Science.gov

Sample records for calcium transients delayed

  1. Transient Oxygen/Glucose Deprivation Causes a Delayed Loss of Mitochondria and Increases Spontaneous Calcium Signaling in Astrocytic Processes

    PubMed Central

    O'Donnell, John C.; Jackson, Joshua G.

    2016-01-01

    Recently, mitochondria have been localized to astrocytic processes where they shape Ca2+ signaling; this relationship has not been examined in models of ischemia/reperfusion. We biolistically transfected astrocytes in rat hippocampal slice cultures to facilitate fluorescent confocal microscopy, and subjected these slices to transient oxygen/glucose deprivation (OGD) that causes delayed excitotoxic death of CA1 pyramidal neurons. This insult caused a delayed loss of mitochondria from astrocytic processes and increased colocalization of mitochondria with the autophagosome marker LC3B. The losses of neurons in area CA1 and mitochondria in astrocytic processes were blocked by ionotropic glutamate receptor (iGluR) antagonists, tetrodotoxin, ziconotide (Ca2+ channel blocker), two inhibitors of reversed Na+/Ca2+ exchange (KB-R7943, YM-244769), or two inhibitors of calcineurin (cyclosporin-A, FK506). The effects of OGD were mimicked by NMDA. The glutamate uptake inhibitor (3S)-3-[[3-[[4-(trifluoromethyl)benzoyl]amino]phenyl]methoxy]-l-aspartate increased neuronal loss after OGD or NMDA, and blocked the loss of astrocytic mitochondria. Exogenous glutamate in the presence of iGluR antagonists caused a loss of mitochondria without a decrease in neurons in area CA1. Using the genetic Ca2+ indicator Lck-GCaMP-6S, we observed two types of Ca2+ signals: (1) in the cytoplasm surrounding mitochondria (mitochondrially centered) and (2) traversing the space between mitochondria (extramitochondrial). The spatial spread, kinetics, and frequency of these events were different. The amplitude of both types was doubled and the spread of both types changed by ∼2-fold 24 h after OGD. Together, these data suggest that pathologic activation of glutamate transport and increased astrocytic Ca2+ through reversed Na+/Ca2+ exchange triggers mitochondrial loss and dramatic increases in Ca2+ signaling in astrocytic processes. SIGNIFICANCE STATEMENT Astrocytes, the most abundant cell type in the

  2. Transient Oxygen/Glucose Deprivation Causes a Delayed Loss of Mitochondria and Increases Spontaneous Calcium Signaling in Astrocytic Processes.

    PubMed

    O'Donnell, John C; Jackson, Joshua G; Robinson, Michael B

    2016-07-06

    Recently, mitochondria have been localized to astrocytic processes where they shape Ca(2+) signaling; this relationship has not been examined in models of ischemia/reperfusion. We biolistically transfected astrocytes in rat hippocampal slice cultures to facilitate fluorescent confocal microscopy, and subjected these slices to transient oxygen/glucose deprivation (OGD) that causes delayed excitotoxic death of CA1 pyramidal neurons. This insult caused a delayed loss of mitochondria from astrocytic processes and increased colocalization of mitochondria with the autophagosome marker LC3B. The losses of neurons in area CA1 and mitochondria in astrocytic processes were blocked by ionotropic glutamate receptor (iGluR) antagonists, tetrodotoxin, ziconotide (Ca(2+) channel blocker), two inhibitors of reversed Na(+)/Ca(2+) exchange (KB-R7943, YM-244769), or two inhibitors of calcineurin (cyclosporin-A, FK506). The effects of OGD were mimicked by NMDA. The glutamate uptake inhibitor (3S)-3-[[3-[[4-(trifluoromethyl)benzoyl]amino]phenyl]methoxy]-l-aspartate increased neuronal loss after OGD or NMDA, and blocked the loss of astrocytic mitochondria. Exogenous glutamate in the presence of iGluR antagonists caused a loss of mitochondria without a decrease in neurons in area CA1. Using the genetic Ca(2+) indicator Lck-GCaMP-6S, we observed two types of Ca(2+) signals: (1) in the cytoplasm surrounding mitochondria (mitochondrially centered) and (2) traversing the space between mitochondria (extramitochondrial). The spatial spread, kinetics, and frequency of these events were different. The amplitude of both types was doubled and the spread of both types changed by ∼2-fold 24 h after OGD. Together, these data suggest that pathologic activation of glutamate transport and increased astrocytic Ca(2+) through reversed Na(+)/Ca(2+) exchange triggers mitochondrial loss and dramatic increases in Ca(2+) signaling in astrocytic processes. Astrocytes, the most abundant cell type in the brain

  3. The remodeling transient and the calcium economy.

    PubMed

    Aloia, J F; Arunabh-Talwar, S; Pollack, S; Yeh, J K

    2008-07-01

    The remodeling transient describes a change in bone mass that lasts one remodeling cycle following an intervention that disturbs the calcium economy. We demonstrated the transient in a study of the response of bone density to calcium/vitamin D3 supplementation and show the hazards of misinterpretation if the transient is not considered. The remodeling transient describes a change in bone mass that lasts for one remodeling cycle following an intervention that disturbs the calcium economy. We report an intervention with calcium and vitamin D supplementation in 208 postmenopausal African-American women where the remodeling transient was considered a priori in the study design. Both groups (calcium alone vs. calcium + 20 microg (800 IU) vitamin D3) were ensured a calcium intake in excess of 1200 mg/day. There were no differences between the two groups in changes in BMD over time. These BMD changes were therefore interpreted to reflect increased calcium intake in both groups but not any influence of vitamin D. A transient increase in bone mineral density was observed during the first year of study, followed by a decline. The remodeling period was estimated at about 9 months, which is similar to histomorphometric estimates. It is problematic to draw conclusions concerning interventions that influence the calcium economy without considering the remodeling transient in study design. Studies of agents that effect bone remodeling must be carried out for at least two remodeling cycles and appropriate techniques must be used in data analysis.

  4. Drosophila mushroom body Kenyon cells generate spontaneous calcium transients mediated by PLTX-sensitive calcium channels.

    PubMed

    Jiang, Shaojuan Amy; Campusano, Jorge M; Su, Hailing; O'Dowd, Diane K

    2005-07-01

    Spontaneous calcium oscillations in mushroom bodies of late stage pupal and adult Drosophila brains have been implicated in memory consolidation during olfactory associative learning. This study explores the cellular mechanisms regulating calcium dynamics in Kenyon cells, principal neurons in mushroom bodies. Fura-2 imaging shows that Kenyon cells cultured from late stage Drosophila pupae generate spontaneous calcium transients in a cell autonomous fashion, at a frequency similar to calcium oscillations in vivo (10-20/h). The expression of calcium transients is up regulated during pupal development. Although the ability to generate transients is a property intrinsic to Kenyon cells, transients can be modulated by bath application of nicotine and GABA. Calcium transients are blocked, and baseline calcium levels reduced, by removal of external calcium, addition of cobalt, or addition of Plectreurys toxin (PLTX), an insect-specific calcium channel antagonist. Transients do not require calcium release from intracellular stores. Whole cell recordings reveal that the majority of voltage-gated calcium channels in Kenyon cells are PLTX-sensitive. Together these data show that influx of calcium through PLTX-sensitive voltage-gated calcium channels mediates spontaneous calcium transients and regulates basal calcium levels in cultured Kenyon cells. The data also suggest that these calcium transients represent cellular events underlying calcium oscillations in the intact mushroom bodies. However, spontaneous calcium transients are not unique to Kenyon cells as they are present in approximately 60% of all cultured central brain neurons. This suggests the calcium transients play a more general role in maturation or function of adult brain neurons.

  5. TRANSIENT AMORPHOUS CALCIUM PHOSPHATE IN FORMING ENAMEL

    PubMed Central

    Beniash, Elia; Metzler, Rebecca A.; Lam, Raymond S.K.; Gilbert, P.U.P.A.

    2009-01-01

    Enamel, the hardest tissue in the body, begins as a three-dimensional network of nanometer size mineral particles, suspended in a protein gel. This mineral network serves as a template for mature enamel formation. To further understand the mechanisms of enamel formation we characterized the forming enamel mineral at an early secretory stage using x-ray absorption near-edge structure (XANES) spectromicroscopy, transmission electron microscopy (TEM), FTIR microspectroscopy and polarized light microscopy. We show that the newly formed enamel mineral is amorphous calcium phosphate (ACP), which eventually transforms into apatitic crystals. Interestingly, the size, shape and spatial organization of these amorphous mineral particles and older crystals are essentially the same, indicating that the mineral morphology and organization in enamel is determined prior to its crystallization. Mineralization via transient amorphous phases has been previously reported in chiton teeth, mollusk shells, echinoderm spicules and spines, and recent reports strongly suggest the presence transient amorphous mineral in forming vertebrate bones. The present finding of transient ACP in murine tooth enamel suggests that this strategy might be universal. PMID:19217943

  6. Transient modulation of calcium and parathyroid hormone stimulates bone formation.

    PubMed

    Chen, Andy B; Minami, Kazumasa; Raposo, João F; Matsuura, Nariaki; Koizumi, Masahiko; Yokota, Hiroki; Ferreira, Hugo G

    2016-10-01

    Intermittent administration of parathyroid hormone can stimulate bone formation. Parathyroid hormone is a natural hormone that responds to serum calcium levels. In this study, we examined whether a transient increase and/or decrease in the serum calcium can stimulate bone formation. Using a mathematical model previously developed, we first predicted the effects of administration of parathyroid hormone, neutralizing parathyroid hormone antibody, calcium, and EGTA (calcium chelator) on the serum concentration of parathyroid hormone and calcium. The model predicted that intermittent injection of parathyroid hormone and ethylene glycol tetraacetic acid transiently elevated the serum parathyroid hormone, while that of parathyroid hormone antibody and calcium transiently reduced parathyroid hormone in the serum. In vitro analysis revealed that parathyroid hormone's transient changes (both up and down) elevated activating transcription factor 4-mediated osteocalcin expression. In the mouse model of osteoporosis, both intermittent administration of calcium and ethylene glycol tetraacetic acid showed tendency to increase bone mineral density of the upper limb (ulna and humerus) and spine, but the effects varied in a region-specific manner. Collectively, the study herein supports a common bone response to administration of calcium and its chelator through their effects on parathyroid hormone.

  7. Delayed transiently chaotic neural networks and their application

    NASA Astrophysics Data System (ADS)

    Chen, Shyan-Shiou

    2009-09-01

    In this paper, we propose a novel model, a delayed transiently chaotic neural network (DTCNN), and numerically confirm that the model performs better in finding the global minimum for the traveling salesman problem (TSP) than the traditional transiently chaotic neural network. The asymptotic stability and chaotic behavior of the dynamical system with time delay are fully discussed. We not only theoretically prove the existence of Marotto's chaos for the delayed neural network without the cooling schedule by geometrically constructing a transversal homoclinic orbit, but we also discuss the stability of nonautonomous delayed systems using LaSalle's invariance principle. The result of the application to the TSP by the DTCNN might further explain the importance of systems with time delays in the neural system.

  8. Calcium transients and calcium release in rat fast-twitch skeletal muscle fibres.

    PubMed Central

    Garcia, J; Schneider, M F

    1993-01-01

    1. Calcium transients were recorded from cut segments of fast-twitch rat skeletal muscle fibres stretched to 3.7-4.0 microns per sarcomere and voltage clamped at a holding potential of -80 mV using the double Vaseline-gap technique. Calcium transients were monitored simultaneously with the two calcium indicators antipyrylazo III (AP III) and fura-2. AP III was used to record the calcium changes in response to 10-200 ms depolarizing pulses to different membrane potentials while fura-2 monitored the slow decay of the transient (during 16-20 s) and the resting calcium concentration. Experiments were performed at 14-17 degrees C. 2. For 50-100 ms depolarizing pulses calcium transients were first detected between -30 and -20 mV in a total of twenty-one fibres. The transients recorded with AP III showed a plateau for small pulses (-20 mV) and a steady increase during stronger pulses (-10 mV and more positive). Upon repolarization the transients decayed towards the baseline. The signal recorded simultaneously with fura-2 showed a continuous increase of the transient during the pulses at all membrane potentials. The amplitude of the calcium transients for the large pulses could not be followed with fura-2 due to saturation of the dye. 3. The signals obtained with both dyes were used to determine the kinetics of the calcium-fura-2 reaction inside the fibres. The mean values of the kinetic parameters were: the on rate constant (kon) = 5.1 x 10(8) M-1s-1, the off rate constant (koff) = 26 s-1, and koff/kon (KD) = 69.7 nM. 4. The fast phase of decay of the calcium transients after the pulses was studied from the records obtained with AP III. For depolarizing pulses of the same duration, the rate of decay of the transients after the pulse was slower the stronger the depolarization. For pulses to the same membrane potential, the rate of decay was slower the longer the pulse duration. Both stimulating patterns indicated saturation of the removal system in the muscle fibres due to

  9. CALCIUM-RICH GAP TRANSIENTS: SOLVING THE CALCIUM CONUNDRUM IN THE INTRACLUSTER MEDIUM

    SciTech Connect

    Mulchaey, John S.; Kollmeier, Juna A.; Kasliwal, Mansi M.

    2014-01-10

    X-ray measurements suggest that the abundance of calcium in the intracluster medium is higher than can be explained using favored models for core-collapse and Type Ia supernovae alone. We investigate whether the ''calcium conundrum'' in the intracluster medium can be alleviated by including a contribution from the recently discovered subclass of supernovae known as calcium-rich gap transients. Although the calcium-rich gap transients make up only a small fraction of all supernovae events, we find that their high calcium yields are sufficient to reproduce the X-ray measurements found for nearby rich clusters. We find the χ{sup 2} goodness-of-fit metric improves from 84 to 2 by including this new class. Moreover, calcium-rich supernovae preferentially occur in the outskirts of galaxies making it easier for the nucleosynthesis products of these events to be incorporated in the intracluster medium via ram-pressure stripping. The discovery of calcium-rich gap transients in clusters and groups far from any individual galaxy suggests that supernovae associated with intracluster stars may play an important role in enriching the intracluster medium. Calcium-rich gap transients may also help explain anomalous calcium abundances in many other astrophysical systems including individual stars in the Milky Way, the halos of nearby galaxies, and the circumgalactic medium. Our work highlights the importance of considering the diversity of supernovae types and corresponding yields when modeling the abundance of the intracluster medium and other gas reservoirs.

  10. Delayed, transient, postsolar truncal pruritus: a report of two cases.

    PubMed

    Salako, K B; Anstey, A A; Logan, R A

    2014-08-01

    We present two cases of a rare clinical condition presenting as a delayed and transient pruritus of the trunk following sun exposure. These cases differ from previously reported conditions such as brachioradial pruritus because of the transient nature and anatomical location of the itching. These two cases extend the clinical spectrum of sun-induced pruritus. The patients' initial response to rigorous sun protection is good, but the specific treatment and natural history of the condition have yet to be determined.

  11. Calsequestrin-Mediated Mechanism for Cellular Calcium Transient Alternans

    PubMed Central

    Restrepo, Juan G.; Weiss, James N.; Karma, Alain

    2008-01-01

    Intracellular calcium transient alternans (CTA) has a recognized role in arrhythmogenesis, but its origin is not yet fully understood. Recent models of CTA are based on a steep relationship between calcium release from the sarcoplasmic reticulum (SR) and its calcium load before release. This mechanism alone, however, does not explain recent observations of CTA without diastolic SR calcium content alternations. In addition, nanoscopic imaging of calcium dynamics has revealed that the elementary calcium release units of the SR can become refractory independently of their local calcium content. Here we show using a new physiologically detailed mathematical model of calcium cycling that luminal gating of the calcium release channels (RyRs) mediated by the luminal buffer calsequestrin (CSQN) can cause CTA independently of the steepness of the release-load relationship. In this complementary mechanism, CTA is caused by a beat-to-beat alternation in the number of refractory RyR channels and can occur with or without diastolic SR calcium content alternans depending on pacing conditions and uptake dynamics. The model has unique features, in that it treats a realistic number of spatially distributed and diffusively coupled dyads, each one with a realistic number of RyR channels, and that luminal CSQN buffering and gating is incorporated based on experimental data that characterizes the effect of the conformational state of CSQN on its buffering properties. In addition to reproducing observed features of CTA, this multiscale model is able to describe recent experiments in which CSQN expression levels were genetically altered as well as to reproduce nanoscopic measurements of spark restitution properties. The ability to link microscopic properties of the calcium release units to whole cell behavior makes this model a powerful tool to investigate the arrhythmogenic role of abnormal calcium handling in many pathological settings. PMID:18676655

  12. Photonic Nonlinear Transient Computing with Multiple-Delay Wavelength Dynamics

    NASA Astrophysics Data System (ADS)

    Martinenghi, Romain; Rybalko, Sergei; Jacquot, Maxime; Chembo, Yanne K.; Larger, Laurent

    2012-06-01

    We report on the experimental demonstration of a hybrid optoelectronic neuromorphic computer based on a complex nonlinear wavelength dynamics including multiple delayed feedbacks with randomly defined weights. This neuromorphic approach is based on a new paradigm of a brain-inspired computational unit, intrinsically differing from Turing machines. This recent paradigm consists in expanding the input information to be processed into a higher dimensional phase space, through the nonlinear transient response of a complex dynamics excited by the input information. The computed output is then extracted via a linear separation of the transient trajectory in the complex phase space. The hyperplane separation is derived from a learning phase consisting of the resolution of a regression problem. The processing capability originates from the nonlinear transient, resulting in nonlinear transient computing. The computational performance is successfully evaluated on a standard benchmark test, namely, a spoken digit recognition task.

  13. Numerical methods to determine calcium release flux from calcium transients in muscle cells.

    PubMed Central

    Timmer, J; Müller, T; Melzer, W

    1998-01-01

    Several methods are currently in use to estimate the rate of depolarization-induced calcium release in muscle cells from measured calcium transients. One approach first characterizes calcium removal of the cell. This is done by determining parameters of a reaction scheme from a fit to the decay of elevated calcium after the depolarizing stimulus. In a second step, the release rate during depolarization is estimated based on the fitted model. Using simulated calcium transients with known underlying release rates, we tested the fidelity of this analysis in determining the time course of calcium release under different conditions. The analysis reproduced in a satisfactory way the characteristics of the input release rate, even when the assumption that release had ended before the start of the fitting interval was severely violated. Equally good reconstructions of the release rate time course could be obtained when the model used for the analysis differed in structure from the one used for simulating the data. We tested the application of a new strategy (multiple shooting) for fitting parameters in nonlinear differential equation systems. This procedure rendered the analysis less sensitive to ill-chosen initial guesses of the parameters and to noise. A locally adaptive kernel estimator for calculating numerical derivatives allowed good reconstructions of the original release rate time course from noisy calcium transients when other methods failed. PMID:9545033

  14. Picomolar Amyloid-β Peptides Enhance Spontaneous Astrocyte Calcium Transients

    PubMed Central

    Lee, Linda; Kosuri, Pallav; Arancio, Ottavio

    2014-01-01

    Amyloid-β (Aβ) peptides are constitutively produced in the brain throughout life via mechanisms that can be regulated by synaptic activity. Although Aβ has been extensively studied as the pathological plaque-forming protein species in Alzheimer’s disease (AD), little is known about the normal physiological function(s) and signaling pathway(s). We previously discovered that physiologically-relevant, low picomolar amounts of Aβ can enhance synaptic plasticity and hippocampal-dependent cognition in mice. In this study, we demonstrated that astrocytes are cellular candidates for participating in this type of Aβ signaling. Using calcium imaging of primary astrocyte cultures, we observed that picomolar amounts of Aβ peptides can enhance spontaneous intracellular calcium transient signaling. After application of 200 pM Aβ42 peptides, the frequency and amplitude averages of spontaneous cytosolic calcium transients were significantly increased. These effects were dependent on α7 nicotinic acetylcholine receptors (α7-nAChRs), as the enhancement effects were blocked by a pharmacological α7-nAChR inhibitor and in astrocytes from an α7 deficient mouse strain. We additionally examined evoked intercellular calcium wave signaling but did not detect significant picomolar Aβ-induced alterations in propagation parameters. Overall, these results indicate that at a physiologically-relevant low picomolar concentration, Aβ peptides can enhance spontaneous astrocyte calcium transient signaling via α7-nAChRs. Since astrocyte-mediated gliotransmission has been previously found to have neuromodulatory roles, Aβ peptides may have a normal physiological function in regulating neuron-glia signaling. Dysfunction of this signaling process may underlie glia-based aspects of AD pathogenesis. PMID:23948929

  15. Transient response of the calcium homeostatic system of the conscious pig to bolus calcium injections.

    PubMed

    Járos, G G; Maier, H; Podzuweit, T; von Gülich, M; Schindler, J G

    1982-07-01

    Calcium injection in the pig elicits a fast transient response which reinstates the calcium concentration to within normal limits between 30 and 40 min after injection. Although the fate of the calcium that disappeared is not known, the present experiments eliminate the kidneys and the bone remodeling cells as the main short-term regulators. The fast response is independent of parathyroid hormone but is greatly dependent of calcitonin. Further experiments are being performed to discover the nature and site of the regulating mechanisms.

  16. Analysis of Spontaneous and Nerve-Evoked Calcium Transients in Intact Extraocular Muscles in Vitro

    PubMed Central

    Feng, Cheng-Yuan; Hennig, Grant W.; Corrigan, Robert D.; Smith, Terence K.; von Bartheld, Christopher S.

    2012-01-01

    Extraocular muscles (EOMs) have unique calcium handling properties, yet little is known about the dynamics of calcium events underlying ultrafast and tonic contractions in myofibers of intact EOMs. Superior oblique EOMs of juvenile chickens were dissected with their nerve attached, maintained in oxygenated Krebs buffer, and loaded with fluo-4. Spontaneous and nerve stimulation-evoked calcium transients were recorded and, following calcium imaging, some EOMs were double-labeled with rhodamine-conjugated alpha-bungarotoxin (rhBTX) to identify EOM myofiber types. EOMs showed two main types of spontaneous calcium transients, one slow type (calcium waves with 1/2max duration of 2–12 s, velocity of 25–50 μm/s) and two fast “flash-like” types (Type 1, 30–90 ms; Type 2, 90–150 ms 1/2max duration). Single pulse nerve stimulation evoked fast calcium transients identical to the fast (Type 1) calcium transients. Calcium waves were accompanied by a local myofiber contraction that followed the calcium transient wavefront. The magnitude of calcium-wave induced myofiber contraction far exceeded those of movement induced by nerve stimulation and associated fast calcium transients. Tetrodotoxin eliminated nerve-evoked transients, but not spontaneous transients. Alpha-bungarotoxin eliminated both spontaneous and nerve-evoked fast calcium transients, but not calcium waves, and caffeine increased wave activity. Calcium waves were observed in myofibers lacking spontaneous or evoked fast transients, suggestive of multiply-innervated myofibers, and this was confirmed by double-labeling with rhBTX. We propose that the abundant spontaneous calcium transients and calcium waves with localized contractions that do not depend on innervation may contribute to intrinsic generation of tonic functions of EOMs. PMID:22579493

  17. Analysis of spontaneous and nerve-evoked calcium transients in intact extraocular muscles in vitro.

    PubMed

    Feng, Cheng-Yuan; Hennig, Grant W; Corrigan, Robert D; Smith, Terence K; von Bartheld, Christopher S

    2012-07-01

    Extraocular muscles (EOMs) have unique calcium handling properties, yet little is known about the dynamics of calcium events underlying ultrafast and tonic contractions in myofibers of intact EOMs. Superior oblique EOMs of juvenile chickens were dissected with their nerve attached, maintained in oxygenated Krebs buffer, and loaded with fluo-4. Spontaneous and nerve stimulation-evoked calcium transients were recorded and, following calcium imaging, some EOMs were double-labeled with rhodamine-conjugated alpha-bungarotoxin (rhBTX) to identify EOM myofiber types. EOMs showed two main types of spontaneous calcium transients, one slow type (calcium waves with 1/2(max) duration of 2-12 s, velocity of 25-50 μm/s) and two fast "flash-like" types (Type 1, 30-90 ms; Type 2, 90-150 ms 1/2(max) duration). Single pulse nerve stimulation evoked fast calcium transients identical to the fast (Type 1) calcium transients. Calcium waves were accompanied by a local myofiber contraction that followed the calcium transient wavefront. The magnitude of calcium-wave induced myofiber contraction far exceeded those of movement induced by nerve stimulation and associated fast calcium transients. Tetrodotoxin eliminated nerve-evoked transients, but not spontaneous transients. Alpha-bungarotoxin eliminated both spontaneous and nerve-evoked fast calcium transients, but not calcium waves, and caffeine increased wave activity. Calcium waves were observed in myofibers lacking spontaneous or evoked fast transients, suggestive of multiply-innervated myofibers, and this was confirmed by double-labeling with rhBTX. We propose that the abundant spontaneous calcium transients and calcium waves with localized contractions that do not depend on innervation may contribute to intrinsic generation of tonic functions of EOMs.

  18. High bandwidth optical coherent transient true-time delay

    NASA Astrophysics Data System (ADS)

    Reibel, Randy Ray

    An approach to reaching high bandwidth optical coherent transient (OCT) true-time delay (TTD) is described and demonstrated in this thesis. Utilizing the stimulated photon echo process in rare-earth ion doped crystals, such as Tm3+:YAG, TTD of optical signals with bandwidths >20 GHz and high time bandwidth products >104 are possible. TTD regenerators using OCT's have been demonstrated at low bandwidths (<40 MHz) showing picosecond delay resolutions with microsecond delays. With the advent of high bandwidth chirped lasers and high bandwidth electro-optic phase modulators, OCT TTD of broadband optical signals is now possible in the multi-gigahertz regime. To achieve this goal, several theoretical and technical aspects had to be explored. Theoretical discussions and numerical simulations are given using the Maxwell-Bloch equations with arbitrary phase. These simulations show good signal fidelity and high (60%) power efficiencies on echoes produced from gratings programmed with linear frequency chirps. New approaches for programming spectral gratings were also examined that utilized high bandwidth electro-optic modulators. In this technique, the phase modulation sidebands on an optical carrier are linearly chirped, creating an analog to the common linear frequency chirp. This approach allows multi-gigahertz true-time delay spectral grating programming. These new programming approaches are examined and characterized, both through simulation and experiment. A high bandwidth injection locked amplifier, based on semiconductor diode lasers, had to be developed and characterized to boost optical powers from both electro-optic phase modulators as well as chirped lasers. The injection locking system in conjunction with acousto-optic modulators were used in high bandwidth TTD demonstrations in Tm3+:YAG. Ultimately, high bandwidth binary phase shift keyed probe pulses were used in a demonstration of broadband true-time delay at a data rate of 1 GBit/s. The techniques, theory

  19. An Analysis of the Transient Responses of Acoustic Delay Lines

    NASA Astrophysics Data System (ADS)

    Okano, Tatsuo; Tominaga, Goroh

    1981-09-01

    Transient responses of acoustic delay lines (ADLs) were simulated on the assumptions that gas molecules in each segment of an ADL were in thermal equilibrium and that the straight-through component in the intruding gas was negligibly small. The flow rate of gas through an orifice was evaluated by using expressions of orifice conductance applicable in a wide pressure range. In order to examine the adequateness of the present method, the results of simulations were compared with several experimental data. The influence of the location of vacuum pumps and of arranging a high speed shutter at the entrance of an ADL were also simulated.

  20. Calcium and Potassium Channels in Experimental Subarachnoid Hemorrhage and Transient Global Ischemia

    PubMed Central

    Kamp, Marcel A.; Dibué, Maxine; Schneider, Toni; Steiger, Hans-Jakob; Hänggi, Daniel

    2012-01-01

    Healthy cerebrovascular myocytes express members of several different ion channel families which regulate resting membrane potential, vascular diameter, and vascular tone and are involved in cerebral autoregulation. In animal models, in response to subarachnoid blood, a dynamic transition of ion channel expression and function is initiated, with acute and long-term effects differing from each other. Initial hypoperfusion after exposure of cerebral vessels to oxyhemoglobin correlates with a suppression of voltage-gated potassium channel activity, whereas delayed cerebral vasospasm involves changes in other potassium channel and voltage-gated calcium channels expression and function. Furthermore, expression patterns and function of ion channels appear to differ between main and small peripheral vessels, which may be key in understanding mechanisms behind subarachnoid hemorrhage-induced vasospasm. Here, changes in calcium and potassium channel expression and function in animal models of subarachnoid hemorrhage and transient global ischemia are systematically reviewed and their clinical significance discussed. PMID:23251831

  1. Decreasing motion artifacts in calcium-dependent fluorescence transients from the perfused mouse heart using frequency filtering.

    PubMed

    Du, Congwu; Pan, Yingtian; MacGowan, Guy A; Koretsky, Alan P

    2004-02-01

    A strategy has been developed for the removal of motion artifact and noise in calcium-dependent fluorescence transients from the perfused mouse heart using frequency filtering. An analytical model indicates that the spectral removal of motion artifacts is independent of the phase shift of the motion waveform in the frequency domain, and thus to the time shift (or delay) of motion in the time domain. This is based on the "shift theorem" of Fourier analysis, which avoids erroneous correction of motion artifact when using the motion signal obtained using reflectance from the heart. Several major steps are adopted to implement this model for elimination of motion as well as detection noise from the fluorescence transient signals from the calcium-sensitive probe Rhod-2. These include (1) extracting the fluorescence calcium transient signal from the raw data by using power spectrum density (PSD) in the frequency domain by subtracting the motion recorded using the reflectance of excitation light, (2) digitally filtering out the random noise using multiple bandpass filters centralized at harmonic frequencies of the transients, and (3) extracting high frequency noise with a Gaussian Kernel filter method. The processed signal of transients acquired with excessive motion artifact is comparable to transients acquired with minimal motion obtained by immobilizing the heart against the detection window, demonstrating the usefulness of this technique.

  2. [Transient brain ischemia: NMDA receptor modulation and delayed neuronal death].

    PubMed

    Benquet, Pascal; Gee, Christine E; Gerber, Urs

    2008-02-01

    Transient global ischemia induces delayed neuronal death in certain cell types and brain regions while sparing cells in other areas. A key process through which oxygen-glucose deprivation triggers cell death is the excessive accumulation of the neurotransmitter glutamate leading to over excitation of neurons. In certain neurons this increase in glutamate will potentiate the NMDA type of glutamate receptor, which can then initiate cell death. This review provides an update of the neurophysiological, cellular and molecular mechanisms inducing post-ischemic plasticity of NMDA receptors, focusing on the sensitive CA1 pyramidal neurons in the hippocampus as compared to the relatively resistant neighboring CA3 neurons. Both a change in the equilibrium between protein tyrosine kinases/phosphatases and an increased density of surface NMDA receptors in response to ischemia may explain the selective vulnerability of specific cell types. Implications for the treatment of stroke and reasons for the failures of human clinical trials utilizing NMDA receptor antagonists are also discussed.

  3. Delayed neuronal cell death in brainstem after transient brainstem ischemia in gerbils.

    PubMed

    Cao, Fang; Hata, Ryuji; Zhu, Pengxiang; Takeda, Shoichiro; Yoshida, Tadashi; Hakuba, Nobuhiro; Sakanaka, Masahiro; Gyo, Kiyofumi

    2010-09-14

    Because of the lack of reproducible brainstem ischemia models in rodents, the temporal profile of ischemic lesions in the brainstem after transient brainstem ischemia has not been evaluated intensively. Previously, we produced a reproducible brainstem ischemia model of Mongolian gerbils. Here, we showed the temporal profile of ischemic lesions after transient brainstem ischemia. Brainstem ischemia was produced by occlusion of the bilateral vertebral arteries just before their entry into the transverse foramina of the cervical vertebrae of Mongolian gerbils. Animals were subjected to brainstem ischemia for 15 min, and then reperfused for 0 d (just after ischemia), 1 d, 3 d and 7 d (n = 4 in each group). Sham-operated animals (n = 4) were used as control. After deep anesthesia, the gerbils were perfused with fixative for immunohistochemical investigation. Ischemic lesions were detected by immunostaining for microtubule-associated protein 2 (MAP2). Just after 15-min brainstem ischemia, ischemic lesions were detected in the lateral vestibular nucleus and the ventral part of the spinal trigeminal nucleus, and these ischemic lesions disappeared one day after reperfusion in all animals examined. However, 3 days and 7 days after reperfusion, ischemic lesions appeared again and clusters of ionized calcium-binding adapter molecule-1(IBA-1)-positive cells were detected in the same areas in all animals. These results suggest that delayed neuronal cell death took place in the brainstem after transient brainstem ischemia in gerbils.

  4. Super-transient scaling in time-delay autonomous Boolean network motifs.

    PubMed

    D'Huys, Otti; Lohmann, Johannes; Haynes, Nicholas D; Gauthier, Daniel J

    2016-09-01

    Autonomous Boolean networks are commonly used to model the dynamics of gene regulatory networks and allow for the prediction of stable dynamical attractors. However, most models do not account for time delays along the network links and noise, which are crucial features of real biological systems. Concentrating on two paradigmatic motifs, the toggle switch and the repressilator, we develop an experimental testbed that explicitly includes both inter-node time delays and noise using digital logic elements on field-programmable gate arrays. We observe transients that last millions to billions of characteristic time scales and scale exponentially with the amount of time delays between nodes, a phenomenon known as super-transient scaling. We develop a hybrid model that includes time delays along network links and allows for stochastic variation in the delays. Using this model, we explain the observed super-transient scaling of both motifs and recreate the experimentally measured transient distributions.

  5. Super-transient scaling in time-delay autonomous Boolean network motifs

    SciTech Connect

    D'Huys, Otti Haynes, Nicholas D.; Lohmann, Johannes; Gauthier, Daniel J.

    2016-09-15

    Autonomous Boolean networks are commonly used to model the dynamics of gene regulatory networks and allow for the prediction of stable dynamical attractors. However, most models do not account for time delays along the network links and noise, which are crucial features of real biological systems. Concentrating on two paradigmatic motifs, the toggle switch and the repressilator, we develop an experimental testbed that explicitly includes both inter-node time delays and noise using digital logic elements on field-programmable gate arrays. We observe transients that last millions to billions of characteristic time scales and scale exponentially with the amount of time delays between nodes, a phenomenon known as super-transient scaling. We develop a hybrid model that includes time delays along network links and allows for stochastic variation in the delays. Using this model, we explain the observed super-transient scaling of both motifs and recreate the experimentally measured transient distributions.

  6. Super-transient scaling in time-delay autonomous Boolean network motifs

    NASA Astrophysics Data System (ADS)

    D'Huys, Otti; Lohmann, Johannes; Haynes, Nicholas D.; Gauthier, Daniel J.

    2016-09-01

    Autonomous Boolean networks are commonly used to model the dynamics of gene regulatory networks and allow for the prediction of stable dynamical attractors. However, most models do not account for time delays along the network links and noise, which are crucial features of real biological systems. Concentrating on two paradigmatic motifs, the toggle switch and the repressilator, we develop an experimental testbed that explicitly includes both inter-node time delays and noise using digital logic elements on field-programmable gate arrays. We observe transients that last millions to billions of characteristic time scales and scale exponentially with the amount of time delays between nodes, a phenomenon known as super-transient scaling. We develop a hybrid model that includes time delays along network links and allows for stochastic variation in the delays. Using this model, we explain the observed super-transient scaling of both motifs and recreate the experimentally measured transient distributions.

  7. Sound-evoked network calcium transients in mouse auditory cortex in vivo.

    PubMed

    Grienberger, Christine; Adelsberger, Helmuth; Stroh, Albrecht; Milos, Ruxandra-Iulia; Garaschuk, Olga; Schierloh, Anja; Nelken, Israel; Konnerth, Arthur

    2012-02-15

    Population calcium signals generated by the action potential activity of local clusters of neurons have been recorded in the auditory cortex of mice using an optical fibre-based approach. These network calcium transients (NCaTs) occurred spontaneously as well as in response to sound stimulation. Two-photon calcium imaging experiments suggest that neurons and neuropil contribute about equally to the NCaT. Sound-evoked calcium signals had two components: an early, fast increase in calcium concentration, which corresponds to the short-latency spiking responses observed in electrophysiological experiments, and a late, slow calcium transient which lasted for at least 1 s. The slow calcium transients evoked by sound were essentially identical to spontaneous NCaTs. Their sizes were dependent on the spontaneous activity level at sound onset, suggesting that spontaneous and sensory-evoked NCaTs excluded each other. When using pure tones as stimulus, the early evoked calcium transients were more narrowly tuned than the slow NCaTs. The slow NCaTs were correlated with global ‘up states' recorded with epidural potentials, and sound presented during an epidural ‘down state' triggered a calcium transient that was associated with an epidural ‘up state'. Essentially indistinguishable calcium transients were evoked by optogenetic activation of local clusters of layer 5 pyramidal neurons in the auditory cortex, indicating that these neurons play an important role in the generation of the calcium signal. Taken together, our results identify sound-evoked slow NCaTs as an integral component of neuronal signalling in the mouse auditory cortex, reflecting the prolonged neuronal activity of local clusters of neurons that can be activated even by brief stimuli.

  8. Quantum shutter transient solutions and the delay time for the {delta} potential

    SciTech Connect

    Hernandez, Alberto; Garcia-Calderon, Gaston

    2003-07-01

    The analytical solution to the time-dependent Schroedinger equation for tunneling using cutoff plane-wave initial conditions is in general given by the sum of two types of terms that exhibit a transient behavior. The time evolution of the probability density for the {delta} potential is compared with the free case to investigate in this case the role of these transient terms for the delay time. We find, by a dynamical calculation, that the delay time arises from the interference between these transient terms and we show that at very long times it goes into the phase delay time, given by the energy derivative of the phase of the transmission amplitude.

  9. Calcium Transient and Sodium-Calcium Exchange Current in Human versus Rabbit Sinoatrial Node Pacemaker Cells

    PubMed Central

    Verkerk, Arie O.

    2013-01-01

    There is an ongoing debate on the mechanism underlying the pacemaker activity of sinoatrial node (SAN) cells, focusing on the relative importance of the “membrane clock” and the “Ca2+ clock” in the generation of the small net membrane current that depolarizes the cell towards the action potential threshold. Specifically, the debate centers around the question whether the membrane clock-driven hyperpolarization-activated current, I f, which is also known as the “funny current” or “pacemaker current,” or the Ca2+ clock-driven sodium-calcium exchange current, I NaCa, is the main contributor to diastolic depolarization. In our contribution to this journal's “Special Issue on Cardiac Electrophysiology,” we present a numerical reconstruction of I f and I NaCa in isolated rabbit and human SAN pacemaker cells based on experimental data on action potentials, I f, and intracellular calcium concentration ([Ca2+]i) that we have acquired from these cells. The human SAN pacemaker cells have a smaller I f, a weaker [Ca2+]i transient, and a smaller I NaCa than the rabbit cells. However, when compared to the diastolic net membrane current, I NaCa is of similar size in human and rabbit SAN pacemaker cells, whereas I f is smaller in human than in rabbit cells. PMID:23606816

  10. Calcium transient and sodium-calcium exchange current in human versus rabbit sinoatrial node pacemaker cells.

    PubMed

    Verkerk, Arie O; van Borren, Marcel M G J; Wilders, Ronald

    2013-01-01

    There is an ongoing debate on the mechanism underlying the pacemaker activity of sinoatrial node (SAN) cells, focusing on the relative importance of the "membrane clock" and the "Ca(2+) clock" in the generation of the small net membrane current that depolarizes the cell towards the action potential threshold. Specifically, the debate centers around the question whether the membrane clock-driven hyperpolarization-activated current, I f , which is also known as the "funny current" or "pacemaker current," or the Ca(2+) clock-driven sodium-calcium exchange current, I NaCa, is the main contributor to diastolic depolarization. In our contribution to this journal's "Special Issue on Cardiac Electrophysiology," we present a numerical reconstruction of I f and I NaCa in isolated rabbit and human SAN pacemaker cells based on experimental data on action potentials, I f , and intracellular calcium concentration ([Ca(2+)] i ) that we have acquired from these cells. The human SAN pacemaker cells have a smaller I f , a weaker [Ca(2+)] i transient, and a smaller I NaCa than the rabbit cells. However, when compared to the diastolic net membrane current, I NaCa is of similar size in human and rabbit SAN pacemaker cells, whereas I f is smaller in human than in rabbit cells.

  11. Sub-Surface Excavation of Transient Craters in Porous Targets: Explaining the Impact Delay

    NASA Astrophysics Data System (ADS)

    Bowling, T. J.; Melosh, H. J.

    2012-03-01

    We numerically investigate the subsurface excavation of the transient crater in the earliest moments after the Deep Impact event. At high target porosities the crater remains hidden from observation long enough to explain the "impact delay."

  12. Selective inhibition of sodium–calcium exchanger by SEA-0400 decreases early and delayed afterdepolarization in canine heart

    PubMed Central

    Nagy, Zsolt A; Virág, László; Tóth, András; Biliczki, Péter; Acsai, Károly; Bányász, Tamás; Nánási, Péter; Papp, Julius Gy; Varró, András

    2004-01-01

    The sodium–calcium exchanger (NCX) was considered to play an important role in arrhythmogenesis under certain conditions such as heart failure or calcium overload. In the present study, the effect of SEA-0400, a selective inhibitor of the NCX, was investigated on early and delayed afterdepolarizations in canine ventricular papillary muscles and Purkinje fibres by applying conventional microelectrode techniques at 37°C. The amplitude of both early and delayed afterdepolarizations was markedly decreased by 1 μM SEA-0400 from 26.6±2.5 to 14.8±1.8 mV (n=9, P<0.05) and from 12.5±1.7 to 5.9±1.4 mV (n=3, P<0.05), respectively. In enzymatically isolated canine ventricular myocytes, SEA-0400 did not change significantly the L-type calcium current and the intracellular calcium transient, studied using the whole-cell configuration of the patch-clamp technique and Fura-2 ratiometric fluorometry. It is concluded that, through the reduction of calcium overload, specific inhibition of the NCX current by SEA-0400 may abolish triggered arrhythmias. PMID:15504749

  13. Selective inhibition of sodium-calcium exchanger by SEA-0400 decreases early and delayed after depolarization in canine heart.

    PubMed

    Nagy, Zsolt A; Virág, László; Tóth, András; Biliczki, Péter; Acsai, Károly; Bányász, Tamás; Nánási, Péter; Papp, Julius Gy; Varró, András

    2004-12-01

    The sodium-calcium exchanger (NCX) was considered to play an important role in arrhythmogenesis under certain conditions such as heart failure or calcium overload. In the present study, the effect of SEA-0400, a selective inhibitor of the NCX, was investigated on early and delayed afterdepolarizations in canine ventricular papillary muscles and Purkinje fibres by applying conventional microelectrode techniques at 37 degrees C. The amplitude of both early and delayed afterdepolarizations was markedly decreased by 1 microM SEA-0400 from 26.6+/-2.5 to 14.8+/-1.8 mV (n=9, P<0.05) and from 12.5+/-1.7 to 5.9+/-1.4 mV (n=3, P<0.05), respectively. In enzymatically isolated canine ventricular myocytes, SEA-0400 did not change significantly the L-type calcium current and the intracellular calcium transient, studied using the whole-cell configuration of the patch-clamp technique and Fura-2 ratiometric fluorometry. It is concluded that, through the reduction of calcium overload, specific inhibition of the NCX current by SEA-0400 may abolish triggered arrhythmias.

  14. Calmodulin Activation by Calcium Transients in the Postsynaptic Density of Dendritic Spines

    PubMed Central

    Keller, Daniel X.; Franks, Kevin M.; Bartol, Thomas M.; Sejnowski, Terrence J.

    2008-01-01

    The entry of calcium into dendritic spines can trigger a sequence of biochemical reactions that begins with the activation of calmodulin (CaM) and ends with long-term changes to synaptic strengths. The degree of activation of CaM can depend on highly local elevations in the concentration of calcium and the duration of transient increases in calcium concentration. Accurate measurement of these local changes in calcium is difficult because the spaces are so small and the numbers of molecules are so low. We have therefore developed a Monte Carlo model of intracellular calcium dynamics within the spine that included calcium binding proteins, calcium transporters and ion channels activated by voltage and glutamate binding. The model reproduced optical recordings using calcium indicator dyes and showed that without the dye the free intracellular calcium concentration transient was much higher than predicted from the fluorescent signal. Excitatory postsynaptic potentials induced large, long-lasting calcium gradients across the postsynaptic density, which activated CaM. When glutamate was released at the synapse 10 ms before an action potential occurred, simulating activity patterns that strengthen hippocampal synapses, the calcium gradient and activation of CaM in the postsynaptic density were much greater than when the order was reversed, a condition that decreases synaptic strengths, suggesting a possible mechanism underlying the induction of long-term changes in synaptic strength. The spatial and temporal mechanisms for selectivity in CaM activation demonstrated here could be used in other signaling pathways. PMID:18446197

  15. Pulsed electromagnetic fields promote the proliferation and differentiation of osteoblasts by reinforcing intracellular calcium transients.

    PubMed

    Tong, Jie; Sun, Lijun; Zhu, Bin; Fan, Yun; Ma, Xingfeng; Yu, Liyin; Zhang, Jianbao

    2017-10-01

    Pulsed electromagnetic fields (PEMF) can be used to treat bone-related diseases, but the underlying mechanism remains unclear, especially the process by which PEMFs initiate biological effects. In this study, we demonstrated the effects of PEMF on proliferation and differentiation of osteoblasts using the model of calcium transients induced by high extracellular calcium. Our results showed that PEMF can increase both the percentage of responding cells and amplitude of intracellular calcium transients induced by high extracellular calcium stimulation. Compared with corresponding extracellular calcium levels, PEMF stimulation increased proliferation and differentiation of osteoblasts and related gene expressions, such as insulin-like growth factor 1 (IGF-1), alkaline phosphatase (ALP), runt-related transcription factor 2 (Runx2), and osteocalcin (OCN), which can be completely abolished by BAPTA-AM. Moreover, PEMF did not affect proliferation and differentiation of osteoblasts if no intracellular calcium transient was present in osteoblasts during PEMF exposure. Our results revealed that PEMF affects osteoblast proliferation and differentiation through enhanced intracellular calcium transients, which provided a cue to treat bone-related diseases with PEMF. Bioelectromagnetics. 38:541-549, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. Calcium transients in developing mouse skeletal muscle fibres

    PubMed Central

    Capote, Joana; Bolaños, Pura; Schuhmeier, Ralph Peter; Melzer, Werner; Caputo, Carlo

    2005-01-01

    Ca2+ transients elicited by action potentials were measured using MagFluo-4, at 20–22°C, in intact muscle fibres enzymatically dissociated from mice of different ages (7, 10, 15 and 42 days). The rise time of the transient (time from 10 to 90% of the peak) was 2.4 and 1.1 ms in fibres of 7- and 42-day-old mice, respectively. The decay of the transient was described by a double exponential function, with time constants of 1.8 and 16.4 ms in adult, and of 4.6 and 105 ms in 7-day-old animals. The fractional recovery of the transient peak amplitude after 10 ms, F2(10)/F1, determined using twin pulses, was 0.53 for adult fibres and ranged between 0.03 and 0.60 in fibres of 7-day-old animals This large variance may indicate differences in the extent of inactivation of Ca2+ release, possibly related to the difference in ryanodine receptor composition between young and old fibres. At the 7 and 10 day stages, fibres responded to Ca2+-free solutions with a larger decrease in the transient peak amplitude (25%versus 11% in adult fibres), possibly indicating a contribution of Ca2+ influx to the Ca2+ transient in younger animals. Cyclopiazonic acid (1 μm), an inhibitor of the sarcoplasmic reticulum (SR) Ca2+-ATPase, abolished the Ca2+ transient decay in fibres of 7- and 10-day-old animals and significantly reduced its rate in older animals. Analysis of the transients with a Ca2+ removal model showed that the results are consistent with a larger relative contribution of the SR Ca2+ pump and a lower expression of myoplasmic Ca2+ buffers in fibres of young versus old animals. PMID:15731192

  17. Simultaneous Measurement of Contraction and Calcium Transients in Stem Cell Derived Cardiomyocytes.

    PubMed

    Ahola, A; Pölönen, R-P; Aalto-Setälä, K; Hyttinen, J

    2017-10-03

    Induced pluripotent stem cell derived cardiomyocytes (iPSC-CM) provide a powerful platform for disease modeling and drug development in vitro. Traditionally, electrophysiological methods or fluorescent dyes (e.g. calcium) have been used in their functional characterization. Recently, video microscopy has enabled non-invasive analysis of CM contractile motion. Simultaneous assessments of motion and calcium transients have not been generally conducted, as motion detection methods are affected by changing pixel intensities in calcium imaging. Here, we present for the first time a protocol for simultaneous video-based measurement of contraction and calcium with fluorescent dye Fluo-4 videos without corrections, providing data on both ionic and mechanic activity. The method and its accuracy are assessed by measuring the effect of fluorescence and background light on transient widths and contraction velocity amplitudes. We demonstrate the method by showing the contraction-calcium relation and measuring the transient time intervals in catecholaminergic polymorphic ventricular tachycardia patient specific iPSC-CMs and healthy controls. Our validation shows that the simultaneous method provides comparable data to combined individual measurements, providing a new tool for measuring CM biomechanics and calcium simultaneously. Our results with calcium sensitive dyes suggest the method could be expanded to use with other fluorescent reporters as well.

  18. Voltage and calcium transients in basal dendrites of the rat prefrontal cortex

    PubMed Central

    Milojkovic, Bogdan A; Zhou, Wen-Liang; Antic, Srdjan D

    2007-01-01

    Higher cortical functions (perception, cognition, learning and memory) are in large part based on the integration of electrical and calcium signals that takes place in thin dendritic branches of neocortical pyramidal cells (synaptic integration). The mechanisms underlying the synaptic integration in thin basal dendrites are largely unexplored. We use a recently developed technique, multisite voltage–calcium imaging, to compare voltage and calcium transients from multiple locations along individual dendritic branches. Our results reveal characteristic electrical transients (plateau potentials) that trigger and shape dendritic calcium dynamics and calcium distribution during suprathreshold glutamatergic synaptic input. We regularly observed three classes of voltage–calcium interactions occurring simultaneously in three different zones of the same dendritic branch: (1) proximal to the input site, (2) at the input site, and (3) distal to the input site. One hundred micrometers away from the synaptic input site, both proximally and distally, dendritic calcium transients are in tight temporal correlation with the dendritic plateau potential. However, on the same dendrite, at the location of excitatory input, calcium transients outlast local dendritic plateau potentials by severalfold. These Ca2+ plateaus (duration 0.5–2 s) are spatially restricted to the synaptic input site, where they cause a brief down-regulation of dendritic excitability. Ca2+ plateaus are not mediated by Ca2+ release from intracellular stores, but rather by an NMDA-dependent small-amplitude depolarization, which persists after the collapse of the dendritic plateau potential. These unique features of dendritic voltage and calcium distributions may provide distinct zones for simultaneous long-term (bidirectional) modulation of synaptic contacts along the same basal branch. PMID:17932150

  19. Application of confocal microscopy on glutamate-induced intracellular calcium transient in neurons

    NASA Astrophysics Data System (ADS)

    Zhu, Geng; Zhou, Wei; Zhang, Yuan; Liu, Xiuli; Wu, Yuxiang; Luo, Qingming

    2006-02-01

    Intracellular calcium, as an important second messenger, plays a significant role in cell signaling transduction and metabolism. Glutamate can induce the intracellular calcium transient through triggering diverse signaling pathways. To test the effect of glutamate to neurons, we loaded Fluo-3/Am in cultured rat hippocampal neurons, and then acquired two-dimensional fluorescent image by confocal microscopy and the analyzed fluorescent intensity. In cultured neurons, we observed two types of neurons that have different morphology: bipolar-type and pyramidal-type. Inducing [Ca 2+] i transient by glutamate, we found the amplitude and time constant of the response curves of bipolar neurons are larger than those of pyramidal neurons. Further, we induced [Ca 2+] ii transient under different concentrations of glutamate. Two different types of kinetic of the [Ca 2+] i transient have been found, corresponded to the two kinds of neuron. The amplitude of [Ca 2+] i transient increased when applying higher concentration of glutamate in pyramidal neurons; while it decreased in bipolar ones. Responses of neurons bathing in calcium-free extracellular solution to glutamate were different from those bathing in normal solution. [Ca 2+] i transient of pyramidal neurons caused by any concentration were totally blocked; while [Ca 2+] i transient in bipolar neurons caused by high concentration of glutamate (500μM) were partly inhibited. All of the phenomena suggest that different types of cultured hippocampal neurons may have different mechanism of the response to glutamate.

  20. Formalin Evokes Calcium Transients from the Endoplasmatic Reticulum

    PubMed Central

    Fischer, Michael J. M.; Soller, Kailey J.; Sauer, Susanne K.; Kalucka, Joanna; Veglia, Gianluigi; Reeh, Peter W.

    2015-01-01

    The formalin test is the most widely used behavioral screening test for analgesic compounds. The cellular mechanism of action of formaldehyde, inducing a typically biphasic pain-related behavior in rodents is addressed in this study. The chemoreceptor channel TRPA1 was suggested as primary transducer, but the high concentrations used in the formalin test elicit a similar response in TRPA1 wildtype and knockout animals. Here we show that formaldehyde evokes a dose-dependent calcium release from intracellular stores in mouse sensory neurons and primary keratinocytes as well as in non-neuronal cell lines, and independent of TRPA1. The source of calcium is the endoplasmatic reticulum and inhibition of the sarco/endoplasmic reticulum calcium-ATPase has a major contribution. This TRPA1-independent mechanism may underlie formaldehyde-induced pan-neuronal excitation and subsequent inflammation. PMID:25875358

  1. Transient dynamics and their control in time-delay autonomous Boolean ring networks.

    PubMed

    Lohmann, Johannes; D'Huys, Otti; Haynes, Nicholas D; Schöll, Eckehard; Gauthier, Daniel J

    2017-02-01

    Biochemical systems with switch-like interactions, such as gene regulatory networks, are well modeled by autonomous Boolean networks. Specifically, the topology and logic of gene interactions can be described by systems of continuous piecewise-linear differential equations, enabling analytical predictions of the dynamics of specific networks. However, most models do not account for time delays along links associated with spatial transport, mRNA transcription, and translation. To address this issue, we have developed an experimental test bed to realize a time-delay autonomous Boolean network with three inhibitory nodes, known as a repressilator, and use it to study the dynamics that arise as time delays along the links vary. We observe various nearly periodic oscillatory transient patterns with extremely long lifetime, which emerge in small network motifs due to the delay, and which are distinct from the eventual asymptotically stable periodic attractors. For repeated experiments with a given network, we find that stochastic processes give rise to a broad distribution of transient times with an exponential tail. In some cases, the transients are so long that it is doubtful the attractors will ever be approached in a biological system that has a finite lifetime. To counteract the long transients, we show experimentally that small, occasional perturbations applied to the time delays can force the trajectories to rapidly approach the attractors.

  2. Transient dynamics and their control in time-delay autonomous Boolean ring networks

    NASA Astrophysics Data System (ADS)

    Lohmann, Johannes; D'Huys, Otti; Haynes, Nicholas D.; Schöll, Eckehard; Gauthier, Daniel J.

    2017-02-01

    Biochemical systems with switch-like interactions, such as gene regulatory networks, are well modeled by autonomous Boolean networks. Specifically, the topology and logic of gene interactions can be described by systems of continuous piecewise-linear differential equations, enabling analytical predictions of the dynamics of specific networks. However, most models do not account for time delays along links associated with spatial transport, mRNA transcription, and translation. To address this issue, we have developed an experimental test bed to realize a time-delay autonomous Boolean network with three inhibitory nodes, known as a repressilator, and use it to study the dynamics that arise as time delays along the links vary. We observe various nearly periodic oscillatory transient patterns with extremely long lifetime, which emerge in small network motifs due to the delay, and which are distinct from the eventual asymptotically stable periodic attractors. For repeated experiments with a given network, we find that stochastic processes give rise to a broad distribution of transient times with an exponential tail. In some cases, the transients are so long that it is doubtful the attractors will ever be approached in a biological system that has a finite lifetime. To counteract the long transients, we show experimentally that small, occasional perturbations applied to the time delays can force the trajectories to rapidly approach the attractors.

  3. [Transient delayed paraplegia after repair of thoracic and thoracoabdominal aneurysms].

    PubMed

    Martín Torrijos, M; Aguilar Lloret, C; Ariño Irujo, J J; Serrano Hernando, F J; López Timoneda, F

    2013-11-01

    Thoracoabdominal aneurysm requires multidisciplinary management due to its complexity both in surgical technique and anesthetic considerations. One of the most feared postoperative complication is spinal cord ischemia. It can be presented as different clinical patterns, and its recovery may be partial or complete. The postoperative management of spinal cord ischemia is mainly based on techniques to increase spinal cord perfusion, above all, hemodynamic stability and cerebrospinal fluid drainage. We present two cases of delayed paraplegia after an open repair of a thoracoabdominal aneurysm and a descending thoracic aortic aneurysm repair using an endovascular stent graft. They both had a complete neurological recovery after cerebrospinal fluid drainage. Copyright © 2012 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Published by Elsevier España. All rights reserved.

  4. Diffuse dispersive delay and the time convolution/attenuation of transients

    NASA Technical Reports Server (NTRS)

    Bittner, Burt J.

    1991-01-01

    Test data and analytic evaluations are presented to show that relatively poor 100 KHz shielding of 12 Db can effectively provide an electromagnetic pulse transient reduction of 100 Db. More importantly, several techniques are shown for lightning surge attenuation as an alternative to crowbar, spark gap, or power zener type clipping which simply reflects the surge. A time delay test method is shown which allows CW testing, along with a convolution program to define transient shielding effectivity where the Fourier phase characteristics of the transient are known or can be broadly estimated.

  5. Computational reconstitution of spine calcium transients from individual proteins

    PubMed Central

    Bartol, Thomas M.; Keller, Daniel X.; Kinney, Justin P.; Bajaj, Chandrajit L.; Harris, Kristen M.; Sejnowski, Terrence J.; Kennedy, Mary B.

    2015-01-01

    We have built a stochastic model in the program MCell that simulates Ca2+ transients in spines from the principal molecular components believed to control Ca2+ entry and exit. Proteins, with their kinetic models, are located within two segments of dendrites containing 88 intact spines, centered in a fully reconstructed 6 × 6 × 5 μm3 cube of hippocampal neuropil. Protein components include AMPA- and NMDA-type glutamate receptors, L- and R-type voltage-dependent Ca2+ channels, Na+/Ca2+ exchangers, plasma membrane Ca2+ ATPases, smooth endoplasmic reticulum Ca2+ ATPases, immobile Ca2+ buffers, and calbindin. Kinetic models for each protein were taken from published studies of the isolated proteins in vitro. For simulation of electrical stimuli, the time course of voltage changes in the dendritic spine was generated with the desired stimulus in the program NEURON. Voltage-dependent parameters were then continuously re-adjusted during simulations in MCell to reproduce the effects of the stimulus. Nine parameters of the model were optimized within realistic experimental limits by a process that compared results of simulations to published data. We find that simulations in the optimized model reproduce the timing and amplitude of Ca2+ transients measured experimentally in intact neurons. Thus, we demonstrate that the characteristics of individual isolated proteins determined in vitro can accurately reproduce the dynamics of experimentally measured Ca2+ transients in spines. The model will provide a test bed for exploring the roles of additional proteins that regulate Ca2+ influx into spines and for studying the behavior of protein targets in the spine that are regulated by Ca2+ influx. PMID:26500546

  6. Microscopic heat pulses induce contraction of cardiomyocytes without calcium transients

    SciTech Connect

    Oyama, Kotaro; Mizuno, Akari; Shintani, Seine A.; Itoh, Hideki; Serizawa, Takahiro; Fukuda, Norio; Suzuki, Madoka

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Infra-red laser beam generates microscopic heat pulses. Black-Right-Pointing-Pointer Heat pulses induce contraction of cardiomyocytes. Black-Right-Pointing-Pointer Ca{sup 2+} transients during the contraction were not detected. Black-Right-Pointing-Pointer Skinned cardiomyocytes in free Ca{sup 2+} solution also contracted. Black-Right-Pointing-Pointer Heat pulses regulated the contractions without Ca{sup 2+} dynamics. -- Abstract: It was recently demonstrated that laser irradiation can control the beating of cardiomyocytes and hearts, however, the precise mechanism remains to be clarified. Among the effects induced by laser irradiation on biological tissues, temperature change is one possible effect which can alter physiological functions. Therefore, we investigated the mechanism by which heat pulses, produced by infra-red laser light under an optical microscope, induce contractions of cardiomyocytes. Here we show that microscopic heat pulses induce contraction of rat adult cardiomyocytes. The temperature increase, {Delta}T, required for inducing contraction of cardiomyocytes was dependent upon the ambient temperature; that is, {Delta}T at physiological temperature was lower than that at room temperature. Ca{sup 2+} transients, which are usually coupled to contraction, were not detected. We confirmed that the contractions of skinned cardiomyocytes were induced by the heat pulses even in free Ca{sup 2+} solution. This heat pulse-induced Ca{sup 2+}-decoupled contraction technique has the potential to stimulate heart and skeletal muscles in a manner different from the conventional electrical stimulations.

  7. Characterization and functional consequences of delayed rectifier current transient in ventricular repolarization.

    PubMed

    Gintant, G A

    2000-03-01

    Although inactivation of the rapidly activating delayed rectifier current (I(Kr)) limits outward current on depolarization, the role of I(Kr) (and recovery from inactivation) during repolarization is uncertain. To characterize I(Kr) during ventricular repolarization (and compare with the inward rectifier current, I(K1)), voltage-clamp waveforms simulating the action potential were applied to canine ventricular, atrial, and Purkinje myocytes. In ventricular myocytes, I(Kr) was minimal at plateau potentials but transiently increased during repolarizing ramps. The I(Kr) transient was unaffected by repolarization rate and maximal after 150-ms depolarizations (+25 mV). Action potential clamps revealed the I(Kr) transient terminating the plateau. Although peak I(Kr) transient density was relatively uniform among myocytes, potentials characterizing the peak transients were widely dispersed. In contrast, peak inward rectifier current (I(K1)) density during repolarization was dispersed, whereas potentials characterizing I(K1) defined a narrower (more negative) voltage range. In summary, rapidly activating I(Kr) provides a delayed voltage-dependent (and functionally time-independent) outward transient during ventricular repolarization, consistent with rapid recovery from inactivation. The heterogeneous voltage dependence of I(Kr) provides a novel means for modulating the contribution of this current during repolarization.

  8. Imaging of calcium transients in skeletal muscle fibers.

    PubMed Central

    Vergara, J; DiFranco, M; Compagnon, D; Suarez-Isla, B A

    1991-01-01

    Epifluorescence images of Ca2+ transients elicited by electrical stimulation of single skeletal muscle fibers were studied with fast imaging techniques that take advantage of the large fluorescence signals emitted at relatively long wavelengths by the dyes fluo-3 and rhod-2 in response to binding of Ca2+ ions, and of the suitable features of a commercially available CCD video camera. The localized release of Ca2+ in response to microinjection of InsP3 was also monitored to demonstrate the adequate space and time resolutions of the imaging system. The time resolution of the imager system, although limited to the standard video frequency response, still proved to be adequate to investigate the fast Ca2+ release process in skeletal muscle fibers at low temperatures. Images FIGURE 4 FIGURE 5 FIGURE 6 PMID:2015378

  9. Acetate transiently inhibits myocardial contraction by increasing mitochondrial calcium uptake.

    PubMed

    Schooley, James F; Namboodiri, Aryan M A; Cox, Rachel T; Bünger, Rolf; Flagg, Thomas P

    2014-12-09

    There is a close relationship between cardiovascular disease and cardiac energy metabolism, and we have previously demonstrated that palmitate inhibits myocyte contraction by increasing Kv channel activity and decreasing the action potential duration. Glucose and long chain fatty acids are the major fuel sources supporting cardiac function; however, cardiac myocytes can utilize a variety of substrates for energy generation, and previous studies demonstrate the acetate is rapidly taken up and oxidized by the heart. In this study, we tested the effects of acetate on contractile function of isolated mouse ventricular myocytes. Acute exposure of myocytes to 10 mM sodium acetate caused a marked, but transient, decrease in systolic sarcomere shortening (1.49 ± 0.20% vs. 5.58 ± 0.49% in control), accompanied by a significant increase in diastolic sarcomere length (1.81 ± 0.01 μm vs. 1.77 ± 0.01 μm in control), with a near linear dose response in the 1-10 mM range. Unlike palmitate, acetate caused no change in action potential duration; however, acetate markedly increased mitochondrial Ca(2+) uptake. Moreover, pretreatment of cells with the mitochondrial Ca(2+) uptake blocker, Ru-360 (10 μM), markedly suppressed the effect of acetate on contraction. Lehninger and others have previously demonstrated that the anions of weak aliphatic acids such as acetate stimulate Ca(2+) uptake in isolated mitochondria. Here we show that this effect of acetate appears to extend to isolated cardiac myocytes where it transiently modulates cell contraction.

  10. Two New Calcium-Rich Gap Transients in Group and Cluster Environments

    NASA Astrophysics Data System (ADS)

    Lunnan, Ragnhild; Kasliwal, Mansi M.; Cao, Yi; Hangard, Laura; Yaron, Ofer; Parrent, Jerod; Masafumi, Yagi; Intermediate Palomar Transient Factory

    2017-01-01

    Calcium-rich gap transients are a recently discovered class of transients, characterized by peak luminosities in the “gap” between supernovae and novae, rapid photometric and spectroscopic evolution, and a nebular spectrum dominated by [Ca II] emisison. We present two new events discovered by the Palomar Transient Factory: PTF11kmb and PTF12bho. A striking feature of both transients are their host environments: PTF12bho is an intra-cluster transient in the Coma Cluster, while PTF11kmb is located in a loose galaxy group, and both are offset >20 kpc from any plausible host galaxy. Deep imaging from Subaru and the Hubble Space Telescope constrains the presence of any underlying faint galaxies or globular clusters at the locations of the transients. We discuss the offset distribution and host galaxy demographics of Ca-rich gap transients as a class, showing that both are more extreme than that observed for either Type Ia SNe and even short-duration gamma-ray bursts, and that the majority of events found to date are found in galaxy groups or clusters. Finally, we discuss the implications for the progenitor systems of Ca-rich gap transients.

  11. Impaired mitochondria and intracellular calcium transients in the salivary glands of obese rats.

    PubMed

    Ittichaicharoen, Jitjiroj; Apaijai, Nattayaporn; Tanajak, Pongpan; Sa-Nguanmoo, Piangkwan; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2017-04-01

    Long-term consumption of a high-fat diet (HFD) causes not only obese-insulin resistance, but is also associated with mitochondrial dysfunction in several organs. However, the effect of obese-insulin resistance on salivary glands has not been investigated. We hypothesized that obese-insulin resistance induced by HFD impaired salivary gland function by reducing salivation, increasing inflammation, and fibrosis, as well as impairing mitochondrial function and calcium transient signaling. Male Wistar rats (200-220 g) were fed either a ND or an HFD (n = 8/group) for 16 weeks. At the end of week 16, salivary flow rates, metabolic parameters, and plasma oxidative stress were determined. Rats were then sacrificed and submandibular glands were removed to determine inflammation, fibrosis, apoptosis, mitochondrial function and dynamics, and intracellular calcium transient signaling. Long-term consumption of an HFD caused obese-insulin resistance and increased oxidative stress, fibrosis, inflammation, and apoptosis in the salivary glands. In addition, impaired mitochondrial function, as indicated by increased mitochondrial reactive oxygen species, mitochondrial membrane depolarization, and mitochondrial swelling in salivary glands and impaired intracellular calcium regulation, as indicated by a reduced intracellular calcium transient rising rate, decay rates, and amplitude of salivary acinar cells, were observed in HFD-fed rats. However, salivary flow rate and level of aquaporin 5 protein were not different between both groups. Although HFD consumption did not affect salivation, it caused obese-insulin resistance, leading to pathophysiological alteration of salivary glands, including impaired intracellular calcium transients, increased oxidative stress and inflammation, and salivary mitochondrial dysfunction.

  12. Fura-2 calcium transients in frog skeletal muscle fibres.

    PubMed Central

    Baylor, S M; Hollingworth, S

    1988-01-01

    1. Intact single twitch fibres from frog muscle were mounted at long sarcomere spacing (3.5-4.2 microns) on an optical bench apparatus for the measurement of absorbance and fluorescence signals following the myoplasmic injection of either or both of the Ca2+ indicator dyes Fura-2 and Antipyrylazo III. Dye-related signals were measured at 16-17 degrees C in fibres at rest and stimulated electrically to give a single action potential or brief train of action potentials. 2. The apparent diffusion constant of Fura-2 in myoplasm, Dapp, was estimated from Fura-2 fluorescence measured as a function of time and distance from the site of dye injection. On average (N = 7), Dapp was 0.36 x 10(-6) cm2 s-1, a value nearly 3-fold smaller than expected if all the Fura-2 was freely dissolved in the myoplasmic solution. The small value of Dapp is explained if approximately 60-65% of the Fura-2 molecules were bound to relatively immobile sites in myoplasm. 3. In resting fibres the fraction of Fura-2 in the Ca2+-bound form was estimated to be small, on average (N = 11) 0.06 of total dye. However, because of the large fraction of Fura-2 not freely dissolved in myoplasm, and the indirect method employed for estimating Ca2+-bound dye, calibration of the resting level of myoplasmic free Ca2+ ([Ca2+]) from the fraction of Ca2+-bound dye was not considered reliable. 4. In response to a single action potential, large changes in Fura-2 fluorescence (delta F) and absorbance (delta A) were detected, which had identical time courses. As expected, the directions of these transients corresponded to an increase in Ca2+-dye complex. For wavelengths, lambda, between 380 and 460 nm, peak delta A(lambda) was closely similar to the Ca2+-dye difference spectrum for Fura-2 determined in in vitro calibrations. Beer's law was used to calibrate the concentration of Ca2+-dye complex formed during activity (delta[CaFura-2]) from the delta A(lambda) signal. Peak delta[CaFura-2] was found to vary between 0

  13. Calcium transients in asymmetrically activated skeletal muscle fibers.

    PubMed Central

    Trube, G; Lopez, J R; Taylor, S R

    1981-01-01

    Skeletal muscle fibers of the frog Rana temporaria were held just taut and stimulated transversely by unidirectional electrical fields. We observed the reversible effects of stimulus duration (0.1-100 ms) and strength on action potentials, intracellular Ca2+ transients (monitored by aequorin), and contractile force during fixed-end contractions. Long duration stimuli (e.g., 10 ms) induced a maintained depolarization on the cathodal side of a cell and a maintained hyperpolarization on its anodal side. The hyperpolarization of the side facing the anode prevented the action potential from reaching mechanical threshold during strong stimuli. Variation of the duration or strength of a stimulus changed the luminescent response from a fiber injected with aequorin. Thus, the intracellular Ca2+ released during excitation-contraction coupling could be changed by the stimulus parameters. Prolongation of a stimulus at field strengths above 1.1 x rheobase decreased the amplitude of aequorin signals and the force of contractions. The decreases in aequorin and force signals from a given fiber paralleled one another and depended on the stimulus strength, but not on the stimulus polarity. These changes were completely reversible for stimulus strengths up to at least 4.2 x rheobase. The graded decreases in membrane depolarization, aequorin signals, and contractile force were correlated with the previously described folding of myofibrils in fibers allowed to shorten in response to the application of a long duration stimulus. The changes in aequorin signals and force suggest an absence of myofilament activation by Ca2+ in the section of the fiber closest to the anode. The results imply that injected aequorin distributes circumferentially in frog muscle with a coefficient of at least 10(-7) cm2/s, which is not remarkably different from the previously measured coefficient of 5 x 10(-8) cm2/s for its diffusion lengthwise. PMID:6976801

  14. Label-Free Imaging of Dynamic and Transient Calcium Signaling in Single Cells.

    PubMed

    Lu, Jin; Li, Jinghong

    2015-11-09

    Cell signaling consists of diverse events that occur at various temporal and spatial scales, ranging from milliseconds to hours and from single biomolecules to cell populations. The pathway complexities require the development of new techniques that detect the overall signaling activities and are not limited to quantifying a single event. A plasmonic-based electrochemical impedance microscope (P-EIM) that can provide such data with excellent temporal and spatial resolution and does not require the addition of any labels for detection has now been developed. The highly dynamic and transient calcium signaling activities at the early stage of G-protein-coupled receptor (GPCR) stimulation were thus studied. It could be shown that a subpopulation of cells is more responsive towards agonist stimulation, and the heterogeneity of the local distributions and the transient activities of the ion channels during agonist-activated calcium flux in single HeLa cells were investigated.

  15. Enhancement of calcium signalling dynamics and stability by delayed modulation of the plasma-membrane calcium-ATPase in human T cells

    PubMed Central

    Bautista, Diana M; Hoth, Markus; Lewis, Richard S

    2002-01-01

    In addition to its homeostatic role of maintaining low resting levels of intracellular calcium ([Ca2+]i), the plasma-membrane calcium-ATPase (PMCA) may actively contribute to the generation of complex Ca2+ signals. We have investigated the role of the PMCA in shaping Ca2+ signals in Jurkat human leukaemic T cells using single-cell voltage-clamp and calcium-imaging techniques. Crosslinking the T-cell receptor with the monoclonal antibody OKT3 induces a biphasic elevation in [Ca2+]i consisting of a rapid overshoot to a level > 1 μM, followed by a slow decay to a plateau of ≈0.5 μM. A similar overshoot was triggered by a constant level of Ca2+ influx through calcium-release-activated Ca2+ (CRAC) channels in thapsigargin-treated cells, due to a delayed increase in the rate of Ca2+ clearance by the PMCA. Following a rise in [Ca2+]i, PMCA activity increased in two phases: a rapid increase followed by a further calcium-dependent increase of up to approximately fivefold over 10-60 s, termed modulation. After the return of [Ca2+]i to baseline levels, the PMCA recovered slowly from modulation (τ ≈4 min), effectively retaining a ‘memory’ of the previous [Ca2+]i elevation. Using a Michaelis-Menten model with appropriate corrections for cytoplasmic Ca2+ buffering, we found that modulation extended the dynamic range of PMCA activity by increasing both the maximal pump rate and Ca2+ sensitivity (reduction of KM). A simple flux model shows how pump modulation and its reversal produce the initial overshoot of the biphasic [Ca2+]i response. The modulation of PMCA activity enhanced the stability of Ca2+ signalling by adjusting the efflux rate to match influx through CRAC channels, even at high [Ca2+]i levels that saturate the transport sites and would otherwise render the cell defenceless against additional Ca2+ influx. At the same time, the delay in modulation enables small Ca2+ fluxes to transiently elevate [Ca2+]i, thus enhancing Ca2+ signalling dynamics. PMID:12068047

  16. Characterization of action potential-evoked calcium transients in mouse postganglionic sympathetic axon bundles.

    PubMed

    Jackson, V M; Trout, S J; Brain, K L; Cunnane, T C

    2001-11-15

    1. Action potential-evoked Ca(2+) transients in postganglionic sympathetic axon bundles in mouse vas deferens have been characterized using confocal microscopy and Ca(2+) imaging. 2. Axonal Ca(2+) transients were tetrodotoxin sensitive. The amplitude depended on both the frequency of stimulation and the number of stimuli in a train. 3. Removal of extracellular Ca(2+) abolished the Ca(2+) transient. Cd(2+)(100 microM) inhibited the Ca(2+) transient by 78 +/- 10 %. The N-type Ca(2+) channel blocker omega-conotoxin GVIA (0.1 microM) reduced the amplitude by -35 +/-4 %, whereas nifedipine (10 microM; L-type) and omega-conotoxin MVIIC (0.1 microM; P/Q type) were ineffective. 4. Caffeine (10 mM), ryanodine (10 microM), cyclopiazonic acid (30 microM) or CCCP (10 microM) had no detectable effects. 5. Blockade of large and small conductance Ca(2+)-dependent K+ channels with iberiotoxin (0.1 microM) and apamin (1 microM), respectively, or Ca(2+)-dependent Cl(-) channels by niflumic acid (100 microM) did not alter Ca(2+) transients. 6. In contrast, the non-specific K+ channel blockers tetraethylammonium (10 mM) and 4-aminopyridine (10 mM) markedly increased the amplitude of the Ca(2+) transient. Blockade of delayed rectifiers and A-like K+ channels, by tityustoxin-K (alpha) (0.1 microM) and pandinustoxin-K (alpha) (10 nM), respectively, also increased the Ca(2+) transient amplitude. 7. Thus, Ca(2+) transients are evoked by Na(+)-dependent action potentials in axons. These transients originate mainly from Ca(2+) entry through voltage-dependent Ca(2+) channels (80 % Cd(2+) sensitive of which 40 % was attributable to N-type). Twenty per cent of the Ca(2+) transient was not due to Ca(2+) entry through voltage-gated Ca(2+) channels. Intracellular stores and mitochondria were not involved in the generation of the transient. Ca(2+) transients are modulated by A-like K+ channels and delayed rectifiers (possibly K(V)1.2) but not by Ca(2+)-activated ion channels.

  17. Mechanical transients of single toad stomach smooth muscle cells. Effects of lowering temperature and extracellular calcium

    PubMed Central

    1990-01-01

    Smooth muscle's slow, economical contractions may relate to the kinetics of the crossbridge cycle. We characterized the crossbridge cycle in smooth muscle by studying tension recovery in response to a small, rapid length change (i.e., tension transients) in single smooth muscle cells from the toad stomach (Bufo marinus). To confirm that these tension transients reflect crossbridge kinetics, we examined the effect of lowering cell temperature on the tension transient time course. Once this was confirmed, cells were exposed to low extracellular calcium [( Ca2+]o) to determine whether modulation of the cell's shortening velocity by changes in [Ca2+]o reflected the calcium sensitivity of one or more steps in the crossbridge cycle. Single smooth muscle cells were tied between an ultrasensitive force transducer and length displacement device after equilibration in temperature-controlled physiological saline having either a low (0.18 mM) or normal (1.8 mM) calcium concentration. At the peak of isometric force, after electrical stimulation, small, rapid (less than or equal to 1.8% cell length in 3.6 ms) step stretches and releases were imposed. At room temperature (20 degrees C) in normal [Ca2+]o, tension recovery after the length step was described by the sum of two exponentials with rates of 40-90 s-1 for the fast phase and 2-4 s-1 for the slow phase. In normal [Ca2+]o but at low temperature (10 degrees C), the fast tension recovery phase slowed (apparent Q10 = 1.9) for both stretches and releases whereas the slow tension recovery phase for a release was only moderately affected (apparent Q10 = 1.4) while unaffected for a stretch. Dynamic stiffness was determined throughout the time course of the tension transient to help correlate the tension transient phases with specific step(s) in the crossbridge cycle. The dissociation of tension and stiffness, during the fast tension recovery phase after a release, was interpreted as evidence that this recovery phase resulted from

  18. Differences of calcium binding proteins immunoreactivities in the young hippocampal CA1 region from the adult following transient ischemic damage.

