin-calcium interaction may serve a protective function in muscle, which could preclude costly unfolding of select domains when muscles elongate to great lengths. To test this idea, fluorescence spectroscopy was performed revealing a change in the microenvironment of the investigated immunoglobulin domain 27 (I27) of titin with calcium. Additionally, an atomic force microscope was used to evaluate the calcium-dependent regulation of passive force by stretching eight linked titin I27 domains until they unfolded. When stretching in the presence of calcium, the I27 homopolymer chain became stabilized, displaying three novel properties: (1) higher stretching forces were needed to unfold the domains, (2) the stiffness, measured as a persistence length (PL), increased and (3) the peak-to-peak distance between adjacent I27 domains increased. Furthermore, a peak order dependence became apparent for both force and PL, reflecting the importance of characterizing the dynamic unfolding history of a polymer with this approach. Together, this novel titin Ig-calcium interaction may serve to stabilize the I27 domain permitting titin to tune passive force within stretched muscle in a calcium-dependent manner.

  15. Dehydration-induced amorphous phases of calcium carbonate.

    PubMed

    Saharay, Moumita; Yazaydin, A Ozgur; Kirkpatrick, R James

    2013-03-28

    Amorphous calcium carbonate (ACC) is a critical transient phase in the inorganic precipitation of CaCO3 and in biomineralization. The calcium carbonate crystallization pathway is thought to involve dehydration of more hydrated ACC to less hydrated ACC followed by the formation of anhydrous ACC. We present here computational studies of the transition of a hydrated ACC with a H2O/CaCO3 ratio of 1.0 to anhydrous ACC. During dehydration, ACC undergoes reorganization to a more ordered structure with a significant increase in density. The computed density of anhydrous ACC is similar to that of calcite, the stable crystalline phase. Compared to the crystalline CaCO3 phases, calcite, vaterite, and aragonite, the computed local structure of anhydrous ACC is most-similar to those of calcite and vaterite, but the overall structure is not well described by either. The strong hydrogen bond interaction between the carbonate ions and water molecules plays a crucial role in stabilizing the less hydrated ACC compositions compared to the more hydrated ones, leading to a progressively increasing hydration energy with decreasing water content.

  16. Mean, covariance, and effective dimension of stochastic distributed delay dynamics

    NASA Astrophysics Data System (ADS)

    René, Alexandre; Longtin, André

    2017-11-01

    Dynamical models are often required to incorporate both delays and noise. However, the inherently infinite-dimensional nature of delay equations makes formal solutions to stochastic delay differential equations (SDDEs) challenging. Here, we present an approach, similar in spirit to the analysis of functional differential equations, but based on finite-dimensional matrix operators. This results in a method for obtaining both transient and stationary solutions that is directly amenable to computation, and applicable to first order differential systems with either discrete or distributed delays. With fewer assumptions on the system's parameters than other current solution methods and no need to be near a bifurcation, we decompose the solution to a linear SDDE with arbitrary distributed delays into natural modes, in effect the eigenfunctions of the differential operator, and show that relatively few modes can suffice to approximate the probability density of solutions. Thus, we are led to conclude that noise makes these SDDEs effectively low dimensional, which opens the possibility of practical definitions of probability densities over their solution space.

  17. Novel calcium-sensing receptor cytoplasmic tail deletion mutation causing autosomal dominant hypocalcemia: molecular and clinical study.

    PubMed

    Obermannova, Barbora; Sumnik, Zdenek; Dusatkova, Petra; Cinek, Ondrej; Grant, Michael; Lebl, Jan; Hendy, Geoffrey N

    2016-04-01

    Autosomal dominant hypocalcemia (ADH) is a rare disorder caused by activating mutations of the calcium-sensing receptor (CASR). The treatment of ADH patients with 1α-hydroxylated vitamin D derivatives can cause hypercalciuria leading to nephrocalcinosis. We studied a girl who presented with hypoparathyroidism and asymptomatic hypocalcemia at age 2.5 years. Mutations of CASR were investigated by DNA sequencing. Functional analyses of mutant and WT CASRs were done in transiently transfected human embryonic kidney (HEK293) cells. The proband and her father are heterozygous for an eight-nucleotide deletion c.2703_2710delCCTTGGAG in the CASR encoding the intracellular domain of the protein. Transient expression of CASR constructs in kidney cells in vitro suggested greater cell surface expression of the mutant receptor with a left-shifted extracellular calcium dose-response curve relative to that of the WT receptor consistent with gain of function. Initial treatment of the patient with calcitriol led to increased urinary calcium excretion. Evaluation for mosaicism in the paternal grandparents of the proband was negative. We describe a novel naturally occurring deletion mutation within the CASR that apparently arose de novo in the father of the ADH proband. Functional analysis suggests that the cytoplasmic tail of the CASR contains determinants that regulate the attenuation of signal transduction. Early molecular analysis of the CASR gene in patients with isolated idiopathic hypoparathyroidism is recommended because of its relevance to clinical outcome and treatment choice. In ADH patients, calcium supplementation and low-dose cholecalciferol avoids hypocalcemic symptoms without compromising renal function. © 2016 European Society of Endocrinology.

  18. Light-Induced resetting of the circadian pacemaker: quantitative analysis of transient versus steady-state phase shifts.

    PubMed

    Watanabe, K; Deboer, T; Meijer, J H

    2001-12-01

    The suprachiasmatic nuclei of the hypothalamus contain the major circadian pacemaker in mammals, driving circadian rhythms in behavioral and physiological functions. This circadian pacemaker's responsiveness to light allows synchronization to the light-dark cycle. Phase shifting by light often involves several transient cycles in which the behavioral activity rhythm gradually shifts to its steady-state position. In this article, the authors investigate in Syrian hamsters whether a phase-advancing light pulse results in immediate shifts of the PRC at the next circadian cycle. In a first series of experiments, the authors aimed a light pulse at CT 19 to induce a phase advance. It appeared that the steady-state phase advances were highly correlated with activity onset in the first and second transient cycle. This enabled them to make a reliable estimate of the steady-state phase shift induced by a phase-advancing light pulse on the basis of activity onset in the first transient cycle. In the next series of experiments, they presented a light pulse at CT 19, which was followed by a second light pulse aimed at the delay zone of the PRC on the next circadian cycle. The immediate and steady-state phase delays induced by the second light pulse were compared with data from a third experiment in which animals received a phase-delaying light pulse only. The authors observed that the waveform of the phase-delay part of the PRC (CT 12-16) obtained in Experiment 2 was virtually identical to the phase-delay part of the PRC for a single light pulse (obtained in Experiment 3). This finding allowed for a quantitative assessment of the data. The analysis indicates that the delay part of the PRC-between CT 12 and CT 16-is rapidly reset following a light pulse at CT 19. These findings complement earlier findings in the hamster showing that after a light pulse at CT 19, the phase-advancing part of the PRC is immediately shifted. Together, the data indicate that the basis for phase

  19. Effects of dietary carbohydrates on metabolism of calcium and other minerals in normal subjects and patients with noninsulin-dependent diabetes mellitus.

    PubMed

    Garg, A; Bonanome, A; Grundy, S M; Unger, R H; Breslau, N A; Pak, C Y

    1990-04-01

    Transient hypercalciuria has been noted after high carbohydrate meals which is independent of dietary calcium and is probably due to impaired renal calcium reabsorption mediated by an increase in plasma insulin levels. Based on these observations, some investigators believe that long term intake of high carbohydrate diets may increase the risk of nephrolithiasis and possibly osteoporosis. Using a randomized cross-over design, we compared high carbohydrate diets (60% carbohydrate and 25% fat) with high fat diets (50% fat and 35% carbohydrate) for effects on metabolism of calcium and other minerals in eight normal subjects and eight euglycemic patients with noninsulin-dependent diabetes mellitus. All other dietary constituents, such as protein, fiber, fluid, minerals (including Ca, Mg, Na, K, and P), and caffeine intake, were kept constant. Despite higher daylong levels of plasma insulin on the high carbohydrate diets compared to the high fat diet in both normal and noninsulin-dependent diabetic subjects, no changes in daily urinary excretion of calcium or other constituents, associated with renal stone risk, were observed. Furthermore, there was no change in fractional intestinal 47Ca absorption. Although hypercalciuria may ensue transiently after high carbohydrate meals, we conclude that substitution of simple or complex carbohydrates for fats in an isocaloric manner for a longer duration does not result in significant urinary calcium loss, and therefore, high intakes of digestible carbohydrates may not increase the risk of nephrolithiasis or osteoporosis via this mechanism.

  20. Effect of chemical admixtures on properties of high-calcium fly ash geopolymer

    NASA Astrophysics Data System (ADS)

    Rattanasak, Ubolluk; Pankhet, Kanokwan; Chindaprasirt, Prinya

    2011-06-01

    Owing to the high viscosity of sodium silicate solution, fly ash geopolymer has the problems of low workability and rapid setting time. Therefore, the effect of chemical admixtures on the properties of fly ash geopolymer was studied to overcome the rapid set of the geopolymer in this paper. High-calcium fly ash and alkaline solution were used as starting materials to synthesize the geopolymer. Calcium chloride, calcium sulfate, sodium sulfate, and sucrose at dosages of 1wt% and 2wt% of fly ash were selected as admixtures based on concrete knowledge to improve the properties of the geopolymer. The setting time, compressive strength, and degree of reaction were recorded, and the microstructure was examined. The results show that calcium chloride significantly shortens both the initial and final setting times of the geopolymer paste. In addition, sucrose also delays the final setting time significantly. The degrees of reaction of fly ash in the geopolymer paste with the admixtures are all higher than those of the control paste. This contributes to the obvious increases in compressive strength.

  1. Hyperosmotically induced volume change and calcium signaling in intervertebral disk cells: the role of the actin cytoskeleton.

    PubMed

    Pritchard, Scott; Erickson, Geoffrey R; Guilak, Farshid

    2002-11-01

    Loading of the spine alters the osmotic environment in the intervertebral disk (IVD) as interstitial water is expressed from the tissue. Cells from the three zones of the IVD, the anulus fibrosus (AF), transition zone (TZ), and nucleus pulposus (NP), respond to osmotic stress with altered biosynthesis through a pathway that may involve calcium (Ca(2+)) as a second messenger. We examined the hypothesis that IVD cells respond to hyperosmotic stress by increasing the concentration of intracellular calcium ([Ca(2+)](i)) through a mechanism involving F-actin. In response to hyperosmotic stress, control cells from all zones decreased in volume and cells from the AF and TZ exhibited [Ca(2+)](i) transients, while cells from the NP did not. Extracellular Ca(2+) was necessary to initiate [Ca(2+)](i) transients. Stabilization of F-actin with phalloidin prevented the Ca(2+) response in AF and TZ cells and decreased the rate of volume change in cells from all zones, coupled with an increase in the elastic moduli and apparent viscosity. Conversely, actin breakdown with cytochalasin D facilitated Ca(2+) signaling while decreasing the elastic moduli and apparent viscosity for NP cells. These results suggest that hyperosmotic stress induces volume change in IVD cells and may initiate [Ca(2+)](i) transients through an actin-dependent mechanism.

  2. Impact of calcium signaling during infection of Neisseria meningitidis to human brain microvascular endothelial cells.

    PubMed

    Asmat, Tauseef M; Tenenbaum, Tobias; Jonsson, Ann-Beth; Schwerk, Christian; Schroten, Horst

    2014-01-01

    The pili and outer membrane proteins of Neisseria meningitidis (meningococci) facilitate bacterial adhesion and invasion into host cells. In this context expression of meningococcal PilC1 protein has been reported to play a crucial role. Intracellular calcium mobilization has been implicated as an important signaling event during internalization of several bacterial pathogens. Here we employed time lapse calcium-imaging and demonstrated that PilC1 of meningococci triggered a significant increase in cytoplasmic calcium in human brain microvascular endothelial cells, whereas PilC1-deficient meningococci could not initiate this signaling process. The increase in cytosolic calcium in response to PilC1-expressing meningococci was due to efflux of calcium from host intracellular stores as demonstrated by using 2-APB, which inhibits the release of calcium from the endoplasmic reticulum. Moreover, pre-treatment of host cells with U73122 (phospholipase C inhibitor) abolished the cytosolic calcium increase caused by PilC1-expressing meningococci demonstrating that active phospholipase C (PLC) is required to induce calcium transients in host cells. Furthermore, the role of cytosolic calcium on meningococcal adherence and internalization was documented by gentamicin protection assay and double immunofluorescence (DIF) staining. Results indicated that chelation of intracellular calcium by using BAPTA-AM significantly impaired PilC1-mediated meningococcal adherence to and invasion into host endothelial cells. However, buffering of extracellular calcium by BAPTA or EGTA demonstrated no significant effect on meningococcal adherence to and invasion into host cells. Taken together, these results indicate that meningococci induce calcium release from intracellular stores of host endothelial cells via PilC1 and cytoplasmic calcium concentrations play a critical role during PilC1 mediated meningococcal adherence to and subsequent invasion into host endothelial cells.

  3. Calcium

    MedlinePlus

    ... You'll also find calcium in broccoli and dark green, leafy vegetables (especially collard and turnip greens, ... can enjoy good sources of calcium such as dark green, leafy vegetables, broccoli, chickpeas, and calcium-fortified ...

  4. The effects of thermal stimuli on intracellular calcium change and histamine releases in rat basophilic leukemia mast cells

    NASA Astrophysics Data System (ADS)

    Wu, Zu-Hui; Zhu, Dan; Chen, Ji-Yao; Zhou, Lu-Wei

    2012-05-01

    The effects of thermal stimuli on rat basophilic leukemia mast cells were studied. The cells in calcium-contained or calcium-free buffers were thermally stimulated in the temperature range of 25-60 °C. The corresponding calcium ion concentration in cells [Ca2+]i as well as the released histamine from cells was measured with fluorescence staining methods. The ruthenium red (RR), a block of membrane calcium channels (transient receptor potential family V (TRPV)), was used in experiments. Under the stimulus of 25-50 °C, no significant difference on [Ca2+]i was found between these three groups of the cells in calcium-contained buffer without or with RR and cells in calcium-free saline, indicating that the increased calcium in cytosol did not result from the extracellular buffer but came from the intracellular calcium stores. The [Ca2+]i continuously increased under the temperature of 50-60 °C, but the RR and calcium-free saline can obviously diminish the [Ca2+]i increase at these high temperatures, reflecting that the opening of the TRPV2 channels leads to a calcium influx resulting in the [Ca2+]i increment. The histamine release also became significant in these cases. Since the released histamine is a well-known mediator for the microcirculation promotion, the histamine release from mast cells could be one of the mechanisms of thermal therapy.

  5. TRIENNIAL LACTATION SYMPOSIUM/BOLFA: Serotonin and the regulation of calcium transport in dairy cows.

    PubMed

    Hernandez, L L

    2017-12-01

    The mammary gland regulates maternal metabolism during lactation. Numerous factors within the tissue send signals to shift nutrients to the mammary gland for milk synthesis. Serotonin is a monoamine that has been well documented to regulate several aspects of lactation among species. Maintenance of maternal calcium homeostasis during lactation is a highly evolved process that is elegantly regulated by the interaction of the mammary gland with the bone, gut, and kidney tissues. It is well documented that dietary calcium is insufficient to maintain maternal calcium concentrations during lactation, and mammals must rely on bone resorption to maintain normocalcemia. Our recent work focused on the ability of the mammary gland to function as an accessory parathyroid gland during lactation. It was demonstrated that serotonin acts to stimulate parathyroid hormone-related protein (PTHrP) in the mammary gland during lactation. The main role of mammary-derived PTHrP during mammalian lactation is to stimulate bone resorption to maintain maternal calcium homeostasis during lactation. In addition to regulating PTHrP, it was shown that serotonin appears to directly affect calcium transporters and pumps in the mammary gland. Our current working hypothesis regarding the control of calcium during lactation is as follows: serotonin directly stimulates PTHrP production in the mammary gland through interaction with the sonic hedgehog signaling pathway. Simultaneously, serotonin directly increases calcium movement into the mammary gland and, subsequently, milk. These 2 direct actions of serotonin combine to induce a transient maternal hypocalcemia required to further stimulate PTHrP production and calcium mobilization from bone. Through these 2 routes, serotonin is able to improve maternal calcium concentrations. Furthermore, we have shown that Holstein and Jersey cows appear to regulate calcium in different manners and also respond differently to serotonergic stimulation of the calcium

  6. Photoreception and signal transduction in corals: proteomic and behavioral evidence for cytoplasmic calcium as a mediator of light responsivity.

    PubMed

    Hilton, J Daniel; Brady, Aisling K; Spaho, Skender A; Vize, Peter D

    2012-12-01

    Little is known about how corals sense and respond to light. In this report the proteome of coral is explored using 2D protein electrophoresis in two species, Montastraea cavernosa and Acropora millepora. Multiple protein species have major shifts in abundance in both species when sampled in daylight compared to corals sampled late in the night. These changes were observed both in larvae lacking zooxanthellae and in adult tissue containing zooxanthellae, including both Pacific and Caribbean corals. When larvae kept in the dark were treated with either thapsigargin or ionomycin, compounds that raise the level of cytoplasmic calcium, the night pattern of proteins shifted to the day pattern. This implies that photoreceptors responding to light elevate calcium levels and that calcium acts as the second messenger relaying light responses in corals. Corals spawn at night, and spawning can be delayed by exposure to light or pushed forward by early artificial sunsets. In a series of behavioral experiments, treatment of corals with ionomycin or thapsigargin was found to delay broadcast spawning in M. franksi, demonstrating that pharmacologically altering cytoplasmic calcium levels generates the same response as light exposure. Together these results show that the photo-responsive cells of corals detect and respond to light by altering cytoplasmic calcium levels, similarly to the transduction pathways in complex invertebrate eyes. The primacy of cytoplasmic calcium levels in light responsivity has broad implications for coral reproduction, including predicting how different species spawn at different times after sunset and how reproductive isolation is achieved during coral speciation.

  7. Calcium channel blockers: spectrum of side effects and drug interactions.

    PubMed

    Hedner, T

    1986-01-01

    Calcium antagonists are a chemically heterogenous group of agents with potent cardiovascular effects which are beneficial in the treatment of angina pectoris, arterial hypertension and cardiac arrhythmias. The main side effects for the group are dose-dependent and the result of the main action or actions of the calcium antagonists, i.e. vasodilatation, negative inotropic effects and antiarrhythmic effects. Pronounced hypotension is reported for the main calcium antagonist drugs; verapamil, diltiazem and nifedipine. While conduction disturbances and bradycardia are seen more often after verapamil and diltiazem, tachycardia, headache and flush are more frequent after nifedipine. Constipation is relatively frequent after verapamil while nifedipine is reported to induce diarrhea in som patients. Idiosyncratic side effects are rare but have been reported from the skin, mouth, musculoskeletal system, the liver and the central nervous system. These side effects include urticarial rashes, gingival hyperplasia, arthralgia, hepathotoxicity and transistory mental confusion or akathisia. Verapamil, diltiazem and possibly also nifedipine have been reported to increase serum digoxin concentrations but the clinical relevance of these drug interactions are not clear. Furthermore, verapamil and diltiazem may potentiate the effects of beta-adrenergic blocking drugs and verapamil may also potentiate the effects of neuromuscular blocking drugs. It is concluded that side effects after calcium antagonist drugs are mostly trivial and transient although they may sometimes be relatively common. Clinically relevant drug interactions are few. Judged from the point of efficacy and safety, calcium antagonists will have a major place in the future pharmacotherapy of several cardiovascular disorders.

  8. Exaggerated levothyroxine malabsorption due to calcium carbonate supplementation in gastrointestinal disorders.

    PubMed

    Csako, G; McGriff, N J; Rotman-Pikielny, P; Sarlis, N J; Pucino, F

    2001-12-01

    To describe a patient with primary hypothyroidism in whom ingestion of levothyroxine with calcium carbonate led to markedly elevated serum thyrotropin concentrations. A 61-year-old white woman with primary hypothyroidism, systemic lupus erythematosus, celiac disease, and history of Whipple resection for pancreatic cancer was euthyroid with levothyroxine 175-188 micrograms/d. After taking a high dose of calcium carbonate (1250 mg three times daily) with levothyroxine, she developed biochemical evidence of hypothyroidism (thyrotropin up to 41.4 mU/L) while remaining clinically euthyroid. Delaying calcium carbonate administration by four hours returned her serum thyrotropin to a borderline high concentration (5.7 mU/L) within a month. Serum concentrations of unbound and total thyroxine and triiodothyronine tended to decrease, but remained borderline low to normal while the patient concomitantly received levothyroxine and calcium carbonate. Concomitant administration of levothyroxine and calcium carbonate often results in levothyroxine malabsorption. While in most patients the clinical consequences of this interaction, even with prolonged exposure, are relatively small, overt hypothyrodism may develop in patients with preexisting malabsorption disorders. However, as the current case illustrates, the clinical manifestations of the initial levothyroxine deficit may not always be apparent and, of all usual laboratory thyroid function tests, only thyrotropin measurement will reliably uncover the exaggerated levothyroxine malabsorption. Decreased absorption of levothyroxine when given with calcium carbonate may be particularly pronounced in patients with preexisting malabsorption disorders. Once recognized, a change in drug administration schedule usually minimizes or eliminates this interaction.

  9. Measurand transient signal suppressor

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor)

    1994-01-01

    A transient signal suppressor for use in a controls system which is adapted to respond to a change in a physical parameter whenever it crosses a predetermined threshold value in a selected direction of increasing or decreasing values with respect to the threshold value and is sustained for a selected discrete time interval is presented. The suppressor includes a sensor transducer for sensing the physical parameter and generating an electrical input signal whenever the sensed physical parameter crosses the threshold level in the selected direction. A manually operated switch is provided for adapting the suppressor to produce an output drive signal whenever the physical parameter crosses the threshold value in the selected direction of increasing or decreasing values. A time delay circuit is selectively adjustable for suppressing the transducer input signal for a preselected one of a plurality of available discrete suppression time and producing an output signal only if the input signal is sustained for a time greater than the selected suppression time. An electronic gate is coupled to receive the transducer input signal and the timer output signal and produce an output drive signal for energizing a control relay whenever the transducer input is a non-transient signal which is sustained beyond the selected time interval.

  10. Structural dynamics of the cell nucleus: basis for morphology modulation of nuclear calcium signaling and gene transcription.

    PubMed

    Queisser, Gillian; Wiegert, Simon; Bading, Hilmar

    2011-01-01

    Neuronal morphology plays an essential role in signal processing in the brain. Individual neurons can undergo use-dependent changes in their shape and connectivity, which affects how intracellular processes are regulated and how signals are transferred from one cell to another in a neuronal network. Calcium is one of the most important intracellular second messengers regulating cellular morphologies and functions. In neurons, intracellular calcium levels are controlled by ion channels in the plasma membrane such as NMDA receptors (NMDARs), voltage-gated calcium channels (VGCCs) and certain α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) as well as by calcium exchange pathways between the cytosol and internal calcium stores including the endoplasmic reticulum and mitochondria. Synaptic activity and the subsequent opening of ligand and/or voltage-gated calcium channels can initiate cytosolic calcium transients which propagate towards the cell soma and enter the nucleus via its nuclear pore complexes (NPCs) embedded in the nuclear envelope. We recently described the discovery that in hippocampal neurons the morphology of the nucleus affects the calcium dynamics within the nucleus. Here we propose that nuclear infoldings determine whether a nucleus functions as an integrator or detector of oscillating calcium signals. We outline possible ties between nuclear mophology and transcriptional activity and discuss the importance of extending the approach to whole cell calcium signal modeling in order to understand synapse-to-nucleus communication in healthy and dysfunctional neurons.

  11. Crystallization and preliminary X-ray characterization of the genetically encoded fluorescent calcium indicator protein GCaMP2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodríguez Guilbe, María M.; Protein Research and Development Center, University of Puerto Rico; Alfaro Malavé, Elisa C.

    The genetically encoded fluorescent calcium-indicator protein GCaMP2 was crystallized in the calcium-saturated form. X-ray diffraction data were collected to 2.0 Å resolution and the structure was solved by molecular replacement. Fluorescent proteins and their engineered variants have played an important role in the study of biology. The genetically encoded calcium-indicator protein GCaMP2 comprises a circularly permuted fluorescent protein coupled to the calcium-binding protein calmodulin and a calmodulin target peptide, M13, derived from the intracellular calmodulin target myosin light-chain kinase and has been used to image calcium transients in vivo. To aid rational efforts to engineer improved variants of GCaMP2, thismore » protein was crystallized in the calcium-saturated form. X-ray diffraction data were collected to 2.0 Å resolution. The crystals belong to space group C2, with unit-cell parameters a = 126.1, b = 47.1, c = 68.8 Å, β = 100.5° and one GCaMP2 molecule in the asymmetric unit. The structure was phased by molecular replacement and refinement is currently under way.« less

  12. Filamin and Phospholipase C-ε Are Required for Calcium Signaling in the Caenorhabditis elegans Spermatheca

    PubMed Central

    Kovacevic, Ismar; Orozco, Jose M.; Cram, Erin J.

    2013-01-01

    The Caenorhabditis elegans spermatheca is a myoepithelial tube that stores sperm and undergoes cycles of stretching and constriction as oocytes enter, are fertilized, and exit into the uterus. FLN-1/filamin, a stretch-sensitive structural and signaling scaffold, and PLC-1/phospholipase C-ε, an enzyme that generates the second messenger IP3, are required for embryos to exit normally after fertilization. Using GCaMP, a genetically encoded calcium indicator, we show that entry of an oocyte into the spermatheca initiates a distinctive series of IP3-dependent calcium oscillations that propagate across the tissue via gap junctions and lead to constriction of the spermatheca. PLC-1 is required for the calcium release mechanism triggered by oocyte entry, and FLN-1 is required for timely initiation of the calcium oscillations. INX-12, a gap junction subunit, coordinates propagation of the calcium transients across the spermatheca. Gain-of-function mutations in ITR-1/IP3R, an IP3-dependent calcium channel, and loss-of-function mutations in LFE-2, a negative regulator of IP3 signaling, increase calcium release and suppress the exit defect in filamin-deficient animals. We further demonstrate that a regulatory cassette consisting of MEL-11/myosin phosphatase and NMY-1/non-muscle myosin is required for coordinated contraction of the spermatheca. In summary, this study answers long-standing questions concerning calcium signaling dynamics in the C. elegans spermatheca and suggests FLN-1 is needed in response to oocyte entry to trigger calcium release and coordinated contraction of the spermathecal tissue. PMID:23671426

  13. Calcium ion propagation in cultured keratinocytes and other cells in skin in response to hydraulic pressure stimulation.

    PubMed

    Goto, Makiko; Ikeyama, Kazuyuki; Tsutsumi, Moe; Denda, Sumiko; Denda, Mitsuhiro

    2010-07-01

    We have previously suggested that a variety of environmental factors might be first sensed by epidermal keratinocytes, which represent the frontier of the body. To further examine this idea, in the present study, we examined the intracellular calcium responses of cultured keratinocytes to external hydraulic pressure. First, we compared the responses of undifferentiated and differentiated keratinocytes with those of fibroblasts, vascular endothelial cells (VEC), and lymphatic endothelial cells. Elevation of intracellular calcium was observed after application of pressure to keratinocytes, fibroblasts, and VEC. The calcium propagation extended over a larger area and continued for a longer period of time in differentiated keratinocytes, as compared with the other cells. The response of the keratinocytes was dramatically reduced when the cells were incubated in medium without calcium. Application of a non-selective transient receptor potential (TRP) channel blocker also attenuated the calcium response. These results suggest that differentiated keratinocytes are sensitive to external pressure and that TRP might be involved in the mechanism of their response. (c) 2010 Wiley-Liss, Inc.

  14. The Positive Inotropic Effect of Pyruvate Involves an Increase in Myofilament Calcium Sensitivity

    PubMed Central

    Torres, Carlos A. A.; Varian, Kenneth D.; Canan, Cynthia H.; Davis, Jonathan P.; Janssen, Paul M. L.

    2013-01-01

    Pyruvate is a metabolic fuel that is a potent inotropic agent. Despite its unique inotropic and antioxidant properties, the molecular mechanism of its inotropic mechanism is still largely unknown. To examine the inotropic effect of pyruvate in parallel with intracellular calcium handling under near physiological conditions, we measured pH, myofilament calcium sensitivity, developed force, and calcium transients in ultra thin rabbit heart trabeculae at 37 °C loaded iontophoretically with the calcium indicator bis-fura-2. By contrasting conditions of control versus sarcoplasmic reticulum block (with either cyclopiazonic acid and ryanodine or with thapsigargin) we were able to characterize and isolate the effects of pyruvate on sarcoplasmic reticulum calcium handling and developed force. A potassium contracture technique was subsequently utilized to assess the force-calcium relationship and thus the myofilament calcium sensitivity. Pyruvate consistently increased developed force whether or not the sarcoplasmic reticulum was blocked (16.8±3.5 to 24.5±5.1 vs. 6.9±2.6 to 12.5±4.4 mN/mm2, non-blocked vs. blocked sarcoplasmic reticulum respectively, p<0.001, n = 9). Furthermore, the sensitizing effect of pyruvate on the myofilaments was demonstrated by potassium contractures (EC50 at baseline versus 20 minutes of pyruvate infusion (peak force development) was 701±94 vs. 445±65 nM, p<0.01, n = 6). This study is the first to demonstrate that a leftward shift in myofilament calcium sensitivity is an important mediator of the inotropic effect of pyruvate. This finding can have important implications for future development of therapeutic strategies in the management of heart failure. PMID:23691074

  15. Effects of calcium channel blockers on the contractility of the filariid Acanthocheilonema viteae.

    PubMed

    Christ, D; Stillson, T

    1992-01-01

    The role of calcium in muscle contractility was explored in the filarial nematode Acanthocheilonema viteae (Dipetalonema viteae). The parasite was slit open longitudinally and mounted in a smooth-muscle chamber that had been filled with aerated (95% N2/5% CO2) physiological solution at 37 degrees C. Nifedipine (10(-6) M) and cadmium (3 x 10(-5) M) reduced the spontaneous isotonic contractions of A. viteae, whereas verapamil (10(-5) M) and diltiazem (10(-5) M) enhanced them. The effects of nifedipine and verapamil did not appear to be due to the solvent ethanol. All of the drugs reduced the maximal contraction induced by acetylcholine (ACh, 10(-5) M), although nifedipine was the most potent. After the exposure of worm preparations to a calcium-free medium containing ethyleneglycol-bis-(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA, 10(-4) M) for 1 h, application of ACh (10(-5) M) induced a small, transient contraction. Subsequent applications of ACh in this medium had no effect. Thus, the nematode muscle contraction appears to depend on extracellular calcium. Nifedipine, diltiazem, and verapamil could act by reducing the calcium influx across the muscle membrane.

  16. Calcium Currents of Olfactory Bulb Juxtaglomerular Cells: Profile and Multiple Conductance Plateau Potential Simulation

    PubMed Central

    Masurkar, Arjun V.; Chen, Wei R.

    2011-01-01

    The olfactory glomerulus is the locus of information transfer between olfactory sensory neurons and output neurons of the olfactory bulb. Juxtaglomerular cells (JGCs) may influence intraglomerular processing by firing plateau potentials that support multiple spikes. It is unclear what inward currents mediate this firing pattern. In previous work, we characterized potassium currents of JGCs. We focus here on the inward currents using whole cell current clamp and voltage recording in a rat in vitro slice preparation, as well as computer simulation. We first showed that sodium current was not required to mediate plateau potentials. Voltage clamp characterization of calcium current (ICa) determined that ICa consisted of a slow activating, rapidly inactivating (τ10%–90% rise 6–8ms, τinactivation 38–77ms) component Icat1, similar to T-type currents, and a sustained (τinactivation≫500ms) component Icat2, likely composed of L-type and P/Q-type currents. We used computer simulation to test their roles in plateau potential firing. We robustly modeled Icat1 and Icat2 to Hodgkin-Huxley schemes (m3h and m2, respectively) and simulated a JGC plateau potential with 6 conductances: calcium currents as above, potassium currents from our prior study (A-type Ikt1, D-type Ikt2, delayed rectifier Ikt3), and a fast sodium current (INa). We demonstrated that Icat1 was required for mediating the plateau potential, unlike INa and Icat2, and its τinactivation determined plateau duration. We also found that Ikt1 dictated plateau potential shape more than Ikt2 and Ikt3. The influence of these two transient and opposing conductances suggests a unique mechanism of plateau potential physiology. PMID:21704681

  17. MOSFiT: Modular Open Source Fitter for Transients

    NASA Astrophysics Data System (ADS)

    Guillochon, James; Nicholl, Matt; Villar, V. Ashley; Mockler, Brenna; Narayan, Gautham; Mandel, Kaisey S.; Berger, Edo; Williams, Peter K. G.

    2018-05-01

    Much of the progress made in time-domain astronomy is accomplished by relating observational multiwavelength time-series data to models derived from our understanding of physical laws. This goal is typically accomplished by dividing the task in two: collecting data (observing), and constructing models to represent that data (theorizing). Owing to the natural tendency for specialization, a disconnect can develop between the best available theories and the best available data, potentially delaying advances in our understanding new classes of transients. We introduce MOSFiT: the Modular Open Source Fitter for Transients, a Python-based package that downloads transient data sets from open online catalogs (e.g., the Open Supernova Catalog), generates Monte Carlo ensembles of semi-analytical light-curve fits to those data sets and their associated Bayesian parameter posteriors, and optionally delivers the fitting results back to those same catalogs to make them available to the rest of the community. MOSFiT is designed to help bridge the gap between observations and theory in time-domain astronomy; in addition to making the application of existing models and creation of new models as simple as possible, MOSFiT yields statistically robust predictions for transient characteristics, with a standard output format that includes all the setup information necessary to reproduce a given result. As large-scale surveys such as that conducted with the Large Synoptic Survey Telescope (LSST), discover entirely new classes of transients, tools such as MOSFiT will be critical for enabling rapid comparison of models against data in statistically consistent, reproducible, and scientifically beneficial ways.

  18. 21 CFR 172.330 - Calcium pantothenate, calcium chloride double salt.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium pantothenate, calcium chloride double salt... FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.330 Calcium pantothenate, calcium chloride double salt. The food additive calcium chloride double salt of calcium pantothenate may...

  19. Terminal Transient Phase of Chaotic Transients

    NASA Astrophysics Data System (ADS)

    Lilienkamp, Thomas; Parlitz, Ulrich

    2018-03-01

    Transient chaos in spatially extended systems can be characterized by the length of the transient phase, which typically grows quickly with the system size (supertransients). For a large class of these systems, the chaotic phase terminates abruptly, without any obvious precursors in commonly used observables. Here we investigate transient spatiotemporal chaos in two different models of this class. By probing the state space using perturbed trajectories we show the existence of a "terminal transient phase," which occurs prior to the abrupt collapse of chaotic dynamics. During this phase the impact of perturbations is significantly different from the earlier transient and particular patterns of (non)susceptible regions in state space occur close to the chaotic trajectories. We therefore hypothesize that even without perturbations proper precursors for the collapse of chaotic transients exist, which might be highly relevant for coping with spatiotemporal chaos in cardiac arrhythmias or brain functionality, for example.

  20. Interpreting the Marine Calcium Isotope Record: Influence of Reef Builders

    NASA Astrophysics Data System (ADS)

    Boehm, F.; Eisenhauer, A.; Farkas, J.; Kiessling, W.; Veizer, J.; Wallmann, K.

    2008-12-01

    The calcium isotopic composition of seawater as recorded in brachiopod shells varied substantially during the Paleozoic (Farkas et al. 2007, Geochim. Cosmochim. Acta, 71, 5117-5134). The most prominent feature of the record is an excursion to higher 44Ca/40Ca values that started during the Early Carboniferous and lasted until the Permian. The shift occurred shortly after the transition from a calcite-sea to an aragonite-sea (Sandberg 1983, Nature 305, 19-22; Stanley and Hardie 1998, Pal3, 144, 3-19). It therefore has been interpreted to reflect a change in the average calcium isotope fractionation of carbonates produced in the oceans. Aragonite is depleted by about 0.6 permil in 44Ca/40Ca compared to calcite (Gussone et al. 2005, Geochim. Cosmochim. Acta, 69, 4485-4494). Consequently a transient shift from calcite dominated to an aragonite dominated calcium carbonate sedimentation could have caused the observed 0.5 permil isotope shift. We compare the marine calcium isotope record with a new compilation of the Phanerozoic trends in the skeletal mineralogy of marine invertebrates (Kiessling et al. 2008, Nature Geoscience, 1, 527-530). The compilation is based on data collected in the PaleoReef database and the Paleobiology Database, which include information on Phanerozoic reef complexes and taxonomic collection data of Phanerozoic biota, respectively. We find a strong positive correlation between the calcium isotope ratios and the abundance of aragonitic reef builders from the Silurian until the Permian at a sample resolution of about 10 million years. The two records, however, diverge in the Triassic, when reefs were dominated by aragonite but the calcium isotope values remained at a relatively low level. We also find a good correlation between calcium isotopes and the proportion of aragonite in the general record of Phanerozoic biota. However, in this case the records start to diverge already in the latest Carboniferous. The observations suggest that the

  1. Crystallization and preliminary X-ray characterization of the genetically encoded fluorescent calcium indicator protein GCaMP2

    PubMed Central

    Rodríguez Guilbe, María M.; Alfaro Malavé, Elisa C.; Akerboom, Jasper; Marvin, Jonathan S.; Looger, Loren L.; Schreiter, Eric R.

    2008-01-01

    Fluorescent proteins and their engineered variants have played an important role in the study of biology. The genetically encoded calcium-indicator protein GCaMP2 comprises a circularly permuted fluorescent protein coupled to the calcium-binding protein calmodulin and a calmodulin target peptide, M13, derived from the intracellular calmodulin target myosin light-chain kinase and has been used to image calcium transients in vivo. To aid rational efforts to engineer improved variants of GCaMP2, this protein was crystallized in the calcium-saturated form. X-ray diffraction data were collected to 2.0 Å resolution. The crystals belong to space group C2, with unit-cell parameters a = 126.1, b = 47.1, c = 68.8 Å, β = 100.5° and one GCaMP2 molecule in the asymmetric unit. The structure was phased by molecular replacement and refinement is currently under way. PMID:18607093

  2. Fast, transient and specific intracellular ROS changes in living root hair cells responding to Nod factors (NFs).

    PubMed

    Cárdenas, Luis; Martínez, Adán; Sánchez, Federico; Quinto, Carmen

    2008-12-01

    The role of reactive oxygen species (ROS) in root-nodule development and metabolism has been extensively studied. However, there is limited evidence showing ROS changes during the earliest stages of the interaction between legumes and rhizobia. Herein, using ratio-imaging analysis, increasing and transient ROS levels were detected at the tips of actively growing root hair cells within seconds after addition of Nod factors (NFs). This transient response (which lasted up to 3 min) was Nod-factor-specific, as chitin oligomers (pentamers) failed to induce a similar response. When chitosan, a fungal elicitor, or ATP was used instead, a sustained increasing signal was observed. As ROS levels are transiently elevated after the perception of NFs, we propose that this ROS response is characteristic of the symbiotic interaction. Furthermore, we discuss the remarkable spatial and temporal coincidences between ROS and transiently increased calcium levels observed in root hair cells immediately after the detection of NFs.

  3. Investigations of calcium spectral lines in laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Ching, Sim Yit; Tariq, Usman; Haider, Zuhaib; Tufail, Kashif; Sabri, Salwanie; Imran, Muhammad; Ali, Jalil

    2017-03-01

    Laser-induced breakdown spectroscopy (LIBS) is a direct and versatile analytical technique that performs the elemental composition analysis based on optical emission produced by laser induced-plasma, with a little or no sample preparation. The performance of the LIBS technique relies on the choice of experimental conditions which must be thoroughly explored and optimized for each application. The main parameters affecting the LIBS performance are the laser energy, laser wavelength, pulse duration, gate delay, geometrical set-up of the focusing and collecting optics. In LIBS quantitative analysis, the gate delay and laser energy are very important parameters that have pronounced impact on the accuracy of the elemental composition information of the materials. The determination of calcium elements in the pelletized samples was investigated and served for the purpose of optimizing the gate delay and laser energy by studying and analyzing the results from emission intensities collected and signal to background ratio (S/B) for the specified wavelengths.

  4. Calcium transients recorded with arsenazo III in the presynaptic terminal of the squid giant synapse.

    PubMed

    Miledi, R; Parker, I

    1981-05-22

    Transient changes in free intracellular Ca2+ concentration were monitored in the presynaptic terminal of the giant synapse of the squid, by means of the Ca2+-sensitive dye arsenazo III. Calibration experiments showed a linear relation between the amount of Ca2+ injected by iontophoresis into the terminal, and the peak size of the arsenazo light absorbance record. A light signal could be detected on tetanic stimulation of the presynaptic axon bathed in sea water containing 45 mM Ca2+. During a 1 s tetanus the light signal rose approximately linearly, even though transmitter release declined rapidly and the light signal subsequently declined with a half-time of 2-6 s. The Ca2+ transient elicited by single nerve impulses was recorded by signal averaging, and showed a time course very much slower than the duration of transmitter release.

  5. Inference of neuronal network spike dynamics and topology from calcium imaging data

    PubMed Central

    Lütcke, Henry; Gerhard, Felipe; Zenke, Friedemann; Gerstner, Wulfram; Helmchen, Fritjof

    2013-01-01

    Two-photon calcium imaging enables functional analysis of neuronal circuits by inferring action potential (AP) occurrence (“spike trains”) from cellular fluorescence signals. It remains unclear how experimental parameters such as signal-to-noise ratio (SNR) and acquisition rate affect spike inference and whether additional information about network structure can be extracted. Here we present a simulation framework for quantitatively assessing how well spike dynamics and network topology can be inferred from noisy calcium imaging data. For simulated AP-evoked calcium transients in neocortical pyramidal cells, we analyzed the quality of spike inference as a function of SNR and data acquisition rate using a recently introduced peeling algorithm. Given experimentally attainable values of SNR and acquisition rate, neural spike trains could be reconstructed accurately and with up to millisecond precision. We then applied statistical neuronal network models to explore how remaining uncertainties in spike inference affect estimates of network connectivity and topological features of network organization. We define the experimental conditions suitable for inferring whether the network has a scale-free structure and determine how well hub neurons can be identified. Our findings provide a benchmark for future calcium imaging studies that aim to reliably infer neuronal network properties. PMID:24399936

  6. Spermine selectively inhibits high-conductance, but not low-conductance calcium-induced permeability transition pore.

    PubMed

    Elustondo, Pia A; Negoda, Alexander; Kane, Constance L; Kane, Daniel A; Pavlov, Evgeny V

    2015-02-01

    The permeability transition pore (PTP) is a large channel of the mitochondrial inner membrane, the opening of which is the central event in many types of stress-induced cell death. PTP opening is induced by elevated concentrations of mitochondrial calcium. It has been demonstrated that spermine and other polyamines can delay calcium-induced swelling of isolated mitochondria, suggesting their role as inhibitors of the mitochondrial PTP. Here we further investigated the mechanism by which spermine inhibits the calcium-induced, cyclosporine A (CSA) -sensitive PTP by using three indicators: 1) calcium release from the mitochondria detected with calcium green, 2) mitochondrial membrane depolarization using TMRM, and 3) mitochondrial swelling by measuring light absorbance. We found that despite calcium release and membrane depolarization, indicative of PTP activation, mitochondria underwent only partial swelling in the presence of spermine. This was in striking contrast to the high-amplitude swelling detected in control mitochondria and in mitochondria treated with the PTP inhibitor CSA. We conclude that spermine selectively prevents opening of the high-conductance state, while allowing activation of the lower conductance state of the PTP. We propose that the existence of lower conductance, stress-induced PTP might play an important physiological role, as it is expected to allow the release of toxic levels of calcium, while keeping important molecules (e.g., NAD) within the mitochondrial matrix. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Intracellular calcium: a prerequisite for aldosterone action.

