Science.gov

Sample records for calculate doses resulting

  1. BENCHMARKING UPGRADED HOTSPOT DOSE CALCULATIONS AGAINST MACCS2 RESULTS

    SciTech Connect

    Brotherton, Kevin

    2009-04-30

    The radiological consequence of interest for a documented safety analysis (DSA) is the centerline Total Effective Dose Equivalent (TEDE) incurred by the Maximally Exposed Offsite Individual (MOI) evaluated at the 95th percentile consequence level. An upgraded version of HotSpot (Version 2.07) has been developed with the capabilities to read site meteorological data and perform the necessary statistical calculations to determine the 95th percentile consequence result. These capabilities should allow HotSpot to join MACCS2 (Version 1.13.1) and GENII (Version 1.485) as radiological consequence toolbox codes in the Department of Energy (DOE) Safety Software Central Registry. Using the same meteorological data file, scenarios involving a one curie release of {sup 239}Pu were modeled in both HotSpot and MACCS2. Several sets of release conditions were modeled, and the results compared. In each case, input parameter specifications for each code were chosen to match one another as much as the codes would allow. The results from the two codes are in excellent agreement. Slight differences observed in results are explained by algorithm differences.

  2. Results of monte carlo calculations of neutron spectra and doses outside the BDMS shielding

    SciTech Connect

    Radev, R P; Hall, J M

    2000-10-16

    A set of Monte Carlo calculations of the neutron dose rates and neutron spectra outside Blend Down Monitoring System (BDMS) shielding were performed with U.S. and Russian neutron fluence-to-dose conversion coefficients. The purpose of these calculations was to facilitate the proper interpretation of the dose rate measurements from rem meters outside the BDMS shielding. An accurate determination of the dose rate is of particular interest so that dose rate can be compared with the applicable regulatory limit. The calculations show that the neutrons outside the BDMS shielding are significantly reduced in energy, i.e. the spectrum is shifted (moderated) towards the lower energies and contains significantly larger amount of neutrons in the energy range below 100 keV. The result of these calculations indicates that the dose measurement for the BDMS neutrons is overestimated from 25% to 55% depending on the location around BDMS when using either Russian or U.S. dose conversion coefficients. For an accurate neutron dose determination the application of an appropriate correcting factor to the neutron dose measurement is necessary.

  3. Electron beam dose calculations.

    PubMed

    Hogstrom, K R; Mills, M D; Almond, P R

    1981-05-01

    Electron beam dose distributions in the presence of inhomogeneous tissue are calculated by an algorithm that sums the dose distribution of individual pencil beams. The off-axis dependence of the pencil beam dose distribution is described by the Fermi-Eyges theory of thick-target multiple Coulomb scattering. Measured square-field depth-dose data serve as input for the calculations. Air gap corrections are incorporated and use data from'in-air' measurements in the penumbra of the beam. The effective depth, used to evaluate depth-dose, and the sigma of the off-axis Gaussian spread against depth are calculated by recursion relations from a CT data matrix for the material underlying individual pencil beams. The correlation of CT number with relative linear stopping power and relative linear scattering power for various tissues is shown. The results of calculations are verified by comparison with measurements in a 17 MeV electron beam from the Therac 20 linear accelerator. Calculated isodose lines agree nominally to within 2 mm of measurements in a water phantom. Similar agreement is observed in cork slabs simulating lung. Calculations beneath a bone substitute illustrate a weakness in the calculation. Finally a case of carcinoma in the maxillary antrum is studied. The theory suggests an alternative method for the calculation of depth-dose of rectangular fields.

  4. Dose Calculation Spreadsheet

    SciTech Connect

    Simpkins, Ali

    1997-06-10

    VENTSAR XL is an EXCEL Spreadsheet that can be used to calculate downwind doses as a result of a hypothetical atmospheric release. Both building effects and plume rise may be considered. VENTSAR XL will run using any version of Microsoft EXCEL version 4.0 or later. Macros (the programming language of EXCEL) was used to automate the calculations. The user enters a minimal amount of input and the code calculates the resulting concentrations and doses at various downwind distances as specified by the user.

  5. Calculating the peak skin dose resulting from fluoroscopically guided interventions. Part I: Methods.

    PubMed

    Jones, A Kyle; Pasciak, Alexander S

    2011-11-15

    While direct measurement of the peak skin dose resulting from a fluoroscopically-guided procedure is possible, the decision must be made a priori at additional cost and time. It is most often the case that the need for accurate knowledge of the peak skin dose is realized only after a procedure has been completed, or after a suspected reaction has been discovered. Part I of this review article discusses methods for calculating the peak skin dose across a range of clinical scenarios. In some cases, a wealth of data are available, while in other cases few data are available and additional data must be measured in order to estimate the peak skin dose. Data may be gathered from a dose report, the DICOM headers of images, or from staff and physician interviews. After data are gathered, specific steps must be followed to convert dose metrics, such as the reference point air kerma (K(a,r)) or the kerma area product (KAP), into peak skin dose. These steps require knowledge of other related factors, such as the f-factor and the backscatter factor, tables of which are provided in this manuscript. Sources of error and the impact of these errors on the accuracy of the final estimate of the peak skin dose are discussed.

  6. Calculation of effective dose.

    PubMed

    McCollough, C H; Schueler, B A

    2000-05-01

    The concept of "effective dose" was introduced in 1975 to provide a mechanism for assessing the radiation detriment from partial body irradiations in terms of data derived from whole body irradiations. The effective dose is the mean absorbed dose from a uniform whole-body irradiation that results in the same total radiation detriment as from the nonuniform, partial-body irradiation in question. The effective dose is calculated as the weighted average of the mean absorbed dose to the various body organs and tissues, where the weighting factor is the radiation detriment for a given organ (from a whole-body irradiation) as a fraction of the total radiation detriment. In this review, effective dose equivalent and effective dose, as established by the International Commission on Radiological Protection in 1977 and 1990, respectively, are defined and various methods of calculating these quantities are presented for radionuclides, radiography, fluoroscopy, computed tomography and mammography. In order to calculate either quantity, it is first necessary to estimate the radiation dose to individual organs. One common method of determining organ doses is through Monte Carlo simulations of photon interactions within a simplified mathematical model of the human body. Several groups have performed these calculations and published their results in the form of data tables of organ dose per unit activity or exposure. These data tables are specified according to particular examination parameters, such as radiopharmaceutical, x-ray projection, x-ray beam energy spectra or patient size. Sources of these organ dose conversion coefficients are presented and differences between them are examined. The estimates of effective dose equivalent or effective dose calculated using these data, although not intended to describe the dose to an individual, can be used as a relative measure of stochastic radiation detriment. The calculated values, in units of sievert (or rem), indicate the amount of

  7. Results of 1 year of clinical experience with independent dose calculation software for VMAT fields

    PubMed Central

    Colodro, Juan Fernando Mata; Berna, Alfredo Serna; Puchades, Vicente Puchades; Amores, David Ramos; Baños, Miguel Alcaraz

    2014-01-01

    It is widely accepted that a redundant independent dose calculation (RIDC) must be included in any treatment planning verification procedure. Specifically, volumetric modulated arc therapy (VMAT) technique implies a comprehensive quality assurance (QA) program in which RIDC should be included. In this paper, the results obtained in 1 year of clinical experience are presented. Eclipse from Varian is the treatment planning system (TPS), here in use. RIDC were performed with the commercial software; Diamond® (PTW) which is capable of calculating VMAT fields. Once the plan is clinically accepted, it is exported via Digital Imaging and Communications in Medicine (DICOM) to RIDC, together with the body contour, and then a point dose calculation is performed, usually at the isocenter. A total of 459 plans were evaluated. The total average deviation was -0.3 ± 1.8% (one standard deviation (1SD)). For higher clearance the plans were grouped by location in: Prostate, pelvis, abdomen, chest, head and neck, brain, stereotactic radiosurgery, lung stereotactic body radiation therapy, and miscellaneous. The highest absolute deviation was -0.8 ± 1.5% corresponding to the prostate. A linear fit between doses calculated by RIDC and by TPS produced a correlation coefficient of 0.9991 and a slope of 1.0023. These results are very close to those obtained in the validation process. This agreement led us to consider this RIDC software as a valuable tool for QA in VMAT plans. PMID:25525309

  8. Results of 1 year of clinical experience with independent dose calculation software for VMAT fields.

    PubMed

    Colodro, Juan Fernando Mata; Berna, Alfredo Serna; Puchades, Vicente Puchades; Amores, David Ramos; Baños, Miguel Alcaraz

    2014-10-01

    It is widely accepted that a redundant independent dose calculation (RIDC) must be included in any treatment planning verification procedure. Specifically, volumetric modulated arc therapy (VMAT) technique implies a comprehensive quality assurance (QA) program in which RIDC should be included. In this paper, the results obtained in 1 year of clinical experience are presented. Eclipse from Varian is the treatment planning system (TPS), here in use. RIDC were performed with the commercial software; Diamond(®) (PTW) which is capable of calculating VMAT fields. Once the plan is clinically accepted, it is exported via Digital Imaging and Communications in Medicine (DICOM) to RIDC, together with the body contour, and then a point dose calculation is performed, usually at the isocenter. A total of 459 plans were evaluated. The total average deviation was -0.3 ± 1.8% (one standard deviation (1SD)). For higher clearance the plans were grouped by location in: Prostate, pelvis, abdomen, chest, head and neck, brain, stereotactic radiosurgery, lung stereotactic body radiation therapy, and miscellaneous. The highest absolute deviation was -0.8 ± 1.5% corresponding to the prostate. A linear fit between doses calculated by RIDC and by TPS produced a correlation coefficient of 0.9991 and a slope of 1.0023. These results are very close to those obtained in the validation process. This agreement led us to consider this RIDC software as a valuable tool for QA in VMAT plans.

  9. Methods used to calculate doses resulting from inhalation of Capstone depleted uranium aerosols.

    PubMed

    Miller, Guthrie; Cheng, Yung Sung; Traub, Richard J; Little, Tom T; Guilmette, Raymond A

    2009-03-01

    The methods used to calculate radiological and toxicological doses to hypothetical persons inside either a U.S. Army Abrams tank or Bradley Fighting Vehicle that has been perforated by depleted uranium munitions are described. Data from time- and particle-size-resolved measurements of depleted uranium aerosol as well as particle-size-resolved measurements of aerosol solubility in lung fluids for aerosol produced in the breathing zones of the hypothetical occupants were used. The aerosol was approximated as a mixture of nine monodisperse (single particle size) components corresponding to particle size increments measured by the eight stages plus the backup filter of the cascade impactors used. A Markov Chain Monte Carlo Bayesian analysis technique was employed, which straightforwardly calculates the uncertainties in doses. Extensive quality control checking of the various computer codes used is described.

  10. A method for calculating Bayesian uncertainties on internal doses resulting from complex occupational exposures.

    PubMed

    Puncher, M; Birchall, A; Bull, R K

    2012-08-01

    Estimating uncertainties on doses from bioassay data is of interest in epidemiology studies that estimate cancer risk from occupational exposures to radionuclides. Bayesian methods provide a logical framework to calculate these uncertainties. However, occupational exposures often consist of many intakes, and this can make the Bayesian calculation computationally intractable. This paper describes a novel strategy for increasing the computational speed of the calculation by simplifying the intake pattern to a single composite intake, termed as complex intake regime (CIR). In order to assess whether this approximation is accurate and fast enough for practical purposes, the method is implemented by the Weighted Likelihood Monte Carlo Sampling (WeLMoS) method and evaluated by comparing its performance with a Markov Chain Monte Carlo (MCMC) method. The MCMC method gives the full solution (all intakes are independent), but is very computationally intensive to apply routinely. Posterior distributions of model parameter values, intakes and doses are calculated for a representative sample of plutonium workers from the United Kingdom Atomic Energy cohort using the WeLMoS method with the CIR and the MCMC method. The distributions are in good agreement: posterior means and Q(0.025) and Q(0.975) quantiles are typically within 20 %. Furthermore, the WeLMoS method using the CIR converges quickly: a typical case history takes around 10-20 min on a fast workstation, whereas the MCMC method took around 12-72 hr. The advantages and disadvantages of the method are discussed.

  11. Offsite radiation doses from Hanford Operations for the years 1983 through 1987: A comparison of results calculated by two methods

    SciTech Connect

    Soldat, J.K.

    1989-10-01

    This report compares the results of the calculation of potential radiation doses to the public by two different environmental dosimetric systems for the years 1983 through 1987. Both systems project the environmental movement of radionuclides released with effluents from Hanford operations; their concentrations in air, water, and foods; the intake of radionuclides by ingestion and inhalation; and, finally, the potential radiation doses from radionuclides deposited in the body and from external sources. The first system, in use for the past decade at Hanford, calculates radiation doses in terms of 50-year cumulative dose equivalents to body organs and to the whole body, based on the methodology defined in ICRP Publication 2. This system uses a suite of three computer codes: PABLM, DACRIN, and KRONIC. In the new system, 50-year committed doses are calculated in accordance with the recommendations of the ICRP Publications 26 and 30, which were adopted by the US Department of Energy (DOE) in 1985. This new system calculates dose equivalent (DE) to individual organs and effective dose equivalent (EDE). The EDE is a risk-weighted DE that is designed to be an indicator of the potential health effects arising from the radiation dose. 16 refs., 1 fig., 38 tabs.

  12. Whole organ and islet of Langerhans dosimetry for calculation of absorbed doses resulting from imaging with radiolabeled exendin

    PubMed Central

    van der Kroon, Inge; Woliner-van der Weg, Wietske; Brom, Maarten; Joosten, Lieke; Frielink, Cathelijne; Konijnenberg, Mark W.; Visser, Eric P.; Gotthardt, Martin

    2017-01-01

    Radiolabeled exendin is used for non-invasive quantification of beta cells in the islets of Langerhans in vivo. High accumulation of radiolabeled exendin in the islets raised concerns about possible radiation-induced damage to these islets in man. In this work, islet absorbed doses resulting from exendin-imaging were calculated by combining whole organ dosimetry with small scale dosimetry for the islets. Our model contains the tissues with high accumulation of radiolabeled exendin: kidneys, pancreas and islets. As input for the model, data from a clinical study (radiolabeled exendin distribution in the human body) and from a preclinical study with Biobreeding Diabetes Prone (BBDP) rats (islet-to-exocrine uptake ratio, beta cell mass) were used. We simulated 111In-exendin and 68Ga-exendin absorbed doses in patients with differences in gender, islet size, beta cell mass and radiopharmaceutical uptake in the kidneys. In all simulated cases the islet absorbed dose was small, maximum 1.38 mGy for 68Ga and 66.0 mGy for 111In. The two sources mainly contributing to the islet absorbed dose are the kidneys (33–61%) and the islet self-dose (7.5–57%). In conclusion, all islet absorbed doses are low (<70 mGy), so even repeated imaging will hardly increase the risk on diabetes. PMID:28067253

  13. Absorbed Dose and Dose Equivalent Calculations for Modeling Effective Dose

    NASA Technical Reports Server (NTRS)

    Welton, Andrew; Lee, Kerry

    2010-01-01

    While in orbit, Astronauts are exposed to a much higher dose of ionizing radiation than when on the ground. It is important to model how shielding designs on spacecraft reduce radiation effective dose pre-flight, and determine whether or not a danger to humans is presented. However, in order to calculate effective dose, dose equivalent calculations are needed. Dose equivalent takes into account an absorbed dose of radiation and the biological effectiveness of ionizing radiation. This is important in preventing long-term, stochastic radiation effects in humans spending time in space. Monte carlo simulations run with the particle transport code FLUKA, give absorbed and equivalent dose data for relevant shielding. The shielding geometry used in the dose calculations is a layered slab design, consisting of aluminum, polyethylene, and water. Water is used to simulate the soft tissues that compose the human body. The results obtained will provide information on how the shielding performs with many thicknesses of each material in the slab. This allows them to be directly applicable to modern spacecraft shielding geometries.

  14. WRAITH - A Computer Code for Calculating Internal and External Doses Resulting From An Atmospheric Release of Radioactive Material

    SciTech Connect

    Scherpelz, R. I.; Borst, F. J.; Hoenes, G. R.

    1980-12-01

    WRAITH is a FORTRAN computer code which calculates the doses received by a standard man exposed to an accidental release of radioactive material. The movement of the released material through the atmosphere is calculated using a bivariate straight-line Gaussian distribution model, with Pasquill values for standard deviations. The quantity of material in the released cloud is modified during its transit time to account for radioactive decay and daughter production. External doses due to exposure to the cloud can be calculated using a semi-infinite cloud approximation. In situations where the semi-infinite cloud approximation is not a good one, the external dose can be calculated by a "finite plume" three-dimensional point-kernel numerical integration technique. Internal doses due to acute inhalation are cal.culated using the ICRP Task Group Lung Model and a four-segmented gastro-intestinal tract model. Translocation of the material between body compartments and retention in the body compartments are calculated using multiple exponential retention functions. Internal doses to each organ are calculated as sums of cross-organ doses, with each target organ irradiated by radioactive material in a number of source organs. All doses are calculated in rads, with separate values determined for high-LET and low-LET radiation.

  15. Prenatal radiation exposure: dose calculation.

    PubMed

    Scharwächter, C; Röser, A; Schwartz, C A; Haage, P

    2015-05-01

    The unborn child requires special protection. In this context, the indication for an X-ray examination is to be checked critically. If thereupon radiation of the lower abdomen including the uterus cannot be avoided, the examination should be postponed until the end of pregnancy or alternative examination techniques should be considered. Under certain circumstances, either accidental or in unavoidable cases after a thorough risk assessment, radiation exposure of the unborn may take place. In some of these cases an expert radiation hygiene consultation may be required. This consultation should comprise the expected risks for the unborn while not perturbing the mother or the involved medical staff. For the risk assessment in case of an in-utero x-ray exposition deterministic damages with a defined threshold dose are distinguished from stochastic damages without a definable threshold dose. The occurrence of deterministic damages depends on the dose and the developmental stage of the unborn at the time of radiation. To calculate the risks of an in-utero radiation exposure a three-stage concept is commonly applied. Depending on the amount of radiation, the radiation dose is either estimated, roughly calculated using standard tables or, in critical cases, accurately calculated based on the individual event. The complexity of the calculation thereby increases from stage to stage. An estimation based on stage one is easily feasible whereas calculations based on stages two and especially three are more complex and often necessitate execution by specialists. This article demonstrates in detail the risks for the unborn child pertaining to its developmental phase and explains the three-stage concept as an evaluation scheme. It should be noted, that all risk estimations are subject to considerable uncertainties. • Radiation exposure of the unborn child can result in both deterministic as well as stochastic damage und hitherto should be avoided or reduced to a minimum

  16. Practical applications of internal dose calculations

    SciTech Connect

    Carbaugh, E.H.

    1994-06-01

    Accurate estimates of intake magnitude and internal dose are the goal for any assessment of an actual intake of radioactivity. When only one datum is available on which to base estimates, the choices for internal dose assessment become straight-forward: apply the appropriate retention or excretion function, calculate the intake, and calculate the dose. The difficulty comes when multiple data and different types of data become available. Then practical decisions must be made on how to interpret conflicting data, or how to adjust the assumptions and techniques underlying internal dose assessments to give results consistent with the data. This article describes nine types of adjustments which can be incorporated into calculations of intake and internal dose, and then offers several practical insights to dealing with some real-world internal dose puzzles.

  17. Assessment of the effective dose equivalent for external photon radiation. Volume 1, Calculational results for beam and point source geometries: Final report

    SciTech Connect

    Reece, W.D.; Poston, J.W.; Xu, X.G.

    1993-02-01

    Beginning in January 1994, US nuclear power plants must change the way that they determine the radiation exposure to their workforce. At that time, revisions to Title 10 Part 20 of the Code of Federal Regulations will be in force requiring licensees to evaluate worker radiation exposure using a risk-based methodology termed the ``effective dose equivalent.`` A research project was undertaken to improve upon the conservative method presently used for assessing effective dose equivalent. In this project effective dose equivalent was calculated using a mathematical model of the human body, and tracking photon interactions for a wide variety of radiation source geometries using Monte Carlo computer code simulations. Algorithms were then developed to relate measurements of the photon flux on the surface of the body (as measured by dosimeters) to effective dose equivalent. This report (Volume I of a two-part study) describes: the concept of effective dose equivalent, the evolution of the concept and its incorporation into regulations, the variations in human organ susceptibility to radiation, the mathematical modeling and calculational techniques used, the results of effective dose equivalent calculations for a broad range of photon energiesand radiation source geometries. The study determined that for beam radiation sources the highest effective dose equivalent occurs for beams striking the front of the torso. Beams striking the rear of the torsoproduce the next highest effective dose equivalent, with effective dose equivalent falling significantly as one departs from these two orientations. For point sources, the highest effective dose equivalent occurs when the sources are in contact with the body on the front of the torso. For females the highest effective dose equivalent occurs when the source is on the sternum, for males when it is on the gonads.

  18. Use of Fluka to Create Dose Calculations

    NASA Technical Reports Server (NTRS)

    Lee, Kerry T.; Barzilla, Janet; Townsend, Lawrence; Brittingham, John

    2012-01-01

    Monte Carlo codes provide an effective means of modeling three dimensional radiation transport; however, their use is both time- and resource-intensive. The creation of a lookup table or parameterization from Monte Carlo simulation allows users to perform calculations with Monte Carlo results without replicating lengthy calculations. FLUKA Monte Carlo transport code was used to develop lookup tables and parameterizations for data resulting from the penetration of layers of aluminum, polyethylene, and water with areal densities ranging from 0 to 100 g/cm^2. Heavy charged ion radiation including ions from Z=1 to Z=26 and from 0.1 to 10 GeV/nucleon were simulated. Dose, dose equivalent, and fluence as a function of particle identity, energy, and scattering angle were examined at various depths. Calculations were compared against well-known results and against the results of other deterministic and Monte Carlo codes. Results will be presented.

  19. A dose error evaluation study for 4D dose calculations

    NASA Astrophysics Data System (ADS)

    Milz, Stefan; Wilkens, Jan J.; Ullrich, Wolfgang

    2014-10-01

    Previous studies have shown that respiration induced motion is not negligible for Stereotactic Body Radiation Therapy. The intrafractional breathing induced motion influences the delivered dose distribution on the underlying patient geometry such as the lung or the abdomen. If a static geometry is used, a planning process for these indications does not represent the entire dynamic process. The quality of a full 4D dose calculation approach depends on the dose coordinate transformation process between deformable geometries. This article provides an evaluation study that introduces an advanced method to verify the quality of numerical dose transformation generated by four different algorithms. The used transformation metric value is based on the deviation of the dose mass histogram (DMH) and the mean dose throughout dose transformation. The study compares the results of four algorithms. In general, two elementary approaches are used: dose mapping and energy transformation. Dose interpolation (DIM) and an advanced concept, so called divergent dose mapping model (dDMM), are used for dose mapping. The algorithms are compared to the basic energy transformation model (bETM) and the energy mass congruent mapping (EMCM). For evaluation 900 small sample regions of interest (ROI) are generated inside an exemplary lung geometry (4DCT). A homogeneous fluence distribution is assumed for dose calculation inside the ROIs. The dose transformations are performed with the four different algorithms. The study investigates the DMH-metric and the mean dose metric for different scenarios (voxel sizes: 8 mm, 4 mm, 2 mm, 1 mm 9 different breathing phases). dDMM achieves the best transformation accuracy in all measured test cases with 3-5% lower errors than the other models. The results of dDMM are reasonable and most efficient in this study, although the model is simple and easy to implement. The EMCM model also achieved suitable results, but the approach requires a more complex

  20. Calculation of external dose from distributed source

    SciTech Connect

    Kocher, D.C.

    1986-01-01

    This paper discusses a relatively simple calculational method, called the point kernel method (Fo68), for estimating external dose from distributed sources that emit photon or electron radiations. The principles of the point kernel method are emphasized, rather than the presentation of extensive sets of calculations or tables of numerical results. A few calculations are presented for simple source geometries as illustrations of the method, and references and descriptions are provided for other caluclations in the literature. This paper also describes exposure situations for which the point kernel method is not appropriate and other, more complex, methods must be used, but these methods are not discussed in any detail.

  1. Tank Z-361 dose rate calculations

    SciTech Connect

    Richard, R.F.

    1998-09-30

    Neutron and gamma ray dose rates were calculated above and around the 6-inch riser of tank Z-361 located at the Plutonium Finishing Plant. Dose rates were also determined off of one side of the tank. The largest dose rate 0.029 mrem/h was a gamma ray dose and occurred 76.2 cm (30 in.) directly above the open riser. All other dose rates were negligible. The ANSI/ANS 1991 flux to dose conversion factor for neutrons and photons were used in this analysis. Dose rates are reported in units of mrem/h with the calculated uncertainty shown within the parentheses.

  2. A MULTIMODEL APPROACH FOR CALCULATING BENCHMARK DOSE

    EPA Science Inventory


    A Multimodel Approach for Calculating Benchmark Dose
    Ramon I. Garcia and R. Woodrow Setzer

    In the assessment of dose response, a number of plausible dose- response models may give fits that are consistent with the data. If no dose response formulation had been speci...

  3. A MULTIMODEL APPROACH FOR CALCULATING BENCHMARK DOSE

    EPA Science Inventory


    A Multimodel Approach for Calculating Benchmark Dose
    Ramon I. Garcia and R. Woodrow Setzer

    In the assessment of dose response, a number of plausible dose- response models may give fits that are consistent with the data. If no dose response formulation had been speci...

  4. SU-C-204-06: Monte Carlo Dose Calculation for Kilovoltage X-Ray-Psoralen Activated Cancer Therapy (X-PACT): Preliminary Results

    SciTech Connect

    Mein, S; Gunasingha, R; Nolan, M; Oldham, M; Adamson, J

    2016-06-15

    Purpose: X-PACT is an experimental cancer therapy where kV x-rays are used to photo-activate anti-cancer therapeutics through phosphor intermediaries (phosphors that absorb x-rays and re-radiate as UV light). Clinical trials in pet dogs are currently underway (NC State College of Veterinary Medicine) and an essential component is the ability to model the kV dose in these dogs. Here we report the commissioning and characterization of a Monte Carlo (MC) treatment planning simulation tool to calculate X-PACT radiation doses in canine trials. Methods: FLUKA multi-particle MC simulation package was used to simulate a standard X-PACT radiation treatment beam of 80kVp with the Varian OBI x-ray source geometry. The beam quality was verified by comparing measured and simulated attenuation of the beam by various thicknesses of aluminum (2–4.6 mm) under narrow beam conditions (HVL). The beam parameters at commissioning were then corroborated using MC, characterized and verified with empirically collected commissioning data, including: percent depth dose curves (PDD), back-scatter factors (BSF), collimator scatter factor(s), and heel effect, etc. All simulations were conducted for N=30M histories at M=100 iterations. Results: HVL and PDD simulation data agreed with an average percent error of 2.42%±0.33 and 6.03%±1.58, respectively. The mean square error (MSE) values for HVL and PDD (0.07% and 0.50%) were low, as expected; however, longer simulations are required to validate convergence to the expected values. Qualitatively, pre- and post-filtration source spectra matched well with 80kVp references generated via SPEKTR software. Further validation of commissioning data simulation is underway in preparation for first-time 3D dose calculations with canine CBCT data. Conclusion: We have prepared a Monte Carlo simulation capable of accurate dose calculation for use with ongoing X-PACT canine clinical trials. Preliminary results show good agreement with measured data and hold

  5. Phage therapy pharmacology: calculating phage dosing.

    PubMed

    Abedon, Stephen

    2011-01-01

    Phage therapy, which can be described as a phage-mediated biocontrol of bacteria (or, simply, biocontrol), is the application of bacterial viruses-also bacteriophages or phages-to reduce densities of nuisance or pathogenic bacteria. Predictive calculations for phage therapy dosing should be useful toward rational development of therapeutic as well as biocontrol products. Here, I consider the theoretical basis of a number of concepts relevant to phage dosing for phage therapy including minimum inhibitory concentration (but also "inundation threshold"), minimum bactericidal concentration (but also "clearance threshold"), decimal reduction time (D value), time until bacterial eradication, threshold bacterial density necessary to support phage population growth ("proliferation threshold"), and bacterial density supporting half-maximal phage population growth rates (K(B)). I also address the concepts of phage killing titers, multiplicity of infection, and phage peak densities. Though many of the presented ideas are not unique to this chapter, I nonetheless provide variations on derivations and resulting formulae, plus as appropriate discuss relative importance. The overriding goal is to present a variety of calculations that are useful toward phage therapy dosing so that they may be found in one location and presented in a manner that allows facile appreciation, comparison, and implementation. The importance of phage density as a key determinant of the phage potential to eradicate bacterial targets is stressed throughout the chapter.

  6. Calculation of dose distribution above contaminated soil

    NASA Astrophysics Data System (ADS)

    Kuroda, Junya; Tenzou, Hideki; Manabe, Seiya; Iwakura, Yukiko

    2017-07-01

    The purpose of this study was to assess the relationship between altitude and the distribution of the ambient dose rate in the air over soil decontamination area by using PHITS simulation code. The geometry configuration was 1000 m ×1000 m area and 1m in soil depth and 100m in altitude from the ground to simulate the area of residences or a school grounds. The contaminated region is supposed to be uniformly contaminated by Cs-137 γ radiation sources. The air dose distribution and space resolution was evaluated for flux of the gamma rays at each altitude, 1, 5, 10, and 20m. The effect of decontamination was calculated by defining sharpness S. S was the ratio of an average flux and a flux at the center of denomination area in each altitude. The suitable flight altitude of the drone is found to be less than 15m above a residence and 31m above a school grounds to confirm the decontamination effect. The calculation results can be a help to determine a flight planning of a drone to minimize the clash risk.

  7. Historical river flow rates for dose calculations

    SciTech Connect

    Carlton, W.H.

    1991-06-10

    Annual average river flow rates are required input to the LADTAP Computer Code for calculating offsite doses from liquid releases of radioactive materials to the Savannah River. The source of information on annual river flow rates used in dose calculations varies, depending on whether calculations are for retrospective releases or prospective releases. Examples of these types of releases are: Retrospective - releases from routine operations (annual environmental reports) and short term release incidents that have occurred. Prospective - releases that might be expected in the future from routine or abnormal operation of existing or new facilities (EIS`s, EID`S, SAR`S, etc.). This memorandum provides historical flow rates at the downstream gauging station at Highway 301 for use in retrospective dose calculations and derives flow rate data for the Beaufort-Jasper and Port Wentworth water treatment plants.

  8. Dose rate calculations for a reconnaissance vehicle.

    PubMed

    Grindrod, L; Mackey, J; Salmon, M; Smith, C; Wall, S

    2005-01-01

    A Chemical Nuclear Reconnaissance System (CNRS) has been developed by the British Ministry of Defence to make chemical and radiation measurements on contaminated terrain using appropriate sensors and recording equipment installed in a land rover. A research programme is under way to develop and validate a predictive capability to calculate the build-up of contamination on the vehicle, radiation detector performance and dose rates to the occupants of the vehicle. This paper describes the geometric model of the vehicle and the methodology used for calculations of detector response. Calculated dose rates obtained using the MCBEND Monte Carlo radiation transport computer code in adjoint mode are presented. These address the transient response of the detectors as the vehicle passes through a contaminated area. Calculated dose rates were found to agree with the measured data to be within the experimental uncertainties, thus giving confidence in the shielding model of the vehicle and its application to other scenarios.

  9. Automatic computed tomography patient dose calculation using DICOM header metadata.

    PubMed

    Jahnen, A; Kohler, S; Hermen, J; Tack, D; Back, C

    2011-09-01

    The present work describes a method that calculates the patient dose values in computed tomography (CT) based on metadata contained in DICOM images in support of patient dose studies. The DICOM metadata is preprocessed to extract necessary calculation parameters. Vendor-specific DICOM header information is harmonized using vendor translation tables and unavailable DICOM tags can be completed with a graphical user interface. CT-Expo, an MS Excel application for calculating the radiation dose, is used to calculate the patient doses. All relevant data and calculation results are stored for further analysis in a relational database. Final results are compiled by utilizing data mining tools. This solution was successfully used for the 2009 CT dose study in Luxembourg. National diagnostic reference levels for standard examinations were calculated based on each of the countries' hospitals. The benefits using this new automatic system saved time as well as resources during the data acquisition and the evaluation when compared with earlier questionnaire-based surveys.

  10. Extremity model for neutron dose calculations

    SciTech Connect

    Sattelberger, J. A.; Shores, E. F.

    2001-01-01

    In personnel dosimetry for external radiation exposures, health physicists tend to focus on measurement of whole body dose, where 'whole body' is generally regarded as the torso on which the dosimeter is placed.' Although a variety of scenarios exist in which workers must handle radioactive materials, whole body dose estimates may not be appropriate when assessing dose, particularly to the extremities. For example, consider sources used for instrument calibration. If such sources are in a contact geometry (e.g. held by fingers), an extremity dose estimate may be more relevant than a whole body dose. However, because questions arise regarding how that dose should be calculated, a detailed extremity model was constructed with the MCNP-4Ca Monte Carlo code. Although initially intended for use with gamma sources, recent work by Shores2 provided the impetus to test the model with neutrons.

  11. Superficial dose evaluation of four dose calculation algorithms

    NASA Astrophysics Data System (ADS)

    Cao, Ying; Yang, Xiaoyu; Yang, Zhen; Qiu, Xiaoping; Lv, Zhiping; Lei, Mingjun; Liu, Gui; Zhang, Zijian; Hu, Yongmei

    2017-08-01

    Accurate superficial dose calculation is of major importance because of the skin toxicity in radiotherapy, especially within the initial 2 mm depth being considered more clinically relevant. The aim of this study is to evaluate superficial dose calculation accuracy of four commonly used algorithms in commercially available treatment planning systems (TPS) by Monte Carlo (MC) simulation and film measurements. The superficial dose in a simple geometrical phantom with size of 30 cm×30 cm×30 cm was calculated by PBC (Pencil Beam Convolution), AAA (Analytical Anisotropic Algorithm), AXB (Acuros XB) in Eclipse system and CCC (Collapsed Cone Convolution) in Raystation system under the conditions of source to surface distance (SSD) of 100 cm and field size (FS) of 10×10 cm2. EGSnrc (BEAMnrc/DOSXYZnrc) program was performed to simulate the central axis dose distribution of Varian Trilogy accelerator, combined with measurements of superficial dose distribution by an extrapolation method of multilayer radiochromic films, to estimate the dose calculation accuracy of four algorithms in the superficial region which was recommended in detail by the ICRU (International Commission on Radiation Units and Measurement) and the ICRP (International Commission on Radiological Protection). In superficial region, good agreement was achieved between MC simulation and film extrapolation method, with the mean differences less than 1%, 2% and 5% for 0°, 30° and 60°, respectively. The relative skin dose errors were 0.84%, 1.88% and 3.90%; the mean dose discrepancies (0°, 30° and 60°) between each of four algorithms and MC simulation were (2.41±1.55%, 3.11±2.40%, and 1.53±1.05%), (3.09±3.00%, 3.10±3.01%, and 3.77±3.59%), (3.16±1.50%, 8.70±2.84%, and 18.20±4.10%) and (14.45±4.66%, 10.74±4.54%, and 3.34±3.26%) for AXB, CCC, AAA and PBC respectively. Monte Carlo simulation verified the feasibility of the superficial dose measurements by multilayer Gafchromic films. And the rank

  12. Study of dose calculation on breast brachytherapy using prism TPS

    NASA Astrophysics Data System (ADS)

    Fendriani, Yoza; Haryanto, Freddy

    2015-09-01

    PRISM is one of non-commercial Treatment Planning System (TPS) and is developed at the University of Washington. In Indonesia, many cancer hospitals use expensive commercial TPS. This study aims to investigate Prism TPS which been applied to the dose distribution of brachytherapy by taking into account the effect of source position and inhomogeneities. The results will be applicable for clinical Treatment Planning System. Dose calculation has been implemented for water phantom and CT scan images of breast cancer using point source and line source. This study used point source and line source and divided into two cases. On the first case, Ir-192 seed source is located at the center of treatment volume. On the second case, the source position is gradually changed. The dose calculation of every case performed on a homogeneous and inhomogeneous phantom with dimension 20 × 20 × 20 cm3. The inhomogeneous phantom has inhomogeneities volume 2 × 2 × 2 cm3. The results of dose calculations using PRISM TPS were compared to literature data. From the calculation of PRISM TPS, dose rates show good agreement with Plato TPS and other study as published by Ramdhani. No deviations greater than ±4% for all case. Dose calculation in inhomogeneous and homogenous cases show similar result. This results indicate that Prism TPS is good in dose calculation of brachytherapy but not sensitive for inhomogeneities. Thus, the dose calculation parameters developed in this study were found to be applicable for clinical treatment planning of brachytherapy.

  13. Multigroup neutron dose calculations for proton therapy

    SciTech Connect

    Kelsey Iv, Charles T; Prinja, Anil K

    2009-01-01

    We have developed tools for the preparation of coupled multigroup proton/neutron cross section libraries. Our method is to use NJOY to process evaluated nuclear data files for incident particles below 150 MeV and MCNPX to produce data for higher energies. We modified the XSEX3 program of the MCNPX code system to produce Legendre expansions of scattering matrices generated by sampling the physics models that are comparable to the output of the GROUPR routine of NJOY. Our code combines the low and high energy scattering data with user input stopping powers and energy deposition cross sections that we also calculated using MCNPX. Our code also calculates momentum transfer coefficients for the library and optionally applies an energy straggling model to the scattering cross sections and stopping powers. The motivation was initially for deterministic solution of space radiation shielding calculations using Attila, but noting that proton therapy treatment planning may neglect secondary neutron dose assessments because of difficulty and expense, we have also investigated the feasibility of multi group methods for this application. We have shown that multigroup MCNPX solutions for secondary neutron dose compare well with continuous energy solutions and are obtainable with less than half computational cost. This efficiency comparison neglects the cost of preparing the library data, but this becomes negligible when distributed over many multi group calculations. Our deterministic calculations illustrate recognized obstacles that may have to be overcome before discrete ordinates methods can be efficient alternatives for proton therapy neutron dose calculations.

  14. Agriculture-related radiation dose calculations

    SciTech Connect

    Furr, J.M.; Mayberry, J.J.; Waite, D.A.

    1987-10-01

    Estimates of radiation dose to the public must be made at each stage in the identification and qualification process leading to siting a high-level nuclear waste repository. Specifically considering the ingestion pathway, this paper examines questions of reliability and adequacy of dose calculations in relation to five stages of data availability (geologic province, region, area, location, and mass balance) and three methods of calculation (population, population/food production, and food production driven). Calculations were done using the model PABLM with data for the Permian and Palo Duro Basins and the Deaf Smith County area. Extra effort expended in gathering agricultural data at succeeding environmental characterization levels does not appear justified, since dose estimates do not differ greatly; that effort would be better spent determining usage of food types that contribute most to the total dose; and that consumption rate and the air dispersion factor are critical to assessment of radiation dose via the ingestion pathway. 17 refs., 9 figs., 32 tabs.

  15. Monte Carlo dose calculations in advanced radiotherapy

    NASA Astrophysics Data System (ADS)

    Bush, Karl Kenneth

    The remarkable accuracy of Monte Carlo (MC) dose calculation algorithms has led to the widely accepted view that these methods should and will play a central role in the radiotherapy treatment verification and planning of the future. The advantages of using MC clinically are particularly evident for radiation fields passing through inhomogeneities, such as lung and air cavities, and for small fields, including those used in today's advanced intensity modulated radiotherapy techniques. Many investigators have reported significant dosimetric differences between MC and conventional dose calculations in such complex situations, and have demonstrated experimentally the unmatched ability of MC calculations in modeling charged particle disequilibrium. The advantages of using MC dose calculations do come at a cost. The nature of MC dose calculations require a highly detailed, in-depth representation of the physical system (accelerator head geometry/composition, anatomical patient geometry/composition and particle interaction physics) to allow accurate modeling of external beam radiation therapy treatments. To perform such simulations is computationally demanding and has only recently become feasible within mainstream radiotherapy practices. In addition, the output of the accelerator head simulation can be highly sensitive to inaccuracies within a model that may not be known with sufficient detail. The goal of this dissertation is to both improve and advance the implementation of MC dose calculations in modern external beam radiotherapy. To begin, a novel method is proposed to fine-tune the output of an accelerator model to better represent the measured output. In this method an intensity distribution of the electron beam incident on the model is inferred by employing a simulated annealing algorithm. The method allows an investigation of arbitrary electron beam intensity distributions and is not restricted to the commonly assumed Gaussian intensity. In a second component of

  16. Complexity of Monte Carlo and deterministic dose-calculation methods.

    PubMed

    Börgers, C

    1998-03-01

    Grid-based deterministic dose-calculation methods for radiotherapy planning require the use of six-dimensional phase space grids. Because of the large number of phase space dimensions, a growing number of medical physicists appear to believe that grid-based deterministic dose-calculation methods are not competitive with Monte Carlo methods. We argue that this conclusion may be premature. Our results do suggest, however, that finite difference or finite element schemes with orders of accuracy greater than one will probably be needed if such methods are to compete well with Monte Carlo methods for dose calculations.

  17. Fast dose calculation in magnetic fields with GPUMCD.

    PubMed

    Hissoiny, S; Raaijmakers, A J E; Ozell, B; Després, P; Raaymakers, B W

    2011-08-21

    A new hybrid imaging-treatment modality, the MRI-Linac, involves the irradiation of the patient in the presence of a strong magnetic field. This field acts on the charged particles, responsible for depositing dose, through the Lorentz force. These conditions require a dose calculation engine capable of taking into consideration the effect of the magnetic field on the dose distribution during the planning stage. Also in the case of a change in anatomy at the time of treatment, a fast online replanning tool is desirable. It is improbable that analytical solutions such as pencil beam calculations can be efficiently adapted for dose calculations within a magnetic field. Monte Carlo simulations have therefore been used for the computations but the calculation speed is generally too slow to allow online replanning. In this work, GPUMCD, a fast graphics processing unit (GPU)-based Monte Carlo dose calculation platform, was benchmarked with a new feature that allows dose calculations within a magnetic field. As a proof of concept, this new feature is validated against experimental measurements. GPUMCD was found to accurately reproduce experimental dose distributions according to a 2%-2 mm gamma analysis in two cases with large magnetic field-induced dose effects: a depth-dose phantom with an air cavity and a lateral-dose phantom surrounded by air. Furthermore, execution times of less than 15 s were achieved for one beam in a prostate case phantom for a 2% statistical uncertainty while less than 20 s were required for a seven-beam plan. These results indicate that GPUMCD is an interesting candidate, being fast and accurate, for dose calculations for the hybrid MRI-Linac modality.

  18. Fluence-convolution broad-beam (FCBB) dose calculation.

    PubMed

    Lu, Weiguo; Chen, Mingli

    2010-12-07

    IMRT optimization requires a fast yet relatively accurate algorithm to calculate the iteration dose with small memory demand. In this paper, we present a dose calculation algorithm that approaches these goals. By decomposing the infinitesimal pencil beam (IPB) kernel into the central axis (CAX) component and lateral spread function (LSF) and taking the beam's eye view (BEV), we established a non-voxel and non-beamlet-based dose calculation formula. Both LSF and CAX are determined by a commissioning procedure using the collapsed-cone convolution/superposition (CCCS) method as the standard dose engine. The proposed dose calculation involves a 2D convolution of a fluence map with LSF followed by ray tracing based on the CAX lookup table with radiological distance and divergence correction, resulting in complexity of O(N(3)) both spatially and temporally. This simple algorithm is orders of magnitude faster than the CCCS method. Without pre-calculation of beamlets, its implementation is also orders of magnitude smaller than the conventional voxel-based beamlet-superposition (VBS) approach. We compared the presented algorithm with the CCCS method using simulated and clinical cases. The agreement was generally within 3% for a homogeneous phantom and 5% for heterogeneous and clinical cases. Combined with the 'adaptive full dose correction', the algorithm is well suitable for calculating the iteration dose during IMRT optimization.

  19. Determination of radionuclides and pathways contributing to cumulative dose. Hanford Environmental Dose Reconstruction Project: Dose code recovery activities, Calculation 004

    SciTech Connect

    Napier, B.A.

    1992-12-01

    A series of scoping calculations has been undertaken to evaluate the absolute and relative contributions of different radionuclides and exposure pathways to doses that may have been received by individuals living in the vicinity of the Hanford Site. This scoping calculation (Calculation 004) examined the contributions of numerous radionuclides to cumulative dose via environmental exposures and accumulation in foods. Addressed in this calculation were the contributions to organ and effective dose of infants and adults from (1) air submersion and groundshine external dose, (2) inhalation, (3) ingestion of soil by humans, (4) ingestion of leafy vegetables, (5) ingestion of other vegetables and fruits, (6) ingestion of meat, (7) ingestion of eggs, and (8) ingestion of cows` milk from Feeding Regime 1, as described in calculation 002. This calculation specifically addresses cumulative radiation doses to infants and adults resulting from releases occurring over the period 1945 through 1972.

  20. Fast convolution-superposition dose calculation on graphics hardware.

    PubMed

    Hissoiny, Sami; Ozell, Benoît; Després, Philippe

    2009-06-01

    The numerical calculation of dose is central to treatment planning in radiation therapy and is at the core of optimization strategies for modern delivery techniques. In a clinical environment, dose calculation algorithms are required to be accurate and fast. The accuracy is typically achieved through the integration of patient-specific data and extensive beam modeling, which generally results in slower algorithms. In order to alleviate execution speed problems, the authors have implemented a modern dose calculation algorithm on a massively parallel hardware architecture. More specifically, they have implemented a convolution-superposition photon beam dose calculation algorithm on a commodity graphics processing unit (GPU). They have investigated a simple porting scenario as well as slightly more complex GPU optimization strategies. They have achieved speed improvement factors ranging from 10 to 20 times with GPU implementations compared to central processing unit (CPU) implementations, with higher values corresponding to larger kernel and calculation grid sizes. In all cases, they preserved the numerical accuracy of the GPU calculations with respect to the CPU calculations. These results show that streaming architectures such as GPUs can significantly accelerate dose calculation algorithms and let envision benefits for numerically intensive processes such as optimizing strategies, in particular, for complex delivery techniques such as IMRT and are therapy.

  1. Study of dose calculation on breast brachytherapy using prism TPS

    SciTech Connect

    Fendriani, Yoza; Haryanto, Freddy

    2015-09-30

    PRISM is one of non-commercial Treatment Planning System (TPS) and is developed at the University of Washington. In Indonesia, many cancer hospitals use expensive commercial TPS. This study aims to investigate Prism TPS which been applied to the dose distribution of brachytherapy by taking into account the effect of source position and inhomogeneities. The results will be applicable for clinical Treatment Planning System. Dose calculation has been implemented for water phantom and CT scan images of breast cancer using point source and line source. This study used point source and line source and divided into two cases. On the first case, Ir-192 seed source is located at the center of treatment volume. On the second case, the source position is gradually changed. The dose calculation of every case performed on a homogeneous and inhomogeneous phantom with dimension 20 × 20 × 20 cm{sup 3}. The inhomogeneous phantom has inhomogeneities volume 2 × 2 × 2 cm{sup 3}. The results of dose calculations using PRISM TPS were compared to literature data. From the calculation of PRISM TPS, dose rates show good agreement with Plato TPS and other study as published by Ramdhani. No deviations greater than ±4% for all case. Dose calculation in inhomogeneous and homogenous cases show similar result. This results indicate that Prism TPS is good in dose calculation of brachytherapy but not sensitive for inhomogeneities. Thus, the dose calculation parameters developed in this study were found to be applicable for clinical treatment planning of brachytherapy.

  2. Dose Calculation Accuracy of the Monte Carlo Algorithm for CyberKnife Compared with Other Commercially Available Dose Calculation Algorithms

    SciTech Connect

    Sharma, Subhash; Ott, Joseph Williams, Jamone; Dickow, Danny

    2011-01-01

    Monte Carlo dose calculation algorithms have the potential for greater accuracy than traditional model-based algorithms. This enhanced accuracy is particularly evident in regions of lateral scatter disequilibrium, which can develop during treatments incorporating small field sizes and low-density tissue. A heterogeneous slab phantom was used to evaluate the accuracy of several commercially available dose calculation algorithms, including Monte Carlo dose calculation for CyberKnife, Analytical Anisotropic Algorithm and Pencil Beam convolution for the Eclipse planning system, and convolution-superposition for the Xio planning system. The phantom accommodated slabs of varying density; comparisons between planned and measured dose distributions were accomplished with radiochromic film. The Monte Carlo algorithm provided the most accurate comparison between planned and measured dose distributions. In each phantom irradiation, the Monte Carlo predictions resulted in gamma analysis comparisons >97%, using acceptance criteria of 3% dose and 3-mm distance to agreement. In general, the gamma analysis comparisons for the other algorithms were <95%. The Monte Carlo dose calculation algorithm for CyberKnife provides more accurate dose distribution calculations in regions of lateral electron disequilibrium than commercially available model-based algorithms. This is primarily because of the ability of Monte Carlo algorithms to implicitly account for tissue heterogeneities, density scaling functions; and/or effective depth correction factors are not required.

  3. Dose calculation accuracy of the Monte Carlo algorithm for CyberKnife compared with other commercially available dose calculation algorithms.

    PubMed

    Sharma, Subhash; Ott, Joseph; Williams, Jamone; Dickow, Danny

    2011-01-01

    Monte Carlo dose calculation algorithms have the potential for greater accuracy than traditional model-based algorithms. This enhanced accuracy is particularly evident in regions of lateral scatter disequilibrium, which can develop during treatments incorporating small field sizes and low-density tissue. A heterogeneous slab phantom was used to evaluate the accuracy of several commercially available dose calculation algorithms, including Monte Carlo dose calculation for CyberKnife, Analytical Anisotropic Algorithm and Pencil Beam convolution for the Eclipse planning system, and convolution-superposition for the Xio planning system. The phantom accommodated slabs of varying density; comparisons between planned and measured dose distributions were accomplished with radiochromic film. The Monte Carlo algorithm provided the most accurate comparison between planned and measured dose distributions. In each phantom irradiation, the Monte Carlo predictions resulted in gamma analysis comparisons >97%, using acceptance criteria of 3% dose and 3-mm distance to agreement. In general, the gamma analysis comparisons for the other algorithms were <95%. The Monte Carlo dose calculation algorithm for CyberKnife provides more accurate dose distribution calculations in regions of lateral electron disequilibrium than commercially available model-based algorithms. This is primarily because of the ability of Monte Carlo algorithms to implicitly account for tissue heterogeneities, density scaling functions; and/or effective depth correction factors are not required.

  4. Verification of Calculated Skin Doses in Postmastectomy Helical Tomotherapy

    SciTech Connect

    Ito, Shima; Parker, Brent C.; Levine, Renee; Sanders, Mary Ella; Fontenot, Jonas; Gibbons, John; Hogstrom, Kenneth

    2011-10-01

    Purpose: To verify the accuracy of calculated skin doses in helical tomotherapy for postmastectomy radiation therapy (PMRT). Methods and Materials: In vivo thermoluminescent dosimeters (TLDs) were used to measure the skin dose at multiple points in each of 14 patients throughout the course of treatment on a TomoTherapy Hi.Art II system, for a total of 420 TLD measurements. Five patients were evaluated near the location of the mastectomy scar, whereas 9 patients were evaluated throughout the treatment volume. The measured dose at each location was compared with calculations from the treatment planning system. Results: The mean difference and standard error of the mean difference between measurement and calculation for the scar measurements was -1.8% {+-} 0.2% (standard deviation [SD], 4.3%; range, -11.1% to 10.6%). The mean difference and standard error of the mean difference between measurement and calculation for measurements throughout the treatment volume was -3.0% {+-} 0.4% (SD, 4.7%; range, -18.4% to 12.6%). The mean difference and standard error of the mean difference between measurement and calculation for all measurements was -2.1% {+-} 0.2% (standard deviation, 4.5%: range, -18.4% to 12.6%). The mean difference between measured and calculated TLD doses was statistically significant at two standard deviations of the mean, but was not clinically significant (i.e., was <5%). However, 23% of the measured TLD doses differed from the calculated TLD doses by more than 5%. Conclusions: The mean of the measured TLD doses agreed with TomoTherapy calculated TLD doses within our clinical criterion of 5%.

  5. Validation of Dose Calculation Codes for Clearance

    SciTech Connect

    Menon, S.; Wirendal, B.; Bjerler, J.; Studsvik; Teunckens, L.

    2003-02-27

    Various international and national bodies such as the International Atomic Energy Agency, the European Commission, the US Nuclear Regulatory Commission have put forward proposals or guidance documents to regulate the ''clearance'' from regulatory control of very low level radioactive material, in order to allow its recycling as a material management practice. All these proposals are based on predicted scenarios for subsequent utilization of the released materials. The calculation models used in these scenarios tend to utilize conservative data regarding exposure times and dose uptake as well as other assumptions as a safeguard against uncertainties. None of these models has ever been validated by comparison with the actual real life practice of recycling. An international project was organized in order to validate some of the assumptions made in these calculation models, and, thereby, better assess the radiological consequences of recycling on a practical large scale.

  6. Gamma Knife radiosurgery with CT image-based dose calculation.

    PubMed

    Xu, Andy Yuanguang; Bhatnagar, Jagdish; Bednarz, Greg; Niranjan, Ajay; Kondziolka, Douglas; Flickinger, John; Lunsford, L Dade; Huq, M Saiful

    2015-11-08

    and the TMR 10 calculations are 14.9%, 16.4%, 11.1%, 16.8, 6.9%, and 11.4%, respectively. The maximum differences in the minimum and the mean target doses between the two calculation algorithms are 8.1% and 4.2% of the corresponding prescription doses. The maximum differences in the maximum and the mean doses for the critical structures between the two calculation algorithms are 1.3 Gy and 0.7 Gy. The results from the two skull definition methods with the TMR 10 algorithm agree either within ± 2.5% or 0.3 Gy for the dose values, except for a 4.9% difference in the treatment times for a lower cerebellar lesion. The imaging skull definition method does not affect Gamma Knife dose calculation considerably when compared to the conventional measurement-based skull definition method, except in some extreme cases. Large differences were observed between the TMR 10 and the convolution calculation method for the same dose prescription and the same shot arrangements, indicating that the implementation of the convolution algorithm in routine clinical use might be desirable for optimal dose calculation results.

  7. Gamma Knife radiosurgery with CT image-based dose calculation.

    PubMed

    Xu, Andy Yuanguang; Bhatnagar, Jagdish; Bednarz, Greg; Niranjan, Ajay; Kondziolka, Douglas; Flickinger, John; Lunsford, L Dade; Huq, M Saiful

    2015-11-01

    and the TMR 10 calculations are 14.9%, 16.4%, 11.1%, 16.8, 6.9%, and 11.4%, respectively. The maximum differences in the minimum and the mean target doses between the two calculation algorithms are 8.1% and 4.2% of the corresponding prescription doses. The maximum differences in the maximum and the mean doses for the critical structures between the two calculation algorithms are 1.3 Gy and 0.7 Gy. The results from the two skull definition methods with the TMR 10 algorithm agree either within ± 2.5% or 0.3 Gy for the dose values, except for a 4.9% difference in the treatment times for a lower cerebellar lesion. The imaging skull definition method does not affect Gamma Knife dose calculation considerably when compared to the conventional measurement-based skull definition method, except in some extreme cases. Large differences were observed between the TMR 10 and the convolution calculation method for the same dose prescription and the same shot arrangements, indicating that the implementation of the convolution algorithm in routine clinical use might be desirable for optimal dose calculation results. PACS numbers: 87.55.D, 87.55.kd.

  8. Data required for testicular dose calculation during radiotherapy of seminoma

    SciTech Connect

    Mazonakis, Michalis; Kokona, Georgiana; Varveris, Haralambos; Damilakis, John; Gourtsoyiannis, Nicholas

    2006-07-15

    The purpose of this study was to provide the required data for the direct calculation of testicular dose resulting from radiotherapy in patients with seminoma. Paraortic (PA) treatment fields and dog-leg (DL) portals including paraortic and ipsilateral pelvic nodes were simulated on a male anthropomorphic phantom equipped with an artificial testicle. Anterior and posterior irradiations were performed for five different PA and DL field dimensions. Dose measurements were carried out using a calibrated ionization chamber. The dependence of testicular dose upon the distance separating the testicle from the treatment volume and upon the tissue thickness at the entrance point of the beam was investigated. A clamshell lead shield was used to reduce testicular dose. The scattered dose to testicle was measured in nine patients using thermoluminescent dosimeters. Phantom and patient exposures were generated with a 6 MV x-ray beam. Linear and nonlinear regression analysis was employed to obtain formulas describing the relation between the radiation dose to an unshielded and/or shielded testicle with the field size and the distance from the inferior field edge. Correction factors showing the variation of testicular dose with the patient thickness along beam axis were found. Bland-Altman statistical analysis showed that testicular dose obtained by the proposed calculation method may differ from the measured dose value by less than 25%. The current study presents a method providing reasonable estimations of testicular dose for individual patients undergoing PA or DL radiotherapy.

  9. COMPARING MEASURED AND CALCULATED DOSES IN INTERVENTIONAL CARDIOLOGY PROCEDURES.

    PubMed

    Oliveira da Silva, M W; Canevaro, L V; Hunt, J; Rodrigues, B B D

    2017-03-16

    Interventional cardiology requires complex procedures and can result in high doses and dose rates to the patient and medical staff. The many variables that influence the dose to the patient and staff include the beam position and angle, beam size, kVp, filtration, kerma-area product and focus-skin distance. A number of studies using the Monte Carlo method have been undertaken to obtain prospective dose assessments. In this paper, detailed irradiation scenarios were simulated mathematically and the resulting dose estimates were compared with real measurements made previously under very similar irradiation conditions and geometries. The real measurements and the calculated doses were carried out using or simulating an interventional cardiology system with a flat monoplane detector installed in a dedicated room with an Alderson phantom placed on the procedure table. The X-ray spectra, beam angles, focus-skin distance, measured kerma-area product and filtration were simulated, and the real dose measurements and calculated doses were compared. It was shown that the Monte Carlo method was capable of reproducing the real dose measurements within acceptable levels of uncertainty.

  10. Quantification of Proton Dose Calculation Accuracy in the Lung

    SciTech Connect

    Grassberger, Clemens; Daartz, Juliane; Dowdell, Stephen; Ruggieri, Thomas; Sharp, Greg; Paganetti, Harald

    2014-06-01

    Purpose: To quantify the accuracy of a clinical proton treatment planning system (TPS) as well as Monte Carlo (MC)–based dose calculation through measurements and to assess the clinical impact in a cohort of patients with tumors located in the lung. Methods and Materials: A lung phantom and ion chamber array were used to measure the dose to a plane through a tumor embedded in the lung, and to determine the distal fall-off of the proton beam. Results were compared with TPS and MC calculations. Dose distributions in 19 patients (54 fields total) were simulated using MC and compared to the TPS algorithm. Results: MC increased dose calculation accuracy in lung tissue compared with the TPS and reproduced dose measurements in the target to within ±2%. The average difference between measured and predicted dose in a plane through the center of the target was 5.6% for the TPS and 1.6% for MC. MC recalculations in patients showed a mean dose to the clinical target volume on average 3.4% lower than the TPS, exceeding 5% for small fields. For large tumors, MC also predicted consistently higher V5 and V10 to the normal lung, because of a wider lateral penumbra, which was also observed experimentally. Critical structures located distal to the target could show large deviations, although this effect was highly patient specific. Range measurements showed that MC can reduce range uncertainty by a factor of ∼2: the average (maximum) difference to the measured range was 3.9 mm (7.5 mm) for MC and 7 mm (17 mm) for the TPS in lung tissue. Conclusion: Integration of Monte Carlo dose calculation techniques into the clinic would improve treatment quality in proton therapy for lung cancer by avoiding systematic overestimation of target dose and underestimation of dose to normal lung. In addition, the ability to confidently reduce range margins would benefit all patients by potentially lowering toxicity.