    PubMed

    Lee, Young Joo; Yan, Bing Chun; Park, Joon Ha; Ahn, Ji Hyeon; Kim, In Hye; Lee, Jae-Chul; Lee, Hui Young; Kim, Young-Myeong; Won, Moo-Ho; Cho, Jun Hwi

    2013-03-15

    It has been reported that the young were much more resistant to transient cerebral ischemia than in the adult. In the present study, we examined that about 90% of CA1 pyramidal cells in the adult gerbil hippocampus died at 4days after ischemia-reperfusion; however, in the young hippocampus, about 56% of them died at 7days after ischemia-reperfusion. We compared immunoreactivities and levels of calcium binding proteins (CBPs), such as calbindin 28k (CB-D28k), calretinin (CR) and parvalbumin (PV). The immunoreactivities and protein levels of all the CBPs in the young sham were higher than those in the adult sham. In the adult, the immunoreactivities and protein levels of all the CBPs were markedly decreased at 4days after ischemia-reperfusion, however, in the young, they were apparently maintained. At 7days after ischemia-reperfusion, they were decreased in the young, however, they were much higher than those in the adult. In brief, the immunoreactivities and levels of CBPs were not decreased in the ischemic CA1 region of the young 4days after transient cerebral ischemia. This finding indicates that the longer maintenance of CBPs may contribute to a less and more delayed neuronal death/damage in the young.

  19. Shaker and Shal Mediate Transient Calcium-Independent Potassium Current in a Drosophila Flight Motoneuron

    PubMed Central

    Duch, Carsten

    2009-01-01

    Ionic currents underlie the firing patterns, excitability, and synaptic integration of neurons. Despite complete sequence information in multiple species, our knowledge about ion channel function in central neurons remains incomplete. This study analyzes the potassium currents of an identified Drosophila flight motoneuron, MN5, in situ. MN5 exhibits four different potassium currents, two fast-activating transient ones and two sustained ones, one of each is calcium activated. Pharmacological and genetic manipulations unravel the specific contributions of Shaker and Shal to the calcium independent transient A-type potassium currents. α-dendrotoxin (Shaker specific) and phrixotoxin-2 (Shal specific) block different portions of the transient calcium independent A-type potassium current. Following targeted expression of a Shaker dominant negative transgene in MN5, the remaining A-type potassium current is α-dendrotoxin insensitive. In Shal RNAi knock down the remaining A-type potassium current is phrixotoxin-2 insensitive. Additionally, barium blocks calcium-activated potassium currents but also a large portion of phrixotoxin-2-sensitive A-type currents. Targeted knock down of Shaker or Shal channels each cause identical reduction in total potassium current amplitude as acute application of α-dendrotoxin or phrixotoxin-2, respectively. This shows that the knock downs do not cause upregulation of potassium channels underlying other A-type channels during development. Immunocytochemistry and targeted expression of modified GFP-tagged Shaker channels with intact targeting sequence in MN5 indicate predominant axonal localization. These data can now be used to investigate the roles of Shaker and Shal for motoneuron intrinsic properties, synaptic integration, and spiking output during behavior by targeted genetic manipulations. PMID:19828724

  20. Contribution of downregulation of L-type calcium currents to delayed neuronal death in rat hippocampus after global cerebral ischemia and reperfusion.

    PubMed

    Li, Xiao-Ming; Yang, Jian-Ming; Hu, De-Hui; Hou, Feng-Qing; Zhao, Miao; Zhu, Xin-Hong; Wang, Ying; Li, Jian-Guo; Hu, Ping; Chen, Liang; Qin, Lu-Ning; Gao, Tian-Ming

    2007-05-09

    Transient forebrain ischemia induces delayed, selective neuronal death in the CA1 region of the hippocampus. The underlying molecular mechanisms are as yet unclear, but it is known that activation of L-type Ca2+ channels specifically increases the expression of a group of genes required for neuronal survival. Accordingly, we examined temporal changes in L-type calcium-channel activity in CA1 and CA3 pyramidal neurons of rat hippocampus after transient forebrain ischemia by patch-clamp techniques. In vulnerable CA1 neurons, L-type Ca2+-channel activity was persistently downregulated after ischemic insult, whereas in invulnerable CA3 neurons, no change occurred. Downregulation of L-type calcium channels was partially caused by oxidation modulation in postischemic channels. Furthermore, L-type but neither N-type nor P/Q-type Ca2+-channel antagonists alone significantly inhibited the survival of cultured hippocampal neurons. In contrast, specific L-type calcium-channel agonist remarkably reduced neuronal cell death and restored the inhibited channels induced by nitric oxide donor. More importantly, L-type calcium-channel agonist applied after reoxygenation or reperfusion significantly decreased neuronal injury in in vitro oxygen-glucose deprivation ischemic model and in animals subjected to forebrain ischemia-reperfusion. Together, the present results suggest that ischemia-induced inhibition of L-type calcium currents may give rise to delayed death of neurons in the CA1 region, possibly via oxidation mechanisms. Our findings may lead to a new perspective on neuronal death after ischemic insult and suggest that a novel therapeutic approach, activation of L-type calcium channels, could be tested at late stages of reperfusion for stroke treatment.

  1. ATP Released by Electrical Stimuli Elicits Calcium Transients and Gene Expression in Skeletal Muscle*

    PubMed Central

    Buvinic, Sonja; Almarza, Gonzalo; Bustamante, Mario; Casas, Mariana; López, Javiera; Riquelme, Manuel; Sáez, Juan Carlos; Huidobro-Toro, Juan Pablo; Jaimovich, Enrique

    2009-01-01

    ATP released from cells is known to activate plasma membrane P2X (ionotropic) or P2Y (metabotropic) receptors. In skeletal muscle cells, depolarizing stimuli induce both a fast calcium signal associated with contraction and a slow signal that regulates gene expression. Here we show that nucleotides released to the extracellular medium by electrical stimulation are partly involved in the fast component and are largely responsible for the slow signals. In rat skeletal myotubes, a tetanic stimulus (45 Hz, 400 1-ms pulses) rapidly increased extracellular levels of ATP, ADP, and AMP after 15 s to 3 min. Exogenous ATP induced an increase in intracellular free Ca2+ concentration, with an EC50 value of 7.8 ± 3.1 μm. Exogenous ADP, UTP, and UDP also promoted calcium transients. Both fast and slow calcium signals evoked by tetanic stimulation were inhibited by either 100 μm suramin or 2 units/ml apyrase. Apyrase also reduced fast and slow calcium signals evoked by tetanus (45 Hz, 400 0.3-ms pulses) in isolated mouse adult skeletal fibers. A likely candidate for the ATP release pathway is the pannexin-1 hemichannel; its blockers inhibited both calcium transients and ATP release. The dihydropyridine receptor co-precipitated with both the P2Y2 receptor and pannexin-1. As reported previously for electrical stimulation, 500 μm ATP significantly increased mRNA expression for both c-fos and interleukin 6. Our results suggest that nucleotides released during skeletal muscle activity through pannexin-1 hemichannels act through P2X and P2Y receptors to modulate both Ca2+ homeostasis and muscle physiology. PMID:19822518

  2. Acute effect of androgens on maximal force-generating capacity and electrically evoked calcium transient in mouse skeletal muscles.

    PubMed

    Fraysse, Bodvael; Vignaud, Alban; Fane, Bourama; Schuh, Mélanie; Butler-Browne, Gillian; Metzger, Daniel; Ferry, Arnaud

    2014-09-01

    As androgens might have rapid androgen-receptor (AR) independent action on muscle cells, we analysed the in vivo acute effect of androgens on maximal force generation capacity and electrically evoked calcium transient responsible for the excitation-contraction coupling in skeletal muscle from wild-type male mice and muscle fibre androgen receptor (AR) deficient (AR(skm-/y)) male mice. We tested the hypothesis that acute in vivo androgen treatment improves contractility and modifies calcium transient in mouse hindlimb muscles. In addition, we determined whether the reduced maximal force generation capacity of AR(skm-/y) mice is caused by an alteration in calcium transient. We found that acute dehydrotestosterone (DHT) and testosterone treatment of mice does not change in situ maximal force, power or fatigue resistance of tibialis anterior muscles. In agreement with this observation, maximal force and twitch kinetics also remained unchanged when both whole extensor digitorum longus (EDL) muscle or fibre bundles were incubated in vitro with DHT. Electrically evoked calcium transient, i.e. calcium amplitude, time to peak and decay, was also not modified by DHT treatment of EDL muscle fibre bundles. Finally, we found no difference in calcium transient between AR(skm-/y) and wild-type mice despite the reduced maximal force in EDL fibre bundles of AR(skm-/y) mice. In conclusion, acute androgen treatment has no ergogenic effect on muscle contractility and does not affect calcium transient in response to stimulation. In addition, the reduced maximal force of AR(skm-/y) mice is not related to calcium transient dysfunction.

  3. Role of time delay on intracellular calcium dynamics driven by non-Gaussian noises

    PubMed Central

    Duan, Wei-Long; Zeng, Chunhua

    2016-01-01

    Effect of time delay (τ) on intracellular calcium dynamics with non-Gaussian noises in transmission processes of intracellular Ca2+ is studied by means of second-order stochastic Runge-Kutta type algorithm. By simulating and analyzing time series, normalized autocorrelation function, and characteristic correlation time of cytosolic and calcium store’s Ca2+ concentration, the results exhibit: (i) intracellular calcium dynamics’s time coherence disappears and stability strengthens as τ → 0.1s; (ii) for the case of τ < 0.1s, the normalized autocorrelation functions of cytosolic and calcium store’s Ca2+ concentration show damped motion when τ is very short, but they trend to a level line as τ → 0.1s, and for the case of τ > 0.1s, they show different variation as τ increases, the former changes from underdamped motion to a level line, but the latter changes from damped motion to underdamped motion; and (iii) at the moderate value of time delay, reverse resonance occurs both in cytosol and calcium store. PMID:27121687

  4. Role of time delay on intracellular calcium dynamics driven by non-Gaussian noises.

    PubMed

    Duan, Wei-Long; Zeng, Chunhua

    2016-04-28

    Effect of time delay (τ) on intracellular calcium dynamics with non-Gaussian noises in transmission processes of intracellular Ca(2+) is studied by means of second-order stochastic Runge-Kutta type algorithm. By simulating and analyzing time series, normalized autocorrelation function, and characteristic correlation time of cytosolic and calcium store's Ca(2+) concentration, the results exhibit: (i) intracellular calcium dynamics's time coherence disappears and stability strengthens as τ → 0.1s; (ii) for the case of τ < 0.1s, the normalized autocorrelation functions of cytosolic and calcium store's Ca(2+) concentration show damped motion when τ is very short, but they trend to a level line as τ → 0.1s, and for the case of τ > 0.1s, they show different variation as τ increases, the former changes from underdamped motion to a level line, but the latter changes from damped motion to underdamped motion; and (iii) at the moderate value of time delay, reverse resonance occurs both in cytosol and calcium store.

  5. Two New Calcium-rich Gap Transients in Group and Cluster Environments

    NASA Astrophysics Data System (ADS)

    Lunnan, R.; Kasliwal, M. M.; Cao, Y.; Hangard, L.; Yaron, O.; Parrent, J. T.; McCully, C.; Gal-Yam, A.; Mulchaey, J. S.; Ben-Ami, S.; Filippenko, A. V.; Fremling, C.; Fruchter, A. S.; Howell, D. A.; Koda, J.; Kupfer, T.; Kulkarni, S. R.; Laher, R.; Masci, F.; Nugent, P. E.; Ofek, E. O.; Yagi, M.; Yan, Lin

    2017-02-01

    We present the Palomar Transient Factory discoveries and the photometric and spectroscopic observations of PTF11kmb and PTF12bho. We show that both transients have properties consistent with the class of calcium-rich gap transients, specifically lower peak luminosities and rapid evolution compared to ordinary supernovae, and a nebular spectrum dominated by [Ca ii] emission. A striking feature of both transients is their host environments: PTF12bho is an intracluster transient in the Coma Cluster, while PTF11kmb is located in a loose galaxy group, at a physical offset ∼150 kpc from the most likely host galaxy. Deep Subaru imaging of PTF12bho rules out an underlying host system to a limit of {M}R> -8.0 {mag}, while Hubble Space Telescope imaging of PTF11kmb reveals a marginal counterpart that, if real, could be either a background galaxy or a globular cluster. We show that the offset distribution of Ca-rich gap transients is significantly more extreme than that seen for SNe Ia or even short-hard gamma-ray bursts (sGRBs). Thus, if the offsets are caused by a kick, they require higher kick velocities and/or longer merger times than sGRBs. We also show that almost all Ca-rich transients found to date are in group and cluster environments with elliptical host galaxies, indicating a very old progenitor population; the remote locations could partially be explained by these environments having the largest fraction of stars in the intragroup/intracluster light following galaxy–galaxy interactions.

  6. Fluid shear stress induces calcium transients in osteoblasts through depolarization of osteoblastic membrane.

    PubMed

    Sun, Junqing; Liu, Xifang; Tong, Jie; Sun, Lijun; Xu, Hao; Shi, Liang; Zhang, Jianbao

    2014-12-18

    Intracellular calcium transient ([Ca(2+)]i transient) induced by fluid shear stress (FSS) plays an important role in osteoblastic mechanotransduction. Changes of membrane potential usually affect [Ca(2+)]i level. Here, we sought to determine whether there was a relationship between membrane potential and FSS-induced [Ca(2+)]i transient in osteoblasts. Fluorescent dyes DiBAC4(3) and fura-2AM were respectively used to detect membrane potential and [Ca(2+)]i. Our results showed that FSS firstly induced depolarization of membrane potential and then a transient rising of [Ca(2+)]i in osteoblasts. There was a same threshold for FSS to induce depolarization of membrane potential and [Ca(2+)]i transients. Replacing extracellular Na(+) with tetraethylammonium or blocking stretch-activated channels (SACs) with gadolinium both effectively inhibited FSS-induced membrane depolarization and [Ca(2+)]i transients. However, voltage-activated K(+) channel inhibitor, 4-Aminopyridine, did not affect these responses. Removing extracellular Ca(2+) or blocking of L-type voltage-sensitive Ca(2+) channels (L-VSCCs) with nifedipine inhibited FSS-induced [Ca(2+)]i transients in osteoblasts too. Quantifying membrane potential with patch clamp showed that the resting potential of osteoblasts was -43.3mV and the depolarization induced by FSS was about 44mV. Voltage clamp indicated that this depolarization was enough to activated L-VSCCs in osteoblasts. These results suggested a time line of Ca(2+) mobilization wherein FSS activated SACs to promote Na(+) entry to depolarize membrane that, in turn, activated L-VSCCs and Ca(2+) influx though L-VSCCs switched on [Ca(2+)]i response in osteoblasts.

  7. Two New Calcium-rich Gap Transients in Group and Cluster Environments

    DOE PAGES

    Lunnan, R.; Kasliwal, M. M.; Cao, Y.; ...

    2017-02-08

    We present the Palomar Transient Factory discoveries and the photometric and spectroscopic observations of PTF11kmb and PTF12bho. We show that both transients have properties consistent with the class of calcium-rich gap transients, specifically lower peak luminosities and rapid evolution compared to ordinary supernovae, and a nebular spectrum dominated by [Ca ii] emission. A striking feature of both transients is their host environments: PTF12bho is an intracluster transient in the Coma Cluster, while PTF11kmb is located in a loose galaxy group, at a physical offset ~150 kpc from the most likely host galaxy. Deep Subaru imaging of PTF12bho rules out anmore » underlying host system to a limit of MR > -8.0 mag, while Hubble Space Telescope imaging of PTF11kmb reveals a marginal counterpart that, if real, could be either a background galaxy or a globular cluster. Here, we show that the offset distribution of Ca-rich gap transients is significantly more extreme than that seen for SNe Ia or even short-hard gamma-ray bursts (sGRBs). Thus, if the offsets are caused by a kick, they require higher kick velocities and/or longer merger times than sGRBs. Finally, we also show that almost all Ca-rich transients found to date are in group and cluster environments with elliptical host galaxies, indicating a very old progenitor population; the remote locations could partially be explained by these environments having the largest fraction of stars in the intragroup/intracluster light following galaxy-galaxy interactions.« less

  8. Calcium currents and transients in co-cultured contracting normal and Duchenne muscular dystrophy human myotubes.

    PubMed

    Imbert, N; Vandebrouck, C; Duport, G; Raymond, G; Hassoni, A A; Constantin, B; Cullen, M J; Cognard, C

    2001-07-15

    1. The goal of the present study was to investigate differences in calcium movements between normal and Duchenne muscular dystrophy (DMD) human contracting myotubes co-cultured with explants of rat spinal cord with attached dorsal root ganglia. Membrane potential, variations of intracellular calcium concentration and T- and L-type calcium currents were recorded. Further, a descriptive and quantitative study by electron microscopy of the ultrastructure of the co-cultures was carried out. 2. The resting membrane potential was slightly less negative in DMD (-61.4 +/- 1.1 mV) than in normal myotubes (-65.5 +/- 0.9 mV). Both types of myotube displayed spontaneous action potentials (mean firing frequency, 0.42 and 0.16 Hz, respectively), which triggered spontaneous calcium transients measured with Indo-1. 3. The time integral under the spontaneous Ca(2+) transients was significantly greater in DMD myotubes (97 +/- 8 nM s) than in normal myotubes (67 +/- 13 nM s). 4. The L- and T-type current densities estimated from patch-clamp recordings were smaller in DMD cells (2.0 +/- 0.5 and 0.90 +/- 0.19 pA pF(-1), respectively) than in normal cells (3.9 +/- 0.7 and 1.39 +/- 0.30 pA pF(-1), respectively). 5. The voltage-dependent inactivation relationships revealed a shift in the conditioning potential at which inactivation is half-maximal (V(h,0.5)) of the T- and L-type currents towards less negative potentials, from -72.1 +/- 0.7 and -53.7 +/- 1.5 mV in normal cells to -61.9 +/- 1.4 and -29.2 +/- 1.4 mV in DMD cells, respectively. 6. Both descriptive and quantitative studies by electron microscopy suggested a more advanced development of DMD myotubes as compared to normal ones. This conclusion was supported by the significantly larger capacitance of the DMD myotubes (408 +/- 45 pF) than of the normal myotubes (299 +/- 34 pF) of the same apparent size. 7. Taken together, these results show that differences in T- and L-type calcium currents between normal and DMD myotubes cannot

  9. Calcium currents and transients in co-cultured contracting normal and Duchenne muscular dystrophy human myotubes

    PubMed Central

    Imbert, Nathalie; Vandebrouck, Clarisse; Duport, Gérard; Raymond, Guy; Hassoni, Abdul A; Constantin, Bruno; Cullen, Michael J; Cognard, Christian

    2001-01-01

    The goal of the present study was to investigate differences in calcium movements between normal and Duchenne muscular dystrophy (DMD) human contracting myotubes co-cultured with explants of rat spinal cord with attached dorsal root ganglia. Membrane potential, variations of intracellular calcium concentration and T- and L-type calcium currents were recorded. Further, a descriptive and quantitative study by electron microscopy of the ultrastructure of the co-cultures was carried out. The resting membrane potential was slightly less negative in DMD (−61.4 ± 1.1 mV) than in normal myotubes (−65.5 ± 0.9 mV). Both types of myotube displayed spontaneous action potentials (mean firing frequency, 0.42 and 0.16 Hz, respectively), which triggered spontaneous calcium transients measured with Indo-1. The time integral under the spontaneous Ca2+ transients was significantly greater in DMD myotubes (97 ± 8 nm s) than in normal myotubes (67 ± 13 nm s). The L- and T-type current densities estimated from patch-clamp recordings were smaller in DMD cells (2.0 ± 0.5 and 0.90 ± 0.19 pA pF−1, respectively) than in normal cells (3.9 ± 0.7 and 1.39 ± 0.30 pA pF−1, respectively). The voltage-dependent inactivation relationships revealed a shift in the conditioning potential at which inactivation is half-maximal (Vh,0.5) of the T- and L-type currents towards less negative potentials, from −72.1 ± 0.7 and −53.7 ± 1.5 mV in normal cells to −61.9 ± 1.4 and −29.2 ± 1.4 mV in DMD cells, respectively. Both descriptive and quantitative studies by electron microscopy suggested a more advanced development of DMD myotubes as compared to normal ones. This conclusion was supported by the significantly larger capacitance of the DMD myotubes (408 ± 45 pF) than of the normal myotubes (299 ± 34 pF) of the same apparent size. Taken together, these results show that differences in T- and L-type calcium currents between normal and DMD myotubes cannot simply explain all observed

  10. IP3-dependent, post-tetanic calcium transients induced by electrostimulation of adult skeletal muscle fibers

    PubMed Central

    Casas, Mariana; Figueroa, Reinaldo; Jorquera, Gonzalo; Escobar, Matías; Molgó, Jordi

    2010-01-01

    Tetanic electrical stimulation induces two separate calcium signals in rat skeletal myotubes, a fast one, dependent on Cav 1.1 or dihydropyridine receptors (DHPRs) and ryanodine receptors and related to contraction, and a slow signal, dependent on DHPR and inositol trisphosphate receptors (IP3Rs) and related to transcriptional events. We searched for slow calcium signals in adult muscle fibers using isolated adult flexor digitorum brevis fibers from 5–7-wk-old mice, loaded with fluo-3. When stimulated with trains of 0.3-ms pulses at various frequencies, cells responded with a fast calcium signal associated with muscle contraction, followed by a slower signal similar to one previously described in cultured myotubes. Nifedipine inhibited the slow signal more effectively than the fast one, suggesting a role for DHPR in its onset. The IP3R inhibitors Xestospongin B or C (5 µM) also inhibited it. The amplitude of post-tetanic calcium transients depends on both tetanus frequency and duration, having a maximum at 10–20 Hz. At this stimulation frequency, an increase of the slow isoform of troponin I mRNA was detected, while the fast isoform of this gene was inhibited. All three IP3R isoforms were present in adult muscle. IP3R-1 was differentially expressed in different types of muscle fibers, being higher in a subset of fast-type fibers. Interestingly, isolated fibers from the slow soleus muscle did not reveal the slow calcium signal induced by electrical stimulus. These results support the idea that IP3R-dependent slow calcium signals may be characteristic of distinct types of muscle fibers and may participate in the activation of specific transcriptional programs of slow and fast phenotype. PMID:20837675

  11. Transient exposure to calcium ionophore enables in vitro fertilization in sterile mouse models

    PubMed Central

    Navarrete, Felipe A.; Alvau, Antonio; Lee, Hoi Chang; Levin, Lonny R.; Buck, Jochen; Leon, Patricia Martin-De; Santi, Celia M.; Krapf, Dario; Mager, Jesse; Fissore, Rafael A.; Salicioni, Ana M.; Darszon, Alberto; Visconti, Pablo E.

    2016-01-01

    Mammalian sperm acquire fertilizing capacity in the female tract in a process called capacitation. At the molecular level, capacitation requires protein kinase A activation, changes in membrane potential and an increase in intracellular calcium. Inhibition of these pathways results in loss of fertilizing ability in vivo and in vitro. We demonstrated that transient incubation of mouse sperm with Ca2+ ionophore accelerated capacitation and rescued fertilizing capacity in sperm with inactivated PKA function. We now show that a pulse of Ca2+ ionophore induces fertilizing capacity in sperm from infertile CatSper1 (Ca2+ channel), Adcy10 (soluble adenylyl cyclase) and Slo3 (K+ channel) KO mice. In contrast, sperm from infertile mice lacking the Ca2+ efflux pump PMACA4 were not rescued. These results indicate that a transient increase in intracellular Ca2+ can overcome genetic infertility in mice and suggest this approach may prove adaptable to rescue sperm function in certain cases of human male infertility. PMID:27627854

  12. NOTE: Total body-calcium measurements: comparison of two delayed-gamma neutron activation facilities

    NASA Astrophysics Data System (ADS)

    Ma, R.; Ellis, K. J.; Yasumura, S.; Shypailo, R. J.; Pierson, R. N., Jr.

    1999-06-01

    This study compares two independently calibrated delayed-gamma neutron activation (DGNA) facilities, one at the Brookhaven National Laboratory (BNL), Upton, New York, and the other at the Children's Nutrition Research Center (CNRC), Houston, Texas that measure total body calcium (TBCa). A set of BNL phantoms was sent to CNRC for neutron activation analysis, and a set of CNRC phantoms was measured at BNL. Both facilities showed high precision (<2%), and the results were in good agreement, within 5%.

  13. Cav3-type α1T calcium channels mediate transient calcium currents that regulate repetitive firing in Drosophila antennal lobe PNs.

    PubMed

    Iniguez, Jorge; Schutte, Soleil S; O'Dowd, Diane K

    2013-10-01

    Projection neurons (PNs), located in the antennal lobe region of the insect brain, play a key role in processing olfactory information. To explore how activity is regulated at the level of single PNs within this central circuit we have recorded from these neurons in adult Drosophila melanogaster brains. Our previous study demonstrated that PNs express voltage-gated calcium currents with a transient and sustained component. We found that the sustained component is mediated by cac gene-encoded Cav2-type channels involved in regulating action potential-independent release of neurotransmitter at excitatory cholinergic synapses. The function of the transient calcium current and the gene encoding the underlying channels, however, were unknown. Here we report that the transient current blocked by prepulse inactivation is sensitive to amiloride, a vertebrate Cav3-type channel blocker. In addition PN-specific RNAi knockdown of α1T, the Drosophila Cav3-type gene, caused a dramatic reduction in the transient current without altering the sustained component. These data demonstrate that the α1T gene encodes voltage-gated calcium channels underlying the amiloride-sensitive transient current. Alterations in evoked firing and spontaneous burst firing in the α1T knockdowns demonstrate that the Cav3-type calcium channels are important in regulating excitability in adult PNs.

  14. Sarcoplasmic reticulum calcium release in frog skeletal muscle fibres estimated from Arsenazo III calcium transients.

    PubMed Central

    Baylor, S M; Chandler, W K; Marshall, M W

    1983-01-01

    Single twitch fibres, dissected from frog muscle, were injected with the metallochromic dye Arsenazo III. Changes in dye-related absorbance measured at 650 or 660 nm were used to estimate the time course of myoplasmic free [Ca2+] following either action potential stimulation or voltage-clamp depolarization (temperature, 15-17 degrees C). The amplitude of the Ca2+ transient decreased when fibres were stretched to sarcomere spacings approaching 4 microns. The effect appeared to be less marked in H2O Ringer than in D2O Ringer, where a reduction of about 40% was observed in going from 3.0 microns to 3.7-3.9 microns. In fibres heavily injected with dye (1.5-2.2 mM-dye) at least 0.1 mM-Ca2+ was complexed with Arsenazo III following a single action potential, implying that at least 0.1 mM-Ca2+ was released from the sarcoplasmic reticulum (s.r.) into the myoplasm. Computer simulations were carried out to estimate the flux of Ca2+ between the s.r. and myoplasm (in fibres containing no more that 0.8 mM-dye). The amounts and time courses of Ca2+ bound to the Ca2+-regulatory sites on troponin and to the Ca2+, Mg2+ sites on parvalbumin were estimated from the free [Ca2+] wave form and the law of mass action. In the computations the total myoplasmic [Ca2+] was taken as the total amount of Ca2+ existing either as free ion or as ion complexed with dye, troponin or parvalbumin. The time derivative of total myoplasmic [Ca2+] was used as an estimate of net Ca2+ flux (release minus uptake) from the s.r. into myoplasm. Rate constants for formation of cation: receptor complex were taken from published values. For the Ca2+-regulatory sites on troponin, three sets of rate constants, corresponding to two values of dissociation constant (0.2 and 2 microM) were used. Each set of three simulations was carried out both with and without parvalbumin. The simulations show that following action potential stimulation, 0.2-0.3 mM-Ca2+ enters the myoplasm from the s.r. The wave form of s.r. Ca2

  15. Calcium Transients Closely Reflect Prolonged Action Potentials in iPSC Models of Inherited Cardiac Arrhythmia

    PubMed Central

    Spencer, C. Ian; Baba, Shiro; Nakamura, Kenta; Hua, Ethan A.; Sears, Marie A.F.; Fu, Chi-cheng; Zhang, Jianhua; Balijepalli, Sadguna; Tomoda, Kiichiro; Hayashi, Yohei; Lizarraga, Paweena; Wojciak, Julianne; Scheinman, Melvin M.; Aalto-Setälä, Katriina; Makielski, Jonathan C.; January, Craig T.; Healy, Kevin E.; Kamp, Timothy J.; Yamanaka, Shinya; Conklin, Bruce R.

    2014-01-01

    Summary Long-QT syndrome mutations can cause syncope and sudden death by prolonging the cardiac action potential (AP). Ion channels affected by mutations are various, and the influences of cellular calcium cycling on LQTS cardiac events are unknown. To better understand LQTS arrhythmias, we performed current-clamp and intracellular calcium ([Ca2+]i) measurements on cardiomyocytes differentiated from patient-derived induced pluripotent stem cells (iPS-CM). In myocytes carrying an LQT2 mutation (HERG-A422T), APs and [Ca2+]i transients were prolonged in parallel. APs were abbreviated by nifedipine exposure and further lengthened upon releasing intracellularly stored Ca2+. Validating this model, control iPS-CM treated with HERG-blocking drugs recapitulated the LQT2 phenotype. In LQT3 iPS-CM, expressing NaV1.5-N406K, APs and [Ca2+]i transients were markedly prolonged. AP prolongation was sensitive to tetrodotoxin and to inhibiting Na+-Ca2+ exchange. These results suggest that LQTS mutations act partly on cytosolic Ca2+ cycling, potentially providing a basis for functionally targeted interventions regardless of the specific mutation site. PMID:25254341

  16. Dissociation of Calcium Transients and Force Development following a Change in Stimulation Frequency in Isolated Rabbit Myocardium

    PubMed Central

    Haizlip, Kaylan M.; Milani-Nejad, Nima; Varian, Kenneth D.; Slabaugh, Jessica L.; Walton, Shane D.; Gyorke, Sandor; Davis, Jonathan P.; Biesiadecki, Brandon J.; Janssen, Paul M. L.

    2015-01-01

    As the heart transitions from one exercise intensity to another, changes in cardiac output occur, which are modulated by alterations in force development and calcium handling. Although the steady-state force-calcium relationship at various heart rates is well investigated, regulation of these processes during transitions in heart rate is poorly understood. In isolated right ventricular muscle preparations from the rabbit, we investigated the beat-to-beat alterations in force and calcium during the transition from one stimulation frequency to another, using contractile assessments and confocal microscopy. We show that a change in steady-state conditions occurs in multiple phases: a rapid phase, which is characterized by a fast change in force production mirrored by a change in calcium transient amplitude, and a slow phase, which follows the rapid phase and occurs as the muscle proceeds to stabilize at the new frequency. This second/late phase is characterized by a quantitative dissociation between the calcium transient amplitude and developed force. Twitch timing kinetics, such as time to peak tension and 50% relaxation rate, reached steady-state well before force development and calcium transient amplitude. The dynamic relationship between force and calcium upon a switch in stimulation frequency unveils the dynamic involvement of myofilament-based properties in frequency-dependent activation. PMID:25961020

  17. Dissociation of Calcium Transients and Force Development following a Change in Stimulation Frequency in Isolated Rabbit Myocardium.

    PubMed

    Haizlip, Kaylan M; Milani-Nejad, Nima; Brunello, Lucia; Varian, Kenneth D; Slabaugh, Jessica L; Walton, Shane D; Gyorke, Sandor; Davis, Jonathan P; Biesiadecki, Brandon J; Janssen, Paul M L

    2015-01-01

    As the heart transitions from one exercise intensity to another, changes in cardiac output occur, which are modulated by alterations in force development and calcium handling. Although the steady-state force-calcium relationship at various heart rates is well investigated, regulation of these processes during transitions in heart rate is poorly understood. In isolated right ventricular muscle preparations from the rabbit, we investigated the beat-to-beat alterations in force and calcium during the transition from one stimulation frequency to another, using contractile assessments and confocal microscopy. We show that a change in steady-state conditions occurs in multiple phases: a rapid phase, which is characterized by a fast change in force production mirrored by a change in calcium transient amplitude, and a slow phase, which follows the rapid phase and occurs as the muscle proceeds to stabilize at the new frequency. This second/late phase is characterized by a quantitative dissociation between the calcium transient amplitude and developed force. Twitch timing kinetics, such as time to peak tension and 50% relaxation rate, reached steady-state well before force development and calcium transient amplitude. The dynamic relationship between force and calcium upon a switch in stimulation frequency unveils the dynamic involvement of myofilament-based properties in frequency-dependent activation.

  18. An optical coherent transient true-time delay device: Concept development and experimental demonstrations including delay programming with frequency-chirped pulses

    NASA Astrophysics Data System (ADS)

    Merkel, Kristian Doyle

    1998-09-01

    A coherent transient true-time delay regenerator is presented in terms of conceptual development, simulations and experimental demonstrations in Tm3+:YAG. Theory predicts the arrival time of the emitted signals for a three-pulse sequence of square pulses. A shifting of the emitted signal's arrival time as a function of the individual pulse's area and duration is experimentally demonstrated. A novel delay-programming scheme is presented using linear frequency-chirped pulses. This technique enables changing the programmed delay only by frequency-shifting one (or both) of these pulses without changing its timing, bandwidth or duration. A delay range of 500 ns with sub-100 ps resolution is demonstrated for a signal bandwidth of 40 MHz. A continuous data stream of 100 bits, of a duration longer than the dephasing time T2 of Tm3+:YAG, is also delayed by a grating stored with linear frequency-chirped pulses. Frequency division multiplexing of delays is experimentally demonstrated for two delays whose gratings are in adjacent frequency channels, and stored with linear frequency-chirped pulses. The application of a coherent transient true-time delay device in array antennas is considered, and future research directions for this implementation are given.

  19. Estimating background-subtracted fluorescence transients in calcium imaging experiments: a quantitative approach.

    PubMed

    Joucla, Sébastien; Franconville, Romain; Pippow, Andreas; Kloppenburg, Peter; Pouzat, Christophe

    2013-08-01

    Calcium imaging has become a routine technique in neuroscience for subcellular to network level investigations. The fast progresses in the development of new indicators and imaging techniques call for dedicated reliable analysis methods. In particular, efficient and quantitative background fluorescence subtraction routines would be beneficial to most of the calcium imaging research field. A background-subtracted fluorescence transients estimation method that does not require any independent background measurement is therefore developed. This method is based on a fluorescence model fitted to single-trial data using a classical nonlinear regression approach. The model includes an appropriate probabilistic description of the acquisition system's noise leading to accurate confidence intervals on all quantities of interest (background fluorescence, normalized background-subtracted fluorescence time course) when background fluorescence is homogeneous. An automatic procedure detecting background inhomogeneities inside the region of interest is also developed and is shown to be efficient on simulated data. The implementation and performances of the proposed method on experimental recordings from the mouse hypothalamus are presented in details. This method, which applies to both single-cell and bulk-stained tissues recordings, should help improving the statistical comparison of fluorescence calcium signals between experiments and studies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. A novel calcium-sensing receptor antagonist transiently stimulates parathyroid hormone secretion in vivo.

    PubMed

    Arey, Brian J; Seethala, Ramakrishna; Ma, Zhengping; Fura, Aberra; Morin, Jennifer; Swartz, Joann; Vyas, Viral; Yang, Wu; Dickson, John K; Feyen, Jean H M

    2005-04-01

    Circulating calcium (Ca(2+)) is a primary regulator of bone homeostasis through its action on PTH secretion. Extracellular Ca(2+) modulates PTH secretion through a cell surface G protein-coupled receptor, the calcium-sensing receptor (CaR). The expression of the CaR suggests a critical role in cellular regulation by calcium in various organs, including parathyroid gland, bone, and kidney. Despite an obvious pharmacological utility for CaR antagonists in the treatment of disease, only a limited number of such classes of compounds exist. We have identified a novel class of small molecules with specific activity at the CaR. This class of compounds is represented by compound 1. It possesses potent antagonist activity at the human CaR with IC(50) values of 64 nm and 230 nm in inhibiting intracellular Ca(2+) flux and inositol phosphate generation in vitro, respectively. When administered to male rats in vivo, compound 1 robustly increased serum PTH levels. The stimulation of PTH secretion was rapid and transient when administered either iv or orally. The pharmacokinetic profile of compound 1 after oral administration revealed that maximal plasma levels of compound were reached within 1 h and the half-life of the compound to be approximately 2 h in rats. These data describe a representative compound of a novel chemical class than previously described allosteric modulators that offer a new avenue for the development of improved treatments of osteoporosis.

  1. Acute serum calcium changes in transient ischemic attack and cerebral infarction.

    PubMed

    D'Erasmo, E; Pisani, D; Romagnoli, S; Ragno, A; Acca, M

    1998-01-01

    Total (T-Ca), albumin corrected (A-Ca) and ionized (Ca++) serum calcium levels were measured in patients affected by transient ischemic attack (TIA) and ischemic cerebral infarction (ICI), in order to evaluate the clinical and prognostic significance of calcemic status during the acute phase of these events. These results demonstrate that the calcium level is decreased in cerebral ischemia and that more substantial changes are observed in ICI than in TIA and controls (p < 0.0001, p < 0.02 and p < 0.0001 respectively for T-Ca, A-Ca and Ca++; analysis of variance). The mean T-Ca was significantly reduced in patients who died during hospitalization compared with values observed in survivors (p < 0.005), whereas A-Ca and Ca++ were not different. The calcium changes observed in the early phase of TIA and ICI suggest that the severity of cerebral ischemia may condition the amount of its acute decrease. The cause of hypocalcemia is unclear (primary effect or secondary epiphenomenon of cerebral ischemia?), but when A-Ca and Ca++ are considered, its in-hospital unfavorable prognostic role may be excluded.

  2. Calcium-rich Gap Transients in the Remote Outskirts of Galaxies

    NASA Astrophysics Data System (ADS)

    Kasliwal, Mansi M.; Kulkarni, S. R.; Gal-Yam, Avishay; Nugent, Peter E.; Sullivan, Mark; Bildsten, Lars; Yaron, Ofer; Perets, Hagai B.; Arcavi, Iair; Ben-Ami, Sagi; Bhalerao, Varun B.; Bloom, Joshua S.; Cenko, S. Bradley; Filippenko, Alexei V.; Frail, Dale A.; Ganeshalingam, Mohan; Horesh, Assaf; Howell, D. Andrew; Law, Nicholas M.; Leonard, Douglas C.; Li, Weidong; Ofek, Eran O.; Polishook, David; Poznanski, Dovi; Quimby, Robert M.; Silverman, Jeffrey M.; Sternberg, Assaf; Xu, Dong

    2012-08-01

    From the first two seasons of the Palomar Transient Factory, we identify three peculiar transients (PTF 09dav, PTF 10iuv, and PTF 11bij) with five distinguishing characteristics: peak luminosity in the gap between novae and supernovae (MR ≈ -15.5 to -16.5 mag), rapid photometric evolution (t rise ≈ 12-15 days), large photospheric velocities (≈6000-11,000 km s-1), early spectroscopic evolution into nebular phase (≈1-3 months), and peculiar nebular spectra dominated by calcium. We also culled the extensive decade-long Lick Observatory Supernova Search database and identified an additional member of this group, SN 2007ke. Our choice of photometric and spectroscopic properties was motivated by SN 2005E (Perets et al.). To our surprise, as in the case of SN 2005E, all four members of this group are also clearly offset from the bulk of their host galaxy. Given the well-sampled early- and late-time light curves, we derive ejecta masses in the range of 0.4-0.7 M ⊙. Spectroscopically, we find that there may be a diversity in the photospheric phase, but the commonality is in the unusual nebular spectra. Our extensive follow-up observations rule out standard thermonuclear and standard core-collapse explosions for this class of "calcium-rich gap" transients. If the progenitor is a white dwarf, we are likely seeing a detonation of the white dwarf core and perhaps even shock-front interaction with a previously ejected nova shell. If the progenitor is a massive star, a nonstandard channel specific to a low-metallicity environment needs to be invoked (e.g., ejecta fallback leading to black hole formation). Detection (or the lack thereof) of a faint underlying host (dwarf galaxy and cluster) will provide a crucial and decisive diagnostic to choose between these alternatives.

  3. Neuronal damage and calcium accumulation following transient cerebral ischemia in the rat

    SciTech Connect

    Araki, T.; Inoue, T.; Kato, H.; Kogure, K.; Murakami, M. )

    1990-06-01

    The purpose of this study was to examine the distribution of neuronal damage following transient cerebral ischemia in the rat model of four-vessel occlusion utilizing light microscopy as well as {sup 45}Ca-autoradiography. Transient ischemia was induced for 30 min. The animals were allowed to survive for 7 d after ischemia. In the animals subjected to ischemia, the most frequently and seriously damaged areas were the paramedian region of hippocampus, the hippocampal CA1 sector, and the dorsolateral part of striatum, followed by the inferior colliculus, the substantia nigra, the frontal cortex, and the thalamus, which were moderate damaged. Furthermore, the cerebellar Purkinje neurons, the hippocampal CA4 sector, the medial geniculate body, and the hippocampal CA3 sector were slightly affected. {sup 45}Ca-autoradiographyic study also revealed calcium accumulation in the identical sites of ischemic neuronal damage, except for the frontal cortex. Regional cerebral blood flow during 10 min of ischemia was severely decreased in selectively vulnerable areas. The blood flow in the medial geniculate body, the substantia nigra, the inferior colliculus, and the cerebellum was less pronounced than that in the selectively vulnerable areas. The present study demonstrates that transient cerebral ischemia can produce significant neuronal damage not only in the selectively vulnerable regions, but also in the brainstem.

  4. The effects of digitalis on intracellular calcium transients in mammalian working myocardium as detected with aequorin.

    PubMed

    Morgan, J P

    1985-11-01

    The effects of positive inotropic agents on the amplitude and time course of the light signal and corresponding tension response were studied in cat and human working myocardium microinjected with the bioluminescent Ca2+ indicator aequorin. Distinctive patterns of light and tension responses were identified that are consistent with known actions of the various agents on the release of Ca2+ from intracellular stores, rate of uptake of Ca2+ by the sarcoplasmic reticulum and sensitivity of the myofilaments to Ca2+. In common with most other inotropic drugs, the cardiotonic steroid, acetylstrophanthidin, in doses of 4 X 10(-7) to 2 X 10(-6)M increases the amount of Ca2+ available for excitation-contraction coupling in the heart. However, in contrast to most other agents, acetylstrophanthidin does not affect the time course of the calcium transient. In common with changes in [Ca2+]o, acetylstrophanthidin does not alter the relationship between the amplitude of the aequorin light signal and developed tension, which, in contrast to caffeine and isoproterenol, indicates that the increase in tension is fully accounted for by the increase in systolic free calcium. These findings suggest that the cardiotonic steroids increase loading of intracellular calcium stores without affecting the kinetics of subcellular handling of Ca2+. In doses of 8 X 10(-7) to 2 X 10(-6)M, acetylstrophanthidin produces a calcium-overload state characterized by 'after-contractions' and 'after-glimmers' that are associated with the development of automatic and triggerable dysrhythmias. These studies provide direct evidence that the inotropic and toxic effects of digitalis on animal and human working myocardium are produced by changes in intracellular Ca2+.

  5. Seronegative Maternal Ocular Myasthenia Gravis and Delayed Transient Neonatal Myasthenia Gravis

    PubMed Central

    Townsel, Courtney; Keller, Rebecca; Johnson, Kendall; Hussain, Naveed; Campbell, Winston A.

    2016-01-01

    Background Myasthenia gravis (MG) is an autoimmune disorder with fluctuating muscle weakness, divided into generalized and localized (ocular) forms. Maternal antibodies to acetylcholine receptors cross the placenta and may cause transient neonatal myasthenia gravis (TNMG). We present a case of seronegative maternal ocular MG and delayed TNMG. Case A 29-year-old G3P1011 underwent cesarean birth of a male infant who developed oxygen desaturation requiring supplemental oxygen on day of life (DOL) 3. Based on the clinical course and after exclusion of other diagnoses, the infant was diagnosed with TNMG. Infant's condition improved spontaneously and he was weaned off supplemental oxygen and discharged home on DOL 12. Conclusion Infants born to mothers with seronegative localized (ocular) MG are also susceptible to TNMG which may be late in onset. PMID:26989568

  6. Delayed administration IL-1β neutralizing antibody improves cognitive function after transient global ischemia in rats.

    PubMed

    Zhao, Bei; Zou, Chang-Jiang; Zhou, Ping

    2016-04-15

    In order to study the protective effects on motor and cognitive function by inhibiting IL-1β as delayed as 24h after global ischemia, we designed behavioral testing protocol and histology detection after 10 min transient global ischemia followed by IL-1β or its antibody intracerebroventricular injection. We found benefit of IL-1β antibody treatment 24h after ischemia in cognitive function recovery. But no obvious amelioration in motor function was found. Further we detected cell morphology and survival by histology staining and proved IL-1β antibody could reduce ischemia induced cell morphological changes and cell loss in hippocampus, which related with cognitive function. Present results indicate intervening IL-1β pathway could be helpful in cognitive function recovery even as late as 24h after ischemia happens.

  7. The effects of caffeine on tension development and intracellular calcium transients in rat ventricular muscle.

    PubMed Central

    Konishi, M; Kurihara, S; Sakai, T

    1984-01-01

    The effects of caffeine on tension and intracellular [Ca2+] were investigated in rat ventricular muscle using the Ca2+-sensitive photoprotein, aequorin. Contracture was induced by rapid application of 0.5-10 mM-caffeine solution at 20 degrees C. In normal Tyrode solution at 8 degrees C, or in Na+-deficient solution in which Na+ was isotonically replaced by sucrose, peak tension of caffeine contracture was potentiated and relaxation was prolonged. Caffeine contracture could not be induced immediately after a prior contracture. Repriming time was 10 min in Tyrode solution, and was much shorter in Na+-deficient solution or in high-K+ solution containing 105.9 mM-K+. Caffeine prolonged the plateau of action potential dose dependently. At low temperature, prolongation of the plateau phase by caffeine was more marked. Twitch tension showed a triphasic change after application of caffeine; peak tension transiently increased in a potentiating phase (P phase), and then decreased below control level in an inhibitory phase (I phase) followed by gradual recovery in a recovery phase (R phase). The effects of caffeine on the Ca2+ transients during a twitch were also complex, depending on time after application and dose of caffeine. In low caffeine concentration (below 0.5 mM) the peak of the Ca2+ transient was potentiated in the I phase, although the peak tension was suppressed. At high concentration (above 3 mM) the peaks of both the Ca2+ transient and twitch tension were suppressed. In every concentration of caffeine tested (0.1-5 mM), time to the Ca2+ transient and twitch tension peaks was prolonged, and the falling phases of both were delayed. Caffeine might release Ca2+ from intracellular store(s) and enhance the slow inward current. The Ca2+ transient obtained in this study clearly indicate that the prolonged time to peak tension in the presence of caffeine is due to the slow rise of intracellular [Ca2+] and prolonged time to peak of the Ca2+ transient. It is also quite

  8. Calmodulin modulates the delay period between release of calcium from internal stores and activation of calcium influx via endogenous TRP1 channels.

    PubMed

    Vaca, Luis; Sampieri, Alicia

    2002-11-01

    In the present study we have explored the role of calmodulin (CaM) and inositol 1,4,5-trisphosphate receptor (IP(3)R) in the communication process activated after the release of calcium from the endoplasmic reticulum (ER) and the activation of calcium influx via endogenous TRP1 channels from Chinese hamster ovary cells. Experiments using combined rapid confocal calcium and electrophysiology measurements uncovered a consistent delay of around 900 ms between the first detectable calcium released from the ER and the activation of the calcium current. This delay was evident with two different methods used to release calcium from the ER: either the blockade of the microsomal calcium ATPase with thapsigargin or activation of bradykinin receptors linked to the IP(3) cascade. Direct application of IP(3) or a peptide from the NH(2)-terminal region of the IP(3)R activated store operated calcium, reducing the delay period. Introduction of CaM into the cell via the patch pipette increased the delay period from 900 +/- 100 ms to 10 +/- 2.1 s (n = 18). Furthermore, the use of selective CaM antagonists W7 and trifluoperazine maleate resulted in a substantial reduction of the delay period to 200 +/- 100 ms with 5 microm trifluoperazine maleate (n = 16) and 150 +/- 50 ms with 500 nm W7 (n = 22). CaM reduced also the current density activated by thapsigargin or brandykinin to about 60% from control. The CaM antagonists did not affect significantly the current density. The results presented here are consistent with an antagonistic effect of IP(3)R and CaM for the activation of store operated calcium after depletion of the ER. The functional competition between the activating effect of IP(3)R and the inhibiting effect of CaM may modulate the delay period between the release of calcium from the ER and the activation of calcium influx observed in different cells, as well as the amount of current activated after depletion of the ER.

  9. Nitric oxide triggers specific and dose-dependent cytosolic calcium transients in Arabidopsis.

    PubMed

    Aboul-Soud, Mourad A M; Aboul-Enein, Ahmed M; Loake, Gary J

    2009-03-01

    Calcium (Ca(2+)) transients have been shown to take place in response to diverse developmental and physiological cues. Also, it is involved in biotic and abiotic stress signaling. Nitric oxide (NO) is an important signaling molecule that plays a crucial role in plant growth and development, starting from germination to flowering, ripening of fruit and senescence of organs. Moreover, it plays a pivotal role in several biotic and abiotic stress signaling processes. In the present work, the ability of NO to trigger increases in cytosolic calcium concentration ([Ca(2+)](cyt)) was investigated. For this purpose, transgenic Arabidopsis seedlings constitutively expressing the luminescent Ca(2+)-sensitive protein apoaequorin (35S::APOAEQUORIN) was employed. In chemiluminescence and in vivo Ca(2+) imaging assays, the NO-donor sodium nitroprusside (SNP) triggered a strong, instantaneous, reproducible, and dose-dependent rise in [Ca(2+)](cyt). Moreover, the observed rise in [Ca(2+)](cyt) was shown to be NO-specific and not associated with decomposition products of SNP, as the NO-scavenger 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3 oxide (C-PTIO) significantly blunted the observed NO-mediated spike in [Ca(2+)](cyt). Interestingly, preincubation of 35S::APOAEQUORIN Arabidopsis seedlings with the plasma membrane channel blocker lanthanum chloride resulted in partial concentration-dependent blocking of the NO-specific Ca(2+) transient. This observation indicates that, in addition to the mobilization of [Ca(2+)](cyt), as an external source in response to NO treatment, there also exists an appreciable contribution of an as yet unidentified internal pool.

  10. Psilocybin dose-dependently causes delayed, transient headaches in healthy volunteers

    PubMed Central

    Johnson, Matthew W.; Sewell, R. Andrew; Griffiths, Roland R.

    2011-01-01

    Background Psilocybin is a well-characterized classic hallucinogen (psychedelic) with a long history of religious use by indigenous cultures, and nonmedical use in modern societies. Although psilocybin is structurally related to migraine medications, and case studies suggest that psilocybin may be efficacious in treatment of cluster headache, little is known about the relationship between psilocybin and headache. Methods This double-blind study examined a broad range of psilocybin doses (0, 5, 10, 20, and 30 mg/70 kg) on headache in 18 healthy participants. Results Psilocybin frequently caused headache, the incidence, duration, and severity of which increased in a dose-dependent manner. All headaches had delayed onset, were transient, and lasted no more than a day after psilocybin administration. Conclusions Possible mechanisms for these observations are discussed, and include induction of delayed headache through nitric oxide release. These data suggest that headache is an adverse event to be expected with the nonmedical use of psilocybin-containing mushrooms as well as the administration of psilocybin in human research. Headaches were neither severe nor disabling, and should not present a barrier to future psilocybin research. PMID:22129843

  11. Psilocybin dose-dependently causes delayed, transient headaches in healthy volunteers.

    PubMed

    Johnson, Matthew W; Sewell, R Andrew; Griffiths, Roland R

    2012-06-01

    Psilocybin is a well-characterized classic hallucinogen (psychedelic) with a long history of religious use by indigenous cultures, and nonmedical use in modern societies. Although psilocybin is structurally related to migraine medications, and case studies suggest that psilocybin may be efficacious in treatment of cluster headache, little is known about the relationship between psilocybin and headache. This double-blind study examined a broad range of psilocybin doses (0, 5, 10, 20, and 30 mg/70 kg) on headache in 18 healthy participants. Psilocybin frequently caused headache, the incidence, duration, and severity of which increased in a dose-dependent manner. All headaches had delayed onset, were transient, and lasted no more than a day after psilocybin administration. Possible mechanisms for these observations are discussed, and include induction of delayed headache through nitric oxide release. These data suggest that headache is an adverse event to be expected with the nonmedical use of psilocybin-containing mushrooms as well as the administration of psilocybin in human research. Headaches were neither severe nor disabling, and should not present a barrier to future psilocybin research. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  12. Pharmacological analysis of calcium transients in response to gravity vector change in Arabidopsis hypocotyls and petioles.

    NASA Astrophysics Data System (ADS)

    Toyota, M.; Furuichi, T.; Tatsumi, H.; Sokabe, M.

    Plants regulate their growth and morphology in response to gravity field known as gravitropism in general In the process of gravitropism gravity sensing will form the critical earliest event which is supposed to take place in specialized cells statocytes such as columella cells and shoot endodermal cells Although gravistimulation is assumed to be converted into certain intracellular signals the underlying transduction mechanisms have hardly been explored One of the potential candidates for the intracellular signals is an increase in the cytoplasmic free calcium concentration Ca 2 c Here we measured Ca 2 c changes induced by gravistimulation in seedlings of Arabidopsis thaliana expressing aequorin as a calcium reporter When a plate of seedlings was turned through 180 r Ca 2 c transiently increased within 50 s and decayed exponentially with a time constant of ca 60 s The amplitude of the Ca 2 c increase was independent of the angular velocity of the rotation The Ca 2 c increase was reversibly blocked by extracellularly applied potential mechanosensitive channel blockers La 3 Gd 3 or a Ca 2 chelator BAPTA indicating that it arose from Ca 2 -influx via Ca 2 -permeable channel s on the plasma membrane Furthermore the Ca 2 c increase was attenuated by actin-disrupting drugs latrunculin B cytochalasin B but not by microtuble-disrupting drugs oryzalin nocodazole indicating that the activation of

  13. Time profile of calcium accumulation in hippocampus, striatum and frontoparietal cortex after transient forebrain ischemia in the gerbil.

    PubMed

    Bonnekoh, P; Kuroiwa, T; Kloiber, O; Hossmann, K

    1992-01-01

    The topical and temporal relationship between neuronal injury and calcium loading was investigated in gerbils following bilateral carotid artery occlusion for 5 or 10 min and recirculation times from 15 min to 7 days. The association of histochemically visible calcium deposits with neuronal death was assessed by combining two calcium stains, alizarin red and arsenazo III, with conventional histological techniques. Neuronal calcium accumulation was evaluated morphometrically in the striatum, the frontoparietal cortex and the CA1 and CA4 sectors of the hippocampus. After 5-min ischemia and 1-2 days of recirculation numerous calcium-containing neurons appeared in the CA4 sector but only a few were present in the CA1 sector. After 4 days of recirculation calcium accumulation was visible in the whole CA1 sector and the dorso-lateral part of striate nucleus. After 10-min ischemia calcium accumulation started in these regions, as well as in the cortex, already after 1 day. In the CA1 sector calcium accumulation followed a typical time course: on day 2 only the lateral parts were affected, while on day 4 the whole CA1 neuronal band was calcium positive. The regional distribution of histological lesions matched that of calcium loading and, furthermore, the lesions appeared after a corresponding delay in the respective regions. Morphometric evaluations of calcium staining and histological lesions in the CA1 sector revealed a high correlation, indicating that calcium accumulation and neuronal death are closely associated both topically and temporally. This suggests that disturbances of calcium homeostasis such as those measured by this histochemical technique are the consequence of and not the reason for ischemic cell death.

  14. NMDA-evoked calcium transients and currents in the suprachiasmatic nucleus

    PubMed Central

    Colwell, Christopher S.

    2008-01-01

    A variety of evidence suggests that the effects of light on the mammalian circadian system are mediated by glutamatergic mechanisms and that the N-methyl-D-aspartate (NMDA) receptor plays an important role in this regulation. One of the fundamental features of circadian oscillators is that their response to environmental stimulation varies depending on the phase of the daily cycle when the stimuli are applied. For example, the same light treatment, which can produce phase shifts of the oscillator when applied during subjective night, has no effect when applied during the subjective day in animals held in constant darkness (DD). We examined the hypothesis that the effects of NMDA on neurons in the suprachiasmatic nucleus (SCN) also vary from day to night. Optical techniques were utilized to estimate NMDA-induced calcium (Ca2+) changes in SCN cells. The resulting data indicate that there was a daily rhythm in the magnitude and duration of NMDA-induced Ca2+ transients. The phase of this rhythm was determined by the light—dark cycle to which the rats were exposed with the Ca2+ transients peaking during the night. This rhythm continued when animals were held in DD. γ-Aminobutyric acid (GABA)ergic mechanisms modulated the NMDA response but were not responsible for the rhythm. Finally, there was a rhythm in NMDA-evoked currents in SCN neurons that also peaked during the night. This study provides the first evidence for a circadian oscillation in NMDA-evoked Ca2+ transients in SCN cells. This rhythm may play an important role in determining the periodic sensitivity of the circadian systems response to light. PMID:11298803

  15. iPTF15eqv: Multiwavelength Exposé of a Peculiar Calcium-rich Transient

    NASA Astrophysics Data System (ADS)

    Milisavljevic, Dan; Patnaude, Daniel J.; Raymond, John C.; Drout, Maria R.; Margutti, Raffaella; Kamble, Atish; Chornock, Ryan; Guillochon, James; Sanders, Nathan E.; Parrent, Jerod T.; Lovisari, Lorenzo; Chilingarian, Igor V.; Challis, Peter; Kirshner, Robert P.; Penny, Matthew T.; Itagaki, Koichi; Eldridge, J. J.; Moriya, Takashi J.

    2017-09-01

    The progenitor systems of the class of “Ca-rich transients” is a key open issue in time domain astrophysics. These intriguing objects exhibit unusually strong calcium line emissions months after explosion, fall within an intermediate luminosity range, are often found at large projected distances from their host galaxies, and may play a vital role in enriching galaxies and the intergalactic medium. Here we present multiwavelength observations of iPTF15eqv in NGC 3430, which exhibits a unique combination of properties that bridge those observed in Ca-rich transients and SNe Ib/c. iPTF15eqv has among the highest [Ca ii]/[O i] emission line ratios observed to date, yet is more luminous and decays more slowly than other Ca-rich transients. Optical and near-infrared photometry and spectroscopy reveal signatures consistent with the supernova explosion of a ≲ 10 {M}ȯ star that was stripped of its H-rich envelope via binary interaction. Distinct chemical abundances and ejecta kinematics suggest that the core collapse occurred through electron-capture processes. Deep limits on possible radio emission made with the Jansky Very Large Array imply a clean environment (n ≲ 0.1 cm‑3) within a radius of ∼ {10}17 cm. Chandra X-ray Observatory observations rule out alternative scenarios involving the tidal disruption of a white dwarf (WD) by a black hole, for masses >100 M ⊙. Our results challenge the notion that spectroscopically classified Ca-rich transients only originate from WD progenitor systems, complicate the view that they are all associated with large ejection velocities, and indicate that their chemical abundances may vary widely between events.

  16. Reorientation of Seedlings in the Earth's Gravitational Field Induces Cytosolic Calcium Transients1

    PubMed Central

    Plieth, Christoph; Trewavas, Anthony J.

    2002-01-01

    The gravitational field controls plant growth, morphology, and development. However, the underlying transduction mechanisms are not well understood. Much indirect evidence has implicated the cytoplasmic free calcium concentration ([Ca2+]c) as an important factor, but direct evidence for changes in [Ca2+]c is currently lacking. We now have made measurements of [Ca2+]c in groups of young seedlings of Arabidopsis expressing aequorin in the cytoplasm and reconstituted in vivo with cp-coelenterazine, a synthetic high-affinity luminophore. Distinct [Ca2+]c signaling occurs in response to gravistimulation with kinetics very different from [Ca2+]c transients evoked by other mechanical stimuli (e.g. movement and wind). [Ca2+]c changes produced in response to gravistimulation are transient but with a duration of many minutes and dependent on stimulus strength (i.e. the angle of displacement). The auxin transport blockers 2,3,5-tri-iodo benzoic acid and N-(1-naphthyl) phthalamic acid interfere with gravi-induced [Ca2+]c responses and addition of methyl indole-3-acetic acid to whole seedlings induces long-lived [Ca2+]c transients, suggesting that changes in auxin transport may interact with [Ca2+]c. Permanent nonaxial rotation of seedlings on a two-dimensional clinostat, however, produced a sustained elevation of the [Ca2+]c level. This probably reflects permanent displacement of gravity-sensing cellular components and/or disturbance of cytoskeletal tension. It is concluded that [Ca2+]c is part of the gravity transduction mechanism in young Arabidopsis seedlings. PMID:12068119

  17. Reorientation of seedlings in the earth's gravitational field induces cytosolic calcium transients.

    PubMed

    Plieth, Christoph; Trewavas, Anthony J

    2002-06-01

    The gravitational field controls plant growth, morphology, and development. However, the underlying transduction mechanisms are not well understood. Much indirect evidence has implicated the cytoplasmic free calcium concentration ([Ca(2+)](c)) as an important factor, but direct evidence for changes in [Ca(2+)](c) is currently lacking. We now have made measurements of [Ca(2+)](c) in groups of young seedlings of Arabidopsis expressing aequorin in the cytoplasm and reconstituted in vivo with cp-coelenterazine, a synthetic high-affinity luminophore. Distinct [Ca(2+)](c) signaling occurs in response to gravistimulation with kinetics very different from [Ca(2+)](c) transients evoked by other mechanical stimuli (e.g. movement and wind). [Ca(2+)](c) changes produced in response to gravistimulation are transient but with a duration of many minutes and dependent on stimulus strength (i.e. the angle of displacement). The auxin transport blockers 2,3,5-tri-iodo benzoic acid and N-(1-naphthyl) phthalamic acid interfere with gravi-induced [Ca(2+)](c) responses and addition of methyl indole-3-acetic acid to whole seedlings induces long-lived [Ca(2+)](c) transients, suggesting that changes in auxin transport may interact with [Ca(2+)](c). Permanent nonaxial rotation of seedlings on a two-dimensional clinostat, however, produced a sustained elevation of the [Ca(2+)](c) level. This probably reflects permanent displacement of gravity-sensing cellular components and/or disturbance of cytoskeletal tension. It is concluded that [Ca(2+)](c) is part of the gravity transduction mechanism in young Arabidopsis seedlings.

  18. Extracellular calcium transients and action potential configuration changes related to post-stimulatory potentiation in rabbit atrium.

    PubMed

    Hilgemann, D W

    1986-05-01

    Extracellular calcium transients were monitored with 2 mM tetramethylmurexide at low calcium (250 microM total, 130 microM free), and action potentials were monitored together with developed tension at normal calcium (1.3 mM) during the production and decay of post-stimulatory potentiation in rabbit left atrial strips. At normal calcium, the contractile potentiation produced by a brief burst of 4 Hz stimulation is lost in three to five post-stimulatory excitations, which correlate with a negative staircase of the late action potential. At low calcium, stimulation at 4 Hz for 3-8 s results in a net extracellular calcium depletion of 5-15 microM. At the subsequent potentiated contraction (1-45 s rest), total extracellular calcium increases by 4-8 microM. The contractile response at a second excitation is greatly suppressed and results in little or no further calcium shift; the sequence can be repeated immediately thereafter. Reducing external sodium to 60 mM (sucrose replacement) enhances post-rest contractions, suppresses the late action potential, nearly eliminates loss of contractility and net calcium efflux at post-rest excitations, and markedly reduces extracellular calcium depletion during rapid stimulation. 4-Aminopyridine (1 mM) markedly suppresses the rapid early repolarization of this preparation at post-rest excitations and the loss of contractility at post-rest stimulation from the rested state; during a post-stimulatory potentiation sequence at low calcium, replenishment of extracellular calcium takes several post-stimulatory excitations. Ryanodine (10 nM to 5 microM) abolishes the post-stimulatory contraction at rest periods of greater than 5 s. If the initial repolarization is rapid, ryanodine suppresses the late action potential, calcium efflux during quiescence is greatly accelerated, and subsequent excitations do not result in an accumulation of extracellular calcium. A positive staircase of the early action potential correlates with the magnitude

  19. Imaging and analysis of evoked excitatory-postsynaptic-calcium-transients by individual presynaptic-boutons of cultured Aplysia sensorimotor synapse.

    PubMed

    Malkinson, Guy; Spira, Micha E

    2010-04-01

    The use of the sensory-motor (SN-MN) synapse of the Aplysia gill withdrawal reflex has contributed immensely to the understanding of synaptic transmission, learning and memory acquisition processes. Whereas the majority of the studies focused on analysis of the presynaptic mechanisms, recent studies indicated that as in mammalian synapses, long term potentiation (LTP) formed by Aplysia SN-MN synapse depends on elevation of the postsynaptic free intracellular calcium concentration ([Ca2+](i)). Consistently, injection of the fast calcium chelator BAPTA to the MN prevents the formation of serotonin-induced LTP. Nevertheless, currently there are no published reports that directly examine and document whether evoked synaptic transmission is associated with transient increase in the postsynaptic [Ca2+](i). In the present study we imaged, for the first time, alterations in the postsynaptic [Ca2+](i) in response to presynaptic stimulation and analyzed the underlying mechanisms. Using live imaging of the postsynaptic [Ca2+](i) while monitoring the EPSP, we found that evoked transmitter release generates excitatory postsynaptic calcium concentration transients (EPSCaTs) by two mechanisms: (a) activation of DNQX-sensitive postsynaptic receptors-gated calcium influx and (b) calcium influx through nitrendipine-sensitive voltage-gated calcium channels (VGCCs). Concomitant confocal imaging of presynaptic boutons and EPSCaTs revealed that approximately 86% of the presynaptic boutons are associated with functional synapses.

  20. Calcium-sensitive and insensitive transient outward current in rabbit ventricular myocytes.

    PubMed Central

    Hiraoka, M; Kawano, S

    1989-01-01

    1. A suction pipette whole-cell voltage-clamp technique was used to record membrane currents and potentials of isolated ventricular myocytes from rabbit hearts. 2. Transient outward current (Ito) was activated by voltage steps positive to -20 mV, increasing in amplitude with further depolarization to reach a maximum around +70 mV. The current attained its peak within 10 ms and then it inactivated for 100-200 ms. 3. A large portion of Ito still remained after the calcium current (ICa) was blocked when depolarizing pulses were applied at a frequency of 0.1 Hz or less. Therefore, this current component is referred to as calcium-insensitive Ito or It. 4. It showed voltage- and time-dependent inactivation similar to that observed in Purkinje fibres and other cardiac preparations. 5. The reversal potential of It depended on external K+ concentration, [K+]o, with a slope of 32 mV per 10-fold change in the presence of a normal [Na+]o (143 mM), while the slope was 48 mV per 10-fold change in low [Na+]o (1.0 mM). 6. It was completely inhibited by 2-4 mM-4-aminopyridine. Ito in the presence of ICa was also partially blocked by 4-aminopyridine and the remainder was abolished by 5 mM-caffeine. 7. The calcium-insensitive and caffeine-sensitive Ito differed in their decay rates as well as in their recovery time courses. The former was predominantly available at a slow pulsing rate, while the latter increased its amplitude with high-frequency depolarization. 8. The caffeine-sensitive Ito was inhibited by a blockade of ICa, by replacing Ca2+ with Sr2+, by external application of ryanodine and by internal application of EGTA. This indicates that the current is calcium-sensitive and is dependent on increased myoplasmic Ca2+ through Ca2+ influx via the sarcolemma and Ca2+ release from the sarcoplasmic reticulum. The current is therefore designated as IK, Ca. 9. The physiological functions of IK, Ca and It are indicated by their contribution to ventricular repolarization at fast and

  1. Delayed and transient increase of adult hippocampal neurogenesis by physical exercise in DBA/2 mice.

    PubMed

    Overall, Rupert W; Walker, Tara L; Leiter, Odette; Lenke, Sina; Ruhwald, Susann; Kempermann, Gerd

    2013-01-01

    This study builds on the findings that physical activity, such as wheel running in mice, enhances cell proliferation and neurogenesis in the adult hippocampus of the common mouse strain C57BL/6, and that the baseline level of neurogenesis varies by strain, being considerably lower in DBA/2. Because C57BL/6 and DBA/2 are important as the parental strains of the BXD recombinant inbred cross which allows the detection of genetic loci regulating phenotypes such as adult neurogenesis, we performed the current study to investigate the gene x environment interactions regulating neurogenesis. At equal distances and times run DBA/2J mice lacked the acute increase in precursor cell proliferation known from C57BL/6. In DBA/2J proliferation even negatively correlated with the distance run. This was neither due to a stress response (to running itself or single housing) nor differences in estrous cycle. DBA/2 animals exhibited a delayed and weaker pro-neurogenic response with a significant increase in numbers of proliferating cells first detectable after more than a week of wheel running. The proliferative response to running was transient in both strains, the effect being undetectable by 6 weeks. There was also a small transient increase in the production of new neurons in DBA/2J, although these extra cells did not survive. These findings indicate that the comparison between C57BL/6 and DBA/2, and by extension the BXD genetic reference population derived from these strains, should provide a powerful tool for uncovering the complex network of modifier genes affecting the activity-dependent regulation of adult hippocampal neurogenesis. More generally, our findings also describe how the external physical environment interacts with the internal genetic environment to produce different responses to the same behavioral stimuli.

  2. Delayed release of neurotransmitter from cerebellar granule cells.

    PubMed

    Atluri, P P; Regehr, W G

    1998-10-15

    At fast chemical synapses the rapid release of neurotransmitter that occurs within a few milliseconds of an action potential is followed by a more sustained elevation of release probability, known as delayed release. Here we characterize the role of calcium in delayed release and test the hypothesis that facilitation and delayed release share a common mechanism. Synapses between cerebellar granule cells and their postsynaptic targets, stellate cells and Purkinje cells, were studied in rat brain slices. Presynaptic calcium transients were measured with calcium-sensitive fluorophores, and delayed release was detected with whole-cell recordings. Calcium influx, presynaptic calcium dynamics, and the number of stimulus pulses were altered to assess their effect on delayed release and facilitation. Following single stimuli, delayed release can be separated into two components: one lasting for tens of milliseconds that is steeply calcium-dependent, the other lasting for hundreds of milliseconds that is driven by low levels of calcium with a nearly linear calcium dependence. The amplitude, calcium dependence, and magnitude of delayed release do not correspond to those of facilitation, indicating that these processes are not simple reflections of a shared mechanism. The steep calcium dependence of delayed release, combined with the large calcium transients observed in these presynaptic terminals, suggests that for physiological conditions delayed release provides a way for cells to influence their postsynaptic targets long after their own action potential activity has subsided.

  3. The roles of calcium signaling and ERK1/2 phosphorylation in a Pax6+/- mouse model of epithelial wound-healing delay

    PubMed Central

    Leiper, Lucy J; Walczysko, Petr; Kucerova, Romana; Ou, Jingxing; Shanley, Lynne J; Lawson, Diane; Forrester, John V; McCaig, Colin D; Zhao, Min; Collinson, J Martin

    2006-01-01

    Background Congenital aniridia caused by heterozygousity at the PAX6 locus is associated with ocular surface disease including keratopathy. It is not clear whether the keratopathy is a direct result of reduced PAX6 gene dosage in the cornea itself, or due to recurrent corneal trauma secondary to defects such as dry eye caused by loss of PAX6 in other tissues. We investigated the hypothesis that reducing Pax6 gene dosage leads to corneal wound-healing defects. and assayed the immediate molecular responses to wounding in wild-type and mutant corneal epithelial cells. Results Pax6+/- mouse corneal epithelia exhibited a 2-hour delay in their response to wounding, but subsequently the cells migrated normally to repair the wound. Both Pax6+/+ and Pax6+/- epithelia activated immediate wound-induced waves of intracellular calcium signaling. However, the intensity and speed of propagation of the calcium wave, mediated by release from intracellular stores, was reduced in Pax6+/- cells. Initiation and propagation of the calcium wave could be largely decoupled, and both phases of the calcium wave responses were required for wound healing. Wounded cells phosphorylated the extracellular signal-related kinases 1/2 (phospho-ERK1/2). ERK1/2 activation was shown to be required for rapid initiation of wound healing, but had only a minor effect on the rate of cell migration in a healing epithelial sheet. Addition of exogenous epidermal growth factor (EGF) to wounded Pax6+/- cells restored the calcium wave, increased ERK1/2 activation and restored the immediate healing response to wild-type levels. Conclusion The study links Pax6 deficiency to a previously overlooked wound-healing delay. It demonstrates that defective calcium signaling in Pax6+/- cells underlies this delay, and shows that it can be pharmacologically corrected. ERK1/2 phosphorylation is required for the rapid initiation of wound healing. A model is presented whereby minor abrasions, which are quickly healed in normal

  4. Calcium permeability of transient receptor potential canonical (TRPC) 4 channels measured by TRPC4-GCaMP6s

    PubMed Central

    Ko, Juyeon; Myeong, Jongyun; Yang, Dongki

    2017-01-01

    Conflicting evidence has been obtained regarding whether transient receptor potential cation channels (TRPC) are store-operated channels (SOCs) or receptor-operated channels (ROCs). Moreover, the Ca/Na permeability ratio differs depending on whether the current-voltage (I-V) curve has a doubly rectifying shape or inward rectifying shape. To investigate the calcium permeability of TRPC4 channels, we attached GCaMP6s to TRPC4 and simultaneously measured the current and calcium signals. A TRPC4 specific activator, (–)-englerin A, induced both current and calcium fluorescence with the similar time course. Muscarinic receptor stimulator, carbachol, also induced both current and calcium fluorescence with the similar time course. By forming heteromers with TRPC4, TRPC1 significantly reduced the inward current with outward rectifying I-V curve, which also caused the decrease of calcium fluorescence intensity. These results suggest that GCaMP6s attached to TRPC4 can detect slight calcium changes near TRPC4 channels. Consequently, TRPC4-GCaMP6s can be a useful tool for testing the calcium permeability of TRPC4 channels. PMID:28066150

  5. The Transient Role for Calcium and Vitamin D during the Developmental Hair Follicle Cycle.

    PubMed

    Mady, Leila J; Ajibade, Dare V; Hsaio, Connie; Teichert, Arnaud; Fong, Chak; Wang, Yongmei; Christakos, Sylvia; Bikle, Daniel D

    2016-07-01

    The role for 1,25-dihydroxyvitamin D3 and/or calcium in hair follicle cycling is not clear despite their impact on keratinocyte differentiation. We found that calbindin-D9k null (knockout) pups generated from calbindin-D9k knockout females fed a vitamin D-deficient, low-calcium (0.47%) diet develop transient alopecia. The pups appear phenotypically normal until 13 days of age, after which the hair progressively sheds in a caudocephalic direction, resulting in truncal alopecia totalis by 20-23 days, with spontaneous recovery by 28 days. Histological studies showed markedly dystrophic hair follicles, loss of hair shafts with increased apoptosis, and hyperplastic epidermis during this time. Ha1 expression is lost during catagen in all mice but recovers more slowly in the knockout pups on the vitamin D-deficient, low-calcium diet. Keratin 1 expression is reduced throughout days 19-28. The expressions of involucrin, loricrin, and cathepsin L is initially increased by day 19 but subsequently falls below those of controls by day 23, as does that of desmoglein 3. Feeding the mothers a high-vitamin D/high-calcium (2%)/lactose (20%) diet lessens the phenotype, and knockout pups fostered to mothers fed a normal diet do not develop alopecia. Our results show that in calbindin-D9k knockout pups, a maternal vitamin D-deficient/low-calcium diet leads to transient noncicatricial alopecia. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Decay of calcium transients after electrical stimulation in rat fast- and slow-twitch skeletal muscle fibres.

    PubMed Central

    Carroll, S L; Klein, M G; Schneider, M F

    1997-01-01

    1. Calcium transients were calculated from fura-2 fluorescence signals (corrected for kinetic delays in the Ca(2+)-fura-2 reaction) from single rat skeletal muscle fibres, either fully dissociated from the fast-twitch flexor digitorum brevis (FDB) muscle or in small bundles from the slow-twitch soleus muscle. Fibres or bundles were embedded in agarose gel to inhibit movement and stimulated by single or trains of 1-2 ms electrical pulses (100 Hz, 2-400 ms train duration). 2. The rate constant of decay of [Ca2+] determined from single-exponential fits to the final decay phase of [Ca2+] after a single action potential was considerably faster in FDB fibres than in soleus fibres. As the stimulation duration increased, the rate constant of [Ca2+] decay decreased for both the FDB and soleus fibres, but the effect was greater in FDB than in soleus fibres. 3. Using the magnitude of the decline in the rate constant of [Ca2+] decay with increasing stimulation duration as an index of relative contribution of the saturable Ca2+ binding sites on parvalbumin, subpopulations termed 'high', 'medium' and 'low', referring to estimated parvalbumin content, were determined within each group of FDB and soleus fibres. In fibres assigned to the 'high' and 'medium' groups, parvalbumin was the major contributor (50-73%) to the [Ca2+] decay rate constant after a single action potential. In fibres in the 'low' group, parvalbumin contributed only 0-28% to the rate constant of [Ca2+] decay. 4. Fluorescence recordings using mag-fura-2, a lower-affinity Ca2+ indicator expected to be in equilibrium with myoplasmic Ca2+, gave similar values for both the [Ca2+] decay rate constant after a single action potential and the decrease in this rate constant with increased stimulation duration, as found for the fura-2 [Ca2+] transients from FDB and soleus fibres. Thus, the observed differences in decay rate of Ca2+ were not introduced by kinetic correction of the fura-2 recordings, but are attributed to

  7. Galectin-3 expression in delayed neuronal death of hippocampal CA1 following transient forebrain ischemia, and its inhibition by hypothermia.