    PubMed

    Schäfer, C; Shahin, V; Albermann, L; Schillers, H; Hug, M J; Oberleithner, H

    2003-12-01

    Transport of salt and water in various tissues is under control of the mineralocorticoid hormone aldosterone. As a liphophilic hormone, aldosterone diffuses through the plasma membrane and, then, binds to cytosolic mineralocorticoid receptors in the target cells. After binding to nuclear pore complexes, the activated receptor is translocated to the nucleus where transcription processes are initiated. After a lag period of about 20 minutes hormone-specific early mRNA transcripts leave the nucleus through nuclear pores. Some of the steps in this cascade can be followed by electrophysiology in Xenopus laevis oocyte nuclei. In addition to the genomic pathway, aldosterone exerts a rapid pre-genomic response that involves an increase in intracellular calcium. In this study, we tested for the potential role of Ca(2+) in the genomic response of the hormone. We measured the electrical resistance across the nuclear envelope in response to aldosterone, in presence and absence of intracellular Ca(2+). Nuclear envelope electrical resistance reflects receptor binding to the nuclear pore complexes ("early" resistance peak, 2 minutes after aldosterone), ongoing transcription ("transient" resistance drop, 5-15 minutes after aldosterone) and mRNA export ("late" resistance peak, 20 minutes after aldosterone). Pre-injection of the Ca(2+) chelator EGTA eliminated all electrical responses evoked by aldosterone. The transient resistance drop and the late resistance peak, induced by the hormone, were prevented by the transcription inhibitor actinomycin D, coinjected with aldosterone, while the early resistance peak remained unaffected. We conclude that (i). the presence of intracellular Ca(2+) is a prerequisite for the genomic action of aldosterone. (ii). Intracellular calcium plays a role early in the signaling cascade, either in agonist-receptor interaction, or receptor transport/docking to the nuclear pore complexes.

  8. Background norepinephrine primes astrocytic calcium responses to subsequent norepinephrine stimuli in the cerebral cortex.

    PubMed

    Nuriya, Mutsuo; Takeuchi, Miyabi; Yasui, Masato

    2017-01-29

    Norepinephrine (NE) levels in the cerebral cortex are regulated in two modes; the brain state is correlated with slow changes in background NE concentration, while salient stimuli induce transient NE spikes. Previous studies have revealed their diverse neuromodulatory actions; however, the modulatory role of NE on astrocytic activity has been poorly characterized thus far. In this study, we evaluated the modulatory action of background NE on astrocytic responses to subsequent stimuli, using two-photon calcium imaging of acute murine cortical brain slices. We find that subthreshold background NE significantly augments calcium responses to subsequent pulsed NE stimulation in astrocytes. This priming effect is independent of neuronal activity and is mediated by the activation of β-adrenoceptors and the downstream cAMP pathway. These results indicate that background NE primes astrocytes for subsequent calcium responses to NE stimulation and suggest a novel gliomodulatory role for brain state-dependent background NE in the cerebral cortex. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Optical transient monitor

    NASA Astrophysics Data System (ADS)

    Bernas, Martin; Páta, Petr; Hudec, René; Soldán, Jan; Rezek, Tomáš; Castro-Tirado, Alberto J.

    1998-05-01

    Although there are several optical GRB follow-up systems in operation and/or in development, some of them with a very short response time, they will never be able to provide true simultaneous (no delay) and pre-burst optical data for GRBs. We report on the development and tests of a monitoring experiment expected to be put into test operation in 1998. The system should detect Optical Transients down to mag 6-7 (few seconds duration assumed) over a wide field of view. The system is based on the double CCD wide-field cameras ST8. For the real time evaluation of the signal from both cameras, two TMS 320C40 processors are used. Using two channels differing in spectral sensitivity and processing of temporal sequence of images allows us to eliminate man-made objects and defects of the CCD electronics. The system is controlled by a standard PC computer.

  10. Canonical transient receptor potential channel 2 (TRPC2): old name-new games. Importance in regulating of rat thyroid cell physiology.

    PubMed

    Törnquist, Kid; Sukumaran, Pramod; Kemppainen, Kati; Löf, Christoffer; Viitanen, Tero

    2014-11-01

    In addition to the TSH-cyclic AMP signalling pathway, calcium signalling is of crucial importance in thyroid cells. Although the importance of calcium signalling has been thoroughly investigated for several decades, the nature of the calcium channels involved in signalling is unknown. In a recent series of investigations using the well-studied rat thyroid FRTL-5 cell line, we showed that these cells exclusively express the transient receptor potential canonical 2 (TRPC2) channel. Our results suggested that the TRPC2 channel is of significant importance in regulating thyroid cell function. These investigations were the first to show that thyroid cells express a member of the TRPC family of ion channels. In this review, we will describe the importance of the TRPC2 channel in regulating TSH receptor expression, thyroglobulin maturation, intracellular calcium and iodide homeostasis and that the channel also regulates thyroid cell proliferation.

  11. Modeling the effect of transient populations on epidemics in Washington DC.

    PubMed

    Parikh, Nidhi; Youssef, Mina; Swarup, Samarth; Eubank, Stephen

    2013-11-06

    Large numbers of transients visit big cities, where they come into contact with many people at crowded areas. However, epidemiological studies have not paid much attention to the role of this subpopulation in disease spread. We evaluate the effect of transients on epidemics by extending a synthetic population model for the Washington DC metro area to include leisure and business travelers. A synthetic population is obtained by combining multiple data sources to build a detailed minute-by-minute simulation of population interaction resulting in a contact network. We simulate an influenza-like illness over the contact network to evaluate the effects of transients on the number of infected residents. We find that there are significantly more infections when transients are considered. Since much population mixing happens at major tourism locations, we evaluate two targeted interventions: closing museums and promoting healthy behavior (such as the use of hand sanitizers, covering coughs, etc.) at museums. Surprisingly, closing museums has no beneficial effect. However, promoting healthy behavior at the museums can both reduce and delay the epidemic peak. We analytically derive the reproductive number and perform stability analysis using an ODE-based model.

  12. Modeling the effect of transient populations on epidemics in Washington DC

    NASA Astrophysics Data System (ADS)

    Parikh, Nidhi; Youssef, Mina; Swarup, Samarth; Eubank, Stephen

    2013-11-01

    Large numbers of transients visit big cities, where they come into contact with many people at crowded areas. However, epidemiological studies have not paid much attention to the role of this subpopulation in disease spread. We evaluate the effect of transients on epidemics by extending a synthetic population model for the Washington DC metro area to include leisure and business travelers. A synthetic population is obtained by combining multiple data sources to build a detailed minute-by-minute simulation of population interaction resulting in a contact network. We simulate an influenza-like illness over the contact network to evaluate the effects of transients on the number of infected residents. We find that there are significantly more infections when transients are considered. Since much population mixing happens at major tourism locations, we evaluate two targeted interventions: closing museums and promoting healthy behavior (such as the use of hand sanitizers, covering coughs, etc.) at museums. Surprisingly, closing museums has no beneficial effect. However, promoting healthy behavior at the museums can both reduce and delay the epidemic peak. We analytically derive the reproductive number and perform stability analysis using an ODE-based model.

  13. Calcium deprivation increases the palatability of calcium solutions in rats.

    PubMed

    McCaughey, Stuart A; Forestell, Catherine A; Tordoff, Michael G

    2005-02-15

    Calcium-deprived rats have elevated intakes of CaCl2, other calcium salts, and some non-calcium compounds. We used taste reactivity to examine the effects of calcium deprivation on the palatability of CaCl2 and other solutions. Nine male Sprague-Dawley rats were calcium-deprived by maintenance on a low-calcium diet, and eight replete rats were used as controls. All rats were videotaped during intraoral infusion of the following solutions: 30 and 300 mM CaCl2, 30 mM calcium lactate, 100 and 600 mM NaCl, 30 mM MgCl2, 1 mM quinine.HCl, 2.5 mM sodium saccharin, and deionized water. We counted individual orofacial and somatic movements elicited by the infusions and used them to calculate total ingestive and aversive scores. Relative to controls, calcium-deprived rats gave a significantly larger number of tongue protrusions and had higher total ingestive scores for CaCl2, calcium lactate, NaCl, and MgCl2. Our results suggest that CaCl2, calcium lactate, NaCl, and MgCl2 taste more palatable to rats when they are calcium-deprived than replete, and this may be responsible for the increased intake of these solutions following calcium deprivation.

  14. Excitation-calcium release uncoupling in aged single human skeletal muscle fibers.

    PubMed

    Delbono, O; O'Rourke, K S; Ettinger, W H

    1995-12-01

    The biological mechanisms underlying decline in muscle power and fatigue with age are not completely understood. The contribution of alterations in the excitation-calcium release coupling in single muscle fibers was explored in this work. Single muscle fibers were voltage-clamped using the double Vaseline gap technique. The samples were obtained by needle biopsy of the vastus lateralis (quadriceps) from 9 young (25-35 years; 25.9 +/- 9.1; 5 female and 4 male) and 11 old subjects (65-75 years; 70.5 +/- 2.3; 6 f, 5 m). Data were obtained from 36 and 39 fibers from young and old subjects, respectively. Subjects included in this study had similar physical activity. Denervated and slow-twitch muscle fibers were excluded from this study. A significant reduction of maximum charge movement (Qmax) and DHP-sensitive Ca current were recorded in muscle fibers from the 65-75 group. Qmax values were 7.6 +/- 0.9 and 3.2 +/- 0.3 nC/muF for young and old muscle fibers, respectively (P < 0.01). No evidences of charge inactivation or interconversion (charge 1 to charge 2) were found. The peak Ca current was (-)4.7 +/- 0.08 and (-)2.15 +/- 0.11 muA/muF for young and old fibers, respectively (P < 0.01). The peak calcium transient studied with mag-fura-2 (400 microM) was 6.3 +/- 0.4 microM and 4.2 +/- 0.3 microM for young and old muscle fibers, respectively. Caffeine (0.5 mM) induced potentiation of the peak calcium transient in both groups. The decrease in the voltage-/Ca-dependent Ca release ratio in old fibers (0.18 +/- 0.02) compared to young fibers (0.47 +/- 0.03) (P < 0.01), was recorded in the absence of sarcoplasmic reticulum calcium depletion. These data support a significant reduction of the amount of Ca available for triggering mechanical responses in aged skeletal muscle and, the reduction of Ca release is due to DHPR-ryanodine receptor uncoupling in fast-twitch fibers. These alterations can account, at least partially for the skeletal muscle function impairment associated

  15. Constraints on frequency-dependent violations of Shapiro delay from GW150914

    NASA Astrophysics Data System (ADS)

    Kahya, Emre O.; Desai, Shantanu

    2016-05-01

    On 14th September 2015, a transient gravitational wave (GW150914) was detected by the two LIGO detectors at Hanford and Livingston from the coalescence of a binary black hole system located at a distance of about 400 Mpc. We point out that GW150914 experienced a Shapiro delay due to the gravitational potential of the mass distribution along the line of sight of about 1800 days. Also, the near-simultaneous arrival of gravitons over a frequency range of about 200 Hz within a 0.2 s window allows us to constrain any violations of Shapiro delay and Einstein's equivalence principle between the gravitons at different frequencies. From the calculated Shapiro delay and the observed duration of the signal, frequency-dependent violations of the equivalence principle for gravitons are constrained to an accuracy of O (10-9).

  16. Ultrafast laser processing of copper: A comparative study of experimental and simulated transient optical properties

    NASA Astrophysics Data System (ADS)

    Winter, Jan; Rapp, Stephan; Schmidt, Michael; Huber, Heinz P.

    2017-09-01

    In this paper, we present ultrafast measurements of the complex refractive index for copper up to a time delay of 20 ps with an accuracy <1% at laser fluences in the vicinity of the ablation threshold. The measured refractive index n and extinction coefficient k are supported by a simulation including the two-temperature model with an accurate description of thermal and optical properties and a thermomechanical model. Comparison of the measured time resolved optical properties with results of the simulation reveals underlying physical mechanisms in three distinct time delay regimes. It is found that in the early stage (-5 ps to 0 ps) the thermally excited d-band electrons make a major contribution to the laser pulse absorption and create a steep increase in transient optical properties n and k. In the second time regime (0-10 ps) the material expansion influences the plasma frequency, which is also reflected in the transient extinction coefficient. In contrast, the refractive index n follows the total collision frequency. Additionally, the electron-ion thermalization time can be attributed to a minimum of the extinction coefficient at ∼10 ps. In the third time regime (10-20 ps) the transient extinction coefficient k indicates the surface cooling-down process.

  17. Green fluorescent genetically encoded calcium indicator based on calmodulin/M13-peptide from fungi.

    PubMed

    Barykina, Natalia V; Subach, Oksana M; Piatkevich, Kiryl D; Jung, Erica E; Malyshev, Aleksey Y; Smirnov, Ivan V; Bogorodskiy, Andrey O; Borshchevskiy, Valentin I; Varizhuk, Anna M; Pozmogova, Galina E; Boyden, Edward S; Anokhin, Konstantin V; Enikolopov, Grigori N; Subach, Fedor V

    2017-01-01

    Currently available genetically encoded calcium indicators (GECIs) utilize calmodulins (CaMs) or troponin C from metazoa such as mammals, birds, and teleosts, as calcium-binding domains. The amino acid sequences of the metazoan calcium-binding domains are highly conserved, which may limit the range of the GECI key parameters and cause undesired interactions with the intracellular environment in mammalian cells. Here we have used fungi, evolutionary distinct organisms, to derive CaM and its binding partner domains and design new GECI with improved properties. We applied iterative rounds of molecular evolution to develop FGCaMP, a novel green calcium indicator. It includes the circularly permuted version of the enhanced green fluorescent protein (EGFP) sandwiched between the fungal CaM and a fragment of CaM-dependent kinase. FGCaMP is an excitation-ratiometric indicator that has a positive and an inverted fluorescence response to calcium ions when excited at 488 and 405 nm, respectively. Compared with the GCaMP6s indicator in vitro, FGCaMP has a similar brightness at 488 nm excitation, 7-fold higher brightness at 405 nm excitation, and 1.3-fold faster calcium ion dissociation kinetics. Using site-directed mutagenesis, we generated variants of FGCaMP with improved binding affinity to calcium ions and increased the magnitude of FGCaMP fluorescence response to low calcium ion concentrations. Using FGCaMP, we have successfully visualized calcium transients in cultured mammalian cells. In contrast to the limited mobility of GCaMP6s and G-GECO1.2 indicators, FGCaMP exhibits practically 100% molecular mobility at physiological concentrations of calcium ion in mammalian cells, as determined by photobleaching experiments with fluorescence recovery. We have successfully monitored the calcium dynamics during spontaneous activity of neuronal cultures using FGCaMP and utilized whole-cell patch clamp recordings to further characterize its behavior in neurons. Finally, we used FGCa

  18. Calcium ionization balance and argon/calcium abundance in solar flares

    NASA Astrophysics Data System (ADS)

    Antonucci, E.; Marocchi, D.; Gabriel, A. H.; Doschek, G. A.

    1987-12-01

    An earlier analysis of solar flare calcium spectra from XRP and P78-1 aimed at measuring the calcium ionization balance resulted in an ambiguity due to a line blend between the calcium q line and an Ar XVII line. In the present work the calcium line 'r' is included in the analysis in order to resolve this problem. It is shown that the correct calcium ionization balance is that indicated in the earlier paper as corresponding to an argon/calcium abundance ratio of 0.2. The argon/calcium abundance ratio in the group of solar flares studied is shown to be 0.2 + or - 0.2. It is further argued that while the abundance of heavy elements may be enhanced in energetic flare events, this enhancement is less for argon than for calcium, leading to an argon/calcium ratio smaller than that present in the quiet sun.

  19. Characterizing Nanoscale Transient Communication.

    PubMed

    Chen, Yifan; Anwar, Putri Santi; Huang, Limin; Asvial, Muhamad

    2016-04-01

    We consider the novel paradigm of nanoscale transient communication (NTC), where certain components of the small-scale communication link are physically transient. As such, the transmitter and the receiver may change their properties over a prescribed lifespan due to their time-varying structures. The NTC systems may find important applications in the biomedical, environmental, and military fields, where system degradability allows for benign integration into life and environment. In this paper, we analyze the NTC systems from the channel-modeling and capacity-analysis perspectives and focus on the stochastically meaningful slow transience scenario, where the coherence time of degeneration Td is much longer than the coding delay Tc. We first develop novel and parsimonious models to characterize the NTC channels, where three types of physical layers are considered: electromagnetism-based terahertz (THz) communication, diffusion-based molecular communication (DMC), and nanobots-assisted touchable communication (TouchCom). We then revisit the classical performance measure of ϵ-outage channel capacity and take a fresh look at its formulations in the NTC context. Next, we present the notion of capacity degeneration profile (CDP), which describes the reduction of channel capacity with respect to the degeneration time. Finally, we provide numerical examples to demonstrate the features of CDP. To the best of our knowledge, the current work represents a first attempt to systematically evaluate the quality of nanoscale communication systems deteriorating with time.

  20. Calcium Carbonate

    MedlinePlus

    ... Maalox® (as a combination product containing Calcium Carbonate, Simethicone) ... Relief (as a combination product containing Calcium Carbonate, Simethicone) ... Plus (as a combination product containing Calcium Carbonate, Simethicone)

  1. The role of calcium in the nuclear maturation of Bufo arenarum oocytes.

    PubMed

    Zelarayán, Liliana I; Toranzo, Graciela Sánchez; Oterino, Julia M; Bühler, Marta I

    2004-02-01

    In Bufo arenarum, progesterone is the physiological maturation inducer. However, in this species, oocytes reinitiate meiosis with no need of an exogenous hormonal stimulus when deprived of their enveloping cell, a phenomenon called spontaneous maturation. We demonstrated that in Bufo arenarum spontaneous maturation occurs only in oocytes obtained during the reproductive period, which can be considered competent to mature spontaneously, in contrast to those in the non-reproductive period, which are incompetent. Interestingly, full-grown Bufo arenarum oocytes always respond to progesterone regardless of the season in which they are obtained. There is a general consensus that both a transient increase in intracellular calcium and a decrease in cAMP-dependent protein kinase activity are the first steps in the mechanisms by which progesterone induces maturation in amphibians. In the present work we analysed the role of calcium in the spontaneous and progesterone-induced maturation of Bufo arenarum oocytes. Results demonstrated that the absence of calcium in the incubation medium or the prevention of Ca(2+) influx by channel blockers such as CdCl2 or NiCl2 did not prevent meiosis reinitiation in either type of maturation. The inhibition of the Ca(2+)-calmodulin complex in no case affected the maturation of the treated oocytes. However, when the oocytes were deprived of calcium by incubation in Ca(2+)-free AR + A23187, meiosis resumption was inhibited. In brief, we demonstrated that in Bufo arenarum the reinitiation of meiosis is a process independent of extracellular calcium at any period of the year and that oocytes require adequate levels of intracellular calcium for germinal vesicle breakdown to occur.

  2. Zolpidem Reduces Hippocampal Neuronal Activity in Freely Behaving Mice: A Large Scale Calcium Imaging Study with Miniaturized Fluorescence Microscope

    PubMed Central

    Berdyyeva, Tamara; Otte, Stephani; Aluisio, Leah; Ziv, Yaniv; Burns, Laurie D.; Dugovic, Christine; Yun, Sujin; Ghosh, Kunal K.; Schnitzer, Mark J.; Lovenberg, Timothy; Bonaventure, Pascal

    2014-01-01

    Therapeutic drugs for cognitive and psychiatric disorders are often characterized by their molecular mechanism of action. Here we demonstrate a new approach to elucidate drug action on large-scale neuronal activity by tracking somatic calcium dynamics in hundreds of CA1 hippocampal neurons of pharmacologically manipulated behaving mice. We used an adeno-associated viral vector to express the calcium sensor GCaMP3 in CA1 pyramidal cells under control of the CaMKII promoter and a miniaturized microscope to observe cellular dynamics. We visualized these dynamics with and without a systemic administration of Zolpidem, a GABAA agonist that is the most commonly prescribed drug for the treatment of insomnia in the United States. Despite growing concerns about the potential adverse effects of Zolpidem on memory and cognition, it remained unclear whether Zolpidem alters neuronal activity in the hippocampus, a brain area critical for cognition and memory. Zolpidem, when delivered at a dose known to induce and prolong sleep, strongly suppressed CA1 calcium signaling. The rate of calcium transients after Zolpidem administration was significantly lower compared to vehicle treatment. To factor out the contribution of changes in locomotor or physiological conditions following Zolpidem treatment, we compared the cellular activity across comparable epochs matched by locomotor and physiological assessments. This analysis revealed significantly depressive effects of Zolpidem regardless of the animal’s state. Individual hippocampal CA1 pyramidal cells differed in their responses to Zolpidem with the majority (∼65%) significantly decreasing the rate of calcium transients, and a small subset (3%) showing an unexpected and significant increase. By linking molecular mechanisms with the dynamics of neural circuitry and behavioral states, this approach has the potential to contribute substantially to the development of new therapeutics for the treatment of CNS disorders. PMID:25372144

  3. Albumin elicits calcium signals from astrocytes in brain slices from neonatal rat cortex

    PubMed Central

    Nadal, Angel; Sul, Jai-Yoon; Valdeolmillos, Miguel; McNaughton, Peter A

    1998-01-01

    Albumin causes calcium signals and mitosis in cultured astrocytes, but it has not been established whether astrocytes in intact brain also respond to albumin. The effect of albumin on intracellular calcium concentration ([Ca2+]i) in single cells was therefore studied in acutely isolated cortical brain slices from the neonatal rat.Physiological concentrations of albumin from plasma and from serum produced an increase in [Ca2+]i in a subpopulation of cortical cells. Trains of transient elevations in [Ca2+]i (Ca2+ spikes) were seen in 41 % of these cells.The cells responding to albumin are identified as astrocytes because the neurone-specific agonist NMDA caused much smaller and slower responses in these cells. On the other hand NMDA-responsive cells, which are probably neurones, exhibited only small and slow responses to albumin. The residual responses of astrocytes to NMDA and neurones to albumin are likely to be due to crosstalk with adjacent neurones and astrocytes, respectively.Methanol extraction of albumin removes a polar lipid and abolishes the ability of albumin to increase intracellular calcium.Astrocyte calcium signalling caused by albumin may have important physiological consequences when the blood-brain barrier breaks down and allows albumin to enter the CNS. PMID:9596793

  4. Activation of oral trigeminal neurons by fatty acids is dependent upon intracellular calcium.

    PubMed

    Yu, Tian; Shah, Bhavik P; Hansen, Dane R; Park-York, MieJung; Gilbertson, Timothy A

    2012-08-01

    The chemoreception of dietary fat in the oral cavity has largely been attributed to activation of the somatosensory system that conveys the textural properties of fat. However, the ability of fatty acids, which are believed to represent the proximate stimulus for fat taste, to stimulate rat trigeminal neurons has remained unexplored. Here, we found that several free fatty acids are capable of activating trigeminal neurons with different kinetics. Further, a polyunsaturated fatty acid, linoleic acid (LA), activates trigeminal neurons by increasing intracellular calcium concentration and generating depolarizing receptor potentials. Ion substitution and pharmacological approaches reveal that intracellular calcium store depletion is crucial for LA-induced signaling in a subset of trigeminal neurons. Using pseudorabies virus (PrV) as a live cell tracer, we identified a subset of lingual nerve-innervated trigeminal neurons that respond to different subsets of fatty acids. Quantitative real-time PCR of several transient receptor potential channel markers in individual neurons validated that PrV labeled a subset but not the entire population of lingual-innervated trigeminal neurons. We further confirmed that the LA-induced intracellular calcium rise is exclusively coming from the release of calcium stores from the endoplasmic reticulum in this subset of lingual nerve-innervated trigeminal neurons.

  5. Activation of Oral Trigeminal Neurons by Fatty Acids is Dependent upon Intracellular Calcium

    PubMed Central

    Yu, Tian; Shah, Bhavik P.; Hansen, Dane R.; Park-York, MieJung; Gilbertson, Timothy A.

    2012-01-01

    The chemoreception of dietary fat in the oral cavity has largely been attributed to activation of the somatosensory system that conveys the textural properties of fat. However, the ability of fatty acids, which are believed to represent the proximate stimulus for fat taste, to stimulate rat trigeminal neurons has remained unexplored. Here, we found that several free fatty acids are capable of activating trigeminal neurons with different kinetics. Further, a polyunsaturated fatty acid, linoleic acid (LA), activates trigeminal neurons by increasing intracellular calcium concentration and generating depolarizing receptor potentials. Ion substitution and pharmacological approaches reveal that intracellular calcium store depletion is crucial for LA-induced signaling in a subset of trigeminal neurons. Using pseudorabies virus (PrV) as a live cell tracer, we identified a subset of lingual nerve-innervated trigeminal neurons that respond to different subsets of fatty acids. Quantitative real-time PCR of several transient receptor potential (TRP) channel markers in individual neurons validated that PrV labeled a subset but not the entire population of lingual-innervated trigeminal neurons. We further confirmed that the LA-induced intracellular calcium rise is exclusively coming from the release of calcium stores from the endoplasmic reticulum in this subset of lingual nerve-innervated trigeminal neurons. PMID:22644615

  6. Risk of calcium oxalate nephrolithiasis in postmenopausal women supplemented with calcium or combined calcium and estrogen.

    PubMed

    Domrongkitchaiporn, Somnuek; Ongphiphadhanakul, Boonsong; Stitchantrakul, Wasana; Chansirikarn, Sirinthorn; Puavilai, Gobchai; Rajatanavin, Rajata

    2002-02-26

    Recent studies showed that postmenopausal women lost less bone mass when supplemented with calcium or estrogen therapy. However, the safety of the treatments in terms of the risk of calcium oxalate stone formation is unknown. We therefore conducted this study to determine the alteration in calcium oxalate supersaturation after calcium supplement or after combined calcium and estrogen therapy in postmenopausal osteoporotic women. Fifty-six postmenopausal women were enrolled in this study. All subjects were more than 10 years postmenopausal with vertebral or femoral osteoporosis by bone mineral density criteria. They were randomly allocated to receive either 625 mg of calcium carbonate (250 mg of elemental calcium) at the end of a meal three times a day (group A, n=26) or calcium carbonate in the same manner plus 0.625 mg/day of conjugated equine estrogen and 5 mg medrogestone acetate from day 1-12 each month (group B, n=30). The age (mean +/- S.E.M.) was 66.3 +/- 1.2 and 65.1 +/- 1.1 years, weight 54.1 +/- 1.2 and 55.3 +/- 2.1 kg, in group A and group B, respectively. Urine specimens (24-h) were collected at baseline and 3 months after treatment for the determination of calcium oxalate saturation by using Tiselius's index (AP(CaOx)) and calcium/citrate ratio. After 3 months of treatment, there was no significant alteration from baseline for urinary excretion of calcium, citrate and oxalate. Urinary phosphate excretion was significantly reduced (6.3 +/- 0.7 vs. 5.1 +/- 0.7 mmol/day for group A and 8.2 +/- 0.9 vs. 5.8 +/- 0.7 mmol/day for group B, P<0.05), whereas net alkaline absorption was significantly elevated (10.1 +/- 3.6 vs. 20.1 +/- 4.4 meq/day for group A and 4.8 +/- 3.2 vs. 19.9 +/- 3.6 meq/day for group B, P<0.05). Calcium/citrate ratio and AP(CaOx) determined at baseline were not different from the corresponding values after treatment in both groups; calcium/citrate: 10.1 +/- 3.1 vs. 10.1 +/- 2.5 for group A and 9.3 +/- 1.8 vs. 11.9 +/- 2.5 for group B and

  7. Flt1/VEGFR1 heterozygosity causes transient embryonic edema.

    PubMed

    Otowa, Yasunori; Moriwaki, Kazumasa; Sano, Keigo; Shirakabe, Masanori; Yonemura, Shigenobu; Shibuya, Masabumi; Rossant, Janet; Suda, Toshio; Kakeji, Yoshihiro; Hirashima, Masanori

    2016-06-02

    Vascular endothelial growth factor-A is a major player in vascular development and a potent vascular permeability factor under physiological and pathological conditions by binding to a decoy receptor Flt1 and its primary receptor Flk1. In this study, we show that Flt1 heterozygous (Flt1(+/-)) mouse embryos grow up to adult without life-threatening abnormalities but exhibit a transient embryonic edema around the nuchal and back regions, which is reminiscent of increased nuchal translucency in human fetuses. Vascular permeability is enhanced and an intricate infolding of the plasma membrane and huge vesicle-like structures are seen in Flt1(+/-) capillary endothelial cells. Flk1 tyrosine phosphorylation is elevated in Flt1(+/-) embryos, but Flk1 heterozygosity does not suppress embryonic edema caused by Flt1 heterozygosity. When Flt1 mutants are crossed with Aspp1(-/-) mice which exhibit a transient embryonic edema with delayed formation and dysfunction of lymphatic vessels, only 5.7% of Flt1(+/-); Aspp1(-/-) mice survive, compared to expected ratio (25%). Our results demonstrate that Flt1 heterozygosity causes a transient embryonic edema and can be a risk factor for embryonic lethality in combination with other mutations causing non-lethal vascular phenotype.

  8. Calcium influx affects intracellular transport and membrane repair following nanosecond pulsed electric field exposure

    NASA Astrophysics Data System (ADS)

    Thompson, Gary Lee; Roth, Caleb C.; Dalzell, Danielle R.; Kuipers, Marjorie; Ibey, Bennett L.

    2014-05-01

    The cellular response to subtle membrane damage following exposure to nanosecond pulsed electric fields (nsPEF) is not well understood. Recent work has shown that when cells are exposed to nsPEF, ion permeable nanopores (<2 nm) are created in the plasma membrane in contrast to larger diameter pores (>2 nm) created by longer micro- and millisecond duration pulses. Nanoporation of the plasma membrane by nsPEF has been shown to cause a transient increase in intracellular calcium concentration within milliseconds after exposure. Our research objective is to determine the impact of nsPEF on calcium-dependent structural and repair systems in mammalian cells. Chinese hamster ovary (CHO-K1) cells were exposed in the presence and absence of calcium ions in the outside buffer to either 1 or 20, 600-ns duration electrical pulses at 16.2 kV/cm, and pore size was determined using propidium iodide and calcium green. Membrane organization was observed with morphological changes and increases in FM1-43 fluorescence. Migration of lysosomes, implicated in membrane repair, was followed using confocal microscopy of red fluorescent protein-tagged LAMP1. Microtubule structure was imaged using mEmerald-tubulin. We found that at high 600-ns PEF dosage, calcium-induced membrane restructuring and microtubule depolymerization coincide with interruption of membrane repair via lysosomal exocytosis.

  9. Calcium influx affects intracellular transport and membrane repair following nanosecond pulsed electric field exposure.

    PubMed

    Thompson, Gary Lee; Roth, Caleb C; Dalzell, Danielle R; Kuipers, Marjorie; Ibey, Bennett L

    2014-05-01

    The cellular response to subtle membrane damage following exposure to nanosecond pulsed electric fields (nsPEF) is not well understood. Recent work has shown that when cells are exposed to nsPEF, ion permeable nanopores (<2  nm) are created in the plasma membrane in contrast to larger diameter pores (>2  nm) created by longer micro- and millisecond duration pulses. Nanoporation of the plasma membrane by nsPEF has been shown to cause a transient increase in intracellular calcium concentration within milliseconds after exposure. Our research objective is to determine the impact of nsPEF on calcium-dependent structural and repair systems in mammalian cells. Chinese hamster ovary (CHO-K1) cells were exposed in the presence and absence of calcium ions in the outside buffer to either 1 or 20, 600-ns duration electrical pulses at 16.2  kV/cm, and pore size was determined using propidium iodide and calcium green. Membrane organization was observed with morphological changes and increases in FM1-43 fluorescence. Migration of lysosomes, implicated in membrane repair, was followed using confocal microscopy of red fluorescent protein-tagged LAMP1. Microtubule structure was imaged using mEmerald-tubulin. We found that at high 600-ns PEF dosage, calcium-induced membrane restructuring and microtubule depolymerization coincide with interruption of membrane repair via lysosomal exocytosis.

  10. Phase-locked-loop-based delay-line-free picosecond electro-optic sampling system

    NASA Astrophysics Data System (ADS)

    Lin, Gong-Ru; Chang, Yung-Cheng

    2003-04-01

    A delay-line-free, high-speed electro-optic sampling (EOS) system is proposed by employing a delay-time-controlled ultrafast laser diode as the optical probe. Versatile optoelectronic delay-time controllers (ODTCs) based on modified voltage-controlled phase-locked-loop phase-shifting technologies are designed for the laser. The integration of the ODTC circuit and the pulsed laser diode has replaced the traditional optomechanical delay-line module used in the conventional EOS system. This design essentially prevents sampling distortion from misalignment of the probe beam, and overcomes the difficulty in sampling free-running high-speed transients. The maximum tuning range, error, scanning speed, tuning responsivity, and resolution of the ODTC are 3.9π (700°), <5% deviation, 25-2405 ns/s, 0.557 ps/mV, and ˜1 ps, respectively. Free-running wave forms from the analog, digital, and pulsed microwave signals are sampled and compared with those measured by the commercial apparatus.

  11. Study of electron mobility in small molecular SAlq by transient electroluminescence method

    NASA Astrophysics Data System (ADS)

    Kumar, Pankaj; Jain, S. C.; Kumar, Vikram; Chand, Suresh; Kamalasanan, M. N.; Tandon, R. P.

    2007-12-01

    The study of electron mobility of bis(2-methyl 8-hydroxyquinoline) (triphenyl siloxy) aluminium (SAlq) by transient electroluminescence (EL) is presented. An EL device is fabricated in bilayer, ITO/N,N'-diphenyl-N, N'-bis(3-methylphenyl)-(1,1'-biphenyl)-4,4'-diamine (TPD)/SAlq/LiF/Al configuration. The temporal evaluation of the EL with respect to the step voltage pulse is characterized by a delay time followed by a fast initial rise, which is followed by a slower rise. The delay time between the applied electrical pulse and the onset of EL is correlated with the carrier mobility (electron in our case). Transient EL studies for SAlq have been carried out at different temperatures and different applied electric fields. The electron mobility in SAlq is found to be field and temperature dependent and calculated to be 6.9 × 10-7 cm2 V-1 s-1 at 2.5 × 106 V cm-1 and 308 K. The EL decays immediately as the voltage is turned off and does not depend on the amplitude of the applied voltage pulse or dc offset.

  12. CALCIUM CHLORIDE PLANT LOOKING EAST. CALCIUM CHLORIDE BUILDING IN CENTER, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CALCIUM CHLORIDE PLANT LOOKING EAST. CALCIUM CHLORIDE BUILDING IN CENTER, CALCIUM CHLORIDE STORAGE BUILDING ON RIGHT WITH SA (SODA ASH) BUILDING IN RIGHT BACKGROUND. - Solvay Process Company, Calcium Chloride Plant, Between Willis & Milton Avenues, Solvay, Onondaga County, NY

  13. Calcium signaling in brain mitochondria: interplay of malate aspartate NADH shuttle and calcium uniporter/mitochondrial dehydrogenase pathways.

    PubMed

    Contreras, Laura; Satrústegui, Jorgina

    2009-03-13

    Ca2+ signaling in mitochondria has been mainly attributed to Ca2+ entry to the matrix through the Ca2+ uniporter and activation of mitochondrial matrix dehydrogenases. However, mitochondria can also sense increases in cytosolic Ca2+ through a mechanism that involves the aspartate-glutamate carriers, extramitochondrial Ca2+ activation of the NADH malate-aspartate shuttle (MAS). Both pathways are linked through the shared substrate alpha-ketoglutarate (alphaKG). Here we have studied the interplay between the two pathways under conditions of Ca2+ activation. We show that alphaKG becomes limiting when Ca2+ enters in brain or heart mitochondria, but not liver mitochondria, resulting in a drop in alphaKG efflux through the oxoglutarate carrier and in a drop in MAS activity. Inhibition of alphaKG efflux and MAS activity by matrix Ca2+ in brain mitochondria was fully reversible upon Ca2+ efflux. Because of their differences in cytosolic calcium concentration requirements, the MAS and Ca2+ uniporter-mitochondrial dehydrogenase pathways are probably sequentially activated during a Ca2+ transient, and the inhibition of MAS at the center of the transient may provide an explanation for part of the increase in lactate observed in the stimulated brain in vivo.

  14. Crystal structure of the epithelial calcium channel TRPV6.

    PubMed

    Saotome, Kei; Singh, Appu K; Yelshanskaya, Maria V; Sobolevsky, Alexander I

    2016-06-23

    Precise regulation of calcium homeostasis is essential for many physiological functions. The Ca(2+)-selective transient receptor potential (TRP) channels TRPV5 and TRPV6 play vital roles in calcium homeostasis as Ca(2+) uptake channels in epithelial tissues. Detailed structural bases for their assembly and Ca(2+) permeation remain obscure. Here we report the crystal structure of rat TRPV6 at 3.25 Å resolution. The overall architecture of TRPV6 reveals shared and unique features compared with other TRP channels. Intracellular domains engage in extensive interactions to form an intracellular 'skirt' involved in allosteric modulation. In the K(+) channel-like transmembrane domain, Ca(2+) selectivity is determined by direct coordination of Ca(2+) by a ring of aspartate side chains in the selectivity filter. On the basis of crystallographically identified cation-binding sites at the pore axis and extracellular vestibule, we propose a Ca(2+) permeation mechanism. Our results provide a structural foundation for understanding the regulation of epithelial Ca(2+) uptake and its role in pathophysiology.

  15. Decreased akt activity is associated with activation of forkhead transcription factor after transient forebrain ischemia in gerbil hippocampus.

    PubMed

    Kawano, Takayuki; Morioka, Motohiro; Yano, Shigetoshi; Hamada, Jun-Ichiro; Ushio, Yukitaka; Miyamoto, Eishichi; Fukunaga, Kohji

    2002-08-01

    The authors recently reported that sodium orthovanadate rescues cells from delayed neuronal death in gerbil hippocampus after transient forebrain ischemia through phosphatidylinositol 3-kinase-protein kinase B (Akt) pathway (Kawano et al., 2001). In the current study, they demonstrated that the activation of FKHR, a Forkhead transcription factor and a substrate for Akt, preceded delayed neuronal death in CA1 regions after transient forebrain ischemia. Adult Mongolian gerbils were subjected to 5-minute forebrain ischemia. Immunoblotting analysis with anti-phospho-FKHR antibody showed that phosphorylation of FKHR at serine-256 in the CA1 region decreased immediately after and 0.5 and 1 hour after reperfusion. The dephosphorylation of FKHR was correlated with the decreased Akt activity. Intracerebroventricular injection of orthovanadate 30 minutes before ischemia inhibited dephosphorylation of FKHR after reperfusion, and blocked delayed neuronal death in the CA1 region. Gel mobility shift analysis using nuclear extracts from the CA1 region prepared immediately after reperfusion revealed increases in DNA binding activity for the FKHR-responsive element on the Fas ligand promoter. The orthovanadate injection administered before ischemia inhibited its binding activity. Two days after reperfusion, expression of Fas ligand increased in the CA1 region and the orthovanadate injection inhibited this increased expression. These results suggest that the inactivation of Akt results in the activation of FKHR and, in turn, relates to the expression of Fas ligand in the CA1 region after transient forebrain ischemia.

  16. 21 CFR 172.330 - Calcium pantothenate, calcium chloride double salt.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.330 Calcium pantothenate, calcium chloride double salt. The food additive calcium chloride double salt of calcium pantothenate may...

  17. 21 CFR 172.330 - Calcium pantothenate, calcium chloride double salt.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.330 Calcium pantothenate, calcium chloride double salt. The food additive calcium chloride double salt of calcium pantothenate may...

  18. 21 CFR 172.330 - Calcium pantothenate, calcium chloride double salt.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.330 Calcium pantothenate, calcium chloride double salt. The food additive calcium chloride double salt of calcium pantothenate may...

  19. CALCIUM CHLORIDE PLANT LOOKING EAST. CALCIUM CHLORIDE BUILDING ON LEFT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CALCIUM CHLORIDE PLANT LOOKING EAST. CALCIUM CHLORIDE BUILDING ON LEFT, CALCIUM CHLORIDE STORAGE BUILDING ON RIGHT OF CENTER WITH TOP OF SA (SODA ASH) BUILDING IN RIGHT BACKGROUND. - Solvay Process Company, Calcium Chloride Plant, Between Willis & Milton Avenues, Solvay, Onondaga County, NY

  20. A pupal transcriptomic screen identifies Ral as a target of store-operated calcium entry in Drosophila neurons.

    PubMed

    Richhariya, Shlesha; Jayakumar, Siddharth; Abruzzi, Katharine; Rosbash, Michael; Hasan, Gaiti

    2017-02-14

    Transcriptional regulation by Store-operated Calcium Entry (SOCE) is well studied in non-excitable cells. However, the role of SOCE has been poorly documented in neuronal cells with more complicated calcium dynamics. Previous reports demonstrated a requirement for SOCE in neurons that regulate Drosophila flight bouts. We refine this requirement temporally to the early pupal stage and use RNA-sequencing to identify SOCE mediated gene expression changes in the developing Drosophila pupal nervous system. Down regulation of dStim, the endoplasmic reticular calcium sensor and a principal component of SOCE in the nervous system, altered the expression of 131 genes including Ral, a small GTPase. Disruption of Ral function in neurons impaired flight, whereas ectopic expression of Ral in SOCE-compromised neurons restored flight. Through live imaging of calcium transients from cultured pupal neurons, we confirmed that Ral does not participate in SOCE, but acts downstream of it. These results identify neuronal SOCE as a mechanism that regulates expression of specific genes during development of the pupal nervous system and emphasizes the relevance of SOCE-regulated gene expression to flight circuit maturation.

  1. 21 CFR 172.330 - Calcium pantothenate, calcium chloride double salt.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... SERVICES (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.330 Calcium pantothenate, calcium chloride double salt. The food additive calcium chloride double salt of calcium pantothenate may be safely used in foods for special...

  2. Gitelman syndrome manifesting in early childhood and leading to delayed puberty: a case report.

    PubMed

    Raza, Farhan; Sultan, Mubashar; Qamar, Khola; Jawad, Ali; Jawa, Ali

    2012-10-02

    Gitelman syndrome is an inherited autosomal recessive renal salt-wasting disorder. It presents with variable clinical symptoms including muscle weakness and fatigue, and the diagnosis is based on metabolic alkalosis, hypokalemia, hypomagnesemia and hypocalciuria. It is usually diagnosed incidentally in early adulthood. There are rare cases of Gitelman syndrome presenting in early childhood; however, to the best of our knowledge it has not previously been associated with delayed puberty. A 17-year-old South Asian man with recurrent episodes of generalized muscle weakness, fatigue and cramps from the age of two years was admitted for further workup. Before the age of 12 years, the episodes had been mild, but they then got progressively worse. Other symptoms include polyuria, polydipsia, nocturia, paresthesia and occasional watery diarrhea. He also had a history of short stature, poor weight gain and delayed developmental landmarks. His family history was unremarkable except for the consanguineous marriage of his parents. An examination revealed a thin and lean man with blood pressure of 95/60mmHg. His height and weight were below the third percentile and his sexual development was at Tanner Stage II. Laboratory work revealed serum sodium of 124mmol/L, potassium 2.4mmol/L, calcium 6.5mmol/L and magnesium of 1.2mg/dL. His testosterone level was low (0.85ng/mL, normal for his age 2.67 to 10.12ng/mL) with normal levels of luteinizing hormone and follicle-stimulating hormone. The sex hormone findings were attributed to delayed puberty. A 24-hour urinary analysis revealed decreased excretion of calcium (25.9mg/24 hours). Based on the findings of hypokalemic metabolic alkalosis without hypertension, severe hypomagnesemia and hypocalciuria, a diagnosis of Gitelman syndrome was made. Treatment was started with oral supplementation of potassium, magnesium and calcium along with spironolactone and liberal salt intake. Diagnosis of Gitelman syndrome is usually made incidentally

  3. Phosphorylation and calcium antagonistically tune myosin-binding protein C’s structure and function

    PubMed Central

    Previs, Michael J.; Mun, Ji Young; Michalek, Arthur J.; Previs, Samantha Beck; Gulick, James; Robbins, Jeffrey; Warshaw, David M.; Craig, Roger

    2016-01-01

    During each heartbeat, cardiac contractility results from calcium-activated sliding of actin thin filaments toward the centers of myosin thick filaments to shorten cellular length. Cardiac myosin-binding protein C (cMyBP-C) is a component of the thick filament that appears to tune these mechanochemical interactions by its N-terminal domains transiently interacting with actin and/or the myosin S2 domain, sensitizing thin filaments to calcium and governing maximal sliding velocity. Both functional mechanisms are potentially further tunable by phosphorylation of an intrinsically disordered, extensible region of cMyBP-C’s N terminus, the M-domain. Using atomic force spectroscopy, electron microscopy, and mutant protein expression, we demonstrate that phosphorylation reduced the M-domain’s extensibility and shifted the conformation of the N-terminal domain from an extended structure to a compact configuration. In combination with motility assay data, these structural effects of M-domain phosphorylation suggest a mechanism for diminishing the functional potency of individual cMyBP-C molecules. Interestingly, we found that calcium levels necessary to maximally activate the thin filament mitigated the structural effects of phosphorylation by increasing M-domain extensibility and shifting the phosphorylated N-terminal fragments back to the extended state, as if unphosphorylated. Functionally, the addition of calcium to the motility assays ablated the impact of phosphorylation on maximal sliding velocities, fully restoring cMyBP-C’s inhibitory capacity. We conclude that M-domain phosphorylation may have its greatest effect on tuning cMyBP-C’s calcium-sensitization of thin filaments at the low calcium levels between contractions. Importantly, calcium levels at the peak of contraction would allow cMyBP-C to remain a potent contractile modulator, regardless of cMyBP-C’s phosphorylation state. PMID:26908872

  4. Calcium waves.

    PubMed

    Jaffe, Lionel F

    2008-04-12

    Waves through living systems are best characterized by their speeds at 20 degrees C. These speeds vary from those of calcium action potentials to those of ultraslow ones which move at 1-10 and/or 10-20 nm s(-1). All such waves are known or inferred to be calcium waves. The two classes of calcium waves which include ones with important morphogenetic effects are slow waves that move at 0.2-2 microm s(-1) and ultraslow ones. Both may be propagated by cycles in which the entry of calcium through the plasma membrane induces subsurface contraction. This contraction opens nearby stretch-sensitive calcium channels. Calcium entry through these channels propagates the calcium wave. Many slow waves are seen as waves of indentation. Some are considered to act via cellular peristalsis; for example, those which seem to drive the germ plasm to the vegetal pole of the Xenopus egg. Other good examples of morphogenetic slow waves are ones through fertilizing maize eggs, through developing barnacle eggs and through axolotl embryos during neural induction. Good examples of ultraslow morphogenetic waves are ones during inversion in developing Volvox embryos and across developing Drosophila eye discs. Morphogenetic waves may be best pursued by imaging their calcium with aequorins.