  11. Quantification of Proton Dose Calculation Accuracy in the Lung

    PubMed Central

    Grassberger, Clemens; Daartz, Juliane; Dowdell, Stephen; Ruggieri, Thomas; Sharp, Greg; Paganetti, Harald

    2014-01-01

    Purpose Quantify the accuracy of a clinical proton treatment planning system (TPS) as well as Monte Carlo (MC) based dose calculation through measurements. Assess the clinical impact in a cohort of patients with tumors located in the lung. Methods A lung phantom and ion chamber array were used to measure the dose to a plane through a tumor embedded in lung and to determine the distal fall-off of the proton beam. Results were compared with TPS and MC calculations. Dose distributions in 19 patients (54 fields total) were simulated using MC and compared to the TPS algorithm. Results MC increases dose calculation accuracy in lung tissue compared to the TPS and reproduces dose measurements in the target to within ±2%. The average difference between measured and predicted dose in a plane through the center of the target is 5.6% for the TPS and 1.6% for MC. MC recalculations in patients show a mean dose to the clinical target volume on average 3.4% lower than the TPS, exceeding 5% for small fields. For large tumors MC also predicts consistently higher V5 and V10 to the normal lung, due to a wider lateral penumbra, which was also observed experimentally. Critical structures located distal to the target can show large deviations, though this effect is very patient-specific. Range measurements show that MC can reduce range uncertainty by a factor ~2: the average(maximum) difference to the measured range is 3.9mm(7.5mm) for MC and 7mm(17mm) for the TPS in lung tissue. Conclusion Integration of Monte Carlo dose calculation techniques into the clinic would improve treatment quality in proton therapy for lung cancer by avoiding systematic overestimation of target dose and underestimation of dose to normal lung. Additionally, the ability to confidently reduce range margins would benefit all patients through potentially lower toxicity. PMID:24726289

  12. Validation of the photon dose calculation model in the VARSKIN 4 skin dose computer code.

    PubMed

    Sherbini, Sami; Decicco, Joseph; Struckmeyer, Richard; Saba, Mohammad; Bush-Goddard, Stephanie

    2012-12-01

    An updated version of the skin dose computer code VARSKIN, namely VARSKIN 4, was examined to determine the accuracy of the photon model in calculating dose rates with different combinations of source geometry and radionuclides. The reference data for this validation were obtained by means of Monte Carlo transport calculations using MCNP5. The geometries tested included the zero volume sources point and disc, as well as the volume sources sphere and cylinder. Three geometries were tested using source directly on the skin, source off the skin with an absorber material between source and skin, and source off the skin with only an air gap between source and skin. The results of these calculations showed that the non-volume sources produced dose rates that were in very good agreement with the Monte Carlo calculations, but the volume sources resulted in overestimates of the dose rates compared with the Monte Carlo results by factors that ranged up to about 2.5. The results for the air gap showed poor agreement with Monte Carlo for all source geometries, with the dose rates overestimated in all cases. The conclusion was that, for situations where the beta dose is dominant, these results are of little significance because the photon dose in such cases is generally a very small fraction of the total dose. For situations in which the photon dose is dominant, use of the point or disc geometries should be adequate in most cases except those in which the dose approaches or exceeds an applicable limit. Such situations will often require a more accurate dose assessment and may require the use of methods such as Monte Carlo transport calculations.

  13. Brachytherapy source characterization for improved dose calculations using primary and scatter dose separation.

    PubMed

    Russell, Kellie R; Tedgren, Asa K Carlsson; Ahnesjö, Anders

    2005-09-01

    In brachytherapy, tissue heterogeneities, source shielding, and finite patient/phantom extensions affect both the primary and scatter dose distributions. The primary dose is, due to the short range of secondary electrons, dependent only on the distribution of material located on the ray line between the source and dose deposition site. The scatter dose depends on both the direct irradiation pattern and the distribution of material in a large volume surrounding the point of interest, i.e., a much larger volume must be included in calculations to integrate many small dose contributions. It is therefore of interest to consider different methods for the primary and the scatter dose calculation to improve calculation accuracy with limited computer resources. The algorithms in present clinical use ignore these effects causing systematic dose errors in brachytherapy treatment planning. In this work we review a primary and scatter dose separation formalism (PSS) for brachytherapy source characterization to support separate calculation of the primary and scatter dose contributions. We show how the resulting source characterization data can be used to drive more accurate dose calculations using collapsed cone superposition for scatter dose calculations. Two types of source characterization data paths are used: a direct Monte Carlo simulation in water phantoms with subsequent parameterization of the results, and an alternative data path built on processing of AAPM TG43 formatted data to provide similar parameter sets. The latter path is motivated of the large amounts of data already existing in the TG43 format. We demonstrate the PSS methods using both data paths for a clinical 192Ir source. Results are shown for two geometries: a finite but homogeneous water phantom, and a half-slab consisting of water and air. The dose distributions are compared to results from full Monte Carlo simulations and we show significant improvement in scatter dose calculations when the collapsed

  14. Brachytherapy source characterization for improved dose calculations using primary and scatter dose separation

    SciTech Connect

    Russell, Kellie R.; Carlsson Tedgren, Aasa K.; Ahnesjoe, Anders

    2005-09-15

    In brachytherapy, tissue heterogeneities, source shielding, and finite patient/phantom extensions affect both the primary and scatter dose distributions. The primary dose is, due to the short range of secondary electrons, dependent only on the distribution of material located on the ray line between the source and dose deposition site. The scatter dose depends on both the direct irradiation pattern and the distribution of material in a large volume surrounding the point of interest, i.e., a much larger volume must be included in calculations to integrate many small dose contributions. It is therefore of interest to consider different methods for the primary and the scatter dose calculation to improve calculation accuracy with limited computer resources. The algorithms in present clinical use ignore these effects causing systematic dose errors in brachytherapy treatment planning. In this work we review a primary and scatter dose separation formalism (PSS) for brachytherapy source characterization to support separate calculation of the primary and scatter dose contributions. We show how the resulting source characterization data can be used to drive more accurate dose calculations using collapsed cone superposition for scatter dose calculations. Two types of source characterization data paths are used: a direct Monte Carlo simulation in water phantoms with subsequent parameterization of the results, and an alternative data path built on processing of AAPM TG43 formatted data to provide similar parameter sets. The latter path is motivated of the large amounts of data already existing in the TG43 format. We demonstrate the PSS methods using both data paths for a clinical {sup 192}Ir source. Results are shown for two geometries: a finite but homogeneous water phantom, and a half-slab consisting of water and air. The dose distributions are compared to results from full Monte Carlo simulations and we show significant improvement in scatter dose calculations when the

  15. Photon dose calculation based on electron multiple-scattering theory: primary dose deposition kernels.

    PubMed

    Wang, L; Jette, D

    1999-08-01

    The transport of the secondary electrons resulting from high-energy photon interactions is essential to energy redistribution and deposition. In order to develop an accurate dose-calculation algorithm for high-energy photons, which can predict the dose distribution in inhomogeneous media and at the beam edges, we have investigated the feasibility of applying electron transport theory [Jette, Med. Phys. 15, 123 (1988)] to photon dose calculation. In particular, the transport of and energy deposition by Compton electron and electrons and positrons resulting from pair production were studied. The primary photons are treated as the source of the secondary electrons and positrons, which are transported through the irradiated medium using Gaussian multiple-scattering theory [Jette, Med. Phys. 15, 123 (1988)]. The initial angular and kinetic energy distribution(s) of the secondary electrons (and positrons) emanating from the photon interactions are incorporated into the transport. Due to different mechanisms of creation and cross-section functions, the transport of and the energy deposition by the electrons released in these two processes are studied and modeled separately based on first principles. In this article, we focus on determining the dose distribution for an individual interaction site. We define the Compton dose deposition kernel (CDK) or the pair-production dose deposition kernel (PDK) as the dose distribution relative to the point of interaction, per unit interaction density, for a monoenergetic photon beam in an infinite homogeneous medium of unit density. The validity of this analytic modeling of dose deposition was evaluated through EGS4 Monte Carlo simulation. Quantitative agreement between these two calculations of the dose distribution and the average energy deposited per interaction was achieved. Our results demonstrate the applicability of the electron dose-calculation method to photon dose calculation.

  16. Independent dose calculations for commissioning, quality assurance and dose reconstruction of PBS proton therapy.

    PubMed

    Meier, G; Besson, R; Nanz, A; Safai, S; Lomax, A J

    2015-04-07

    Pencil beam scanning proton therapy allows the delivery of highly conformal dose distributions by delivering several thousand pencil beams. These beams have to be individually optimised and accurately delivered requiring a significant quality assurance workload. In this work we describe a toolkit for independent dose calculations developed at Paul Scherrer Institut which allows for dose reconstructions at several points in the treatment workflow. Quality assurance based on reconstructed dose distributions was shown to be favourable to pencil beam by pencil beam comparisons for the detection of delivery uncertainties and estimation of their effects. Furthermore the dose reconstructions were shown to have a sensitivity of the order of or higher than the measurements currently employed in the clinical verification procedures. The design of the independent dose calculation tool allows for a high modifiability of the dose calculation parameters (e.g. depth dose profiles, angular spatial distributions) allowing for a safe environment outside of the clinical treatment planning system for investigating the effect of such parameters on the resulting dose distributions and thus distinguishing between different contributions to measured dose deviations. The presented system could potentially reduce the amount of patient-specific quality assurance measurements which currently constitute a bottleneck in the clinical workflow.

  17. Beta and gamma dose calculations for PWR and BWR containments

    SciTech Connect

    King, D.B.

    1989-07-01

    Analyses of gamma and beta dose in selected regions in PWR and BWR containment buildings have been performed for a range of fission product releases from selected severe accidents. The objective of this study was to determine the radiation dose that safety-related equipment could experience during the selected severe accident sequences. The resulting dose calculations demonstrate the extent to which design basis accident qualified equipment could also be qualified for the severe accident environments. Surry was chosen as the representative PWR plant while Peach Bottom was selected to represent BWRs. Battelle Columbus Laboratory performed the source term release analyses. The AB epsilon scenario (an intermediate to large LOCA with failure to recover onsite or offsite electrical power) was selected as the base case Surry accident, and the AE scenario (a large break LOCA with one initiating event and a combination of failures in two emergency cooling systems) was selected as the base case Peach Bottom accident. Radionuclide release was bounded for both scenarios by including spray operation and arrested sequences as variations of the base scenarios. Sandia National Laboratories used the source terms to calculate dose to selected containment regions. Scenarios with sprays operational resulted in a total dose comparable to that (2.20 /times/ 10/sup 8/ rads) used in current equipment qualification testing. The base case scenarios resulted in some calculated doses roughly an order of magnitude above the current 2.20 /times/ 10/sup 8/ rad equipment qualification test region. 8 refs., 23 figs., 12 tabs.

  18. Limitations of analytical dose calculations for small field proton radiosurgery.

    PubMed

    Geng, Changran; Daartz, Juliane; Lam-Tin-Cheung, Kimberley; Bussiere, Marc; Shih, Helen A; Paganetti, Harald; Schuemann, Jan

    2017-01-07

    The purpose of the work was to evaluate the dosimetric uncertainties of an analytical dose calculation engine and the impact on treatment plans using small fields in intracranial proton stereotactic radiosurgery (PSRS) for a gantry based double scattering system. 50 patients were evaluated including 10 patients for each of 5 diagnostic indications of: arteriovenous malformation (AVM), acoustic neuroma (AN), meningioma (MGM), metastasis (METS), and pituitary adenoma (PIT). Treatment plans followed standard prescription and optimization procedures for PSRS. We performed comparisons between delivered dose distributions, determined by Monte Carlo (MC) simulations, and those calculated with the analytical dose calculation algorithm (ADC) used in our current treatment planning system in terms of dose volume histogram parameters and beam range distributions. Results show that the difference in the dose to 95% of the target (D95) is within 6% when applying measured field size output corrections for AN, MGM, and PIT. However, for AVM and METS, the differences can be as great as 10% and 12%, respectively. Normalizing the MC dose to the ADC dose based on the dose of voxels in a central area of the target reduces the difference of the D95 to within 6% for all sites. The generally applied margin to cover uncertainties in range (3.5% of the prescribed range  +  1 mm) is not sufficient to cover the range uncertainty for ADC in all cases, especially for patients with high tissue heterogeneity. The root mean square of the R90 difference, the difference in the position of distal falloff to 90% of the prescribed dose, is affected by several factors, especially the patient geometry heterogeneity, modulation and field diameter. In conclusion, implementation of Monte Carlo dose calculation techniques into the clinic can reduce the uncertainty of the target dose for proton stereotactic radiosurgery. If MC is not available for treatment planning, using MC dose distributions to

  19. Limitations of analytical dose calculations for small field proton radiosurgery

    NASA Astrophysics Data System (ADS)

    Geng, Changran; Daartz, Juliane; Lam-Tin-Cheung, Kimberley; Bussiere, Marc; Shih, Helen A.; Paganetti, Harald; Schuemann, Jan

    2017-01-01

    The purpose of the work was to evaluate the dosimetric uncertainties of an analytical dose calculation engine and the impact on treatment plans using small fields in intracranial proton stereotactic radiosurgery (PSRS) for a gantry based double scattering system. 50 patients were evaluated including 10 patients for each of 5 diagnostic indications of: arteriovenous malformation (AVM), acoustic neuroma (AN), meningioma (MGM), metastasis (METS), and pituitary adenoma (PIT). Treatment plans followed standard prescription and optimization procedures for PSRS. We performed comparisons between delivered dose distributions, determined by Monte Carlo (MC) simulations, and those calculated with the analytical dose calculation algorithm (ADC) used in our current treatment planning system in terms of dose volume histogram parameters and beam range distributions. Results show that the difference in the dose to 95% of the target (D95) is within 6% when applying measured field size output corrections for AN, MGM, and PIT. However, for AVM and METS, the differences can be as great as 10% and 12%, respectively. Normalizing the MC dose to the ADC dose based on the dose of voxels in a central area of the target reduces the difference of the D95 to within 6% for all sites. The generally applied margin to cover uncertainties in range (3.5% of the prescribed range  +  1 mm) is not sufficient to cover the range uncertainty for ADC in all cases, especially for patients with high tissue heterogeneity. The root mean square of the R90 difference, the difference in the position of distal falloff to 90% of the prescribed dose, is affected by several factors, especially the patient geometry heterogeneity, modulation and field diameter. In conclusion, implementation of Monte Carlo dose calculation techniques into the clinic can reduce the uncertainty of the target dose for proton stereotactic radiosurgery. If MC is not available for treatment planning, using MC dose distributions to

  20. Comparison of dose calculation methods for brachytherapy of intraocular tumors

    SciTech Connect

    Rivard, Mark J.; Chiu-Tsao, Sou-Tung; Finger, Paul T.; Meigooni, Ali S.; Melhus, Christopher S.; Mourtada, Firas; Napolitano, Mary E.; Rogers, D. W. O.; Thomson, Rowan M.; Nath, Ravinder

    2011-01-15

    Purpose: To investigate dosimetric differences among several clinical treatment planning systems (TPS) and Monte Carlo (MC) codes for brachytherapy of intraocular tumors using {sup 125}I or {sup 103}Pd plaques, and to evaluate the impact on the prescription dose of the adoption of MC codes and certain versions of a TPS (Plaque Simulator with optional modules). Methods: Three clinical brachytherapy TPS capable of intraocular brachytherapy treatment planning and two MC codes were compared. The TPS investigated were Pinnacle v8.0dp1, BrachyVision v8.1, and Plaque Simulator v5.3.9, all of which use the AAPM TG-43 formalism in water. The Plaque Simulator software can also handle some correction factors from MC simulations. The MC codes used are MCNP5 v1.40 and BrachyDose/EGSnrc. Using these TPS and MC codes, three types of calculations were performed: homogeneous medium with point sources (for the TPS only, using the 1D TG-43 dose calculation formalism); homogeneous medium with line sources (TPS with 2D TG-43 dose calculation formalism and MC codes); and plaque heterogeneity-corrected line sources (Plaque Simulator with modified 2D TG-43 dose calculation formalism and MC codes). Comparisons were made of doses calculated at points-of-interest on the plaque central-axis and at off-axis points of clinical interest within a standardized model of the right eye. Results: For the homogeneous water medium case, agreement was within {approx}2% for the point- and line-source models when comparing between TPS and between TPS and MC codes, respectively. For the heterogeneous medium case, dose differences (as calculated using the MC codes and Plaque Simulator) differ by up to 37% on the central-axis in comparison to the homogeneous water calculations. A prescription dose of 85 Gy at 5 mm depth based on calculations in a homogeneous medium delivers 76 Gy and 67 Gy for specific {sup 125}I and {sup 103}Pd sources, respectively, when accounting for COMS-plaque heterogeneities. For off

  1. The Monte Carlo calculation of integral radiation dose in xeromammography.

    PubMed

    Dance, D R

    1980-01-01

    A Monte Carlo computer program has been developed for the computation of integral radiation dose to the breast in xeromammography. The results are given in terms of the integral dose per unit area of the breast per unit incident exposure. The calculations have been made for monoenergetic incident photons and the results integrated over a variety of X-ray spectra from both tungsten and molybdenum targets. This range incorporates qualities used in conventional and xeromammography. The program includes the selenium plate used in xeroradiography; the energy absorbed in this detector has also been investigated. The latter calculations have been used to predict relative values of exposure and of integral dose to the breast for xeromammograms taken at various radiation qualities. The results have been applied to recent work on the reduction of patient exposure in xeromammography by the addition of aluminium filters to the X-ray beam.

  2. Recommendations for Insulin Dose Calculator Risk Management.

    PubMed

    Rees, Christen

    2014-01-01

    Several studies have shown the usefulness of an automated insulin dose bolus advisor (BA) in achieving improved glycemic control for insulin-using diabetes patients. Although regulatory agencies have approved several BAs over the past decades, these devices are not standardized in their approach to dosage calculation and include many features that may introduce risk to patients. Moreover, there is no single standard of care for diabetes worldwide and no guidance documents for BAs, specifically. Given the emerging and more stringent regulations on software used in medical devices, the approval process is becoming more difficult for manufacturers to navigate, with some manufacturers opting to remove BAs from their products altogether. A comprehensive literature search was performed, including publications discussing: diabetes BA use and benefit, infusion pump safety and regulation, regulatory submissions, novel BAs, and recommendations for regulation and risk management of BAs. Also included were country-specific and international guidance documents for medical device, infusion pump, medical software, and mobile medical application risk management and regulation. No definitive worldwide guidance exists regarding risk management requirements for BAs, specifically. However, local and international guidance documents for medical devices, infusion pumps, and medical device software offer guidance that can be applied to this technology. In addition, risk management exercises that are algorithm-specific can help prepare manufacturers for regulatory submissions. This article discusses key issues relevant to BA use and safety, and recommends risk management activities incorporating current research and guidance.

  3. Recommendations for Insulin Dose Calculator Risk Management

    PubMed Central

    2014-01-01

    Several studies have shown the usefulness of an automated insulin dose bolus advisor (BA) in achieving improved glycemic control for insulin-using diabetes patients. Although regulatory agencies have approved several BAs over the past decades, these devices are not standardized in their approach to dosage calculation and include many features that may introduce risk to patients. Moreover, there is no single standard of care for diabetes worldwide and no guidance documents for BAs, specifically. Given the emerging and more stringent regulations on software used in medical devices, the approval process is becoming more difficult for manufacturers to navigate, with some manufacturers opting to remove BAs from their products altogether. A comprehensive literature search was performed, including publications discussing: diabetes BA use and benefit, infusion pump safety and regulation, regulatory submissions, novel BAs, and recommendations for regulation and risk management of BAs. Also included were country-specific and international guidance documents for medical device, infusion pump, medical software, and mobile medical application risk management and regulation. No definitive worldwide guidance exists regarding risk management requirements for BAs, specifically. However, local and international guidance documents for medical devices, infusion pumps, and medical device software offer guidance that can be applied to this technology. In addition, risk management exercises that are algorithm-specific can help prepare manufacturers for regulatory submissions. This article discusses key issues relevant to BA use and safety, and recommends risk management activities incorporating current research and guidance. PMID:24876550

  4. Radiotherapy dose calculations in the presence of hip prostheses

    SciTech Connect

    Keall, Paul J.; Siebers, Jeffrey V.; Jeraj, Robert; Mohan, Radhe

    2003-06-30

    The high density and atomic number of hip prostheses for patients undergoing pelvic radiotherapy challenge our ability to accurately calculate dose. A new clinical dose calculation algorithm, Monte Carlo, will allow accurate calculation of the radiation transport both within and beyond hip prostheses. The aim of this research was to investigate, for both phantom and patient geometries, the capability of various dose calculation algorithms to yield accurate treatment plans. Dose distributions in phantom and patient geometries with high atomic number prostheses were calculated using Monte Carlo, superposition, pencil beam, and no-heterogeneity correction algorithms. The phantom dose distributions were analyzed by depth dose and dose profile curves. The patient dose distributions were analyzed by isodose curves, dose-volume histograms (DVHs) and tumor control probability/normal tissue complication probability (TCP/NTCP) calculations. Monte Carlo calculations predicted the dose enhancement and reduction at the proximal and distal prosthesis interfaces respectively, whereas superposition and pencil beam calculations did not. However, further from the prosthesis, the differences between the dose calculation algorithms diminished. Treatment plans calculated with superposition showed similar isodose curves, DVHs, and TCP/NTCP as the Monte Carlo plans, except in the bladder, where Monte Carlo predicted a slightly lower dose. Treatment plans calculated with either the pencil beam method or with no heterogeneity correction differed significantly from the Monte Carlo plans.

  5. GMctdospp: Description and validation of a CT dose calculation system

    SciTech Connect

    Schmidt, Ralph Wulff, Jörg; Zink, Klemens

    2015-07-15

    Purpose: To develop a Monte Carlo (MC)-based computed tomography (CT) dose estimation method with a graphical user interface with options to define almost arbitrary simulation scenarios, to make calculations sufficiently fast for comfortable handling, and to make the software free of charge for general availability to the scientific community. Methods: A framework called GMctdospp was developed to calculate phantom and patient doses with the MC method based on the EGSnrc system. A CT scanner was modeled for testing and was adapted to half-value layer, beam-shaping filter, z-profile, and tube-current modulation (TCM). To validate the implemented variance reduction techniques, depth-dose and cross-profile calculations of a static beam were compared against DOSXYZnrc/EGSnrc. Measurements for beam energies of 80 and 120 kVp at several positions of a CT dose-index (CTDI) standard phantom were compared against calculations of the created CT model. Finally, the efficiency of the adapted code was benchmarked against EGSnrc defaults. Results: The CT scanner could be modeled accurately. The developed TCM scheme was confirmed by the dose measurement. A comparison of calculations to DOSXYZnrc showed no systematic differences. Measurements in a CTDI phantom could be reproduced within 2% average, with a maximal difference of about 6%. Efficiency improvements of about six orders of magnitude were observed for larger organ structures of a chest-examination protocol in a voxelized phantom. In these cases, simulations took 25 s to achieve a statistical uncertainty of ∼0.5%. Conclusions: A fast dose-calculation system for phantoms and patients in a CT examination was developed, successfully validated, and benchmarked. Influences of scan protocols, protection method, and other issues can be easily examined with the developed framework.

  6. Dosimetric impact of intermediate dose calculation for optimization convergence error.

    PubMed

    Park, Byung Do; Kim, Tae Gyu; Kim, Jong Eon

    2016-06-21

    Intensity-modulated radiation therapy (IMRT) provides the protection of the normal organs and a precise treatment plan through its optimization process. However, the final dose-volume histogram (DVH) obtained by this technique differs from the optimal DVH, owing to optimization convergence errors. Herein, intermediate dose calculation was applied to IMRT plans during the optimization process to solve these issues.Homogeneous and heterogeneous targets were delineated on a virtual phantom, and the final DVH for the target volume was assessed on the target coverage. The IMRT plans of 30 patients were established to evaluate the usefulness of intermediate dose calculation.The target coverage results were analogous in the three plans with homogeneous targets. Conversely, conformity indices (conformity index [CI], heterogeneity index [HI], and uniformity index [UI]) of plans with intermediate dose calculation were estimated to be more homogenous than plans without this option for heterogeneous targets (CI, 0.371 vs. 1.000; HI, 0.104 vs. 0.036; UI, 1.099 vs. 1.031 for Phantom B; and CI, 0.318 vs. 0.956; HI, 0.167 vs. 0.076; UI, 1.165 vs. 1.057 for Phantom C). In brain and prostate cancers, a slight difference between plans calculated with anisotropic analytical algorithm (AAA) was observed (HI, p = 0.043, UI, p = 0.043 for brain; HI, p = 0.042, UI, p = 0.043 for prostate). All target coverage indices were improved by intermediate dose calculation in lung cancer cases (p = 0.043).In conclusion, intermediate dose calculation in IMRT plans improves the target coverage in the target volume around heterogeneous materials. Moreover, the optimization time can be reduced.

  7. Calculation of dose conversion factors for doses in the fingernails to organ doses at external gamma irradiation in air

    PubMed Central

    Khailov, A.M.; Ivannikov, A. I.; Skvortsov, V.G.; Stepanenko, V.F.; Orlenko, S.P.; Flood, A.B.; Williams, B.B.; Swartz, H.M.

    2015-01-01

    Absorbed doses to fingernails and organs were calculated for a set of homogenous external gamma-ray irradiation geometries in air. The doses were obtained by stochastic modeling of the ionizing particle transport (Monte Carlo method) for a mathematical human phantom with arms and hands placed loosely along the sides of the body. The resulting dose conversion factors for absorbed doses in fingernails can be used to assess the dose distribution and magnitude in practical dose reconstruction problems. For purposes of estimating dose in a large population exposed to radiation in order to triage people for treatment of acute radiation syndrome, the calculated data for a range of energies having a width of from 0.05 to 3.5 MeV were used to convert absorbed doses in fingernails to corresponding doses in organs and the whole body as well as the effective dose. Doses were assessed based on assumed rates of radioactive fallout at different time periods following a nuclear explosion. PMID:26347593

  8. Monte Carlo dose calculation in dental amalgam phantom

    PubMed Central

    Aziz, Mohd. Zahri Abdul; Yusoff, A. L.; Osman, N. D.; Abdullah, R.; Rabaie, N. A.; Salikin, M. S.

    2015-01-01

    It has become a great challenge in the modern radiation treatment to ensure the accuracy of treatment delivery in electron beam therapy. Tissue inhomogeneity has become one of the factors for accurate dose calculation, and this requires complex algorithm calculation like Monte Carlo (MC). On the other hand, computed tomography (CT) images used in treatment planning system need to be trustful as they are the input in radiotherapy treatment. However, with the presence of metal amalgam in treatment volume, the CT images input showed prominent streak artefact, thus, contributed sources of error. Hence, metal amalgam phantom often creates streak artifacts, which cause an error in the dose calculation. Thus, a streak artifact reduction technique was applied to correct the images, and as a result, better images were observed in terms of structure delineation and density assigning. Furthermore, the amalgam density data were corrected to provide amalgam voxel with accurate density value. As for the errors of dose uncertainties due to metal amalgam, they were reduced from 46% to as low as 2% at d80 (depth of the 80% dose beyond Zmax) using the presented strategies. Considering the number of vital and radiosensitive organs in the head and the neck regions, this correction strategy is suggested in reducing calculation uncertainties through MC calculation. PMID:26500401

  9. Monte Carlo dose calculation in dental amalgam phantom.

    PubMed

    Aziz, Mohd Zahri Abdul; Yusoff, A L; Osman, N D; Abdullah, R; Rabaie, N A; Salikin, M S

    2015-01-01

    It has become a great challenge in the modern radiation treatment to ensure the accuracy of treatment delivery in electron beam therapy. Tissue inhomogeneity has become one of the factors for accurate dose calculation, and this requires complex algorithm calculation like Monte Carlo (MC). On the other hand, computed tomography (CT) images used in treatment planning system need to be trustful as they are the input in radiotherapy treatment. However, with the presence of metal amalgam in treatment volume, the CT images input showed prominent streak artefact, thus, contributed sources of error. Hence, metal amalgam phantom often creates streak artifacts, which cause an error in the dose calculation. Thus, a streak artifact reduction technique was applied to correct the images, and as a result, better images were observed in terms of structure delineation and density assigning. Furthermore, the amalgam density data were corrected to provide amalgam voxel with accurate density value. As for the errors of dose uncertainties due to metal amalgam, they were reduced from 46% to as low as 2% at d80 (depth of the 80% dose beyond Zmax) using the presented strategies. Considering the number of vital and radiosensitive organs in the head and the neck regions, this correction strategy is suggested in reducing calculation uncertainties through MC calculation.

  10. Internal dose conversion factors for calculation of dose to the public

    SciTech Connect

    Not Available

    1988-07-01

    This publication contains 50-year committed dose equivalent factors, in tabular form. The document is intended to be used as the primary reference by the US Department of Energy (DOE) and its contractors for calculating radiation dose equivalents for members of the public, resulting from ingestion or inhalation of radioactive materials. Its application is intended specifically for such materials released to the environment during routine DOE operations, except in those instances where compliance with 40 CFR 61 (National Emission Standards for Hazardous Air Pollutants) requires otherwise. However, the calculated values may be equally applicable to unusual releases or to occupational exposures. The use of these committed dose equivalent tables should ensure that doses to members of the public from internal exposures are calculated in a consistent manner at all DOE facilities.

  11. Absorbed photon dose measurement and calculation for some patient organs examined by computed tomography

    NASA Astrophysics Data System (ADS)

    Shousha, Hany A.

    Patient doses from computed tomography (CT) examinations are usually expressed in terms of dose index, organ doses, and effective dose. The CT dose index (CTDI) can be measured free-in-air or in a CT dosimetry phantom. Organ doses can be measured directly in anthropomorphic Rando phantoms using thermoluminescent detectors. Organ doses can also be calculated by the Monte Carlo method utilizing measured CTDI values. In this work, organ doses were assessed for three main CT examinations: head, chest, and abdomen, using the different mentioned methods. Results of directly measured doses were compared with calculated doses for different organs in the study, and also compared with published international studies.

  12. Smartphone apps for calculating insulin dose: a systematic assessment.

    PubMed

    Huckvale, Kit; Adomaviciute, Samanta; Prieto, José Tomás; Leow, Melvin Khee-Shing; Car, Josip

    2015-05-06

    subtle harms resulting from suboptimal glucose control. Healthcare professionals should exercise substantial caution in recommending unregulated dose calculators to patients and address app safety as part of self-management education. The prevalence of errors attributable to incorrect interpretation of medical principles underlines the importance of clinical input during app design. Systemic issues affecting the safety and suitability of higher-risk apps may require coordinated surveillance and action at national and international levels involving regulators, health agencies and app stores.

  13. Approaches to reducing photon dose calculation errors near metal implants

    PubMed Central

    Huang, Jessie Y.; Followill, David S.; Howell, Rebecca M.; Liu, Xinming; Mirkovic, Dragan; Stingo, Francesco C.; Kry, Stephen F.

    2016-01-01

    Purpose: Dose calculation errors near metal implants are caused by limitations of the dose calculation algorithm in modeling tissue/metal interface effects as well as density assignment errors caused by imaging artifacts. The purpose of this study was to investigate two strategies for reducing dose calculation errors near metal implants: implementation of metal-based energy deposition kernels in the convolution/superposition (C/S) dose calculation method and use of metal artifact reduction methods for computed tomography (CT) imaging. Methods: Both error reduction strategies were investigated using a simple geometric slab phantom with a rectangular metal insert (composed of titanium or Cerrobend), as well as two anthropomorphic phantoms (one with spinal hardware and one with dental fillings), designed to mimic relevant clinical scenarios. To assess the dosimetric impact of metal kernels, the authors implemented titanium and silver kernels in a commercial collapsed cone C/S algorithm. To assess the impact of CT metal artifact reduction methods, the authors performed dose calculations using baseline imaging techniques (uncorrected 120 kVp imaging) and three commercial metal artifact reduction methods: Philips Healthcare’s o-mar, GE Healthcare’s monochromatic gemstone spectral imaging (gsi) using dual-energy CT, and gsi with metal artifact reduction software (mars) applied. For the simple geometric phantom, radiochromic film was used to measure dose upstream and downstream of metal inserts. For the anthropomorphic phantoms, ion chambers and radiochromic film were used to quantify the benefit of the error reduction strategies. Results: Metal kernels did not universally improve accuracy but rather resulted in better accuracy upstream of metal implants and decreased accuracy directly downstream. For the clinical cases (spinal hardware and dental fillings), metal kernels had very little impact on the dose calculation accuracy (<1.0%). Of the commercial CT artifact

  14. A convolution-superposition dose calculation engine for GPUs

    SciTech Connect

    Hissoiny, Sami; Ozell, Benoit; Despres, Philippe

    2010-03-15

    Purpose: Graphic processing units (GPUs) are increasingly used for scientific applications, where their parallel architecture and unprecedented computing power density can be exploited to accelerate calculations. In this paper, a new GPU implementation of a convolution/superposition (CS) algorithm is presented. Methods: This new GPU implementation has been designed from the ground-up to use the graphics card's strengths and to avoid its weaknesses. The CS GPU algorithm takes into account beam hardening, off-axis softening, kernel tilting, and relies heavily on raytracing through patient imaging data. Implementation details are reported as well as a multi-GPU solution. Results: An overall single-GPU acceleration factor of 908x was achieved when compared to a nonoptimized version of the CS algorithm implemented in PlanUNC in single threaded central processing unit (CPU) mode, resulting in approximatively 2.8 s per beam for a 3D dose computation on a 0.4 cm grid. A comparison to an established commercial system leads to an acceleration factor of approximately 29x or 0.58 versus 16.6 s per beam in single threaded mode. An acceleration factor of 46x has been obtained for the total energy released per mass (TERMA) calculation and a 943x acceleration factor for the CS calculation compared to PlanUNC. Dose distributions also have been obtained for a simple water-lung phantom to verify that the implementation gives accurate results. Conclusions: These results suggest that GPUs are an attractive solution for radiation therapy applications and that careful design, taking the GPU architecture into account, is critical in obtaining significant acceleration factors. These results potentially can have a significant impact on complex dose delivery techniques requiring intensive dose calculations such as intensity-modulated radiation therapy (IMRT) and arc therapy. They also are relevant for adaptive radiation therapy where dose results must be obtained rapidly.

  15. Approaches to reducing photon dose calculation errors near metal implants.

    PubMed

    Huang, Jessie Y; Followill, David S; Howell, Rebecca M; Liu, Xinming; Mirkovic, Dragan; Stingo, Francesco C; Kry, Stephen F

    2016-09-01

    Dose calculation errors near metal implants are caused by limitations of the dose calculation algorithm in modeling tissue/metal interface effects as well as density assignment errors caused by imaging artifacts. The purpose of this study was to investigate two strategies for reducing dose calculation errors near metal implants: implementation of metal-based energy deposition kernels in the convolution/superposition (C/S) dose calculation method and use of metal artifact reduction methods for computed tomography (CT) imaging. Both error reduction strategies were investigated using a simple geometric slab phantom with a rectangular metal insert (composed of titanium or Cerrobend), as well as two anthropomorphic phantoms (one with spinal hardware and one with dental fillings), designed to mimic relevant clinical scenarios. To assess the dosimetric impact of metal kernels, the authors implemented titanium and silver kernels in a commercial collapsed cone C/S algorithm. To assess the impact of CT metal artifact reduction methods, the authors performed dose calculations using baseline imaging techniques (uncorrected 120 kVp imaging) and three commercial metal artifact reduction methods: Philips Healthcare's o-mar, GE Healthcare's monochromatic gemstone spectral imaging (gsi) using dual-energy CT, and gsi with metal artifact reduction software (mars) applied. For the simple geometric phantom, radiochromic film was used to measure dose upstream and downstream of metal inserts. For the anthropomorphic phantoms, ion chambers and radiochromic film were used to quantify the benefit of the error reduction strategies. Metal kernels did not universally improve accuracy but rather resulted in better accuracy upstream of metal implants and decreased accuracy directly downstream. For the clinical cases (spinal hardware and dental fillings), metal kernels had very little impact on the dose calculation accuracy (<1.0%). Of the commercial CT artifact reduction methods investigated

  16. Dose calculation using megavoltage cone-beam CT

    SciTech Connect

    Morin, Olivier . E-mail: Morin@radonc17.ucsf.edu; Chen, Josephine; Aubin, Michele; Gillis, Amy; Aubry, Jean-Francois; Bose, Supratik; Chen Hong; Descovich, Martina; Xia Ping; Pouliot, Jean

    2007-03-15

    Purpose: To demonstrate the feasibility of performing dose calculation on megavoltage cone-beam CT (MVCBCT) of head-and-neck patients in order to track the dosimetric errors produced by anatomic changes. Methods and Materials: A simple geometric model was developed using a head-size water cylinder to correct an observed cupping artifact occurring with MVCBCT. The uniformity-corrected MVCBCT was calibrated for physical density. Beam arrangements and weights from the initial treatment plans defined using the conventional CT were applied to the MVCBCT image, and the dose distribution was recalculated. The dosimetric inaccuracies caused by the cupping artifact were evaluated on the water phantom images. An ideal test patient with no observable anatomic changes and a patient imaged with both CT and MVCBCT before and after considerable weight loss were used to clinically validate MVCBCT for dose calculation and to determine the dosimetric impact of large anatomic changes. Results: The nonuniformity of a head-size water phantom ({approx}30%) causes a dosimetric error of less than 5%. The uniformity correction method developed greatly reduces the cupping artifact, resulting in dosimetric inaccuracies of less than 1%. For the clinical cases, the agreement between the dose distributions calculated using MVCBCT and CT was better than 3% and 3 mm where all tissue was encompassed within the MVCBCT. Dose-volume histograms from the dose calculations on CT and MVCBCT were in excellent agreement. Conclusion: MVCBCT can be used to estimate the dosimetric impact of changing anatomy on several structures in the head-and-neck region.

  17. Absorbed doses behind bones with MR image-based dose calculations for radiotherapy treatment planning.

    PubMed

    Korhonen, Juha; Kapanen, Mika; Keyrilainen, Jani; Seppala, Tiina; Tuomikoski, Laura; Tenhunen, Mikko

    2013-01-01

    Magnetic resonance (MR) images are used increasingly in external radiotherapy target delineation because of their superior soft tissue contrast compared to computed tomography (CT) images. Nevertheless, radiotherapy treatment planning has traditionally been based on the use of CT images, due to the restrictive features of MR images such as lack of electron density information. This research aimed to measure absorbed radiation doses in material behind different bone parts, and to evaluate dose calculation errors in two pseudo-CT images; first, by assuming a single electron density value for the bones, and second, by converting the electron density values inside bones from T(1)∕T(2)∗-weighted MR image intensity values. A dedicated phantom was constructed using fresh deer bones and gelatine. The effect of different bone parts to the absorbed dose behind them was investigated with a single open field at 6 and 15 MV, and measuring clinically detectable dose deviations by an ionization chamber matrix. Dose calculation deviations in a conversion-based pseudo-CT image and in a bulk density pseudo-CT image, where the relative electron density to water for the bones was set as 1.3, were quantified by comparing the calculation results with those obtained in a standard CT image by superposition and Monte Carlo algorithms. The calculations revealed that the applied bulk density pseudo-CT image causes deviations up to 2.7% (6 MV) and 2.0% (15 MV) to the dose behind the examined bones. The corresponding values in the conversion-based pseudo-CT image were 1.3% (6 MV) and 1.0% (15 MV). The examinations illustrated that the representation of the heterogeneous femoral bone (cortex denser compared to core) by using a bulk density for the whole bone causes dose deviations up to 2% both behind the bone edge and the middle part of the bone (diameter <2.5 cm), but in the opposite directions. The measured doses and the calculated ones in the standard CT image were within 0.4% (through

  18. Fast optimization and dose calculation in scanned ion beam therapy

    SciTech Connect

    Hild, S.; Graeff, C.; Trautmann, J.; Kraemer, M.; Zink, K.; Durante, M.; Bert, C.

    2014-07-15

    Purpose: Particle therapy (PT) has advantages over photon irradiation on static tumors. An increased biological effectiveness and active target conformal dose shaping are strong arguments for PT. However, the sensitivity to changes of internal geometry complicates the use of PT for moving organs. In case of interfractionally moving objects adaptive radiotherapy (ART) concepts known from intensity modulated radiotherapy (IMRT) can be adopted for PT treatments. One ART strategy is to optimize a new treatment plan based on daily image data directly before a radiation fraction is delivered [treatment replanning (TRP)]. Optimizing treatment plans for PT using a scanned beam is a time consuming problem especially for particles other than protons where the biological effective dose has to be calculated. For the purpose of TRP, fast optimization and fast dose calculation have been implemented into the GSI in-house treatment planning system (TPS) TRiP98. Methods: This work reports about the outcome of a code analysis that resulted in optimization of the calculation processes as well as implementation of routines supporting parallel execution of the code. To benchmark the new features, the calculation time for therapy treatment planning has been studied. Results: Compared to the original version of the TPS, calculation times for treatment planning (optimization and dose calculation) have been improved by a factor of 10 with code optimization. The parallelization of the TPS resulted in a speedup factor of 12 and 5.5 for the original version and the code optimized version, respectively. Hence the total speedup of the new implementation of the authors' TPS yielded speedup factors up to 55. Conclusions: The improved TPS is capable of completing treatment planning for ion beam therapy of a prostate irradiation considering organs at risk in this has been overseen in the review process. Also see below 6 min.

  19. Fast optimization and dose calculation in scanned ion beam therapy.

    PubMed

    Hild, S; Graeff, C; Trautmann, J; Kraemer, M; Zink, K; Durante, M; Bert, C

    2014-07-01

    Particle therapy (PT) has advantages over photon irradiation on static tumors. An increased biological effectiveness and active target conformal dose shaping are strong arguments for PT. However, the sensitivity to changes of internal geometry complicates the use of PT for moving organs. In case of interfractionally moving objects adaptive radiotherapy (ART) concepts known from intensity modulated radiotherapy (IMRT) can be adopted for PT treatments. One ART strategy is to optimize a new treatment plan based on daily image data directly before a radiation fraction is delivered [treatment replanning (TRP)]. Optimizing treatment plans for PT using a scanned beam is a time consuming problem especially for particles other than protons where the biological effective dose has to be calculated. For the purpose of TRP, fast optimization and fast dose calculation have been implemented into the GSI in-house treatment planning system (TPS) TRiP98. This work reports about the outcome of a code analysis that resulted in optimization of the calculation processes as well as implementation of routines supporting parallel execution of the code. To benchmark the new features, the calculation time for therapy treatment planning has been studied. Compared to the original version of the TPS, calculation times for treatment planning (optimization and dose calculation) have been improved by a factor of 10 with code optimization. The parallelization of the TPS resulted in a speedup factor of 12 and 5.5 for the original version and the code optimized version, respectively. Hence the total speedup of the new implementation of the authors' TPS yielded speedup factors up to 55. The improved TPS is capable of completing treatment planning for ion beam therapy of a prostate irradiation considering organs at risk in this has been overseen in the review process. Also see below 6 min.

  20. Dose Calculation Evolution for Internal Organ Irradiation in Humans

    SciTech Connect

    Jimenez V, Reina A.

    2007-10-26

    The International Commission of Radiation Units (ICRU) has established through the years, a discrimination system regarding the security levels on the prescription and administration of doses in radiation treatments (Radiotherapy, Brach therapy, Nuclear Medicine). The first level is concerned with the prescription and posterior assurance of dose administration to a point of interest (POI), commonly located at the geometrical center of the region to be treated. In this, the effects of radiation around that POI, is not a priority. The second level refers to the dose specifications in a particular plane inside the patient, mostly the middle plane of the lesion. The dose is calculated to all the structures in that plane regardless if they are tumor or healthy tissue. In this case, the dose is not represented by a point value, but by level curves called 'isodoses' as in a topographic map, so you can assure the level of doses to this particular plane, but it also leave with no information about how this values go thru adjacent planes. This is why the third level is referred to the volumetrical description of doses so these isodoses construct now a volume (named 'cloud') that give us better assurance about tissue irradiation around the volume of the lesion and its margin (sub clinical spread or microscopic illness). This work shows how this evolution has resulted, not only in healthy tissue protection improvement but in a rise of tumor control, quality of life, better treatment tolerance and minimum permanent secuelae.

  1. Monte Carlo dose calculations for phantoms with hip prostheses

    NASA Astrophysics Data System (ADS)

    Bazalova, M.; Coolens, C.; Cury, F.; Childs, P.; Beaulieu, L.; Verhaegen, F.

    2008-02-01

    Computed tomography (CT) images of patients with hip prostheses are severely degraded by metal streaking artefacts. The low image quality makes organ contouring more difficult and can result in large dose calculation errors when Monte Carlo (MC) techniques are used. In this work, the extent of streaking artefacts produced by three common hip prosthesis materials (Ti-alloy, stainless steel, and Co-Cr-Mo alloy) was studied. The prostheses were tested in a hypothetical prostate treatment with five 18 MV photon beams. The dose distributions for unilateral and bilateral prosthesis phantoms were calculated with the EGSnrc/DOSXYZnrc MC code. This was done in three phantom geometries: in the exact geometry, in the original CT geometry, and in an artefact-corrected geometry. The artefact-corrected geometry was created using a modified filtered back-projection correction technique. It was found that unilateral prosthesis phantoms do not show large dose calculation errors, as long as the beams miss the artefact-affected volume. This is possible to achieve in the case of unilateral prosthesis phantoms (except for the Co-Cr-Mo prosthesis which gives a 3% error) but not in the case of bilateral prosthesis phantoms. The largest dose discrepancies were obtained for the bilateral Co-Cr-Mo hip prosthesis phantom, up to 11% in some voxels within the prostate. The artefact correction algorithm worked well for all phantoms and resulted in dose calculation errors below 2%. In conclusion, a MC treatment plan should include an artefact correction algorithm when treating patients with hip prostheses.

  2. Monte Carlo calculation of skyshine'' neutron dose from ALS (Advanced Light Source)

    SciTech Connect

    Moin-Vasiri, M.

    1990-06-01

    This report discusses the following topics on skyshine'' neutron dose from ALS: Sources of radiation; ALS modeling for skyshine calculations; MORSE Monte-Carlo; Implementation of MORSE; Results of skyshine calculations from storage ring; and Comparison of MORSE shielding calculations.

  3. Methods of calculating radiation absorbed dose.

    PubMed

    Wegst, A V

    1987-01-01

    The new tumoricidal radioactive agents being developed will require a careful estimate of radiation absorbed tumor and critical organ dose for each patient. Clinical methods will need to be developed using standard imaging or counting instruments to determine cumulated organ activities with tracer amounts before the therapeutic administration of the material. Standard MIRD dosimetry methods can then be applied.

  4. NAC-1 cask dose rate calculations for LWR spent fuel

    SciTech Connect

    CARLSON, A.B.

    1999-02-24

    A Nuclear Assurance Corporation nuclear fuel transport cask, NAC-1, is being considered as a transport and storage option for spent nuclear fuel located in the B-Cell of the 324 Building. The loaded casks will be shipped to the 200 East Area Interim Storage Area for dry interim storage. Several calculations were performed to assess the photon and neutron dose rates. This report describes the analytical methods, models, and results of this investigation.

  5. Verification of the VARSKIN beta skin dose calculation computer code.

    PubMed

    Sherbini, Sami; DeCicco, Joseph; Gray, Anita Turner; Struckmeyer, Richard

    2008-06-01

    The computer code VARSKIN is used extensively to calculate dose to the skin resulting from contaminants on the skin or on protective clothing covering the skin. The code uses six pre-programmed source geometries, four of which are volume sources, and a wide range of user-selectable radionuclides. Some verification of this code had been carried out before the current version of the code, version 3.0, was released, but this was limited in extent and did not include all the source geometries that the code is capable of modeling. This work extends this verification to include all the source geometries that are programmed in the code over a wide range of beta radiation energies and skin depths. Verification was carried out by comparing the doses calculated using VARSKIN with the doses for similar geometries calculated using the Monte Carlo radiation transport code MCNP5. Beta end-point energies used in the calculations ranged from 0.3 MeV up to 2.3 MeV. The results showed excellent agreement between the MCNP and VARSKIN calculations, with the agreement being within a few percent for point and disc sources and within 20% for other sources with the exception of a few cases, mainly at the low end of the beta end-point energies. The accuracy of the VARSKIN results, based on the work in this paper, indicates that it is sufficiently accurate for calculation of skin doses resulting from skin contaminations, and that the uncertainties arising from the use of VARSKIN are likely to be small compared with other uncertainties that typically arise in this type of dose assessment, such as those resulting from a lack of exact information on the size, shape, and density of the contaminant, the depth of the sensitive layer of the skin at the location of the contamination, the duration of the exposure, and the possibility of the source moving over various areas of the skin during the exposure period if the contaminant is on protective clothing.

  6. Accelerated ray tracing for radiotherapy dose calculations on a GPU.

    PubMed

    de Greef, M; Crezee, J; van Eijk, J C; Pool, R; Bel, A

    2009-09-01

    The graphical processing unit (GPU) on modern graphics cards offers the possibility of accelerating arithmetically intensive tasks. By splitting the work into a large number of independent jobs, order-of-magnitude speedups are reported. In this article, the possible speedup of PLATO's ray tracing algorithm for dose calculations using a GPU is investigated. A GPU version of the ray tracing algorithm was implemented using NVIDIA's CUDA, which extends the standard C language with functionality to program graphics cards. The developed algorithm was compared based on the accuracy and speed to a multithreaded version of the PLATO ray tracing algorithm. This comparison was performed for three test geometries, a phantom and two radiotherapy planning CT datasets (a pelvic and a head-and-neck case). For each geometry, four different source positions were evaluated. In addition to this, for the head-and-neck case also a vertex field was evaluated. The GPU algorithm was proven to be more accurate than the PLATO algorithm by elimination of the look-up table for z indices that introduces discretization errors in the reference algorithm. Speedups for ray tracing were found to be in the range of 2.1-10.1, relative to the multithreaded PLATO algorithm running four threads. For dose calculations the speedup measured was in the range of 1.5-6.2. For the speedup of both the ray tracing and the dose calculation, a strong dependency on the tested geometry was found. This dependency is related to the fraction of air within the patient's bounding box resulting in idle threads. With the use of a GPU, ray tracing for dose calculations can be performed accurately in considerably less time. Ray tracing was accelerated, on average, with a factor of 6 for the evaluated cases. Dose calculation for a single beam can typically be carried out in 0.6-0.9 s for clinically realistic datasets. These findings can be used in conventional planning to enable (nearly) real-time dose calculations. Also the

  7. Calculation of intervention doses for the CNGS facility

    NASA Astrophysics Data System (ADS)

    Sentís, M. Lorenzo; Ferrari, A.; Roesler, S.

    2006-06-01

    The purpose of the CNGS (CERN Neutrinos to Gran Sasso) project is to generate at CERN a powerful artificial muon-neutrino beam aimed at the Gran Sasso Laboratory in Italy. There, detectors will detect those neutrinos and try to disentangle those, which on their 730 km trip have changed their flavour. During the operating lifetime of the neutrino beam facility some interventions are required. These maintenance operations have to be planned in advance to define the guidelines of design and operational procedures in order to keep the doses received by personnel As Low As Reasonably Achievable (ALARA-principle). A calculational method developed for the Monte Carlo simulation program FLUKA has been used, which allows one to compute dose equivalent rates from induced radioactivity for different cooling times in the regions of the human intervention. In this paper the method of calculation is described, the results of dose equivalent rate in the areas of interventions are summarized and discussed and finally, these results are applied to estimate doses received by personnel during interventions.

  8. The influence of the dose calculation resolution of VMAT plans on the calculated dose for eye lens and optic pathway.

    PubMed

    Park, Jong Min; Park, So-Yeon; Kim, Jung-In; Carlson, Joel; Kim, Jin Ho

    2017-03-01

    To investigate the effect of dose calculation grid on calculated dose-volumetric parameters for eye lenses and optic pathways. A total of 30 patients treated using the volumetric modulated arc therapy (VMAT) technique, were retrospectively selected. For each patient, dose distributions were calculated with calculation grids ranging from 1 to 5 mm at 1 mm intervals. Identical structures were used for VMAT planning. The changes in dose-volumetric parameters according to the size of the calculation grid were investigated. Compared to dose calculation with 1 mm grid, the maximum doses to the eye lens with calculation grids of 2, 3, 4 and 5 mm increased by 0.2 ± 0.2 Gy, 0.5 ± 0.5 Gy, 0.9 ± 0.8 Gy and 1.7 ± 1.5 Gy on average, respectively. The Spearman's correlation coefficient between dose gradients near structures vs. the differences between the calculated doses with 1 mm grid and those with 5 mm grid, were 0.380 (p < 0.001). For the accurate calculation of dose distributions, as well as efficiency, using a grid size of 2 mm appears to be the most appropriate choice.

  9. Uncertainty Quantification in Internal Dose Calculations for Seven Selected Radiopharmaceuticals.

    PubMed

    Spielmann, Vladimir; Li, Wei Bo; Zankl, Maria; Oeh, Uwe; Hoeschen, Christoph

    2016-01-01

    Dose coefficients of radiopharmaceuticals have been published by the International Commission on Radiological Protection (ICRP) and the MIRD Committee but without information concerning uncertainties. The uncertainty information of dose coefficients is important, for example, to compare alternative diagnostic methods and choose the method that causes the lowest patient exposure with appropriate and comparable diagnostic quality. For the study presented here, an uncertainty analysis method was developed and used to calculate the uncertainty of the internal doses of 7 common radiopharmaceuticals. On the basis of the generalized schema of dose calculation recommended by the ICRP and MIRD Committee, an analysis based on propagation of uncertainty was developed and applied for 7 radiopharmaceuticals. The method takes into account the uncertainties contributed from pharmacokinetic models and the so-called S values derived from several voxel computational phantoms previously developed at Helmholtz Zentrum München. Random and Latin hypercube sampling techniques were used to sample parameters of pharmacokinetic models and S values, and the uncertainties of absorbed doses and effective doses were calculated. The uncertainty factors (square root of the ratio between 97.5th and 2.5th percentiles) for organ-absorbed doses are in the range of 1.1-3.3. Uncertainty values of effective doses are lower in comparison to absorbed doses, the maximum value being approximately 1.4. The ICRP reference values showed a deviation comparable to the effective dose calculated in this study. A general statistical method was developed for calculating the uncertainty of absorbed doses and effective doses for 7 radiopharmaceuticals. The dose uncertainties can be used to further identify the most important parameters in the dose calculation and provide reliable dose coefficients for risk analysis of the patients in nuclear medicine. © 2016 by the Society of Nuclear Medicine and Molecular Imaging

  10. Dose calculation accuracies in whole breast radiotherapy treatment planning: a multi-institutional study.

    PubMed

    Hatanaka, Shogo; Miyabe, Yuki; Tohyama, Naoki; Kumazaki, Yu; Kurooka, Masahiko; Okamoto, Hiroyuki; Tachibana, Hidenobu; Kito, Satoshi; Wakita, Akihisa; Ohotomo, Yuko; Ikagawa, Hiroyuki; Ishikura, Satoshi; Nozaki, Miwako; Kagami, Yoshikazu; Hiraoka, Masahiro; Nishio, Teiji

    2015-07-01

    Our objective in this study was to evaluate the variation in the doses delivered among institutions due to dose calculation inaccuracies in whole breast radiotherapy. We have developed practical procedures for quality assurance (QA) of radiation treatment planning systems. These QA procedures are designed to be performed easily at any institution and to permit comparisons of results across institutions. The dose calculation accuracy was evaluated across seven institutions using various irradiation conditions. In some conditions, there was a >3 % difference between the calculated dose and the measured dose. The dose calculation accuracy differs among institutions because it is dependent on both the dose calculation algorithm and beam modeling. The QA procedures in this study are useful for verifying the accuracy of the dose calculation algorithm and of the beam model before clinical use for whole breast radiotherapy.

  11. DICOM organ dose does not accurately represent calculated dose in mammography

    NASA Astrophysics Data System (ADS)

    Suleiman, Moayyad E.; Brennan, Patrick C.; McEntee, Mark F.

    2016-03-01

    This study aims to analyze the agreement between the mean glandular dose estimated by the mammography unit (organ dose) and mean glandular dose calculated using Dance et al published method (calculated dose). Anonymised digital mammograms from 50 BreastScreen NSW centers were downloaded and exposure information required for the calculation of dose was extracted from the DICOM header along with the organ dose estimated by the system. Data from quality assurance annual tests for the included centers were collected and used to calculate the mean glandular dose for each mammogram. Bland-Altman analysis and a two-tailed paired t-test were used to study the agreement between calculated and organ dose and the significance of any differences. A total of 27,869 dose points from 40 centers were included in the study, mean calculated dose and mean organ dose (+/- standard deviation) were 1.47 (+/-0.66) and 1.38 (+/-0.56) mGy respectively. A statistically significant 0.09 mGy bias (t = 69.25; p<0.0001) with 95% limits of agreement between calculated and organ doses ranging from -0.34 and 0.52 were shown by Bland-Altman analysis, which indicates a small yet highly significant difference between the two means. The use of organ dose for dose audits is done at the risk of over or underestimating the calculated dose, hence, further work is needed to identify the causal agents for differences between organ and calculated doses and to generate a correction factor for organ dose.

  12. Dose calculation for electron therapy using an improved LBR method

    SciTech Connect

    Gebreamlak, Wondesen T.; Alkhatib, Hassaan A.; Tedeschi, David J.

    2013-07-15

    Purpose: To calculate the percentage depth dose (PDD) of any irregularly shaped electron beam using a modified lateral build-up ratio (LBR) method.Methods: Percentage depth dose curves were measured using 6, 9, 12, and 15 MeV electron beam energies for applicator cone sizes of 6 Multiplication-Sign 6, 10 Multiplication-Sign 10, 14 Multiplication-Sign 14, and 20 Multiplication-Sign 20 cm{sup 2}. Circular cutouts for each cone were prepared from 2.0 cm diameter to the maximum possible size for each cone. In addition, three irregular cutouts were prepared.Results: The LBR for each circular cutout was calculated from the measured PDD curve using the open field of the 14 Multiplication-Sign 14 cm{sup 2} cone as the reference field. Using the LBR values and the radius of the circular cutouts, the corresponding lateral spread parameter [{sigma}{sub R}(z)] of the electron shower was calculated. Unlike the commonly accepted assumption that {sigma}{sub R}(z) is independent of cutout size, it is shown that its value increases linearly with circular cutout size (R). Using this characteristic of the lateral spread parameter, the PDD curves of irregularly shaped cutouts were calculated. Finally, the calculated PDD curves were compared with measured PDD curves.Conclusions: In this research, it is shown that the lateral spread parameter {sigma}{sub R}(z) increases with cutout size. For radii of circular cutout sizes up to the equilibrium range of the electron beam, the increase of {sigma}{sub R}(z) with the cutout size is linear. The percentage difference of the calculated PDD curve from the measured PDD data for irregularly shaped cutouts was under 1.0% in the region between the surface and therapeutic range of the electron beam. Similar results were obtained for four electron beam energies (6, 9, 12, and 15 MeV)

  13. Dose calculation software for helical tomotherapy, utilizing patient CT data to calculate an independent three-dimensional dose cube

    SciTech Connect

    Thomas, Simon J.; Eyre, Katie R.; Tudor, G. Samuel J.; Fairfoul, Jamie

    2012-01-15

    Purpose: Treatment plans for the TomoTherapy unit are produced with a planning system that is integral to the unit. The authors have produced an independent dose calculation system, to enable plans to be recalculated in three dimensions, using the patient's CT data. Methods: Software has been written using MATLAB. The DICOM-RT plan object is used to determine the treatment parameters used, including the treatment sinogram. Each projection of the sinogram is segmented and used to calculate dose at multiple calculation points in a three-dimensional grid using tables of measured beam data. A fast ray-trace algorithm is used to determine effective depth for each projection angle at each calculation point. Calculations were performed on a standard desktop personal computer, with a 2.6 GHz Pentium, running Windows XP. Results: The time to perform a calculation, for 3375 points averaged 1 min 23 s for prostate plans and 3 min 40 s for head and neck plans. The mean dose within the 50% isodose was calculated and compared with the predictions of the TomoTherapy planning system. When the modified CT (which includes the TomoTherapy couch) was used, the mean difference for ten prostate patients, was -0.4% (range -0.9% to +0.3%). With the original CT (which included the CT couch), the mean difference was -1.0% (range -1.7% to 0.0%). The number of points agreeing with a gamma 3%/3 mm averaged 99.2% with the modified CT, 96.3% with the original CT. For ten head and neck patients, for the modified and original CT, respectively, the mean difference was +1.1% (range -0.4% to +3.1%) and 1.1% (range -0.4% to +3.0%) with 94.4% and 95.4% passing a gamma 4%/4 mm. The ability of the program to detect a variety of simulated errors has been tested. Conclusions: By using the patient's CT data, the independent dose calculation performs checks that are not performed by a measurement in a cylindrical phantom. This enables it to be used either as an additional check or to replace phantom

  14. Clinical implementation and evaluation of the Acuros dose calculation algorithm.

    PubMed

    Yan, Chenyu; Combine, Anthony G; Bednarz, Greg; Lalonde, Ronald J; Hu, Bin; Dickens, Kathy; Wynn, Raymond; Pavord, Daniel C; Saiful Huq, M

    2017-09-01

    The main aim of this study is to validate the Acuros XB dose calculation algorithm for a Varian Clinac iX linac in our clinics, and subsequently compare it with the wildely used AAA algorithm. The source models for both Acuros XB and AAA were configured by importing the same measured beam data into Eclipse treatment planning system. Both algorithms were validated by comparing calculated dose with measured dose on a homogeneous water phantom for field sizes ranging from 6 cm × 6 cm to 40 cm × 40 cm. Central axis and off-axis points with different depths were chosen for the comparison. In addition, the accuracy of Acuros was evaluated for wedge fields with wedge angles from 15 to 60°. Similarly, variable field sizes for an inhomogeneous phantom were chosen to validate the Acuros algorithm. In addition, doses calculated by Acuros and AAA at the center of lung equivalent tissue from three different VMAT plans were compared to the ion chamber measured doses in QUASAR phantom, and the calculated dose distributions by the two algorithms and their differences on patients were compared. Computation time on VMAT plans was also evaluated for Acuros and AAA. Differences between dose-to-water (calculated by AAA and Acuros XB) and dose-to-medium (calculated by Acuros XB) on patient plans were compared and evaluated. For open 6 MV photon beams on the homogeneous water phantom, both Acuros XB and AAA calculations were within 1% of measurements. For 23 MV photon beams, the calculated doses were within 1.5% of measured doses for Acuros XB and 2% for AAA. Testing on the inhomogeneous phantom demonstrated that AAA overestimated doses by up to 8.96% at a point close to lung/solid water interface, while Acuros XB reduced that to 1.64%. The test on QUASAR phantom showed that Acuros achieved better agreement in lung equivalent tissue while AAA underestimated dose for all VMAT plans by up to 2.7%. Acuros XB computation time was about three times faster than AAA for VMAT plans, and

  15. Source term calculations for assessing radiation dose to equipment

    SciTech Connect

    Denning, R.S.; Freeman-Kelly, R.; Cybulskis, P.; Curtis, L.A.