    PubMed

    Satoh, Kunio; Niwa, Masayuki; Goda, Wael; Binh, Nguyen Huy; Nakashima, Masaya; Takamatsu, Manabu; Hara, Akira

    2011-03-25

    The ischemic damage in the hippocampal CA1 sector following transient ischemia, delayed neuronal death, is a typical apoptosis, but the mechanism underlying the delayed neuronal death is still far from fully understood. Galectin-3 is a β-galactosidase-binding lectin which is important in cell proliferation and apoptotic regulation. Galectin-3 is expressed by microglial cells in experimental models of adult stroke. It has been reported that activated microglial cells are widely observed in the brain, including in the hippocampal CA1 region after transient ischemic insult. In the present study, time course expression of galectin-3 following transient forebrain ischemia in gerbils was examined by immunohistochemistry, combined with Iba-1 immunostaining (a specific microglial cell marker), hematoxylin and eosin staining (for morphological observation), and in situ terminal dUTP-biotin nick end labeling of DNA fragments method (for determination of cell death). Following transient ischemia, we observed a transient increase of galectin-3 expression in CA1 region, which was maximal 96h after reperfusion. Galectin-3 expression was predominately localized within CA1 region and observed only in cells which expressed Iba-1. The galectin-3-positive microglial cells emerge after the onset of neuronal cell damage. Expressions of galectin-3 and Iba-1 were strongly reduced by hypothermia during ischemic insult. Prevention of galectin-3 and Iba-1 expression in microglia by hypothermia has led us to propose that hypothermia either inhibits microglial activation or prevents delayed neuronal death itself. Our results indicate that galectin-3 might exert its effect by modulating the neuronal damage in delayed neuronal death.

  8. Stress, caffeine and ethanol trigger transient neurological dysfunction through shared mechanisms in a mouse calcium channelopathy.

    PubMed

    Raike, Robert S; Weisz, Catherine; Hoebeek, Freek E; Terzi, Matthew C; De Zeeuw, Chris I; van den Maagdenberg, Arn M; Jinnah, H A; Hess, Ellen J

    2013-02-01

    Several episodic neurological disorders are caused by ion channel gene mutations. In patients, transient neurological dysfunction is often evoked by stress, caffeine and ethanol, but the mechanisms underlying these triggers are unclear because each has diverse and diffuse effects on the CNS. Attacks of motor dysfunction in the Ca(V)2.1 calcium channel mouse mutant tottering are also triggered by stress, caffeine and ethanol. Therefore, we used the tottering mouse attacks to explore the pathomechanisms of the triggers. Despite the diffuse physiological effects of these triggers, ryanodine receptor blockers prevented attacks induced by all of them. In contrast, compounds that potentiate ryanodine receptors triggered attacks suggesting a convergent biochemical pathway. Tottering mouse attacks were both induced and blocked within the cerebellum suggesting that the triggers act locally to instigate attacks. In fact, stress, caffeine and alcohol precipitated attacks in Ca(V)2.1 mutant mice in which genetic pathology was limited to cerebellar Purkinje cells, suggesting that the triggers initiate dysfunction within a specific brain region. The surprising biochemical and anatomical specificity of the triggers and the discovery that the triggers operate through shared mechanisms suggest that it is possible to develop targeted therapies aimed at blocking the induction of episodic neurological dysfunction, rather than treating the symptoms once provoked. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Stress, caffeine and ethanol trigger transient neurological dysfunction through shared mechanisms in a mouse calcium channelopathy

    PubMed Central

    Raike, Robert S.; Weisz, Catherine; Hoebeek, Freek E.; Terzi, Matthew C.; Zeeuw, Chris I. De; van den Maagdenberg, Arn M.; Jinnah, H.A.; Hess, Ellen J.

    2012-01-01

    Several episodic neurological disorders are caused by ion channel gene mutations. In patients, transient neurological dysfunction is often evoked by stress, caffeine and ethanol, but the mechanisms underlying these triggers are unclear because each has diverse and diffuse effects on the CNS. Attacks of motor dysfunction in the CaV2.1 calcium channel mouse mutant tottering are also triggered by stress, caffeine and ethanol. Therefore, we used the tottering mouse attacks to explore the pathomechanisms of the triggers. Despite the diffuse physiological effects of these triggers, ryanodine receptor blockers prevented attacks induced by all of them. In contrast, compounds that potentiate ryanodine receptors triggered attacks suggesting a convergent biochemical pathway. Tottering mouse attacks were both induced and blocked within the cerebellum suggesting that the triggers act locally to instigate attacks. In fact, stress, caffeine and alcohol precipitated attacks in CaV2.1 mutant mice in which genetic pathology was limited to cerebellar Purkinje cells, suggesting that the triggers initiate dysfunction within a specific brain region. The surprising biochemical and anatomical specificity of the triggers and the discovery that the triggers operate through shared mechanisms suggests that it is possible to develop targeted therapies aimed at blocking the induction of episodic neurological dysfunction, rather than treating the symptoms once provoked. PMID:23009754

  10. Divergent Soybean Calmodulins Respond Similarly to Calcium Transients: Insight into Differential Target Regulation

    PubMed Central

    Walton, Shane D.; Chakravarthy, Harshini; Shettigar, Vikram; O’Neil, Andrew J.; Siddiqui, Jalal K.; Jones, Benjamin R.; Tikunova, Svetlana B.; Davis, Jonathan P.

    2017-01-01

    Plants commonly respond to stressors by modulating the expression of a large family of calcium binding proteins including isoforms of the ubiquitous signaling protein calmodulin (CaM). The various plant CaM isoforms are thought to differentially regulate the activity of specific target proteins to modulate cellular stress responses. The mechanism(s) behind differential target activation by the plant CaMs is unknown. In this study, we used steady-state and stopped-flow fluorescence spectroscopy to investigate the strategy by which two soybean CaMs (sCaM1 and sCaM4) have evolved to differentially regulate NAD kinase (NADK), which is activated by sCaM1 but inhibited by sCaM4. Although the isolated proteins have different cation binding properties, in the presence of Mg2+ and the CaM binding domains from proteins that are differentially regulated, the two plant CaMs respond nearly identically to rapid and slow Ca2+ transients. Our data suggest that the plant CaMs have evolved to bind certain targets with comparable affinities, respond similarly to a particular Ca2+ signature, but achieve different structural states, only one of which can activate the enzyme. Understanding the basis for differential enzyme regulation by the plant CaMs is the first step to engineering a vertebrate CaM that will selectively alter the CaM signaling network. PMID:28261258

  11. [Curve-fit with hybrid logistic function for intracellular calcium transient].

    PubMed

    Mizuno, Ju; Morita, Shigeho; Araki, Junichi; Otsuji, Mikiya; Hanaoka, Kazuo; Kurihara, Satoshi

    2009-01-01

    As the left ventricular (LV) pressure curve and myocardial tension curve in heart are composed of contraction and relaxation processes, we have found that hybrid logistic (HL) function calculated as the difference between two logistic functions curve-fits better the isovolumic LV pressure curve and the isometric twitch tension curve than the conventional polynomial exponential and sinusoidal functions. Increase and decrease in intracellular Ca2+ concentration regulate myocardial contraction and relaxation. Recently, we reported that intracellular Ca2+ transient (CaT) curves measured using the calcium-sensitive bioluminescent protein, aequorin, were better curve-fitted by HL function compared to the polynomial exponential function in the isolated rabbit RV and mouse LV papillary muscles. We speculate that the first logistic component curve of HL fit represents the concentration of the Ca2+ inflow into the cytoplasmic space, the concentration of Ca2+ released from sarcoplasmic reticulum (SR), the concentration of Ca2+ binding to troponin C (TnC), and the attached number of cross-bridge (CB) and their time courses, and that the second logistic component curve of HL fit represents the concentration of Ca2+ sequestered into SR, the concentration of Ca2+ removal from the cytoplasmic space, the concentration of Ca2+ released from TnC, and the detached number of CB and their time courses. This HL approach for CaT curve may provide a more useful model for investigating Ca2+ handling, Ca(2+) -TnC interaction, and CB cycling.

  12. Glibenclamide decreases ATP-induced intracellular calcium transient elevation via inhibiting reactive oxygen species and mitochondrial activity in macrophages.

    PubMed

    Li, Duo-ling; Ma, Zhi-yong; Fu, Zhi-jie; Ling, Ming-ying; Yan, Chuan-zhu; Zhang, Yun

    2014-01-01

    Increasing evidence has revealed that glibenclamide has a wide range of anti-inflammatory effects. However, it is unclear whether glibenclamide can affect the resting and adenosine triphosphate (ATP)-induced intracellular calcium ([Ca(2+)]i) handling in Raw 264.7 macrophages. In the present study, [Ca(2+)]i transient, reactive oxygen species (ROS) and mitochondrial activity were measured by the high-speed TILLvisION digital imaging system using the indicators of Fura 2-am, DCFDA and rhodamine-123, respectively. We found that glibenclamide, pinacidil and other unselective K(+) channel blockers had no effect on the resting [Ca(2+)]i of Raw 264.7 cells. Extracellular ATP (100 µM) induced [Ca(2+)]i transient elevation independent of extracellular Ca(2+). The transient elevation was inhibited by an ROS scavenger (tiron) and mitochondria inhibitor (rotenone). Glibenclamide and 5-hydroxydecanoate (5-HD) also decreased ATP-induced [Ca(2+)]i transient elevation, but pinacidil and other unselective K(+) channel blockers had no effect. Glibenclamide also decreased the peak of [Ca(2+)]i transient induced by extracellular thapsigargin (Tg, 1 µM). Furthermore, glibenclamide decreased intracellular ROS and mitochondrial activity. When pretreated with tiron and rotenone, glibenclamide could not decrease ATP, and Tg induced maximal [Ca(2+)]i transient further. We conclude that glibenclamide may inhibit ATP-induced [Ca(2+)]i transient elevation by blocking mitochondria KATP channels, resulting in decreased ROS generation and mitochondrial activity in Raw 264.7 macrophages.

  13. PMCA4 (ATP2B4) mutation in familial spastic paraplegia causes delay in intracellular calcium extrusion

    PubMed Central

    Ho, Philip Wing-Lok; Pang, Shirley Yin-Yu; Li, Miaoxin; Tse, Zero Ho-Man; Kung, Michelle Hiu-Wai; Sham, Pak-Chung; Ho, Shu-Leong

    2015-01-01

    Background Familial spastic paraplegia (FSP) is a heterogeneous group of disorders characterized primarily by progressive lower limb spasticity and weakness. More than 50 disease loci have been described with different modes of inheritance. Recently, we described a novel missense mutation (c.803G>A, p.R268Q) in the plasma membrane calcium ATPase (PMCA4, or ATP2B4) gene in a Chinese family with autosomal dominant FSP. Further to this finding, here we describe the functional effect of this mutation. Methods As PMCA4 removes cytosolic calcium, we measured transient changes and the time-dependent decay of cytosolic calcium level as visualized by using fura-2 fluorescent dye with confocal microscopy in human SH-SY5Y neuroblastoma cells overexpressing either wild-type or R268Q mutant PMCA4. Results Overexpressing both wild-type and R268Q PMCA4 significantly reduced maximum calcium surge after KCl-induced depolarization as compared with vector control cells. However, cells overexpressing mutant PMCA4 protein demonstrated significantly higher level of calcium surge when compared with wild-type. Furthermore, the steady-state cytosolic calcium concentration in these mutant cells remained markedly higher than the wild-type after SERCA inhibition by thapsigargin. Conclusion Our result showed that p.R268Q mutation in PMCA4 resulted in functional changes in calcium homeostasis in human neuronal cells. This suggests that calcium dysregulation may be associated with the pathogenesis of FSP. PMID:25798335

  14. Calcium-dependent expression of transient receptor potential canonical type 3 channels in patients with chronic kidney disease.

    PubMed

    Liu, Ying; Krueger, Katharina; Hovsepian, Anahit; Tepel, Martin; Thilo, Florian

    2011-10-01

    It is unknown whether extracellular calcium may regulate the expression of transient receptor potential canonical type 3 (TRPC3) channels in patients with chronic kidney disease. Using quantitative in-cell Western assay we compared the expression of TRPC3 channel protein in monocytes from 20 patients with chronic kidney disease and 19 age- and sex-matched healthy control subjects. TRPC3 channels were identified by immunoblotting using specific antibodies and TRPC3 protein was further confirmed by mass spectrometry. We observed a significant increase of TRPC3 channel protein expression in patients with chronic kidney disease compared to healthy control subjects (normalized expression, 0.42±0.06 vs. 0.19±0.03; p<0.01). Expression of TRPC3 was significantly inversely correlated with estimated glomerular filtration rates (Spearman r=-0.41) or serum calcium concentration (Spearman r=-0.34). During a hemodialysis session serum calcium concentrations significantly increased, whereas the expression of TRPC3 channels and calcium influx significantly decreased. In vitro studies confirmed that higher calcium concentrations but not magnesium, barium nor sodium concentrations significantly decreased TRPC3 expression in human monocytes. This study indicates that reduced extracellular calcium concentrations up-regulate TRPC3 channel protein expression in patients with chronic kidney disease.

  15. Sources of variability in cytosolic calcium transients triggered by stimulation of homogeneous uro-epithelial cell monolayers

    PubMed Central

    Appleby, Peter A.; Shabir, Saqib; Southgate, Jennifer; Walker, Dawn

    2015-01-01

    Epithelial tissue structure is the emergent outcome of the interactions between large numbers of individual cells. Experimental cell biology offers an important tool to unravel these complex interactions, but current methods of analysis tend to be limited to mean field approaches or representation by selected subsets of cells. This may result in bias towards cells that respond in a particular way and/or neglect local, context-specific cell responses. Here, an automated algorithm was applied to examine in detail the individual calcium transients evoked in genetically homogeneous, but asynchronous populations of cultured non-immortalized normal human urothelial cells when subjected to either the global application of an external agonist or a localized scratch wound. The recorded calcium transients were classified automatically according to a set of defined metrics and distinct sub-populations of cells that responded in qualitatively different ways were observed. The nature of this variability in the homogeneous cell population was apportioned to two sources: intrinsic variation in individual cell responses and extrinsic variability due to context-specific factors of the environment, such as spatial heterogeneity. Statistically significant variation in the features of the calcium transients evoked by scratch wounding according to proximity to the wound edge was identified. The manifestation of distinct sub-populations of cells is considered central to the coordination of population-level response resulting in wound closure. PMID:25694543

  16. Calcium transients during early development in single starfish (Asterias forbesi) oocytes

    PubMed Central

    1984-01-01

    Maturation and fertilization of the starfish oocyte are putative calcium-dependent events. We have investigated the spatial distribution and temporal dynamics of this calcium dependence in single oocytes of Asterias forbesi. We used the calcium photoprotein, aequorin, in conjunction with a microscope-photomultiplier and microscope-image intensifier. Surprisingly, in contrast to earlier work with Marasthenias glacialis, there is no detectable increase in intracellular-free calcium in the oocyte of A. forbesi in response to the maturation hormone 1-methyl adenine. During fertilization of the same, matured, A. forbesi oocyte there is a large increase in intracellular-free calcium. The calcium concentration increases to approximately 1 microM at the point of insemination and the region of elevated free calcium expands across the oocyte in approximately 20 s (17-19 degrees C). After the entire oocyte reaches an elevated concentration of free calcium, the concentration decreases uniformly throughout the oocyte over the next several minutes. PMID:6490725

  17. Calcium transients during early development in single starfish (Asterias forbesi) oocytes

    SciTech Connect

    Eisen, A.; Reynolds, G.T.

    1984-11-01

    Maturation and fertilization of the starfish oocyte are putative calcium-dependent events. The authors have investigated the spatial distribution and temporal dynamics of this calcium dependence in single oocytes of Asterias forbesi. They used the calcium photoprotein, aequorin, in conjunction with a microscope-photomultiplier and microscope-image intensifier. Surprisingly, in contrast to earlier work with Marasthenias glacialis, there is no detectable increase in intracellular-free calcium in the oocyte of A. forbesi in response to the maturation hormone 1-methyl adenine. During fertilization of the same, matured, A. forbesi oocyte there is a large increase in intracellular-free calcium. The calcium concentration increases to approx.1 ..mu..M at the point of insemination and the region of elevated free calcium expands across the oocyte in approx.20 s (17-19/sup 0/C). After the entire oocyte reaches an elevated concentration of free calcium, the concentration decreases uniformly throughout the oocyte over the next several minutes.

  18. Optical identification of calcium-dependent action potentials transiently expressed in the embryonic rat brainstem.

    PubMed

    Momose-Sato, Y; Sato, K; Kamino, K

    1999-01-01

    Using multiple-site optical recording of transmembrane potential changes, we have found a new type of calcium-dependent action potential expressed transiently in the embryonic rat dorsal motor nucleus of the vagus nerve. Slice preparations with vagus nerve fibers attached were dissected from 12- to 16-day-old embryonic (E12-E16) rat brainstems, and they were stained with a voltage-sensitive merocyanine-rhodanine dye (NK2761). Electrical activities in response to vagal stimuli were optically recorded simultaneously from many sites using 1020- or 128-element photodiode array measuring systems. In brainstem preparations, two types of action potential-related optical signals were identified. One was detected from the dorsolateral region, and was related to sensory nerve activity (Type I). The other was detected from the dorsomedial region, and corresponded to the action potential in the dorsal motor nucleus of the vagus nerve (Type II). We found a difference in the ionic basis of the Type I vs Type II signals. The Type I signal was not altered in Ca2+-free bathing solution and was eliminated by tetrodotoxin, suggesting that the sensory nerve activity is mediated by Na+ currents. The Type II signal at early developmental stages (E12-E13, and some preparations in E14) was also independent of Ca2+. However, the Type II signal in later developmental stages (E15-E16, and some preparations in E14) did depend upon Ca2+: it was eliminated in Ca2+-free Ringer's solution, blocked by Cd2+, Ni2+ or Mn2+, and elicited in Sr2+-containing Ringer's solution, where CaCl2 was replaced with SrCl2. These results suggest that the cation which dominates the motoneuron action potential changes from Na+ to Ca2+ during development, and this change occurs around E14. With pharmacological analysis using Ca2+ channel blockers, we show that the Ca2+ channel mediating the motoneuron action potential is distinct from T-, L-, N-, P- or Q-type channels. Because the vagal action potential in adult

  19. The differentiation inducer, dimethyl sulfoxide, transiently increases the intracellular calcium ion concentration in various cell types.

    PubMed

    Morley, P; Whitfield, J F

    1993-08-01

    Dimethyl sulfoxide (DMSO) initiates a coordinated differentiation program in various cell types but the mechanism(s) by which DMSO does this is not understood. In this study, the effect of DMSO on intracellular calcium ion concentration ([Ca2+]i) was determined in primary cultures of chicken ovarian granulosa cells from the two largest preovulatory follicles of laying hens, and in three cell lines: undifferentiated P19 embryonal carcinoma cells, 3T3-L1 fibroblasts, and Friend murine erythroleukemia (MEL) cells. [Ca2+]i was measured in cells loaded with the Ca(2+)-specific fluoroprobe Fura-2. There was an immediate (i.e., within 5 sec), transient, two to sixfold increase in [Ca2+]i after exposing all cell types to 1% DMSO. DMSO was effective between 0.2 and 1%. The prompt DMSO-induced [Ca2+]i spike in all of the cell types was not prevented by incubating the cells in Ca(2+)-free medium containing 2 mM EGTA or by pretreating them with the Ca(2+)-channel blockers methoxyverapamil (D600; 100 microM), nifedipine (20 microM), or cobalt (5 mM). However, when granulosa cells, 3T3-L1 cells, or MEL cells were pretreated with lanthanum (La3+; 1 mM), which blocks both Ca2+ channels and membrane Ca2+ pumps, there was a sustained increase in [Ca2+]i in response to 1% DMSO. By contrast, pretreating P19 cells with La3+ (1 mM) did not prolong the DMSO-triggered [Ca2+]i transient. In all cases, the DMSO-induced [Ca2+]i surge was unaffected by pretreating the cells with the inhibitors of inositol phospholipid hydrolysis, neomycin (1.5 mM) or U-73, 122 (2.5 microM). These results suggest that DMSO almost instantaneously triggers the release of Ca2+ from intracellular stores through a common mechanism in cells in primary cultures and in cells of a variety of established lines, but this release is not mediated through phosphoinositide breakdown. This large, DMSO-induced Ca2+ spike may play a role in the induction of cell differentiation by DMSO.

  20. Transient effect of weak electromagnetic fields on calcium ion concentration in Arabidopsis thaliana.

    PubMed

    Pazur, Alexander; Rassadina, Valentina

    2009-04-30

    Weak magnetic and electromagnetic fields can influence physiological processes in animals, plants and microorganisms, but the underlying way of perception is poorly understood. The ion cyclotron resonance is one of the discussed mechanisms, predicting biological effects for definite frequencies and intensities of electromagnetic fields possibly by affecting the physiological availability of small ions. Above all an influence on Calcium, which is crucial for many life processes, is in the focus of interest. We show that in Arabidopsis thaliana, changes in Ca2+-concentrations can be induced by combinations of magnetic and electromagnetic fields that match Ca2+-ion cyclotron resonance conditions. An aequorin expressing Arabidopsis thaliana mutant (Col0-1 Aeq Cy+) was subjected to a magnetic field around 65 microtesla (0.65 Gauss) and an electromagnetic field with the corresponding Ca2+ cyclotron frequency of 50 Hz. The resulting changes in free Ca2+ were monitored by aequorin bioluminescence, using a high sensitive photomultiplier unit. The experiments were referenced by the additional use of wild type plants. Transient increases of cytosolic Ca2+ were observed both after switching the electromagnetic field on and off, with the latter effect decreasing with increasing duration of the electromagnetic impact. Compared with this the uninfluenced long-term loss of bioluminescence activity without any exogenic impact was negligible. The magnetic field effect rapidly decreased if ion cyclotron resonance conditions were mismatched by varying the magnetic fieldstrength, also a dependence on the amplitude of the electromagnetic component was seen. Considering the various functions of Ca2+ as a second messenger in plants, this mechanism may be relevant for perception of these combined fields. The applicability of recently hypothesized mechanisms for the ion cyclotron resonance effect in biological systems is discussed considering it's operating at magnetic field strengths weak

  1. Hearts of surviving MLP-KO mice show transient changes of intracellular calcium handling.

    PubMed

    Kemecsei, Péter; Miklós, Zsuzsanna; Bíró, Tamás; Marincsák, Rita; Tóth, Balázs I; Komlódi-Pásztor, Edina; Barnucz, Eniko; Mirk, Eva; Van der Vusse, Ger J; Ligeti, László; Ivanics, Tamás

    2010-09-01

    The muscle Lim protein knock-out (MLP-KO) mouse model is extensively used for studying the pathophysiology of dilated cardiomyopathy. However, explanation is lacking for the observed long survival of the diseased mice which develop until adulthood despite the gene defect, which theoretically predestines them to early death due to heart failure. We hypothesized that adaptive changes of cardiac intracellular calcium (Ca(i)(2+)) handling might explain the phenomenon. In order to study the progression of changes in cardiac function and Ca(i)(2+) cycling, myocardial Ca(i)(2+)-transients recorded by Indo-1 surface fluorometry were assessed with concomitant measurement of hemodynamic performance in isolated Langendorff-perfused hearts of 3- and 9-month old MLP-KO animals. Hearts were challenged with beta-agonist isoproterenol and the sarcoplasmic reticular Ca(2+)-ATPase (SERCA2a) inhibitor cyclopiazonic acid (CPA). Cardiac mRNA content and levels of key Ca(2+) handling proteins were also measured. A decline in lusitropic function was observed in 3-month old, but not in 9-month old MLP-KO mice under unchallenged conditions. beta-adrenergic responses to isoproterenol were similar in all the studied groups. The CPA induced an increase in end-diastolic Ca(i)(2+)-level and a decrease in Ca(2+)-sequestration capacity in 3-month old MLP-KO mice compared to age-matched controls. This unfavorable condition was absent at 9 months of age. SERCA2a expression was lower in 3-month old MLP-KO than in the corresponding controls and in 9-month old MLP-KO hearts. Our results show time-related recovery of hemodynamic function and an age-dependent compensatory upregulation of Ca(i)(2+) handling in hearts of MLP-KO mice, which most likely involve the normalization of the expression of SERCA2a in the affected hearts.

  2. Transient effect of weak electromagnetic fields on calcium ion concentration in Arabidopsis thaliana

    PubMed Central

    Pazur, Alexander; Rassadina, Valentina

    2009-01-01

    Background Weak magnetic and electromagnetic fields can influence physiological processes in animals, plants and microorganisms, but the underlying way of perception is poorly understood. The ion cyclotron resonance is one of the discussed mechanisms, predicting biological effects for definite frequencies and intensities of electromagnetic fields possibly by affecting the physiological availability of small ions. Above all an influence on Calcium, which is crucial for many life processes, is in the focus of interest. We show that in Arabidopsis thaliana, changes in Ca2+-concentrations can be induced by combinations of magnetic and electromagnetic fields that match Ca2+-ion cyclotron resonance conditions. Results An aequorin expressing Arabidopsis thaliana mutant (Col0-1 Aeq Cy+) was subjected to a magnetic field around 65 microtesla (0.65 Gauss) and an electromagnetic field with the corresponding Ca2+ cyclotron frequency of 50 Hz. The resulting changes in free Ca2+ were monitored by aequorin bioluminescence, using a high sensitive photomultiplier unit. The experiments were referenced by the additional use of wild type plants. Transient increases of cytosolic Ca2+ were observed both after switching the electromagnetic field on and off, with the latter effect decreasing with increasing duration of the electromagnetic impact. Compared with this the uninfluenced long-term loss of bioluminescence activity without any exogenic impact was negligible. The magnetic field effect rapidly decreased if ion cyclotron resonance conditions were mismatched by varying the magnetic fieldstrength, also a dependence on the amplitude of the electromagnetic component was seen. Conclusion Considering the various functions of Ca2+ as a second messenger in plants, this mechanism may be relevant for perception of these combined fields. The applicability of recently hypothesized mechanisms for the ion cyclotron resonance effect in biological systems is discussed considering it's operating at

  3. Delay in Seeking Medical Help following Transient Ischemic Attack (TIA) or “Mini-Stroke”: A Qualitative Study

    PubMed Central

    Mc Sharry, Jennifer; Baxter, Alison; Wallace, Louise M.; Kenton, Anthony; Turner, Andrew; French, David P.

    2014-01-01

    Background Prompt treatment following Transient Ischemic Attack (TIA) can reduce the risk of subsequent stroke and disability. However, many patients delay in making contact with medical services. This study aimed to explore TIA patients' accounts of delay between symptom onset and contacting medical services including how decisions to contact services were made and the factors discussed in relation to delay. Methods Twenty interviews were conducted with TIA patients in England. Using a previous systematic review as an initial framework, interview data were organised into categories of symptom recognition, presence of others and type of care sought. A thematic analysis was then conducted to explore descriptions of care-seeking relevant to each category. Results Delay in contacting medical services varied from less than an hour to eight days. Awareness of typical stroke symptoms could lead to urgent action when more severe TIA symptoms were present but could lead to delay when experienced symptoms were less severe. The role of friends and family varied widely from deciding on and enacting care-seeking decisions to simply providing transport to the GP practice. When family or friends played a greater role, and both made and enacted care-seeking decisions, delays were often shorter, even when patients themselves failed to identify symptoms. Healthcare professionals also impacted on patients' care-seeking with greater delays in seeking further care for the same episode described when patients perceived a lack of urgency during initial healthcare interactions. Conclusions This study provides new information on patients' decisions to contact medical services following TIA and identifies overlapping factors that can lead to delay in receiving appropriate treatment. While recognition of symptoms may contribute to delay in contacting medical services, additional factors, including full responsibility being taken by others and initial healthcare interactions, can over

  4. Delay in seeking medical help following Transient Ischemic Attack (TIA) or "mini-stroke": a qualitative study.

    PubMed

    Mc Sharry, Jennifer; Baxter, Alison; Wallace, Louise M; Kenton, Anthony; Turner, Andrew; French, David P

    2014-01-01

    Prompt treatment following Transient Ischemic Attack (TIA) can reduce the risk of subsequent stroke and disability. However, many patients delay in making contact with medical services. This study aimed to explore TIA patients' accounts of delay between symptom onset and contacting medical services including how decisions to contact services were made and the factors discussed in relation to delay. Twenty interviews were conducted with TIA patients in England. Using a previous systematic review as an initial framework, interview data were organised into categories of symptom recognition, presence of others and type of care sought. A thematic analysis was then conducted to explore descriptions of care-seeking relevant to each category. Delay in contacting medical services varied from less than an hour to eight days. Awareness of typical stroke symptoms could lead to urgent action when more severe TIA symptoms were present but could lead to delay when experienced symptoms were less severe. The role of friends and family varied widely from deciding on and enacting care-seeking decisions to simply providing transport to the GP practice. When family or friends played a greater role, and both made and enacted care-seeking decisions, delays were often shorter, even when patients themselves failed to identify symptoms. Healthcare professionals also impacted on patients' care-seeking with greater delays in seeking further care for the same episode described when patients perceived a lack of urgency during initial healthcare interactions. This study provides new information on patients' decisions to contact medical services following TIA and identifies overlapping factors that can lead to delay in receiving appropriate treatment. While recognition of symptoms may contribute to delay in contacting medical services, additional factors, including full responsibility being taken by others and initial healthcare interactions, can over-ride or undermine the importance of patients

  5. Mapping calcium transients in the dendrites of Purkinje cells from the guinea-pig cerebellum in vitro.

    PubMed Central

    Ross, W N; Werman, R

    1987-01-01

    1. A 10 X 10 photodiode array was used to detect stimulation-dependent absorbance changes simultaneously from many positions in the dendrite field of guinea-pig Purkinje cells which had been injected with the calcium indicator Arsenazo III in thin cerebellar slices. Signals from each element of the array were matched to positions on the cells by mapping them onto fluorescence photographs of Lucifer Yellow which had been co-injected into the cells with the Arsenazo III. 2. In response to intrasomatic stimulation the rising phase of the absorbance signals corresponded in time with the calcium spikes recorded with an intracellular electrode. There was no increase in absorbance during bursts of fast sodium spikes. Absorbance signals persisted after the sodium spikes were blocked by tetrodotoxin (TTX). In addition, the signals were largest at 660 nm and small signals of opposite polarity were found at 540 nm. These results indicate that the absorbance signals came from calcium entry into the cell resulting from the turning on of voltage-dependent calcium conductances. 3. In these experiments signals were usually seen all over the dendritic field and were weak or totally absent over the soma. In some cases signals were seen over a more restricted area. With a spatial resolution of 25 microns we were not able to see any evidence for highly localized sites of calcium entry. 4. Sometimes the rising phase of the calcium signals was separated by almost 13 ms in different parts of the dendritic field, too long to be explained by active propagation delay. This suggests that calcium spikes causing these signals can be evoked separately in different regions of the Purkinje cell dendritic field by long-lasting potentials which may reach local threshold at different times. 5. Calcium signals resulting from slow plateau after-potentials and the calcium spikes produced by them were also detected in all locations in the dendritic field. The relative distribution of amplitudes from

  6. Calcium

    MedlinePlus

    ... You'll also find calcium in broccoli and dark green, leafy vegetables (especially collard and turnip greens, ... can enjoy good sources of calcium such as dark green, leafy vegetables, broccoli, chickpeas, and calcium-fortified ...

  7. Coaccumulation of calcium and beta-amyloid in the thalamus after transient middle cerebral artery occlusion in rats.

    PubMed

    Mäkinen, Susanna; van Groen, Thomas; Clarke, Jared; Thornell, Anders; Corbett, Dale; Hiltunen, Mikko; Soininen, Hilkka; Jolkkonen, Jukka

    2008-02-01

    Transient occlusion of the middle cerebral artery (MCAO) in rats leads to abnormal accumulation of beta-amyloid (Abeta) peptides in the thalamus. This study investigated the chemical composition of these deposits. Adult male human beta-amyloid precursor protein (APP) overexpressing (hAPP695) rats and their wild-type littermates were subjected to transient MCAO for 2 h or sham operation. After 26-week survival time, histological examination revealed an overlapping distribution pattern for rodent and human Abeta in the thalamus of hAPP695 rats subjected to MCAO. X-ray microanalysis showed that the deposits did not contain significant amount of iron, zinc, or copper typical to senile plaques. In contrast, the deposit both in hAPP695 and non-transgenic rats contained calcium and phosphorus in a ratio (1.28+/-0.15) characteristic to hydroxyapatites. Alizarin red staining confirmed that calcium coaccumulated in these Abeta deposits. It is suggested that APP expression is induced by ischemic insult in cortical neurons adjacent to infarct, which in turn is reflected as increased release of Abeta peptides by their corticothalamic axon endings. This together with insufficient clearance or atypical degradation of Abeta peptides lead to dysregulation of calcium homeostatis and coaccumulation in the thalamus.

  8. Activity-dependent depression of excitability and calcium transients in the neurohypophysis suggests a model of "stuttering conduction".

    PubMed

    Muschol, Martin; Kosterin, Paul; Ichikawa, Michinori; Salzberg, B M

    2003-12-10

    Using millisecond time-resolved optical recordings of transmembrane voltage and intraterminal calcium, we have determined how activity-dependent changes in the population action potential are related to a concurrent modulation of calcium transients in the neurohypophysis. We find that repetitive stimulation dramatically alters the amplitude of the population action potential and significantly increases its temporal dispersion. The population action potentials and the calcium transients exhibit well correlated frequency-dependent amplitude depression, with broadening of the action potential playing only a limited role. High-speed camera recordings indicate that the magnitude of the spike modulation is uniform throughout the neurohypophysis, thereby excluding propagation failure as the underlying mechanism. In contrast, temporal dispersion and latency of the population spike do increase with distance from the stimulation site. This increase is enhanced during repeated stimulation and by raising the stimulation frequency. Changes in Ca influx directly affect the decline in population spike amplitude, consistent with electrophysiological measurements of the local loss of excitability in nerve terminals and varicosities, mediated by a Ca-activated K conductance. Our observations suggest a model of "stuttering conduction": repeated action potential stimulation causes excitability failures limited to nerve terminals and varicosities, which account for the rapid decline in the population spike amplitude. These failures, however, do not block action potential propagation but generate the cumulative increases in spike latency.

  9. TRPM2 channel deficiency prevents delayed cytosolic Zn2+ accumulation and CA1 pyramidal neuronal death after transient global ischemia

    PubMed Central

    Ye, M; Yang, W; Ainscough, J F; Hu, X-P; Li, X; Sedo, A; Zhang, X-H; Zhang, X; Chen, Z; Li, X-M; Beech, D J; Sivaprasadarao, A; Luo, J-H; Jiang, L-H

    2014-01-01

    Transient ischemia is a leading cause of cognitive dysfunction. Postischemic ROS generation and an increase in the cytosolic Zn2+ level ([Zn2+]c) are critical in delayed CA1 pyramidal neuronal death, but the underlying mechanisms are not fully understood. Here we investigated the role of ROS-sensitive TRPM2 (transient receptor potential melastatin-related 2) channel. Using in vivo and in vitro models of ischemia–reperfusion, we showed that genetic knockout of TRPM2 strongly prohibited the delayed increase in the [Zn2+]c, ROS generation, CA1 pyramidal neuronal death and postischemic memory impairment. Time-lapse imaging revealed that TRPM2 deficiency had no effect on the ischemia-induced increase in the [Zn2+]c but abolished the cytosolic Zn2+ accumulation during reperfusion as well as ROS-elicited increases in the [Zn2+]c. These results provide the first evidence to show a critical role for TRPM2 channel activation during reperfusion in the delayed increase in the [Zn2+]c and CA1 pyramidal neuronal death and identify TRPM2 as a key molecule signaling ROS generation to postischemic brain injury. PMID:25429618

  10. Mitochondrial calcium uptake regulates rapid calcium transients in skeletal muscle during excitation-contraction (E-C) coupling.

    PubMed

    Yi, Jianxun; Ma, Changling; Li, Yan; Weisleder, Noah; Ríos, Eduardo; Ma, Jianjie; Zhou, Jingsong

    2011-09-16

    Defective coupling between sarcoplasmic reticulum and mitochondria during control of intracellular Ca(2+) signaling has been implicated in the progression of neuromuscular diseases. Our previous study showed that skeletal muscles derived from an amyotrophic lateral sclerosis (ALS) mouse model displayed segmental loss of mitochondrial function that was coupled with elevated and uncontrolled sarcoplasmic reticulum Ca(2+) release activity. The localized mitochondrial defect in the ALS muscle allows for examination of the mitochondrial contribution to Ca(2+) removal during excitation-contraction coupling by comparing Ca(2+) transients in regions with normal and defective mitochondria in the same muscle fiber. Here we show that Ca(2+) transients elicited by membrane depolarization in fiber segments with defective mitochondria display an ~10% increased amplitude. These regional differences in Ca(2+) transients were abolished by the application of 1,2-bis(O-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, a fast Ca(2+) chelator that reduces mitochondrial Ca(2+) uptake. Using a mitochondria-targeted Ca(2+) biosensor (mt11-YC3.6) expressed in ALS muscle fibers, we monitored the dynamic change of mitochondrial Ca(2+) levels during voltage-induced Ca(2+) release and detected a reduced Ca(2+) uptake by mitochondria in the fiber segment with defective mitochondria, which mirrored the elevated Ca(2+) transients in the cytosol. Our study constitutes a direct demonstration of the importance of mitochondria in shaping the cytosolic Ca(2+) signaling in skeletal muscle during excitation-contraction coupling and establishes that malfunction of this mechanism may contribute to neuromuscular degeneration in ALS.

  11. Transient oscillatory patterns in the diffusive non-local blowfly equation with delay under the zero-flux boundary condition

    NASA Astrophysics Data System (ADS)

    Su, Ying; Zou, Xingfu

    2014-01-01

    In this paper, we study the spatial-temporal patterns of the solutions to the diffusive non-local Nicholson's blowflies equations with time delay (maturation time) subject to the no flux boundary condition. We establish the existence of both spatially homogeneous periodic solutions and various spatially inhomogeneous periodic solutions by investigating the Hopf bifurcations at the spatially homogeneous steady state. We also compute the normal form on the centre manifold, by which the bifurcation direction and stability of the bifurcated periodic solutions can be determined. The results show that the bifurcated homogeneous periodic solutions are stable, while the bifurcated inhomogeneous periodic solutions can only be stable on the corresponding centre manifold, implying that generically the model can only allow transient oscillatory patterns. Finally, we present some numerical simulations to demonstrate the theoretic results. For these transient patterns, we derive approximation formulas which are confirmed by numerical simulations.

  12. Mammalian oocyte activation by the synergistic action of discrete sperm head components: induction of calcium transients and involvement of proteolysis.

    PubMed

    Perry, A C; Wakayama, T; Cooke, I M; Yanagimachi, R

    2000-01-15

    Sperm-borne oocyte-activating factor (SOAF) elicits activation sufficient for full development and originates from sperm head submembrane matrices. SOAF comprises discrete, heat-sensitive and -stable components (referred to here respectively as SOAF-I and -II) which are each necessary but not sufficient to activate oocytes. The heat-sensitive SOAF component, SOAF-I(m), becomes solubilized from the perinuclear matrix under reducing conditions (the SOAF transition) to generate SOAF-I(s). Although calcium transients likely play an important role in oocyte activation at fertilization, the question is open as to whether demembranated heads or SOAF-I(s) and/or SOAF-II can induce calcium transients. We now report that injection of demembranated sperm heads into mouse oocytes efficiently induced Ca(2+) oscillations. When injected independently, SOAF-I(s) and demembranated heads heated to 48 degrees C failed to generate Ca(2+) oscillations. However, co-injection of SOAF-I(s) and 48 degrees C-heated heads induced oscillations, mirroring their synergistic ability to activate oocytes. This suggests that SOAF-mediated activation proceeds via pathways resembling those at fertilization and provides the first direct evidence that multiple sperm components are required to induce Ca(2+) oscillations. We probed the SOAF-I(s) liberation at the center of this activation and show that in vitro it was sensitive to a profile of serine protease inhibitors. These findings support a model in which mammalian oocyte activation, including the induction of calcium transients, involves proteolytic processing of SOAF from sperm head submembrane compartments.

  13. Sustained Expression of Osteopontin Is Closely Associated with Calcium Deposits in the Rat Hippocampus After Transient Forebrain Ischemia

    PubMed Central

    Park, Jang-Mi; Shin, Yoo-Jin; Kim, Hong Lim; Cho, Jeong Min

    2012-01-01

    The present study was designed to evaluate the extent and topography of osteopontin (OPN) protein expression in the rat hippocampus 4 to 12 weeks following transient forebrain ischemia, and to compare OPN expression patterns with those of calcium deposits and astroglial and microglial reactions. Two patterns of OPN staining were recognized by light microscopy: 1) a diffuse pattern of tiny granular deposits throughout the CA1 region at 4 weeks after ischemia and 2) non-diffuse ovoid to round deposits, which formed conglomerates in the CA1 pyramidal cell layer over the chronic interval of 8 to 12 weeks. Immunogold-silver electron microscopy and electron probe microanalysis demonstrated that OPN deposits were indeed diverse types of calcium deposits, which were clearly delineated by profuse silver grains indicative of OPN expression. Intracellular OPN deposits were frequently observed within reactive astrocytes and neurons 4 weeks after ischemia but rarely at later times. By contrast, extracellular OPN deposits progressively increased in size and appeared to be gradually phagocytized by microglia or brain macrophages and some astrocytes over 8 to 12 weeks. These data indicate an interaction between OPN and calcium in the hippocampus in the chronic period after ischemia, suggesting that OPN binding to calcium deposits may be involved in scavenging mechanisms. PMID:22496158

  14. Effects of Noise Correlation and Time Delay on Transient Properties of a Cancer Growth System with Immunization

    NASA Astrophysics Data System (ADS)

    Jia, Zheng-Lin

    The effects of noise correlation and time delay on the transient properties of a cancer growth system are studied in terms of the mean first-passage time (MFPT), which provides a measure of the mean extinction time of the tumor cell population. The results indicate that the additive and multiplicative noises can induce the noise-enhanced stability (NES) effect. The increasing of the delay time weakens the NES effect in the presence of two noise sources and induces a shift of the maximum of the MFPT towards smaller values of the noise intensities. The increasing of cross-correlation strength between noises can only restrain the NES effect induced by the multiplicative noise and can induce a shift of the peak of the MFPT towards larger values of the noise intensities.

  15. Emerin plays a crucial role in nuclear invagination and in the nuclear calcium transient.

    PubMed

    Shimojima, Masaya; Yuasa, Shinsuke; Motoda, Chikaaki; Yozu, Gakuto; Nagai, Toshihiro; Ito, Shogo; Lachmann, Mark; Kashimura, Shin; Takei, Makoto; Kusumoto, Dai; Kunitomi, Akira; Hayashiji, Nozomi; Seki, Tomohisa; Tohyama, Shugo; Hashimoto, Hisayuki; Kodaira, Masaki; Egashira, Toru; Hayashi, Kenshi; Nakanishi, Chiaki; Sakata, Kenji; Yamagishi, Masakazu; Fukuda, Keiichi

    2017-03-14

    Alteration of the nuclear Ca(2+) transient is an early event in cardiac remodeling. Regulation of the nuclear Ca(2+) transient is partly independent of the cytosolic Ca(2+) transient in cardiomyocytes. One nuclear membrane protein, emerin, is encoded by EMD, and an EMD mutation causes Emery-Dreifuss muscular dystrophy (EDMD). It remains unclear whether emerin is involved in nuclear Ca(2+) homeostasis. The aim of this study is to elucidate the role of emerin in rat cardiomyocytes by means of hypertrophic stimuli and in EDMD induced pluripotent stem (iPS) cell-derived cardiomyocytes in terms of nuclear structure and the Ca(2+) transient. The cardiac hypertrophic stimuli increased the nuclear area, decreased nuclear invagination, and increased the half-decay time of the nuclear Ca(2+) transient in cardiomyocytes. Emd knockdown cardiomyocytes showed similar properties after hypertrophic stimuli. The EDMD-iPS cell-derived cardiomyocytes showed increased nuclear area, decreased nuclear invagination, and increased half-decay time of the nuclear Ca(2+) transient. An autopsied heart from a patient with EDMD also showed increased nuclear area and decreased nuclear invagination. These data suggest that Emerin plays a crucial role in nuclear structure and in the nuclear Ca(2+) transient. Thus, emerin and the nuclear Ca(2+) transient are possible therapeutic targets in heart failure and EDMD.

  16. Emerin plays a crucial role in nuclear invagination and in the nuclear calcium transient

    PubMed Central

    Shimojima, Masaya; Yuasa, Shinsuke; Motoda, Chikaaki; Yozu, Gakuto; Nagai, Toshihiro; Ito, Shogo; Lachmann, Mark; Kashimura, Shin; Takei, Makoto; Kusumoto, Dai; Kunitomi, Akira; Hayashiji, Nozomi; Seki, Tomohisa; Tohyama, Shugo; Hashimoto, Hisayuki; Kodaira, Masaki; Egashira, Toru; Hayashi, Kenshi; Nakanishi, Chiaki; Sakata, Kenji; Yamagishi, Masakazu; Fukuda, Keiichi

    2017-01-01

    Alteration of the nuclear Ca2+ transient is an early event in cardiac remodeling. Regulation of the nuclear Ca2+ transient is partly independent of the cytosolic Ca2+ transient in cardiomyocytes. One nuclear membrane protein, emerin, is encoded by EMD, and an EMD mutation causes Emery-Dreifuss muscular dystrophy (EDMD). It remains unclear whether emerin is involved in nuclear Ca2+ homeostasis. The aim of this study is to elucidate the role of emerin in rat cardiomyocytes by means of hypertrophic stimuli and in EDMD induced pluripotent stem (iPS) cell-derived cardiomyocytes in terms of nuclear structure and the Ca2+ transient. The cardiac hypertrophic stimuli increased the nuclear area, decreased nuclear invagination, and increased the half-decay time of the nuclear Ca2+ transient in cardiomyocytes. Emd knockdown cardiomyocytes showed similar properties after hypertrophic stimuli. The EDMD-iPS cell-derived cardiomyocytes showed increased nuclear area, decreased nuclear invagination, and increased half-decay time of the nuclear Ca2+ transient. An autopsied heart from a patient with EDMD also showed increased nuclear area and decreased nuclear invagination. These data suggest that Emerin plays a crucial role in nuclear structure and in the nuclear Ca2+ transient. Thus, emerin and the nuclear Ca2+ transient are possible therapeutic targets in heart failure and EDMD. PMID:28290476

  17. Optogenetic approach for targeted activation of global calcium transients in differentiated C2C12 myotubes.

    PubMed

    Sebille, Stéphane; Ayad, Oualid; Chapotte-Baldacci, Charles-Albert; Cognard, Christian; Bois, Patrick; Chatelier, Aurélien

    2017-09-11

    Excitation-contraction coupling in muscle cells is initiated by a restricted membrane depolarization delimited within the neuromuscular junction. This targeted depolarization triggers an action potential that propagates and induces a global cellular calcium response and a consequent contraction. To date, numerous studies have investigated this excitation-calcium response coupling by using different techniques to depolarize muscle cells. However, none of these techniques mimic the temporal and spatial resolution of membrane depolarization observed in the neuromuscular junction. By using optogenetics in C2C12 muscle cells, we developed a technique to study the calcium response following membrane depolarization induced by photostimulations of membrane surface similar or narrower than the neuromuscular junction area. These stimulations coupled to confocal calcium imaging generate a global cellular calcium response that is the consequence of a membrane depolarization propagation. In this context, this technique provides an interesting, contactless and relatively easy way of investigation of calcium increase/release as well as calcium decrease/re-uptake triggered by a propagated membrane depolarization.

  18. Calcium

    MedlinePlus

    ... in luck if you like sardines and canned salmon with bones. Almond milk. previous continue Working Calcium ... drinks, and cereals. Other Considerations for Building Bones Vitamin D is essential for calcium absorption, so it's ...

  19. Functional properties of cardiac L-type calcium channels transiently expressed in HEK293 cells. Roles of alpha 1 and beta subunits

    PubMed Central

    1995-01-01

    The cardiac dihydropyridine-sensitive calcium channel was transiently expressed in HEK293 cells by transfecting the rabbit cardiac calcium channel alpha 1 subunit (alpha 1C) alone or in combination with the rabbit calcium channel beta subunit cloned from skeletal muscle. Transfection with alpha 1C alone leads to the expression of inward, voltage-activated, calcium or barium currents that exhibit dihydropyridine sensitivity and voltage- as well as calcium-dependent inactivation. Coexpression of the skeletal muscle beta subunit increases current density and the number of high-affinity dihydropyridine binding sites and also affects the macroscopic kinetics of the current. Recombinant alpha 1C beta channels exhibit a slowing of activation and a faster inactivation rate when either calcium or barium carries the charge. Our data suggest that both an increase in the number of channels as well as modulatory effects on gating underlie the modifications observed upon beta subunit coexpression. PMID:7539049

  20. Transient receptor potential vanilloid-1-mediated calcium responses are inhibited by the alkylamine antihistamines dexbrompheniramine and chlorpheniramine.

    PubMed

    Sadofsky, Laura R; Campi, Barbara; Trevisani, Marcello; Compton, Steven J; Morice, Alyn H

    2008-12-01

    American guidelines, unlike European guidelines, support the use of antihistamines as a first line of treatment for some causes of chronic cough. Transient receptor potential vanilloid-1 (TRPV1) is an ion channel activated by the tussive agents capsaicin, resiniferatoxin, and protons. It is predominantly expressed by C-fiber and some Adelta -fiber sensory neurons and is thought to be a cough receptor. By measuring increases in intracellular calcium as an indicator of TRPV1 activation, the authors sought to determine whether antihistamines could antagonise TRPV1 permanently expressed in HEK and Pro5 cells and TRPV1 endogenously expressed in rat dorsal root ganglia neurons. In human TRPV1-expressing HEK cells (hTRPV1-HEK), diphenhydramine and fexofenadine failed to inhibit capsaicin-triggered calcium responses. However, both dexbrompheniramine and chlorpheniramine significantly inhibited capsaicin-evoked responses in hTRPV1-HEK. Dexbrompheniramine also inhibited activation of rat TRPV1 expressed in HEK and Pro5 cells, without interfering with TRPA1 and proteinase-activated receptor-2 (PAR(2)) activation. Finally, in rat dorsal root ganglia neuron preparations, dexbrompheniramine dose-dependently inhibited capsaicin-evoked calcium responses. Thus, the inhibition of TRPV1 activation by dexbrompheniramine may provide one potential mechanism whereby this antihistamine exerts its therapeutic effect in chronic cough.

  1. Calcium

    MedlinePlus

    ... such as canned sardines and salmon Calcium-enriched foods such as breakfast cereals, fruit juices, soy and rice drinks, and tofu. Check the product labels. The exact amount of calcium you need depends on your age and other factors. Growing children and teenagers need more calcium than ...

  2. Least-Squares Time-Delay Estimation for Transient Signals in a Multipath Environment

    DTIC Science & Technology

    1992-07-01

    characterized by a thin sediment In order to obtain unbiased estimates, we need to go layer over a highly reflecting basalt as shown in Fig. 6. The...surface and the basalt . The model Transient data were gathered in the Atlantic Ocean on a ocean impulse response is shown in Fig. 8 with the four paths...Senamato and D. G. Childers , "Signal resolution via digital inverse Multipath Environment." in Proc. Oceans 󈨞, Washington. DC, pp filtering." [EEE Trans

  3. Dependence of transient and residual calcium dynamics on action-potential patterning during neuropeptide secretion.

    PubMed

    Muschol, M; Salzberg, B M

    2000-09-15

    Secretion of the neuropeptide arginine vasopressin (AVP) from the neurohypophysis is optimized by short phasic bursts of action potentials with a mean intraburst frequency around 10 Hz. Several hypotheses, most prominently action-potential broadening and buildup of residual calcium, have been proposed to explain this frequency dependence of AVP release. However, how either of these mechanisms would optimize release at any given frequency remains an open question. We have addressed this issue by correlating the frequency-dependence of intraterminal calcium dynamics and AVP release during action-potential stimulation. By monitoring the intraterminal calcium changes with low-affinity indicator dyes and millisecond time resolution, the signal could be dissected into three separate components: rapid Ca(2+) rises (Delta[Ca(2+)](tr)) related to action-potential depolarization, Ca(2+) extrusion and/or uptake, and a gradual increase in residual calcium (Delta[Ca(2+)](res)) throughout the stimulus train. Action-potential stimulation modulated all three components in a manner dependent on both the stimulation frequency and number of stimuli. Overall, the cumulative Delta[Ca(2+)](tr) amplitude initially increased with f(Stim) and then rapidly deteriorated, with a maximum around f(Stim) calcium levels, in contrast, increased monotonically with stimulation frequency. Simultaneously with the calcium measurements we determined the amount of AVP release evoked by each stimulus train. Hormone release increased with f(Stim) beyond the peak in Delta[Ca(2+)](tr) amplitudes, reaching its maximum between 5 and 10 Hz before returning to its 1 Hz level. Thus, AVP release responds to the temporal patterning of stimulation, is sensitive to both Delta[Ca(2+)](tr) and Delta[Ca(2+)](res), and is optimized at a frequency intermediate between the frequency-dependent maxima in Delta[Ca(2+)](tr) and Delta[Ca(2+)](res).

  4. Spontaneous calcium transients manifest in the regenerating muscle and are necessary for skeletal muscle replenishment.

    PubMed

    Tu, Michelle Kim; Borodinsky, Laura Noemi

    2014-07-01

    Tissue regeneration entails replenishing of damaged cells, appropriate cell differentiation and inclusion of regenerated cells into functioning tissues. In adult humans, the capacity of the injured spinal cord and muscle to self-repair is limited. In contrast, the amphibian larva can regenerate its tail after amputation with complete recovery of muscle, notochord and spinal cord. The cellular and molecular mechanisms underlying this phenomenon are still unclear. Here we show that upon injury muscle cell precursors exhibit Ca(2+) transients that depend on Ca(2+) release from ryanodine receptor-operated stores. Blockade of these transients impairs muscle regeneration. Furthermore, inhibiting Ca(2+) transients in the regenerating tail prevents the activation and proliferation of muscle satellite cells, which results in deficient muscle replenishment. These findings suggest that Ca(2+)-mediated activity is critical for the early stages of muscle regeneration, which may lead to developing effective therapies for tissue repair.

  5. Comparative effects of bupivacaine and ropivacaine on intracellular calcium transients and tension in ferret ventricular muscle.

    PubMed

    Mio, Yasushi; Fukuda, Norio; Kusakari, Yoichiro; Amaki, Yoshikiyo; Tanifuji, Yasumasa; Kurihara, Satoshi

    2004-10-01

    Recent evidence suggests that ropivacaine exerts markedly less cardiotoxicity compared with bupivacaine; however, the mechanisms are not fully understood at the molecular level. Isolated ferret ventricular papillary muscles were microinjected with the Ca-binding photoprotein aequorin, and intracellular Ca transients and tension were simultaneously measured during twitch in the absence and presence of bupivacaine or ropivacaine. Bupivacaine and ropivacaine (10, 30, and 100 microm) reduced peak systolic [Ca]i and tension in a concentration-dependent manner. The effects were significantly greater for bupivacaine, particularly on tension (approximately twofold). The percentage reduction of tension was linearly correlated with that of [Ca]i for both anesthetics, with the slope of the relationship being approximately equal to 1.0 for ropivacaine and approximately equal to 1.3 for bupivacaine (slope difference, P < 0.05), suggesting that the cardiodepressant effect of ropivacaine results predominantly from inhibition of Ca transients, whereas bupivacaine suppresses Ca transients and the reaction beyond Ca transients, i.e., myofibrillar activation, as well. BAY K 8644, a Ca channel opener, abolished the inhibitory effects of ropivacaine on Ca transients and tension, whereas BAY K 8644 only partially inhibited the effects of bupivacaine, particularly the effects on tension. The cardiodepressant effect of bupivacaine is approximately twofold greater than that of ropivacaine. Bupivacaine suppresses Ca transients more markedly than does ropivacaine and reduces myofibrillar activation, which may at least in part underlie the greater inhibitory effect of bupivacaine on cardiac contractions. These results suggest that ropivacaine has a more favorable profile as a local anesthetic in the clinical settings.

  6. Transient delayed facial nerve palsy after inferior alveolar nerve block anesthesia.

    PubMed

    Tzermpos, Fotios H; Cocos, Alina; Kleftogiannis, Matthaios; Zarakas, Marissa; Iatrou, Ioannis

    2012-01-01

    Facial nerve palsy, as a complication of an inferior alveolar nerve block anesthesia, is a rarely reported incident. Based on the time elapsed, from the moment of the injection to the onset of the symptoms, the paralysis could be either immediate or delayed. The purpose of this article is to report a case of delayed facial palsy as a result of inferior alveolar nerve block, which occurred 24 hours after the anesthetic administration and subsided in about 8 weeks. The pathogenesis, treatment, and results of an 8-week follow-up for a 20-year-old patient referred to a private maxillofacial clinic are presented and discussed. The patient's previous medical history was unremarkable. On clinical examination the patient exhibited generalized weakness of the left side of her face with a flat and expressionless appearance, and she was unable to close her left eye. One day before the onset of the symptoms, the patient had visited her dentist for a routine restorative procedure on the lower left first molar and an inferior alveolar block anesthesia was administered. The patient's medical history, clinical appearance, and complete examinations led to the diagnosis of delayed facial nerve palsy. Although neurologic occurrences are rare, dentists should keep in mind that certain dental procedures, such as inferior alveolar block anesthesia, could initiate facial nerve palsy. Attention should be paid during the administration of the anesthetic solution.

  7. Magnesium sulfate after transient hypoxia-ischemia fails to prevent delayed cerebral energy failure in the newborn piglet.

    PubMed

    Penrice, J; Amess, P N; Punwani, S; Wylezinska, M; Tyszczuk, L; D'Souza, P; Edwards, A D; Cady, E B; Wyatt, J S; Reynolds, E O

    1997-03-01

    Severely birth-asphyxiated human infants develop delayed ("secondary") cerebral energy failure, which carries a poor prognosis, during the first few days of life. This study tested the hypothesis that i.v. magnesium sulfate (MgSO4) after severe transient cerebral hypoxia-ischemia decreases the severity of delayed energy failure in the newborn piglet. Twelve piglets underwent temporary occlusion of the common carotid arteries and hypoxemia. Resuscitation was started when cerebral [phosphocreatine (PCr)]/[inorganic phosphate (Pi)], as determined by phosphorus magnetic resonance spectroscopy, had fallen virtually to zero, and nucleotide triphosphate (NTP) had fallen below a third of baseline. The piglets were randomized to receive, blind, either: 1) three i.v. infusions of 12.5% MgSO4 heptahydrate solution: 400 mg.kg-1 MgSO4.7H2O starting 1 h after resuscitation, and 200 mg.kg-1 12 and 24 h later (n = 6); or 2) three infusions of placebo, 0.9% NaCl (n = 6). Phosphorus and proton spectroscopy were continued until 48 h after resuscitation, and values were compared between the two groups. Mean plasma magnesium levels, 1 h after each of the three doses of MgSO4, were 2.1, 2.0, and 1.9 mmol.L-1, respectively. The severity of the primary insult, determined by the time-integral of depletion of cerebral [NTP]/[exchangeable phosphate pool (EPP)], was similar in the MgSO4-treated and placebo groups. After resuscitation, there was no difference in the progression or severity of delayed energy failure between the two groups, as judged by cerebral [PCr]/[Pi], [NTP]/[EPP], or lactate/creatine and N-acetylaspartate/creatine peak-area ratios. We conclude that MgSO4 did not decrease the severity of delayed cerebral energy failure.

  8. Calcium transients and the effect of a photolytically released calcium chelator during electrically induced contractions in rabbit rectococcygeus smooth muscle.

    PubMed Central

    Arner, A; Malmqvist, U; Rigler, R

    1998-01-01

    Intracellular Ca2+ was determined with the fura-2 technique during electrically induced contractions in the rabbit rectococcygeus smooth muscle at 22 degreesC. The muscles were electrically activated to give short, reproducible contractions. Intracellular [Ca2+] increased during activation; the increase in [Ca2+] preceded force development by approximately 2 s. After cessation of stimulation Ca2+ fell, preceding the fall in force by approximately 4 s. The fluorescence properties of fura-2 were determined with time-resolved spectroscopy using synchrotron light at the MAX-storage ring, Lund, Sweden. The fluorescence decay of free fura-2 was best described by two exponential decays (time constants approximately 0.5 and 1.5 ns) at low Ca2+ (pCa 9). At high Ca2+ (pCa 4.5), fluorescence decay became slower and could be fitted by one exponential decay (1.9 ns). Time-resolved anisotropy of free fura-2 was characteristic of free rotational motion (correlation time 0.3 ns). Motion of fura-2 could be markedly inhibited by high concentrations of creatine kinase. Time-resolved spectroscopy measurements of muscle fibers loaded with fura-2 showed that the fluorescence lifetime of the probe was longer, suggesting an influence of the chemical environment. Anisotropy measurements revealed, however, that the probe was mobile in the cells. The Ca2+-dependence of contraction and relaxation was studied using a photolabile calcium chelator, diazo-2, which could be loaded into the muscle cells in a similar manner as fura-2. Photolysis of diazo-2 leads to an increase in its Ca2+-affinity and a fall in free Ca2+. When muscles that had been loaded with diazo-2 were illuminated with UV light flashes during the rising phase of contraction, the rate of contraction became slower, suggesting a close relation between intracellular Ca2+ and the cross-bridge interaction. In contrast, photolysis during relaxation did not influence the rate of force decay, suggesting that relaxation of these

  9. Cytoplasmic calcium transients due to single action potentials and voltage-clamp depolarizations in mouse pancreatic B-cells.

    PubMed Central

    Rorsman, P; Ammälä, C; Berggren, P O; Bokvist, K; Larsson, O

    1992-01-01

    Changes in the cytoplasmic free calcium concentration ([Ca2+]i) in pancreatic B-cells play an important role in the regulation of insulin secretion. We have recorded [Ca2+]i transients evoked by single action potentials and voltage-clamp Ca2+ currents in isolated B-cells by the combination of dual wavelength emission spectrofluorimetry and the patch-clamp technique. A 500-1000 ms depolarization of the B-cell from -70 to -10 mV evoked a transient rise in [Ca2+]i from a resting value of approximately 100 nM to a peak concentration of 550 nM. Similar [Ca2+]i changes were associated with individual action potentials. The depolarization-induced [Ca2+]i transients were abolished by application of nifedipine, a blocker of L-type Ca2+ channels, indicating their dependence on influx of extracellular Ca2+. Following the voltage-clamp step, [Ca2+]i decayed with a time constant of approximately 2.5 s and summation of [Ca2+]i occurred whenever depolarizations were applied with an interval of less than 2 s. The importance of the Na(+)-Ca2+ exchange for B-cell [Ca2+]i maintenance was evidenced by the demonstration that basal [Ca2+]i rose to 200 nM and the magnitude of the depolarization-evoked [Ca2+]i transients was markedly increased after omission of extracellular Na+. However, the rate by which [Ca2+]i returned to basal was not affected, suggesting the existence of additional [Ca2+]i buffering processes. PMID:1639061

  10. Protective role of transient pore openings in calcium handling by cardiac mitochondria.

    PubMed

    Korge, Paavo; Yang, Ling; Yang, Jun-Hai; Wang, Yibin; Qu, Zhilin; Weiss, James N

    2011-10-07

    Long-lasting mitochondrial permeability transition pore (mPTP) openings damage mitochondria, but transient mPTP openings protect against chronic cardiac stress. To probe the mechanism, we subjected isolated cardiac mitochondria to gradual Ca(2+) loading, which, in the absence of BSA, induced long-lasting mPTP opening, causing matrix depolarization. However, with BSA present to mimic cytoplasmic fatty acid-binding proteins, the mitochondrial population remained polarized and functional, even after matrix Ca(2+) release caused an extramitochondrial free [Ca(2+)] increase to >10 μM, unless mPTP openings were inhibited. These findings could be explained by asynchronous transient mPTP openings allowing individual mitochondria to depolarize long enough to flush accumulated matrix Ca(2+) and then to repolarize rapidly after pore closure. Because subsequent matrix Ca(2+) reuptake via the Ca(2+) uniporter is estimated to be >100-fold slower than matrix Ca(2+) release via mPTP, only a tiny fraction of mitochondria (<1%) are depolarized at any given time. Our results show that transient mPTP openings allow cardiac mitochondria to defend themselves collectively against elevated cytoplasmic Ca(2+) levels as long as respiratory chain activity is able to balance proton influx with proton pumping. We found that transient mPTP openings also stimulated reactive oxygen species production, which may engage reactive oxygen species-dependent cardioprotective signaling.

  11. Controlling pulse delay by light and low magnetic fields: slow light in emerald induced by transient spectral hole-burning.

    PubMed

    Rajan, Rajitha Papukutty; Riesen, Hans; Rebane, Aleksander

    2013-11-15

    Slow light based on transient spectral hole-burning is reported for emerald, Be(3)Al(2)Si(6)O(18):Cr(3+). Experiments were conducted in π polarization on the R(1)(± 3/2) line (E2 ← A(2)4) at 2.2 K in zero field and low magnetic fields B||c. The hole width was strongly dependent on B||c, and this allowed us to smoothly tune the pulse delay from 40 to 154 ns between zero field and B||c = 15.2 mT. The latter corresponds to a group velocity of 16 km/s. Slow light in conjunction with a linear filter theory can be used as a powerful and accurate technique in time-resolved spectroscopy, e.g., to determine spectral hole-widths as a function of time.

  12. Alcohol delays the emergence of the fetal elicited startle response, but only transiently

    PubMed Central

    Hepper, Peter G; Dornan, James C; Lynch, Catherine; Maguire, Jennifer F

    2012-01-01

    Prenatal exposure to alcohol may exert a significant detrimental effect on the functioning of the individual’s brain, however few studies have examined this before birth. This longitudinal study examined the effect of maternal alcohol consumption on the elicited startle response of the fetus. Two groups of fetuses were examined: one whose mothers drank alcohol (approximately 10 units per week); the other whose mothers did not drink alcohol. Fetuses were examined at 29, 32 and 35 weeks gestation and their startle response observed using ultrasound in response to 2 presentations of a pink noise (70–250Hz) at 90dB(A) separated by 30 seconds. Fetuses exposed to alcohol exhibited a weaker startle response at 29 weeks gestation than did fetuses not exposed to alcohol. There was no difference in the response at 32 and 35 weeks gestation. To ensure the effects were not due to a more general effect of alcohol on fetal movement, a second experiment compared the spontaneous movements (observed on ultrasound for 45 minutes) of fetuses whose mothers drank alcohol and fetuses of mothers who didn’t drink alcohol. There were no differences in movements exhibited by the fetuses. The results suggest that exposure to alcohol delays the emergence of the elicited startle response at 29 weeks gestation but this delay has disappeared by 32 weeks gestation. The possible role of altered neural development, acute exposure to alcohol and disruptions to the fetus’s behavioural repertoire, in mediating these effects are discussed. PMID:22691707

  13. Ginkgo biloba Prevents Transient Global Ischemia-Induced Delayed Hippocampal Neuronal Death Through Antioxidant and Anti-inflammatory Mechanism

    PubMed Central

    Tulsulkar, Jatin; Shah, Zahoor A.

    2012-01-01

    We have previously reported neuroprotective properties of Ginkgo biloba/EGb 761® (EGb 761) in transient and permanent mouse models of brain ischemia. In a quest to extend our studies on EGB 761 and its constituents further, we used a model of transient global ischemia induced delayed hippocampal neuronal death and inflammation. Mice pretreated with different test drugs for 7 days were subjected to eight-minute bilateral common carotid artery occlusion (tBCCAO) at day 8. After 7 days of reperfusion, mice brains were dissected out for TUNEL assay and immunohistochemistry. In-situ detection of fragmented DNA (TUNEL staining) showed that out of all test drugs, only EGb 761 (13.6% ± 3.2) pretreatment protected neurons in the hippocampus against global ischemia (vs. vehicle, 85.1% ± 9.9; p < 0.05). Immunofluorescence-based studies demonstrated that pretreatment with EGb 761 upregulated the expression levels of heme oxygenase 1 (HO1), nuclear factor erythroid 2-related factor 2 (Nrf2), and vascular endothelial growth factor (VEGF) as compared to the vehicle group. In addition, increased number of activated astrocytes and microglia in the vehicle group was observed to be significantly lower in the EGb 761 pretreated group. Together, these results suggest that EGb 761 is a multifunctional neuroprotective agent, and the protection is in part associated with activation of the HO1/Nrf2 pathway, upregulation of VEGF and downregulation of inflammatory mediators such as astrocytes and microglia. PMID:23228346

  14. Alcohol delays the emergence of the fetal elicited startle response, but only transiently.

    PubMed

    Hepper, Peter G; Dornan, James C; Lynch, Catherine; Maguire, Jennifer F

    2012-08-20

    Prenatal exposure to alcohol may exert a significant detrimental effect on the functioning of the individual's brain, however few studies have examined this before birth. This longitudinal study examined the effect of maternal alcohol consumption on the elicited startle response of the fetus. Two groups of fetuses were examined: one whose mothers drank alcohol (approximately 10 units per week); the other whose mothers did not drink alcohol. Fetuses were examined at 29, 32 and 35 weeks gestation and their startle response observed using ultrasound in response to 2 presentations of a pink noise (70-250Hz) at 90dB(A) separated by 30s. Fetuses exposed to alcohol exhibited a weaker startle response at 29 weeks gestation than did fetuses not exposed to alcohol. There was no difference in the response at 32 and 35 weeks gestation. To ensure that the effects were not due to a more general effect of alcohol on fetal movement, a second experiment compared the spontaneous movements (observed on ultrasound for 45 min) of fetuses whose mothers drank alcohol and fetuses of mothers who didn't drink alcohol. There were no differences in movements exhibited by the fetuses. The results suggest that exposure to alcohol delays the emergence of the elicited startle response at 29 weeks gestation but this delay has disappeared by 32 weeks gestation. The possible role of altered neural development, acute exposure to alcohol and disruptions to the fetus's behavioural repertoire, in mediating these effects are discussed. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. A diffusible signal from arbuscular mycorrhizal fungi elicits a transient cytosolic calcium elevation in host plant cells.

    PubMed

    Navazio, Lorella; Moscatiello, Roberto; Genre, Andrea; Novero, Mara; Baldan, Barbara; Bonfante, Paola; Mariani, Paola

    2007-06-01

    The implication of calcium as intracellular messenger in the arbuscular mycorrhizal (AM) symbiosis has not yet been directly demonstrated, although often envisaged. We used soybean (Glycine max) cell cultures stably expressing the bioluminescent Ca(2+) indicator aequorin to detect intracellular Ca(2+) changes in response to the culture medium of spores of Gigaspora margarita germinating in the absence of the plant partner. Rapid and transient elevations in cytosolic free Ca(2+) were recorded, indicating that diffusible molecules released by the mycorrhizal fungus are perceived by host plant cells through a Ca(2+)-mediated signaling. Similar responses were also triggered by two Glomus isolates. The fungal molecules active in generating the Ca(2+) transient were constitutively released in the medium, and the induced Ca(2+) signature was not modified by the coculture of germinating spores with plant cells. Even ungerminated spores were able to generate the signaling molecules, as proven when the germination was blocked by a low temperature. The fungal molecules were found to be stable to heat treatment, of small molecular mass (<3 kD), and, on the basis of extraction with an organic solvent, partially lipophilic. Evidence for the specificity of such an early fungal signal to the AM symbiosis is suggested by the lack of a Ca(2+) response in cultured cells of the nonhost plant Arabidopsis (Arabidopsis thaliana) and by the up-regulation in soybean cells of genes related to Medicago truncatula DMI1, DMI2, and DMI3 and considered essential for the establishment of the AM symbiosis.

  16. Consistent delayed unilateral neuronal death after modified transient focal cerebral ischemia in mice that mimics neuronal injury after transient global cerebral ischemia.

    PubMed

    Nishijima, Yasuo; Niizuma, Kuniyasu; Fujimura, Miki; Akamatsu, Yosuke; Shimizu, Hiroaki; Tominaga, Teiji

    2015-07-01

    Numerous studies have attempted to reveal the pathophysiology of ischemic neuronal injury using a representative transient global cerebral ischemia (tGCI) model in rodents; however, most of them have used gerbil or rat models. Recent advances in transgene and gene-knockout technology have enabled the precise molecular mechanisms of ischemic brain injury to be investigated. Because the predominant species for the study of genetic mutations is the mouse, a representative mouse model of tGCI is of particular importance. However, simple mouse models of tGCI are less reproducible; therefore, a more complex process or longer duration of ischemia, which causes a high mortality rate, has been used in previous tGCI models in mice. In this study, the authors aimed to overcome these problems and attempted to produce consistent unilateral delayed hippocampal CA1 neuronal death in mice. C57BL/6 mice were subjected to short-term unilateral cerebral ischemia using a 4-mm silicone-coated intraluminal suture to obstruct the origin of the posterior cerebral artery (PCA), and regional cerebral blood flow (rCBF) of the PCA territory was measured using laser speckle flowmetry. The mice were randomly assigned to groups of different ischemic durations and histologically evaluated at different time points after ischemia. The survival rate and neurological score of the group that experienced 15 minutes of ischemia were also evaluated. Consistent neuronal death was observed in the medial CA1 subregion 4 days after 15 minutes of ischemia in the group of mice with a reduction in rCBF of < 65% in the PCA territory during ischemia. Morphologically degenerated cells were mostly positive for terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling and cleaved caspase 3 staining 4 days after ischemia. The survival rates of the mice 24 hours (n = 24), 4 days (n = 15), and 7 days (n = 7) after being subjected to 15 minutes of ischemia were 95.8%, 100%, and 100

  17. Anti-epileptic drugs delay age-related loss of spiral ganglion neurons via T-type calcium channel.

    PubMed

    Lei, Debin; Gao, Xia; Perez, Philip; Ohlemiller, Kevin K; Chen, Chien-Chang; Campbell, Kevin P; Hood, Aizhen Yang; Bao, Jianxin

    2011-08-01

    Loss of spiral ganglion neurons is a major cause of age-related hearing loss (presbycusis). Despite being the third most prevalent condition afflicting elderly persons, there are no known medications to prevent presbycusis. Because calcium signaling has long been implicated in age-related neuronal death, we investigated T-type calcium channels. This family is comprised of three members (Ca(v)3.1, Ca(v)3.2, and Ca(v)3.3), based on their respective main pore-forming alpha subunits: α1G, α1H, and α1I. In the present study, we report a significant delay of age-related loss of cochlear function and preservation of spiral ganglion neurons in α1H null and heterozygous mice, clearly demonstrating an important role for Ca(v)3.2 in age-related neuronal loss. Furthermore, we show that anticonvulsant drugs from a family of T-type calcium channel blockers can significantly preserve spiral ganglion neurons during aging. To our knowledge, this is the first report of drugs capable of diminishing age-related loss of spiral ganglion neurons. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Anti-Epileptic Drugs Delay Age-Related Loss of Spiral Ganglion Neurons via T-type Calcium Channel

    PubMed Central

    Lei, Debin; Gao, Xia; Perez, Philip; Ohlemiller, Kevin K; Chen, Chien-Chang; Campbell, Kevin P.; Hood, Aizhen Yang; Bao, Jianxin

    2011-01-01

    Loss of spiral ganglion neurons is a major cause of age-related hearing loss (presbycusis). Despite being the third most prevalent condition afflicting elderly persons, there are no known medications to prevent presbycusis. Because calcium signaling has long been implicated in age-related neuronal death, we investigated T-type calcium channels. This family is comprised of three members (Cav3.1, Cav3.2, and Cav3.3), based on their respective main pore-forming alpha subunits: α1G, α1H, and α1I. In the present study, we report a significant delay of age-related loss of cochlear function and preservation of spiral ganglion neurons in α1H null and heterozygous mice, clearly demonstrating an important role for Cav3.2 in age-related neuronal loss. Furthermore, we show that anticonvulsant drugs from a family of T-type calcium channel blockers can significantly preserve spiral ganglion neurons during aging. To our knowledge, this is the first report of drugs capable of diminishing age-related loss of spiral ganglion neurons. PMID:21640179

  19. Novel features on the regulation by mitochondria of calcium and secretion transients in chromaffin cells challenged with acetylcholine at 37°C

    PubMed Central

    Caricati‐Neto, Afonso; Padín, Juan‐Fernando; Silva‐Junior, Edilson‐Dantas; Fernández‐Morales, José‐Carlos; de Diego, Antonio‐Miguel G.; Jurkiewicz, Aron; García, Antonio G.

    2013-01-01

    Abstract From experiments performed at room temperature, we know that the buffering of Ca2+ by mitochondria contributes to the shaping of the bulk cytosolic calcium transient ([Ca2+]c) and secretion transients of chromaffin cells stimulated with depolarizing pulses. We also know that the mitochondrial Ca2+ transporters and the release of catecholamine are faster at 37°C with respect to room temperature. Therefore, we planned this investigation to gain further insight into the contribution of mitochondrial Ca2+ buffering to the shaping of [Ca2+]c and catecholamine release transients, using some novel experimental conditions that have not been yet explored namely: (1) perifusion of bovine chromaffin cells (BCCs) with saline at 37°C and their repeated challenging with the physiological neurotransmitter acetylcholine (ACh); (2) separate blockade of mitochondrial Ca2+ uniporter (mCUP) with Ru360 or the mitochondrial Na+/Ca2+ exchanger (mNCX) with CGP37157; (3) full blockade of the mitochondrial Ca2+ cycling (mCC) by the simultaneous inhibition of the mCUP and the mNCX. Ru360 caused a pronounced delay of [Ca2+]c clearance and augmented secretion. In contrast, CGP37157 only caused a tiny delay of [Ca2+]c clearance and a mild decrease in secretion. The mCC resulting in continued Ca2+ uptake and its release back into the cytosol was interrupted by combined Ru360 + CGP37157 (Ru/CGP), the protonophore carbonyl cyanide‐p‐trifluoromethoxyphenylhydrazone, or combined oligomycin + rotenone (O/R); these three treatments caused a mild but sustained elevation of basal [Ca2+]c that, however, was not accompanied by a parallel increase in basal secretion. Nevertheless, all treatments caused a pronounced augmentation of ACh‐induced secretion, with minor changes of the ACh‐induced [Ca2+]c transients. Combined Ru/CGP did not alter the resting membrane potential in current‐clamped cells. Additionally, Ru/CGP did not increase basal [Ca2+]c near subplasmalemmal sites and caused a

  20. Neurally Evoked Calcium Transients in Terminal Schwann Cells at the Neuromuscular Junction

    NASA Astrophysics Data System (ADS)

    Reist, Noreen E.; Smith, Stephen J.