  5. A Nonlinear Model for Transient Responses from Light-Adapted Wolf Spider Eyes

    PubMed Central

    DeVoe, Robert D.

    1967-01-01

    A quantitative model is proposed to test the hypothesis that the dynamics of nonlinearities in retinal action potentials from light-adapted wolf spider eyes may be due to delayed asymmetries in responses of the visual cells. For purposes of calculation, these delayed asymmetries are generated in an analogue by a time-variant resistance. It is first shown that for small incremental stimuli, the linear behavior of such a resistance describes peaking and low frequency phase lead in frequency responses of the eye to sinusoidal modulations of background illumination. It also describes the overshoots in linear step responses. It is next shown that the analogue accounts for nonlinear transient and short term DC responses to large positive and negative step stimuli and for the variations in these responses with changes in degree of light adaptation. Finally, a physiological model is proposed in which the delayed asymmetries in response are attributed to delayed rectification by the visual cell membrane. In this model, cascaded chemical reactions may serve to transduce visual stimuli into membrane resistance changes. PMID:6056011

  6. Bilirubin induces a calcium-dependent inhibition of multifunctional Ca2+/calmodulin-dependent kinase II activity in vitro.

    PubMed

    Churn, S B; DeLorenzo, R J; Shapiro, S M

    1995-12-01

    Excessive bilirubin levels in newborn infants result in long-term neurologic deficits that remain after bilirubin levels return to normal. Much of the observed neurologic deficits can be attributed to bilirubin-induced, delayed neuronal cell death. Inhibition of calcium/calmodulin-dependent kinase II (CaM kinase II) activity that precedes cell death is observed in conditions such as seizure activity, stroke, and glutamate excitotoxicity. Because neonatal bilirubin exposure results in neuronal loss in developing brain systems, we tested whether bilirubin exposure would induce an immediate inhibition of CaM activity, in vitro. P-81 filtration assay of basal and calcium-stimulated kinase activity was performed under standard kinase assay conditions. Bilirubin and/or albumin was added to the reaction vessels to determine the effect of these agents on kinase activity. Bilirubin exposure resulted in a concentration-dependent inhibition of CaM kinase II activity (IC50 = 16.78 microM). At concentrations above 50 microM, bilirubin exposure resulted in a 71 +/- 8% (mean +/- SD) inhibition of kinase activity (p < 0.001, t test, n = 10). Bilirubin exposure did not result in kinase inhibition if excessive bilirubin was removed by albumin binding before stimulation of kinase activity (106.9 +/- 9.6% control activity, n = 5). However, removal of bilirubin by binding with albumin after calcium addition did not restore kinase activity. (36.1 +/- 3.8% control activity, n = 5). Thus, once inhibition was observed, the activity could not be restored by addition of albumin. The data suggest that bilirubin exposure resulted in a calcium-dependent inhibition of CaM kinase II activity that, once induced, was not reversible by removing bilirubin by the addition of albumin. Because inhibition of CaM kinase II activity has been correlated with delayed neuronal cell death in many neuropathologic conditions, bilirubin-induced inhibition of this enzyme may be a cellular mechanism by which

  7. Numerical investigation of the influence of electromagnetic treatment on calcium carbonate scaling rate in non-isothermal pipe flow

    NASA Astrophysics Data System (ADS)

    Kireev, Victor; Kovaleva, Liana; Isakov, Andrey; Alimbekova, Sofya

    2017-11-01

    In the present paper, an attempt to explain the mechanisms of the electromagnetic field influence on the process of formation and deposition of calcium carbonate from supersaturated brine solution has been made using numerical modeling. The one-dimensional mathematical model of the brine laminar flow through a cylindrical tube with non-uniform temperature field is written in the form of the system of transient convection-diffusion-reaction partial differential equations describing temperature field and chemical components concentrations (Ca2+, HCO3-, CaCO3). The influence of the temperature on the kinetics of formation of calcium carbonate is taken into account and it is described in accordance with the Arrhenius equation. The kinetics of the calcium carbonate precipitation on the wall of the pipe is given on the basis of the Henry isotherm. It has been established that the electromagnetic treatment of brine solution leads to a decrease of the adsorption rate constant and Henry's constant but it does not significantly influence on the chemical reaction rate of calcium carbonate formation. It also has been shown that treatment with electromagnetic field significantly reduces the amount of calcium carbonate deposits on the wall of the pipe.

  8. Calcium - urine

    MedlinePlus

    Urinary Ca+2; Kidney stones - calcium in urine; Renal calculi - calcium in your urine; Parathyroid - calcium in urine ... A 24-hour urine sample is most often needed: On day 1, urinate into the toilet when you wake up in the morning. ...

  9. Obscure Severe Infrarenal Aortoiliac Stenosis With Severe Transient Lactic Acidosis

    PubMed Central

    Nantsupawat, Teerapat; Mankongpaisarnrung, Charoen; Soontrapa, Suthipong; Limsuwat, Chok

    2013-01-01

    A 57-year-old man presented with sudden onset of leg pain, right-sided weakness, aphasia, confusion, drooling, and severe lactic acidosis (15 mmol/L). He had normal peripheral pulses and demonstrated no pain, pallor, poikilothermia, paresthesia, or paralysis. Empiric antibiotics, aspirin, full-dose enoxaparin, and intravenous fluid were initiated. Lactic acid level decreased to 2.5 mmol/L. The patient was subsequently extubated and was alert and oriented with no complaints of leg or abdominal pain. Unexpectedly, the patient developed cardiac arrest, rebound severe lactic acidosis (8.13 mmol/L), and signs of acute limb ischemia. Emergent computed tomography of the aorta confirmed infrarenal aortoiliac thrombosis. Transient leg pain and transient severe lactic acidosis can be unusual presentations of severe infrarenal aortoiliac stenosis. When in doubt, vascular studies should be implemented without delay to identify this catastrophic diagnosis. PMID:26425569

  10. Calcium Signaling throughout the Toxoplasma gondii Lytic Cycle

    PubMed Central

    Borges-Pereira, Lucas; Budu, Alexandre; McKnight, Ciara A.; Moore, Christina A.; Vella, Stephen A.; Hortua Triana, Miryam A.; Liu, Jing; Garcia, Celia R. S.; Pace, Douglas A.; Moreno, Silvia N. J.

    2015-01-01

    Toxoplasma gondii is an obligate intracellular parasite that invades host cells, creating a parasitophorous vacuole where it communicates with the host cell cytosol through the parasitophorous vacuole membrane. The lytic cycle of the parasite starts with its exit from the host cell followed by gliding motility, conoid extrusion, attachment, and invasion of another host cell. Here, we report that Ca2+ oscillations occur in the cytosol of the parasite during egress, gliding, and invasion, which are critical steps of the lytic cycle. Extracellular Ca2+ enhances each one of these processes. We used tachyzoite clonal lines expressing genetically encoded calcium indicators combined with host cells expressing transiently expressed calcium indicators of different colors, and we measured Ca2+ changes in both parasites and host simultaneously during egress. We demonstrated a link between cytosolic Ca2+ oscillations in the host and in the parasite. Our approach also allowed us to measure two new features of motile parasites, which were enhanced by Ca2+ influx. This is the first study showing, in real time, Ca2+ signals preceding egress and their direct link with motility, an essential virulence trait. PMID:26374900

  11. Transmembrane proteoglycans control stretch-activated channels to set cytosolic calcium levels

    PubMed Central

    Gopal, Sandeep; Søgaard, Pernille; Multhaupt, Hinke A.B.; Pataki, Csilla; Okina, Elena; Xian, Xiaojie; Pedersen, Mikael E.; Stevens, Troy; Griesbeck, Oliver; Park, Pyong Woo; Pocock, Roger

    2015-01-01

    Transmembrane heparan sulfate proteoglycans regulate multiple aspects of cell behavior, but the molecular basis of their signaling is unresolved. The major family of transmembrane proteoglycans is the syndecans, present in virtually all nucleated cells, but with mostly unknown functions. Here, we show that syndecans regulate transient receptor potential canonical (TRPCs) channels to control cytosolic calcium equilibria and consequent cell behavior. In fibroblasts, ligand interactions with heparan sulfate of syndecan-4 recruit cytoplasmic protein kinase C to target serine714 of TRPC7 with subsequent control of the cytoskeleton and the myofibroblast phenotype. In epidermal keratinocytes a syndecan–TRPC4 complex controls adhesion, adherens junction composition, and early differentiation in vivo and in vitro. In Caenorhabditis elegans, the TRPC orthologues TRP-1 and -2 genetically complement the loss of syndecan by suppressing neuronal guidance and locomotory defects related to increases in neuronal calcium levels. The widespread and conserved syndecan–TRPC axis therefore fine tunes cytoskeletal organization and cell behavior. PMID:26391658

  12. The effect of variable calcium and very low calcium diets on human calcium metabolism. Ph.D. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Chu, J.

    1971-01-01

    The effects of a very low calcium diet, with variable high and low protein intake, on the dynamics of calcium metabolism and the mechanism of calciuretics, are examined. The experiment, using male subjects, was designed to study the role of intestinal calcium absorption on urinary calcium excretion, and the rate of production of endogeneously secreted calcium in the gastrointestinal tract. The study showed an average of 70% fractional absorption rate during very low calcium intake, and that a decrease in renal tubular reabsorption of calcium is responsible for calciuretic effects of high protein intake. The study also indicates that there is a tendency to develop osteoporosis after long periods of low calcium intake, especially with a concurrent high protein intake.

  13. Effects of inorganic phosphate and ADP on calcium handling by the sarcoplasmic reticulum in rat skinned cardiac muscles.

    PubMed

    Xiang, J Z; Kentish, J C

    1995-03-01

    The aim was to investigate whether, and how, increases in inorganic phosphate (Pi) and ADP, similar to those occurring intracellularly during early myocardial ischaemia, affect the calcium handling of the sarcoplasmic reticulum. Rat ventricular trabeculae were permeabilised with saponin. The physiological process of calcium induced calcium release (CICR) from the muscle sarcoplasmic reticulum was triggered via flash photolysis of the "caged Ca2+", nitr-5. Alternatively, calcium release was induced by rapid application of caffeine to give an estimate of sarcoplasmic reticular calcium loading. The initial rate of sarcoplasmic reticular calcium pumping was also assessed by photolysis of caged ATP at saturating [Ca2+]. Myoplasmic [Ca2+] (using fluo-3) and isometric force were measured. Pi (2-20 mM) significantly depressed the magnitude of CICR and the associated force transient. Sarcoplasmic reticular calcium loading was inhibited even more than CICR by Pi, suggesting that reduced calcium loading could account for all of the inhibitory effect of Pi on CICR and that Pi may slightly activate the calcium release mechanism. The reduced sarcoplasmic reticular calcium loading seemed to be due to a fall in the free energy of ATP hydrolysis (delta GATP) available for the calcium pump, since equal decreases in delta GATP produced by adding both Pi and ADP in various ratios caused similar falls in the calcium loading of the sarcoplasmic reticulum. The caged ATP experiments indicated that Pi (20 mM) did not affect the rate constant of sarcoplasmic reticular calcium uptake. ADP (10 mM) alone, or with 1 mM Pi, inhibited calcium loading. In spite of this, ADP (10 mM) did not alter CICR and, when 1 mM Pi was added, ADP increased CICR above control. An increase in intracellular Pi reduces sarcoplasmic reticular calcium loading and thus depresses the CICR. This could be an important contributing factor in the hypoxic or ischaemic contractile failure of the myocardium. However the

  14. The activity of calcium in calcium-metal-fluoride fluxes

    NASA Astrophysics Data System (ADS)

    Ochifuji, Yuichiro; Tsukihashi, Fumitaka; Sano, Nobuo

    1995-08-01

    The standard Gibbs energy of reaction Ca (1) + O (mass pct, in Zr) = CaO (s) has been determined as follows by equilibrating molten calcium with solid zirconium in a CaO crucible: Δ G° = -64,300(±700) + 19.8(±3.5) T J/mol (1373 to 1623 K) The activities of calcium in the CaOsatd-Ca- MF2 ( M: Ca, Ba, Mg) and CaOsatd-Ca-NaF systems were measured as a function of calcium composition at high calcium contents at 1473 K on the basis of the standard Gibbs energy. The activities of calcium increase in the order of CaF2, BaF2, and MgF2 at the same calcium fraction of these fluxes. The observed activities are compared with those estimated by using the Temkin model for ionic solutions. Furthermore, the possibility of the removal of tramp elements such as tin, arsenic, antimony, bismuth, and lead from carbon-saturated iron by using calcium-metal-fluoride fluxes is discussed.

  15. Vulnerability to paroxysmal oscillations in delayed neural networks: A basis for nocturnal frontal lobe epilepsy?

    NASA Astrophysics Data System (ADS)

    Quan, Austin; Osorio, Ivan; Ohira, Toru; Milton, John

    2011-12-01

    Resonance can occur in bistable dynamical systems due to the interplay between noise and delay (τ) in the absence of a periodic input. We investigate resonance in a two-neuron model with mutual time-delayed inhibitory feedback. For appropriate choices of the parameters and inputs three fixed-point attractors co-exist: two are stable and one is unstable. In the absence of noise, delay-induced transient oscillations (referred to herein as DITOs) arise whenever the initial function is tuned sufficiently close to the unstable fixed-point. In the presence of noisy perturbations, DITOs arise spontaneously. Since the correlation time for the stationary dynamics is ˜τ, we approximated a higher order Markov process by a three-state Markov chain model by rescaling time as t → 2sτ, identifying the states based on whether the sub-intervals were completely confined to one basin of attraction (the two stable attractors) or straddled the separatrix, and then determining the transition probability matrix empirically. The resultant Markov chain model captured the switching behaviors including the statistical properties of the DITOs. Our observations indicate that time-delayed and noisy bistable dynamical systems are prone to generate DITOs as switches between the two attractors occur. Bistable systems arise transiently in situations when one attractor is gradually replaced by another. This may explain, for example, why seizures in certain epileptic syndromes tend to occur as sleep stages change.

  16. The impact of age and oral calcium and vitamin D supplements on postoperative hypocalcemia after total thyroidectomy. A prospective study

    PubMed Central

    2013-01-01

    Background Hypocalcemia caused by transient or definitive hypoparathyroidism is the most frequent complication after total thyroidectomy (TT). We aimed to compare the impact of age and the clinical usefulness of oral calcium and vitamin D supplements on postoperative hypocalcemia after TT, and to determine which risk factors are important for hypocalcemia incidence. Methods Two hundred consecutive patients treated by TT were included prospectively in the present study. All patients supplemented oral calcium and vitamin D in the post-operative time. The data concerning symptomatic and laboratoristichypocalcemia were collected. Patients were evaluated according to age, sex, postoperative serum calcium levels, and preoperative serum alkaline phosphatasis levels. Results Symptomatic hypocalcemia developed only in 19 patients (9.5%), whereas laboratory hypocalcemia developed in 36 patients (18%). The risk for postoperative hypocalcemia was increate 20-fold for patients older than 50 years. Conclusions Age is significantly associated with postoperative hypocalcemia. Implementing oral calcium and vitamin D after total thyroidectomy can reduce the incidence of hypocalcemia related to surgery. PMID:24267491

  17. Transient receptor potential canonical channel-1 (TRPC1) KO mice that exercise are protected from high-fat diet-induced obesity and type 2 diabetes risk

    USDA-ARS?s Scientific Manuscript database

    Objective: Transient receptor potential canonical channel-1 (TRPC1) is a major class of calcium permeable channels found in key metabolic tissues, including the hypothalamus, adipose tissue, and skeletal muscle, making them likely candidates for the regulation of cellular energy metabolism. The exac...

  18. Calcium orthophosphates

    PubMed Central

    Dorozhkin, Sergey V.

    2011-01-01

    The present overview is intended to point the readers’ attention to the important subject of calcium orthophosphates. This type of materials is of special significance for human beings, because they represent the inorganic part of major normal (bones, teeth and antlers) and pathological (i.e., those appearing due to various diseases) calcified tissues of mammals. For example, atherosclerosis results in blood vessel blockage caused by a solid composite of cholesterol with calcium orthophosphates, while dental caries and osteoporosis mean a partial decalcification of teeth and bones, respectively, that results in replacement of a less soluble and harder biological apatite by more soluble and softer calcium hydrogenphosphates. Therefore, the processes of both normal and pathological calcifications are just an in vivo crystallization of calcium orthophosphates. Similarly, dental caries and osteoporosis might be considered an in vivo dissolution of calcium orthophosphates. Thus, calcium orthophosphates hold a great significance for humankind, and in this paper, an overview on the current knowledge on this subject is provided. PMID:23507744

  19. Very long transients, irregular firing, and chaotic dynamics in networks of randomly connected inhibitory integrate-and-fire neurons.

    PubMed

    Zillmer, Rüdiger; Brunel, Nicolas; Hansel, David

    2009-03-01

    We present results of an extensive numerical study of the dynamics of networks of integrate-and-fire neurons connected randomly through inhibitory interactions. We first consider delayed interactions with infinitely fast rise and decay. Depending on the parameters, the network displays transients which are short or exponentially long in the network size. At the end of these transients, the dynamics settle on a periodic attractor. If the number of connections per neuron is large ( approximately 1000) , this attractor is a cluster state with a short period. In contrast, if the number of connections per neuron is small ( approximately 100) , the attractor has complex dynamics and very long period. During the long transients the neurons fire in a highly irregular manner. They can be viewed as quasistationary states in which, depending on the coupling strength, the pattern of activity is asynchronous or displays population oscillations. In the first case, the average firing rates and the variability of the single-neuron activity are well described by a mean-field theory valid in the thermodynamic limit. Bifurcations of the long transient dynamics from asynchronous to synchronous activity are also well predicted by this theory. The transient dynamics display features reminiscent of stable chaos. In particular, despite being linearly stable, the trajectories of the transient dynamics are destabilized by finite perturbations as small as O(1/N) . We further show that stable chaos is also observed for postsynaptic currents with finite decay time. However, we report in this type of network that chaotic dynamics characterized by positive Lyapunov exponents can also be observed. We show in fact that chaos occurs when the decay time of the synaptic currents is long compared to the synaptic delay, provided that the network is sufficiently large.

  20. Use of diphosphonates to correct disorders in calcium metabolism and mineral composition of bone tissue with 60-day hypokinesia in rats

    NASA Technical Reports Server (NTRS)

    Morukov, B. V.; Zaychik, V. YE.; Ivanov, V. M.; Orlov, O. I.

    1988-01-01

    Compounds of the diphosphonate group suppress bone resorption and bone tissue metabolism, from which it was assumed that they can be used for the prevention of osteoporosis and disorders of calcium homeostasis in humans during space flight. Two compounds of this group were used for preventive purposes in 60 day hypokinesia in rats. The results showed that diphosphonates have a marked effect on calcium metabolism and the condition of the bone tissues under conditions of long term hypokinesia: they reduce the content of ionized calcium in blood, delay the loss of calcium and phosphorus by the bone tissue, and to a considerable degree prevent reduction of bone density. This confirms the possibility of using compounds of this group for correcting and preventing changes of bone tissue and mineral metabolism during long term hypokinesia.

  1. Rapid Electrical Stimulation Increased Cardiac Apoptosis Through Disturbance of Calcium Homeostasis and Mitochondrial Dysfunction in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes.

    PubMed

    Geng, Le; Wang, Zidun; Cui, Chang; Zhu, Yue; Shi, Jiaojiao; Wang, Jiaxian; Chen, Minglong

    2018-06-15

    Heart failure induced by tachycardia, the most common arrhythmia, is frequently observed in clinical practice. This study was designed to investigate the underlying mechanisms. Rapid electrical stimulation (RES) at a frequency of 3 Hz was applied on human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) for 7 days, with 8 h/day and 24 h/day set to represent short-term and long-term tachycardia, respectively. Age-matched hiPSC-CMs without electrical stimulation or with slow electrical stimulation (1 Hz) were set as no electrical stimulation (NES) control or low-frequency electrical stimulation (LES) control. Following stimulation, JC-1 staining flow cytometry analysis was performed to examine mitochondrial conditions. Apoptosis in hiPSC-CMs was evaluated using Hoechst staining and Annexin V/propidium iodide (AV/PI) staining flow cytometry analysis. Calcium transients and L-type calcium currents were recorded to evaluate calcium homeostasis. Western blotting and qPCR were performed to evaluate the protein and mRNA expression levels of apoptosis-related genes and calcium homeostasis-regulated genes. Compared to the controls, hiPSC-CMs following RES presented mitochondrial dysfunction and an increased apoptotic percentage. Amplitudes of calcium transients and L-type calcium currents were significantly decreased in hiPSC-CMs with RES. Molecular analysis demonstrated upregulated expression of Caspase3 and increased Bax/Bcl-2 ratio. Genes related to calcium re-sequence were downregulated, while phosphorylated Ca2+/calmodulin-dependent protein kinase II (CaMKII) was significantly upregulated following RES. There was no significant difference between the NES control and LES control groups in these aspects. Inhibition of CaMKII with 1 µM KN93 partly reversed these adverse effects of RES. RES on hiPSC-CMs disturbed calcium homeostasis, which led to mitochondrial stress, promoted cell apoptosis and caused electrophysiological remodeling in a time

  2. Disruption of the vacuolar calcium-ATPases in arabidopsis results in the activation of a salicylic acid-dependent programmed cell death pathway

    USDA-ARS?s Scientific Manuscript database

    Calcium (Ca2+) signals regulate many aspects of plant development, including the Hypersensitive Response (HR) that triggers a programmed cell death response to protect a plant from a pathogen. A transient increase in cytosolic Ca2+ ([Ca2+]cyt ) results from Ca2+ entry from the apoplast or release fr...

  3. Sperm chemotaxis in siphonophores. II. Calcium-dependent asymmetrical movement of spermatozoa induced by the attractant.

    PubMed

    Cosson, M P; Carré, D; Cosson, J

    1984-06-01

    Spermatozoa from siphonophores have been shown to be attracted towards an extracellular structure, the cupule, which covers the predetermined site of fertilization of the egg. Observations on sperm behaviour during the chemotactic response show that spermatozoa describe trajectories of large diameter (700-1000 micron) while far from the cupule, and of smaller diameter (200 micron) in the cupule area. The transition between the two types of swimming occurs progressively when spermatozoa cross a 3 mm wide area around the cupule. After a few minutes 99% of the spermatozoa keep swimming around the attractant source, following circular paths 150-200 micron in diameter. In the absence of the attractant, comparable modifications of sperm trajectories are observed in the presence of the ionophore A23187 and high calcium concentrations. In the presence of 10(-2) M calcium ions, A23187-treated spermatozoa describe trajectories 200 micron in diameter, which increase up to 800 micron at lower calcium concentrations (10(-6) M). In the absence of calcium ions, spermatozoa swim across the cupule area without modification of their trajectories and no sperm accumulation can be detected. This requirement of the chemotactic response for calcium ions is observed either with fresh cupules stuck on the eggs, with cupules separated from the eggs, or with cupule extracts. Moreover, a soluble component fractionated from the cupule induces, when diluted in sea water, a reduction in the size of the sperm trajectories and this also requires calcium ions. The present data show that the chemotactic response of siphonophore sperm, which requires millimolar concentrations of calcium ions, occurs through a non-transient induction of increased asymmetry of the flagellar waveform. It is proposed that the natural attractant operates to produce an increase in the intraaxonemal calcium concentration.

  4. Calcium

    MedlinePlus

    ... Guidelines for Americans and the U.S. Department of Agriculture's MyPlate . Where can I find out more about ... on food sources of calcium: U.S. Department of Agriculture's (USDA) National Nutrient Database Nutrient List for calcium ( ...

  5. Pump-probe micro-spectroscopy by means of an ultra-fast acousto-optics delay line.

    PubMed

    Audier, Xavier; Balla, Naveen; Rigneault, Hervé

    2017-01-15

    We demonstrate femtosecond pump-probe transient absorption spectroscopy using a programmable dispersive filter as an ultra-fast delay line. Combined with fast synchronous detection, this delay line allows for recording of 6 ps decay traces at 34 kHz. With such acquisition speed, we perform single point pump-probe spectroscopy on bulk samples in 80 μs and hyperspectral pump-probe imaging over a field of view of 100 μm in less than a second. The usability of the method is illustrated in a showcase experiment to image and discriminate between two pigments in a mixture.

  6. Calcium ion as intracellular messenger and cellular toxin.

    PubMed

    Rasmussen, H; Barrett, P; Smallwood, J; Bollag, W; Isales, C

    1990-03-01

    Ca2+ serves a nearly universal intracellular messenger function in cell activation, but excess Ca2+ is also a cellular toxin. The possibility of Ca2+ intoxication is minimized by an elaborate autoregulatory system in which changes in Ca2+ influx rate across the plasma membrane are rapidly compensated for by parallel changes in Ca2+ efflux rate. By this mean, cellular Ca2+ homestasis is maintained so that minimal changes in total cell calcium and cytosolic Ca2+ concentration occur during sustained Ca2(+)-mediated responses. Rather than a sustained increase in cytosolic Ca2+ concentration, it is the localized cycling of Ca2+ across the plasma membrane that is the critically important Ca2+ messenger during the sustained phase of cellular responses mediated via surface receptors linked to the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2). PIP2 hydrolysis gives rise to inositol(1,4,5)trisphosphate (IP3) and diacylglycerol (DAG). The IP3 acts to release Ca2+ from an intracellular pool, thereby causing a transient rise in cytosolic Ca2+ concentration. This transient Ca2+ signal activates calmodulin-dependent protein kinases transiently, and hence, causes the transient phosphorylation of a subset of cellular proteins that mediate the initial phase of the response. The DAG brings about the association of protein kinase C (PKC) with the plasma membrane where a receptor-mediated increase in Ca2+ cycling across the membrane regulates PKC activity. The sustained phosphorylation of a second subset of proteins by PKC mediates the sustained phase of the response. Hence, Ca2+ serves as a messenger during both phases of the cellular response, but its cellular sites of action, its mechanisms of generation, and its molecular targets differ during the initial and sustained phases of the response.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Calcium ion as intracellular messenger and cellular toxin.

    PubMed Central

    Rasmussen, H; Barrett, P; Smallwood, J; Bollag, W; Isales, C

    1990-01-01

    Ca2+ serves a nearly universal intracellular messenger function in cell activation, but excess Ca2+ is also a cellular toxin. The possibility of Ca2+ intoxication is minimized by an elaborate autoregulatory system in which changes in Ca2+ influx rate across the plasma membrane are rapidly compensated for by parallel changes in Ca2+ efflux rate. By this mean, cellular Ca2+ homestasis is maintained so that minimal changes in total cell calcium and cytosolic Ca2+ concentration occur during sustained Ca2(+)-mediated responses. Rather than a sustained increase in cytosolic Ca2+ concentration, it is the localized cycling of Ca2+ across the plasma membrane that is the critically important Ca2+ messenger during the sustained phase of cellular responses mediated via surface receptors linked to the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2). PIP2 hydrolysis gives rise to inositol(1,4,5)trisphosphate (IP3) and diacylglycerol (DAG). The IP3 acts to release Ca2+ from an intracellular pool, thereby causing a transient rise in cytosolic Ca2+ concentration. This transient Ca2+ signal activates calmodulin-dependent protein kinases transiently, and hence, causes the transient phosphorylation of a subset of cellular proteins that mediate the initial phase of the response. The DAG brings about the association of protein kinase C (PKC) with the plasma membrane where a receptor-mediated increase in Ca2+ cycling across the membrane regulates PKC activity. The sustained phosphorylation of a second subset of proteins by PKC mediates the sustained phase of the response. Hence, Ca2+ serves as a messenger during both phases of the cellular response, but its cellular sites of action, its mechanisms of generation, and its molecular targets differ during the initial and sustained phases of the response.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2190811

  8. Tissue-tissue interaction-triggered calcium elevation is required for cell polarization during Xenopus gastrulation.

    PubMed

    Shindo, Asako; Hara, Yusuke; Yamamoto, Takamasa S; Ohkura, Masamichi; Nakai, Junichi; Ueno, Naoto

    2010-02-02

    mechanical forces through cell-cell contact that initiates coordinated cell polarization through a transient increase in intracellular calcium.

  9. Interplay of Plasma Membrane and Vacuolar Ion Channels, Together with BAK1, Elicits Rapid Cytosolic Calcium Elevations in Arabidopsis during Aphid Feeding[OPEN

    PubMed Central

    Vincent, Thomas R.; Avramova, Marieta; Canham, James; Higgins, Peter; Bilkey, Natasha; Mugford, Sam T.; Pitino, Marco; Toyota, Masatsugu

    2017-01-01

    A transient rise in cytosolic calcium ion concentration is one of the main signals used by plants in perception of their environment. The role of calcium in the detection of abiotic stress is well documented; however, its role during biotic interactions remains unclear. Here, we use a fluorescent calcium biosensor (GCaMP3) in combination with the green peach aphid (Myzus persicae) as a tool to study Arabidopsis thaliana calcium dynamics in vivo and in real time during a live biotic interaction. We demonstrate rapid and highly localized plant calcium elevations around the feeding sites of M. persicae, and by monitoring aphid feeding behavior electrophysiologically, we demonstrate that these elevations correlate with aphid probing of epidermal and mesophyll cells. Furthermore, we dissect the molecular mechanisms involved, showing that interplay between the plant defense coreceptor BRASSINOSTEROID INSENSITIVE-ASSOCIATED KINASE1 (BAK1), the plasma membrane ion channels GLUTAMATE RECEPTOR-LIKE 3.3 and 3.6 (GLR3.3 and GLR3.6), and the vacuolar ion channel TWO-PORE CHANNEL1 (TPC1) mediate these calcium elevations. Consequently, we identify a link between plant perception of biotic threats by BAK1, cellular calcium entry mediated by GLRs, and intracellular calcium release by TPC1 during a biologically relevant interaction. PMID:28559475

  10. Aluminum hydroxide, calcium carbonate and calcium acetate in chronic intermittent hemodialysis patients.

    PubMed

    Janssen, M J; van der Kuy, A; ter Wee, P M; van Boven, W P

    1996-02-01

    Prevention of secondary hyperparathyroidism in uremia necessitates correction of hyperphosphatemia and hypocalcemia. In order to avoid aluminum toxicity, calcium containing phosphate binders are used increasingly, instead of aluminium hydroxide. Recent studies have shown that calcium acetate has many characteristics of an ideal phosphate binder. It is, for instance, a more readily soluble salt compared with calcium carbonate. This advantage might, however, disappear if calcium carbonate is taken on an empty stomach, a few minutes before meals. We examined the efficacy of three different phosphate binding agents in a randomized prospective study of 53 patients on regular hemodialysis. Bicarbonate dialyses were performed with a dialysate calcium concentration of 1.75 mmol/l. After a three-week wash-out period, patients received either aluminum hydroxide (control group), calcium acetate, or calcium carbonate as their phosphate binder. Patients were instructed to take the calcium salts a few minutes before meals on an empty stomach, and aluminum hydroxide during meals. Serum calcium, phosphate, intact parathormone, and alkaline phosphatase levels were determined every month. Patient compliance was estimated every month by asking the patients which phosphate binder and what daily dose they had used. Aluminum hydroxide tended to be the most effective phosphate binder. The mean +/- SEM required daily dose of calcium acetate at 12 months was 5.04 +/- 0.60 g, corresponding to 10.1 +/- 1.20 tablets of 500 mg. Co-medication with aluminum hydroxide, however, was needed (1.29 +/- 0.54 g per day, corresponding to 2.6 +/- 1.08 tablets of 500 mg). The required daily calcium carbonate dose appeared to be 2.71 +/- 0.48 g, corresponding to 5.4 +/- 0.95 capsules of 500 mg, with an adjuvant daily aluminum hydroxide dose of 0.69 +/- 0.27 g, corresponding to 1.4 +/- 0.55 tablets of 500 mg (p = 0.0055). Thus, the mean daily doses of elemental calcium were comparable between the calcium

  11. On the role of calcium ions in the regulation of glycogenolysis in mouse brain cortical slices.

    PubMed

    Ververken, D; Van Veldhoven, P; Proost, C; Carton, H; De Wulf, H

    1982-05-01

    Using mouse brain cortical slices, we investigated the relative roles of cyclic AMP and of calcium ions as the intracellular messengers for the activation of glycogen phosphorylase (EC 2.4.1.1; alpha-1,4-glucan:orthophosphate glucosyltransferase) induced by noradrenaline and by depolarization. Activation of phosphorylase by 100 microM noradrenaline is mediated by beta-adrenergic receptors and does not require the copresence of adenosine. The role of the concomitant small increase in cyclic AMP is questioned. Short-term treatment with EGTA or LaCl3 abolishes the noradrenaline activation of phosphorylase, pointing to a critical role of extracellular calcium. Depolarization by 25 mM K+ or 100 microM veratridine produces a rapid and large (fourfold) activation of phosphorylase. Only veratridine increases the cyclic AMP levels; exogenous adenosine deaminase essentially blocks this cyclic AMP accumulation but not the phosphorylase activation. A half-maximal activation of phosphorylase occurs at about 12 mM K+. Addition of EGTA or LaCl3 reduces the effect of both depolarizations to a slight and transient activation of phosphorylase. These results indicate that activation of glycogen phosphorylase by K+ or veratridine occurs by a cyclic AMP-independent and calcium-dependent mechanism. The calcium dependency of brain phosphorylase kinase renders this kinase the prime target enzyme for regulation of glycogenolysis by calcium ions.

  12. Activity of Palythoa caribaeorum Venom on Voltage-Gated Ion Channels in Mammalian Superior Cervical Ganglion Neurons.

    PubMed

    Lazcano-Pérez, Fernando; Castro, Héctor; Arenas, Isabel; García, David E; González-Muñoz, Ricardo; Arreguín-Espinosa, Roberto

    2016-05-05

    The Zoanthids are an order of cnidarians whose venoms and toxins have been poorly studied. Palythoa caribaeorum is a zoanthid commonly found around the Mexican coastline. In this study, we tested the activity of P. caribaeorum venom on voltage-gated sodium channel (NaV1.7), voltage-gated calcium channel (CaV2.2), the A-type transient outward (IA) and delayed rectifier (IDR) currents of KV channels of the superior cervical ganglion (SCG) neurons of the rat. These results showed that the venom reversibly delays the inactivation process of voltage-gated sodium channels and inhibits voltage-gated calcium and potassium channels in this mammalian model. The compounds responsible for these effects seem to be low molecular weight peptides. Together, these results provide evidence for the potential use of zoanthids as a novel source of cnidarian toxins active on voltage-gated ion channels.

  13. Neutronic safety parameters and transient analyses for Poland's MARIA research reactor.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bretscher, M. M.; Hanan, N. A.; Matos, J. E.

    1999-09-27

    Reactor kinetic parameters, reactivity feedback coefficients, and control rod reactivity worths have been calculated for the MARIA Research Reactor (Swierk, Poland) for M6-type fuel assemblies with {sup 235}U enrichments of 80% and 19.7%. Kinetic parameters were evaluated for family-dependent effective delayed neutron fractions, decay constants, and prompt neutron lifetimes and neutron generation times. Reactivity feedback coefficients were determined for fuel Doppler coefficients, coolant (H{sub 2}O) void and temperature coefficients, and for in-core and ex-core beryllium temperature coefficients. Total and differential control rod worths and safety rod worths were calculated for each fuel type. These parameters were used to calculate genericmore » transients for fast and slow reactivity insertions with both HEU and LEU fuels. The analyses show that the HEU and LEU cores have very similar responses to these transients.« less

  14. Transient compartment-like syndrome and normokalaemic periodic paralysis due to a Cav1.1 mutation

    PubMed Central

    Fan, Chunxiang; Lehmann-Horn, Frank; Weber, Marc-André; Bednarz, Marcin; Groome, James R.; Jonsson, Malin K. B.

    2013-01-01

    We studied a two-generation family presenting with conditions that included progressive permanent weakness, myopathic myopathy, exercise-induced contracture before normokalaemic periodic paralysis or, if localized to the tibial anterior muscle group, transient compartment-like syndrome (painful acute oedema with neuronal compression and drop foot). 23Na and 1H magnetic resonance imaging displayed myoplasmic sodium overload, and oedema. We identified a novel familial Cav1.1 calcium channel mutation, R1242G, localized to the third positive charge of the domain IV voltage sensor. Functional expression of R1242G in the muscular dysgenesis mouse cell line GLT revealed a 28% reduced central pore inward current and a −20 mV shift of the steady-state inactivation curve. Both changes may be at least partially explained by an outward omega (gating pore) current at positive potentials. Moreover, this outward omega current of 27.5 nS/nF may cause the reduction of the overshoot by 13 mV and slowing of the upstroke of action potentials by 36% that are associated with muscle hypoexcitability (permanent weakness and myopathic myopathy). In addition to the outward omega current, we identified an inward omega pore current of 95 nS/nF at negative membrane potentials after long depolarizing pulses that shifts the R1242G residue above the omega pore constriction. A simulation reveals that the inward current might depolarize the fibre sufficiently to trigger calcium release in the absence of an action potential and therefore cause an electrically silent depolarization-induced muscle contracture. Additionally, evidence of the inward current can be found in 23Na magnetic resonance imaging-detected sodium accumulation and 1H magnetic resonance imaging-detected oedema. We hypothesize that the episodes are normokalaemic because of depolarization-induced compensatory outward potassium flux through both delayed rectifiers and omega pore. We conclude that the position of the R1242G residue

  15. Role of DARPP-32 and ARPP-21 in the Emergence of Temporal Constraints on Striatal Calcium and Dopamine Integration

    PubMed Central

    Bhalla, Upinder S.; Hellgren Kotaleski, Jeanette

    2016-01-01

    In reward learning, the integration of NMDA-dependent calcium and dopamine by striatal projection neurons leads to potentiation of corticostriatal synapses through CaMKII/PP1 signaling. In order to elicit the CaMKII/PP1-dependent response, the calcium and dopamine inputs should arrive in temporal proximity and must follow a specific (dopamine after calcium) order. However, little is known about the cellular mechanism which enforces these temporal constraints on the signal integration. In this computational study, we propose that these temporal requirements emerge as a result of the coordinated signaling via two striatal phosphoproteins, DARPP-32 and ARPP-21. Specifically, DARPP-32-mediated signaling could implement an input-interval dependent gating function, via transient PP1 inhibition, thus enforcing the requirement for temporal proximity. Furthermore, ARPP-21 signaling could impose the additional input-order requirement of calcium and dopamine, due to its Ca2+/calmodulin sequestering property when dopamine arrives first. This highlights the possible role of phosphoproteins in the temporal aspects of striatal signal transduction. PMID:27584878

  16. A pupal transcriptomic screen identifies Ral as a target of store-operated calcium entry in Drosophila neurons

    PubMed Central

    Richhariya, Shlesha; Jayakumar, Siddharth; Abruzzi, Katharine; Rosbash, Michael; Hasan, Gaiti

    2017-01-01

    Transcriptional regulation by Store-operated Calcium Entry (SOCE) is well studied in non-excitable cells. However, the role of SOCE has been poorly documented in neuronal cells with more complicated calcium dynamics. Previous reports demonstrated a requirement for SOCE in neurons that regulate Drosophila flight bouts. We refine this requirement temporally to the early pupal stage and use RNA-sequencing to identify SOCE mediated gene expression changes in the developing Drosophila pupal nervous system. Down regulation of dStim, the endoplasmic reticular calcium sensor and a principal component of SOCE in the nervous system, altered the expression of 131 genes including Ral, a small GTPase. Disruption of Ral function in neurons impaired flight, whereas ectopic expression of Ral in SOCE-compromised neurons restored flight. Through live imaging of calcium transients from cultured pupal neurons, we confirmed that Ral does not participate in SOCE, but acts downstream of it. These results identify neuronal SOCE as a mechanism that regulates expression of specific genes during development of the pupal nervous system and emphasizes the relevance of SOCE-regulated gene expression to flight circuit maturation. PMID:28195208

  17. Delayed rectifier potassium channels are involved in SO2 derivative-induced hippocampal neuronal injury.

    PubMed

    Li, Guangke; Sang, Nan

    2009-01-01

    Recent studies implicate the possible neurotoxicity of SO(2), however, its mechanisms remain unclear. In the present study, we investigated SO(2) derivative-induced effect on delayed rectifier potassium channels (I(K)) and cellular death/apoptosis in primary cultured hippocampal neurons. The results demonstrate that SO(2) derivatives (NaHSO(3) and Na(2)SO(3), 3:1M/M) effectively augmented I(K) and promoted the activation of delayed rectifier potassium channels. Also, SO(2) derivatives increased neuronal death percentage and contributed to the formation of DNA ladder in concentration-dependent manners. Interestingly, the neuronal death and DNA ladder formation, caused by SO(2) derivatives, could be attenuated by the delayed rectifier potassium channel blocker (tetraethylammonium, TEA), but not by the transient outward potassium channel blocker (4-aminopyridine, 4-AP). It implies that stimulating delayed rectifier potassium channels were involved in SO(2) derivative-caused hippocampal neuronal insults, and blocking these channels might be one of the possibly clinical treatment for SO(2)-caused neuronal dysfunction.

  18. Atomically resolved calcium phosphate coating on a gold substrate.

    PubMed

    Metoki, Noah; Baik, Sung-Il; Isheim, Dieter; Mandler, Daniel; Seidman, David N; Eliaz, Noam

    2018-05-10

    Some articles have revealed that the electrodeposition of calcium phosphate (CaP) coatings entails a precursor phase, similarly to biomineralization in vivo. The chemical composition of the initial layer and its thickness are, however, still arguable, to the best of our knowledge. Moreover, while CaP and electrodeposition of metal coatings have been studied utilizing atom-probe tomography (APT), the electrodeposition of CaP ceramics has not been heretofore studied. Herein, we present an investigation of the CaP deposition on a gold substrate. Using APT and transmission electron microscopy (TEM) it is found that a mixture of phases, which could serve as transient precursor phases to hydroxyapatite (HAp), can be detected. The thickness of these phases is tens of nanometers, and they consist of amorphous CaP (ACP), dibasic calcium phosphate dihydrate (DCPD), and octacalcium phosphate (OCP). This demonstrates the value of using atomic-resolved characterization techniques for identifying the precursor phases. It also indicates that the kinetics of their transformation into the more stable HAp is not too fast to enable their observation. The coating gradually displays higher Ca/P atomic ratios, a porous nature, and concomitantly a change in its density.