    1989-07-01

    This study examines results of analyses performed with the Source Term Code Package to develop updated source terms using NUREG-0956 methods. The updated source terms are to be used to assess the adequacy of current regulatory source terms used as the basis for equipment qualification. Time-dependent locational distributions of radionuclides within a containment following a severe accident have been developed. The Surry reactor has been selected in this study as representative of PWR containment designs. Similarly, the Peach Bottom reactor has been used to examine radionuclide distributions in boiling water reactors. The time-dependent inventory of each key radionuclide is provided in terms of its activity in curies. The data are to be used by Sandia National Laboratories to perform shielding analyses to estimate radiation dose to equipment in each containment design. See NUREG/CR-5175, Beta and Gamma Dose Calculations for PWR and BWR Containments.'' 6 refs., 11 tabs.

  16. Implementation of spot scanning dose optimization and dose calculation for helium ions in Hyperion

    SciTech Connect

    Fuchs, Hermann; Schreiner, Thomas; Georg, Dietmar

    2015-09-15

    Purpose: Helium ions ({sup 4}He) may supplement current particle beam therapy strategies as they possess advantages in physical dose distribution over protons. To assess potential clinical advantages, a dose calculation module accounting for relative biological effectiveness (RBE) was developed and integrated into the treatment planning system Hyperion. Methods: Current knowledge on RBE of {sup 4}He together with linear energy transfer considerations motivated an empirical depth-dependent “zonal” RBE model. In the plateau region, a RBE of 1.0 was assumed, followed by an increasing RBE up to 2.8 at the Bragg-peak region, which was then kept constant over the fragmentation tail. To account for a variable proton RBE, the same model concept was also applied to protons with a maximum RBE of 1.6. Both RBE models were added to a previously developed pencil beam algorithm for physical dose calculation and included into the treatment planning system Hyperion. The implementation was validated against Monte Carlo simulations within a water phantom using γ-index evaluation. The potential benefits of {sup 4}He based treatment plans were explored in a preliminary treatment planning comparison (against protons) for four treatment sites, i.e., a prostate, a base-of-skull, a pediatric, and a head-and-neck tumor case. Separate treatment plans taking into account physical dose calculation only or using biological modeling were created for protons and {sup 4}He. Results: Comparison of Monte Carlo and Hyperion calculated doses resulted in a γ{sub mean} of 0.3, with 3.4% of the values above 1 and γ{sub 1%} of 1.5 and better. Treatment plan evaluation showed comparable planning target volume coverage for both particles, with slightly increased coverage for {sup 4}He. Organ at risk (OAR) doses were generally reduced using {sup 4}He, some by more than to 30%. Improvements of {sup 4}He over protons were more pronounced for treatment plans taking biological effects into account. All

  17. Photon beam description in PEREGRINE for Monte Carlo dose calculations

    SciTech Connect

    Cox, L. J., LLNL

    1997-03-04

    Goal of PEREGRINE is to provide capability for accurate, fast Monte Carlo calculation of radiation therapy dose distributions for routine clinical use and for research into efficacy of improved dose calculation. An accurate, efficient method of describing and sampling radiation sources is needed, and a simple, flexible solution is provided. The teletherapy source package for PEREGRINE, coupled with state-of-the-art Monte Carlo simulations of treatment heads, makes it possible to describe any teletherapy photon beam to the precision needed for highly accurate Monte Carlo dose calculations in complex clinical configurations that use standard patient modifiers such as collimator jaws, wedges, blocks, and/or multi-leaf collimators. Generic beam descriptions for a class of treatment machines can readily be adjusted to yield dose calculation to match specific clinical sites.

  18. [CUDA-based fast dose calculation in radiotherapy].

    PubMed

    Wang, Xianliang; Liu, Cao; Hou, Qing

    2011-10-01

    Dose calculation plays a key role in treatment planning of radiotherapy. Algorithms for dose calculation require high accuracy and computational efficiency. Finite size pencil beam (FSPB) algorithm is a method commonly adopted in the treatment planning system for radiotherapy. However, improvement on its computational efficiency is still desirable for such purpose as real time treatment planning. In this paper, we present an implementation of the FSPB, by which the most time-consuming parts in the algorithm are parallelized and ported on graphic processing unit (GPU). Compared with the FSPB completely running on central processing unit (CPU), the GPU-implemented FSPB can speed up the dose calculation for 25-35 times on a low price GPU (Geforce GT320) and for 55-100 times on a Tesla C1060, indicating that the GPU-implemented FSPB can provide fast enough dose calculations for real-time treatment planning.

  19. Implementation of spot scanning dose optimization and dose calculation for helium ions in Hyperion.

    PubMed

    Fuchs, Hermann; Alber, Markus; Schreiner, Thomas; Georg, Dietmar

    2015-09-01

    Helium ions ((4)He) may supplement current particle beam therapy strategies as they possess advantages in physical dose distribution over protons. To assess potential clinical advantages, a dose calculation module accounting for relative biological effectiveness (RBE) was developed and integrated into the treatment planning system Hyperion. Current knowledge on RBE of (4)He together with linear energy transfer considerations motivated an empirical depth-dependent "zonal" RBE model. In the plateau region, a RBE of 1.0 was assumed, followed by an increasing RBE up to 2.8 at the Bragg-peak region, which was then kept constant over the fragmentation tail. To account for a variable proton RBE, the same model concept was also applied to protons with a maximum RBE of 1.6. Both RBE models were added to a previously developed pencil beam algorithm for physical dose calculation and included into the treatment planning system Hyperion. The implementation was validated against Monte Carlo simulations within a water phantom using γ-index evaluation. The potential benefits of (4)He based treatment plans were explored in a preliminary treatment planning comparison (against protons) for four treatment sites, i.e., a prostate, a base-of-skull, a pediatric, and a head-and-neck tumor case. Separate treatment plans taking into account physical dose calculation only or using biological modeling were created for protons and (4)He. Comparison of Monte Carlo and Hyperion calculated doses resulted in a γ mean of 0.3, with 3.4% of the values above 1 and γ 1% of 1.5 and better. Treatment plan evaluation showed comparable planning target volume coverage for both particles, with slightly increased coverage for (4)He. Organ at risk (OAR) doses were generally reduced using (4)He, some by more than to 30%. Improvements of (4)He over protons were more pronounced for treatment plans taking biological effects into account. All OAR doses were within tolerances specified in the QUANTEC report. The

  20. Optimization of Monte Carlo dose calculations: The interface problem

    NASA Astrophysics Data System (ADS)

    Soudentas, Edward

    1998-05-01

    High energy photon beams are widely used for radiation treatment of deep-seated tumors. The human body contains many types of interfaces between dissimilar materials that affect dose distribution in radiation therapy. Experimentally, significant radiation dose perturbations has been observed at such interfaces. The EGS4 Monte Carlo code was used to calculate dose perturbations at boundaries between dissimilar materials (such as bone/water) for 60Co and 6 MeV linear accelerator beams using a UNIX workstation. A simple test of the reliability of a random number generator was also developed. A systematic study of the adjustable parameters in EGS4 was performed in order to minimize calculational artifacts at boundaries. Calculations of dose perturbations at boundaries between different materials showed that there is a 12% increase in dose at water/bone interface, and a 44% increase in dose at water/copper interface. with the increase mainly due to electrons produced in water and backscattered from the high atomic number material. The dependence of the dose increase on the atomic number was also investigated. The clinically important case of using two parallel opposed beams for radiation therapy was investigated where increased doses at boundaries has been observed. The Monte Carlo calculations can provide accurate dosimetry data under conditions of electronic non-equilibrium at tissue interfaces.

  1. Verification of calculated skin doses in postmastectomy helical tomotherapy.

    PubMed

    Ito, Shima; Parker, Brent C; Levine, Renee; Sanders, Mary Ella; Fontenot, Jonas; Gibbons, John; Hogstrom, Kenneth

    2011-10-01

    To verify the accuracy of calculated skin doses in helical tomotherapy for postmastectomy radiation therapy (PMRT). In vivo thermoluminescent dosimeters (TLDs) were used to measure the skin dose at multiple points in each of 14 patients throughout the course of treatment on a TomoTherapy Hi·Art II system, for a total of 420 TLD measurements. Five patients were evaluated near the location of the mastectomy scar, whereas 9 patients were evaluated throughout the treatment volume. The measured dose at each location was compared with calculations from the treatment planning system. The mean difference and standard error of the mean difference between measurement and calculation for the scar measurements was -1.8% ± 0.2% (standard deviation [SD], 4.3%; range, -11.1% to 10.6%). The mean difference and standard error of the mean difference between measurement and calculation for measurements throughout the treatment volume was -3.0% ± 0.4% (SD, 4.7%; range, -18.4% to 12.6%). The mean difference and standard error of the mean difference between measurement and calculation for all measurements was -2.1% ± 0.2% (standard deviation, 4.5%: range, -18.4% to 12.6%). The mean difference between measured and calculated TLD doses was statistically significant at two standard deviations of the mean, but was not clinically significant (i.e., was <5%). However, 23% of the measured TLD doses differed from the calculated TLD doses by more than 5%. The mean of the measured TLD doses agreed with TomoTherapy calculated TLD doses within our clinical criterion of 5%. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Validation of GPU based TomoTherapy dose calculation engine.

    PubMed

    Chen, Quan; Lu, Weiguo; Chen, Yu; Chen, Mingli; Henderson, Douglas; Sterpin, Edmond

    2012-04-01

    The graphic processing unit (GPU) based TomoTherapy convolution/superposition(C/S) dose engine (GPU dose engine) achieves a dramatic performance improvement over the traditional CPU-cluster based TomoTherapy dose engine (CPU dose engine). Besides the architecture difference between the GPU and CPU, there are several algorithm changes from the CPU dose engine to the GPU dose engine. These changes made the GPU dose slightly different from the CPU-cluster dose. In order for the commercial release of the GPU dose engine, its accuracy has to be validated. Thirty eight TomoTherapy phantom plans and 19 patient plans were calculated with both dose engines to evaluate the equivalency between the two dose engines. Gamma indices (Γ) were used for the equivalency evaluation. The GPU dose was further verified with the absolute point dose measurement with ion chamber and film measurements for phantom plans. Monte Carlo calculation was used as a reference for both dose engines in the accuracy evaluation in heterogeneous phantom and actual patients. The GPU dose engine showed excellent agreement with the current CPU dose engine. The majority of cases had over 99.99% of voxels with Γ(1%, 1 mm) < 1. The worst case observed in the phantom had 0.22% voxels violating the criterion. In patient cases, the worst percentage of voxels violating the criterion was 0.57%. For absolute point dose verification, all cases agreed with measurement to within ±3% with average error magnitude within 1%. All cases passed the acceptance criterion that more than 95% of the pixels have Γ(3%, 3 mm) < 1 in film measurement, and the average passing pixel percentage is 98.5%-99%. The GPU dose engine also showed similar degree of accuracy in heterogeneous media as the current TomoTherapy dose engine. It is verified and validated that the ultrafast TomoTherapy GPU dose engine can safely replace the existing TomoTherapy cluster based dose engine without degradation in dose accuracy.

  3. Monte Carlo calculation of patient organ doses from computed tomography.

    PubMed

    Oono, Takeshi; Araki, Fujio; Tsuduki, Shoya; Kawasaki, Keiichi

    2014-01-01

    In this study, we aimed to evaluate quantitatively the patient organ dose from computed tomography (CT) using Monte Carlo calculations. A multidetector CT unit (Aquilion 16, TOSHIBA Medical Systems) was modeled with the GMctdospp (IMPS, Germany) software based on the EGSnrc Monte Carlo code. The X-ray spectrum and the configuration of the bowtie filter for the Monte Carlo modeling were determined from the chamber measurements for the half-value layer (HVL) of aluminum and the dose profile (off-center ratio, OCR) in air. The calculated HVL and OCR were compared with measured values for body irradiation with 120 kVp. The Monte Carlo-calculated patient dose distribution was converted to the absorbed dose measured by a Farmer chamber with a (60)Co calibration factor at the center of a CT water phantom. The patient dose was evaluated from dose-volume histograms for the internal organs in the pelvis. The calculated Al HVL was in agreement within 0.3% with the measured value of 5.2 mm. The calculated dose profile in air matched the measured value within 5% in a range of 15 cm from the central axis. The mean doses for soft tissues were 23.5, 23.8, and 27.9 mGy for the prostate, rectum, and bladder, respectively, under exposure conditions of 120 kVp, 200 mA, a beam pitch of 0.938, and beam collimation of 32 mm. For bones of the femur and pelvis, the mean doses were 56.1 and 63.6 mGy, respectively. The doses for bone increased by up to 2-3 times that of soft tissue, corresponding to the ratio of their mass-energy absorption coefficients.

  4. Dose equivalent rate constants and barrier transmission data for nuclear medicine facility dose calculations and shielding design.

    PubMed

    Kusano, Maggie; Caldwell, Curtis B

    2014-07-01

    A primary goal of nuclear medicine facility design is to keep public and worker radiation doses As Low As Reasonably Achievable (ALARA). To estimate dose and shielding requirements, one needs to know both the dose equivalent rate constants for soft tissue and barrier transmission factors (TFs) for all radionuclides of interest. Dose equivalent rate constants are most commonly calculated using published air kerma or exposure rate constants, while transmission factors are most commonly calculated using published tenth-value layers (TVLs). Values can be calculated more accurately using the radionuclide's photon emission spectrum and the physical properties of lead, concrete, and/or tissue at these energies. These calculations may be non-trivial due to the polyenergetic nature of the radionuclides used in nuclear medicine. In this paper, the effects of dose equivalent rate constant and transmission factor on nuclear medicine dose and shielding calculations are investigated, and new values based on up-to-date nuclear data and thresholds specific to nuclear medicine are proposed. To facilitate practical use, transmission curves were fitted to the three-parameter Archer equation. Finally, the results of this work were applied to the design of a sample nuclear medicine facility and compared to doses calculated using common methods to investigate the effects of these values on dose estimates and shielding decisions. Dose equivalent rate constants generally agreed well with those derived from the literature with the exception of those from NCRP 124. Depending on the situation, Archer fit TFs could be significantly more accurate than TVL-based TFs. These results were reflected in the sample shielding problem, with unshielded dose estimates agreeing well, with the exception of those based on NCRP 124, and Archer fit TFs providing a more accurate alternative to TVL TFs and a simpler alternative to full spectral-based calculations. The data provided by this paper should assist

  5. Dose-Response Calculator for ArcGIS

    USGS Publications Warehouse

    Hanser, Steven E.; Aldridge, Cameron L.; Leu, Matthias; Nielsen, Scott E.

    2011-01-01

    The Dose-Response Calculator for ArcGIS is a tool that extends the Environmental Systems Research Institute (ESRI) ArcGIS 10 Desktop application to aid with the visualization of relationships between two raster GIS datasets. A dose-response curve is a line graph commonly used in medical research to examine the effects of different dosage rates of a drug or chemical (for example, carcinogen) on an outcome of interest (for example, cell mutations) (Russell and others, 1982). Dose-response curves have recently been used in ecological studies to examine the influence of an explanatory dose variable (for example, percentage of habitat cover, distance to disturbance) on a predicted response (for example, survival, probability of occurrence, abundance) (Aldridge and others, 2008). These dose curves have been created by calculating the predicted response value from a statistical model at different levels of the explanatory dose variable while holding values of other explanatory variables constant. Curves (plots) developed using the Dose-Response Calculator overcome the need to hold variables constant by using values extracted from the predicted response surface of a spatially explicit statistical model fit in a GIS, which include the variation of all explanatory variables, to visualize the univariate response to the dose variable. Application of the Dose-Response Calculator can be extended beyond the assessment of statistical model predictions and may be used to visualize the relationship between any two raster GIS datasets (see example in tool instructions). This tool generates tabular data for use in further exploration of dose-response relationships and a graph of the dose-response curve.

  6. [The methodology development of the calculating and empirical internal dose assessments at far post Chernobyl period].

    PubMed

    Vlasova, N G; Zhuchenko, Iu M; Chunikhin, L A

    2009-01-01

    The comparison analysis of internal dose assessment had been conducted by different calculated methods. The results of the WBC measurements were used as a criteria of internal dose assessment. It was shown that the methodology of the internal dose assessment intended uncertainties reducing of the received results. It is realized by means of the modern WBC modeling.

  7. Limitations of the TG-43 formalism for skin high-dose-rate brachytherapy dose calculations

    SciTech Connect

    Granero, Domingo; Perez-Calatayud, Jose; Vijande, Javier; Ballester, Facundo; Rivard, Mark J.

    2014-02-15

    Purpose: In skin high-dose-rate (HDR) brachytherapy, sources are located outside, in contact with, or implanted at some depth below the skin surface. Most treatment planning systems use the TG-43 formalism, which is based on single-source dose superposition within an infinite water medium without accounting for the true geometry in which conditions for scattered radiation are altered by the presence of air. The purpose of this study is to evaluate the dosimetric limitations of the TG-43 formalism in HDR skin brachytherapy and the potential clinical impact. Methods: Dose rate distributions of typical configurations used in skin brachytherapy were obtained: a 5 cm × 5 cm superficial mould; a source inside a catheter located at the skin surface with and without backscatter bolus; and a typical interstitial implant consisting of an HDR source in a catheter located at a depth of 0.5 cm. Commercially available HDR{sup 60}Co and {sup 192}Ir sources and a hypothetical {sup 169}Yb source were considered. The Geant4 Monte Carlo radiation transport code was used to estimate dose rate distributions for the configurations considered. These results were then compared to those obtained with the TG-43 dose calculation formalism. In particular, the influence of adding bolus material over the implant was studied. Results: For a 5 cm × 5 cm{sup 192}Ir superficial mould and 0.5 cm prescription depth, dose differences in comparison to the TG-43 method were about −3%. When the source was positioned at the skin surface, dose differences were smaller than −1% for {sup 60}Co and {sup 192}Ir, yet −3% for {sup 169}Yb. For the interstitial implant, dose differences at the skin surface were −7% for {sup 60}Co, −0.6% for {sup 192}Ir, and −2.5% for {sup 169}Yb. Conclusions: This study indicates the following: (i) for the superficial mould, no bolus is needed; (ii) when the source is in contact with the skin surface, no bolus is needed for either {sup 60}Co and {sup 192}Ir. For

  8. Limitations of the TG-43 formalism for skin high-dose-rate brachytherapy dose calculations

    SciTech Connect

    Granero, Domingo; Perez-Calatayud, Jose; Vijande, Javier; Ballester, Facundo; Rivard, Mark J.

    2014-02-15

    Purpose: In skin high-dose-rate (HDR) brachytherapy, sources are located outside, in contact with, or implanted at some depth below the skin surface. Most treatment planning systems use the TG-43 formalism, which is based on single-source dose superposition within an infinite water medium without accounting for the true geometry in which conditions for scattered radiation are altered by the presence of air. The purpose of this study is to evaluate the dosimetric limitations of the TG-43 formalism in HDR skin brachytherapy and the potential clinical impact. Methods: Dose rate distributions of typical configurations used in skin brachytherapy were obtained: a 5 cm × 5 cm superficial mould; a source inside a catheter located at the skin surface with and without backscatter bolus; and a typical interstitial implant consisting of an HDR source in a catheter located at a depth of 0.5 cm. Commercially available HDR{sup 60}Co and {sup 192}Ir sources and a hypothetical {sup 169}Yb source were considered. The Geant4 Monte Carlo radiation transport code was used to estimate dose rate distributions for the configurations considered. These results were then compared to those obtained with the TG-43 dose calculation formalism. In particular, the influence of adding bolus material over the implant was studied. Results: For a 5 cm × 5 cm{sup 192}Ir superficial mould and 0.5 cm prescription depth, dose differences in comparison to the TG-43 method were about −3%. When the source was positioned at the skin surface, dose differences were smaller than −1% for {sup 60}Co and {sup 192}Ir, yet −3% for {sup 169}Yb. For the interstitial implant, dose differences at the skin surface were −7% for {sup 60}Co, −0.6% for {sup 192}Ir, and −2.5% for {sup 169}Yb. Conclusions: This study indicates the following: (i) for the superficial mould, no bolus is needed; (ii) when the source is in contact with the skin surface, no bolus is needed for either {sup 60}Co and {sup 192}Ir. For

  9. Georgia fishery study: implications for dose calculations. Revision 1

    SciTech Connect

    Turcotte, M.D.S.

    1983-08-05

    Fish consumption will contribute a major portion of the estimated individual and population doses from L-Reactor liquid releases and Cs-137 remobilization in Steel Creek. It is therefore important that the values for fish consumption used in dose calculations be as realistic as possible. Since publication of the L-Reactor Environmental Information Document (EID), data have become available on sport fishing in the Savannah River. These data provide SRP with a site-specific sport fish harvest and consumption values for use in dose calculations. The Georgia fishery data support the total population fish consumption and calculated dose reported in the EID. The data indicate, however, that both the EID average and maximum individual fish consumption have been underestimated, although each to a different degree. The average fish consumption value used in the EID is approximately 3% below the lower limit of the fish consumption range calculated using the Georgia data. Maximum fish consumption in the EID has been underestimated by approximately 60%, and doses to the maximum individual should also be recalculated. Future dose calculations should utilize an average adult fish consumption value of 11.3 kg/yr, and a maximum adult fish consumption value of 34 kg/yr. Consumption values for the teen and child age groups should be increased proportionally: (1) teen average = 8.5; maximum = 25.9 kg/yr; and (2) child average = 3.6; maximum = 11.2 kg/yr. 8 refs.

  10. Dose calculation and in-phantom measurement in BNCT using response matrix method.

    PubMed

    Rahmani, Faezeh; Shahriari, Majid

    2011-12-01

    In-phantom measurement of physical dose distribution is very important for Boron Neutron Capture Therapy (BNCT) planning validation. If any changes take place in therapeutic neutron beam due to the beam shaping assembly (BSA) change, the dose will be changed so another group of simulations should be carried out for dose calculation. To avoid this time consuming procedure and speed up the dose calculation to help patients not wait for a long time, response matrix method was used. This procedure was performed for neutron beam of the optimized BSA as a reference beam. These calculations were carried out using the MCNPX, Monte Carlo code. The calculated beam parameters were measured for a SNYDER head phantom placed 10 cm away from beam the exit of the BSA. The head phantom can be assumed as a linear system and neutron beam and dose distribution can be assumed as an input and a response of this system (head phantom), respectively. Neutron spectrum energy was digitized into 27 groups. Dose response of each group was calculated. Summation of these dose responses is equal to a total dose of the whole neutron/gamma spectrum. Response matrix is the double dimension matrix (energy/dose) in which each parameter represents a depth-dose resulted from specific energy. If the spectrum is changed, response of each energy group may be differed. By considering response matrix and energy vector, dose response can be calculated. This method was tested for some BSA, and calculations show statistical errors less than 10%.

  11. Emergency Doses (ED) - Revision 3: A calculator code for environmental dose computations

    SciTech Connect

    Rittmann, P.D.

    1990-12-01

    The calculator program ED (Emergency Doses) was developed from several HP-41CV calculator programs documented in the report Seven Health Physics Calculator Programs for the HP-41CV, RHO-HS-ST-5P (Rittman 1984). The program was developed to enable estimates of offsite impacts more rapidly and reliably than was possible with the software available for emergency response at that time. The ED - Revision 3, documented in this report, revises the inhalation dose model to match that of ICRP 30, and adds the simple estimates for air concentration downwind from a chemical release. In addition, the method for calculating the Pasquill dispersion parameters was revised to match the GENII code within the limitations of a hand-held calculator (e.g., plume rise and building wake effects are not included). The summary report generator for printed output, which had been present in the code from the original version, was eliminated in Revision 3 to make room for the dispersion model, the chemical release portion, and the methods of looping back to an input menu until there is no further no change. This program runs on the Hewlett-Packard programmable calculators known as the HP-41CV and the HP-41CX. The documentation for ED - Revision 3 includes a guide for users, sample problems, detailed verification tests and results, model descriptions, code description (with program listing), and independent peer review. This software is intended to be used by individuals with some training in the use of air transport models. There are some user inputs that require intelligent application of the model to the actual conditions of the accident. The results calculated using ED - Revision 3 are only correct to the extent allowed by the mathematical models. 9 refs., 36 tabs.

  12. Calculation and prescription of dose for total body irradiation

    SciTech Connect

    Galvin, J.M.

    1983-12-01

    The use of large total body fields creates a unique set of problems that stress the accuracy of techniques routinely used for dose calculation. This paper discusses an approach suggested by the Children's Cancer Study Group (CCSG) for both prescribing the total body irradiation (TBI) dose and calculating the beam-on time or meter set needed to deliver it. It is aimed at guaranteeing the accuracy of the calculation, while at the same time ensuring a high degree of compliance for various CCSG protocols using TBI. Data supporting the various CCSG recommendations are presented.

  13. Kilovoltage beam Monte Carlo dose calculations in submillimeter voxels for small animal radiotherapy

    SciTech Connect

    Bazalova, Magdalena; Zhou, Hu; Keall, Paul J.; Graves, Edward E.

    2009-11-15

    Purpose: Small animal conformal radiotherapy (RT) is essential for preclinical cancer research studies and therefore various microRT systems have been recently designed. The aim of this paper is to efficiently calculate the dose delivered using our microRT system based on a microCT scanner with the Monte Carlo (MC) method and to compare the MC calculations to film measurements. Methods: Doses from 2-30 mm diameter 120 kVp photon beams deposited in a solid water phantom with 0.2x0.2x0.2 mm{sup 3} voxels are calculated using the latest versions of the EGSnrc codes BEAMNRC and DOSXYZNRC. Two dose calculation approaches are studied: a two-step approach using phase-space files and direct dose calculation with BEAMNRC simulation sources. Due to the small beam size and submillimeter voxel size resulting in long calculation times, variance reduction techniques are studied. The optimum bremsstrahlung splitting number (NBRSPL in BEAMNRC) and the optimum DOSXYZNRC photon splitting (N{sub split}) number are examined for both calculation approaches and various beam sizes. The dose calculation efficiencies and the required number of histories to achieve 1% statistical uncertainty--with no particle recycling--are evaluated for 2-30 mm beams. As a final step, film dose measurements are compared to MC calculated dose distributions. Results: The optimum NBRSPL is approximately 1x10{sup 6} for both dose calculation approaches. For the dose calculations with phase-space files, N{sub split} varies only slightly for 2-30 mm beams and is established to be 300. N{sub split} for the DOSXYZNRC calculation with the BEAMNRC source ranges from 300 for the 30 mm beam to 4000 for the 2 mm beam. The calculation time significantly increases for small beam sizes when the BEAMNRC simulation source is used compared to the simulations with phase-space files. For the 2 and 30 mm beams, the dose calculations with phase-space files are more efficient than the dose calculations with BEAMNRC sources by

  14. Calculation of total effective dose equivalent and collective dose in the event of a LOCA in Bushehr Nuclear Power Plant.

    PubMed

    Raisali, G; Davilu, H; Haghighishad, A; Khodadadi, R; Sabet, M

    2006-01-01

    In this research, total effective dose equivalent (TEDE) and collective dose (CD) are calculated for the most adverse potential accident in Bushehr Nuclear Power Plant from the viewpoint of radionuclides release to the environment. Calculations are performed using a Gaussian diffusion model and a slightly modified version of AIREM computer code to adopt for conditions in Bushehr. The results are comparable with the final safety analysis report which used DOZAM code. Results of our calculations show no excessive dose in populated regions. Maximum TEDE is determined to be in the WSW direction. CD in the area around the nuclear power plant by a distance of 30 km (138 man Sv) is far below the accepted limits. Thyroid equivalent dose is also calculated for the WSW direction (maximum 25.6 mSv) and is below the limits at various distances from the reactor stack.

  15. SU-E-T-374: Evaluation and Verification of Dose Calculation Accuracy with Different Dose Grid Sizes for Intracranial Stereotactic Radiosurgery

    SciTech Connect

    Han, C; Schultheiss, T

    2015-06-15

    Purpose: In this study, we aim to evaluate the effect of dose grid size on the accuracy of calculated dose for small lesions in intracranial stereotactic radiosurgery (SRS), and to verify dose calculation accuracy with radiochromic film dosimetry. Methods: 15 intracranial lesions from previous SRS patients were retrospectively selected for this study. The planning target volume (PTV) ranged from 0.17 to 2.3 cm{sup 3}. A commercial treatment planning system was used to generate SRS plans using the volumetric modulated arc therapy (VMAT) technique using two arc fields. Two convolution-superposition-based dose calculation algorithms (Anisotropic Analytical Algorithm and Acuros XB algorithm) were used to calculate volume dose distribution with dose grid size ranging from 1 mm to 3 mm with 0.5 mm step size. First, while the plan monitor units (MU) were kept constant, PTV dose variations were analyzed. Second, with 95% of the PTV covered by the prescription dose, variations of the plan MUs as a function of dose grid size were analyzed. Radiochomic films were used to compare the delivered dose and profile with the calculated dose distribution with different dose grid sizes. Results: The dose to the PTV, in terms of the mean dose, maximum, and minimum dose, showed steady decrease with increasing dose grid size using both algorithms. With 95% of the PTV covered by the prescription dose, the total MU increased with increasing dose grid size in most of the plans. Radiochromic film measurements showed better agreement with dose distributions calculated with 1-mm dose grid size. Conclusion: Dose grid size has significant impact on calculated dose distribution in intracranial SRS treatment planning with small target volumes. Using the default dose grid size could lead to under-estimation of delivered dose. A small dose grid size should be used to ensure calculation accuracy and agreement with QA measurements.

  16. Impact of dose calculation algorithm on radiation therapy

    PubMed Central

    Chen, Wen-Zhou; Xiao, Ying; Li, Jun

    2014-01-01

    The quality of radiation therapy depends on the ability to maximize the tumor control probability while minimize the normal tissue complication probability. Both of these two quantities are directly related to the accuracy of dose distributions calculated by treatment planning systems. The commonly used dose calculation algorithms in the treatment planning systems are reviewed in this work. The accuracy comparisons among these algorithms are illustrated by summarizing the highly cited research papers on this topic. Further, the correlation between the algorithms and tumor control probability/normal tissue complication probability values are manifested by several recent studies from different groups. All the cases demonstrate that dose calculation algorithms play a vital role in radiation therapy. PMID:25431642

  17. Determination of dose distributions and parameter sensitivity. Hanford Environmental Dose Reconstruction Project; dose code recovery activities; Calculation 005

    SciTech Connect

    Napier, B.A.; Farris, W.T.; Simpson, J.C.

    1992-12-01

    A series of scoping calculations has been undertaken to evaluate the absolute and relative contribution of different radionuclides and exposure pathways to doses that may have been received by individuals living in the vicinity of the Hanford site. This scoping calculation (Calculation 005) examined the contributions of numerous parameters to the uncertainty distribution of doses calculated for environmental exposures and accumulation in foods. This study builds on the work initiated in the first scoping study of iodine in cow`s milk and the third scoping study, which added additional pathways. Addressed in this calculation were the contributions to thyroid dose of infants from (1) air submersion and groundshine external dose, (2) inhalation, (3) ingestion of soil by humans, (4) ingestion of leafy vegetables, (5) ingestion of other vegetables and fruits, (6) ingestion of meat, (7) ingestion of eggs, and (8) ingestion of cows` milk from Feeding Regime 1 as described in Calculation 001.

  18. Calculation of the biological effective dose for piecewise defined dose-rate fits

    SciTech Connect

    Hobbs, Robert F.; Sgouros, George

    2009-03-15

    An algorithmic solution to the biological effective dose (BED) calculation from the Lea-Catcheside formula for a piecewise defined function is presented. Data from patients treated for metastatic thyroid cancer were used to illustrate the solution. The Lea-Catcheside formula for the G-factor of the BED is integrated numerically using a large number of small trapezoidal fits to each integral. The algorithmically calculated BED is compatible with an analytic calculation for a similarly valued exponentially fitted dose-rate plot and is the only resolution for piecewise defined dose-rate functions.

  19. Calculations of Operational and Residual Doses for the SNS Linac

    SciTech Connect

    Gallmeier, FX

    2001-08-13

    Dose profiles throughout the front-end building and the accelerator tunnel were calculated for the SNS linac system both for normal operation and after shut down of the facility based on normal operations beam losses. The calculated dose levels at an cylindrical envelope with 60 cm radius range from 0.08 to 10 rem/hr for the drift tube linac part, from 50-80 rem/hr for the coupled cavity linac part, from 1 to 20 rem/hr for the superconducting linac part, and from 70-200 rem/hr for the spare section extending after the linac. In the front-end building that houses the first 10 meters of the drift tube linac, dose levels of up to 500 mrem/hr were calculated that need to be reduced by adequate shielding, for example an ordinary concrete shield of up to 120 cm thickness. The shield thickness can be reduced by 25% using borated concrete or a layer of 20 cm borated polyethylene followed by ordinary concrete. The calculated residual dose levels in the accelerator tunnel are a factor of 2000-30 00 lower compared to the operational doses assuming a 30-year operations period and a 1hour decay period.

  20. Cone-Beam Computed Tomography: Imaging Dose during CBCT Scan Acquisition and Accuracy of CBCT Based Dose Calculations

    NASA Astrophysics Data System (ADS)

    Giles, David Matthew

    Cone beam computed tomography (CBCT) is a recent development in radiotherapy for use in image guidance. Image guided radiotherapy using CBCT allows visualization of soft tissue targets and critical structures prior to treatment. Dose escalation is made possible by accurately localizing the target volume while reducing normal tissue toxicity. The kilovoltage x-rays of the cone beam imaging system contribute additional dose to the patient. In this study a 2D reference radiochromic film dosimetry method employing GAFCHROMIC(TM) model XR-QA film is used to measure point skin doses and dose profiles from the Elekta XVI CBCT system integrated onto the Synergy linac. The soft tissue contrast of the daily CBCT images makes adaptive radiotherapy possible in the clinic. In order to track dose to the patient or utilize on-line replanning for adaptive radiotherapy the CBCT images must be used to calculate dose. A Hounsfield unit calibration method for scatter correction is investigated for heterogeneity corrected dose calculation in CBCT images. Three Hounsfield unit to density calibration tables are used for each of four cases including patients and an anthropomorphic phantom, and the calculated dose from each is compared to results from the clinical standard fan beam CT. The dose from the scan acquisition is reported and the effect of scan geometry and total output of the x-ray tube on dose magnitude and distribution is shown. The ability to calculate dose with CBCT is shown to improve with the use of patient specific density tables for scatter correction, and for high beam energies the calculated dose agreement is within 1%.

  1. Calculation of immersion doses from external exposure to a plume of radioactive material.

    PubMed

    Raza, S; Avila, R

    2005-09-01

    The immersion doses from external exposure to a Gaussian plume of noble gases accidentally released into the atmosphere have been calculated. A numerical integration procedure employing Gauss-Legendre of 64th order has been used. The numerical procedure allows calculating the dose rate at any downwind horizontal or vertical distance. The dose rates were calculated using various forms of gamma dose build-up factors, including Linear, Berger and Geometric Progression (GP). The GP form, having an extraordinarily precise formulation, is a favored choice because the build-up factor levels off for large distances and does not increase exponentially as does the Berger form. The Linear form much under predicts the build-up and subsequently the dose rates for large distances from the source. The dose predictions using a simple uniform cloud model (that does not use any form of build-up factor) is also presented for comparison purposes. The comparison of dose rates with the already reported results indicated that the numerical procedure could be used for dose calculations from a Gaussian plume for all downwind and crosswind distances. The comparison of dose rates obtained using different forms of the build-up factors indicated that the Geometric Progression form was a favored choice and has a wider range of applicability as compared to the Linear or Berger form. The simple uniform cloud model for dose calculations is only suitable for plume centerline doses and should be used with caution for off-center distances.

  2. Benchmarking analytical calculations of proton doses in heterogeneous matter.

    PubMed

    Ciangaru, George; Polf, Jerimy C; Bues, Martin; Smith, Alfred R

    2005-12-01

    A proton dose computational algorithm, performing an analytical superposition of infinitely narrow proton beamlets (ASPB) is introduced. The algorithm uses the standard pencil beam technique of laterally distributing the central axis broad beam doses according to the Moliere scattering theory extended to slablike varying density media. The purpose of this study was to determine the accuracy of our computational tool by comparing it with experimental and Monte Carlo (MC) simulation data as benchmarks. In the tests, parallel wide beams of protons were scattered in water phantoms containing embedded air and bone materials with simple geometrical forms and spatial dimensions of a few centimeters. For homogeneous water and bone phantoms, the proton doses we calculated with the ASPB algorithm were found very comparable to experimental and MC data. For layered bone slab inhomogeneity in water, the comparison between our analytical calculation and the MC simulation showed reasonable agreement, even when the inhomogeneity was placed at the Bragg peak depth. There also was reasonable agreement for the parallelepiped bone block inhomogeneity placed at various depths, except for cases in which the bone was located in the region of the Bragg peak, when discrepancies were as large as more than 10%. When the inhomogeneity was in the form of abutting air-bone slabs, discrepancies of as much as 8% occurred in the lateral dose profiles on the air cavity side of the phantom. Additionally, the analytical depth-dose calculations disagreed with the MC calculations within 3% of the Bragg peak dose, at the entry and midway depths in the phantom. The distal depth-dose 20%-80% fall-off widths and ranges calculated with our algorithm and the MC simulation were generally within 0.1 cm of agreement. The analytical lateral-dose profile calculations showed smaller (by less than 0.1 cm) 20%-80% penumbra widths and shorter fall-off tails than did those calculated by the MC simulations. Overall

  3. Patient-specific dose calculation methods for high-dose-rate iridium-192 brachytherapy

    NASA Astrophysics Data System (ADS)

    Poon, Emily S.

    In high-dose-rate 192Ir brachytherapy, the radiation dose received by the patient is calculated according to the AAPM Task Group 43 (TG-43) formalism. This table-based dose superposition method uses dosimetry parameters derived with the radioactive 192Ir source centered in a water phantom. It neglects the dose perturbations caused by inhomogeneities, such as the patient anatomy, applicators, shielding, and radiographic contrast solution. In this work, we evaluated the dosimetric characteristics of a shielded rectal applicator with an endocavitary balloon injected with contrast solution. The dose distributions around this applicator were calculated by the GEANT4 Monte Carlo (MC) code and measured by ionization chamber and GAFCHROMIC EBT film. A patient-specific dose calculation study was then carried out for 40 rectal treatment plans. The PTRAN_CT MC code was used to calculate the dose based on computed tomography (CT) images. This study involved the development of BrachyGUI, an integrated treatment planning tool that can process DICOM-RT data and create PTRAN_CT input initialization files. BrachyGUI also comes with dose calculation and evaluation capabilities. We proposed a novel scatter correction method to account for the reduction in backscatter radiation near tissue-air interfaces. The first step requires calculating the doses contributed by primary and scattered photons separately, assuming a full scatter environment. The scatter dose in the patient is subsequently adjusted using a factor derived by MC calculations, which depends on the distances between the point of interest, the 192Ir source, and the body contour. The method was validated for multicatheter breast brachytherapy, in which the target and skin doses for 18 patient plans agreed with PTRAN_CT calculations better than 1%. Finally, we developed a CT-based analytical dose calculation method. It corrects for the photon attenuation and scatter based upon the radiological paths determined by ray tracing

  4. The reliability of calculated laboratory results.

    PubMed

    Coskun, Abdurrahman

    2005-01-01

    In clinical laboratories, patient results can be obtained in two ways: (i) by direct determination of requested tests using various chemical methods, (ii) by calculation of unknown test results, based on relationships between measured tests. The reliability of measured tests can be checked by various quality control rules. However, no test is performed to check the reliability of calculated data. In this study we develop a method using Taylor series expansion and an alternative equation to obtain the standard deviation of calculated laboratory tests and discuss the reliability of calculated data. To obtain reliable test results by calculation instead of being measured by chemical methods, the standard deviation of each measured component of the equation must be thoroughly analyzed and then the standard deviation of the equation must be determined. We conclude that the analytical coefficient of variation of any measured component must be lower so as to obtain an acceptable analytical coefficient of variation for calculated tests. Otherwise we should measure the concentration of requested tests by chemical methods instead of calculation by equation using specified components.

  5. Considerations of beta and electron transport in internal dose calculations

    SciTech Connect

    Bolch, W.E.; Poston, J.W. Sr.

    1990-12-01

    Ionizing radiation has broad uses in modern science and medicine. These uses often require the calculation of energy deposition in the irradiated media and, usually, the medium of interest is the human body. Energy deposition from radioactive sources within the human body and the effects of such deposition are considered in the field of internal dosimetry. In July of 1988, a three-year research project was initiated by the Nuclear Engineering Department at Texas A M University under the sponsorship of the US Department of Energy. The main thrust of the research was to consider, for the first time, the detailed spatial transport of electron and beta particles in the estimation of average organ doses under the Medical Internal Radiation Dose (MIRD) schema. At the present time (December of 1990), research activities are continuing within five areas. Several are new initiatives begun within the second or third year of the current contract period. They include: (1) development of small-scale dosimetry; (2) development of a differential volume phantom; (3) development of a dosimetric bone model; (4) assessment of the new ICRP lung model; and (5) studies into the mechanisms of DNA damage. A progress report is given for each of these tasks within the Comprehensive Report. In each case, preliminary results are very encouraging and plans for further research are detailed within this document.

  6. Considerations of beta and electron transport in internal dose calculations

    SciTech Connect

    Bolch, W.E.; Poston, J.W. Sr. . Dept. of Nuclear Engineering)

    1990-12-01

    Ionizing radiation has broad uses in modern science and medicine. These uses often require the calculation of energy deposition in the irradiated media and, usually, the medium of interest is the human body. Energy deposition from radioactive sources within the human body and the effects of such deposition are considered in the field of internal dosimetry. In July of 1988, a three-year research project was initiated by the Nuclear Engineering Department at Texas A M University under the sponsorship of the US Department of Energy. The main thrust of the research was to consider, for the first time, the detailed spatial transport of electron and beta particles in the estimation of average organ doses under the Medical Internal Radiation Dose (MIRD) schema. At the present time (December of 1990), research activities are continuing within five areas. Several are new initiatives begun within the second or third year of the current contract period. They include: (1) development of small-scale dosimetry; (2) development of a differential volume phantom; (3) development of a dosimetric bone model; (4) assessment of the new ICRP lung model; and (5) studies into the mechanisms of DNA damage. A progress report is given for each of these tasks within the Comprehensive Report. In each use, preliminary results are very encouraging and plans for further research are detailed within this document. 22 refs., 13 figs., 1 tab.

  7. Proton Depth Dose Distribution: 3-D Calculation of Dose Distributions from Solar Flare Irradiation

    DTIC Science & Technology

    1990-11-01

    distributions in the transverse plane intersecting isocenter are presented for each of the 3 solar flare event. in all 3 exposure geometries. In all 3...calculation con- figurations the maximum predicted",dose occurred on the surface of the head. The dose at the isocenter of the head relative ’to the...for all 3 cases ire: 1. All isodose distributions are displayed relative to a normalization dose of 100 centigray at the isocenter in the absence of

  8. Evaluation of a new commercial Monte Carlo dose calculation algorithm for electron beams

    SciTech Connect

    Vandervoort, Eric J. Cygler, Joanna E.; Tchistiakova, Ekaterina; La Russa, Daniel J.

    2014-02-15

    Purpose: In this report the authors present the validation of a Monte Carlo dose calculation algorithm (XiO EMC from Elekta Software) for electron beams. Methods: Calculated and measured dose distributions were compared for homogeneous water phantoms and for a 3D heterogeneous phantom meant to approximate the geometry of a trachea and spine. Comparisons of measurements and calculated data were performed using 2D and 3D gamma index dose comparison metrics. Results: Measured outputs agree with calculated values within estimated uncertainties for standard and extended SSDs for open applicators, and for cutouts, with the exception of the 17 MeV electron beam at extended SSD for cutout sizes smaller than 5 × 5 cm{sup 2}. Good agreement was obtained between calculated and experimental depth dose curves and dose profiles (minimum number of measurements that pass a 2%/2 mm agreement 2D gamma index criteria for any applicator or energy was 97%). Dose calculations in a heterogeneous phantom agree with radiochromic film measurements (>98% of pixels pass a 3 dimensional 3%/2 mm γ-criteria) provided that the steep dose gradient in the depth direction is considered. Conclusions: Clinically acceptable agreement (at the 2%/2 mm level) between the measurements and calculated data for measurements in water are obtained for this dose calculation algorithm. Radiochromic film is a useful tool to evaluate the accuracy of electron MC treatment planning systems in heterogeneous media.

  9. Effect of Embolization Material in the Calculation of Dose Deposition in Arteriovenous Malformations

    NASA Astrophysics Data System (ADS)

    De la Cruz, O. O. Galván; Lárraga-Gutiérrez, J. M.; Moreno-Jiménez, S.; Célis-López, M. A.

    2010-12-01

    In this work it is studied the impact of the incorporation of high Z materials (embolization material) in the dose calculation for stereotactic radiosurgery treatment for arteriovenous malformations. A statistical analysis is done to establish the variables that may impact in the dose calculation. To perform the comparison pencil beam (PB) and Monte Carlo (MC) calculation algorithms were used. The comparison between both dose calculations shows that PB overestimates the dose deposited. The statistical analysis, for the quantity of patients of the study (20), shows that the variable that may impact in the dose calculation is the volume of the high Z material in the arteriovenous malformation. Further studies have to be done to establish the clinical impact with the radiosurgery result.

  10. Analytical probabilistic proton dose calculation and range uncertainties

    NASA Astrophysics Data System (ADS)

    Bangert, M.; Hennig, P.; Oelfke, U.

    2014-03-01

    We introduce the concept of analytical probabilistic modeling (APM) to calculate the mean and the standard deviation of intensity-modulated proton dose distributions under the influence of range uncertainties in closed form. For APM, range uncertainties are modeled with a multivariate Normal distribution p(z) over the radiological depths z. A pencil beam algorithm that parameterizes the proton depth dose d(z) with a weighted superposition of ten Gaussians is used. Hence, the integrals ∫ dz p(z) d(z) and ∫ dz p(z) d(z)2 required for the calculation of the expected value and standard deviation of the dose remain analytically tractable and can be efficiently evaluated. The means μk, widths δk, and weights ωk of the Gaussian components parameterizing the depth dose curves are found with least squares fits for all available proton ranges. We observe less than 0.3% average deviation of the Gaussian parameterizations from the original proton depth dose curves. Consequently, APM yields high accuracy estimates for the expected value and standard deviation of intensity-modulated proton dose distributions for two dimensional test cases. APM can accommodate arbitrary correlation models and account for the different nature of random and systematic errors in fractionated radiation therapy. Beneficial applications of APM in robust planning are feasible.

  11. Utilising pseudo-CT data for dose calculation and plan optimization in adaptive radiotherapy.

    PubMed

    Whelan, Brendan; Kumar, Shivani; Dowling, Jason; Begg, Jarrad; Lambert, Jonathan; Lim, Karen; Vinod, Shalini K; Greer, Peter B; Holloway, Lois

    2015-12-01

    To quantify the dose calculation error and resulting optimization uncertainty caused by performing inverse treatment planning on inaccurate electron density data (pseudo-CT) as needed for adaptive radiotherapy and Magnetic Resonance Imaging (MRI) based treatment planning. Planning Computer Tomography (CT) data from 10 cervix cancer patients was used to generate 4 pseudo-CT data sets. Each pseudo-CT was created based on an available method of assigning electron density to an anatomic image. An inversely modulated radiotherapy (IMRT) plan was developed on each planning CT. The dose calculation error caused by each pseudo-CT data set was quantified by comparing the dose calculated each pseudo-CT data set with that calculated on the original planning CT for the same IMRT plan. The optimization uncertainty introduced by the dose calculation error was quantified by re-optimizing the same optimization parameters on each pseudo-CT data set and comparing against the original planning CT. Dose differences were quantified by assessing the Equivalent Uniform Dose (EUD) for targets and relevant organs at risk. Across all pseudo-CT data sets and all organs, the absolute mean dose calculation error was 0.2 Gy, and was within 2 % of the prescription dose in 98.5 % of cases. Then absolute mean optimisation error was 0.3 Gy EUD, indicating that that inverse optimisation is impacted by the dose calculation error. However, the additional uncertainty introduced to plan optimisation is small compared the sources of variation which already exist. Use of inaccurate electron density data for inverse treatment planning results in a dose calculation error, which in turn introduces additional uncertainty into the plan optimization process. In this study, we showed that both of these effects are clinically acceptable for cervix cancer patients using four different pseudo-CT data sets. Dose calculation and inverse optimization on pseudo-CT is feasible for this patient cohort.

  12. Improvements in dose calculation accuracy for small off-axis targets in high dose per fraction tomotherapy

    SciTech Connect

    Hardcastle, Nicholas; Bayliss, Adam; Wong, Jeannie Hsiu Ding; Rosenfeld, Anatoly B.; Tome, Wolfgang A.

    2012-08-15

    Purpose: A recent field safety notice from TomoTherapy detailed the underdosing of small, off-axis targets when receiving high doses per fraction. This is due to angular undersampling in the dose calculation gantry angles. This study evaluates a correction method to reduce the underdosing, to be implemented in the current version (v4.1) of the TomoTherapy treatment planning software. Methods: The correction method, termed 'Super Sampling' involved the tripling of the number of gantry angles from which the dose is calculated during optimization and dose calculation. Radiochromic film was used to measure the dose to small targets at various off-axis distances receiving a minimum of 21 Gy in one fraction. Measurements were also performed for single small targets at the center of the Lucy phantom, using radiochromic film and the dose magnifying glass (DMG). Results: Without super sampling, the peak dose deficit increased from 0% to 18% for a 10 mm target and 0% to 30% for a 5 mm target as off-axis target distances increased from 0 to 16.5 cm. When super sampling was turned on, the dose deficit trend was removed and all peak doses were within 5% of the planned dose. For measurements in the Lucy phantom at 9.7 cm off-axis, the positional and dose magnitude accuracy using super sampling was verified using radiochromic film and the DMG. Conclusions: A correction method implemented in the TomoTherapy treatment planning system which triples the angular sampling of the gantry angles used during optimization and dose calculation removes the underdosing for targets as small as 5 mm diameter, up to 16.5 cm off-axis receiving up to 21 Gy.

  13. A method for the evaluation of dose-effect data utilizing a programmable calculator.

    PubMed

    Carmines, E L; Carchman, R A; Borzelleca, J F

    1980-08-01

    A program for the calculation of the median effective dose (ED50) and the slope of the dose-effect line was developed for a programmable calculator. The method employed approximated the solution described by Bliss. Experimental data were evaluated and compared to both hand calculated results and results of other computer methods. This method produced results which differed from other computer methods by less than 1 percent. This program provided information necessary for the test for parallelism and estimate of relative potency of two dose-effect lines.

  14. MCNP analyses of criticality calculation results

    SciTech Connect

    Forster, R.A.; Booth, T.E.

    1995-05-01

    Careful assessment of the results of a calculation by the code itself can reduce mistakes in the problem setup and execution. MCNP has over four hundred error messages that inform the user of FATAL or WARNING errors that have been discovered during the processing of just the input file. The latest version, MCNP4A, now performs a self assessment of the calculated results to aid the user in determining the quality of the Monte Carlo results. MCNP4A, which was released to RSIC in October 1993, contains new analyses of the MCNP Monte Carlo calculation that provide simple user WARNINGs for both criticality and fixed source calculations. The goal of the new analyses is to provide the MCNP criticality practitioner with enough information in the output to assess the validity of the k{sub eff} calculation and any associated tallies. The results of these checks are presented in the k{sub eff} results summary page, several k{sub eff} tables and graphs, and tally tables and graphs. Plots of k{sub eff} at the workstation are also available as the problem is running or in a postprocessing mode to assess problem performance and results.

  15. Hanford Site Annual Report Radiological Dose Calculation Upgrade Evaluation

    SciTech Connect

    Snyder, Sandra F.

    2010-02-28

    Operations at the Hanford Site, Richland, Washington, result in the release of radioactive materials to offsite residents. Site authorities are required to estimate the dose to the maximally exposed offsite resident. Due to the very low levels of exposure at the residence, computer models, rather than environmental samples, are used to estimate exposure, intake, and dose. A DOS-based model has been used in the past (GENII version 1.485). GENII v1.485 has been updated to a Windows®-based software (GENII version 2.08). Use of the updated software will facilitate future dose evaluations, but must be demonstrated to provide results comparable to those of GENII v1.485. This report describes the GENII v1.485 and GENII v2.08 dose exposure, intake, and dose estimates for the maximally exposed offsite resident reported for calendar year 2008. The GENII v2.08 results reflect updates to implemented algorithms. No two environmental models produce the same results, as was again demonstrated in this report. The aggregated dose results from 2008 Hanford Site airborne and surface water exposure scenarios provide comparable dose results. Therefore, the GENII v2.08 software is recommended for future offsite resident dose evaluations.

  16. Development of a radiopharmaceutical dose calculator for pediatric patients undergoing diagnostic nuclear medicine studies

    PubMed Central

    Pandey, Anil Kumar; Sharma, Sanjay Kumar; Sharma, Punit; Gupta, Priyanka; Kumar, Rakesh

    2013-01-01

    Objective: It is important to ensure that as low as reasonably achievable (ALARA) concept during the radiopharmaceutical (RPH) dose administration in pediatric patients. Several methods have been suggested over the years for the calculation of individualized RPH dose, sometimes requiring complex calculations and large variability exists for administered dose in children. The aim of the present study was to develop a software application that can calculate and store RPH dose along with patient record. Materials and Methods: We reviewed the literature to select the dose formula and used Microsoft Access (a software package) to develop this application. We used the Microsoft Excel to verify the accurate execution of the dose formula. The manual and computer time using this program required for calculating the RPH dose were compared. Results: The developed application calculates RPH dose for pediatric patients based on European Association of Nuclear Medicine dose card, weight based, body surface area based, Clark, Solomon Fried, Young and Webster's formula. It is password protected to prevent the accidental damage and stores the complete record of patients that can be exported to Excel sheet for further analysis. It reduces the burden of calculation and saves considerable time i.e., 2 min computer time as compared with 102 min (manual calculation with the calculator for all seven formulas for 25 patients). Conclusion: The software detailed above appears to be an easy and useful method for calculation of pediatric RPH dose in routine clinical practice. This software application will help in helping the user to routinely applied ALARA principle while pediatric dose administration. PMID:24163510

  17. Comparing Ultraviolet Spectra Against Calculations: First Results

    NASA Technical Reports Server (NTRS)

    Peterson, Ruth C.

    2003-01-01

    The five-year goal of this effort is to calculate high fidelity mid-UV spectra for individual stars and stellar systems for a wide range of ages, abundances, and abundance ratios. In this first year, the emphasis was placed on revising the list of atomic line parameters used to calculate mid-UV spectra. First, new identifications of atomic lines and measurements of their transition probabilities were obtained for lines of the first and second ionization stages of iron-peak elements. Second, observed mid-UV and optical spectra for standard stars were re-analyzed and compared to new calculations, to refine the determination of transition probabilities and to estimate the identity of lines still missing from the laboratory lists. As evidenced by the figures, a dramatic improvement has resulted in the reproduction of the spectra of standard stars by the calculations.

  18. A design of a DICOM-RT-based tool box for nonrigid 4D dose calculation.

    PubMed

    Wong, Victy Y W; Baker, Colin R; Leung, T W; Tung, Stewart Y

    2016-03-08

    The study was aimed to introduce a design of a DICOM-RT-based tool box to facilitate 4D dose calculation based on deformable voxel-dose registration. The computational structure and the calculation algorithm of the tool box were explicitly discussed in the study. The tool box was written in MATLAB in conjunction with CERR. It consists of five main functions which allow a) importation of DICOM-RT-based 3D dose plan, b) deformable image registration, c) tracking voxel doses along breathing cycle, d) presentation of temporal dose distribution at different time phase, and e) derivation of 4D dose. The efficacy of using the tool box for clinical application had been verified with nine clinical cases on retrospective-study basis. The logistic and the robustness of the tool box were tested with 27 applications and the results were shown successful with no computational errors encountered. In the study, the accumulated dose coverage as a function of planning CT taken at end-inhale, end-exhale, and mean tumor position were assessed. The results indicated that the majority of the cases (67%) achieved maximum target coverage, while the planning CT was taken at the temporal mean tumor position and 56% at the end-exhale position. The comparable results to the literature imply that the studied tool box can be reliable for 4D dose calculation. The authors suggest that, with proper application, 4D dose calculation using deformable registration can provide better dose evaluation for treatment with moving target.

  19. Experimental assessment of proton dose calculation accuracy in inhomogeneous media.

    PubMed

    Sorriaux, J; Testa, M; Paganetti, H; Orban de Xivry, J; Lee, J A; Traneus, E; Souris, K; Vynckier, S; Sterpin, E

    2017-06-01

    Proton therapy with Pencil Beam Scanning (PBS) has the potential to improve radiotherapy treatments. Unfortunately, its promises are jeopardized by the sensitivity of the dose distributions to uncertainties, including dose calculation accuracy in inhomogeneous media. Monte Carlo dose engines (MC) are expected to handle heterogeneities better than analytical algorithms like the pencil-beam convolution algorithm (PBA). In this study, an experimental phantom has been devised to maximize the effect of heterogeneities and to quantify the capability of several dose engines (MC and PBA) to handle these. An inhomogeneous phantom made of water surrounding a long insert of bone tissue substitute (1×10×10 cm(3)) was irradiated with a mono-energetic PBS field (10×10 cm(2)). A 2D ion chamber array (MatriXX, IBA Dosimetry GmbH) lied right behind the bone. The beam energy was such that the expected range of the protons exceeded the detector position in water and did not attain it in bone. The measurement was compared to the following engines: Geant4.9.5, PENH, MCsquare, as well as the MC and PBA algorithms of RayStation (RaySearch Laboratories AB). For a γ-index criteria of 2%/2mm, the passing rates are 93.8% for Geant4.9.5, 97.4% for PENH, 93.4% for MCsquare, 95.9% for RayStation MC, and 44.7% for PBA. The differences in γ-index passing rates between MC and RayStation PBA calculations can exceed 50%. The performance of dose calculation algorithms in highly inhomogeneous media was evaluated in a dedicated experiment. MC dose engines performed overall satisfactorily while large deviations were observed with PBA as expected. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  20. External dose-rate conversion factors for calculation of dose to the public

    SciTech Connect

    Not Available

    1988-07-01

    This report presents a tabulation of dose-rate conversion factors for external exposure to photons and electrons emitted by radionuclides in the environment. This report was prepared in conjunction with criteria for limiting dose equivalents to members of the public from operations of the US Department of Energy (DOE). The dose-rate conversion factors are provided for use by the DOE and its contractors in performing calculations of external dose equivalents to members of the public. The dose-rate conversion factors for external exposure to photons and electrons presented in this report are based on a methodology developed at Oak Ridge National Laboratory. However, some adjustments of the previously documented methodology have been made in obtaining the dose-rate conversion factors in this report. 42 refs., 1 fig., 4 tabs.

  1. Moderated 252Cf neutron energy spectra in brain tissue and calculated boron neutron capture dose.

    PubMed

    Rivard, Mark J; Zamenhof, Robert G

    2004-11-01

    While there is significant clinical experience using both low- and high-dose (252)Cf brachytherapy, combination therapy using (10)B for neutron capture therapy-enhanced (252)Cf brachytherapy has not been performed. Monte Carlo calculations were performed in a brain phantom (ICRU 44 brain tissue) to evaluate the dose enhancement predicted for a range of (10)B concentrations over a range of distances from a clinical (252)Cf source. These results were compared to experimental measurements and calculations published in the literature. For (10)B concentrations dose enhancement was small in comparison to the (252)Cf fast neutron dose.

  2. Comparison of dose calculation algorithms for colorectal cancer brachytherapy treatment with a shielded applicator

    SciTech Connect

    Yan Xiangsheng; Poon, Emily; Reniers, Brigitte; Vuong, Te; Verhaegen, Frank

    2008-11-15

    Colorectal cancer patients are treated at our hospital with {sup 192}Ir high dose rate (HDR) brachytherapy using an applicator that allows the introduction of a lead or tungsten shielding rod to reduce the dose to healthy tissue. The clinical dose planning calculations are, however, currently performed without taking the shielding into account. To study the dose distributions in shielded cases, three techniques were employed. The first technique was to adapt a shielding algorithm which is part of the Nucletron PLATO HDR treatment planning system. The isodose pattern exhibited unexpected features but was found to be a reasonable approximation. The second technique employed a ray tracing algorithm that assigns a constant dose ratio with/without shielding behind the shielding along a radial line originating from the source. The dose calculation results were similar to the results from the first technique but with improved accuracy. The third and most accurate technique used a dose-matrix-superposition algorithm, based on Monte Carlo calculations. The results from the latter technique showed quantitatively that the dose to healthy tissue is reduced significantly in the presence of shielding. However, it was also found that the dose to the tumor may be affected by the presence of shielding; for about a quarter of the patients treated the volume covered by the 100% isodose lines was reduced by more than 5%, leading to potential tumor cold spots. Use of any of the three shielding algorithms results in improved dose estimates to healthy tissue and the tumor.

  3. Specification of absorbed dose to water using model-based dose calculation algorithms for treatment planning in brachytherapy.