    1992-08-01

    We examined the effects of motor-nerve stimulation on the intracellular Ca2+ levels of Schwann cells, the glial cells at the frog neuromuscular junction. Schwann cells, which were loaded with the fluorescent Ca2+ indicator fluo-3 and examined by confocal microscopy, showed a transient increase in free Ca2+ within a few seconds of the onset of tetanic stimulation of the motor nerve. The Ca2+ response was specific to the synapse in that it was found in the terminal Schwann cells at the junction but not in the myelinating Schwann cells along the axon. The Ca2+ transients occurred in the presence of d-tubocurare, indicating that they were not mediated by nicotinic acetylcholine receptors and recurred when the stimulus was repeated. The Ca2+ response persisted after degeneration of the postsynaptic muscle fiber, demonstrating that the terminal Schwann cell was stimulated directly by presynaptic activity. The finding that terminal Schwann cells at the neuromuscular junction respond to presynaptic activity suggests that glial-cell function is modulated by synaptic transmission.

  1. Calcium Transients in Dendrites of Neocortical Neurons Evoked by Single Subthreshold Excitatory Postsynaptic Potentials via Low-Voltage-Activated Calcium Channels

    NASA Astrophysics Data System (ADS)

    Markram, Henry; Sakmann, Bert

    1994-05-01

    Simultaneous recordings of membrane voltage and concentration of intracellular Ca2+ ([Ca2+]_i) were made in apical dendrites of layer 5 pyramidal cells of rat neocortex after filling dendrites with the fluorescent Ca2+ indicator Calcium Green-1. Subthreshold excitatory postsynaptic potentials (EPSPs), mediated by the activation of glutamate receptor channels, caused a brief increase in dendritic [Ca2+]_i. This rise in dendritic [Ca2+]_i was mediated by the opening of low-voltage-activated Ca2+ channels in the dendritic membrane. The results provide direct evidence that dendrites do not function as passive cables even at low-frequency synaptic activity; rather, a single subthreshold EPSP changes the dendritic membrane conductance by opening Ca2+ channels and generating a [Ca2+]_i transient that may propagate towards the soma. The activation of these Ca2+ channels at a low-voltage threshold is likely to influence the way in which dendritic EPSPs contribute to the electrical activity of the neuron.

  2. Mechanisms of GABA and glycine depolarization-induced calcium transients in rat dorsal horn neurons.

    PubMed Central

    Reichling, D B; Kyrozis, A; Wang, J; MacDermott, A B

    1994-01-01

    1. The mechanisms and effects of GABA- and glycine-evoked depolarization were studied in cultured rat dorsal horn neurons using indo-1 recordings of [Ca2+]i and patch clamp recordings in conventional whole-cell or perforated-patch mode. 2. Application of GABA to unclamped neurons caused [Ca2+]i increases that were dose dependent and exhibited GABAA receptor pharmacology. Calcium entered the neurons via high-threshold voltage-gated calcium channels (conotoxin and nimodipine sensitive). 3. In perforated-patch recordings employing cation-selective ionophores, GABAA receptor activation depolarized 123 of 132 cells to membrane potentials as depolarized as -33 mV (mean -50 mV in all 132 cells, +12 mV above resting potential). The ionic basis of the depolarization was determined by extracellular ion substitution; increased anionic conductance could account fully for the results. 4. Glycine, acting at a strychnine-sensitive receptor, also caused Ca2+ entry into these neurons through voltage-gated Ca2+ channels. Glycine and GABA both evoked [Ca2+]i responses in the same cells and the responses were highly correlated in amplitude. Glycine also depolarized all five cells tested with perforated recording. Each of the five cells was also depolarized by muscimol to a value similar to that obtained for glycine. 5. Both the depolarization and the increases in [Ca2+]i caused by GABA and glycine could potentially play a role in processes of development and differentiation and sensory transmission in the spinal cord dorsal horn. PMID:8057250

  3. Left ventricular deformation associated with cardiomyocyte Ca(2+) transients delay in early stage of low-dose of STZ and high-fat diet induced type 2 diabetic rats.

    PubMed

    Liu, Xiao-Ying; Liu, Fu-Cheng; Deng, Chun-Yu; Zhang, Meng-Zhen; Yang, Min; Xiao, Ding-Zhang; Lin, Qiu-Xiong; Cai, Shi-Ting; Kuang, Su-Juan; Chen, Jing; Chen, Shao-Xian; Zhu, Jie-Ning; Yang, Hui; Rao, Fang; Fu, Yong-Heng; Yu, Xi-Yong

    2016-02-16

    In the early stage of diabetes, the cardiac ejection fraction is preserved, despite the existence of the subclinical cardiac dysfunction to some extent. However, the detailed phenotype of this dysfunction and the underlying mechanism remain unclear. To improve our understanding of this issue, we used low-dose STZ and high-fat diet to induce type 2 diabetic models in rats. The effects and the mechanism associated with the early stages of the disease were analyzed. The type 2 diabetic mellitus (T2DM) in SD rats were induced through 30 mg/kg STZ and high-fat diet. Two-dimensional spackle-tracking echocardiography (STE) and the dobutamine test were performed to examine the cardiac function. Calcium transients of left ventricular myocytes were detected and the related intracellular signalling factors were analyzed by western blotting. After 6-weeks, T2DM rats in left ventricular (LV) diastole showed decreased global and segment strain(S) levels (P < 0.05), both in the radial and circumferential directions. Strain rate (Sr) abatement occurred in three segments in the radial and circumferential directions (P < 0.05), and the radial global Sr also decreased (P < 0.05). In the systolic LV, radial Sr was reduced, except the segment of the anterior septum, and the Sr of the lateral wall and post septum decreased in the circumferential direction (P < 0.05). Conventional M-mode echocardiography failed to detect significant alterations of cardiac performance between the two groups even after 12 weeks, and the decreased ejection fraction (EF%), fractional shortening (FS%) and end-systolic diameters (ESD) could be detected only under stress conditions induced by dobutamine (P < 0.05). In terms of calcium transients in cardiac myocytes, the Tpeak in model rats at 6 weeks was not affected, while the Tdecay1/2 was higher than that of the controls (P < 0.05), and both showed a dose-dependent delay after isoproterenol treatment (P < 0.05). Western blot analysis showed that in 6-week T2

  4. Direct In Vivo Manipulation and Imaging of Calcium Transients in Neutrophils Identify a Critical Role for Leading-Edge Calcium Flux.

    PubMed

    Beerman, Rebecca W; Matty, Molly A; Au, Gina G; Looger, Loren L; Choudhury, Kingshuk Roy; Keller, Philipp J; Tobin, David M

    2015-12-15

    Calcium signaling has long been associated with key events of immunity, including chemotaxis, phagocytosis, and activation. However, imaging and manipulation of calcium flux in motile immune cells in live animals remain challenging. Using light-sheet microscopy for in vivo calcium imaging in zebrafish, we observe characteristic patterns of calcium flux triggered by distinct events, including phagocytosis of pathogenic bacteria and migration of neutrophils toward inflammatory stimuli. In contrast to findings from ex vivo studies, we observe enriched calcium influx at the leading edge of migrating neutrophils. To directly manipulate calcium dynamics in vivo, we have developed transgenic lines with cell-specific expression of the mammalian TRPV1 channel, enabling ligand-gated, reversible, and spatiotemporal control of calcium influx. We find that controlled calcium influx can function to help define the neutrophil's leading edge. Cell-specific TRPV1 expression may have broad utility for precise control of calcium dynamics in other immune cell types and organisms.

  5. Role of Transient Receptor Potential Vanilloid 1 (TRPV1) in the Modulation of Airway Smooth Muscle Tone and Calcium Handling.

    PubMed

    Yocum, Gene T; Chen, Jun; Choi, Christine H; Townsend, Elizabeth A; Zhang, Yi; Xu, Dingbang; Fu, Xiao Wen; Sanderson, Michael J; Emala, Charles W

    2017-03-23

    Asthma is a common disorder characterized, in part, by airway smooth muscle (ASM) hyperresponsiveness. Transient receptor potential vanilloid 1 (TRPV1) is a non-selective cation channel expressed on airway nerve fibers that modulates afferent signals resulting in cough, and potentially bronchoconstriction. In the present study, the TRPV1 transcript was detected by RT-PCR in primary cultured human ASM cells, and the TRPV1 protein was detected in ASM of human trachea by immunohistochemistry. Proximity ligation assays suggest that TRPV1 is expressed in the sarcoplasmic reticulum membrane of human ASM cells in close association with sarco/endoplasmic reticulum Ca2+ ATPase 2. In guinea pig tracheal ring organ bath experiments, the TRPV1 agonist capsaicin led to ASM contraction, but this contraction was significantly attenuated by the sodium-channel inhibitor bupivicaine (N=4, p<0.05) and the NK-2 receptor antagonist GR 159897 (N=4, p<0.05), suggesting that this contraction is neurally-mediated. However, pretreatment of guinea pig and human ASM in organ bath experiments with the TRPV1 antagonist capsazepine inhibited the maintenance phase of an acetylcholine-induced contraction (N=4, p<0.01 for both species). Similarly, capsazepine inhibited methacholine-induced contraction of peripheral airways in mouse precision-cut lung slice (PCLS) experiments (N=4-5, p<0.05). Although capsazepine did not inhibit store-operated calicum entry in mouse ASM cells in PCLS (N=4-7, p=NS), it did inhibit calcium oscillations (N=3, p<0.001). These studies suggest that TRPV1 is expressed on ASM, including the SR, but that ASM TRPV1 activation does not play a significant role in initiation of ASM contraction. However, capsazepine does inhibit maintenance of contraction, likely by inhibiting calcium oscillation.

  6. Comparison of sodium-calcium exchanger and transient inward currents in single cells from rabbit ventricle.

    PubMed Central

    Giles, W; Shimoni, Y

    1989-01-01

    1. Whole-cell voltage-clamp measurements have been made in rabbit ventricular myocytes under conditions in which both Na(+)-Ca2+ exchanger currents (IEX, slow tails) and transient inward currents (ITI or TI) can be recorded. A number of experimental manoeuvres have been used in an attempt to separate or dissociate these two currents. 2. As expected, partial inhibition of the Na(+)-K+ pump by application of 0.54 mM [K+] Tyrode solution or 10(-5) M-strophanthidin induced TI currents which were recorded in the presence of IEX slow tails. 3. Complete inhibition of the Na(+)-K+ pump with zero [K+] Tyrode solution resulted in larger and more frequent TIs but smaller IEX tails. 4. A somewhat similar dissociation between ITI and IEX was observed when NaCl was reduced to 37.5 mM by using LiCl to replace NaCl. This inhibited the Na(+)-Ca2+ exchanger current, but induced ITI. 5. Transient inward currents and IEX tails could also be separated by selected patterns of stimulation (voltage-clamp depolarizations): following the second pulse of a pair of stimuli, IEX was significantly reduced whereas the TIs increased in size and frequency. 6. Additional experimental tests involving changes in external divalent ions could also separate these two currents. Increasing [Ca2+]o 3-fold increased the TIs without changing IEX. Shortly after [Ca2+]o was replaced with either [Ba2+]o or [Sr2+]o the TIs were blocked but IEX was unchanged. Application of MnCl2 (1 mM) and elevation of [K+]o inhibited IEX but did not significantly change the TI currents. 7. Application of caffeine (5-10 mM) or ryanodine (2 x 10(-6) M) blocked the TI currents at times when the IEX tails were not changed. 8. In combination these results suggest that even though both IEX and ITI are triggered (activated) by increases in [Ca2+]i, these two currents are distinct. IEX is generated by electrogenic Na(+)-Ca2+ exchange, while the TI currents may be due to Ca2(+)-activated cation-selective channels in the sarcolemma. PMID

  7. Transient calcium-dependent potassium current in magnocellular neurosecretory cells of the rat supraoptic nucleus.

    PubMed

    Bourque, C W

    1988-03-01

    1. Magnocellular neurosecretory neurones were impaled in the supraoptic nucleus of perfused explants of rat hypothalamus. Membrane currents were studied at 35 degrees C using the single-microelectrode voltage-clamp technique. 2. Depolarizing voltage steps applied from -100 mV evoked a transient outward current (TOC) from a threshold of -75 mV. From this potential, the amplitude of the current increased non-linearly with voltage. 3. Following its activation TOC reached a peak within 7 ms and subsequently decayed monotonically with a time constant of 30 ms. This time constant did not vary significantly with voltage between -75 and -55 mV. 4. The TOC showed complete steady-state inactivation at potentials positive to -55 mV. Inactivation was removed by hyperpolarization, with a mid-point near -80 mV. The removal of inactivation followed a complex time course with distinct fast (tens of milliseconds) and slow (hundreds of milliseconds) components. 5. Tail current measurements revealed that the TOC equilibrium potential (ETOC) lies near -97 mV in the presence of 3 mM [K+]o. Increasing [K+]o caused a decrease of TOC amplitude and a shift in ETOC of 57 mV/log [K+]o. The TOC is therefore predominantly a K+ current. 6. The TOC was unaffected by tetraethylammonium (up to 12 mM) but was reversibly reduced by 4-aminopyridine (ca. 50% block at 1.0 mM) and dendrotoxin (ca. 50% block at 4 nM). 7. The TOC was strongly inhibited (greater than 70%) by adding Co2+ or Mn2+ (1-3 mM) or Cd2+ (50-400 microM) to Ca-containing solutions, or by removal of Ca2+ from the perfusate. These effects were not accompanied by detectable changes in threshold voltage. The amplitude of TOC was also depressed by the organic Ca2+ channel blocker methoxyverapamil (D600). Finally replacement of Ca2+ by Ba2+ in the perfusate completely and reversibly abolished the TOC. 8. These findings suggest that neurosecretory neurones of the rat supraoptic nucleus display a transient K+ current which is strongly

  8. Transient calcium-dependent potassium current in magnocellular neurosecretory cells of the rat supraoptic nucleus.

    PubMed Central

    Bourque, C W

    1988-01-01

    1. Magnocellular neurosecretory neurones were impaled in the supraoptic nucleus of perfused explants of rat hypothalamus. Membrane currents were studied at 35 degrees C using the single-microelectrode voltage-clamp technique. 2. Depolarizing voltage steps applied from -100 mV evoked a transient outward current (TOC) from a threshold of -75 mV. From this potential, the amplitude of the current increased non-linearly with voltage. 3. Following its activation TOC reached a peak within 7 ms and subsequently decayed monotonically with a time constant of 30 ms. This time constant did not vary significantly with voltage between -75 and -55 mV. 4. The TOC showed complete steady-state inactivation at potentials positive to -55 mV. Inactivation was removed by hyperpolarization, with a mid-point near -80 mV. The removal of inactivation followed a complex time course with distinct fast (tens of milliseconds) and slow (hundreds of milliseconds) components. 5. Tail current measurements revealed that the TOC equilibrium potential (ETOC) lies near -97 mV in the presence of 3 mM [K+]o. Increasing [K+]o caused a decrease of TOC amplitude and a shift in ETOC of 57 mV/log [K+]o. The TOC is therefore predominantly a K+ current. 6. The TOC was unaffected by tetraethylammonium (up to 12 mM) but was reversibly reduced by 4-aminopyridine (ca. 50% block at 1.0 mM) and dendrotoxin (ca. 50% block at 4 nM). 7. The TOC was strongly inhibited (greater than 70%) by adding Co2+ or Mn2+ (1-3 mM) or Cd2+ (50-400 microM) to Ca-containing solutions, or by removal of Ca2+ from the perfusate. These effects were not accompanied by detectable changes in threshold voltage. The amplitude of TOC was also depressed by the organic Ca2+ channel blocker methoxyverapamil (D600). Finally replacement of Ca2+ by Ba2+ in the perfusate completely and reversibly abolished the TOC. 8. These findings suggest that neurosecretory neurones of the rat supraoptic nucleus display a transient K+ current which is strongly

  9. Ca2+ efflux mechanisms following depolarization evoked calcium transients in cultured rat sensory neurones.

    PubMed Central

    Benham, C D; Evans, M L; McBain, C J

    1992-01-01

    1. We have used a combination of microfluorimetry and patch-clamp techniques to investigate cytoplasmic Ca2+ ([Ca2+]i) buffering in response to physiological Ca2+ loads in neurones cultured from the dorsal root ganglia of the rat. 2. In cells loaded with Indo-1 AM and using high resistance microelectrodes to initiate and record action potentials, single action potentials were associated with a measurable rise in [Ca2+]i. Short trains of action potentials evoked [Ca2+]i transients with monoexponential recovery rates with time constants of around 5 s. 3. Similar Ca2+ buffering properties were seen in cells perfused with patch-clamp pipettes in the whole-cell recording mode suggesting that the slow (seconds) Ca2+ buffering properties were not seriously perturbed by the recording technique. 4. In cells held under voltage clamp, reversal of the Na(+)-Ca2+ exchanger driving force had a small but significant effect on the rate of Ca2+ removal. 5. Increasing extracellular pH or adding vanadate (200 microM) to the internal solution dramatically slowed the rate of recovery. Addition of calmidazolium to the pipette solution also produced a significant but much less dramatic slowing of Ca2+ efflux. 6. The results demonstrate that the activity of a plasmalemmal Ca(2+)-ATPase is important for the removal of somatic Ca2+ loads of a similar amplitude to those generated by the firing of a few action potentials. Images Fig. 7 PMID:1484362

  10. Ca2+ efflux mechanisms following depolarization evoked calcium transients in cultured rat sensory neurones.

    PubMed

    Benham, C D; Evans, M L; McBain, C J

    1992-09-01

    1. We have used a combination of microfluorimetry and patch-clamp techniques to investigate cytoplasmic Ca2+ ([Ca2+]i) buffering in response to physiological Ca2+ loads in neurones cultured from the dorsal root ganglia of the rat. 2. In cells loaded with Indo-1 AM and using high resistance microelectrodes to initiate and record action potentials, single action potentials were associated with a measurable rise in [Ca2+]i. Short trains of action potentials evoked [Ca2+]i transients with monoexponential recovery rates with time constants of around 5 s. 3. Similar Ca2+ buffering properties were seen in cells perfused with patch-clamp pipettes in the whole-cell recording mode suggesting that the slow (seconds) Ca2+ buffering properties were not seriously perturbed by the recording technique. 4. In cells held under voltage clamp, reversal of the Na(+)-Ca2+ exchanger driving force had a small but significant effect on the rate of Ca2+ removal. 5. Increasing extracellular pH or adding vanadate (200 microM) to the internal solution dramatically slowed the rate of recovery. Addition of calmidazolium to the pipette solution also produced a significant but much less dramatic slowing of Ca2+ efflux. 6. The results demonstrate that the activity of a plasmalemmal Ca(2+)-ATPase is important for the removal of somatic Ca2+ loads of a similar amplitude to those generated by the firing of a few action potentials.

  11. Calcium transients in single fibers of low-frequency stimulated fast-twitch muscle of rat.

    PubMed

    Carroll, S; Nicotera, P; Pette, D

    1999-12-01

    Ca(2+) transients were investigated in single fibers isolated from rat extensor digitorum longus muscles exposed to chronic low-frequency stimulation for different time periods up to 10 days. Approximately 2.5-fold increases in resting Ca(2+) concentration ([Ca(2+)]) were observed 2 h after stimulation onset and persisted throughout the stimulation period. The elevated [Ca(2+)] levels were in the range characteristic of slow-twitch fibers from soleus muscle. In addition, we noticed a transitory elevation of the integral [Ca(2+)] per pulse with a maximum ( approximately 5-fold) after 1 day. Steep decreases in rate constant of [Ca(2+)] decay could be explained by an immediate impairment of Ca(2+) uptake and, with longer stimulation periods, by an additional loss of cytosolic Ca(2+) binding capacity resulting from a decay in parvalbumin content. A partial recovery of the rate constant of [Ca(2+)] decay in 10-day stimulated muscle could be explained by an increasing mitochondrial contribution to Ca(2+) sequestration.

  12. Transient early neurotrophin release and delayed inflammatory cytokine release by microglia in response to PAR-2 stimulation.

    PubMed

    Chen, Chen-Wen; Chen, Qian-Bo; Ouyang, Qing; Sun, Ji-Hu; Liu, Fang-Ting; Song, Dian-Wen; Yuan, Hong-Bin

    2012-06-25

    Activated microglia exerts both beneficial and deleterious effects on neurons, but the signaling mechanism controlling these distinct responses remain unclear. We demonstrated that treatment of microglial cultures with the PAR-2 agonist, 2-Furoyl-LIGRLO-NH2, evoked early transient release of BDNF, while sustained PAR-2 stimulation evoked the delayed release of inflammatory cytokines (IL-1 β and TNF-α) and nitric oxide. Culture medium harvested during the early phase (at 1 h) of microglial activation induced by 2-Furoyl-LIGRLO-NH2 (microglial conditioned medium, MCM) had no deleterious effects on cultured neurons, while MCM harvested during the late phase (at 72 h) promoted DNA fragmentation and apoptosis as indicated by TUNEL and annexin/PI staining. Blockade of PAR-1 during the early phase of PAR-2 stimulation enhanced BDNF release (by 11%, small but significant) while a PAR-1 agonist added during the late phase (24 h after 2-Furoyl-LIGRLO-NH2 addition) suppressed the release of cytokines and NO. The neuroprotective and neurotoxic effects of activated microglial exhibit distinct temporal profiles that are regulated by PAR-1 and PAR-2 stimulation. It may be possible to facilitate neuronal recovery and repair by appropriately timed stimulation and inhibition of microglial PAR-1 and PAR-2 receptors.

  13. Single event transient modeling and mitigation techniques for mixed-signal delay locked loop (DLL) and clock circuits

    NASA Astrophysics Data System (ADS)

    Maillard, Pierre

    The purpose of this PhD work has been to investigate, model, test, develop and provide hardening techniques and guidelines for the mitigation of single event transients (SETs) in analog mixed-signal (AMS) delay locked loops (DLLs) for radiation-hardened applications. Delay-locked-loops (DLLs) are circuit substructures that are present in complex ASIC and system-on-a-chip designs. These circuits are widely used in on-chip clock distribution systems to reduce clock skew, to reduce jitter noise, and to recover clock signals at regional points within a global clock distribution system. DLLs are critical to the performance of many clock distribution systems, and in turn, the overall performance of the associated integrated system; as such, complex systems often employ multiple DLLs for clock deskew and distribution tasks. In radiation environments such as on-orbit, these critical circuits represent at-risk points of malfunction for large sections of integrated circuits due to vulnerabilities to radiation-generated transients (i.e. single event transients) that fan out across the system. The analysis of single event effects in analog DLLs has shown that each DLL sub-circuit primitive is vulnerable to single event transients. However, we have identified the voltage controlled delay line (VCDL) sub-circuit as the most sensitive to radiation-induced single event effects generating missing clock pulses that increase with the operating frequency of the circuit. This vulnerability increases with multiple instantiation of DLLs as clock distribution nodes throughout an integrated system on a chip. To our knowledge, no complete work in the rad-hard community regarding the hardening of mixed-signal DLLs against single event effects (missing pulses) has been developed. Most of the work present in the literature applies the "brute force" and well-established digital technique of triple modular redundancy (TMR) to the digital subcomponents. We have developed two novel design

  14. Calcium.

    PubMed

    Williams, Robert J P

    2002-01-01

    This chapter describes the chemical and biological value of the calcium ion. In calcium chemistry, our main interest is in equilibria within static, nonflowing systems. Hence, we examined the way calcium formed precipitates and complex ions in solution. We observed thereafter its uses by humankind in a vast number of materials such as minerals, e.g., marble, concrete, mortars, which parallel the biological use in shells and bones. In complex formation, we noted that many combinations were of anion interaction with calcium for example in the uses of detergents and medicines. The rates of exchange of calcium from bound states were noted but they had little application. Calcium ions do not act as catalysts of organic reactions. In biological systems, interest is in the above chemistry, but extends to the fact that Ca2+ ions can carry information by flowing in one solution or from one solution to another through membranes. Hence, we became interested in the details of rates of calcium exchange. The fast exchange of this divalent ion from most organic binding sites has allowed it to develop as the dominant second messenger. Now the flow can be examined in vitro as calcium binds particular isolated proteins, which it activates as seen in physical mechanical changes or chemical changes and this piece-by-piece study of cells is common. Here, however, we have chosen to stress the whole circuit of Ca2+ action indicating that the cell is organized both at a basal and an activated state kinetic level by the steady state flow of the ion (see Fig. 11). Different time constants of exchange utilizing very similar binding constants lead to: 1) fast responses as in the muscle of an animal; or 2) slower change as in differentiation of an egg or seed. Many other changes of state may relate to Ca2+ steady-state levels of flow in the circuitry and here we point to two: 1) dormancy in reptiles and animals; and 2) sporulation in both bacteria and lower plants. In the other chapters of

  15. Periapical tissue reactions to calcium hydroxide and MTA after external root resorption as a sequela of delayed tooth replantation.

    PubMed

    Marão, Heloisa Fonseca; Panzarini, Sônia Regina; Aranega, Alessandra Marcondes; Sonoda, Celso Koogi; Poi, Wilson Roberto; Esteves, Jônatas Caldeiras; Silva, Pedro Ivo Santos

    2012-08-01

    Clinical experience has shown that most avulsed teeth are replanted after a long extra-alveolar time and dry or inadequate wet storage, causing necrosis of periodontal ligament cells. This condition invariably leads to development of external root resorption, leaving the filling material in contact with the periapical connective tissues. In this study, the periapical tissue reactions to calcium hydroxide (CH) and mineral trioxide aggregate (MTA) were evaluated after occurrence of external root resorption as an expected sequela of delayed tooth replantation. Twenty male Wistar rats (Rattus norvegicus, albinus) had their right upper incisor extracted and maintained in dry storage for 60 min. Then, the dental papilla, enamel organ, pulp tissue, and periodontal ligament were removed, and the teeth were immersed in a 2% acidulated phosphate sodium fluoride solution, pH 5.5, for 10 min. The teeth were randomly assigned into two groups (n = 10), in which the canals were filled with either a CH and saline paste (CH group) or MTA (MTA group). The sockets were irrigated with saline, and the teeth were replanted. After 80 days, it was possible to observe large areas of replacement root resorption and some areas of inflammatory root resorption in both groups. More severe inflammatory tissue reaction was observed in contact with calcium hydroxide compared with the mineral trioxide aggregate. New bone formation was more intense at the bottom of the socket in the MTA group. In conclusion, as far as periapical tissue compatibility is concerned, intracanal MTA can be considered as a viable option for root canal filling in delayed tooth replantation, in which external root resorption is an expected sequela.

  16. Pharmacological Characterization of the Mechanisms Involved in Delayed Calcium Deregulation in SH-SY5Y Cells Challenged with Methadone

    PubMed Central

    Perez-Alvarez, Sergio; Solesio, Maria E.; Cuenca-Lopez, Maria D.; Melero-Fernández de Mera, Raquel M.; Villalobos, Carlos; Kmita, Hanna; Galindo, Maria F.; Jordán, Joaquin

    2012-01-01

    Previously, we have shown that SH-SY5Y cells exposed to high concentrations of methadone died due to a necrotic-like cell death mechanism related to delayed calcium deregulation (DCD). In this study, we show that, in terms of their Ca2+ responses to 0.5 mM methadone, SH-SY5Y cells can be pooled into four different groups. In a broad pharmacological survey, the relevance of different Ca2+-related mechanisms on methadone-induced DCD was investigated including extracellular calcium, L-type Ca2+ channels, μ-opioid receptor, mitochondrial inner membrane potential, mitochondrial ATP synthesis, mitochondrial Ca2+/2Na+-exchanger, reactive oxygen species, and mitochondrial permeability transition. Only those compounds targeting mitochondria such as oligomycin, FCCP, CGP 37157, and cyclosporine A were able to amend methadone-induced Ca2+ dyshomeostasis suggesting that methadone induces DCD by modulating the ability of mitochondria to handle Ca2+. Consistently, mitochondria became dramatically shorter and rounder in the presence of methadone. Furthermore, analysis of oxygen uptake by isolated rat liver mitochondria suggested that methadone affected mitochondrial Ca2+ uptake in a respiratory substrate-dependent way. We conclude that methadone causes failure of intracellular Ca2+ homeostasis, and this effect is associated with morphological and functional changes of mitochondria. Likely, this mechanism contributes to degenerative side effects associated with methadone treatment. PMID:22778742

  17. Rate Dependence and Regulation of Action Potential and Calcium Transient in a Canine Cardiac Ventricular Cell Model

    PubMed Central

    Hund, Thomas J.; Rudy, Yoram

    2007-01-01

    Background Computational biology is a powerful tool for elucidating arrhythmogenic mechanisms at the cellular level, where complex interactions between ionic processes determine behavior. A novel theoretical model of the canine ventricular epicardial action potential and calcium cycling was developed and used to investigate ionic mechanisms underlying Ca2+ transient (CaT) and action potential duration (APD) rate dependence. Methods and Results The Ca2+/calmodulin-dependent protein kinase (CaMKII) regulatory pathway was integrated into the model, which included a novel Ca2+-release formulation, Ca2+ subspace, dynamic chloride handling, and formulations for major ion currents based on canine ventricular data. Decreasing pacing cycle length from 8000 to 300 ms shortened APD primarily because of ICa(L) reduction, with additional contributions from Ito1, INaK, and late INa. CaT amplitude increased as cycle length decreased from 8000 to 500 ms. This positive rate–dependent property depended on CaMKII activity. Conclusions CaMKII is an important determinant of the rate dependence of CaT but not of APD, which depends on ion-channel kinetics. The model of CaMKII regulation may serve as a paradigm for modeling effects of other regulatory pathways on cell function. PMID:15505083

  18. Noggin inhibits hypoxia-induced proliferation by targeting store-operated calcium entry and transient receptor potential cation channels.

    PubMed

    Yang, Kai; Lu, Wenju; Jia, Jing; Zhang, Jie; Zhao, Mingming; Wang, Sabrina; Jiang, Haiyang; Xu, Lei; Wang, Jian

    2015-06-01

    Abnormally elevated bone morphogenetic protein 4 (BMP4) expression and mediated signaling play a critical role in the pathogenesis of chronic hypoxia-induced pulmonary hypertension (CHPH). In this study, we investigated the expression level and functional significance of four reported naturally occurring BMP4 antagonists, noggin, follistatin, gremlin1, and matrix gla protein (MGP), in the lung and distal pulmonary arterial smooth muscle cell (PASMC). A 21-day chronic hypoxic (10% O2) exposure rat model was utilized, which has been previously shown to successfully establish experimental CHPH. Among the four antagonists, noggin, but not the other three, was selectively downregulated by hypoxic exposure in both the lung tissue and PASMC, in correlation with markedly elevated BMP4 expression, suggesting that the loss of noggin might account for the hypoxia-triggered BMP4 signaling transduction. Then, by using treatment of extrogenous recombinant noggin protein, we further found that noggin significantly normalized 1) BMP4-induced phosphorylation of cellular p38 and ERK1/2; 2) BMP4-induced phosphorylation of cellular JAK2 and STAT3; 3) hypoxia-induced PASMC proliferation; 4) hypoxia-induced store-operated calcium entry (SOCE), and 5) hypoxia-increased expression of transient receptor potential cation channels (TRPC1 and TRPC6) in PASMC. In combination, these data strongly indicated that the hypoxia-suppressed noggin accounts, at least partially, for hypoxia-induced excessive PASMC proliferation, while restoration of noggin may be an effective way to inhibit cell proliferation by suppressing SOCE and TRPC expression.

  19. Transient activation and delayed inhibition of Na+,K+,Cl- cotransport in ATP-treated C11-MDCK cells involve distinct P2Y receptor subtypes and signaling mechanisms.

    PubMed

    Akimova, Olga A; Grygorczyk, Alexandra; Bundey, Richard A; Bourcier, Nathalie; Gekle, Michael; Insel, Paul A; Orlov, Sergei N

    2006-10-20

    In C11-MDCK cells, which resemble intercalated cells from collecting ducts of the canine kidney, P2Y agonists promote transient activation of the Na+,K+,Cl- cotransporter (NKCC), followed by its sustained inhibition. We designed this study to identify P2Y receptor subtypes involved in dual regulation of this carrier. Real time polymerase chain reaction analysis demonstrated that C11-MDCK cells express abundant P2Y1 and P2Y2 mRNA compared with that of other P2Y receptor subtypes. The rank order of potency of agents (ATP approximately UTP > 2-(methylthio)-ATP (2MeSATP); adenosine 5'-[beta-thio]diphosphate (ADPbetaS) inactive) indicated that P2Y2 rather than P2Y1 receptors mediate a 3-4-fold activation of NKCC within the first 5-10 min of nucleotide addition. NKCC activation in ATP-treated cells was abolished by the intracellular calcium chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, calmodulin (CaM) antagonists trifluoroperazine and W-7, and KN-62, an inhibitor of Ca2+/CaM-dependent protein kinase II. By contrast with the transient activation, 30-min incubation with nucleotides produced up to 4-5-fold inhibition of NKCC, and this inhibition exhibited a rank order of potency (2MeSATP > ADPbetaS > ATP > UTP) typical of P2Y1 receptors. Unlike the early response, delayed inhibition of NKCC occurred in 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-loaded cells and was completely abolished by the P2Y1 antagonists MRS2179 and MRS2500. Transient activation and delayed inhibition of NKCC in C11 cell monolayers were observed after the addition of ATP to mucosal and serosal solutions, respectively. NKCC inhibition triggered by basolateral application of ADPbetaS was abolished by MRS2500. Our results thus show that transient activation and delayed inhibition of NKCC in ATP-treated C11-MDCK cells is mediated by Ca2+/CaM-dependent protein kinase II- and Ca2+-independent signaling triggered by apical P2Y2 and basolateral P2Y1 receptors, respectively.

  20. Seventy per cent hydrofluoric acid burns: delayed decontamination with hexafluorine® and treatment with calcium gluconate.

    PubMed

    Yoshimura, Carlos Alberto; Mathieu, Laurence; Hall, Alan H; Monteiro, Mário G Kool; de Almeida, Décio Moreira

    2011-01-01

    This is a case report of decontamination and treatment of a 70% hydrofluoric acid (HF) dermal splash injury. A worker was splashed with 70% HF, sustaining approximately 10% TBSA first- to third-degree chemical skin burns of the face, trunk, and left thigh and leg. Initial decontamination involved water rinsing, removal of contaminated clothing, more water rinsing, topical application of magnesium oxide, and administration of intravenous narcotics for management of severe pain. After a delay of approximately 3 hours, active skin washing with Hexafluorine®, 5 L, was performed, followed by intravenous, intradermal perilesional, and topical inunction administration of calcium gluconate. Pain relief and a cooling sensation were quite prompt after Hexafluorine® decontamination. Surgical debridement and skin grafting of the more severe burns were required. No significant systemic toxicity developed, although this has occurred in previously reported similar concentrated HF dermal splash exposure cases, some of which resulted in fatality. While burns did develop, the patient was released from the intensive care service after 2 days and, after skin grafting, had a good outcome at 90-day follow-up. Even after a long delay, decontamination with Hexafluorine® appeared to be beneficial in this case.

  1. Myoplasmic calcium transients monitored with purpurate indicator dyes injected into intact frog skeletal muscle fibers

    PubMed Central

    1991-01-01

    Intact single twitch fibers from frog muscle were studied on an optical bench apparatus after microinjection with tetramethylmurexide (TMX) or purpurate-3,3' diacetic acid (PDAA), two compounds from the purpurate family of absorbance Ca2+ indicators previously used in cut muscle fibers (Maylie, J., M. Irving, N. L. Sizto, G. Boyarsky, and W. K. Chandler. 1987. J. Gen. Physiol. 89:145-176; Hirota, A., W. K. Chandler, P. L. Southwick, and A. S. Waggoner. 1989. J. Gen. Physiol. 94:597-631.) The apparent longitudinal diffusion constant of PDAA (mol wt 380) in myoplasm was 0.99 (+/- 0.04, SEM) x 10(-6) cm2 s-1 (16-17 degrees C), a value which suggests that 24-43% of the PDAA molecules were bound to myoplasmic constituents of large molecular weight. The corresponding values for TMX (mol wt 322) were 0.98 (+/- 0.05) x 10(-6) cm2 s-1 and 44-50%, respectively. Muscle membranes (surface and/or transverse-tubular) appear to be permeable to TMX and, to a lesser extent, to PDAA, since the total amount of indicator contained within a fiber decreased with time after injection. The average time constants for disappearance of indicator were 46 (+/- 7, SEM) min for TMX and 338 (+/- 82) min for PDAA. The fraction of indicator in the Ca2(+)-bound state in resting fibers was significantly different from zero for TMX (0.070 +/- 0.008) but not for PDAA (0.026 +/- 0.009). In in vitro calibrations PDAA but not TMX appeared to react with Ca2+ with 1:1 stoichiometry. In agreement with Hirota et al. (Hirota, A., W. K. Chandler, P. L. Southwick, and A. S. Waggoner. 1989. J. Gen. Physiol. 94:597-631), we conclude that PDAA is probably a more reliable myoplasmic Ca2+ indicator than TMX. In fibers that contained PDAA and were stimulated by a single action potential, the calibrated peak value of the myoplasmic free [Ca2+] transient (delta[Ca2+]) averaged 9.4 (+/- 0.6) microM, a value about fivefold larger than that calibrated with antipyrylazo III under otherwise identical conditions (Baylor, S. M

  2. GFP Facilitates Native Purification of Recombinant Perlucin Derivatives and Delays the Precipitation of Calcium Carbonate

    PubMed Central

    Weber, Eva; Guth, Christina; Weiss, Ingrid M.

    2012-01-01

    Insolubility is one of the possible functions of proteins involved in biomineralization, which often limits their native purification. This becomes a major problem especially when recombinant expression systems are required to obtain larger amounts. For example, the mollusc shell provides a rich source of unconventional proteins, which can interfere in manifold ways with different mineral phases and interfaces. Therefore, the relevance of such proteins for biotechnological processes is still in its infancy. Here we report a simple and reproducible purification procedure for a GFP-tagged lectin involved in biomineralization, originally isolated from mother-of-pearl in abalone shells. An optimization of E. coli host cell culture conditions was the key to obtain reasonable yields and high degrees of purity by using simple one-step affinity chromatography. We identified a dual functional role for the GFP domain when it became part of a mineralizing system in vitro. First, the GFP domain improved the solubility of an otherwise insoluble protein, in this case recombinant perlucin derivatives. Second, GFP inhibited calcium carbonate precipitation in a concentration dependent manner. This was demonstrated here using a simple bulk assay over a time period of 400 seconds. At concentrations of 2 µg/ml and higher, the inhibitory effect was observed predominantly for HCO3− as the first ionic interaction partner, but not necessarily for Ca2+. The interference of GFP-tagged perlucin derivatives with the precipitation of calcium carbonate generated different types of GFP-fluorescent composite calcite crystals. GFP-tagging offers therefore a genetically tunable tool to gently modify mechanical and optical properties of synthetic biocomposite minerals. PMID:23056388

  3. Analysis of Calcium Transients and Uniaxial Contraction Force in Single Human Embryonic Stem Cell-Derived Cardiomyocytes on Microstructured Elastic Substrate with Spatially Controlled Surface Chemistries.

    PubMed

    Grespan, Eleonora; Martewicz, Sebastian; Serena, Elena; Le Houerou, Vincent; Rühe, Jürgen; Elvassore, Nicola

    2016-11-22

    The mechanical activity of cardiomyocytes is the result of a process called excitation-contraction coupling (ECC). A membrane depolarization wave induces a transient cytosolic calcium concentration increase that triggers activation of calcium-sensitive contractile proteins, leading to cell contraction and force generation. An experimental setup capable of acquiring simultaneously all ECC features would have an enormous impact on cardiac drug development and disease study. In this work, we develop a microengineered elastomeric substrate with tailor-made surface chemistry to measure simultaneously the uniaxial contraction force and the calcium transients generated by single human cardiomyocytes in vitro. Microreplication followed by photocuring is used to generate an array consisting of elastomeric micropillars. A second photochemical process is employed to spatially control the surface chemistry of the elastomeric pillar. As result, human embryonic stem cell-derived cardiomyocytes (hESC-CMs) can be confined in rectangular cell-adhesive areas, which induce cell elongation and promote suspended cell anchoring between two adjacent micropillars. In this end-to-end conformation, confocal fluorescence microscopy allows simultaneous detection of calcium transients and micropillar deflection induced by a single-cell uniaxial contraction force. Computational finite elements modeling (FEM) and 3D reconstruction of the cell-pillar interface allow force quantification. The platform is used to follow calcium dynamics and contraction force evolution in hESC-CMs cultures over the course of several weeks. Our results show how a biomaterial-based platform can be a versatile tool for in vitro assaying of cardiac functional properties of single-cell human cardiomyocytes, with applications in both in vitro developmental studies and drug screening on cardiac cultures.

  4. The PIDDosome mediates delayed death of hippocampal CA1 neurons after transient global cerebral ischemia in rats

    PubMed Central

    Niizuma, Kuniyasu; Endo, Hidenori; Nito, Chikako; Myer, D. Jeannie; Kim, Gab Seok; Chan, Pak H.

    2008-01-01

    A brief period of global brain ischemia, such as that induced by cardiac arrest or cardiopulmonary bypass surgery, causes cell death in vulnerable hippocampal CA1 pyramidal neurons days after reperfusion. Although numerous factors have been suggested to account for this phenomenon, the mechanisms underlying it are poorly understood. We describe a cell death signal called the PIDDosome, a protein complex of p53-induced protein with a death domain (PIDD), receptor-interacting protein–associated ICH-1/CED-3 homologous protein with a death domain (RAIDD), and procaspase-2. We induced 5 min of transient global cerebral ischemia (tGCI) using bilateral common carotid artery occlusion with hypotension. Western blot analysis showed that expression of twice-cleaved fragment of PIDD (PIDD-CC) increased in the cytosolic fraction of the hippocampal CA1 subregion and preceded procaspase-2 activation after tGCI. Caspase-2 cleaved Bid in brain homogenates. Co-immunoprecipitation and immunofluorescent studies demonstrated that PIDD-CC, RAIDD, and procaspase-2 were co-localized and bound directly, which indicates the formation of the PIDD death domain complex. Furthermore, we tested inhibition of PIDD expression by using small interfering RNA (siRNA) treatment that was initiated 48 h before tGCI. Administration of siRNA against PIDD decreased not only expression of PIDD-CC, but also activation of procaspase-2 and Bid, resulting in a decrease in histological neuronal damage and DNA fragmentation in the hippocampal CA1 subregion after tGCI. These results imply that PIDD plays an important role in procaspase-2 activation and delayed CA1 neuronal death after tGCI. We propose that PIDD is a hypothetical molecular target for therapy against neuronal death after tGCI. PMID:18845684

  5. Production altitude and time delays of the terrestrial gamma flashes: Revisiting the Burst and Transient Source Experiment spectra

    NASA Astrophysics Data System (ADS)

    Østgaard, N.; Gjesteland, T.; Stadsnes, J.; Connell, P. H.; Carlson, B.

    2008-02-01

    On the basis of the RHESSI results it has been suggested that terrestrial gamma flashes (TGFs) are produced at very low altitudes. On the other hand some of the Burst and Transient Source Experiment (BATSE) spectra show unabsorbed fluxes of X rays in the 25-50 keV energy range, indicating a higher production altitude. To investigate this, we have developed a Monte Carlo code for X-ray propagation through the atmosphere. The most important features seen in the modeled spectra are (1) a low-energy cutoff which moves to lower energies as TGFs are produced at higher altitudes, (2) a high-energy cutoff which moves to lower energies as TGFs are observed at larger zenith angles, and (3) time delays are observed for TGFs produced at <=20 km (and some at 30 km) altitude when observed at larger zenith angle than the half-angle defining the initial isotropic X-ray beam. This is a pure Compton effect. The model results and an optimization procedure are used to estimate production altitudes of the BATSE TGFs. The main findings are (1) half or more of the BATSE TGFs are produced at low altitudes, <=20 km, (2) a significant portion of the BATSE TGFs are produced at higher altitudes, 30 km to 40 km, (3) for the TGFs produced at <=20 km (and some at 30 km) altitudes the dispersion signatures can be explained as a pure Compton effect, and (4) the softening of the BATSE spectra for increasing zenith angles and the time dispersions both indicate that the initial TGF distribution is beamed.

  6. Evaluation of the association between stroke/transient ischemic attack and atrial electromechanical delay in patients with paroxysmal atrial fibrillation.

    PubMed

    Bayar, Nermin; Üreyen, Çağın Mustafa; Erkal, Zehra; Küçükseymen, Selçuk; Çay, Serkan; Çağırcı, Göksel; Arslan, Şakir

    2016-08-01

    This study aimed to evaluate the association between the history of stroke/transient ischemic attack (TIA) and inter- and intra-atrial electromechanical delay (EMD) in patients with paroxysmal atrial fibrillation (PAF). Patients diagnosed with PAF were included in this retrospective study. Patients who had a history of stroke or TIA were defined as the symptomatic group, whereas those who did not have such a history were defined as the asymptomatic group. On the basis of the transthoracic echocardiographic records, atrial electromechanical coupling (time interval from the onset of the P wave on the surface electrocardiogram to the beginning of the A' wave interval with tissue Doppler echocardiography) and intra- and interatrial EMD were measured. In this study, 160 patients were included, 52 of whom were symptomatic. While the intra-left atrial EMD was 68.2±6.1 ms in the symptomatic group, it was found to be 50.8±6.5 ms in the asymptomatic group (p<0.001). Interatrial EMD was 91.3±5.0 ms in the symptomatic group, whereas it was 71.5±7.0 ms in the asymptomatic group (p<0.001). In multiple logistic regression analysis, intra-left atrial [odds ratio (OR): 1.417, 95% confidence interval (CI): 1.193-1.684, p<0.001] and interatrial EMDs (OR: 1.398, 95% CI: 1.177-1.661, p<0.001) were found to be independently associated with the presence of stroke/TIA. Prolonged inter- and intra-left atrial EMDs in patients with PAF is associated with stroke/TIA. Evaluating this parameter in addition to the CHA2DS2-VASc score in patients with PAF may be helpful in identifying patients who are at a high risk of stroke/TIA.

  7. Transient receptor potential vanilloid 4-dependent calcium influx and ATP release in mouse and rat gastric epithelia

    PubMed Central

    Mihara, Hiroshi; Suzuki, Nobuhiro; Boudaka, Ammar Abdullkader; Muhammad, Jibran Sualeh; Tominaga, Makoto; Tabuchi, Yoshiaki; Sugiyama, Toshiro

    2016-01-01

    AIM: To explore the expression of transient receptor potential vanilloid 4 (TRPV4) and its physiological meaning in mouse and rat gastric epithelia. METHODS: RT-PCR and immunochemistry were used to detect TRPV4 mRNA and protein expression in mouse stomach and a rat normal gastric epithelial cell line (RGE1-01), while Ca2+-imaging and electrophysiology were used to evaluate TRPV4 channel activity. ATP release was measured by a luciferin-luciferase assay. Gastric emptying was also compared between WT and TRPV4 knockout mice. RESULTS: TRPV4 mRNA and protein were detected in mouse tissues and RGE1-01 cells. A TRPV4-specific agonist (GSK1016790A) increased intracellular Ca2+ concentrations and/or evoked TRPV4-like current activities in WT mouse gastric epithelial cells and RGE1-01 cells, but not TRPV4KO cells. GSK1016790A or mechanical stimuli induced ATP release from RGE1-01 cells while TRPV4 knockout mice displayed delayed gastric emptying in vivo. CONCLUSION: TRPV4 is expressed in mouse and rat gastric epithelium and contributes to ATP release and gastric emptying. PMID:27350729

  8. Comparison of the myoplasmic calcium transient elicited by an action potential in intact fibres of mdx and normal mice.

    PubMed

    Hollingworth, Stephen; Zeiger, Ulrike; Baylor, Stephen M

    2008-11-01

    The myoplasmic free [Ca2+] transient elicited by an action potential (Delta[Ca2+]) was compared in fast-twitch fibres of mdx (dystrophin null) and normal mice. Methods were used that maximized the likelihood that any detected differences apply in vivo. Small bundles of fibres were manually dissected from extensor digitorum longus muscles of 7- to 14-week-old mice. One fibre within a bundle was microinjected with furaptra, a low-affinity rapidly responding fluorescent calcium indicator. A fibre was accepted for study if it gave a stable, all-or-nothing fluorescence response to an external shock. In 18 normal fibres, the peak amplitude and the full-duration at half-maximum (FDHM) of Delta[Ca2+] were 18.4 +/- 0.5 microm and 4.9 +/- 0.2 ms, respectively (mean +/- s.e.m.; 16 degrees C). In 13 mdx fibres, the corresponding values were 14.5 +/- 0.6 microm and 4.7 +/- 0.2 ms. The difference in amplitude is statistically highly significant (P = 0.0001; two-tailed t test), whereas the difference in FDHM is not (P = 0.3). A multi-compartment computer model was used to estimate the amplitude and time course of the sarcoplasmic reticulum (SR) calcium release flux underlying Delta[Ca2+]. Estimates were made based on several differing assumptions: (i) that the resting myoplasmic free Ca2+ concentration ([Ca2+]R) and the total concentration of parvalbumin ([Parv(T)]) are the same in mdx and normal fibres, (ii) that [Ca2+](R) is larger in mdx fibres, (iii) that [Parv(T)] is smaller in mdx fibres, and (iv) that [Ca2+]R is larger and [Parv(T)] is smaller in mdx fibres. According to the simulations, the 21% smaller amplitude of Delta[Ca2+] in mdx fibres in combination with the unchanged FDHM of Delta[Ca2+] is consistent with mdx fibres having a approximately 25% smaller flux amplitude, a 6-23% larger FDHM of the flux, and a 9-20% smaller total amount of released Ca2+ than normal fibres. The changes in flux are probably due to a change in the gating of the SR Ca2+-release channels and

  9. Delayed tooth replantation following root canal filling with calcium hydroxide and MTA: Histomorphometric study in rats.

    PubMed

    Esteves, Jônatas Caldeira; Marão, Heloisa Fonseca; Silva, Pedro Ivo Dos Santos; Poi, Wilson Roberto; Panzarini, Sônia Regina; Aranega, Alessandra Marcondes; Ribeiro, Eduardo Dias; Sonoda, Celso Koogi

    2015-09-01

    The aim of this study was to perform a histomorphometric evaluation of the repair process in rat teeth replanted after root canals were filled with calcium hydroxide (CH) and mineral trioxide aggregate (MTA). Upper right incisors were extracted from 30 rats divided into three groups (n=10). The teeth were stored dry for 60min, after which the pulp and periodontal ligament (PDL) were removed and immersed in acidulated-phosphate sodium fluoride solution. In Group I, the root canals were filled with saline; in Group II, they were filled with CH; and in Group III, they were filled with CH, and the foramen was sealed with an MTA plug. The teeth were replanted, and the animals were sacrificed after 60 days. The sections with teeth were removed for histological preparation (haematoxylin and eosin, H&E). The characteristics of the PDL, cementum, dentine, and alveolar bone, as well as the occurrence of inflammatory and replacement root resorption and apical sealing, were subjected to histological and morphometric analysis (P<0.05). Group I was the most affected by root resorption (mean=67.05%). In Groups II and III, the resorption averaged 42.2% and 11.7%, respectively. Group III was less affected by inflammatory resorption and presented more areas of apical sealing by mineralized tissue (P<0.05). An apical MTA plug improved the repair of the replanted tooth by decreasing surface resorption and repairing mineralized tissue in the periapical region. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. A functional tandem between transient receptor potential canonical channels 6 and calcium-dependent chloride channels in human epithelial cells.

    PubMed

    Bertrand, Johanna; Dannhoffer, Luc; Antigny, Fabrice; Vachel, Laura; Jayle, Christophe; Vandebrouck, Clarisse; Becq, Frédéric; Norez, Caroline

    2015-10-15

    TRPC6 plays important human physiological functions, notably in artery and arterioles constriction, in regulation of vascular volume and in bronchial muscle constriction. It is implicated in pulmonary hypertension, cardiovascular disease, and focal segmental glomerulosclerosis and seems to play a role in cancer development. Previously, we identified Guanabenz, an α2-adrenergic agonist used for hypertension treatment (Wytensin®), as an activator of calcium-dependent chloride channels (CaCC) in human Cystic Fibrosis (CF) nasal epithelial cells by transiently increasing [Ca2+]i via an influx of extracellular Ca2+. In this study, using assays to measure chloride channel activity, we show that guanabenz is an activator of CaCC in freshly dissociated human bronchial epithelial cells from three CF patients with various genotypes (F508del/F508del, F508del/R1066C, F508del/H1085R). We further characterised the effect of guanabenz and show that it is independent of α-adrenergic receptors, is inhibited by the TRPC family inhibitor SKF-96365 but not by the TRPV family inhibitor ruthenium red. Using western-blotting, Ca2+ measurements and iodide efflux assay, we found that TRPC1 siRNA has no effect on guanabenz induced responses whereas TRPC6 siRNA prevented the guanabenz-dependent Ca2+ influx and the CaCC-dependent activity stimulated by guanabenz. In conclusion, we show that TRPC6 channel is pivotal for the activation of CaCC by guanabenz through a α2-adrenergic-independent pathway in human airway epithelial cells. We suggest propose a functional coupling between TRPC6 and CaCC and guanabenz as a potential TRPC6 activator for exploring TRPC6 and CaCC channel functions and corresponding channelopathies.

  11. Noggin inhibits hypoxia-induced proliferation by targeting store-operated calcium entry and transient receptor potential cation channels

    PubMed Central

    Yang, Kai; Lu, Wenju; Jia, Jing; Zhang, Jie; Zhao, Mingming; Wang, Sabrina; Jiang, Haiyang; Xu, Lei

    2015-01-01

    Abnormally elevated bone morphogenetic protein 4 (BMP4) expression and mediated signaling play a critical role in the pathogenesis of chronic hypoxia-induced pulmonary hypertension (CHPH). In this study, we investigated the expression level and functional significance of four reported naturally occurring BMP4 antagonists, noggin, follistatin, gremlin1, and matrix gla protein (MGP), in the lung and distal pulmonary arterial smooth muscle cell (PASMC). A 21-day chronic hypoxic (10% O2) exposure rat model was utilized, which has been previously shown to successfully establish experimental CHPH. Among the four antagonists, noggin, but not the other three, was selectively downregulated by hypoxic exposure in both the lung tissue and PASMC, in correlation with markedly elevated BMP4 expression, suggesting that the loss of noggin might account for the hypoxia-triggered BMP4 signaling transduction. Then, by using treatment of extrogenous recombinant noggin protein, we further found that noggin significantly normalized 1) BMP4-induced phosphorylation of cellular p38 and ERK1/2; 2) BMP4-induced phosphorylation of cellular JAK2 and STAT3; 3) hypoxia-induced PASMC proliferation; 4) hypoxia-induced store-operated calcium entry (SOCE), and 5) hypoxia-increased expression of transient receptor potential cation channels (TRPC1 and TRPC6) in PASMC. In combination, these data strongly indicated that the hypoxia-suppressed noggin accounts, at least partially, for hypoxia-induced excessive PASMC proliferation, while restoration of noggin may be an effective way to inhibit cell proliferation by suppressing SOCE and TRPC expression. PMID:25740156

  12. Parvalbumin overexpression alters immune-mediated increases in intracellular calcium, and delays disease onset in a transgenic model of familial amyotrophic lateral sclerosis

    NASA Technical Reports Server (NTRS)

    Beers, D. R.; Ho, B. K.; Siklos, L.; Alexianu, M. E.; Mosier, D. R.; Mohamed, A. H.; Otsuka, Y.; Kozovska, M. E.; McAlhany, R. E.; Smith, R. G.; hide

    2001-01-01

    Intracellular calcium is increased in vulnerable spinal motoneurons in immune-mediated as well as transgenic models of amyotrophic lateral sclerosis (ALS). To determine whether intracellular calcium levels are influenced by the calcium-binding protein parvalbumin, we developed transgenic mice overexpressing parvalbumin in spinal motoneurons. ALS immunoglobulins increased intracellular calcium and spontaneous transmitter release at motoneuron terminals in control animals, but not in parvalbumin overexpressing transgenic mice. Parvalbumin transgenic mice interbred with mutant SOD1 (mSOD1) transgenic mice, an animal model of familial ALS, had significantly reduced motoneuron loss, and had delayed disease onset (17%) and prolonged survival (11%) when compared with mice with only the mSOD1 transgene. These results affirm the importance of the calcium binding protein parvalbumin in altering calcium homeostasis in motoneurons. The increased motoneuron parvalbumin can significantly attenuate the immune-mediated increases in calcium and to a lesser extent compensate for the mSOD1-mediated 'toxic-gain-of-function' in transgenic mice.

  13. Parvalbumin overexpression alters immune-mediated increases in intracellular calcium, and delays disease onset in a transgenic model of familial amyotrophic lateral sclerosis

    NASA Technical Reports Server (NTRS)

    Beers, D. R.; Ho, B. K.; Siklos, L.; Alexianu, M. E.; Mosier, D. R.; Mohamed, A. H.; Otsuka, Y.; Kozovska, M. E.; McAlhany, R. E.; Smith, R. G.; Appel, S. H.

    2001-01-01

    Intracellular calcium is increased in vulnerable spinal motoneurons in immune-mediated as well as transgenic models of amyotrophic lateral sclerosis (ALS). To determine whether intracellular calcium levels are influenced by the calcium-binding protein parvalbumin, we developed transgenic mice overexpressing parvalbumin in spinal motoneurons. ALS immunoglobulins increased intracellular calcium and spontaneous transmitter release at motoneuron terminals in control animals, but not in parvalbumin overexpressing transgenic mice. Parvalbumin transgenic mice interbred with mutant SOD1 (mSOD1) transgenic mice, an animal model of familial ALS, had significantly reduced motoneuron loss, and had delayed disease onset (17%) and prolonged survival (11%) when compared with mice with only the mSOD1 transgene. These results affirm the importance of the calcium binding protein parvalbumin in altering calcium homeostasis in motoneurons. The increased motoneuron parvalbumin can significantly attenuate the immune-mediated increases in calcium and to a lesser extent compensate for the mSOD1-mediated 'toxic-gain-of-function' in transgenic mice.

  14. The calcium-independent transient outward potassium current in isolated ferret right ventricular myocytes. I. Basic characterization and kinetic analysis

    PubMed Central

    1993-01-01

    Enzymatically isolated myocytes from ferret right ventricles (12-16 wk, male) were studied using the whole cell patch clamp technique. The macroscopic properties of a transient outward K+ current I(to) were quantified. I(to) is selective for K+, with a PNa/PK of 0.082. Activation of I(to) is a voltage-dependent process, with both activation and inactivation being independent of Na+ or Ca2+ influx. Steady-state inactivation is well described by a single Boltzmann relationship (V1/2 = -13.5 mV; k = 5.6 mV). Substantial inactivation can occur during a subthreshold depolarization without any measurable macroscopic current. Both development of and recovery from inactivation are well described by single exponential processes. Ensemble averages of single I(to) channel currents recorded in cell-attached patches reproduce macroscopic I(to) and indicate that inactivation is complete at depolarized potentials. The overall inactivation/recovery time constant curve has a bell-shaped potential dependence that peaks between -10 and -20 mV, with time constants (22 degrees C) ranging from 23 ms (-90 mV) to 304 ms (-10 mV). Steady-state activation displays a sigmoidal dependence on membrane potential, with a net aggregate half- activation potential of +22.5 mV. Activation kinetics (0 to +70 mV, 22 degrees C) are rapid, with I(to) peaking in approximately 5-15 ms at +50 mV. Experiments conducted at reduced temperatures (12 degrees C) demonstrate that activation occurs with a time delay. A nonlinear least- squares analysis indicates that three closed kinetic states are necessary and sufficient to model activation. Derived time constants of activation (22 degrees C) ranged from 10 ms (+10 mV) to 2 ms (+70 mV). Within the framework of Hodgkin-Huxley formalism, Ito gating can be described using an a3i formulation. PMID:8505627

  15. Increase of galectin-3 expression in microglia by hyperthermia in delayed neuronal death of hippocampal CA1 following transient forebrain ischemia.

    PubMed

    Satoh, Kunio; Niwa, Masayuki; Binh, Nguyen Huy; Nakashima, Masaya; Kobayashi, Kazuhiro; Takamatsu, Manabu; Hara, Akira

    2011-10-31

    The ischemic damage in the hippocampal CA1 region following transient forebrain ischemia, delayed neuronal death, is a typical apoptotic response, but the underlying mechanisms are not fully understood. We have reported that mild hyperthermia (38 °C) accelerates DNA fragmentation of the gerbil CA1 pyramidal neurons following transient forebrain ischemia. Recently, we reported that galectin-3, a β-galactosidase-binding lectin, is spatio-temporally expressed only by activated microglial cells located within CA1 region following transient forebrain ischemia in gerbils. Furthermore, expression of galectin-3 and Iba-1 (a specific microglial cell marker) are strongly reduced by hypothermia during ischemic insult. To further elucidate the effect of hyperthermia on the expression of galectin-3 by micloglia in delayed neuronal death, we examined immunohistochemical expression of galectin-3 and Iba-1, in situ terminal dUTP-biotin nick end labeling of DNA fragmentation (for determination of cell death) and hematoxylin and eosin staining (for morphological observation). We observed that between 37 °C and 39 °C, there was a temperature-dependent enhancement of galectin-3 expression in microglial cells in the CA1 region following transient ischemia. Apoptotic DNA fragmentation, detected by TUNEL staining, was observed in CA1 region in normothermia. This TUNEL staining was enhanced by hyperthermia at 37.5 °C and 38 °C, but not at 39 °C. Ischemia-induced neuronal degeneration in CA1 region in gerbil hippocampus subjected to hyperthermia (37.5 °C, 38 °C and 39 °C) observed by HE staining is similar to that in normothermic gerbils. These findings imply that galectin-3 expression in microglia may influence the survival of CA1 pyramidal neurons in cases such as hyperthermia-related neuronal injury.

  16. Modulation of intracellular calcium transient in response to beta-adrenoceptor stimulation in the hearts of 4-wk-old rats during simulated weightlessness.

    PubMed

    Cui, Yan; Zhang, Shu-Miao; Zhang, Quan-Yu; Fan, Rong; Li, Juan; Guo, Hai-Tao; Bi, Hui; Wang, Yue-Min; Hu, Yu-Zhen; Zheng, Qi-Jun; Gu, Chun-Hu; Yu, Shi-Qiang; Yi, Ding-Hua; Li, Zhi-Chao; Pei, Jian-Ming

    2010-04-01

    Modulation of intracellular calcium ([Ca(2+)](i)) transient in response to beta-adrenoceptor stimulation in the hearts of hindlimb unweighted (HLU) rats during simulated weightlessness has not been reported. In the present study, we adopted the rat tail suspension for 4 wk to simulate weightlessness. Effects of simulated microgravity on beta-adrenoceptor responsiveness were then studied. Mean arterial blood pressure, left ventricular pressure (LVP), systolic function [maximum positive change in pressure over time (+dP/dt(max))], and diastolic function [maximum negative change in pressure over time (-dP/dt(max))] were monitored during the in vivo experiment. beta-Adrenoceptor density was quantitated by radioactive ligand binding. Single rat ventricular myocyte was obtained by enzymatic dissociation method. +/-dP/dt(max), myocyte contraction, intracellular [Ca(2+)](i) transient, and L-type calcium current in response to beta-adrenoceptor stimulation with isoproterenol were measured. Compared with the control group, no significant changes were found in heart weight, body weight, and mean arterial blood pressure, whereas LVP and +/-dP/dt(max) were significantly reduced. LVP and +/-dP/dt(max) were significantly attenuated in the HLU group in response to isoproterenol administration. In the in vitro study, the beta-adrenoceptor density was unchanged. Effects of isoproterenol on electrically induced single-cell contraction and [Ca(2+)](i) transient in myocytes of ventricles in HLU rats were significantly attenuated. The enhanced L-type Ca(2+) current elicited by isoproterenol in cardiomyocytes was significantly decreased in the HLU group. The above results indicate that impaired function of L-type Ca(2+) current and decreased [Ca(2+)](i) transient cause the depressed responsiveness of the beta-adrenoceptor stimulation, which may be partially responsible for the depression of cardiac function.

  17. Overlapping distribution of osteopontin and calcium in the ischemic core of rat brain after transient focal ischemia.

    PubMed

    Shin, Yoo-Jin; Kim, Hong Lim; Park, Jang-Mi; Cho, Jeong Min; Kim, Chang-Yeon; Choi, Ki-Ju; Kweon, Hee-Seok; Cha, Jung-Ho; Lee, Mun-Yong

    2012-05-01

    Osteopontin (OPN), an adhesive glycoprotein, has recently been proposed to act as an opsonin that facilitates phagocytosis of neuronal debris by macrophages in the ischemic brain. The present study was designed to elucidate the process whereby OPN binds to neuronal cell debris in a rat model of ischemic stroke. Significant co-localization of the OPN protein and calcium deposits in the ischemic core were observed by combining alizarin red staining and OPN immunohistochemistry. In addition, electron microscopy (EM) using the osmium/potassium dichromate method revealed that electron-dense precipitates, typical of calcium deposits, were localized mainly along the periphery of putative degenerating neurites. This topical pattern of calcium precipitates resembled the distribution of OPN as detected by immunogold-silver EM. Combining immunogold-silver EM and electron probe microanalysis further demonstrated that the OPN protein was localized at the periphery of cell debris or degenerating neurites, corresponding with locally higher concentrations of calcium and phosphorus, and that the relative magnitude of OPN accumulation was comparable to that of calcium and phosphorus. These data suggest that calcium precipitation provides a matrix for the binding of the OPN protein within the debris or degenerating neurites induced by ischemic injury. Therefore, OPN binding to calcium deposits may be involved in phagocytosis of such debris, and may participate in the regulation of ectopic calcification in the ischemic brain.

  18. Transient Growth Theory Prediction of Optimal Placing of Passive and Active Flow Control Devices for Separation Delay in LPT Airfoils

    NASA Technical Reports Server (NTRS)

    Tumin, Anatoli; Ashpis, David E.

    2003-01-01

    An analysis of the non-modal growth of perturbations in a boundary layer in the presence of a streamwise pressure gradient is presented. The analysis is based on PSE equations for an incompressible fluid. Examples with Falkner-Skan profiles indicate that a favorable pressure gradient decreases the non-modal growth while an unfavorable pressure gradient leads to an increase of the amplification. It is suggested that the transient growth mechanism be utilized to choose optimal parameters of tripping elements on a low-pressure turbine (LPT) airfoil. As an example, a boundary layer flow with a streamwise pressure gradient corresponding to the pressure distribution over a LPT airfoil is considered. It is shown that there is an optimal spacing of the tripping elements and that the transient growth effect depends on the starting point. At very low Reynolds numbers, there is a possibility to enhance the transient energy growth by means of wall cooling.

  19. Transient response of thyroidectomized pigs to bolus calcium injections and the effect of salmon calcitonin and parathyroid hormone.

    PubMed

    Jaros, G G; Van Hoorn-Hickman, R; Maier, H; Newman, E

    1983-04-01

    The intravenous injection of calcium gluconate (0.11 mM/kg body weight) into conscious thyroidectomized pigs elicits a 30% rise in both ionized and total calcium concentrations of plasma, which return to basal levels within 180 min. The administration of calcitonin (2.5-10 MRC U/kg body weight) reduces this time to 30 to 40 min which is similar to the time obtained in thyroid intact animals. These results suggest that calcitonin may be involved in the fast calcium removal processes and thus in the short-term regulating system of calcium homeostasis. Neither parathyroidectomy nor the administration of parathyroid hormone affected the time for recovery in thyroidectomized pigs, suggesting that the short-term regulation is independent on the parathyroid gland and its hormone.

  20. Understanding spatial and temporal patterning of astrocyte calcium transients via interactions between network transport and extracellular diffusion

    NASA Astrophysics Data System (ADS)

    Shtrahman, E.; Maruyama, D.; Olariu, E.; Fink, C. G.; Zochowski, M.

    2017-02-01

    Astrocytes form interconnected networks in the brain and communicate via calcium signaling. We investigate how modes of coupling between astrocytes influence the spatio-temporal patterns of calcium signaling within astrocyte networks and specifically how these network interactions promote coordination within this group of cells. To investigate these complex phenomena, we study reduced cultured networks of astrocytes and neurons. We image the spatial temporal patterns of astrocyte calcium activity and quantify how perturbing the coupling between astrocytes influences astrocyte activity patterns. To gain insight into the pattern formation observed in these cultured networks, we compare the experimentally observed calcium activity patterns to the patterns produced by a reduced computational model, where we represent astrocytes as simple units that integrate input through two mechanisms: gap junction coupling (network transport) and chemical release (extracellular diffusion). We examine the activity patterns in the simulated astrocyte network and their dependence upon these two coupling mechanisms. We find that gap junctions and extracellular chemical release interact in astrocyte networks to modulate the spatiotemporal patterns of their calcium dynamics. We show agreement between the computational and experimental findings, which suggests that the complex global patterns can be understood as a result of simple local coupling mechanisms.

  1. Role of protein kinase C in neuroprotective effect of geranylgeranylacetone, a noninvasive inducing agent of heat shock protein, on delayed neuronal death caused by transient ischemia in rats.

    PubMed

    Fujiki, Minoru; Hikawa, Takamitsu; Abe, Tatsuya; Uchida, Susumu; Morishige, Masaki; Sugita, Kenji; Kobayashi, Hidenori

    2006-07-01

    We evaluated the neuroprotective effect of geranylgeranylacetone (GGA), an antiulcer agent and inducing agent of heat-shock protein (HSP), against the delayed death of hippocampal neurons induced by transient bilateral occlusion of the common carotid artery (CCA) and hypotension (40 mm Hg) lasting for 10 min. To test the hypothesis that orally administered GGA would induce protein kinase C (PKC), leading to the expression of HSP70 and protection against delayed neuronal death (DND), we gave GGA orally to rats in various regimens prior to bilateral occlusion of the CCA, and quantitatively assessed the extent of DND in region CA1 of the hippocampus at 7 days after transient ischemia. Pretreatment with a single oral dose of GGA of 800 mg/kg at 48 h before ischemia significantly attenuated DND (20.0 +/- 3.81 vs. 321.0 +/- 11.01 mm(3); p < 0.05). A similar degree of neuron sparing occurred when GGA was given 2, 4, or 8 days before ischemia. These neuroprotective effects of GGA were prevented by pretreatment with chelerythrine (CHE), a specific inhibitor of PKC, indicating that PKC may mediate GGA-dependent protection against ischemic DND. Oral GGA-induced expression of HSP70 elicited the expression of PKCdelta, and pretreatment with GGA enhanced the ischemia-induced expression of HSP70, both of which effects were prevented by pretreatment with CHE. These results suggest that a single oral dose of GGA induces the expression of PKCdelta and promotes the expression of HSP70 in the brain, and that GGA plays an important role in neuroprotection against DND. Pretreatment with a single oral dose of GGA provides an important tool for exploring the mechanisms of neuroprotection against DND of hippocampal neurons after transient ischemia.

  2. Community socioeconomic status and prehospital times in acute stroke and transient ischemic attack: do poorer patients have longer delays from 911 call to the emergency department?

    PubMed

    Kleindorfer, Dawn O; Lindsell, Christopher J; Broderick, Joseph P; Flaherty, Matthew L; Woo, Daniel; Ewing, Irene; Schmit, Pam; Moomaw, Charles; Alwell, Kathleen; Pancioli, Arthur; Jauch, Edward; Khoury, Jane; Miller, Rosie; Schneider, Alexander; Kissela, Brett M

    2006-06-01

    Timely access to medical treatment is critical for patients with acute stroke because acute therapies must be given very quickly after symptom onset. We examined the effect of socioeconomic status on prehospital delays in stroke and transient ischemic attack (TIA) patients within a large, biracial population. By screening all local hospital ICD-9 codes 430 to 436, all stroke and TIA patients were identified during the calendar year of 1999. Cases must have used emergency medical services (EMS), lived at home, had their stroke at home, and had documented times of the 911 call and arrival to the emergency department. Socioeconomic status was estimated using economic data regarding the geocoded home residence census tract. Only 38% of stroke and TIA patients used EMS. There were 978 cases of stroke and TIA included in this analysis. The mean times were call to arrival on scene 6.5 minutes, on-scene time 14.1 minutes, and transport time 13.1 minutes. Lower community socioeconomic status was associated with all 3 EMS time intervals; however, all time differences were small: the largest difference was 5 minutes. Within our population, living in a poorer area does not appear to delay access to acute care for stroke in a clinically significant way. We did find small, statistically significant delays in prehospital times that were associated with poorer communities, black race, and increasing age. However, delays related to public recognition of stroke symptoms, and limited use of 911, are likely much more important than these small delays that occur with EMS systems.

  3. Spine Calcium Transients Induced by Synaptically-Evoked Action Potentials Can Predict Synapse Location and Establish Synaptic Democracy

    PubMed Central

    Meredith, Rhiannon M.; van Ooyen, Arjen

    2012-01-01

    CA1 pyramidal neurons receive hundreds of synaptic inputs at different distances from the soma. Distance-dependent synaptic scaling enables distal and proximal synapses to influence the somatic membrane equally, a phenomenon called “synaptic democracy”. How this is established is unclear. The backpropagating action potential (BAP) is hypothesised to provide distance-dependent information to synapses, allowing synaptic strengths to scale accordingly. Experimental measurements show that a BAP evoked by current injection at the soma causes calcium currents in the apical shaft whose amplitudes decay with distance from the soma. However, in vivo action potentials are not induced by somatic current injection but by synaptic inputs along the dendrites, which creates a different excitable state of the dendrites. Due to technical limitations, it is not possible to study experimentally whether distance information can also be provided by synaptically-evoked BAPs. Therefore we adapted a realistic morphological and electrophysiological model to measure BAP-induced voltage and calcium signals in spines after Schaffer collateral synapse stimulation. We show that peak calcium concentration is highly correlated with soma-synapse distance under a number of physiologically-realistic suprathreshold stimulation regimes and for a range of dendritic morphologies. Peak calcium levels also predicted the attenuation of the EPSP across the dendritic tree. Furthermore, we show that peak calcium can be used to set up a synaptic democracy in a homeostatic manner, whereby synapses regulate their synaptic strength on the basis of the difference between peak calcium and a uniform target value. We conclude that information derived from synaptically-generated BAPs can indicate synapse location and can subsequently be utilised to implement a synaptic democracy. PMID:22719238

  4. Elevated polyamines in urothelial cells from OAB subjects mediate oxotremorine-evoked rapid intracellular calcium rise and delayed acetylcholine release

    PubMed Central

    Li, Mingkai; Sun, Yan; Tomiya, Noboru; Hsu, Yuchao

    2013-01-01

    Increased polyamine signaling in bladder urothelial cells (BUC) may play a role in the pathophysiology of overactive bladder (OAB). We quantitated intracellular polyamine levels in cultured BUC from OAB and asymptomatic (NB) subjects. We assessed whether polyamines modulated rapid intracellular calcium ([Ca2+]i) changes and delayed acetylcholine (ACh) release evoked by oxotremorine (OXO, a muscarinic agonist). BUC were cultured from cystoscopic biopsies. High-performance liquid chromatography (HPLC) quantitated intracellular putrescine, spermidine, and spermine levels. Five-millimeter difluoromethylornithine (DFMO), and one-millimeter methylglyoxalbisguanylhydrazone (MGBG) treatments were used to deplete intracellular polyamines. Ten micrometers of OXO were used to increase [Ca2+]i levels (measured by fura 2 microfluorimetry) and trigger extracellular ACh release (measured by ELISA). Polyamine levels were elevated in OAB compared with NB BUC (0.5 ± 0.15 vs. 0.16 ± 0.03 nmol/mg for putrescine, 2.4 ± 0.21 vs. 1.01 ± 0.13 nmol/mg for spermidine, and 1.90 ± 0.27 vs. 0.86 ± 0.26 nmol/mg for spermine; P < 0.05 for all comparisons). OXO evoked greater [Ca2+]i rise in OAB (205.10 ± 18.82% increase over baseline) compared with in NB BUC (119.54 ± 13.01%; P < 0.05). After polyamine depletion, OXO evoked [Ca2+]i rise decreased in OAB and NB BUC to 43.40 ± 6.45 and 38.82 ± 3.5%, respectively. OXO tended to increase ACh release by OAB vs. NB BUC (9.02 ± 0.1 vs. 7.04 ± 0.09 μM, respectively; P < 0.05). Polyamine depletion reduced ACh release by both OAB and NB BUC. In conclusion, polyamine levels were elevated twofold in OAB BUC. OXO evoked greater increase in [Ca2+]i and ACh release in OAB BUC, although these two events may be unrelated. Depletion of polyamines caused OAB BUC to behave similarly to NB BUC. PMID:23698115

  5. Developmental delay and failure to thrive in a 7-month-old baby boy with spontaneous transient Graves' thyrotoxicosis: a case report.

    PubMed

    Yatsuga, Shuichi; Saikusa, Tomoko; Sasaki, Takako; Ushijima, Kikumi; Kitamura, Miyuki; Nishioka, Junko; Koga, Yasutoshi

    2016-08-10

    Thyroid dysfunction can induce developmental delay and failure to thrive in infancy. Congenital hypothyroidism is one of the common causes of these symptoms in infancy. By contrast, hyperthyroidism is a rare cause of these symptoms in infancy. A 7-month-old Japanese baby boy was examined for developmental delay and failure to thrive. Blood tests were performed, which showed low levels of thyroid-stimulating hormone (<0.01 μU/mL) and high levels of free thyroxine (2.14 pg/mL). He was referred to our hospital at 8 months of age. His height was 64 cm (-2.7 standard deviation) and his weight was 6085 g (-2.5 standard deviation). No goiter was detected on examination. His thyrotropin receptor antibody was slightly high (3.9 IU/L), whereas thyroid stimulating antibody, anti-thyroglobulin antibody, and thyroid peroxidase antibody were within normal range. These blood findings indicated hyperthyroidism, most likely Graves' disease. His free thyroxine level decreased in the first month after our examination. No increased vascularity of his thyroid gland was noted. The technetium uptake of his thyroid gland in scintigraphy was relatively increased compared to the intake of his salivary gland. We elected to observe rather than treat with anti-thyroid medications. We have to rule out spontaneous transient Graves' thyrotoxicosis when babies have symptoms of developmental delay and fail to thrive.