  19. Induction of defence gene expression by oligogalacturonic acid requires increases in both cytosolic calcium and hydrogen peroxide in Arabidopsis thaliana.

    PubMed

    Hu, Xiang Yang; Neill, Steven J; Cai, Wei Ming; Tang, Zhang Cheng

    2004-06-01

    Responses to oligogalacturonic acid (OGA) were determined in transgenic Arabidopsis thaliana seedlings expressing the calcium reporter protein aequorin. OGA stimulated a rapid, substantial and transient increase in the concentration of cytosolic calcium ([Ca2+]cyt) that peaked after ca. 15 s. This increase was dose-dependent, saturating at ca. 50 ug Gal equiv/ml of OGA. OGA also stimulated a rapid generation of H2O2. A small, rapid increase in H2O2 content was followed by a much larger oxidative burst, with H2O2 content peaking after ca. 60 min and declining thereafter. Induction of the oxidative burst by OGA was also dose-dependent, with a maximum response again being achieved at ca. 50 ug Gal equiv/mL. Inhibitors of calcium fluxes inhibited both increases in [Ca2+]cyt and [H2O2], whereas inhibitors of NADPH oxidase blocked only the oxidative burst. OGA increased strongly the expression of the defence-related genes CHS, GST, PAL and PR-1. This induction was suppressed by inhibitors of calcium flux or NADPH oxidase, indicating that increases in both cytosolic calcium and H2O2 are required for OGA-induced gene expression.

  20. Effect of extracellular ATP on contraction, cytosolic calcium activity, membrane voltage and ion currents of rat mesangial cells in primary culture.

    PubMed Central

    Pavenstädt, H.; Gloy, J.; Leipziger, J.; Klär, B.; Pfeilschifter, J.; Schollmeyer, P.; Greger, R.

    1993-01-01

    1. The effects of extracellular ATP on contraction, membrane voltage (Vm), ion currents and intracellular calcium activity [Ca2+]i were studied in rat mesangial cells (MC) in primary culture. 2. Addition of extracellular ATP (10(-5) and 10(-4) M) to MC led to a cell contraction which was independent of extracellular calcium. 3. Membrane voltage (Vm) and ion currents were measured with the nystatin patch clamp technique. ATP induced a concentration-dependent transient depolarization of Vm (ED50: 2 x 10(-6) M). During the transient depolarization ion currents were monitored simultaneously and showed an increase of the inward- and outward current. 4. In a buffer with a reduced extracellular chloride concentration (from 145 to 30 mM) ATP induced a depolarization augmented to -4 +/- 4 mV. 5. ATP-gamma-S and 2-methylthio-ATP depolarized Vm to the same extent as ATP, whereas alpha,beta-methylene-ATP (all 10(-5) M) had no effect on Vm. 6. The Ca2+ ionophore, A23187, depolarized Vm transiently from -51 +/- 2 to -28 +/- 4 mV and caused an increase of the inward current. 7. The intracellular calcium activity [Ca2+]i was measured with the fura-2 technique. ATP stimulated a concentration-dependent increase of [Ca2+]i (ED50: 5 x 10(-6) M). The increase of [Ca2+]i was biphasic with an initial peak followed by a sustained plateau. 8. The [Ca2+]i peak was still present in an extracellular Ca(2+)-free buffer, whereas the plateau was abolished. Verapamil (10(-4) M) did not inhibit the [Ca2+]i increase induced by ATP.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 1 PMID:7691366

  1. Voltage-Gated Calcium Influx Modifies Cholinergic Inhibition of Inner Hair Cells in the Immature Rat Cochlea.

    PubMed

    Zachary, Stephen; Nowak, Nathaniel; Vyas, Pankhuri; Bonanni, Luke; Fuchs, Paul Albert

    2018-06-20

    Until postnatal day (P) 12, inner hair cells of the rat cochlea are invested with both afferent and efferent synaptic connections. With the onset of hearing at P12, the efferent synapses disappear, and afferent (ribbon) synapses operate with greater efficiency. This change coincides with increased expression of voltage-gated potassium channels, the loss of calcium-dependent electrogenesis, and the onset of graded receptor potentials driven by sound. The transient efferent synapses include near-membrane postsynaptic cisterns thought to regulate calcium influx through the hair cell's α9-containing and α10-containing nicotinic acetylcholine receptors. This influx activates small-conductance Ca 2+ -activated K + (SK) channels. Serial-section electron microscopy of inner hair cells from two 9-d-old (male) rat pups revealed many postsynaptic efferent cisterns and presynaptic afferent ribbons whose average minimal separation in five cells ranged from 1.1 to 1.7 μm. Efferent synaptic function was studied in rat pups (age, 7-9 d) of either sex. The duration of these SK channel-mediated IPSCs was increased by enhanced calcium influx through L-type voltage-gated channels, combined with ryanodine-sensitive release from internal stores-presumably the near-membrane postsynaptic cistern. These data support the possibility that inner hair cell calcium electrogenesis modulates the efficacy of efferent inhibition during the maturation of inner hair cell synapses. SIGNIFICANCE STATEMENT Strict calcium buffering is essential for cellular function. This problem is especially acute for compact hair cells where increasing cytoplasmic calcium promotes the opposing functions of closely adjoining afferent and efferent synapses. The near-membrane postsynaptic cistern at efferent synapses segregates synaptic calcium signals by acting as a dynamic calcium store. The hair cell serves as an informative model for synapses with postsynaptic cisterns (C synapses) found in central neurons

  2. Gravimetric Determination of Calcium as Calcium Carbonate Hydrate.

    ERIC Educational Resources Information Center

    Henrickson, Charles H.; Robinson, Paul R.

    1979-01-01

    The gravimetric determination of calcium as calcium carbonate is described. This experiment is suitable for undergraduate quantitative analysis laboratories. It is less expensive than determination of chloride as silver chloride. (BB)

  3. Calcium binding to Procambarus clarkii sarcoplasmic calcium binding protein splice variants.

    PubMed

    Rohrback, Suzanne E; Wheatly, Michele G; Gillen, Christopher M

    2015-01-01

    Sarcoplasmic calcium binding protein (SCP) is a high-affinity calcium buffering protein expressed in muscle of crayfish and other invertebrates. In previous work, we identified three splice variants of Procambarus clarkii SCP (pcSCP1a, pcSCP1b, and pcSCP1c) that differ in a 37 amino acid region that lies mainly between the 2nd and 3ed EF-hand calcium binding domain. To evaluate the function of the proteins encoded by the pcSCP1 transcripts, we produced recombinant pcSCP1 and used tryptophan fluorescence to characterize calcium binding. Tryptophan fluorescence of pcSCP1a decreased in response to increased calcium, while tryptophan fluorescence of the pcSCP1b and pcSCP1c variants increased. We estimated calcium binding constants and Hill coefficients with two different equations: the standard Hill equation and a modified Hill equation that accounts for contributions from two different tryptophans. The approaches gave similar results. Steady-state calcium binding constants (Kd) ranged from 2.7±0.7×10(-8)M to 5.6±0.1×10(-7)M, consistent with previous work. Variants displayed significantly different apparent calcium affinities, which were decreased in the presence of magnesium. Calcium Kd was lowest for pcSCP1a and highest for pcSCP1c. Site-directed mutagenesis of pcSCP1c residues to the amino acids of pcSCP1b decreased the calcium Kd, identifying residues outside the EF-hand domains that contribute to calcium binding in crayfish SCP. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Why Calcium? How Calcium Became the Best Communicator*

    PubMed Central

    Carafoli, Ernesto; Krebs, Joachim

    2016-01-01

    Calcium carries messages to virtually all important functions of cells. Although it was already active in unicellular organisms, its role became universally important after the transition to multicellular life. In this Minireview, we explore how calcium ended up in this privileged position. Most likely its unique coordination chemistry was a decisive factor as it makes its binding by complex molecules particularly easy even in the presence of large excesses of other cations, e.g. magnesium. Its free concentration within cells can thus be maintained at the very low levels demanded by the signaling function. A large cadre of proteins has evolved to bind or transport calcium. They all contribute to buffer it within cells, but a number of them also decode its message for the benefit of the target. The most important of these “calcium sensors” are the EF-hand proteins. Calcium is an ambivalent messenger. Although essential to the correct functioning of cell processes, if not carefully controlled spatially and temporally within cells, it generates variously severe cell dysfunctions, and even cell death. PMID:27462077

  5. Calcium

    MedlinePlus

    ... and enzymes and to send messages through the nervous system. It is important to get plenty of calcium in the foods you eat. Foods rich in calcium include Dairy products such as milk, cheese, and yogurt Leafy, green vegetables Fish with soft bones that you eat, such as ...

  6. Chaotic simulated annealing by a neural network with a variable delay: design and application.

    PubMed

    Chen, Shyan-Shiou

    2011-10-01

    In this paper, we have three goals: the first is to delineate the advantages of a variably delayed system, the second is to find a more intuitive Lyapunov function for a delayed neural network, and the third is to design a delayed neural network for a quadratic cost function. For delayed neural networks, most researchers construct a Lyapunov function based on the linear matrix inequality (LMI) approach. However, that approach is not intuitive. We provide a alternative candidate Lyapunov function for a delayed neural network. On the other hand, if we are first given a quadratic cost function, we can construct a delayed neural network by suitably dividing the second-order term into two parts: a self-feedback connection weight and a delayed connection weight. To demonstrate the advantage of a variably delayed neural network, we propose a transiently chaotic neural network with variable delay and show numerically that the model should possess a better searching ability than Chen-Aihara's model, Wang's model, and Zhao's model. We discuss both the chaotic and the convergent phases. During the chaotic phase, we simply present bifurcation diagrams for a single neuron with a constant delay and with a variable delay. We show that the variably delayed model possesses the stochastic property and chaotic wandering. During the convergent phase, we not only provide a novel Lyapunov function for neural networks with a delay (the Lyapunov function is independent of the LMI approach) but also establish a correlation between the Lyapunov function for a delayed neural network and an objective function for the traveling salesman problem. © 2011 IEEE

  7. Antibacterial action of calcium hydroxide vehicles and calcium hydroxide pastes.

    PubMed

    Pacios, María Gabriela; Silva, Clara; López, María Elena; Cecilia, Marta

    2012-11-01

    To evaluate the in vitro action of vehicles alone and with calcium hydroxide against different bacterial species. Agar plates were inoculated with the microbial suspensions, and wells were made and filled with the calcium hydroxide pastes and the vehicles used to prepare the pastes. The zones of inhibited bacterial growth were recorded, and the resulting measurements were statistically analyzed. Enterococcus faecalis was the most resistant microorganism to all medicaments. Calcium hydroxide + p-monochlorophenol; calcium hydroxide + p-monochlorophenol-propylene glycol pastes; and p-monochlorophenol, p-monochlorophenol-propylene glycol, and chlorhexidine gluconate gel alone showed the largest zones of inhibition against all the tested microorganisms. The vehicle used to prepare the calcium hydroxide paste might contribute to its antibacterial action. Chlorhexidine gluconate gel used alone, and camphorated p-monochlorophenol and camphorated p-monochlorophenol-propylene glycol as vehicles of calcium hydroxide, could be recommended, in an antimicrobial sense. © 2012 Wiley Publishing Asia Pty Ltd.

  8. AKAP150-mediated TRPV1 sensitization is disrupted by calcium/calmodulin.

    PubMed

    Chaudhury, Sraboni; Bal, Manjot; Belugin, Sergei; Shapiro, Mark S; Jeske, Nathaniel A

    2011-05-14

    The transient receptor potential vanilloid type1 (TRPV1) is expressed in nociceptive sensory neurons and is sensitive to phosphorylation. A-Kinase Anchoring Protein 79/150 (AKAP150) mediates phosphorylation of TRPV1 by Protein Kinases A and C, modulating channel activity. However, few studies have focused on the regulatory mechanisms that control AKAP150 association with TRPV1. In the present study, we identify a role for calcium/calmodulin in controlling AKAP150 association with, and sensitization of, TRPV1. In trigeminal neurons, intracellular accumulation of calcium reduced AKAP150 association with TRPV1 in a manner sensitive to calmodulin antagonism. This was also observed in transfected Chinese hamster ovary (CHO) cells, providing a model for conducting molecular analysis of the association. In CHO cells, the deletion of the C-terminal calmodulin-binding site of TRPV1 resulted in greater association with AKAP150, and increased channel activity. Furthermore, the co-expression of wild-type calmodulin in CHOs significantly reduced TRPV1 association with AKAP150, as evidenced by total internal reflective fluorescence-fluorescence resonance energy transfer (TIRF-FRET) analysis and electrophysiology. Finally, dominant-negative calmodulin co-expression increased TRPV1 association with AKAP150 and increased basal and PKA-sensitized channel activity. the results from these studies indicate that calcium/calmodulin interferes with the association of AKAP150 with TRPV1, potentially extending resensitization of the channel.

  9. Calcium and Calcium Supplements: Achieving the Right Balance

    MedlinePlus

    ... soy products, cereal and fruit juices, and milk substitutes To absorb calcium, your body also needs vitamin ... Nutrition/default.asp. Accessed June 25, 2015. Calcium. Natural Medicines Comprehensive Database. http://www.naturaldatabase.com. Accessed ...

  10. Background norepinephrine primes astrocytic calcium responses to subsequent norepinephrine stimuli in the cerebral cortex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nuriya, Mutsuo; Keio Advanced Research Center for Water Biology and Medicine, Keio University, Shinjuku, Tokyo, 160-8582; Graduate School of Environment and Information Sciences, Yokohama National University, Yokohama, Kanagawa, 240-8501

    Norepinephrine (NE) levels in the cerebral cortex are regulated in two modes; the brain state is correlated with slow changes in background NE concentration, while salient stimuli induce transient NE spikes. Previous studies have revealed their diverse neuromodulatory actions; however, the modulatory role of NE on astrocytic activity has been poorly characterized thus far. In this study, we evaluated the modulatory action of background NE on astrocytic responses to subsequent stimuli, using two-photon calcium imaging of acute murine cortical brain slices. We find that subthreshold background NE significantly augments calcium responses to subsequent pulsed NE stimulation in astrocytes. This primingmore » effect is independent of neuronal activity and is mediated by the activation of β-adrenoceptors and the downstream cAMP pathway. These results indicate that background NE primes astrocytes for subsequent calcium responses to NE stimulation and suggest a novel gliomodulatory role for brain state-dependent background NE in the cerebral cortex. - Highlights: • Background NE augments the responsiveness of astrocytes to subsequent NE stimulation. • The priming effect is independent of neuronal activity and mediated by βadrenoceptor. • Background subthreshold NE may play gliomodulatory roles in the cerebral cortex.« less

  11. Calcium content of different compositions of gallstones and pathogenesis of calcium carbonate gallstones.

    PubMed

    Yu, Ji-Kuen; Pan, Huichin; Huang, Shing-Moo; Huang, Nan-Lan; Yao, Chung-Chin; Hsiao, Kuang-Ming; Wu, Chew-Wun

    2013-01-01

    Our aim was to investigate the calcium content of different gallstone compositions and the pathogenic mechanisms of calcium carbonate gallstones. Between August 2001 and July 2007, gallstones from 481 patients, including 68 calcium carbonate gallstones, were analyzed for total calcium content. Gallbladder bile samples from 33 cases and six controls were analyzed for pH, carbonate anion level, free-ionized calcium concentration and saturation index for calcium carbonate. Total calcium content averaged 75.6 %, 11.8 %, and 4.2 % for calcium carbonate, calcium bilirubinate and cholesterol gallstones. In 29.4 % of patients, chronic and/or intermittent cystic duct obstructions were caused by polypoid lesions in the neck region and 70.6 % were caused by stones. A total of 82 % of patients had chronic low-grade inflammation of the gallbladder wall and 18.0 % had acute inflammatory exacerbations. In the bile, we found the mean pH, mean carbonate anion, free-ionized calcium concentrations, and mean saturation index for calcium carbonate to be elevated in comparison to controls. From our study, we found chronic and/or intermittent cystic duct obstructions and low-grade GB wall inflammation lead to GB epithelium hydrogen secretion dysfunction. Increased calcium ion efflux into the GB lumen combined with increased carbonate anion presence increases SI_CaCO(3) from 1 to 22.4. Thus, in an alkaline milieu with pH 7.8, calcium carbonate begins to aggregate and precipitate. Copyright © 2012. Published by Elsevier B.V.

  12. Calcium source (image)

    MedlinePlus

    Getting enough calcium to keep bones from thinning throughout a person's life may be made more difficult if that person has ... as a tendency toward kidney stones, for avoiding calcium-rich food sources. Calcium deficiency also effects the ...

  13. A robust nonlinear stabilizer as a controller for improving transient stability in micro-grids.

    PubMed

    Azimi, Seyed Mohammad; Afsharnia, Saeed

    2017-01-01

    This paper proposes a parametric-Lyapunov approach to the design of a stabilizer aimed at improving the transient stability of micro-grids (MGs). This strategy is applied to electronically-interfaced distributed resources (EI-DRs) operating with a unified control configuration applicable to all operational modes (i.e. grid-connected mode, islanded mode, and mode transitions). The proposed approach employs a simple structure compared with other nonlinear controllers, allowing ready implementation of the stabilizer. A new parametric-Lyapunov function is proposed rendering the proposed stabilizer more effective in damping system transition transients. The robustness of the proposed stabilizer is also verified based on both time-domain simulations and mathematical proofs, and an ultimate bound has been derived for the frequency transition transients. The proposed stabilizer operates by deploying solely local information and there are no needs for communication links. The deteriorating effects of the primary resource delays on the transient stability are also treated analytically. Finally, the effectiveness of the proposed stabilizer is evaluated through time-domain simulations and compared with the recently-developed stabilizers performed on a multi-resource MG. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Effective delayed neutron fraction and prompt neutron lifetime of Tehran research reactor mixed-core.

    PubMed

    Lashkari, A; Khalafi, H; Kazeminejad, H

    2013-05-01

    In this work, kinetic parameters of Tehran research reactor (TRR) mixed cores have been calculated. The mixed core configurations are made by replacement of the low enriched uranium control fuel elements with highly enriched uranium control fuel elements in the reference core. The MTR_PC package, a nuclear reactor analysis tool, is used to perform the analysis. Simulations were carried out to compute effective delayed neutron fraction and prompt neutron lifetime. Calculation of kinetic parameters is necessary for reactivity and power excursion transient analysis. The results of this research show that effective delayed neutron fraction decreases and prompt neutron lifetime increases with the fuels burn-up. Also, by increasing the number of highly enriched uranium control fuel elements in the reference core, the prompt neutron lifetime increases, but effective delayed neutron fraction does not show any considerable change.

  15. Effective delayed neutron fraction and prompt neutron lifetime of Tehran research reactor mixed-core

    PubMed Central

    Lashkari, A.; Khalafi, H.; Kazeminejad, H.

    2013-01-01

    In this work, kinetic parameters of Tehran research reactor (TRR) mixed cores have been calculated. The mixed core configurations are made by replacement of the low enriched uranium control fuel elements with highly enriched uranium control fuel elements in the reference core. The MTR_PC package, a nuclear reactor analysis tool, is used to perform the analysis. Simulations were carried out to compute effective delayed neutron fraction and prompt neutron lifetime. Calculation of kinetic parameters is necessary for reactivity and power excursion transient analysis. The results of this research show that effective delayed neutron fraction decreases and prompt neutron lifetime increases with the fuels burn-up. Also, by increasing the number of highly enriched uranium control fuel elements in the reference core, the prompt neutron lifetime increases, but effective delayed neutron fraction does not show any considerable change. PMID:24976672

  16. Calcium transient prevalence across the dendritic arbour predicts place field properties.

    PubMed

    Sheffield, Mark E J; Dombeck, Daniel A

    2015-01-08

    Establishing the hippocampal cellular ensemble that represents an animal's environment involves the emergence and disappearance of place fields in specific CA1 pyramidal neurons, and the acquisition of different spatial firing properties across the active population. While such firing flexibility and diversity have been linked to spatial memory, attention and task performance, the cellular and network origin of these place cell features is unknown. Basic integrate-and-fire models of place firing propose that such features result solely from varying inputs to place cells, but recent studies suggest instead that place cells themselves may play an active role through regenerative dendritic events. However, owing to the difficulty of performing functional recordings from place cell dendrites, no direct evidence of regenerative dendritic events exists, leaving any possible connection to place coding unknown. Using multi-plane two-photon calcium imaging of CA1 place cell somata, axons and dendrites in mice navigating a virtual environment, here we show that regenerative dendritic events do exist in place cells of behaving mice, and, surprisingly, their prevalence throughout the arbour is highly spatiotemporally variable. Furthermore, we show that the prevalence of such events predicts the spatial precision and persistence or disappearance of place fields. This suggests that the dynamics of spiking throughout the dendritic arbour may play a key role in forming the hippocampal representation of space.

  17. The effect of habitat geology on calcium intake and calcium status of wild rodents.

    PubMed

    Shore, R F; Balment, R J; Yalden, D W

    1991-12-01

    Calcium is essential for normal physiological function, reproduction and growth in mammals but its distribution in the natural environment is heterogeneous. Spatial variation in calcium soil content is especially marked in the Peak District, United Kingdom, where both calcium-rich limestone and calcium-poor gritstone rock types occur. Wood mice Apodemus sylvaticus (L) and bank voles Clethrionomys glareolus (Schreber 1780) from limestone areas had significantly higher calcium concentrations in stomach contents and in faeces compared with their counterparts from gritstone areas. Calcium status was assessed from serum calcium concentration, femur weight, ash content of the body, calcium concentration in the femur and body ash. There was no significant difference in serum calcium concentration, femur calcium concentration and body ash calcium concentration between animals from the limestone and the gritstone. However, on the limestone, bank voles, but not wood mice, had significantly heavier femora and a greater proportion of ash in the body compared with their gritstone counterparts.

  18. Understanding Charge Collection Mechanisms in InGaAs FinFETs Using High-Speed Pulsed-Laser Transient Testing With Tunable Wavelength

    NASA Astrophysics Data System (ADS)

    Ni, Kai; Sternberg, Andrew L.; Zhang, En Xia; Kozub, John A.; Jiang, Rong; Schrimpf, Ronald D.; Reed, Robert A.; Fleetwood, Daniel M.; Alles, Michael L.; McMorrow, Dale; Lin, Jianqiang; Vardi, Alon; del Alamo, Jesús

    2017-08-01

    A tunable wavelength laser system and high-resolution transient capture system are introduced to characterize transients in high-mobility MOSFETs. The experimental configuration enables resolution of fast transient signals and new understanding of charge collection mechanisms. The channel layer is critical in the charge collection process for the InGaAs FinFETs examined here. The transient current mainly comes from the channel current, due to shunt effects and parasitic bipolar effects, instead of the junction collection. The charge amplification factor is found to be as high as 14, which makes this technology relatively sensitive to transient radiation. The peak current is inversely proportional to the device gate length. Simulations show that the parasitic bipolar effect is due to source-to-channel barrier lowering caused by hole accumulation in the source and channel. Charge deposited in the channel causes prompt current, while charge deposited below the channel causes delayed and slow current.

  19. Delayed repair of distal biceps tendon ruptures is successful: a case-control study.

    PubMed

    Haverstock, John; Grewal, Ruby; King, Graham J W; Athwal, George S

    2017-06-01

    The literature has shown an increased complication rate with a delay to surgical repair of acute distal biceps tendon ruptures; however, little has been documented regarding the outcome of delayed repairs. This case-control study compared a study cohort of delayed (>21 days) distal biceps tendon repairs with a control cohort repaired acutely (<21 days). Sixteen delayed repair cases were reviewed and matched with acute controls (1:3) based on repair technique, age, and workers' compensation status. The delayed cohort was reviewed and completed isometric strength testing and the Disabilities of the Arm, Shoulder and Hand questionnaire; Patient-Rated Elbow Evaluation; and American Shoulder and Elbow Surgeons elbow questionnaire. The time to surgery averaged 37 ± 12 days in the delayed cohort versus 10 ± 6 days in the acute cohort. Complications occurred in 63% of patients in the delayed cohort versus 29% in the acute cohort (P = .04); however, 90% of the delayed cohort's complications consisted of transient paresthesias. Follow-up scores on the Patient-Rated Elbow Evaluation, Disabilities of the Arm, Shoulder and Hand questionnaire, and American Shoulder and Elbow Surgeons elbow questionnaire were not statistically different between cohorts (P > .37, P > .22, and P > .46, respectively). Despite a high rate of initial complications, patients treated with distal biceps tendon repair after a delay (>21 days) can expect similar functional outcomes to those treated acutely. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  20. Calcium fertilization increases the concentration of calcium in sapwood and calcium oxalate in foliage of red spruce

    Treesearch

    Kevin T. Smith; Walter C. Shortle; Jon H. Connolly; Rakesh Minocha; Jody Jellison

    2009-01-01

    Calcium cycling plays a key role in the health and productivity of red spruce forests in the northeastern US. A portion of the flowpath of calcium within forests includes translocation as Ca2+ in sapwood and accumulation as crystals of calcium oxalate in foliage. Concentrations of Ca in these tree tissues have been used as markers of...

  1. Correlation of transient adenosine release and oxygen changes in the caudate-putamen

    PubMed Central

    Wang, Ying; Venton, B. Jill

    2016-01-01

    Adenosine is an endogenous nucleoside that modulates important physiological processes, such as vasodilation, in the central nervous system. A rapid, 2–4 seconds, mode of adenosine signaling has been recently discovered, but the relationship between this type of adenosine and blood flow change has not been characterized. In this study, adenosine and oxygen changes were simultaneously measured using fast-scan cyclic voltammetry. Oxygen changes occur when there is an increase in local cerebral blood flow and thus are a measure of vasodilation. About 34% of adenosine transients in the rat caudate-putamen are correlated with a subsequent transient change in oxygen. The amount of oxygen was correlated with the concentration of adenosine release and larger adenosine transients (over 0.4 μM) always had subsequent oxygen changes. The average duration of adenosine and oxygen transients were 3.2 seconds and 3.5 seconds, respectively. On average, the adenosine release starts and peaks 0.2 seconds prior to the oxygen. The A2a antagonist, SCH442416, decreased the number of both adenosine and oxygen transient events by about 32%. However, the A1 antagonist, DPCPX, did not significantly affect simultaneous adenosine and oxygen release. The nitric oxide (NO) synthase inhibitor L-NAME also did not affect the concentration or number of adenosine and oxygen release events. These results demonstrate that both adenosine and oxygen release are modulated via A2a receptors. The correlation of transient concentrations, time delay between adenosine and oxygen peaks, and effect of A2a receptors suggests adenosine modulates blood flow on a rapid, sub-second time scale. PMID:27314215

  2. Why Calcium? How Calcium Became the Best Communicator.

    PubMed

    Carafoli, Ernesto; Krebs, Joachim

    2016-09-30

    Calcium carries messages to virtually all important functions of cells. Although it was already active in unicellular organisms, its role became universally important after the transition to multicellular life. In this Minireview, we explore how calcium ended up in this privileged position. Most likely its unique coordination chemistry was a decisive factor as it makes its binding by complex molecules particularly easy even in the presence of large excesses of other cations, e.g. magnesium. Its free concentration within cells can thus be maintained at the very low levels demanded by the signaling function. A large cadre of proteins has evolved to bind or transport calcium. They all contribute to buffer it within cells, but a number of them also decode its message for the benefit of the target. The most important of these "calcium sensors" are the EF-hand proteins. Calcium is an ambivalent messenger. Although essential to the correct functioning of cell processes, if not carefully controlled spatially and temporally within cells, it generates variously severe cell dysfunctions, and even cell death. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Effects of chlorogenic acid on intracellular calcium regulation in lysophosphatidylcholine-treated endothelial cells

    PubMed Central

    Jung, Hye-Jin; Im, Seung-Soon; Song, Dae-Kyu; Bae, Jae-Hoon

    2017-01-01

    Lysophosphatidylcholine (LPC) is a major phospholipid component of oxidized low-density lipoprotein (ox-LDL) and is implicated in its atherogenic activity. This study investigated the effects of LPC on cell viability, intracellular calcium homeostasis, and the protective mechanisms of chlorogenic acid (CGA) in human umbilical vein endothelial cells (HUVECs). LPC increased intracellular calcium ([Ca2+]i) by releasing Ca2+ from intracellular stores and via Ca2+ influx through store-operated channels (SOCs). LPC also increased the generation of reactive oxygen species (ROS) and decreased cell viability. The mRNA expression of Transient receptor potential canonical (TRPC) channel 1 was increased significantly by LPC treatment and suppressed by CGA. CGA inhibited LPC-induced Ca2+ influx and ROS generation, and restored cell viability. These results suggested that CGA inhibits SOC-mediated Ca2+ influx and ROS generation by attenuating TRPC1 expression in LPC-treated HUVECs. Therefore, CGA might protect endothelial cells against LPC injury, thereby inhibiting atherosclerosis. PMID:28088946

  4. Association of Urinary Calcium Excretion with Serum Calcium and Vitamin D Levels

    PubMed Central

    Rathod, Anita; Bonny, Olivier; Guessous, Idris; Suter, Paolo M.; Conen, David; Erne, Paul; Binet, Isabelle; Gabutti, Luca; Gallino, Augusto; Muggli, Franco; Hayoz, Daniel; Péchère-Bertschi, Antoinette; Paccaud, Fred

    2015-01-01

    Background and objectives Population-based data on urinary calcium excretion are scarce. The association of serum calcium and circulating levels of vitamin D [25(OH)D2 or D3] with urinary calcium excretion in men and women from a population-based study was explored. Design, settings, participants, & measurements Multivariable linear regression was used to explore factors associated with square root–transformed 24-hour urinary calcium excretion (milligrams per 24 hours) taken as the dependent variable with a focus on month-specific vitamin D tertiles and serum calcium in the Swiss Survey on Salt Study. Results In total, 624 men and 669 women were studied with mean ages of 49.2 and 47.0 years, respectively (age range=15–95 years). Mean urinary calcium excretion was higher in men than in women (183.05 versus 144.60 mg/24 h; P<0.001). In adjusted models, the association (95% confidence interval) of square root urinary calcium excretion with protein–corrected serum calcium was 1.78 (95% confidence interval, 1.21 to 2.34) mg/24 h per milligram per deciliter in women and 0.59 (95% confidence interval, −0.11 to 1.29) mg/24 h per milligram per deciliter in men. Men in the third 25(OH)D3 tertile had higher square root urinary calcium excretion than men in the first tertile (0.99; 95% confidence interval, 0.36 to 1.63 mg/24 h per nanogram per milliliter), and the corresponding association was 0.32 (95% confidence interval, −0.22 to 0.85) mg/24 h per nanogram per milliliter in women. These sex differences were more marked under conditions of high urinary sodium or urea excretions. Conclusions There was a positive association of serum calcium with urinary calcium excretion in women but not men. Vitamin 25(OH)D3 was associated with urinary calcium excretion in men but not women. These results suggest important sex differences in the hormonal and dietary control of urinary calcium excretion. PMID:25518946

  5. Association of urinary calcium excretion with serum calcium and vitamin D levels.

    PubMed

    Rathod, Anita; Bonny, Olivier; Guessous, Idris; Suter, Paolo M; Conen, David; Erne, Paul; Binet, Isabelle; Gabutti, Luca; Gallino, Augusto; Muggli, Franco; Hayoz, Daniel; Péchère-Bertschi, Antoinette; Paccaud, Fred; Burnier, Michel; Bochud, Murielle

    2015-03-06

    Population-based data on urinary calcium excretion are scarce. The association of serum calcium and circulating levels of vitamin D [25(OH)D2 or D3] with urinary calcium excretion in men and women from a population-based study was explored. Multivariable linear regression was used to explore factors associated with square root-transformed 24-hour urinary calcium excretion (milligrams per 24 hours) taken as the dependent variable with a focus on month-specific vitamin D tertiles and serum calcium in the Swiss Survey on Salt Study. In total, 624 men and 669 women were studied with mean ages of 49.2 and 47.0 years, respectively (age range=15-95 years). Mean urinary calcium excretion was higher in men than in women (183.05 versus 144.60 mg/24 h; P<0.001). In adjusted models, the association (95% confidence interval) of square root urinary calcium excretion with protein-corrected serum calcium was 1.78 (95% confidence interval, 1.21 to 2.34) mg/24 h per milligram per deciliter in women and 0.59 (95% confidence interval, -0.11 to 1.29) mg/24 h per milligram per deciliter in men. Men in the third 25(OH)D3 tertile had higher square root urinary calcium excretion than men in the first tertile (0.99; 95% confidence interval, 0.36 to 1.63 mg/24 h per nanogram per milliliter), and the corresponding association was 0.32 (95% confidence interval, -0.22 to 0.85) mg/24 h per nanogram per milliliter in women. These sex differences were more marked under conditions of high urinary sodium or urea excretions. There was a positive association of serum calcium with urinary calcium excretion in women but not men. Vitamin 25(OH)D3 was associated with urinary calcium excretion in men but not women. These results suggest important sex differences in the hormonal and dietary control of urinary calcium excretion. Copyright © 2015 by the American Society of Nephrology.

  6. Transient Hypothyroidism after Radioiodine for Graves’ Disease: Challenges in Interpreting Thyroid Function Tests

    PubMed Central

    Sheehan, Michael T.; Doi, Suhail A.R.

    2016-01-01

    Graves’ disease is the most common cause of hyperthyroidism and is often managed with radioactive iodine (RAI) therapy. With current dosing schemes, the vast majority of patients develop permanent post-RAI hypothyroidism and are placed on life-long levothyroxine therapy. This hypothyroidism typically occurs within the first 3 to 6 months after RAI therapy is administered. Indeed, patients are typically told to expect life-long thyroid hormone replacement therapy to be required within this timeframe and many providers expect this post-RAI hypothyroidism to be complete and permanent. There is, however, a small subset of patients in whom a transient post-RAI hypothyroidism develops which, initially, presents exactly as the typical permanent hypothyroidism. In some cases the transient hypothyroidism leads to a period of euthyroidism of variable duration eventually progressing to permanent hypothyroidism. In others, persistent hyperthyroidism requires a second dose of RAI. Failure to appreciate and recognize the possibility of transient post-RAI hypothyroidism can delay optimal and appropriate treatment of the patient. We herein describe five cases of transient post-RAI hypothyroidism which highlight this unusual sequence of events. Increased awareness of this possible outcome after RAI for Graves’ disease will help in the timely management of patients. PMID:26864507

  7. Transient Hypothyroidism after Radioiodine for Graves' Disease: Challenges in Interpreting Thyroid Function Tests.

    PubMed

    Sheehan, Michael T; Doi, Suhail A R

    2016-03-01

    Graves' disease is the most common cause of hyperthyroidism and is often managed with radioactive iodine (RAI) therapy. With current dosing schemes, the vast majority of patients develop permanent post-RAI hypothyroidism and are placed on life-long levothyroxine therapy. This hypothyroidism typically occurs within the first 3 to 6 months after RAI therapy is administered. Indeed, patients are typically told to expect life-long thyroid hormone replacement therapy to be required within this timeframe and many providers expect this post-RAI hypothyroidism to be complete and permanent. There is, however, a small subset of patients in whom a transient post-RAI hypothyroidism develops which, initially, presents exactly as the typical permanent hypothyroidism. In some cases the transient hypothyroidism leads to a period of euthyroidism of variable duration eventually progressing to permanent hypothyroidism. In others, persistent hyperthyroidism requires a second dose of RAI. Failure to appreciate and recognize the possibility of transient post-RAI hypothyroidism can delay optimal and appropriate treatment of the patient. We herein describe five cases of transient post-RAI hypothyroidism which highlight this unusual sequence of events. Increased awareness of this possible outcome after RAI for Graves' disease will help in the timely management of patients. © 2016 Marshfield Clinic.

  8. Calcium and Mitosis

    NASA Technical Reports Server (NTRS)

    Hepler, P.

    1983-01-01

    Although the mechanism of calcium regulation is not understood, there is evidence that calcium plays a role in mitosis. Experiments conducted show that: (1) the spindle apparatus contains a highly developed membrane system that has many characteristics of sarcoplasmic reticulum of muscle; (2) this membrane system contains calcium; and (3) there are ionic fluxes occurring during mitosis which can be seen by a variety of fluorescence probes. Whether the process of mitosis can be modulated by experimentally modulating calcium is discussed.

  9. Detection of light-induced changes of intracellular ionized calcium concentration in Limulus ventral photoreceptors using arsenazo III

    PubMed Central

    Brown, J. E.; Brown, P. K.; Pinto, L. H.

    1977-01-01

    1. The metallochromic indicator dye, arsenazo III, was injected intracellularly into Limulus ventral photoreceptor cells to concentrations greater than 1 mM. 2. The absorption spectrum (450-750 nm) of the dye in single dark-adapted cells was measured by a scanning microspectrophotometer. When a cell was light-adapted, the absorption of the dye changed; the difference spectrum had two maxima at about 610 and 660 nm, a broad minimum at about 540 nm and an isosbestic point at about 585 nm. 3. When intracellular calcium concentration was raised in dark-adapted cells previously injected with arsenazo III, the difference spectum had two maxima at about 610 and 660 nm, a broad minimum at about 530 nm and an isosbestic point at about 585 nm. The injection of Mg2+ into dark-adapted cells previously injected with the dye induced a difference spectrum that had a single maximum at about 620 nm. Also, decreasing the intracellular pH of cells previously injected with the dye induced a difference spectrum that had a minimum at about 620 nm. The evidence suggests that there is a rise of intracellular ionized calcium when a Limulus ventral photoreceptor is light-adapted. 4. The intracellular calcium concentration, [Ca2+]1, in light-adapted photoreceptors was estimated to reach at least 10-4 M by compaing the light-induced difference spectra measured in ventral photoreceptors with a standard curve determined in microcuvettes containing 2mM arsenazo III in 400 mM-KCl, 1 mM-MgCl2 and 25 mM MOPS at pH 7·0. 5. In cells injected to less than 3 mM arsenazo III, light induced a transient decrease in optical transmission at 660 nm (T660). This decrease in T660 indicates that illumination of a ventral photoreceptor normally causes a transient increase of [Ca2+]1. 6. Arsenazo III was found to be sensitive, selective and rapid enough to measure light-induced changes of intracellular ionized calcium in Limulus ventral photoreceptor cells. PMID:17732

  10. Controlling periodic ripple microstructure formation on 4H-SiC crystal with three time-delayed femtosecond laser beams of different linear polarizations.

    PubMed

    He, Wanlin; Yang, Jianjun; Guo, Chunlei

    2017-03-06

    The control of laser-induced periodic ripple microstructures on 4H-SiC crystal surface is studied using temporally delayed collinear three femtosecond laser pulse trains linearly polarized in different directions. The ripple orientation appears to develop independent of the individual laser polarizations and exhibits non-monotonical change with variable time delays, whose variation tendency is also affected by the polarization intersection angles. Remarkably, the ripple period is observed to transfer from high- to low-spatial-frequency regions, accompanied by distinctly improved morphological uniformity and clearness. The results are satisfactorily interpreted based on a physical model of the surface wave excitation on a transient index metasurface, which is confirmed by further experiments. Our investigations indicate that transient noneqilibrium dynamics of the material surface provides an effective way to manipulate the laser-induced microstructures.

  11. Simultaneous mapping of membrane voltage and calcium in zebrafish heart in vivo reveals chamber-specific developmental transitions in ionic currents

    PubMed Central

    Hou, Jennifer H.; Kralj, Joel M.; Douglass, Adam D.; Engert, Florian; Cohen, Adam E.

    2014-01-01

    The cardiac action potential (AP) and the consequent cytosolic Ca2+ transient are key indicators of cardiac function. Natural developmental processes, as well as many drugs and pathologies change the waveform, propagation, or variability (between cells or over time) of these parameters. Here we apply a genetically encoded dual-function calcium and voltage reporter (CaViar) to study the development of the zebrafish heart in vivo between 1.5 and 4 days post fertilization (dpf). We developed a high-sensitivity spinning disk confocal microscope and associated software for simultaneous three-dimensional optical mapping of voltage and calcium. We produced a transgenic zebrafish line expressing CaViar under control of the heart-specific cmlc2 promoter, and applied ion channel blockers at a series of developmental stages to map the maturation of the action potential in vivo. Early in development, the AP initiated via a calcium current through L-type calcium channels. Between 90 and 102 h post fertilization (hpf), the ventricular AP switched to a sodium-driven upswing, while the atrial AP remained calcium driven. In the adult zebrafish heart, a sodium current drives the AP in both the atrium and ventricle. Simultaneous voltage and calcium imaging with genetically encoded reporters provides a new approach for monitoring cardiac development, and the effects of drugs on cardiac function. PMID:25309445

  12. Simultaneous mapping of membrane voltage and calcium in zebrafish heart in vivo reveals chamber-specific developmental transitions in ionic currents.

    PubMed

    Hou, Jennifer H; Kralj, Joel M; Douglass, Adam D; Engert, Florian; Cohen, Adam E

    2014-01-01

    The cardiac action potential (AP) and the consequent cytosolic Ca(2+) transient are key indicators of cardiac function. Natural developmental processes, as well as many drugs and pathologies change the waveform, propagation, or variability (between cells or over time) of these parameters. Here we apply a genetically encoded dual-function calcium and voltage reporter (CaViar) to study the development of the zebrafish heart in vivo between 1.5 and 4 days post fertilization (dpf). We developed a high-sensitivity spinning disk confocal microscope and associated software for simultaneous three-dimensional optical mapping of voltage and calcium. We produced a transgenic zebrafish line expressing CaViar under control of the heart-specific cmlc2 promoter, and applied ion channel blockers at a series of developmental stages to map the maturation of the action potential in vivo. Early in development, the AP initiated via a calcium current through L-type calcium channels. Between 90 and 102 h post fertilization (hpf), the ventricular AP switched to a sodium-driven upswing, while the atrial AP remained calcium driven. In the adult zebrafish heart, a sodium current drives the AP in both the atrium and ventricle. Simultaneous voltage and calcium imaging with genetically encoded reporters provides a new approach for monitoring cardiac development, and the effects of drugs on cardiac function.

  13. Transient Growth Theory Prediction of Optimal Placing of Passive and Active Flow Control Devices for Separation Delay in LPT Airfoils

    NASA Technical Reports Server (NTRS)

    Tumin, Anatoli; Ashpis, David E.

    2003-01-01

    An analysis of the non-modal growth of perturbations in a boundary layer in the presence of a streamwise pressure gradient is presented. The analysis is based on PSE equations for an incompressible fluid. Examples with Falkner-Skan profiles indicate that a favorable pressure gradient decreases the non-modal growth while an unfavorable pressure gradient leads to an increase of the amplification. It is suggested that the transient growth mechanism be utilized to choose optimal parameters of tripping elements on a low-pressure turbine (LPT) airfoil. As an example, a boundary layer flow with a streamwise pressure gradient corresponding to the pressure distribution over a LPT airfoil is considered. It is shown that there is an optimal spacing of the tripping elements and that the transient growth effect depends on the starting point. At very low Reynolds numbers, there is a possibility to enhance the transient energy growth by means of wall cooling.