    PubMed

    Tedgren, Åsa Carlsson; Carlsson, Gudrun Alm

    2013-04-21

    Model-based dose calculation algorithms (MBDCAs), recently introduced in treatment planning systems (TPS) for brachytherapy, calculate tissue absorbed doses. In the TPS framework, doses have hereto been reported as dose to water and water may still be preferred as a dose specification medium. Dose to tissue medium Dmed then needs to be converted into dose to water in tissue Dw,med. Methods to calculate absorbed dose to differently sized water compartments/cavities inside tissue, infinitesimal (used for definition of absorbed dose), small, large or intermediate, are reviewed. Burlin theory is applied to estimate photon energies at which cavity sizes in the range 1 nm-10 mm can be considered small or large. Photon and electron energy spectra are calculated at 1 cm distance from the central axis in cylindrical phantoms of bone, muscle and adipose tissue for 20, 50, 300 keV photons and photons from (125)I, (169)Yb and (192)Ir sources; ratios of mass-collision-stopping powers and mass energy absorption coefficients are calculated as applicable to convert Dmed into Dw,med for small and large cavities. Results show that 1-10 nm sized cavities are small at all investigated photon energies; 100 µm cavities are large only at photon energies <20 keV. A choice of an appropriate conversion coefficient Dw, med/Dmed is discussed in terms of the cavity size in relation to the size of important cellular targets. Free radicals from DNA bound water of nanometre dimensions contribute to DNA damage and cell killing and may be the most important water compartment in cells implying use of ratios of mass-collision-stopping powers for converting Dmed into Dw,med.

  4. Specification of absorbed dose to water using model-based dose calculation algorithms for treatment planning in brachytherapy

    NASA Astrophysics Data System (ADS)

    Carlsson Tedgren, Åsa; Alm Carlsson, Gudrun

    2013-04-01

    Model-based dose calculation algorithms (MBDCAs), recently introduced in treatment planning systems (TPS) for brachytherapy, calculate tissue absorbed doses. In the TPS framework, doses have hereto been reported as dose to water and water may still be preferred as a dose specification medium. Dose to tissue medium Dmed then needs to be converted into dose to water in tissue Dw,med. Methods to calculate absorbed dose to differently sized water compartments/cavities inside tissue, infinitesimal (used for definition of absorbed dose), small, large or intermediate, are reviewed. Burlin theory is applied to estimate photon energies at which cavity sizes in the range 1 nm-10 mm can be considered small or large. Photon and electron energy spectra are calculated at 1 cm distance from the central axis in cylindrical phantoms of bone, muscle and adipose tissue for 20, 50, 300 keV photons and photons from 125I, 169Yb and 192Ir sources; ratios of mass-collision-stopping powers and mass energy absorption coefficients are calculated as applicable to convert Dmed into Dw,med for small and large cavities. Results show that 1-10 nm sized cavities are small at all investigated photon energies; 100 µm cavities are large only at photon energies <20 keV. A choice of an appropriate conversion coefficient Dw, med/Dmed is discussed in terms of the cavity size in relation to the size of important cellular targets. Free radicals from DNA bound water of nanometre dimensions contribute to DNA damage and cell killing and may be the most important water compartment in cells implying use of ratios of mass-collision-stopping powers for converting Dmed into Dw,med.

  5. Measurement of Entrance Skin Dose and Calculation of Effective Dose for Common Diagnostic X-Ray Examinations in Kashan, Iran.

    PubMed

    Aliasgharzadeh, Akbar; Mihandoost, Ehsan; Masoumbeigi, Mahboubeh; Salimian, Morteza; Mohseni, Mehran

    2015-02-24

    The knowledge of the radiation dose received by the patient during the radiological examination is essential to prevent risks of exposures. The aim of this work is to study patient doses for common diagnostic radiographic examinations in hospitals affiliated to Kashan University of Medical sciences, Iran. The results of this survey are compared with those published by some national and international values. Entrance surface dose (ESD) was measured based on the exposure parameters used for the actual examination and effective dose (ED) was calculated by use of conversion coefficients calculated by Monte Carlo methods. The mean entrance surface dose and effective dose for examinations of the chest (PA, Lat), abdomen (AP), pelvis (AP), lumbar spine (AP, Lat) and skull (AP, Lat) are 0.37, 0.99, 2.01, 1.76, 2.18, 5.36, 1.39 and 1.01 mGy, and 0.04, 0.1, 0.28, 0,28, 0.23, 0.13, 0.01 and 0.01 mSv, respectively. The ESDs and EDs reported in this study, except for examinations of the chest, are generally lower than comparable reference dose values published in the literature. On the basis of the results obtained in this study can conclude that use of newer equipment and use of the proper radiological parameter can significantly reduce the absorbed dose. It is recommended that radiological parameter in chest examinations be revised.

  6. Measurement of Entrance Skin Dose and Calculation of Effective Dose for Common Diagnostic X-Ray Examinations in Kashan, Iran

    PubMed Central

    Aliasgharzadeh, Akbar; Mihandoost, Ehsan; Masoumbeigi, Mahboubeh; Salimian, Morteza; Mohseni, Mehran

    2015-01-01

    The knowledge of the radiation dose received by the patient during the radiological examination is essential to prevent risks of exposures. The aim of this work is to study patient doses for common diagnostic radiographic examinations in hospitals affiliated to Kashan University of Medical sciences, Iran. The results of this survey are compared with those published by some national and international values. Entrance surface dose (ESD) was measured based on the exposure parameters used for the actual examination and effective dose (ED) was calculated by use of conversion coefficients calculated by Monte Carlo methods. The mean entrance surface dose and effective dose for examinations of the chest (PA, Lat), abdomen (AP), pelvis (AP), lumbar spine (AP, Lat) and skull (AP, Lat) are 0.37, 0.99, 2.01, 1.76, 2.18, 5.36, 1.39 and 1.01 mGy, and 0.04, 0.1, 0.28, 0,28, 0.23, 0.13, 0.01 and 0.01 mSv, respectively. The ESDs and EDs reported in this study, except for examinations of the chest, are generally lower than comparable reference dose values published in the literature. On the basis of the results obtained in this study can conclude that use of newer equipment and use of the proper radiological parameter can significantly reduce the absorbed dose. It is recommended that radiological parameter in chest examinations be revised. PMID:26156930

  7. Comparison of the neutron ambient dose equivalent and ambient absorbed dose calculations with different GEANT4 physics lists

    NASA Astrophysics Data System (ADS)

    Ribeiro, Rosane Moreira; Souza-Santos, Denison

    2017-10-01

    A comparison between neutron physics lists given by GEANT4, is made in the calculation of the ambient dose equivalent, and ambient absorbed dose, per fluence conversion coefficients (H* (10) / ϕ and D* (10) / ϕ) for neutrons in the range of 10-9 MeV to 15 MeV. Physics processes are included for neutrons, photons and charged particles, and calculations are made for neutrons and secondary particles. Results obtained for QBBC, QGSP_BERT, QGSP_BIC and Neutron High Precision physics lists are compared with values published in ICRP 74 and previously published articles. Neutron high precision physics lists showed the best results in the studied energy range.

  8. Determination of the feasibility of reducing the spatial domain of the HEDR dose code. Hanford Environmental Dose Reconstruction Project: Dose code recovery activities, Calculation 006

    SciTech Connect

    Napier, B.A.; Snyder, S.F.

    1992-12-01

    A series of scoping calculations has been undertaken to evaluate the doses that may have been received by individuals living in the vicinity of the Hanford site. The primary impetus for this scoping calculation was to determine if large areas of the Hanford Environmental Dose Reconstruction (HEDR) Project atmospheric domain could be excluded from detailed calculation because the atmospheric transport of radionuclides from Hanford resulted in no (or negligible) deposition in those areas. The secondary impetus was to investigate whether an intermediate screen could be developed to reduce the data storage requirements by taking advantage of locations with periods of ``effectively zero`` deposition. This scoping calculation (Calculation 006) examined the spatial distribution of potential doses resulting from releases in the year 1945. This study builds on the work initiated in the first scoping study, of iodine in cow`s milk, and the third scoping study, which added additional pathways. Addressed in this calculation were the contributions to thyroid dose of infants from (1) air submersion and groundshine external dose, (2) inhalation, (3) ingestion of soil by humans, (4) ingestion of leafy vegetables, (5) ingestion of other vegetables and fruits, and (6) ingestion of meat, (7) ingestion of eggs, and (8) ingestion of cow`s milk from Feeding Regime 1 as described in scoping calculation 001.

  9. SU-E-T-481: In Vivo and Post Mortem Animal Irradiation: Measured Vs. Calculated Doses

    SciTech Connect

    Heintz, P; Heintz, B; Sandoval, D; Weber, W; Melo, D; Guilmette, R

    2015-06-15

    Purpose: Computerized radiation therapy treatment planning is performed on almost all patients today. However it is seldom used for laboratory irradiations. The first objective is to assess whether modern radiation therapy treatment planning (RTP) systems accurately predict the subject dose by comparing in vivo and decedent dose measurements to calculated doses. The other objective is determine the importance of using a RTP system for laboratory irradiations. Methods: 5 MOSFET radiation dosimeters were placed enterically in each subject (2 sedated Rhesus Macaques) to measure the absorbed dose at 5 levels (carina, lung, heart, liver and rectum) during whole body irradiation. The subjects were treated with large opposed lateral fields and extended distances to cover the entire subject using a Varian 600C linac. CT simulation was performed ante-mortem (AM) and post-mortem (PM). To compare AM and PM doses, calculation points were placed at the location of each dosimeter in the treatment plan. The measured results were compared to the results using Varian Eclipse and Prowess Panther RTP systems. Results: The Varian and Prowess treatment planning system agreed to within in +1.5% for both subjects. However there were significant differences between the measured and calculated doses. For both animals the calculated central axis dose was higher than prescribed by 3–5%. This was caused in part by inaccurate measurement of animal thickness at the time of irradiation. For one subject the doses ranged from 4% to 7% high and the other subject the doses ranged 7% to 14% high when compared to the RTP doses. Conclusions: Our results suggest that using proper CT RTP system can more accurately deliver the prescribed dose to laboratory subjects. It also shows that there is significant dose variation in such subjects when inhomogeneities are not considered in the planning process.

  10. Calculations of specific cellular doses for low-energy electrons

    NASA Astrophysics Data System (ADS)

    Liu, C. S.; Tung, C.-J.; Hu, Y. H.; Chou, C. M.; Chao, T. C.; Lee, C. C.

    2009-05-01

    The objectives of this work were to calculate the cellular doses and the lineal energies of low-energy electrons in liquid water for different source-target geometry in a cell. Calculated specific cellular doses and their variations were analyzed for the dependences on electron energy, source-target geometry, elastic interaction, and type of energy depositions, i.e. starter, stopper, insider and crosser. Two approaches, i.e. the probabilistic method and the mixed method, were applied. In the probabilistic method, the Monte Carlo Penelope code was used. In the mixed method, the range-energy relation and the sampling of electron paths were applied. It was found that for N ← Cy elastic interactions led to a change of the specific cellular dose by about 30% for electron energies below 10 keV. Here N ← Cy denotes electrons emitted from the source region, Cy (cytoplasm), to deposit energy in the target region, N (cell nucleus). The variation of specific cellular dose was found greater (more than 10%) for N ← Cy than N ← N, C ← C and C ← CS, where C and CS denote the cell and cell surface, respectively. The lineal energy distribution varied substantially with electron energy, source-target geometry, and target size. The maximum values of the relative dose-mean lineal energy for 1, 5 and 10 keV electrons, relative to 36 keV reference electrons used to define the relative biological effectiveness, occurred at target radii of several tens, hundreds and thousands nanometers, respectively.

  11. A modified dose calculation formalism for electronic brachytherapy sources.

    PubMed

    DeWerd, Larry A; Culberson, Wesley S; Micka, John A; Simiele, Samantha J

    2015-01-01

    To propose a modification of the current dose calculation formalism introduced in the Task Group No. 43 Report (TG-43) to accommodate an air-kerma rate standard for electronic brachytherapy sources as an alternative to an air-kerma strength standard. Electronic brachytherapy sources are miniature x-ray tubes emitting low energies with high-dose-rates. The National Institute of Standards and Technology (NIST) has introduced a new primary air-kerma rate standard for one of these sources, in contrast to air-kerma strength. A modification of the TG-43 protocol for calculation of dose-rate distributions around electronic brachytherapy sources including sources in an applicator is presented. It cannot be assumed that the perturbations from sources in an applicator are negligible, and thus, the applicator is incorporated in the formalism. The modified protocol mimics the fundamental methodology of the original TG-43 formalism, but now incorporates the new NIST-traceable source strength metric of air-kerma rate at 50 cm and introduces a new subscript, i, to denote the presence of an applicator used in treatment delivery. Applications of electronic brachytherapy sources for surface brachytherapy are not addressed in this Technical Note since they are well documented in other publications. A modification of the AAPM TG-43 protocol has been developed to accommodate an air-kerma rate standard for electronic brachytherapy sources as an alternative to an air-kerma strength standard. The modified TG-43 formalism allows dose calculations to be performed using a new NIST-traceable source strength metric and introduces the concept of applicator-specific formalism parameters denoted with subscript, i. Copyright © 2015 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  12. Monte Carlo calculated doses to treatment volumes and organs at risk for permanent implant lung brachytherapy.

    PubMed

    Sutherland, J G H; Furutani, K M; Thomson, R M

    2013-10-21

    Iodine-125 ((125)I) and Caesium-131 ((131)Cs) brachytherapy have been used with sublobar resection to treat stage I non-small cell lung cancer and other radionuclides, (169)Yb and (103)Pd, are considered for these treatments. This work investigates the dosimetry of permanent implant lung brachytherapy for a range of source energies and various implant sites in the lung. Monte Carlo calculated doses are calculated in a patient CT-derived computational phantom using the EGsnrc user-code BrachyDose. Calculations are performed for (103)Pd, (125)I, (131)Cs seeds and 50 and 100 keV point sources for 17 implant positions. Doses to treatment volumes, ipsilateral lung, aorta, and heart are determined and compared to those determined using the TG-43 approach. Considerable variation with source energy and differences between model-based and TG-43 doses are found for both treatment volumes and organs. Doses to the heart and aorta generally increase with increasing source energy. TG-43 underestimates the dose to the heart and aorta for all implants except those nearest to these organs where the dose is overestimated. Results suggest that model-based dose calculations are crucial for selecting prescription doses, comparing clinical endpoints, and studying radiobiological effects for permanent implant lung brachytherapy.

  13. Monte Carlo calculated doses to treatment volumes and organs at risk for permanent implant lung brachytherapy

    NASA Astrophysics Data System (ADS)

    Sutherland, J. G. H.; Furutani, K. M.; Thomson, R. M.

    2013-10-01

    Iodine-125 (125I) and Caesium-131 (131Cs) brachytherapy have been used with sublobar resection to treat stage I non-small cell lung cancer and other radionuclides, 169Yb and 103Pd, are considered for these treatments. This work investigates the dosimetry of permanent implant lung brachytherapy for a range of source energies and various implant sites in the lung. Monte Carlo calculated doses are calculated in a patient CT-derived computational phantom using the EGsnrc user-code BrachyDose. Calculations are performed for 103Pd, 125I, 131Cs seeds and 50 and 100 keV point sources for 17 implant positions. Doses to treatment volumes, ipsilateral lung, aorta, and heart are determined and compared to those determined using the TG-43 approach. Considerable variation with source energy and differences between model-based and TG-43 doses are found for both treatment volumes and organs. Doses to the heart and aorta generally increase with increasing source energy. TG-43 underestimates the dose to the heart and aorta for all implants except those nearest to these organs where the dose is overestimated. Results suggest that model-based dose calculations are crucial for selecting prescription doses, comparing clinical endpoints, and studying radiobiological effects for permanent implant lung brachytherapy.

  14. Accurate convolution/superposition for multi-resolution dose calculation using cumulative tabulated kernels.

    PubMed

    Lu, Weiguo; Olivera, Gustavo H; Chen, Ming-Li; Reckwerdt, Paul J; Mackie, Thomas R

    2005-02-21

    Convolution/superposition (C/S) is regarded as the standard dose calculation method in most modern radiotherapy treatment planning systems. Different implementations of C/S could result in significantly different dose distributions. This paper addresses two major implementation issues associated with collapsed cone C/S: one is how to utilize the tabulated kernels instead of analytical parametrizations and the other is how to deal with voxel size effects. Three methods that utilize the tabulated kernels are presented in this paper. These methods differ in the effective kernels used: the differential kernel (DK), the cumulative kernel (CK) or the cumulative-cumulative kernel (CCK). They result in slightly different computation times but significantly different voxel size effects. Both simulated and real multi-resolution dose calculations are presented. For simulation tests, we use arbitrary kernels and various voxel sizes with a homogeneous phantom, and assume forward energy transportation only. Simulations with voxel size up to 1 cm show that the CCK algorithm has errors within 0.1% of the maximum gold standard dose. Real dose calculations use a heterogeneous slab phantom, both the 'broad' (5 x 5 cm2) and the 'narrow' (1.2 x 1.2 cm2) tomotherapy beams. Various voxel sizes (0.5 mm, 1 mm, 2 mm, 4 mm and 8 mm) are used for dose calculations. The results show that all three algorithms have negligible difference (0.1%) for the dose calculation in the fine resolution (0.5 mm voxels). But differences become significant when the voxel size increases. As for the DK or CK algorithm in the broad (narrow) beam dose calculation, the dose differences between the 0.5 mm voxels and the voxels up to 8 mm (4 mm) are around 10% (7%) of the maximum dose. As for the broad (narrow) beam dose calculation using the CCK algorithm, the dose differences between the 0.5 mm voxels and the voxels up to 8 mm (4 mm) are around 1% of the maximum dose. Among all three methods, the CCK algorithm is

  15. Influence of polarization and a source model for dose calculation in MRT

    SciTech Connect

    Bartzsch, Stefan Oelfke, Uwe; Lerch, Michael; Petasecca, Marco; Bräuer-Krisch, Elke

    2014-04-15

    Purpose: Microbeam Radiation Therapy (MRT), an alternative preclinical treatment strategy using spatially modulated synchrotron radiation on a micrometer scale, has the great potential to cure malignant tumors (e.g., brain tumors) while having low side effects on normal tissue. Dose measurement and calculation in MRT is challenging because of the spatial accuracy required and the arising high dose differences. Dose calculation with Monte Carlo simulations is time consuming and their accuracy is still a matter of debate. In particular, the influence of photon polarization has been discussed in the literature. Moreover, it is controversial whether a complete knowledge of phase space trajectories, i.e., the simulation of the machine from the wiggler to the collimator, is necessary in order to accurately calculate the dose. Methods: With Monte Carlo simulations in the Geant4 toolkit, the authors investigate the influence of polarization on the dose distribution and the therapeutically important peak to valley dose ratios (PVDRs). Furthermore, the authors analyze in detail phase space information provided byMartínez-Rovira et al. [“Development and commissioning of a Monte Carlo photon model for the forthcoming clinical trials in microbeam radiation therapy,” Med. Phys. 39(1), 119–131 (2012)] and examine its influence on peak and valley doses. A simple source model is developed using parallel beams and its applicability is shown in a semiadjoint Monte Carlo simulation. Results are compared to measurements and previously published data. Results: Polarization has a significant influence on the scattered dose outside the microbeam field. In the radiation field, however, dose and PVDRs deduced from calculations without polarization and with polarization differ by less than 3%. The authors show that the key consequences from the phase space information for dose calculations are inhomogeneous primary photon flux, partial absorption due to inclined beam incidence outside

  16. NOTE: The effect of tomotherapy imaging beam output instabilities on dose calculation

    NASA Astrophysics Data System (ADS)

    Duchateau, Michael; Tournel, Koen; Verellen, Dirk; Van de Vondel, Iwein; Reynders, Truus; Linthout, Nadine; Gevaert, Thierry; de Coninck, Peter; Depuydt, Tom; Storme, Guy

    2010-06-01

    A radiotherapy treatment plan is based on an anatomical 'snapshot' of the patient acquired during the preparation stage using a kVCT (kilovolt computed tomography) scanner. Anatomical changes will occur during the treatment course, in some cases requiring a new treatment plan to deliver the prescribed dose. With the introduction of 3D volumetric on-board imaging devices, it became feasible to use the produced images for dose recalculation. However, the use of these on-board imaging devices in clinical routine for the calculation of dose depends on the stability of the images. In this study the validation of tomotherapy MVCT (megavolt computed tomography) produced images, for the purpose of dose recalculation by the Planned Adaptive software, has been performed. To investigate the validity of MVCT images for dose calculation, a treatment plan was created based on kVCT-acquired images of a solid water phantom. During a period of 4 months, MVCT images of the phantom have been acquired and were used by the planned adaptive software to recalculate the initial kVCT-based dose on the MVCT images. The influence of the adapted IVDTs (image value-to-density tables) has been investigated as well as the effect of image acquisition with or without preceding airscan. Output fluctuations and/or instabilities of the imaging beam result in MV images of different quality yielding different results when used for dose calculation. It was shown that the output of the imaging beam is not stable, leading to differences of nearly 3% between the original kV-based dose and the recalculated MV-based dose, for solid water only. MVCT images can be used for dose calculation purposes bearing in mind that the output beam is liable to fluctuations. The acquisition of an IVDT together with the MVCT image set, that is going to be used for dose calculation, is highly recommended.

  17. Evaluation of dose calculation accuracy of treatment planning systems at hip prosthesis interfaces.

    PubMed

    Paulu, David; Alaei, Parham

    2017-03-20

    There are an increasing number of radiation therapy patients with hip prosthesis. The common method of minimizing treatment planning inaccuracies is to avoid radiation beams to transit through the prosthesis. However, the beams often exit through them, especially when the patient has a double-prosthesis. Modern treatment planning systems employ algorithms with improved dose calculation accuracies but even these algorithms may not predict the dose accurately at high atomic number interfaces. The current study evaluates the dose calculation accuracy of three common dose calculation algorithms employed in two commercial treatment planning systems. A hip prosthesis was molded inside a cylindrical phantom and the dose at several points within the phantom at the interface with prosthesis was measured using thermoluminescent dosimeters. The measured doses were then compared to the predicted ones by the planning systems. The results of the study indicate all three algorithms underestimate the dose at the prosthesis interface, albeit to varying degrees, and for both low- and high-energy x rays. The measured doses are higher than calculated ones by 5-22% for Pinnacle Collapsed Cone Convolution algorithm, 2-23% for Eclipse Acuros XB, and 6-25% for Eclipse Analytical Anisotropic Algorithm. There are generally better agreements for AXB algorithm and the worst results are for the AAA.

  18. Assessing the Clinical Impact of Approximations in Analytical Dose Calculations for Proton Therapy

    SciTech Connect

    Schuemann, Jan Giantsoudi, Drosoula; Grassberger, Clemens; Moteabbed, Maryam; Min, Chul Hee; Paganetti, Harald

    2015-08-01

    Purpose: To assess the impact of approximations in current analytical dose calculation methods (ADCs) on tumor control probability (TCP) in proton therapy. Methods: Dose distributions planned with ADC were compared with delivered dose distributions as determined by Monte Carlo simulations. A total of 50 patients were investigated in this analysis with 10 patients per site for 5 treatment sites (head and neck, lung, breast, prostate, liver). Differences were evaluated using dosimetric indices based on a dose-volume histogram analysis, a γ-index analysis, and estimations of TCP. Results: We found that ADC overestimated the target doses on average by 1% to 2% for all patients considered. The mean dose, D95, D50, and D02 (the dose value covering 95%, 50% and 2% of the target volume, respectively) were predicted within 5% of the delivered dose. The γ-index passing rate for target volumes was above 96% for a 3%/3 mm criterion. Differences in TCP were up to 2%, 2.5%, 6%, 6.5%, and 11% for liver and breast, prostate, head and neck, and lung patients, respectively. Differences in normal tissue complication probabilities for bladder and anterior rectum of prostate patients were less than 3%. Conclusion: Our results indicate that current dose calculation algorithms lead to underdosage of the target by as much as 5%, resulting in differences in TCP of up to 11%. To ensure full target coverage, advanced dose calculation methods like Monte Carlo simulations may be necessary in proton therapy. Monte Carlo simulations may also be required to avoid biases resulting from systematic discrepancies in calculated dose distributions for clinical trials comparing proton therapy with conventional radiation therapy.

  19. A CT-based analytical dose calculation method for HDR 192Ir brachytherapy.

    PubMed

    Poon, Emily; Verhaegen, Frank

    2009-09-01

    This article presents an analytical dose calculation method for high-dose-rate 192Ir brachytherapy, taking into account the effects of inhomogeneities and reduced photon backscatter near the skin. The adequacy of the Task Group 43 (TG-43) two-dimensional formalism for treatment planning is also assessed. The proposed method uses material composition and density data derived from computed tomography images. The primary and scatter dose distributions for each dwell position are calculated first as if the patient is an infinite water phantom. This is done using either TG-43 or a database of Monte Carlo (MC) dose distributions. The latter can be used to account for the effects of shielding in water. Subsequently, corrections for photon attenuation, scatter, and spectral variations along medium- or low-Z inhomogeneities are made according to the radiological paths determined by ray tracing. The scatter dose is then scaled by a correction factor that depends on the distances between the point of interest, the body contour, and the source position. Dose calculations are done for phantoms with tissue and lead inserts, as well as patient plans for head-and-neck, esophagus, and MammoSite balloon breast brachytherapy treatments. Gamma indices are evaluated using a dose-difference criterion of 3% and a distance-to-agreement criterion of 2 mm. PTRAN_CT MC calculations are used as the reference dose distributions. For the phantom with tissue and lead inserts, the percentages of the voxels of interest passing the gamma criteria (Pgamma > or = 1) are 100% for the analytical calculation and 91% for TG-43. For the breast patient plan, TG-43 overestimates the target volume receiving the prescribed dose by 4% and the dose to the hottest 0.1 cm3 of the skin by 9%, whereas the analytical and MC results agree within 0.4%. Pgamma > or = 1 are 100% and 48% for the analytical and TG-43 calculations, respectively. For the head-and-neck and esophagus patient plans, Pgamma > or = 1 are > or

  20. A fast analytic dose calculation method for arc treatments for kilovoltage small animal irradiators.

    PubMed

    Marco-Rius, I; Wack, L; Tsiamas, P; Tryggestad, E; Berbeco, R; Hesser, J; Zygmanski, P

    2013-09-01

    Arc treatments require calculation of dose for collections of discrete gantry angles. The sampling of angles must balance between short computation time of small angle sets and the better calculation reliability of large sets. In this paper, an analytical formula is presented that allows calculation of dose delivered during continuous rotation of the gantry. The formula holds valid for continuous short arcs of up to about 30° and is derived by integrating a dose formula over gantry angles within a small angle approximation. Doses for longer arcs may be obtained in terms of doses for shorter arcs. The formula is derived with an empirical beam model in water and extended to inhomogeneous media. It is validated with experimental data obtained by applying arc treatment using kV small animal irradiator to a phantom of solid water and lung-equivalent material. The results are a promising step towards efficient 3D dose calculation and inverse planning purposes. In principle, this method also applies to VMAT dose calculation and optimization but requires extensions.

  1. Quantification of residual dose estimation error on log file-based patient dose calculation.

    PubMed

    Katsuta, Yoshiyuki; Kadoya, Noriyuki; Fujita, Yukio; Shimizu, Eiji; Matsunaga, Kenichi; Matsushita, Haruo; Majima, Kazuhiro; Jingu, Keiichi

    2016-05-01

    The log file-based patient dose estimation includes a residual dose estimation error caused by leaf miscalibration, which cannot be reflected on the estimated dose. The purpose of this study is to determine this residual dose estimation error. Modified log files for seven head-and-neck and prostate volumetric modulated arc therapy (VMAT) plans simulating leaf miscalibration were generated by shifting both leaf banks (systematic leaf gap errors: ±2.0, ±1.0, and ±0.5mm in opposite directions and systematic leaf shifts: ±1.0mm in the same direction) using MATLAB-based (MathWorks, Natick, MA) in-house software. The generated modified and non-modified log files were imported back into the treatment planning system and recalculated. Subsequently, the generalized equivalent uniform dose (gEUD) was quantified for the definition of the planning target volume (PTV) and organs at risks. For MLC leaves calibrated within ±0.5mm, the quantified residual dose estimation errors that obtained from the slope of the linear regression of gEUD changes between non- and modified log file doses per leaf gap are in head-and-neck plans 1.32±0.27% and 0.82±0.17Gy for PTV and spinal cord, respectively, and in prostate plans 1.22±0.36%, 0.95±0.14Gy, and 0.45±0.08Gy for PTV, rectum, and bladder, respectively. In this work, we determine the residual dose estimation errors for VMAT delivery using the log file-based patient dose calculation according to the MLC calibration accuracy. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  2. PFP vertical calciner shield wall dose rate calculations using MCNP

    SciTech Connect

    Wittekind, W.D.

    1997-08-21

    This report yields a neutron shield wall design for a full time occupancy dose rate of 0.25 mrem/h. ORIGEN2 generated gamma ray spectrum and neutron intensity for plutonium. MCNP modeled the calciner glovebox and room for reflection of neutrons off concrete walls and ceiling. Neutron calculations used MCNP in mode n, p to include neutron capture gammas. Photon calculations used MCNP in mode p for gamma rays. Neutron shield with lower 137.16 cm (4.5 feet) of 12.7 cm (5 inch) thick Lucite{reg_sign} and 0.3175 cm (0.125 inch) stainless steel on both sides, and upper 76.2 cm (2.5 feet) of 10.16 cm (4 inch) thick Lucite{reg_sign} and 1.905 cm (0.75 inch) thick glass on each side gave a total weighted dose rate of 0.23 mrem/h, fulfilling the design goal. Lucite{reg_sign} is considered to be equivalent to Plexiglas{reg_sign} since both are methylmethacrylate polymers.

  3. TH-A-19A-09: Towards Sub-Second Proton Dose Calculation On GPU

    SciTech Connect

    Silva, J da

    2014-06-15

    Purpose: To achieve sub-second dose calculation for clinically relevant proton therapy treatment plans. Rapid dose calculation is a key component of adaptive radiotherapy, necessary to take advantage of the better dose conformity offered by hadron therapy. Methods: To speed up proton dose calculation, the pencil beam algorithm (PBA; clinical standard) was parallelised and implemented to run on a graphics processing unit (GPU). The implementation constitutes the first PBA to run all steps on GPU, and each part of the algorithm was carefully adapted for efficiency. Monte Carlo (MC) simulations obtained using Fluka of individual beams of energies representative of the clinical range impinging on simple geometries were used to tune the PBA. For benchmarking, a typical skull base case with a spot scanning plan consisting of a total of 8872 spots divided between two beam directions of 49 energy layers each was provided by CNAO (Pavia, Italy). The calculations were carried out on an Nvidia Geforce GTX680 desktop GPU with 1536 cores running at 1006 MHz. Results: The PBA reproduced within ±3% of maximum dose results obtained from MC simulations for a range of pencil beams impinging on a water tank. Additional analysis of more complex slab geometries is currently under way to fine-tune the algorithm. Full calculation of the clinical test case took 0.9 seconds in total, with the majority of the time spent in the kernel superposition step. Conclusion: The PBA lends itself well to implementation on many-core systems such as GPUs. Using the presented implementation and current hardware, sub-second dose calculation for a clinical proton therapy plan was achieved, opening the door for adaptive treatment. The successful parallelisation of all steps of the calculation indicates that further speedups can be expected with new hardware, brightening the prospects for real-time dose calculation. This work was funded by ENTERVISION, European Commission FP7 grant 264552.

  4. Assessing the effect of electron density in photon dose calculations

    SciTech Connect

    Seco, J.; Evans, P. M.

    2006-02-15

    Photon dose calculation algorithms (such as the pencil beam and collapsed cone, CC) model the attenuation of a primary photon beam in media other than water, by using pathlength scaling based on the relative mass density of the media to water. In this study, we assess if differences in the electron density between the water and media, with different atomic composition, can influence the accuracy of conventional photon dose calculations algorithms. A comparison is performed between an electron-density scaling method and the standard mass-density scaling method for (i) tissues present in the human body (such as bone, muscle, etc.), and for (ii) water-equivalent plastics, used in radiotherapy dosimetry and quality assurance. We demonstrate that the important material property that should be taken into account by photon dose algorithms is the electron density, and not the mass density. The mass-density scaling method is shown to overestimate, relative to electron-density predictions, the primary photon fluence for tissues in the human body and water-equivalent plastics, where 6%-7% and 10% differences were observed respectively for bone and air. However, in the case of patients, differences are expected to be smaller due to the large complexity of a treatment plan and of the patient anatomy and atomic composition and of the smaller thickness of bone/air that incident photon beams of a treatment plan may have to traverse. Differences have also been observed for conventional dose algorithms, such as CC, where an overestimate of the lung dose occurs, when irradiating lung tumors. The incorrect lung dose can be attributed to the incorrect modeling of the photon beam attenuation through the rib cage (thickness of 2-3 cm in bone upstream of the lung tumor) and through the lung and the oversimplified modeling of electron transport in convolution algorithms. In the present study, the overestimation of the primary photon fluence, using the mass-density scaling method, was shown

  5. A design of a DICOM-RT-based tool box for nonrigid 4D dose calculation.

    PubMed

    Wong, Victy Y W; Baker, Colin R; Leung, T W; Tung, Stewart Y

    2016-03-01

    The study was aimed to introduce a design of a DICOM-RT-based tool box to facilitate 4D dose calculation based on deformable voxel-dose registration. The computational structure and the calculation algorithm of the tool box were explicitly discussed in the study. The tool box was written in MATLAB in conjunction with CERR. It consists of five main functions which allow a) importation of DICOM-RT-based 3D dose plan, b) deformable image registration, c) tracking voxel doses along breathing cycle, d) presentation of temporal dose distribution at different time phase, and e) derivation of 4D dose. The efficacy of using the tool box for clinical application had been verified with nine clinical cases on retrospective-study basis. The logistic and the robustness of the tool box were tested with 27 applications and the results were shown successful with no computational errors encountered. In the study, the accumulated dose coverage as a function of planning CT taken at end-inhale, end-exhale, and mean tumor position were assessed. The results indicated that the majority of the cases (67%) achieved maximum target coverage, while the planning CT was taken at the temporal mean tumor position and 56% at the end-exhale position. The comparable results to the literature imply that the studied tool box can be reliable for 4D dose calculation. The authors suggest that, with proper application, 4D dose calculation using deformable registration can provide better dose evaluation for treatment with moving target. PACS number(s): 87.55.kh.

  6. Investigation of Nonuniform Dose Voxel Geometry in Monte Carlo Calculations.

    PubMed

    Yuan, Jiankui; Chen, Quan; Brindle, James; Zheng, Yiran; Lo, Simon; Sohn, Jason; Wessels, Barry

    2015-08-01

    The purpose of this work is to investigate the efficacy of using multi-resolution nonuniform dose voxel geometry in Monte Carlo (MC) simulations. An in-house MC code based on the dose planning method MC code was developed in C++ to accommodate the nonuniform dose voxel geometry package since general purpose MC codes use their own coupled geometry packages. We devised the package in a manner that the entire calculation volume was first divided into a coarse mesh and then the coarse mesh was subdivided into nonuniform voxels with variable voxel sizes based on density difference. We name this approach as multi-resolution subdivision (MRS). It generates larger voxels in small density gradient regions and smaller voxels in large density gradient regions. To take into account the large dose gradients due to the beam penumbra, the nonuniform voxels can be further split using ray tracing starting from the beam edges. The accuracy of the implementation of the algorithm was verified by comparing with the data published by Rogers and Mohan. The discrepancy was found to be 1% to 2%, with a maximum of 3% at the interfaces. Two clinical cases were used to investigate the efficacy of nonuniform voxel geometry in the MC code. Applying our MRS approach, we started with the initial voxel size of 5 × 5 × 3 mm(3), which was further divided into smaller voxels. The smallest voxel size was 1.25 × 1.25 × 3 mm(3). We found that the simulation time per history for the nonuniform voxels is about 30% to 40% faster than the uniform fine voxels (1.25 × 1.25 × 3 mm(3)) while maintaining similar accuracy.

  7. The denoising of Monte Carlo dose distributions using convolution superposition calculations.

    PubMed

    El Naqa, I; Cui, J; Lindsay, P; Olivera, G; Deasy, J O

    2007-09-07

    Monte Carlo (MC) dose calculations can be accurate but are also computationally intensive. In contrast, convolution superposition (CS) offers faster and smoother results but by making approximations. We investigated MC denoising techniques, which use available convolution superposition results and new noise filtering methods to guide and accelerate MC calculations. Two main approaches were developed to combine CS information with MC denoising. In the first approach, the denoising result is iteratively updated by adding the denoised residual difference between the result and the MC image. Multi-scale methods were used (wavelets or contourlets) for denoising the residual. The iterations are initialized by the CS data. In the second approach, we used a frequency splitting technique by quadrature filtering to combine low frequency components derived from MC simulations with high frequency components derived from CS components. The rationale is to take the scattering tails as well as dose levels in the high-dose region from the MC calculations, which presumably more accurately incorporates scatter; high-frequency details are taken from CS calculations. 3D Butterworth filters were used to design the quadrature filters. The methods were demonstrated using anonymized clinical lung and head and neck cases. The MC dose distributions were calculated by the open-source dose planning method MC code with varying noise levels. Our results indicate that the frequency-splitting technique for incorporating CS-guided MC denoising is promising in terms of computational efficiency and noise reduction.

  8. SU-E-T-277: Dose Calculation Comparisons Between Monaco, Pinnacle and Eclipse Treatment Planning Systems

    SciTech Connect

    Bosse, C; Kirby, N; Narayanasamy, G; Papanikolaou, N; Stathakis, S

    2015-06-15

    Purpose: Monaco treatment planning system (TPS) version 5.0 uses a Monte-Carlo based dose calculation engine. The aim of this study is to verify and compare the Monaco based dose calculations with both Pinnacle{sup 3} collapsed cone convolution superposition (CCC) and Eclipse analytical anisotropic algorithm (AAA) calculations. Methods: For this study, previously treated SBRT lung, head and neck and abdomen patients were chosen to compare dose calculations between Pinnacle, Monaco and Eclipse. Plans were chosen from those that had been treated using the Elekta VersaHD or a NovalisTX linac. The plans included 3D conventional and IMRT beams using 6MV and 6MV Flattening filter free (FFF) photon beams. The original plans calculated with CCCS or AAA along with the recalculated ones using MC from the three TPS were exported into Velocity software for inter-comparison. Results: To compare the dose calculations, Mean Lung Dose (MLD), lung V5 and V20 values, and PTV Heterogeneity indexes (HI) and Conformity indexes (CI) were all calculated and recorded from the dose volume histograms (DVH). For each patient, the CI values were identical but there were differences in all other parameters. The HI was computed higher by 5 and 4% for calculated plans AAA and CCCS respectively, compared to the MC ones. The DVH graphs showed large differences between the CCCS and AAA and Monaco for 3D FFF, VMAT and IMRT plans. Better DVH agreement between was observed for 3D conventional plans. Conclusion: Better agreement was observed between CCCS and MC calculations than AAA and MC calculations. Those differences were more profound as the field size was decreasing and in the presence of inhomogeneities.

  9. Study on GEANT4 code applications to dose calculation using imaging data

    NASA Astrophysics Data System (ADS)

    Lee, Jeong Ok; Kang, Jeong Ku; Kim, Jhin Kee; Kwon, Hyeong Cheol; Kim, Jung Soo; Kim, Bu Gil; Jeong, Dong Hyeok

    2015-07-01

    The use of the GEANT4 code has increased in the medical field. Various studies have calculated the patient dose distributions by users the GEANT4 code with imaging data. In present study, Monte Carlo simulations based on DICOM data were performed to calculate the dose absorb in the patient's body. Various visualization tools are installed in the GEANT4 code to display the detector construction; however, the display of DICOM images is limited. In addition, to displaying the dose distributions on the imaging data of the patient is difficult. Recently, the gMocren code, a volume visualization tool for GEANT4 simulation, was developed and has been used in volume visualization of image files. In this study, the imaging based on the dose distributions absorbed in the patients was performed by using the gMocren code. Dosimetric evaluations with were carried out by using thermo luminescent dosimeter and film dosimetry to verify the calculated results.

  10. Absorbed dose calculations to blood and blood vessels for internally deposited radionuclides

    SciTech Connect

    Akabani, G.; Poston, J.W. Sr. )

    1991-05-01

    At present, absorbed dose calculations for radionuclides in the human circulatory system used relatively simple models and are restricted in their applications. To determine absorbed doses to the blood and to the surface of the blood vessel wall, EGS4 Monte Carlo calculations were performed. Absorbed doses were calculated for the blood and the blood vessel wall (lumen) for different blood vessels sizes. The radionuclides chosen for this study were those commonly used in nuclear medicine. No penetration of the radionuclide into the blood vessel was assumed nor was cross fire between the vessel assumed. The results are useful in assessing the dose to blood and blood vessel walls for different nuclear medicine procedures.

  11. Absorbed dose calculations to blood and blood vessels for internally deposited radionuclides

    SciTech Connect

    Akabani, G. ); Poston, J.W. . Dept. of Nuclear Engineering)

    1991-05-01

    At present, absorbed dose calculations for radionuclides in the human circulatory system used relatively simple models and are restricted in their applications. To determine absorbed doses to the blood and to the surface of the blood vessel wall, EGS4 Monte Carlo calculations were performed. Absorbed doses were calculated for the blood and the blood vessel wall (lumen) for different blood vessels sizes. The radionuclides chosen for this study were those commonly used in nuclear medicine. No diffusion of the radionuclide into the blood vessel was assumed nor cross fire between vessel was assumed. Results are useful in assessing the dose in blood and blood vessel walls for different nuclear medicine procedures. 6 refs., 6 figs., 5 tabs.

  12. GTV-based prescription in SBRT for lung lesions using advanced dose calculation algorithms.

    PubMed

    Lacornerie, Thomas; Lisbona, Albert; Mirabel, Xavier; Lartigau, Eric; Reynaert, Nick

    2014-10-16

    The aim of current study was to investigate the way dose is prescribed to lung lesions during SBRT using advanced dose calculation algorithms that take into account electron transport (type B algorithms). As type A algorithms do not take into account secondary electron transport, they overestimate the dose to lung lesions. Type B algorithms are more accurate but still no consensus is reached regarding dose prescription. The positive clinical results obtained using type A algorithms should be used as a starting point. In current work a dose-calculation experiment is performed, presenting different prescription methods. Three cases with three different sizes of peripheral lung lesions were planned using three different treatment platforms. For each individual case 60 Gy to the PTV was prescribed using a type A algorithm and the dose distribution was recalculated using a type B algorithm in order to evaluate the impact of the secondary electron transport. Secondly, for each case a type B algorithm was used to prescribe 48 Gy to the PTV, and the resulting doses to the GTV were analyzed. Finally, prescriptions based on specific GTV dose volumes were evaluated. When using a type A algorithm to prescribe the same dose to the PTV, the differences regarding median GTV doses among platforms and cases were always less than 10% of the prescription dose. The prescription to the PTV based on type B algorithms, leads to a more important variability of the median GTV dose among cases and among platforms, (respectively 24%, and 28%). However, when 54 Gy was prescribed as median GTV dose, using a type B algorithm, the variability observed was minimal. Normalizing the prescription dose to the median GTV dose for lung lesions avoids variability among different cases and treatment platforms of SBRT when type B algorithms are used to calculate the dose. The combination of using a type A algorithm to optimize a homogeneous dose in the PTV and using a type B algorithm to prescribe the

  13. Efficient photon beam dose calculations using DOSXYZnrc with BEAMnrc.

    PubMed

    Kawrakow, I; Walters, B R B

    2006-08-01

    This study examines the efficiencies of doses calculated using DOSXYZnrc for 18 MV (10 X 10 cm2 field size) and 6 MV (10 X 10 cm2 and 20 X 20 cm2 field sizes) photon beams simulated using BEAMnrc. Both phase-space sources and full BEAMnrc simulation sources are used in the DOSXYZnrc calculations. BEAMnrc simulation sources consist of a BEAMnrc accelerator simulation compiled as a shared library and run by the user code (DOSXYZnrc in this case) to generate source particles. Their main advantage is in eliminating the need to store intermediate phase-space files. In addition, the efficiency improvements due to photon splitting and particle recycling in the DOSXYZnrc simulation are examined. It is found that photon splitting increases dose calculation efficiency by a factor of up to 6.5, depending on beam energy, field size, voxel size, and the type of secondary collimation used in the BEAMnrc simulation (multileaf collimator vs photon jaws). The optimum efficiency with photon splitting is approximately 55% higher than that with particle recycling, indicating that, while most of the gain is due to time saved by reusing source particle data, there is significant gain due to the uniform distribution of interaction sites and faster DOSXYZnrc simulation time when photon splitting is employed. Use of optimized directional bremsstrahlung splitting in the BEAMnrc simulation sources increases the efficiency of photon beam simulations sufficiently that the peak efficiencies (i.e., with optimum setting of the photon splitting number) of DOSXYZnrc simulations using these sources are only 3-13% lower than those with phase-space file sources. This points towards eliminating the need for storing intermediate phase-space files.

  14. Performance of dose calculation algorithms from three generations in lung SBRT: comparison with full Monte Carlo-based dose distributions.

    PubMed

    Ojala, Jarkko J; Kapanen, Mika K; Hyödynmaa, Simo J; Wigren, Tuija K; Pitkänen, Maunu A

    2014-03-06

    threshold criteria showed larger discrepancies. The TPS algorithm comparison results showed large dose discrepancies in the PTV mean dose (D50%), nearly 60%, for the PBC algorithm, and differences of nearly 20% for the AAA, occurring also in the small PTV size range. This work suggests the application of independent plan verification, when the AAA or the AXB algorithm are utilized in lung SBRT having PTVs smaller than 20-25 cc. The calculated data from this study can be used in converting the SBRT protocols based on type 'a' and/or type 'b' algorithms for the most recent generation type 'c' algorithms, such as the AXB algorithm.

  15. Voxel-based dose calculation in radiocolloid therapy of cystic craniopharyngiomas

    NASA Astrophysics Data System (ADS)

    Treuer, H.; Hoevels, M.; Luyken, K.; Gierich, A.; Hellerbach, A.; Lachtermann, B.; Visser-Vandewalle, V.; Ruge, M.; Wirths, J.

    2015-02-01

    Very high doses are administered in radiocolloid therapy of cystic craniopharyngiomas. However individual dose planning is not common yet mainly due to insufficient image resolution. Our aim was to investigate whether currently available high-resolution image data can be used for voxel-based dose calculation for short-ranged β-emitters (32P,90Y,186Re) and to assess the achievable accuracy. We developed a convolution algorithm based on voxelized dose activity distributions and dose-spread kernels. Results for targets with 5-40 mm diameter were compared with high-resolution Monte Carlo calculations in spherical phantoms. Voxel size was 0.35 mm. Homogeneous volume and surface activity distributions were used. Dose-volume histograms of targets and shell structures were compared and γ index (dose tolerance 5%, distance to agreement 0.35 mm) was calculated for dose profiles along the principal axes. For volumetric activity distributions 89.3% ± 11.9% of all points passed the γ test (mean γ 0.53  ±  0.16). For surface distributions 33.6% ± 14.8% of all points passed the γ test (mean γ 2.01  ±  0.60). The shift of curves in dose-volume histograms was -1.7 Gy ± 7.6 Gy (-4.4 Gy ± 24.1 Gy for 186Re) in volumetric distributions and 46.3% ± 32.8% in surface distributions. The results show that individual dose planning for radiocolloid therapy of cystic craniopharyngiomas based on high-resolution voxelized image data is feasible and yields highly accurate results for volumetric activity distributions and reasonable dose estimates for surface distributions.

  16. Valganciclovir dosing using area under the curve calculations in pediatric solid organ transplant recipients.

    PubMed

    Villeneuve, David; Brothers, Adam; Harvey, Eric; Kemna, Mariska; Law, Yuk; Nemeth, Thomas; Gantt, Soren

    2013-02-01

    Pediatric valganciclovir dosing recommendations have not been extensively validated for prevention or treatment for CMV infection. As such, we performed a pharmacokinetic study to compare different valganciclovir dosing regimens and the potential benefits of individualized dose adjustments in children following organ transplantation. Ganciclovir AUCs were calculated from four plasma drug levels in pediatric SOT recipients aged six months through three yr receiving valganciclovir suspension by mouth. Of the 28 ganciclovir AUC calculations performed, 11 (39%) were outside the therapeutic target range of 40-60 mcg h/L leading to a valganciclovir dose adjustment. Current manufacturer-recommended dosing based on BSA and CrCl was estimated to result in therapeutic AUCs in fewer patients than the simple weight-based formula used in our institution (4 vs. 13; p = 0.017). An AUC calculation using only the two- and five-h measurements was strongly correlated with the AUC using all four time measurements (R(2) = 0.846; p < 0.001). A simple weight-based dosing approach gives a higher probability for therapeutic AUCs compared to the manufacturer-recommended dosing in pediatric transplant patients aged six months through three yr with normal renal function. An AUC calculated using two sample times might allow for fewer blood draws in the future. © 2012 John Wiley & Sons A/S.

  17. Model-based dose calculations for {sup 125}I lung brachytherapy

    SciTech Connect

    Sutherland, J. G. H.; Furutani, K. M.; Garces, Y. I.; Thomson, R. M.

    2012-07-15

    Purpose: Model-baseddose calculations (MBDCs) are performed using patient computed tomography (CT) data for patients treated with intraoperative {sup 125}I lung brachytherapy at the Mayo Clinic Rochester. Various metallic artifact correction and tissue assignment schemes are considered and their effects on dose distributions are studied. Dose distributions are compared to those calculated under TG-43 assumptions. Methods: Dose distributions for six patients are calculated using phantoms derived from patient CT data and the EGSnrc user-code BrachyDose. {sup 125}I (GE Healthcare/Oncura model 6711) seeds are fully modeled. Four metallic artifact correction schemes are applied to the CT data phantoms: (1) no correction, (2) a filtered back-projection on a modified virtual sinogram, (3) the reassignment of CT numbers above a threshold in the vicinity of the seeds, and (4) a combination of (2) and (3). Tissue assignment is based on voxel CT number and mass density is assigned using a CT number to mass density calibration. Three tissue assignment schemes with varying levels of detail (20, 11, and 5 tissues) are applied to metallic artifact corrected phantoms. Simulations are also performed under TG-43 assumptions, i.e., seeds in homogeneous water with no interseed attenuation. Results: Significant dose differences (up to 40% for D{sub 90}) are observed between uncorrected and metallic artifact corrected phantoms. For phantoms created with metallic artifact correction schemes (3) and (4), dose volume metrics are generally in good agreement (less than 2% differences for all patients) although there are significant local dose differences. The application of the three tissue assignment schemes results in differences of up to 8% for D{sub 90}; these differences vary between patients. Significant dose differences are seen between fully modeled and TG-43 calculations with TG-43 underestimating the dose (up to 36% in D{sub 90}) for larger volumes containing higher proportions of

  18. A comparison of Monte Carlo dose calculation denoising techniques

    NASA Astrophysics Data System (ADS)

    El Naqa, I.; Kawrakow, I.; Fippel, M.; Siebers, J. V.; Lindsay, P. E.; Wickerhauser, M. V.; Vicic, M.; Zakarian, K.; Kauffmann, N.; Deasy, J. O.

    2005-03-01

    Recent studies have demonstrated that Monte Carlo (MC) denoising techniques can reduce MC radiotherapy dose computation time significantly by preferentially eliminating statistical fluctuations ('noise') through smoothing. In this study, we compare new and previously published approaches to MC denoising, including 3D wavelet threshold denoising with sub-band adaptive thresholding, content adaptive mean-median-hybrid (CAMH) filtering, locally adaptive Savitzky-Golay curve-fitting (LASG), anisotropic diffusion (AD) and an iterative reduction of noise (IRON) method formulated as an optimization problem. Several challenging phantom and computed-tomography-based MC dose distributions with varying levels of noise formed the test set. Denoising effectiveness was measured in three ways: by improvements in the mean-square-error (MSE) with respect to a reference (low noise) dose distribution; by the maximum difference from the reference distribution and by the 'Van Dyk' pass/fail criteria of either adequate agreement with the reference image in low-gradient regions (within 2% in our case) or, in high-gradient regions, a distance-to-agreement-within-2% of less than 2 mm. Results varied significantly based on the dose test case: greater reductions in MSE were observed for the relatively smoother phantom-based dose distribution (up to a factor of 16 for the LASG algorithm); smaller reductions were seen for an intensity modulated radiation therapy (IMRT) head and neck case (typically, factors of 2-4). Although several algorithms reduced statistical noise for all test geometries, the LASG method had the best MSE reduction for three of the four test geometries, and performed the best for the Van Dyk criteria. However, the wavelet thresholding method performed better for the head and neck IMRT geometry and also decreased the maximum error more effectively than LASG. In almost all cases, the evaluated methods provided acceleration of MC results towards statistically more accurate

  19. HADOC: a computer code for calculation of external and inhalation doses from acute radionuclide releases

    SciTech Connect

    Strenge, D.L.; Peloquin, R.A.

    1981-04-01

    The computer code HADOC (Hanford Acute Dose Calculations) is described and instructions for its use are presented. The code calculates external dose from air submersion and inhalation doses following acute radionuclide releases. Atmospheric dispersion is calculated using the Hanford model with options to determine maximum conditions. Building wake effects and terrain variation may also be considered. Doses are calculated using dose conversion factor supplied in a data library. Doses are reported for one and fifty year dose commitment periods for the maximum individual and the regional population (within 50 miles). The fractional contribution to dose by radionuclide and exposure mode are also printed if requested.

  20. Dose uncertainties in photon pencil kernel calculations at off-axis positions

    SciTech Connect

    Olofsson, Joergen; Nyholm, Tufve; Ahnesjoe, Anders; Karlsson, Mikael

    2006-09-15

    The purpose of this study was to investigate the specific problems associated with photon dose calculations in points located at a distance from the central beam axis. These problems are related to laterally inhomogeneous energy fluence distributions and spectral variations causing a lateral shift in the beam quality, commonly referred to as off-axis softening (OAS). We have examined how the dose calculation accuracy is affected when enabling and disabling explicit modeling of these two effects. The calculations were performed using a pencil kernel dose calculation algorithm that facilitates modeling of OAS through laterally varying kernel properties. Together with a multisource model that provides the lateral energy fluence distribution this generates the total dose output, i.e., the dose per monitor unit, at an arbitrary point of interest. The dose calculation accuracy was evaluated through comparisons with 264 measured output factors acquired at 5, 10, and 20 cm depth in four different megavoltage photon beams. The measurements were performed up to 18 cm from the central beam axis, inside square fields of varying size and position. The results show that calculations including explicit modeling of OAS were considerably more accurate, up to 4%, than those ignoring the lateral beam quality shift. The deviations caused by simplified head scatter modeling were smaller, but near the field edges additional errors close to 1% occurred. When enabling full physics modeling in the dose calculations the deviations display a mean value of -0.1%, a standard deviation of 0.7%, and a maximum deviation of -2.2%. Finally, the results were analyzed in order to quantify and model the inherent uncertainties that are present when leaving the central beam axis. The off-axis uncertainty component showed to increase with both off-axis distance and depth, reaching 1% (1 standard deviation) at 20 cm depth.

  1. A general model for stray dose calculation of static and intensity-modulated photon radiation

    SciTech Connect

    Hauri, Pascal Schneider, Uwe; Hälg, Roger A.; Besserer, Jürgen

    2016-04-15

    Purpose: There is an increasing number of cancer survivors who are at risk of developing late effects caused by ionizing radiation such as induction of second tumors. Hence, the determination of out-of-field dose for a particular treatment plan in the patient’s anatomy is of great importance. The purpose of this study was to analytically model the stray dose according to its three major components. Methods: For patient scatter, a mechanistic model was developed. For collimator scatter and head leakage, an empirical approach was used. The models utilize a nominal beam energy of 6 MeV to describe two linear accelerator types of a single vendor. The parameters of the models were adjusted using ionization chamber measurements registering total absorbed dose in simple geometries. Whole-body dose measurements using thermoluminescent dosimeters in an anthropomorphic phantom for static and intensity-modulated treatment plans were compared to the 3D out-of-field dose distributions calculated by a combined model. Results: The absolute mean difference between the whole-body predicted and the measured out-of-field dose of four different plans was 11% with a maximum difference below 44%. Computation time of 36 000 dose points for one field was around 30 s. By combining the model-calculated stray dose with the treatment planning system dose, the whole-body dose distribution can be viewed in the treatment planning system. Conclusions: The results suggest that the model is accurate, fast and can be used for a wide range of treatment modalities to calculate the whole-body dose distribution for clinical analysis. For similar energy spectra, the mechanistic patient scatter model can be used independently of treatment machine or beam orientation.

  2. Calculation of the absorbed dose and dose equivalent induced by medium energy neutrons and protons and comparison with experiment

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Bishop, B. L.

    1972-01-01

    Monte Carlo calculations have been carried out to determine the absorbed dose and dose equivalent for 592-MeV protons incident on a cylindrical phantom and for neutrons from 580-MeV proton-Be collisions incident on a semi-infinite phantom. For both configurations, the calculated depth dependence of the absorbed dose is in good agreement with experimental data.

  3. SU-E-T-161: Evaluation of Dose Calculation Based On Cone-Beam CT

    SciTech Connect

    Abe, T; Nakazawa, T; Saitou, Y; Nakata, A; Yano, M; Tateoka, K; Fujimoto, K; Sakata, K

    2014-06-01

    Purpose: The purpose of this study is to convert pixel values in cone-beam CT (CBCT) using histograms of pixel values in the simulation CT (sim-CT) and the CBCT images and to evaluate the accuracy of dose calculation based on the CBCT. Methods: The sim-CT and CBCT images immediately before the treatment of 10 prostate cancer patients were acquired. Because of insufficient calibration of the pixel values in the CBCT, it is difficult to be directly used for dose calculation. The pixel values in the CBCT images were converted using an in-house program. A 7 fields treatment plans (original plan) created on the sim-CT images were applied to the CBCT images and the dose distributions were re-calculated with same monitor units (MUs). These prescription doses were compared with those of original plans. Results: In the results of the pixel values conversion in the CBCT images,the mean differences of pixel values for the prostate,subcutaneous adipose, muscle and right-femur were −10.78±34.60, 11.78±41.06, 29.49±36.99 and 0.14±31.15 respectively. In the results of the calculated doses, the mean differences of prescription doses for 7 fields were 4.13±0.95%, 0.34±0.86%, −0.05±0.55%, 1.35±0.98%, 1.77±0.56%, 0.89±0.69% and 1.69±0.71% respectively and as a whole, the difference of prescription dose was 1.54±0.4%. Conclusion: The dose calculation on the CBCT images achieve an accuracy of <2% by using this pixel values conversion program. This may enable implementation of efficient adaptive radiotherapy.

  4. Measurements and calculations of the absorbed dose distribution around a 60Co source.

    PubMed

    Tiourina, T B; Dries, W J; van der Linden, P M

    1995-05-01

    The data from Meisberger et al. [Radiology 90, 953-957 (1968)] are often used as a basis for dose calculations in brachytherapy. In order to describe the absorbed dose in water around a brachytherapy point source, Meisberger provided a polynomial fit for different isotopes taking into account the effect of attenuation and scattering. The validity of the Meisberger coefficients is restricted to distances up to 10 cm from the source, which is regarded to be satisfactory for most brachytherapy applications. However, for more distant organs it may lead to errors in calculated absorbed dose. For this reason dose measurements have been performed in air and in water around a high activity 60Co source used in high dose rate brachytherapy. Measurements were carried out to distances of 20 cm, using ionization chambers. These data show that at a distance of about 15 cm the amount of scattered radiation virtually equals the amount of primary radiation. This emphasizes the contribution of scattered radiation to the dose in healthy tissue far from the target volume, even with relatively high energy photon radiation of 60Co. It is also shown that the Meisberger data as well as the approach of Van Kleffens and Star [Int. J. Radiat. Oncol. Phys. 5, 557-563 (1979)] lead to significant errors in absorbed dose between distances of 10 and 20 cm from the source. In addition to these measurements, the Monte Carlo code has been used to calculate separately primary dose and scattered dose from a cobalt point source. The calculated results agree with the experimental data within 1% for a most distant dose scoring region.