  6. N- and L-Type Voltage-Gated Calcium Channels Mediate Fast Calcium Transients in Axonal Shafts of Mouse Peripheral Nerve

    PubMed Central

    Barzan, Ruxandra; Pfeiffer, Friederike; Kukley, Maria

    2016-01-01

    In the peripheral nervous system (PNS) a vast number of axons are accommodated within fiber bundles that constitute peripheral nerves. A major function of peripheral axons is to propagate action potentials along their length, and hence they are equipped with Na+ and K+ channels, which ensure successful generation, conduction and termination of each action potential. However little is known about Ca2+ ion channels expressed along peripheral axons and their possible functional significance. The goal of the present study was to test whether voltage-gated Ca2+ channels (VGCCs) are present along peripheral nerve axons in situ and mediate rapid activity-dependent Ca2+ elevations under physiological circumstances. To address this question we used mouse sciatic nerve slices, Ca2+ indicator Oregon Green BAPTA-1, and 2-photon Ca2+ imaging in fast line scan mode (500 Hz). We report that transient increases in intra-axonal Ca2+ concentration take place along peripheral nerve axons in situ when axons are stimulated electrically with single pulses. Furthermore, we show for the first time that Ca2+ transients in peripheral nerves are fast, i.e., occur in a millisecond time-domain. Combining Ca2+ imaging and pharmacology with specific blockers of different VGCCs subtypes we demonstrate that Ca2+ transients in peripheral nerves are mediated mainly by N-type and L-type VGCCs. Discovery of fast Ca2+ entry into the axonal shafts through VGCCs in peripheral nerves suggests that Ca2+ may be involved in regulation of action potential propagation and/or properties in this system, or mediate neurotransmitter release along peripheral axons as it occurs in the optic nerve and white matter of the central nervous system (CNS). PMID:27313508

  7. Transient Receptor Potential-Like Channels Are Essential for Calcium Signaling and Fluid Transport in a Drosophila Epithelium

    PubMed Central

    MacPherson, Matthew R.; Pollock, Valerie P.; Kean, Laura; Southall, Tony D.; Giannakou, Maria E.; Broderick, Kate E.; Dow, Julian A. T.; Hardie, Roger C.; Davies, Shireen A.

    2005-01-01

    Calcium signaling is an important mediator of neuropeptide-stimulated fluid transport by Drosophila Malpighian (renal) tubules. We demonstrate the first epithelial role, in vivo, for members of the TRP family of calcium channels. RT-PCR revealed expression of trp, trpl, and trpγ in tubules. Use of antipeptide polyclonal antibodies for TRP, TRPL, and TRPγ showed expression of all three channels in type 1 (principal) cells in the tubule main segment. Neuropeptide (CAP2b)-stimulated fluid transport rates were significantly reduced in tubules from the trpl302 mutant and the trpl;trp double mutant, trpl302;trp343. However, a trp null, trp343, had no impact on stimulated fluid transport. Measurement of cytosolic calcium concentrations ([Ca2+]i) in tubule principal cells using an aequorin transgene in trp and trpl mutants showed a reduction in calcium responses in trpl302. Western blotting of tubule preparations from trp and trpl mutants revealed a correlation between TRPL levels and CAP2b-stimulated fluid transport and calcium signaling. Rescue of trpl302 with a trpl transgene under heat-shock control resulted in a stimulated fluid transport phenotype that was indistinguishable from wild-type tubules. Furthermore, restoration of normal stimulated rates of fluid transport by rescue of trpl302 was not compromised by introduction of the trp null, trp343. Thus, in an epithelial context, TRPL is sufficient for wild-type responses. Finally, a scaffolding component of the TRPL/TRP-signaling complex, INAD, is not expressed in tubules, suggesting that inaD is not essential for TRPL/TRP function in Drosophila tubules. PMID:15695363

  8. Use of Recombinant Aequorin to Study Calcium Homeostasis and Monitor Calcium Transients in Response to Heat and Cold Shock in Cyanobacteria1

    PubMed Central

    Torrecilla, Ignacio; Leganés, Francisco; Bonilla, Ildefonso; Fernández-Piñas, Francisca

    2000-01-01

    We investigated the possibility of Ca2+ signaling in cyanobacteria (blue-green algae) by measuring intracellular free Ca2+ levels ([Ca2+]i) in a recombinant strain of the nitrogen fixing cyanobacterium Anabaena strain sp. PCC7120, which constitutively expresses the Ca2+-binding photoprotein apoaequorin. The homeostasis of intracellular Ca2+ in response to increasing external Ca2+ has been studied in this strain. The resting level of free Ca2+ in Anabaena was found to be between 100 and 200 nm. Additions of increasing concentrations of external Ca2+ gave a transient burst of [Ca2+]i followed by a very quick decline, reaching a plateau within seconds that brought the level of [Ca2+]i back to the resting value. These results indicate that Anabaena strain sp. PCC7120 is able to regulate its internal Ca2+ levels. We also monitored Ca2+ transients in our recombinant strain in response to heat and cold shock. The cell's response to both stresses was dependent on the way they were induced. The use of inhibitors suggests that heat shock mobilizes cytosolic Ca2+ from both intracellular and extracellular sources, while the Ca2+ source for cold shock signaling is mostly extracellular. PMID:10806234

  9. Streptococcus pneumoniae Infection of Host Epithelial Cells via Polymeric Immunoglobulin Receptor Transiently Induces Calcium Release from Intracellular Stores*

    PubMed Central

    Asmat, Tauseef M.; Agarwal, Vaibhav; Räth, Susann; Hildebrandt, Jan-Peter; Hammerschmidt, Sven

    2011-01-01

    The pneumococcal surface protein C (PspC) is a major adhesin of Streptococcus pneumoniae (pneumococci) that interacts in a human-specific manner with the ectodomain of the human polymeric immunoglobulin receptor (pIgR) produced by respiratory epithelial cells. This interaction promotes bacterial colonization and bacterial internalization by initiating host signal transduction cascades. Here, we examined alterations of intracellular calcium ([Ca2+]i) levels in epithelial cells during host cell infections with pneumococci via the PspC-hpIgR mechanism. The release of [Ca2+]i from intracellular stores in host cells was significantly increased by wild-type pneumococci but not by PspC-deficient pneumococci. The increase in [Ca2+]i was dependent on phospholipase C as pretreatment of cells with a phospholipase C-specific inhibitor U73122 abolished the increase in [Ca2+]i. In addition, we demonstrated the effect of [Ca2+]i on pneumococcal internalization by epithelial cells. Uptake of pneumococci was significantly increased after pretreatment of epithelial cells with the cell-permeable calcium chelator 1,2-bis-(o-aminophenoxy)-ethane-N,N,N′,N′-tetraacetic acid-tetraacetoxymethyl ester or use of EGTA as an extracellular Ca2+-chelating agent. In contrast, thapsigargin, an inhibitor of endoplasmic reticulum Ca2+ATPase, which increases [Ca2+]i in a sustained fashion, significantly reduced pIgR-mediated pneumococcal invasion. Importantly, pneumococcal adherence to pIgR-expressing cells was not altered in the presence of inhibitors as demonstrated by immunofluorescence microscopy. In conclusion, these results demonstrate that pneumococcal infections induce mobilization of [Ca2+]i from intracellular stores. This may constitute a defense response of host cells as the experimental reduction of intracellular calcium levels facilitates pneumococcal internalization by pIgR-expressing cells, whereas elevated calcium levels diminished bacterial internalization by host epithelial

  10. Effect of Adipose-Derived Mesenchymal Stem Cell Administration and Mild Hypothermia Induction on Delayed Neuronal Death After Transient Global Cerebral Ischemia.

    PubMed

    Chung, Tae Nyoung; Kim, Jin Hee; Choi, Bo Young; Jeong, Ju-Yeon; Chung, Sung Phil; Kwon, Sung Won; Suh, Sang Won

    2017-05-01

    Global cerebral ischemia is a cause of poor prognosis after resuscitation from cardiac arrest. Various attempts have been made to minimize global cerebral ischemia but none been more effective than mild hypothermia induction. A few studies have shown the effect of mesenchymal stem cells on global cerebral ischemia, but no studies have compared this effect with mild hypothermia or assessed any possible interaction. We aimed to show the effect of mesenchymal stem cells on delayed neuronal death after global cerebral ischemia and to compare this effect with mild hypothermia. Experimental study. Animal research laboratory. Adult male Sprague-Dawley rats weighing 250-300 g. Rats were subjected to 7 minutes of transient global cerebral ischemia and randomized into four groups: control, mild hypothermia, injection of human adipose-derived mesenchymal stem cells, and combined application of mild hypothermia and mesenchymal stem cells, along with four sham groups treated identically. Rats were euthanized 7 days after global cerebral ischemia. Degree of neuronal death in hippocampus was significantly higher in control than in other groups. The number of activated microglia was higher in control group than in other groups and was higher in mild hypothermia than shams, mesenchymal stem cells, mild hypothermia/mesenchymal stem cells. Degree of blood-brain barrier disruption and the count of infiltrated neutrophils were significantly higher in control than in other groups. Degree of oxidative injury was significantly higher in control than other groups. It was higher in mild hypothermia than sham groups, mesenchymal stem cells, mild hypothermia/mesenchymal stem cells and was higher in mesenchymal stem cells group than sham groups. Significantly, worse functional results were found in control than in other groups. Administration of mesenchymal stem cells after transient global cerebral ischemia has a prominent protective effect on delayed neuron death, even compared with mild

  11. Protective effects of Choto-san and hooks and stems of Uncaria sinensis against delayed neuronal death after transient forebrain ischemia in gerbil.

    PubMed

    Yokoyama, Koichi; Shimada, Yutaka; Hori, Etsuro; Sekiya, Nobuyasu; Goto, Hirozo; Sakakibara, Iwao; Nishijo, Hisao; Terasawa, Katsutoshi

    2004-09-01

    Previously, we revealed that Choto-san (Diao-teng-san in Chinese), a Kampo formula, is effective on vascular dementia clinically, and the hooks and stems of Uncaria sinensis (Oliv.) Havil., a medicinal plant comprising Chotosan, has a neuroprotective effect in vitro. In the present study, for the purpose of clarifying their effects in vivo, we investigated whether the oral administration of Choto-san extract (CSE) or U. sinensis extract (USE) reduces delayed neuronal death following ischemia/reperfusion (i/rp) in gerbils. Transient forebrain ischemia was induced by bilateral carotid artery occlusion for 4 min, and two doses (1.0% and 3.0%) of CSE or USE were dissolved in drinking water and provided to the gerbils ad libitum from 7 days prior to i/rp until 7 days after i/rp. It was found that 1.0% and 3.0% CSE treatments significantly reduced pyramidal cell death in the hippocampal CA1 region at 7 days post i/rp. Three percent USE treatment also inhibited pyramidal cell death significantly at 7 days after i/rp. Superoxide anion and hydroxyl radical scavenging activities of the homogenized hippocampus at 7 days after i/rp in the 1.0% CSE- and 3.0% USE-treated groups were significantly enhanced compared to those of control. Further, lipid peroxide and NO2-/NO3- levels of the homogenized hippocampus at 48h after i/rp in the 1.0% CSE- and 3.0% USE-treated groups were significantly lower than those of control. These results suggest that the oral administration of CSE or USE provides a protective effect against transient ischemia-induced delayed neuronal death by reducing oxidative damage to neurons.

  12. The effect of time delays in fuel pin failure on LOF-TOP transient calculations for a commercial-sized LMFBR

    SciTech Connect

    Pizzica, P.A.; Hummel, H.H.

    1982-02-01

    Various loss-of-flow cases have been calculated for a commercial-sized liquid-metal fast breeder reactor. Particular attention has been paid to the development of loss-of-flow-driven transient-overpower (LOF-TOP) conditions. In such conditions, it is crucial to consider when an initial cladding breach might occur in LOF-TOP pins and over what length of time the initial cladding breach might extend in fuel pins failing under burst pressure. This study shows that the neutronic energy deposition in transient calculations including LOF-TOP pin failures can increase substantially compared to a calculation excluding such LOF-TOP failures in two ways. First, there will be an increase if there is no extension of an initial cladding failure in LOF-TOP pins or if there is a relatively long delay in the extension. Secondly, when, in applying a fuel melt fraction criterion for pin failure, the same melt fraction is specified for failure extension as for initial failure, which implies a certain delay time for failure extension, there will be an increase in the energy deposition compared to the case without any LOF-TOP failures only when the specified fuel melt fraction becomes very large. However, even in the case with the largest failure melt fraction, there will be no increase in energy deposition when a rapid enough failure extension is assumed. These calculations make a number of very conservative assumptions. The purpose of the study is not to provide a best estimate of accident conditions but to show how quickly an initial cladding breach must extend in such conservative calculations if it is to limit the increase in neutronic energy deposition.

  13. Outcomes of early language delay: I. Predicting persistent and transient language difficulties at 3 and 4 years.

    PubMed

    Dale, Philip S; Price, Thomas S; Bishop, Dorothy V M; Plomin, Robert

    2003-06-01

    Parent-based assessments of vocabulary, grammar, nonverbal ability, and use of language to refer to post and future (displaced reference) were obtained for 8,386 twin children at 2 years of age. Children with 2 year vocabulary scores below the 10th centile were designated the early language delay (ELD) group, and their outcomes at 3 and 4 years were contrasted with the remainder of the sample, the typical language (TL) group. At 3 and 4 years old, children were designated as language impaired if their scores fell below the 15th centile on at least 2 of the 3 parent-provided language measures: vocabulary, grammar, and use of abstract language. At 3 years, 44.1% of the ELD group (as compared to 7.2% of the TL group) met criteria for persistent language difficulties, decreasing slightly to 40.2% at 4 years (as compared to 8.5% of the TL group), consistent with previous reports of frequent spontaneous resolution of delayed language in preschoolers. Although relations between language and nonverbal abilities at 2 years and outcome at 3 and 4 years within the ELD group were highly statistically significant, effect sizes were small, and classification of outcome on the basis of data on 2-year-olds was far too inaccurate to be clinically useful. Children whose language difficulties persisted were not necessarily those with the most severe initial difficulties. Furthermore, measures of parental education and the child's history of ear infections failed to substantially improve the prediction.

  14. Ristocetin-mediated interaction of human von Willebrand factor with platelet glycoprotein lb evokes a transient calcium signal: observations with Fura-PE3.

    PubMed

    Milner, E P; Zheng, Q; Kermode, J C

    1998-01-01

    High shear stress in narrowed arteries causes von Willebrand factor (vWf) to bind to its platelet receptor, glycoprotein Ib (GpIb). This binding is reported to promote an increase in intracellular free calcium concentration ((Ca2+)i), which may be responsible for platelet activation. The present study examined the platelet (Ca2+)i signal that arises when ristocetin mediates vWf-GpIb binding. Platelet (Ca2+)i was monitored with Fura-PE3 (Vorndran C, Minta A, Poenie M. Biophys J 1995;69:2112-24), a new ratiometric calcium indicator. Fura-PE3 has calcium-binding characteristics (Kd = 146 nmol/L) and fluorescent properties similar to those of Fura-2. However, its zwitterionic nature ensured much slower extrusion from the platelet (0.2% per minute) than that for Fura-2. This eliminated one of the technical problems that seriously distorted previous measurements of vWf-induced changes in platelets (Ca2+)i. Design of a novel stirring arrangement avoided the other major problem, which is the tendency of platelet aggregates to settle to the bottom of the cuvette, beneath the detection zone of the spectrofluorometer. With Fura-PE3 and the new stirrer used in the present study, vWf-induced changes in (Ca2+)i could be measured reliably in aggregating platelets. Ristocetin-mediated vWf-GpIb binding induced a transient increase in platelet (Ca2+)i. This increase occurred after a significant lag phase; platelet (Ca2+)i rose gradually, followed by a decline to almost the resting level. Binding of vWf to platelet Gplb was responsible for the (Ca2+)i signal. A similar signal was found in the absence of extracellular calcium. These characteristics differ substantially from those described in previous reports, in which the vWf-induced rise in (Ca2+)i was attributed to calcium influx through channels in the plasma membrane. Data from those earlier studies, however, were severely distorted by indicator extrusion and loss of platelet aggregates. The present findings are a more accurate

  15. Cytosolic calcium transients are a determinant of contraction-induced HSP72 transcription in single skeletal muscle fibers.

    PubMed

    Stary, Creed M; Hogan, Michael C

    2016-05-15

    The intrinsic activating factors that induce transcription of heat shock protein 72 (HSP72) in skeletal muscle following exercise remain unclear. We hypothesized that the cytosolic Ca(2+) transient that occurs with depolarization is a determinant. We utilized intact, single skeletal muscle fibers from Xenopus laevis to test the role of the cytosolic Ca(2+) transient and several other exercise-related factors (fatigue, hypoxia, AMP kinase, and cross-bridge cycling) on the activation of HSP72 transcription. HSP72 and HSP60 mRNA levels were assessed with real-time quantitative PCR; cytosolic Ca(2+) concentration ([Ca(2+)]cyt) was assessed with fura-2. Both fatiguing and nonfatiguing contractions resulted in a significant increase in HSP72 mRNA. As expected, peak [Ca(2+)]cyt remained tightly coupled with peak developed tension in contracting fibers. Pretreatment with N-benzyl-p-toluene sulfonamide (BTS) resulted in depressed peak developed tension with stimulation, while peak [Ca(2+)]cyt remained largely unchanged from control values. Despite excitation-contraction uncoupling, BTS-treated fibers displayed a significant increase in HSP72 mRNA. Treatment of fibers with hypoxia (Po2: <3 mmHg) or AMP kinase activation had no effect on HSP72 mRNA levels. These results suggest that the intermittent cytosolic Ca(2+) transient that occurs with skeletal muscle depolarization provides a sufficient activating stimulus for HSP72 transcription. Metabolic or mechanical factors associated with fatigue development and cross-bridge cycling likely play a more limited role.

  16. Effects of total flavones from Acanthopanax senticosus on L-type calcium channels, calcium transient and contractility in rat ventricular myocytes.

    PubMed

    Guan, Shengjiang; Ma, Juanjuan; Chu, Xi; Gao, Yonggang; Zhang, Ying; Zhang, Xuan; Zhang, Fenghua; Liu, Zhenyi; Zhang, Jianping; Chu, Li

    2015-04-01

    Acanthopanax senticosus (Rupr. et Maxim.) Harms (AS), a traditional herbal medicine, has been widely used to treat ischemic heart disease. However, the underlying cellular mechanisms of its benefits to cardiac function remain unclear. The present study examined the effects of total flavones from AS (TFAS) on L-type Ca(2+) channel currents (ICa-L ) using the whole cell patch-clamp technique and on intracellular calcium ([Ca(2+) ]i ) handling and cell contractility in rat ventricular myocytes with the aid of a video-based edge-detection system. Exposure to TFAS resulted in a concentration- and voltage-dependent blockade of ICa-L , with the half-maximal inhibitory concentration (IC50 ) of 283.12 µg/mL and the maximal inhibitory effect of 36.49 ± 1.95%. Moreover, TFAS not only increased the maximum current in the current-voltage relationship but also shifted the activation and inactivation curves of ICa-L toward the hyperpolarizing direction. Meanwhile, TFAS significantly reduced amplitudes of myocyte shortening and [Ca(2+) ]i with an increase in the time to 10% of the peak (Tp) and a decrease in the time to 10% of the baseline (Tr). Thus, the cardioprotective effects of TFAS may be attributed mainly to the attenuation of [Ca(2+) ]i through the direct inhibition of ICa-L in rat ventricular myocytes and consequent negative effect on myocardial contractility.

  17. α1H mRNA in single skeletal muscle fibres accounts for T-type calcium current transient expression during fetal development in mice

    PubMed Central

    Berthier, Christine; Monteil, Arnaud; Lory, Philippe; Strube, Caroline

    2002-01-01

    Calcium channels are essential for excitation-contraction coupling and muscle development. At the end of fetal life, two types of Ca2+ currents can be recorded in muscle cells. Whereas L-type Ca2+ channels have been extensively studied, T-type channels have been poorly characterized in skeletal muscle. We describe here the functional and molecular properties of T-type calcium channels in developing mouse skeletal muscle. The T-type current density increased transiently during prenatal myogenesis with a maximum at embryonic day E16 followed by a drastic decrease until birth. This current showed similar electrophysiological and pharmacological properties at all examined stages. It displayed a wide window current centred at about −35 and −55 mV in 10 and 2 mm external Ca2+, respectively. Activation and inactivation kinetics were fast (3 and 16 ms, respectively). The current was inhibited by nickel and amiloride with an IC50 of 5.4 and 156 μm, respectively, values similar to those described for cloned T-type α1H channels. Whole muscle tissue RT-PCR analysis revealed mRNAs corresponding to α1H and α1G subunits in the fetus but not in the adult. However, single-fibre RT-PCR demonstrated that only α1H mRNA was present in prenatal fibres, suggesting that the α1G transcript present in muscle tissue must be expressed by non-skeletal muscle cells. Altogether, these results demonstrate that the α1H subunit generates functional T-type calcium channels in developing skeletal muscle fibres and suggest that these channels are involved in the early stages of muscle differentiation. PMID:11897840

  18. New Findings on the Effects of Tannic Acid: Inhibition of L-Type Calcium Channels, Calcium Transient and Contractility in Rat Ventricular Myocytes.

    PubMed

    Zhu, Fengli; Chu, Xi; Wang, Hua; Zhang, Xuan; Zhang, Yuanyuan; Liu, Zhenyi; Guo, Hui; Liu, Hongying; Liu, Yang; Chu, Li; Zhang, Jianping

    2016-03-01

    Tannic acid (TA) is a group of water-soluble polyphenolic compounds that occur mainly in plant-derived feeds, food grains and fruits. Many studies have explored its biomedical properties, such as anticancer, antibacterial, antimutagenic, antioxidant, antidiabetic, antiinflammatory and antihypertensive activities. However, the effects of TA on the L-type Ca(2+) current (ICa-L) of cardiomyocytes remain undefined. The present study examined the effects of TA on ICa-L using the whole-cell patch-clamp technique and on intracellular Ca(2+) handling and cell contractility in rat ventricular myocytes with the aid of a video-based edge detection system. Exposure to TA resulted in a concentration- and voltage-dependent blockade of ICa-L, with the half maximal inhibitory concentration of 1.69 μM and the maximal inhibitory effect of 46.15%. Moreover, TA significantly inhibited the amplitude of myocyte shortening and peak value of Ca(2+) transient and increased the time to 10% of the peak. These findings provide new experimental evidence for the cellular mechanism of action of TA and may help to expand clinical treatments for cardiovascular disease.

  19. A transient increase in lipid peroxidation primes preadipocytes for delayed mitochondrial inner membrane permeabilization and ATP depletion during prolonged exposure to fatty acids.

    PubMed

    Rogers, Carlyle; Davis, Barbara; Neufer, P Darrell; Murphy, Michael P; Anderson, Ethan J; Robidoux, Jacques

    2014-02-01

    Preadipocytes are periodically subjected to fatty acid (FA) concentrations that are potentially cytotoxic. We tested the hypothesis that prolonged exposure of preadipocytes of human origin to a physiologically relevant mix of FAs leads to mitochondrial inner membrane (MIM) permeabilization and ultimately to mitochondrial crisis. We found that exposure of preadipocytes to FAs led to progressive cyclosporin A-sensitive MIM permeabilization, which in turn caused a reduction in MIM potential, oxygen consumption, and ATP synthetic capacity and, ultimately, death. Additionally, we showed that FAs induce a transient increase in intramitochondrial reactive oxygen species (ROS) and lipid peroxide production, lasting roughly 30 and 120min for the ROS and lipid peroxides, respectively. MIM permeabilization and its deleterious consequences including mitochondrial crisis and cell death were prevented by treating the cells with the mitochondrial FA uptake inhibitor etomoxir, the mitochondrion-selective superoxide and lipid peroxide antioxidants MitoTempo and MitoQ, or the lipid peroxide and reactive carbonyl scavenger l-carnosine. FAs also promoted a delayed oxidative stress phase. However, the beneficial effects of etomoxir, MitoTempo, and l-carnosine were lost by delaying the treatment by 2h, suggesting that the initial phase was sufficient to prime the cells for the delayed MIM permeabilization and mitochondrial crisis. It also suggested that the second ROS production phase is a consequence of this loss in mitochondrial health. Altogether, our data suggest that approaches designed to diminish intramitochondrial ROS or lipid peroxide accumulation, as well as MIM permeabilization, are valid mechanism-based therapeutic avenues to prevent the loss in preadipocyte metabolic fitness associated with prolonged exposure to elevated FA levels. © 2013 Elsevier Inc. All rights reserved.

  20. A transient increase in lipid peroxidation primes preadipocytes for delayed mitochondrial inner membrane permeabilization and ATP depletion during prolonged exposure to fatty acids

    PubMed Central

    Rogers, Carlyle; Davis, Barbara; Neufer, P. Darrell; Murphy, Michael P.; Anderson, Ethan J; Robidoux, Jacques

    2014-01-01

    Preadipocytes are periodically subjected to fatty acid (FA) concentrations that are potentially cytotoxic. We tested the hypothesis that prolonged exposure of preadipocytes of human origin to a physiologically relevant mix of FAs leads to mitochondrial inner membrane (MIM) permeabilization and ultimately to mitochondrial crisis. We found that exposure of preadipocytes to FAs led to progressive cyclosporin A-sensitive MIM permeabilization, which in turn caused reduction in MIM potential (ΔΨM), oxygen consumption, ATP synthetic capacity, and ultimately death. Additionally, we showed that FAs induce a transient increase in intramitochondrial ROS and lipid peroxide production lasting roughly 30 and 120 minutes for the ROS and lipid peroxides, respectively. MIM permeabilization and its deleterious consequences including mitochondrial crisis and cell death were prevented by treating the cells with the mitochondrial FA uptake inhibitor, Etomoxir; the mitochondrion selective superoxide and lipid peroxide antioxidants, MitoTempo and MitoQ; or the lipid peroxide and reactive carbonyl scavenger, L-carnosine. FAs also promoted a delayed oxidative stress phase. However, since the beneficial effects of Etomoxir, MitoTempo and L-carnosine were lost by delaying the treatment by 2 hours, it suggested that the initial phase was sufficient to prime the cells for the delayed MIM permeabilization and mitochondrial crisis. It also suggested that the second ROS production phase is a consequence of this loss in mitochondrial health. Altogether, our data suggest that approaches designed to diminish intramitochondrial ROS or lipid peroxide accumulation as well as MIM permeabilization, are valid mechanism-based therapeutic avenues to prevent the loss in preadipocyte metabolic fitness associated with prolonged exposure to elevated FA levels. PMID:24269897

  1. Inhibition of presynaptic calcium transients in cortical inputs to the dorsolateral striatum by metabotropic GABAB and mGlu2/3 receptors

    PubMed Central

    Kupferschmidt, David A; Lovinger, David M

    2015-01-01

    Cortical inputs to the dorsolateral striatum (DLS) are dynamically regulated during skill learning and habit formation, and are dysregulated in disorders characterized by impaired action control. Therefore, a mechanistic investigation of the processes regulating corticostriatal transmission is key to understanding DLS-associated circuit function, behaviour and pathology. Presynaptic GABAB and group II metabotropic glutamate (mGlu2/3) receptors exert marked inhibitory control over corticostriatal glutamate release in the DLS, yet the signalling pathways through which they do so are unclear. We developed a novel approach using the genetically encoded calcium (Ca2+) indicator GCaMP6 to assess presynaptic Ca2+ in corticostriatal projections to the DLS. Using simultaneous photometric presynaptic Ca2+ and striatal field potential recordings, we report that relative to P/Q-type Ca2+ channels, N-type channels preferentially contributed to evoked presynaptic Ca2+ influx in motor cortex projections to, and excitatory transmission in, the DLS. Activation of GABAB or mGlu2/3 receptors inhibited both evoked presynaptic Ca2+ transients and striatal field potentials. mGlu2/3 receptor-mediated depression did not require functional N-type Ca2+ channels, but was attenuated by blockade of P/Q-type channels. These findings reveal presynaptic mechanisms of inhibitory modulation of corticostriatal function that probably contribute to the selection and shaping of behavioural repertoires. Key points Plastic changes at cortical inputs to the dorsolateral striatum (DLS) underlie skill learning and habit formation, so characterizing the mechanisms by which these inputs are regulated is important for understanding the neural basis of action control. We developed a novel approach using the genetically encoded calcium (Ca2+) indicator GCaMP6 and brain slice photometry to assess evoked presynaptic Ca2+ transients in cortical inputs to the DLS and study their regulation by GABAB and mGlu2

  2. Early and delayed long-term transcriptional changes and short-term transient responses during cold acclimation in olive leaves

    PubMed Central

    Leyva-Pérez, María de la O; Valverde-Corredor, Antonio; Valderrama, Raquel; Jiménez-Ruiz, Jaime; Muñoz-Merida, Antonio; Trelles, Oswaldo; Barroso, Juan Bautista; Mercado-Blanco, Jesús; Luque, Francisco

    2015-01-01

    Low temperature severely affects plant growth and development. To overcome this constraint, several plant species from regions having a cool season have evolved an adaptive response, called cold acclimation. We have studied this response in olive tree (Olea europaea L.) cv. Picual. Biochemical stress markers and cold-stress symptoms were detected after the first 24 h as sagging leaves. After 5 days, the plants were found to have completely recovered. Control and cold-stressed plants were sequenced by Illumina HiSeq 1000 paired-end technique. We also assembled a new olive transcriptome comprising 157,799 unigenes and found 6,309 unigenes differentially expressed in response to cold. Three types of response that led to cold acclimation were found: short-term transient response, early long-term response, and late long-term response. These subsets of unigenes were related to different biological processes. Early responses involved many cold-stress-responsive genes coding for, among many other things, C-repeat binding factor transcription factors, fatty acid desaturases, wax synthesis, and oligosaccharide metabolism. After long-term exposure to cold, a large proportion of gene down-regulation was found, including photosynthesis and plant growth genes. Up-regulated genes after long-term cold exposure were related to organelle fusion, nucleus organization, and DNA integration, including retrotransposons. PMID:25324298

  3. Early and delayed long-term transcriptional changes and short-term transient responses during cold acclimation in olive leaves.

    PubMed

    Leyva-Pérez, María de la O; Valverde-Corredor, Antonio; Valderrama, Raquel; Jiménez-Ruiz, Jaime; Muñoz-Merida, Antonio; Trelles, Oswaldo; Barroso, Juan Bautista; Mercado-Blanco, Jesús; Luque, Francisco

    2015-02-01

    Low temperature severely affects plant growth and development. To overcome this constraint, several plant species from regions having a cool season have evolved an adaptive response, called cold acclimation. We have studied this response in olive tree (Olea europaea L.) cv. Picual. Biochemical stress markers and cold-stress symptoms were detected after the first 24 h as sagging leaves. After 5 days, the plants were found to have completely recovered. Control and cold-stressed plants were sequenced by Illumina HiSeq 1000 paired-end technique. We also assembled a new olive transcriptome comprising 157,799 unigenes and found 6,309 unigenes differentially expressed in response to cold. Three types of response that led to cold acclimation were found: short-term transient response, early long-term response, and late long-term response. These subsets of unigenes were related to different biological processes. Early responses involved many cold-stress-responsive genes coding for, among many other things, C-repeat binding factor transcription factors, fatty acid desaturases, wax synthesis, and oligosaccharide metabolism. After long-term exposure to cold, a large proportion of gene down-regulation was found, including photosynthesis and plant growth genes. Up-regulated genes after long-term cold exposure were related to organelle fusion, nucleus organization, and DNA integration, including retrotransposons. © The Author 2014. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  4. Ca analysis: an Excel based program for the analysis of intracellular calcium transients including multiple, simultaneous regression analysis.

    PubMed

    Greensmith, David J

    2014-01-01

    Here I present an Excel based program for the analysis of intracellular Ca transients recorded using fluorescent indicators. The program can perform all the necessary steps which convert recorded raw voltage changes into meaningful physiological information. The program performs two fundamental processes. (1) It can prepare the raw signal by several methods. (2) It can then be used to analyze the prepared data to provide information such as absolute intracellular Ca levels. Also, the rates of change of Ca can be measured using multiple, simultaneous regression analysis. I demonstrate that this program performs equally well as commercially available software, but has numerous advantages, namely creating a simplified, self-contained analysis workflow.

  5. Calcium signal transmission in chick sensory neurones is diffusion based.

    PubMed

    Coatesworth, William; Bolsover, Stephen

    2008-03-01

    In many cells, the cytosol is an excitable medium through which calcium waves propagate by calcium induced calcium release (CICR). Many labs. have reported CICR in neurones subsequent to calcium influx through voltage gated channels. However, these have used long depolarizations. We have imaged calcium within chick sensory neurones following 50 ms depolarizations. Calcium signals travelled rapidly throughout the cell, such that changes at the cell centre were delayed by 24 ms compared to regions 3 microm from the plasma membrane. The nuclear envelope imposed a delay of 9 ms. A simple diffusion model with few unknowns gave good fits to the measured data, indicating that passive diffusion is responsible for signal transmission in these neurones. Simulations run without indicator dye did not reveal markedly different spatiotemporal dynamics, although concentration changes were larger. Simulations of calcium changes during action potentials revealed that large calcium transients occurring in the cytosol close to the nucleus are significantly attenuated by the nuclear envelope. Our results indicate that for the brief depolarisations that neurones will experience during normal signal processing calcium signals are transmitted by passive diffusion only. Diffusion is perfectly capable of transmitting the calcium signal into the interior of nerve cell bodies, and into the nucleoplasm.

  6. Different fibre populations distinguished by their calcium transient characteristics in enzymatically dissociated murine flexor digitorum brevis and soleus muscles.

    PubMed

    Calderón, Juan C; Bolaños, Pura; Torres, Sonia H; Rodríguez-Arroyo, Greta; Caputo, Carlo

    2009-01-01

    Enzymatically dissociated flexor digitorum brevis (FDB) and soleus fibres from mouse were used to compare the kinetics of electrically elicited Ca2+ transients of slow and fast skeletal muscle fibres, using the fast Ca2+ dye MagFluo4-AM, at 20-22 degrees C. For FDB two Ca2+ transient morphologies, types I (MT-I, 11 fibres, 19%) and II (MT-II, 47 fibres, 81%), were found, the kinetic parameters (amplitude, rise time, half width, decay time, and time constants of decay) being statistically different. For soleus (n = 20) only MT-I was found, with characteristics similar to MT-I from FDB. Correlations with histochemically determined mATPase, reduced nicotinamide adenine dinucleotide diaphorase and alpha-glycerophosphate dehydrogenase activities, as well as immunostaining and myosin heavy chain electrophoretic analysis of both muscles suggest that signals classified as MT-I may correspond to slow type I and fast IIA fibres while those classified as MT-II may correspond to fast IIX/D fibres. The results point to the importance of Ca2+ signaling for characterization of muscle fibres, but also to its possible role in determining fibre function.

  7. Profound regulation of Na/K pump activity by transient elevations of cytoplasmic calcium in murine cardiac myocytes

    PubMed Central

    Lu, Fang-Min; Deisl, Christine; Hilgemann, Donald W

    2016-01-01

    Small changes of Na/K pump activity regulate internal Ca release in cardiac myocytes via Na/Ca exchange. We now show conversely that transient elevations of cytoplasmic Ca strongly regulate cardiac Na/K pumps. When cytoplasmic Na is submaximal, Na/K pump currents decay rapidly during extracellular K application and multiple results suggest that an inactivation mechanism is involved. Brief activation of Ca influx by reverse Na/Ca exchange enhances pump currents and attenuates current decay, while repeated Ca elevations suppress pump currents. Pump current enhancement reverses over 3 min, and results are similar in myocytes lacking the regulatory protein, phospholemman. Classical signaling mechanisms, including Ca-activated protein kinases and reactive oxygen, are evidently not involved. Electrogenic signals mediated by intramembrane movement of hydrophobic ions, such as hexyltriphenylphosphonium (C6TPP), increase and decrease in parallel with pump currents. Thus, transient Ca elevation and Na/K pump inactivation cause opposing sarcolemma changes that may affect diverse membrane processes. DOI: http://dx.doi.org/10.7554/eLife.19267.001 PMID:27627745

  8. Transient Increased Calcium and Calcitriol Requirements After Discontinuation of Human Synthetic Parathyroid Hormone 1-34 (hPTH 1-34) Replacement Therapy in Hypoparathyroidism.

    PubMed

    Gafni, Rachel I; Guthrie, Lori C; Kelly, Marilyn H; Brillante, Beth A; Christie, C Michele; Reynolds, James C; Yovetich, Nancy A; James, Robert; Collins, Michael T

    2015-11-01

    Synthetic human PTH 1-34 (hPTH 1-34) replacement therapy in hypoparathyroidism maintains eucalcemia and converts quiescent bone to high-turnover bone. However, the skeletal and metabolic effects of drug discontinuation have not been reported. Nine subjects with hypoparathyroidism received subcutaneous injections of hPTH 1-34 two to three times daily for 19.8 to 61.3 months and then transitioned back to calcium and calcitriol. Biochemistries and bone mineral density (BMD) by dual-energy X-ray absorptiometry (DXA) were assessed at baseline, while on treatment, and at follow-up 3 to 12 months after drug discontinuation. Two subjects developed hypocalcemia when hPTH 1-34 was abruptly discontinued. Thus, to avoid hypocalcemia, subjects were slowly weaned from hPTH 1-34 over several weeks. When hPTH 1-34 was stopped, subjects were requiring two to three times pretreatment doses of calcitriol and calcium to maintain blood calcium levels. Doses were gradually reduced over many weeks until calcium levels were stable on doses similar to baseline. Bone-specific alkaline phosphatase (BSAP), N-telopeptide (NTX), and osteocalcin (OC) increased significantly with hPTH 1-34; at follow-up, BSAP and NTX had returned to baseline while OC was still slightly elevated. During treatment, BMD was unchanged at the hip and lateral spine but declined at the anterior-posterior (AP) spine, radius, and total body. During weaning, BMD increased, with the hip and lateral spine exceeding pre-hPTH 1-34 values and the whole body returning to baseline. AP spine was increased non-significantly compared to baseline at follow-up. hPTH 1-34 must be gradually weaned in hypoparathyroid patients with high doses of oral medications given to avoid hypocalcemia. The transient increased requirements accompanied by increased BMD after long-term hPTH 1-34 therapy suggest a reversal of the expanded remodeling space favoring bone formation as the skeleton returns to a low-turnover state, reminiscent of the hungry

  9. Blast Overpressure Waves Induce Transient Anxiety and Regional Changes in Cerebral Glucose Metabolism and Delayed Hyperarousal in Rats

    PubMed Central

    Awwad, Hibah O.; Gonzalez, Larry P.; Tompkins, Paul; Lerner, Megan; Brackett, Daniel J.; Awasthi, Vibhudutta; Standifer, Kelly M.

    2015-01-01

    Physiological alterations, anxiety, and cognitive disorders are strongly associated with blast-induced traumatic brain injury (blast TBI), and are common symptoms in service personnel exposed to blasts. Since 2006, 25,000–30,000 new TBI cases are diagnosed annually in U.S. Service members; increasing evidence confirms that primary blast exposure causes diffuse axonal injury and is often accompanied by altered behavioral outcomes. Behavioral and acute metabolic effects resulting from blast to the head in the absence of thoracic contributions from the periphery were examined, following a single blast wave directed to the head of male Sprague-Dawley rats protected by a lead shield over the torso. An 80 psi head blast produced cognitive deficits that were detected in working memory. Blast TBI rats displayed increased anxiety as determined by elevated plus maze at day 9 post-blast compared to sham rats; blast TBI rats spent significantly more time than the sham controls in the closed arms (p < 0.05; n = 8–11). Interestingly, anxiety symptoms were absent at days 22 and 48 post-blast. Instead, blast TBI rats displayed increased rearing behavior at day 48 post-blast compared to sham rats. Blast TBI rats also exhibited suppressed acoustic startle responses, but similar pre-pulse inhibition at day 15 post-blast compared to sham rats. Acute physiological alterations in cerebral glucose metabolism were determined by positron emission tomography 1 and 9 days post-blast using 18F-fluorodeoxyglucose (18F-FDG). Global glucose uptake in blast TBI rat brains increased at day 1 post-blast (p < 0.05; n = 4–6) and returned to sham levels by day 9. Our results indicate a transient increase in cerebral metabolism following a blast injury. Markers for reactive astrogliosis and neuronal damage were noted by immunoblotting motor cortex tissue from day 10 post-blast in blast TBI rats compared to sham controls (p < 0.05; n = 5–6). PMID:26136722

  10. Blast Overpressure Waves Induce Transient Anxiety and Regional Changes in Cerebral Glucose Metabolism and Delayed Hyperarousal in Rats.

    PubMed

    Awwad, Hibah O; Gonzalez, Larry P; Tompkins, Paul; Lerner, Megan; Brackett, Daniel J; Awasthi, Vibhudutta; Standifer, Kelly M

    2015-01-01

    Physiological alterations, anxiety, and cognitive disorders are strongly associated with blast-induced traumatic brain injury (blast TBI), and are common symptoms in service personnel exposed to blasts. Since 2006, 25,000-30,000 new TBI cases are diagnosed annually in U.S. Service members; increasing evidence confirms that primary blast exposure causes diffuse axonal injury and is often accompanied by altered behavioral outcomes. Behavioral and acute metabolic effects resulting from blast to the head in the absence of thoracic contributions from the periphery were examined, following a single blast wave directed to the head of male Sprague-Dawley rats protected by a lead shield over the torso. An 80 psi head blast produced cognitive deficits that were detected in working memory. Blast TBI rats displayed increased anxiety as determined by elevated plus maze at day 9 post-blast compared to sham rats; blast TBI rats spent significantly more time than the sham controls in the closed arms (p < 0.05; n = 8-11). Interestingly, anxiety symptoms were absent at days 22 and 48 post-blast. Instead, blast TBI rats displayed increased rearing behavior at day 48 post-blast compared to sham rats. Blast TBI rats also exhibited suppressed acoustic startle responses, but similar pre-pulse inhibition at day 15 post-blast compared to sham rats. Acute physiological alterations in cerebral glucose metabolism were determined by positron emission tomography 1 and 9 days post-blast using (18)F-fluorodeoxyglucose ((18)F-FDG). Global glucose uptake in blast TBI rat brains increased at day 1 post-blast (p < 0.05; n = 4-6) and returned to sham levels by day 9. Our results indicate a transient increase in cerebral metabolism following a blast injury. Markers for reactive astrogliosis and neuronal damage were noted by immunoblotting motor cortex tissue from day 10 post-blast in blast TBI rats compared to sham controls (p < 0.05; n = 5-6).

  11. Approximate analytical time-dependent solutions to describe large-amplitude local calcium transients in the presence of buffers.

    PubMed

    Mironova, Lidia A; Mironov, Sergej L

    2008-01-15

    Local Ca(2+) signaling controls many neuronal functions, which is often achieved through spatial localization of Ca(2+) signals. These nanodomains are formed due to combined effects of Ca(2+) diffusion and binding to the cytoplasmic buffers. In this article we derived simple analytical expressions to describe Ca(2+) diffusion in the presence of mobile and immobile buffers. A nonlinear character of the reaction-diffusion problem was circumvented by introducing a logarithmic approximation of the concentration term. The obtained formulas reproduce free Ca(2+) levels up to 50 microM and their changes in the millisecond range. Derived equations can be useful to predict spatiotemporal profiles of large-amplitude [Ca(2+)] transients, which participate in various physiological processes.

  12. Approximate Analytical Time-Dependent Solutions to Describe Large-Amplitude Local Calcium Transients in the Presence of Buffers

    PubMed Central

    Mironova, Lidia A.; Mironov, Sergej L.

    2008-01-01

    Local Ca2+ signaling controls many neuronal functions, which is often achieved through spatial localization of Ca2+ signals. These nanodomains are formed due to combined effects of Ca2+ diffusion and binding to the cytoplasmic buffers. In this article we derived simple analytical expressions to describe Ca2+ diffusion in the presence of mobile and immobile buffers. A nonlinear character of the reaction-diffusion problem was circumvented by introducing a logarithmic approximation of the concentration term. The obtained formulas reproduce free Ca2+ levels up to 50 μM and their changes in the millisecond range. Derived equations can be useful to predict spatiotemporal profiles of large-amplitude [Ca2+] transients, which participate in various physiological processes. PMID:17872951

  13. Ca analysis: An Excel based program for the analysis of intracellular calcium transients including multiple, simultaneous regression analysis☆

    PubMed Central

    Greensmith, David J.

    2014-01-01

    Here I present an Excel based program for the analysis of intracellular Ca transients recorded using fluorescent indicators. The program can perform all the necessary steps which convert recorded raw voltage changes into meaningful physiological information. The program performs two fundamental processes. (1) It can prepare the raw signal by several methods. (2) It can then be used to analyze the prepared data to provide information such as absolute intracellular Ca levels. Also, the rates of change of Ca can be measured using multiple, simultaneous regression analysis. I demonstrate that this program performs equally well as commercially available software, but has numerous advantages, namely creating a simplified, self-contained analysis workflow. PMID:24125908

  14. A crucial role for cAMP and protein kinase A in D1 dopamine receptor regulated intracellular calcium transients.

    PubMed

    Dai, Rujuan; Ali, Mohammad K; Lezcano, Nelson; Bergson, Clare

    2008-01-01

    D1-like dopamine receptors stimulate Ca(2+) transients in neurons but the effector coupling and signaling mechanisms underlying these responses have not been elucidated. Here we investigated potential mechanisms using both HEK 293 cells that stably express D1 receptors (D1HEK293) and hippocampal neurons in culture. In D1HEK293 cells, the full D1 receptor agonist SKF 81297 evoked a robust dose-dependent increase in Ca(2+)(i) following 'priming' of endogenous G(q/11)-coupled muscarinic or purinergic receptors. The effect of SKF81297 could be mimicked by forskolin or 8-Br-cAMP. Further, cholera toxin and the cAMP-dependent protein kinase (PKA) inhibitors, KT5720 and H89, as well as thapsigargin abrogated the D1 receptor evoked Ca(2+) transients. Removal of the priming agonist and treatment with the phospholipase C inhibitor U73122 also blocked the SKF81297-evoked responses. D1R agonist did not stimulate IP(3) production, but pretreatment of cells with the D1R agonist potentiated G(q)-linked receptor agonist mobilization of intracellular Ca(2+) stores. In neurons, SKF81297 and SKF83959, a partial D1 receptor agonist, promoted Ca(2+) oscillations in response to G(q/11)-coupled metabotropic glutamate receptor (mGluR) stimulation. The effects of both D1R agonists on the mGluR-evoked Ca(2+) responses were PKA dependent. Altogether the data suggest that dopamine D1R activation and ensuing cAMP production dynamically regulates the efficiency and timing of IP(3)-mediated intracellular Ca(2+) store mobilization.

  15. Actions of a hydrogen sulfide donor (NaHS) on transient sodium, persistent sodium, and voltage-gated calcium currents in neurons of the subfornical organ.

    PubMed

    Kuksis, Markus; Ferguson, Alastair V

    2015-09-01

    Hydrogen sulfide (H2S) is an endogenously found gasotransmitter that has been implicated in a variety of beneficial physiological functions. This study was performed to investigate the cellular mechanisms underlying actions of H2S previously observed in subfornical organ (SFO), where H2S acts to regulate blood pressure through a depolarization of the membrane and an overall increase in the excitability of SFO neurons. We used whole cell patch-clamp electrophysiology in the voltage-clamp configuration to analyze the effect of 1 mM NaHS, an H2S donor, on voltage-gated potassium, sodium, and calcium currents. We observed no effect of NaHS on potassium currents; however, both voltage-gated sodium currents (persistent and transient) and the N-type calcium current had a depolarized activation curve and an enhanced peak-induced current in response to a series of voltage-step and ramp protocols run in the control and NaHS conditions. These effects were not responsible for the previously observed depolarization of the membrane potential, as depolarizing effects of H2S were still observed following block of these conductances with tetrodotoxin (5 μM) and ω-conotoxin-GVIA (100 nM). Our studies are the first to investigate the effect of H2S on a variety of voltage-gated conductances in a single brain area, and although they do not explain mechanisms underlying the depolarizing actions of H2S on SFO neurons, they provide evidence of potential mechanisms through which this gasotransmitter influences the excitability of neurons in this important brain area as a consequence of the modulation of multiple ion channels.

  16. The activation of N-methyl-d-aspartate receptors downregulates transient outward potassium and L-type calcium currents in rat models of depression.

    PubMed

    Liu, Xin; Shi, Shaobo; Yang, Hongjie; Qu, Chuan; Chen, Yuting; Liang, Jinjun; Yang, Bo

    2017-08-01

    Major depression is an important clinical factor in ventricular arrhythmia. Patients diagnosed with major depression overexpress N-methyl-d-aspartate receptors (NMDARs). Previous studies found that chronic NMDAR activation increases susceptibility to ventricular arrhythmias. We aimed to explore the mechanisms by which NMDAR activation may increase susceptibility to ventricular arrhythmias. Male rats were randomly assigned to either normal environments as control (CTL) group or 4 wk of chronic mild stress (CMS) to produce a major depression disorder (MDD) model group. After 4 wk of CMS, depression-like behaviors were measured in both groups. Varying doses (1-100 μM) of NMDA and 10 μM NMDA antagonist (MK-801) were perfused through ventricular myocytes isolated from MDD rats to measure the L-type calcium current (ICa-L) and transient outward potassium current (Ito). Structural remodeling was assessed using serial histopathology including Masson's trichrome dye. Electrophysiological characteristics were evaluated using Langendorff perfusion. Depression-like behaviors were observed in MDD rats. MDD rats showed longer action potential durations at 90% repolarization and higher susceptibility to ventricular arrhythmias than CTL rats. MDD rats showed lower ICa-L and Ito current densities than CTL rats. Additionally, NMDA reduced both currents in a concentration-dependent manner, whereas there was no significant impact on the currents when perfused with MK-801. MDD rats exhibited significantly more fibrosis areas in heart tissue and reduced expression of Kv4.2, Kv4.3, and Cav1.2. We observed that acute NMDAR activation led to downregulation of potassium and L-type calcium currents in a rat model of depression, which may be the mechanism underlying ventricular arrhythmia promotion by depression. Copyright © 2017 the American Physiological Society.

  17. Role of protein kinase C (PKC) in short- and long-term cellular responses: inhibition of agonist-mediated calcium transients and down-regulation of PKC

    SciTech Connect

    Fabbro, D.; Mazurek, N.; Borner, C.; Conscience, J.F.; Erne, P.

    1988-01-01

    Active tumor promoters such as 12-O-tetradecanoyl-phorbol-13-acetate (TPA) or membrane-diffusible synthetic diacylglycerols such as 1,2-dioctanoyl-sn-glycerol (DiC8), which specifically activate protein kinase C (PKC), inhibited the agonist-mediated rise in cytosolic calcium ((Ca2+)i) in a mast cell line (PB-3c) and human platelets. TPA inhibition of agonist-mediated calcium transient in platelets was readily reversed by the PKC inhibitor staurosporine. In contrast to DiCs, only active tumor promoters induced a time- and dose-dependent translocation of cytosolic PKC to membranes as determined both enzymatically or by immunoblotting. However, the concentration of TPA required to induce a half-maximal subcellular redistribution of immunodetectable PKC activity was an order of magnitude greater than the half-maximal dose required to inhibit the intracellular rise in (Ca2+)i. Thus, activation of PKC seems not to be exclusively coupled to its translocation to membranes, suggesting that translocation of PKC is mainly involved in the down-regulation of PKC. Down-regulation of immunoprecipitable PKC was studied in various human breast cancer cell lines that display differential growth inhibitory responses toward the tumor promoter. TPA induced translocation of (35S)methionine-prelabeled cytosolic 80 kDa PKC to membranes followed by complete degradation of the enzyme (t1/2 = 2 h) without affecting PKC synthesis. During prolonged TPA exposure, 20-80% of total 80 kDa PKC of control cells was still synthetized as a membrane-bound 74/80 kDa PKC doublet. Although both proteins lacked PKC activity and phorbol ester binding, they revealed structural similarity with the active 80 kDa PKC form of untreated cells.

  18. Differential expression of the calcium-sensing receptor in the ischemic and border zones after transient focal cerebral ischemia in rats.

    PubMed

    Noh, Jeong Sook; Pak, Ha-Jin; Shin, Yoo-Jin; Riew, Tae-Ryong; Park, Joo-Hee; Moon, Young Wha; Lee, Mun-Yong

    2015-01-01

    G-protein-coupled calcium-sensing receptor (CaSR) has been recently recognized as an important modulator of diverse cellular functions, beyond the regulation of systemic calcium homeostasis. To identify whether CaSR is involved in the pathophysiology of stroke, we studied the spatiotemporal regulation of CaSR protein expression in rats undergoing transient focal cerebral ischemia, which was induced by middle cerebral artery occlusion. We observed very weak or negligible immunoreactivity for CaSR in the striatum of sham-operated rats, as well as in the contralateral striatum of ischemic rats after reperfusion. However, CaSR expression was induced in the ischemic and border zones of the lesion in ischemic rats. Six hours post-reperfusion there was an upregulation of CaSR in the ischemic zone, which seemed to decrease after seven days. This upregulation preferentially affected some neurons and cells associated with blood vessels, particularly endothelial cells and pericytes. In contrast, CaSR expression in the peri-infarct region was prominent three days after reperfusion, and with the exception of some neurons, it was mostly located in reactive astrocytes, up to day 14 after ischemia. On the other hand, activated microglia/macrophages in both the ischemic and border zones were devoid of specific labeling for CaSR at any time point after reperfusion, despite their massive infiltration in both regions. Our results show heterogeneity in CaSR-positive cells within the ischemic and border zones, suggesting that CaSR expression is regulated in response to the altered extracellular ionic environment caused by ischemic injury. Thus, CaSR may have a multifunctional role in the pathophysiology of ischemic stroke, possibly in vascular remodeling and astrogliosis.

  19. A transient outward current related to calcium release and development of tension in elephant seal atrial fibres.

    PubMed Central

    Maylie, J; Morad, M

    1984-01-01

    Membrane currents and development of tension in atrial trabeculae from elephant seal hearts were studied using a single sucrose-gap voltage-clamp technique. A transient outward current (Ito) was observed with kinetics, voltage and beat dependence, similar to those of tension. Ito had a bell-shaped voltage dependence similar to that of tension and the slow inward current (Isi). Ito, unlike Isi, showed beat dependence quite similar to developed tension. Increases in [Ca]o, frequency of stimulation, and addition of adrenaline enhanced Ito and developed tension. Ito was suppressed by addition of Mn2+, tetracaine, or by depolarizing pre-pulses (to -40 mV for 250 ms). Caffeine at low concentrations (1 mM) blocked beat dependence of Ito. At higher concentrations (greater than 5 mM) caffeine suppressed the activation of Ito, phasic tension, and the second component of the birefringence signal (related to Ca2+-releasing activity of the sarcoplasmic reticulum (s.r.]. Similar to Isi phasic tension and Ito, the voltage dependence of the second component of the birefringence signal was bell-shaped. Our studies suggest that activation of Ito is related to triggered release of Ca2+ from the s.r. which generates the phasic tension. An excitation-contraction coupling scheme is presented which incorporates these findings and suggests that Ito may be responsible for shorter action potentials found in atrial fibres. Images Plate 1 PMID:6512692

  20. Lanthanum carbonate delays progression of coronary artery calcification compared with calcium-based phosphate binders in patients on hemodialysis: a pilot study.

    PubMed

    Ohtake, Takayasu; Kobayashi, Shuzo; Oka, Machiko; Furuya, Rei; Iwagami, Masao; Tsutsumi, Daimu; Mochida, Yasuhiro; Maesato, Kyoko; Ishioka, Kunihiro; Moriya, Hidekazu; Hidaka, Sumi

    2013-09-01

    Coronary artery calcification (CAC) is associated with future cardiovascular events and/or death of patients on hemodialysis (HD). We investigated whether progression of CAC in patients on HD could be delayed by switching from a calcium (Ca)-based phosphate (Pi) binder to lanthanum carbonate. The CAC scores were evaluated at study enrollment and after 6 months in 52 patients on HD using calcium carbonate (CC) as a Pi binder. Patients were randomly divided into 2 groups assigned to receive either CC or lanthanum carbonate (LC), and the CAC scores were evaluated after a 6-month treatment period. Progression of CAC was assessed, as were serum levels of Ca, Pi, and intact parathyroid hormone (iPTH). Forty-two patients completed the study (23 receiving CC and 19 receiving LC). In the 6 months prior to randomization, all patients were treated with CC. During this 6-month period, the CAC scores increased significantly in all 42 patients. Once randomized, there was significantly less progression in the group treated with LC than with CC. Changes in CAC scores from 6 to 12 months were significantly smaller in the LC group than the CC group (-288.9 ± 1176.4 vs 107.1 ± 559.6, P = .036), and percentage changes were also significantly different (-6.4% vs 41.2%, P = .024). Serum Ca, Pi, and iPTH levels were similar in both groups during the study period. This pilot study suggested that LC delayed progression of CAC in patients on HD compared with CC.

  1. Functional identification of neural stem cell-derived oligodendrocytes by means of calcium transients elicited by thrombin.

    PubMed

    Grade, Sofia; Agasse, Fabienne; Bernardino, Liliana; Silva, Carla G; Cortes, Luísa; Malva, João O

    2010-02-01

    Current immunosuppressive treatments for central nervous system demyelinating diseases fail to prevent long-term motor and cognitive decline in patients. Excitingly, glial cell transplantation arises as a promising complementary strategy to challenge oligodendrocytes loss occurring in myelination disorders. A potential source of new oligodendrocytes is the subventricular zone (SVZ) pool of multipotent neural stem cells. However, this approach has been handicapped by the lack of functional methods for identification and pharmacological analysis of differentiating oligodendrocytes, prior to transplantation. In this study, we questioned whether SVZ-derived oligodendrocytes could be functionally discriminated due to intracellular calcium level ([Ca(2+)](i)) variations following KCl, histamine, and thrombin stimulations. Previously, we have shown that SVZ-derived neurons and immature cells can be discriminated on the basis of their selective [Ca(2+)](i) rise upon KCl and histamine stimulation, respectively. Herein, we demonstrate that O4+ and proteolipid protein-positive (PLP+) oligodendrocytes do not respond to these stimuli, but display a robust [Ca(2+)](i) rise following thrombin stimulation, whereas other cell types are thrombin-insensitive. Thrombin-induced Ca(2+) increase in oligodendrocytes is mediated by protease-activated receptor-1 (PAR-1) activation and downstream signaling through G(q/11) and phospholipase C (PLC), resulting in Ca(2+) recruitment from intracellular compartments. This method allows the analysis of functional properties of oligodendrocytes in living SVZ cultures, which is of major interest for the development of effective grafting strategies in the demyelinated brain. Additionally, it opens new perspectives for the search of new pro-oligodendrogenic factors to be used prior grafting.

  2. SKF-96365 activates cytoprotective autophagy to delay apoptosis in colorectal cancer cells through inhibition of the calcium/CaMKIIγ/AKT-mediated pathway.

    PubMed

    Jing, Zhao; Sui, Xinbing; Yao, Junlin; Xie, Jiansheng; Jiang, Liming; Zhou, Yubin; Pan, Hongming; Han, Weidong

    2016-03-28

    Store-operated Ca(2+) entry (SOCE) inhibitors are emerging as an attractive new generation of anti-cancer drugs. Here, we report that SKF-96365, an SOCE inhibitor, exhibits potent anti-neoplastic activity by inducing cell-cycle arrest and apoptosis in colorectal cancer cells. In the meantime, SKF-96365 also induces cytoprotective autophagy to delay apoptosis by preventing the release of cytochrome c (cyt c) from the mitochondria into the cytoplasm. Mechanistically, SKF-96365 treatment inhibited the calcium/calmodulin-dependent protein kinase IIγ (CaMKIIγ)/AKT signaling cascade in vitro and in vivo. Overexpression of CaMKIIγ or AKT abolished the effects of SKF-96365 on cancer cells, suggesting a critical role of the CaMKIIγ/AKT signaling pathway in SFK-96365-induced biological effects. Moreover, Hydroxychloroquine (HCQ), an FDA-approved drug used to inhibit autophagy, could significantly augment the anti-cancer effect of SFK-96365 in a mouse xenograft model. To our best knowledge, this is the first report to demonstrate that calcium/CaMKIIγ/AKT signaling can regulate apoptosis and autophagy simultaneously in cancer cells, and the combination of the SOCE inhibitor SKF-96365 with autophagy inhibitors represents a promising strategy for treating patients with colorectal cancer. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Adipose-specific ablation of Nrf2 transiently delayed high-fat diet-induced obesity by altering glucose, lipid and energy metabolism of male mice.

    PubMed

    Zhang, Le; Dasuri, Kalavathi; Fernandez-Kim, Sun-Ok; Bruce-Keller, Annadora J; Keller, Jeffrey N

    2016-01-01

    Nuclear factor E2-related factor 2 (NRF2) is a well-known master controller of the cellular adaptive antioxidant and detoxification response. Recent studies demonstrated altered glucose, lipid and energy metabolism in mice with a global Nrf2 knockout. In the present study, we aim to determine the effects of an adipose-specific ablation of Nrf2 (ASAN) on diet-induced obesity (DIO) in male mice. The 6-week-old adipose-specific Nrf2 knockout (NK) and its Nrf2 control (NC) mice were fed with either control diet (CD) or high-fat diet (HFD) for 14 weeks. NK mice exhibited transiently delayed body weight (BW) growth from week 5 to week 11 of HFD feeding, higher daily physical activity levels and preferential use of fat over carbohydrates as a source of energy at week 8 of the CD-feeding period. After 14 weeks of feeding, NK mice showed comparable results with NC mice with respect to the overall BW and body fat content, but exhibited reduced blood glucose, reduced number but increased size of adipocytes, accompanied with elevated expression of many genes and proteins in the visceral fat related to glucose, lipid and energy metabolism (e.g. Fgf21, Pgc1a). These results indicated that NRF2 is an important mediator for glucose, lipid and energy metabolism in adipose tissue, and ASAN could have beneficial effect for prevention of DIO during the early development of mice.

  4. Modeling the effects of vorinostat in vivo reveals both transient and delayed HIV transcriptional activation and minimal killing of latently infected cells

    SciTech Connect

    Ke, Ruian; Lewin, Sharon R.; Elliott, Julian H.; Perelson, Alan S.; Chakraborty, Arup K.

    2015-10-23

    Recent efforts to cure human immunodeficiency virus type-1 (HIV-1) infection have focused on developing latency reversing agents as a first step to eradicate the latent reservoir. The histone deacetylase inhibitor, vorinostat, has been shown to activate HIV RNA transcription in CD4+ T-cells and alter host cell gene transcription in HIV-infected individuals on antiretroviral therapy. In order to understand how latently infected cells respond dynamically to vorinostat treatment and determine the impact of vorinostat on reservoir size in vivo, we have constructed viral dynamic models of latency that incorporate vorinostat treatment. We fitted these models to data collected from a recent clinical trial in which vorinostat was administered daily for 14 days to HIV-infected individuals on suppressive ART. The results show that HIV transcription is increased transiently during the first few hours or days of treatment and that there is a delay before a sustained increase of HIV transcription, whose duration varies among study participants and may depend on the long term impact of vorinostat on host gene expression. Parameter estimation suggests that in latently infected cells, HIV transcription induced by vorinostat occurs at lower levels than in productively infected cells. Lastly, the estimated loss rate of transcriptionally induced cells remains close to baseline in most study participants, suggesting vorinostat treatment does not induce latently infected cell killing and thus reduce the latent reservoir in vivo.

  5. Modeling the effects of vorinostat in vivo reveals both transient and delayed HIV transcriptional activation and minimal killing of latently infected cells

    DOE PAGES

    Ke, Ruian; Lewin, Sharon R.; Elliott, Julian H.; ...

    2015-10-23

    Recent efforts to cure human immunodeficiency virus type-1 (HIV-1) infection have focused on developing latency reversing agents as a first step to eradicate the latent reservoir. The histone deacetylase inhibitor, vorinostat, has been shown to activate HIV RNA transcription in CD4+ T-cells and alter host cell gene transcription in HIV-infected individuals on antiretroviral therapy. In order to understand how latently infected cells respond dynamically to vorinostat treatment and determine the impact of vorinostat on reservoir size in vivo, we have constructed viral dynamic models of latency that incorporate vorinostat treatment. We fitted these models to data collected from a recentmore » clinical trial in which vorinostat was administered daily for 14 days to HIV-infected individuals on suppressive ART. The results show that HIV transcription is increased transiently during the first few hours or days of treatment and that there is a delay before a sustained increase of HIV transcription, whose duration varies among study participants and may depend on the long term impact of vorinostat on host gene expression. Parameter estimation suggests that in latently infected cells, HIV transcription induced by vorinostat occurs at lower levels than in productively infected cells. Lastly, the estimated loss rate of transcriptionally induced cells remains close to baseline in most study participants, suggesting vorinostat treatment does not induce latently infected cell killing and thus reduce the latent reservoir in vivo.« less

  6. Adipose-specific ablation of Nrf2 transiently delayed high-fat diet-induced obesity by altering glucose, lipid and energy metabolism of male mice

    PubMed Central

    Zhang, Le; Dasuri, Kalavathi; Fernandez-Kim, Sun-Ok; Bruce-Keller, Annadora J; Keller, Jeffrey N

    2016-01-01

    Nuclear factor E2-related factor 2 (NRF2) is a well-known master controller of the cellular adaptive antioxidant and detoxification response. Recent studies demonstrated altered glucose, lipid and energy metabolism in mice with a global Nrf2 knockout. In the present study, we aim to determine the effects of an adipose-specific ablation of Nrf2 (ASAN) on diet-induced obesity (DIO) in male mice. The 6-week-old adipose-specific Nrf2 knockout (NK) and its Nrf2 control (NC) mice were fed with either control diet (CD) or high-fat diet (HFD) for 14 weeks. NK mice exhibited transiently delayed body weight (BW) growth from week 5 to week 11 of HFD feeding, higher daily physical activity levels and preferential use of fat over carbohydrates as a source of energy at week 8 of the CD-feeding period. After 14 weeks of feeding, NK mice showed comparable results with NC mice with respect to the overall BW and body fat content, but exhibited reduced blood glucose, reduced number but increased size of adipocytes, accompanied with elevated expression of many genes and proteins in the visceral fat related to glucose, lipid and energy metabolism (e.g. Fgf21, Pgc1a). These results indicated that NRF2 is an important mediator for glucose, lipid and energy metabolism in adipose tissue, and ASAN could have beneficial effect for prevention of DIO during the early development of mice. PMID:28078004

  7. Novel transient outward and ultra-rapid delayed rectifier current antagonist, AVE0118, protects against ventricular fibrillation induced by myocardial ischemia.

    PubMed

    Billman, George E; Kukielka, Monica

    2008-04-01

    AVE0118 is a novel drug that blocks the transient outward current (Ito), the ultra rapid component of the delayed rectifier current (IKur), and the acetylcholine dependent potassium channel (IKach). The latter 2 channels are more abundant in atrial tissue. It is possible that AVE0118 could reduce regional differences in repolarization and thereby prevent malignant arrhythmias provoked by ischemia. To test this hypothesis, ventricular fibrillation was induced by a 2-minute occlusion of the left circumflex coronary artery during the last min of exercise in dogs with healed myocardial infarctions (n = 9). On a subsequent day, this exercise plus ischemia test was repeated after pretreatment with AVE0118 (1.0 mg/kg, IV). AVE0118 did not change QTc (Van de Water's correction) interval [245 +/- 6.0 ms (control) versus 242 +/- 2.3 ms (AVE)] and attenuated the dispersion of repolarization as measured by the duration of the descending portion of the T wave (Tpeak - Tend) induced by ischemia [ischemic changes: +11.1 +/- 2.4 ms (no drug) versus +2.2 +/- 3.7 ms (AVE)]. AVE0118 also significantly reduced the incidence of ventricular fibrillation, protecting 7 of 9 animals. Thus, AVE0118 abolished ischemically induced repolarization abnormalities and prevented malignant arrhythmias induced by ischemia without altering QTc interval.

  8. Modeling the Effects of Vorinostat In Vivo Reveals both Transient and Delayed HIV Transcriptional Activation and Minimal Killing of Latently Infected Cells.

    PubMed

    Ke, Ruian; Lewin, Sharon R; Elliott, Julian H; Perelson, Alan S

    2015-10-01

    Recent efforts to cure human immunodeficiency virus type-1 (HIV-1) infection have focused on developing latency reversing agents as a first step to eradicate the latent reservoir. The histone deacetylase inhibitor, vorinostat, has been shown to activate HIV RNA transcription in CD4+ T-cells and alter host cell gene transcription in HIV-infected individuals on antiretroviral therapy. In order to understand how latently infected cells respond dynamically to vorinostat treatment and determine the impact of vorinostat on reservoir size in vivo, we have constructed viral dynamic models of latency that incorporate vorinostat treatment. We fitted these models to data collected from a recent clinical trial in which vorinostat was administered daily for 14 days to HIV-infected individuals on suppressive ART. The results show that HIV transcription is increased transiently during the first few hours or days of treatment and that there is a delay before a sustained increase of HIV transcription, whose duration varies among study participants and may depend on the long term impact of vorinostat on host gene expression. Parameter estimation suggests that in latently infected cells, HIV transcription induced by vorinostat occurs at lower levels than in productively infected cells. Furthermore, the estimated loss rate of transcriptionally induced cells remains close to baseline in most study participants, suggesting vorinostat treatment does not induce latently infected cell killing and thus reduce the latent reservoir in vivo.

  9. Stabilization of diastolic calcium signal via calcium pump regulation of complex local calcium releases and transient decay in a computational model of cardiac pacemaker cell with individual release channels

    PubMed Central

    Maltsev, Alexander V.; Maltsev, Victor A.; Stern, Michael D.

    2017-01-01

    Intracellular Local Ca releases (LCRs) from sarcoplasmic reticulum (SR) regulate cardiac pacemaker cell function by activation of electrogenic Na/Ca exchanger (NCX) during diastole. Prior studies demonstrated the existence of powerful compensatory mechanisms of LCR regulation via a complex local cross-talk of Ca pump, release and NCX. One major obstacle to study these mechanisms is that LCR exhibit complex Ca release propagation patterns (including merges and separations) that have not been characterized. Here we developed new terminology, classification, and computer algorithms for automatic detection of numerically simulated LCRs and examined LCR regulation by SR Ca pumping rate (Pup) that provides a major contribution to fight-or-flight response. In our simulations the faster SR Ca pumping accelerates action potential-induced Ca transient decay and quickly clears Ca under the cell membrane in diastole, preventing premature releases. Then the SR generates an earlier, more synchronized, and stronger diastolic LCR signal activating an earlier and larger inward NCX current. LCRs at higher Pup exhibit larger amplitudes and faster propagation with more collisions to each other. The LCRs overlap with Ca transient decay, causing an elevation of the average diastolic [Ca] nadir to ~200 nM (at Pup = 24 mM/s). Background Ca (in locations lacking LCRs) quickly decays to resting Ca levels (<100 nM) at high Pup, but remained elevated during slower decay at low Pup. Release propagation is facilitated at higher Pup by a larger LCR amplitude, whereas at low Pup by higher background Ca. While at low Pup LCRs show smaller amplitudes, their larger durations and sizes combined with longer transient decay stabilize integrals of diastolic Ca and NCX current signals. Thus, the local interplay of SR Ca pump and release channels regulates LCRs and Ca transient decay to insure fail-safe pacemaker cell operation within a wide range of rates. PMID:28792496

  10. Stabilization of diastolic calcium signal via calcium pump regulation of complex local calcium releases and transient decay in a computational model of cardiac pacemaker cell with individual release channels.

    PubMed

    Maltsev, Alexander V; Maltsev, Victor A; Stern, Michael D

    2017-08-01

    Intracellular Local Ca releases (LCRs) from sarcoplasmic reticulum (SR) regulate cardiac pacemaker cell function by activation of electrogenic Na/Ca exchanger (NCX) during diastole. Prior studies demonstrated the existence of powerful compensatory mechanisms of LCR regulation via a complex local cross-talk of Ca pump, release and NCX. One major obstacle to study these mechanisms is that LCR exhibit complex Ca release propagation patterns (including merges and separations) that have not been characterized. Here we developed new terminology, classification, and computer algorithms for automatic detection of numerically simulated LCRs and examined LCR regulation by SR Ca pumping rate (Pup) that provides a major contribution to fight-or-flight response. In our simulations the faster SR Ca pumping accelerates action potential-induced Ca transient decay and quickly clears Ca under the cell membrane in diastole, preventing premature releases. Then the SR generates an earlier, more synchronized, and stronger diastolic LCR signal activating an earlier and larger inward NCX current. LCRs at higher Pup exhibit larger amplitudes and faster propagation with more collisions to each other. The LCRs overlap with Ca transient decay, causing an elevation of the average diastolic [Ca] nadir to ~200 nM (at Pup = 24 mM/s). Background Ca (in locations lacking LCRs) quickly decays to resting Ca levels (<100 nM) at high Pup, but remained elevated during slower decay at low Pup. Release propagation is facilitated at higher Pup by a larger LCR amplitude, whereas at low Pup by higher background Ca. While at low Pup LCRs show smaller amplitudes, their larger durations and sizes combined with longer transient decay stabilize integrals of diastolic Ca and NCX current signals. Thus, the local interplay of SR Ca pump and release channels regulates LCRs and Ca transient decay to insure fail-safe pacemaker cell operation within a wide range of rates.

  11. Transient receptor potential vanilloid 4 (TRPV4)-dependent calcium influx and ATP release in mouse oesophageal keratinocytes.

    PubMed

    Mihara, Hiroshi; Boudaka, Ammar; Sugiyama, Toshiro; Moriyama, Yoshinori; Tominaga, Makoto

    2011-07-15

    Gastro-oesophageal reflux disease (GERD) is a multi-factorial disease that may involve oesophageal hypersensitivity to mechanical or heat stimulus as well as acids. Intraganglionic laminar endings (IGLEs) are the most prominent terminal structures of oesophageal vagal mechanosensitive afferents and may modulate mechanotransduction via purinergic receptors. Transient receptor potential channel vanilloid 4 (TRPV4) can detect various stimuli such as warm temperature, stretch and some chemicals, including 4α-phorbol 12,13-didecanoate (4α-PDD) and GSK1016790A. TRPV4 is expressed in many tissues, including renal epithelium, skin keratinocytes and urinary bladder epithelium, but its expression and function in the oesophagus is poorly understood. Here, we show anatomical and functional TRPV4 expression in mouse oesophagus and its involvement in ATP release. TRPV4 mRNA and protein were detected in oesophageal keratinocytes. Several known TRPV4 activators (chemicals, heat and stretch stimulus) increased cytosolic Ca2+ concentrations in cultured WT keratinocytes but not in TRPV4 knockout (KO) cells. Moreover, the TRPV4 agonist GSK1016790A and heat stimulus evoked TRPV4-like current responses in isolated WT keratinocytes, but not in TRPV4KO cells. GSK1016790A and heat stimulus also significantly increased ATP release from WT oesophageal keratinocytes compared to TRPV4KO cells. The vesicle-trafficking inhibitor brefeldin A (BFA) inhibited the ATP release. This ATP release could be mediated by the newly identified vesicle ATP transporter, VNUT, which is expressed by oesophageal keratinocytes at the mRNA and protein levels. In conclusion, in response to heat, chemical and possibly mechanical stimuli, TRPV4 contributes to ATP release in the oesophagus. Thus, TRPV4 could be involved in oesophageal mechano- and heat hypersensitivity.

  12. Calcium-induced transitions between the spontaneous miniature outward and the transient outward currents in retinal amacrine cells.

    PubMed

    Mitra, Pratip; Slaughter, Malcolm M

    2002-04-01

    Spontaneous miniature outward currents (SMOCs) occur in a subset of retinal amacrine cells at membrane potentials between -60 and -40 mV. At more depolarized potentials, a transient outward current (I(to)) appears and SMOCs disappear. Both SMOCs and the I(to) are K(+) currents carried by BK channels. They both arise from Ca(2+) influx through high voltage-activated (HVA) Ca(2+) channels, which stimulates release of internal Ca(2+) from caffeine- and ryanodine-sensitive stores. An increase in Ca(2+) influx resulted in an increase in SMOC frequency, but also led to a decline in SMOC mean amplitude. This reduction showed a temporal dependence: the effect being greater in the latter part of a voltage step. Thus, Ca(2+) influx, although required to generate SMOCs, also produced a negative modulation of their amplitudes. Increasing Ca(2+) influx also led to a decline in the first latency to SMOC occurrence. A combination of these effects resulted in the disappearance of SMOCs, along with the concomitant appearance of the I(to) at high levels of Ca(2+) influx. Therefore, low levels of Ca(2+) influx, arising from low levels of activation of the HVA Ca(2+) channels, produce randomly occurring SMOCs within the range of -60 to -40 mV. Further depolarization leads to greater activation of the HVA Ca(2+) channels, larger Ca(2+) influx, and the disappearance of discontinuous SMOCs, along with the appearance of the I(to). Based on their characteristics, SMOCs in retinal neurons may function as synaptic noise suppressors at quiescent glutamatergic synapses.

  13. Wenxin Keli attenuates ischemia-induced ventricular arrhythmias in rats: Involvement of L‑type calcium and transient outward potassium currents.

    PubMed

    Wang, Xi; Wang, Xin; Gu, Yongwei; Wang, Teng; Huang, Congxin

    2013-02-01

    Wenxin Keli is the first state‑sanctioned traditional Chinese medicine (TCM)-based antiarrhythmic drug. The present study aimed to examine whether long‑term treatment with Wenxin Keli reduces ischemia‑induced ventricular arrhythmias in rats in vivo, and if so, which mechanisms are involved. Male rats were treated with either saline (control group) or Wenxin Keli for 3 weeks and were subjected to myocardial ischemia for 30 min with assessment of the resulting ventricular arrhythmias. The L‑type calcium current (ICa,L) and transient outward potassium current (Ito) were measured by the patch clamp technique in normal rat cardiac ventricular myocytes. During the 30‑min ischemia, Wenxin Keli significantly reduced the incidence of ventricular fibrillation (VF) (P<0.05). The number of ventricular tachycardia (VT)+VF episodes and the severity of arrhythmias were significantly reduced by Wenxin Keli administration compared to the control group (P<0.05). In addition, Wenxin Keli inhibited ICa,L and Ito in a concentration‑dependent manner. These results suggest that long‑term treatment with Wenxin Keli may attenuate ischemia‑induced ventricular arrhythmias in rats and that ICa,L and Ito may be involved in this attenuation.

  14. Simulation of intracellular [Formula: see text] transients in osteoblasts induced by fluid shear stress and its application.