  14. Calcium ion binding properties of Medicago truncatula calcium/calmodulin-dependent protein kinase.

    PubMed

    Swainsbury, David J K; Zhou, Liang; Oldroyd, Giles E D; Bornemann, Stephen

    2012-09-04

    A calcium/calmodulin-dependent protein kinase (CCaMK) is essential in the interpretation of calcium oscillations in plant root cells for the establishment of symbiotic relationships with rhizobia and mycorrhizal fungi. Some of its properties have been studied in detail, but its calcium ion binding properties and subsequent conformational change have not. A biophysical approach was taken with constructs comprising either the visinin-like domain of Medicago truncatula CCaMK, which contains EF-hand motifs, or this domain together with the autoinhibitory domain. The visinin-like domain binds three calcium ions, leading to a conformational change involving the exposure of hydrophobic surfaces and a change in tertiary but not net secondary or quaternary structure. The affinity for calcium ions of visinin-like domain EF-hands 1 and 2 (K(d) = 200 ± 50 nM) was appropriate for the interpretation of calcium oscillations (~125-850 nM), while that of EF-hand 3 (K(d) ≤ 20 nM) implied occupancy at basal calcium ion levels. Calcium dissociation rate constants were determined for the visinin-like domain of CCaMK, M. truncatula calmodulin 1, and the complex between these two proteins (the slowest of which was 0.123 ± 0.002 s(-1)), suggesting the corresponding calcium association rate constants were at or near the diffusion-limited rate. In addition, the dissociation of calmodulin from the protein complex was shown to be on the same time scale as the dissociation of calcium ions. These observations suggest that the formation and dissociation of the complex between calmodulin and CCaMK would substantially mirror calcium oscillations, which typically have a 90 s periodicity.

  15. Calcium-dependent inactivation of calcium channels in cochlear hair cells of the chicken.

    PubMed

    Lee, Seunghwan; Briklin, Olga; Hiel, Hakim; Fuchs, Paul

    2007-09-15

    Voltage-gated calcium channels support both spontaneous and sound-evoked neurotransmitter release from ribbon synapses of cochlear hair cells. A variety of regulatory mechanisms must cooperate to ensure the appropriate level of activity in the restricted pool of synaptic calcium channels ( approximately 100) available to each synaptic ribbon. One potential feedback mechanism, calcium-dependent inactivation (CDI) of voltage-gated, L-type calcium channels, can be modulated by calmodulin-like calcium-binding proteins. CDI of voltage-gated calcium current was studied in hair cells of the chicken's basilar papilla (analogous to the mammalian cochlea) after blocking the predominant potassium conductances. For inactivating currents produced by 2.5 s steps to the peak of the current-voltage relation (1 mm EGTA internal calcium buffer), single exponential fits yielded an average decay time constant of 1.92 +/- 0.18 s (mean +/- s.e.m., n = 12) at 20-22 degrees C, while recovery occurred with a half-time of approximately 10 s. Inactivation produced no change in reversal potential, arguing that the observed relaxation did not result from alternative processes such as calcium accumulation or activation of residual potassium currents. Substitution of external calcium with barium greatly reduced inactivation, while inhibition of endoplasmic calcium pumps with t-benzohydroquinone (BHQ) or thapsigargin made inactivation occur faster and to a greater extent. Raising external calcium 10-fold (from 2 to 20 mm) increased peak current 3-fold, but did not alter the extent or time course of CDI. However, increasing levels of internal calcium buffer consistently reduced the rate and extent of inactivation. With 1 mm EGTA buffering and in 2 mm external calcium, the available pool of calcium channels was half-inactivated near the resting membrane potential (-50 mV). CDI may be further regulated by calmodulin-like calcium-binding proteins (CaBPs). mRNAs for several CaBPs are expressed in

  16. Extragalactic High-energy Transients: Event Rate Densities and Luminosity Functions

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Zhang, Bing; Li, Zhuo

    2015-10-01

    Several types of extragalactic high-energy transients have been discovered, which include high-luminosity and low-luminosity long-duration gamma-ray bursts (GRBs), short-duration GRBs, supernova shock breakouts (SBOs), and tidal disruption events (TDEs) without or with an associated relativistic jet. In this paper, we apply a unified method to systematically study the redshift-dependent event rate densities and the global luminosity functions (GLFs; ignoring redshift evolution) of these transients. We introduce some empirical formulae for the redshift-dependent event rate densities for different types of transients and derive the local specific event rate density, which also represents its GLF. Long GRBs (LGRBs) have a large enough sample to reveal features in the GLF, which is best charaterized as a triple power law (PL). All the other transients are consistent with having a single-power-law (SPL) LF. The total event rate density depends on the minimum luminosity, and we obtain the following values in units of Gpc-3 yr-1: {0.8}-0.1+0.1 for high-luminosity LGRBs above 1050 erg s-1 {164}-65+98 for low-luminosity LGRBs above 5 × 1046 erg s-1 {1.3}-0.3+0.4, {1.2}-0.3+0.4, and {3.3}-0.8+1.0 above 1050 erg s-1 for short GRBs with three different merger delay models (Gaussian, lognormal, and PL); {1.9}-1.2+2.4× {10}4 above 1044 erg s-1 for SBOs, {4.8}-2.1+3.2× {10}2 for normal TDEs above 1044 erg s-1 and {0.03}-0.02+0.04 above 1048 erg s-1 for TDE jets as discovered by Swift. Intriguingly, the GLFs of different kinds of transients, which cover over 12 orders of magnitude, are consistent with an SPL with an index of -1.6.

  17. An overview of techniques for the measurement of calcium distribution, calcium fluxes, and cytosolic free calcium in mammalian cells.

    PubMed Central

    Borle, A B

    1990-01-01

    An array of techniques can be used to study cell calcium metabolism that comprises several calcium compartments and many types of transport systems such as ion channels, ATP-dependent pumps, and antiporters. The measurement of total cell calcium brings little information of value since 60 to 80% of total cell calcium is actually bound to the extracellular glycocalyx. Cell fractionation and differential centrifugation have been used to study intracellular Ca2+ compartmentalization, but the methods suffer from the possibility of Ca2+ loss or redistribution among cell fractions. Steady-state kinetic analyses of 45Ca uptake or desaturation curves have been used to study the distribution of Ca2+ among various kinetic pools in living cells and their rate of Ca2+ exchange, but the analyses are constrained by many limitations. Nonsteady-state tracer studies can provide information about rapid changes in calcium influx or efflux in and out of the cell. Zero-time kinetics of 45Ca uptake can detect instantaneous changes in calcium influx, while 45Ca fractional efflux ratio, can detect rapid stimulations or inhibitions of calcium efflux out of cells. Permeabilized cells have been successfully used to gauge the relative role of intracellular organelles in controlling [Ca2+]i. The measurement of the cytosolic ionized calcium ([Ca2+]i) is undoubtedly the most important and, physiologically, the most relevant method available. The choice of the appropriate calcium indicator, fluorescent, bioluminescent, metallochromic, or Ca2(+)-sensitive microelectrodes depends on the cell type and the magnitude and time constant of the event under study. Each probe has specific assets and drawbacks. The study of plasma membrane vesicles derived from baso-lateral or apical plasmalemma can also bring important information on the (Ca2(+)-Mg2+) ATPase-dependent calcium pump and on the kinetics and stoichiometry of the Na(+)-Ca2+ antiporter. The best strategy to study cell calcium metabolism is to

  18. Activity of Palythoa caribaeorum Venom on Voltage-Gated Ion Channels in Mammalian Superior Cervical Ganglion Neurons

    PubMed Central

    Lazcano-Pérez, Fernando; Castro, Héctor; Arenas, Isabel; García, David E.; González-Muñoz, Ricardo; Arreguín-Espinosa, Roberto

    2016-01-01

    The Zoanthids are an order of cnidarians whose venoms and toxins have been poorly studied. Palythoa caribaeorum is a zoanthid commonly found around the Mexican coastline. In this study, we tested the activity of P. caribaeorum venom on voltage-gated sodium channel (NaV1.7), voltage-gated calcium channel (CaV2.2), the A-type transient outward (IA) and delayed rectifier (IDR) currents of KV channels of the superior cervical ganglion (SCG) neurons of the rat. These results showed that the venom reversibly delays the inactivation process of voltage-gated sodium channels and inhibits voltage-gated calcium and potassium channels in this mammalian model. The compounds responsible for these effects seem to be low molecular weight peptides. Together, these results provide evidence for the potential use of zoanthids as a novel source of cnidarian toxins active on voltage-gated ion channels. PMID:27164140

  19. Calcium Blood Test

    MedlinePlus

    ... Your health care provider may order a calcium test if you have a pre-existing condition that may affect your calcium levels. These include: Kidney disease Thyroid disease Malnutrition Certain types of cancer What happens during a calcium blood test? A health care professional will take a blood ...

  20. Effect of anions or foods on absolute bioavailability of calcium from calcium salts in mice by pharmacokinetics.

    PubMed

    Ueda, Yukari; Taira, Zenei

    2013-01-01

    We studied the absolute bioavailability of calcium from calcium L-lactate in mice using pharmacokinetics, and reviewed the absolute bioavailability of calcium from three other calcium salts in mice previously studied: calcium chloride, calcium acetate, and calcium ascorbate. The results showed that calcium metabolism is linear between intravenous administration of 15 mg/kg and 30 mg/kg, and is not affected by anions. Results after oral calcium administration of 150 mg/kg showed that the intestinal absorption process was significantly different among the four calcium salts. The rank of absolute bioavailability of calcium was calcium ascorbate > calcium L-lactate ≥ calcium acetate > calcium chloride. The mean residence time (MRTab) of calcium from calcium ascorbate (32.2 minutes) in the intestinal tract was much longer than that from calcium L-lactate (9.5 minutes), calcium acetate (15.0 minutes) and calcium chloride (13.6 minutes). Furthermore, the foods di-D-fructo-furanose-1,2':2,3'-dianhydride, sudachi (Citrus sudachi) juice, and moromi-su (a Japanese vinegar) increased the absolute bioavailability of calcium from calcium chloride by 2.46-fold, 2.86-fold, and 1.23-fold, respectively, and prolonged MRTab by 48.5 minutes, 43.1 minutes, and 44.9 minutes, respectively. In conclusion, the prolonged MRTab of calcium in the intestinal tract by anion or food might cause the increased absorbability of calcium.

  1. Effect of anions or foods on absolute bioavailability of calcium from calcium salts in mice by pharmacokinetics

    PubMed Central

    Ueda, Yukari; Taira, Zenei

    2013-01-01

    We studied the absolute bioavailability of calcium from calcium L-lactate in mice using pharmacokinetics, and reviewed the absolute bioavailability of calcium from three other calcium salts in mice previously studied: calcium chloride, calcium acetate, and calcium ascorbate. The results showed that calcium metabolism is linear between intravenous administration of 15 mg/kg and 30 mg/kg, and is not affected by anions. Results after oral calcium administration of 150 mg/kg showed that the intestinal absorption process was significantly different among the four calcium salts. The rank of absolute bioavailability of calcium was calcium ascorbate > calcium L-lactate ≥ calcium acetate > calcium chloride. The mean residence time (MRTab) of calcium from calcium ascorbate (32.2 minutes) in the intestinal tract was much longer than that from calcium L-lactate (9.5 minutes), calcium acetate (15.0 minutes) and calcium chloride (13.6 minutes). Furthermore, the foods di-D-fructo-furanose-1,2′:2,3′-dianhydride, sudachi (Citrus sudachi) juice, and moromi-su (a Japanese vinegar) increased the absolute bioavailability of calcium from calcium chloride by 2.46-fold, 2.86-fold, and 1.23-fold, respectively, and prolonged MRTab by 48.5 minutes, 43.1 minutes, and 44.9 minutes, respectively. In conclusion, the prolonged MRTab of calcium in the intestinal tract by anion or food might cause the increased absorbability of calcium. PMID:27186137

  2. Calcium, magnesium, and phosphorus metabolism, and parathyroid-calcitonin function during prolonged exposure to elevated CO2 concentrations on submarines.

    PubMed

    Messier, A A; Heyder, E; Braithwaite, W R; McCluggage, C; Peck, A; Schaefer, K E

    1979-01-01

    Studies of calcium and phosphorus metabolism and acid-base balance were carried out on three Fleet Ballistic Missile (FBM) submarines during prolonged exposure to elevated concentrations of CO2. The average CO2 concentration in the submarine atmosphere during patrols ranged from 0.85% to 1% CO2. In the three studies, in which 9--15 subjects participated, the urinary excretion of calcium and phosphate fell during the first three weeks to a level commensurate with a decrease in plasma calcium and increase in phosphorus. In the fourth week of one patrol, a marked increase was found in urinary calcium excretion, associated with a rise in blood PCO2 and bicarbonate. Urinary calcium excretion decreased again during the 5th to 8th week, with a secondary decrease in blood pH and plasma calcium. During the third patrol, the time course of acid-base changes corresponded well with that found during the second patrol. There was a trend toward an increase in plasma calcium between the fourth and fifth week commensurate with the transient rise in pH and bicarbonate. Plasma parathyroid and calcitonin hormone activities were measured in two patrols and no significant changes were found. Hydroxyproline excretion decreased in the three-week study and remained unchanged in the second patrol, which lasted 57 days. It is suggested that during prolonged exposure to low levels of CO2 (up to 1% CO2), calcium metabolism is controlled by the uptake and release of CO2 in the bones. The resulting phases in bone buffering, rather than renal regulation, determine acid-base balance.

  3. Role of Postoperative Vitamin D and/or Calcium Routine Supplementation in Preventing Hypocalcemia After Thyroidectomy: A Systematic Review and Meta-Analysis

    PubMed Central

    Alhefdhi, Amal; Mazeh, Haggi

    2013-01-01

    Background. Transient hypocalcemia is a frequent complication after total thyroidectomy. Routine postoperative administration of vitamin D and calcium can reduce the incidence of symptomatic postoperative hypocalcemia. We performed a systematic review to assess the effectiveness of this intervention. The primary aim was to evaluate the efficacy of routine postoperative oral calcium and vitamin D supplementation in preventing symptomatic post-thyroidectomy hypocalcemia. The second aim was to draw clear guidelines regarding prophylactic calcium and/or vitamin D therapy for patients after thyroidectomy. Methods. We identified randomized controlled trials comparing the administration of vitamin D or its metabolites to calcium or no treatment in adult patients after thyroidectomy. The search was performed in PubMed, Cochrane Library, Cumulative Index to Nursing and Allied Health Literature, Google Scholar, and Web of Knowledge databases. Patients with a history of previous neck surgery, calcium supplementation, or renal impairment were excluded. Results. Nine studies with 2,285 patients were included: 22 in the vitamin D group, 580 in the calcium group, 792 in the vitamin D and calcium group, and 891 in the no intervention group, with symptomatic hypocalcemia incidences of 4.6%, 14%, 14%, and 20.5%, respectively. Subcomparisons demonstrated that the incidences of postoperative hypocalcemia were 10.1% versus 18.8% for calcium versus no intervention and 6.8% versus 25.9% for vitamin D and calcium versus no intervention. The studies showed a significant range of variability in patients' characteristics. Conclusions. A significant decrease in postoperative hypocalcemia was identified in patients who received routine supplementation of oral calcium or vitamin D. The incidence decreased even more with the combined administration of both supplements. Based on this analysis, we recommend oral calcium for all patients following thyroidectomy, with the addition of vitamin D for

  4. Spitzer Characterization of Transients from the Palomar Transient Factory

    NASA Astrophysics Data System (ADS)

    Kasliwal, Mansi; Ofek, Eran; Corsi, Alessandra; Nugent, Peter; Kulkarni, Shri; Cao, Yi; Helou, George; Gal-Yam, Avishay; Arcavi, Iair; Ben-Ami, Sagi

    2012-12-01

    We propose to continue Spitzer/IRAC follow-up of optical transients discovered by the Palomar Transient Factory. Our goals are: (i) probe the mass loss history and characterize the circumstellar environment of supernovae. (ii) construct a late-time bolometric light curve; the mid-infrared observations complement our ground-based optical and near-infrared data and (iii) understand the physical origin of new classes of transients (specifically, intermediate luminosity red transients) where the mystery is literally enshrouded in dust. We select extremely nearby supernovae, both thermonuclear and core-collapse, where the thermal echo is easily detectable in the mid-infrared. We also select peculiar supernovae that show tell-tale signs of circumstellar interaction. We also select rare and red gap transients in the local universe for IRAC follow-up. Additionally, we request low-impact target of opportunity observations for new discoveries in 2013. Our total request is 24 hrs.

  5. Spitzer Characterization of Transients from the Palomar Transient Factory

    NASA Astrophysics Data System (ADS)

    Kasliwal, Mansi; Goobar, Ariel; Johansson, Joel; Cenko, Brad; Ofek, Eran; Nugent, Peter; Kulkarni, Shri; Cao, Yi; Helou, George; Gal-Yam, Avishay; Arcavi, Iair; Ben-Ami, Sagi

    2013-10-01

    We propose to continue Spitzer/IRAC follow-up of optical transients discovered by the Palomar Transient Factory. Our goals are: (i) probe the mass loss history and characterize the circumstellar environment of supernovae. (ii) construct a late-time bolometric light curve; the mid-infrared observations complement our ground-based optical and near-infrared data and (iii) understand the physical origin of new classes of transients (specifically, intermediate luminosity red transients) where the mystery is literally enshrouded in dust. We select extremely nearby supernovae, both thermonuclear and core-collapse, where the thermal echo is easily detectable in the mid-infrared. We also select peculiar supernovae that show tell-tale signs of circumstellar interaction. We also select rare and red gap transients in the local universe. Additionally, we request low-impact target of opportunity observations for new discoveries in 2014. Our total request is 17 hrs.

  6. Calcium - ionized

    MedlinePlus

    ... diuretics Thrombocytosis (high platelet count) Tumors Vitamin A excess Vitamin D excess Lower-than-normal levels may be due to: Hypoparathyroidism Malabsorption Osteomalacia Pancreatitis Renal failure Rickets Vitamin D deficiency Alternative Names Free calcium; Ionized calcium ...

  7. Femtosecond Chirp-Free Transient Absorption Method And Apparatus

    DOEpatents

    McBranch, Duncan W.; Klimov, Victor I.

    2001-02-20

    A method and apparatus for femtosecond transient absorption comprising phase-sensitive detection, spectral scanning and simultaneous controlling of a translation stage to obtain TA spectra information having at least a sensitivity two orders of magnitude higher than that for single-shot methods, with direct, simultaneous compensation for chirp as the data is acquired. The present invention includes a amplified delay translation stage which generates a splittable frequency-doubled laser signal at a predetermined frequency f, a controllable means for synchronously modulating one of the laser signals at a repetition rate of f/2, applying the laser signals to a material to be sample, and acquiring data from the excited sample while simultaneously controlling the controllable means for synchronously modulating.

  8. SEA0400 fails to alter the magnitude of intracellular Ca2+ transients and contractions in Langendorff-perfused guinea pig heart.

    PubMed

    Szentandrássy, Norbert; Birinyi, Péter; Szigeti, Gyula; Farkas, Attila; Magyar, János; Tóth, András; Csernoch, László; Varró, András; Nánási, Péter P

    2008-07-01

    SEA0400 is a recently developed inhibitor of the Na+/Ca2+ exchanger (NCX) shown to suppress both forward and reverse mode operation of NCX. Present experiments were designed to study the effect of partial blockade of NCX on Ca handling and contractility in Langendorff-perfused guinea pig hearts loaded with the fluorescent Ca-sensitive dye fura-2. Left ventricular pressure and intracellular calcium concentration ([Ca2+]i) were synchronously recorded before and after cumulative superfusion with 0.3 and 1 muM SEA0400. SEA0400 caused no significant change in the systolic and diastolic values of left ventricular pressure and [Ca2+]i. Accordingly, pulse pressure and amplitude of the [Ca2+]i transient also remained unchanged in the presence of SEA0400. SEA0400 had no influence either on the time required to reach peak values of pressure and [Ca2+)]i or on half relaxation time. On the other hand, both 0.3 and 1 microM SEA0400 significantly increased the decay time constant of [Ca2+]i transients, obtained by fitting its descending limb between 30% and 90% of relaxation, from 127 +/- 7 to 165 +/- 7 and 177 +/- 14 ms, respectively (P < 0.05, n=6). In contrast to the guinea pig hearts, rat hearts responded to SEA0400 treatment with increased [Ca2+]i transients and contractility. These interspecies differences observed in the effect of SEA0400 can be explained by the known differences in calcium handling between the two species.

  9. Transient Ischemic Attack

    MedlinePlus Videos and Cool Tools

    Transient Ischemic Attack TIA , or transient ischemic attack, is a "mini stroke" that occurs when a blood ... The only difference between a stroke and TIA is that with TIA the blockage is transient (temporary). ...

  10. Calcium Coordination Solids for pH-Triggered Release of Olsalazine

    DOE PAGES

    Levine, Dana J.; Gonzalez, Miguel I.; Legendre, Christina M.; ...

    2017-09-12

    Here, calcium coordination solids were synthesized and evaluated for delivery of olsalazine (H 4olz), an anti-inflammatory compound used for treatment of ulcerative colitis. The materials include one-dimensional Ca(H 2olz)•4H 2O chains, two-dimensional Ca(H 2olz)•2H 2O sheets, and a three-dimensional metal-organic framework Ca(H 2olz)•2DMF (DMF= N,N-dimethylformamide). The framework undergoes structural changes in response to solvent, forming a dense Ca(H 2olz) phase when exposed to aqueous HCl. The compounds Ca(H 2olz)•xH 2O (x=0, 2, 4) were each pressed into pellets and exposed to simulated gastrointestinal fluids to mimic the passage of a pill from the acidic stomach to the pH-neutral intestines. Allmore » three calcium materials exhibited a delayed release of olsalazine relative to Na 2(H 2olz), the commercial formulation, illustrating how formulation of a drug within an extended coordination solid can serve to tune its solubility and performance.« less

  11. Calcium Coordination Solids for pH-Triggered Release of Olsalazine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levine, Dana J.; Gonzalez, Miguel I.; Legendre, Christina M.

    Here, calcium coordination solids were synthesized and evaluated for delivery of olsalazine (H 4olz), an anti-inflammatory compound used for treatment of ulcerative colitis. The materials include one-dimensional Ca(H 2olz)•4H 2O chains, two-dimensional Ca(H 2olz)•2H 2O sheets, and a three-dimensional metal-organic framework Ca(H 2olz)•2DMF (DMF= N,N-dimethylformamide). The framework undergoes structural changes in response to solvent, forming a dense Ca(H 2olz) phase when exposed to aqueous HCl. The compounds Ca(H 2olz)•xH 2O (x=0, 2, 4) were each pressed into pellets and exposed to simulated gastrointestinal fluids to mimic the passage of a pill from the acidic stomach to the pH-neutral intestines. Allmore » three calcium materials exhibited a delayed release of olsalazine relative to Na 2(H 2olz), the commercial formulation, illustrating how formulation of a drug within an extended coordination solid can serve to tune its solubility and performance.« less

  12. Calcium transient prevalence across the dendritic arbor predicts place field properties

    PubMed Central

    Sheffield, Mark E. J.; Dombeck, Daniel A.

    2014-01-01

    Establishing the hippocampal cellular ensemble that represents an animal’s environment involves the emergence and disappearance of place fields in specific CA1 pyramidal neurons1–4, and the acquisition of different spatial firing properties across the active population5. While such firing flexibility and diversity have been linked to spatial memory, attention and task performance6,7, the cellular and network origin of these place cell features is unknown. Basic integrate-and-fire models of place firing propose that such features result solely from varying inputs to place cells8,9, but recent studies3,10 instead suggest that place cells themselves may play an active role through regenerative dendritic events. However, due to the difficulty of performing functional recordings from place cell dendrites, no direct evidence of regenerative dendritic events exists, leaving any possible connection to place coding unknown. Using multi-plane two-photon calcium imaging of CA1 place cell somata, axons, and dendrites in mice navigating a virtual environment, we show that regenerative dendritic events do exist in place cells of behaving mice and, surprisingly, their prevalence throughout the arbor is highly spatiotemporally variable. Further, we show that the prevalence of such events predicts the spatial precision and persistence or disappearance of place fields. This suggests that the dynamics of spiking throughout the dendritic arbor may play a key role in forming the hippocampal representation of space. PMID:25363782

  13. Intracellular Calcium Mobilization in Response to Ion Channel Regulators via a Calcium-Induced Calcium Release Mechanism

    PubMed Central

    Petrou, Terry; Olsen, Hervør L.; Thrasivoulou, Christopher; Masters, John R.; Ashmore, Jonathan F.

    2017-01-01

    Free intracellular calcium ([Ca2+]i), in addition to being an important second messenger, is a key regulator of many cellular processes including cell membrane potential, proliferation, and apoptosis. In many cases, the mobilization of [Ca2+]i is controlled by intracellular store activation and calcium influx. We have investigated the effect of several ion channel modulators, which have been used to treat a range of human diseases, on [Ca2+]i release, by ratiometric calcium imaging. We show that six such modulators [amiodarone (Ami), dofetilide, furosemide (Fur), minoxidil (Min), loxapine (Lox), and Nicorandil] initiate release of [Ca2+]i in prostate and breast cancer cell lines, PC3 and MCF7, respectively. Whole-cell currents in PC3 cells were inhibited by the compounds tested in patch-clamp experiments in a concentration-dependent manner. In all cases [Ca2+]i was increased by modulator concentrations comparable to those used clinically. The increase in [Ca2+]i in response to Ami, Fur, Lox, and Min was reduced significantly (P < 0.01) when the external calcium was reduced to nM concentration by chelation with EGTA. The data suggest that many ion channel regulators mobilize [Ca2+]i. We suggest a mechanism whereby calcium-induced calcium release is implicated; such a mechanism may be important for understanding the action of these compounds. PMID:27980039

  14. A comparative study of calcium absorption following a single serving administration of calcium carbonate powder versus calcium citrate tablets in healthy premenopausal women

    PubMed Central

    Wang, Haiyuan; Bua, Peter; Capodice, Jillian

    2014-01-01

    Background Calcium is an essential mineral often taken as a daily, long-term nutritional supplement. Data suggests that once-daily dosing is important with regard to long-term compliance of both drugs and nutritional supplements. Objective This study was undertaken to compare the bioavailability of a single serving of two calcium supplements in healthy, premenopausal women. Design A two-period, crossover bioavailability study of a single serving of calcium citrate tablets (two tablets=500 mg calcium) versus a single serving of calcium carbonate powder (one packet of powder=1,000 mg calcium) was performed in healthy women aged between 25 and 45. All subjects were on a calcium-restricted diet 7 days prior to testing and fasted for 12 h before being evaluated at 0, 1, 2, and 4 h after oral administration of the test agents. Blood measurements for total and ionized calcium and parathyroid hormone were performed and adverse events were monitored. Results Twenty-three women were evaluable with a mean age of 33.2±8.71. Results showed that administration of a single serving of a calcium carbonate powder resulted in greater absorption in total and ionized calcium versus a single serving of calcium citrate tablets at 4 h (4.25±0.21 vs. 4.16±0.16, p=0.001). There were minimal side effects and no reported serious adverse events. Conclusions This study shows that a single serving of a calcium carbonate powder is more bioavailable than a single serving of calcium citrate tablets. This may be beneficial for long-term compliance. PMID:24772062

  15. Measuring calcium dynamics in living cells with Genetically Encodable Calcium Indicators

    PubMed Central

    McCombs, Janet E.

    2008-01-01

    Genetically encoded calcium indicators (GECIs) allow researchers to measure calcium dynamics in specific targeted locations within living cells. Such indicators enable dissection of the spatial and temporal control of calcium signaling processes. Here we review recent progress in the development of GECIs, highlighting which indicators are most appropriate for measuring calcium in specific organelles and localized domains in mammalian tissue culture cells. An overview of recent approaches that have been undertaken to ensure that the GECIs are minimally perturbed by the cellular environment is provided. Additionally, the procedures for introducing GECIs into mammalian cells, conducting calcium imaging experiments, and analyzing data are discussed. Because organelle-targeted indicators often pose an additional challenge, we underscore strategies for calibrating GECIs in these locations. PMID:18848629

  16. Imaging of underground karst water channels using an improved multichannel transient Rayleigh wave detecting method

    PubMed Central

    Zheng, Xuhui; Liu, Lei; Li, Gao; Zhou, Fubiao; Xu, Jiemin

    2018-01-01

    Geological and hydrogeological conditions in karst areas are complicated from the viewpoint of engineering. The construction of underground structures in these areas is often disturbed by the gushing of karst water, which may delay the construction schedule, result in economic losses, and even cause heavy casualties. In this paper, an innovative method of multichannel transient Rayleigh wave detecting is proposed by introducing the concept of arrival time difference phase between channels (TDP). Overcoming the restriction of the space-sampling law, the proposed method can extract the phase velocities of different frequency components from only two channels of transient Rayleigh wave recorded on two adjacent detecting points. This feature greatly improves the work efficiency and lateral resolution of transient Rayleigh wave detecting. The improved multichannel transient Rayleigh wave detecting method is applied to the detection of karst caves and fractures in rock mass of the foundation pit of Yan’an Road Station of Guiyang Metro. The imaging of the detecting results clearly reveals the distribution of karst water inflow channels, which provided significant guidance for water plugging and enabled good control over karst water gushing in the foundation pit. PMID:29883492

  17. Imaging of underground karst water channels using an improved multichannel transient Rayleigh wave detecting method.

    PubMed

    Zheng, Xuhui; Liu, Lei; Sun, Jinzhong; Li, Gao; Zhou, Fubiao; Xu, Jiemin

    2018-01-01

    Geological and hydrogeological conditions in karst areas are complicated from the viewpoint of engineering. The construction of underground structures in these areas is often disturbed by the gushing of karst water, which may delay the construction schedule, result in economic losses, and even cause heavy casualties. In this paper, an innovative method of multichannel transient Rayleigh wave detecting is proposed by introducing the concept of arrival time difference phase between channels (TDP). Overcoming the restriction of the space-sampling law, the proposed method can extract the phase velocities of different frequency components from only two channels of transient Rayleigh wave recorded on two adjacent detecting points. This feature greatly improves the work efficiency and lateral resolution of transient Rayleigh wave detecting. The improved multichannel transient Rayleigh wave detecting method is applied to the detection of karst caves and fractures in rock mass of the foundation pit of Yan'an Road Station of Guiyang Metro. The imaging of the detecting results clearly reveals the distribution of karst water inflow channels, which provided significant guidance for water plugging and enabled good control over karst water gushing in the foundation pit.

  18. Utilisation of steel furnace slag coarse aggregate in a low calcium fly ash geopolymer concrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, M. S.H.,; Castel, Arnaud; Akbarnezhad, A.

    This paper evaluates the performance of steel furnace slag (SFS) coarse aggregate in blended slag and low calcium fly ash geopolymer concrete (GPC). The geopolymer binder is composed of 90% of low calcium fly ash and 10% of ground granulated blast furnace slag (GGBFS). Mechanical and physical properties, shrinkage, and detailed microstructure analysis were carried out. The results showed that geopolymer concrete with SFS aggregate offered higher compressive strength, surface resistivity and pulse velocity than that of GPC with traditional aggregate. The shrinkage results showed no expansion or swelling due to delayed calcium oxide (CaO) hydration after 320 days. Nomore » traditional porous interfacial transition zone (ITZ) was detected using scanning electron microscopy, indicating a better bond between SFS aggregate and geopolymer matrix. Energy dispersive spectroscopy results further revealed calcium (Ca) diffusion at the vicinity of ITZ. Raman spectroscopy results showed no new crystalline phase formed due to Ca diffusion. X-ray fluorescence result showed Mg diffusion from SFS aggregate towards geopolymer matrix. The incorporation of Ca and Mg into the geopolymer structure and better bond between SFS aggregate and geopolymer matrix are the most likely reasons for the higher compressive strength observed in GPC with SFS aggregate.« less

  19. Calcium-dependent inactivation of calcium channels in cochlear hair cells of the chicken

    PubMed Central

    Lee, Seunghwan; Briklin, Olga; Hiel, Hakim; Fuchs, Paul

    2007-01-01

    Voltage-gated calcium channels support both spontaneous and sound-evoked neurotransmitter release from ribbon synapses of cochlear hair cells. A variety of regulatory mechanisms must cooperate to ensure the appropriate level of activity in the restricted pool of synaptic calcium channels (∼100) available to each synaptic ribbon. One potential feedback mechanism, calcium-dependent inactivation (CDI) of voltage-gated, L-type calcium channels, can be modulated by calmodulin-like calcium-binding proteins. CDI of voltage-gated calcium current was studied in hair cells of the chicken's basilar papilla (analogous to the mammalian cochlea) after blocking the predominant potassium conductances. For inactivating currents produced by 2.5 s steps to the peak of the current–voltage relation (1 mm EGTA internal calcium buffer), single exponential fits yielded an average decay time constant of 1.92 ± 0.18 s (mean ±s.e.m., n = 12) at 20–22°C, while recovery occurred with a half-time of ∼10 s. Inactivation produced no change in reversal potential, arguing that the observed relaxation did not result from alternative processes such as calcium accumulation or activation of residual potassium currents. Substitution of external calcium with barium greatly reduced inactivation, while inhibition of endoplasmic calcium pumps with t-benzohydroquinone (BHQ) or thapsigargin made inactivation occur faster and to a greater extent. Raising external calcium 10-fold (from 2 to 20 mm) increased peak current 3-fold, but did not alter the extent or time course of CDI. However, increasing levels of internal calcium buffer consistently reduced the rate and extent of inactivation. With 1 mm EGTA buffering and in 2 mm external calcium, the available pool of calcium channels was half-inactivated near the resting membrane potential (−50 mV). CDI may be further regulated by calmodulin-like calcium-binding proteins (CaBPs). mRNAs for several CaBPs are expressed in chicken cochlear tissue, and

  20. Effect of Aegle marmelos and Murraya koenigii in treatment of delayed pubertal buffaloes heifers

    PubMed Central

    Baitule, Mohan M.; Gawande, A. P.; Kumar, Umesh; Sahatpure, S. K.; Patil, Manoj S.; Baitule, Mansi M.

    2016-01-01

    Aim: This study aims to study the estrus induction, ovulation, and conception rate of delayed puberty in buffaloes heifers by feeding a herbal plants Aegle marmelos (bael/bili/bhel leaf) and Murraya koenigii (Curry leaf). Materials and Methods: Totally, 24 buffalo heifers with delayed puberty were selected for the present study and divided randomly in four equal groups (n=6). Before experiment, all animals were dewormed with albendazole at 10 mg/kg body weight to prevent them from the stress of parasitism. In the present experiment, four group taken and Group I (n=6) treated with A. marmelos, Group II (n=6) treated with M. koenigii, Group III (n=6) treated with mixture of A. marmelos and M. koenigii and fed for 9 days. Group IV (n=6) considered as control and fed with concentrate only. The blood samples were collected from all the animals on day 0 (before treatment), 4, 9 (during treatment), on the day of estrus and day 8 after the onset of estrus. The 10 ml blood was collected from the jugular vein of all the experimental animals for estimation of serum calcium, inorganic phosphorus, and progesterone (P4). The estrus response, ovulation, conception rate along with serum calcium, inorganic phosphorus, and progesterone level were determined by the standard protocol. Results: From Group III 4 heifers, from Group II 3 heifers, and from Group I and IV (Control) 2 heifers each, exhibited the estrus. The estrus response was recorded as 33.33%, 50.00%, 75.00%, and 33.33% in Group I, Group II, Group III, and Group IV, respectively. In treatment Group III, serum calcium found significantly more (p<0.05) on day 8 post-estrus as compared to other groups at a similar interval. Inorganic phosphorus and progesterone show no significant difference between groups. The ovulation and conception rates are comparatively better in Group III (75%) buffalo heifers than other groups. Conclusion: Herbal supplementation of A. marmelos and M. koenigii in combination, as well as M. koenigii

  1. Structure-function of proteins interacting with the α1 pore-forming subunit of high-voltage-activated calcium channels

    PubMed Central

    Neely, Alan; Hidalgo, Patricia

    2014-01-01

    Openings of high-voltage-activated (HVA) calcium channels lead to a transient increase in calcium concentration that in turn activate a plethora of cellular functions, including muscle contraction, secretion and gene transcription. To coordinate all these responses calcium channels form supramolecular assemblies containing effectors and regulatory proteins that couple calcium influx to the downstream signal cascades and to feedback elements. According to the original biochemical characterization of skeletal muscle Dihydropyridine receptors, HVA calcium channels are multi-subunit protein complexes consisting of a pore-forming subunit (α1) associated with four additional polypeptide chains β, α2, δ, and γ, often referred to as accessory subunits. Twenty-five years after the first purification of a high-voltage calcium channel, the concept of a flexible stoichiometry to expand the repertoire of mechanisms that regulate calcium channel influx has emerged. Several other proteins have been identified that associate directly with the α1-subunit, including calmodulin and multiple members of the small and large GTPase family. Some of these proteins only interact with a subset of α1-subunits and during specific stages of biogenesis. More strikingly, most of the α1-subunit interacting proteins, such as the β-subunit and small GTPases, regulate both gating and trafficking through a variety of mechanisms. Modulation of channel activity covers almost all biophysical properties of the channel. Likewise, regulation of the number of channels in the plasma membrane is performed by altering the release of the α1-subunit from the endoplasmic reticulum, by reducing its degradation or enhancing its recycling back to the cell surface. In this review, we discuss the structural basis, interplay and functional role of selected proteins that interact with the central pore-forming subunit of HVA calcium channels. PMID:24917826

  2. Teaching Calcium-Induced Calcium Release in Cardiomyocytes Using a Classic Paper by Fabiato

    ERIC Educational Resources Information Center

    Liang, Willmann

    2008-01-01

    This teaching paper utilizes the materials presented by Dr. Fabiato in his review article entitled "Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum." In the review, supporting evidence of calcium-induced calcium release (CICR) is presented. Data concerning potential objections to the CICR theory are discussed as well. In…

  3. Transient Go: A Mobile App for Transient Astronomy Outreach

    NASA Astrophysics Data System (ADS)

    Crichton, D.; Mahabal, A.; Djorgovski, S. G.; Drake, A.; Early, J.; Ivezic, Z.; Jacoby, S.; Kanbur, S.

    2016-12-01

    Augmented Reality (AR) is set to revolutionize human interaction with the real world as demonstrated by the phenomenal success of `Pokemon Go'. That very technology can be used to rekindle the interest in science at the school level. We are in the process of developing a prototype app based on sky maps that will use AR to introduce different classes of astronomical transients to students as they are discovered i.e. in real-time. This will involve transient streams from surveys such as the Catalina Real-time Transient Survey (CRTS) today and the Large Synoptic Survey Telescope (LSST) in the near future. The transient streams will be combined with archival and latest image cut-outs and other auxiliary data as well as historical and statistical perspectives on each of the transient types being served. Such an app could easily be adapted to work with various NASA missions and NSF projects to enrich the student experience.

  4. Transient increase in the levels of gamma-tubulin complex in reorientation of cortical microtubules by gravity in azuki bean epicotyls

    NASA Astrophysics Data System (ADS)

    Soga, Kouichi; Kotake, Toshihisa; Wakabayashi, Kazuyuki; Kamisaka, Seiichiro; Hoson, Takayuki

    Azuki bean (Vigna angularis Ohwi et Ohashi) seedlings were exposed to centrifugal hypergravity, and the changes in the orientation of cortical microtubules and the expression of genes cording γ-tubulin complex (VaTUBG and VaSpc98p) were examined. By 300 g treatment, the percentage of cells with transverse microtubules was decreased, while that with longitudinal microtubules was increased in epicotyls. Hypergravity increased the expression of VaTUBG and VaSpc98p transiently. Also, the expression of both genes was increased transiently by removal of hypergravity stimulus. Lanthanum and gadolinium ions, potential blockers of mechanosensitive calcium ion-permeable channels (mechanoreceptors), nullified reorientation of microtubules as well as up-regulation of expression of VaTUBG and VaSpc98p by hypergravity. These results suggest that mechanoreceptors on the plasma membrane may perceive the gravity signal, which leads to reorientation of cortical microtubules by transiently stimulating the formation of γ-tubulin complex.

  5. Modeling the effects of vorinostat in vivo reveals both transient and delayed HIV transcriptional activation and minimal killing of latently infected cells

    DOE PAGES

    Ke, Ruian; Lewin, Sharon R.; Elliott, Julian H.; ...

    2015-10-23

    Recent efforts to cure human immunodeficiency virus type-1 (HIV-1) infection have focused on developing latency reversing agents as a first step to eradicate the latent reservoir. The histone deacetylase inhibitor, vorinostat, has been shown to activate HIV RNA transcription in CD4+ T-cells and alter host cell gene transcription in HIV-infected individuals on antiretroviral therapy. In order to understand how latently infected cells respond dynamically to vorinostat treatment and determine the impact of vorinostat on reservoir size in vivo, we have constructed viral dynamic models of latency that incorporate vorinostat treatment. We fitted these models to data collected from a recentmore » clinical trial in which vorinostat was administered daily for 14 days to HIV-infected individuals on suppressive ART. The results show that HIV transcription is increased transiently during the first few hours or days of treatment and that there is a delay before a sustained increase of HIV transcription, whose duration varies among study participants and may depend on the long term impact of vorinostat on host gene expression. Parameter estimation suggests that in latently infected cells, HIV transcription induced by vorinostat occurs at lower levels than in productively infected cells. Lastly, the estimated loss rate of transcriptionally induced cells remains close to baseline in most study participants, suggesting vorinostat treatment does not induce latently infected cell killing and thus reduce the latent reservoir in vivo.« less

  6. Modeling the effects of vorinostat in vivo reveals both transient and delayed HIV transcriptional activation and minimal killing of latently infected cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ke, Ruian; Lewin, Sharon R.; Elliott, Julian H.

    Recent efforts to cure human immunodeficiency virus type-1 (HIV-1) infection have focused on developing latency reversing agents as a first step to eradicate the latent reservoir. The histone deacetylase inhibitor, vorinostat, has been shown to activate HIV RNA transcription in CD4+ T-cells and alter host cell gene transcription in HIV-infected individuals on antiretroviral therapy. In order to understand how latently infected cells respond dynamically to vorinostat treatment and determine the impact of vorinostat on reservoir size in vivo, we have constructed viral dynamic models of latency that incorporate vorinostat treatment. We fitted these models to data collected from a recentmore » clinical trial in which vorinostat was administered daily for 14 days to HIV-infected individuals on suppressive ART. The results show that HIV transcription is increased transiently during the first few hours or days of treatment and that there is a delay before a sustained increase of HIV transcription, whose duration varies among study participants and may depend on the long term impact of vorinostat on host gene expression. Parameter estimation suggests that in latently infected cells, HIV transcription induced by vorinostat occurs at lower levels than in productively infected cells. Lastly, the estimated loss rate of transcriptionally induced cells remains close to baseline in most study participants, suggesting vorinostat treatment does not induce latently infected cell killing and thus reduce the latent reservoir in vivo.« less

  7. Calcium signaling in liver.

    PubMed

    Gaspers, Lawrence D; Thomas, Andrew P

    2005-01-01

    In hepatocytes, hormones linked to the formation of the second messenger inositol 1,4,5-trisphosphate (InsP3) evoke transient increases or spikes in cytosolic free calcium ([Ca2+]i), that increase in frequency with the agonist concentration. These oscillatory Ca2+ signals are thought to transmit the information encoded in the extracellular stimulus to down-stream Ca2+-sensitive metabolic processes. We have utilized both confocal and wide field fluorescence microscopy techniques to study the InsP3-dependent signaling pathway at the cellular and subcellular levels in the intact perfused liver. Typically InsP3-dependent [Ca2+]i spikes manifest as Ca2+ waves that propagate throughout the entire cytoplasm and nucleus, and in the intact liver these [Ca2+]i increases are conveyed through gap junctions to encompass entire lobular units. The translobular movement of Ca2+ provides a means to coordinate the function of metabolic zones of the lobule and thus, liver function. In this article, we describe the characteristics of agonist-evoked [Ca2+]i signals in the liver and discuss possible mechanisms to explain the propagation of intercellular Ca2+ waves in the intact organ.