  5. Fast Pencil Beam Dose Calculation for Proton Therapy Using a Double-Gaussian Beam Model

    PubMed Central

    da Silva, Joakim; Ansorge, Richard; Jena, Rajesh

    2015-01-01

    The highly conformal dose distributions produced by scanned proton pencil beams (PBs) are more sensitive to motion and anatomical changes than those produced by conventional radiotherapy. The ability to calculate the dose in real-time as it is being delivered would enable, for example, online dose monitoring, and is therefore highly desirable. We have previously described an implementation of a PB algorithm running on graphics processing units (GPUs) intended specifically for online dose calculation. Here, we present an extension to the dose calculation engine employing a double-Gaussian beam model to better account for the low-dose halo. To the best of our knowledge, it is the first such PB algorithm for proton therapy running on a GPU. We employ two different parameterizations for the halo dose, one describing the distribution of secondary particles from nuclear interactions found in the literature and one relying on directly fitting the model to Monte Carlo simulations of PBs in water. Despite the large width of the halo contribution, we show how in either case the second Gaussian can be included while prolonging the calculation of the investigated plans by no more than 16%, or the calculation of the most time-consuming energy layers by about 25%. Furthermore, the calculation time is relatively unaffected by the parameterization used, which suggests that these results should hold also for different systems. Finally, since the implementation is based on an algorithm employed by a commercial treatment planning system, it is expected that with adequate tuning, it should be able to reproduce the halo dose from a general beam line with sufficient accuracy. PMID:26734567

  6. Fast Pencil Beam Dose Calculation for Proton Therapy Using a Double-Gaussian Beam Model.

    PubMed

    da Silva, Joakim; Ansorge, Richard; Jena, Rajesh

    2015-01-01

    The highly conformal dose distributions produced by scanned proton pencil beams (PBs) are more sensitive to motion and anatomical changes than those produced by conventional radiotherapy. The ability to calculate the dose in real-time as it is being delivered would enable, for example, online dose monitoring, and is therefore highly desirable. We have previously described an implementation of a PB algorithm running on graphics processing units (GPUs) intended specifically for online dose calculation. Here, we present an extension to the dose calculation engine employing a double-Gaussian beam model to better account for the low-dose halo. To the best of our knowledge, it is the first such PB algorithm for proton therapy running on a GPU. We employ two different parameterizations for the halo dose, one describing the distribution of secondary particles from nuclear interactions found in the literature and one relying on directly fitting the model to Monte Carlo simulations of PBs in water. Despite the large width of the halo contribution, we show how in either case the second Gaussian can be included while prolonging the calculation of the investigated plans by no more than 16%, or the calculation of the most time-consuming energy layers by about 25%. Furthermore, the calculation time is relatively unaffected by the parameterization used, which suggests that these results should hold also for different systems. Finally, since the implementation is based on an algorithm employed by a commercial treatment planning system, it is expected that with adequate tuning, it should be able to reproduce the halo dose from a general beam line with sufficient accuracy.

  7. Evaluation of dose calculations accuracy of a commercial treatment planning system for the head and neck region in radiotherapy.

    PubMed

    Bahreyni Toossi, Mohammad Taghi; Farhood, Bagher; Soleymanifard, Shokouhozaman

    2017-01-01

    The objective was to quantify dose calculation accuracy of TiGRT TPS for head and neck region in radiotherapy. In radiotherapy of head and neck cancers, treatment planning is difficult, due to the complex shape of target volumes and also to spare critical and normal structures. These organs are often very near to the target volumes and have low tolerance to radiation. In this regard, dose calculation accuracy of treatment planning system (TPS) must be high enough. Thermoluminescent dosimeter-100 (TLD-100) chips were used within RANDO phantom for dose measurement. TiGRT TPS was also applied for dose calculation. Finally, difference between measured doses (Dmeas) and calculated doses (Dcalc) was obtained to quantify the dose calculation accuracy of the TPS at head and neck region. For in-field regions, in some points, the TiGRT TPS overestimated the dose compared to the measurements and for other points underestimated the dose. For outside field regions, the TiGRT TPS underestimated the dose compared to the measurements. For most points, the difference values between Dcalc and Dmeas for the in-field and outside field regions were less than 5% and 40%, respectively. Due to the sensitive structures to radiation in the head and neck region, the dose calculation accuracy of TPSs should be sufficient. According to the results of this study, it is concluded that the accuracy of dose calculation of TiGRT TPS is enough for in-field and out of field regions.

  8. Monte Carlo prompt dose calculations for the National Ingition Facility

    SciTech Connect

    Latkowski, J.F.; Phillips, T.W.

    1997-01-01

    During peak operation, the National Ignition Facility (NIF) will conduct as many as 600 experiments per year and attain deuterium- tritium fusion yields as high as 1200 MJ/yr. The radiation effective dose equivalent (EDE) to workers is limited to an average of 03 mSv/yr (30 mrem/yr) in occupied areas of the facility. Laboratory personnel determined located outside the facility will receive EDEs <= 0.5 mSv/yr (<= 50 mrem/yr). The total annual occupational EDE for the facility will be maintained at <= 0.1 person-Sv/yr (<= 10 person- rem/yr). To ensure that prompt EDEs meet these limits, three- dimensional Monte Carlo calculations have been completed.

  9. Postimplant Dosimetry Using a Monte Carlo Dose Calculation Engine: A New Clinical Standard

    SciTech Connect

    Carrier, Jean-Francois . E-mail: jean-francois.carrier.chum@ssss.gouv.qc.ca; D'Amours, Michel; Verhaegen, Frank; Reniers, Brigitte; Martin, Andre-Guy; Vigneault, Eric; Beaulieu, Luc

    2007-07-15

    Purpose: To use the Monte Carlo (MC) method as a dose calculation engine for postimplant dosimetry. To compare the results with clinically approved data for a sample of 28 patients. Two effects not taken into account by the clinical calculation, interseed attenuation and tissue composition, are being specifically investigated. Methods and Materials: An automated MC program was developed. The dose distributions were calculated for the target volume and organs at risk (OAR) for 28 patients. Additional MC techniques were developed to focus specifically on the interseed attenuation and tissue effects. Results: For the clinical target volume (CTV) D{sub 90} parameter, the mean difference between the clinical technique and the complete MC method is 10.7 Gy, with cases reaching up to 17 Gy. For all cases, the clinical technique overestimates the deposited dose in the CTV. This overestimation is mainly from a combination of two effects: the interseed attenuation (average, 6.8 Gy) and tissue composition (average, 4.1 Gy). The deposited dose in the OARs is also overestimated in the clinical calculation. Conclusions: The clinical technique systematically overestimates the deposited dose in the prostate and in the OARs. To reduce this systematic inaccuracy, the MC method should be considered in establishing a new standard for clinical postimplant dosimetry and dose-outcome studies in a near future.

  10. Independent calculation of dose distributions for helical tomotherapy using a conventional treatment planning system

    SciTech Connect

    Klüter, Sebastian Schubert, Kai; Lissner, Steffen; Sterzing, Florian; Oetzel, Dieter; Debus, Jürgen; Schlegel, Wolfgang; Oelfke, Uwe; Nill, Simeon

    2014-08-15

    Purpose: The dosimetric verification of treatment plans in helical tomotherapy usually is carried out via verification measurements. In this study, a method for independent dose calculation of tomotherapy treatment plans is presented, that uses a conventional treatment planning system with a pencil kernel dose calculation algorithm for generation of verification dose distributions based on patient CT data. Methods: A pencil beam algorithm that directly uses measured beam data was configured for dose calculation for a tomotherapy machine. Tomotherapy treatment plans were converted into a format readable by an in-house treatment planning system by assigning each projection to one static treatment field and shifting the calculation isocenter for each field in order to account for the couch movement. The modulation of the fluence for each projection is read out of the delivery sinogram, and with the kernel-based dose calculation, this information can directly be used for dose calculation without the need for decomposition of the sinogram. The sinogram values are only corrected for leaf output and leaf latency. Using the converted treatment plans, dose was recalculated with the independent treatment planning system. Multiple treatment plans ranging from simple static fields to real patient treatment plans were calculated using the new approach and either compared to actual measurements or the 3D dose distribution calculated by the tomotherapy treatment planning system. In addition, dose–volume histograms were calculated for the patient plans. Results: Except for minor deviations at the maximum field size, the pencil beam dose calculation for static beams agreed with measurements in a water tank within 2%/2 mm. A mean deviation to point dose measurements in the cheese phantom of 0.89% ± 0.81% was found for unmodulated helical plans. A mean voxel-based deviation of −0.67% ± 1.11% for all voxels in the respective high dose region (dose values >80%), and a mean local

  11. SU-E-T-464: Implementation and Validation of 4D Acuros XB Dose Calculations

    SciTech Connect

    Thomas, S; Yuen, C; Huang, V; Milette, M; Teke, T

    2015-06-15

    Purpose: In this abstract we implement and validate a 4D VMAT Acuros XB dose calculation using Gafchromic film. Special attention is paid to the physical material assignment in the CT dataset and to reported dose to water and dose to medium. Methods: A QUASAR phantom with a 3 cm sinusoidal tumor motion and 5 second period was scanned using 4D computed tomography. A CT was also obtained of the static QUASAR phantom with the tumor at the central position. A VMAT plan was created on the average CT dataset and was delivered on a Varian TrueBeam linear accelerator. The trajectory log file from this treatment was acquired and used to create 10 VMAT subplans (one for each portion of the breathing cycle). Motion for each subplan was simulated by moving the beam isocentre in the superior/inferior direction in the Treatment Planning System on the static CT scan. The 10 plans were calculated (both dose to medium and dose to water) and summed for 1) the original HU values from the static CT scan and 2) the correct physical material assignment in the CT dataset. To acquire a breathing phase synchronized film measurements the trajectory log was used to create a VMAT delivery plan which includes dynamic couch motion using the Developer Mode. Three different treatment start phases were investigated (mid inhalation, full inhalation and full exhalation). Results: For each scenario the coronal dose distributions were measured using Gafchromic film and compared to the corresponding calculation with Film QA Pro Software using a Gamma test with a 3%/3mm distance to agreement criteria. Good agreement was found between calculation and measurement. No statistically significant difference in agreement was found between calculations to original HU values vs calculations to over-written (material-assigned) HU values. Conclusion: The investigated 4D dose calculation method agrees well with measurement.

  12. SU-E-I-28: Evaluating the Organ Dose From Computed Tomography Using Monte Carlo Calculations

    SciTech Connect

    Ono, T; Araki, F

    2014-06-01

    Purpose: To evaluate organ doses from computed tomography (CT) using Monte Carlo (MC) calculations. Methods: A Philips Brilliance CT scanner (64 slice) was simulated using the GMctdospp (IMPS, Germany) based on the EGSnrc user code. The X-ray spectra and a bowtie filter for MC simulations were determined to coincide with measurements of half-value layer (HVL) and off-center ratio (OCR) profile in air. The MC dose was calibrated from absorbed dose measurements using a Farmer chamber and a cylindrical water phantom. The dose distribution from CT was calculated using patient CT images and organ doses were evaluated from dose volume histograms. Results: The HVLs of Al at 80, 100, and 120 kV were 6.3, 7.7, and 8.7 mm, respectively. The calculated HVLs agreed with measurements within 0.3%. The calculated and measured OCR profiles agreed within 3%. For adult head scans (CTDIvol) =51.4 mGy), mean doses for brain stem, eye, and eye lens were 23.2, 34.2, and 37.6 mGy, respectively. For pediatric head scans (CTDIvol =35.6 mGy), mean doses for brain stem, eye, and eye lens were 19.3, 24.5, and 26.8 mGy, respectively. For adult chest scans (CTDIvol=19.0 mGy), mean doses for lung, heart, and spinal cord were 21.1, 22.0, and 15.5 mGy, respectively. For adult abdominal scans (CTDIvol=14.4 mGy), the mean doses for kidney, liver, pancreas, spleen, and spinal cord were 17.4, 16.5, 16.8, 16.8, and 13.1 mGy, respectively. For pediatric abdominal scans (CTDIvol=6.76 mGy), mean doses for kidney, liver, pancreas, spleen, and spinal cord were 8.24, 8.90, 8.17, 8.31, and 6.73 mGy, respectively. In head scan, organ doses were considerably different from CTDIvol values. Conclusion: MC dose distributions calculated by using patient CT images are useful to evaluate organ doses absorbed to individual patients.

  13. A pre–postintervention study to evaluate the impact of dose calculators on the accuracy of gentamicin and vancomycin initial doses

    PubMed Central

    Hamad, Anas; Cavell, Gillian; Hinton, James; Wade, Paul; Whittlesea, Cate

    2015-01-01

    Objectives Gentamicin and vancomycin are narrow-therapeutic-index antibiotics with potential for high toxicity requiring dose individualisation and continuous monitoring. Clinical decision support (CDS) tools have been effective in reducing gentamicin and vancomycin dosing errors. Online dose calculators for these drugs were implemented in a London National Health Service hospital. This study aimed to evaluate the impact of these calculators on the accuracy of gentamicin and vancomycin initial doses. Methods The study used a pre–postintervention design. Data were collected using electronic patient records and paper notes. Random samples of gentamicin and vancomycin initial doses administered during the 8 months before implementation of the calculators were assessed retrospectively against hospital guidelines. Following implementation of the calculators, doses were assessed prospectively. Any gentamicin dose not within ±10% and any vancomycin dose not within ±20% of the guideline-recommended dose were considered incorrect. Results The intranet calculator pages were visited 721 times (gentamicin=333; vancomycin=388) during the 2-month period following the calculators’ implementation. Gentamicin dose errors fell from 61.5% (120/195) to 44.2% (95/215), p<0.001. Incorrect vancomycin loading doses fell from 58.1% (90/155) to 32.4% (46/142), p<0.001. Incorrect vancomycin first maintenance doses fell from 55.5% (86/155) to 33.1% (47/142), p<0.001. Loading and first maintenance vancomycin doses were both incorrect in 37.4% (58/155) of patients before and 13.4% (19/142) after calculator implementation, p<0.001. Conclusions This study suggests that gentamicin and vancomycin dose calculators significantly improved the prescribing of initial doses of these agents. Therefore, healthcare organisations should consider using such CDS tools to support the prescribing of these high-risk drugs. PMID:26044758

  14. Immunotoxicity of perfluorinated alkylates: calculation of benchmark doses based on serum concentrations in children.

    PubMed

    Grandjean, Philippe; Budtz-Jørgensen, Esben

    2013-04-19

    Immune suppression may be a critical effect associated with exposure to perfluorinated compounds (PFCs), as indicated by recent data on vaccine antibody responses in children. Therefore, this information may be crucial when deciding on exposure limits. Results obtained from follow-up of a Faroese birth cohort were used. Serum-PFC concentrations were measured at age 5 years, and serum antibody concentrations against tetanus and diphtheria toxoids were obtained at age 7 years. Benchmark dose results were calculated in terms of serum concentrations for 431 children with complete data using linear and logarithmic curves, and sensitivity analyses were included to explore the impact of the low-dose curve shape. Under different linear assumptions regarding dose-dependence of the effects, benchmark dose levels were about 1.3 ng/mL serum for perfluorooctane sulfonic acid and 0.3 ng/mL serum for perfluorooctanoic acid at a benchmark response of 5%. These results are below average serum concentrations reported in recent population studies. Even lower results were obtained using logarithmic dose-response curves. Assumption of no effect below the lowest observed dose resulted in higher benchmark dose results, as did a benchmark response of 10%. The benchmark dose results obtained are in accordance with recent data on toxicity in experimental models. When the results are converted to approximate exposure limits for drinking water, current limits appear to be several hundred fold too high. Current drinking water limits therefore need to be reconsidered.

  15. Calculation of patient effective dose and scattered dose for dental mobile fluoroscopic equipment: application of the Monte Carlo simulation.

    PubMed

    Lee, Boram; Lee, Jungseok; Kang, Sangwon; Cho, Hyelim; Shin, Gwisoon; Lee, Jeong-Woo; Choi, Jonghak

    2013-01-01

    The objective of this study was to evaluate the patient effective dose and scattered dose from recently developed dental mobile equipment in Korea. The MCNPX 2.6 (Los Alamos National Laboratory, USA) was used in a Monte Carlo simulation to calculate both the effective and scattered doses. The MCNPX code was constructed identically as in the general use of equipment and the effective dose and scattered dose were calculated using the KTMAN-2 digital phantom. The effective dose was calculated as 906 μSv. The equivalent doses per organ were calculated via the MCNPX code, and were 32 174 and 19 μSv in the salivary gland and oesophagus, respectively. The scattered dose of 22.5-32.6 μSv of the tube side at 25 cm from the centre in anterior and posterior planes was measured as 1.4-3 times higher than the detector side of 10.5-16.0 μSv.

  16. Recommended environmental dose calculation methods and Hanford-specific parameters

    SciTech Connect

    Schreckhise, R.G.; Rhoads, K.; Napier, B.A.; Ramsdell, J.V. ); Davis, J.S. )

    1993-03-01

    This document was developed to support the Hanford Environmental Dose overview Panel (HEDOP). The Panel is responsible for reviewing all assessments of potential doses received by humans and other biota resulting from the actual or possible environmental releases of radioactive and other hazardous materials from facilities and/or operations belonging to the US Department of Energy on the Hanford Site in south-central Washington. This document serves as a guide to be used for developing estimates of potential radiation doses, or other measures of risk or health impacts, to people and other biota in the environs on and around the Hanford Site. It provides information to develop technically sound estimates of exposure (i.e., potential or actual) to humans or other biotic receptors that could result from the environmental transport of potentially harmful materials that have been, or could be, released from Hanford operations or facilities. Parameter values and information that are specific to the Hanford environs as well as other supporting material are included in this document.

  17. Effects of energy spectrum on dose distribution calculations for high energy electron beams.

    PubMed

    Toutaoui, Abdelkader; Khelassi-Toutaoui, Nadia; Brahimi, Zakia; Chami, Ahmed Chafik

    2009-01-01

    In an early work we have demonstrated the possibility of using Monte Carlo generated pencil beams for 3D electron beam dose calculations. However, in this model the electron beam was considered as monoenergetic and the effects of the energy spectrum were taken into account by correction factors, derived from measuring central-axis depth dose curves. In the present model, the electron beam is considered as polyenergetic and the pencil beam distribution of a clinical electron beam, of a given nominal energy, is represented as a linear combination of Monte Carlo monoenergetic pencil beams. The coefficients of the linear combination describe the energy spectrum of the clinical electron beam, and are chosen to provide the best-fit between the calculated and measured central axis depth dose, in water. The energy spectrum is determined by the constrained least square method. The angular distribution of the clinical electron beam is determined by in-air penumbra measurements. The predictions of this algorithm agree very well with the measurements in the region near the surface, and the discrepancies between the measured and calculated dose distributions, behind 3D heterogeneities, are reduced to less than 10%. We have demonstrated a new algorithm for 3D electron beam dose calculations, which takes into account the energy spectra. Results indicate that the use of this algorithm leads to a better modeling of dose distributions downstream, from complex heterogeneities.

  18. Effects of energy spectrum on dose distribution calculations for high energy electron beams

    PubMed Central

    Toutaoui, Abdelkader; Khelassi-Toutaoui, Nadia; Brahimi, Zakia; Chami, Ahmed Chafik

    2009-01-01

    In an early work we have demonstrated the possibility of using Monte Carlo generated pencil beams for 3D electron beam dose calculations. However, in this model the electron beam was considered as monoenergetic and the effects of the energy spectrum were taken into account by correction factors, derived from measuring central-axis depth dose curves. In the present model, the electron beam is considered as polyenergetic and the pencil beam distribution of a clinical electron beam, of a given nominal energy, is represented as a linear combination of Monte Carlo monoenergetic pencil beams. The coefficients of the linear combination describe the energy spectrum of the clinical electron beam, and are chosen to provide the best-fit between the calculated and measured central axis depth dose, in water. The energy spectrum is determined by the constrained least square method. The angular distribution of the clinical electron beam is determined by in-air penumbra measurements. The predictions of this algorithm agree very well with the measurements in the region near the surface, and the discrepancies between the measured and calculated dose distributions, behind 3D heterogeneities, are reduced to less than 10%. We have demonstrated a new algorithm for 3D electron beam dose calculations, which takes into account the energy spectra. Results indicate that the use of this algorithm leads to a better modeling of dose distributions downstream, from complex heterogeneities. PMID:20126560

  19. Application of dose kernel calculation using a simplified Monte Carlo method to treatment plan for scanned proton beams.

    PubMed

    Mizutani, Shohei; Takada, Yoshihisa; Kohno, Ryosuke; Hotta, Kenji; Tansho, Ryohei; Akimoto, Tetsuo

    2016-03-01

    Full Monte Carlo (FMC) calculation of dose distribution has been recognized to have superior accuracy, compared with the pencil beam algorithm (PBA). However, since the FMC methods require long calculation time, it is difficult to apply them to routine treatment planning at present. In order to improve the situation, a simplified Monte Carlo (SMC) method has been introduced to the dose kernel calculation applicable to dose optimization procedure for the proton pencil beam scanning. We have evaluated accuracy of the SMC calculation by comparing a result of the dose kernel calculation using the SMC method with that using the FMC method in an inhomogeneous phantom. The dose distribution obtained by the SMC method was in good agreement with that obtained by the FMC method. To assess the usefulness of SMC calculation in clinical situations, we have compared results of the dose calculation using the SMC with those using the PBA method for three clinical cases of tumor treatment. The dose distributions calculated with the PBA dose kernels appear to be homogeneous in the planning target volumes (PTVs). In practice, the dose distributions calculated with the SMC dose kernels with the spot weights optimized with the PBA method show largely inhomogeneous dose distributions in the PTVs, while those with the spot weights optimized with the SMC method have moderately homogeneous distributions in the PTVs. Calculation using the SMC method is faster than that using the GEANT4 by three orders of magnitude. In addition, the graphic processing unit (GPU) boosts the calculation speed by 13 times for the treatment planning using the SMC method. Thence, the SMC method will be applicable to routine clinical treatment planning for reproduction of the complex dose distribution more accurately than the PBA method in a reasonably short time by use of the GPU-based calculation engine. PACS number(s): 87.55.Gh.

  20. Application of dose kernel calculation using a simplified Monte Carlo method to treatment plan for scanned proton beams.

    PubMed

    Mizutani, Shohei; Takada, Yoshihisa; Kohno, Ryosuke; Hotta, Kenji; Tansho, Ryohei; Akimoto, Tetsuo

    2016-03-08

    Full Monte Carlo (FMC) calculation of dose distribution has been recognized to have superior accuracy, compared with the pencil beam algorithm (PBA). However, since the FMC methods require long calculation time, it is difficult to apply them to routine treatment planning at present. In order to improve the situation, a simplified Monte Carlo (SMC) method has been introduced to the dose kernel calculation applicable to dose optimization procedure for the proton pencil beam scanning. We have evaluated accuracy of the SMC calculation by comparing a result of the dose kernel calculation using the SMC method with that using the FMC method in an inhomogeneous phantom. The dose distribution obtained by the SMC method was in good agreement with that obtained by the FMC method. To assess the usefulness of SMC calculation in clinical situations, we have compared results of the dose calculation using the SMC with those using the PBA method for three clinical cases of tumor treatment. The dose distributions calculated with the PBA dose kernels appear to be homogeneous in the planning target volumes (PTVs). In practice, the dose distributions calculated with the SMC dose kernels with the spot weights optimized with the PBA method show largely inhomogeneous dose distributions in the PTVs, while those with the spot weights optimized with the SMC method have moderately homogeneous distributions in the PTVs. Calculation using the SMC method is faster than that using the GEANT4 by three orders of magnitude. In addition, the graphic processing unit (GPU) boosts the calculation speed by 13 times for the treatment planning using the SMC method. Thence, the SMC method will be applicable to routine clinical treatment planning for reproduction of the complex dose distribution more accurately than the PBA method in a reasonably short time by use of the GPU-based calculation engine.

  1. Radiation dose calculations for CT scans with tube current modulation using the approach to equilibrium function

    SciTech Connect

    Li, Xinhua; Zhang, Da; Liu, Bob

    2014-11-01

    Purpose: The approach to equilibrium function has been used previously to calculate the radiation dose to a shift-invariant medium undergoing CT scans with constant tube current [Li, Zhang, and Liu, Med. Phys. 39, 5347–5352 (2012)]. The authors have adapted this method to CT scans with tube current modulation (TCM). Methods: For a scan with variable tube current, the scan range was divided into multiple subscan ranges, each with a nearly constant tube current. Then the dose calculation algorithm presented previously was applied. For a clinical CT scan series that presented tube current per slice, the authors adopted an efficient approach that computed the longitudinal dose distribution for one scan length equal to the slice thickness, which center was at z = 0. The cumulative dose at a specific point was a summation of the contributions from all slices and the overscan. Results: The dose calculations performed for a total of four constant and variable tube current distributions agreed with the published results of Dixon and Boone [Med. Phys. 40, 111920 (14pp.) (2013)]. For an abdomen/pelvis scan of an anthropomorphic phantom (model ATOM 701-B, CIRS, Inc., VA) on a GE Lightspeed Pro 16 scanner with 120 kV, N × T = 20 mm, pitch = 1.375, z axis current modulation (auto mA), and angular current modulation (smart mA), dose measurements were performed using two lines of optically stimulated luminescence dosimeters, one of which was placed near the phantom center and the other on the surface. Dose calculations were performed on the central and peripheral axes of a cylinder containing water, whose cross-sectional mass was about equal to that of the ATOM phantom in its abdominal region, and the results agreed with the measurements within 28.4%. Conclusions: The described method provides an effective approach that takes into account subject size, scan length, and constant or variable tube current to evaluate CT dose to a shift-invariant medium. For a clinical CT scan

  2. SU-E-T-27: A Tool for Routine Quality Assurance of Radiotherapy Dose Calculation Software

    SciTech Connect

    Popple, R; Cardan, R; Duan, J; Wu, X; Shen, S; Brezovich, I

    2014-06-01

    Purpose: Dose calculation software is thoroughly evaluated when it is commissioned; however, evaluation of periodic software updates is typically limited in scope due to staffing constraints and the need to quickly return the treatment planning system to clinical service. We developed a tool for quickly and comprehensively testing and documenting dose calculation software against measured data. Methods: A tool was developed using MatLab (The MathWorks, Natick, MA) for evaluation of dose calculation algorithms against measured data. Inputs to the tool are measured data, reference DICOM RT PLAN files describing the measurements, and dose calculations in DICOM format. The tool consists of a collection of extensible modules that can perform analysis of point dose, depth dose curves, and profiles using dose difference, distance-to-agreement, and the gamma-index. Each module generates a report subsection that is incorporated into a master template, which is converted to final form in portable document format (PDF). Results: After each change to the treatment planning system, a report can be generated in approximately 90 minutes. The tool has been in use for more than 5 years, spanning 5 versions of the eMC and 4 versions of the AAA. We have detected changes to the algorithms that affected clinical practice once during this period. Conclusion: Our tool provides an efficient method for quality assurance of dose calculation software, providing a complete set of tests for an update. Future work includes the addition of plan level tests, allowing incorporation of, for example, the TG-119 test suite for IMRT, and integration with the treatment planning system via an application programming interface. Integration with the planning system will permit fully-automated testing and reporting at scheduled intervals.

  3. HDRMC, an accelerated Monte Carlo dose calculator for high dose rate brachytherapy with CT-compatible applicators

    SciTech Connect

    Chibani, Omar C-M Ma, Charlie

    2014-05-15

    Purpose: To present a new accelerated Monte Carlo code for CT-based dose calculations in high dose rate (HDR) brachytherapy. The new code (HDRMC) accounts for both tissue and nontissue heterogeneities (applicator and contrast medium). Methods: HDRMC uses a fast ray-tracing technique and detailed physics algorithms to transport photons through a 3D mesh of voxels representing the patient anatomy with applicator and contrast medium included. A precalculated phase space file for the{sup 192}Ir source is used as source term. HDRM is calibrated to calculated absolute dose for real plans. A postprocessing technique is used to include the exact density and composition of nontissue heterogeneities in the 3D phantom. Dwell positions and angular orientations of the source are reconstructed using data from the treatment planning system (TPS). Structure contours are also imported from the TPS to recalculate dose-volume histograms. Results: HDRMC was first benchmarked against the MCNP5 code for a single source in homogenous water and for a loaded gynecologic applicator in water. The accuracy of the voxel-based applicator model used in HDRMC was also verified by comparing 3D dose distributions and dose-volume parameters obtained using 1-mm{sup 3} versus 2-mm{sup 3} phantom resolutions. HDRMC can calculate the 3D dose distribution for a typical HDR cervix case with 2-mm resolution in 5 min on a single CPU. Examples of heterogeneity effects for two clinical cases (cervix and esophagus) were demonstrated using HDRMC. The neglect of tissue heterogeneity for the esophageal case leads to the overestimate of CTV D90, CTV D100, and spinal cord maximum dose by 3.2%, 3.9%, and 3.6%, respectively. Conclusions: A fast Monte Carlo code for CT-based dose calculations which does not require a prebuilt applicator model is developed for those HDR brachytherapy treatments that use CT-compatible applicators. Tissue and nontissue heterogeneities should be taken into account in modern HDR

  4. Dose Rate Calculations for the 2-MCO/2-DHLW Waste Package

    SciTech Connect

    G. Radulescu

    2000-10-03

    The objective of this calculation is to determine the dose rates on the external surfaces of the waste package (WP) containing two Hanford defense high-level waste (DHLW) glass canisters and two Hanford multi-canister overpacks (MCO). Each MCO is loaded with the N Reactor spent nuclear fuel (SNF). The information provided by the sketches attached to this calculation is that of the potential design for the WP type considered in this calculation. The scope of this calculation is limited to reporting dose rates averaged over segments of the WP radial and axial surfaces and of surfaces 1 m and 2 m from the WP. The results of this calculation will be used to assess the shielding performance of the 2-MC012-DHLW WP engineering design.

  5. Analysis of nominal dose-effect data with an advanced programmable calculator.

    PubMed

    Baird, J B; Balster, R L

    1979-01-01

    A step by step procedure is described for programming the method of Bliss for analyzing nominal dose-effect data for use with an advanced programmable calculator. A comparison of the results using this method with the results of others shows a good correspondence.

  6. Comparisons of TORT and MCNP dose calculations for BNCT treatment planning

    SciTech Connect

    Ingersol, D.T.; Slater, C.O.; Williams, L.R.; Redmond, E.L., II; Zamenhof, R.G.

    1996-12-31

    The relative merit of using a deterministic code to calculate dose distributions for BNCT applications were examined. The TORT discrete deterministic ordinated code was used in comparison to MCNP4A to calculate dose distributions for BNCT applications

  7. NOTE: Biological dose calculation with Monte Carlo physics simulation for heavy-ion radiotherapy

    NASA Astrophysics Data System (ADS)

    Kase, Yuki; Kanematsu, Nobuyuki; Kanai, Tatsuaki; Matsufuji, Naruhiro

    2006-12-01

    Treatment planning of heavy-ion radiotherapy involves predictive calculation of not only the physical dose but also the biological dose in a patient body. The biological dose is defined as the product of the physical dose and the relative biological effectiveness (RBE). In carbon-ion radiotherapy at National Institute of Radiological Sciences, the RBE value has been defined as the ratio of the 10% survival dose of 200 kVp x-rays to that of the radiation of interest for in vitro human salivary gland tumour cells. In this note, the physical and biological dose distributions of a typical therapeutic carbon-ion beam are calculated using the GEANT4 Monte Carlo simulation toolkit in comparison with those with the biological dose estimate system based on the one-dimensional beam model currently used in treatment planning. The results differed between the GEANT4 simulation and the one-dimensional beam model, indicating the physical limitations in the beam model. This study demonstrates that the Monte Carlo physics simulation technique can be applied to improve the accuracy of the biological dose distribution in treatment planning of heavy-ion radiotherapy.

  8. SU-E-T-313: The Accuracy of the Acuros XB Advanced Dose Calculation Algorithm for IMRT Dose Distributions in Head and Neck

    SciTech Connect

    Araki, F; Onizuka, R; Ohno, T; Tomiyama, Y; Hioki, K

    2014-06-01

    Purpose: To investigate the accuracy of the Acuros XB version 11 (AXB11) advanced dose calculation algorithm by comparing with Monte Caro (MC) calculations. The comparisons were performed with dose distributions for a virtual inhomogeneity phantom and intensity-modulated radiotherapy (IMRT) in head and neck. Methods: Recently, AXB based on Linear Boltzmann Transport Equation has been installed in the Eclipse treatment planning system (Varian Medical Oncology System, USA). The dose calculation accuracy of AXB11 was tested by the EGSnrc-MC calculations. In additions, AXB version 10 (AXB10) and Analytical Anisotropic Algorithm (AAA) were also used. First the accuracy of an inhomogeneity correction for AXB and AAA algorithms was evaluated by comparing with MC-calculated dose distributions for a virtual inhomogeneity phantom that includes water, bone, air, adipose, muscle, and aluminum. Next the IMRT dose distributions for head and neck were compared with the AXB and AAA algorithms and MC by means of dose volume histograms and three dimensional gamma analysis for each structure (CTV, OAR, etc.). Results: For dose distributions with the virtual inhomogeneity phantom, AXB was in good agreement with those of MC, except the dose in air region. The dose in air region decreased in order of MCdose kernel of water, the doses in regions for air, bone, and aluminum considerably became higher than those of AXB and MC. The pass rates of the gamma analysis for IMRT dose distributions in head and neck were similar to those of MC in order of AXB11dose calculation accuracy of AXB11 was almost equivalent to the MC dose calculation.

  9. Boron Neutron Capture Therapy (BNCT) Dose Calculation using Geometrical Factors Spherical Interface for Glioblastoma Multiforme

    SciTech Connect

    Zasneda, Sabriani; Widita, Rena

    2010-06-22

    Boron Neutron Capture Therapy (BNCT) is a cancer therapy by utilizing thermal neutron to produce alpha particles and lithium nuclei. The superiority of BNCT is that the radiation effects could be limited only for the tumor cells. BNCT radiation dose depends on the distribution of boron in the tumor. Absorbed dose to the cells from the reaction 10B (n, {alpha}) 7Li was calculated near interface medium containing boron and boron-free region. The method considers the contribution of the alpha particle and recoiled lithium particle to the absorbed dose and the variation of Linear Energy Transfer (LET) charged particles energy. Geometrical factor data of boron distribution for the spherical surface is used to calculate the energy absorbed in the tumor cells, brain and scalp for case Glioblastoma Multiforme. The result shows that the optimal dose in tumor is obtained for boron concentrations of 22.1 mg {sup 10}B/g blood.

  10. Evaluation of uncertainty predictions and dose output for model-based dose calculations for megavoltage photon beams

    SciTech Connect

    Olofsson, Joergen; Nyholm, Tufve; Georg, Dietmar; Ahnesjoe, Anders; Karlsson, Mikael

    2006-07-15

    In many radiotherapy clinics an independent verification of the number of monitor units (MU) used to deliver the prescribed dose to the target volume is performed prior to the treatment start. Traditionally this has been done by using methods mainly based on empirical factors which, at least to some extent, try to separate the influence from input parameters such as field size, depth, distance, etc. The growing complexity of modern treatment techniques does however make this approach increasingly difficult, both in terms of practical application and in terms of the reliability of the results. In the present work the performance of a model-based approach, describing the influence from different input parameters through actual modeling of the physical effects, has been investigated in detail. The investigated model is based on two components related to megavoltage photon beams; one describing the exiting energy fluence per delivered MU, and a second component describing the dose deposition through a pencil kernel algorithm solely based on a measured beam quality index. Together with the output calculations, the basis of a method aiming to predict the inherent calculation uncertainties in individual treatment setups has been developed. This has all emerged from the intention of creating a clinical dose/MU verification tool that requires an absolute minimum of commissioned input data. This evaluation was focused on irregular field shapes and performed through comparison with output factors measured at 5, 10, and 20 cm depth in ten multileaf collimated fields on four different linear accelerators with varying multileaf collimator designs. The measurements were performed both in air and in water and the results of the two components of the model were evaluated separately and combined. When compared with the corresponding measurements the resulting deviations in the calculated output factors were in most cases smaller than 1% and in all cases smaller than 1.7%. The

  11. SU-E-J-60: Efficient Monte Carlo Dose Calculation On CPU-GPU Heterogeneous Systems

    SciTech Connect

    Xiao, K; Chen, D. Z; Hu, X. S; Zhou, B

    2014-06-01

    Purpose: It is well-known that the performance of GPU-based Monte Carlo dose calculation implementations is bounded by memory bandwidth. One major cause of this bottleneck is the random memory writing patterns in dose deposition, which leads to several memory efficiency issues on GPU such as un-coalesced writing and atomic operations. We propose a new method to alleviate such issues on CPU-GPU heterogeneous systems, which achieves overall performance improvement for Monte Carlo dose calculation. Methods: Dose deposition is to accumulate dose into the voxels of a dose volume along the trajectories of radiation rays. Our idea is to partition this procedure into the following three steps, which are fine-tuned for CPU or GPU: (1) each GPU thread writes dose results with location information to a buffer on GPU memory, which achieves fully-coalesced and atomic-free memory transactions; (2) the dose results in the buffer are transferred to CPU memory; (3) the dose volume is constructed from the dose buffer on CPU. We organize the processing of all radiation rays into streams. Since the steps within a stream use different hardware resources (i.e., GPU, DMA, CPU), we can overlap the execution of these steps for different streams by pipelining. Results: We evaluated our method using a Monte Carlo Convolution Superposition (MCCS) program and tested our implementation for various clinical cases on a heterogeneous system containing an Intel i7 quad-core CPU and an NVIDIA TITAN GPU. Comparing with a straightforward MCCS implementation on the same system (using both CPU and GPU for radiation ray tracing), our method gained 2-5X speedup without losing dose calculation accuracy. Conclusion: The results show that our new method improves the effective memory bandwidth and overall performance for MCCS on the CPU-GPU systems. Our proposed method can also be applied to accelerate other Monte Carlo dose calculation approaches. This research was supported in part by NSF under Grants CCF

  12. Construction of new skin models and calculation of skin dose coefficients for electron exposures

    NASA Astrophysics Data System (ADS)

    Yeom, Yeon Soo; Kim, Chan Hyeong; Nguyen, Thang Tat; Choi, Chansoo; Han, Min Cheol; Jeong, Jong Hwi

    2016-08-01

    The voxel-type reference phantoms of the International Commission on Radiological Protection (ICRP), due to their limited voxel resolutions, cannot represent the 50- μm-thick radiosensitive target layer of the skin necessary for skin dose calculations. Alternatively, in ICRP Publication 116, the dose coefficients (DCs) for the skin were calculated approximately, averaging absorbed dose over the entire skin depth of the ICRP phantoms. This approximation is valid for highly-penetrating radiations such as photons and neutrons, but not for weakly penetrating radiations like electrons due to the high gradient in the dose distribution in the skin. To address the limitation, the present study introduces skin polygon-mesh (PM) models, which have been produced by converting the skin models of the ICRP voxel phantoms to a high-quality PM format and adding a 50- μm-thick radiosensitive target layer into the skin models. Then, the constructed skin PM models were implemented in the Geant4 Monte Carlo code to calculate the skin DCs for external exposures of electrons. The calculated values were then compared with the skin DCs of the ICRP Publication 116. The results of the present study show that for high-energy electrons (≥ 1 MeV), the ICRP-116 skin DCs are, indeed, in good agreement with the skin DCs calculated in the present study. For low-energy electrons (< 1 MeV), however, significant discrepancies were observed, and the ICRP-116 skin DCs underestimated the skin dose as much as 15 times for some energies. Besides, regardless of the small tissue weighting factor of the skin ( w T = 0.01), the discrepancies in the skin dose were found to result in significant discrepancies in the effective dose, demonstarting that the effective DCs in ICRP-116 are not reliable for external exposure to electrons.

  13. Technical note: An algorithm to calculate the tissue phantom ratio from depth dose in radiosurgery.

    PubMed

    Ramos Garcia, Luis Isaac; Almansa, Julio F

    2011-05-01

    To propose a method to calculate the tissue phantom ratio (TPR) using the depth dose and to compare the proposed method with two other methods. An analytical dose model from Bjärngard was used to describe the depth dose and the TPR. The parameters of the model were derived from depth dose measurements, which were then used to calculate the TPR. The calculated TPR values were compared with actual measurements as well as with TPR values predicted from two methods that also use depth dose, namely, the method proposed by BrainLAB and the conventional method that sets the quotients of the scatter phantom ratios (Sp) to 1. TPR values calculated from the proposed algorithm deviated by -0.2 +/- 0.1% (mean deviation) from the experimental measurements, over a range of field sizes and depths. The results of the proposed method were in better agreement with the experimental measurements than were results using the other two methods. Furthermore, the differences between the proposed method and the other methods are statistically significant.

  14. Dose Calculation For Accidental Release Of Radioactive Cloud Passing Over Jeddah

    SciTech Connect

    Alharbi, N. D.; Mayhoub, A. B.

    2011-12-26

    For the evaluation of doses after the reactor accident, in particular for the inhalation dose, a thorough knowledge of the concentration of the various radionuclide in air during the passage of the plume is required. In this paper we present an application of the Gaussian Plume Model (GPM) to calculate the atmospheric dispersion and airborne radionuclide concentration resulting from radioactive cloud over the city of Jeddah (KSA). The radioactive cloud is assumed to be emitted from a reactor of 10 MW power in postulated accidental release. Committed effective doses (CEDs) to the public at different distance from the source to the receptor are calculated. The calculations were based on meteorological condition and data of the Jeddah site. These data are: pasquill atmospheric stability is the class B and the wind speed is 2.4m/s at 10m height in the N direction. The residence time of some radionuclides considered in this study were calculated. The results indicate that, the values of doses first increase with distance, reach a maximum value and then gradually decrease. The total dose received by human is estimated by using the estimated values of residence time of each radioactive pollutant at different distances.

  15. Size-specific dose estimate (SSDE) provides a simple method to calculate organ dose for pediatric CT examinations

    SciTech Connect

    Moore, Bria M.; Brady, Samuel L. Kaufman, Robert A.; Mirro, Amy E.

    2014-07-15

    Purpose: To investigate the correlation of size-specific dose estimate (SSDE) with absorbed organ dose, and to develop a simple methodology for estimating patient organ dose in a pediatric population (5–55 kg). Methods: Four physical anthropomorphic phantoms representing a range of pediatric body habitus were scanned with metal oxide semiconductor field effect transistor (MOSFET) dosimeters placed at 23 organ locations to determine absolute organ dose. Phantom absolute organ dose was divided by phantom SSDE to determine correlation between organ dose and SSDE. Organ dose correlation factors (CF{sub SSDE}{sup organ}) were then multiplied by patient-specific SSDE to estimate patient organ dose. The CF{sub SSDE}{sup organ} were used to retrospectively estimate individual organ doses from 352 chest and 241 abdominopelvic pediatric CT examinations, where mean patient weight was 22 kg ± 15 (range 5–55 kg), and mean patient age was 6 yrs ± 5 (range 4 months to 23 yrs). Patient organ dose estimates were compared to published pediatric Monte Carlo study results. Results: Phantom effective diameters were matched with patient population effective diameters to within 4 cm; thus, showing appropriate scalability of the phantoms across the entire pediatric population in this study. IndividualCF{sub SSDE}{sup organ} were determined for a total of 23 organs in the chest and abdominopelvic region across nine weight subcategories. For organs fully covered by the scan volume, correlation in the chest (average 1.1; range 0.7–1.4) and abdominopelvic region (average 0.9; range 0.7–1.3) was near unity. For organ/tissue that extended beyond the scan volume (i.e., skin, bone marrow, and bone surface), correlation was determined to be poor (average 0.3; range: 0.1–0.4) for both the chest and abdominopelvic regions, respectively. A means to estimate patient organ dose was demonstrated. Calculated patient organ dose, using patient SSDE and CF{sub SSDE}{sup organ}, was compared to

  16. Improved patient size estimates for accurate dose calculations in abdomen computed tomography

    NASA Astrophysics Data System (ADS)

    Lee, Chang-Lae

    2017-07-01

    The radiation dose of CT (computed tomography) is generally represented by the CTDI (CT dose index). CTDI, however, does not accurately predict the actual patient doses for different human body sizes because it relies on a cylinder-shaped head (diameter : 16 cm) and body (diameter : 32 cm) phantom. The purpose of this study was to eliminate the drawbacks of the conventional CTDI and to provide more accurate radiation dose information. Projection radiographs were obtained from water cylinder phantoms of various sizes, and the sizes of the water cylinder phantoms were calculated and verified using attenuation profiles. The effective diameter was also calculated using the attenuation of the abdominal projection radiographs of 10 patients. When the results of the attenuation-based method and the geometry-based method shown were compared with the results of the reconstructed-axial-CT-image-based method, the effective diameter of the attenuation-based method was found to be similar to the effective diameter of the reconstructed-axial-CT-image-based method, with a difference of less than 3.8%, but the geometry-based method showed a difference of less than 11.4%. This paper proposes a new method of accurately computing the radiation dose of CT based on the patient sizes. This method computes and provides the exact patient dose before the CT scan, and can therefore be effectively used for imaging and dose control.

  17. SU-E-T-202: Impact of Monte Carlo Dose Calculation Algorithm On Prostate SBRT Treatments

    SciTech Connect

    Venencia, C; Garrigo, E; Cardenas, J; Castro Pena, P

    2014-06-01

    Purpose: The purpose of this work was to quantify the dosimetric impact of using Monte Carlo algorithm on pre calculated SBRT prostate treatment with pencil beam dose calculation algorithm. Methods: A 6MV photon beam produced by a Novalis TX (BrainLAB-Varian) linear accelerator equipped with HDMLC was used. Treatment plans were done using 9 fields with Iplanv4.5 (BrainLAB) and dynamic IMRT modality. Institutional SBRT protocol uses a total dose to the prostate of 40Gy in 5 fractions, every other day. Dose calculation is done by pencil beam (2mm dose resolution), heterogeneity correction and dose volume constraint (UCLA) for PTV D95%=40Gy and D98%>39.2Gy, Rectum V20Gy<50%, V32Gy<20%, V36Gy<10% and V40Gy<5%, Bladder V20Gy<40% and V40Gy<10%, femoral heads V16Gy<5%, penile bulb V25Gy<3cc, urethra and overlap region between PTV and PRV Rectum Dmax<42Gy. 10 SBRT treatments plans were selected and recalculated using Monte Carlo with 2mm spatial resolution and mean variance of 2%. DVH comparisons between plans were done. Results: The average difference between PTV doses constraints were within 2%. However 3 plans have differences higher than 3% which does not meet the D98% criteria (>39.2Gy) and should have been renormalized. Dose volume constraint differences for rectum, bladder, femoral heads and penile bulb were les than 2% and within tolerances. Urethra region and overlapping between PTV and PRV Rectum shows increment of dose in all plans. The average difference for urethra region was 2.1% with a maximum of 7.8% and for the overlapping region 2.5% with a maximum of 8.7%. Conclusion: Monte Carlo dose calculation on dynamic IMRT treatments could affects on plan normalization. Dose increment in critical region of urethra and PTV overlapping region with PTV could have clinical consequences which need to be studied. The use of Monte Carlo dose calculation algorithm is limited because inverse planning dose optimization use only pencil beam.

  18. SU-E-T-226: Correction of a Standard Model-Based Dose Calculator Using Measurement Data

    SciTech Connect

    Chen, M; Jiang, S; Lu, W

    2015-06-15

    Purpose: To propose a hybrid method that combines advantages of the model-based and measurement-based method for independent dose calculation. Modeled-based dose calculation, such as collapsed-cone-convolution/superposition (CCCS) or the Monte-Carlo method, models dose deposition in the patient body accurately; however, due to lack of detail knowledge about the linear accelerator (LINAC) head, commissioning for an arbitrary machine is tedious and challenging in case of hardware changes. On the contrary, the measurement-based method characterizes the beam property accurately but lacks the capability of dose disposition modeling in heterogeneous media. Methods: We used a standard CCCS calculator, which is commissioned by published data, as the standard model calculator. For a given machine, water phantom measurements were acquired. A set of dose distributions were also calculated using the CCCS for the same setup. The difference between the measurements and the CCCS results were tabulated and used as the commissioning data for a measurement based calculator. Here we used a direct-ray-tracing calculator (ΔDRT). The proposed independent dose calculation consists of the following steps: 1. calculate D-model using CCCS. 2. calculate D-ΔDRT using ΔDRT. 3. combine Results: D=D-model+D-ΔDRT. Results: The hybrid dose calculation was tested on digital phantoms and patient CT data for standard fields and IMRT plan. The results were compared to dose calculated by the treatment planning system (TPS). The agreement of the hybrid and the TPS was within 3%, 3 mm for over 98% of the volume for phantom studies and lung patients. Conclusion: The proposed hybrid method uses the same commissioning data as those for the measurement-based method and can be easily extended to any non-standard LINAC. The results met the accuracy, independence, and simple commissioning criteria for an independent dose calculator.

  19. Interpolation Method for Calculation of Computed Tomography Dose from Angular Varying Tube Current

    NASA Astrophysics Data System (ADS)

    Caracappa, Peter F.; Gao, Yiming; Xu, X. George

    2014-06-01

    The scope and magnitude of radiation dose from computed tomography (CT) examination has led to increased scrutiny and focus on accurate dose tracking. The use of tube current modulation (TCM) results complicates dose tracking by generating unique scans that are specific to the patient. Three methods of estimating the radiation dose from a CT examination that uses TCM are compared: using the average current for an entire scan, using the average current for each slice in the scan, and using an estimation of the angular variation of the dose contribution. To determine the impact of TCM on the radiation dose received, a set of angular weighting functions for each tissue of the body are derived by fitting a function to the relative dose contributions tabulated for the four principle exposure projections. This weighting function is applied to the angular tube current function to determine the organ dose contributions from a single rotation. Since the angular tube current function is not typically known, a method for estimating that function is also presented. The organ doses calculated using these three methods are compared to simulations that explicitly include the estimated TCM function.

  20. Calculation of equivalent dose for Auger electron emitting radionuclides distributed in human organs.

    PubMed

    Goddu, S M; Howell, R W; Rao, D V

    1996-01-01

    Radionuclides that emit Auger electrons can be extremely radiotoxic depending on the subcellular distribution of the radiochemical. Despite this, ICRP 60 provides no guidance in the calculation of equivalent dose H(T) for Auger electrons. The recent report by the American Association of Physicists in Medicine recommends a radiation weighting factor wR of 20 for stochastic effects caused by Auger electrons, along with a method of calculating the equivalent dose that takes into account the subcellular distribution of the radionuclide. In view of these recommendations, it is important to reevaluate equivalent doses from Auger electron emitters. The mean absorbed dose per unit cumulated activity (S-value) from Auger electrons and other radiations is calculated for ninety Auger-electron-emitting radionuclides distributed in human ovaries, testes and liver. Using these S-values, and the formalism given in the recent AAPM report, the dependence of the organ equivalent doses on subcellular distribution of the Auger electron emitters is examined. The results show an increase in the mean equivalent dose for Auger electron emitters when a significant fraction of the organ activity localizes in the DNA.

  1. Monte Carlo photon beam modeling and commissioning for radiotherapy dose calculation algorithm.

    PubMed

    Toutaoui, A; Ait chikh, S; Khelassi-Toutaoui, N; Hattali, B

    2014-11-01

    The aim of the present work was a Monte Carlo verification of the Multi-grid superposition (MGS) dose calculation algorithm implemented in the CMS XiO (Elekta) treatment planning system and used to calculate the dose distribution produced by photon beams generated by the linear accelerator (linac) Siemens Primus. The BEAMnrc/DOSXYZnrc (EGSnrc package) Monte Carlo model of the linac head was used as a benchmark. In the first part of the work, the BEAMnrc was used for the commissioning of a 6 MV photon beam and to optimize the linac description to fit the experimental data. In the second part, the MGS dose distributions were compared with DOSXYZnrc using relative dose error comparison and γ-index analysis (2%/2 mm, 3%/3 mm), in different dosimetric test cases. Results show good agreement between simulated and calculated dose in homogeneous media for square and rectangular symmetric fields. The γ-index analysis confirmed that for most cases the MGS model and EGSnrc doses are within 3% or 3 mm.

  2. Monte Carlo calculation of dose distributions in oligometastatic patients planned for spine stereotactic ablative radiotherapy.

    PubMed

    Moiseenko, V; Liu, M; Loewen, S; Kosztyla, R; Vollans, E; Lucido, J; Fong, M; Vellani, R; Popescu, I A

    2013-10-21

    Dosimetric consequences of plans optimized using the analytical anisotropic algorithm (AAA) implemented in the Varian Eclipse treatment planning system for spine stereotactic body radiotherapy were evaluated by re-calculating with BEAMnrc/DOSXYZnrc Monte Carlo. Six patients with spinal vertebral metastases were planned using volumetric modulated arc therapy. The planning goal was to cover at least 80% of the planning target volume with a prescribed dose of 35 Gy in five fractions. Tissue heterogeneity-corrected AAA dose distributions for the planning target volume and spinal canal planning organ-at-risk volume were compared against those obtained from Monte Carlo. The results showed that the AAA overestimated planning target volume coverage with the prescribed dose by up to 13.5% (mean 8.3% +/- 3.2%) when compared to Monte Carlo simulations. Maximum dose to spinal canal planning organ-at-risk volume calculated with Monte Carlo was consistently smaller than calculated with the treatment planning system and remained under spinal cord dose tolerance. Differences in dose distribution appear to be related to the dosimetric effects of accounting for body composition in Monte Carlo simulations. In contrast, the treatment planning system assumes that all tissues are water-equivalent in their composition and only differ in their electron density.

  3. Comprehensive evaluation and clinical implementation of commercially available Monte Carlo dose calculation algorithm.

    PubMed

    Zhang, Aizhen; Wen, Ning; Nurushev, Teamour; Burmeister, Jay; Chetty, Indrin J

    2013-03-04

    based on point-dose prescription. The eMC algorithm calculation was characterized by deeper penetration in the low-density regions, such as lung and air cavities. As a result, the mean dose in the low-density regions was underestimated using PB algorithm. The eMC computation time ranged from 5 min to 66 min on a single 2.66 GHz desktop, which is comparable with PB algorithm calculation time for the same resolution level.

  4. A single-source photon source model of a linear accelerator for Monte Carlo dose calculation

    PubMed Central

    Glatting, Gerhard; Wenz, Frederik; Fleckenstein, Jens

    2017-01-01

    Purpose To introduce a new method of deriving a virtual source model (VSM) of a linear accelerator photon beam from a phase space file (PSF) for Monte Carlo (MC) dose calculation. Materials and methods A PSF of a 6 MV photon beam was generated by simulating the interactions of primary electrons with the relevant geometries of a Synergy linear accelerator (Elekta AB, Stockholm, Sweden) and recording the particles that reach a plane 16 cm downstream the electron source. Probability distribution functions (PDFs) for particle positions and energies were derived from the analysis of the PSF. These PDFs were implemented in the VSM using inverse transform sampling. To model particle directions, the phase space plane was divided into a regular square grid. Each element of the grid corresponds to an area of 1 mm2 in the phase space plane. The average direction cosines, Pearson correlation coefficient (PCC) between photon energies and their direction cosines, as well as the PCC between the direction cosines were calculated for each grid element. Weighted polynomial surfaces were then fitted to these 2D data. The weights are used to correct for heteroscedasticity across the phase space bins. The directions of the particles created by the VSM were calculated from these fitted functions. The VSM was validated against the PSF by comparing the doses calculated by the two methods for different square field sizes. The comparisons were performed with profile and gamma analyses. Results The doses calculated with the PSF and VSM agree to within 3% /1 mm (>95% pixel pass rate) for the evaluated fields. Conclusion A new method of deriving a virtual photon source model of a linear accelerator from a PSF file for MC dose calculation was developed. Validation results show that the doses calculated with the VSM and the PSF agree to within 3% /1 mm. PMID:28886048

  5. Organ doses from environmental exposures calculated using voxel phantoms of adults and children

    NASA Astrophysics Data System (ADS)

    Petoussi-Henss, Nina; Schlattl, H.; Zankl, M.; Endo, A.; Saito, K.

    2012-09-01

    This paper presents effective and organ dose conversion coefficients for members of the public due to environmental external exposures, calculated using the ICRP adult male and female reference computational phantoms as well as voxel phantoms of a baby, two children and four adult individual phantoms--one male and three female, one of them pregnant. Dose conversion coefficients are given for source geometries representing environmental radiation exposures, i.e. whole body irradiations from a volume source in air, representing a radioactive cloud, a plane source in the ground at a depth of 0.5 g cm-2, representing ground contamination by radioactive fall-out, and uniformly distributed natural sources in the ground. The organ dose conversion coefficients were calculated employing the Monte Carlo code EGSnrc simulating the photon transport in the voxel phantoms, and are given as effective and equivalent doses normalized to air kerma free-in-air at height 1 m above the ground in Sv Gy-1. The findings showed that, in general, the smaller the body mass of the phantom, the higher the dose. The difference in effective dose between an adult and an infant is 80-90% at 50 keV and less than 40% above 100 keV. Furthermore, dose equivalent rates for photon exposures of several radionuclides for the above environmental exposures were calculated with the most recent nuclear decay data. Data are shown for effective dose, thyroid, colon and red bone marrow. The results are expected to facilitate regulation of exposure to radiation, relating activities of radionuclides distributed in air and ground to dose of the public due to external radiation as well as the investigation of the radiological effects of major radiation accidents such as the recent one in Fukushima and the decision making of several committees.

  6. Model-based dose calculations for COMS eye plaque brachytherapy using an anatomically realistic eye phantom

    SciTech Connect

    Lesperance, Marielle; Inglis-Whalen, M.; Thomson, R. M.

    2014-02-15

    Purpose : To investigate the effects of the composition and geometry of ocular media and tissues surrounding the eye on dose distributions for COMS eye plaque brachytherapy with{sup 125}I, {sup 103}Pd, or {sup 131}Cs seeds, and to investigate doses to ocular structures. Methods : An anatomically and compositionally realistic voxelized eye model with a medial tumor is developed based on a literature review. Mass energy absorption and attenuation coefficients for ocular media are calculated. Radiation transport and dose deposition are simulated using the EGSnrc Monte Carlo user-code BrachyDose for a fully loaded COMS eye plaque within a water phantom and our full eye model for the three radionuclides. A TG-43 simulation with the same seed configuration in a water phantom neglecting the plaque and interseed effects is also performed. The impact on dose distributions of varying tumor position, as well as tumor and surrounding tissue media is investigated. Each simulation and radionuclide is compared using isodose contours, dose volume histograms for the lens and tumor, maximum, minimum, and average doses to structures of interest, and doses to voxels of interest within the eye. Results : Mass energy absorption and attenuation coefficients of the ocular media differ from those of water by as much as 12% within the 20–30 keV photon energy range. For all radionuclides studied, average doses to the tumor and lens regions in the full eye model differ from those for the plaque in water by 8%–10% and 13%–14%, respectively; the average doses to the tumor and lens regions differ between the full eye model and the TG-43 simulation by 2%–17% and 29%–34%, respectively. Replacing the surrounding tissues in the eye model with water increases the maximum and average doses to the lens by 2% and 3%, respectively. Substituting the tumor medium in the eye model for water, soft tissue, or an alternate melanoma composition affects tumor dose compared to the default eye model

  7. Site-specific range uncertainties caused by dose calculation algorithms for proton therapy

    NASA Astrophysics Data System (ADS)

    Schuemann, J.; Dowdell, S.; Grassberger, C.; Min, C. H.; Paganetti, H.

    2014-08-01

    The purpose of this study was to assess the possibility of introducing site-specific range margins to replace current generic margins in proton therapy. Further, the goal was to study the potential of reducing margins with current analytical dose calculations methods. For this purpose we investigate the impact of complex patient geometries on the capability of analytical dose calculation algorithms to accurately predict the range of proton fields. Dose distributions predicted by an analytical pencil-beam algorithm were compared with those obtained using Monte Carlo (MC) simulations (TOPAS). A total of 508 passively scattered treatment fields were analyzed for seven disease sites (liver, prostate, breast, medulloblastoma-spine, medulloblastoma-whole brain, lung and head and neck). Voxel-by-voxel comparisons were performed on two-dimensional distal dose surfaces calculated by pencil-beam and MC algorithms to obtain the average range differences and root mean square deviation for each field for the distal position of the 90% dose level (R90) and the 50% dose level (R50). The average dose degradation of the distal falloff region, defined as the distance between the distal position of the 80% and 20% dose levels (R80-R20), was also analyzed. All ranges were calculated in water-equivalent distances. Considering total range uncertainties and uncertainties from dose calculation alone, we were able to deduce site-specific estimations. For liver, prostate and whole brain fields our results demonstrate that a reduction of currently used uncertainty margins is feasible even without introducing MC dose calculations. We recommend range margins of 2.8% + 1.2 mm for liver and prostate treatments and 3.1% + 1.2 mm for whole brain treatments, respectively. On the other hand, current margins seem to be insufficient for some breast, lung and head and neck patients, at least if used generically. If no case specific adjustments are applied, a generic margin of 6.3% + 1.2 mm would be

  8. Monte-Carlo Simulation of Radiation Track Structure and Calculation of Dose Deposition in Nanovolumes

    NASA Technical Reports Server (NTRS)

    Plante, I.; Cucinotta, F. A.

    2010-01-01

    INTRODUCTION: The radiation track structure is of crucial importance to understand radiation damage to molecules and subsequent biological effects. Of a particular importance in radiobiology is the induction of double-strand breaks (DSBs) by ionizing radiation, which are caused by clusters of lesions in DNA, and oxidative damage to cellular constituents leading to aberrant signaling cascades. DSB can be visualized within cell nuclei with gamma-H2AX experiments. MATERIAL AND METHODS: In DSB induction models, the DSB probability is usually calculated by the local dose obtained from a radial dose profile of HZE tracks. In this work, the local dose imparted by HZE ions is calculated directly from the 3D Monte-Carlo simulation code RITRACKS. A cubic volume of 5 micron edge (Figure 1) is irradiated by a (Fe26+)-56 ion of 1 GeV/amu (LET approx.150 keV/micron) and by a fluence of 450 H+ ions, 300 MeV/amu (LET approx. 0.3 keV/micron). In both cases, the dose deposited in the volume is approx.1 Gy. The dose is then calculated into each 3D pixels (voxels) of 20 nm edge and visualized in 3D. RESULTS AND DISCUSSION: The dose is deposited uniformly in the volume by the H+ ions. The voxels which receive a high dose (orange) corresponds to electron track ends. The dose is deposited differently by the 56Fe26+ ion. Very high dose (red) is deposited in voxels with direct ion traversal. Voxels with electron track ends (orange) are also found distributed around the path of the track. In both cases, the appearance of the dose distribution looks very similar to DSBs seen in gammaH2AX experiments, particularly when the visualization threshold is applied. CONCLUSION: The refinement of the dose calculation to the nanometer scale has revealed important differences in the energy deposition between high- and low-LET ions. Voxels of very high dose are only found in the path of high-LET ions. Interestingly, experiments have shown that DSB induced by high-LET radiation are more difficult to

  9. Potential dose distributions at proposed surface radioactvity clearance levels resulting from occupational scenarios.

    SciTech Connect

    Kamboj, S.; Yu, C.; Rabovsky, J.