    PubMed

    Sun, Junqing; Xie, Wenjun; Shi, Liang; Yu, Liyin; Zhang, Jianbao

    2017-04-01

    Intracellular [Formula: see text] transient induced by fluid shear stress (FSS) plays an important role in mechanical regulation of osteoblasts, but the cellular mechanism remains incompletely understood. Here, we constructed a mathematical model combined with experiments to elucidate it. Our simulated and experimental results showed that it was the delay of membrane potential repolarization to produce the refractory period of FSS-induced intracellular calcium transients in osteoblasts. Moreover, the results also demonstrated that the amplitude of FSS-induced intracellular calcium transient is crucial to the proliferation, while its duration is critical to the differentiation, of osteoblasts. Overall, the present study provides a way to understand the cellular mechanism of intracellular calcium transients in osteoblast induced by FSS and explains some of related physiological events.

  15. Potential roles for calcium-sensing receptor (CaSR) and transient receptor potential ankyrin-1 (TRPA1) in murine anorectic response to deoxynivalenol (vomitoxin).

    PubMed

    Wu, Wenda; Zhou, Hui-Ren; Pestka, James J

    2017-01-01

    Food contamination by the trichothecene mycotoxin deoxynivalenol (DON, vomitoxin) has the potential to adversely affect animal and human health by suppressing food intake and impairing growth. In mice, the DON-induced anorectic response results from aberrant satiety hormone secretion by enteroendocrine cells (EECs) of the gastrointestinal tract. Recent in vitro studies in the murine STC-1 EEC model have linked DON-induced satiety hormone secretion to activation of calcium-sensing receptor (CaSR), a G-coupled protein receptor, and transient receptor potential ankyrin-1 (TRPA1), a TRP channel. However, it is unknown whether similar mechanisms mediate DON's anorectic effects in vivo. Here, we tested the hypothesis that DON-induced food refusal and satiety hormone release in the mouse are linked to activation of CaSR and TRPA1. Oral treatment with selective agonists for CaSR (R-568) or TRPA1 (allyl isothiocyanate (AITC)) suppressed food intake in mice, and the agonist's effects were suppressed by pretreatment with corresponding antagonists NPS-2143 or ruthenium red (RR), respectively. Importantly, NPS-2143 or RR inhibited both DON-induced food refusal and plasma elevations of the satiety hormones cholecystokinin (CCK) and peptide YY3-36 (PYY3-36); cotreatment with both antagonists additively suppressed both anorectic and hormone responses to DON. Taken together, these in vivo data along with prior in vitro findings support the contention that activation of CaSR and TRPA1 contributes to DON-induced food refusal by mediating satiety hormone exocytosis from EEC.

  16. No advantage to delaying the introduction of calcium soaps of palm oil fatty acids to early lactation dairy rations.

    PubMed

    Holter, J B; Hayes, H H

    1994-03-01

    Holstein cows (n = 105, 39 primiparous) were blocked by parity (1 vs. > 1) and assigned randomly at calving to receive supplemental Ca soaps of palm oil (2.9% fatty acids in dietary DM), commencing on DIM 1, 29, or 57 and ending on DIM 112. Effects on DMI, BW and condition score, and milk yield and composition were studied during 1 to 140 DIM. Control TMR contained 4.4% ether extract (mainly from corn meal and dried distillers grains with solubles), was fed using four grain to forage ratios, and, in early lactation, averaged 60% concentrate, 25% corn silage, and 15% wilted grass silage DM. Delayed supplementation of soaps did not promote higher dietary DMI, resulted in reduced milk fat percentage and yield, tended to decrease 4% FCM yield, and did not significantly influence milk protein content. Supplementation of soaps in wk 1 to 8 did not spare postpartum BW loss, hasten BW regain, or affect the normal change in body condition score. Ad libitum DMI and 4% FCM yield were significantly and negatively correlated (r = -.3) with the proportion of dietary CP that was ruminally undegradable.

  17. Nonequilibrium Calcium Dynamics Regulate the Autonomous Firing Pattern of Rat Striatal Cholinergic Interneurons

    PubMed Central

    Goldberg, Joshua A.; Teagarden, Mark A.; Foehring, Robert C.; Wilson, Charles J.

    2009-01-01

    Striatal cholinergic interneurons discharge rhythmically in two patterns associated with different afterhyperpolarization timescales, each dictated by a different calcium-dependent potassium current. Single spiking depends on a medium-duration afterhyperpolarization (mAHP) generated by rapid SK currents that are associated with N-type calcium channels. Periodic bursting is driven by a delayed and slowly decaying afterhyperpolarization (sAHP) current associated with L-type channels. Using calcium imaging we show that the calcium transients underlying these currents exhibit two corresponding timescales throughout the somatodendritic tree. This result is not consistent with spatial compartmentalization of calcium entering through the two calcium channels and acting on the two potassium currents, or with differences in channel gating kinetics of the calcium dependent potassium currents. Instead, we show that nonequilibrium dynamics of calcium redistribution among cytoplasmic binding sites with different calcium binding kinetics can give rise to multiple timescales within the same cytoplasmic volume. The resulting independence of mAHP and sAHP currents allows cytoplasmic calcium to control two different and incompatible firing patterns (single spiking or bursting and pausing), depending on whether calcium influx is pulsatile or sustained. During irregular firing, calcium entry at both timescales can be detected, suggesting that an interaction between the medium and slow calcium-dependent afterhyperpolarizations may underlie this firing pattern. PMID:19571130

  18. Nonequilibrium calcium dynamics regulate the autonomous firing pattern of rat striatal cholinergic interneurons.

    PubMed

    Goldberg, Joshua A; Teagarden, Mark A; Foehring, Robert C; Wilson, Charles J

    2009-07-01

    Striatal cholinergic interneurons discharge rhythmically in two patterns associated with different afterhyperpolarization timescales, each dictated by a different calcium-dependent potassium current. Single spiking depends on a medium-duration afterhyperpolarization (mAHP) generated by rapid SK currents that are associated with N-type calcium channels. Periodic bursting is driven by a delayed and slowly decaying afterhyperpolarization (sAHP) current associated with L-type channels. Using calcium imaging we show that the calcium transients underlying these currents exhibit two corresponding timescales throughout the somatodendritic tree. This result is not consistent with spatial compartmentalization of calcium entering through the two calcium channels and acting on the two potassium currents, or with differences in channel gating kinetics of the calcium dependent potassium currents. Instead, we show that nonequilibrium dynamics of calcium redistribution among cytoplasmic binding sites with different calcium binding kinetics can give rise to multiple timescales within the same cytoplasmic volume. The resulting independence of mAHP and sAHP currents allows cytoplasmic calcium to control two different and incompatible firing patterns (single spiking or bursting and pausing), depending on whether calcium influx is pulsatile or sustained. During irregular firing, calcium entry at both timescales can be detected, suggesting that an interaction between the medium and slow calcium-dependent afterhyperpolarizations may underlie this firing pattern.

  19. Impaired calcium mobilization in natural killer cells from chronic fatigue syndrome/myalgic encephalomyelitis patients is associated with transient receptor potential melastatin 3 ion channels

    PubMed Central

    Johnston, S.; Clarke, L.; Smith, P.; Staines, D.; Marshall‐Gradisnik, S.

    2016-01-01

    Summary Transient receptor potential melastatin subfamily 3 (TRPM3) ion channels play a role in calcium (Ca2+) cell signalling. Reduced TRPM3 protein expression has been identified in chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) patients. However, the significance of TRPM3 and association with intracellular Ca2+ mobilization has yet to be determined. Fifteen CFS/ME patients (mean age 48·82 ± 9·83 years) and 25 healthy controls (mean age 39·2 ± 12·12 years) were examined. Isolated natural killer (NK) cells were labelled with fluorescent antibodies to determine TRPM3, CD107a and CD69 receptors on CD56dimCD16+NK cells and CD56brightCD16dim/– NK cells. Ca2+ flux and NK cytotoxicity activity was measured under various stimulants, including pregnenolone sulphate (PregS), thapsigargin (TG), 2‐aminoethoxydiphenyl borate (2APB) and ionomycin. Unstimulated CD56brightCD16dim/– NK cells showed significantly reduced TRPM3 receptors in CFS/ME compared with healthy controls (HC). Ca2+ flux showed no significant difference between groups. Moreover, PregS‐stimulated CD56brightCD16dim/–NK cells showed a significant increase in Ca2+ flux in CFS/ME patients compared with HC. By comparison, unstimulated CD56dimCD16+ NK cells showed no significant difference in both Ca2+ flux and TRPM3 expression. PregS‐stimulated CD56dimCD16+ NK cells increased TRPM3 expression significantly in CFS/ME, but this was not associated with a significant increase in Ca2+ flux. Furthermore, TG‐stimulated CD56dimCD16+ NK cells increased K562 cell lysis prior to PregS stimulation in CFS/ME patients compared with HC. Differential expression of TRPM3 and Ca2+ flux between NK cell subtypes may provide evidence for their role in the pathomechanism involving NK cell cytotoxicity activity in CFS/ME. PMID:27727448

  20. Impaired calcium mobilization in natural killer cells from chronic fatigue syndrome/myalgic encephalomyelitis patients is associated with transient receptor potential melastatin 3 ion channels.

    PubMed

    Nguyen, T; Johnston, S; Clarke, L; Smith, P; Staines, D; Marshall-Gradisnik, S

    2017-02-01

    Transient receptor potential melastatin subfamily 3 (TRPM3) ion channels play a role in calcium (Ca(2+) ) cell signalling. Reduced TRPM3 protein expression has been identified in chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) patients. However, the significance of TRPM3 and association with intracellular Ca(2+) mobilization has yet to be determined. Fifteen CFS/ME patients (mean age 48·82 ± 9·83 years) and 25 healthy controls (mean age 39·2 ± 12·12 years) were examined. Isolated natural killer (NK) cells were labelled with fluorescent antibodies to determine TRPM3, CD107a and CD69 receptors on CD56(dim) CD16(+) NK cells and CD56(bright) CD16(dim/-) NK cells. Ca(2+) flux and NK cytotoxicity activity was measured under various stimulants, including pregnenolone sulphate (PregS), thapsigargin (TG), 2-aminoethoxydiphenyl borate (2APB) and ionomycin. Unstimulated CD56(bright) CD16(dim/-) NK cells showed significantly reduced TRPM3 receptors in CFS/ME compared with healthy controls (HC). Ca(2+) flux showed no significant difference between groups. Moreover, PregS-stimulated CD56(bright) CD16(dim/-) NK cells showed a significant increase in Ca(2+) flux in CFS/ME patients compared with HC. By comparison, unstimulated CD56(dim) CD16(+) NK cells showed no significant difference in both Ca(2+) flux and TRPM3 expression. PregS-stimulated CD56(dim) CD16(+) NK cells increased TRPM3 expression significantly in CFS/ME, but this was not associated with a significant increase in Ca(2+) flux. Furthermore, TG-stimulated CD56(dim) CD16(+) NK cells increased K562 cell lysis prior to PregS stimulation in CFS/ME patients compared with HC. Differential expression of TRPM3 and Ca(2+) flux between NK cell subtypes may provide evidence for their role in the pathomechanism involving NK cell cytotoxicity activity in CFS/ME.

  1. Rapid intracellular calcium changes in U937 monocyte cell line: transient increases in response to platelet-activating factor and chemotactic peptide but not interferon-gamma or lipopolysaccharide.

    PubMed Central

    Maudsley, D J; Morris, A G

    1987-01-01

    The dye fura-2, a potentially more sensitive successor to quin2 for measuring intracellular free calcium ion concentrations [(Ca2+]i), has been applied here to investigate the possible involvement of early changes in [Ca2+]i in the stimulation of the human monocyte-macrophage-like cell line U937. The calcium ionophores A23187 and ionomycin, known pharmacological stimuli for macrophages, were found to cause sharp rises in [Ca2+]i as expected. Responses analogous to those reported for a murine macrophage cell (J774) were obtained on stimulation of U937 cells with ATP which caused rapid, but transient, increases in [Ca2+]i (from resting levels of about 70 nM to peaks of about 200 mM). In addition to ATP, several agents known to activate macrophages were used as stimuli. In particular, platelet-activating factor (PAF; 1-0-alkyl-2-acetyl-sn-glycero-3-phosphocholine) was found to cause rapid, but transient, increases in [Ca2+]i (from resting levels of about 70 nM to peaks of about 400 nM) even at concentrations as low as 10(-10) M. This contrasts with responses to ATP that were markedly reduced at 10(-6) M compared with 10(-5) M or above, suggesting that PAF is a highly potent stimulus for intracellular calcium mobilization in macrophages. Similar responses were obtained with chemotactic peptide (N-formyl-methionyl-leucyl-phenylalanine). On the other hand, two agents known to be potent activators of macrophages, interferon gamma and lipopolysaccharide, had no rapid effect on [Ca2+]i. This may reflect differences in the kinetics of signal-response coupling or alternatively a different mechanism of action by-passing the need for rapid elevation of [Ca2+]i. PMID:3110054

  2. Combined system for high-time-resolution dual-excitation fluorescence photometry and fluorescence imaging of calcium transients in single normal and diseased skeletal muscle fibers

    NASA Astrophysics Data System (ADS)

    Uttenweiler, Dietmar; Wojciechowski, Reinhold; Makabe, Makoto; Veigel, Claudia; Fink, Rainer H.

    1994-12-01

    Fast photometric measurements and video-imaging of fluorescent indicators both are powerful tools in measuring the intracellular free calcium concentration of muscle and many other cells. as photometric systems yield a high temporal resolution, calcium imaging systems have high spatial but significantly reduced temporal resolution. Therefore we have developed an integrated system combining both methods and based mostly on standard components. As a common, sensitive Ca2+- indicator we used the fluorescent probe Fura-2, which is alternatingly excited for ratio measurements at 340/380 nm. We used a commercially available dual excitation photometric system (OSP-3; Olympus) for attaching a CCD-camera and a frame grabber board. To achieve the synchronization we had to design circuitries for external triggering, synchronization and accurate control of the filter changer, which we added to the system. Additionally, the software for a triggered image acquisition was developed. With this integrated setup one can easily switch between the fast photometric mode (ratio frequency 100 Hz) and the imaging mode (ratio frequency 4.17 Hz). The calcium images are correlated with the 25 times faster spot measurements and are analyzed by means of image processing. With this combined system we study release and uptake of calcium ions of normal and diseased skeletal muscle from mdx mice. Such a system will also be important for other cellular studies in which fluorescence indicators are used to monitor similar time dependent alterations as well as changes in cellular distributions of calcium.

  3. PRECISION TIME-DELAY CIRCUIT

    DOEpatents

    Creveling, R.

    1959-03-17

    A tine-delay circuit which produces a delay time in d. The circuit a capacitor, an te back resistance, connected serially with the anode of the diode going to ground. At the start of the time delay a negative stepfunction is applied to the series circuit and initiates a half-cycle transient oscillatory voltage terminated by a transient oscillatory voltage of substantially higher frequency. The output of the delay circuit is taken at the junction of the inductor and diode where a sudden voltage rise appears after the initiation of the higher frequency transient oscillations.

  4. Mitochondrial calcium transients in adult rabbit cardiac myocytes: inhibition by ruthenium red and artifacts caused by lysosomal loading of Ca(2+)-indicating fluorophores.

    PubMed Central

    Trollinger, D R; Cascio, W E; Lemasters, J J

    2000-01-01

    A cold/warm loading protocol was used to ester-load Rhod 2 into mitochondria and other organelles and Fluo 3 into the cytosol of adult rabbit cardiac myocytes for confocal fluorescence imaging. Transient increases in both cytosolic Fluo 3 and mitochondrial Rhod 2 fluorescence occurred after electrical stimulation. Ruthenium red, a blocker of the mitochondrial Ca(2+) uniporter, inhibited mitochondrial Rhod 2 fluorescence transients but not cytosolic Fluo 3 transients. Thus the ruthenium red-sensitive mitochondrial Ca(2+) uniporter catalyzes Ca(2+) uptake during beat-to-beat transients of mitochondrial free Ca(2+), which in turn may help match mitochondrial ATP production to myocardial ATP demand. After ester loading, substantial amounts of Ca(2+)-indicating fluorophores localized into an acidic lysosomal/endosomal compartment. This lysosomal fluorescence did not respond to electrical stimulation. Because fluorescence arose predominantly from lysosomes after the cold loading/warm incubation procedure, total cellular fluorescence failed to track beat-to-beat changes of mitochondrial fluorescence. Only three-dimensionally resolved confocal imaging distinguished the relatively weak mitochondrial signal from the bright lysosomal fluorescence. PMID:10866936

  5. The transient expression of LIM-domain transcription factors is coincident with the delayed maturation of photoreceptors in the chicken retina

    PubMed Central

    Fischer, Andy J.; Foster, Shane; Scott, Melissa A.; Sherwood, Patrick

    2009-01-01

    In the retina of warm-blooded vertebrates, photoreceptors are specified many days before the onset of synaptogenesis and the expression of photopigments. The factors that regulate the maturation of photoreceptors in the developing retina remain unknown. We report here that photoreceptors transiently express LIM-domain transcription factors during the development of the chicken retina. We examined the differentiation of photoreceptors through the normal course of embryonic development and at the far periphery of the postnatal retina, where the differentiation of photoreceptors is slowed and persists across a spatial gradient. In the embryonic retina, we find visinin-positive photoreceptors that transiently express Islet2 and Lim3 starting at E8 and ending around E15, but persisting in far peripheral regions of the retina through the first 2 weeks of postnatal development. During early stages of photoreceptor maturation, there is coincident and transient expression of the LIM-domain factors with axonin1, a cell surface glycoprotein that is a member of the immunoglobulin super family. Coincident with the down-regulation of Islet2 and Lim3, we find the up-regulation of calbindin, red/green opsin, rhodopsin and a synaptic marker in the OPL (dystrophin). In the periphery of the postnatal retina, photoreceptors that express Islet2, Lim3 and axonin1 do not overlap with photoreceptors that express calbindin, red/geen opsin, rhodopsin, and dystrophin. We propose that Islet2 and Lim3 may promote the expression of genes that are involved in the early stages of differentiation, but may suppress the expression of genes that are required in the mature photoreceptors. PMID:18072193

  6. Glutamate Receptor-Like Channel3.3 Is Involved in Mediating Glutathione-Triggered Cytosolic Calcium Transients, Transcriptional Changes, and Innate Immunity Responses in Arabidopsis1[W][OA

    PubMed Central

    Li, Feng; Wang, Jing; Ma, Chunli; Zhao, Yongxiu; Wang, Yingchun; Hasi, Agula; Qi, Zhi

    2013-01-01

    The tripeptide reduced glutathione (GSH; γ-glutamate [Glu]-cysteine [Cys]-glycine) is a major endogenous antioxidant in both animal and plant cells. It also functions as a neurotransmitter mediating communication among neurons in the central nervous system of animals through modulating specific ionotropic Glu receptors (GLRs) in the membrane. Little is known about such signaling roles in plant cells. Here, we report that transient rises in cytosolic calcium triggered by exogenous GSH in Arabidopsis (Arabidopsis thaliana) leaves were sensitive to GLR antagonists and abolished in loss-of-function atglr3.3 mutants. Like the GSH biosynthesis-defective mutant PHYTOALEXIN DEFICIENT2, atglr3.3 showed enhanced susceptibility to the bacterial pathogen Pseudomonas syringae pv tomato DC3000. Pathogen-induced defense marker gene expression was also decreased in atglr3.3 mutants. Twenty-seven percent of genes that were rapidly responsive to GSH treatment of seedlings were defense genes, most of which were dependent on functional AtGLR3.3, while GSH suppressed pathogen propagation through the AtGLR3.3-dependent pathway. Eight previously identified putative AtGLR3.3 ligands, GSH, oxidized glutathione, alanine, asparagine, Cys, Glu, glycine, and serine, all elicited the AtGLR3.3-dependent cytosolic calcium transients, but only GSH and Cys induced the defense response, with the Glu-induced AtGLR3.3-dependent transcription response being much less apparent than that triggered by GSH. Together, these observations suggest that AtGLR3.3 is required for several signaling effects mediated by extracellular GSH, even though these effects may not be causally related. PMID:23656893

  7. Calcium supplements

    MedlinePlus

    ... TYPES OF CALCIUM SUPPLEMENTS Forms of calcium include: Calcium carbonate: Over-the-counter (OTC) antacid products, such as Tums and Rolaids, contain calcium carbonate. These sources of calcium do not cost much. ...

  8. Transient increases in cytosolic free calcium appear to be required for the migration of adherent human neutrophils [published erratum appears in J Cell Biol 1990 Mar;110(3):861

    PubMed Central

    1990-01-01

    Human neutrophils exhibit multiple increases in cytosolic free calcium concentration [( Ca2+]i) spontaneously and in response to the chemoattractant N-formyl-L-methionyl-L-leucyl-L-phenylalanine (Jaconi, M. E. E., R. W. Rivest, W. Schlegel, C. B. Wollheim, D. Pittet, and P. D. Lew. 1988. J. Biol. Chem. 263:10557-10560). The function of these repetitive increases in [Ca2+]i, as well as the role of Ca2+ in human neutrophil migration, remain unresolved. We have used microspectrofluorometry to measure [Ca2+]i in single fura-2-loaded human neutrophils as they moved on poly-D-lysine-coated glass in the presence of serum. To investigate the role of Ca2+ in human neutrophil migration, we examined cells in the presence and absence of extracellular Ca2+, as well as intracellular Ca2(+)-buffered and Ca2(+)- depleted cells. In the presence of extracellular Ca2+, multiple increases and decreases in [Ca2+]i were frequently observed, and at least one such transient increase in [Ca2+]i occurred in every moving cell during chemokinesis, chemotaxis, and phagocytosis. In addition, neutrophils that extended pseudopodia and assumed a polarized morphology after plating onto a surface were always observed to exhibit [Ca2+]i transients even in the absence of chemoattractant. In contrast, a [Ca2+]i transient was observed in only one of the nonpolarized stationary cells that were examined (n = 15). Although some cells exhibited relatively periodic increases and decreases in [Ca2+]i, resembling the regular oscillations that have been observed in some cell types, many others exhibited increases and decreases in [Ca2+]i that varied in their timing, magnitude, and duration. Buffering of [Ca2+]i or removal of extracellular Ca2+ damped out or blocked transient increases in [Ca2+]i and reduced or inhibited the migration of neutrophils. Under these conditions, polarized cells were often observed to make repeated attempts at migration, but they remained anchored at their rear. These data suggest

  9. Thromboxane synthetase inhibitor ameliorates delayed neuronal death in the CA1 subfield of the hippocampus after transient global ischemia in gerbils.

    PubMed

    Iijima, T; Sawa, H; Shiokawa, Y; Saito, I; Ishii, H; Nakamura, Z; Sankawa, H

    1996-07-01

    Thromboxane A2 accumulates in the hippocampus after global ischemia and may play a key role in postischemic hypoperfusion. Thromboxane synthetase inhibitor (OKY-046) inhibits the accumulation of thromboxane A2 and promotes prostacycline production. Therefore, we set out to determine whether the inhibition of thromboxane synthesis would ameriolate postischemic neuronal death. Three groups of six Mongolian gerbils were subjected to different treatments: untreated control, untreated ischemia, and treated ischemia. Immediately after forebrain ischemia, OKY-046 (10 mg/kg) was injected intraperitoneally into the treated group. After 7 days of survival, the histopathology of the brain was examined. Pyramidal cell density in the CA1 sector in the treated group was 147 +/- 70 nuclei/mm (mean +/- SD), which was significantly (p < 0.05) higher than than in the untreated group (33 +/- 10 (nuclei/mm). The findings were 231 +/- 7 nuclei/mm for the control group. No significant difference was seen in the profile of temporal muscle temperature before and after ischemia between the groups. Ultrastructurally, the vessels in the CAI sector showed lumen patency in the treated group, whereas occluded vessels with an extended perivascular space were observed in the untreated group. Thromboxane synthetase inhibitor thus partly ameliorates the selective vulnerability of the hippocampus after forebrain ischemia, suggesting that thromboxane A2 is involved in the development of delayed neuronal death, independently of any thermal effect.

  10. Folic acid deficiency increases delayed neuronal death, DNA damage, platelet endothelial cell adhesion molecule-1 immunoreactivity, and gliosis in the hippocampus after transient cerebral ischemia.

    PubMed

    Hwang, In Koo; Yoo, Ki-Yeon; Suh, Hong-Won; Kim, Young Sup; Kwon, Dae Young; Kwon, Young-Guen; Yoo, Jun-Hyun; Won, Moo-Ho

    2008-07-01

    Folic acid deficiency increases stroke risk. In the present study, we examined whether folic acid deficiency enhances neuronal damage and gliosis via oxidative stress in the gerbil hippocampus after transient forebrain ischemia. Animals were exposed to a folic acid-deficient diet (FAD) for 3 months and then subjected to occlusion of both common carotid arteries for 5 min. Exposure to an FAD increased plasma homocysteine levels by five- to eightfold compared with those of animals fed with a control diet (CD). In CD-treated animals, most neurons were dead in the hippocampal CA1 region 4 days after ischemia/reperfusion, whereas, in FAD-treated animals, this occurred 3 days after ischemia/reperfusion. Immunostaining for 8-hydroxy-2'-deoxyguanosine (8-OHdG) was performed to examine DNA damage in CA1 neurons in both groups after ischemia, and it was found that 8-OHdG immunoreactivity in both FAD and CD groups peaked at 12 hr after reperfusion, although the immunoreactivity in the FAD group was much greater than that in the CD group. Platelet endothelial cell adhesion molecule-1 (PECAM-1; a final mediator of neutrophil transendothelial migration) immunoreactivity in both groups increased with time after ischemia/reperfusion: Its immunoreactivity in the FAD group was much higher than that in the CD group 3 days after ischemia/reperfusion. In addition, reactive gliosis in the ischemic CA1 region increased with time after ischemia in both groups, but astrocytosis and microgliosis in the FAD group were more severe than in the CD group at all times after ischemia. Our results suggest that folic acid deficiency enhances neuronal damage induced by ischemia. 2008 Wiley-Liss, Inc.

  11. CCK-4-induced calcium mobilization in T cells is enhanced in panic disorder.

    PubMed

    Akiyoshi, J; Moriyama, T; Isogawa, K; Miyamoto, M; Sasaki, I; Kuga, K; Yamamoto, H; Yamada, K; Fujii, I

    1996-04-01

    We investigated the effects of brain cholecystokinin (CCK) receptors on the intracellular calcium concentration and protein kinase C in human T cells. CCK-4 produced a transient increase in calcium in the absence of extracellular calcium. CCK-B agonists stimulated calcium mobilization in a dose-dependent manner in T cells. CCK-B antagonists suppressed CCK-4-induced calcium mobilization more potently than CCK-A antagonist. The recovery of desensitization of the CCK-4-induced response was delayed by phosphoserine/phosphothreonine phosphatase inhibitor, calyculin A. The responsiveness to CCK-4 was also reduced by phorbol 12,13-dibutyrate (PDBu), and this effect of PDBu was abolished completely by preincubation with staurosporine. CCK-4-induced calcium mobilization was too small to attribute the desensitization to the protein kinase C transduction pathway. T cells from patients with untreated panic disorder exhibited significantly higher cholecystokinin-4-induced calcium mobilization than those from healthy controls or patients with treated panic disorder. These results suggest that cholecystokinin-B receptor function in T cells of patients with panic disorder is enhanced. Cholecystokinin-4-induced calcium mobilization in T cells may be state dependent and useful as a biological marker of panic disorder.

  12. Evidence for glutamate-mediated activation of hippocampal neurons by glial calcium waves.

    PubMed

    Hassinger, T D; Atkinson, P B; Strecker, G J; Whalen, L R; Dudek, F E; Kossel, A H; Kater, S B

    1995-10-01

    Communication from astrocytes to neurons has recently been reported by two laboratories, but different mechanisms were though to underlie glial calcium wave activation of associated neurons. Neuronal calcium elevation by glia observed in the present report is similar to that reported previously, where an increase in neuronal calcium was demonstrated in response to glial stimulation. In the present study hippocampal neurons plated on a confluent glial monolayer displayed a transient increase in intracellular calcium following a short delay after the passage of a wave of increased calcium in underlying glia. Activated cells displayed action potentials in response to glial waves and showed antineurofilament immunoreactivity. Finally, the N-methyl-D-aspartate glutamate receptor antagonist DL-2-amino-5-phosphonovaleric acid and the non-NMDA glutamate receptor antagonist 6,7-dinitroquinoxaline-2,3-dione significantly reduced the responsiveness of neurons to glial calcium waves. Our results indicate that hippocampal neurons growing on hippocampal or cortical astrocytes respond to glial calcium waves with elevations in calcium and increased electrical activity. Furthermore, we show that in most cases this communication appears to be mediated by ionotropic glutamate receptor channels.

  13. Hypotonic-induced stretching of plasma membrane activates transient receptor potential vanilloid channels and sodium-calcium exchangers in mouse odontoblasts.

    PubMed

    Sato, Masaki; Sobhan, Ubaidus; Tsumura, Maki; Kuroda, Hidetaka; Soya, Manabu; Masamura, Aya; Nishiyama, Akihiro; Katakura, Akira; Ichinohe, Tatsuya; Tazaki, Masakazu; Shibukawa, Yoshiyuki

    2013-06-01

    A number of transient receptor potential (TRP) channels have been identified as membrane-bound sensory proteins in odontoblasts. However, the activation properties of these channels remain to be clarified. The purpose of this study was to investigate hypotonic stimulation-induced Ca(2+) entry via TRP vanilloid subfamily member (TRPV) 1, TRPV2, and TRPV4 channels, which are sensitive to osmotic and mechanical stimuli, and their functional coupling with Na(+)-Ca(2+) exchangers (NCXs) in mouse odontoblast lineage cells. We examined TRP channel activity by measuring intracellular-free Ca(2+) concentration by using fura-2 fluorescence and ionic current recordings with whole-cell patch-clamp methods. Protein localization and messenger RNA expression were characterized using immunofluorescence and reverse-transcription polymerase chain reaction analyses. Extracellular hypotonic solution-induced stretching of plasma membrane resulted in the activation of Ca(2+) influx and inward currents. TRPV1, TRPV2, and TRPV4 channel antagonists inhibited the hypotonic stimulation-induced Ca(2+) entry and currents. Their respective agonists activated Ca(2+) entry. Although the increase in the intracellular free Ca(2+) concentration decayed rapidly after the applications of these TRPV channel agonists, NCX inhibitors significantly prolonged the decay time constant. The messenger RNA expression of TRPV1, TRPV2, and TRPV4 channels; NCX isoforms 2 and 3; and dentin sialophosphoprotein were up-regulated after 24 hours of exposure to the hypotonic culture medium. These results indicate that stretching of the odontoblast membrane activates TRPV1-, TRPV2-, and TRPV4-mediated Ca(2+) entry, and increased intracellular-free Ca(2+) concentration is extruded via NCXs. These results suggest that odontoblasts can act as sensors that detect stimuli applied to exposed dentin and drive a number of cellular functions including dentinogenesis and/or sensory transduction. Copyright © 2013 American

  14. The polymodal ion channel transient receptor potential vanilloid 4 modulates calcium flux, spiking rate, and apoptosis of mouse retinal ganglion cells.

    PubMed

    Ryskamp, Daniel A; Witkovsky, Paul; Barabas, Peter; Huang, Wei; Koehler, Christopher; Akimov, Nikolay P; Lee, Suk Hee; Chauhan, Shiwani; Xing, Wei; Rentería, René C; Liedtke, Wolfgang; Krizaj, David

    2011-05-11

    Sustained increase in intraocular pressure represents a major risk factor for eye disease, yet the cellular mechanisms of pressure transduction in the posterior eye are essentially unknown. Here we show that the mouse retina expresses mRNA and protein for the polymodal transient receptor potential vanilloid 4 (TRPV4) cation channel known to mediate osmotransduction and mechanotransduction. TRPV4 antibodies labeled perikarya, axons, and dendrites of retinal ganglion cells (RGCs) and intensely immunostained the optic nerve head. Müller glial cells, but not retinal astrocytes or microglia, also expressed TRPV4 immunoreactivity. The selective TRPV4 agonists 4α-PDD and GSK1016790A elevated [Ca2+]i in dissociated RGCs in a dose-dependent manner, whereas the TRPV1 agonist capsaicin had no effect on [Ca2+](RGC). Exposure to hypotonic stimulation evoked robust increases in [Ca2+](RGC). RGC responses to TRPV4-selective agonists and hypotonic stimulation were absent in Ca2+ -free saline and were antagonized by the nonselective TRP channel antagonists Ruthenium Red and gadolinium, but were unaffected by the TRPV1 antagonist capsazepine. TRPV4-selective agonists increased the spiking frequency recorded from intact retinas recorded with multielectrode arrays. Sustained exposure to TRPV4 agonists evoked dose-dependent apoptosis of RGCs. Our results demonstrate functional TRPV4 expression in RGCs and suggest that its activation mediates response to membrane stretch leading to elevated [Ca2+]i and augmented excitability. Excessive Ca2+ influx through TRPV4 predisposes RGCs to activation of Ca2+ -dependent proapoptotic signaling pathways, indicating that TRPV4 is a component of the response mechanism to pathological elevations of intraocular pressure.

  15. Temporal expression of calcium channel subunits in satellite cells and bone marrow mesenchymal cells.

    PubMed

    Grajales, Liliana; Lach, Lawrence E; Janisch, Patrick; Geenen, David L; García, Jesús

    2015-06-01

    Bone marrow-derived mesenchymal stem cells (MSC) can be differentiated into myocytes, as well as adipocytes, chondrocytes, and osteocytes in culture. Calcium channels mediate excitation-contraction coupling and are essential for the function of muscle. However, little is known about the expression of calcium channel subunits and calcium handling in stem cells. We examined whether the expression of calcium channel subunits in MSC is similar to that of skeletal muscle satellite cells and if their levels of expression are modified after treatment with bone morphogenetic protein-4 (BMP4). We found that during myogenic differentiation, MSC first express the α2δ1 subunit and the cardiac channel subunit Cav1.2. In contrast to the α2δ1 subunit levels, the Cav1.2 subunit decreases rapidly with time. The skeletal channel subunit Cav1.1 is detected at day 3 but its expression increases considerably, resembling more closely the expression of the subunits in satellite cells. Treatment of MSC with BMP4 caused a significant increase in expression of Cav1.2, a delay in expression of Cav1.1, and a reduction in the duration of calcium transients when extracellular calcium was removed. Calcium currents and transients followed a pattern related to the expression of the cardiac (Cav1.2) or skeletal (Cav1.1) α1subunits. These results indicate that differentiation of untreated MSC resembles differentiation of skeletal muscle and that BMP4 reduces skeletal muscle calcium channel expression and promotes the expression of cardiac calcium channels during myogenic differentiation.

  16. Serum S100 calcium binding protein A4 improves the diagnostic accuracy of transient elastography for assessing liver fibrosis in hepatitis B.

    PubMed

    Yan, Li-Bo; Zhang, Qing-Bo; Zhu, Xia; He, Min; Tang, Hong

    2017-07-05

    The diagnostic performance of Fibroscan might be improved when combined with other serum fibrosis related markers. Previous study has demonstrated that S100A4 expression is associated with liver fibrosis in humans with hepatitis. This study aimed to clarify diagnostic accuracy of serum S100A4 levels for significant liver fibrosis in patients with chronic hepatitis B (CHB), and develop a combined algorithm of liver stiffness measurement (LSM) and S100A4 to predict significant liver fibrosis in CHB. One hundred and seventy-five CHB patients who had performed liver biopsy were consecutively included. We evaluated serum S100A4 levels, LSM values and other clinically-approved fibrosis scores. Serum S100A4 level was higher in CHB patients with significant fibrosis, compared to those without [199.58 (33.31-1971.96) vs. 107.15 (2.10-1038.94), P<0.001]. Using receiver-operating characteristic (ROC) analyses, the area under the curves (AUC), sensitivity, specificity and accuracy of S100A4 were found to be 0.749, 62.7%, 75.9% and 0.70 for significant fibrosis (≥Stage 2), respectively. Although not superior to LSM, these results were better than the fibrosis index based on the 4 factor (FIB-4) and the aspartate aminotransferase-to-platelet ratio index (APRI) for significant fibrosis detection. An algorithm consisting of S100A4 and LSM was derived. The AUC, sensitivity, specificity and accuracy of model based on serum S100A4 level and LSM were 0.866, 86.6%, 77.8% and 0.79 for significant fibrosis detection, superior to those based on LSM alone (0.834, 76.1%, 80.7% and 0.76, P=0.041). Serum S100A4 level was identified as a fibrosis marker of liver fibrosis in patients with CHB. Combining serum S100A4 with LSM improved the accuracy of transient elastography for hepatitis B significant fibrosis detection. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Full-length transient receptor potential vanilloid 1 channels mediate calcium signals and possibly contribute to osmoreception in vasopressin neurones in the rat supraoptic nucleus.

    PubMed

    Moriya, Taiki; Shibasaki, Rina; Kayano, Tomohiko; Takebuchi, Nami; Ichimura, Momoko; Kitamura, Naoki; Asano, Atsushi; Hosaka, Yoshinao Z; Forostyak, Oksana; Verkhratsky, Alexei; Dayanithi, Govindan; Shibuya, Izumi

    2015-01-01

    Neurones in the supraoptic nucleus (SON) of the hypothalamus possess intrinsic osmosensing mechanisms, which are lost in transient receptor potential vanilloid 1 (Trpv1)-knock-out mice. The molecular nature of the osmosensory mechanism in SON neurones is believed to be associated with the N-terminal splice variant of Trpv1, although their entire molecular structures have not been hitherto identified. In this study, we sought for TRPV1-related molecules and their function in the rat SON. We performed RT-PCR and immunohistochemistry to detect TRPV1-related molecules in the SON, and patch-clamp and imaging of the cytosolic Ca(2+) concentration ([Ca(2+)]i) to measure responses to osmolality changes and TRPV-related drugs in acutely dissociated SON neurones of rats. RT-PCR analysis revealed full-length Trpv1 and a new N-terminal splice variant, Trpv1_SON (LC008303) in the SON. Positive immunostaining was observed using an antibody against the N-terminal portion of TRPV1 in arginine vasopressin (AVP)-immunoreactive neurones, but not in oxytocin (OT)-immunoreactive neurones. Approximately 20% of SON neurones responded to mannitol (50 mM) with increased action potential firing, inward currents, and [Ca(2+)]i mobilization. Mannitol-induced responses were observed in AVP neurones isolated from AVP-eGFP transgenic rats and identified by GFP fluorescence, but not in OT neurones isolated from OT-mRFP transgenic rats and identified by RFP fluorescence. The mannitol-induced [Ca(2+)]i responses were reversibly blocked by the non-selective TRPV antagonist, ruthenium red (10 μM) and the TRPV1 antagonists, capsazepine (10 μM) and BCTC (10 μM). Although the TRPV1 agonist, capsaicin (100 nM) evoked no response at room temperature, it triggered cationic currents and [Ca(2+)]i elevation when the temperature was increased to 36°C. These results suggest that AVP neurones in the rat SON possess functional full-length TRPV1. Moreover, differences between the responses to capsaicin or

  18. Calcium Efflux from Internally Dialyzed Squid Giant Axons

    PubMed Central

    Dipolo, Reinaldo

    1973-01-01

    Calcium efflux has been studied in squid giant axons under conditions in which the internal composition was controlled by means of a dialysis perfusion technique. The mean calcium efflux from axons dialyzed with 0.3 µM calcium and 5 mM ATP was 0.26 pmol/cm2·s at 22°C. The curve relating the Ca efflux with the internal Ca concentration had a slope of about one for [Ca]i lower than 0.3µM and a slope smaller than one for higher concentrations. Under the above conditions replacement of [Na]o and [Ca]o by Tris and Mg causes an 80% fall in the calcium efflux. When the axons were dialyzed with a medium free of ATP and containing 2 mM cyanide plus 5µg/ml oligomycin, analysis of the perfusion effluent gave values of 1–4 µM ATP. Under this low ATP condition, replacement of external sodium and calcium causes the same drop in the calcium efflux. The same effect was observed at higher [Ca]i, (80 µM). These results suggest that the Na-Ca exchange component of the calcium efflux is apparently not dependent on the amounts of ATP in the axoplasm. Axons previously depleted of ATP show a significant transient drop in the calcium efflux when ATP is added to the dialysis medium. This effect probably represents the sequestering of calcium by the mitochondrial system. The consumption of calcium by the mitochondria of the axoplasm in dialyzed axons was determined to be of the order of 6.0 x 10-7 mol Ca++/mg of protein with an initial rate of 2.6 x 10-8 mol Ca++/min·mg of protein. Axons dialyzed with 2 mM cyanide after 8–10-min delays show a rise in the calcium efflux in the presence of "normal" amounts of exogenous ATP. This effect seems to indicate that cyanide, per se, can release calcium ions from internal sources. PMID:4751386

  19. Calcium Carbonate

    MedlinePlus

    Calcium carbonate is a dietary supplement used when the amount of calcium taken in the diet is not ... for healthy bones, muscles, nervous system, and heart. Calcium carbonate also is used as an antacid to relieve ...

  20. In vivo analysis of the calcium signature in the plant Golgi apparatus reveals unique dynamics.

    PubMed

    Ordenes, Viviana R; Moreno, Ignacio; Maturana, Daniel; Norambuena, Lorena; Trewavas, Anthony J; Orellana, Ariel

    2012-11-01

    The Golgi apparatus is thought to play a role in calcium homeostasis in plant cells. However, the calcium dynamics in this organelle is unknown in plants. To monitor the [Ca2+]Golgiin vivo, we obtained and analyzed Arabidopsis thaliana plants that express aequorin in the Golgi. Our results show that free [Ca2+] levels in the Golgi are higher than in the cytosol (0.70 μM vs. 0.05 μM, respectively). Stimuli such as cold shock, mechanical stimulation and hyperosmotic stress, led to a transient increase in cytosolic calcium; however, no instant change in the [Ca2+]Golgi concentration was detected. Nevertheless, a delayed increase in the [Ca2+]Golgi up to 2-3 μM was observed. Cyclopiazonic acid and thapsigargin inhibited the stimuli-induced [Ca2+]Golgi increase, suggesting that [Ca2+]Golgi levels are dependent upon the activity of Ca2+-ATPases. Treatment of these plants with the synthetic auxin analog, 2,4-dichlorophenoxy acetic acid (2,4-D), produced a slow decrease of free calcium in the organelle. Our results indicate that the plant Golgi apparatus is not involved in the generation of cytosolic calcium transients and exhibits its own dynamics modulated in part by the activity of Ca2+ pumps and hormones.

  1. A 3-day delay in synovial fluid crystal identification did not hinder the reliable detection of monosodium urate and calcium pyrophosphate crystals.

    PubMed

    Tausche, Anne-Kathrin; Gehrisch, Siegmund; Panzner, Ines; Winzer, Maria; Range, Ursula; Bornstein, Stefan R; Siegert, Gabriele; Wunderlich, Carsten; Aringer, Martin

    2013-08-01

    Arthrocentesis is an essential emergency step in managing patients with acute arthritis. To identify a bacterial infection, Gram staining is performed promptly. However, crystal analysis may not be immediately performed in many facilities. Being considered not to be stable over time, synovial fluid (SF) is sometimes discarded instead of being stored for crystal identification. The aim of this study was to assess the detectability of monosodium urate (MSU) and calcium pyrophosphate (CPP) crystals in SF over a period of 3 days. Consecutive SF samples from 75 joints were analyzed for MSU, CPP crystals, and pH. Two independent observers evaluated the samples by regular light and polarization microscopy immediately after arthrocentesis and after 1, 2, and 3 days at room temperature or at 4°C. Of 75 samples, 27 contained crystals (16 MSU, 6 CPP, 5 both); semiquantitative counts of both MSU and CPP crystals did not change significantly after 3 days. There was no new formation of crystals in any of the crystal-negative samples, which was independent of the storage temperature. Synovial fluid pH was not predictive of crystals and did not change over time. Although immediate workup for microbiology, including Gram stain and culture, is indispensable and well established, crystal analysis may at times not be immediately performed. Our study suggests that when crystal identification cannot be done immediately, it can be safely performed up to 3 days after arthrocentesis when SF is stored at 4°C or even at stable room temperature (20°C).

  2. Delayed ejaculation

    MedlinePlus

    Ejaculatory incompetence; Sex - delayed ejaculation; Retarded ejaculation; Anejaculation; Infertility - delayed ejaculation ... include: Religious background that makes the person view sex as sinful Lack of attraction for a partner ...

  3. Villin promoter-mediated transgenic expression of transient receptor potential cation channel, subfamily V, member 6 (TRPV6) increases intestinal calcium absorption in wild-type and vitamin D receptor knockout mice.

    PubMed

    Cui, Min; Li, Qiang; Johnson, Robert; Fleet, James C

    2012-10-01

    Transient receptor potential cation channel, subfamily V, member 6 (TRPV6) is an apical membrane calcium (Ca) channel in the small intestine proposed to be essential for vitamin D-regulated intestinal Ca absorption. Recent studies have challenged the proposed role for TRPV6 in Ca absorption. We directly tested intestinal TRPV6 function in Ca and bone metabolism in wild-type (WT) and vitamin D receptor knockout (VDRKO) mice. TRPV6 transgenic mice (TG) were made with intestinal epithelium-specific expression of a 3X Flag-tagged human TRPV6 protein. TG and VDRKO mice were crossed to make TG-VDRKO mice. Ca and bone metabolism was examined in WT, TG, VDRKO, and TG-VDRKO mice. TG mice developed hypercalcemia and soft tissue calcification on a chow diet. In TG mice fed a 0.25% Ca diet, Ca absorption was more than three-fold higher and femur bone mineral density (BMD) was 26% higher than WT. Renal 1α hydroxylase (CYP27B1) mRNA and intestinal expression of the natural mouse TRPV6 gene were reduced to <10% of WT but small intestine calbindin-D(9k) expression was elevated >15 times in TG mice. TG-VDRKO mice had high Ca absorption that prevented the low serum Ca, high renal CYP27B1 mRNA, low BMD, and abnormal bone microarchitecture seen in VDRKO mice. In addition, small intestinal calbindin D(9K) mRNA and protein levels were elevated in TG-VDRKO. Transgenic TRPV6 expression in intestine is sufficient to increase Ca absorption and bone density, even in VDRKO mice. VDR-independent upregulation of intestinal calbindin D(9k) in TG-VDRKO suggests this protein may buffer intracellular Ca during Ca absorption. © 2012 American Society for Bone and Mineral Research.

  4. Involvement of calcium-calmodulin protein kinase but not mitogen-activated protein kinase in light-induced phase delays and Per gene expression in the suprachiasmatic nucleus of the hamster.

    PubMed

    Yokota, S; Yamamoto, M; Moriya, T; Akiyama, M; Fukunaga, K; Miyamoto, E; Shibata, S

    2001-04-01

    It is known that Ca(2+)-dependent phosphorylation of cAMP response element binding protein (CREB) and the rapid induction of mPer1 and mPer2, mouse period genes in the suprachiasmatic nucleus (SCN) are associated with light-induced phase shifting. The CREB/CRE transcriptional pathway has been shown to be activated by calcium/calmodulin dependent kinase II (CaMKII) and mitogen-activated protein kinase (MAPK); however, there is a lack of evidence concerning whether the activation of CaMKII and/or MAPK elicited by photic stimuli are associated with the change in Per gene expression and behavioral phase shifting. In this experiment, we found there was an inhibitory effect by KN93, CaMKII inhibitor, on hamster Per1 and Per2 expression in the SCN and on phase delays in wheel running rhythm induced by light pulses. PD98059 and U0126, MAPK kinase inhibitors, however, affected neither light-induced Per1 and Per2 expression nor behavioral phase delays, even though PD98059 attenuated the light-induced phosphorylation of MAPK in the SCN. The present findings demonstrate that the light-induced activation of CaMKII plays an important role in the induction of Per1 and Per2 mRNA in the hamster SCN as well as phase shifting. These results suggest that gated induction of Per1 and/or Per2 genes through CaMKII-CREB/CRE accompanied with photic stimuli may be a critical step in phase shifting.

  5. Kidney and calcium homeostasis.

    PubMed

    Jeon, Un Sil

    2008-12-01

    Plasma calcium concentration is maintained within a narrow range (8.5-10.5 mg/dL) by the coordinated action of parathyroid hormone (PTH), 1,25(OH)2D3, calcitonin, and ionized calcium (iCa(2+)) itself. The kidney plays a key role in this process by the fine regulation of calcium excretion. More than 95% of filtered calcium is reabsorbed along the renal tubules. In the proximal tubules, 60% of filtered calcium is reabsorbed by passive mechanisms. In the thick ascending limb, 15% of calcium is reabsorbed by paracellular diffusion through paracellin-1 (claudin-16). The calcium sensing receptor (CaSR) in the basolateral membrane of the thick ascending limb senses the change in iCa(2+) and inhibits calcium reabsorption independent to PTH and 1,25(OH)2D3. The fine regulation of calcium excretion occurs in the distal convoluted tubules and connecting tubules despite the fact that only 10-15% of filtered calcium is reabsorbed there. Transient receptor potential vanilloid 5 (TRPV5) and 6 (TRPV6) in the apical membrane act as the main portal of entry, calbindin-D28K delivers Ca(2+) in the cytoplasm, and then Na(2+)/Ca(2+) exchanger (NCX1) and plasma membrane Ca(2+)-ATPase in the basolateral membrane serve as an exit. In the cortical collecting duct, TRPV6 is expressed, but the role might be negligible. In addition to PTH and 1,25(OH)2D3, acid-base disturbance, diuretics, and estrogen affect on these calcium channels. Recently, klotho and fibroblast growth factor 23 (FGF23) are suggested as new players in the calcium metabolism. Klotho is exclusively expressed in the kidney and co-localized with TRPV5, NCX1, and calbindin-D28K. Klotho increases calcium reabsorption through trafficking of TRPV5 to the plasma membrane, and also converts FGF receptor to the specific FGF23 receptor. FGF23:klotho complex bound to FGF receptor inhibits 1α-hydroxylase of vitamin D, and contributes to calcium reabsorption and phosphate excretion in the kidney.

  6. Dopaminergic regulation of dendritic calcium: fast multisite calcium imaging.

    PubMed

    Zhou, Wen-Liang; Oikonomou, Katerina D; Short, Shaina M; Antic, Srdjan D

    2013-01-01

    Optimal dopamine tone is required for the normal cortical function; however it is still unclear how cortical-dopamine-release affects information processing in individual cortical neurons. Thousands of glutamatergic inputs impinge onto elaborate dendritic trees of neocortical pyramidal neurons. In the process of ensuing synaptic integration (information processing), a variety of calcium transients are generated in remote dendritic compartments. In order to understand the cellular mechanisms of dopaminergic modulation it is important to know whether and how dopaminergic signals affect dendritic calcium transients. In this chapter, we describe a relatively inexpensive method for monitoring dendritic calcium fluctuations at multiple loci across the pyramidal dendritic tree, at the same moment of time (simultaneously). The experiments have been designed to measure the amplitude, time course and spatial extent of action potential-associated dendritic calcium transients before and after application of dopaminergic drugs. In the examples provided here the dendritic calcium transients were evoked by triggering the somatic action potentials (backpropagation-evoked), and puffs of exogenous dopamine were applied locally onto selected dendritic branches.

  7. Transient pseudohypoparathyroidism of the neonate.

    PubMed

    Minagawa, M; Yasuda, T; Kobayashi, Y; Niimi, H

    1995-08-01

    We report three neonates with transient hypoparathyroidism with elevated parathyroid hormone (PTH) levels to clarify further the pathogenesis of late neonatal hypocalcemia and calcium homeostasis. Clinical signs were seizures starting at age of 10 and 11 days. The biochemical features were characterized by transient hypocalcemia and hyperphosphatemia due to a high transport maximum of the phosphate/glomerular filtration rate, despite high PTH levels. All had normal magnesium and calcidiol levels (at least 5 micrograms/l) for their age, and this precludes hypoparathyroidism due to low magnesium levels and hyperparathyroidism due to overt vitamin D deficiency. To diagnose pseudohypoparathyroidism type I, intravenous human PTH (1-34) infusions were performed; however, they showed brisk responses of plasma and/or urine cyclic AMP in response to the PTH infusion, but the phosphaturic response to the PTH was sluggish compared to the controls. All three showed an increase in serum alkaline phosphatase activity, suggesting PTH stimulation of osteoblasts. They were treated initially with calcium lactate or (1 alpha)-hydroxycalciol/calcitriol. Their hypoparathyroid condition, however, was transient; they maintained normal serum calcium and PTH levels without medication before the age of 6 months. The etiology, possibly intracellular signal transduction distal to cyclic AMP and/or distinct from adenylate cyclase in the kidney, is developmental and the condition was resolved completely within 6 months of age. We have termed this condition "transient pseudohypoparathyroidism of the neonate".

  8. Suppression of calcium release by calcium or procaine in voltage clamped rat skeletal muscle fibres.

    PubMed Central

    García, J; Schneider, M F

    1995-01-01

    1. Calcium transients were measured in fast-twitch rat skeletal muscle fibres stretched to 3.7-4.0 microns per sarcomere, and voltage clamped at a holding potential of -80 mV using the double-seal Vaseline gap technique. Resting calcium was monitored with fura-2 and the calcium transients were measured with antipyrylazo III. The rate of release of calcium from the sarcoplasmic reticulum was calculated from the calcium transient records. The temperature was 14-17 degrees C. 2. The steady-state calcium dependence of inactivation of release was studied with a two-pulse protocol in which 200 ms prepulses of different amplitudes elevated the internal calcium concentration to various levels. The inactivation of release was then measured in the test pulse that followed the prepulses. The calcium concentration at which the inactivation of release are half-maximal was approximately 0.22 microM, the average number of bound calcium ions needed to cause inactivation was about three per release channel and the amount of release that could be inactivated was, on average, 2.48 times the steady level of release during the test pulses. 3. Procaine (0.3mM) reversibly decreased the amplitude and the rate of rise of the calcium transient. Both the peak and the steady level of release were decreased by about 50%. The shape of the release waveform was not modified. PMID:7666366

  9. Viva Delay.

    PubMed

    Yahaghi, Hossein; Sorooshian, Shahryar; Yahaghi, Javad

    2016-06-28

    The time delay between submission of a thesis and Viva Voce is intolerable for students. This letter tries to draw the readers' attention to the effect of choosing the right examiner, in order to reduce the Viva Voce delay.

  10. A model of propagating calcium-induced calcium release mediated by calcium diffusion

    PubMed Central

    1989-01-01

    The effect of sudden local fluctuations of the free sarcoplasmic [Ca++]i in cardiac cells on calcium release and calcium uptake by the sarcoplasmic reticulum (SR) was calculated with the aid of a simplified model of SR calcium handling. The model was used to evaluate whether propagation of calcium transients and the range of propagation velocities observed experimentally (0.05-15 mm s(-1)) could be predicted. Calcium fluctuations propagate by virtue of focal calcium release from the SR, diffusion through the cytosol (which is modulated by binding to troponin and calmodulin and sequestration by the SR), and subsequently induce calcium release from adjacent release sites of the SR. The minimal and maximal velocities derived from the simulation were 0.09 and 15 mm s(-1) respectively. The method of solution involved writing the diffusion equation as a difference equation in the spatial coordinates. Thus, coupled ordinary differential equations in time with banded coefficients were generated. The coupled equations were solved using Gear's sixth order predictor-corrector algorithm for stiff equations with reflective boundaries. The most important determinants of the velocity of propagation of the calcium waves were the diastolic [Ca++]i, the rate of rise of the release, and the amount of calcium released from the SR. The results are consistent with the assumptions that calcium loading causes an increase in intracellular calcium and calcium in the SR, and an increase in the amount and rate of calcium released. These two effects combine to increase the propagation velocity at higher levels of calcium loading. PMID:2738577

  11. Transient osteoporosis.

    PubMed

    Korompilias, Anastasios V; Karantanas, Apostolos H; Lykissas, Marios G; Beris, Alexandros E

    2008-08-01

    Transient osteoporosis is characterized primarily by bone marrow edema. The disease most commonly affects the hip, knee, and ankle in middle-aged men. Its cause remains unknown. The hallmark that separates transient osteoporosis from other conditions presenting with a bone marrow edema pattern is its self-limited nature. Laboratory tests usually do not contribute to the diagnosis. Plain radiographs may reveal regional osseous demineralization. Magnetic resonance imaging is used primarily for early diagnosis and monitoring disease progression. Early differentiation from more aggressive conditions with long-term sequelae is essential to avoid unnecessary treatment. Clinical entities such as transient osteoporosis of the hip and regional migratory osteoporosis are spontaneously resolving conditions. However, early differential diagnosis and surgical treatment are crucial for the patient with osteonecrosis of the hip or knee.

  12. Calcium-induced calcium release in crayfish skeletal muscle.

    PubMed Central

    Györke, S; Palade, P

    1992-01-01

    1. Cut crayfish skeletal muscle fibres were mounted in a triple Vaseline-gap voltage clamp with the Ca(2+)-sensing dye Rhod-2 allowed to diffuse in via the cut ends. Ca2+ currents across the surface/T-tubule membranes (ICa) were recorded simultaneously with changes in myoplasmic Ca2+ concentration (Ca2+ transients). 2. Excitation-contraction coupling in crayfish skeletal muscle fibres is abolished when calcium in the extracellular solution is replaced by Mg2+. 3. The amplitude of the Ca2+ transients elicited by voltage clamp pulses closely followed the amplitude of the peak calcium currents recorded simultaneously across the surface/T-tubule membranes. This included decreases in both parameters as the pulse potential approached ECa (reversal potential for Ca2+), as well as secondary Ca2+ transients accompanying large tail calcium currents occurring upon repolarization from very large depolarizations. 4. A large contribution of sarcoplasmic reticulum (SR) Ca2+ release to the Ca2+ transients was revealed by a large decrease in the transient caused by the calcium-induced calcium release (CICR) blockers procaine and tetracaine. 5. Short pulses which interrupted the calcium current while SR Ca2+ release was in progress at high rates caused the Ca2+ transient to stop rising nearly immediately after the end of the pulse in most fibres. In about 15% of the fibres the Ca2+ transients continued to rise, albeit at a slower rate, for 10-20 ms after the end of the pulse, as if released Ca2+ was able to elicit some further Ca2+ release from the SR for a while. 6. Even with fibres displaying little sign of continued release after termination of short pulses under control conditions, procaine accelerated the decay of Ca2+ transients elicited by short pulses, indicating that continued release was taking place even as the transient was declining. 7. These results suggest that CICR in crayfish fibres is more closely controlled by a small entry of Ca2+ via surface/T-tubule membrane Ca

  13. Calcium Test

    MedlinePlus

    ... Hyperthyroidism Sarcoidosis Tuberculosis Prolonged immobilization Excess vitamin D intake Thiazide diuretics Kidney transplant HIV/AIDS Low total calcium (hypocalcemia) The most common cause of low total calcium is: Low blood protein levels, especially a low level of albumin , which ...

  14. Spatiotemporal effects of sonoporation measured by real-time calcium imaging.

    PubMed

    Kumon, R E; Aehle, M; Sabens, D; Parikh, P; Han, Y W; Kourennyi, D; Deng, C X

    2009-03-01

    To investigate the effects of sonoporation, spatiotemporal evolution of ultrasound-induced changes in intracellular calcium ion concentration ([Ca(2+)](i)) was determined using real-time fura-2AM fluorescence imaging. Monolayers of Chinese hamster ovary (CHO) cells were exposed to a 1-MHz ultrasound tone burst (0.2 s, 0.45 MPa) in the presence of Optison microbubbles. At extracellular [Ca(2+)](o) of 0.9 mM, ultrasound application generated both nonoscillating and oscillating (periods 12 to 30 s) transients (changes of [Ca(2+)](i) in time) with durations of 100-180 s. Immediate [Ca(2+)](i) transients after ultrasound application were induced by ultrasound-mediated microbubble-cell interactions. In some cases, the immediately affected cells did not return to pre-ultrasound equilibrium [Ca(2+)](i) levels, thereby indicating irreversible membrane damage. Spatial evolution of [Ca(2+)](i) in different cells formed a calcium wave that was observed to propagate outward from the immediately affected cells at 7-20 microm/s over a distance >200 microm, causing delayed transients in cells to occur sometimes 60 s or more after ultrasound application. In calcium-free solution, ultrasound-affected cells did not recover, consistent with the requirement of extracellular Ca(2+) for cell membrane recovery subsequent to sonoporation. In summary, ultrasound application in the presence of Optison microbubbles can generate transient [Ca(2+)](i) changes and oscillations at a focal site and in surrounding cells via calcium waves that last longer than the ultrasound duration and spread beyond the focal site. These results demonstrate the complexity of downstream effects of sonoporation beyond the initial pore formation and subsequent diffusion-related transport through the cellular membrane.

  15. Mitochondrial calcium buffering contributes to the maintenance of Basal calcium levels in mouse taste cells.

    PubMed

    Hacker, Kyle; Medler, Kathryn F

    2008-10-01

    Taste stimuli are detected by taste receptor cells present in the oral cavity using diverse signaling pathways. Some taste stimuli are detected by G protein-coupled receptors (GPCRs) that cause calcium release from intracellular stores, whereas other stimuli depolarize taste cells to cause calcium influx through voltage-gated calcium channels (VGCCs). Although taste cells use two distinct mechanisms to transmit taste signals, increases in cytosolic calcium are critical for normal responses in both pathways. This creates a need to tightly control intracellular calcium levels in all transducing taste cells. To date, however, the mechanisms used by taste cells to regulate cytosolic calcium levels have not been identified. Studies in other cell types have shown that mitochondria can be important calcium buffers, even during small changes in calcium loads. In this study, we used calcium imaging to characterize the role of mitochondria in buffering calcium levels in taste cells. We discovered that mitochondria make important contributions to the maintenance of resting calcium levels in taste cells by routinely buffering a constitutive calcium influx across the plasma membrane. This is unusual because in other cell types, mitochondrial calcium buffering primarily affects large evoked calcium responses. We also found that the amount of calcium that is buffered by mitochondria varies with the signaling pathways used by the taste cells. A transient receptor potential (TRP) channel, likely TRPV1 or a taste variant of TRPV1, contributes to the constitutive calcium influx.

  16. Double patch clamp reveals that transient fusion (kiss-and-run) is a major mechanism of secretion in calf adrenal chromaffin cells: high calcium shifts the mechanism from kiss-and-run to complete fusion.

    PubMed

    Elhamdani, Abdeladim; Azizi, Fouad; Artalejo, Cristina R

    2006-03-15

    Transient fusion ("kiss-and-run") is accepted as a mode of transmitter release both in central neurons and neuroendocrine cells, but the prevalence of this mechanism compared with full fusion is still in doubt. Using a novel double patch-clamp method (whole cell/cell attached), permitting the recording of unitary capacitance events while stimulating under a variety of conditions including action potentials, we show that transient fusion is the predominant (>90%) mode of secretion in calf adrenal chromaffin cells. Raising intracellular Ca2+ concentration ([Ca]i) from 10 to 200 microM increases the incidence of full fusion events at the expense of transient fusion. Blocking rapid endocytosis that normally terminates transient fusion events also promotes full fusion events. Thus, [Ca]i controls the transition between transient and full fusion, each of which is coupled to different modes of endocytosis.

  17. Theoretical aspects of calcium signaling

    NASA Astrophysics Data System (ADS)

    Pencea, Corneliu Stefan

    2001-08-01

    Experiments investigating intracellular calcium dynamics have revealed that calcium signals differentially affect a variety of intracellular processes, from fertilization and cell development and differentiation to subsequent cellular activity, ending with cell death. As an intracellular messenger, calcium transmits information within and between cells, thus regulating their activity. To control such a variety of processes, calcium signals have to be very flexible and also precisely regulated. The cell uses a calcium signaling ``toolkit'', where calcium ions can act in different contexts of space, amplitude and time. For different tasks, the cell selects the particular signal, or combination of signals, that triggers the appropriate physiological response. The physical foundations of such a versatile cellular signaling toolkit involving calcium are not completely understood, despite important experimental and theoretical progress made recently. The declared goal of this work is to investigate physical mechanisms on which the propagation of differential signals can be based. The dynamics of calcium near a cluster of inositol trisphosphate (IP3) activated calcium channels has been investigated analytically and numerically. Our work has demonstrated that clusters of different IP3 receptors can show similar bistable behavior, but differ in both the transient and long term dynamics. We have also investigated the conditions under which a calcium signal propagates between a pair of localized stores. We have shown that the propagation of the signal across a random distribution of such stores shows a percolation transition manifested in the shape of the wave front. More importantly, our work indicates that specific distribution of stores can be interpreted as calcium circuits that can perform important signal analyzing task, from unidirectional propagation and coincidence detection to a complete set of logic gates. We believe that phenomena like the ones described are

  18. Calcium and osteoporosis.

    PubMed

    Nordin, B E

    1997-01-01

    Calcium is an essential nutrient that is involved in most metabolic processes and the phosphate salts of which provide mechanical rigidity to the bones and teeth, where 99% of the body's calcium resides. The calcium in the skeleton has the additional role of acting as a reserve supply of calcium to meet the body's metabolic needs in states of calcium deficiency. Calcium deficiency is easily induced because of the obligatory losses of calcium via the bowel, kidneys, and skin. In growing animals, it may impair growth, delay consolidation of the skeleton, and in certain circumstances give rise to rickets but the latter is more often due to deficiency of vitamin D. In adult animals, calcium deficiency causes mobilization of bone and leads sooner or later to osteoporosis, i.e., a reduction in the "amount of bone in the bone" or apparent bone density. The effects of calcium deficiency and oophorectomy (ovariectomy) are additive. In humans, osteoporosis is a common feature of aging. Loss of bone starts in women at the time of the menopause and in men at about age 55 and leads to an increase in fracture rates in both sexes. Individual fracture risk is inversely related to bone density, which in turn is determined by the density achieved at maturity (peak bone density) and the subsequent rate of bone loss. At issue is whether either or both of these variables is related to calcium intake. The calcium requirement of adults may be defined as the mean calcium intake needed to preserve calcium balance, i.e., to meet the significant obligatory losses of calcium through the gastrointestinal tract, kidneys, and skin. The calcium allowance is the higher intake recommended for a population to allow for individual variation in the requirement. The mean requirement defined in this way, calculated from balance studies, is about 20 mmol (800 mg) a day on Western diets, implying an allowance of 25 mmol (1000 mg) or more. Corresponding requirements and allowances have been calculated for

  19. [Delayed puberty].

    PubMed

    Edouard, T; Tauber, M

    2010-02-01

    Delayed puberty is defined in girls by the absence of breast development beyond 13 years old and in boys by the absence of testicular enlargement (< 4 ml) beyond 14 years old. Simple investigations lead to the diagnosis of central or peripheral hypogonadism and constitutional delay of puberty. In girls, delayed puberty is rare and often organic, and then Turner syndrome should be systematically suspected. In boys, delayed puberty is often constitutional and functional. Treatment is etiologic when possible, hormonal replacement therapy (oestrogen in girls and testosterone in boys) and psychological management.

  20. Astrocyte calcium signaling: the third wave.

    PubMed

    Bazargani, Narges; Attwell, David

    2016-02-01

    The discovery that transient elevations of calcium concentration occur in astrocytes, and release 'gliotransmitters' which act on neurons and vascular smooth muscle, led to the idea that astrocytes are powerful regulators of neuronal spiking, synaptic plasticity and brain blood flow. These findings were challenged by a second wave of reports that astrocyte calcium transients did not mediate functions attributed to gliotransmitters and were too slow to generate blood flow increases. Remarkably, the tide has now turned again: the most important calcium transients occur in fine astrocyte processes not resolved in earlier studies, and new mechanisms have been discovered by which astrocyte [Ca(2+)]i is raised and exerts its effects. Here we review how this third wave of discoveries has changed our understanding of astrocyte calcium signaling and its consequences for neuronal function.

  1. Calcium-induced calcium release and gap junctions mediate large-scale calcium waves in olfactory ensheathing cells in situ.

    PubMed

    Stavermann, Maren; Meuth, Patrick; Doengi, Michael; Thyssen, Anne; Deitmer, Joachim W; Lohr, Christian

    2015-08-01

    Olfactory ensheathing cells (OECs) are a specialised type of glial cells, supporting axon growth and guidance during development and regeneration of the olfactory nerve and the nerve layer of the olfactory bulb. We measured calcium signalling in OECs in olfactory bulb in-toto preparations using confocal and epifluorescence microscopy and the calcium indicator Fluo-4. We identified two subpopulations of olfactory bulb OECs: OECs in the outer sublamina of the nerve layer responded to purinergic neurotransmitters such as adenosine triphosphate with calcium transients, while OECs in the inner sublamina of the nerve layer did not respond to neurotransmitters. However, the latter generated spontaneous calcium waves that covered hundreds of cells. These calcium waves persisted in the presence of tetrodotoxin and in calcium-free saline, but were abolished after calcium store depletion with cyclopiazonic acid or inositol trisphosphate receptor blockage with 2-APB. Calcium waves could be triggered by laser photolysis of caged inositol trisphosphate. Blocking purinoceptors with PPADS had no effect on calcium wave propagation, whereas blocking gap junctions with carbenoxolone or meclofenamic acid entirely suppressed calcium waves. Increasing calcium buffer capacity in OECs with NP-EGTA ("caged" Ca(2+)) prevented calcium wave generation, and laser photolysis of NP-EGTA in a small group of OECs resulted in a calcium increase in the irradiated cells followed by a calcium wave. We conclude that calcium waves in OECs can be initiated by calcium-induced calcium release via InsP3 receptors and propagate through gap junctions, while purinergic signalling is not involved. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Acute calcium homeostasis in MHS swine.

    PubMed

    Harrison, G G; Morrell, D F; Brain, V; Jaros, G G

    1987-07-01

    To elucidate a pathogenesis for the reduction in bone calcium content observed in MHS individuals, we studied the acute calcium homeostasis of MHS swine. This was achieved by the serial measurement, with a calcium selective electrode, of calcium transients in Landrace MHS (five) and control Landrace/large white cross MH negative (five) swine following IV bolus injection of calcium gluconate 0.1 mmol X kg-1--a dose which induced an acute 45 per cent increase in plasma ionised calcium. Experimental animals were anaesthetised with ketamine 10 mg X kg-1 IM, thiopentone (intermittent divided doses) 15-25 mg X kg-1 (total) IV and N2O/O2 (FIO2 0.3) by IPPV to maintain a normal blood gas, acid/base state. The plasma ionised calcium decay curve observed in MHS swine did not differ from that of control normal swine. Further it was noted that the induced acute rise in plasma ionised calcium failed to trigger the MH syndrome in any MHS swine. It is concluded that the mechanisms of acute calcium homeostasis in MHS swine are normal. An explanation for the reduction in bone calcium content observed in MHS individuals must be sought, therefore, through study of the slow long-term component of the calcium regulatory process. In addition, the conventional strictures placed on the use, in MHS patients, of calcium gluconate are called in question.

  3. Influence of sodium borate on the early age hydration of calcium sulfoaluminate cement

    SciTech Connect

    Champenois, Jean-Baptiste; Dhoury, Mélanie; Cau Dit Coumes, Céline; Mercier, Cyrille; Revel, Bertrand; Le Bescop, Patrick; Damidot, Denis

    2015-04-15

    Calcium sulfoaluminate (CSA) cements are potential candidates for the conditioning of radioactive wastes with high sodium borate concentrations. This work thus investigates early age hydration of two CSA cements with different gypsum contents (0 to 20%) as a function of the mixing solution composition (borate and NaOH concentrations). Gypsum plays a key role in controlling the reactivity of cement. When the mixing solution is pure water, increasing the gypsum concentration accelerates cement hydration. However, the reverse is observed when the mixing solution contains sodium borate. Until gypsum exhaustion, the pore solution pH remains constant at ~ 10.8, and a poorly crystallized borate compound (ulexite) precipitates. A correlation is established between this transient precipitation and the hydration delay. Decreasing the gypsum content in the binder, or increasing the sodium content in the mixing solution, are two ways of reducing the stability of ulexite, thus decreasing the hydration delay.

  4. Yeast respond to hypotonic shock with a calcium pulse

    NASA Technical Reports Server (NTRS)

    Batiza, A. F.; Schulz, T.; Masson, P. H.

    1996-01-01

    We have used the transgenic AEQUORIN calcium reporter system to monitor the cytosolic calcium ([Ca2+]cyt) response of Saccharomyces cerevisiae to hypotonic shock. Such a shock generates an almost immediate and transient rise in [Ca2+]cyt which is eliminated by gadolinium, a blocker of stretch-activated channels. In addition, this transient rise in [Ca2+]cyt is initially insensitive to 1,2-bis-(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA), an extracellular calcium chelator. However, BAPTA abruptly attenuates the maintenance of that transient rise. These data show that hypotonic shock generates a stretch-activated channel-dependent calcium pulse in yeast. They also suggest that the immediate calcium influx is primarily generated from intracellular stores, and that a sustained increase in [Ca2+]cyt depends upon extracellular calcium.

  5. Yeast respond to hypotonic shock with a calcium pulse

    NASA Technical Reports Server (NTRS)

    Batiza, A. F.; Schulz, T.; Masson, P. H.

    1996-01-01

    We have used the transgenic AEQUORIN calcium reporter system to monitor the cytosolic calcium ([Ca2+]cyt) response of Saccharomyces cerevisiae to hypotonic shock. Such a shock generates an almost immediate and transient rise in [Ca2+]cyt which is eliminated by gadolinium, a blocker of stretch-activated channels. In addition, this transient rise in [Ca2+]cyt is initially insensitive to 1,2-bis-(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA), an extracellular calcium chelator. However, BAPTA abruptly attenuates the maintenance of that transient rise. These data show that hypotonic shock generates a stretch-activated channel-dependent calcium pulse in yeast. They also suggest that the immediate calcium influx is primarily generated from intracellular stores, and that a sustained increase in [Ca2+]cyt depends upon extracellular calcium.

  6. Approximating chaotic saddles for delay differential equations

    NASA Astrophysics Data System (ADS)

    Taylor, S. Richard; Campbell, Sue Ann

    2007-04-01

    Chaotic saddles are unstable invariant sets in the phase space of dynamical systems that exhibit transient chaos. They play a key role in mediating transport processes involving scattering and chaotic transients. Here we present evidence (long chaotic transients and fractal basins of attraction) of transient chaos in a “logistic” delay differential equation. We adapt an existing method (stagger-and-step) to numerically construct the chaotic saddle for this system. This is the first such analysis of transient chaos in an infinite-dimensional dynamical system, and in delay differential equations in particular. Using Poincaré section techniques we illustrate approaches to visualizing the saddle set, and confirm that the saddle has the Cantor-like fractal structure consistent with a chaotic saddle generated by horseshoe-type dynamics.

  7. Transient effects in Herschel/PACS spectroscopy

    NASA Astrophysics Data System (ADS)

    Fadda, Dario; Jacobson, Jeffery D.; Appleton, Philip N.

    2016-10-01

    Context. The Ge:Ga detectors used in the PACS spectrograph onboard the Herschel space telescope react to changes of the incident flux with a certain delay. This generates transient effects on the resulting signal which can be important and last for up to an hour. Aims: The paper presents a study of the effects of transients on the detected signal and proposes methods to mitigate them especially in the case of the unchopped mode. Methods: Since transients can arise from a variety of causes, we classified them in three main categories: transients caused by sudden variations of the continuum due to the observational mode used; transients caused by cosmic ray impacts on the detectors; transients caused by a continuous smooth variation of the continuum during a wavelength scan. We propose a method to disentangle these effects and treat them separately. In particular, we show that a linear combination of three exponential functions is needed to fit the response variation of the detectors during a transient. An algorithm to detect, fit, and correct transient effects is presented. Results: The solution proposed to correct the signal for the effects of transients substantially improves the quality of the final reduction with respect to the standard methods used for archival reduction in the cases where transient effects are most pronounced. Conclusions: The programs developed to implement the corrections are offered through two new interactive data reduction pipelines in the latest releases of the Herschel Interactive Processing Environment.

  8. Characterizing Nanoscale Transient Communication.

    PubMed

    Chen, Yifan; Anwar, Putri Santi; Huang, Limin; Asvial, Muhamad

    2016-04-01

    We consider the novel paradigm of nanoscale transient communication (NTC), where certain components of the small-scale communication link are physically transient. As such, the transmitter and the receiver may change their properties over a prescribed lifespan due to their time-varying structures. The NTC systems may find important applications in the biomedical, environmental, and military fields, where system degradability allows for benign integration into life and environment. In this paper, we analyze the NTC systems from the channel-modeling and capacity-analysis perspectives and focus on the stochastically meaningful slow transience scenario, where the coherence time of degeneration Td is much longer than the coding delay Tc. We first develop novel and parsimonious models to characterize the NTC channels, where three types of physical layers are considered: electromagnetism-based terahertz (THz) communication, diffusion-based molecular communication (DMC), and nanobots-assisted touchable communication (TouchCom). We then revisit the classical performance measure of ϵ-outage channel capacity and take a fresh look at its formulations in the NTC context. Next, we present the notion of capacity degeneration profile (CDP), which describes the reduction of channel capacity with respect to the degeneration time. Finally, we provide numerical examples to demonstrate the features of CDP. To the best of our knowledge, the current work represents a first attempt to systematically evaluate the quality of nanoscale communication systems deteriorating with time.

  9. [Bone involvement in idiopathic calcium lithiasis].