  8. AKAP150-mediated TRPV1 sensitization is disrupted by calcium/calmodulin

    PubMed Central

    2011-01-01

    Background The transient receptor potential vanilloid type1 (TRPV1) is expressed in nociceptive sensory neurons and is sensitive to phosphorylation. A-Kinase Anchoring Protein 79/150 (AKAP150) mediates phosphorylation of TRPV1 by Protein Kinases A and C, modulating channel activity. However, few studies have focused on the regulatory mechanisms that control AKAP150 association with TRPV1. In the present study, we identify a role for calcium/calmodulin in controlling AKAP150 association with, and sensitization of, TRPV1. Results In trigeminal neurons, intracellular accumulation of calcium reduced AKAP150 association with TRPV1 in a manner sensitive to calmodulin antagonism. This was also observed in transfected Chinese hamster ovary (CHO) cells, providing a model for conducting molecular analysis of the association. In CHO cells, the deletion of the C-terminal calmodulin-binding site of TRPV1 resulted in greater association with AKAP150, and increased channel activity. Furthermore, the co-expression of wild-type calmodulin in CHOs significantly reduced TRPV1 association with AKAP150, as evidenced by total internal reflective fluorescence-fluorescence resonance energy transfer (TIRF-FRET) analysis and electrophysiology. Finally, dominant-negative calmodulin co-expression increased TRPV1 association with AKAP150 and increased basal and PKA-sensitized channel activity. Conclusions the results from these studies indicate that calcium/calmodulin interferes with the association of AKAP150 with TRPV1, potentially extending resensitization of the channel. PMID:21569553

  9. Downhole delay assembly for blasting with series delay

    DOEpatents

    Ricketts, Thomas E.

    1982-01-01

    A downhole delay assembly is provided which can be placed into a blasthole for initiation of explosive in the blasthole. The downhole delay assembly includes at least two detonating time delay devices in series in order to effect a time delay of longer than about 200 milliseconds in a round of explosions. The downhole delay assembly provides a protective housing to prevent detonation of explosive in the blasthole in response to the detonation of the first detonating time delay device. There is further provided a connection between the first and second time delay devices. The connection is responsive to the detonation of the first detonating time delay device and initiates the second detonating time delay device. A plurality of such downhole delay assemblies are placed downhole in unfragmented formation and are initiated simultaneously for providing a round of explosive expansions. The explosive expansions can be used to form an in situ oil shale retort containing a fragmented permeable mass of formation particles.

  10. Calcium absorption from fortified ice cream formulations compared with calcium absorption from milk.

    PubMed

    van der Hee, Regine M; Miret, Silvia; Slettenaar, Marieke; Duchateau, Guus S M J E; Rietveld, Anton G; Wilkinson, Joy E; Quail, Patricia J; Berry, Mark J; Dainty, Jack R; Teucher, Birgit; Fairweather-Tait, Susan J

    2009-05-01

    Optimal bone mass in early adulthood is achieved through appropriate diet and lifestyle, thereby protecting against osteoporosis and risk of bone fracture in later life. Calcium and vitamin D are essential to build adequate bones, but calcium intakes of many population groups do not meet dietary reference values. In addition, changes in dietary patterns are exacerbating the problem, thereby emphasizing the important role of calcium-rich food products. We have designed a calcium-fortified ice cream formulation that is lower in fat than regular ice cream and could provide a useful source of additional dietary calcium. Calcium absorption from two different ice cream formulations was determined in young adults and compared with milk. Sixteen healthy volunteers (25 to 45 years of age), recruited from the general public of The Netherlands, participated in a randomized, reference-controlled, double-blind cross-over study in which two test products and milk were consumed with a light standard breakfast on three separate occasions: a standard portion of ice cream (60 g) fortified with milk minerals and containing a low level (3%) of butter fat, ice cream (60 g) fortified with milk minerals and containing a typical level (9%) of coconut oil, and reduced-fat milk (1.7% milk fat) (200 mL). Calcium absorption was measured by the dual-label stable isotope technique. Effects on calcium absorption were evaluated by analysis of variance. Fractional absorption of calcium from the 3% butterfat ice cream, 9% coconut oil ice cream, and milk was 26%+/-8%, 28%+/-5%, and 31%+/-9%, respectively, and did not differ significantly (P=0.159). Results indicate that calcium bioavailability in the two calcium-fortified ice cream formulations used in this study is as high as milk, indicating that ice cream may be a good vehicle for delivery of calcium.

  11. Calcium Absorption from Fortified Ice Cream Formulations Compared with Calcium Absorption from Milk

    PubMed Central

    van der Hee, Regine M.; Miret, Silvia; Slettenaar, Marieke; Duchateau, Guus S.M.J.E.; Rietveld, Anton G.; Wilkinson, Joy E.; Quail, Patricia J.; Berry, Mark J.; Dainty, Jack R.; Teucher, Birgit; Fairweather-Tait, Susan J.

    2009-01-01

    Objective Optimal bone mass in early adulthood is achieved through appropriate diet and lifestyle, thereby protecting against osteoporosis and risk of bone fracture in later life. Calcium and vitamin D are essential to build adequate bones, but calcium intakes of many population groups do not meet dietary reference values. In addition, changes in dietary patterns are exacerbating the problem, thereby emphasizing the important role of calcium-rich food products. We have designed a calcium-fortified ice cream formulation that is lower in fat than regular ice cream and could provide a useful source of additional dietary calcium. Calcium absorption from two different ice cream formulations was determined in young adults and compared with milk. Subjects/setting Sixteen healthy volunteers (25 to 45 years of age), recruited from the general public of The Netherlands, participated in a randomized, reference-controlled, double-blind cross-over study in which two test products and milk were consumed with a light standard breakfast on three separate occasions: a standard portion of ice cream (60 g) fortified with milk minerals and containing a low level (3%) of butter fat, ice cream (60 g) fortified with milk minerals and containing a typical level (9%) of coconut oil, and reduced-fat milk (1.7% milk fat) (200 mL). Calcium absorption was measured by the dual-label stable isotope technique. Statistical analysis Effects on calcium absorption were evaluated by analysis of variance. Results Fractional absorption of calcium from the 3% butterfat ice cream, 9% coconut oil ice cream, and milk was 26%±8%, 28%±5%, and 31%±9%, respectively, and did not differ significantly (P=0.159). Conclusions Results indicate that calcium bioavailability in the two calcium-fortified ice cream formulations used in this study is as high as milk, indicating that ice cream may be a good vehicle for delivery of calcium. PMID:19394469

  12. Calcium acetate or calcium carbonate for hyperphosphatemia of hemodialysis patients: a meta-analysis.

    PubMed

    Wang, Yong; Xie, Guoqiang; Huang, Yuanhang; Zhang, Han; Yang, Bo; Mao, Zhiguo

    2015-01-01

    High levels of serum phosphorus both at baseline and during follow-up are associated with increased mortality in dialysis patients, and administration of phosphate binders was independently associated with improved survival among hemodialysis population. Calcium-based phosphate binders are the most commonly used phosphate binders in developing countries for their relatively low costs. To compare the efficacy and safety between calcium carbonate and calcium acetate in the treatment of hyperphosphatemia in hemodialysis patients. PubMed, EMBASE, Cochrane Library, Google scholar and Chinese databases (Wanfang, Weipu, National Knowledge Infrastructure of China) were searched for relevant studies published before March 2014. Reference lists of nephrology textbooks and review articles were checked. A meta-analysis of randomized controlled trials (RCTs) and quasi-RCTs that assessed the effects and adverse events of calcium acetate and calcium carbonate in adult patients with MHD was performed using Review Manager 5.0. A total of ten studies (625 participants) were included in this meta-analysis. There was insufficient data in all-cause mortality and cardiovascular events for meta-analysis. Compared with calcium carbonate group, the serum phosphorus was significantly lower in calcium acetate group after4 weeks' administration (MD -0.15 mmol/L, 95% CI -0.28 to -0.01) and after 8 weeks' administration (MD -0.25 mmol/L, 95% CI -0.40 to -0.11). There was no difference in serum calcium levels or the incidence of hypercalcemia between two groups at 4 weeks and 8 weeks. No statistical difference was found in parathyroid hormone (PTH) levels or serum calcium by phosphorus (Ca x P) product. There was significantly higher risk of intolerance with calcium acetate treatment (RR 3.46, 95% CI 1.48 to 8.26). For hyperphosphatemia treatment, calcium acetate showed better efficacy and with a higher incidence of intolerance compared with calcium carbonate. There are insufficient data to

  13. Calcium Acetate or Calcium Carbonate for Hyperphosphatemia of Hemodialysis Patients: A Meta-Analysis

    PubMed Central

    Zhang, Han; Yang, Bo; Mao, Zhiguo

    2015-01-01

    Background High levels of serum phosphorus both at baseline and during follow-up are associated with increased mortality in dialysis patients, and administration of phosphate binders was independently associated with improved survival among hemodialysis population. Calcium-based phosphate binders are the most commonly used phosphate binders in developing countries for their relatively low costs. Objectives To compare the efficacy and safety between calcium carbonate and calcium acetate in the treatment of hyperphosphatemia in hemodialysis patients. Methods PubMed, EMBASE, Cochrane Library, Google scholar and Chinese databases (Wanfang, Weipu, National Knowledge Infrastructure of China) were searched for relevant studies published before March 2014. Reference lists of nephrology textbooks and review articles were checked. A meta-analysis of randomized controlled trials (RCTs) and quasi-RCTs that assessed the effects and adverse events of calcium acetate and calcium carbonate in adult patients with MHD was performed using Review Manager 5.0. Results A total of ten studies (625 participants) were included in this meta-analysis. There was insufficient data in all-cause mortality and cardiovascular events for meta-analysis. Compared with calcium carbonate group, the serum phosphorus was significantly lower in calcium acetate group after4 weeks’ administration (MD -0.15 mmol/L, 95% CI -0.28 to -0.01) and after 8 weeks’ administration (MD -0.25 mmol/L, 95% CI -0.40 to -0.11). There was no difference in serum calcium levels or the incidence of hypercalcemia between two groups at 4 weeks and 8 weeks. No statistical difference was found in parathyroid hormone (PTH) levels or serum calcium by phosphorus (Ca x P) product. There was significantly higher risk of intolerance with calcium acetate treatment (RR 3.46, 95% CI 1.48 to 8.26). Conclusions For hyperphosphatemia treatment, calcium acetate showed better efficacy and with a higher incidence of intolerance compared with

  14. Effect of particle size on calcium release and elevation of pH of endodontic cements.

    PubMed

    Saghiri, Mohammad Ali; Asatourian, Armen; Orangi, Jafar; Lotfi, Mehrdad; Soukup, Jason W; Garcia-Godoy, Franklin; Sheibani, Nader

    2015-06-01

    Elevation of pH and calcium ion release are of great importance in antibacterial activity and the promotion of dental soft and hard tissue healing process. In this study, we evaluated the effect of particle size on the elevation of pH and the calcium ion release from calcium silicate-based dental cements. Twelve plastic tubes were divided into three groups, filled with white mineral trioxide aggregate (WMTA), WMTA plus 1% methylcellulose, and nano-modified WMTA (nano-WMTA), and placed inside flasks containing 10 ml of distilled water. The pH values were measured using a pH sensor 3, 24, 72, and 168 h after setting of the cements. The calcium ion release was measured using an atomic absorption spectrophotometer with same sample preparation method. Data were subjected to two-way analysis of variance (anova) followed by post hoc Tukey tests with significance level of P < 0.05. Nano-WMTA showed significant pH elevation only after 24 h (P < 0.05) compared with WMTA, and after 3, 24, and 72 h compared with WMTA plus 1% methylcellulose (P < 0.05). Nano-WMTA showed significantly higher calcium ion release values compared to the other two groups (P < 0.05). Nano-modification of WMTA remarkably increased the calcium ion release at all time intervals postsetting, which can significantly influence the osteogenic properties of human dental pulp cells and as a consequence enhance mineralized matrix nodule formation to achieve desirable clinical outcomes. However, the increase in pH values mainly occurred during the short time postsetting. Addition of 1% methylcellulose imposed a delay in elevation of pH and calcium ion release by WMTA. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Combined system for high-time-resolution dual-excitation fluorescence photometry and fluorescence imaging of calcium transients in single normal and diseased skeletal muscle fibers

    NASA Astrophysics Data System (ADS)

    Uttenweiler, Dietmar; Wojciechowski, Reinhold; Makabe, Makoto; Veigel, Claudia; Fink, Rainer H.

    1994-12-01

    Fast photometric measurements and video-imaging of fluorescent indicators both are powerful tools in measuring the intracellular free calcium concentration of muscle and many other cells. as photometric systems yield a high temporal resolution, calcium imaging systems have high spatial but significantly reduced temporal resolution. Therefore we have developed an integrated system combining both methods and based mostly on standard components. As a common, sensitive Ca2+- indicator we used the fluorescent probe Fura-2, which is alternatingly excited for ratio measurements at 340/380 nm. We used a commercially available dual excitation photometric system (OSP-3; Olympus) for attaching a CCD-camera and a frame grabber board. To achieve the synchronization we had to design circuitries for external triggering, synchronization and accurate control of the filter changer, which we added to the system. Additionally, the software for a triggered image acquisition was developed. With this integrated setup one can easily switch between the fast photometric mode (ratio frequency 100 Hz) and the imaging mode (ratio frequency 4.17 Hz). The calcium images are correlated with the 25 times faster spot measurements and are analyzed by means of image processing. With this combined system we study release and uptake of calcium ions of normal and diseased skeletal muscle from mdx mice. Such a system will also be important for other cellular studies in which fluorescence indicators are used to monitor similar time dependent alterations as well as changes in cellular distributions of calcium.

  16. Kinetics of calcium sulfoaluminate formation from tricalcium aluminate, calcium sulfate and calcium oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xuerun, E-mail: xuerunli@163.com; Zhang, Yu; Shen, Xiaodong, E-mail: xdshen@njut.edu.cn

    The formation kinetics of tricalcium aluminate (C{sub 3}A) and calcium sulfate yielding calcium sulfoaluminate (C{sub 4}A{sub 3}more » $$) and the decomposition kinetics of calcium sulfoaluminate were investigated by sintering a mixture of synthetic C{sub 3}A and gypsum. The quantitative analysis of the phase composition was performed by X-ray powder diffraction analysis using the Rietveld method. The results showed that the formation reaction 3Ca{sub 3}Al{sub 2}O{sub 6} + CaSO{sub 4} → Ca{sub 4}Al{sub 6}O{sub 12}(SO{sub 4}) + 6CaO was the primary reaction < 1350 °C with and activation energy of 231 ± 42 kJ/mol; while the decomposition reaction 2Ca{sub 4}Al{sub 6}O{sub 12}(SO{sub 4}) + 10CaO → 6Ca{sub 3}Al{sub 2}O{sub 6} + 2SO{sub 2} ↑ + O{sub 2} ↑ primarily occurred beyond 1350 °C with an activation energy of 792 ± 64 kJ/mol. The optimal formation region for C{sub 4}A{sub 3}$$ was from 1150 °C to 1350 °C and from 6 h to 1 h, which could provide useful information on the formation of C{sub 4}A{sub 3}$ containing clinkers. The Jander diffusion model was feasible for the formation and decomposition of calcium sulfoaluminate. Ca{sup 2+} and SO{sub 4}{sup 2−} were the diffusive species in both the formation and decomposition reactions. -- Highlights: •Formation and decomposition of calcium sulphoaluminate were studied. •Decomposition of calcium sulphoaluminate combined CaO and yielded C{sub 3}A. •Activation energy for formation was 231 ± 42 kJ/mol. •Activation energy for decomposition was 792 ± 64 kJ/mol. •Both the formation and decomposition were controlled by diffusion.« less

  17. Profound regulation of Na/K pump activity by transient elevations of cytoplasmic calcium in murine cardiac myocytes

    PubMed Central

    Lu, Fang-Min; Deisl, Christine; Hilgemann, Donald W

    2016-01-01

    Small changes of Na/K pump activity regulate internal Ca release in cardiac myocytes via Na/Ca exchange. We now show conversely that transient elevations of cytoplasmic Ca strongly regulate cardiac Na/K pumps. When cytoplasmic Na is submaximal, Na/K pump currents decay rapidly during extracellular K application and multiple results suggest that an inactivation mechanism is involved. Brief activation of Ca influx by reverse Na/Ca exchange enhances pump currents and attenuates current decay, while repeated Ca elevations suppress pump currents. Pump current enhancement reverses over 3 min, and results are similar in myocytes lacking the regulatory protein, phospholemman. Classical signaling mechanisms, including Ca-activated protein kinases and reactive oxygen, are evidently not involved. Electrogenic signals mediated by intramembrane movement of hydrophobic ions, such as hexyltriphenylphosphonium (C6TPP), increase and decrease in parallel with pump currents. Thus, transient Ca elevation and Na/K pump inactivation cause opposing sarcolemma changes that may affect diverse membrane processes. DOI: http://dx.doi.org/10.7554/eLife.19267.001 PMID:27627745

  18. A Touch-Communication Framework for Drug Delivery Based on a Transient Microbot System.

    PubMed

    Yifan Chen; Kosmas, Panagiotis; Anwar, Putri Santi; Limin Huang

    2015-06-01

    Recent progress in bioresorbable radio frequency electronics and engineered bacteria has promised the prospect of realizing a transient microbot (TM) system for therapeutic applications. The inorganic or organic miniature robots will dissolve into the human body after completing the required tasks and cause no side-effect. In this paper, we propose a potential architecture of a TM system for transporting pharmaceutical compounds inside the body, and analyze the system using a micro-to-macro cross-scale communication model. The remote controllability and tangibility of a TM essentially lead to a touch-communication (TouchCom) paradigm. Externally maneuverable and trackable TMs are responsible for the delivery of drug particles (information molecules in the TouchCom context). The loading/injection and unloading of the drug correspond to the transmitting and receiving processes in the TouchCom framework. Subsequently, we investigate simulation tools for the propagation and transient characteristics of TMs in the blood vessels. We also define the propagation delay, path loss, as well as angular and delay spectra of targeting intensity, which are parallel to their counterpart concepts in the conventional wireless channel. Finally, our approach is illustrated with comprehensive simulation studies of targeted drug delivery by using the proposed analytical framework integrating robotics and communications at crossover length scales. The proposed methodology may find important applications in the design and analysis of TM-assisted administration of pharmaceutical compounds.

  19. An Exploration of the Calcium-Binding Mode of Egg White Peptide, Asp-His-Thr-Lys-Glu, and In Vitro Calcium Absorption Studies of Peptide-Calcium Complex.

    PubMed

    Sun, Na; Jin, Ziqi; Li, Dongmei; Yin, Hongjie; Lin, Songyi

    2017-11-08

    The binding mode between the pentapeptide (DHTKE) from egg white hydrolysates and calcium ions was elucidated upon its structural and thermodynamics characteristics. The present study demonstrated that the DHTKE peptide could spontaneously bind calcium with a 1:1 stoichiometry, and that the calcium-binding site corresponded to the carboxyl oxygen, amino nitrogen, and imidazole nitrogen atoms of the DHTKE peptide. Moreover, the effect of the DHTKE-calcium complex on improving the calcium absorption was investigated in vitro using Caco-2 cells. Results showed that the DHTKE-calcium complex could facilitate the calcium influx into the cytosol and further improve calcium absorption across Caco-2 cell monolayers by more than 7 times when compared to calcium-free control. This study facilitates the understanding about the binding mechanism between peptides and calcium ions as well as suggests a potential application of egg white peptides as nutraceuticals to improve calcium absorption.

  20. Delayed hippocampal neuronal death in young gerbil following transient global cerebral ischemia is related to higher and longer-term expression of p63 in the ischemic hippocampus

    PubMed Central

    Bae, Eun Joo; Chen, Bai Hui; Yan, Bing Chun; Shin, Bich Na; Cho, Jeong Hwi; Kim, In Hye; Ahn, Ji Hyeon; Lee, Jae Chul; Tae, Hyun-Jin; Hong, Seongkweon; Kim, Dong Won; Cho, Jun Hwi; Lee, Yun Lyul; Won, Moo-Ho; Park, Joon Ha

    2015-01-01

    The tumor suppressor p63 is one of p53 family members and plays a vital role as a regulator of neuronal apoptosis in the development of the nervous system. However, the role of p63 in mature neuronal death has not been addressed yet. In this study, we first compared ischemia-induced effects on p63 expression in the hippocampal regions (CA1–3) between the young and adult gerbils subjected to 5 minutes of transient global cerebral ischemia. Neuronal death in the hippocampal CA1 region of young gerbils was significantly slow compared with that in the adult gerbils after transient global cerebral ischemia. p63 immunoreactivity in the hippocampal CA1 pyramidal neurons in the sham-operated young group was significantly low compared with that in the sham-operated adult group. p63 immunoreactivity was apparently changed in ischemic hippocampal CA1 pyramidal neurons in both ischemia-operated young and adult groups. In the ischemia-operated adult groups, p63 immunoreactivity in the hippocampal CA1 pyramidal neurons was significantly decreased at 4 days post-ischemia; however, p63 immunoreactivity in the ischemia-operated young group was significantly higher than that in the ischemia-operated adult group. At 7 days post-ischemia, p63 immunoreactivity was decreased in the hippocampal CA1 pyramidal neurons in both ischemia-operated young and adult groups. Change patterns of p63 level in the hippocampal CA1 region of adult and young gerbils after ischemic damage were similar to those observed in the immunohistochemical results. These findings indicate that higher and longer-term expression of p63 in the hippocampal CA1 region of the young gerbils after ischemia/reperfusion may be related to more delayed neuronal death compared to that in the adults. PMID:26199612

  1. Oral calcium carbonate affects calcium but not phosphorus balance in stage 3–4 chronic kidney disease

    PubMed Central

    Hill, Kathleen M.; Martin, Berdine R.; Wastney, Meryl; McCabe, George P.; Moe, Sharon M.; Weaver, Connie M.; Peacock, Munro

    2014-01-01

    Chronic kidney disease (CKD) patients are given calcium carbonate to bind dietary phosphorus and reduce phosphorus retention, and to prevent negative calcium balance. Data are limited on calcium and phosphorus balance in CKD to support this. The aim of this study was to determine calcium and phosphorus balance and calcium kinetics with and without calcium carbonate in CKD patients. Eight stage 3/4 CKD patients, eGFR 36 mL/min, participated in two 3-week balances in a randomized placebo-controlled cross-over study of calcium carbonate (1500 mg/d calcium). Calcium and phosphorus balance were determined on a controlled diet. Oral and intravenous 45calcium with blood sampling and urine and fecal collections were used for calcium kinetics. Fasting blood and urine were collected at baseline and end of each week of each balance period for biochemical analyses. Results showed that patients were in neutral calcium and phosphorus balance while on placebo. Calcium carbonate produced positive calcium balance, did not affect phosphorus balance, and produced only a modest reduction in urine phosphorus excretion compared with placebo. Calcium kinetics demonstrated positive net bone balance but less than overall calcium balance suggesting tissue deposition. Fasting biochemistries of calcium and phosphate homeostasis were unaffected by calcium carbonate. If they can be extrapolated to effects of chronic therapy, these data caution against the use of calcium carbonate as a phosphate binder. PMID:23254903

  2. The calcium-sensing receptor regulates mammary gland parathyroid hormone–related protein production and calcium transport

    PubMed Central

    VanHouten, Joshua; Dann, Pamela; McGeoch, Grace; Brown, Edward M.; Krapcho, Karen; Neville, Margaret; Wysolmerski, John J.

    2004-01-01

    The transfer of calcium from mother to milk during lactation is poorly understood. In this report, we demonstrate that parathyroid hormone–related protein (PTHrP) production and calcium transport in mammary epithelial cells are regulated by extracellular calcium acting through the calcium-sensing receptor (CaR). The CaR becomes expressed on mammary epithelial cells at the transition from pregnancy to lactation. Increasing concentrations of calcium, neomycin, and a calcimimetic compound suppress PTHrP secretion by mammary epithelial cells in vitro, whereas in vivo, systemic hypocalcemia increases PTHrP production, an effect that can be prevented by treatment with a calcimimetic. Hypocalcemia also reduces overall milk production and calcium content, while increasing milk osmolality and protein concentrations. The changes in milk calcium content, milk osmolality, and milk protein concentration were mitigated by calcimimetic infusions. Finally, in a three-dimensional culture system that recapitulates the lactating alveolus, activation of the basolateral CaR increases transcellular calcium transport independent of its effect on PTHrP. We conclude that the lactating mammary gland can sense calcium and adjusts its secretion of calcium, PTHrP, and perhaps water in response to changes in extracellular calcium concentration. We believe this defines a homeostatic system that helps to match milk production to the availability of calcium. PMID:14966569

  3. Calcium Signaling in Taste Cells

    PubMed Central

    Medler, Kathryn F.

    2014-01-01

    The sense of taste is a common ability shared by all organisms and is used to detect nutrients as well as potentially harmful compounds. Thus taste is critical to survival. Despite its importance, surprisingly little is known about the mechanisms generating and regulating responses to taste stimuli. All taste responses depend on calcium signals to generate appropriate responses which are relayed to the brain. Some taste cells have conventional synapses and rely on calcium influx through voltage-gated calcium channels. Other taste cells lack these synapses and depend on calcium release to formulate an output signal through a hemichannel. Beyond establishing these characteristics, few studies have focused on understanding how these calcium signals are formed. We identified multiple calcium clearance mechanisms that regulate calcium levels in taste cells as well as a calcium influx that contributes to maintaining appropriate calcium homeostasis in these cells. Multiple factors regulate the evoked taste signals with varying roles in different cell populations. Clearly, calcium signaling is a dynamic process in taste cells and is more complex than has previously been appreciated. PMID:25450977

  4. Oral calcium carbonate affects calcium but not phosphorus balance in stage 3-4 chronic kidney disease.

    PubMed

    Hill, Kathleen M; Martin, Berdine R; Wastney, Meryl E; McCabe, George P; Moe, Sharon M; Weaver, Connie M; Peacock, Munro

    2013-05-01

    Patients with chronic kidney disease (CKD) are given calcium carbonate to bind dietary phosphorus, reduce phosphorus retention, and prevent negative calcium balance; however, data are limited on calcium and phosphorus balance during CKD to support this. Here, we studied eight patients with stage 3 or 4 CKD (mean estimated glomerular filtration rate 36 ml/min) who received a controlled diet with or without a calcium carbonate supplement (1500 mg/day calcium) during two 3-week balance periods in a randomized placebo-controlled cross-over design. All feces and urine were collected during weeks 2 and 3 of each balance period and fasting blood, and urine was collected at baseline and at the end of each week. Calcium kinetics were determined using oral and intravenous (45)calcium. Patients were found to be in neutral calcium and phosphorus balance while on the placebo. Calcium carbonate supplementation produced positive calcium balance, did not affect phosphorus balance, and produced only a modest reduction in urine phosphorus excretion compared with placebo. Calcium kinetics demonstrated positive net bone balance but less than overall calcium balance, suggesting soft-tissue deposition. Fasting blood and urine biochemistries of calcium and phosphate homeostasis were unaffected by calcium carbonate. Thus, the positive calcium balance produced by calcium carbonate treatment within 3 weeks cautions against its use as a phosphate binder in patients with stage 3 or 4 CKD, if these findings can be extrapolated to long-term therapy.

  5. The calcium current of Helix neuron

    PubMed Central

    1978-01-01

    Calcium current, Ica, was studied in isolated nerve cell bodies of Helix aspersa after suppression of Na+ and K+ currents. The suction pipette method described in the preceding paper was used. Ica rises to a peak value and then subsides exponentially and has a null potential of 150 mV or more and a relationship with [Ca2+]o that is hyperbolic over a small range of [Ca2+]o's. When [Ca2+]i is increased, Ica is reduced disproportionately, but the effect is not hyperbolic. Ica is blocked by extracellular Ni2+, La3+, Cd2+, and Co2+ and is greater when Ba2+ and Sr2+ carry the current. Saturation and blockage are described by a Langmuir adsorption relationship similar to that found in Balanus. Thus, the calcium conductance probably contains a site which binds the ions referred to. The site also appears to be voltage-dependent. Activation and inactivation of Ica are described by first order kinetics, and there is evidence that the processes are coupled. For example, inactivation is delayed slightly in its onset and tau inactivation depends upon the method of study. However, the currents are described equally well by either a noncoupled Hodgkin-Huxley mh scheme or a coupled reaction. Facilitation of Ica by prepulses was not observed. For times up to 50 ms, currents even at small depolarizations were accounted for by suitable adjustment of the activation and inactivation rate constants. PMID:660160

  6. NADPH oxidase-2 inhibition restores contractility and intracellular calcium handling and reduces arrhythmogenicity in dystrophic cardiomyopathy

    PubMed Central

    Gonzalez, Daniel R.; Treuer, Adriana V.; Lamirault, Guillaume; Mayo, Vera; Cao, Yenong; Dulce, Raul A.

    2014-01-01

    Duchenne muscular dystrophy may affect cardiac muscle, producing a dystrophic cardiomyopathy in humans and the mdx mouse. We tested the hypothesis that oxidative stress participates in disrupting calcium handling and contractility in the mdx mouse with established cardiomyopathy. We found increased expression (fivefold) of the NADPH oxidase (NOX) 2 in the mdx hearts compared with wild type, along with increased superoxide production. Next, we tested the impact of NOX2 inhibition on contractility and calcium handling in isolated cardiomyocytes. Contractility was decreased in mdx myocytes compared with wild type, and this was restored toward normal by pretreating with apocynin. In addition, the amplitude of evoked intracellular Ca2+ concentration transients that was diminished in mdx myocytes was also restored with NOX2 inhibition. Total sarcoplasmic reticulum (SR) Ca2+ content was reduced in mdx hearts and normalized by apocynin treatment. Additionally, NOX2 inhibition decreased the production of spontaneous diastolic calcium release events and decreased the SR calcium leak in mdx myocytes. In addition, nitric oxide (NO) synthase 1 (NOS-1) expression was increased eightfold in mdx hearts compared with wild type. Nevertheless, cardiac NO production was reduced. To test whether this paradox implied NOS-1 uncoupling, we treated cardiac myocytes with exogenous tetrahydrobioterin, along with the NOX inhibitor VAS2870. These agents restored NO production and phospholamban phosphorylation in mdx toward normal. Together, these results demonstrate that, in mdx hearts, NOX2 inhibition improves the SR calcium handling and contractility, partially by recoupling NOS-1. These findings reveal a new layer of nitroso-redox imbalance in dystrophic cardiomyopathy. PMID:25015966

  7. Novel calcium recognition constructions in proteins: Calcium blade and EF-hand zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denesyuk, Alexander I., E-mail: adenesyu@abo.fi; Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino 142290; Permyakov, Sergei E.

    Metal ions can regulate various cell processes being first, second or third messengers, and some of them, especially transition metal ions, take part in catalysis in many enzymes. As an intracellular ion, Ca{sup 2+} is involved in many cellular functions from fertilization and contraction, cell differentiation and proliferation, to apoptosis and cancer. Here, we have identified and described two novel calcium recognition environments in proteins: the calcium blade zone and the EF-hand zone, common to 12 and 8 different protein families, respectively. Each of the two environments contains three distinct structural elements: (a) the well-known characteristic Dx[DN]xDG motif; (b) anmore » adjacent structurally identical segment, which binds metal ion in the same way between the calcium blade zone and the EF-hand zone; and (c) the following structurally variable segment, which distinguishes the calcium blade zone from the EF-hand zone. Both zones have sequence insertions between the last residue of the zone and calcium-binding residues in positions V or VI. The long insertion often connects the active and the calcium-binding sites in proteins. Using the structurally identical segments as an anchor, we were able to construct the classical calmodulin type EF-hand calcium-binding site out of two different calcium-binding motifs from two unrelated proteins.« less

  8. Calcium and bones (image)

    MedlinePlus

    Calcium is one of the most important minerals for the growth, maintenance, and reproduction of the human ... body, are continually being re-formed and incorporate calcium into their structure. Calcium is essential for the ...

  9. Antenatal calcium intake in Malaysia.

    PubMed

    Mahdy, Zaleha Abdullah; Basri, Hashimah; Md Isa, Zaleha; Ahmad, Shuhaila; Shamsuddin, Khadijah; Mohd Amin, Rahmah

    2014-04-01

    To determine the adequacy of antenatal calcium intake in Malaysia, and the influencing factors. A cross-sectional study was conducted among postnatal women who delivered in two tertiary hospitals. Data were collected from antenatal cards, hospital documents and diet recall on daily milk and calcium intake during pregnancy. SPSS version 19.0 was used for statistical analyses. A total of 150 women were studied. The total daily calcium intake was 834 ± 43 mg (mean ± standard error of the mean), but the calcium intake distribution curve was skewed to the right with a median intake of 725 mg daily. When calcium intake from milk and calcium supplements was excluded, the daily dietary calcium intake was only 478 ± 25 mg. Even with inclusion of milk and calcium supplements, more than a third (n=55 or 36.7%) of the women consumed less than 600 mg calcium in their daily diet. The adequacy of daily calcium intake was not influenced by maternal age, ethnicity, income or maternal job or educational status as well as parity. The daily dietary calcium intake of the Malaysian antenatal population is far from adequate without the addition of calcium supplements and milk. © 2013 The Authors. Journal of Obstetrics and Gynaecology Research © 2013 Japan Society of Obstetrics and Gynecology.

  10. Ca2+ transients in cardiac myocytes measured with high and low affinity Ca2+ indicators.

    PubMed Central

    Berlin, J R; Konishi, M

    1993-01-01

    Intracellular calcium ion ([Ca2+]i) transients were measured in voltage-clamped rat cardiac myocytes with fura-2 or furaptra to quantitate rapid changes in [Ca2+]i. Patch electrode solutions contained the K+ salt of fura-2 (50 microM) or furaptra (300 microM). With identical experimental conditions, peak amplitude of stimulated [Ca2+]i transients in furaptra-loaded myocytes was 4- to 6-fold greater than that in fura-2-loaded cells. To determine the reason for this discrepancy, intracellular fura-2 Ca2+ buffering, kinetics of Ca2+ binding, and optical properties were examined. Decreasing cellular fura-2 concentration by lowering electrode fura-2 concentration 5-fold, decreased the difference between the amplitudes of [Ca2+]i transients in fura-2 and furaptra-loaded myocytes by twofold. Thus, fura-2 buffers [Ca2+]i under these conditions; however, Ca2+ buffering is not the only factor that explains the different amplitudes of the [Ca2+]i transients measured with these indicators. From the temporal comparison of the [Ca2+]i transients measured with fura-2 and furaptra, the apparent reverse rate constant for Ca2+ binding of fura-2 was at least 65s-1, much faster than previously reported in skeletal muscle fibers. These binding kinetics do not explain the difference in the size of the [Ca2+]i transients reported by fura-2 and furaptra. Parameters for fura-2 calibration, Rmin, Rmax, and beta, were obtained in salt solutions (in vitro) and in myocytes exposed to the Ca2+ ionophore, 4-Br A23187, in EGTA-buffered solutions (in situ). Calibration of fura-2 fluorescence signals with these in situ parameters yielded [Ca2+]i transients whose peak amplitude was 50-100% larger than those calculated with in vitro parameters. Thus, in vitro calibration of fura-2 fluorescence significantly underestimates the amplitude of the [Ca2+]i transient. These data suggest that the difference in amplitude of [Ca2+]i transients in fura-2 and furaptra-loaded myocytes is due, in part, to Ca2

  11. Calcium metabolism in health and disease.

    PubMed

    Peacock, Munro

    2010-01-01

    This brief review focuses on calcium balance and homeostasis and their relationship to dietary calcium intake and calcium supplementation in healthy subjects and patients with chronic kidney disease and mineral bone disorders (CKD-MBD). Calcium balance refers to the state of the calcium body stores, primarily in bone, which are largely a function of dietary intake, intestinal absorption, renal excretion, and bone remodeling. Bone calcium balance can be positive, neutral, or negative, depending on a number of factors, including growth, aging, and acquired or inherited disorders. Calcium homeostasis refers to the hormonal regulation of serum ionized calcium by parathyroid hormone, 1,25-dihydroxyvitamin D, and serum ionized calcium itself, which together regulate calcium transport at the gut, kidney, and bone. Hypercalcemia and hypocalcemia indicate serious disruption of calcium homeostasis but do not reflect calcium balance on their own. Calcium balance studies have determined the dietary and supplemental calcium requirements needed to optimize bone mass in healthy subjects. However, similar studies are needed in CKD-MBD, which disrupts both calcium balance and homeostasis, because these data in healthy subjects may not be generalizable to this patient group. Importantly, increasing evidence suggests that calcium supplementation may enhance soft tissue calcification and cardiovascular disease in CKD-MBD. Further research is needed to elucidate the risks and mechanisms of soft tissue calcification with calcium supplementation in both healthy subjects and CKD-MBD patients.

  12. Development of a rapid biolistic assay to determine changes in relative levels of intracellular calcium in leaves following tetracycline uptake by pinto bean plants.

    PubMed

    Farkas, Michael H; Mojica, Elmer-Rico E; Patel, Minesh; Aga, Diana S; Berry, James O

    2009-08-01

    Tetracycline antibiotics, such as chlortetracycline (CTC) and tetracycline (TC), are introduced into agricultural lands through the application of manure as fertilizer. These compounds are phytotoxic to certain crop plants, including pinto beans (Phaseolus vulgaris), the species used for this investigation. While the mechanism of this toxicity is not yet understood, CTC is known to be a calcium chelator. We describe here a novel method to show that CTC is taken up by pinto bean plants and chelates calcium in leaves. Cameleon fusion proteins can provide qualitative and quantitative imaging of intracellular calcium levels, but current methodology requires stable transformation. Many plant species, including pinto beans, are not yet transformable using standard Agrobacterium-based protocols. To determine the role of calcium chelation in this plant, a rapid, biolistic method was developed to transiently express the cameleon protein. This method can easily be adapted to other plant systems. Our findings provide evidence that chelation of intracellular calcium by CTC is related to phytotoxic effects caused by this antibiotic in pinto beans. Root uptake of CTC and TC by pinto beans and their translocation to leaves were further verified by fluorescence spectroscopy and liquid chromatography/mass spectrometry, confirming results of the biolistic method that showed calcium chelation by tetracyclines in leaves.

  13. Evaluation of the calcium-antagonist, antidiarrhoeic and central nervous system activities of Baccharis serraefolia.

    PubMed

    Tortoriello, J; Aguilar-Santamaría, L

    1996-09-01

    Baccharis serraefolia is a widely used plant to treat diarrhoea in Mexican traditional medicine. Although the methanolic extract of this plant has shown an important dose-dependent spasmolytic activity, its underlying mechanism has not been studied. In the present work, the methanolic extract of B. serraefolia significantly delayed the onset of tonic seizures induced by strychnine and pentylenetetrazol; besides, it diminished the death rate and number of animals that exhibited convulsions. It produced potentiation of the hypnotic effect of pentobarbital. Oral administration produced an inhibition of gastrointestinal transit in mice as effective as that produced by loperamide. As to the effect on smooth muscles, the active extract produced an inhibition of contraction induced electrically, which could not be reversed by naloxone. The calcium concentration-contraction curve showed a rightward displacement when the extract was added to isolated guinea pig ileum depolarized with high K+ and cumulative concentrations of Ca2+. The results suggest that the methanolic extract does not interact with classical opiate receptors and its effects, at least that produced on smooth muscle, may be due to a probable interference with calcium influx and/or calcium release from an intra-cellular store.

  14. The Hepatitis B Virus X Protein Elevates Cytosolic Calcium Signals by Modulating Mitochondrial Calcium Uptake

    PubMed Central

    Yang, Bei

    2012-01-01

    Chronic hepatitis B virus (HBV) infections are associated with the development of hepatocellular carcinoma (HCC). The HBV X protein (HBx) is thought to play an important role in the development of HBV-associated HCC. One fundamental HBx function is elevation of cytosolic calcium signals; this HBx activity has been linked to HBx stimulation of cell proliferation and transcription pathways, as well as HBV replication. Exactly how HBx elevates cytosolic calcium signals is not clear. The studies described here show that HBx stimulates calcium entry into cells, resulting in an increased plateau level of inositol 1,4,5-triphosphate (IP3)-linked calcium signals. This increased calcium plateau can be inhibited by blocking mitochondrial calcium uptake and store-operated calcium entry (SOCE). Blocking SOCE also reduced HBV replication. Finally, these studies also demonstrate that there is increased mitochondrial calcium uptake in HBx-expressing cells. Cumulatively, these studies suggest that HBx can increase mitochondrial calcium uptake and promote increased SOCE to sustain higher cytosolic calcium and stimulate HBV replication. PMID:22031934

  15. GFP Facilitates Native Purification of Recombinant Perlucin Derivatives and Delays the Precipitation of Calcium Carbonate

    PubMed Central

    Weber, Eva; Guth, Christina; Weiss, Ingrid M.

    2012-01-01

    Insolubility is one of the possible functions of proteins involved in biomineralization, which often limits their native purification. This becomes a major problem especially when recombinant expression systems are required to obtain larger amounts. For example, the mollusc shell provides a rich source of unconventional proteins, which can interfere in manifold ways with different mineral phases and interfaces. Therefore, the relevance of such proteins for biotechnological processes is still in its infancy. Here we report a simple and reproducible purification procedure for a GFP-tagged lectin involved in biomineralization, originally isolated from mother-of-pearl in abalone shells. An optimization of E. coli host cell culture conditions was the key to obtain reasonable yields and high degrees of purity by using simple one-step affinity chromatography. We identified a dual functional role for the GFP domain when it became part of a mineralizing system in vitro. First, the GFP domain improved the solubility of an otherwise insoluble protein, in this case recombinant perlucin derivatives. Second, GFP inhibited calcium carbonate precipitation in a concentration dependent manner. This was demonstrated here using a simple bulk assay over a time period of 400 seconds. At concentrations of 2 µg/ml and higher, the inhibitory effect was observed predominantly for HCO3 − as the first ionic interaction partner, but not necessarily for Ca2+ . The interference of GFP-tagged perlucin derivatives with the precipitation of calcium carbonate generated different types of GFP-fluorescent composite calcite crystals. GFP-tagging offers therefore a genetically tunable tool to gently modify mechanical and optical properties of synthetic biocomposite minerals. PMID:23056388

  16. Suppression of the PI3K subunit p85α delays embryoid body development and inhibits cell adhesion.

    PubMed

    Gurney, Susan M R; Forster, Peter; Just, Ursula; Schwanbeck, Ralf

    2011-12-01

    Phosphatidylinositol-3-kinases (PI3Ks) exert a variety of signaling functions in eukaryotes. We suppressed the PI3K regulatory subunit p85α using a small interfering RNA (Pik3r1 siRNA) and examined the effects on embryoid body (EB) development in hanging drop culture. We observed a 150% increase in the volume of the treated EBs within 24 h, compared to the negative controls. Fluorescence Activated Cell Sorting (FACS) assays showed that this increase in volume is not due to increased cellular proliferation. Instead, the increase in volume appears to be due to reduced cellular aggregation and adherence. This is further shown by our observation that 40% of treated EBs form twin instead of single EBs, and that they have a significantly reduced ability to adhere to culture dishes when plated. A time course over the first 96 h reveals that the impaired adherence is transient and explained by an initial 12-hour delay in EB development. Quantitative PCR expression analysis suggests that the adhesion molecule integrin-β1 (ITGB1) is transiently downregulated by the p85α suppression. In conclusion we found that suppressing p85α leads to a delay in forming compact EBs, accompanied by a transient inability of the EBs to undergo normal cell-cell and cell-substrate adhesion. Copyright © 2011 Wiley Periodicals, Inc.

  17. Dietary Calcium Intake, Serum Calcium Level, and their Association with Preeclampsia in Rural North India

    PubMed Central

    Gupta, Anant; Kant, Shashi; Pandav, Chandrakant S.; Gupta, Sanjeev K.; Rai, Sanjay K.; Misra, Puneet

    2016-01-01

    Background: Preeclampsia in pregnancy has been shown to be associated with low serum calcium level. Though the evidence is abundant, it is equivocal. Objectives: The study aimed to estimate the dietary calcium intake and serum calcium status among pregnant women, and to document the association of the dietary calcium intake and serum calcium status with incidence of preeclampsia in the 3rd trimester of pregnancy. Materials and Methods: A community-based cross-sectional study was conducted in the Health and Demographic Surveillance System (HDSS) site, Ballabgarh, Haryana, India. All pregnant women between 28 weeks and 36 weeks of gestation were interviewed. A semi-structured interview schedule and a 24-h dietary recall questionnaire were administered to assess the dietary calcium intake. AutoAnalyser (Biolis 24i) was used for measuring serum calcium. Results: We enrolled 217 pregnant women. The mean [standard deviation (SD)] dietary calcium intake was 858 (377) mg/day. The mean (SD) serum calcium level was 9.6 mg/dL (0.56). Incidence of preeclampsia was 13.4%. Preeclampsia was not associated with hypocalcemia [odds ratio (OR) = 1.2 95% confidence interval (CI); 0.27-3.98]. Conclusion: The majority of pregnant women had inadequate dietary calcium intake. The prevalence of hypocalcemia was low. Low serum calcium level was not associated with preeclampsia. Calcium supplementation may not reduce preeclampsia in this population. PMID:27385877

  18. Neuron class-specific requirements for Fragile X Mental Retardation Protein in critical period development of calcium signaling in learning and memory circuitry.