    2011-08-02

    The purpose of this report is to evaluate the potential dose distribution resulting from surface radioactivity, using occupational radiation exposure scenarios. The surface radioactivity clearance values considered in this analysis may ultimately replace those currently specified in the U.S. Department of Energy (DOE) requirements and guidance for radiological protection of workers, the public and the environment. The surface contamination values apply to radioactive contamination deposited on a surface (i.e., not incorporated into the interior of the material). For these calculations, the dose coefficients for intake of radionuclides were taken from ICRP Publication 68 (ICRP 1994), and external exposure dose coefficients were taken from the compact disc (CD) that accompanied Federal Guidance Report (FGR) 13 (Eckerman et al. 1999). The ICRP Publication 68 dose coefficients were based on ICRP Publication 60 (ICRP 1990) and were used specifically for worker dose calculations. The calculated dose in this analysis is the 'effective dose' (ED), rather than the 'effective dose equivalent' (EDE).

  10. A single-source photon source model of a linear accelerator for Monte Carlo dose calculation.

    PubMed

    Nwankwo, Obioma; Glatting, Gerhard; Wenz, Frederik; Fleckenstein, Jens

    2017-01-01

    To introduce a new method of deriving a virtual source model (VSM) of a linear accelerator photon beam from a phase space file (PSF) for Monte Carlo (MC) dose calculation. A PSF of a 6 MV photon beam was generated by simulating the interactions of primary electrons with the relevant geometries of a Synergy linear accelerator (Elekta AB, Stockholm, Sweden) and recording the particles that reach a plane 16 cm downstream the electron source. Probability distribution functions (PDFs) for particle positions and energies were derived from the analysis of the PSF. These PDFs were implemented in the VSM using inverse transform sampling. To model particle directions, the phase space plane was divided into a regular square grid. Each element of the grid corresponds to an area of 1 mm2 in the phase space plane. The average direction cosines, Pearson correlation coefficient (PCC) between photon energies and their direction cosines, as well as the PCC between the direction cosines were calculated for each grid element. Weighted polynomial surfaces were then fitted to these 2D data. The weights are used to correct for heteroscedasticity across the phase space bins. The directions of the particles created by the VSM were calculated from these fitted functions. The VSM was validated against the PSF by comparing the doses calculated by the two methods for different square field sizes. The comparisons were performed with profile and gamma analyses. The doses calculated with the PSF and VSM agree to within 3% /1 mm (>95% pixel pass rate) for the evaluated fields. A new method of deriving a virtual photon source model of a linear accelerator from a PSF file for MC dose calculation was developed. Validation results show that the doses calculated with the VSM and the PSF agree to within 3% /1 mm.

  11. Verification of organ doses calculated by a dose monitoring software tool based on Monte Carlo Simulation in thoracic CT protocols.

    PubMed

    Guberina, Nika; Suntharalingam, Saravanabavaan; Naßenstein, Kai; Forsting, Michael; Theysohn, Jens; Wetter, Axel; Ringelstein, Adrian

    2017-01-01

    Background The importance of monitoring of the radiation dose received by the human body during computed tomography (CT) examinations is not negligible. Several dose-monitoring software tools emerged in order to monitor and control dose distribution during CT examinations. Some software tools incorporate Monte Carlo Simulation (MCS) and allow calculation of effective dose and organ dose apart from standard dose descriptors. Purpose To verify the results of a dose-monitoring software tool based on MCS in assessment of effective and organ doses in thoracic CT protocols. Material and Methods Phantom measurements were performed with thermoluminescent dosimeters (TLD LiF:Mg,Ti) using two different thoracic CT protocols of the clinical routine: (I) standard CT thorax (CTT); and (II) CTT with high-pitch mode, P = 3.2. Radiation doses estimated with MCS and measured with TLDs were compared. Results Inter-modality comparison showed an excellent correlation between MCS-simulated and TLD-measured doses ((I) after localizer correction r = 0.81; (II) r = 0.87). The following effective and organ doses were determined: (I) (a) effective dose = MCS 1.2 mSv, TLD 1.3 mSv; (b) thyroid gland = MCS 2.8 mGy, TLD 2.5 mGy; (c) thymus = MCS 3.1 mGy, TLD 2.5 mGy; (d) bone marrow = MCS 0.8 mGy, TLD 0.9 mGy; (e) breast = MCS 2.5 mGy, TLD 2.2 mGy; (f) lung = MCS 2.8 mGy, TLD 2.7 mGy; (II) (a) effective dose = MCS 0.6 mSv, TLD 0.7 mSv; (b) thyroid gland = MCS 1.4 mGy, TLD 1.8 mGy; (c) thymus = MCS 1.4 mGy, TLD 1.8 mGy; (d) bone marrow = MCS 0.4 mGy, TLD 0.5 mGy; (e) breast = MCS 1.1 mGy, TLD 1.1 mGy; (f) lung = MCS 1.2 mGy, TLD 1.3 mGy. Conclusion Overall, in thoracic CT protocols, organ doses simulated by the dose-monitoring software tool were coherent to those measured by TLDs. Despite some challenges, the dose-monitoring software was capable of an accurate dose calculation.

  12. X-ray dose from pediatric cardiac catheterization: a comparison of materials and methods for measurement or calculation.

    PubMed

    Herron, Brent; Strain, John; Fagan, Thomas; Wright, Linda; Shockley, Heather

    2010-11-01

    Pediatric cardiac catheterization procedures have the potential to transmit high X-ray doses, which may lead to acute effects or latent skin reactions. Direct measurement of radiation dose was facilitated using nanodot dosimeters and radiochromic film. Direct measurement results were compared with vendor-listed dosimetry and calculation using phantom data. Vendor-listed data demonstrated a wide discrepancy with measured data, whereas the calculation reproducibly overestimated the actual dose. A simple formula was derived to calculate the dose using fluoroscopy time, cine frame quantity and average cine mA in a biplane environment.

  13. Analytic IMRT dose calculations utilizing Monte Carlo to predict MLC fluence modulation

    PubMed Central

    Mihaylov, I. B.; Lerma, F. A.; Wu, Y.; Siebers, J. V.

    2007-01-01

    with γ ≤1 (3% /3 mm). Paired one-way ANOVA tests of the gamma analysis results found that the hybrid method better predicts measurements in terms of both the fraction of points with γ ≤1 and the average gamma for both 2% /2 mm and 3% /3 mm criteria. These results quantify the enhancement in accuracy in IMRT dose calculations when MC is used to model the MLC field modulation. PMID:16696458

  14. Angular under-sampling effect on VMAT dose calculation: An analysis and a solution strategy.

    PubMed

    Park, Ji-Yeon; Li, Feifei; Li, Jonathan; Kahler, Darren; Park, Justin C; Yan, Guanghua; Liu, Chihray; Lu, Bo

    2017-06-01

    Most VMAT algorithms compute the dose on discretized apertures with small angular separations for practical reasons. However, machines deliver the VMAT dose with a continuously moving MLC and gantry and a continuously changing dose rate. The computed dose can deviate from the delivered dose, especially if no, or loose, MLC movement constraints are applied for the VMAT optimization. The goal of this paper is to establish a simplified mathematical model to analyze the discrepancy between the VMAT plan calculation dose and the delivered dose and to provide a reasonable solution for clinical implementation. A simplified metric is first introduced to describe the discrepancy between doses computed with discretized apertures and a continuous delivery model. The delivery fluences were formed separately for six different leaf movement scenarios. The formula was then rewritten in a more general form. The correlation between discretized and continuous fluence is summarized using this general form. The Fourier analysis for the impacts from three separate factors - dose kernel width, aperture width, aperture distance - to the dose discrepancy is also presented in order to provide insight into the dose discrepancy caused by under-sampling in the frequency domain. Finally, a weighting-based interpolation (WBI) algorithm, which can improve the aperture interpolation efficiency, is proposed. The associated evaluation methods and criteria for the proposed algorithm are also given. The comparisons between the WBI algorithm and the equal angular interpolation (EAI) method suggested that the proposed algorithm has a great advantage with regard to aperture number efficiency. To achieve a 90% gamma passing rate using the dose computed with apertures generated with 0.5° EAI, with the initial optimization apertures as the standard for the comparison, the WBI needs only 66% and 54% of the aperture numbers that the EAI method needs for a 2° and a 4° angular separation of the VMAT

  15. PABLM: a computer program to calculate accumulated radiation doses from radionuclides in the environment

    SciTech Connect

    Napier, B.A.; Kennedy, W.E. Jr.; Soldat, J.K.

    1980-03-01

    A computer program, PABLM, was written to facilitate the calculation of internal radiation doses to man from radionuclides in food products and external radiation doses from radionuclides in the environment. This report contains details of mathematical models used and calculational procedures required to run the computer program. Radiation doses from radionuclides in the environment may be calculated from deposition on the soil or plants during an atmospheric or liquid release, or from exposure to residual radionuclides in the environment after the releases have ended. Radioactive decay is considered during the release of radionuclides, after they are deposited on the plants or ground, and during holdup of food after harvest. The radiation dose models consider several exposure pathways. Doses may be calculated for either a maximum-exposed individual or for a population group. The doses calculated are accumulated doses from continuous chronic exposure. A first-year committed dose is calculated as well as an integrated dose for a selected number of years. The equations for calculating internal radiation doses are derived from those given by the International Commission on Radiological Protection (ICRP) for body burdens and MPC's of each radionuclide. The radiation doses from external exposure to contaminated water and soil are calculated using the basic assumption that the contaminated medium is large enough to be considered an infinite volume or plane relative to the range of the emitted radiations. The equations for calculations of the radiation dose from external exposure to shoreline sediments include a correction for the finite width of the contaminated beach.

  16. Quantification of confounding factors in MRI-based dose calculations as applied to prostate IMRT

    NASA Astrophysics Data System (ADS)

    Maspero, Matteo; Seevinck, Peter R.; Schubert, Gerald; Hoesl, Michaela A. U.; van Asselen, Bram; Viergever, Max A.; Lagendijk, Jan J. W.; Meijer, Gert J.; van den Berg, Cornelis A. T.

    2017-02-01

    Magnetic resonance (MR)-only radiotherapy treatment planning requires pseudo-CT (pCT) images to enable MR-based dose calculations. To verify the accuracy of MR-based dose calculations, institutions interested in introducing MR-only planning will have to compare pCT-based and computer tomography (CT)-based dose calculations. However, interpreting such comparison studies may be challenging, since potential differences arise from a range of confounding factors which are not necessarily specific to MR-only planning. Therefore, the aim of this study is to identify and quantify the contribution of factors confounding dosimetric accuracy estimation in comparison studies between CT and pCT. The following factors were distinguished: set-up and positioning differences between imaging sessions, MR-related geometric inaccuracy, pCT generation, use of specific calibration curves to convert pCT into electron density information, and registration errors. The study comprised fourteen prostate cancer patients who underwent CT/MRI-based treatment planning. To enable pCT generation, a commercial solution (MRCAT, Philips Healthcare, Vantaa, Finland) was adopted. IMRT plans were calculated on CT (gold standard) and pCTs. Dose difference maps in a high dose region (CTV) and in the body volume were evaluated, and the contribution to dose errors of possible confounding factors was individually quantified. We found that the largest confounding factor leading to dose difference was the use of different calibration curves to convert pCT and CT into electron density (0.7%). The second largest factor was the pCT generation which resulted in pCT stratified into a fixed number of tissue classes (0.16%). Inter-scan differences due to patient repositioning, MR-related geometric inaccuracy, and registration errors did not significantly contribute to dose differences (0.01%). The proposed approach successfully identified and quantified the factors confounding accurate MRI-based dose calculation in

  17. Quantification of confounding factors in MRI-based dose calculations as applied to prostate IMRT.

    PubMed

    Maspero, Matteo; Seevinck, Peter R; Schubert, Gerald; Hoesl, Michaela A U; van Asselen, Bram; Viergever, Max A; Lagendijk, Jan J W; Meijer, Gert J; van den Berg, Cornelis A T

    2017-02-07

    Magnetic resonance (MR)-only radiotherapy treatment planning requires pseudo-CT (pCT) images to enable MR-based dose calculations. To verify the accuracy of MR-based dose calculations, institutions interested in introducing MR-only planning will have to compare pCT-based and computer tomography (CT)-based dose calculations. However, interpreting such comparison studies may be challenging, since potential differences arise from a range of confounding factors which are not necessarily specific to MR-only planning. Therefore, the aim of this study is to identify and quantify the contribution of factors confounding dosimetric accuracy estimation in comparison studies between CT and pCT. The following factors were distinguished: set-up and positioning differences between imaging sessions, MR-related geometric inaccuracy, pCT generation, use of specific calibration curves to convert pCT into electron density information, and registration errors. The study comprised fourteen prostate cancer patients who underwent CT/MRI-based treatment planning. To enable pCT generation, a commercial solution (MRCAT, Philips Healthcare, Vantaa, Finland) was adopted. IMRT plans were calculated on CT (gold standard) and pCTs. Dose difference maps in a high dose region (CTV) and in the body volume were evaluated, and the contribution to dose errors of possible confounding factors was individually quantified. We found that the largest confounding factor leading to dose difference was the use of different calibration curves to convert pCT and CT into electron density (0.7%). The second largest factor was the pCT generation which resulted in pCT stratified into a fixed number of tissue classes (0.16%). Inter-scan differences due to patient repositioning, MR-related geometric inaccuracy, and registration errors did not significantly contribute to dose differences (0.01%). The proposed approach successfully identified and quantified the factors confounding accurate MRI-based dose calculation in

  18. Calculation of residence times and radiation doses using the standard PC software Excel.

    PubMed

    Herzog, H; Zilken, H; Niederbremer, A; Friedrich, W; Müller-Gärtner, H W

    1997-12-01

    We developed a program which aims to facilitate the calculation of radiation doses to single organs and the whole body. IMEDOSE uses Excel to include calculations, graphical displays, and interactions with the user in a single general-purpose PC software tool. To start the procedure the input data are copied into a spreadsheet. They must represent percentage uptake values of several organs derived from measurements in animals or humans. To extrapolate these data up to seven half-lives of the radionuclide, fitting to one or two exponentional functions is included and can be checked by the user. By means of the approximate time-activity information the cumulated activity or residence times are calculated. Finally these data are combined with the absorbed fraction doses (S-values) given by MIRD pamphlet No. 11 to yield radiation doses, the effective dose equivalent and the effective dose. These results are presented in a final table. Interactions are realized with push-buttons and drop-down menus. Calculations use the Visual Basic tool of Excel. In order to test our program, biodistribution data of fluorine-18 fluorodeoxyglucose were taken from the literature (Meija et al., J Nucl Med 1991; 32:699-706). For a 70-kg adult the resulting radiation doses of all target organs listed in MIRD 11 were different from the ICRP 53 values by 1%+/-18% on the average. When the residence times were introduced into MIRDOSE3 (Stabin, J Nucl Med 1996; 37:538-546) the mean difference between our results and those of MIRDOSE3 was -3%+/-6%. Both outcomes indicate the validity of the present approach.

  19. [Method for the calculation of the 50% effective dose of biologically active agents].

    PubMed

    Kuznetsov, V G

    2004-01-01

    A newly proposed method for the mathematical and graphic determination and calculation of ED50 (LD50) on the abscissa at the meeting point of the cumulate of dead and the cumulate of survived animals (in absolute figures) in "dose-effect) experiments is described. "The method of meeting cumulates) for the calculation of ED50 (LD50) is simple, eliminates unnecessary calculations, yields results, highly similar (95-100%) to those obtained by other methods and may be used in different medico-biological studies.

  20. Reduced Variance using ADVANTG in Monte Carlo Calculations of Dose Coefficients to Stylized Phantoms

    NASA Astrophysics Data System (ADS)

    Hiller, Mauritius; Bellamy, Michael; Eckerman, Keith; Hertel, Nolan

    2017-09-01

    The estimation of dose coefficients of external radiation sources to the organs in phantoms becomes increasingly difficult for lower photon source energies. This study focus on the estimation of photon emitters around the phantom. The computer time needed to calculate a result within a certain precision can be lowered by several orders of magnitude using ADVANTG compared to a standard run. Using ADVANTG which employs the DENOVO adjoint calculation package enables the user to create a fully populated set of weight windows and source biasing instructions for an MCNP calculation.

  1. TH-A-19A-06: Site-Specific Comparison of Analytical and Monte Carlo Based Dose Calculations

    SciTech Connect

    Schuemann, J; Grassberger, C; Paganetti, H; Dowdell, S

    2014-06-15

    Purpose: To investigate the impact of complex patient geometries on the capability of analytical dose calculation algorithms to accurately predict dose distributions and to verify currently used uncertainty margins in proton therapy. Methods: Dose distributions predicted by an analytical pencilbeam algorithm were compared with Monte Carlo simulations (MCS) using TOPAS. 79 complete patient treatment plans were investigated for 7 disease sites (liver, prostate, breast, medulloblastoma spine and whole brain, lung and head and neck). A total of 508 individual passively scattered treatment fields were analyzed for field specific properties. Comparisons based on target coverage indices (EUD, D95, D90 and D50) were performed. Range differences were estimated for the distal position of the 90% dose level (R90) and the 50% dose level (R50). Two-dimensional distal dose surfaces were calculated and the root mean square differences (RMSD), average range difference (ARD) and average distal dose degradation (ADD), the distance between the distal position of the 80% and 20% dose levels (R80- R20), were analyzed. Results: We found target coverage indices calculated by TOPAS to generally be around 1–2% lower than predicted by the analytical algorithm. Differences in R90 predicted by TOPAS and the planning system can be larger than currently applied range margins in proton therapy for small regions distal to the target volume. We estimate new site-specific range margins (R90) for analytical dose calculations considering total range uncertainties and uncertainties from dose calculation alone based on the RMSD. Our results demonstrate that a reduction of currently used uncertainty margins is feasible for liver, prostate and whole brain fields even without introducing MC dose calculations. Conclusion: Analytical dose calculation algorithms predict dose distributions within clinical limits for more homogeneous patients sites (liver, prostate, whole brain). However, we recommend

  2. Calculation of organ doses in x-ray examinations of premature babies.

    PubMed

    Smans, Kristien; Tapiovaara, Markku; Cannie, Mieke; Struelens, Lara; Vanhavere, Filip; Smet, Marleen; Bosmans, Hilde

    2008-02-01

    Lung disease represents one of the most life-threatening conditions in prematurely born children. In the evaluation of the neonatal chest, the primary and most important diagnostic study is the chest radiograph. Since prematurely born children are very sensitive to radiation, those radiographs may lead to a significant radiation detriment. Knowledge of the radiation dose is therefore necessary to justify the exposures. To calculate doses in the entire body and in specific organs, computational models of the human anatomy are needed. Using medical imaging techniques, voxel phantoms have been developed to achieve a representation as close as possible to the anatomical properties. In this study two voxel phantoms, representing prematurely born babies, were created from computed tomography- and magnetic resonance images: Phantom 1 (1910 g) and Phantom 2 (590 g). The two voxel phantoms were used in Monte Carlo calculations (MCNPX) to assess organ doses. The results were compared with the commercially available software package PCXMC in which the available mathematical phantoms can be downsized toward the prematurely born baby. The simple phantom-scaling method used in PCXMC seems to be sufficient to calculate doses for organs within the radiation field. However, one should be careful in specifying the irradiation geometry. Doses in organs that are wholly or partially outside the primary radiation field depend critically on the irradiation conditions and the phantom model.

  3. Calculation of organ doses in x-ray examinations of premature babies

    SciTech Connect

    Smans, Kristien; Tapiovaara, Markku; Cannie, Mieke; Struelens, Lara; Vanhavere, Filip; Smet, Marleen; Bosmans, Hilde

    2008-02-15

    Lung disease represents one of the most life-threatening conditions in prematurely born children. In the evaluation of the neonatal chest, the primary and most important diagnostic study is the chest radiograph. Since prematurely born children are very sensitive to radiation, those radiographs may lead to a significant radiation detriment. Knowledge of the radiation dose is therefore necessary to justify the exposures. To calculate doses in the entire body and in specific organs, computational models of the human anatomy are needed. Using medical imaging techniques, voxel phantoms have been developed to achieve a representation as close as possible to the anatomical properties. In this study two voxel phantoms, representing prematurely born babies, were created from computed tomography- and magnetic resonance images: Phantom 1 (1910 g) and Phantom 2 (590 g). The two voxel phantoms were used in Monte Carlo calculations (MCNPX) to assess organ doses. The results were compared with the commercially available software package PCXMC in which the available mathematical phantoms can be downsized toward the prematurely born baby. The simple phantom-scaling method used in PCXMC seems to be sufficient to calculate doses for organs within the radiation field. However, one should be careful in specifying the irradiation geometry. Doses in organs that are wholly or partially outside the primary radiation field depend critically on the irradiation conditions and the phantom model.

  4. Individual Dose Calculations with Use of the Revised Techa River Dosimetry System TRDS-2009D

    SciTech Connect

    Degteva, M. O.; Shagina, N. B.; Tolstykh, E. I.; Vorobiova, M. I.; Anspaugh, L. R.; Napier, Bruce A.

    2009-10-23

    An updated deterministic version of the Techa River Dosimetry System (TRDS-2009D) has been developed to estimate individual doses from external exposure and intake of radionuclides for residents living on the Techa River contaminated as a result of radioactive releases from the Mayak plutonium facility in 1949–1956. The TRDS-2009D is designed as a flexible system that uses, depending on the input data for an individual, various elements of system databases to provide the dosimetric variables requested by the user. Several phases are included in the computation schedule. The first phase includes calculations with use of a common protocol for all cohort members based on village-average-intake functions and external dose rates; individual data on age, gender and history of residence are included in the first phase. This phase results in dose estimates similar to those obtained with system TRDS-2000 used previously to derive risks of health effects in the Techa River Cohort. The second phase includes refinement of individual internal doses for those persons who have had body-burden measurements or exposure parameters specific to the household where he/she lived on the Techa River. The third phase includes summation of individual doses from environmental exposure and from radiological examinations. The results of TRDS-2009D dose calculations have demonstrated for the ETRC members on average a moderate increase in RBM dose estimates (34%) and a minor increase (5%) in estimates of stomach dose. The calculations for the members of the ETROC indicated similar small changes for stomach, but significant increase in RBM doses (400%). Individual-dose assessments performed with use of TRDS-2009D have been provided to epidemiologists for exploratory risk analysis in the ETRC and ETROC. These data provide an opportunity to evaluate the possible impact on radiogenic risk of such factors as confounding exposure (environmental and medical), changes in the Techa River source

  5. SU-E-T-639: Proton Dose Calculation for Irregular Motion Using a Sliding Interface

    SciTech Connect

    Phillips, J; Gueorguiev, G; Grassberger, C; Paganetti, H; Sharp, G

    2015-06-15

    Purpose: While many techniques exist to evaluate dose to regularly moving lung targets, there are few available to calculate dose at tumor positions not present in the 4DCT. We have previously developed a method that extrapolates an existing dose to a new tumor location. In this abstract, we present a novel technique that accounts for relative anatomical shifts at the chest wall interface. We also utilize this procedure to simulate breathing motion functions on a cohort of eleven patients. Amplitudes exceeding the original range of motion were used to evaluate coverage using several aperture and smearing beam settings. Methods: The water-equivalent depth (WED) technique requires an initial dose and CT image at the corresponding tumor position. Each dose volume was converted from its Cartesian geometry into a beam-specific radiological depth space. The sliding chest wall interface was determined by converting the lung contour into this same space. Any dose proximal to the initial boundary of the warped lung contour was held fixed, while the remaining distal dose was moved in the direction of motion along the interface. Results: V95 coverage was computed for each patient using the updated algorithm. Incorporation of the sliding motion yielded large dose differences, with gamma pass rates as low as 69.7% (3mm, 3%) and V95 coverage differences up to 2.0%. Clinical coverage was maintained for most patients with 5 mm excess simulated breathing motion, and up to 10 mm of excess motion was tolerated for a subset of patients and beam settings. Conclusion: We have established a method to determine the maximum allowable excess breathing motion for a given plan on a patient-by-patient basis. By integrating a sliding chest wall interface into our dose calculation technique, we have analyzed the robustness of breathing patterns that differ during treatment from at the time of 4DCT acquisition.

  6. Scoping calculation for components of the cow-milk dose pathway for evaluating the dose contribution from iodine-131. Hanford Environmental Dose Reconstruction Project: Dose code recovery activities

    SciTech Connect

    Ikenberry, T.A.; Napier, B.A.

    1992-12-01

    A series of scoping calculations have been undertaken to evaluate The absolute and relative contribution of different exposure pathways to doses that may have been received by individuals living in the vicinity of the Hanford site. This scoping calculation (Calculation 001) examined the contributions of the various exposure pathways associated with environmental transport and accumulation of iodine-131 in the pasture-cow-milk pathway. Addressed in this calculation were the contributions to thyroid dose of infants and adult from (1) the ingestion by dairy cattle of various feedstuffs (pasturage, silage, alfalfa hay, and grass hay) in four different feeding regimes; (2) ingestion of soil by dairy cattle; (3) ingestion of stared feed on which airborne iodine-131 had been deposited; and (4) inhalation of airborne iodine-131 by dairy cows.

  7. A patient-specific Monte Carlo dose-calculation method for photon beams.

    PubMed

    Wang, L; Chui, C S; Lovelock, M

    1998-06-01

    A patient-specific, CT-based, Monte Carlo dose-calculation method for photon beams has been developed to correctly account for inhomogeneity in the patient. The method employs the EGS4 system to sample the interaction of radiation in the medium. CT images are used to describe the patient geometry and to determine the density and atomic number in each voxel. The user code (MCPAT) provides the data describing the incident beams, and performs geometry checking and energy scoring in patient CT images. Several variance reduction techniques have been implemented to improve the computation efficiency. The method was verified with measured data and other calculations, both in homogeneous and inhomogeneous media. The method was also applied to a lung treatment, where significant differences in dose distributions, especially in the low-density region, were observed when compared with the results using an equivalent pathlength method. Comparison of the DVHs showed that the Monte Carlo calculated plan predicted an underdose of nearly 20% to the target, while the maximum doses to the cord and the heart were increased by 25% and 33%, respectively. These results suggested that the Monte Carlo method may have an impact on treatment designs, and also that it can be used as a benchmark to assess the accuracy of other dose calculation algorithms. The computation time for the lung case employing five 15-MV wedged beams, with an approximate field size of 13 X 13 cm and the dose grid size of 0.375 cm, was less than 14 h on a 175-MHz computer with a standard deviation of 1.5% in the high-dose region.

  8. Dose calculations using artificial neural networks: A feasibility study for photon beams

    NASA Astrophysics Data System (ADS)

    Vasseur, Aurélien; Makovicka, Libor; Martin, Éric; Sauget, Marc; Contassot-Vivier, Sylvain; Bahi, Jacques

    2008-04-01

    Direct dose calculations are a crucial requirement for Treatment Planning Systems. Some methods, such as Monte Carlo, explicitly model particle transport, others depend upon tabulated data or analytic formulae. However, their computation time is too lengthy for clinical use, or accuracy is insufficient, especially for recent techniques such as Intensity-Modulated Radiotherapy. Based on artificial neural networks (ANNs), a new solution is proposed and this work extends the properties of such an algorithm and is called NeuRad. Prior to any calculations, a first phase known as the learning process is necessary. Monte Carlo dose distributions in homogeneous media are used, and the ANN is then acquired. According to the training base, it can be used as a dose engine for either heterogeneous media or for an unknown material. In this report, two networks were created in order to compute dose distribution within a homogeneous phantom made of an unknown material and within an inhomogeneous phantom made of water and TA6V4 (titanium alloy corresponding to hip prosthesis). All NeuRad results were compared to Monte Carlo distributions. The latter required about 7 h on a dedicated cluster (10 nodes). NeuRad learning requires between 8 and 18 h (depending upon the size of the training base) on a single low-end computer. However, the results of dose computation with the ANN are available in less than 2 s, again using a low-end computer, for a 150×1×150 voxels phantom. In the case of homogeneous medium, the mean deviation in the high dose region was less than 1.7%. With a TA6V4 hip prosthesis bathed in water, the mean deviation in the high dose region was less than 4.1%. Further improvements in NeuRad will have to include full 3D calculations, inhomogeneity management and input definitions.

  9. SU-E-T-196: Comparative Analysis of Surface Dose Measurements Using MOSFET Detector and Dose Predicted by Eclipse - AAA with Varying Dose Calculation Grid Size

    SciTech Connect

    Badkul, R; Nejaiman, S; Pokhrel, D; Jiang, H; Kumar, P

    2015-06-15

    Purpose: Skin dose can be the limiting factor and fairly common reason to interrupt the treatment, especially for treating head-and-neck with Intensity-modulated-radiation-therapy(IMRT) or Volumetrically-modulated - arc-therapy (VMAT) and breast with tangentially-directed-beams. Aim of this study was to investigate accuracy of near-surface dose predicted by Eclipse treatment-planning-system (TPS) using Anisotropic-Analytic Algorithm (AAA)with varying calculation grid-size and comparing with metal-oxide-semiconductor-field-effect-transistors(MOSFETs)measurements for a range of clinical-conditions (open-field,dynamic-wedge, physical-wedge, IMRT,VMAT). Methods: QUASAR™-Body-Phantom was used in this study with oval curved-surfaces to mimic breast, chest wall and head-and-neck sites.A CT-scan was obtained with five radio-opaque markers(ROM) placed on the surface of phantom to mimic the range of incident angles for measurements and dose prediction using 2mm slice thickness.At each ROM, small structure(1mmx2mm) were contoured to obtain mean-doses from TPS.Calculations were performed for open-field,dynamic-wedge,physical-wedge,IMRT and VMAT using Varian-21EX,6&15MV photons using twogrid-sizes:2.5mm and 1mm.Calibration checks were performed to ensure that MOSFETs response were within ±5%.Surface-doses were measured at five locations and compared with TPS calculations. Results: For 6MV: 2.5mm grid-size,mean calculated doses(MCD)were higher by 10%(±7.6),10%(±7.6),20%(±8.5),40%(±7.5),30%(±6.9) and for 1mm grid-size MCD were higher by 0%(±5.7),0%(±4.2),0%(±5.5),1.2%(±5.0),1.1% (±7.8) for open-field,dynamic-wedge,physical-wedge,IMRT,VMAT respectively.For 15MV: 2.5mm grid-size,MCD were higher by 30%(±14.6),30%(±14.6),30%(±14.0),40%(±11.0),30%(±3.5)and for 1mm grid-size MCD were higher by 10% (±10.6), 10%(±9.8),10%(±8.0),30%(±7.8),10%(±3.8) for open-field, dynamic-wedge, physical-wedge, IMRT, VMAT respectively.For 6MV, 86% and 56% of all measured values

  10. Probable solar flare doses encountered on an interplanetary mission as calculated by the MCFLARE code

    NASA Technical Reports Server (NTRS)

    Lahti, G. P.; Karp, I. M.

    1972-01-01

    The computer program, MCFLARE, uses Monte Carlo methods to simulate solar flare occurrences during an interplanetary space voyage. The total biological dose inside a shielded crew compartment due to the flares encountered during the voyage is determined. The computer program evaluates the doses obtained on a large number of trips having identical trajectories. From these results, a dose D sub p having a probability p of not being exceeded during the voyage can be determined as a function of p for any shield material configuration. To illustrate the use of the code, a trip to Mars and return is calculated, and estimated doses behind several thicknesses of aluminum shield and water shield are presented.

  11. A brief look at model-based dose calculation principles, practicalities, and promise.

    PubMed

    Sloboda, Ron S; Morrison, Hali; Cawston-Grant, Brie; Menon, Geetha V

    2017-02-01

    Model-based dose calculation algorithms (MBDCAs) have recently emerged as potential successors to the highly practical, but sometimes inaccurate TG-43 formalism for brachytherapy treatment planning. So named for their capacity to more accurately calculate dose deposition in a patient using information from medical images, these approaches to solve the linear Boltzmann radiation transport equation include point kernel superposition, the discrete ordinates method, and Monte Carlo simulation. In this overview, we describe three MBDCAs that are commercially available at the present time, and identify guidance from professional societies and the broader peer-reviewed literature intended to facilitate their safe and appropriate use. We also highlight several important considerations to keep in mind when introducing an MBDCA into clinical practice, and look briefly at early applications reported in the literature and selected from our own ongoing work. The enhanced dose calculation accuracy offered by a MBDCA comes at the additional cost of modelling the geometry and material composition of the patient in treatment position (as determined from imaging), and the treatment applicator (as characterized by the vendor). The adequacy of these inputs and of the radiation source model, which needs to be assessed for each treatment site, treatment technique, and radiation source type, determines the accuracy of the resultant dose calculations. Although new challenges associated with their familiarization, commissioning, clinical implementation, and quality assurance exist, MBDCAs clearly afford an opportunity to improve brachytherapy practice, particularly for low-energy sources.

  12. A brief look at model-based dose calculation principles, practicalities, and promise

    PubMed Central

    Morrison, Hali; Cawston-Grant, Brie; Menon, Geetha V.

    2017-01-01

    Model-based dose calculation algorithms (MBDCAs) have recently emerged as potential successors to the highly practical, but sometimes inaccurate TG-43 formalism for brachytherapy treatment planning. So named for their capacity to more accurately calculate dose deposition in a patient using information from medical images, these approaches to solve the linear Boltzmann radiation transport equation include point kernel superposition, the discrete ordinates method, and Monte Carlo simulation. In this overview, we describe three MBDCAs that are commercially available at the present time, and identify guidance from professional societies and the broader peer-reviewed literature intended to facilitate their safe and appropriate use. We also highlight several important considerations to keep in mind when introducing an MBDCA into clinical practice, and look briefly at early applications reported in the literature and selected from our own ongoing work. The enhanced dose calculation accuracy offered by a MBDCA comes at the additional cost of modelling the geometry and material composition of the patient in treatment position (as determined from imaging), and the treatment applicator (as characterized by the vendor). The adequacy of these inputs and of the radiation source model, which needs to be assessed for each treatment site, treatment technique, and radiation source type, determines the accuracy of the resultant dose calculations. Although new challenges associated with their familiarization, commissioning, clinical implementation, and quality assurance exist, MBDCAs clearly afford an opportunity to improve brachytherapy practice, particularly for low-energy sources. PMID:28344608

  13. SU-F-19A-10: Recalculation and Reporting Clinical HDR 192-Ir Head and Neck Dose Distributions Using Model Based Dose Calculation

    SciTech Connect

    Carlsson Tedgren, A; Persson, M; Nilsson, J

    2014-06-15

    Purpose: To retrospectively re-calculate dose distributions for selected head and neck cancer patients, earlier treated with HDR 192Ir brachytherapy, using Monte Carlo (MC) simulations and compare results to distributions from the planning system derived using TG43 formalism. To study differences between dose to medium (as obtained with the MC code) and dose to water in medium as obtained through (1) ratios of stopping powers and (2) ratios of mass energy absorption coefficients between water and medium. Methods: The MC code Algebra was used to calculate dose distributions according to earlier actual treatment plans using anonymized plan data and CT images in DICOM format. Ratios of stopping power and mass energy absorption coefficients for water with various media obtained from 192-Ir spectra were used in toggling between dose to water and dose to media. Results: Differences between initial planned TG43 dose distributions and the doses to media calculated by MC are insignificant in the target volume. Differences are moderate (within 4–5 % at distances of 3–4 cm) but increase with distance and are most notable in bone and at the patient surface. Differences between dose to water and dose to medium are within 1-2% when using mass energy absorption coefficients to toggle between the two quantities but increase to above 10% for bone using stopping power ratios. Conclusion: MC predicts target doses for head and neck cancer patients in close agreement with TG43. MC yields improved dose estimations outside the target where a larger fraction of dose is from scattered photons. It is important with awareness and a clear reporting of absorbed dose values in using model based algorithms. Differences in bone media can exceed 10% depending on how dose to water in medium is defined.

  14. Development of a radiopharmaceutical dose calculator for pediatric patients undergoing diagnostic nuclear medicine studies.

    PubMed

    Pandey, Anil Kumar; Sharma, Sanjay Kumar; Sharma, Punit; Gupta, Priyanka; Kumar, Rakesh

    2013-04-01

    It is important to ensure that as low as reasonably achievable (ALARA) concept during the radiopharmaceutical (RPH) dose administration in pediatric patients. Several methods have been suggested over the years for the calculation of individualized RPH dose, sometimes requiring complex calculations and large variability exists for administered dose in children. The aim of the present study was to develop a software application that can calculate and store RPH dose along with patient record. We reviewed the literature to select the dose formula and used Microsoft Access (a software package) to develop this application. We used the Microsoft Excel to verify the accurate execution of the dose formula. The manual and computer time using this program required for calculating the RPH dose were compared. The developed application calculates RPH dose for pediatric patients based on European Association of Nuclear Medicine dose card, weight based, body surface area based, Clark, Solomon Fried, Young and Webster's formula. It is password protected to prevent the accidental damage and stores the complete record of patients that can be exported to Excel sheet for further analysis. It reduces the burden of calculation and saves considerable time i.e., 2 min computer time as compared with 102 min (manual calculation with the calculator for all seven formulas for 25 patients). The software detailed above appears to be an easy and useful method for calculation of pediatric RPH dose in routine clinical practice. This software application will help in helping the user to routinely applied ALARA principle while pediatric dose administration.

  15. Sex-specific tissue weighting factors for effective dose equivalent calculations

    SciTech Connect

    Xu, X.G.; Reece, W.D.

    1996-01-01

    The effective dose equivalent was defined in the International Commission on Radiological Protection Publication 26 in 1977 and later adopted by the U.S. Nuclear REgulatory Commission. To calculate organ doses and effective dose equivalent for external exposures using Monte Carlo simulations, sex-specific anthropomorphic phantoms and sex-specific weighting factors are always employed. This paper presents detailed mathematical derivation of a set of sex-specific tissue weighting factors and the conditions which the weighting factors must satisfy. Results of effective dose equivalent calculations using female and male phantoms exposed to monoenergetic photon beams of 0.08, 0.3, and 1.0 MeV are provided and compared with results published by other authors using different sex-specific weighting factors and phantoms. The results indicate that females always receive higher effective dose equivalent than males for the photon energies and geometries considered and that some published data may be wrong due to mistakes in deriving the sex-specific weighting factors. 17 refs., 2 figs., 2 tabs.

  16. 3D dose distribution calculation in a voxelized human phantom by means of Monte Carlo method.

    PubMed

    Abella, V; Miró, R; Juste, B; Verdú, G

    2010-01-01

    The aim of this work is to provide the reconstruction of a real human voxelized phantom by means of a MatLab program and the simulation of the irradiation of such phantom with the photon beam generated in a Theratron 780 (MDS Nordion) (60)Co radiotherapy unit, by using the Monte Carlo transport code MCNP (Monte Carlo N-Particle), version 5. The project results in 3D dose mapping calculations inside the voxelized antropomorphic head phantom. The program provides the voxelization by first processing the CT slices; the process follows a two-dimensional pixel and material identification algorithm on each slice and three-dimensional interpolation in order to describe the phantom geometry via small cubic cells, resulting in an MCNP input deck format output. Dose rates are calculated by using the MCNP5 tool FMESH, superimposed mesh tally, which gives the track length estimation of the particle flux in units of particles/cm(2). Furthermore, the particle flux is converted into dose by using the conversion coefficients extracted from the NIST Physical Reference Data. The voxelization using a three-dimensional interpolation technique in combination with the use of the FMESH tool of the MCNP Monte Carlo code offers an optimal simulation which results in 3D dose mapping calculations inside anthropomorphic phantoms. This tool is very useful in radiation treatment assessments, in which voxelized phantoms are widely utilized. Copyright 2009 Elsevier Ltd. All rights reserved.

  17. TH-C-BRD-02: Analytical Modeling and Dose Calculation Method for Asymmetric Proton Pencil Beams

    SciTech Connect

    Gelover, E; Wang, D; Hill, P; Flynn, R; Hyer, D

    2014-06-15

    Purpose: A dynamic collimation system (DCS), which consists of two pairs of orthogonal trimmer blades driven by linear motors has been proposed to decrease the lateral penumbra in pencil beam scanning proton therapy. The DCS reduces lateral penumbra by intercepting the proton pencil beam near the lateral boundary of the target in the beam's eye view. The resultant trimmed pencil beams are asymmetric and laterally shifted, and therefore existing pencil beam dose calculation algorithms are not capable of trimmed beam dose calculations. This work develops a method to model and compute dose from trimmed pencil beams when using the DCS. Methods: MCNPX simulations were used to determine the dose distributions expected from various trimmer configurations using the DCS. Using these data, the lateral distribution for individual beamlets was modeled with a 2D asymmetric Gaussian function. The integral depth dose (IDD) of each configuration was also modeled by combining the IDD of an untrimmed pencil beam with a linear correction factor. The convolution of these two terms, along with the Highland approximation to account for lateral growth of the beam along the depth direction, allows a trimmed pencil beam dose distribution to be analytically generated. The algorithm was validated by computing dose for a single energy layer 5×5 cm{sup 2} treatment field, defined by the trimmers, using both the proposed method and MCNPX beamlets. Results: The Gaussian modeled asymmetric lateral profiles along the principal axes match the MCNPX data very well (R{sup 2}≥0.95 at the depth of the Bragg peak). For the 5×5 cm{sup 2} treatment plan created with both the modeled and MCNPX pencil beams, the passing rate of the 3D gamma test was 98% using a standard threshold of 3%/3 mm. Conclusion: An analytical method capable of accurately computing asymmetric pencil beam dose when using the DCS has been developed.

  18. Site-specific range uncertainties caused by dose calculation algorithms for proton therapy

    PubMed Central

    Schuemann, J.; Dowdell, S.; Grassberger, C.; Min, C. H.; Paganetti, H.

    2014-01-01

    The purpose of this study was to investigate the impact of complex patient geometries on the capability of analytical dose calculation algorithms to accurately predict the range of proton fields. Dose distributions predicted by an analytical pencil-beam algorithm were compared with those obtained using Monte Carlo simulations (TOPAS). A total of 508 passively scattered treatment fields were analyzed for 7 disease sites (liver, prostate, breast, medulloblastoma-spine, medulloblastoma-whole brain, lung and head & neck). Voxel-by-voxel comparisons were performed on two-dimensional distal dose surfaces calculated by pencil-beam and Monte Carlo algorithms to obtain the average range differences (ARD) and root mean square deviation (RMSD) for each field for the distal position of the 90% dose level (R90) and the 50% dose level (R50). The average dose degradation (ADD) of the distal falloff region, defined as the distance between the distal position of the 80% and 20% dose levels (R80-R20), was also analyzed. All ranges were calculated in water-equivalent distances. Considering total range uncertainties and uncertainties from dose calculation alone, we were able to deduce site-specific estimations. For liver, prostate and whole brain fields our results demonstrate that a reduction of currently used uncertainty margins is feasible even without introducing Monte Carlo dose calculations. We recommend range margins of 2.8% + 1.2 mm for liver and prostate treatments and 3.1% + 1.2 mm for whole brain treatments, respectively. On the other hand, current margins seem to be insufficient for some breast, lung and head & neck patients, at least if used generically. If no case specific adjustments are applied, a generic margin of 6.3% + 1.2 mm would be needed for breast, lung and head & neck treatments. We conclude that currently used generic range uncertainty margins in proton therapy should be redefined site specific and that complex geometries may require a field specific

  19. Radiation therapy for stage IIA and IIB testicular seminoma: peripheral dose calculations and risk assessments

    NASA Astrophysics Data System (ADS)

    Mazonakis, Michalis; Berris, Theocharris; Lyraraki, Efrossyni; Damilakis, John

    2015-03-01

    This study was conducted to calculate the peripheral dose to critical structures and assess the radiation risks from modern radiotherapy for stage IIA/IIB testicular seminoma. A Monte Carlo code was used for treatment simulation on a computational phantom representing an average adult. The initial treatment phase involved anteroposterior and posteroanaterior modified dog-leg fields exposing para-aortic and ipsilateral iliac lymph nodes followed by a cone-down phase for nodal mass irradiation. Peripheral doses were calculated using different modified dog-leg field dimensions and an extended conventional dog-leg portal. The risk models of the BEIR-VII report and ICRP-103 were combined with dosimetric calculations to estimate the probability of developing stochastic effects. Radiotherapy for stage IIA seminoma with a target dose of 30 Gy resulted in a range of 23.0-603.7 mGy to non-targeted peripheral tissues and organs. The corresponding range for treatment of stage IIB disease to a cumulative dose of 36 Gy was 24.2-633.9 mGy. A dose variation of less than 13% was found by altering the field dimensions. Radiotherapy with the conventional instead of the modern modified dog-leg field increased the peripheral dose up to 8.2 times. The calculated heart doses of 589.0-632.9 mGy may increase the risk for developing cardiovascular diseases whereas the testicular dose of more than 231.9 mGy may lead to a temporary infertility. The probability of birth abnormalities in the offspring of cancer survivors was below 0.13% which is much lower than the spontaneous mutation rate. Abdominoplevic irradiation may increase the lifetime intrinsic risk for the induction of secondary malignancies by 0.6-3.9% depending upon the site of interest, patient’s age and tumor dose. Radiotherapy for stage IIA/IIB seminoma with restricted fields and low doses is associated with an increased morbidity. These data may allow the definition of a risk-adapted follow-up scheme for long

  20. Radiation therapy for stage IIA and IIB testicular seminoma: peripheral dose calculations and risk assessments.

    PubMed

    Mazonakis, Michalis; Berris, Theocharris; Lyraraki, Efrossyni; Damilakis, John

    2015-03-21

    This study was conducted to calculate the peripheral dose to critical structures and assess the radiation risks from modern radiotherapy for stage IIA/IIB testicular seminoma. A Monte Carlo code was used for treatment simulation on a computational phantom representing an average adult. The initial treatment phase involved anteroposterior and posteroanaterior modified dog-leg fields exposing para-aortic and ipsilateral iliac lymph nodes followed by a cone-down phase for nodal mass irradiation. Peripheral doses were calculated using different modified dog-leg field dimensions and an extended conventional dog-leg portal. The risk models of the BEIR-VII report and ICRP-103 were combined with dosimetric calculations to estimate the probability of developing stochastic effects. Radiotherapy for stage IIA seminoma with a target dose of 30 Gy resulted in a range of 23.0-603.7 mGy to non-targeted peripheral tissues and organs. The corresponding range for treatment of stage IIB disease to a cumulative dose of 36 Gy was 24.2-633.9 mGy. A dose variation of less than 13% was found by altering the field dimensions. Radiotherapy with the conventional instead of the modern modified dog-leg field increased the peripheral dose up to 8.2 times. The calculated heart doses of 589.0-632.9 mGy may increase the risk for developing cardiovascular diseases whereas the testicular dose of more than 231.9 mGy may lead to a temporary infertility. The probability of birth abnormalities in the offspring of cancer survivors was below 0.13% which is much lower than the spontaneous mutation rate. Abdominoplevic irradiation may increase the lifetime intrinsic risk for the induction of secondary malignancies by 0.6-3.9% depending upon the site of interest, patient's age and tumor dose. Radiotherapy for stage IIA/IIB seminoma with restricted fields and low doses is associated with an increased morbidity. These data may allow the definition of a risk-adapted follow-up scheme for long

  1. Head-and-neck IMRT treatments assessed with a Monte Carlo dose calculation engine

    NASA Astrophysics Data System (ADS)

    Seco, J.; Adams, E.; Bidmead, M.; Partridge, M.; Verhaegen, F.

    2005-03-01

    IMRT is frequently used in the head-and-neck region, which contains materials of widely differing densities (soft tissue, bone, air-cavities). Conventional methods of dose computation for these complex, inhomogeneous IMRT cases involve significant approximations. In the present work, a methodology for the development, commissioning and implementation of a Monte Carlo (MC) dose calculation engine for intensity modulated radiotherapy (MC-IMRT) is proposed which can be used by radiotherapy centres interested in developing MC-IMRT capabilities for research or clinical evaluations. The method proposes three levels for developing, commissioning and maintaining a MC-IMRT dose calculation engine: (a) development of a MC model of the linear accelerator, (b) validation of MC model for IMRT and (c) periodic quality assurance (QA) of the MC-IMRT system. The first step, level (a), in developing an MC-IMRT system is to build a model of the linac that correctly predicts standard open field measurements for percentage depth-dose and off-axis ratios. Validation of MC-IMRT, level (b), can be performed in a rando phantom and in a homogeneous water equivalent phantom. Ultimately, periodic quality assurance of the MC-IMRT system is needed to verify the MC-IMRT dose calculation system, level (c). Once the MC-IMRT dose calculation system is commissioned it can be applied to more complex clinical IMRT treatments. The MC-IMRT system implemented at the Royal Marsden Hospital was used for IMRT calculations for a patient undergoing treatment for primary disease with nodal involvement in the head-and-neck region (primary treated to 65 Gy and nodes to 54 Gy), while sparing the spinal cord, brain stem and parotid glands. Preliminary MC results predict a decrease of approximately 1-2 Gy in the median dose of both the primary tumour and nodal volumes (compared with both pencil beam and collapsed cone). This is possibly due to the large air-cavity (the larynx of the patient) situated in the centre

  2. Head-and-neck IMRT treatments assessed with a Monte Carlo dose calculation engine.

    PubMed

    Seco, J; Adams, E; Bidmead, M; Partridge, M; Verhaegen, F

    2005-03-07

    IMRT is frequently used in the head-and-neck region, which contains materials of widely differing densities (soft tissue, bone, air-cavities). Conventional methods of dose computation for these complex, inhomogeneous IMRT cases involve significant approximations. In the present work, a methodology for the development, commissioning and implementation of a Monte Carlo (MC) dose calculation engine for intensity modulated radiotherapy (MC-IMRT) is proposed which can be used by radiotherapy centres interested in developing MC-IMRT capabilities for research or clinical evaluations. The method proposes three levels for developing, commissioning and maintaining a MC-IMRT dose calculation engine: (a) development of a MC model of the linear accelerator, (b) validation of MC model for IMRT and (c) periodic quality assurance (QA) of the MC-IMRT system. The first step, level (a), in developing an MC-IMRT system is to build a model of the linac that correctly predicts standard open field measurements for percentage depth-dose and off-axis ratios. Validation of MC-IMRT, level (b), can be performed in a rando phantom and in a homogeneous water equivalent phantom. Ultimately, periodic quality assurance of the MC-IMRT system is needed to verify the MC-IMRT dose calculation system, level (c). Once the MC-IMRT dose calculation system is commissioned it can be applied to more complex clinical IMRT treatments. The MC-IMRT system implemented at the Royal Marsden Hospital was used for IMRT calculations for a patient undergoing treatment for primary disease with nodal involvement in the head-and-neck region (primary treated to 65 Gy and nodes to 54 Gy), while sparing the spinal cord, brain stem and parotid glands. Preliminary MC results predict a decrease of approximately 1-2 Gy in the median dose of both the primary tumour and nodal volumes (compared with both pencil beam and collapsed cone). This is possibly due to the large air-cavity (the larynx of the patient) situated in the centre

  3. Calculation of mean central dose in interstitial brachytherapy using Delaunay triangulation.

    PubMed

    Astrahan, M A; Streeter, O E; Jozsef, G

    2001-06-01

    In 1997 the ICRU published Report 58 "Dose and Volume Specification for Reporting Interstitial Therapy" with the objective of addressing the problem of absorbed dose specification for reporting contemporary interstitial therapy. One of the concepts proposed in that report is "mean central dose." The fundamental goal of the mean central dose (MCD) calculation is to obtain a single, readily reportable and intercomparable value which is representative of dose in regions of the implant "where the dose gradient approximates a plateau." Delaunay triangulation (DT) is a method used in computational geometry to partition the space enclosed by the convex hull of a set of distinct points P into a set of nonoverlapping cells. In the three-dimensional case, each point of P becomes a vertex of a tetrahedron and the result of the DT is a set of tetrahedra. All treatment planning for interstitial brachytherapy inherently requires that the location of the radioactive sources, or dwell positions in the case of HDR, be known or digitized. These source locations may be regarded as a set of points representing the implanted volume. Delaunay triangulation of the source locations creates a set of tetrahedra without manual intervention. The geometric centers of these tetrahedra define a new set of points which lie "in between" the radioactive sources and which are distributed uniformly over the volume of the implant. The arithmetic mean of the dose at these centers is a three dimensional analog of the two-dimensional triangulation and inspection methods proposed for calculating MCD in ICRU 58. We demonstrate that DT can be successfully incorporated into a computerized treatment planning system and used to calculate the MCD.

  4. GPU-based fast Monte Carlo simulation for radiotherapy dose calculation.

    PubMed

    Jia, Xun; Gu, Xuejun; Graves, Yan Jiang; Folkerts, Michael; Jiang, Steve B

    2011-11-21

    Monte Carlo (MC) simulation is commonly considered to be the most accurate dose calculation method in radiotherapy. However, its efficiency still requires improvement for many routine clinical applications. In this paper, we present our recent progress toward the development of a graphics processing unit (GPU)-based MC dose calculation package, gDPM v2.0. It utilizes the parallel computation ability of a GPU to achieve high efficiency, while maintaining the same particle transport physics as in the original dose planning method (DPM) code and hence the same level of simulation accuracy. In GPU computing, divergence of execution paths between threads can considerably reduce the efficiency. Since photons and electrons undergo different physics and hence attain different execution paths, we use a simulation scheme where photon transport and electron transport are separated to partially relieve the thread divergence issue. A high-performance random number generator and a hardware linear interpolation are also utilized. We have also developed various components to handle the fluence map and linac geometry, so that gDPM can be used to compute dose distributions for realistic IMRT or VMAT treatment plans. Our gDPM package is tested for its accuracy and efficiency in both phantoms and realistic patient cases. In all cases, the average relative uncertainties are less than 1%. A statistical t-test is performed and the dose difference between the CPU and the GPU results is not found to be statistically significant in over 96% of the high dose region and over 97% of the entire region. Speed-up factors of 69.1 ∼ 87.2 have been observed using an NVIDIA Tesla C2050 GPU card against a 2.27 GHz Intel Xeon CPU processor. For realistic IMRT and VMAT plans, MC dose calculation can be completed with less than 1% standard deviation in 36.1 ∼ 39.6 s using gDPM.

  5. Sensitivity of low energy brachytherapy Monte Carlo dose calculations to uncertainties in human tissue composition

    SciTech Connect

    Landry, Guillaume; Reniers, Brigitte; Murrer, Lars; Lutgens, Ludy; Bloemen-Van Gurp, Esther; Pignol, Jean-Philippe; Keller, Brian; Beaulieu, Luc; Verhaegen, Frank

    2010-10-15

    Purpose: The objective of this work is to assess the sensitivity of Monte Carlo (MC) dose calculations to uncertainties in human tissue composition for a range of low photon energy brachytherapy sources: {sup 125}I, {sup 103}Pd, {sup 131}Cs, and an electronic brachytherapy source (EBS). The low energy photons emitted by these sources make the dosimetry sensitive to variations in tissue atomic number due to the dominance of the photoelectric effect. This work reports dose to a small mass of water in medium D{sub w,m} as opposed to dose to a small mass of medium in medium D{sub m,m}. Methods: Mean adipose, mammary gland, and breast tissues (as uniform mixture of the aforementioned tissues) are investigated as well as compositions corresponding to one standard deviation from the mean. Prostate mean compositions from three different literature sources are also investigated. Three sets of MC simulations are performed with the GEANT4 code: (1) Dose calculations for idealized TG-43-like spherical geometries using point sources. Radial dose profiles obtained in different media are compared to assess the influence of compositional uncertainties. (2) Dose calculations for four clinical prostate LDR brachytherapy permanent seed implants using {sup 125}I seeds (Model 2301, Best Medical, Springfield, VA). The effect of varying the prostate composition in the planning target volume (PTV) is investigated by comparing PTV D{sub 90} values. (3) Dose calculations for four clinical breast LDR brachytherapy permanent seed implants using {sup 103}Pd seeds (Model 2335, Best Medical). The effects of varying the adipose/gland ratio in the PTV and of varying the elemental composition of adipose and gland within one standard deviation of the assumed mean composition are investigated by comparing PTV D{sub 90} values. For (2) and (3), the influence of using the mass density from CT scans instead of unit mass density is also assessed. Results: Results from simulation (1) show that variations

  6. Three-Dimensional Dose Calculation for Total Body Irradiation

    NASA Astrophysics Data System (ADS)

    Ito, Akira

    Bone Marrow Transplant (BMT) therapy has been a big success in the treatment of leukemia and other haematopoietic diseases 1 . Prior to BMT, total body irradiation (TBI) is given to the patient for the purpose of (1) killing leukemia cells in bone marrow, as well as in the whole body, and (2) producing immuno-suppressive status in the patient so that the donor's marrow cells will be transplanted without rejection. TBI employs a very large field photon beam to irradiate the whole body of the patient. A uniform dose distribution over the entire body is the treatment goal. To prevent the occurrence of a serious side effect (interstitial pneumonia), the lung dose should not exceed a certain level. This novel technique poses various new radiological physics problems. The accurate assessment of dose and dose distribution in the patient is essential. Physical and dosimetric problems associated with TBI are reviewed elsewhere 2,3 .

  7. Comparison of measured and calculated dose rates for the Castor HAW 20/28 CG.

    PubMed

    Ringleb, O; Kühl, H; Scheib, H; Rimpler, A

    2005-01-01

    In January 2003 neutron and gamma dose rate measurements at a CASTOR HAW 20/28 CG were performed by the Bundesamt für Strahlenschutz at Gorleben. First, commercial dose rate measurement devices were used, then spectral measurements with a Bonner sphere system were made to verify the results. Axial and circumferential dose rate profiles were measured near the cask surface and spectral measurements were performed for some locations. A shielding analysis of the cask was performed with the MCNP Monte Carlo Code with ENDF/B-VI cross section libraries. The cask was modelled 'as built', i.e. with its real inventory, dimensions and material densities and with the same configuration and position as in the storage facility. The average C/E-ratios are 1.3 for neutron dose rates and 1.4 for gamma dose rates. Both the measured and calculated dose rates show the same qualitative trends in the axial and circumferential direction. The spectral measurements show a variation in the spectra across the cask surface. This correlates with the variation found in the C/E-ratios. At cask midheight good agreement between the Bonner sphere system and the commercial device (LB 6411) is found with a 7% lower derived H*(10) dose rate from the Bonner sphere system.

  8. Sensitivity of low energy brachytherapy Monte Carlo dose calculations to uncertainties in human tissue composition.

    PubMed

    Landry, Guillaume; Reniers, Brigitte; Murrer, Lars; Lutgens, Ludy; Gurp, Esther Bloemen-Van; Pignol, Jean-Philippe; Keller, Brian; Beaulieu, Luc; Verhaegen, Frank

    2010-10-01

    The objective of this work is to assess the sensitivity of Monte Carlo (MC) dose calculations to uncertainties in human tissue composition for a range of low photon energy brachytherapy sources: 125I, 103Pd, 131Cs, and an electronic brachytherapy source (EBS). The low energy photons emitted by these sources make the dosimetry sensitive to variations in tissue atomic number due to the dominance of the photoelectric effect. This work reports dose to a small mass of water in medium D(w,m) as opposed to dose to a small mass of medium in medium D(m,m). Mean adipose, mammary gland, and breast tissues (as uniform mixture of the aforementioned tissues) are investigated as well as compositions corresponding to one standard deviation from the mean. Prostate mean compositions from three different literature sources are also investigated. Three sets of MC simulations are performed with the GEANT4 code: (1) Dose calculations for idealized TG-43-like spherical geometries using point sources. Radial dose profiles obtained in different media are compared to assess the influence of compositional uncertainties. (2) Dose calculations for four clinical prostate LDR brachytherapy permanent seed implants using 125I seeds (Model 2301, Best Medical, Springfield, VA). The effect of varying the prostate composition in the planning target volume (PTV) is investigated by comparing PTV D90 values. (3) Dose calculations for four clinical breast LDR brachytherapy permanent seed implants using 103Pd seeds (Model 2335, Best Medical). The effects of varying the adipose/gland ratio in the PTV and of varying the elemental composition of adipose and gland within one standard deviation of the assumed mean composition are investigated by comparing PTV D90 values. For (2) and (3), the influence of using the mass density from CT scans instead of unit mass density is also assessed. Results from simulation (1) show that variations in the mean compositions of tissues affect low energy brachytherapy dosimetry

  9. The development and validation of a Monte Carlo model for calculating the out-of-field dose from radiotherapy treatments

    NASA Astrophysics Data System (ADS)

    Kry, Stephen

    Introduction. External beam photon radiotherapy is a common treatment for many malignancies, but results in the exposure of the patient to radiation away from the treatment site. This out-of-field radiation irradiates healthy tissue and may lead to the induction of secondary malignancies. Out-of-field radiation is composed of photons and, at high treatment energies, neutrons. Measurement of this out-of-field dose is time consuming, often difficult, and is specific to the conditions of the measurements. Monte Carlo simulations may be a viable approach to determining the out-of-field dose quickly, accurately, and for arbitrary irradiation conditions. Methods. An accelerator head, gantry, and treatment vault were modeled with MCNPX and 6 MV and 18 MV beams were simulated. Photon doses were calculated in-field and compared to measurements made with an ion chamber in a water tank. Photon doses were also calculated out-of-field from static fields and compared to measurements made with thermoluminescent dosimeters in acrylic. Neutron fluences were calculated and compared to measurements made with gold foils. Finally, photon and neutron dose equivalents were calculated in an anthropomorphic phantom following intensity-modulated radiation therapy and compared to previously published dose equivalents. Results. The Monte Carlo model was able to accurately calculate the in-field dose. From static treatment fields, the model was also able to calculate the out-of-field photon dose within 16% at 6 MV and 17% at 18 MV and the neutron fluence within 19% on average. From the simulated IMRT treatments, the calculated out-of-field photon dose was within 14% of measurement at 6 MV and 13% at 18 MV on average. The calculated neutron dose equivalent was much lower than the measured value but is likely accurate because the measured neutron dose equivalent was based on an overestimated neutron energy. Based on the calculated out-of-field doses generated by the Monte Carlo model, it was

  10. Analysis of offsite dose calculation methodology for a nuclear power reactor

    SciTech Connect

    Moser, Donna Smith

    1995-01-01

    This technical study reviews the methodology for calculating offsite dose estimates as described in the offsite dose calculation manual (ODCM) for Pennsylvania Power and Light - Susquehanna Steam Electric Station (SSES). An evaluation of the SSES ODCM dose assessment methodology indicates that it conforms with methodology accepted by the US Nuclear Regulatory Commission (NRC). Using 1993 SSES effluent data, dose estimates are calculated according to SSES ODCM methodology and compared to the dose estimates calculated according to SSES ODCM and the computer model used to produce the reported 1993 dose estimates. The 1993 SSES dose estimates are based on the axioms of Publication 2 of the International Commission of Radiological Protection (ICRP). SSES Dose estimates based on the axioms of ICRP Publication 26 and 30 reveal the total body estimates to be the most affected.