    PubMed

    Ghazali, A; Bataille, P; Solal, M C; Marié, A; Brazier, M; Sebert, J L; Prin, L; Fournier, A

    1995-01-01

    Bone involvement in idiopathic calcium nephrolithiasis is characterized by the following abnormalities: a) the bone density is decreased, the severity of bone loss being dependent upon the existence of hypercalciuria and upon the pathophysiology of this latter: it is inconsistent in the absence of hypercalciuria or when hypercalciuria is of the absorptive type I or II, whereas it is almost constant in fasting hypercalciuria without secondary hyperparathyroidism and constant and severe in the rare true renal hypercalciuria. b) The bone histology (which has been evaluated only in idiopathic hypercalciuric patients) mainly shows a defect in bone formation at the exception of the rare renal hypercalciuria. Osteoclastic hyperresorption is only seen in this latter type of hypercalciuria whereas in the other types of hypercalciuria only an increase of the total or inactive resorption surface is observed. This phenomenon is possibly explained only by a delayed refilling of the resorption lacunae secondary to the decreased bone formation. The osteoid thickness is either normal or decreased despite decrease in mineralization apposition rate which seems therefore to be secondary to the decreased bone formation. c) Symptomatic bone disease in hypercalciuric stone formers is exceptional and always related to a severe long term calcium restriction. d) The biochemical markers of bone resorption tend to be increased in idiopathic hypercalciuria. Hydroxyprolinuria is more often elevated than pyridinolinuria. However pyridinolinuria is negatively correlated to bone density. The contrast between the increase of these bone resorption markers and the usual normality of plasma PTH and of the osteoclastic resorptive surfaces, suggest the role of meat induced acid load which may favor inactive resorption by dissolution of bone buffers. A disturbed profile synthesis of cytokines which induce differentiation and proliferation of the osteoclasts and which modulate the osteoblastic

  10. Delayed fluorescence in photosynthesis.

    PubMed

    Goltsev, Vasilij; Zaharieva, Ivelina; Chernev, Petko; Strasser, Reto J

    2009-01-01

    Photosynthesis is a very efficient photochemical process. Nevertheless, plants emit some of the absorbed energy as light quanta. This luminescence is emitted, predominantly, by excited chlorophyll a molecules in the light-harvesting antenna, associated with Photosystem II (PS II) reaction centers. The emission that occurs before the utilization of the excitation energy in the primary photochemical reaction is called prompt fluorescence. Light emission can also be observed from repopulated excited chlorophylls as a result of recombination of the charge pairs. In this case, some time-dependent redox reactions occur before the excitation of the chlorophyll. This delays the light emission and provides the name for this phenomenon-delayed fluorescence (DF), or delayed light emission (DLE). The DF intensity is a decreasing polyphasic function of the time after illumination, which reflects the kinetics of electron transport reactions both on the (electron) donor and the (electron) acceptor sides of PS II. Two main experimental approaches are used for DF measurements: (a) recording of the DF decay in the dark after a single turnover flash or after continuous light excitation and (b) recording of the DF intensity during light adaptation of the photosynthesizing samples (induction curves), following a period of darkness. In this paper we review historical data on DF research and recent advances in the understanding of the relation between the delayed fluorescence and specific reactions in PS II. An experimental method for simultaneous recording of the induction transients of prompt and delayed chlorophyll fluorescence and decay curves of DF in the millisecond time domain is discussed.

  11. Delayed puberty.

    PubMed

    Traggiai, Cristina; Stanhope, Richard

    2002-03-01

    Puberty is the acquisition of secondary sexual characteristics associated with a growth spurt and resulting in the attainment of reproductive function. Delayed puberty is diagnosed when there is no breast development by 13.4 years of age in a girl and no testicular enlargement by 14.0 years in a boy. The aetiologies are: (i) pubertal delay, either with constitutional delay of growth and puberty or secondary to chronic illness, and (ii) pubertal failure, with hypogonadotrophic (defect in the hypothalamo-pituitary region) or hypergonadotrophic (secondary to gonadal failure) hypogonadism, or both (secondary to radio/chemotherapy). The investigation includes: history, auxological data and pubertal development examination. Boys usually require treatment and, if they do not respond, investigation. In girls it is appropriate to measure the thyroid function and karyotype first and, if necessary, to offer treatment. If they present with dysmorphic features, or positive familial history, an assessment is required before treatment.

  12. Calcium - ionized

    MedlinePlus

    ... 245. Read More Acute kidney failure Albumin - blood (serum) test Bone tumor Calcium blood test Hyperparathyroidism Hypoparathyroidism Malabsorption Milk-alkali syndrome Multiple myeloma Osteomalacia Paget disease of the bone Rickets Sarcoidosis Vitamin D Review ...

  13. Calcium - urine

    MedlinePlus

    ... Monitor someone who has a problem with the parathyroid gland , which helps control calcium levels in the blood ... much production of parathyroid hormone (PTH) by the parathyroid glands in the neck (hyperparathyroidism) Use of loop diuretics ...

  14. Calcium Carbonate.

    PubMed

    Al Omari, M M H; Rashid, I S; Qinna, N A; Jaber, A M; Badwan, A A

    2016-01-01

    Calcium carbonate is a chemical compound with the formula CaCO3 formed by three main elements: carbon, oxygen, and calcium. It is a common substance found in rocks in all parts of the world (most notably as limestone), and is the main component of shells of marine organisms, snails, coal balls, pearls, and eggshells. CaCO3 exists in different polymorphs, each with specific stability that depends on a diversity of variables. © 2016 Elsevier Inc. All rights reserved.

  15. Calcium orthophosphates

    PubMed Central

    Dorozhkin, Sergey V.

    2011-01-01

    The present overview is intended to point the readers’ attention to the important subject of calcium orthophosphates. This type of materials is of special significance for human beings, because they represent the inorganic part of major normal (bones, teeth and antlers) and pathological (i.e., those appearing due to various diseases) calcified tissues of mammals. For example, atherosclerosis results in blood vessel blockage caused by a solid composite of cholesterol with calcium orthophosphates, while dental caries and osteoporosis mean a partial decalcification of teeth and bones, respectively, that results in replacement of a less soluble and harder biological apatite by more soluble and softer calcium hydrogenphosphates. Therefore, the processes of both normal and pathological calcifications are just an in vivo crystallization of calcium orthophosphates. Similarly, dental caries and osteoporosis might be considered an in vivo dissolution of calcium orthophosphates. Thus, calcium orthophosphates hold a great significance for humankind, and in this paper, an overview on the current knowledge on this subject is provided. PMID:23507744

  16. Calcium Hydroxylapatite

    PubMed Central

    Yutskovskaya, Yana Alexandrovna; Philip Werschler, WM.

    2015-01-01

    Background: Calcium hydroxylapatite is one of the most well-studied dermal fillers worldwide and has been extensively used for the correction of moderate-to-severe facial lines and folds and to replenish lost volume. Objectives: To mark the milestone of 10 years of use in the aesthetic field, this review will consider the evolution of calcium hydroxylapatite in aesthetic medicine, provide a detailed injection protocol for a global facial approach, and examine how the unique properties of calcium hydroxylapatite provide it with an important place in today’s market. Methods: This article is an up-to-date review of calcium hydroxylapatite in aesthetic medicine along with procedures for its use, including a detailed injection protocol for a global facial approach by three expert injectors. Conclusion: Calcium hydroxylapatite is a very effective agent for many areas of facial soft tissue augmentation and is associated with a high and well-established safety profile. Calcium hydroxylapatite combines high elasticity and viscosity with an ability to induce long-term collagen formation making it an ideal agent for a global facial approach. PMID:25610523

  17. The use of size-defined DNA-functionalized calcium phosphate nanoparticles to minimise intracellular calcium disturbance during transfection.

    PubMed

    Neumann, Sebastian; Kovtun, Anna; Dietzel, Irmgard D; Epple, Matthias; Heumann, Rolf

    2009-12-01

    Calcium phosphate-based transfection methods are frequently used to transfer DNA into living cells. However, it has so far not been studied in detail to what extend the different transfection methods lead to a net calcium uptake. Upon subsequent resolution of the calcium phosphate, intracellular free ionic calcium-surges could result, inducing as side effect various physiological responses that may finally result in cell death. Here we investigated the overall calcium uptake by the human bladder carcinoma cell line T24 during the standard calcium phosphate transfection method and also during transfection with custom-made calcium phosphate/DNA nanoparticles by isotope labelling with (45)calcium. (45)Calcium uptake was strongly increased after 7h of standard calcium phosphate transfection but not if the transfection was performed with calcium phosphate nanoparticles. Time lapse imaging microscopy using the calcium-sensitive dye Fura-2 revealed large transient increases of the intracellular free calcium level during the standard calcium phosphate transfection but not if calcium phosphate nanoparticles were used. Consistently, the viability of cells transfected by calcium phosphate/DNA nanoparticles was not changed, in remarkable contrast to the standard method where considerable cell death occurred.

  18. Delayed puberty.

    PubMed

    Fenichel, Patrick

    2012-01-01

    Since puberty is a long ongoing developmental process with significant individual and population differences in timing, the definition of delayed puberty for a given individual needs to rest on simple, though arbitrary criteria based on epidemiological data. Although several genes involved in the hypothalamic-pituitary-gonadal maturation cascade have been characterized recently from familial or sporadic cases of primitive isolated hypogonadotropic hypogonadism, many genes regulating puberty onset remain undetermined. In case of delayed puberty and/or primary amenorrhea, a complete clinical examination including a detailed past history will evaluate the development of secondary sex characteristics, verify the association with a growth delay and look for specific indicative features pertaining to the etiological diagnosis. This clinical check-up completed if necessary with biological, ultrasonographic, radiological and genetic investigations will try to determine which girls will have a permanent sexual infantilism of gonadal, hypophyseal or hypothalamic origin, which girls will undergo spontaneous but delayed puberty and which girls have primary amenorrhea with developed secondary sex characteristics. Therapeutic attitude will have to integrate etiological factors, statural prognosis, bone mass preservation and psychological factors.

  19. An Attempt to Induce Transient Immunosuppression Pre-erythrocytapheresis in a Girl With Sickle Cell Disease, a History of Severe Delayed Hemolytic Transfusion Reactions and Need for Hip Prosthesis

    PubMed Central

    Cattoni, Alessandro; Cazzaniga, Giovanni; Perseghin, Paolo; Zatti, Giovanni; Gaddi, Diego; Cossio, Andrea; Biondi, Andrea; Corti, Paola; Masera, Nicoletta

    2013-01-01

    Abstract We report on a case of delayed hemolytic transfusion reaction (DHTR) occurred 7 days after an erythrocytapheresis or eritroexchange procedure (EEX) treated with rituximab and glucocorticoids in a 15-years old patient with sickle cell disease. EEX was performed despite a previous diagnosis of alloimmunization, in order to reduce hemoglobin S rate before a major surgery for avascular necrosis of the femoral head. A first dose of rituximab was administered before EEX. However, rituximab couldn’t prevent DHTR that occurred with acute hemolysis, hemoglobinuria and hyperbilirubinemia. A further dose of rituximab and three boli of methylprednisolone were given after the onset of the reaction. It is likely that the combined use of rituximab and steroids managed to gradually improve both patient’s general conditions and hemoglobin levels. Nor early or late side effects were registered in a 33-months follow-up period. This report suggests the potential effectiveness and safety of rituximab in combination with steroids in managing and mitigating the symptoms of delayed post-transfusional hemolytic reactions in alloimmunized patients affected by sickle cell disease with absolute need for erythrocytapheresis. PMID:23888247

  20. Calcium and Calcium Supplements: Achieving the Right Balance

    MedlinePlus

    ... calcium. Common calcium supplements may be labeled as: Calcium carbonate (40 percent elemental calcium) Calcium citrate (21 percent ... forms of calcium supplements are carbonate and citrate. Calcium carbonate is cheapest and therefore often a good first ...

  1. Trpv6 mediates intestinal calcium absorption during calcium restriction and contributes to bone homeostasis

    PubMed Central

    Lieben, L.; Benn, B. S.; Ajibade, D.; Stockmans, I.; Moermans, K.; Hediger, M.A.; Peng, J.B.; Christakos, S.; Bouillon, R.; Carmeliet, G.

    2010-01-01

    Energy-dependent intestinal calcium absorption is important for the maintenance of calcium and bone homeostasis, especially when dietary calcium supply is restricted. The active form of vitamin D, 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], is a crucial regulator of this process and increases the expression of the transient receptor potential vanilloid 6 (Trpv6) calcium channel that mediates calcium transfer across the intestinal apical membrane. Genetic inactivation of Trpv6 in mice (Trpv6−/−) showed, however, that TRPV6 is redundant for intestinal calcium absorption when dietary calcium content is normal/high and passive diffusion likely contributes to maintain normal serum calcium levels. At the other hand, Trpv6 inactivation impaired the increase in intestinal calcium transport following calcium restriction, however without resulting in hypocalcemia. A possible explanation is that normocalcemia is maintained at the expense of bone homeostasis, a hypothesis investigated in this study. In this study, we thoroughly analyzed the bone phenotype of Trpv6−/− mice receiving a normal (~ 1%) or low (~ 0.02%) calcium diet from weaning onwards using micro-computed tomography, histomorphometry and serum parameters. When dietary supply of calcium is normal, Trpv6 inactivation did not affect growth plate morphology, bone mass and remodeling parameters in young adult or ageing mice. Restricting dietary calcium had no effect on serum calcium levels and resulted in a comparable reduction in bone mass accrual in Trpv6+/+ and Trpv6−/− mice (−35% and 45% respectively). This decrease in bone mass was associated with a similar increase in bone resorption, whereas serum osteocalcin levels and the amount of unmineralized bone matrix were only significantly increased in Trpv6−/− mice. Taken together, our findings indicate that TRPV6 contributes to intestinal calcium transport when dietary calcium supply is limited and in this condition indirectly regulates bone formation

  2. Spatiotemporal intracellular calcium dynamics during cardiac alternans

    PubMed Central

    Restrepo, Juan G.; Karma, Alain

    2009-01-01

    Cellular calcium transient alternans are beat-to-beat alternations in the peak cytosolic calcium concentration exhibited by cardiac cells during rapid electrical stimulation or under pathological conditions. Calcium transient alternans promote action potential duration alternans, which have been linked to the onset of life-threatening ventricular arrhythmias. Here we use a recently developed physiologically detailed mathematical model of ventricular myocytes to investigate both stochastic and deterministic aspects of intracellular calcium dynamics during alternans. The model combines a spatially distributed description of intracellular calcium cycling, where a large number of calcium release units are spatially distributed throughout the cell, with a full set of ionic membrane currents. The results demonstrate that ion channel stochasticity at the level of single calcium release units can influence the whole-cell alternans dynamics by causing phase reversals over many beats during fixed frequency pacing close to the alternans bifurcation. They also demonstrate the existence of a wide range of dynamical states. Depending on the sign and magnitude of calcium-voltage coupling, calcium alternans can be spatially synchronized or desynchronized, in or out of phase with action potential duration alternans, and the node separating out-of-phase regions of calcium alternans can be expelled from or trapped inside the cell. This range of states is found to be larger than previously anticipated by including a robust global attractor where calcium alternans can be spatially synchronized but out of phase with action potential duration alternans. The results are explained by a combined theoretical analysis of alternans stability and node motion using general iterative maps of the beat-to-beat dynamics and amplitude equations. PMID:19792040

  3. Hypothermia increases aquaporin 4 (AQP4) plasma membrane abundance in human primary cortical astrocytes via a calcium/ transient receptor potential vanilloid 4 (TRPV4)- and calmodulin-mediated mechanism.

    PubMed

    Salman, Mootaz M; Kitchen, Philip; Woodroofe, M Nicola; Brown, James E; Bill, Roslyn M; Conner, Alex C; Conner, Matthew T

    2017-09-19

    Human aquaporin 4 (AQP4) is the primary water channel protein in brain astrocytes. Hypothermia is known to cause astrocyte swelling in culture, but the precise role of AQP4 in this process is unknown. Primary human cortical astrocytes were cultured under hypothermic (32°C) or normothermic (37°C) conditions. AQP4 transcript, total protein and surface localized protein were quantified using RT-qPCR, sandwich ELISA with whole cell lysates, or cell-surface biotinylation followed by ELISA analysis of the surface-localized protein, respectively. Four-hour mild hypothermic treatment increased the surface localization of AQP4 in human astrocytes to 155 ± 4% of normothermic controls, despite no change in total protein expression levels. The hypothermia-mediated increase in AQP4 surface abundance on human astrocytes was blocked using either calmodulin antagonist (trifluoperazine; TFP); TRPV4 antagonist, HC-067047 or calcium chelation using EGTA-AM. The TRPV4 agonist (GSK1016790A) mimicked the effect of hypothermia compared with untreated normothermic astrocytes. Hypothermia led to an increase in surface localization of AQP4 in human astrocytes through a mechanism likely dependent on the TRPV4 calcium channel and calmodulin activation. Understanding the effects of hypothermia on astrocytic AQP4 cell-surface expression may help develop new treatments for brain swelling based on an in-depth mechanistic understanding of AQP4 translocation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  4. Delayed puberty.

    PubMed

    Reiter, Edward O; Lee, Peter A

    2002-02-01

    Normal puberty is a time of life and a process of development that results in full adult maturity of growth, sexual development, and psychosocial achievement. Delayed puberty describes the clinical condition in which the pubertal events start late (usually > +2.5 SD later than the mean) or are attenuated in progression. The differential diagnosis includes syndromes of low gonadotropin production, usually constitutional delay of growth and maturation associated with chronic disease, but also an array of gene-mediated disorders, and syndromes of primary gonadal dysfunction with hypergonadotropic hypogonadism, including Turner and Klinefelter syndromes, and a group of acquired and genetic abnormalities. Diagnostic assessment and varied therapeutic modalities are discussed. The issues of androgen or estrogen therapy are important to assess, and growth hormone treatment remains a difficult dilemma.

  5. Calcium antagonists and vasospasm.

    PubMed

    Meyer, F B

    1990-04-01

    A critical review of the clinical data supports the conclusion that nimodipine decreases the severity of neurologic deficits and improves outcome after subarachnoid hemorrhage. The mechanisms by which mortality and morbidity are reduced are still controversial. First, the frequency of vasospasm is not altered (Figs. 5 and 6). Second, the consistent reversal of vasospasm once present has not been demonstrated either angiographically or by noninvasive cerebral blood flow studies. These observations suggest that there is either modification of microcirculatory flow (i.e., dilation of pial conducting vessels or decreased platelet aggregation) or a direct neuronal protective effect. As suggested previously, support for either mechanism is not resolute, and further investigation is necessary. Currently, nimodipine has been the most thoroughly investigated calcium antagonist both from an experimental and clinical perspective. Oral administration has had few reported complications. Therefore, the benefit/risk ratio clearly supports the prophylactic use of this calcium antagonist in patients of all clinical grades after subarachnoid hemorrhage. Evidence also indicates that starting nimodipine after the onset of delayed ischemic deficits is of benefit. Finally, it can be predicted that in the future additional calcium antagonists with more selective vascular or neuronal effects will be developed for use in neurologic disorders.

  6. Speract induces calcium oscillations in the sperm tail.

    PubMed

    Wood, Chris D; Darszon, Alberto; Whitaker, Michael

    2003-04-14

    Sea urchin sperm motility is modulated by sperm-activating peptides. One such peptide, speract, induces changes in intracellular free calcium concentration ([Ca2+]i). High resolution imaging of single sperm reveals that speract-induced changes in [Ca2+]i have a complex spatiotemporal structure. [Ca2+]i increases arise in the tail as periodic oscillations; [Ca2+]i increases in the sperm head lag those in the tail and appear to result from the summation of the tail signal transduction events. The period depends on speract concentration. Infrequent spontaneous [Ca2+]i transients were also seen in the tail of unstimulated sperm, again with the head lagging the tail. Speract-induced fluctuations were sensitive to membrane potential and calcium channel blockers, and were potentiated by niflumic acid, an anion channel blocker. 3-isobutyl-1-methylxanthine, which potentiates the cGMP/cAMP-signaling pathways, abolished the [Ca2+]i fluctuations in the tail, leading to a very delayed and sustained [Ca2+]i increase in the head. These data point to a model in which a messenger generated periodically in the tail diffuses to the head. Sperm are highly polarized cells. Our results indicate that a clear understanding of the link between [Ca2+]i and sperm motility will only be gained by analysis of [Ca2+]i signals at the level of the single sperm.

  7. Air bubble contact with endothelial cells in vitro induces calcium influx and IP3-dependent release of calcium stores

    PubMed Central

    Sobolewski, Peter; Kandel, Judith; Klinger, Alexandra L.

    2011-01-01

    Gas embolism is a serious complication of decompression events and clinical procedures, but the mechanism of resulting injury remains unclear. Previous work has demonstrated that contact between air microbubbles and endothelial cells causes a rapid intracellular calcium transient and can lead to cell death. Here we examined the mechanism responsible for the calcium rise. Single air microbubbles (50–150 μm), trapped at the tip of a micropipette, were micromanipulated into contact with individual human umbilical vein endothelial cells (HUVECs) loaded with Fluo-4 (a fluorescent calcium indicator). Changes in intracellular calcium were then recorded via epifluorescence microscopy. First, we confirmed that HUVECs rapidly respond to air bubble contact with a calcium transient. Next, we examined the involvement of extracellular calcium influx by conducting experiments in low calcium buffer, which markedly attenuated the response, or by pretreating cells with stretch-activated channel blockers (gadolinium chloride or ruthenium red), which abolished the response. Finally, we tested the role of intracellular calcium release by pretreating cells with an inositol 1,4,5-trisphosphate (IP3) receptor blocker (xestospongin C) or phospholipase C inhibitor (neomycin sulfate), which eliminated the response in 64% and 67% of cases, respectively. Collectively, our results lead us to conclude that air bubble contact with endothelial cells causes an influx of calcium through a stretch-activated channel, such as a transient receptor potential vanilloid family member, triggering the release of calcium from intracellular stores via the IP3 pathway. PMID:21633077

  8. Air bubble contact with endothelial cells in vitro induces calcium influx and IP3-dependent release of calcium stores.

    PubMed

    Sobolewski, Peter; Kandel, Judith; Klinger, Alexandra L; Eckmann, David M

    2011-09-01

    Gas embolism is a serious complication of decompression events and clinical procedures, but the mechanism of resulting injury remains unclear. Previous work has demonstrated that contact between air microbubbles and endothelial cells causes a rapid intracellular calcium transient and can lead to cell death. Here we examined the mechanism responsible for the calcium rise. Single air microbubbles (50-150 μm), trapped at the tip of a micropipette, were micromanipulated into contact with individual human umbilical vein endothelial cells (HUVECs) loaded with Fluo-4 (a fluorescent calcium indicator). Changes in intracellular calcium were then recorded via epifluorescence microscopy. First, we confirmed that HUVECs rapidly respond to air bubble contact with a calcium transient. Next, we examined the involvement of extracellular calcium influx by conducting experiments in low calcium buffer, which markedly attenuated the response, or by pretreating cells with stretch-activated channel blockers (gadolinium chloride or ruthenium red), which abolished the response. Finally, we tested the role of intracellular calcium release by pretreating cells with an inositol 1,4,5-trisphosphate (IP3) receptor blocker (xestospongin C) or phospholipase C inhibitor (neomycin sulfate), which eliminated the response in 64% and 67% of cases, respectively. Collectively, our results lead us to conclude that air bubble contact with endothelial cells causes an influx of calcium through a stretch-activated channel, such as a transient receptor potential vanilloid family member, triggering the release of calcium from intracellular stores via the IP3 pathway.

  9. Store-operated calcium entry is essential for glial calcium signalling in CNS white matter.

    PubMed

    Papanikolaou, M; Lewis, A; Butt, A M

    2017-02-28

    'Calcium signalling' is the ubiquitous response of glial cells to multiple extracellular stimuli. The primary mechanism of glial calcium signalling is by release of calcium from intracellular stores of the endoplasmic reticulum (ER). Replenishment of ER Ca(2+) stores relies on store-operated calcium entry (SOCE). However, despite the importance of calcium signalling in glial cells, little is known about their mechanisms of SOCE. Here, we investigated SOCE in glia of the mouse optic nerve, a typical CNS white matter tract that comprises bundles of myelinated axons and the oligodendrocytes and astrocytes that support them. Using quantitative RT-PCR, we identified Orai1 channels, both Stim1 and Stim2, and the transient receptor potential M3 channel (TRPM3) as the primary channels for SOCE in the optic nerve, and their expression in both astrocytes and oligodendrocytes was demonstrated by immunolabelling of optic nerve sections and cultures. The functional importance of SOCE was demonstrated by fluo-4 calcium imaging on isolated intact optic nerves and optic nerve cultures. Removal of extracellular calcium ([Ca(2+)]o) resulted in a marked depletion of glial cytosolic calcium ([Ca(2+)]i), which recovered rapidly on restoration of [Ca(2+)]o via SOCE. 2-aminoethoxydiphenylborane (2APB) significantly decreased SOCE and severely attenuated ATP-mediated calcium signalling. The results provide evidence that Orai/Stim and TRPM3 are important components of the 'calcium toolkit' that underpins SOCE and the sustainability of calcium signalling in white matter glia.

  10. Analytical applications for delayed neutrons

    SciTech Connect

    Eccleston, G.W.

    1983-01-01

    Analytical formulations that describe the time dependence of neutron populations in nuclear materials contain delayed-neutron dependent terms. These terms are important because the delayed neutrons, even though their yields in fission are small, permit control of the fission chain reaction process. Analytical applications that use delayed neutrons range from simple problems that can be solved with the point reactor kinetics equations to complex problems that can only be solved with large codes that couple fluid calculations with the neutron dynamics. Reactor safety codes, such as SIMMER, model transients of the entire reactor core using coupled space-time neutronics and comprehensive thermal-fluid dynamics. Nondestructive delayed-neutron assay instruments are designed and modeled using a three-dimensional continuous-energy Monte Carlo code. Calculations on high-burnup spent fuels and other materials that contain a mix of uranium and plutonium isotopes require accurate and complete information on the delayed-neutron periods, yields, and energy spectra. A continuing need exists for delayed-neutron parameters for all the fissioning isotopes.

  11. Calcium cyanide

    Integrated Risk Information System (IRIS)

    Jump to main content . Integrated Risk Information System Recent Additions | Contact Us Search : All EPA IRIS • You are here : EPA Home • Research • Environmental Assessment • IRIS • IRIS Summaries Redirect Page As of September 28 , 2010 , the assessment summary for calcium cyanide is included in th

  12. Survival of parvalbumin-immunoreactive neurons in the gerbil hippocampus following transient forebrain ischemia does not depend on HSP-70 protein induction.

    PubMed

    Ferrer, I; Soriano, M A; Vidal, A; Planas, A M

    1995-09-18

    HSP-70 was induced in the gerbil following 20 min of forebrain ischemia. The induction, as revealed with immunohistochemistry, is stronger and longer-lasting in CA3 and dentate gyrus than in CA1. Most neurons in this region, except GABAergic interneurons containing the calcium-binding protein parvalbumin, eventually cease to live as a result of delayed cell death. Double-labeling of inducible HSP-70 and parvalbumin has shown that no co-localization occurs in the hippocampus and neocortex of the gerbil in this model of transient forebrain ischemia. These results show that different thresholds of sensitivity and vulnerability exist for different subpopulations of neurons in the ischemic hippocampus, and suggest that HSP-70 protein induction is probably not essential for the survival of particular neuronal subpopulations subjected to transient ischemia.

  13. Transient catalytic combustor model

    NASA Technical Reports Server (NTRS)

    Tien, J. S.

    1981-01-01

    A quasi-steady gas phase and thermally thin substrate model is used to analyze the transient behavior of catalytic monolith combustors in fuel lean operation. The combustor response delay is due to the substrate thermal inertia. Fast response is favored by thin substrate, short catalytic bed length, high combustor inlet and final temperatures, and small gas channel diameters. The calculated gas and substrate temperature time history at different axial positions provides an understanding of how the catalytic combustor responds to an upstream condition change. The computed results also suggest that the gas residence times in the catalytic bed in the after bed space are correlatable with the nondimensional combustor response time. The model also performs steady state combustion calculations; and the computed steady state emission characteristics show agreement with available experimental data in the range of parameters covered. A catalytic combustor design for automotive gas turbine engine which has reasonably fast response ( 1 second) and can satisfy the emission goals in an acceptable total combustor length is possible.

  14. Transient catalytic combustor model

    NASA Astrophysics Data System (ADS)

    Tien, J. S.

    1981-05-01

    A quasi-steady gas phase and thermally thin substrate model is used to analyze the transient behavior of catalytic monolith combustors in fuel lean operation. The combustor response delay is due to the substrate thermal inertia. Fast response is favored by thin substrate, short catalytic bed length, high combustor inlet and final temperatures, and small gas channel diameters. The calculated gas and substrate temperature time history at different axial positions provides an understanding of how the catalytic combustor responds to an upstream condition change. The computed results also suggest that the gas residence times in the catalytic bed in the after bed space are correlatable with the nondimensional combustor response time. The model also performs steady state combustion calculations; and the computed steady state emission characteristics show agreement with available experimental data in the range of parameters covered. A catalytic combustor design for automotive gas turbine engine which has reasonably fast response ( 1 second) and can satisfy the emission goals in an acceptable total combustor length is possible.

  15. Calcium channels and migraine.

    PubMed

    Pietrobon, Daniela

    2013-07-01

    Missense mutations in CACNA1A, the gene that encodes the pore-forming α1 subunit of human voltage-gated Ca(V)2.1 (P/Q-type) calcium channels, cause a rare form of migraine with aura (familial hemiplegic migraine type 1: FHM1). Migraine is a common disabling brain disorder whose key manifestations are recurrent attacks of unilateral headache that may be preceded by transient neurological aura symptoms. This review, first, briefly summarizes current understanding of the pathophysiological mechanisms that are believed to underlie migraine headache, migraine aura and the onset of a migraine attack, and briefly describes the localization and function of neuronal Ca(V)2.1 channels in the brain regions that have been implicated in migraine pathogenesis. Then, the review describes and discusses i) the functional consequences of FHM1 mutations on the biophysical properties of recombinant human Ca(V)2.1 channels and native Ca(V)2.1 channels in neurons of knockin mouse models carrying the mild R192Q or severe S218L mutations in the orthologous gene, and ii) the functional consequences of these mutations on neurophysiological processes in the cerebral cortex and trigeminovascular system thought to be involved in the pathophysiology of migraine, and the insights into migraine mechanisms obtained from the functional analysis of these processes in FHM1 knockin mice. This article is part of a Special Issue entitled: Calcium channels.

  16. Delaying obsolescence.

    PubMed

    Lawlor, Rob

    2015-04-01

    This paper argues that those who emphasise that designers and engineers need to plan for obsolescence are too conservative. Rather, in addition to planning for obsolescence, designers and engineers should also think carefully about what they could do in order delay obsolescence. They should so this by thinking about the design itself, thinking of ways in which products could be useful and appealing for longer before becoming obsolete, as well thinking about the wider context in terms of the marketing of products, and also the social and legal. The paper also considers objections that these suggestions are unrealistically idealistic, failing to recognise the economic realities. I respond to these objections appealing to research in advertising, psychology, cognitive linguistics, philosophy, history, and economics, as well as drawing on the Statement of Ethical Principles developed by the Royal Academy of Engineering and the Engineering Council.

  17. Activation of store-mediated calcium entry by secretion-like coupling between the inositol 1,4,5-trisphosphate receptor type II and human transient receptor potential (hTrp1) channels in human platelets.

    PubMed Central

    Rosado, J A; Sage, S O

    2001-01-01

    Physical coupling between inositol 1,4,5-trisphosphate (IP(3)) receptors and transient receptor potential (Trp) channels has been demonstrated in both transfected and normal cells as a candidate mechanism for the activation of store-mediated Ca(2+) entry (SMCE). We have investigated the properties of the coupling between the type II IP(3) receptor and naturally expressed human Trp1 (hTrp1) in human platelets. Treatment with xestospongin C, an inhibitor of IP(3) receptor function, abolished SMCE and coupling between the IP(3) receptor and hTrp1. The coupling was activated by depletion of the intracellular Ca(2+) stores, and was reversed by refilling of the stores. We have also examined the role of actin filaments in the activation and maintenance of the coupling. Stabilization of the cortical actin network with jasplakinolide prevented the coupling, indicating that, as with secretion, the actin filaments at the cell periphery act as a negative clamp which prevents constitutive coupling. In addition, the actin cytoskeleton plays a positive role, since disruption of the actin network inhibited the coupling when the Ca(2+) stores were depleted. These results provide strong evidence for the activation of SMCE by a secretion-like coupling mechanism involving a reversible association between IP(3) receptors and hTrp1 in normal human cells. PMID:11336651

  18. Calcium and bone disease

    PubMed Central

    Blair, Harry C.; Robinson, Lisa J.; Huang, Christopher L.-H.; Sun, Li; Friedman, Peter A.; Schlesinger, Paul H.; Zaidi, Mone

    2013-01-01

    Calcium transport and calcium signaling are of basic importance in bone cells. Bone is the major store of calcium and a key regulatory organ for calcium homeostasis. Bone, in major part, responds to calcium-dependent signals from the parathyroids and via vitamin D metabolites, although bone retains direct response to extracellular calcium if parathyroid regulation is lost. Improved understanding of calcium transporters and calcium-regulated cellular processes has resulted from analysis of genetic defects, including several defects with low or high bone mass. Osteoblasts deposit calcium by mechanisms including phosphate and calcium transport with alkalinization to absorb acid created by mineral deposition; cartilage calcium mineralization occurs by passive diffusion and phosphate production. Calcium mobilization by osteoclasts is mediated by acid secretion. Both bone forming and bone resorbing cells use calcium signals as regulators of differentiation and activity. This has been studied in more detail in osteoclasts, where both osteoclast differentiation and motility are regulated by calcium. PMID:21674636

  19. Acidic calcium pools in intraerythrocytic malaria parasites.

    PubMed

    Garcia, C R; Ann, S E; Tavares, E S; Dluzewski, A R; Mason, W T; Paiva, F B

    1998-06-01

    Calcium uptake by permeabilized P. chabaudi malaria parasites was measured at the trophozoite stage to assess calcium accumulation by the parasite organelles. As determined with 45Ca2+, the total calcium in the parasite was found to be 11 pmoles/10(7) cells. When the K+/H+ uncoupling agent, nigericin was present, this level fell to 6.5 pmoles/10(7) cells. A similar regulatory mechanism operates in P. falciparum, since addition of nigericin to intact parasites in calcium free-medium resulted in a transient elevation of free calcium in the parasite cytosol, as judged by fluorescent imaging of single cells loaded with the calcium indicator fluo-3,AM. 7-Chloro-4-nitrobenz-2-oxa-1,3-diazole (NBD-Cl) and monensin, inhibitors of H+ ATPases and K+/H+ ionophore respectively, induced calcium elevation in fluo-3, AM-labeled intact P. chabaudi parasites. We conclude that malaria parasites utilize acidic intracellular compartments to regulate their cytosolic free calcium concentration.

  20. Transient triggering of near and distant earthquakes

    USGS Publications Warehouse

    Gomberg, J.; Blanpied, M.L.; Beeler, N.M.

    1997-01-01

    We demonstrate qualitatively that frictional instability theory provides a context for understanding how earthquakes may be triggered by transient loads associated with seismic waves from near and distance earthquakes. We assume that earthquake triggering is a stick-slip process and test two hypotheses about the effect of transients on the timing of instabilities using a simple spring-slider model and a rate- and state-dependent friction constitutive law. A critical triggering threshold is implicit in such a model formulation. Our first hypothesis is that transient loads lead to clock advances; i.e., transients hasten the time of earthquakes that would have happened eventually due to constant background loading alone. Modeling results demonstrate that transient loads do lead to clock advances and that the triggered instabilities may occur after the transient has ceased (i.e., triggering may be delayed). These simple "clock-advance" models predict complex relationships between the triggering delay, the clock advance, and the transient characteristics. The triggering delay and the degree of clock advance both depend nonlinearly on when in the earthquake cycle the transient load is applied. This implies that the stress required to bring about failure does not depend linearly on loading time, even when the fault is loaded at a constant rate. The timing of instability also depends nonlinearly on the transient loading rate, faster rates more rapidly hastening instability. This implies that higher-frequency and/or longer-duration seismic waves should increase the amount of clock advance. These modeling results and simple calculations suggest that near (tens of kilometers) small/moderate earthquakes and remote (thousands of kilometers) earthquakes with magnitudes 2 to 3 units larger may be equally effective at triggering seismicity. Our second hypothesis is that some triggered seismicity represents earthquakes that would not have happened without the transient load (i

  1. Transient drainage summary report

    SciTech Connect

    1996-09-01

    This report summarizes the history of transient drainage issues on the Uranium Mill Tailings Remedial Action (UMTRA) Project. It defines and describes the UMTRA Project disposal cell transient drainage process and chronicles UMTRA Project treatment of the transient drainage phenomenon. Section 4.0 includes a conceptual cross section of each UMTRA Project disposal site and summarizes design and construction information, the ground water protection strategy, and the potential for transient drainage.

  2. Spindle function in Xenopus oocytes involves possible nanodomain calcium signaling

    PubMed Central

    Li, Ruizhen; Leblanc, Julie; He, Kevin; Liu, X. Johné

    2016-01-01

    Intracellular calcium transients are a universal phenomenon at fertilization and are required for egg activation, but the exact role of Ca2+ in second-polar-body emission remains unknown. On the other hand, similar calcium transients have not been demonstrated during oocyte maturation, and yet, manipulating intracellular calcium levels interferes with first-polar-body emission in mice and frogs. To determine the precise role of calcium signaling in polar body formation, we used live-cell imaging coupled with temporally precise intracellular calcium buffering. We found that BAPTA-based calcium chelators cause immediate depolymerization of spindle microtubules in meiosis I and meiosis II. Surprisingly, EGTA at similar or higher intracellular concentrations had no effect on spindle function or polar body emission. Using two calcium probes containing permutated GFP and the calcium sensor calmodulin (Lck-GCaMP3 and GCaMP3), we demonstrated enrichment of the probes at the spindle but failed to detect calcium increase during oocyte maturation at the spindle or elsewhere. Finally, endogenous calmodulin was found to colocalize with spindle microtubules throughout all stages of meiosis. Our results—most important, the different sensitivities of the spindle to BAPTA and EGTA—suggest that meiotic spindle function in frog oocytes requires highly localized, or nanodomain, calcium signaling. PMID:27582389

  3. Intracellular Calcium Release at Fertilization in the Sea Urchin Egg

    PubMed Central

    Steinhardt, R.; Zucker, R.; Schattenand, G.

    2015-01-01

    Fertilization or ionophore activation of Lytechinus pictus eggs can be monitored after injection with the Ca-sensitive photoprotein aequorin to estimate calcium release during activation. We estimate the peak calcium transient to reach concentrations of 2.5–4.5 μM free calcium 45–60 sec after activation and to last 2–3 min, assuming equal Ca2+ release throughout the cytoplasm. Calcium is released from an intracellular store, since similar responses are obtained during fertilization at a wide range of external calcium concentrations or in zero-calcium seawater in ionophore activations. In another effort to estimate free calcium at fertilization, we isolated egg cortices, added back calcium quantitatively, and fixed for observation with a scanning electron microscope. In this way, we determined that the threshold for discharge of the cortical granules is between 9 and 18 μM Ca2+. Therefore, the threshold for the in vitro cortical reaction is about five times the amount of free calcium, assuming equal distribution in the egg. This result suggests that transient calcium release is confined to the inner subsurface of the egg. PMID:326602

  4. Excitability in a stochastic differential equation model for calcium puffs.

    PubMed

    Rüdiger, S

    2014-06-01

    Calcium dynamics are essential to a multitude of cellular processes. For many cell types, localized discharges of calcium through small clusters of intracellular channels are building blocks for all spatially extended calcium signals. Because of the large noise amplitude, the validity of noise-approximating model equations for this system has been questioned. Here we revisit the master equations for local calcium release, examine the multiple scales of calcium concentrations in the cluster domain, and derive adapted stochastic differential equations. We show by comparison of discrete and continuous trajectories that the Langevin equations can be made consistent with the master equations even for very small channel numbers. In its deterministic limit, the model reveals that excitability, a dynamical phenomenon observed in many natural systems, is at the core of calcium puffs. The model also predicts a bifurcation from transient to sustained release which may link local and global calcium signals in cells.

  5. Calcium signals and calcium channels in osteoblastic cells

    NASA Technical Reports Server (NTRS)

    Duncan, R. L.; Akanbi, K. A.; Farach-Carson, M. C.

    1998-01-01

    Calcium (Ca2+) channels are present in non-excitable as well as in excitable cells. In bone cells of the osteoblast lineage, Ca2+ channels play fundamental roles in cellular responses to external stimuli including both mechanical forces and hormonal signals. They are also proposed to modulate paracrine signaling between bone-forming osteoblasts and bone-resorbing osteoclasts at local sites of bone remodeling. Calcium signals are characterized by transient increases in intracellular Ca2+ levels that are associated with activation of intracellular signaling pathways that control cell behavior and phenotype, including patterns of gene expression. Development of Ca2+ signals is a tightly regulated cellular process that involves the concerted actions of plasma membrane and intracellular Ca2+ channels, along with Ca2+ pumps and exchangers. This review summarizes the current state of knowledge concerning the structure, function, and role of Ca2+ channels and Ca2+ signals in bone cells, focusing on the osteoblast.

  6. Calcium signals and calcium channels in osteoblastic cells

    NASA Technical Reports Server (NTRS)

    Duncan, R. L.; Akanbi, K. A.; Farach-Carson, M. C.

    1998-01-01

    Calcium (Ca2+) channels are present in non-excitable as well as in excitable cells. In bone cells of the osteoblast lineage, Ca2+ channels play fundamental roles in cellular responses to external stimuli including both mechanical forces and hormonal signals. They are also proposed to modulate paracrine signaling between bone-forming osteoblasts and bone-resorbing osteoclasts at local sites of bone remodeling. Calcium signals are characterized by transient increases in intracellular Ca2+ levels that are associated with activation of intracellular signaling pathways that control cell behavior and phenotype, including patterns of gene expression. Development of Ca2+ signals is a tightly regulated cellular process that involves the concerted actions of plasma membrane and intracellular Ca2+ channels, along with Ca2+ pumps and exchangers. This review summarizes the current state of knowledge concerning the structure, function, and role of Ca2+ channels and Ca2+ signals in bone cells, focusing on the osteoblast.

  7. Hamlet's delay.

    PubMed

    Dendy, E B

    2001-01-01

    This paper raises a question about Freud's understanding of Hamlet and offers a fresh psychoanalytic perspective on the play, emphasizing the psychological use made of Hamlet by the audience. It suggests Hamlet and Claudius both serve as sacrificial objects, scapegoats, for the audience, embodying, through a mechanism of both identification and disidentification, the fulfillment, punishment, and renunciation of the audience's forbidden (i.e. Oedipal) wishes. The play is thus seen to represent unconsciously a rite of sacrifice in which both Claudius and Hamlet, both the father and the son, are led, albeit circuitously, to the slaughter. The need for delay on the part of Hamlet is thus seen to arise not merely from Hamlet's psychology, whatever the audience may project onto it, but ultimately from the function (both sadistic and defensive) that the sacrificial spectacle, the play as a whole, serves for the audience. The paper also speculates somewhat on the role of tragic heroes and heroines in general, and points to the unconscious collusion that permits author and audience to make use of them. Finally, in an addendum, the paper discusses the work of René Girard, a nonpsychoanalytic thinker whose ideas nonetheless are somewhat similar to those presented here.

  8. Calcium and Vitamin D

    USDA-ARS?s Scientific Manuscript database

    Calcium is required for the bone formation phase of bone remodeling. Typically about 5 nmol (200 mg) of calcium is removed from the adult skeleton and replaced each day. To supply this amount, one would need to consume about 600 mg of calcium, since calcium is not very efficiently absorbed. Calcium ...

  9. Cloning and expression of a novel mammalian homolog of Drosophila transient receptor potential (Trp) involved in calcium entry secondary to activation of receptors coupled by the Gq class of G protein.

    PubMed

    Boulay, G; Zhu, X; Peyton, M; Jiang, M; Hurst, R; Stefani, E; Birnbaumer, L

    1997-11-21

    Hormonal stimulation of Gq-protein coupled receptors triggers Ca2+ mobilization from internal stores. This is followed by a Ca2+ entry through the plasma membrane. Drosophila Trp and Trpl proteins have been implicated in Ca2+ entry and three mammalian homologues of Drosophila Trp/Trpl, hTrp1, hTrp3 and bTrp4 (also bCCE) have been cloned and expressed. Using mouse brain RNA as template, we report here the polymerase chain reaction-based cloning and functional expression of a novel Trp, mTrp6. The cDNA encodes a protein of 930 amino acids, the sequence of which is 36.8, 36.3, 43.1, 38.6, and 74. 1% identical to Drosophila Trp and Trpl, bovine Trp4, and human Trp1 and Trp3, respectively. Transient expression of mTrp6 in COS.M6 cells by transfection of the full-length mTrp6 cDNA increases Ca2+ entry induced by stimulation of co-transfected M5 muscarinic acetylcholine receptor with carbachol (CCh), as seen by dual wavelength fura 2 fluorescence ratio measurements. The mTrp6-mediated increase in Ca2+ entry activity was blocked by SKF-96365 and La3+. Ca2+ entry activity induced by thapsigargin was similar in COS cells transfected with or without the mTrp6 cDNA. The thapsigargin-stimulated Ca2+ entry could not be further stimulated by CCh in control cells but was markedly increased in mTrp6-transfected cells. Records of whole cell transmembrane currents developed in response to voltage ramps from -80 to +40 mV in control HEK cells and HEK cells stably expressing mTrp6 revealed the presence of a muscarinic receptor responsive non-selective cation conductance in Trp6 cells that was absent in control cells. Our data support the hypothesis that mTrp6 encodes an ion channel subunit that mediates Ca2+ entry stimulated by a G-protein coupled receptor, but not Ca2+ entry stimulated by intracellular Ca2+ store depletion.

  10. Sodium-calcium exchange during the action potential in guinea-pig ventricular cells.

    PubMed Central

    Egan, T M; Noble, D; Noble, S J; Powell, T; Spindler, A J; Twist, V W

    1989-01-01

    1. Slow inward tail currents attributable to electrogenic sodium-calcium exchange can be recorded by imposing hyperpolarizing voltage clamp pulses during the normal action potential of isolated guinea-pig ventricular cells. The hyperpolarizations return the membrane to the resting potential (between -65 and -88 m V) allowing an inward current to be recorded. This current usually has peak amplitude when repolarization is imposed during the first 50 ms after the action potential upstroke, but becomes negligible once the final phase of repolarization is reached. The envelope of peak current tail amplitudes strongly resembles that of the intracellular calcium transient recorded in other studies. 2. Repetitive stimulation producing normal action potentials at a frequency of 2 Hz progressively augments the tail current recorded immediately after the stimulus train. Conversely, if each action potential is prematurely terminated at 0.1 Hz, repetitive stimulation produces a tail current much smaller than the control value. The control amplitude of inward current is only maintained if interrupted action potentials are separated by at least one full 'repriming' action potential. These effects mimic those on cell contraction (Arlock & Wohlfart, 1986) and suggest that progressive changes in tail current are controlled by variations in the amplitude and time course of the intracellular calcium transient. 3. When intracellular calcium is buffered sufficiently to abolish contraction, the tail current is abolished. Substitution of calcium with strontium greatly reduces the tail current. 4. The inward tail current can also be recorded at more positive membrane potentials using standard voltage clamp pulse protocols. In this way it was found that temperature has a large effect on the tail current, which can change from net inward at 22 degrees C to net outward at 37 degrees C. The largest inward currents are usually recorded at about 30 degrees C. It is shown that this effect is

  11. UAVs and Control Delays

    DTIC Science & Technology

    2005-09-01

    Transport Delay itI tl2 s2+(tl +t2tI2)s+ 1 Delay Figure 17 A Matlab Simulink model used to compare a simple delayed system , in this case an integrator...23 3 Control of tim e-delay system s...discuss the various sources of delays, leading to an assessment of typical delays to be expected in a few example systems . Sources of delay that will

  12. Biologically formed amorphous calcium carbonate.

    PubMed

    Weiner, Steve; Levi-Kalisman, Yael; Raz, Sefi; Addadi, Lia

    2003-01-01

    Many organisms from a wide variety of taxa produce amorphous calcium carbonate (ACC), despite the fact that it is inherently unstable and relatively soluble in its pure state. These properties also make it difficult to detect and characterize ACC. Raman spectroscopy is a particularly useful method for investigating ACC because the sample can be examined wet, and extended X-ray absorption fine structure (EXAFS) analysis can provide detailed information on the short-range order. Other methods for characterizing ACC include infrared spectroscopy, thermogravimetric analysis and differential thermal analysis (TGA and DTA), transmission electron microscopy (TEM), and electron and X-ray diffraction. Because of the difficulties involved, we suspect that ACC is far more widely distributed than is presently known, and a comparison of EXAFS spectra shows that different biogenic ACC phases have different short-range order structures. We also suspect that ACC fulfils many different functions, including as a transient precursor phase during the formation of crystalline calcium carbonate.

  13. Rapid and delayed effects of epidermal growth factor on gluconeogenesis.

    PubMed Central

    Soler, C; Soley, M

    1993-01-01

    Most reports on the effects of epidermal growth factor (EGF) on gluconeogenesis have indicated that such effects depend on the substrate used and are only observable after a lag time of 30-40 min. Recently, an immediate and transient effect of EGF on glucose synthesis was described in a perfused liver system. Here we extend the study of the effect of EGF on gluconeogenesis to isolated hepatocytes from fasted rats. The delayed effect of EGF on gluconeogenesis was studied by adding the substrate 40 min after the peptide. Under these conditions EGF increased glucose synthesis from pyruvate, decreased it when the substrate was lactate or glycerol and did not modify gluconeogensis from fructose or dihydroxyacetone. EGF did not affect the metabolic flux through glycolysis, determined as the production of lactate+pyruvate from 30 mM glucose. Furthermore, EGF did not modify the metabolic flux through pyruvate kinase, determined as the production of lactate+pyruvate from 1 mM dihydroxyacetone. The differing effects of EGF on gluconeogenesis depending on the substrate used can be explained by the effects of EGF on the cytosolic redox state (measured as the lactate/pyruvate ratio). About 20 min after the addition of EGF, the mitochondrial redox state (measured as the 3-hydroxybutyrate/acetoacetate ratio) decreased. This effect of EGF was blocked by ammonium, which also abolished the effect of the peptide on gluconeogenesis. Thus the effect of EGF at the mitochondrial level appears to be necessary for its effects on gluconeogenesis. Taken together, our results indicate that the delayed effects of EGF on gluconeogenesis are secondary to the effects of the peptide at both the mitochondrial and cytosolic levels. In addition to these delayed effects, we observed that EGF rapidly and transiently stimulated glucose synthesis from lactate, decreased the cytosolic redox state and increased oxygen consumption. All of these rapid effects required the presence of extracellular calcium

  14. Design and mechanistic insight into ultrafast calcium indicators for monitoring intracellular calcium dynamics

    PubMed Central

    Helassa, Nordine; Podor, Borbala; Fine, Alan; Török, Katalin

    2016-01-01

    Calmodulin-based genetically encoded fluorescent calcium indicators (GCaMP-s) are powerful tools of imaging calcium dynamics from cells to freely moving animals. High affinity indicators with slow kinetics however distort the temporal profile of calcium transients. Here we report the development of reduced affinity ultrafast variants of GCaMP6s and GCaMP6f. We hypothesized that GCaMP-s have a common kinetic mechanism with a rate-limiting process in the interaction of the RS20 peptide and calcium-calmodulin. Therefore we targeted specific residues in the binding interface by rational design generating improved indicators with GCaMP6fu displaying fluorescence rise and decay times (t1/2) of 1 and 3 ms (37 °C) in vitro, 9 and 22-fold faster than GCaMP6f respectively. In HEK293T cells, GCaMP6fu revealed a 4-fold faster decay of ATP-evoked intracellular calcium transients than GCaMP6f. Stimulation of hippocampal CA1 pyramidal neurons with five action potentials fired at 100 Hz resulted in a single dendritic calcium transient with a 2-fold faster rise and 7-fold faster decay time (t1/2 of 40 ms) than GCaMP6f, indicating that tracking high frequency action potentials may be limited by calcium dynamics. We propose that the design strategy used for generating GCaMP6fu is applicable for the acceleration of the response kinetics of GCaMP-type calcium indicators. PMID:27922063

  15. Calcium and Vitamin D

    MedlinePlus

    ... A calcium-rich diet (including dairy, nuts, leafy greens and fish) helps to build and protect your ... yogurt and cheese are high in calcium. Certain green vegetables and other foods contain calcium in smaller ...

  16. Potentiation of fractional sarcoplasmic reticulum calcium release by total and free intra-sarcoplasmic reticulum calcium concentration.

    PubMed Central

    Shannon, T R; Ginsburg, K S; Bers, D M

    2000-01-01

    Our aim was to measure the influence of sarcoplasmic reticulum (SR) calcium content ([Ca](SRT)) and free SR [Ca] ([Ca](SR)) on the fraction of SR calcium released during voltage clamp steps in isolated rabbit ventricular myocytes. [Ca](SRT), as measured by caffeine application, was progressively increased by conditioning pulses. Sodium was absent in both the intracellular and in the extracellular solutions to block sodium/calcium exchange. Total cytosolic calcium flux during the transient was inferred from I(Ca), [Ca](SRT), [Ca](i), and cellular buffering characteristics. Fluxes via the calcium current (I(Ca)), the SR calcium pump, and passive leak from the SR were evaluated to determine SR calcium release flux (J(rel)). Excitation-contraction (EC) coupling was characterized with respect to both gain (integral J(rel)/integral I(Ca)) and fractional SR calcium release. Both parameters were virtually zero for a small, but measurable [Ca](SRT). Gain and fractional SR calcium release increased steeply and nonlinearly with both [Ca](SRT) and [Ca](SR). We conclude that potentiation of EC coupling can be correlated with both [Ca](SRT) and [Ca](SR). While fractional SR calcium release was not linearly dependent upon [Ca](SR), intra-SR calcium may play a crucial role in regulating the SR calcium release process. PMID:10620297

  17. Intracellular sphingosine releases calcium from lysosomes

    PubMed Central

    Höglinger, Doris; Haberkant, Per; Aguilera-Romero, Auxiliadora; Riezman, Howard; Porter, Forbes D; Platt, Frances M; Galione, Antony; Schultz, Carsten

    2015-01-01

    To elucidate new functions of sphingosine (Sph), we demonstrate that the spontaneous elevation of intracellular Sph levels via caged Sph leads to a significant and transient calcium release from acidic stores that is independent of sphingosine 1-phosphate, extracellular and ER calcium levels. This photo-induced Sph-driven calcium release requires the two-pore channel 1 (TPC1) residing on endosomes and lysosomes. Further, uncaging of Sph leads to the translocation of the autophagy-relevant transcription factor EB (TFEB) to the nucleus specifically after lysosomal calcium release. We confirm that Sph accumulates in late endosomes and lysosomes of cells derived from Niemann-Pick disease type C (NPC) patients and demonstrate a greatly reduced calcium release upon Sph uncaging. We conclude that sphingosine is a positive regulator of calcium release from acidic stores and that understanding the interplay between Sph homeostasis, calcium signaling and autophagy will be crucial in developing new therapies for lipid storage disorders such as NPC. DOI: http://dx.doi.org/10.7554/eLife.10616.001 PMID:26613410

  18. The calcium paradox in isolated frog heart: Ringer revisited.

    PubMed

    Ruigrok, T J; Slade, A M; Poole-Wilson, P A

    1983-12-01

    Restoration of a normal calcium concentration in the perfusate of isolated hearts after a short period of calcium-free perfusion may result in irreversible cell damage (calcium paradox). We have compared the calcium paradox in rat and frog hearts. Perfusion with zero calcium for 8 min at 37 degrees C predisposed the rat heart to the paradox. After the reintroduction of calcium to the perfusate resting tension rose, developed tension did not recover, ultrastructural changes occurred and enzyme loss was substantial. In the frog heart a calcium paradox did not occur after 8 min of calcium-free perfusion at 23 degrees C. Removal of both potassium and calcium caused a rise in resting tension on reintroduction of control solution, but the rise was only transient and absent if potassium was present during the perfusion with zero calcium. At 37 degrees C no complete calcium paradox occurred after 8 min calcium-free perfusion. Only a small rise in resting tension was apparent, and developed tension partially recovered. A calcium paradox could only be induced in the frog heart after calcium-free perfusion at 37 degrees C for 30 min. Ultrastructural changes were apparent and resting tension rose but even under these conditions the recovery of developed tension was not abolished. Release of creatine kinase was 161 +/- 55 IU/g dry tissue during the 15 min after reintroduction of calcium (n = 5). Calcium-free perfusion for 8 min resulted in a smaller release of creatine kinase over 15 min (39 +/- 11 IU/g dry tissue. n = 5).(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Calcium-induced calcium release supports recruitment of synaptic vesicles in auditory hair cells

    PubMed Central

    Schnee, Michael E.; Ricci, Anthony J.

    2015-01-01

    Hair cells from auditory and vestibular systems transmit continuous sound and balance information to the central nervous system through the release of synaptic vesicles at ribbon synapses. The high activity experienced by hair cells requires a unique mechanism to sustain recruitment and replenishment of synaptic vesicles for continuous release. Using pre- and postsynaptic electrophysiological recordings, we explored the potential contribution of calcium-induced calcium release (CICR) in modulating the recruitment of vesicles to auditory hair cell ribbon synapses. Pharmacological manipulation of CICR with agents targeting endoplasmic reticulum calcium stores reduced both spontaneous postsynaptic multiunit activity and the frequency of excitatory postsynaptic currents (EPSCs). Pharmacological treatments had no effect on hair cell resting potential or activation curves for calcium and potassium channels. However, these drugs exerted a reduction in vesicle release measured by dual-sine capacitance methods. In addition, calcium substitution by barium reduced release efficacy by delaying release onset and diminishing vesicle recruitment. Together these results demonstrate a role for calcium stores in hair cell ribbon synaptic transmission and suggest a novel contribution of CICR in hair cell vesicle recruitment. We hypothesize that calcium entry via calcium channels is tightly regulated to control timing of vesicle fusion at the synapse, whereas CICR is used to maintain a tonic calcium signal to modulate vesicle trafficking. PMID:26510758

  20. Delayed childbearing.

    PubMed

    Francis, H H

    1985-06-01

    In many Western nations, including England and Wales, Sweden, and the US, there is a current trend towards delayed childbearing because of women's pursuit of a career, later marriage, a longer interval between marriage and the 1st birth, and the increasing number of divorcees having children in a 2nd marriage. Wives of men in social classes I and II in England and Wales are, on average, having their 1st child at 27.9 years, 1.6 years later than in 1973, and in social classes IV and V, 1.0 years later than in 1973, at a mean age of 23.7 years. Consequently, the total period fertility rate for British women aged 30-34 years, 35-39 years, and 40 and over increased by 4%, 2%, and 4%, respectively, between 1982-83, in contrast to reductions of 2% and 3%, respectively, in the 15-19 year and 20-24 year age groups, with the 25-29-year-olds remaining static. The average maternal mortality for all parties in England and Wales during 1976-78 was 106/million for adolescents, 70.4/million for 20-24 year-olds, and 1162/million for those aged 40 years and older. The specific obstetric and allied conditions which increase with age are the hypertensive diseases of pregnancy, hemorrhage, pulmonary embolism, abortion, cardiac disease, caesarean section, ruptured uterus, and amniotic fluid embolism. The Swedish Medical Birth Registry of all live births and perinatal deaths since 1973 has shown that the risk of late fetal death is significantly greater in women aged 30-39 years than in those of the same parity and gravidity aged 20-24 years. The risk of giving birth to low birth weight babies preterm and at term and of premature labor are similarly increased. The early neonatal death rate also was increased for primigravidas and nulliparas in the 30-39 year age group but not in parous women. This is, in part, due to the rise in incidence of fetal abnormalities with advancing maternal age because of chromosomal and nonchromosomal anomalies. These also appear to be the cause of the

  1. Sodium entry through endothelial store-operated calcium entry channels: regulation by Orai1.

    PubMed

    Xu, Ningyong; Cioffi, Donna L; Alexeyev, Mikhail; Rich, Thomas C; Stevens, Troy

    2015-02-15

    Orai1 interacts with transient receptor potential protein of the canonical subfamily (TRPC4) and contributes to calcium selectivity of the endothelial cell store-operated calcium entry current (ISOC). Orai1 silencing increases sodium permeability and decreases membrane-associated calcium, although it is not known whether Orai1 is an important determinant of cytosolic sodium transitions. We test the hypothesis that, upon activation of store-operated calcium entry channels, Orai1 is a critical determinant of cytosolic sodium transitions. Activation of store-operated calcium entry channels transiently increased cytosolic calcium and sodium, characteristic of release from an intracellular store. The sodium response occurred more abruptly and returned to baseline more rapidly than did the transient calcium rise. Extracellular choline substitution for sodium did not inhibit the response, although 2-aminoethoxydiphenyl borate and YM-58483 reduced it by ∼50%. After this transient response, cytosolic sodium continued to increase due to influx through activated store-operated calcium entry channels. The magnitude of this sustained increase in cytosolic sodium was greater when experiments were conducted in low extracellular calcium and when Orai1 expression was silenced; these two interventions were not additive, suggesting a common mechanism. 2-Aminoethoxydiphenyl borate and YM-58483 inhibited the sustained increase in cytosolic sodium, only in the presence of Orai1. These studies demonstrate that sodium permeates activated store-operated calcium entry channels, resulting in an increase in cytosolic sodium; the magnitude of this response is determined by Orai1.

  2. TRPA1 channel mediates organophosphate-induced delayed neuropathy.

    PubMed

    Ding, Qiang; Fang, Sui; Chen, Xueqin; Wang, Youxin; Li, Jian; Tian, Fuyun; Xu, Xiang; Attali, Bernard; Xie, Xin; Gao, Zhaobing

    2017-01-01

    The organophosphate-induced delayed neuropathy (OPIDN), often leads to paresthesias, ataxia and paralysis, occurs in the late-stage of acute poisoning or after repeated exposures to organophosphate (OP) insecticides or nerve agents, and may contribute to the Gulf War Syndrome. The acute phase of OP poisoning is often attributed to acetylcholinesterase inhibition. However, the underlying mechanism for the delayed neuropathy remains unknown and no treatment is available. Here we demonstrate that TRPA1 channel (Transient receptor potential cation channel, member A1) mediates OPIDN. A variety of OPs, exemplified by malathion, activates TRPA1 but not other neuronal TRP channels. Malathion increases the intracellular calcium levels and upregulates the excitability of mouse dorsal root ganglion neurons in vitro. Mice with repeated exposures to malathion also develop local tissue nerve injuries and pain-related behaviors, which resembles OPIDN. Both the neuropathological changes and the nocifensive behaviors can be attenuated by treatment of TRPA1 antagonist HC030031 or abolished by knockout of Trpa1 gene. In the classic hens OPIDN model, malathion causes nerve injuries and ataxia to a similar level as the positive inducer tri-ortho-cresyl phosphate (TOCP), which also activates TRPA1 channel. Treatment with HC030031 reduces the damages caused by malathion or tri-ortho-cresyl phosphate. Duloxetine and Ketotifen, two commercially available drugs exhibiting TRPA1 inhibitory activity, show neuroprotective effects against OPIDN and might be used in emergency situations. The current study suggests TRPA1 is the major mediator of OPIDN and targeting TRPA1 is an effective way for the treatment of OPIDN.

  3. Calcium and Calcium-Base Alloys

    DTIC Science & Technology

    1949-01-01

    alloys have •been made in electrical contacts. Little is known of’ the high - calcium alloys,» The aluminum-calcium diagram from Hansen^1) is shown in...list is still incom- plete« No use has been suggested for high calcium -aluminum alloys, ..•Arsenic-pal’c-iüm- Alloys •K.. Calcium arsenide, OajAsg...hot CaCUy, by X-ray determination of the structure. The probability of finding a useful high - calcium alloy in this system is based-on-the-validity

  4. Understanding calcium homeostasis in postnatal gonadotropin-releasing hormone neurons using cell-specific Pericam transgenics.

    PubMed

    Constantin, Stéphanie; Jasoni, Christine; Romanò, Nicola; Lee, Kiho; Herbison, Allan E

    2012-01-01

    The gonadotropin-releasing hormone (GnRH) neurons are the key output cells of a complex neuronal network controlling fertility in mammals. To examine calcium homeostasis in postnatal GnRH neurons, we generated a transgenic mouse line in which the genetically encodable calcium indicator ratiometric Pericam (rPericam) was targeted to the GnRH neurons. This mouse model enabled real-time imaging of calcium concentrations in GnRH neurons in the acute brain slice preparation. Investigations in GnRH-rPericam mice revealed that GnRH neurons exhibited spontaneous, long-duration (~8s) calcium transients. Dual electrical-calcium recordings revealed that the calcium transients were correlated perfectly with burst firing in GnRH neurons and that calcium transients in GnRH neurons regulated two calcium-activated potassium channels that, in turn, determined burst firing dynamics in these cells. Curiously, the occurrence of calcium transients in GnRH neurons across puberty or through the estrous cycle did not correlate well with the assumption that GnRH neuron burst firing was contributory to changing patterns of pulsatile GnRH release at these times. The GnRH-rPericam mouse was also valuable in determining differential mechanisms of GABA and glutamate control of calcium levels in GnRH neurons as well as effects of G-protein-coupled receptors for GnRH and kisspeptin. The simultaneous measurement of calcium levels in multiple GnRH neurons was hampered by variable rPericam fluorescence in different GnRH neurons. Nevertheless, in the multiple recordings that were achieved no evidence was found for synchronous calcium transients. Together, these observations show the great utility of transgenic targeting strategies for investigating the roles of calcium with specified neuronal cell types. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. L-Type Calcium Channel Inhibition Contributes to the Proarrhythmic Effects of Aconitine in Human Cardiomyocytes

    PubMed Central

    Wu, Jianjun; Wang, Xiangchong; Chung, Ying Ying; Koh, Cai Hong; Liu, Zhenfeng; Guo, Huicai; Yuan, Qiang; Wang, Chuan; Su, Suwen; Wei, Heming

    2017-01-01

    Aconitine (ACO) is well-known for causing lethal ventricular tachyarrhythmias. While cardiac Na+ channel opening during repolarization has long been documented in animal cardiac myocytes, the cellular effects and mechanism of ACO in human remain unexplored. This study aimed to assess the proarrhythmic effects of ACO in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). ACO concentration-dependently (0.3 ~ 3.0 μM) shortened the action potentials (AP) durations (APD) in ventricular-like hiPSC-CMs by > 40% and induced delayed after-depolarization. Laser-scanning confocal calcium imaging analysis showed that ACO decreased the duration and amplitude of [Ca2+]i transients and increased in the beating frequencies by over 60%. Moreover, ACO was found to markedly reduce the L-type calcium channel (LTCC) currents (ICa,L) in hiPSC-CMs associated with a positive-shift of activation and a negative shift of inactivation. ACO failed to alter the peak and late Na+ currents (INa) in hiPSC-CMs while it drastically increased the late INa in Guinea-pig ventricular myocytes associated with enhanced activation/delayed inactivation of INa at -55 mV~ -85 mV. Further, the effects of ACO on ICa,L, INa and the rapid delayed rectifier potassium current (Ikr) were validated in heterologous expression systems by automated voltage-clamping assays and a moderate suppression of Ikr was observed in addition to concentration-dependent ICa,L inhibition. Lastly, increased beating frequency, decreased Ca2+ wave and shortened field potential duration were recorded from hiPSC-CMs by microelectrode arrays assay. In summary, our data demonstrated that LTCC inhibition could play a main role in the proarrhythmic action of ACO in human cardiomyocytes. PMID:28056022

  6. Delayed coker fractionator advanced control

    SciTech Connect

    Jaisinghani, R.; Minter, B. ); Tica, A.; Puglesi, A.; Ojeda, R. )

    1993-08-01

    In a delayed coking process, as coke drum switches are made, rapid changes occur in both the fractionator feed rate and composition. With conventional control, it is not unusual to see long transient behavior of large swings in both quality and flowrates of coker gas oils. This can extract a heavy economic toll, not only in coker operation, but in the operation of downstream units as the upset is propagated. An advanced process control application (APC) was recently implemented on the coker fractionator at the Yacimentos Petroliferos Fiscales (YPF), Lujan de Cuyo Refinery, in Mendoza, Argentina. This coker fractionator control design was unique as it handled two different operating objectives: control of product qualities via tower temperature profile during normal operation and control of gas oil product flow ratio during drum switch. This combination of control objectives in one multivariable predictive control program was achieved by including special logic to decouple the individual tuning requirements. Also, additional logic was included to unambiguously detect and identify drum switch and drum steam out as discrete events within 30 seconds of their actual occurrence. These discrete events were then used as disturbance variables to minimize fractionator transient behavior. As a performance measure, the overhead temperature was controlled within 2 C to 2.5 C of its target, gas oil flows were stabilized during drum switches and steam generation via pump around was maximized. Overall, implementing advanced control for the delayed coker fractionator resulted in substantial benefits from product quality control, product flow control and minimized energy consumption.

  7. Dynamic modulation of spike timing-dependent calcium influx during corticostriatal upstates

    PubMed Central

    Evans, R. C.; Maniar, Y. M.

    2013-01-01

    The striatum of the basal ganglia demonstrates distinctive upstate and downstate membrane potential oscillations during slow-wave sleep and under anesthetic. The upstates generate calcium transients in the dendrites, and the amplitude of these calcium transients depends strongly on the timing of the action potential (AP) within the upstate. Calcium is essential for synaptic plasticity in the striatum, and these large calcium transients during the upstates may control which synapses undergo plastic changes. To investigate the mechanisms that underlie the relationship between calcium and AP timing, we have developed a realistic biophysical model of a medium spiny neuron (MSN). We have implemented sophisticated calcium dynamics including calcium diffusion, buffering, and pump extrusion, which accurately replicate published data. Using this model, we found that either the slow inactivation of dendritic sodium channels (NaSI) or the calcium inactivation of voltage-gated calcium channels (CDI) can cause high calcium corresponding to early APs and lower calcium corresponding to later APs. We found that only CDI can account for the experimental observation that sensitivity to AP timing is dependent on NMDA receptors. Additional simulations demonstrated a mechanism by which MSNs can dynamically modulate their sensitivity to AP timing and show that sensitivity to specifically timed pre- and postsynaptic pairings (as in spike timing-dependent plasticity protocols) is altered by the timing of the pairing within the upstate. These findings have implications for synaptic plasticity in vivo during sleep when the upstate-downstate pattern is prominent in the striatum. PMID:23843436

  8. Imaging calcium in neurons.

    PubMed

    Grienberger, Christine; Konnerth, Arthur

    2012-03-08

    Calcium ions generate versatile intracellular signals that control key functions in all types of neurons. Imaging calcium in neurons is particularly important because calcium signals exert their highly specific functions in well-defined cellular subcompartments. In this Primer, we briefly review the general mechanisms of neuronal calcium signaling. We then introduce the calcium imaging devices, including confocal and two-photon microscopy as well as miniaturized devices that are used in freely moving animals. We provide an overview of the classical chemical fluorescent calcium indicators and of the protein-based genetically encoded calcium indicators. Using application examples, we introduce new developments in the field, such as calcium imaging in awake, behaving animals and the use of calcium imaging for mapping single spine sensory inputs in cortical neurons in vivo. We conclude by providing an outlook on the prospects of calcium imaging for the analysis of neuronal signaling and plasticity in various animal models.

  9. Minimal model for calcium alternans due to SR release refractoriness

    NASA Astrophysics Data System (ADS)

    Cantalapiedra, Inma R.; Alvarez-Lacalle, Enrique; Peñaranda, Angelina; Echebarria, Blas

    2017-09-01

    In the heart, rapid pacing rates may induce alternations in the strength of cardiac contraction, termed pulsus alternans. Often, this is due to an instability in the dynamics of the intracellular calcium concentration, whose transients become larger and smaller at consecutive beats. This alternation has been linked experimentally and theoretically to two different mechanisms: an instability due to (1) a strong dependence of calcium release on sarcoplasmic reticulum (SR) load, together with a slow calcium reuptake into the SR or (2) to SR release refractoriness, due to a slow recovery of the ryanodine receptors (RyR2) from inactivation. The relationship between calcium alternans and refractoriness of the RyR2 has been more elusive than the corresponding SR Ca load mechanism. To study the former, we reduce a general calcium model, which mimics the deterministic evolution of a calcium release unit, to its most basic elements. We show that calcium alternans can be understood using a simple nonlinear equation for calcium concentration at the dyadic space, coupled to a relaxation equation for the number of recovered RyR2s. Depending on the number of RyR2s that are recovered at the beginning of a stimulation, the increase in calcium concentration may pass, or not, over an excitability threshold that limits the occurrence of a large calcium transient. When the recovery of the RyR2 is slow, this produces naturally a period doubling bifurcation, resulting in calcium alternans. We then study the effects of inactivation, calcium diffusion, and release conductance for the onset of alternans. We find that the development of alternans requires a well-defined value of diffusion while it is less sensitive to the values of inactivation or release conductance.

  10. Perception of acoustic transients

    NASA Astrophysics Data System (ADS)

    Howard, J. H., Jr.

    1984-01-01

    The research investigates the role of knowledge based or top-down processing in the perception of nonlinguistic, transient signals. The experiments address issues in transient pattern classification, target observation, attentional focusing, auditory induction, and computer based performance aids. The theoretical significance and naval relevance of the research is considered.

  11. Low myoplasmic Mg2+ potentiates calcium release during depolarization of frog skeletal muscle fibers

    PubMed Central

    1992-01-01

    The role of intracellular free magnesium concentration ([Mg2+]) in modulating calcium release from the sarcoplasmic reticulum (SR) was studied in voltage-clamped frog cut skeletal muscle fibers equilibrated with cut end solutions containing two calcium indicators, fura-2 and antipyrylazo III (AP III), and various concentrations of free Mg2+ (25 microM-1 mM) obtained by adding appropriate total amounts of ATP and magnesium to the solutions. Changes in AP III absorbance were used to monitor calcium transients, whereas fura-2 fluorescence was used to monitor resting calcium. The rate of release (Rrel) of calcium from the SR was calculated from the calcium transient and found to be increased in low internal [Mg2+]. After correcting for effects of calcium depletion from the SR and normalization to SR content, the mean values of the inactivatable and noninactivatable components of Rrel were increased by 163 and 46%, respectively, in low Mg2+. Independent of normalization to SR content, the ratio of inactivatable to noninactivatable components of Rrel was increased in low internal [Mg2+]. Both observations suggest that internal [Mg2+] preferentially modulates the inactivatable component of Rrel, which is thought to be due to calcium-induced calcium release from the SR. This could also explain the observation that, in low internal [Mg2+], the time to the peak of the calcium transient for a 5-ms depolarizing pulse was not very different from the time to the peak of the delta [Ca2+] for a 10- ms pulse of the same amplitude. Finally, in low internal [Mg2+], the calcium transient elicited by a short depolarizing pulse was in some cases clearly followed by a very slow rise of calcium after the end of the pulse. The observed effects of reduced [Mg2+] on calcium release are consistent with a removal of the inhibition that the normal 1 mM myoplasmic [Mg2+] exerts on calcium release in skeletal muscle fibers. PMID:1512555

  12. The delayed and noisy nervous system: implications for neural control.

    PubMed

    Milton, John G

    2011-12-01

    Recent advances in the study of delay differential equations draw attention to the potential benefits of the interplay between random perturbations ('noise') and delay in neural control. The phenomena include transient stabilizations of unstable steady states by noise, control of fast movements using time-delayed feedback and the occurrence of long-lived delay-induced transients. In particular, this research suggests that the interplay between noise and delay necessitates the use of intermittent, discontinuous control strategies in which corrective movements are made only when controlled variables cross certain thresholds. A potential benefit of such strategies is that they may be optimal for minimizing energy expenditures associated with control. In this paper, the concepts are made accessible by introducing them through simple illustrative examples that can be readily reproduced using software packages, such as XPPAUT.

  13. Nuclear calcium sensors reveal that repetition of trains of synaptic stimuli boosts nuclear calcium signaling in CA1 pyramidal neurons.

    PubMed

    Bengtson, C Peter; Freitag, H Eckehard; Weislogel, Jan-Marek; Bading, Hilmar

    2010-12-15

    Nuclear calcium is a key signal in the dialogue between synapse and nucleus that controls the genomic responses required for persistent adaptations, including memory and acquired neuroprotection. The amplitude and duration of nuclear calcium transients specify activity-induced transcriptional changes. However, the precise relationship between synaptic input and nuclear calcium output is unknown. Here, we used stereotaxic delivery to the rat brain of recombinant adeno-associated viruses encoding nuclear-targeted calcium sensors to assess nuclear calcium transients in CA1 pyramidal neurons after stimulation of the Schaffer collaterals. We show that in acute hippocampal slices, a burst of synaptic activity elicits a nuclear calcium signal with a regenerative component at above-threshold stimulation intensities. Using classical stimulation paradigms (i.e., high-frequency stimulation (HFS) and θ burst stimulation (TBS)) to induce early LTP (E-LTP) and transcription-dependent late LTP (L-LTP), we found that the magnitude of nuclear calcium signals and the number of action potentials activated by synaptic stimulation trains are greatly amplified by their repetition. Nuclear calcium signals and action potential generation were reduced by blockade of either NMDA receptors or L-type voltage-gated calcium channels, but not by procedures that lead to internal calcium store depletion or by blockade of metabotropic glutamate receptors. These findings identify a repetition-induced switch in nuclear calcium signaling that correlates with the transition from E-LTP to L-LTP, and may explain why the transcription-dependent phase of L-LTP is not induced by a single HFS or TBS but requires repeated trains of activity. Recombinant, nuclear-targeted indicators may prove useful for further analysis of nuclear calcium signaling in vivo.

  14. Nuclear Calcium Sensors Reveal that Repetition of Trains of Synaptic Stimuli Boosts Nuclear Calcium Signaling in CA1 Pyramidal Neurons

    PubMed Central

    Bengtson, C. Peter; Freitag, H. Eckehard; Weislogel, Jan-Marek; Bading, Hilmar

    2010-01-01

    Nuclear calcium is a key signal in the dialogue between synapse and nucleus that controls the genomic responses required for persistent adaptations, including memory and acquired neuroprotection. The amplitude and duration of nuclear calcium transients specify activity-induced transcriptional changes. However, the precise relationship between synaptic input and nuclear calcium output is unknown. Here, we used stereotaxic delivery to the rat brain of recombinant adeno-associated viruses encoding nuclear-targeted calcium sensors to assess nuclear calcium transients in CA1 pyramidal neurons after stimulation of the Schaffer collaterals. We show that in acute hippocampal slices, a burst of synaptic activity elicits a nuclear calcium signal with a regenerative component at above-threshold stimulation intensities. Using classical stimulation paradigms (i.e., high-frequency stimulation (HFS) and θ burst stimulation (TBS)) to induce early LTP (E-LTP) and transcription-dependent late LTP (L-LTP), we found that the magnitude of nuclear calcium signals and the number of action potentials activated by synaptic stimulation trains are greatly amplified by their repetition. Nuclear calcium signals and action potential generation were reduced by blockade of either NMDA receptors or L-type voltage-gated calcium channels, but not by procedures that lead to internal calcium store depletion or by blockade of metabotropic glutamate receptors. These findings identify a repetition-induced switch in nuclear calcium signaling that correlates with the transition from E-LTP to L-LTP, and may explain why the transcription-dependent phase of L-LTP is not induced by a single HFS or TBS but requires repeated trains of activity. Recombinant, nuclear-targeted indicators may prove useful for further analysis of nuclear calcium signaling in vivo. PMID:21156150

  15. Characterization of a calcium/calmodulin-regulated SR/CAMTA gene family during tomato fruit development and ripening.