    PubMed

    Doll, Caleb A; Broadie, Kendal

    2016-05-01

    Neural circuit optimization occurs through sensory activity-dependent mechanisms that refine synaptic connectivity and information processing during early-use developmental critical periods. Fragile X Mental Retardation Protein (FMRP), the gene product lost in Fragile X syndrome (FXS), acts as an activity sensor during critical period development, both as an RNA-binding translation regulator and channel-binding excitability regulator. Here, we employ a Drosophila FXS disease model to assay calcium signaling dynamics with a targeted transgenic GCaMP reporter during critical period development of the mushroom body (MB) learning/memory circuit. We find FMRP regulates depolarization-induced calcium signaling in a neuron-specific manner within this circuit, suppressing activity-dependent calcium transients in excitatory cholinergic MB input projection neurons and enhancing calcium signals in inhibitory GABAergic MB output neurons. Both changes are restricted to the developmental critical period and rectified at maturity. Importantly, conditional genetic (dfmr1) rescue of null mutants during the critical period corrects calcium signaling defects in both neuron classes, indicating a temporally restricted FMRP requirement. Likewise, conditional dfmr1 knockdown (RNAi) during the critical period replicates constitutive null mutant defects in both neuron classes, confirming cell-autonomous requirements for FMRP in developmental regulation of calcium signaling dynamics. Optogenetic stimulation during the critical period enhances depolarization-induced calcium signaling in both neuron classes, but this developmental change is eliminated in dfmr1 null mutants, indicating the activity-dependent regulation requires FMRP. These results show FMRP shapes neuron class-specific calcium signaling in excitatory vs. inhibitory neurons in developing learning/memory circuitry, and that FMRP mediates activity-dependent regulation of calcium signaling specifically during the early

  19. Fruit Calcium: Transport and Physiology

    PubMed Central

    Hocking, Bradleigh; Tyerman, Stephen D.; Burton, Rachel A.; Gilliham, Matthew

    2016-01-01

    Calcium has well-documented roles in plant signaling, water relations and cell wall interactions. Significant research into how calcium impacts these individual processes in various tissues has been carried out; however, the influence of calcium on fruit ripening has not been thoroughly explored. Here, we review the current state of knowledge on how calcium may impact the development, physical traits and disease susceptibility of fruit through facilitating developmental and stress response signaling, stabilizing membranes, influencing water relations and modifying cell wall properties through cross-linking of de-esterified pectins. We explore the involvement of calcium in hormone signaling integral to the physiological mechanisms behind common disorders that have been associated with fruit calcium deficiency (e.g., blossom end rot in tomatoes or bitter pit in apples). This review works toward an improved understanding of how the many roles of calcium interact to influence fruit ripening, and proposes future research directions to fill knowledge gaps. Specifically, we focus mostly on grapes and present a model that integrates existing knowledge around these various functions of calcium in fruit, which provides a basis for understanding the physiological impacts of sub-optimal calcium nutrition in grapes. Calcium accumulation and distribution in fruit is shown to be highly dependent on water delivery and cell wall interactions in the apoplasm. Localized calcium deficiencies observed in particular species or varieties can result from differences in xylem morphology, fruit water relations and pectin composition, and can cause leaky membranes, irregular cell wall softening, impaired hormonal signaling and aberrant fruit development. We propose that the role of apoplasmic calcium-pectin crosslinking, particularly in the xylem, is an understudied area that may have a key influence on fruit water relations. Furthermore, we believe that improved knowledge of the calcium

  20. A Closer look at calcium absorption and the benefits and risks of dietary versus supplemental calcium.

    PubMed

    Booth, Anna; Camacho, Pauline

    2013-11-01

    To perform a thorough search of the literature on calcium research and specifically address the topic of calcium absorption. PubMed and Ovid were the main engines used for primary literature searches; textbooks, review articles, and book chapters are examples of the other sources used for supplemental information. Regarding calcium absorption, it seems apparent that the absorption efficiency of all calcium salts, regardless of solubility, is fairly equivalent and not significantly less than the absorption efficiency of dietary calcium. However, dietary calcium has been shown to have greater impact in bone building than supplemental calcium. This is likely due to improved absorption with meals and the tendency of people to intake smaller amounts more frequently, which is more ideal for the body's method of absorption. In addition, the cardiovascular risks of excessive calcium intake appear to be more closely related to calcium supplements than dietary calcium; this relationship continues to be controversial in the literature. We conclude that further studies are needed for direct comparison of supplemental and dietary calcium to fully establish if one is superior to the other with regard to improving bone density. We also propose further studies on the cardiovascular risk of long-term increased calcium intake and on physician estimates of patients' daily calcium intake to better pinpoint those patients who require calcium supplementation.

  1. Voltage-Gated Calcium Channels

    NASA Astrophysics Data System (ADS)

    Zamponi, Gerald Werner

    Voltage Gated Calcium Channels is the first comprehensive book in the calcium channel field, encompassing over thirty years of progress towards our understanding of calcium channel structure, function, regulation, physiology, pharmacology, and genetics. This book balances contributions from many of the leading authorities in the calcium channel field with fresh perspectives from risings stars in the area, taking into account the most recent literature and concepts. This is the only all-encompassing calcium channel book currently available, and is an essential resource for academic researchers at all levels in the areas neuroscience, biophysics, and cardiovascular sciences, as well as to researchers in the drug discovery area.

  2. Delay Choice vs. Delay Maintenance: Different Measures of Delayed Gratification in Capuchin Monkeys (Cebus apella)

    PubMed Central

    Addessi, Elsa; Paglieri, Fabio; Beran, Michael J.; Evans, Theodore A.; Macchitella, Luigi; De Petrillo, Francesca; Focaroli, Valentina

    2013-01-01

    Delaying gratification involves two components: (i) delay choice (selecting a delayed reward over an immediate one), and (ii) delay maintenance (sustaining the decision to delay gratification even if the immediate reward is available during the delay). In primates, two tasks most commonly have explored these components, the Intertemporal choice task and the Accumulation task. It is unclear whether these tasks provide equivalent measures of delay of gratification. Here, we compared the performance of the same capuchin monkeys, belonging to two study populations, between these tasks. We found only limited evidence of a significant correlation in performance. Consequently, in contrast to what is often assumed, our data provide only partial support to the hypothesis that these tasks provide equivalent measures of delay of gratification. PMID:23544770

  3. Miro1 Regulates Activity-Driven Positioning of Mitochondria within Astrocytic Processes Apposed to Synapses to Regulate Intracellular Calcium Signaling

    PubMed Central

    Stephen, Terri-Leigh; Higgs, Nathalie F.; Sheehan, David F.; Al Awabdh, Sana; López-Doménech, Guillermo; Arancibia-Carcamo, I. Lorena

    2015-01-01

    It is fast emerging that maintaining mitochondrial function is important for regulating astrocyte function, although the specific mechanisms that govern astrocyte mitochondrial trafficking and positioning remain poorly understood. The mitochondrial Rho-GTPase 1 protein (Miro1) regulates mitochondrial trafficking and detachment from the microtubule transport network to control activity-dependent mitochondrial positioning in neurons. However, whether Miro proteins are important for regulating signaling-dependent mitochondrial dynamics in astrocytic processes remains unclear. Using live-cell confocal microscopy of rat organotypic hippocampal slices, we find that enhancing neuronal activity induces transient mitochondrial remodeling in astrocytes, with a concomitant, transient reduction in mitochondrial trafficking, mediated by elevations in intracellular Ca2+. Stimulating neuronal activity also induced mitochondrial confinement within astrocytic processes in close proximity to synapses. Furthermore, we show that the Ca2+-sensing EF-hand domains of Miro1 are important for regulating mitochondrial trafficking in astrocytes and required for activity-driven mitochondrial confinement near synapses. Additionally, activity-dependent mitochondrial positioning by Miro1 reciprocally regulates the levels of intracellular Ca2+ in astrocytic processes. Thus, the regulation of intracellular Ca2+ signaling, dependent on Miro1-mediated mitochondrial positioning, could have important consequences for astrocyte Ca2+ wave propagation, gliotransmission, and ultimately neuronal function. SIGNIFICANCE STATEMENT Mitochondria are key cellular organelles that play important roles in providing cellular energy and buffering intracellular calcium ions. The mechanisms that control mitochondrial distribution within the processes of glial cells called astrocytes and the impact this may have on calcium signaling remains unclear. We show that activation of glutamate receptors or increased neuronal

  4. Calcium and Vitamin D

    MedlinePlus

    ... A calcium-rich diet (including dairy, nuts, leafy greens and fish) helps to build and protect your bones. Calcium is a mineral that is necessary for life. In addition to building bones and keeping them healthy, calcium enables our ...

  5. Store-Operated Calcium Entries Control Neural Stem Cell Self-Renewal in the Adult Brain Subventricular Zone.

    PubMed

    Domenichini, Florence; Terrié, Elodie; Arnault, Patricia; Harnois, Thomas; Magaud, Christophe; Bois, Patrick; Constantin, Bruno; Coronas, Valérie

    2018-05-01

    The subventricular zone (SVZ) is the major stem cell niche in the brain of adult mammals. Within this region, neural stem cells (NSC) proliferate, self-renew and give birth to neurons and glial cells. Previous studies underlined enrichment in calcium signaling-related transcripts in adult NSC. Because of their ability to mobilize sustained calcium influxes in response to a wide range of extracellular factors, store-operated channels (SOC) appear to be, among calcium channels, relevant candidates to induce calcium signaling in NSC whose cellular activities are continuously adapted to physiological signals from the microenvironment. By Reverse Transcription Polymerase Chain Reaction (RT-PCR), Western blotting and immunocytochemistry experiments, we demonstrate that SVZ cells express molecular actors known to build up SOC, namely transient receptor potential canonical 1 (TRPC1) and Orai1, as well as their activator stromal interaction molecule 1 (STIM1). Calcium imaging reveals that SVZ cells display store-operated calcium entries. Pharmacological blockade of SOC with SKF-96365 or YM-58483 (also called BTP2) decreases proliferation, impairs self-renewal by shifting the type of SVZ stem cell division from symmetric proliferative to asymmetric, thereby reducing the stem cell population. Brain section immunostainings show that TRPC1, Orai1, and STIM1 are expressed in vivo, in SOX2-positive SVZ NSC. Injection of SKF-96365 in brain lateral ventricle diminishes SVZ cell proliferation and reduces the ability of SVZ cells to form neurospheres in vitro. The present study combining in vitro and in vivo approaches uncovers a major role for SOC in the control of SVZ NSC population and opens new fields of investigation for stem cell biology in health and disease. Stem Cells 2018;36:761-774. © AlphaMed Press 2018.

  6. Modeling delay in genetic networks: From delay birth-death processes to delay stochastic differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Chinmaya; López, José Manuel; Azencott, Robert

    Delay is an important and ubiquitous aspect of many biochemical processes. For example, delay plays a central role in the dynamics of genetic regulatory networks as it stems from the sequential assembly of first mRNA and then protein. Genetic regulatory networks are therefore frequently modeled as stochastic birth-death processes with delay. Here, we examine the relationship between delay birth-death processes and their appropriate approximating delay chemical Langevin equations. We prove a quantitative bound on the error between the pathwise realizations of these two processes. Our results hold for both fixed delay and distributed delay. Simulations demonstrate that the delay chemicalmore » Langevin approximation is accurate even at moderate system sizes. It captures dynamical features such as the oscillatory behavior in negative feedback circuits, cross-correlations between nodes in a network, and spatial and temporal information in two commonly studied motifs of metastability in biochemical systems. Overall, these results provide a foundation for using delay stochastic differential equations to approximate the dynamics of birth-death processes with delay.« less

  7. The Association Between Calcium, Magnesium, and Ratio of Calcium/Magnesium in Seminal Plasma and Sperm Quality.

    PubMed

    Liang, Hong; Miao, Maohua; Chen, Jianping; Chen, Kanglian; Wu, Bin; Dai, Qi; Wang, Jian; Sun, Fei; Shi, Huijuan; Yuan, Wei

    2016-11-01

    The study aimed to examine the relationships between calcium, magnesium, and calcium/magnesium ratio in semen plasma and sperm quality. It was a cross-sectional study based on a program aiming at promoting the reproductive health in less-developed areas. A total of 515 men aged between 18 and 55 years provided semen specimens at family planning clinics in Sandu County, Guizhou Province, China. Total calcium and magnesium concentrations in semen plasma were measured with flame atomic absorption spectrometry. Sperm quality, including sperm motility and concentration, was evaluated by using a computer-assisted sperm analysis method. The medians of seminal plasma calcium, magnesium, and zinc concentrations were 9.61, 4.41, and 2.23 mmol/l, respectively. Calcium concentration and calcium/magnesium ratio were negatively associated with sperm concentrations (β = -0.47, P = 0.0123 for calcium; β = -0.25, P = 0.0393 for calcium/magnesium ratio) after adjusting for zinc and other covariates. In stratified analyses, the association between calcium and sperm concentrations only persisted among subjects with a calcium/magnesium ratio of ≤2.5 (β = -0.71, P = 0.0268). In the same stratum, magnesium was associated with increased sperm concentration (β = 0.73, P = 0.0386). Among subjects with a calcium/magnesium ratio of >2.5, neither calcium nor magnesium was associated with sperm concentration. In conclusion, total calcium and magnesium concentrations were associated with sperm concentration among subjects with a lower calcium/magnesium ratio. The calcium and magnesium ratio had a modifying effect on the associations of calcium and magnesium with sperm concentration.

  8. A comprehensive review of prehospital and in-hospital delay times in acute stroke care.

    PubMed

    Evenson, K R; Foraker, R E; Morris, D L; Rosamond, W D

    2009-06-01

    The purpose of this study was to systematically review and summarize prehospital and in-hospital stroke evaluation and treatment delay times. We identified 123 unique peer-reviewed studies published from 1981 to 2007 of prehospital and in-hospital delay time for evaluation and treatment of patients with stroke, transient ischemic attack, or stroke-like symptoms. Based on studies of 65 different population groups, the weighted Poisson regression indicated a 6.0% annual decline (P<0.001) in hours/year for prehospital delay, defined from symptom onset to emergency department arrival. For in-hospital delay, the weighted Poisson regression models indicated no meaningful changes in delay time from emergency department arrival to emergency department evaluation (3.1%, P=0.49 based on 12 population groups). There was a 10.2% annual decline in hours/year from emergency department arrival to neurology evaluation or notification (P=0.23 based on 16 population groups) and a 10.7% annual decline in hours/year for delay time from emergency department arrival to initiation of computed tomography (P=0.11 based on 23 population groups). Only one study reported on times from arrival to computed tomography scan interpretation, two studies on arrival to drug administration, and no studies on arrival to transfer to an in-patient setting, precluding generalizations. Prehospital delay continues to contribute the largest proportion of delay time. The next decade provides opportunities to establish more effective community-based interventions worldwide. It will be crucial to have effective stroke surveillance systems in place to better understand and improve both prehospital and in-hospital delays for acute stroke care.

  9. Effects of chlorogenic acid on intracellular calcium regulation in lysophosphatidylcholine-treated endothelial cells.

    PubMed

    Jung, Hye-Jin; Im, Seung-Soon; Song, Dae-Kyu; Bae, Jae-Hoon

    2017-06-01

    Lysophosphatidylcholine (LPC) is a major phospholipid component of oxidized low-density lipoprotein (ox-LDL) and is implicated in its atherogenic activity. This study investigated the effects of LPC on cell viability, intracellular calcium homeostasis, and the protective mechanisms of chlorogenic acid (CGA) in human umbilical vein endothelial cells (HUVECs). LPC increased intracellular calcium ([Ca 2+ ] i ) by releasing Ca 2+ from intracellular stores and via Ca 2+ influx through store-operated channels (SOCs). LPC also increased the generation of reactive oxygen species (ROS) and decreased cell viability. The mRNA expression of Transient receptor potential canonical (TRPC) channel 1 was increased significantly by LPC treatment and suppressed by CGA. CGA inhibited LPC-induced Ca 2+ influx and ROS generation, and restored cell viability. These results suggested that CGA inhibits SOC-mediated Ca 2+ influx and ROS generation by attenuating TRPC1 expression in LPC-treated HUVECs. Therefore, CGA might protect endothelial cells against LPC injury, thereby inhibiting atherosclerosis. [BMB Reports 2017; 50(6): 323-328].

  10. In vivo optoacoustic monitoring of calcium activity in the brain (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Deán-Ben, Xose Luís.; Gottschalk, Sven; Sela, Gali; Lauri, Antonella; Kneipp, Moritz; Ntziachristos, Vasilis; Westmeyer, Gil G.; Shoham, Shy; Razansky, Daniel

    2017-03-01

    Non-invasive observation of spatio-temporal neural activity of large neural populations distributed over the entire brain of complex organisms is a longstanding goal of neuroscience [1,2]. Recently, genetically encoded calcium indicators (GECIs) have revolutionized neuroimaging by enabling mapping the activity of entire neuronal populations in vivo [3]. Visualization of these powerful sensors with fluorescence microscopy has however been limited to superficial regions while deep brain areas have so far remained unreachable [4]. We have developed a volumetric multispectral optoacoustic tomography platform for imaging neural activation deep in scattering brains [5]. The developed methodology can render 100 volumetric frames per second across scalable fields of view ranging between 50-1000 mm3 with respective spatial resolution of 35-150µm. Experiments performed in immobilized and freely swimming larvae and in adult zebrafish brains expressing the genetically-encoded calcium indicator GCaMP5G demonstrated, for the first time, the fundamental ability to directly track neural dynamics using optoacoustics while overcoming the depth barrier of optical imaging in scattering brains [6]. It was further possible to monitor calcium transients in a scattering brain of a living adult transgenic zebrafish expressing GCaMP5G calcium indicator [7]. Fast changes in optoacoustic traces associated to GCaMP5G activity were detectable in the presence of other strongly absorbing endogenous chromophores, such as hemoglobin. The results indicate that the optoacoustic signal traces generally follow the GCaMP5G fluorescence dynamics and further enable overcoming the longstanding optical-diffusion penetration barrier associated to scattering in biological tissues [6]. The new functional optoacoustic neuroimaging method can visualize neural activity at penetration depths and spatio-temporal resolution scales not covered with the existing neuroimaging techniques. Thus, in addition to the well

  11. An expert protocol for immunofluorescent detection of calcium channels in tsA-201 cells.

    PubMed

    Koch, Peter; Herzig, Stefan; Matthes, Jan

    Pore-forming subunits of voltage gated calcium channels (VGCC) are large membrane proteins (260kDa) containing 24 transmembrane domains. Despite transfection with viral promoter driven vectors, biochemical analysis of VGCC is often hampered by rather low expression levels in heterologous systems rendering VGCC challenging targets. Especially in immunofluorescent detection, calcium channels are demanding proteins. We provide an expert step-by-step protocol with adapted conditions for handling procedures (tsA-201 cell culture, transient transfection, incubation time and temperature at 28°C or 37°C and immunostaining) to address the L-type calcium-channel pore Ca v 1.2 in an immunofluorescent approach. We performed immunocytochemical analysis of Ca v 1.2 expression at single-cell level in combination with detection of different markers for cellular organelles. We show confluency levels and shapes of tsA-201 cells at different time points during an experiment. Our experiments reveal sufficient levels of Ca v 1.2 protein and a correct Ca v 1.2 expression pattern in polygonal shaped cells already 12h after transfection. A sequence of elaborated protocol modifications allows subcellular localization analysis of Ca v 1.2 in an immunocytochemical approach. We provide a protocol that may be used to achieve insights into physiological and pathophysiological processes involving voltage gated calcium channels. Our protocol may be used for expression analysis of other challenging proteins and efficient overexpression may be exploited in related biochemical techniques requiring immunolabels. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Lattice model for calcium dynamics

    NASA Astrophysics Data System (ADS)

    Guisoni, Nara; de Oliveira, Mario José

    2005-06-01

    We present a simplified lattice model to study calcium dynamics in the endoplasmic reticulum membrane. Calcium channels and calcium ions are placed in two interpenetrating square lattices which are connected in two ways: (i) via calcium release and (ii) because transitions between channel states are calcium dependent. The opening or closing of a channel is a stochastic process controlled by two functions which depend on the calcium density on the channel neighborhood. The model is studied through mean field calculations and simulations. We show that the critical behavior of the model changes drastically depending on the opening/closing functions. For certain choices of these functions, all channels are closed at very low and high calcium densities and the model presents one absorbing state.

  13. Testing the Delayed Gamma Capability in MCNP6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weldon, Robert A.; Fensin, Michael L.; McKinney, Gregg W.

    systems. We examine five different decay chains (two-stage decay to stable) and show the predictability of the MCNP6 delayed gamma feature. Results do show that while the default delayed gamma calculations available in the MCNP6 1.0 release can give accurate results for some isotopes (e.g., 137Ba), the percent differences between the closed form analytic solutions and the MCNP6 calculations were often >40% ( 28Mg, 28Al, 42K, 47Ca, 47Sc, 60Co). With the MCNP6 1.1 Beta release, the tenth entry on the DBCN card allows improved calculation within <5% as compared to the closed form analytic solutions for immediate parent emissions and transient equilibrium systems. While the tenth entry on the DBCN card for MCNP6 1.1 gives much better results for transient equilibrium systems and parent emissions in general, it does little to improve daughter emissions of secular equilibrium systems. Finally, hypotheses were presented as to why daughter emissions of secular equilibrium systems might be mispredicted in some cases and not in others.« less

  14. Altered calcium handling and increased contraction force in human embryonic stem cell derived cardiomyocytes following short term dexamethasone exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kosmidis, Georgios; Bellin, Milena; Ribeiro, Marcelo C.

    One limitation in using human pluripotent stem cell derived cardiomyocytes (hPSC-CMs) for disease modeling and cardiac safety pharmacology is their immature functional phenotype compared with adult cardiomyocytes. Here, we report that treatment of human embryonic stem cell derived cardiomyocytes (hESC-CMs) with dexamethasone, a synthetic glucocorticoid, activated glucocorticoid signaling which in turn improved their calcium handling properties and contractility. L-type calcium current and action potential properties were not affected by dexamethasone but significantly faster calcium decay, increased forces of contraction and sarcomeric lengths, were observed in hESC-CMs after dexamethasone exposure. Activating the glucocorticoid pathway can thus contribute to mediating hPSC-CMs maturation.more » - Highlights: • Dexamethasone accelerates Ca{sup 2+} transient decay in hESC-CMs. • Dexamethasone enhances SERCA and NCX function in hESC-CMs. • Dexamethasone increases force of contraction and sarcomere length in hESC-CMs. • Dexamethasone does not alter I{sub Ca,L} and action potential characteristics in hESC-CMs.« less

  15. Desalted Duck Egg White Peptides Promote Calcium Uptake and Modulate Bone Formation in the Retinoic Acid-Induced Bone Loss Rat and Caco-2 Cell Model.

    PubMed

    Hou, Tao; Liu, Yanshuang; Kolba, Nikolai; Guo, Danjun; He, Hui

    2017-05-12

    Desalted duck egg white peptides (DPs) have been proven to promote calcium uptake in Caco-2 cells and rats treated with a calcium-deficient diet. The retinoic acid-induced bone loss model was used to evaluate the effect of DPs on calcium absorption and bone formation. Three-month-old Wistar female rats were treated with 0.9% saline, DPs (800 mg/kg), or alendronate (5 mg/kg) for three weeks immediately after retinoic acid treatment (80 mg/kg) once daily for two weeks. The model group was significantly higher in serum bone alkaline phosphatase than the other three groups ( p < 0.05), but lower in calcium absorption rate, serum osteocalcin, bone weight index, bone calcium content, bone mineral density, and bone max load. After treatment with DPs or alendronate, the absorption rate increased and some serum and bone indices recovered. The morphology results indicated bone tissue form were ameliorated and numbers of osteoclasts decreased after supplementation with DPs or alendronate. The in vitro study showed that the transient receptor potential vanilloid 6 (TRPV6) calcium channel was the main transport pathway of both DPs and Val-Ser-Glu-Glu peptitde (VSEE), which was identified from DPs. Our results indicated that DPs could be a promising alternative to current therapeutic agents for bone loss because of the promotion of calcium uptake and regulation of bone formation.

  16. Calcium metabolism in birds.

    PubMed

    de Matos, Ricardo

    2008-01-01

    Calcium is one of the most important plasma constituents in mammals and birds. It provides structural strength and support (bones and eggshell) and plays vital roles in many of the biochemical reactions in the body. The control of calcium metabolism in birds is highly efficient and closely regulated in a number of tissues, primarily parathyroid gland, intestine, kidney, and bone. The hormones with the greatest involvement in calcium regulation in birds are parathyroid hormone, 1,25-dihydroxyvitamin D(3) (calcitriol), and estrogen, with calcitonin playing a minor and uncertain role. The special characteristics of calcium metabolism in birds, mainly associated with egg production, are discussed, along with common clinical disorders secondary to derangements in calcium homeostasis.

  17. TRPV6 calcium channel translocates to the plasma membrane via Orai1-mediated mechanism and controls cancer cell survival

    PubMed Central

    Raphaël, Maylis; Lehen’kyi, V’yacheslav; Vandenberghe, Matthieu; Beck, Benjamin; Khalimonchyk, Sergiy; Vanden Abeele, Fabien; Farsetti, Leonardo; Germain, Emmanuelle; Bokhobza, Alexandre; Mihalache, Adriana; Gosset, Pierre; Romanin, Christoph; Clézardin, Philippe; Skryma, Roman; Prevarskaya, Natalia

    2014-01-01

    Transient receptor potential vanilloid subfamily member 6 (TRPV6) is a highly selective calcium channel that has been considered as a part of store-operated calcium entry (SOCE). Despite its first discovery in the early 2000s, the role of this channel in prostate cancer (PCa) remained, until now, obscure. Here we show that TRPV6 mediates calcium entry, which is highly increased in PCa due to the remodeling mechanism involving the translocation of the TRPV6 channel to the plasma membrane via the Orai1/TRPC1-mediated Ca2+/Annexin I/S100A11 pathway, partially contributing to SOCE. The TRPV6 calcium channel is expressed de novo by the PCa cell to increase its survival by enhancing proliferation and conferring apoptosis resistance. Xenografts in nude mice and bone metastasis models confirmed the remarkable aggressiveness of TRPV6-overexpressing tumors. Immunohistochemical analysis of these demonstrated the increased expression of clinical markers such as Ki-67, prostate specific antigen, synaptophysin, CD31, and CD56, which are strongly associated with a poor prognosis. Thus, the TRPV6 channel acquires its oncogenic potential in PCa due to the remodeling mechanism via the Orai1-mediated Ca2+/Annexin I/S100A11 pathway. PMID:25172921

  18. Lead in calcium supplements.

    PubMed Central

    Scelfo, G M; Flegal, A R

    2000-01-01

    Intercalibrated measurements of lead in calcium supplements indicate the importance of rigorous analytical techniques to accurately quantify contaminant exposures in complex matrices. Without such techniques, measurements of lead concentrations in calcium supplements may be either erroneously low, by as much as 50%, or below the detection limit needed for new public health criteria. In this study, we determined the lead content of 136 brands of supplements that were purchased in 1996. The calcium in the products was derived from natural sources (bonemeal, dolomite, or oyster shell) or was synthesized and/or refined (chelated and nonchelated calcium). The dried products were acid digested and analyzed for lead by high resolution-inductively coupled plasma-mass spectrometry. The method's limit of quantitation averaged 0.06 microg/g, with a coefficient of variation of 1.7% and a 90-100% lead recovery of a bonemeal standard reference material. Two-thirds of those calcium supplements failed to meet the 1999 California criteria for acceptable lead levels (1.5 microg/daily dose of calcium) in consumer products. The nonchelated synthesized and/or refined calcium products, specifically antacids and infant formulas, had the lowest lead concentrations, ranging from nondetectable to 2.9 microg Pb/g calcium, and had the largest proportion of brands meeting the new criteria (85% of the antacids and 100% of the infant formulas). Images Figure 1 Figure 2 PMID:10753088

  19. Transient peripartum osteoporosis of the femoral head in first and third pregnancy.

    PubMed

    Truszczyńska, Aleksandra; Walczak, Piotr; Rapała, Kazimierz

    2012-01-01

    The aim of this article was to present transient peripartum femoral head osteoporosis. This very rare condition occurred twice in our patient-a woman in her 30s. The cases described in the literature were mostly unilateral, with bilateral hip involvement noted much less frequently. In our patient, transient osteoporosis occurred in the third trimester of her first pregnancy in the right hip, her second pregnancy was uncomplicated, and in the third trimester of the patient's third pregnancy, osteoporotic changes were noted in the left hip joint. The patient breastfed her first and third babies only 3 wk each. She breastfed her second baby for 4 mo. The diagnostic workup was based on the clinical examination and radiographic/magnetic resonance imaging, which revealed bone marrow edema, and the dual-energy X-ray absorptiometry scans. The treatment consisted in core decompression of the femoral head (foragé), unloading of the hip using crutches as well as administration of calcitonin and calcium supplements. Complete recovery of the femoral heads was achieved. The follow-up time was 7 yr. Copyright © 2012 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  20. Neuroplasticity of A-type potassium channel complexes induced by chronic alcohol exposure enhances dendritic calcium transients in hippocampus.

    PubMed

    Mulholland, Patrick J; Spencer, Kathryn B; Hu, Wei; Kroener, Sven; Chandler, L Judson

    2015-06-01

    Chronic alcohol-induced cognitive impairments and maladaptive plasticity of glutamatergic synapses are well-documented. However, it is unknown if prolonged alcohol exposure affects dendritic signaling that may underlie hippocampal dysfunction in alcoholics. Back-propagation of action potentials (bAPs) into apical dendrites of hippocampal neurons provides distance-dependent signals that modulate dendritic and synaptic plasticity. The amplitude of bAPs decreases with distance from the soma that is thought to reflect an increase in the density of Kv4.2 channels toward distal dendrites. The aim of this study was to quantify changes in hippocampal Kv4.2 channel function and expression using electrophysiology, Ca(2+) imaging, and western blot analyses in a well-characterized in vitro model of chronic alcohol exposure. Chronic alcohol exposure significantly decreased expression of Kv4.2 channels and KChIP3 in hippocampus. This reduction was associated with an attenuation of macroscopic A-type K(+) currents in CA1 neurons. Chronic alcohol exposure increased bAP-evoked Ca(2+) transients in the distal apical dendrites of CA1 pyramidal neurons. The enhanced bAP-evoked Ca(2+) transients induced by chronic alcohol exposure were not related to synaptic targeting of N-methyl-D-aspartate (NMDA) receptors or morphological adaptations in apical dendritic arborization. These data suggest that chronic alcohol-induced decreases in Kv4.2 channel function possibly mediated by a downregulation of KChIP3 drive the elevated bAP-associated Ca(2+) transients in distal apical dendrites. Alcohol-induced enhancement of bAPs may affect metaplasticity and signal integration in apical dendrites of hippocampal neurons leading to alterations in hippocampal function.

  1. Adipose-specific ablation of Nrf2 transiently delayed high-fat diet-induced obesity by altering glucose, lipid and energy metabolism of male mice.

    PubMed

    Zhang, Le; Dasuri, Kalavathi; Fernandez-Kim, Sun-Ok; Bruce-Keller, Annadora J; Keller, Jeffrey N

    2016-01-01

    Nuclear factor E2-related factor 2 (NRF2) is a well-known master controller of the cellular adaptive antioxidant and detoxification response. Recent studies demonstrated altered glucose, lipid and energy metabolism in mice with a global Nrf2 knockout. In the present study, we aim to determine the effects of an adipose-specific ablation of Nrf2 (ASAN) on diet-induced obesity (DIO) in male mice. The 6-week-old adipose-specific Nrf2 knockout (NK) and its Nrf2 control (NC) mice were fed with either control diet (CD) or high-fat diet (HFD) for 14 weeks. NK mice exhibited transiently delayed body weight (BW) growth from week 5 to week 11 of HFD feeding, higher daily physical activity levels and preferential use of fat over carbohydrates as a source of energy at week 8 of the CD-feeding period. After 14 weeks of feeding, NK mice showed comparable results with NC mice with respect to the overall BW and body fat content, but exhibited reduced blood glucose, reduced number but increased size of adipocytes, accompanied with elevated expression of many genes and proteins in the visceral fat related to glucose, lipid and energy metabolism (e.g. Fgf21 , Pgc1a ). These results indicated that NRF2 is an important mediator for glucose, lipid and energy metabolism in adipose tissue, and ASAN could have beneficial effect for prevention of DIO during the early development of mice.

  2. Free-calcium distribution and calcium pulses in rat peripheral macrophages

    NASA Astrophysics Data System (ADS)

    Yu, Yanhua; Xing, Da; Tang, Yonghong; Jin, Ying

    2000-10-01

    With Laser Confocal Scanning Microscope (LCSM) system, three aspects of characteristics of free cytoplasmic calcium in rat peripheral macrophages are studied. One is the Ca2+ concentration in different area in the same cell. Second is the Ca2+ concentration in the same area in different dividing stage. Third is the feature of calcium pulses evoked by Kcl or pH changing. The results show that even in one cell, the evolution of the Ca2+ concentration is not the same in a different area. In the same area, the nucleolus Ca2+ concentration in division breaking stage is much higher than that in division stage. From the experiment phenomena, we conclude that Kcl itself can not evoke calcium pulses in the unexcitable macrophage, but the change of pH can trig calcium pulses in the same cells.

  3. Picosecond Transient Photoconductivity in Functionalized Pentacene Molecular Crystals Probed by Terahertz Pulse Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hegmann, F. A.; Tykwinski, R. R.; Lui, K. P.; Bullock, J. E.; Anthony, J. E.

    2002-11-01

    We have measured transient photoconductivity in functionalized pentacene molecular crystals using ultrafast optical pump-terahertz probe techniques. The single crystal samples were excited using 800nm, 100fs pulses, and the change in transmission of time-delayed, subpicosecond terahertz pulses was used to probe the photoconducting state over a temperature range from 10 to 300K. A subpicosecond rise in photoconductivity is observed, suggesting that mobile carriers are a primary photoexcitation. At times longer than 4ps, a power-law decay is observed consistent with dispersive transport.

  4. Calcium Balance in Chronic Kidney Disease.

    PubMed

    Hill Gallant, Kathleen M; Spiegel, David M

    2017-06-01

    The kidneys play a critical role in the balance between the internal milieu and external environment. Kidney failure is known to disrupt a number of homeostatic mechanisms that control serum calcium and normal bone metabolism. However, our understanding of calcium balance throughout the stages of chronic kidney disease is limited and the concept of balance itself, especially with a cation as complex as calcium, is often misunderstood. Both negative and positive calcium balance have important implications in patients with chronic kidney disease, where negative balance may increase risk of osteoporosis and fracture and positive balance may increase risk of vascular calcification and cardiovascular events. Here, we examine the state of current knowledge about calcium balance in adults throughout the stages of chronic kidney disease and discuss recommendations for clinical strategies to maintain balance as well as future research needs in this area. Recent calcium balance studies in adult patients with chronic kidney disease show that neutral calcium balance is achieved with calcium intake near the recommended daily allowance. Increases in calcium through diet or supplements cause high positive calcium balance, which may put patients at risk for vascular calcification. However, heterogeneity in calcium balance exists among these patients. Given the available calcium balance data in this population, it appears clinically prudent to aim for recommended calcium intakes around 1000 mg/day to achieve neutral calcium balance and avoid adverse effects of either negative or positive calcium balance. Assessment of patients' dietary calcium intake could further equip clinicians to make individualized recommendations for meeting recommended intakes.

  5. Haploinsufficiency of the 22q11.2 microdeletion gene Mrpl40 disrupts short-term synaptic plasticity and working memory through dysregulation of mitochondrial calcium.

    PubMed

    Devaraju, P; Yu, J; Eddins, D; Mellado-Lagarde, M M; Earls, L R; Westmoreland, J J; Quarato, G; Green, D R; Zakharenko, S S

    2017-09-01

    Hemizygous deletion of a 1.5- to 3-megabase region on chromosome 22 causes 22q11.2 deletion syndrome (22q11DS), which constitutes one of the strongest genetic risks for schizophrenia. Mouse models of 22q11DS have abnormal short-term synaptic plasticity that contributes to working-memory deficiencies similar to those in schizophrenia. We screened mutant mice carrying hemizygous deletions of 22q11DS genes and identified haploinsufficiency of Mrpl40 (mitochondrial large ribosomal subunit protein 40) as a contributor to abnormal short-term potentiation (STP), a major form of short-term synaptic plasticity. Two-photon imaging of the genetically encoded fluorescent calcium indicator GCaMP6, expressed in presynaptic cytosol or mitochondria, showed that Mrpl40 haploinsufficiency deregulates STP via impaired calcium extrusion from the mitochondrial matrix through the mitochondrial permeability transition pore. This led to abnormally high cytosolic calcium transients in presynaptic terminals and deficient working memory but did not affect long-term spatial memory. Thus, we propose that mitochondrial calcium deregulation is a novel pathogenic mechanism of cognitive deficiencies in schizophrenia.

  6. Lack of voltage-dependent calcium channel opening during the calcium influx induced by progesterone in human sperm. Effect of calcium channel deactivation and inactivation.

    PubMed

    Guzmán-Grenfell, Alberto Martín; González-Martínez, Marco T

    2004-01-01

    Progesterone induces calcium influx and acrosomal exocytosis in human sperm. Pharmacologic evidence suggests that voltage-dependent calcium channels (VDCCs) are involved. In this study, membrane potential (Vm) and intracellular calcium concentration ([Ca(2+)](i)) were monitored simultaneously to assess the effect of VDCC gating on the calcium influx triggered by progesterone. Holding the Vm to values that maintained VDCCs in a deactivated (-71 mV) closed state inhibited the calcium influx induced by progesterone by approximately 40%. At this Vm, the acrosomal reaction induced by progesterone, but not by A23187, was inhibited. However, when the Vm was held at -15 mV (which maintains VDCCs in an inactivated closed state), the progesterone-induced calcium influx was stimulated. Furthermore, the progesterone and voltage-dependent calcium influxes were additive. These findings indicate that progesterone does not produce VDCC gating in human sperm.

  7. Comparison of the Absorption of Calcium Carbonate and Calcium Citrate after Roux-en-Y Gastric Bypass

    PubMed Central

    Tondapu, P.; Provost, D.; Adams-Huet, B.; Sims, T.; Chang, C.; Sakhaee, K.

    2015-01-01

    Introduction Roux-en-Y gastric bypass (RYGB) restricts food intake. Consequently, patients consume less calcium. In addition, food no longer passes through the duodenum, the main site of calcium absorption. Therefore, calcium absorption is significantly impaired. The goal of this study is to compare two common calcium supplements in gastric bypass patients. Method Nineteen patients were enrolled in a randomized, double-blinded, crossover study comparing the absorption of calcium from calcium carbonate and calcium citrate salts. Serum and urine calcium levels were assessed for peak values (Cmax) and cumulative calcium increment (area under the curve [AUC]). Serum PTH was assessed for minimum values (PTHmin) and cumulative PTH decrement (AUC). Statistical analysis was performed using a repeated analysis of variance model. Results Eighteen subjects completed the study. Calcium citrate resulted in a significantly higher serum Cmax (9.4+0.4 mg/dl vs. 9.2+0.3 mg/dl, p=0.02) and serum AUC (55+2 mg/dl vs. 54+2 mg/dl, p=0.02). Calcium citrate resulted in a significantly lower PTHmin (24+11 pg/ml vs. 30+13 pg/ml, p=0.01) and a higher AUC (−32+51 pg/ml vs. −3+56 pg/ml, p=0.04). There was a non-significant trend for higher urinary AUC in the calcium citrate group (76.13+36.39 mg/6 h vs. 66.04+40.82, p=0.17). Conclusion Calcium citrate has superior bioavailability than calcium carbonate in RYGB patients. PMID:19437082

  8. Calcium-Induced Calcium Release during Action Potential Firing in Developing Inner Hair Cells

    PubMed Central

    Iosub, Radu; Avitabile, Daniele; Grant, Lisa; Tsaneva-Atanasova, Krasimira; Kennedy, Helen J.

    2015-01-01

    In the mature auditory system, inner hair cells (IHCs) convert sound-induced vibrations into electrical signals that are relayed to the central nervous system via auditory afferents. Before the cochlea can respond to normal sound levels, developing IHCs fire calcium-based action potentials that disappear close to the onset of hearing. Action potential firing triggers transmitter release from the immature IHC that in turn generates experience-independent firing in auditory neurons. These early signaling events are thought to be essential for the organization and development of the auditory system and hair cells. A critical component of the action potential is the rise in intracellular calcium that activates both small conductance potassium channels essential during membrane repolarization, and triggers transmitter release from the cell. Whether this calcium signal is generated by calcium influx or requires calcium-induced calcium release (CICR) is not yet known. IHCs can generate CICR, but to date its physiological role has remained unclear. Here, we used high and low concentrations of ryanodine to block or enhance CICR to determine whether calcium release from intracellular stores affected action potential waveform, interspike interval, or changes in membrane capacitance during development of mouse IHCs. Blocking CICR resulted in mixed action potential waveforms with both brief and prolonged oscillations in membrane potential and intracellular calcium. This mixed behavior is captured well by our mathematical model of IHC electrical activity. We perform two-parameter bifurcation analysis of the model that predicts the dependence of IHCs firing patterns on the level of activation of two parameters, the SK2 channels activation and CICR rate. Our data show that CICR forms an important component of the calcium signal that shapes action potentials and regulates firing patterns, but is not involved directly in triggering exocytosis. These data provide important insights

  9. The Effect of Prepubertal Calcium Carbonate Supplementation on Skeletal Development in Gambian Boys—A 12-Year Follow-Up Study

    PubMed Central

    Cole, T. J.; Laskey, M. A.; Ceesay, M.; Mendy, M. B.; Sawo, Y.; Prentice, A.