  11. Development of radiological concentrations and unit liter doses for TWRS FSAR radiological consequence calculations

    SciTech Connect

    Cowley, W.L.

    1996-04-25

    The analysis described in this report develops the Unit Liter Doses for use in the TWRS FSAR. The Unit Liter Doses provide a practical way to calculate conservative radiological consequences for a variety of potential accidents for the tank farms.

  12. A new concept of pencil beam dose calculation for 40-200 keV photons using analytical dose kernels.

    PubMed

    Bartzsch, Stefan; Oelfke, Uwe

    2013-11-01

    The advent of widespread kV-cone beam computer tomography in image guided radiation therapy and special therapeutic application of keV photons, e.g., in microbeam radiation therapy (MRT) require accurate and fast dose calculations for photon beams with energies between 40 and 200 keV. Multiple photon scattering originating from Compton scattering and the strong dependence of the photoelectric cross section on the atomic number of the interacting tissue render these dose calculations by far more challenging than the ones established for corresponding MeV beams. That is why so far developed analytical models of kV photon dose calculations fail to provide the required accuracy and one has to rely on time consuming Monte Carlo simulation techniques. In this paper, the authors introduce a novel analytical approach for kV photon dose calculations with an accuracy that is almost comparable to the one of Monte Carlo simulations. First, analytical point dose and pencil beam kernels are derived for homogeneous media and compared to Monte Carlo simulations performed with the Geant4 toolkit. The dose contributions are systematically separated into contributions from the relevant orders of multiple photon scattering. Moreover, approximate scaling laws for the extension of the algorithm to inhomogeneous media are derived. The comparison of the analytically derived dose kernels in water showed an excellent agreement with the Monte Carlo method. Calculated values deviate less than 5% from Monte Carlo derived dose values, for doses above 1% of the maximum dose. The analytical structure of the kernels allows adaption to arbitrary materials and photon spectra in the given energy range of 40-200 keV. The presented analytical methods can be employed in a fast treatment planning system for MRT. In convolution based algorithms dose calculation times can be reduced to a few minutes.

  13. Modelling lateral beam quality variations in pencil kernel based photon dose calculations

    NASA Astrophysics Data System (ADS)

    Nyholm, T.; Olofsson, J.; Ahnesjö, A.; Karlsson, M.

    2006-08-01

    Standard treatment machines for external radiotherapy are designed to yield flat dose distributions at a representative treatment depth. The common method to reach this goal is to use a flattening filter to decrease the fluence in the centre of the beam. A side effect of this filtering is that the average energy of the beam is generally lower at a distance from the central axis, a phenomenon commonly referred to as off-axis softening. The off-axis softening results in a relative change in beam quality that is almost independent of machine brand and model. Central axis dose calculations using pencil beam kernels show no drastic loss in accuracy when the off-axis beam quality variations are neglected. However, for dose calculated at off-axis positions the effect should be considered, otherwise errors of several per cent can be introduced. This work proposes a method to explicitly include the effect of off-axis softening in pencil kernel based photon dose calculations for arbitrary positions in a radiation field. Variations of pencil kernel values are modelled through a generic relation between half value layer (HVL) thickness and off-axis position for standard treatment machines. The pencil kernel integration for dose calculation is performed through sampling of energy fluence and beam quality in sectors of concentric circles around the calculation point. The method is fully based on generic data and therefore does not require any specific measurements for characterization of the off-axis softening effect, provided that the machine performance is in agreement with the assumed HVL variations. The model is verified versus profile measurements at different depths and through a model self-consistency check, using the dose calculation model to estimate HVL values at off-axis positions. A comparison between calculated and measured profiles at different depths showed a maximum relative error of 4% without explicit modelling of off-axis softening. The maximum relative error

  14. MADOR: a new tool to calculate decrease of effective doses in human after DTPA therapy.

    PubMed

    Fritsch, P; Grémy, O; Hurtgen, C; Bérard, P; Grappin, L; Poncy, J L

    2011-03-01

    Abstract models have been developed to describe dissolution of Pu/Am/Cm after internal contamination by inhalation or wound, chelation of actinides by diethylene triamine penta acetic acid (DTPA) in different retention compartments and excretion of actinide-DTPA complexes. After coupling these models with those currently used for dose calculation, the modelling approach was assessed by fitting human data available in IDEAS database. Good fits were obtained for most studied cases, but further experimental studies are needed to validate some modelling hypotheses as well as the range of parameter values. From these first results, radioprotection tools are being developed: MAnagement of DOse Reduction after DTPA therapy.

  15. The accuracy of timed maximum local anaesthetic dose calculations with an electronic calculator, nomogram, and pen and paper.

    PubMed

    Walker, J D; Williams, N; Williams, D J

    2017-06-01

    Forty anaesthetists calculated maximum permissible doses of eight local anaesthetic formulations for simulated patients three times with three methods: an electronic calculator; nomogram; and pen and paper. Correct dose calculations with the nomogram (85/120) were more frequent than with the calculator (71/120) or pen and paper (57/120), Bayes Factor 4 and 287, p = 0.01 and p = 0.0003, respectively. The rates of calculations at least 120% the recommended dose with each method were different, Bayes Factor 7.9, p = 0.0007: 14/120 with the calculator; 5/120 with the nomogram; 13/120 with pen and paper. The median (IQR [range]) speed of calculation with pen and paper, 38.0 (25.0-56.3 [5-142]) s, was slower than with the calculator, 24.5 (17.8-37.5 [6-204]) s, p = 0.0001, or nomogram, 23.0 (18.0-29.0 [4-100]) s, p = 1 × 10(-7) . Local anaesthetic dose calculations with the nomogram were more accurate than with an electronic calculator or pen and paper and were faster than with pen and paper. © 2017 The Association of Anaesthetists of Great Britain and Ireland.

  16. Dosimetric evaluation of photon dose calculation under jaw and MLC shielding.

    PubMed

    Fogliata, A; Clivio, A; Vanetti, E; Nicolini, G; Belosi, M F; Cozzi, L

    2013-10-01

    The accuracy of photon dose calculation algorithms in out-of-field regions is often neglected, despite its importance for organs at risk and peripheral dose evaluation. The present work has assessed this for the anisotropic analytical algorithm (AAA) and the Acuros-XB algorithms implemented in the Eclipse treatment planning system. Specifically, the regions shielded by the jaw, or the MLC, or both MLC and jaw for flattened and unflattened beams have been studied. The accuracy in out-of-field dose under different conditions was studied for two different algorithms. Measured depth doses out of the field, for different field sizes and various distances from the beam edge were compared with the corresponding AAA and Acuros-XB calculations in water. Four volumetric modulated arc therapy plans (in the RapidArc form) were optimized in a water equivalent phantom, PTW Octavius, to obtain a region always shielded by the MLC (or MLC and jaw) during the delivery. Doses to different points located in the shielded region and in a target-like structure were measured with an ion chamber, and results were compared with the AAA and Acuros-XB calculations. Photon beams of 6 and 10 MV, flattened and unflattened were used for the tests. Good agreement between calculated and measured depth doses was found using both algorithms for all points measured at depth greater than 3 cm. The mean dose differences (± 1SD) were -8% ± 16%, -3% ± 15%, -16% ± 18%, and -9% ± 16% for measurements vs AAA calculations and -10% ± 14%, -5% ± 12%, -19% ± 17%, and -13% ± 14% for Acuros-XB, for 6X, 6 flattening-filter free (FFF), 10X, and 10FFF beams, respectively. The same figures for dose differences relative to the open beam central axis dose were: -0.1% ± 0.3%, 0.0% ± 0.4%, -0.3% ± 0.3%, and -0.1% ± 0.3% for AAA and -0.2% ± 0.4%, -0.1% ± 0.4%, -0.5% ± 0.5%, and -0.3% ± 0.4% for Acuros-XB. Buildup dose was overestimated with AAA, while Acuros-XB gave results more consistent with

  17. Feasibility of a Multigroup Deterministic Solution Method for 3D Radiotherapy Dose Calculations

    PubMed Central

    Vassiliev, Oleg N.; Wareing, Todd A.; Davis, Ian M.; McGhee, John; Barnett, Douglas; Horton, John L.; Gifford, Kent; Failla, Gregory; Titt, Uwe; Mourtada, Firas

    2008-01-01

    Purpose To investigate the potential of a novel deterministic solver, Attila, for external photon beam radiotherapy dose calculations. Methods and Materials Two hypothetical cases for prostate and head and neck cancer photon beam treatment plans were calculated using Attila and EGSnrc Monte Carlo simulations. Open beams were modeled as isotropic photon point sources collimated to specified field sizes (100 cm SSD). The sources had a realistic energy spectrum calculated by Monte Carlo for a Varian Clinac 2100 operated in a 6MV photon mode. The Attila computational grids consisted of 106,000 elements, or 424,000 spatial degrees of freedom, for the prostate case, and 123,000 tetrahedral elements, or 492,000 spatial degrees of freedom, for the head and neck cases. Results For both cases, results demonstrate excellent agreement between Attila and EGSnrc in all areas, including the build-up regions, near heterogeneities, and at the beam penumbra. Dose agreement for 99% of the voxels was within 3% (relative point-wise difference) or 3mm distance-to-agreement criterion. Localized differences between the Attila and EGSnrc results were observed at bone and soft tissue interfaces, and are attributable to the effect of voxel material homogenization in calculating dose-to-medium in EGSnrc. For both cases, Attila calculation times were under 20 CPU minutes on a single 2.2 GHz AMD Opteron processor. Conclusions The methods in Attila have the potential to be the basis for an efficient dose engine for patient specific treatment planning, providing accuracy similar to that obtained by Monte Carlo. PMID:18722273

  18. The difference of scoring dose to water or tissues in Monte Carlo dose calculations for low energy brachytherapy photon sources

    SciTech Connect

    Landry, Guillaume; Reniers, Brigitte; Pignol, Jean-Philippe; Beaulieu, Luc; Verhaegen, Frank

    2011-03-15

    Purpose: The goal of this work is to compare D{sub m,m} (radiation transported in medium; dose scored in medium) and D{sub w,m} (radiation transported in medium; dose scored in water) obtained from Monte Carlo (MC) simulations for a subset of human tissues of interest in low energy photon brachytherapy. Using low dose rate seeds and an electronic brachytherapy source (EBS), the authors quantify the large cavity theory conversion factors required. The authors also assess whether applying large cavity theory utilizing the sources' initial photon spectra and average photon energy induces errors related to spatial spectral variations. First, ideal spherical geometries were investigated, followed by clinical brachytherapy LDR seed implants for breast and prostate cancer patients. Methods: Two types of dose calculations are performed with the GEANT4 MC code. (1) For several human tissues, dose profiles are obtained in spherical geometries centered on four types of low energy brachytherapy sources: {sup 125}I, {sup 103}Pd, and {sup 131}Cs seeds, as well as an EBS operating at 50 kV. Ratios of D{sub w,m} over D{sub m,m} are evaluated in the 0-6 cm range. In addition to mean tissue composition, compositions corresponding to one standard deviation from the mean are also studied. (2) Four clinical breast (using {sup 103}Pd) and prostate (using {sup 125}I) brachytherapy seed implants are considered. MC dose calculations are performed based on postimplant CT scans using prostate and breast tissue compositions. PTV D{sub 90} values are compared for D{sub w,m} and D{sub m,m}. Results: (1) Differences (D{sub w,m}/D{sub m,m}-1) of -3% to 70% are observed for the investigated tissues. For a given tissue, D{sub w,m}/D{sub m,m} is similar for all sources within 4% and does not vary more than 2% with distance due to very moderate spectral shifts. Variations of tissue composition about the assumed mean composition influence the conversion factors up to 38%. (2) The ratio of D{sub 90(w

  19. Efficient and reliable 3D dose quality assurance for IMRT by combining independent dose calculations with measurements

    SciTech Connect

    Visser, R.; Wauben, D. J. L.; Godart, J.; Langendijk, J. A.; Veld, A. A. van't; Korevaar, E. W.; Groot, M. de

    2013-02-15

    Purpose: Advanced radiotherapy treatments require appropriate quality assurance (QA) to verify 3D dose distributions. Moreover, increase in patient numbers demand efficient QA-methods. In this study, a time efficient method that combines model-based QA and measurement-based QA was developed; i.e., the hybrid-QA. The purpose of this study was to determine the reliability of the model-based QA and to evaluate time efficiency of the hybrid-QA method. Methods: Accuracy of the model-based QA was determined by comparison of COMPASS calculated dose with Monte Carlo calculations for heterogeneous media. In total, 330 intensity modulated radiation therapy (IMRT) treatment plans were evaluated based on the mean gamma index (GI) with criteria of 3%/3mm and classification of PASS (GI {<=} 0.4), EVAL (0.4 < GI > 0.6), and FAIL (GI {>=} 0.6). Agreement between model-based QA and measurement-based QA was determined for 48 treatment plans, and linac stability was verified for 15 months. Finally, time efficiency improvement of the hybrid-QA was quantified for four representative treatment plans. Results: COMPASS calculated dose was in agreement with Monte Carlo dose, with a maximum error of 3.2% in heterogeneous media with high density (2.4 g/cm{sup 3}). Hybrid-QA results for IMRT treatment plans showed an excellent PASS rate of 98% for all cases. Model-based QA was in agreement with measurement-based QA, as shown by a minimal difference in GI of 0.03 {+-} 0.08. Linac stability was high with an average GI of 0.28 {+-} 0.04. The hybrid-QA method resulted in a time efficiency improvement of 15 min per treatment plan QA compared to measurement-based QA. Conclusions: The hybrid-QA method is adequate for efficient and accurate 3D dose verification. It combines time efficiency of model-based QA with reliability of measurement-based QA and is suitable for implementation within any radiotherapy department.

  20. User Guide for GoldSim Model to Calculate PA/CA Doses and Limits

    SciTech Connect

    Smith, F.

    2016-10-31

    A model to calculate doses for solid waste disposal at the Savannah River Site (SRS) and corresponding disposal limits has been developed using the GoldSim commercial software. The model implements the dose calculations documented in SRNL-STI-2015-00056, Rev. 0 “Dose Calculation Methodology and Data for Solid Waste Performance Assessment (PA) and Composite Analysis (CA) at the Savannah River Site”.

  1. A pencil beam dose calculation model for CyberKnife system.

    PubMed

    Liang, Bin; Li, Yongbao; Liu, Bo; Zhou, Fugen; Xu, Shouping; Wu, Qiuwen

    2016-10-01

    results agreed well with the film measurement of both Iris collimators and the half-beam blocked field, fared much better than the Ray-Tracing calculation. The authors have developed a pencil beam dose calculation model for the CyberKnife system. The dose calculation accuracy is better than the standard linac based system because the model parameters were specifically tuned to the CyberKnife system and geometry correction factors. The model handles better the lateral scatter and has the potential to be used for the irregularly shaped fields. Comprehensive validations on MLC equipped system are necessary for its clinical implementation. It is reasonably fast enough to be used during plan optimization.

  2. Neutron dose calculation at the maze entrance of medical linear accelerator rooms.

    PubMed

    Falcão, R C; Facure, A; Silva, A X

    2007-01-01

    Currently, teletherapy machines of cobalt and caesium are being replaced by linear accelerators. The maximum photon energy in these machines can vary from 4 to 25 MeV, and one of the great advantages of these equipments is that they do not have a radioactive source incorporated. High-energy (E > 10 MV) medical linear accelerators offer several physical advantages over lower energy ones: the skin dose is lower, the beam is more penetrating, and the scattered dose to tissues outside the target volume is smaller. Nevertheless, the contamination of undesirable neutrons in the therapeutic beam, generated by the high-energy photons, has become an additional problem as long as patient protection and occupational doses are concerned. The treatment room walls are shielded to attenuate the primary and secondary X-ray fluence, and this shielding is generally adequate to attenuate the neutrons. However, these neutrons are scattered through the treatment room maze and may result in a radiological problem at the door entrance, a high occupancy area in a radiotherapy facility. In this article, we used MCNP Monte Carlo simulation to calculate neutron doses in the maze of radiotherapy rooms and we suggest an alternative method to the Kersey semi-empirical model of neutron dose calculation at the entrance of mazes. It was found that this new method fits better measured values found in literature, as well as our Monte Carlo simulated ones.

  3. Monte Carlo calculations of the impact of a hip prosthesis on the dose distribution

    NASA Astrophysics Data System (ADS)

    Buffard, Edwige; Gschwind, Régine; Makovicka, Libor; David, Céline

    2006-09-01

    Because of the ageing of the population, an increasing number of patients with hip prostheses are undergoing pelvic irradiation. Treatment planning systems (TPS) currently available are not always able to accurately predict the dose distribution around such implants. In fact, only Monte Carlo simulation has the ability to precisely calculate the impact of a hip prosthesis during radiotherapeutic treatment. Monte Carlo phantoms were developed to evaluate the dose perturbations during pelvic irradiation. A first model, constructed with the DOSXYZnrc usercode, was elaborated to determine the dose increase at the tissue-metal interface as well as the impact of the material coating the prosthesis. Next, CT-based phantoms were prepared, using the usercode CTCreate, to estimate the influence of the geometry and the composition of such implants on the beam attenuation. Thanks to a program that we developed, the study was carried out with CT-based phantoms containing a hip prosthesis without metal artefacts. Therefore, anthropomorphic phantoms allowed better definition of both patient anatomy and the hip prosthesis in order to better reproduce the clinical conditions of pelvic irradiation. The Monte Carlo results revealed the impact of certain coatings such as PMMA on dose enhancement at the tissue-metal interface. Monte Carlo calculations in CT-based phantoms highlighted the marked influence of the implant's composition, its geometry as well as its position within the beam on dose distribution.

  4. Accuracy of pencil-beam redefinition algorithm dose calculations in patient-like cylindrical phantoms for bolus electron conformal therapy

    SciTech Connect

    Carver, Robert L.; Hogstrom, Kenneth R.; Chu, Connel; Fields, Robert S.; Sprunger, Conrad P.

    2013-07-15

    Purpose: The purpose of this study was to document the improved accuracy of the pencil beam redefinition algorithm (PBRA) compared to the pencil beam algorithm (PBA) for bolus electron conformal therapy using cylindrical patient phantoms based on patient computed tomography (CT) scans of retromolar trigone and nose cancer.Methods: PBRA and PBA electron dose calculations were compared with measured dose in retromolar trigone and nose phantoms both with and without bolus. For the bolus treatment plans, a radiation oncologist outlined a planning target volume (PTV) on the central axis slice of the CT scan for each phantom. A bolus was designed using the planning.decimal{sup Registered-Sign} (p.d) software (.decimal, Inc., Sanford, FL) to conform the 90% dose line to the distal surface of the PTV. Dose measurements were taken with thermoluminescent dosimeters placed into predrilled holes. The Pinnacle{sup 3} (Philips Healthcare, Andover, MD) treatment planning system was used to calculate PBA dose distributions. The PBRA dose distributions were calculated with an in-house C++ program. In order to accurately account for the phantom materials a table correlating CT number to relative electron stopping and scattering powers was compiled and used for both PBA and PBRA dose calculations. Accuracy was determined by comparing differences in measured and calculated dose, as well as distance to agreement for each measurement point.Results: The measured doses had an average precision of 0.9%. For the retromolar trigone phantom, the PBRA dose calculations had an average {+-}1{sigma} dose difference (calculated - measured) of -0.65%{+-} 1.62% without the bolus and -0.20%{+-} 1.54% with the bolus. The PBA dose calculation had an average dose difference of 0.19%{+-} 3.27% without the bolus and -0.05%{+-} 3.14% with the bolus. For the nose phantom, the PBRA dose calculations had an average dose difference of 0.50%{+-} 3.06% without bolus and -0.18%{+-} 1.22% with the bolus. The PBA

  5. Patient-specific Monte Carlo dose calculations for 103Pd breast brachytherapy

    NASA Astrophysics Data System (ADS)

    Miksys, N.; Cygler, J. E.; Caudrelier, J. M.; Thomson, R. M.

    2016-04-01

    This work retrospectively investigates patient-specific Monte Carlo (MC) dose calculations for 103Pd permanent implant breast brachytherapy, exploring various necessary assumptions for deriving virtual patient models: post-implant CT image metallic artifact reduction (MAR), tissue assignment schemes (TAS), and elemental tissue compositions. Three MAR methods (thresholding, 3D median filter, virtual sinogram) are applied to CT images; resulting images are compared to each other and to uncorrected images. Virtual patient models are then derived by application of different TAS ranging from TG-186 basic recommendations (mixed adipose and gland tissue at uniform literature-derived density) to detailed schemes (segmented adipose and gland with CT-derived densities). For detailed schemes, alternate mass density segmentation thresholds between adipose and gland are considered. Several literature-derived elemental compositions for adipose, gland and skin are compared. MC models derived from uncorrected CT images can yield large errors in dose calculations especially when used with detailed TAS. Differences in MAR method result in large differences in local doses when variations in CT number cause differences in tissue assignment. Between different MAR models (same TAS), PTV {{D}90} and skin {{D}1~\\text{c{{\\text{m}}3}}} each vary by up to 6%. Basic TAS (mixed adipose/gland tissue) generally yield higher dose metrics than detailed segmented schemes: PTV {{D}90} and skin {{D}1~\\text{c{{\\text{m}}3}}} are higher by up to 13% and 9% respectively. Employing alternate adipose, gland and skin elemental compositions can cause variations in PTV {{D}90} of up to 11% and skin {{D}1~\\text{c{{\\text{m}}3}}} of up to 30%. Overall, AAPM TG-43 overestimates dose to the PTV ({{D}90} on average 10% and up to 27%) and underestimates dose to the skin ({{D}1~\\text{c{{\\text{m}}3}}} on average 29% and up to 48%) compared to the various MC models derived using the post-MAR CT images studied

  6. Patient-specific Monte Carlo dose calculations for (103)Pd breast brachytherapy.

    PubMed

    Miksys, N; Cygler, J E; Caudrelier, J M; Thomson, R M

    2016-04-07

    This work retrospectively investigates patient-specific Monte Carlo (MC) dose calculations for (103)Pd permanent implant breast brachytherapy, exploring various necessary assumptions for deriving virtual patient models: post-implant CT image metallic artifact reduction (MAR), tissue assignment schemes (TAS), and elemental tissue compositions. Three MAR methods (thresholding, 3D median filter, virtual sinogram) are applied to CT images; resulting images are compared to each other and to uncorrected images. Virtual patient models are then derived by application of different TAS ranging from TG-186 basic recommendations (mixed adipose and gland tissue at uniform literature-derived density) to detailed schemes (segmented adipose and gland with CT-derived densities). For detailed schemes, alternate mass density segmentation thresholds between adipose and gland are considered. Several literature-derived elemental compositions for adipose, gland and skin are compared. MC models derived from uncorrected CT images can yield large errors in dose calculations especially when used with detailed TAS. Differences in MAR method result in large differences in local doses when variations in CT number cause differences in tissue assignment. Between different MAR models (same TAS), PTV [Formula: see text] and skin [Formula: see text] each vary by up to 6%. Basic TAS (mixed adipose/gland tissue) generally yield higher dose metrics than detailed segmented schemes: PTV [Formula: see text] and skin [Formula: see text] are higher by up to 13% and 9% respectively. Employing alternate adipose, gland and skin elemental compositions can cause variations in PTV [Formula: see text] of up to 11% and skin [Formula: see text] of up to 30%. Overall, AAPM TG-43 overestimates dose to the PTV ([Formula: see text] on average 10% and up to 27%) and underestimates dose to the skin ([Formula: see text] on average 29% and up to 48%) compared to the various MC models derived using the post-MAR CT images

  7. Monte Carlo fast dose calculator for proton radiotherapy: application to a voxelized geometry representing a patient with prostate cancer.

    PubMed

    Yepes, Pablo; Randeniya, Sharmalee; Taddei, Phillip J; Newhauser, Wayne D

    2009-01-07

    The Monte Carlo method is used to provide accurate dose estimates in proton radiation therapy research. While it is more accurate than commonly used analytical dose calculations, it is computationally intense. The aim of this work was to characterize for a clinical setup the fast dose calculator (FDC), a Monte Carlo track-repeating algorithm based on GEANT4. FDC was developed to increase computation speed without diminishing dosimetric accuracy. The algorithm used a database of proton trajectories in water to calculate the dose of protons in heterogeneous media. The extrapolation from water to 41 materials was achieved by scaling the proton range and the scattering angles. The scaling parameters were obtained by comparing GEANT4 dose distributions with those calculated with FDC for homogeneous phantoms. The FDC algorithm was tested by comparing dose distributions in a voxelized prostate cancer patient as calculated with well-known Monte Carlo codes (GEANT4 and MCNPX). The track-repeating approach reduced the CPU time required for a complete dose calculation in a voxelized patient anatomy by more than two orders of magnitude, while on average reproducing the results from the Monte Carlo predictions within 2% in terms of dose and within 1 mm in terms of distance.

  8. Monte Carlo fast dose calculator for proton radiotherapy: application to a voxelized geometry representing a patient with prostate cancer

    PubMed Central

    Yepes, Pablo; Randeniya, Sharmalee; Taddei, Phillip J; Newhauser, Wayne D

    2014-01-01

    The Monte Carlo method is used to provide accurate dose estimates in proton radiation therapy research. While it is more accurate than commonly used analytical dose calculations, it is computationally intense. The aim of this work was to characterize for a clinical setup the fast dose calculator (FDC), a Monte Carlo track-repeating algorithm based on GEANT4. FDC was developed to increase computation speed without diminishing dosimetric accuracy. The algorithm used a database of proton trajectories in water to calculate the dose of protons in heterogeneous media. The extrapolation from water to 41 materials was achieved by scaling the proton range and the scattering angles. The scaling parameters were obtained by comparing GEANT4 dose distributions with those calculated with FDC for homogeneous phantoms. The FDC algorithm was tested by comparing dose distributions in a voxelized prostate cancer patient as calculated with well-known Monte Carlo codes (GEANT4 and MCNPX). The track-repeating approach reduced the CPU time required for a complete dose calculation in a voxelized patient anatomy by more than two orders of magnitude, while on average reproducing the results from the Monte Carlo predictions within 2% in terms of dose and within 1 mm in terms of distance. PMID:19075361

  9. NOTE: Monte Carlo fast dose calculator for proton radiotherapy: application to a voxelized geometry representing a patient with prostate cancer

    NASA Astrophysics Data System (ADS)

    Yepes, Pablo; Randeniya, Sharmalee; Taddei, Phillip J.; Newhauser, Wayne D.

    2009-01-01

    The Monte Carlo method is used to provide accurate dose estimates in proton radiation therapy research. While it is more accurate than commonly used analytical dose calculations, it is computationally intense. The aim of this work was to characterize for a clinical setup the fast dose calculator (FDC), a Monte Carlo track-repeating algorithm based on GEANT4. FDC was developed to increase computation speed without diminishing dosimetric accuracy. The algorithm used a database of proton trajectories in water to calculate the dose of protons in heterogeneous media. The extrapolation from water to 41 materials was achieved by scaling the proton range and the scattering angles. The scaling parameters were obtained by comparing GEANT4 dose distributions with those calculated with FDC for homogeneous phantoms. The FDC algorithm was tested by comparing dose distributions in a voxelized prostate cancer patient as calculated with well-known Monte Carlo codes (GEANT4 and MCNPX). The track-repeating approach reduced the CPU time required for a complete dose calculation in a voxelized patient anatomy by more than two orders of magnitude, while on average reproducing the results from the Monte Carlo predictions within 2% in terms of dose and within 1 mm in terms of distance.

  10. Generalized approach to absorbed dose calculations for dynamic tumor and organ masses.

    PubMed

    Goddu, S M; Howell, R W; Rao, D V

    1995-10-01

    Tumor absorbed dose calculations in radionuclide therapy are presently based on the assumption of static tumor mass. This work examines the effect of dynamic tumor mass (growth and/or shrinkage) on the absorbed dose. Tumor mass kinetic characteristics were modeled with the Gompertz equation to simulate tumor growth and an additional exponential term to accommodate tumor shrinkage that may result as a consequence of therapy. Correction factors, defined as the ratio of the absorbed dose, which was calculated by considering tumor mass dynamics, to the absorbed dose, which was calculated by assuming static mass, are presented for 1- and 100-g tumors with different tumor mass kinetics. The dependence of the correction factor on the effective half-life Te of the radioactivity in the tumor and the tumor shrinkage half-time Ts was examined. The correction factors for the 1-g tumor were > 1 for short Ts and Te. In contrast, the correction factor was less than 1 for long Ts ( > 9 days). The dose correction factors for the 100-g tumor were > 1 for all Ts and Te. Finally, the dosimetric method for dynamic masses is illustrated with experimental data on Chinese hamster V79 multicellular spheroids that were treated with 3H. Correction factors as high as about 10 are likely when Te and Ts are short. As Ts increases beyond 20 days, the importance of dynamic mass diminishes because most of the activity decays before the mass changes appreciably. In some cases, mass dynamics should be taken into account when the absorbed dose to tumors is estimated.

  11. Effects of Hounsfield number conversion on CT based proton Monte Carlo dose calculations

    SciTech Connect

    Jiang Hongyu; Seco, Joao; Paganetti, Harald

    2007-04-15

    The Monte Carlo method provides the most accurate dose calculations on a patient computed tomography (CT) geometry. The increase in accuracy is, at least in part, due to the fact that instead of treating human tissues as water of various densities as in analytical algorithms, the Monte Carlo method allows human tissues to be characterized by elemental composition and mass density, and hence allows the accurate consideration of all relevant electromagnetic and nuclear interactions. On the other hand, the algorithm to convert CT Hounsfield numbers to tissue materials for Monte Carlo dose calculation introduces uncertainties. There is not a simple one to one correspondence between Hounsfield numbers and tissue materials. To investigate the effects of Hounsfield number conversion for proton Monte Carlo dose calculations, clinical proton treatment plans were simulated using the Geant4 Monte Carlo code. Three Hounsfield number to material conversion methods were studied. The results were compared in forms of dose volume histograms of gross tumor volume and clinical target volume. The differences found are generally small but can be dosimetrically significant. Further, different methods may cause deviations in the predicted proton beam range in particular for deep proton fields. Typically, slight discrepancies in mass density assignments play only a minor role in the target region, whereas more significant effects are caused by different assignments in elemental compositions. In the presence of large tissue inhomogeneities, for head and neck treatments, treatment planning decisions could be affected by these differences because of deviations in the predicted tumor coverage. Outside the target area, differences in elemental composition and mass density assignments both may play a role. This can lead to pronounced effects for organs at risk, in particular in the spread-out Bragg peak penumbra or distal regions. In addition, the significance of the elemental composition

  12. Effects of Hounsfield number conversion on CT based proton Monte Carlo dose calculations

    PubMed Central

    Jiang, Hongyu; Seco, Joao; Paganetti, Harald

    2008-01-01

    The Monte Carlo method provides the most accurate dose calculations on a patient computed tomography (CT) geometry. The increase in accuracy is, at least in part, due to the fact that instead of treating human tissues as water of various densities as in analytical algorithms, the Monte Carlo method allows human tissues to be characterized by elemental composition and mass density, and hence allows the accurate consideration of all relevant electromagnetic and nuclear interactions. On the other hand, the algorithm to convert CT Hounsfield numbers to tissue materials for Monte Carlo dose calculation introduces uncertainties. There is not a simple one to one correspondence between Hounsfield numbers and tissue materials. To investigate the effects of Hounsfield number conversion for proton Monte Carlo dose calculations, clinical proton treatment plans were simulated using the Geant4 Monte Carlo code. Three Hounsfield number to material conversion methods were studied. The results were compared in forms of dose volume histograms of gross tumor volume and clinical target volume. The differences found are generally small but can be dosimetrically significant. Further, different methods may cause deviations in the predicted proton beam range in particular for deep proton fields. Typically, slight discrepancies in mass density assignments play only a minor role in the target region, whereas more significant effects are caused by different assignments in elemental compositions. In the presence of large tissue inhomogeneities, for head and neck treatments, treatment planning decisions could be affected by these differences because of deviations in the predicted tumor coverage. Outside the target area, differences in elemental composition and mass density assignments both may play a role. This can lead to pronounced effects for organs at risk, in particular in the spread-out Bragg peak penumbra or distal regions. In addition, the significance of the elemental composition

  13. Effects of Hounsfield number conversion on CT based proton Monte Carlo dose calculations.

    PubMed

    Jiang, Hongyu; Seco, Joao; Paganetti, Harald

    2007-04-01

    The Monte Carlo method provides the most accurate dose calculations on a patient computed tomography (CT) geometry. The increase in accuracy is, at least in part, due to the fact that instead of treating human tissues as water of various densities as in analytical algorithms, the Monte Carlo method allows human tissues to be characterized by elemental composition and mass density, and hence allows the accurate consideration of all relevant electromagnetic and nuclear interactions. On the other hand, the algorithm to convert CT Hounsfield numbers to tissue materials for Monte Carlo dose calculation introduces uncertainties. There is not a simple one to one correspondence between Hounsfield numbers and tissue materials. To investigate the effects of Hounsfield number conversion for proton Monte Carlo dose calculations, clinical proton treatment plans were simulated using the Geant4 Monte Carlo code. Three Hounsfield number to material conversion methods were studied. The results were compared in forms of dose volume histograms of gross tumor volume and clinical target volume. The differences found are generally small but can be dosimetrically significant. Further, different methods may cause deviations in the predicted proton beam range in particular for deep proton fields. Typically, slight discrepancies in mass density assignments play only a minor role in the target region, whereas more significant effects are caused by different assignments in elemental compositions. In the presence of large tissue inhomogeneities, for head and neck treatments, treatment planning decisions could be affected by these differences because of deviations in the predicted tumor coverage. Outside the target area, differences in elemental composition and mass density assignments both may play a role. This can lead to pronounced effects for organs at risk, in particular in the spread-out Bragg peak penumbra or distal regions. In addition, the significance of the elemental composition

  14. Fewer doses of HPV vaccine result in immune response similar to three-dose regimen

    Cancer.gov

    NCI scientists report that two doses of a human papillomavirus (HPV) vaccine, trademarked as Cervarix, resulted in similar serum antibody levels against two of the most carcinogenic types of HPV (16 and 18), compared to a standard three dose regimen.

  15. Fewer doses of HPV vaccine result in immune response similar to three-dose regimen

    Cancer.gov

    NCI scientists report that two doses of a human papillomavirus (HPV) vaccine, trademarked as Cervarix, resulted in similar serum antibody levels against two of the most carcinogenic types of HPV (16 and 18), compared to a standard three dose regimen.

  16. Comparison of spent-fuel cask radiation doses calculated by one- and two-dimensional shielding codes

    SciTech Connect

    Carbajo, J.J. )

    1992-01-01

    Spent-fuel cask shield design and calculation of radiation doses are major parts of the overall cask design. This paper compares radiation doses calculated by one- and two-dimensional or three-dimensional shielding codes. The paper also investigates the appropriateness of using one-dimensional codes for two-dimensional geometries. From these results, it can be concluded that the one-dimensional XSDRNPM/XSDOSE codes are adequate for both radial and axial shielding calculations if appropriate bucklings are used. For radial calculations, no buckling or a buckling equal to the length of the fuel are appropriate. For axial calculations, a buckling at least equal to the diameter of the cask must be used for neutron doses. For gamma axial doses, a buckling around the diameter of the fuel region is adequate. More complicated two- or three-dimensional codes are not needed for these types of problems.

  17. Collapsed cone convolution of radiant energy for photon dose calculation in heterogeneous media.

    PubMed

    Ahnesjö, A

    1989-01-01

    A method for photon beam dose calculations is described. The primary photon beam is raytraced through the patient, and the distribution of total radiant energy released into the patient is calculated. Polyenergetic energy deposition kernels are calculated from the spectrum of the beam, using a database of monoenergetic kernels. It is shown that the polyenergetic kernels can be analytically described with high precision by (A exp( -ar) + B exp( -br)/r2, where A, a, B, and b depend on the angle with respect to the impinging photons and the accelerating potential, and r is the radial distance. Numerical values of A, a, B, and b are derived and used to convolve energy deposition kernels with the total energy released per unit mass (TERMA) to yield dose distributions. The convolution is facilitated by the introduction of the collapsed cone approximation. In this approximation, all energy released into coaxial cones of equal solid angle, from volume elements on the cone axis, is rectilinearly transported, attenuated, and deposited in elements on the axis. Scaling of the kernels is implicitly done during the convolution procedure to fully account for inhomogeneities present in the irradiated volume. The number of computational operations needed to compute the dose with the method is proportional to the number of calculation points. The method is tested for five accelerating potentials; 4, 6, 10, 15, and 24 MV, and applied to two geometries; one is a stack of slabs of tissue media, and the other is a mediastinum-like phantom of cork and water. In these geometries, the EGS4 Monte Carlo system has been used to generate reference dose distributions with which the dose computed with the collapsed cone convolution method is compared. Generally, the agreement between the methods is excellent. Deviations are observed in situations of lateral charged particle disequilibrium in low density media, however, but the result is superior compared to that of the generalized Batho method.

  18. A response function calculation for a dose-equivalent neutron dosimeter using superheated drops

    SciTech Connect

    Wang, C.K. )

    1991-01-01

    A neutron dosimeter using superheated drops in gel was invented by Apfel. The SDD-100 or BD-100, which uses Freon-12 (CF{sub 2}Cl{sub 2}) for the superheated drops, is most useful in neutron dosimetry because it was claimed that the neutron response function of such a dosimeter is nearly dose equivalent. An ideal dose-equivalent neutron dosimeter should be totally independent of the energies of incident neutrons. Lo and Apfel have performed calculations and experiments to study the neutron response functions for various types of superheated drops, including Freon-12. Both their calculational and the experimental results demonstrated the dose-equivalent-like response function for the Freon-12. The agreement between the calculational results and the experimental results is not satisfactory, however, especially for neutrons with energies < 100 keV. One important factor, which was not considered and may have contributed to the disagreement, is the neutron-slowing-down effect. That is, kilo-electron-volt neutrons, although not energetic enough to trigger bubbles in Freon-12, have a short mean-free-path (< 1 cm) and can easily slow down or thermalize in the gel matrix and then trigger bubbles in Freon-12 via a {sup 35}Cl(n,p){sup 35}S reaction. To consider the slowing-down effect in the dosimeter, a neutron transport calculation must be performed. This paper describes the set of Monte Carlo neutron transport calculations that were performed to calculate the response function for a bare SDD-100 surrounded with various thicknesses of polyethylene (CH{sub 2}).

  19. A centralized dose calculation system for radiation therapy.

    PubMed

    Xiao, Y; Galvin, J

    2000-05-01

    Centralization of treatment planning in a radiation therapy department is a realistic strategy to achieve an integrated and quality-controlled planning system, especially for institutions with numerous affiliations. The rapid evolution of computer hardware and software technology makes this a distinct possibility. However, the procedure of three-dimensional treatment planning involves a number of steps, such as: (1) input of patient computed tomography (CT) images and contour information; (2) interactions with local devices such as a film digitizer; and (3) output of beam information to be integrated with the record and verify the system. A full-fledged realization of the web-based centralized three-dimensional treatment planning system will require an extensive commercial development effort. We have developed and incorporated a web-based Timer/Monitor Unit (MU) program as a first step towards the full implementation of a centralized treatment planning system. The software application was developed in JAVA language. It uses the internet server and client technology. With one server that can handle multiple threads, it is a simple process to access the application anywhere on the network with an internet browser. Both the essential data needed for the calculation and the results are stored on the server, which centralizes the maintenance of the software and the storage of patient information.

  20. An image-guidance system for dynamic dose calculation in prostate brachytherapy using ultrasound and fluoroscopy

    SciTech Connect

    Kuo, Nathanael Prince, Jerry L.; Dehghan, Ehsan; Deguet, Anton; Mian, Omar Y.; Le, Yi; Song, Danny Y.; Burdette, E. Clif; Fichtinger, Gabor; Lee, Junghoon

    2014-09-15

    Purpose: Brachytherapy is a standard option of care for prostate cancer patients but may be improved by dynamic dose calculation based on localized seed positions. The American Brachytherapy Society states that the major current limitation of intraoperative treatment planning is the inability to localize the seeds in relation to the prostate. An image-guidance system was therefore developed to localize seeds for dynamic dose calculation. Methods: The proposed system is based on transrectal ultrasound (TRUS) and mobile C-arm fluoroscopy, while using a simple fiducial with seed-like markers to compute pose from the nonencoded C-arm. Three or more fluoroscopic images and an ultrasound volume are acquired and processed by a pipeline of algorithms: (1) seed segmentation, (2) fiducial detection with pose estimation, (3) seed matching with reconstruction, and (4) fluoroscopy-to-TRUS registration. Results: The system was evaluated on ten phantom cases, resulting in an overall mean error of 1.3 mm. The system was also tested on 37 patients and each algorithm was evaluated. Seed segmentation resulted in a 1% false negative rate and 2% false positive rate. Fiducial detection with pose estimation resulted in a 98% detection rate. Seed matching with reconstruction had a mean error of 0.4 mm. Fluoroscopy-to-TRUS registration had a mean error of 1.3 mm. Moreover, a comparison of dose calculations between the authors’ intraoperative method and an independent postoperative method shows a small difference of 7% and 2% forD{sub 90} and V{sub 100}, respectively. Finally, the system demonstrated the ability to detect cold spots and required a total processing time of approximately 1 min. Conclusions: The proposed image-guidance system is the first practical approach to dynamic dose calculation, outperforming earlier solutions in terms of robustness, ease of use, and functional completeness.

  1. Air kerma calculation in Monte Carlo simulations for deriving normalized glandular dose coefficients in mammography

    NASA Astrophysics Data System (ADS)

    Sarno, Antonio; Mettivier, Giovanni; Russo, Paolo

    2017-07-01

    The estimation of the mean glandular dose in mammography using Monte Carlo simulations requires the calculation of the incident air kerma evaluated on the breast surface. In such a calculation, caution should be applied in considering explicitly the presence of the top compression paddle, since Compton scattering in this slab may produce a large spread of the incidence angles of x-ray photons on the scoring surface. Then, the calculation of the incident air kerma should contain the ‘effective’ area of the scoring surface, which takes into account the angle of incidence of photons on such a surface. Using Geant4 Monte Carlo simulations with a code previously validated according to the Task Group 195 of the American Association of Physicists in Medicine, we show that for typical x-ray spectra and energy range adopted in mammography, the resulting discrepancy in the calculation of the incident air kerma may lead to an overestimation from a minimum of 10% up to 12% of normalized dose coefficients and, hence, of the corresponding mean glandular dose if this contribution is not considered.

  2. A fourier analysis on the maximum acceptable grid size for discrete proton beam dose calculation.

    PubMed

    Li, Haisen S; Romeijn, H Edwin; Dempsey, James F

    2006-09-01

    We developed an analytical method for determining the maximum acceptable grid size for discrete dose calculation in proton therapy treatment plan optimization, so that the accuracy of the optimized dose distribution is guaranteed in the phase of dose sampling and the superfluous computational work is avoided. The accuracy of dose sampling was judged by the criterion that the continuous dose distribution could be reconstructed from the discrete dose within a 2% error limit. To keep the error caused by the discrete dose sampling under a 2% limit, the dose grid size cannot exceed a maximum acceptable value. The method was based on Fourier analysis and the Shannon-Nyquist sampling theorem as an extension of our previous analysis for photon beam intensity modulated radiation therapy [J. F. Dempsey, H. E. Romeijn, J. G. Li, D. A. Low, and J. R. Palta, Med. Phys. 32, 380-388 (2005)]. The proton beam model used for the analysis was a near monoenergetic (of width about 1% the incident energy) and monodirectional infinitesimal (nonintegrated) pencil beam in water medium. By monodirection, we mean that the proton particles are in the same direction before entering the water medium and the various scattering prior to entrance to water is not taken into account. In intensity modulated proton therapy, the elementary intensity modulation entity for proton therapy is either an infinitesimal or finite sized beamlet. Since a finite sized beamlet is the superposition of infinitesimal pencil beams, the result of the maximum acceptable grid size obtained with infinitesimal pencil beam also applies to finite sized beamlet. The analytic Bragg curve function proposed by Bortfeld [T. Bortfeld, Med. Phys. 24, 2024-2033 (1997)] was employed. The lateral profile was approximated by a depth dependent Gaussian distribution. The model included the spreads of the Bragg peak and the lateral profiles due to multiple Coulomb scattering. The dependence of the maximum acceptable dose grid size on the

  3. Development of CT scanner models for patient organ dose calculations using Monte Carlo methods

    NASA Astrophysics Data System (ADS)

    Gu, Jianwei

    There is a serious and growing concern about the CT dose delivered by diagnostic CT examinations or image-guided radiation therapy imaging procedures. To better understand and to accurately quantify radiation dose due to CT imaging, Monte Carlo based CT scanner models are needed. This dissertation describes the development, validation, and application of detailed CT scanner models including a GE LightSpeed 16 MDCT scanner and two image guided radiation therapy (IGRT) cone beam CT (CBCT) scanners, kV CBCT and MV CBCT. The modeling process considered the energy spectrum, beam geometry and movement, and bowtie filter (BTF). The methodology of validating the scanner models using reported CTDI values was also developed and implemented. Finally, the organ doses to different patients undergoing CT scan were obtained by integrating the CT scanner models with anatomically-realistic patient phantoms. The tube current modulation (TCM) technique was also investigated for dose reduction. It was found that for RPI-AM, thyroid, kidneys and thymus received largest dose of 13.05, 11.41 and 11.56 mGy/100 mAs from chest scan, abdomen-pelvis scan and CAP scan, respectively using 120 kVp protocols. For RPI-AF, thymus, small intestine and kidneys received largest dose of 10.28, 12.08 and 11.35 mGy/100 mAs from chest scan, abdomen-pelvis scan and CAP scan, respectively using 120 kVp protocols. The dose to the fetus of the 3 month pregnant patient phantom was 0.13 mGy/100 mAs and 0.57 mGy/100 mAs from the chest and kidney scan, respectively. For the chest scan of the 6 month patient phantom and the 9 month patient phantom, the fetal doses were 0.21 mGy/100 mAs and 0.26 mGy/100 mAs, respectively. For MDCT with TCM schemas, the fetal dose can be reduced with 14%-25%. To demonstrate the applicability of the method proposed in this dissertation for modeling the CT scanner, additional MDCT scanner was modeled and validated by using the measured CTDI values. These results demonstrated that the

  4. Beyond Gaussians: a study of single-spot modeling for scanning proton dose calculation.

    PubMed

    Li, Yupeng; Zhu, Ronald X; Sahoo, Narayan; Anand, Aman; Zhang, Xiaodong

    2012-02-21

    Active spot scanning proton therapy is becoming increasingly adopted by proton therapy centers worldwide. Unlike passive-scattering proton therapy, active spot scanning proton therapy, especially intensity-modulated proton therapy, requires proper modeling of each scanning spot to ensure accurate computation of the total dose distribution contributed from a large number of spots. During commissioning of the spot scanning gantry at the Proton Therapy Center in Houston, it was observed that the long-range scattering protons in a medium may have been inadequately modeled for high-energy beams by a commercial treatment planning system, which could lead to incorrect prediction of field size effects on dose output. In this study, we developed a pencil beam algorithm for scanning proton dose calculation by focusing on properly modeling individual scanning spots. All modeling parameters required by the pencil beam algorithm can be generated based solely on a few sets of measured data. We demonstrated that low-dose halos in single-spot profiles in the medium could be adequately modeled with the addition of a modified Cauchy-Lorentz distribution function to a double-Gaussian function. The field size effects were accurately computed at all depths and field sizes for all energies, and good dose accuracy was also achieved for patient dose verification. The implementation of the proposed pencil beam algorithm also enabled us to study the importance of different modeling components and parameters at various beam energies. The results of this study may be helpful in improving dose calculation accuracy and simplifying beam commissioning and treatment planning processes for spot scanning proton therapy.

  5. Beyond Gaussians: a study of single spot modeling for scanning proton dose calculation

    PubMed Central

    Li, Yupeng; Zhu, Ronald X.; Sahoo, Narayan; Anand, Aman; Zhang, Xiaodong

    2013-01-01

    Active spot scanning proton therapy is becoming increasingly adopted by proton therapy centers worldwide. Unlike passive-scattering proton therapy, active spot scanning proton therapy, especially intensity-modulated proton therapy, requires proper modeling of each scanning spot to ensure accurate computation of the total dose distribution contributed from a large number of spots. During commissioning of the spot scanning gantry at the Proton Therapy Center in Houston, it was observed that the long-range scattering protons in a medium may have been inadequately modeled for high-energy beams by a commercial treatment planning system, which could lead to incorrect prediction of field-size effects on dose output. In the present study, we developed a pencil-beam algorithm for scanning-proton dose calculation by focusing on properly modeling individual scanning spots. All modeling parameters required by the pencil-beam algorithm can be generated based solely on a few sets of measured data. We demonstrated that low-dose halos in single-spot profiles in the medium could be adequately modeled with the addition of a modified Cauchy-Lorentz distribution function to a double-Gaussian function. The field-size effects were accurately computed at all depths and field sizes for all energies, and good dose accuracy was also achieved for patient dose verification. The implementation of the proposed pencil beam algorithm also enabled us to study the importance of different modeling components and parameters at various beam energies. The results of this study may be helpful in improving dose calculation accuracy and simplifying beam commissioning and treatment planning processes for spot scanning proton therapy. PMID:22297324

  6. Denoising of Monte Carlo dose calculations: smoothing capabilities versus introduction of systematic bias.

    PubMed

    De Smedt, B; Fippel, M; Reynaert, N; Thierens, H

    2006-06-01

    In order to evaluate the performance of denoising algorithms applied to Monte Carlo calculated dose distributions, conventional evaluation methods (rms difference, 1% and 2% difference) can be used. However, it is illustrated that these evaluation methods sometimes underestimate the introduction of bias, since possible bias effects are averaged out over the complete dose distribution. In the present work, a new evaluation method is introduced based on a sliding window superimposed on a difference dose distribution (reference dose-noisy/denoised dose). To illustrate its importance, a new denoising technique (ANRT) is presented based upon a combination of the principles of bilateral filtering and Savitzky-Golay filters. This technique is very conservative in order to limit the introduction of bias in high dose gradient regions. ANRT is compared with IRON for three challenging cases, namely an electron and photon beam impinging on heterogeneous phantoms and two IMRT treatment plans of head-and-neck cancer patients to determine the clinical relevance of the obtained results. For the electron beam case, IRON outperforms ANRT concerning the smoothing capabilities, while no differences in systematic bias are observed. However, for the photon beam case, although ANRT and IRON perform equally well on the conventional evaluation tests (rms difference, 1% and 2% difference), IRON clearly introduces much more bias in the penumbral regions while ANRT seems to introduce no bias at all. When applied to the IMRT patient cases, both denoising methods perform equally well regarding smoothing and bias introduction. This is probably caused by the summation of a large set of different beam segments, decreasing dose gradients compared to a single beam. A reduction in calculation time without introducing large systematic bias can shorten a Monte Carlo treatment planning process considerably and is therefore very useful for the initial trial and error phase of the treatment planning

  7. Evaluation of various approaches for assessing dose indicators and patient organ doses resulting from radiotherapy cone-beam CT

    SciTech Connect

    Rampado, Osvaldo Giglioli, Francesca Romana; Rossetti, Veronica; Ropolo, Roberto; Fiandra, Christian; Ragona, Riccardo

    2016-05-15

    Purpose: The aim of this study was to evaluate various approaches for assessing patient organ doses resulting from radiotherapy cone-beam CT (CBCT), by the use of thermoluminescent dosimeter (TLD) measurements in anthropomorphic phantoms, a Monte Carlo based dose calculation software, and different dose indicators as presently defined. Methods: Dose evaluations were performed on a CBCT Elekta XVI (Elekta, Crawley, UK) for different protocols and anatomical regions. The first part of the study focuses on using PCXMC software (PCXMC 2.0, STUK, Helsinki, Finland) for calculating organ doses, adapting the input parameters to simulate the exposure geometry, and beam dose distribution in an appropriate way. The calculated doses were compared to readouts of TLDs placed in an anthropomorphic Rando phantom. After this validation, the software was used for analyzing organ dose variability associated with patients’ differences in size and gender. At the same time, various dose indicators were evaluated: kerma area product (KAP), cumulative air-kerma at the isocenter (K{sub air}), cone-beam dose index, and central cumulative dose. The latter was evaluated in a single phantom and in a stack of three adjacent computed tomography dose index phantoms. Based on the different dose indicators, a set of coefficients was calculated to estimate organ doses for a range of patient morphologies, using their equivalent diameters. Results: Maximum organ doses were about 1 mGy for head and neck and 25 mGy for chest and pelvis protocols. The differences between PCXMC and TLDs doses were generally below 10% for organs within the field of view and approximately 15% for organs at the boundaries of the radiation beam. When considering patient size and gender variability, differences in organ doses up to 40% were observed especially in the pelvic region; for the organs in the thorax, the maximum differences ranged between 20% and 30%. Phantom dose indexes provided better correlation with organ

  8. SU-E-T-416: VMAT Dose Calculations Using Cone Beam CT Images: A Preliminary Study

    SciTech Connect

    Yu, S; Sehgal, V; Kuo, J; Daroui, P; Ramsinghani, N; Al-Ghazi, M

    2014-06-01

    Purpose: Cone beam CT (CBCT) images have been used routinely for patient positioning throughout the treatment course. However, use of CBCT for dose calculation is still investigational. The purpose of this study is to assess the utility of CBCT images for Volumetric Modulated Arc Therapy (VMAT) plan dose calculation. Methods: A CATPHAN 504 phantom (The Phantom Laboratory, Salem, NY) was used to compare the dosimetric and geometric accuracy between conventional CT and CBCT (in both full and half fan modes). Hounsfield units (HU) profiles at different density areas were evaluated. A C shape target that surrounds a central avoidance structure was created and a VMAT plan was generated on the CT images and copied to the CBCT phantom images. Patient studies included three brain patients, and one head and neck (H'N) patient. VMAT plans generated on the patients treatment planning CT was applied to CBCT images obtained during the first treatment. Isodose distributions and dosevolume- histograms (DVHs) were compared. Results: For the phantom study, the HU difference between CT and CBCT is within 100 (maximum 96 HU for Teflon CBCT images in full fan mode). The impact of these differences on the calculated dose distributions was clinically insignificant. In both phantom and patient studies, target DVHs based on CBCT images were in excellent agreement with those based on planning CT images. Mean, Median, near minimum (D98%), and near maximum (D2%) doses agreed within 0-2.5%. A slightly larger discrepancy is observed in the patient studies compared to that seen in the phantom study, (0-1% vs. 0 - 2.5%). Conclusion: CBCT images can be used to accurately predict dosimetric results, without any HU correction. It is feasible to use CBCT to evaluate the actual dose delivered at each fraction. The dosimetric consequences resulting from tumor response and patient geometry changes could be monitored.

  9. Dose estimation for astronauts using dose conversion coefficients calculated with the PHITS code and the ICRP/ICRU adult reference computational phantoms.

    PubMed

    Sato, Tatsuhiko; Endo, Akira; Sihver, Lembit; Niita, Koji

    2011-03-01

    Absorbed-dose and dose-equivalent rates for astronauts were estimated by multiplying fluence-to-dose conversion coefficients in the units of Gy.cm(2) and Sv.cm(2), respectively, and cosmic-ray fluxes around spacecrafts in the unit of cm(-2) s(-1). The dose conversion coefficients employed in the calculation were evaluated using the general-purpose particle and heavy ion transport code system PHITS coupled to the male and female adult reference computational phantoms, which were released as a common ICRP/ICRU publication. The cosmic-ray fluxes inside and near to spacecrafts were also calculated by PHITS, using simplified geometries. The accuracy of the obtained absorbed-dose and dose-equivalent rates was verified by various experimental data measured both inside and outside spacecrafts. The calculations quantitatively show that the effective doses for astronauts are significantly greater than their corresponding effective dose equivalents, because of the numerical incompatibility between the radiation quality factors and the radiation weighting factors. These results demonstrate the usefulness of dose conversion coefficients in space dosimetry. © Springer-Verlag 2010

  10. Radial Dose Profiles: Calculation Refinements and Sensitivities to Single Event Effects Analysis

    NASA Technical Reports Server (NTRS)

    Patterson, Jeffrey; Swimm, Randall

    2005-01-01

    Comparisons of radial dose calculation are performed, as well as the introduction of important physics to improve the calculation techniques. Also, the consequences to device performance are explored via numerical simulations.

  11. Monte Carlo calculations of lung dose in ORNL phantom for boron neutron capture therapy.

    PubMed

    Krstic, D; Markovic, V M; Jovanovic, Z; Milenkovic, B; Nikezic, D; Atanackovic, J

    2014-10-01

    Monte Carlo simulations were performed to evaluate dose for possible treatment of cancers by boron neutron capture therapy (BNCT). The computational model of male Oak Ridge National Laboratory (ORNL) phantom was used to simulate tumours in the lung. Calculations have been performed by means of the MCNP5/X code. In this simulation, two opposite neutron beams were considered, in order to obtain uniform neutron flux distribution inside the lung. The obtained results indicate that the lung cancer could be treated by BNCT under the assumptions of calculations.

  12. Dosimetric verification of dose calculation algorithm in the lung during total marrow irradiation using helical tomotherapy.

    PubMed

    Konstanty, Ewelina; Malicki, Julian; Łagodowska, Katarzyna; Kowalik, Anna

    2017-01-01

    Treatment of proliferative diseases of the hematopoietic system involves, in most cases, chemotherapy combined with radiation therapy, which is intended to provide adequate immunosuppressant. Conventionally, total body irradiation (TBI) was used; however, total marrow irradiation (TMI) performed with helical tomotherapy (HT) has been proposed as an alternative, with the aim of delivering the highest dose in the target area (skeleton bone). The purpose of this study is to evaluate the accuracy of the dose calculation algorithm for the lung in TMI delivered with HT. Thermoluminescent detectors (TLD-100 Harshaw) were used to measure delivered doses. Doses were calculated for 95 selected points in the central lung (53 TLDs) and near the rib bones (42 TLDs) in the anthropomorphic phantom. A total of 12 Gy were delivered (6 fractions of 2 Gy/fraction). HT-TMI technique reduces the dose delivered to the lungs in a phantom model to levels that are much lower than those reported for TBI delivered by a conventional linear accelerator. The mean calculated lung dose was 5.6 Gy versus a mean measured dose of 5.7 ± 2.4 Gy. The maximum and minimum measured doses were, respectively, 11.3 Gy (chest wall) and 2.8 Gy (central lung). At most of the 95 points, the measured dose was lower than the calculated dose, with the largest differences observed in the region located between the target volume and the adjacent lung tissue. The mean measured dose was lower than the calculated dose in both primary locations: -3.7% in the 42 rib-adjacent detectors and -3.0% in the 53 central lung TLDs. Our study has shown that the measured doses may be lower than those calculated by the HT-TMI calculation algorithm. Although these differences between calculated and measured doses are not clinically relevant, this finding merits further investigation.