    PubMed

    Yang, Tianbao; Peng, Hui; Whitaker, Bruce D; Conway, William S

    2012-02-13

    Fruit ripening is a complicated development process affected by a variety of external and internal cues. It is well established that calcium treatment delays fruit ripening and senescence. However, the underlying molecular mechanisms remain unclear. Previous studies have shown that calcium/calmodulin-regulated SR/CAMTAs are important for modulation of disease resistance, cold sensitivity and wounding response in vegetative tissues. To study the possible roles of this gene family in fruit development and ripening, we cloned seven SR/CAMTAs, designated as SlSRs, from tomato, a model fruit-bearing crop. All seven genes encode polypeptides with a conserved DNA-binding domain and a calmodulin-binding site. Calmodulin specifically binds to the putative targeting site in a calcium-dependent manner. All SlSRs were highly yet differentially expressed during fruit development and ripening. Most notably, the expression of SlSR2 was scarcely detected at the mature green and breaker stages, two critical stages of fruit development and ripening; and SlSR3L and SlSR4 were expressed exclusively in fruit tissues. During the developmental span from 10 to 50 days post anthesis, the expression profiles of all seven SlSRs were dramatically altered in ripening mutant rin compared with wildtype fruit. By contrast, only minor alterations were noted for ripening mutant nor and Nr fruit. In addition, ethylene treatment of mature green wildtype fruit transiently stimulated expression of all SlSRs within one to two hours. This study indicates that SlSR expression is influenced by both the Rin-mediated developmental network and ethylene signaling. The results suggest that calcium signaling is involved in the regulation of fruit development and ripening through calcium/calmodulin/SlSR interactions.

  16. Characterization of a calcium/calmodulin-regulated SR/CAMTA gene family during tomato fruit development and ripening

    PubMed Central

    2012-01-01

    Background Fruit ripening is a complicated development process affected by a variety of external and internal cues. It is well established that calcium treatment delays fruit ripening and senescence. However, the underlying molecular mechanisms remain unclear. Results Previous studies have shown that calcium/calmodulin-regulated SR/CAMTAs are important for modulation of disease resistance, cold sensitivity and wounding response in vegetative tissues. To study the possible roles of this gene family in fruit development and ripening, we cloned seven SR/CAMTAs, designated as SlSRs, from tomato, a model fruit-bearing crop. All seven genes encode polypeptides with a conserved DNA-binding domain and a calmodulin-binding site. Calmodulin specifically binds to the putative targeting site in a calcium-dependent manner. All SlSRs were highly yet differentially expressed during fruit development and ripening. Most notably, the expression of SlSR2 was scarcely detected at the mature green and breaker stages, two critical stages of fruit development and ripening; and SlSR3L and SlSR4 were expressed exclusively in fruit tissues. During the developmental span from 10 to 50 days post anthesis, the expression profiles of all seven SlSRs were dramatically altered in ripening mutant rin compared with wildtype fruit. By contrast, only minor alterations were noted for ripening mutant nor and Nr fruit. In addition, ethylene treatment of mature green wildtype fruit transiently stimulated expression of all SlSRs within one to two hours. Conclusions This study indicates that SlSR expression is influenced by both the Rin-mediated developmental network and ethylene signaling. The results suggest that calcium signaling is involved in the regulation of fruit development and ripening through calcium/calmodulin/SlSR interactions. PMID:22330838

  17. Calcium-dependent mitochondrial function and dysfunction in neurons.

    PubMed

    Pivovarova, Natalia B; Andrews, S Brian

    2010-09-01

    Calcium is an extraordinarily versatile signaling ion, encoding cellular responses to a wide variety of external stimuli. In neurons, mitochondria can accumulate enormous amounts of calcium, with the consequence that mitochondrial calcium uptake, sequestration and release play pivotal roles in orchestrating calcium-dependent responses as diverse as gene transcription and cell death. In this review, we consider the basic chemistry of calcium as a 'sticky' cation, which leads to extremely high bound/free ratios, and discuss areas of current interest or controversy. Topics addressed include methodologies for measuring local intracellular calcium, mitochondrial calcium buffering and loading capacity, mitochondrially directed spatial calcium gradients, and the role of calcium overload-dependent mitochondrial dysfunction in glutamate-evoked excitotoxic injury and neurodegeneration. Finally, we consider the relationship between delayed calcium de-regulation, the mitochondrial permeability transition and the generation of reactive oxygen species, and propose a unified view of the 'source specificity' and 'calcium overload' models of N-methyl-d-aspartate (NMDA) receptor-dependent excitotoxicity. Non-NMDA receptor mechanisms of excitotoxicity are discussed briefly. Journal compilation © 2010 FEBS. No claim to original US government works.

  18. Calcium-dependent mitochondrial function and dysfunction in neurons

    PubMed Central

    Pivovarova, Natalia B.; Andrews, S. Brian

    2012-01-01

    Calcium is an extraordinarily versatile signaling ion, encoding cellular responses to a wide variety of external stimuli. In neurons, mitochondria can accumulate enormous amounts of calcium, with the consequence that mitochondrial calcium uptake, sequestration and release play pivotal roles in orchestrating calcium-dependent responses as diverse as gene transcription and cell death. In this review, we consider the basic chemistry of calcium as a ‘sticky’ cation, which leads to extremely high bound/free ratios, and discuss areas of current interest or controversy. Topics addressed include methodologies for measuring local intracellular calcium, mitochondrial calcium buffering and loading capacity, mitochondrially directed spatial calcium gradients, and the role of calcium overload-dependent mitochondrial dysfunction in glutamate-evoked excitotoxic injury and neurodegeneration. Finally, we consider the relationship between delayed calcium de-regulation, the mitochondrial permeability transition and the generation of reactive oxygen species, and propose a unified view of the ‘source specificity’ and ‘calcium overload’ models of N-methyl-D-aspartate (NMDA) receptor-dependent excitotoxicity. Non-NMDA receptor mechanisms of excitotoxicity are discussed briefly. PMID:20659161

  19. Cameleon calcium indicator reports cytoplasmic calcium dynamics in Arabidopsis guard cells

    NASA Technical Reports Server (NTRS)

    Allen, G. J.; Kwak, J. M.; Chu, S. P.; Llopis, J.; Tsien, R. Y.; Harper, J. F.; Schroeder, J. I.; Evans, M. L. (Principal Investigator)

    1999-01-01

    Cytoplasmic free calcium ([Ca2+]cyt) acts as a stimulus-induced second messenger in plant cells and multiple signal transduction pathways regulate [Ca2+]cyt in stomatal guard cells. Measuring [Ca2+]cyt in guard cells has previously required loading of calcium-sensitive dyes using invasive and technically difficult micro-injection techniques. To circumvent these problems, we have constitutively expressed the pH-independent, green fluorescent protein-based calcium indicator yellow cameleon 2.1 in Arabidopsis thaliana (Miyawaki et al. 1999; Proc. Natl. Acad. Sci. USA 96, 2135-2140). This yellow cameleon calcium indicator was expressed in guard cells and accumulated predominantly in the cytoplasm. Fluorescence ratio imaging of yellow cameleon 2.1 allowed time-dependent measurements of [Ca2+]cyt in Arabidopsis guard cells. Application of extracellular calcium or the hormone abscisic acid (ABA) induced repetitive [Ca2+]cyt transients in guard cells. [Ca2+]cyt changes could be semi-quantitatively determined following correction of the calibration procedure for chloroplast autofluorescence. Extracellular calcium induced repetitive [Ca2+]cyt transients with peak values of up to approximately 1.5 microM, whereas ABA-induced [Ca2+]cyt transients had peak values up to approximately 0.6 microM. These values are similar to stimulus-induced [Ca2+]cyt changes previously reported in plant cells using ratiometric dyes or aequorin. In some guard cells perfused with low extracellular KCl concentrations, spontaneous calcium transients were observed. As yellow cameleon 2.1 was expressed in all guard cells, [Ca2+]cyt was measured independently in the two guard cells of single stomates for the first time. ABA-induced, calcium-induced or spontaneous [Ca2+]cyt increases were not necessarily synchronized in the two guard cells. Overall, these data demonstrate that that GFP-based cameleon calcium indicators are suitable to measure [Ca2+]cyt changes in guard cells and enable the pattern of [Ca

  20. In vivo calcium dynamics during neural crest cell migration and patterning using GCaMP3.

    PubMed

    McKinney, Mary Cathleen; Kulesa, Paul M

    2011-10-15

    Examining calcium dynamics within the neural crest (NC) has the potential to shed light on mechanisms that regulate complex cell migration and patterning events during embryogenesis. Unfortunately, typical calcium indicators are added to culture media or have low signal to noise after microinjection into tissue that severely limit analyses to cultured cells or superficial events. Here, we studied in vivo calcium dynamics during NC cell migration and patterning, using a genetically encoded calcium sensor, GCaMP3. We discovered that trunk NC cells displayed significantly more spontaneous calcium transients than cranial NC cells, and during cell aggregation versus cell migration events. Spontaneous calcium transients were more prevalent during NC cell aggregation into discrete sympathetic ganglia (SG). Blocking of N-cadherin activity in trunk NC cells near the presumptive SG led to a dramatic decrease in the frequency of spontaneous calcium transients. Detailed analysis and mathematical modeling of cell behaviors during SG formation showed NC cells aggregated into clusters after displaying a spontaneous calcium transient. This approach highlights the novel application of a genetically encoded calcium indicator to study subsets of cells during ventral events in embryogenesis. Copyright © 2011. Published by Elsevier Inc.

  1. Functional characterization of linear delay Langevin equations

    NASA Astrophysics Data System (ADS)

    Budini, Adrián A.; Cáceres, Manuel O.

    2004-10-01

    We present an exact functional characterization of linear delay Langevin equations driven by any noise structure defined through its characteristic functional. This method relies on the possibility of finding an explicitly analytical expression for each realization of the delayed stochastic process in terms of those of the driving noise. General properties of the transient dissipative dynamics are analyzed. The corresponding interplay with a color Gaussian noise is presented. As a full application of our functional method we study a model for population growth with non-Gaussian fluctuations: the Gompertz model driven by multiplicative white shot noise.

  2. Optical measurement of presynaptic calcium currents.

    PubMed Central

    Sabatini, B L; Regehr, W G

    1998-01-01

    Measurements of presynaptic calcium currents are vital to understanding the control of transmitter release. However, most presynaptic boutons in the vertebrate central nervous system are too small to allow electrical recordings of presynaptic calcium currents (I(Ca)pre). We therefore tested the possibility of measuring I(Ca)pre optically in boutons loaded with calcium-sensitive fluorophores. From a theoretical treatment of a system containing an endogenous buffer and an indicator, we determined the conditions necessary for the derivative of the stimulus-evoked change in indicator fluorescence to report I(Ca)pre accurately. Matching the calcium dissociation rates of the endogenous buffer and indicator allows the most precise optical measurements of I(Ca)pre. We tested our ability to measure I(Ca)pre in granule cells in rat cerebellar slices. The derivatives of stimulus-evoked fluorescence transients from slices loaded with the low-affinity calcium indicators magnesium green and mag-fura-5 had the same time courses and were unaffected by changes in calcium influx or indicator concentration. Thus both of these indicators were well suited to measuring I(Ca)pre. In contrast, the high-affinity indicator fura-2 distorted I(Ca)pre. The optically determined I(Ca)pre was well approximated by a Gaussian with a half-width of 650 micros at 24 degrees C and 340 micros at 34 degrees C. PMID:9512051

  3. Autoradiographic localization of N-type VGCCs in gerbil hippocampus and failure of omega-conotoxin MVIIA to attenuate neuronal injury after transient cerebral ischemia.

    PubMed

    Azimi-Zonooz, A; Kawa, C B; Dowell, C D; Olivera, B M

    2001-07-13

    In the mammalian central nervous system, transient global ischemia of specific duration causes selective degeneration of CA1 pyramidal neurons in hippocampus. Many of the ischemia-induced pathophysiologic cascades that destroy the neurons are triggered by pre- and postsynaptic calcium entry. Consistent with this, many calcium channel blockers have been shown to be neuroprotective in global models of ischemia. omega-Conotoxin MVIIA, a selective N-type VGCC blocker isolated from the venom of Conus magus, protects CA1 neurons in the rat model of global ischemia, albeit transiently. The mechanism by which this peptide renders neuroprotection is unknown. We performed high-resolution receptor autoradiography with the radiolabeled peptide and observed highest binding in stratum lucidum of CA3 subfield, known to contain inhibitory neurons potentially important in the pathogenesis of delayed neuronal death. This finding suggested that the survival of stratum lucidum inhibitory neurons might be the primary event, leading to CA1 neuroprotection after ischemia. Testing of this hypothesis required the reproduction of its neuroprotective effects in the gerbil model of global ischemia. Surprisingly, we found that omega-MVIIA did not attenuate CA1 hippocampal injury after 5 min of cerebral ischemia in gerbil. Possible reasons are discussed. Lastly, we show that the peptide can be used as a synaptic marker in assessing short and long-term changes that occur in hippocampus after ischemic injury.

  4. Visualization of calcium transients controlling orientation of ciliary beat.

    PubMed

    Tamm, S L; Terasaki, M

    1994-06-01

    To image changes in intraciliary Ca controlling ciliary motility, we microinjected Ca Green dextran, a visible wavelength fluorescent Ca indicator, into eggs or two cell stages of the ctenophore Mnemiopsis leidyi. The embryos developed normally into free-swimming, approximately 0.5 mm cydippid larvae with cells and ciliary comb plates (approximately 100 microns long) loaded with the dye. Comb plates of larvae, like those of adult ctenophores, undergo spontaneous or electrically stimulated reversal of beat direction, triggered by Ca influx through voltage-sensitive Ca channels. Comb plates of larvae loaded with Ca Green dextran emit spontaneous or electrically stimulated fluorescent flashes along the entire length of their cilia, correlated with ciliary reversal. Fluorescence intensity peaks rapidly (34-50 ms), then slowly falls to resting level in approximately 1 s. Electrically stimulated Ca Green emissions often increase in steps to a maximum value near the end of the stimulus pulse train, and slowly decline in 1-2 s. In both spontaneous and electrically stimulated flashes, measurements at multiple sites along a single comb plate show that Ca Green fluorescence rises within 17 ms (1 video field) and to a similar relative extent above resting level from base to tip of the cilia. The decline of fluorescence intensity also begins simultaneously and proceeds at similar rates along the ciliary length. Ca-free sea water reversibly abolishes spontaneous and electrically stimulated Ca Green ciliary emissions as well as reversed beating. Calculations of Ca diffusion from the ciliary base show that Ca must enter the comb plate along the entire length of the ciliary membranes. The voltage-dependent Ca channels mediating changes in beat direction are therefore distributed over the length of the comb plate cilia. The observed rapid and virtually instantaneous Ca signal throughout the intraciliary space may be necessary for reprogramming the pattern of dynein activity responsible for reorientation of the ciliary beat cycle.

  5. Luminous Extragalactic Transients

    NASA Astrophysics Data System (ADS)

    O'Brien, Paul; Jonker, Peter; Athena Explosive Transients Working Group

    2015-09-01

    The ESA Athena X-ray observatory mission will combine exceptionally high throughout with high spectral-energy resolution and will revolutionise many aspects of high-energy astrophysics. Many of the most powerful transient sources, including gamma-ray bursts and tidal disruptions events, are bright X-ray sources. Athena will be designed to have a fast-response capability permitting efficient observations of many transients. We will summarise the proposed capability of the mission and illustrate science programs to study transients ranging from the most distant GRBs to nuclear activity in nearby galaxies.

  6. Transient nucleation in glasses

    NASA Technical Reports Server (NTRS)

    Kelton, K. F.

    1991-01-01

    Nucleation rates in condensed systems are frequently not at their steady state values. Such time dependent (or transient) nucleation is most clearly observed in devitrification studies of metallic and silicate glasses. The origin of transient nucleation and its role in the formation and stability of desired phases and microstructures are discussed. Numerical models of nucleation in isothermal and nonisothermal situations, based on the coupled differential equations describing cluster evolution within the classical theory, are presented. The importance of transient nucleation in glass formation and crystallization is discussed.

  7. [Transient epileptic amnesia].

    PubMed

    Muramatsu, Kazuhiro; Yoshizaki, Takahito

    2016-03-01

    Transient amnesia is one of common clinical phenomenon of epilepsy that are encountered by physicians. The amnestic attacks are often associated with persistent memory disturbances. Epilepsy is common among the elderly, with amnesia as a common symptom and convulsions relatively uncommon. Therefore, amnesia due to epilepsy can easily be misdiagnosed as dementia. The term 'transient epileptic amnesia (TEA)' was introduced in the early 1990s by Kapur, who highlighted that amnestic attacks caused by epilepsy can be similar to those occurring in 'transient global amnesia', but are distinguished by features brevity and recurrence. In 1998, Zeman et al. proposed diagnostic criteria for TEA.

  8. Calcium and calcium isotope changes during carbon cycle perturbations at the end-Permian

    NASA Astrophysics Data System (ADS)

    Komar, N.; Zeebe, R. E.

    2016-01-01

    Negative carbon and calcium isotope excursions, as well as climate shifts, took place during the most severe mass extinction event in Earth's history, the end-Permian (˜252 Ma). Investigating the connection between carbon and calcium cycles during transient carbon cycle perturbation events, such as the end-Permian, may help resolve the intricacies between the coupled calcium-carbon cycles, as well as provide a tool for constraining the causes of mass extinction. Here we identify the deficiencies of a simplified calcium model employed in several previous studies, and we demonstrate the importance of a fully coupled carbon cycle model when investigating the dynamics of carbon and calcium cycling. Simulations with a modified version of the Long-term Ocean-atmosphere-Sediment CArbon cycle Reservoir model, which includes a fully coupled carbon-calcium cycle, indicate that increased weathering rates and ocean acidification (potentially caused by Siberian Trap volcanism) are not capable of producing trends observed in the record, as previously claimed. Our model results suggest that combined effects of carbon input via Siberian Trap volcanism (12,000 Pg C), the cessation of biological carbon export, and variable calcium isotope fractionation (due to a change in the seawater carbonate ion concentration) represents a more plausible scenario. This scenario successfully reconciles δ13C and δ44Ca trends observed in the sediment record, as well as the proposed warming of >6°C.

  9. Calcium and calcium isotope changes during carbon cycle perturbations at the end-Permian

    NASA Astrophysics Data System (ADS)

    Komar, Nemanja; Zeebe, Richard

    2016-04-01

    Negative carbon and calcium isotope excursions, as well as climate shifts, took place during the most severe mass extinction event in Earth's history, the end-Permian (˜252 Ma). Investigating the connection between carbon and calcium cycles during transient carbon cycle perturbation events, such as the end-Permian, may help resolve the intricacies between the coupled calcium-carbon cycles, as well as provide a tool for constraining the causes of mass extinction. Here, we identify the deficiencies of a simplified calcium model employed in several previous studies and we demonstrate the importance of a fully coupled carbon-cycle model when investigating the dynamics of carbon and calcium cycling. Simulations with a modified version of the LOSCAR model, which includes a fully coupled carbon-calcium cycle, indicate that increased weathering rates and ocean acidification (potentially caused by Siberian Trap volcanism) are not capable of producing trends observed in the record, as previously claimed. Our model results suggest that combined effects of carbon input via Siberian Trap volcanism (12,000 Pg C), the cessation of biological carbon export, and variable calcium isotope fractionation (due to a change in the seawater carbonate ion concentration) represents a more plausible scenario. This scenario successfully reconciles δ13C and δ44Ca trends observed in the sediment record, as well as the proposed warming of >6oC.

  10. Reduced calcium-dependent mitochondrial damage underlies the reduced vulnerability of excitotoxicity-tolerant hippocampal neurons.

    PubMed

    Pivovarova, Natalia B; Stanika, Ruslan I; Watts, Charlotte A; Brantner, Christine A; Smith, Carolyn L; Andrews, S Brian

    2008-03-01

    In central neurons, over-stimulation of NMDA receptors leads to excessive mitochondrial calcium accumulation and damage, which is a critical step in excitotoxic death. This raises the possibility that low susceptibility to calcium overload-induced mitochondrial damage might characterize excitotoxicity-resistant neurons. In this study, we have exploited two complementary models of preconditioning-induced excitotoxicity resistance to demonstrate reduced calcium-dependent mitochondrial damage in NMDA-tolerant hippocampal neurons. We have further identified adaptations in mitochondrial calcium handling that account for enhanced mitochondrial integrity. In both models, enhanced tolerance was associated with improved preservation of mitochondrial membrane potential and structure. In the first model, which exhibited modest neuroprotection, mitochondria-dependent calcium deregulation was delayed, even though cytosolic and mitochondrial calcium loads were quantitatively unchanged, indicating that enhanced mitochondrial calcium capacity accounts for reduced injury. In contrast, the second model, which exhibited strong neuroprotection, displayed further delayed calcium deregulation and reduced mitochondrial damage because downregulation of NMDA receptor surface expression depressed calcium loading. Reducing calcium entry also modified the chemical composition of the calcium-buffering precipitates that form in calcium-loaded mitochondria. It thus appears that reduced mitochondrial calcium loading is a major factor underlying the robust neuroprotection seen in highly tolerant cells.

  11. Localized superoxide release by neutrophils can be provoked by a cytosolic calcium 'cloud'.

    PubMed Central

    Davies, E V; Hallett, M B; Campbell, A K

    1991-01-01

    We have used single-cell ratio imaging of Fura-2 loaded neutrophils to visualize release of cytosolic Ca2+ from an intracellular store in order to determine the location of this store and the relationship of release from it to oxidase activation. In the presence of extracellular Ca2+, N-formyl-L-methionyl-L-leucyl-L-phenylalanine (FMLP) produced an increase in free Ca2+ throughout the cytosol. In its absence, however, stimulation induced in 38% of neutrophils a highly localized increase in cytosolic free Ca2+, located between the nuclear lobes and the plasma membrane, at a region of cytosol which stained positively with 3,3'-dihexyloxacarbocyanine iodide [DiOC6(3)]. Calcium release from the store was transient, without oscillation and occurred after delays of up to 120 seconds. Addition of Ca2+ ionophore also released Ca2+ from this, and other stores, within the cell, up to three foci being detected in some cells. Localized oxidase activation occurred at the plasma membrane when the calcium concentration ([Ca2+]) of the 'cloud' exceeded 250 nM. Surprisingly, localized activation occurred at the plasma membrane at a site separate from but near to a region of high Ca2+. It was concluded that release of Ca2+ from a single receptor-releasable, Ca2+ store in neutrophils was insufficient to trigger oxidase activation throughout the cell, but could provide a localized activation of the oxidase. Images Figure 1 Figure 3 Figure 4 PMID:1649127

  12. Calcium Imaging of Sonoporation of Mammalian Cells

    NASA Astrophysics Data System (ADS)

    Sabens, David; Aehle, Matthew; Steyer, Grant; Kourennyi, Dmitri; Deng, Cheri X.

    2006-05-01

    Ultrasound mediated delivery of compounds is a relatively recent development in drug delivery and gene transfection techniques. Due to the lack of methods for real-time monitoring of sonoporation at the cellular level, the efficiency of drug/gene delivery and sonoporation associated side effects, such as the loss of cell viability and enhanced apoptosis, have been studied only through post US exposure analyses, requiring days for cell incubation. Furthermore, because microporation appears to be transient in nature, it was not possible to correlate transfection with microporation on an individual cellular basis. By studying the role of calcium in the cell and using fluorescent calcium imaging to study sonoporation it is possible to quantify both cell porosity and sonoporation side effects. Since both post sonoporation cell survival and delivery efficiency are related to the dynamic process of the cell membrane poration, calcium imaging of sonoporation will provide important knowledge to obtain improved understanding of sonoporation mechanism. Our experimental results demonstrated the feasibility of calcium imaging of sonoporation in Chinese Hamster Ovary (CHO) cells. We have measured the changes in the intracellular calcium concentration using Fura-2, a fluorescent probe, which indicate influx or flow of Calcium across the cell membrane. Analysis of data identified key aspects in the dynamic sonoporation process including the formation of pores in the cell membrane, and the relative temporal duration of the pores and their resealing. These observations are obtained through the analysis of the rate the calcium concentration changes within the cells, making it possible to visualize membrane opening and repair in real-time through such changes in the intracellular calcium concentration.

  13. CALCIUM CHLORIDE PLANT LOOKING EAST. CALCIUM CHLORIDE BUILDING IN CENTER, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CALCIUM CHLORIDE PLANT LOOKING EAST. CALCIUM CHLORIDE BUILDING IN CENTER, CALCIUM CHLORIDE STORAGE BUILDING ON RIGHT WITH SA (SODA ASH) BUILDING IN RIGHT BACKGROUND. - Solvay Process Company, Calcium Chloride Plant, Between Willis & Milton Avenues, Solvay, Onondaga County, NY

  14. High energy transients

    NASA Technical Reports Server (NTRS)

    Woosley, S. E.

    1984-01-01

    A meeting was convened on the campus of the University of California at Santa Cruz during the two-week interval July 11 through July 22, 1983. Roughly 100 participants were chosen so as to give broad representation to all aspects of high energy transients. Ten morning review sessions were held in which invited speakers discussed the current status of observations and theory of the above subjects. Afternoon workshops were also held, usually more than one per day, to informally review various technical aspects of transients, confront shortcomings in theoretical models, and to propose productive courses for future research. Special attention was also given to the instrumentation used to study high energy transient and the characteristics and goals of a dedicated space mission to study transients in the next decade were determined. A listing of articles written by various members of the workshop is included.

  15. Transient topographical amnesia.

    PubMed Central

    Stracciari, A; Lorusso, S; Pazzaglia, P

    1994-01-01

    Ten healthy middle aged or elderly women experienced isolated episodes of topographical amnesia without an obvious aetiology. It is likely a benign cognitive disorder, similar to transient global amnesia. PMID:7964826

  16. Transient Astrophysics Observatory (TAO)

    NASA Astrophysics Data System (ADS)

    Racusin, J. L.; TAO Team

    2016-10-01

    The Transient Astrophysics Observatory (TAO) is a NASA MidEx mission concept (formerly known as Lobster) designed to provide simultaneous wide-field gamma-ray, X-ray, and near-infrared observations of the sky.

  17. Transient Ischemic Attack

    MedlinePlus

    A transient ischemic attack (TIA) is a stroke lasts only a few minutes. It happens when the blood supply to part of the brain is briefly blocked. Symptoms of a TIA are like other stroke symptoms, but do not ...

  18. [Do cows drink calcium?].

    PubMed

    Geishauser, T; Lechner, S; Plate, I; Heidemann, B

    2008-03-01

    The objective of this study was to investigate how well cows drink the Propeller calcium drink, and it's effect on blood calcium concentration. Drinking was tested in 120 cows right after calving, before cows drank anything else. 60 cows each were offered 20 liters of Propeller calcium drink or 20 liters of water. Cows drank the Propeller as good as water. 72% of all cows drank all 20 liters, 18% drank on average 8.2 liters and 10% drank less than 1 liter. Blood calcium concentration was studied in 16 cows right after calving. Eight cows each were offered 20 liters of Propeller calcium drink or no calcium drink. Blood calcium significantly increased ten minutes after Propeller intake and stayed significantly elevated for 24 hours. Without calcium drink blood calcium levels decreased significantly. Advantages of the new Propeller calcium drink over calcium gels or boli could be that cows now drink calcium themselves and that the Propeller increases blood calcium concentration rapidly and long lasting.

  19. Transient multivariable sensor evaluation

    DOEpatents

    Vilim, Richard B.; Heifetz, Alexander

    2017-02-21

    A method and system for performing transient multivariable sensor evaluation. The method and system includes a computer system for identifying a model form, providing training measurement data, generating a basis vector, monitoring system data from sensor, loading the system data in a non-transient memory, performing an estimation to provide desired data and comparing the system data to the desired data and outputting an alarm for a defective sensor.

  20. Gamma ray transients

    NASA Technical Reports Server (NTRS)

    Cline, Thomas L.

    1987-01-01

    The discovery of cosmic gamma ray bursts was made with systems designed at Los Alamos Laboratory for the detection of nuclear explosions beyond the atmosphere. HELIOS-2 was the first gamma ray burst instrument launched; its initial results in 1976, seemed to deepen the mystery around gamma ray transients. Interplanetary spacecraft data were reviewed in terms of explaining the behavior and source of the transients.

  1. Reporting neural activity with genetically encoded calcium indicators

    PubMed Central

    Hires, S. Andrew; Tian, Lin; Looger, Loren L.

    2009-01-01

    Genetically encoded calcium indicators (GECIs), based on recombinant fluorescent proteins, have been engineered to observe calcium transients in living cells and organisms. Through observation of calcium, these indicators also report neural activity. We review progress in GECI construction and application, particularly toward in vivo monitoring of sparse action potentials (APs). We summarize the extrinsic and intrinsic factors that influence GECI performance. A simple model of GECI response to AP firing demonstrates the relative significance of these factors. We recommend a standardized protocol for evaluating GECIs in a physiologically relevant context. A potential method of simultaneous optical control and recording of neuronal circuits is presented. PMID:18941901

  2. Cola beverage and delayed elimination of methotrexate

    PubMed Central

    Santucci, Raoul; Levêque, Dominique; Herbrecht, Raoul

    2010-01-01

    AIMS To report a case of severe delayed methotrexate elimination attributable to consumption of a cola beverage. METHODS To investigate unexplained low urinary pH in a lymphoma patient treated with high-dose methotrexate. RESULTS Unexpected urinary acidity, despite administration of large amounts of sodium bicarbonate, could be attributed to repeated consumption of a cola beverage. It resulted in a delayed elimination of methotrexate and acute renal failure. Discontinuation of cola drinks, increase in calcium folinate rescue and in sodium bicarbonate allowed satisfactory elimination of methotrexate on day 12 after infusion and recovery from renal impairment without other severe toxicity. No other cause of delay in methotrexate elimination could be identified. CONCLUSIONS Cola beverages have a low pH due to their phosphoric acid content that is excreted by renal route. We recommend patients receiving high dose methotrexate abstain from any cola drink within 24 h before and during methotrexate administration and until complete elimination of the drug. PMID:21545633

  3. Alendronate affects calcium dynamics in cardiomyocytes in vitro.

    PubMed

    Kemeny-Suss, Naomi; Kasneci, Amanda; Rivas, Daniel; Afilalo, Jonathan; Komarova, Svetlana V; Chalifour, Lorraine E; Duque, Gustavo

    2009-01-01

    Therapy with bisphosphonates, including alendronate (ALN), is considered a safe and effective treatment for osteoporosis. However, recent studies have reported an unexpected increase in serious atrial fibrillation (AF) in patients treated with bisphosphonates. The mechanism that explains this side effect remains unknown. Since AF is associated with an altered sarcoendoplasmic reticulum calcium load, we studied how ALN affects cardiomyocyte calcium homeostasis and protein isoprenylation in vitro. Acute and long-term (48h) treatment of atrial and ventricular cardiomyocytes with ALN (10(-8)-10(-6)M) was performed. Changes in calcium dynamics were determined by both fluorescence measurement of cytosolic free Ca(2+) concentration and western blot analysis of calcium-regulating proteins. Finally, effect of ALN on protein farnesylation was also identified. In both atrial and ventricular cardiomyocytes, ALN treatment delayed and diminished calcium responses to caffeine. Only in atrial cells, long-term exposure to ALN-induced transitory calcium oscillations and led to the development of oscillatory component in calcium responses to caffeine. Changes in calcium dynamics were accompanied by changes in expression of proteins controlling sarcoendoplasmic reticulum calcium. In contrast, ALN minimally affected protein isoprenylation in these cells. In summary, treatment of atrial cardiomyocytes with ALN-induced abnormalities in calcium dynamics consistent with induction of a self-stimulatory, pacemaker-like behavior, which may contribute to the development of cardiac side effects associated with these drugs.

  4. Effect of glycoursodeoxycholate on precipitation of calcium carbonate.

    PubMed

    Marteau, C; Portugal, H; Pauli, A M; Gerolami, A

    1985-01-01

    The potential role of bile salts in preventing calcium carbonate precipitation was investigated by studying their interaction of Ca2+ and their inhibitory effects on calcium carbonate formation. Glycochenodeoxycholate micelles bound more calcium than did glycocholate. At bile salt concentrations exceeding 12.5 mM, glycoursodeoxycholate bound calcium as well as glycochenodexycholate did. Similar results for calcium binding were observed in mixed micelles of bile salts and lecithin. In bicarbonate (25 or 50 mM) and CaCl2 (10 mM) solutions, calcium carbonate formation was inhibited by the bile salts. Glycoursodeoxycholate and glycochenodeoxycholate (25 mM) prevented calcium carbonate formation which was delayed by glycocholate. This effect is not due to differences between both series of bile salts for calcium binding since glycoursodeoxycholate or glycochenodeoxycholate (25 mM) more efficiently prevented calcium carbonate precipitation than did 35 mM glycocholate in spite of the same Ca2+ binding. These results suggest that some bile salts may have a specific role in preventing calcium precipitation in bile. The mechanism is unknown. The physical properties of glycoursodeoxycholate and glycochenodeoxycholate do not support a role for CaCO3 precipitation in gallstone calcification during litholytic therapy.

  5. Calcium in diet

    MedlinePlus

    ... Salmon and sardines canned with their soft bones Almonds, Brazil nuts, sunflower seeds, tahini, and dried beans ... greens = 100 mg of calcium ¼ cup of almonds = 100 mg of calcium 1 medium orange = 50 ...

  6. Integumentary loss of calcium.

    PubMed

    Chu, J Y; Margen, S; Calloway, D H; Costa, F M

    1979-08-01

    Integumentary calcium loss was studied in 16 healthy young men. The daily loss by the 16 ambulatory but relatively sedentary young men in 52 determinations of 6-day periods each was 8.7 +/- 1.9 mg/m2 per day (average 15.8 mg/man per day). The amount lost was not influenced by calcium intake (0.1 to 2.3 g/day). In contrast to urinary calcium excretion, which is directly related to protein intake, there was no significant change in integumentary calcium loss with varying protein intakes (1 to 96 g nitrogen per day). No compensatory relationship between urinary and integumentary calcium excretion was noted. During strenuous exercise calcium loss increased to an average of 25 mg in 40 min. There was no compensatory decrease in urinary excretion on the day of strenuous exercise. It was also noted that integumentary calcium loss was not affected by general calcium balance.

  7. Calcium Pyrophosphate Deposition (CPPD)

    MedlinePlus

    ... too. Proper diagnosis depends on detecting calcium pyrophosphate crystals in the fluid of an affected joint. CPPD ... using a microscope to see small calcium pyrophosphate crystals in joint fluid. Anti-inflammatory medications reduce pain ...

  8. Effect of the calcium buffer EGTA on the "hump" component of charge movement in skeletal muscle

    PubMed Central

    1991-01-01

    Three manifestations of excitation-contraction (E-C) coupling were measured in cut skeletal muscle fibers of the frog, voltage clamped in a double Vaseline gap: intramembrane charge movements, myoplasmic Ca2+ transients, and changes in optical transparency. Pulsing patterns in the presence of high [EGTA] intracellularly, shown by Garcia et al. (1989. J. Gen. Physiol. 94:973-986) to deplete Ca2+ in the sarcoplasmic reticulum, were found to change the above manifestations. With an intracellular solution containing 15 mM EGTA and 0 Ca, 10-15 pulses (100 ms) to -20 mV at a frequency of 2 min-1 reduced the "hump" component of charge movement current. This effect was reversible by 5 min of rest. The same effect was obtained in 62.5 mM EGTA and 0 Ca by pulsing at 0.2 min-1. This effect was reversible by adding calcium to the EGTA solution, for a nominal [Ca2+]i of 200 nM, and was prevented by adding calcium to the EGTA solution before pulsing. The suppression of the hump was accompanied by elimination of the optical manifestations of E-C coupling. The current suppressed was found by subtraction and had the following properties: delayed onset, a peak at a variable interval (10-20 ms) into the pulse, a negative phase (inward current) after the peak, and a variable OFF transient that could be multi-phasic and carried less charge than the ON transient. In the previous paper (Csernoch et al., 1991. J. Gen. Physiol. 97:845-884) it was shown that several interventions suppress a similar component of charge movement current, identified with the "hump" or Q gamma current (I gamma). Based on the similarity to that component, the charge movement suppressed by the depletion protocols can also be identified with I gamma. The fact that I gamma is suppressed by Ca2+ depletion and the kinetic properties of the charge suppressed is inconsistent with the existence of separate sets of voltage sensors underlying the two components of charge movement, Q beta and Q gamma. This is explicable if

  9. Simultaneous patch-clamping and calcium imaging in developing dendrites.

    PubMed

    Kleindienst, Thomas; Lohmann, Christian

    2014-03-01

    Calcium imaging has been used extensively to explore the role of action potential (AP) firing in the development of neuronal structure and synaptic function because increases in intracellular calcium ([Ca(2+)]i) reliably and, within a certain range, linearly reflect neuronal spiking activity. Patterns of APs in individual cells can be deduced from calcium recordings, which have typically been performed at the level of cell bodies. However, neurons are particularly susceptible to phototoxicity when they are illuminated at the soma. Furthermore, for some imaging experiments (e.g., those that address the interactions between dendrites and axons during synapse formation), the cell body of a given neuron may simply not be in the field of view. In these situations, it would be helpful to determine the spiking patterns of a neuron from the calcium activity in its subcellular compartments such as stretches of dendrites or axons. Here, we describe an approach for determining the relationship between AP firing and dendritic calcium transients by simultaneously imaging calcium transients in small dendritic stretches of hippocampal pyramidal neurons in slice cultures from neonatal rats and recording spiking activity with whole-cell patch-clamp recordings in these neurons. These experiments allow us to correlate the electrophysiological spiking pattern with the accompanying changes in the calcium concentration in individual dendritic segments.

  10. On the structure of amorphous calcium carbonate--a detailed study by solid-state NMR spectroscopy.

    PubMed

    Nebel, Holger; Neumann, Markus; Mayer, Christian; Epple, Matthias

    2008-09-01

    The calcium carbonate phases calcite, aragonite, vaterite, monohydrocalcite (calcium carbonate monohydrate), and ikaite (calcium carbonate hexahydrate) were studied by solid-state NMR spectroscopy ( (1)H and (13)C). Further model compounds were sodium hydrogencarbonate, potassium hydrogencarbonate, and calcium hydroxide. With the help of these data, the structure of synthetically prepared additive-free amorphous calcium carbonate (ACC) was analyzed. ACC contains molecular water (as H 2O), a small amount of mobile hydroxide, and no hydrogencarbonate. This supports the concept of ACC as a transient precursor in the formation of calcium carbonate biominerals.

  11. Calcium and Mitosis

    NASA Technical Reports Server (NTRS)

    Hepler, P.

    1983-01-01

    Although the mechanism of calcium regulation is not understood, there is evidence that calcium plays a role in mitosis. Experiments conducted show that: (1) the spindle apparatus contains a highly developed membrane system that has many characteristics of sarcoplasmic reticulum of muscle; (2) this membrane system contains calcium; and (3) there are ionic fluxes occurring during mitosis which can be seen by a variety of fluorescence probes. Whether the process of mitosis can be modulated by experimentally modulating calcium is discussed.

  12. Calcium and Mitosis

    NASA Technical Reports Server (NTRS)

    Hepler, P.

    1983-01-01

    Although the mechanism of calcium regulation is not understood, there is evidence that calcium plays a role in mitosis. Experiments conducted show that: (1) the spindle apparatus contains a highly developed membrane system that has many characteristics of sarcoplasmic reticulum of muscle; (2) this membrane system contains calcium; and (3) there are ionic fluxes occurring during mitosis which can be seen by a variety of fluorescence probes. Whether the process of mitosis can be modulated by experimentally modulating calcium is discussed.

  13. Diuretics for transient tachypnoea of the newborn.

    PubMed

    Kassab, Manal; Khriesat, Wadah M; Anabrees, Jasim

    2015-11-21

    Transient tachypnoea of the newborn (TTN) results from delayed clearance of lung liquid and is a common cause of admission of full-term infants to neonatal intensive care units. The condition is particularly common after elective caesarean section. Conventional treatment involves appropriate oxygen administration and continuous positive airway pressure in some cases. Most infants receive antibiotic therapy. Hastening the clearance of lung liquid may shorten the duration of the symptoms and reduce complications. To determine whether diuretic administration reduces the duration of oxygen therapy and respiratory symptoms and shortens hospital stay in term infants presenting with transient tachypnoea of the newborn. An updated search was carried out in September 2015 of the following databases: the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library issue 9, 2015), MEDLINE via Ovid, EMBASE, PubMed, and CINAHL via OVID. We included randomised and quasi-randomised controlled trials that compared the effect of diuretics administration versus placebo or no treatment in infants of less than seven days of age, born at 37 or more weeks of gestation with the clinical picture of transient tachypnoea of the newborn. We extracted and analysed data according to the methods outlined in the latest Cochrane Handbook for Systematic Reviews of Interventions. Two review authors assessed trial quality in each potentially eligible manuscript and two review authors extracted data. Our previous systematic review included two trials enrolling a total of 100 infants with transient tachypnoea of the newborn (Wiswell 1985; Karabayir 2006). The updated search revealed no new trials. Wiswell 1985 randomised 50 infants to receive either oral furosemide (2 mg/kg body weight at time of diagnosis followed by a 1 mg/kg dose 12 hours later if the tachypnoea persisted) or placebo. Karabayir 2006 randomised 50 infants to receive either intravenous furosemide (2 mg/kg body

  14. Delayed puberty in girls

    MedlinePlus

    ... hormones. These changes normally begin to appear in girls between ages 8 to 14 years old. With delayed puberty, these changes either don't occur, or if they do, they don't progress normally. Delayed puberty is more common in boys than in girls. Causes In most cases of delayed puberty, growth ...

  15. Dual responses of CNS mitochondria to elevated calcium.

    PubMed

    Brustovetsky, N; Dubinsky, J M

    2000-01-01

    Isolated brain mitochondria were examined for their responses to calcium challenges under varying conditions. Mitochondrial membrane potential was monitored by following the distribution of tetraphenylphosphonium ions in the mitochondrial suspension, mitochondrial swelling by observing absorbance changes, calcium accumulation by an external calcium electrode, and oxygen consumption with an oxygen electrode. Both the extent and rate of calcium-induced mitochondrial swelling and depolarization varied greatly depending on the energy source provided to the mitochondria. When energized with succinate plus glutamate, after a calcium challenge, CNS mitochondria depolarized transiently, accumulated substantial calcium, and increased in volume, characteristic of a mitochondrial permeability transition. When energized with 3 mM succinate, CNS mitochondria maintained a sustained calcium-induced depolarization without appreciable swelling and were slow to accumulate calcium. Maximal oxygen consumption was also restricted under these conditions, preventing the electron transport chain from compensating for this increased proton permeability. In 3 mM succinate, cyclosporin A and ADP plus oligomycin restored potential and calcium uptake. This low conductance permeability was not effected by bongkrekic acid or carboxyatractylate, suggesting that the adenine nucleotide translocator was not directly involved. Fura-2FF measurements of [Ca(2+)](i) suggest that in cultured hippocampal neurons glutamate-induced increases reached tens of micromolar levels, approaching those used with mitochondria. We propose that in the restricted substrate environment, Ca(2+) activated a low-conductance permeability pathway responsible for the sustained mitochondrial depolarization.

  16. Calcium accentuates injury induced by ethanol in human gastric cells.

    PubMed

    Kokoska, E R; Smith, G S; Deshpande, Y; Wolff, A B; Rieckenberg, C; Miller, T A

    1999-01-01

    The mechanism(s) whereby ethanol induces cellular injury remains poorly understood. Furthermore, the role of calcium in gastric mucosal injury under in vitro conditions is poorly defined. The major objectives of this study were to (1) define the temporal relationship between intracellular calcium accumulation induced by ethanol and cellular injury, (2) characterize the mechanism(s) whereby ethanol increases cellular calcium content, and (3) determine whether calcium removal would attenuate ethanol-induced cellular injury. Human gastric cells (AGS) were used for all experiments. Sustained intracellular calcium accumulation induced by ethanol, but not transient changes, preceded and directly correlated with cellular injury. Cells exposed to damaging concentrations of ethanol demonstrated an initial calcium surge that appeared to be a consequence of inositol 1,4,5-triphosphate (IP3) generation and subsequent internal store release followed by a sustained plateau resulting from extracellular calcium influx through store-operated calcium channels. Finally, both morphologic (cellular injury) and functional (clearance of bovine serum albumin) changes induced by ethanol were significantly attenuated when extracellular Ca(+&plus) influx was prevented, and further decreased when intracellular Ca(++) stores were depleted. These data indicate that calcium plays a significant role in cellular injury induced by ethanol.

  17. Effect of thymol on calcium handling in mammalian ventricular myocardium.

    PubMed

    Szentandrássy, Norbert; Szigeti, Gyula; Szegedi, Csaba; Sárközi, Sándor; Magyar, János; Bányász, Tamás; Csernoch, László; Kovács, László; Nánási, Péter P; Jóna, István

    2004-01-02

    Concentration-dependent effects of thymol on calcium handling were studied in canine and guinea pig cardiac preparations (Langendorff-perfused guinea pig hearts, canine ventricular trabeculae, canine sarcoplasmic reticular vesicles and single ryanodine receptors). Thymol induced a concentration-dependent negative inotropic action in both canine and guinea pig preparations (EC(50) = 297 +/- 12 microM in dog). However, low concentrations of thymol reduced intracellular calcium transients in guinea pig hearts without decreasing contractility. At higher concentrations both calcium transients and contractions were suppressed. In canine sarcoplasmic reticular vesicles thymol induced rapid release of calcium (V(max) = 0.47 +/- 0.04 nmol s(-1), EC(50) = 258 +/- 21 microM, Hill coefficient = 3.0 +/- 0.54), and decreased the activity of the calcium pump (EC(50) = 253 +/- 4.7 microM, Hill coefficient = 1.62 +/- 0.05). Due to the less sharp concentration-dependence of the ATPase inhibition, this effect was significant from 50 microM, whereas the thymol-induced calcium release only from 100 microM. In single ryanodine receptors incorporated into artificial lipid bilayer thymol induced long lasting openings, having mean open times increased with 3 orders of magnitude, however, the specific conductance of the channel remained unaltered. This effect of thymol was not voltage-dependent and failed to prevent the binding of ryanodine. In conclusion, the negative inotropic action of thymol can be explained by reduction in calcium content of the sarcoplasmic reticulum due to the combination of the thymol-induced calcium release and inhibition of the calcium pump. The calcium-sensitizer effect, observed at lower thymol concentrations, indicates that thymol is likely to interact with the contractile machinery also.

  18. Fluid Flow Induced Calcium Response in Bone Cell Network

    PubMed Central

    Huo, Bo; Lu, Xin L.; Hung, Clark T.; Costa, Kevin D.; Xu, Qiaobing; Whitesides, George M.; Guo, X. Edward

    2010-01-01

    In our previous work, bone cell networks with controlled spacing and functional intercellular gap junctions had been successfully established by using microcontact printing and self assembled monolayers technologies [Guo, X. E., E. Takai, X. Jiang, Q. Xu, G. M. Whitesides, J. T. Yardley, C. T. Hung, E. M. Chow, T. Hantschel, and K. D. Costa. Mol. Cell. Biomech. 3:95–107, 2006]. The present study investigated the calcium response and the underlying signaling pathways in patterned bone cell networks exposed to a steady fluid flow. The glass slides with cell networks were separated into eight groups for treatment with specific pharmacological agents that inhibit pathways significant in bone cell calcium signaling. The calcium transients of the network were recorded and quantitatively evaluated with a set of network parameters. The results showed that 18α-GA (gap junction blocker), suramin (ATP inhibitor), and thapsigargin (depleting intracellular calcium stores) significantly reduced the occurrence of multiple calcium peaks, which were visually obvious in the untreated group. The number of responsive peaks also decreased slightly yet significantly when either the COX-2/PGE2 or the NOS/nitric oxide pathway was disrupted. Different from all other groups, cells treated with 18α-GA maintained a high concentration of intracellular calcium following the first peak. In the absence of calcium in the culture medium, the intracellular calcium concentration decreased slowly with fluid flow without any calcium transients observed. These findings have identified important factors in the flow mediated calcium signaling of bone cells within a patterned network. PMID:20852730

  19. Calcium measurements with a new high-affinity n.m.r. indicator in the isolated perfused heart.

    PubMed Central

    Kirschenlohr, H L; Grace, A A; Clarke, S D; Shachar-Hill, Y; Metcalfe, J C; Morris, P G; Smith, G A

    1993-01-01

    A new n.m.r. indicator, 1,2-bis-(2-[1-(hydroxycarbony)ethyl- (hydroxycarbonylmethyl)]amino-5-fluorophenoxy)ethane (DiMe-5FBAPTA), with a higher affinity for calcium (apparent Kd 46 nM, pH 7.2, 30 degrees C) than the parent 5FBAPTA chelator (Kd 537 nM, pH 7.1, 30 degrees C) has been used to measure the cardiac intracellular free Ca2+ ([Ca2+]i). DiMe-5FBAPTA was loaded into Langendorff-perfused ferret hearts maintained at 30 degrees C using the acetoxymethyl ester (AM) derivative. The intracellular concentration required to achieve an adequate signal-to-noise (S/N) ratio (> 10:1) for the n.m.r. spectra caused a similar reduction in developed pressure to that obtained using 5FBAPTA-AM. The DiMe-5FBAPTA was used to estimate [Ca2+]i in diastole, through the calcium transient and at rest in the presence of the slow calcium channel blocker diltiazem. At a pacing frequency of 1.0 Hz, end-diastolic [Ca2+]i was 198 +/- 30 nM (n = 9), and reducing the pacing frequency to 0.2 Hz lowered [Ca2+]i to 89 +/- 13 nM (n = 5). Perfusion with diltiazem (100 microM) for 60 min lowered [Ca2+]i to 10 +/- 1 nM (n = 4) in unpaced hearts and to 94 +/- 24 nM (n = 4) in hearts paced at 1.0 Hz. The [Ca2+]i transient measured with DiMe-5FBAPTA was sharper and delayed compared with the transient measured previously with 5FBAPTA. Co-loading the two indicators provided evidence that the indicator with the higher Kd had a dominant effect on the end-diastolic [Ca2+]i. The lower values for end-diastolic [Ca2+]i obtained with DiMe-5FBAPTA are consistent with fluorescent indicator measurements. These observations suggest that perturbations of [Ca2+]i caused by the new indicator are less than those induced by 5FBAPTA. DiMe-5FBAPTA therefore represents a useful step in the development of 19F-n.m.r. calcium indicators. PMID:8343122

  20. Normal calcium homeostasis in dystrophin-expressing facioscapulohumeral muscular dystrophy myotubes.

    PubMed

    Vandebrouck, Clarisse; Imbert, Nathalie; Constantin, Bruno; Duport, Gérard; Raymond, Guy; Cognard, Christian

    2002-03-01

    The aim of this study was to provide a set of data on mechanisms involved in the calcium homeostasis of facioscapulohumeral muscular dystrophy (FSHD) co-cultured myotubes. In fact, abnormal regulation of calcium have been shown in deficient dystrophin cells like Duchenne muscular dystrophy (DMD) cells, and it seemed interesting to study the calcium regulation in a pathologic cellular model which express dystrophin. T- and L-type calcium currents and contractile responses induced by membrane depolarisations as well as intracellular calcium transients induced by three kinds of stimulus (superfusions of acetylcholine, high K+ or caffeine containing media) were recorded by means of whole-cell patch-clamp and ratiometric cytofluorimetry in co-cultured FSHD myotubes which presented a sarcolemmal localisation of dystrophin. As judged from calcium currents properties, voltage-dependency of contractile responses or amplitude of evoked calcium transients, no clear difference in the calcium handling or calcium signalling was observed between this type of cell and the control cells, at least with the means and the conditions used in the present study. Since FSHD cells, contrary to DMD (Duchenne muscular dystrophy) cells, seemed to display both dystrophin expression and unaltered calcium regulation, the FSHD co-cultured cells appeared as a useful model of dystrophin-expressing pathological muscle cells to further investigate the link between dystrophin expression and intracellular calcium level regulation.

  1. The yin and yang of calcium effects on synaptic vesicle endocytosis.

    PubMed

    Wu, Xin-Sheng; Wu, Ling-Gang

    2014-02-12

    A large number of studies suggest that calcium triggers and accelerates vesicle endocytosis at many synapses and non-neuronal secretory cells. However, many studies show that prolonging the duration of the stimulation train, which induces more calcium influx, slows down endocytosis; and several studies suggest that instead of triggering endocytosis, calcium actually inhibits endocytosis. Here we addressed this apparent conflict at a large nerve terminal, the calyx of Held in rat brainstem, in which recent studies suggest that transient calcium increase up to tens of micromolar concentration at the micro/nano domain triggers endocytosis. By dialyzing 0-1 μM calcium into the calyx via a whole-cell pipette, we found that slow endocytosis was inhibited by calcium dialysis in a concentration-dependent manner. Thus, prolonged, small, and global calcium increase inhibits endocytosis, whereas transient and large calcium increase at the micro/nano domain triggers endocytosis and facilitates endocytosis. This yin and yang effect of calcium may reconcile apparent conflicts regarding whether calcium accelerates or inhibits endocytosis. Whether endocytosis is fast or slow depends on the net outcome between the yin and yang effect of calcium.

  2. Control of amplitude chimeras by time delay in oscillator networks

    NASA Astrophysics Data System (ADS)

    Gjurchinovski, Aleksandar; Schöll, Eckehard; Zakharova, Anna

    2017-04-01

    We investigate the influence of time-delayed coupling in a ring network of nonlocally coupled Stuart-Landau oscillators upon chimera states, i.e., space-time patterns with coexisting partially coherent and partially incoherent domains. We focus on amplitude chimeras, which exhibit incoherent behavior with respect to the amplitude rather than the phase and are transient patterns, and we show that their lifetime can be significantly enhanced by coupling delay. To characterize their transition to phase-lag synchronization (coherent traveling waves) and other coherent structures, we generalize the Kuramoto order parameter. Contrasting the results for instantaneous coupling with those for constant coupling delay, for time-varying delay, and for distributed-delay coupling, we demonstrate that the lifetime of amplitude chimera states and related partially incoherent states can be controlled, i.e., deliberately reduced or increased, depending upon the type of coupling delay.

  3. Calcium bioavailability from calcium fortified food products.

    PubMed

    Kohls, K

    1991-08-01

    The calcium balance of 12 presumed healthy human young adult subjects was assessed. Subjects consumed a constant laboratory-controlled diet supplemented with one of four calcium-fortified food products: orange juice (OJ), milk (M), experimental pasteurized processed cheese (T), soda (S), or a calcium carbonate plus vitamin D tablet (CC). Study length was 6 weeks with seven-day experimental periods (2-days allowed for adjustment with 5-days combined for purposes of analysis). All urine and fecal samples were collected by the subjects for the duration of the study. Blood samples were drawn at the end of each experimental period. Urine and fecal calcium contents were determined. Blood samples were analyzed for alkaline phosphatase. Results of this study indicate a higher fecal calcium content (mg/day) when subjects consumed CC and T, and when subjects consumed self-selected diets, than when given S, M, or OJ. Urinary calcium excretion was significantly lower when subjects consumed OJ than when they consumed M, T, or their self-selected diets. A significantly larger positive calcium balance was demonstrated when subjects consumed OJ as compared to T. Fecal transmit time did not vary significantly. Serum alkaline phosphatase was significantly lower when subjects consumed T than when they consumed self-selected diets.

  4. Nonlinear femtosecond pump-probe spectroscopy using a power-encoded soliton delay line.

    PubMed

    Saint-Jalm, Sarah; Andresen, Esben Ravn; Bendahmane, Abdelkrim; Kudlinski, Alexandre; Rigneault, Hervé

    2016-01-01

    We show femtosecond time-resolved nonlinear pump-probe spectroscopy using a fiber soliton as the probe pulse. Furthermore, we exploit soliton dynamics to record an entire transient trace with a power-encoded delay sweep. The power-encoded delay line takes advantage of the dependency of the soliton trajectory in the (λ,z) space upon input power; the difference in accumulated group delay between trajectories converts a fast power sweep into a fast delay sweep. We demonstrate the concept by performing transient absorption spectroscopy in a test sample and validate it against a conventional pump-probe setup.

  5. Palomar Transient Factory

    NASA Astrophysics Data System (ADS)

    Kulkarni, S.; Quimby, R.

    2010-12-01

    The Palomar Transient Factory (PTF) was designed to explicitly to chart the transient sky with a particular focus on events which lie in the nova-supernova gap. With its innovative two-telescope architecture it achieves both high cadence and large areal rate of coverage. PTF was commissioned during the summer of 2009. PTF is now finding an extragalactic transient every 20 minutes and a Galactic (strong) variable every 10 minutes. Spectroscopy undertaken at Keck and Palomar has allowed us: identify an emerging class of ultra-luminous supernovae, discover luminous red novae, undertake UV spectroscopy of Ia supernovae, discover supernovae powered by something other than Nickel-56, clarification of sub-classes of core collapse and thermo-nuclear explosions, map the systematics of core collapse supernovae, a trove of eclipsing binaries and many others.

  6. Inhibitors of calcium buffering depress evoked transmitter release at the squid giant synapse.

    PubMed Central

    Adams, D J; Takeda, K; Umbach, J A

    1985-01-01

    Evoked release of transmitter at the squid giant synapse was examined under conditions where the calcium ion concentration in the presynaptic terminal was manipulated by inhibitors of calcium sequestration. Simultaneous intracellular recordings of presynaptic and post-synaptic resting and action potentials were made during bath application of one of the following metabolic inhibitors: sodium cyanide (NaCN), carbonyl cyanide-p-trifluoromethoxyphenyl hydrazone (FCCP); ruthenium red (RuR) and sodium-free (lithium) sea water. Cyanide and lithium sea water reversibly depressed the post-synaptic potential (p.s.p.) whilst RuR and FCCP blocked the evoked post-synaptic response irreversibly. The progressive reduction of p.s.p. amplitude was accompanied by a reversible increase in synaptic delay. The time course of block of the p.s.p. was similar for different agents and dependent on the rate of presynaptic activity (30-40 min at 0.01 Hz). Recovery of the post-synaptic action potential following block by cyanide and lithium sea water was obtained within 40 min and 5 min respectively. Synaptic depression by the metabolic inhibitors does not result from changes in presynaptic resting or action potentials, nor from a change in post-synaptic receptor sensitivity. The post-synaptic response to the local ionophoresis of L-glutamate was unchanged following inhibition of evoked release of transmitter by cyanide. Injections of EGTA into presynaptic terminals poisoned by cyanide produced transient increases in p.s.p. amplitude, suggesting that cyanide is having its effect through raising intracellular calcium rather than lowering ATP. Control experiments injecting EGTA into unpoisoned nerve terminals showed no apparent effect on evoked transmitter release. PMID:2419546

  7. Transient Uncoupling Induces Synchronization

    NASA Astrophysics Data System (ADS)

    Schröder, Malte; Mannattil, Manu; Dutta, Debabrata; Chakraborty, Sagar; Timme, Marc

    2015-07-01

    Finding conditions that support synchronization is a fertile and active area of research with applications across multiple disciplines. Here we present and analyze a scheme for synchronizing chaotic dynamical systems by transiently uncoupling them. Specifically, systems coupled only in a fraction of their state space may synchronize even if fully coupled they do not. While for many standard systems coupling strengths need to be bounded to ensure synchrony, transient uncoupling removes this bound and thus enables synchronization in an infinite range of effective coupling strengths. The presented coupling scheme therefore opens up the possibility to induce synchrony in (biological or technical) systems whose parameters are fixed and cannot be modified continuously.

  8. Recommendations for the Avoidance of Delayed-Onset Muscle Soreness.

    ERIC Educational Resources Information Center

    Szymanski, David J.

    2001-01-01

    Describes the possible causes of delayed-onset muscle soreness (DOMS), which include buildup of lactic acid in muscle, increased intracellular calcium concentration, increased intramuscular inflammation, and muscle fiber and connective tissue damage. Proposed methods to reduce DOMS include warming up before exercise and performing repeated bouts…

  9. Recommendations for the Avoidance of Delayed-Onset Muscle Soreness.

    ERIC Educational Resources Information Center

    Szymanski, David J.

    2001-01-01

    Describes the possible causes of delayed-onset muscle soreness (DOMS), which include buildup of lactic acid in muscle, increased intracellular calcium concentration, increased intramuscular inflammation, and muscle fiber and connective tissue damage. Proposed methods to reduce DOMS include warming up before exercise and performing repeated bouts…

  10. Privileged crosstalk between TRPV1 channels and mitochondrial calcium shuttling machinery controls nociception.

    PubMed

    Nita, Iulia I; Caspi, Yaki; Gudes, Sagi; Fishman, Dimitri; Lev, Shaya; Hersfinkel, Michal; Sekler, Israel; Binshtok, Alexander M

    2016-12-01

    The nociceptive noxious heat-activated receptor - TRPV1, conducts calcium and sodium, thus producing a depolarizing receptor potential, leading to activation of nociceptive neurons. TRPV1-mediated calcium and sodium influx is negatively modulated by calcium, via calcium-dependent desensitization of TRPV1 channels. A mitochondrial Ca(2+) uniporter - MCU, controls mitochondrial Ca(2+) entry while a sodium/calcium transporter - NCLX shapes calcium and sodium transients by mediating sodium entry into and removing calcium from the mitochondria. The functional interplay between TRPV1, MCU and NCLX, in controlling the cytosolic and mitochondrial calcium and sodium transients and subsequently the nociceptive excitability, is poorly understood. Here, we used cytosolic and mitochondrial fluorescent calcium and sodium imaging together with electrophysiological recordings of TRPV1-induced currents in HEK293T cells and nociceptor-like dissociated rat dorsal root ganglion neurons, while modulating NCLX or MCU expression using specific small interfering RNA (siNCLX). We show that the propagation of the TRPV1-induced cytosolic calcium and sodium fluxes into mitochondria is dependent on coordinated activity of NCLX and MCU. Thus, knocking-down of NCLX triggers down regulation of MCU dependent mitochondrial Ca(2+) uptake. This in turn decreases rate and amplitude of TRPV1-mediated cytosolic calcium, which inhibits capsaicin-induced inward current and neuronal firing. TRPV1-mediated currents were fully rescued by intracellular inclusion of the fast calcium chelator BAPTA. Finally, NCLX controls capsaicin-induced cell death, by supporting massive mitochondrial Ca(2+) shuttling. Altogether, our results suggest that NCLX, by regulating cytosolic and mitochondrial ionic transients, modulates calcium-dependent desensitization of TRPV1 channels, thereby, controlling nociceptive signaling.

  11. Optical Fiber Delay Line Signal Processing.

    NASA Astrophysics Data System (ADS)

    Newton, Steven Arthur

    The delay line transversal filter is a basic component in analog signal processing systems. Unfortunately, conventional delay line devices, such as those that use surface acoustic waves, are largely limited to operation at frequencies of several hundred megahertz and below. In this work, single-mode optical fiber has been used as a delay medium to make transversal filters that extend this kind of signal processing to frequencies of one gigahertz and above. Single-mode optical fiber is an excellent delay medium because it exhibits extremely low loss and dispersion. By efficiently collecting, weighting, and combining signals extracted from a fiber delay line, single-mode fiber can be used, not only to transmit broadband signals, but to process them as well. The goals of the work have been to study efficient tapping mechanisms, and to construct fiber transversal filters capable of performing some basic signal processing functions. Several different tapped and recirculating delay line prototypes have been fabricated using a variety of tapping techniques, including macrobending and evanescent field coupling. These devices have been used to demonstrate basic signal processing functions, such as code generation, convolution, correlation, and frequency filtering, at frequencies that exceed those possible using conventional delay line technologies. Fiber recirculating delay line loops have also been demonstrated as transient memories for the temporary storage of signals and as a means of time division multiplexing via data rate transformation. These devices are the building blocks that are necessary to make systems capable of performing complex signal processing functions. With the recent development of high speed optical sources and detectors to interface with fiber systems of this kind, the real time processing of signals having bandwidths of tens of gigahertz is envisioned.

  12. Voltage transients elicited by sudden step-up of auxin

    NASA Technical Reports Server (NTRS)

    Pickard, B. G.

    1984-01-01

    It is hypothesized (i) that the molecular mechanism for the reception of friction and flexure and the mechanism by which auxin enhances ethylene production have in common a release of free calcium into the cytosol, (ii) that elevated cytosolic calcium initiates vesicle exocytosis, and (iii) that the vesicles release a factor or set of factors which depolarizes the plasmalemma and promotes ethylene synthesis. One consequence of such exocytosis should be small, extracellularly observable voltage transients. Transients, ranging in size up to 600 microvolts and possessing risetimes (10-90%) of approximately 200 ms, are known to be elicited in etiolated stems of Pisum sativum L. by friction and are here shown to be elicited by sudden increase of auxin concentration and also by a Ca2+ ionophore.

  13. Functional calcium imaging in developing cortical networks.

    PubMed

    Dawitz, Julia; Kroon, Tim; Hjorth, J J Johannes; Meredith, Rhiannon M

    2011-10-22

    , synaptogenesis and plasticity (Rakic & Komuro, 1995; Spitzer et al., 2004) are of critical importance for the correct development and maturation of the cortical circuitry. In this JoVE video, we demonstrate the methods used to image spontaneous activity in developing cortical networks. Calcium-sensitive indicators, such as Fura 2-AM ester diffuse across the cell membrane where intracellular esterase activity cleaves the AM esters to leave the cell-impermeant form of indicator dye. The impermeant form of indicator has carboxylic acid groups which are able to then detect and bind calcium ions intracellularly. The fluorescence of the calcium-sensitive dye is transiently altered upon binding to calcium. Single or multi-photon imaging techniques are used to measure the change in photons being emitted from the dye, and thus indicate an alteration in intracellular calcium. Furthermore, these calcium-dependent indicators can be combined with other fluorescent markers to investigate cell types within the active network.

  14. Multiscale Determinants of Delayed Afterdepolarization Amplitude in Cardiac Tissue.

    PubMed

    Ko, Christopher Y; Liu, Michael B; Song, Zhen; Qu, Zhilin; Weiss, James N

    2017-05-09

    Spontaneous calcium (Ca) waves in cardiac myocytes underlie delayed afterdepolarizations (DADs) that trigger cardiac arrhythmias. How these subcellular/cellular events overcome source-sink factors in cardiac tissue to generate DADs of sufficient amplitude to trigger action potentials is not fully understood. Here, we evaluate quantitatively how factors at the subcellular scale (number of Ca wave initiation sites), cellular scale (sarcoplasmic reticulum (SR) Ca load), and tissue scale (synchrony of Ca release in populations of myocytes) determine DAD features in cardiac tissue using a combined experimental and computational modeling approach. Isolated patch-clamped rabbit ventricular myocytes loaded with Fluo-4 to image intracellular Ca were rapidly paced during exposure to elevated extracellular Ca (2.7 mmol/L) and isoproterenol (0.25 μmol/L) to induce diastolic Ca waves and subthreshold DADs. As the number of paced beats increased from 1 to 5, SR Ca content (assessed with caffeine pulses) increased, the number of Ca wave initiation sites increased, integrated Ca transients and DADs became larger and shorter in duration, and the latency period to the onset of Ca waves shortened with reduced variance. In silico analysis using a computer model of ventricular tissue incorporating these experimental measurements revealed that whereas all of these factors promoted larger DADs with higher probability of generating triggered activity, the latency period variance and SR Ca load had the greatest influences. Therefore, incorporating quantitative experimental data into tissue level simulations reveals that increased intracellular Ca promotes DAD-mediated triggered activity in tissue predominantly by increasing both the synchrony (decreasing latency variance) of Ca waves in nearby myocytes and SR Ca load, whereas the number of Ca wave initiation sites per myocyte is less important. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  15. High speed two-photon imaging of calcium dynamics in dendritic spines: consequences for spine calcium kinetics and buffer capacity.

    PubMed

    Cornelisse, L Niels; van Elburg, Ronald A J; Meredith, Rhiannon M; Yuste, Rafael; Mansvelder, Huibert D

    2007-10-24

    Rapid calcium concentration changes in postsynaptic structures are crucial for synaptic plasticity. Thus far, the determinants of postsynaptic calcium dynamics have been studied predominantly based on the decay kinetics of calcium transients. Calcium rise times in spines in response to single action potentials (AP) are almost never measured due to technical limitations, but they could be crucial for synaptic plasticity. With high-speed, precisely-targeted, two-photon point imaging we measured both calcium rise and decay kinetics in spines and secondary dendrites in neocortical pyramidal neurons. We found that both rise and decay kinetics of changes in calcium-indicator fluorescence are about twice as fast in spines. During AP trains, spine calcium changes follow each AP, but not in dendrites. Apart from the higher surface-to-volume ratio (SVR), we observed that neocortical dendritic spines have a markedly smaller endogenous buffer capacity with respect to their parental dendrites. Calcium influx time course and calcium extrusion rate were both in the same range for spines and dendrites when fitted with a dynamic multi-compartment model that included calcium binding kinetics and diffusion. In a subsequent analysis we used this model to investigate which parameters are critical determinants in spine calcium dynamics. The model confirmed the experimental findings: a higher SVR is not sufficient by itself to explain the faster rise time kinetics in spines, but only when paired with a lower buffer capacity in spines. Simulations at zero calcium-dye conditions show that calmodulin is more efficiently activated in spines, which indicates that spine morphology and buffering conditions in neocortical spines favor synaptic plasticity.

  16. Stretch-activated calcium channels relay fast calcium waves propagated by calcium-induced calcium influx.

    PubMed

    Jaffe, Lionel F

    2007-03-01

    For nearly 30 years, fast calcium waves have been attributed to a regenerative process propagated by CICR (calcium-induced calcium release) from the endoplasmic reticulum. Here, I propose a model containing a new subclass of fast calcium waves which is propagated by CICI (calcium-induced calcium influx) through the plasma membrane. They are called fast CICI waves. These move at the order of 100 to 1000 microm/s (at 20 degrees C), rather than the order of 3 to 30 microm/s found for CICR. Moreover, in this proposed subclass, the calcium influx which drives calcium waves is relayed by stretch-activated calcium channels. This model is based upon reports from approx. 60 various systems. In seven of these reports, calcium waves were imaged, and, in five of these, evidence was presented that these waves were regenerated by CICI. Much of this model involves waves that move along functioning flagella and cilia. In these systems, waves of local calcium influx are thought to cause waves of local contraction by inducing the sliding of dynein or of kinesin past tubulin microtubules. Other cells which are reported to exhibit waves, which move at speeds in the fast CICI range, include ones from a dozen protozoa, three polychaete worms, three molluscs, a bryozoan, two sea urchins, one arthropod, four insects, Amphioxus, frogs, two fish and a vascular plant (Equisetum), together with numerous healthy, as well as cancerous, mammalian cells, including ones from human. In two of these systems, very gentle local mechanical stimulation is reported to initiate waves. In these non-flagellar systems, the calcium influxes are thought to speed the sliding of actinomyosin filaments past each other. Finally, I propose that this mechanochemical model could be tested by seeing if gentle mechanical stimulation induces waves in more of these systems and, more importantly, by imaging the predicted calcium waves in more of them.

  17. Lightning-Transient Recorder

    NASA Technical Reports Server (NTRS)

    Grumm, R. L.

    1984-01-01

    Battery-powered system operates for more than one year. Recorder digitizes and records up to 146 current samples at selected intervals during lightning stroke. System continues to store time tags of lightning strokes even if transient current memory is full.

  18. Transient tachypnea - newborn

    MedlinePlus

    ... or reabsorbing it. The first few breaths a baby takes after delivery fill the lungs with air and help to ... goes away within 24 to 48 hours after delivery. In most cases, babies who have had transient tachypnea have no further ...

  19. Transient lingual papillitis.

    PubMed

    Kornerup, Ida M; Senye, Mireya; Peters, Edmund

    2016-01-01

    A case of recurrent, clinically innocuous, but painful papules involving the tongue dorsum of a 25-year-old man is presented. The lesions were interpreted to represent a transient lingual papillitis. This a poorly understood, but benign and self-limited condition involving the tongue fungiform papillae, which does not appear to be widely recognized.

  20. Transient familial hyperbilirubinemia

    MedlinePlus

    ... please enable JavaScript. Transient familial hyperbilirubinemia is a metabolic disorder that is passed down through families. Babies with ... M. Editorial team. Related MedlinePlus Health Topics Jaundice Metabolic Disorders Browse the Encyclopedia A.D.A.M., Inc. ...

  1. Kinetics of transient electroluminescence in organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Shukla, Manju; Kumar, Pankaj; Chand, Suresh; Brahme, Nameeta; Kher, R. S.; Khokhar, M. S. K.

    2008-08-01

    Mathematical simulation on the rise and decay kinetics of transient electroluminescence (EL) in organic light emitting diodes (OLEDs) is presented. The transient EL is studied with respect to a step voltage pulse. While rising, for lower values of time, the EL intensity shows a quadratic dependence on (t - tdel), where tdel is the time delay observed in the onset of EL, and finally attains saturation at a sufficiently large time. When the applied voltage is switched off, the initial EL decay shows an exponential dependence on (t - tdec), where tdec is the time when the voltage is switched off. The simulated results are compared with the transient EL performance of a bilayer OLED based on small molecular bis(2-methyl 8-hydroxyquinoline)(triphenyl siloxy) aluminium (SAlq). Transient EL studies have been carried out at different voltage pulse amplitudes. The simulated results show good agreement with experimental data. Using these simulated results the lifetime of the excitons in SAlq has also been calculated.

  2. Early and late components of EEG delay activity correlate differently with scene working memory performance.

    PubMed

    Ellmore, Timothy M; Ng, Kenneth; Reichert, Chelsea P

    2017-01-01

    Sustained and elevated activity during the working memory delay period has long been considered the primary neural correlate for maintaining information over short time intervals. This idea has recently been reinterpreted in light of findings generated from multiple neural recording modalities and levels of analysis. To further investigate the sustained or transient nature of activity, the temporal-spectral evolution (TSE) of delay period activity was examined in humans with high density EEG during performance of a Sternberg working memory paradigm with a relatively long six second delay and with novel scenes as stimuli. Multiple analyses were conducted using different trial window durations and different baseline periods for TSE computation. Sensor level analyses revealed transient rather than sustained activity during delay periods. Specifically, the consistent finding among the analyses was that high amplitude activity encompassing the theta range was found early in the first three seconds of the delay period. These increases in activity early in the delay period correlated positively with subsequent ability to distinguish new from old probe scenes. Source level signal estimation implicated a right parietal region of transient early delay activity that correlated positively with working memory ability. This pattern of results adds to recent evidence that transient rather than sustained delay period activity supports visual working memory performance. The findings are discussed in relation to synchronous and desynchronous intra- and inter-regional neural transmission, and choosing an optimal baseline for expressing temporal-spectral delay activity change.

  3. CGI delay compensation

    NASA Technical Reports Server (NTRS)

    Mcfarland, Richard E.

    1986-01-01

    Computer-generated graphics in real-time helicopter simulation produces objectionable scene-presentation time delays. In the flight simulation laboratory at Ames Research Center, it has been determined that these delays have an adverse influence on pilot performance during aggressive tasks such as nap-of-the-earth (NOE) maneuvers. Using contemporary equipment, computer-generated image (CGI) time delays are an unavoidable consequence of the operations required for scene generation. However, providing that magnitide distortions at higher frequencies are tolerable, delay compensation is possible over a restricted frequency range. This range, assumed to have an upper limit of perhaps 10 or 15 rad/sec, conforms approximately to the bandwidth associated with helicopter handling qualities research. A compensation algorithm is introduced here and evaluated in terms of tradeoffs in frequency responses. The algorithm has a discrete basis and accommodates both a large, constant transport delay interval and a periodic delay interval, as associated with asynchronous operations.

  4. Excavatolide B Modulates the Electrophysiological Characteristics and Calcium Homeostasis of Atrial Myocytes

    PubMed Central

    Hwang, Hwong-Ru; Tai, Buh-Yuan; Cheng, Pao-Yun; Chen, Ping-Nan; Sung, Ping-Jyun; Wen, Zhi-Hong; Hsu, Chih-Hsueng

    2017-01-01

    Severe bacterial infections caused by sepsis always result in profound physiological changes, including fever, hypotension, arrhythmia, necrosis of tissue, systemic multi-organ dysfunction, and finally death. The lipopolysaccharide (LPS) provokes an inflammatory response under sepsis, which may increase propensity to arrhythmogenesis. Excavatolide B (EXCB) possesses potent anti-inflammatory effects. However, it is not clear whether EXCB could modulate the electrophysiological characteristics and calcium homeostasis of atrial myocytes. This study investigated the effects of EXCB on the atrial myocytes exposed to lipopolysaccharide. A whole-cell patch clamp and indo-1 fluorimetric ratio technique was employed to record the action potential (AP), ionic currents, and intracellular calcium ([Ca2+]i) in single, isolated rabbit left atrial (LA) cardiomyocytes, with and without LPS (1 μg/mL) and LPS + EXCB administration (10 μM) for 6 ± 1 h, in order to investigate the role of EXCB on atrial electrophysiology. In the presence of LPS, EXCB-treated LA myocytes (n = 13) had a longer AP duration at 20% (29 ± 2 vs. 20 ± 2 ms, p < 0.05), 50% (52 ± 4 vs. 40 ± 3 ms, p < 0.05), and 90% (85 ± 5 vs. 68 ± 3 ms, p < 0.05), compared to the LPS-treated cells (n = 12). LPS-treated LA myocytes showed a higher late sodium current, Na+/Ca2+ exchanger current, transient outward current, and delayed rectifier potassium current, but a lower l-type Ca2+ current, than the control LA myocytes. Treatment with EXCB reversed the LPS-induced alterations of the ionic currents. LPS-treated, EXCB-treated, and control LA myocytes exhibited similar Na+ currents. In addition, the LPS-treated LA myocytes exhibited a lower [Ca2+]i content and higher sarcoplasmic reticulum calcium content, than the controls. EXCB reversed the LPS-induced calcium alterations. In conclusion, EXCB modulates LPS-induced LA electrophysiological characteristics and calcium homeostasis, which may contribute to attenuating

  5. Environmentally Benign Pyrotechnic Delays

    DTIC Science & Technology

    2012-06-01

    jay.poret@us.army.mil † School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, USA ABSTRACT Pyrotechnic delays are used in...benign formulations are described. The delay time of the new system is easil