    2014-01-01

    Context: Calcium intake during growth is essential for future bone health but varies widely between individuals and populations. The impact on bone of increasing calcium intake is unknown in a population where low calcium intake, stunting, and delayed puberty are common. Objective: To determine the effect of prepubertal calcium supplementation on mean age at peak velocity for bone growth and mineral accrual. Design and Setting: Prospective follow-up of boys in rural Gambia, West Africa, who had participated in a double-blind, randomized, placebo-controlled trial of calcium supplementation. Participants: Eighty boys, initially aged 8.0–11.9 years, were followed up for 12 years. Interventions: Subjects received 1 year of calcium carbonate supplementation (1000 mg daily, 5 d/wk). Main Outcome Measures: Dual-energy x-ray absorptiometry measurements were carried out for whole body (WB), lumbar spine, and total hip bone mineral content, bone area (BA), and WB lean mass. Super imposition by translation and rotation models was made to assess bone growth. Results: Age at peak velocity was consistently earlier in the calcium group compared to the placebo group, for WB bone mineral content (mean, −6.2 [SE, 3.1]; P = .05), WB BA (mean, −7.0 [SE, 3.2] mo; P = .03), lumbar spine and total hip BA. By young adulthood, supplementation did not change the amount of bone accrued (mineral or size) or the rate of bone growth. Conclusions: Twelve months of prepubertal calcium carbonate supplementation in boys with a low calcium diet advanced the adolescent growth spurt but had no lasting effect on bone mineral or bone size. There is a need for caution when applying international recommendations to different populations. PMID:24762110

  10. Dietary Approaches that Delay Age-Related Diseases

    PubMed Central

    Everitt, Arthur V; Hilmer, Sarah N; Brand-Miller, Jennie C; Jamieson, Hamish A; Truswell, A Stewart; Sharma, Anita P; Mason, Rebecca S; Morris, Brian J; Le Couteur, David G

    2006-01-01

    Reducing food intake in lower animals such as the rat decreases body weight, retards many aging processes, delays the onset of most diseases of old age, and prolongs life. A number of clinical trials of food restriction in healthy adult human subjects running over 2–15 years show significant reductions in body weight, blood cholesterol, blood glucose, and blood pressure, which are risk factors for the development of cardiovascular disease and diabetes. Lifestyle interventions that lower energy balance by reducing body weight such as physical exercise can also delay the development of diabetes and cardiovascular disease. In general, clinical trials are suggesting that diets high in calories or fat along with overweight are associated with increased risk for cardiovascular disease, type 2 diabetes, some cancers, and dementia. There is a growing literature indicating that specific dietary constituents are able to influence the development of age-related diseases, including certain fats (trans fatty acids, saturated, and polyunsaturated fats) and cholesterol for cardiovascular disease, glycemic index and fiber for diabetes, fruits and vegetables for cardiovascular disease, and calcium and vitamin D for osteoporosis and bone fracture. In addition, there are dietary compounds from different functional foods, herbs, and neutraceuticals such as ginseng, nuts, grains, and polyphenols that may affect the development of age-related diseases. Long-term prospective clinical trials will be needed to confirm these diet—disease relationships. On the basis of current research, the best diet to delay age-related disease onset is one low in calories and saturated fat and high in wholegrain cereals, legumes, fruits and vegetables, and which maintains a lean body weight. Such a diet should become a key component of healthy aging, delaying age-related diseases and perhaps intervening in the aging process itself. Furthermore, there are studies suggesting that nutrition in childhood

  11. Calcium Efflux Systems in Stress Signaling and Adaptation in Plants

    PubMed Central

    Bose, Jayakumar; Pottosin, Igor I.; Shabala, Stanislav S.; Palmgren, Michael G.; Shabala, Sergey

    2011-01-01

    Transient cytosolic calcium ([Ca2+]cyt) elevation is an ubiquitous denominator of the signaling network when plants are exposed to literally every known abiotic and biotic stress. These stress-induced [Ca2+]cyt elevations vary in magnitude, frequency, and shape, depending on the severity of the stress as well the type of stress experienced. This creates a unique stress-specific calcium “signature” that is then decoded by signal transduction networks. While most published papers have been focused predominantly on the role of Ca2+ influx mechanisms to shaping [Ca2+]cyt signatures, restoration of the basal [Ca2+]cyt levels is impossible without both cytosolic Ca2+ buffering and efficient Ca2+ efflux mechanisms removing excess Ca2+ from cytosol, to reload Ca2+ stores and to terminate Ca2+ signaling. This is the topic of the current review. The molecular identity of two major types of Ca2+ efflux systems, Ca2+-ATPase pumps and Ca2+/H+ exchangers, is described, and their regulatory modes are analyzed in detail. The spatial and temporal organization of calcium signaling networks is described, and the importance of existence of intracellular calcium microdomains is discussed. Experimental evidence for the role of Ca2+ efflux systems in plant responses to a range of abiotic and biotic factors is summarized. Contribution of Ca2+-ATPase pumps and Ca2+/H+ exchangers in shaping [Ca2+]cyt signatures is then modeled by using a four-component model (plasma- and endo-membrane-based Ca2+-permeable channels and efflux systems) taking into account the cytosolic Ca2+ buffering. It is concluded that physiologically relevant variations in the activity of Ca2+-ATPase pumps and Ca2+/H+ exchangers are sufficient to fully describe all the reported experimental evidence and determine the shape of [Ca2+]cyt signatures in response to environmental stimuli, emphasizing the crucial role these active efflux systems play in plant adaptive responses to environment. PMID:22639615

  12. Identification of a Novel EF-Loop in the N-terminus of TRPM2 Channel Involved in Calcium Sensitivity

    PubMed Central

    Luo, Yuhuan; Yu, Xiafei; Ma, Cheng; Luo, Jianhong; Yang, Wei

    2018-01-01

    As an oxidative stress sensor, transient receptor potential melastatin 2 (TRPM2) channel is involved in many physiological and pathological processes including warmth sensing, ischemia injury, inflammatory diseases and diabetes. Intracellular calcium is critical for TRPM2 channel activation and the IQ-like motif in the N-terminus has been shown to be important by mediating calmodulin binding. Sequence analysis predicted two potential EF-loops in the N-terminus of TRPM2. Site-directed mutagenesis combining with functional assay showed that substitution with alanine of several residues, most of which are conserved in the typical EF-loop, including D267, D278, D288, and E298 dramatically reduced TRPM2 channel currents. By further changing the charges or side chain length of these conserved residues, our results indicate that the negative charge of D267 and the side chain length of D278 are critical for calcium-induced TRPM2 channel activation. G272I mutation also dramatically reduced the channel currents, suggesting that this site is critical for calcium-induced TRPM2 channel activation. Furthermore, D267A mutant dramatically reduced the currents induced by calcium alone compared with that by ADPR, indicating that D267 residue in D267–D278 motif is the most important site for calcium sensitivity of TRPM2. In addition, inside-out recordings showed that mutations at D267, G272, D278, and E298 had no effect on single-channel conductance. Taken together, our data indicate that D267–D278 motif in the N-terminus as a novel EF-loop is critical for calcium-induced TRPM2 channel activation.

  13. Programmable Differential Delay Circuit With Fine Delay Adjustment

    DOEpatents

    DeRyckere, John F.; Jenkins, Philip Nord; Cornett, Frank Nolan

    2002-07-09

    Circuitry that provides additional delay to early arriving signals such that all data signals arrive at a receiving latch with same path delay. The delay of a forwarded clock reference is also controlled such that the capturing clock edge will be optimally positioned near quadrature (depending on latch setup/hold requirements). The circuitry continuously adapts to data and clock path delay changes and digital filtering of phase measurements reduce errors brought on by jittering data edges. The circuitry utilizes only the minimum amount of delay necessary to achieve objective thereby limiting any unintended jitter. Particularly, this programmable differential delay circuit with fine delay adjustment is designed to allow the skew between ASICS to be minimized. This includes skew between data bits, between data bits and clocks as well as minimizing the overall skew in a channel between ASICS.

  14. VEGF attenuated increase of outward delayed-rectifier potassium currents in hippocampal neurons induced by focal ischemia via PI3-K pathway.

    PubMed

    Wu, K W; Yang, P; Li, S S; Liu, C W; Sun, F Y

    2015-07-09

    We recently indicated that the vascular endothelial growth factor (VEGF) protects neurons against hypoxic death via enhancement of tyrosine phosphorylation of Kv1.2, an isoform of the delayed-rectifier potassium channels through activation of the phosphatidylinositol 3-kinase (PI3-K) signaling pathway. The present study investigated whether VEGF could attenuate ischemia-induced increase of the potassium currents in the hippocampal pyramidal neurons of rats after ischemic injury. Adult male Sprague-Dawley rats were subjected to transient middle cerebral artery occlusion (MCAO) to induce brain ischemia. The whole-cell patch-clamp technique was used to record the potassium currents of hippocampal neurons in brain slices from the ischemically injured brains of the rats 24h after MCAO. We detected that transient MCAO caused a significant increase of voltage-gated potassium currents (Kv) and outward delayed-rectifier potassium currents (IK), but not outward transient potassium currents (IA), in the ipsilateral hippocampus compared with the sham. Moreover, we found that VEGF could acutely, reversibly and voltage-dependently inhibit the ischemia-induced IK increase. This inhibitory effect of VEGF could be completely abolished by wortmannin, an inhibitor of PI3-K. Our data indicate that VEGF attenuates the ischemia-induced increase of IK via activation of the PI3-K signaling pathway. Published by Elsevier Ltd.

  15. Fenoprofen calcium overdose

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/002649.htm Fenoprofen calcium overdose To use the sharing features on this page, please enable JavaScript. Fenoprofen calcium is a type of medicine called a nonsteroidal ...

  16. Effect of oral calcium and calcium + fluoride treatments on mouse bone properties during suspension

    NASA Technical Reports Server (NTRS)

    Simske, S. J.; Luttges, M. W.; Allen, K. A.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    The bone effects of oral dosages of calcium chloride with or without supplementary sodium fluoride were assessed in antiorthostatically suspended mice. Two calcium dosages were used to replace half (3.1 mM) or all(6.3 mM) of the dietary calcium lost due to reduced food intake by the suspended mice. Two groups of 6.3 mM CaCl2-treated mice were additionally treated with 0.25 or 2.5 mM NaF. The results indicate that supplementation of the mouse drinking water with calcium salts prevents bone changes induced by short-term suspension, while calcium salts in combination with fluoride are less effective as fluoride dosage increases. However, the calcium supplements change the relationship between the femur mechanical properties and the mineral composition of the bone. Because of this, it appears that oral calcium supplements are effective through a mechanism other than simple dietary supplementation and may indicate a dependence of bone consistency on systemic and local fluid conditions.

  17. Optical and near-infrared study of the Ca-rich transient iPTF15eqv in the early phase

    NASA Astrophysics Data System (ADS)

    Kawahara, Naoki; Yamanaka, Masayuki; Kawabata, Koji; Nakaoka, Tatsuya; Kawabata, Miho; Maeda, Keiichi; Takaki, Katsutoshi; Akitaya, Hiroshi; Itoh, Ryosuke; Moritani, Yuki; Uemura, Makoto; Yoshida, Michitoshi

    2018-01-01

    Supernovae (SNe) exhibiting strong calcium features in their spectra are called Ca-rich transients. Frequently their early-phase spectra also exhibit helium absorption lines. They are mostly discovered in elliptical galaxies or at a remote location far from the host galaxy center. Well-observed samples are still too limited to clarify the explosion and progenitor properties. We present optical and near-infrared observations of a Ca-rich transient iPTF15eqv in the spiral galaxy NGC 3430. The data are obtained using 1.5-m Kanata telescope since Sep 28, 2015. While the discovery was at a post-maximum-phase, we infer the maximum date to be 30 days before the discovery date, by comparing its light curve and spectroscopic evolution to those of well-observed samples. The spectra exhibit absorption lines of He I and prominent emission lines of Ca II IR and [Ca II] from +31 to 69 d after the maximum date. We find that iPTF15eqv is more luminous than other Ca-rich transients by 1.5 to 2 mag on +31 d, and we estimate that the peak absolute magnitude in the R band is approximately -18 to -16.5 mag. The decline rate of the light curve between 30 and 60 d is similar to those of SNe Ib/c. The line velocity of the helium is similar to those of Ca-rich transients but also to SNe Ib. The ejecta properties inferred from our observations indicate that iPTF15eqv has a larger nickel mass than typical Ca-rich transients. While these properties show similarity to SNe Ib, we show that most of these properties are indeed shared by other Ca-rich transients. The properties of iPTF15eqv may thus still be regarded to be within the diversities among the Ca-rich transients.

  18. Calcium mobilizations in response to changes in the gravity vector in Arabidopsis seedlings

    PubMed Central

    Tatsumi, Hitoshi; Toyota, Masatsugu; Furuichi, Takuya; Sokabe, Masahiro

    2014-01-01

    Gravity influences the growth direction of higher plants. Changes in the gravity vector (gravistimulation) immediately promote the increase in the cytoplasmic free calcium ion concentration ([Ca2+]c) in Arabidopsis (Arabidopsis thaliana) seedlings. When the seedlings are gravistimulated by reorientation at 180°, a transient two peaked (biphasic) [Ca2+]c-increase arises in their hypocotyl and petioles. Parabolic flights (PFs) can generate a variety of gravity-stimuli, and enables us to measure gravity-induced [Ca2+]c-increases without specimen rotation, which demonstrate that Arabidopsis seedlings possess a rapid gravity-sensing mechanism linearly transducing a wide range of gravitational changes into Ca2+ signals on a sub-second timescale. Hypergravity by centrifugation (20 g or 300 g) also induces similar transient [Ca2+]c-increases. In this review, we propose models for possible cellular processes of the garavi-stimulus-induced [Ca2+]c-increase, and evaluate those by examining whether the model fits well with the kinetic parameters derived from the [Ca2+]c-increases obtained by applying gravistimulus with different amplitudes and time sequences. PMID:25763612

  19. Calcium isotope constraints on the end-Permian mass extinction

    PubMed Central

    Payne, Jonathan L.; Turchyn, Alexandra V.; Paytan, Adina; DePaolo, Donald J.; Lehrmann, Daniel J.; Yu, Meiyi; Wei, Jiayong

    2010-01-01

    The end-Permian mass extinction horizon is marked by an abrupt shift in style of carbonate sedimentation and a negative excursion in the carbon isotope (δ13C) composition of carbonate minerals. Several extinction scenarios consistent with these observations have been put forward. Secular variation in the calcium isotope (δ44/40Ca) composition of marine sediments provides a tool for distinguishing among these possibilities and thereby constraining the causes of mass extinction. Here we report δ44/40Ca across the Permian-Triassic boundary from marine limestone in south China. The δ44/40Ca exhibits a transient negative excursion of ∼0.3‰ over a few hundred thousand years or less, which we interpret to reflect a change in the global δ44/40Ca composition of seawater. CO2-driven ocean acidification best explains the coincidence of the δ44/40Ca excursion with negative excursions in the δ13C of carbonates and organic matter and the preferential extinction of heavily calcified marine animals. Calcium isotope constraints on carbon cycle calculations suggest that the average δ13C of CO2 released was heavier than -28‰ and more likely near -15‰; these values indicate a source containing substantial amounts of mantle- or carbonate-derived carbon. Collectively, the results point toward Siberian Trap volcanism as the trigger of mass extinction. PMID:20421502

  20. Imaging extracellular calcium in endolymph

    NASA Astrophysics Data System (ADS)

    Strimbu, C. Elliott; Fridberger, Anders

    2018-05-01

    Hair cell mechanoelectrical transduction and adaptation are believed to be regulated by extracellular calcium. However, the majority of experiments addressing calcium's role have been performed on reduced preparations in conditions that do not mimic those present in vivo. We used confocal microscopy and a low affinity (kd ˜11 µM) ratiometric fluorescent indicator to measure the extracellular calcium concentration in scala media in an in vitro preparation of the guinea pig cochlea. Microelectrodes were used to measure the cochlear microphonic potential during acoustic stimulation. The mean calcium concentration is significantly higher in the tectorial membrane (TM) than the surrounding endolymph, suggesting that the membrane acts as a calcium sink. We also observe calcium hot spots along the underside of the TM, near the outer hair cell bundles and near Hensens stripe close to the inner hair cell bundle. This suggests that the local calcium concentration near the hair bundles exceeds 100 µM, significantly higher than the bulk endolymph. These results were corroborated with fluorescence correlation spectroscopy using a second calcium sensitive dye, Oregon Green 488-BAPTA. Following a brief exposure to loud sound, TM calcium drops dramatically and shows recovery on a similar timescale as the microphonic potential. Our results suggest that the extracellular calcium concentration near the hair bundles is much higher than previously believed and may also serve as a partial control parameter for temporary threshold shifts.

  1. Elevated polyamines in urothelial cells from OAB subjects mediate oxotremorine-evoked rapid intracellular calcium rise and delayed acetylcholine release.

    PubMed

    Li, Mingkai; Sun, Yan; Tomiya, Noboru; Hsu, Yuchao; Chai, Toby C

    2013-08-15

    Increased polyamine signaling in bladder urothelial cells (BUC) may play a role in the pathophysiology of overactive bladder (OAB). We quantitated intracellular polyamine levels in cultured BUC from OAB and asymptomatic (NB) subjects. We assessed whether polyamines modulated rapid intracellular calcium ([Ca(2+)]i) changes and delayed acetylcholine (ACh) release evoked by oxotremorine (OXO, a muscarinic agonist). BUC were cultured from cystoscopic biopsies. High-performance liquid chromatography (HPLC) quantitated intracellular putrescine, spermidine, and spermine levels. Five-millimeter difluoromethylornithine (DFMO), and one-millimeter methylglyoxalbisguanylhydrazone (MGBG) treatments were used to deplete intracellular polyamines. Ten micrometers of OXO were used to increase [Ca(2+)]i levels (measured by fura 2 microfluorimetry) and trigger extracellular ACh release (measured by ELISA). Polyamine levels were elevated in OAB compared with NB BUC (0.5 ± 0.15 vs. 0.16 ± 0.03 nmol/mg for putrescine, 2.4 ± 0.21 vs. 1.01 ± 0.13 nmol/mg for spermidine, and 1.90 ± 0.27 vs. 0.86 ± 0.26 nmol/mg for spermine; P < 0.05 for all comparisons). OXO evoked greater [Ca(2+)]i rise in OAB (205.10 ± 18.82% increase over baseline) compared with in NB BUC (119.54 ± 13.01%; P < 0.05). After polyamine depletion, OXO evoked [Ca(2+)]i rise decreased in OAB and NB BUC to 43.40 ± 6.45 and 38.82 ± 3.5%, respectively. OXO tended to increase ACh release by OAB vs. NB BUC (9.02 ± 0.1 vs. 7.04 ± 0.09 μM, respectively; P < 0.05). Polyamine depletion reduced ACh release by both OAB and NB BUC. In conclusion, polyamine levels were elevated twofold in OAB BUC. OXO evoked greater increase in [Ca(2+)]i and ACh release in OAB BUC, although these two events may be unrelated. Depletion of polyamines caused OAB BUC to behave similarly to NB BUC.

  2. Elevated polyamines in urothelial cells from OAB subjects mediate oxotremorine-evoked rapid intracellular calcium rise and delayed acetylcholine release

    PubMed Central

    Li, Mingkai; Sun, Yan; Tomiya, Noboru; Hsu, Yuchao

    2013-01-01

    Increased polyamine signaling in bladder urothelial cells (BUC) may play a role in the pathophysiology of overactive bladder (OAB). We quantitated intracellular polyamine levels in cultured BUC from OAB and asymptomatic (NB) subjects. We assessed whether polyamines modulated rapid intracellular calcium ([Ca2+]i) changes and delayed acetylcholine (ACh) release evoked by oxotremorine (OXO, a muscarinic agonist). BUC were cultured from cystoscopic biopsies. High-performance liquid chromatography (HPLC) quantitated intracellular putrescine, spermidine, and spermine levels. Five-millimeter difluoromethylornithine (DFMO), and one-millimeter methylglyoxalbisguanylhydrazone (MGBG) treatments were used to deplete intracellular polyamines. Ten micrometers of OXO were used to increase [Ca2+]i levels (measured by fura 2 microfluorimetry) and trigger extracellular ACh release (measured by ELISA). Polyamine levels were elevated in OAB compared with NB BUC (0.5 ± 0.15 vs. 0.16 ± 0.03 nmol/mg for putrescine, 2.4 ± 0.21 vs. 1.01 ± 0.13 nmol/mg for spermidine, and 1.90 ± 0.27 vs. 0.86 ± 0.26 nmol/mg for spermine; P < 0.05 for all comparisons). OXO evoked greater [Ca2+]i rise in OAB (205.10 ± 18.82% increase over baseline) compared with in NB BUC (119.54 ± 13.01%; P < 0.05). After polyamine depletion, OXO evoked [Ca2+]i rise decreased in OAB and NB BUC to 43.40 ± 6.45 and 38.82 ± 3.5%, respectively. OXO tended to increase ACh release by OAB vs. NB BUC (9.02 ± 0.1 vs. 7.04 ± 0.09 μM, respectively; P < 0.05). Polyamine depletion reduced ACh release by both OAB and NB BUC. In conclusion, polyamine levels were elevated twofold in OAB BUC. OXO evoked greater increase in [Ca2+]i and ACh release in OAB BUC, although these two events may be unrelated. Depletion of polyamines caused OAB BUC to behave similarly to NB BUC. PMID:23698115

  3. Construction and use of a zebrafish heart voltage and calcium optical mapping system, with integrated electrocardiogram and programmable electrical stimulation

    PubMed Central

    Lin, Eric; Craig, Calvin; Lamothe, Marcel; Sarunic, Marinko V.; Beg, Mirza Faisal

    2015-01-01

    Zebrafish are increasingly being used as a model of vertebrate cardiology due to mammalian-like cardiac properties in many respects. The size and fecundity of zebrafish make them suitable for large-scale genetic and pharmacological screening. In larger mammalian hearts, optical mapping is often used to investigate the interplay between voltage and calcium dynamics and to investigate their respective roles in arrhythmogenesis. This report outlines the construction of an optical mapping system for use with zebrafish hearts, using the voltage-sensitive dye RH 237 and the calcium indicator dye Rhod-2 using two industrial-level CCD cameras. With the use of economical cameras and a common 532-nm diode laser for excitation, the rate dependence of voltage and calcium dynamics within the atrial and ventricular compartments can be simultaneously determined. At 140 beats/min, the atrial action potential duration was 36 ms and the transient duration was 53 ms. With the use of a programmable electrical stimulator, a shallow rate dependence of 3 and 4 ms per 100 beats/min was observed, respectively. In the ventricle the action potential duration was 109 ms and the transient duration was 124 ms, with a steeper rate dependence of 12 and 16 ms per 100 beats/min. Synchronous electrocardiograms and optical mapping recordings were recorded, in which the P-wave aligns with the atrial voltage peak and R-wave aligns with the ventricular peak. A simple optical pathway and imaging chamber are detailed along with schematics for the in-house construction of the electrocardiogram amplifier and electrical stimulator. Laboratory procedures necessary for zebrafish heart isolation, cannulation, and loading are also presented. PMID:25740339

  4. Stimulus-dependent regulation of nuclear Ca2+ signaling in cardiomyocytes: a role of neuronal calcium sensor-1.

    PubMed

    Nakao, Shu; Wakabayashi, Shigeo; Nakamura, Tomoe Y

    2015-01-01

    In cardiomyocytes, intracellular calcium (Ca2+) transients are elicited by electrical and receptor stimulations, leading to muscle contraction and gene expression, respectively. Although such elevations of Ca2+levels ([Ca2+]) also occur in the nucleus, the precise mechanism of nuclear [Ca2+] regulation during different kinds of stimuli, and its relationship with cytoplasmic [Ca2+] regulation are not fully understood. To address these issues, we used a new region-specific fluorescent protein-based Ca2+ indicator, GECO, together with the conventional probe Fluo-4 AM. We confirmed that nuclear Ca2+ transients were elicited by both electrical and receptor stimulations in neonatal mouse ventricular myocytes. Kinetic analysis revealed that electrical stimulation-elicited nuclear Ca2+ transients are slower than cytoplasmic Ca2+ transients, and chelating cytoplasmic Ca2+ abolished nuclear Ca2+ transients, suggesting that nuclear Ca2+ are mainly derived from the cytoplasm during electrical stimulation. On the other hand, receptor stimulation such as with insulin-like growth factor-1 (IGF-1) preferentially increased nuclear [Ca2+] compared to cytoplasmic [Ca2+]. Experiments using inhibitors revealed that electrical and receptor stimulation-elicited Ca2+ transients were mainly mediated by ryanodine receptors and inositol 1,4,5-trisphosphate receptors (IP3Rs), respectively, suggesting different mechanisms for the two signals. Furthermore, IGF-1-elicited nuclear Ca2+ transient amplitude was significantly lower in myocytes lacking neuronal Ca2+ sensor-1 (NCS-1), a Ca2+ binding protein implicated in IP3R-mediated pathway in the heart. Moreover, IGF-1 strengthened the interaction between NCS-1 and IP3R. These results suggest a novel mechanism for receptor stimulation-induced nuclear [Ca2+] regulation mediated by IP3R and NCS-1 that may further fine-tune cardiac Ca2+ signal regulation.

  5. Structures of apicomplexan calcium-dependent protein kinases reveal mechanism of activation by calcium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wernimont, Amy K; Artz, Jennifer D.; Jr, Patrick Finerty

    2010-09-21

    Calcium-dependent protein kinases (CDPKs) have pivotal roles in the calcium-signaling pathway in plants, ciliates and apicomplexan parasites and comprise a calmodulin-dependent kinase (CaMK)-like kinase domain regulated by a calcium-binding domain in the C terminus. To understand this intramolecular mechanism of activation, we solved the structures of the autoinhibited (apo) and activated (calcium-bound) conformations of CDPKs from the apicomplexan parasites Toxoplasma gondii and Cryptosporidium parvum. In the apo form, the C-terminal CDPK activation domain (CAD) resembles a calmodulin protein with an unexpected long helix in the N terminus that inhibits the kinase domain in the same manner as CaMKII. Calcium bindingmore » triggers the reorganization of the CAD into a highly intricate fold, leading to its relocation around the base of the kinase domain to a site remote from the substrate binding site. This large conformational change constitutes a distinct mechanism in calcium signal-transduction pathways.« less

  6. Sustained Perceptual Deficits from Transient Sensory Deprivation

    PubMed Central

    Sanes, Dan H.

    2015-01-01

    displays an increased vulnerability to the sensory environment. Here, we identify a precise developmental window during which mild hearing loss affects the maturation of an auditory perceptual cue that is known to support animal communication, including human speech. Furthermore, animals reared with transient hearing loss display deficits in perceptual learning. Our results suggest that speech and language delays associated with transient or permanent childhood hearing loss may be accounted for, in part, by deficits in central auditory processing mechanisms. PMID:26224865

  7. Calcium in diet

    MedlinePlus

    ... best source. Milk and dairy products such as yogurt, cheeses, and buttermilk contain a form of calcium ... the amount of calcium in a dairy product. Yogurt, most cheeses, and buttermilk are excellent sources of ...

  8. Calcium isotope fractionation between soft and mineralized tissues as a monitor of calcium use in vertebrates.

    PubMed

    Skulan, J; DePaolo, D J

    1999-11-23

    Calcium from bone and shell is isotopically lighter than calcium of soft tissue from the same organism and isotopically lighter than source (dietary) calcium. When measured as the (44)Ca/(40)Ca isotopic ratio, the total range of variation observed is 5.5 per thousand, and as much as 4 per thousand variation is found in a single organism. The observed intraorganismal calcium isotopic variations and the isotopic differences between tissues and diet indicate that isotopic fractionation occurs mainly as a result of mineralization. Soft tissue calcium becomes heavier or lighter than source calcium during periods when there is net gain or loss of mineral mass, respectively. These results suggest that variations of natural calcium isotope ratios in tissues may be useful for assessing the calcium and mineral balance of organisms without introducing isotopic tracers.

  9. Calcium isotope fractionation between soft and mineralized tissues as a monitor of calcium use in vertebrates

    PubMed Central

    Skulan, Joseph; DePaolo, Donald J.

    1999-01-01

    Calcium from bone and shell is isotopically lighter than calcium of soft tissue from the same organism and isotopically lighter than source (dietary) calcium. When measured as the 44Ca/40Ca isotopic ratio, the total range of variation observed is 5.5‰, and as much as 4‰ variation is found in a single organism. The observed intraorganismal calcium isotopic variations and the isotopic differences between tissues and diet indicate that isotopic fractionation occurs mainly as a result of mineralization. Soft tissue calcium becomes heavier or lighter than source calcium during periods when there is net gain or loss of mineral mass, respectively. These results suggest that variations of natural calcium isotope ratios in tissues may be useful for assessing the calcium and mineral balance of organisms without introducing isotopic tracers. PMID:10570137

  10. Calcium Kinetics During Space Flight

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; Wastney, Meryl E.; OBrien, Kimberly O.; Lane, Helen W.

    1999-01-01

    Bone loss is one of the most detrimental effects of space flight, threatening to limit the duration of human space missions. The ability to understand and counteract this loss will be critical for crew health and safety during and after extended-duration missions. The hypotheses to be tested in this project are that space flight alters calcium homeostasis and bone mineral metabolism, and that calcium homeostasis and bone mineral metabolism will return to baseline within days to weeks of return to Earth. These hypotheses will be evidenced by elevated rates of bone mineral resorption and decreased bone mineral deposition, decreased absorption of dietary calcium, altered calcitropic endocrine profiles, elevated excretion of calcium in urine and feces, and elevated excretion of markers of bone resorption. The second hypothesis will be evidenced by return of indices of calcium homeostasis and bone metabolism to preflight levels within days to weeks of return to Earth. Studies will be conducted on International Space Station astronauts before, during, and after extended-duration flights. Measurements of calcium kinetics, bone mass, and endocrine/biochemical markers of bone and calcium homeostasis will be conducted. Kinetic studies utilizing dual isotope tracer kinetic studies and mathematical modeling techniques will allow for determination of bone calcium deposition, bone calcium resorption, dietary calcium absorption and calcium excretion (both urinary and endogenous fecal excretion). These studies will build upon preliminary work conducted on the Russian Mir space station. The results from this project will be critical for clarifying how microgravity affects bone and calcium homeostasis, and will provide an important control point for assessment of countermeasure efficacy. These results are expected to aid in developing countermeasures for bone loss, both for space crews and for individuals on Earth who have metabolic bone diseases.

  11. Calcium distribution in Amoeba proteus

    PubMed Central

    1979-01-01

    A preliminary investigation of the distribution of cellular calcium in Amoeba proteus was undertaken. Total cellular calcium under control conditions was found to be 4.59 mmol/kg of cells. When the external Ca++ concentration is increased from the control level of 0.03 to 20 mM, a net Ca++ influx results with a new steady-state cellular calcium level being achieved in integral of 3 h. At steady state the amount of calcium per unit weight of cells is higher than the amount of calcium per unit weight of external solution when the external concentration of Ca++ is below 10 mM. At external Ca++ concentrations above this level, total cellular calcium approaches the medium level of Ca++. Steady- state calcium exchange in Amoeba proteus was determined with 45Ca. There is an immediate and rapid exchange of integral of 0.84 mmol/kg of cells or 18% of the total cellular calcium with the labelled Ca++. Following this initial exchange, there was very little if any further exchange observed. Most of this exchanged calcium could be eliminated from the cell with 1 mM La+++, suggesting that the exchanged calcium is associated with the surface of the cell. Increase in either the external Ca++ concentration of pH raise the amount of exchangeable calcium associated with the cell. Calcium may be associated with the cell surface as a co-ion in the diffuse double layer or bound to fixed negative sites on the surface of the cell. If Ca++-binding sites do exist on the cell surface, there may be more than one type and they may have different dissociation constants. The cytoplasmic Ca++ ion activity is probably maintained at very low levels. PMID:512628

  12. ATP release due to Thy-1–integrin binding induces P2X7-mediated calcium entry required for focal adhesion formation

    PubMed Central

    Henríquez, Mauricio; Herrera-Molina, Rodrigo; Valdivia, Alejandra; Alvarez, Alvaro; Kong, Milene; Muñoz, Nicolás; Eisner, Verónica; Jaimovich, Enrique; Schneider, Pascal; Quest, Andrew F. G.; Leyton, Lisette

    2011-01-01

    Thy-1, an abundant mammalian glycoprotein, interacts with αvβ3 integrin and syndecan-4 in astrocytes and thus triggers signaling events that involve RhoA and its effector p160ROCK, thereby increasing astrocyte adhesion to the extracellular matrix. The signaling cascade includes calcium-dependent activation of protein kinase Cα upstream of Rho; however, what causes the intracellular calcium transients required to promote adhesion remains unclear. Purinergic P2X7 receptors are important for astrocyte function and form large non-selective cation pores upon binding to their ligand, ATP. Thus, we evaluated whether the intracellular calcium required for Thy-1-induced cell adhesion stems from influx mediated by ATP-activated P2X7 receptors. Results show that adhesion induced by the fusion protein Thy-1-Fc was preceded by both ATP release and sustained intracellular calcium elevation. Elimination of extracellular ATP with Apyrase, chelation of extracellular calcium with EGTA, or inhibition of P2X7 with oxidized ATP, all individually blocked intracellular calcium increase and Thy-1-stimulated adhesion. Moreover, Thy-1 mutated in the integrin-binding site did not trigger ATP release, and silencing of P2X7 with specific siRNA blocked Thy-1-induced adhesion. This study is the first to demonstrate a functional link between αvβ3 integrin and P2X7 receptors, and to reveal an important, hitherto unanticipated, role for P2X7 in calcium-dependent signaling required for Thy-1-stimulated astrocyte adhesion. PMID:21502139

  13. Differential calcium sensitivity in NaV 1.5 mixed syndrome mutants.

    PubMed

    Abdelsayed, Mena; Baruteau, Alban-Elouen; Gibbs, Karen; Sanatani, Shubhayan; Krahn, Andrew D; Probst, Vincent; Ruben, Peter C

    2017-09-15

    SCN5a mutations may express gain-of-function (Long QT Syndrome-3), loss-of-function (Brugada Syndrome 1) or both (mixed syndromes), depending on the mutation and environmental triggers. One such trigger may be an increase in cytosolic calcium, accompanying exercise. Many mixed syndromes mutants, including ∆KPQ, E1784K, 1795insD and Q1909R, are found in calcium-sensitive regions. Elevated cytosolic calcium attenuates gain-of-function properties in ∆KPQ, 1795insD and Q1909R, but not in E1784K. By contrast, elevated cytosolic calcium further exacerbates gain-of-function in E1784K by destabilizing slow inactivation. Action potential modelling, using a modified O'Hara Rudy model, suggests that elevated heart rate rescues action potential duration in ∆KPQ, 1795insD and Q1909R, but not in E1784K. Action potential simulations suggest that E1784K carriers have an increased intracellular sodium-to-calcium ratio under bradycardia and tachycardia conditions. Elevated cytosolic calcium, which is common during high heart rates, ameliorates or exacerbates the mixed syndrome phenotype depending on the genetic signature. Inherited arrhythmias may arise from mutations in the gene for SCN5a, which encodes the cardiac voltage-gated sodium channel, Na V 1.5. Mutants in Na V 1.5 result in Brugada Syndrome (BrS1), Long-QT Syndrome (LQT3) or mixed syndromes (an overlap of BrS1/LQT3). Exercise is a potential arrhythmogenic trigger in mixed syndromes. We aimed to determine the effects of elevated cytosolic calcium, which is common during exercise, in mixed syndrome Na V 1.5 mutants. We used whole-cell patch clamp to assess the biophysical properties of Na V 1.5 wild-type (WT), ∆KPQ, E1784K, 1795insD and Q1909R mutants in human embryonic kidney 293 cells transiently transfected with the Na V 1.5 α subunit (WT or mutants), β1 subunit and enhanced green fluorescent protein. Voltage-dependence and kinetics were measured at cytosolic calcium levels of approximately 0, 500 and 2500

  14. SECONDARY HYPERPARATHYROIDISM AFTER BARIATRIC SURGERY: TREATMENT IS WITH CALCIUM CARBONATE OR CALCIUM CITRATE?

    PubMed Central

    BARETTA, Giorgio Alfredo Pedroso; CAMBI, Maria Paula Carlini; RODRIGUES, Arieli Luz; MENDES, Silvana Aparecida

    2015-01-01

    Background : Bariatric surgery, especially Roux-en-Y gastric bypass, can cause serious nutritional complications arising from poor absorption of essential nutrients. Secondary hyperparathyroidism is one such complications that leads to increased parathyroid hormone levels due to a decrease in calcium and vitamin D, which may compromise bone health. Aim : To compare calcium carbonate and calcium citrate in the treatment of secondary hyperparathyroidism. Method : Patients were selected on the basis of their abnormal biochemical test and treatment was randomly done with citrate or calcium carbonate. Results : After 60 days of supplementation, biochemical tests were repeated, showing improvement in both groups. Conclusion : Supplementation with calcium (citrate or carbonate) and vitamin D is recommended after surgery for prevention of secondary hyperparathyroidism. PMID:26537273

  15. Calcium homeostasis in intraerythrocytic malaria parasites.

    PubMed

    Garcia, C R; Dluzewski, A R; Catalani, L H; Burting, R; Hoyland, J; Mason, W T

    1996-12-01

    The fluorescent indicator, fura-2, AM, was used to measure free calcium concentrations in the intraerythrocytic malaria parasites of Plasmodium chabaudi and Plasmodium falciparum. In both species the free cytosolic calcium concentration was maintained at low levels (between 40 and 100 nM throughout the maturation process. Digital image analysis of the indicator fluorescence was performed on parasites and evaluated with the aid of a calibration of the calcium response, based on permeabilized parasites, exposed to calcium buffers. This again revealed that free calcium concentrations in the intact parasite are maintained at a predetermined level, regardless of the free calcium in the surrounding milieu. Both species of parasites are thus capable of regulating their internal free calcium levels with high precision, presumably by means of calcium pump ATPases. A small but significant elevation of the cytosolic free calcium concentration by the tumor promoter, thapsigargin, may be taken to reflect the presence of calcium stores in the endoplasmic reticulum in P. falciparum.

  16. Novel activating mutation of human calcium-sensing receptor in a family with autosomal dominant hypocalcaemia.

    PubMed

    Baran, Natalia; ter Braak, Michael; Saffrich, Rainer; Woelfle, Joachim; Schmitz, Udo

    2015-05-15

    Autosomal dominant hypocalcaemia (ADH) is caused by activating mutations in the calcium sensing receptor gene (CaR) and characterised by mostly asymptomatic mild to moderate hypocalcaemia with low, inappropriately serum concentration of PTH. The purpose of the present study was to biochemically and functionally characterise a novel mutation of CaR. A female proband presenting with hypocalcaemia was diagnosed to have "idiopathic hypoparathyroidism" at the age of 10 with a history of muscle pain and cramps. Further examinations demonstrated hypocalcaemia in nine additional family members, affecting three generations. P136L CaR mutation was predicted to cause gain of function of CaR. Affected family members showed relevant hypocalcaemia (mean ± SD; 1.9 ± 0.1 mmol/l). Patient history included mild seizures and recurrent nephrolithiasis. Genetic analysis confirmed that hypocalcaemia cosegregated with a heterozygous mutation at codon 136 (CCC → CTC/Pro → Leu) in exon 3 of CaR confirming the diagnosis of ADH. For in vitro studies P136L mutant CaR was generated by site-directed mutagenesis and examined in transiently transfected HEK293 cells. Extracellular calcium stimulation of transiently transfected HEK293 cells showed significantly increased intracellular Ca(2+) mobilisation and MAPK activity for mutant P136L CaR compared to wild type CaR. The present study gives insight about a novel activating mutation of CaR and confirms that the novel P136L-CaR mutation is responsible for ADH in this family. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Monocytes/Macrophages Control Resolution of Transient Inflammatory Pain

    PubMed Central

    Willemen, Hanneke L. D. M.; Eijkelkamp, Niels; Carbajal, Anibal Garza; Wang, Huijing; Mack, Matthias; Zijlstra, Jitske; Heijnen, Cobi J.; Kavelaars, Annemieke

    2014-01-01

    Insights into mechanisms governing resolution of inflammatory pain are of great importance for many chronic pain–associated diseases. Here we investigate the role of macrophages/monocytes and the anti-inflammatory cytokine interleukin-10 (IL-10) in the resolution of transient inflammatory pain. Depletion of mice from peripheral monocytes/macrophages delayed resolution of intraplantar IL-1β- and carrageenan-induced inflammatory hyperalgesia from 1 to 3 days to >1 week. Intrathecal administration of a neutralizing IL-10 antibody also markedly delayed resolution of IL-1β- and carrageenan-induced inflammatory hyperalgesia. Recently, we showed that IL-1β- and carrageenan-induced hyperalgesia is significantly prolonged in LysM-GRK2+/− mice, which have reduced levels of G-protein-coupled receptor kinase 2 (GRK2) in LysM+ myeloid cells. Here we show that adoptive transfer of wild-type, but not of GRK2+/−, bone marrow-derived monocytes normalizes the resolution of IL-1β-induced hyperalgesia in LysM-GRK2+/− mice. Adoptive transfer of IL-10−/− bone marrow-derived monocytes failed to normalize the duration of IL-1β-induced hyperalgesia in LysM-GRK2+/− mice. Mechanistically, we show that GRK2+/− macrophages produce less IL-10 in vitro. In addition, intrathecal IL-10 administration attenuated IL-1β-induced hyperalgesia in LysM-GRK2+/− mice, whereas it had no effect in wild-type mice. Our data uncover a key role for monocytes/macrophages in promoting resolution of inflammatory hyperalgesia via a mechanism dependent on IL-10 signaling in dorsal root ganglia. Perspective We show that IL-10-producing monocytes/macrophages promote resolution of transient inflammatory hyperalgesia. Additionally, we show that reduced monocyte/macrophage GRK2 impairs resolution of hyperalgesia and reduces IL-10 production. We propose that low GRK2 expression and/or impaired IL-10 production by monocytes/macrophages represent peripheral biomarkers for the risk of developing

  18. Short-Term Facilitation at a Detonator Synapse Requires the Distinct Contribution of Multiple Types of Voltage-Gated Calcium Channels.

    PubMed

    Chamberland, Simon; Evstratova, Alesya; Tóth, Katalin

    2017-05-10

    Neuronal calcium elevations are shaped by several key parameters, including the properties, density, and the spatial location of voltage-gated calcium channels (VGCCs). These features allow presynaptic terminals to translate complex firing frequencies and tune the amount of neurotransmitter released. Although synchronous neurotransmitter release relies on both P/Q- and N-type VGCCs at hippocampal mossy fiber-CA3 synapses, the specific contribution of VGCCs to calcium dynamics, neurotransmitter release, and short-term facilitation remains unknown. Here, we used random-access two-photon calcium imaging together with electrophysiology in acute mouse hippocampal slices to dissect the roles of P/Q- and N-type VGCCs. Our results show that N-type VGCCs control glutamate release at a limited number of release sites through highly localized Ca 2+ elevations and support short-term facilitation by enhancing multivesicular release. In contrast, Ca 2+ entry via P/Q-type VGCCs promotes the recruitment of additional release sites through spatially homogeneous Ca 2+ elevations. Altogether, our results highlight the specialized contribution of P/Q- and N-types VGCCs to neurotransmitter release. SIGNIFICANCE STATEMENT In presynaptic terminals, neurotransmitter release is dynamically regulated by the transient opening of different types of voltage-gated calcium channels. Hippocampal giant mossy fiber terminals display extensive short-term facilitation during repetitive activity, with a large several fold postsynaptic response increase. Though, how giant mossy fiber terminals leverage distinct types of voltage-gated calcium channels to mediate short-term facilitation remains unexplored. Here, we find that P/Q- and N-type VGCCs generate different spatial patterns of calcium elevations in giant mossy fiber terminals and support short-term facilitation through specific participation in two mechanisms. Whereas N-type VGCCs contribute only to the synchronization of multivesicular release

  19. 21 CFR 184.1212 - Calcium pantothenate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium pantothenate. 184.1212 Section 184.1212... Listing of Specific Substances Affirmed as GRAS § 184.1212 Calcium pantothenate. (a) Calcium pantothenate... and the DL-racemic mixture of calcium pantothenate are used in food. Commercial calcium pantothenate...

  20. Dietary Calcium Intake and Calcium Supplementation in Hungarian Patients with Osteoporosis

    PubMed Central

    Szamosujvári, Pál; Dombai, Péter; Csóré, Katalin; Mikófalvi, Kinga; Steindl, Tímea; Streicher, Ildikó; Tarsoly, Júlia; Zajzon, Gergely; Somogyi, Péter; Szamosújvári, Pál; Lakatos, Péter

    2013-01-01

    Purpose. Adequate calcium intake is the basis of osteoporosis therapy—when this proves insufficient, even specific antiosteoporotic agents cannot exert their actions properly. Methods. Our representative survey analyzed the dietary intake and supplementation of calcium in 8033 Hungarian female and male (mean age: 68 years) (68.01 (CI95: 67.81–68.21)) patients with osteoporosis. Results. Mean intake from dietary sources was 665 ± 7.9 mg (68.01 (CI95: 67.81–68.21)) daily. A significant positive relationship could be detected between total dietary calcium intake and lumbar spine BMD (P = 0.045), whereas such correlation could not be demonstrated with femoral T-score. Milk consumption positively correlated with femur (P = 0.041), but not with lumbar BMD. The ingestion of one liter of milk daily increased the T-score by 0.133. Average intake from supplementation was 558 ± 6.2 mg (68.01 (CI95: 67.81–68.21)) daily. The cumulative dose of calcium—from both dietary intake and supplementation—was significantly associated with lumbar (r = 0.024, P = 0.049), but not with femur BMD (r = 0.021, P = 0.107). The currently recommended 1000–1500 mg total daily calcium intake was achieved in 34.5% of patients only. It was lower than recommended in 47.8% of the cases and substantially higher in 17.7% of subjects. Conclusions. We conclude that calcium intake in Hungarian osteoporotic patients is much lower than the current recommendation, while routinely applied calcium supplementation will result in inappropriately high calcium intake in numerous patients. PMID:23737777