  13. SU-E-T-355: Efficient Scatter Correction for Direct Ray-Tracing Based Dose Calculation

    SciTech Connect

    Chen, M; Jiang, S; Lu, W

    2015-06-15

    Purpose: To propose a scatter correction method with linear computational complexity for direct-ray-tracing (DRT) based dose calculation. Due to its speed and simplicity, DRT is widely used as a dose engine in the treatment planning system (TPS) and monitor unit (MU) verification software, where heterogeneity correction is applied by radiological distance scaling. However, such correction only accounts for attenuation but not scatter difference, causing the DRT algorithm less accurate than the model-based algorithms for small field size in heterogeneous media. Methods: Inspired by the convolution formula derived from an exponential kernel as is typically done in the collapsed-cone-convolution-superposition (CCCS) method, we redesigned the ray tracing component as the sum of TERMA scaled by a local deposition factor, which is linear with respect to density, and dose of the previous voxel scaled by a remote deposition factor, D(i)=aρ(i)T(i)+(b+c(ρ(i)-1))D(i-1),where T(i)=e(-αr(i)+β(r(i))2) and r(i)=Σ-(j=1,..,i)ρ(j).The two factors together with TERMA can be expressed in terms of 5 parameters, which are subsequently optimized by curve fitting using digital phantoms for each field size and each beam energy. Results: The proposed algorithm was implemented for the Fluence-Convolution-Broad-Beam (FCBB) dose engine and evaluated using digital slab phantoms and clinical CT data. Compared with the gold standard calculation, dose deviations were improved from 20% to 2% in the low density regions of the slab phantoms for the 1-cm field size, and within 2% for over 95% of the volume with the largest discrepancy at the interface for the clinical lung case. Conclusion: We developed a simple recursive formula for scatter correction for the DRT-based dose calculation with much improved accuracy, especially for small field size, while still keeping calculation to linear complexity. The proposed calculator is fast, yet accurate, which is crucial for dose updating in IMRT

  14. Determination of radionuclides and pathways contributing to dose in 1945. Hanford Environmental Dose Reconstruction Project: Dose code recovery activities, Calculation 003

    SciTech Connect

    Napier, B.A.

    1992-12-01

    A series of scoping calculations has been undertaken to evaluate the absolute and relative contributions of different radionuclides and exposure pathways to doses that may have been received by individuals living in the vicinity of the Hanford Site. This scoping calculation (Calculation 003) examined the contributions of numerous radionuclides to dose via environmental exposures and accumulation in foods. This study builds on the work initiated in the first scoping study of iodine in cow`s milk (calculation 001). Addressed in this calculation were the contributions to organ and effective dose of infants and adults from (1) air submersion and groundshine external dose, (2) inhalation, (3) ingestion of soil by humans, (4) ingestion of leafy vegetables, (5) ingestion of other vegetables and fruits, (6) ingestion of meat, (7) ingestion of eggs, and (8) ingestion of cows` milk from Feeding Regime 1, as described in Calculation 001.

  15. Monte Carlo calculations for reporting patient organ doses from interventional radiology

    NASA Astrophysics Data System (ADS)

    Huo, Wanli; Feng, Mang; Pi, Yifei; Chen, Zhi; Gao, Yiming; Xu, X. George

    2017-09-01

    This paper describes a project to generate organ dose data for the purposes of extending VirtualDose software from CT imaging to interventional radiology (IR) applications. A library of 23 mesh-based anthropometric patient phantoms were involved in Monte Carlo simulations for database calculations. Organ doses and effective doses of IR procedures with specific beam projection, filed of view (FOV) and beam quality for all parts of body were obtained. Comparing organ doses for different beam qualities, beam projections, patients' ages and patient's body mass indexes (BMIs) which generated by VirtualDose-IR, significant discrepancies were observed. For relatively long time exposure, IR doses depend on beam quality, beam direction and patient size. Therefore, VirtualDose-IR, which is based on the latest anatomically realistic patient phantoms, can generate accurate doses for IR treatment. It is suitable to apply this software in clinical IR dose management as an effective tool to estimate patient doses and optimize IR treatment plans.

  16. Development of a Monte Carlo multiple source model for inclusion in a dose calculation auditing tool.

    PubMed

    Faught, Austin M; Davidson, Scott E; Fontenot, Jonas; Kry, Stephen F; Etzel, Carol; Ibbott, Geoffrey S; Followill, David S

    2017-09-01

    The Imaging and Radiation Oncology Core Houston (IROC-H) (formerly the Radiological Physics Center) has reported varying levels of agreement in their anthropomorphic phantom audits. There is reason to believe one source of error in this observed disagreement is the accuracy of the dose calculation algorithms and heterogeneity corrections used. To audit this component of the radiotherapy treatment process, an independent dose calculation tool is needed. Monte Carlo multiple source models for Elekta 6 MV and 10 MV therapeutic x-ray beams were commissioned based on measurement of central axis depth dose data for a 10 × 10 cm(2) field size and dose profiles for a 40 × 40 cm(2) field size. The models were validated against open field measurements consisting of depth dose data and dose profiles for field sizes ranging from 3 × 3 cm(2) to 30 × 30 cm(2) . The models were then benchmarked against measurements in IROC-H's anthropomorphic head and neck and lung phantoms. Validation results showed 97.9% and 96.8% of depth dose data passed a ±2% Van Dyk criterion for 6 MV and 10 MV models respectively. Dose profile comparisons showed an average agreement using a ±2%/2 mm criterion of 98.0% and 99.0% for 6 MV and 10 MV models respectively. Phantom plan comparisons were evaluated using ±3%/2 mm gamma criterion, and averaged passing rates between Monte Carlo and measurements were 87.4% and 89.9% for 6 MV and 10 MV models respectively. Accurate multiple source models for Elekta 6 MV and 10 MV x-ray beams have been developed for inclusion in an independent dose calculation tool for use in clinical trial audits. © 2017 American Association of Physicists in Medicine.

  17. Photon dose estimation from ultraintense laser-solid interactions and shielding calculation with Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Yang, Bo; Qiu, Rui; Li, JunLi; Lu, Wei; Wu, Zhen; Li, Chunyan

    2017-02-01

    When a strong laser beam irradiates a solid target, a hot plasma is produced and high-energy electrons are usually generated (the so-called "hot electrons"). These energetic electrons subsequently generate hard X-rays in the solid target through the Bremsstrahlung process. To date, only limited studies have been conducted on this laser-induced radiological protection issue. In this study, extensive literature reviews on the physics and properties of hot electrons have been conducted. On the basis of these information, the photon dose generated by the interaction between hot electrons and a solid target was simulated with the Monte Carlo code FLUKA. With some reasonable assumptions, the calculated dose can be regarded as the upper boundary of the experimental results over the laser intensity ranging from 1019 to 1021 W/cm2. Furthermore, an equation to estimate the photon dose generated from ultraintense laser-solid interactions based on the normalized laser intensity is derived. The shielding effects of common materials including concrete and lead were also studied for the laser-driven X-ray source. The dose transmission curves and tenth-value layers (TVLs) in concrete and lead were calculated through Monte Carlo simulations. These results could be used to perform a preliminary and fast radiation safety assessment for the X-rays generated from ultraintense laser-solid interactions.

  18. Dose calculation for permanent prostate implants incorporating spatially anisotropic linearly time-resolving edema

    SciTech Connect

    Monajemi, T. T.; Clements, Charles M.; Sloboda, Ron S.

    2011-04-15

    Purpose: The objectives of this study were (i) to develop a dose calculation method for permanent prostate implants that incorporates a clinically motivated model for edema and (ii) to illustrate the use of the method by calculating the preimplant dosimetry error for a reference configuration of {sup 125}I, {sup 103}Pd, and {sup 137}Cs seeds subject to edema-induced motions corresponding to a variety of model parameters. Methods: A model for spatially anisotropic edema that resolves linearly with time was developed based on serial magnetic resonance imaging measurements made previously at our center to characterize the edema for a group of n=40 prostate implant patients [R. S. Sloboda et al., ''Time course of prostatic edema post permanent seed implant determined by magnetic resonance imaging,'' Brachytherapy 9, 354-361 (2010)]. Model parameters consisted of edema magnitude, {Delta}, and period, T. The TG-43 dose calculation formalism for a point source was extended to incorporate the edema model, thus enabling calculation via numerical integration of the cumulative dose around an individual seed in the presence of edema. Using an even power piecewise-continuous polynomial representation for the radial dose function, the cumulative dose was also expressed in closed analytical form. Application of the method was illustrated by calculating the preimplant dosimetry error, RE{sub preplan}, in a 5x5x5 cm{sup 3} volume for {sup 125}I (Oncura 6711), {sup 103}Pd (Theragenics 200), and {sup 131}Cs (IsoRay CS-1) seeds arranged in the Radiological Physics Center test case 2 configuration for a range of edema relative magnitudes ({Delta}=[0.1,0.2,0.4,0.6,1.0]) and periods (T=[28,56,84] d). Results were compared to preimplant dosimetry errors calculated using a variation of the isotropic edema model developed by Chen et al. [''Dosimetric effects of edema in permanent prostate seed implants: A rigorous solution,'' Int. J. Radiat. Oncol., Biol., Phys. 47, 1405-1419 (2000

  19. Monte Carlo calculation of artificial radionuclide radiation dose rates for marine species in the Western Pacific.

    PubMed

    Su, Jian; Yu, Wen; Zeng, Zhi; Ma, Hao; Chen, Liqi; Cheng, Jianping

    2014-03-01

    After the Fukushima nuclear accident, there is a widespread concern over the radioactive contamination of the marine environment. To protect non-human species, a radiation dose rate calculation model for Western Pacific marine species was established. Ten kinds of marine species in the Western Pacific were modelled by Geant4 for Monte Carlo simulation. Organisms were modelled with two ellipsoids: one represented organs and the other represented muscle. The enhanced dose rates by 10 main kinds of nuclides were calculated. According to the reported activities of three main nuclides ((134)Cs, (137)Cs and (131)I) in seawater near Fukushima coastal, the radiation risks of marine species were estimated. The results showed that the marine species near the Fukushima accident drain outlets might be at risk. But organisms that were >15 km away from the drain outlets were relatively safe.

  20. SU-F-BRD-09: A Random Walk Model Algorithm for Proton Dose Calculation

    SciTech Connect

    Yao, W; Farr, J

    2015-06-15

    Purpose: To develop a random walk model algorithm for calculating proton dose with balanced computation burden and accuracy. Methods: Random walk (RW) model is sometimes referred to as a density Monte Carlo (MC) simulation. In MC proton dose calculation, the use of Gaussian angular distribution of protons due to multiple Coulomb scatter (MCS) is convenient, but in RW the use of Gaussian angular distribution requires an extremely large computation and memory. Thus, our RW model adopts spatial distribution from the angular one to accelerate the computation and to decrease the memory usage. From the physics and comparison with the MC simulations, we have determined and analytically expressed those critical variables affecting the dose accuracy in our RW model. Results: Besides those variables such as MCS, stopping power, energy spectrum after energy absorption etc., which have been extensively discussed in literature, the following variables were found to be critical in our RW model: (1) inverse squared law that can significantly reduce the computation burden and memory, (2) non-Gaussian spatial distribution after MCS, and (3) the mean direction of scatters at each voxel. In comparison to MC results, taken as reference, for a water phantom irradiated by mono-energetic proton beams from 75 MeV to 221.28 MeV, the gamma test pass rate was 100% for the 2%/2mm/10% criterion. For a highly heterogeneous phantom consisting of water embedded by a 10 cm cortical bone and a 10 cm lung in the Bragg peak region of the proton beam, the gamma test pass rate was greater than 98% for the 3%/3mm/10% criterion. Conclusion: We have determined key variables in our RW model for proton dose calculation. Compared with commercial pencil beam algorithms, our RW model much improves the dose accuracy in heterogeneous regions, and is about 10 times faster than MC simulations.

  1. SU-F-303-17: Real Time Dose Calculation of MRI Guided Co-60 Radiotherapy Treatments On Free Breathing Patients, Using a Motion Model and Fast Monte Carlo Dose Calculation

    SciTech Connect

    Thomas, D; O’Connell, D; Lamb, J; Cao, M; Yang, Y; Agazaryan, N; Lee, P; Low, D

    2015-06-15

    Purpose: To demonstrate real-time dose calculation of free-breathing MRI guided Co−60 treatments, using a motion model and Monte-Carlo dose calculation to accurately account for the interplay between irregular breathing motion and an IMRT delivery. Methods: ViewRay Co-60 dose distributions were optimized on ITVs contoured from free-breathing CT images of lung cancer patients. Each treatment plan was separated into 0.25s segments, accounting for the MLC positions and beam angles at each time point. A voxel-specific motion model derived from multiple fast-helical free-breathing CTs and deformable registration was calculated for each patient. 3D images for every 0.25s of a simulated treatment were generated in real time, here using a bellows signal as a surrogate to accurately account for breathing irregularities. Monte-Carlo dose calculation was performed every 0.25s of the treatment, with the number of histories in each calculation scaled to give an overall 1% statistical uncertainty. Each dose calculation was deformed back to the reference image using the motion model and accumulated. The static and real-time dose calculations were compared. Results: Image generation was performed in real time at 4 frames per second (GPU). Monte-Carlo dose calculation was performed at approximately 1frame per second (CPU), giving a total calculation time of approximately 30 minutes per treatment. Results show both cold- and hot-spots in and around the ITV, and increased dose to contralateral lung as the tumor moves in and out of the beam during treatment. Conclusion: An accurate motion model combined with a fast Monte-Carlo dose calculation allows almost real-time dose calculation of a free-breathing treatment. When combined with sagittal 2D-cine-mode MRI during treatment to update the motion model in real time, this will allow the true delivered dose of a treatment to be calculated, providing a useful tool for adaptive planning and assessing the effectiveness of gated treatments.

  2. SU-E-T-192: Commissioning of a Commercial 3D Dose Calculation Program

    SciTech Connect

    Langen, K; Guerrero, M; Xu, H; Zhou, J; Zhang, B; Chen, S; Killefer, M

    2015-06-15

    Purpose: To commission a commercial software package (CSP) that is used as secondary dose calculation check. The CSP uses an independent golden data beam model. However, some parameters can be modified to generate a customer specific model. Plan comparisons and point dose measurements were performed to test if and to what extent the beam model needed adjustment to optimize results. Methods: Beam parameter configurations were compared between the CSP and both TPS. Twelve phantom test plans ranging from simple to complex were generated in two treatment planning systems (TPS). Tests included small field, off axis, EDW, IMRT and VMAT plans. For each plan a point dose was measured to establish ground truth. Lastly, patient plans were compared for both TPS systems and the CSP. Results: Beam parameters agreed within 2%. The output factors for small fields were changed for the 15 MV beam by 2 and 1.5 % for the 1 cm and 2 cm field sizes, respectively. For the 6 MV beam output factors were adjusted by 3−0.8% for field sizes ranging from 1 to 5 cm. The MLC dynamic leaf gap was adjusted by 1.5 mm for 18 MV beam. Differences between the CSP and the TPS were noted in the built-up region. These differences affected the gamma pass rate in the surface region, however this effect is reduced with increasing number of beam angles and does not affect point dose calculations at depth. All IMRT and VMAT plans agreed with the CSP using a gamma pass rate of 95% (3%, 3mm). Conclusion: The CSP is used to verify point doses for all 3D plans generated in our clinic for the last 6 months. No point dose mismatches were encountered since the CSP was implemented. Next, the CSP will be adapted for secondary checks of all IMRT plans. KL had a beta tester agreement with Mobius Medical for an in-kind equipment and software loan.

  3. Calculation of conversion factors for effective dose for various interventional radiology procedures

    SciTech Connect

    Compagnone, Gaetano; Giampalma, Emanuela; Domenichelli, Sara; Renzulli, Matteo; Golfieri, Rita

    2012-05-15

    Purpose: To provide dose-area-product (DAP) to effective dose (E) conversion factors for complete interventional procedures, based on in-the-field clinical measurements of DAP values and using tabulated E/DAP conversion factors for single projections available from the literature. Methods: Nine types of interventional procedures were performed on 84 patients with two angiographic systems. Different calibration curves (with and without patient table attenuation) were calculated for each DAP meter. Clinical and dosimetric parameters were recorded in-the-field for each projection and for all patients, and a conversion factor linking DAP and effective doses was derived for each complete procedure making use of published, Monte Carlo calculated conversion factors for single static projections. Results: Fluoroscopy time and DAP values for the lowest-dose procedure (biliary drainage) were approximately 3-fold and 13-fold lower, respectively, than those for the highest-dose examination (transjugular intrahepatic portosystemic shunt, TIPS). Median E/DAP conversion factors from 0.12 (abdominal percutaneous transluminal angioplasty) to 0.25 (Nephrostomy) mSvGy{sup -1} cm{sup -2} were obtained and good correlations between E and DAP were found for all procedures, with R{sup 2} coefficients ranging from 0.80 (abdominal angiography) to 0.99 (biliary stent insertion, Nephrostomy and TIPS). The DAP values obtained in this study showed general consistency with the values provided in the literature and median E values ranged from 4.0 mSv (biliary drainage) to 49.6 mSv (TIPS). Conclusions: Values of E/DAP conversion factors were derived for each procedure from a comprehensive analysis of projection and dosimetric data: they could provide a good evaluation for the stochastic effects. These results can be obtained by means of a close cooperation between different interventional professionals involved in patient care and dose optimization.

  4. Treatment planning using MRI data: an analysis of the dose calculation accuracy for different treatment regions

    PubMed Central

    2010-01-01

    Background Because of superior soft tissue contrast, the use of magnetic resonance imaging (MRI) as a complement to computed tomography (CT) in the target definition procedure for radiotherapy is increasing. To keep the workflow simple and cost effective and to reduce patient dose, it is natural to strive for a treatment planning procedure based entirely on MRI. In the present study, we investigate the dose calculation accuracy for different treatment regions when using bulk density assignments on MRI data and compare it to treatment planning that uses CT data. Methods MR and CT data were collected retrospectively for 40 patients with prostate, lung, head and neck, or brain cancers. Comparisons were made between calculations on CT data with and without inhomogeneity corrections and on MRI or CT data with bulk density assignments. The bulk densities were assigned using manual segmentation of tissue, bone, lung, and air cavities. Results The deviations between calculations on CT data with inhomogeneity correction and on bulk density assigned MR data were small. The maximum difference in the number of monitor units required to reach the prescribed dose was 1.6%. This result also includes effects of possible geometrical distortions. Conclusions The dose calculation accuracy at the investigated treatment sites is not significantly compromised when using MRI data when adequate bulk density assignments are made. With respect to treatment planning, MRI can replace CT in all steps of the treatment workflow, reducing the radiation exposure to the patient, removing any systematic registration errors that may occur when combining MR and CT, and decreasing time and cost for the extra CT investigation. PMID:20591179

  5. SU-E-T-91: Accuracy of Dose Calculation Algorithms for Patients Undergoing Stereotactic Ablative Radiotherapy

    SciTech Connect

    Tajaldeen, A; Ramachandran, P; Geso, M

    2015-06-15

    Purpose: The purpose of this study was to investigate and quantify the variation in dose distributions in small field lung cancer radiotherapy using seven different dose calculation algorithms. Methods: The study was performed in 21 lung cancer patients who underwent Stereotactic Ablative Body Radiotherapy (SABR). Two different methods (i) Same dose coverage to the target volume (named as same dose method) (ii) Same monitor units in all algorithms (named as same monitor units) were used for studying the performance of seven different dose calculation algorithms in XiO and Eclipse treatment planning systems. The seven dose calculation algorithms include Superposition, Fast superposition, Fast Fourier Transform ( FFT) Convolution, Clarkson, Anisotropic Analytic Algorithm (AAA), Acurous XB and pencil beam (PB) algorithms. Prior to this, a phantom study was performed to assess the accuracy of these algorithms. Superposition algorithm was used as a reference algorithm in this study. The treatment plans were compared using different dosimetric parameters including conformity, heterogeneity and dose fall off index. In addition to this, the dose to critical structures like lungs, heart, oesophagus and spinal cord were also studied. Statistical analysis was performed using Prism software. Results: The mean±stdev with conformity index for Superposition, Fast superposition, Clarkson and FFT convolution algorithms were 1.29±0.13, 1.31±0.16, 2.2±0.7 and 2.17±0.59 respectively whereas for AAA, pencil beam and Acurous XB were 1.4±0.27, 1.66±0.27 and 1.35±0.24 respectively. Conclusion: Our study showed significant variations among the seven different algorithms. Superposition and AcurosXB algorithms showed similar values for most of the dosimetric parameters. Clarkson, FFT convolution and pencil beam algorithms showed large differences as compared to superposition algorithms. Based on our study, we recommend Superposition and AcurosXB algorithms as the first choice of

  6. GPU-based Monte Carlo radiotherapy dose calculation using phase-space sources.

    PubMed

    Townson, Reid W; Jia, Xun; Tian, Zhen; Graves, Yan Jiang; Zavgorodni, Sergei; Jiang, Steve B

    2013-06-21

    A novel phase-space source implementation has been designed for graphics processing unit (GPU)-based Monte Carlo dose calculation engines. Short of full simulation of the linac head, using a phase-space source is the most accurate method to model a clinical radiation beam in dose calculations. However, in GPU-based Monte Carlo dose calculations where the computation efficiency is very high, the time required to read and process a large phase-space file becomes comparable to the particle transport time. Moreover, due to the parallelized nature of GPU hardware, it is essential to simultaneously transport particles of the same type and similar energies but separated spatially to yield a high efficiency. We present three methods for phase-space implementation that have been integrated into the most recent version of the GPU-based Monte Carlo radiotherapy dose calculation package gDPM v3.0. The first method is to sequentially read particles from a patient-dependent phase-space and sort them on-the-fly based on particle type and energy. The second method supplements this with a simple secondary collimator model and fluence map implementation so that patient-independent phase-space sources can be used. Finally, as the third method (called the phase-space-let, or PSL, method) we introduce a novel source implementation utilizing pre-processed patient-independent phase-spaces that are sorted by particle type, energy and position. Position bins located outside a rectangular region of interest enclosing the treatment field are ignored, substantially decreasing simulation time with little effect on the final dose distribution. The three methods were validated in absolute dose against BEAMnrc/DOSXYZnrc and compared using gamma-index tests (2%/2 mm above the 10% isodose). It was found that the PSL method has the optimal balance between accuracy and efficiency and thus is used as the default method in gDPM v3.0. Using the PSL method, open fields of 4 × 4, 10 × 10 and 30 × 30 cm

  7. GPU-based Monte Carlo radiotherapy dose calculation using phase-space sources

    NASA Astrophysics Data System (ADS)

    Townson, Reid W.; Jia, Xun; Tian, Zhen; Jiang Graves, Yan; Zavgorodni, Sergei; Jiang, Steve B.

    2013-06-01

    A novel phase-space source implementation has been designed for graphics processing unit (GPU)-based Monte Carlo dose calculation engines. Short of full simulation of the linac head, using a phase-space source is the most accurate method to model a clinical radiation beam in dose calculations. However, in GPU-based Monte Carlo dose calculations where the computation efficiency is very high, the time required to read and process a large phase-space file becomes comparable to the particle transport time. Moreover, due to the parallelized nature of GPU hardware, it is essential to simultaneously transport particles of the same type and similar energies but separated spatially to yield a high efficiency. We present three methods for phase-space implementation that have been integrated into the most recent version of the GPU-based Monte Carlo radiotherapy dose calculation package gDPM v3.0. The first method is to sequentially read particles from a patient-dependent phase-space and sort them on-the-fly based on particle type and energy. The second method supplements this with a simple secondary collimator model and fluence map implementation so that patient-independent phase-space sources can be used. Finally, as the third method (called the phase-space-let, or PSL, method) we introduce a novel source implementation utilizing pre-processed patient-independent phase-spaces that are sorted by particle type, energy and position. Position bins located outside a rectangular region of interest enclosing the treatment field are ignored, substantially decreasing simulation time with little effect on the final dose distribution. The three methods were validated in absolute dose against BEAMnrc/DOSXYZnrc and compared using gamma-index tests (2%/2 mm above the 10% isodose). It was found that the PSL method has the optimal balance between accuracy and efficiency and thus is used as the default method in gDPM v3.0. Using the PSL method, open fields of 4 × 4, 10 × 10 and 30 × 30 cm

  8. DEPDOSE: An interactive, microcomputer based program to calculate doses from exposure to radionuclides deposited on the ground

    SciTech Connect

    Beres, D.A.; Hull, A.P.

    1991-12-01

    DEPDOSE is an interactive, menu driven, microcomputer based program designed to rapidly calculate committed dose from radionuclides deposited on the ground. The program is designed to require little or no computer expertise on the part of the user. The program consisting of a dose calculation section and a library maintenance section. These selections are available to the user from the main menu. The dose calculation section provides the user with the ability to calculate committed doses, determine the decay time needed to reach a particular dose, cross compare deposition data from separate locations, and approximate a committed dose based on a measured exposure rate. The library maintenance section allows the user to review and update dose modifier data as well as to build and maintain libraries of radionuclide data, dose conversion factors, and default deposition data. The program is structured to provide the user easy access for reviewing data prior to running the calculation. Deposition data can either be entered by the user or imported from other databases. Results can either be displayed on the screen or sent to the printer.

  9. Organ shielding and doses in Low-Earth orbit calculated for spherical and anthropomorphic phantoms

    NASA Astrophysics Data System (ADS)

    Matthiä, Daniel; Berger, Thomas; Reitz, Günther

    2013-08-01

    Humans in space are exposed to elevated levels of radiation compared to ground. Different sources contribute to the total exposure with galactic cosmic rays being the most important component. The application of numerical and anthropomorphic phantoms in simulations allows the estimation of dose rates from galactic cosmic rays in individual organs and whole body quantities such as the effective dose. The male and female reference phantoms defined by the International Commission on Radiological Protection and the hermaphrodite numerical RANDO phantom are voxel implementations of anthropomorphic phantoms and contain all organs relevant for radiation risk assessment. These anthropomorphic phantoms together with a spherical water phantom were used in this work to translate the mean shielding of organs in the different anthropomorphic voxel phantoms into positions in the spherical phantom. This relation allows using a water sphere as surrogate for the anthropomorphic phantoms in both simulations and measurements. Moreover, using spherical phantoms in the calculation of radiation exposure offers great advantages over anthropomorphic phantoms in terms of computational time. In this work, the mean shielding of organs in the different voxel phantoms exposed to isotropic irradiation is presented as well as the corresponding depth in a water sphere. Dose rates for Low-Earth orbit from galactic cosmic rays during solar minimum conditions were calculated using the different phantoms and are compared to the results for a spherical water phantom in combination with the mean organ shielding. For the spherical water phantom the impact of different aluminium shielding between 1 g/cm2 and 100 g/cm2 was calculated. The dose equivalent rates were used to estimate the effective dose rate.

  10. Pencil-beam redefinition algorithm dose calculations for electron therapy treatment planning

    NASA Astrophysics Data System (ADS)

    Boyd, Robert Arthur

    2001-08-01

    The electron pencil-beam redefinition algorithm (PBRA) of Shiu and Hogstrom has been developed for use in radiotherapy treatment planning (RTP). Earlier studies of Boyd and Hogstrom showed that the PBRA lacked an adequate incident beam model, that PBRA might require improved electron physics, and that no data existed which allowed adequate assessment of the PBRA-calculated dose accuracy in a heterogeneous medium such as one presented by patient anatomy. The hypothesis of this research was that by addressing the above issues the PBRA-calculated dose would be accurate to within 4% or 2 mm in regions of high dose gradients. A secondary electron source was added to the PBRA to account for collimation-scattered electrons in the incident beam. Parameters of the dual-source model were determined from a minimal data set to allow ease of beam commissioning. Comparisons with measured data showed 3% or better dose accuracy in water within the field for cases where 4% accuracy was not previously achievable. A measured data set was developed that allowed an evaluation of PBRA in regions distal to localized heterogeneities. Geometries in the data set included irregular surfaces and high- and low-density internal heterogeneities. The data was estimated to have 1% precision and 2% agreement with accurate, benchmarked Monte Carlo (MC) code. PBRA electron transport was enhanced by modeling local pencil beam divergence. This required fundamental changes to the mathematics of electron transport (divPBRA). Evaluation of divPBRA with the measured data set showed marginal improvement in dose accuracy when compared to PBRA; however, 4% or 2mm accuracy was not achieved by either PBRA version for all data points. Finally, PBRA was evaluated clinically by comparing PBRA- and MC-calculated dose distributions using site-specific patient RTP data. Results show PBRA did not agree with MC to within 4% or 2mm in a small fraction (<3%) of the irradiated volume. Although the hypothesis of the

  11. Generalized eMC implementation for Monte Carlo dose calculation of electron beams from different machine types

    NASA Astrophysics Data System (ADS)

    Fix, Michael K.; Cygler, Joanna; Frei, Daniel; Volken, Werner; Neuenschwander, Hans; Born, Ernst J.; Manser, Peter

    2013-05-01

    The electron Monte Carlo (eMC) dose calculation algorithm available in the Eclipse treatment planning system (Varian Medical Systems) is based on the macro MC method and uses a beam model applicable to Varian linear accelerators. This leads to limitations in accuracy if eMC is applied to non-Varian machines. In this work eMC is generalized to also allow accurate dose calculations for electron beams from Elekta and Siemens accelerators. First, changes made in the previous study to use eMC for low electron beam energies of Varian accelerators are applied. Then, a generalized beam model is developed using a main electron source and a main photon source representing electrons and photons from the scattering foil, respectively, an edge source of electrons, a transmission source of photons and a line source of electrons and photons representing the particles from the scrapers or inserts and head scatter radiation. Regarding the macro MC dose calculation algorithm, the transport code of the secondary particles is improved. The macro MC dose calculations are validated with corresponding dose calculations using EGSnrc in homogeneous and inhomogeneous phantoms. The validation of the generalized eMC is carried out by comparing calculated and measured dose distributions in water for Varian, Elekta and Siemens machines for a variety of beam energies, applicator sizes and SSDs. The comparisons are performed in units of cGy per MU. Overall, a general agreement between calculated and measured dose distributions for all machine types and all combinations of parameters investigated is found to be within 2% or 2 mm. The results of the dose comparisons suggest that the generalized eMC is now suitable to calculate dose distributions for Varian, Elekta and Siemens linear accelerators with sufficient accuracy in the range of the investigated combinations of beam energies, applicator sizes and SSDs.

  12. An analytic linear accelerator source model for GPU-based Monte Carlo dose calculations.

    PubMed

    Tian, Zhen; Li, Yongbao; Folkerts, Michael; Shi, Feng; Jiang, Steve B; Jia, Xun

    2015-10-21

    dose difference within 1.7%. The maximum relative difference of output factors was within 0.5%. Over 98.5% passing rate was achieved in 3D gamma-index tests with 2%/2 mm criteria in both an IMRT prostate patient case and a head-and-neck case. These results demonstrated the efficacy of our model in terms of accurately representing a reference phase-space file. We have also tested the efficiency gain of our source model over our previously developed phase-space-let file source model. The overall efficiency of dose calculation was found to be improved by ~1.3-2.2 times in water and patient cases using our analytical model.

  13. Characterization of differences in calculated and actual measured skin doses to canine limbs during stereotactic radiosurgery using Gafchromic film

    SciTech Connect

    Walters, Jerri; Ryan, Stewart; Harmon, Joseph F.

    2012-07-01

    Accurate calculation of absorbed dose to the skin, especially the superficial and radiosensitive basal cell layer, is difficult for many reasons including, but not limited to, the build-up effect of megavoltage photons, tangential beam effects, mixed energy scatter from support devices, and dose interpolation caused by a finite resolution calculation matrix. Stereotactic body radiotherapy (SBRT) has been developed as an alternative limb salvage treatment option at Colorado State University Veterinary Teaching Hospital for dogs with extremity bone tumors. Optimal dose delivery to the tumor during SBRT treatment can be limited by uncertainty in skin dose calculation. The aim of this study was to characterize the difference between measured and calculated radiation dose by the Varian Eclipse (Varian Medical Systems, Palo Alto, CA) AAA treatment planning algorithm (for 1-mm, 2-mm, and 5-mm calculation voxel dimensions) as a function of distance from the skin surface. The study used Gafchromic EBT film (International Specialty Products, Wayne, NJ), FilmQA analysis software, a limb phantom constructed from plastic water Trade-Mark-Sign (fluke Biomedical, Everett, WA) and a canine cadaver forelimb. The limb phantom was exposed to 6-MV treatments consisting of a single-beam, a pair of parallel opposed beams, and a 7-beam coplanar treatment plan. The canine forelimb was exposed to the 7-beam coplanar plan. Radiation dose to the forelimb skin at the surface and at depths of 1.65 mm and 1.35 mm below the skin surface were also measured with the Gafchromic film. The calculation algorithm estimated the dose well at depths beyond buildup for all calculation voxel sizes. The calculation algorithm underestimated the dose in portions of the buildup region of tissue for all comparisons, with the most significant differences observed in the 5-mm calculation voxel and the least difference in the 1-mm voxel. Results indicate a significant difference between measured and calculated data

  14. Validation of calculation algorithms for organ doses in CT by measurements on a 5 year old paediatric phantom

    NASA Astrophysics Data System (ADS)

    Dabin, Jérémie; Mencarelli, Alessandra; McMillan, Dayton; Romanyukha, Anna; Struelens, Lara; Lee, Choonsik

    2016-06-01

    Many organ dose calculation tools for computed tomography (CT) scans rely on the assumptions: (1) organ doses estimated for one CT scanner can be converted into organ doses for another CT scanner using the ratio of the Computed Tomography Dose Index (CTDI) between two CT scanners; and (2) helical scans can be approximated as the summation of axial slices covering the same scan range. The current study aims to validate experimentally these two assumptions. We performed organ dose measurements in a 5 year-old physical anthropomorphic phantom for five different CT scanners from four manufacturers. Absorbed doses to 22 organs were measured using thermoluminescent dosimeters for head-to-torso scans. We then compared the measured organ doses with the values calculated from the National Cancer Institute dosimetry system for CT (NCICT) computer program, developed at the National Cancer Institute. Whereas the measured organ doses showed significant variability (coefficient of variation (CoV) up to 53% at 80 kV) across different scanner models, the CoV of organ doses normalised to CTDIvol substantially decreased (12% CoV on average at 80 kV). For most organs, the difference between measured and simulated organ doses was within  ±20% except for the bone marrow, breasts and ovaries. The discrepancies were further explained by additional Monte Carlo calculations of organ doses using a voxel phantom developed from CT images of the physical phantom. The results demonstrate that organ doses calculated for one CT scanner can be used to assess organ doses from other CT scanners with 20% uncertainty (k  =  1), for the scan settings considered in the study.

  15. Clinical implementation of the Peregrine Monte Carlo dose calculations system for photon beam therapy

    SciTech Connect

    Albright, N; Bergstrom, P M; Daly, T P; Descalle, M; Garrett, D; House, R K; Knapp, D K; May, S; Patterson, R W; Siantar, C L; Verhey, L; Walling, R S; Welczorek, D

    1999-07-01

    PEREGRINE is a 3D Monte Carlo dose calculation system designed to serve as a dose calculation engine for clinical radiation therapy treatment planning systems. Taking advantage of recent advances in low-cost computer hardware, modern multiprocessor architectures and optimized Monte Carlo transport algorithms, PEREGRINE performs mm-resolution Monte Carlo calculations in times that are reasonable for clinical use. PEREGRINE has been developed to simulate radiation therapy for several source types, including photons, electrons, neutrons and protons, for both teletherapy and brachytherapy. However the work described in this paper is limited to linear accelerator-based megavoltage photon therapy. Here we assess the accuracy, reliability, and added value of 3D Monte Carlo transport for photon therapy treatment planning. Comparisons with clinical measurements in homogeneous and heterogeneous phantoms demonstrate PEREGRINE's accuracy. Studies with variable tissue composition demonstrate the importance of material assignment on the overall dose distribution. Detailed analysis of Monte Carlo results provides new information for radiation research by expanding the set of observables.

  16. A new analytical formula for neutron capture gamma dose calculations in double-bend mazes in radiation therapy

    PubMed Central

    Ghiasi, Hosein; Mesbahi, Asghar

    2012-01-01

    Background Photoneutrons are produced in radiation therapy with high energy photons. Also, capture gamma rays are the byproduct of neutrons interactions with wall material of radiotherapy rooms. Aim In the current study an analytical formula was proposed for capture gamma dose calculations in double bend mazes in radiation therapy rooms. Materials and methods A total of 40 different layouts with double-bend mazes and a 18 MeV photon beam of Varian 2100 Clinac were simulated using MCNPX Monte Carlo (MC) code. Neutron capture gamma ray dose equivalent was calculated by the MC method along the maze and at the maze entrance door of all the simulated rooms. Then, all MC resulted data were fitted to an empirical formula for capture gamma dose calculations. Wu–McGinley analytical formula for capture gamma dose equivalent at the maze entrance door in single-bend mazes was also used for comparison purposes. Results For capture gamma dose equivalents at the maze entrance door, the difference of 2–11% was seen between MC and the derived equation, while the difference of 36–87% was found between MC and the Wu–McGinley methods. Conclusion Our results showed that the derived formula results were consistent with the MC results for all of 40 different geometries. However, as a new formula, further evaluations are required to validate its use in practical situations. Finally, its application is recommend for capture gamma dose calculations in double-bend mazes to improve shielding calculations. PMID:24377027

  17. Radioactivity in food and the environment: calculations of UK radiation doses using integrated assessment methods.

    PubMed

    Camplin, W C; Brownless, G P; Round, G D; Winpenny, K; Hunt, G J

    2002-12-01

    A new method for estimating radiation doses to UK critical groups is proposed for discussion. Amongst others, the Food Standards Agency (FSA) and the Scottish Environment Protection Agency (SEPA) undertake surveillance of UK food and the environment as a check on the effect of discharges of radioactive wastes. Discharges in gaseous and liquid form are made under authorisation by the Environment Agency and SEPA under powers in the Radioactive Substance Act. Results of surveillance by the FSA and SEPA are published in the Radioactivity in Food and the Environment (RIFE) report series. In these reports, doses to critical groups are normally estimated separately for gaseous and liquid discharge pathways. Simple summation of these doses would tend to overestimate doses actually received. Three different methods of combining the effects of both types of discharge in an integrated assessment are considered and ranked according to their ease of application, transparency, scientific rigour and presentational issues. A single integrated assessment method is then chosen for further study. Doses are calculated for surveillance data for the calendar year 2000 and compared with those from the existing RIFE method.

  18. Calculation of Dose Deposition in Nanovolumes and Simulation of gamma-H2AX Experiments

    NASA Technical Reports Server (NTRS)

    Plante, Ianik

    2010-01-01

    Monte-Carlo track structure simulations can accurately simulate experimental data: a) Frequency of target hits. b) Dose per event. c) Dose per ion. d) Radial dose. The dose is uniform in micrometers sized voxels; at the nanometer scale, the difference in energy deposition between high and low-LET radiations appears. The calculated 3D distribution of dose voxels, combined with chromosomes simulated by random walk is very similar to the distribution of DSB observed with gamma-H2AX experiments. This is further evidenced by applying a visualization threshold on dose.

  19. Modeling a superficial radiotherapy X-ray source for relative dose calculations.

    PubMed

    Johnstone, Christopher D; LaFontaine, Richard; Poirier, Yannick; Tambasco, Mauro

    2015-05-08

    The purpose of this study was to empirically characterize and validate a kilovoltage (kV) X-ray beam source model of a superficial X-ray unit for relative dose calculations in water and assess the accuracy of the British Journal of Radiology Supplement 25 (BJR 25) percentage depth dose (PDD) data. We measured central axis PDDs and dose profiles using an Xstrahl 150 X-ray system. We also compared the measured and calculated PDDs to those in the BJR 25. The Xstrahl source was modeled as an effective point source with varying spatial fluence and spectra. In-air ionization chamber measurements were made along the x- and y-axes of the X-ray beam to derive the spatial fluence and half-value layer (HVL) measurements were made to derive the spatially varying spectra. This beam characterization and resulting source model was used as input for our in-house dose calculation software (kVDoseCalc) to compute radiation dose at points of interest (POIs). The PDDs and dose profiles were measured using 2, 5, and 15 cm cone sizes at 80, 120, 140, and 150 kVp energies in a scanning water phantom using IBA Farmer-type ionization chambers of volumes 0.65 and 0.13 cc, respectively. The percent difference in the computed PDDs compared with our measurements range from -4.8% to 4.8%, with an overall mean percent difference and standard deviation of 1.5% and 0.7%, respectively. The percent difference between our PDD measurements and those from BJR 25 range from -14.0% to 15.7%, with an overall mean percent difference and standard deviation of 4.9% and 2.1%, respectively - showing that the measurements are in much better agreement with kVDoseCalc than BJR 25. The range in percent difference between kVDoseCalc and measurement for profiles was -5.9% to 5.9%, with an overall mean percent difference and standard deviation of 1.4% and 1.4%, respectively. The results demonstrate that our empirically based X-ray source modeling approach for superficial X-ray therapy can be used to accurately

  20. Calculs Monte Carlo en transport d'energie pour le calcul de la dose en radiotherapie sur plateforme graphique hautement parallele

    NASA Astrophysics Data System (ADS)

    Hissoiny, Sami

    Dose calculation is a central part of treatment planning. The dose calculation must be 1) accurate so that the medical physicists and the radio-oncologists can make a decision based on results close to reality and 2) fast enough to allow a routine use of dose calculation. The compromise between these two factors in opposition gave way to the creation of several dose calculation algorithms, from the most approximate and fast to the most accurate and slow. The most accurate of these algorithms is the Monte Carlo method, since it is based on basic physical principles. Since 2007, a new computing platform gains popularity in the scientific computing community: the graphics processor unit (GPU). The hardware platform exists since before 2007 and certain scientific computations were already carried out on the GPU. Year 2007, on the other hand, marks the arrival of the CUDA programming language which makes it possible to disregard graphic contexts to program the GPU. The GPU is a massively parallel computing platform and is adapted to data parallel algorithms. This thesis aims at knowing how to maximize the use of a graphics processing unit (GPU) to speed up the execution of a Monte Carlo simulation for radiotherapy dose calculation. To answer this question, the GPUMCD platform was developed. GPUMCD implements the simulation of a coupled photon-electron Monte Carlo simulation and is carried out completely on the GPU. The first objective of this thesis is to evaluate this method for a calculation in external radiotherapy. Simple monoenergetic sources and phantoms in layers are used. A comparison with the EGSnrc platform and DPM is carried out. GPUMCD is within a gamma criteria of 2%-2mm against EGSnrc while being at least 1200x faster than EGSnrc and 250x faster than DPM. The second objective consists in the evaluation of the platform for brachytherapy calculation. Complex sources based on the geometry and the energy spectrum of real sources are used inside a TG-43

  1. Dose calculation for hypofractionated volumetric-modulated arc therapy: approximating continuous arc delivery and tongue-and-groove modeling*

    PubMed Central

    Yang, Jie; Tang, Grace; Zhang, Pengpeng; Hunt, Margie; Lim, Seng B.; LoSasso, Thomas; Mageras, Gig

    2016-01-01

    Hypofractionated treatments generally increase the complexity of a treatment plan due to the more stringent constraints of normal tissues and target coverage. As a result, treatment plans contain more modulated MLC motions that may require extra efforts for accurate dose calculation. This study explores methods to minimize the differences between in-house dose calculation and actual delivery of hypofractionated volumetric-modulated arc therapy (VMAT), by focusing on arc approximation and tongue-and-groove (TG) modeling. For dose calculation, the continuous delivery arc is typically approximated by a series of static beams with an angular spacing of 2°. This causes significant error when there is large MLC movement from one beam to the next. While increasing the number of beams will minimize the dose error, calculation time will increase significantly. We propose a solution by inserting two additional apertures at each of the beam angle for dose calculation. These additional apertures were interpolated at two-thirds’ degree before and after each beam. Effectively, there were a total of three MLC apertures at each beam angle, and the weighted average fluence from the three apertures was used for calculation. Because the number of beams was kept the same, calculation time was only increased by about 6%–8%. For a lung plan, areas of high local dose differences (> 4%) between film measurement and calculation with one aperture were significantly reduced in calculation with three apertures. Ion chamber measurement also showed similar results, where improvements were seen with calculations using additional apertures. Dose calculation accuracy was further improved for TG modeling by developing a sampling method for beam fluence matrix. Single element point sampling for fluence transmitted through MLC was used for our fluence matrix with 1 mm resolution. For Varian HDMLC, grid alignment can cause fluence sampling error. To correct this, transmission volume averaging was

  2. Dose calculation for hypofractionated volumetric-modulated arc therapy: approximating continuous arc delivery and tongue-and-groove modeling.

    PubMed

    Yang, Jie; Tang, Grace; Zhang, Pengpeng; Hunt, Margie; Lim, Seng B; LoSasso, Thomas; Mageras, Gig

    2016-03-01

    Hypofractionated treatments generally increase the complexity of a treatment plan due to the more stringent constraints of normal tissues and target coverage. As a result, treatment plans contain more modulated MLC motions that may require extra efforts for accurate dose calculation. This study explores methods to minimize the differences between in-house dose calculation and actual delivery of hypofractionated volumetric-modulated arc therapy (VMAT), by focusing on arc approximation and tongue-and-groove (TG) modeling. For dose calculation, the continuous delivery arc is typically approximated by a series of static beams with an angular spacing of 2°. This causes significant error when there is large MLC movement from one beam to the next. While increasing the number of beams will minimize the dose error, calculation time will increase significantly. We propose a solution by inserting two additional apertures at each of the beam angle for dose calculation. These additional apertures were interpolated at two-thirds' degree before and after each beam. Effectively, there were a total of three MLC apertures at each beam angle, and the weighted average fluence from the three apertures was used for calculation. Because the number of beams was kept the same, calculation time was only increased by about 6%-8%. For a lung plan, areas of high local dose differences (>4%) between film measurement and calculation with one aperture were significantly reduced in calculation with three apertures. Ion chamber measurement also showed similar results, where improvements were seen with calculations using additional apertures. Dose calculation accuracy was further improved for TG modeling by developing a sampling method for beam fluence matrix. Single element point sampling for fluence transmitted through MLC was used for our fluence matrix with 1 mm resolution. For Varian HDMLC, grid alignment can cause fluence sampling error. To correct this, transmission volume averaging was

  3. Dose calculation for hypofractionated volumetric-modulated arc therapy: approximating continuous arc delivery and tongue-and-groove modeling.

    PubMed

    Yang, Jie; Tang, Grace; Zhang, Pengpeng; Hunt, Margie; Lim, Seng B; LoSasso, Thomas; Mageras, Gig

    2016-03-08

    Hypofractionated treatments generally increase the complexity of a treatment plan due to the more stringent constraints of normal tissues and target coverage. As a result, treatment plans contain more modulated MLC motions that may require extra efforts for accurate dose calculation. This study explores methods to minimize the differences between in-house dose calculation and actual delivery of hypofractionated volumetric-modulated arc therapy (VMAT), by focusing on arc approximation and tongue-and-groove (TG) modeling. For dose calculation, the continuous delivery arc is typically approximated by a series of static beams with an angular spacing of 2°. This causes significant error when there is large MLC movement from one beam to the next. While increasing the number of beams will minimize the dose error, calculation time will increase significantly. We propose a solution by inserting two additional apertures at each of the beam angle for dose calculation. These additional apertures were interpolated at two-thirds' degree before and after each beam. Effectively, there were a total of three MLC apertures at each beam angle, and the weighted average fluence from the three apertures was used for calculation. Because the number of beams was kept the same, calculation time was only increased by about 6%-8%. For a lung plan, areas of high local dose differences (> 4%) between film measurement and calculation with one aperture were significantly reduced in calculation with three apertures. Ion chamber measurement also showed similar results, where improvements were seen with calculations using additional apertures. Dose calculation accuracy was further improved for TG modeling by developing a sampling method for beam fluence matrix. Single element point sampling for fluence transmitted through MLC was used for our fluence matrix with 1 mm resolution. For Varian HDMLC, grid alignment can cause fluence sampling error. To correct this, transmission volume averaging was

  4. A novel lateral disequilibrium inclusive (LDI) pencil-beam based dose calculation algorithm: Evaluation in inhomogeneous phantoms and comparison with Monte Carlo calculations

    SciTech Connect

    Wertz, Hansjoerg; Jahnke, Lennart; Schneider, Frank; Polednik, Martin; Fleckenstein, Jens; Lohr, Frank; Wenz, Frederik

    2011-03-15

    Purpose: Pencil-beam (PB) based dose calculation for treatment planning is limited by inaccuracies in regions of tissue inhomogeneities, particularly in situations with lateral electron disequilibrium as is present at tissue/lung interfaces. To overcome these limitations, a new ''lateral disequilibrium inclusive'' (LDI) PB based calculation algorithm was introduced. In this study, the authors evaluated the accuracy of the new model by film and ionization chamber measurements and Monte Carlo simulations. Methods: To validate the performance of the new LDI algorithm implemented in Corvus 09, eight test plans were generated on inhomogeneous thorax and pelvis phantoms. In addition, three plans were calculated with a simple effective path length (EPL) algorithm on the inhomogeneous thorax phantom. To simulate homogeneous tissues, four test plans were evaluated in homogeneous phantoms (homogeneous dose calculation). Results: The mean pixel pass rates and standard deviations of the gamma 4%/4 mm test for the film measurements were (96{+-}3)% for the plans calculated with LDI, (70{+-}5)% for the plans calculated with EPL, and (99{+-}1)% for the homogeneous plans. Ionization chamber measurements and Monte Carlo simulations confirmed the high accuracy of the new algorithm (dose deviations {<=}4%; gamma 3%/3 mm {>=}96%)Conclusions: LDI represents an accurate and fast dose calculation algorithm for treatment planning.

  5. Evaluation of on-board kV cone beam CT (CBCT)-based dose calculation

    NASA Astrophysics Data System (ADS)

    Yang, Yong; Schreibmann, Eduard; Li, Tianfang; Wang, Chuang; Xing, Lei

    2007-02-01

    significant fluctuation was observed in the calibration over the period of 8 weeks. For the static phantom, the doses computed based on pCT and CBCT agreed to within 1%. A notable difference in CBCT- and pCT-based dose distributions was found for the motion phantom due to the motion artefacts which appeared in the CBCT images (the maximum discrepancy was found to be ~3.0% in the high dose region). The motion artefacts-induced dosimetric inaccuracy was also observed in the lung patient study. For the prostate cases, the mCBCT- and CBCT-based dose calculations yielded very close results (<2%). Coupled with the phantom data, it is concluded that the CBCT can be employed directly for dose calculation for a disease site such as the prostate, where there is little motion artefact. In the prostate case study, we also noted a large discrepancy between the original treatment plan and the CBCT (or mCBCT)-based calculation, suggesting the importance of inter-fractional organ movement and the need for adaptive therapy to compensate for the anatomical changes in the future. Part of this work was presented in 2006 Annual Meeting of American Association of Physicists in Medicine.

  6. Evaluation of on-board kV cone beam CT (CBCT)-based dose calculation.

    PubMed

    Yang, Yong; Schreibmann, Eduard; Li, Tianfang; Wang, Chuang; Xing, Lei

    2007-02-07

    significant fluctuation was observed in the calibration over the period of 8 weeks. For the static phantom, the doses computed based on pCT and CBCT agreed to within 1%. A notable difference in CBCT- and pCT-based dose distributions was found for the motion phantom due to the motion artefacts which appeared in the CBCT images (the maximum discrepancy was found to be approximately 3.0% in the high dose region). The motion artefacts-induced dosimetric inaccuracy was also observed in the lung patient study. For the prostate cases, the mCBCT- and CBCT-based dose calculations yielded very close results (<2%). Coupled with the phantom data, it is concluded that the CBCT can be employed directly for dose calculation for a disease site such as the prostate, where there is little motion artefact. In the prostate case study, we also noted a large discrepancy between the original treatment plan and the CBCT (or mCBCT)-based calculation, suggesting the importance of inter-fractional organ movement and the need for adaptive therapy to compensate for the anatomical changes in the future.

  7. Voxel modeling of rabbits for use in radiological dose rate calculations.

    PubMed

    Caffrey, E A; Johansen, M P; Higley, K A

    2016-01-01

    Radiation dose to biota is generally calculated using Monte Carlo simulations of whole body ellipsoids with homogeneously distributed radioactivity throughout. More complex anatomical phantoms, termed voxel phantoms, have been developed to test the validity of these simplistic geometric models. In most voxel models created to date, human tissue composition and density values have been used in lieu of biologically accurate values for non-human biota. This has raised questions regarding variable tissue composition and density effects on the fraction of radioactive emission energy absorbed within tissues (e.g. the absorbed fraction - AF), along with implications for age-dependent dose rates as organisms mature. The results of this study on rabbits indicates that the variation in composition between two mammalian tissue types (e.g. human vs rabbit bones) made little difference in self-AF (SAF) values (within 5% over most energy ranges). However, variable tissue density (e.g. bone vs liver) can significantly impact SAF values. An examination of differences across life-stages revealed increasing SAF with testis and ovary size of over an order of magnitude for photons and several factors for electrons, indicating the potential for increasing dose rates to these sensitive organs as animals mature. AFs for electron energies of 0.1, 0.2, 0.4, 0.5, 0.7, 1.0, 1.5, 2.0, and 4.0 MeV and photon energies of 0.01, 0.015, 0.02, 0.03, 0.05, 0.1, 0.2, 0.5, 1.0, 1.5, 2.0, and 4.0 MeV are provided for eleven rabbit tissues. The data presented in this study can be used to calculate accurate organ dose rates for rabbits and other small rodents; to aide in extending dose results among different mammal species; and to validate the use of ellipsoidal models for regulatory purposes.

  8. Image reconstruction and the effect on dose calculation for hip prostheses

    SciTech Connect

    Keall, Paul J.; Chock, Leah B.; Jeraj, Robert; Siebers, Jeffrey V.; Mohan, Radhe

    2003-06-30

    High atomic number inserts, such as hip prostheses and dental fillings, cause streak artifacts on computed tomography (CT) images when filtered back-projection (FBP) methods are used. These streak artifacts severely degrade our ability to differentiate the tumor volume. Also, incorrect Hounsfield numbers yield incorrect electron density information that may lead to erroneous dose calculations, and, as a result, compromise clinical outcomes. The aim of this research was to evaluate the dosimetric consequences of artifacts during radiotherapy planning of a prostate patient containing a hip prosthesis. The CT numbers corresponding to an iron prosthesis were inserted into the right femoral head of an existing CT image set. This artifact-free image was used as the standard image set. CT projections through the image set formed the sinogram, from which filtered back projection and iterative deblurring methods were used to create reconstructed image sets. These reconstructed image sets contained artifacts. Prostate treatment plans were then calculated using a Monte Carlo system for the standard and reconstructed CT image sets. Close to the prosthesis, the CT numbers between the reconstructed and standard image sets differed substantially. However, because the CT number differences covered only a small area, the dose distributions on the reconstructed and standard image sets were not significantly different. The dose-volume histograms for the prostate, rectum, and bladder were virtually identical. Our results indicate that even though CT image artifacts restrict our ability to differentiate tumors and critical structures, the dose distributions for a prostate plan containing a hip prosthesis, calculated on both artifact-free image sets and image sets containing artifacts, are not significantly different.

  9. A model to calculate the induced dose rate around an 18 MV ELEKTA linear accelerator.

    PubMed

    Perrin, Bruce; Walker, Anne; Mackay, Ranald

    2003-03-07

    The dose rate due to activity induced by (gamma, n) reactions around an ELEKTA Precise accelerator running at 18 MV is reported. A model to calculate the induced dose rate for a variety of working practices has been derived and compared to the measured values. From this model, the dose received by the staff using the machine can be estimated. From measured dose rates at the face of the linear accelerator for a 10 x 10 cm2 jaw setting at 18 MV an activation coefficient per MU was derived for each of the major activation products. The relative dose rates at points around the linac head, for different energy and jaw settings, were measured. Dose rates adjacent to the patient support system and portal imager were also measured. A model to calculate the dose rate at these points was derived, and compared to those measured over a typical working week. The model was then used to estimate the maximum dose to therapists for the current working schedule on this machine. Calculated dose rates at the linac face agreed to within +/- 12% of those measured over a week, with a typical dose rate of 4.5 microSv h(-1) 2 min after the beam has stopped. The estimated maximum annual whole body dose for a treatment therapist, with the machine treating at only 18 MV, for 60000 MUs per week was 2.5 mSv. This compares well with value of 2.9 mSv published for a Clinac 21EX. A model has been derived to calculate the dose from the four dominant activation products of an ELEKTA Precise 18 MV linear accelerator. This model is a useful tool to calculate the induced dose rate around the treatment head. The model can be used to estimate the dose to the staff for typical working patterns.

  10. Conservatism in effective dose calculations for accident events involving fuel reprocessing waste tanks.

    PubMed

    Bevelacqua, J J

    2011-07-01

    Conservatism in the calculation of the effective dose following an airborne release from an accident involving a fuel reprocessing waste tank is examined. Within the regulatory constraints at the Hanford Site, deterministic effective dose calculations are conservative by at least an order of magnitude. Deterministic calculations should be used with caution in reaching decisions associated with required safety systems and mitigation philosophy related to the accidental release of airborne radioactive material to the environment.

  11. Patient-specific IMRT verification using independent fluence-based dose calculation software: experimental benchmarking and initial clinical experience

    NASA Astrophysics Data System (ADS)

    Georg, Dietmar; Stock, Markus; Kroupa, Bernhard; Olofsson, Jörgen; Nyholm, Tufve; Ahnesjö, Anders; Karlsson, Mikael

    2007-08-01

    Experimental methods are commonly used for patient-specific intensity-modulated radiotherapy (IMRT) verification. The purpose of this study was to investigate the accuracy and performance of independent dose calculation software (denoted as 'MUV' (monitor unit verification)) for patient-specific quality assurance (QA). 52 patients receiving step-and-shoot IMRT were considered. IMRT plans were recalculated by the treatment planning systems (TPS) in a dedicated QA phantom, in which an experimental 1D and 2D verification (0.3 cm3 ionization chamber; films) was performed. Additionally, an independent dose calculation was performed. The fluence-based algorithm of MUV accounts for collimator transmission, rounded leaf ends, tongue-and-groove effect, backscatter to the monitor chamber and scatter from the flattening filter. The dose calculation utilizes a pencil beam model based on a beam quality index. DICOM RT files from patient plans, exported from the TPS, were directly used as patient-specific input data in MUV. For composite IMRT plans, average deviations in the high dose region between ionization chamber measurements and point dose calculations performed with the TPS and MUV were 1.6 ± 1.2% and 0.5 ± 1.1% (1 S.D.). The dose deviations between MUV and TPS slightly depended on the distance from the isocentre position. For individual intensity-modulated beams (total 367), an average deviation of 1.1 ± 2.9% was determined between calculations performed with the TPS and with MUV, with maximum deviations up to 14%. However, absolute dose deviations were mostly less than 3 cGy. Based on the current results, we aim to apply a confidence limit of 3% (with respect to the prescribed dose) or 6 cGy for routine IMRT verification. For off-axis points at distances larger than 5 cm and for low dose regions, we consider 5% dose deviation or 10 cGy acceptable. The time needed for an independent calculation compares very favourably with the net time for an experimental approach

  12. Calculated organ doses from selected prostate treatment plans using Monte Carlo simulations and an anatomically realistic computational phantom

    NASA Astrophysics Data System (ADS)

    Bednarz, Bryan; Hancox, Cindy; Xu, X. George

    2009-09-01

    There is growing concern about radiation-induced second cancers associated with radiation treatments. Particular attention has been focused on the risk to patients treated with intensity-modulated radiation therapy (IMRT) due primarily to increased monitor units. To address this concern we have combined a detailed medical linear accelerator model of the Varian Clinac 2100 C with anatomically realistic computational phantoms to calculate organ doses from selected treatment plans. This paper describes the application to calculate organ-averaged equivalent doses using a computational phantom for three different treatments of prostate cancer: a 4-field box treatment, the same box treatment plus a 6-field 3D-CRT boost treatment and a 7-field IMRT treatment. The equivalent doses per MU to those organs that have shown a predilection for second cancers were compared between the different treatment techniques. In addition, the dependence of photon and neutron equivalent doses on gantry angle and energy was investigated. The results indicate that the box treatment plus 6-field boost delivered the highest intermediate- and low-level photon doses per treatment MU to the patient primarily due to the elevated patient scatter contribution as a result of an increase in integral dose delivered by this treatment. In most organs the contribution of neutron dose to the total equivalent dose for the 3D-CRT treatments was less than the contribution of photon dose, except for the lung, esophagus, thyroid and brain. The total equivalent dose per MU to each organ was calculated by summing the photon and neutron dose contributions. For all organs non-adjacent to the primary beam, the equivalent doses per MU from the IMRT treatment were less than the doses from the 3D-CRT treatments. This is due to the increase in the integral dose and the added neutron dose to these organs from the 18 MV treatments. However, depending on the application technique and optimization used, the required MU

  13. Radial dose distributions from protons of therapeutic energies calculated with Geant4-DNA.

    PubMed

    Wang, He; Vassiliev, Oleg N

    2014-07-21

    Models based on the amorphous track structure approximation have been successful in predicting the biological effects of heavy charged particles. Development of such models remains an active area of research that includes applications to hadrontherapy. In such models, the radial distribution of the dose deposited by delta electrons and directly by the particle is the main characteristic of track structure. We calculated these distributions with Geant4-DNA Monte Carlo code for protons in the energy range from 10 to 100 MeV. These results were approximated by a simple formula that combines the well-known inverse square distance dependence with two factors that eliminate the divergence of the radial dose integral at both small and large distances. A clear physical interpretation is given to the asymptotic behaviour of the radial dose distribution resulting from these two factors. The proposed formula agrees with the Monte Carlo data within 10% for radial distances of up to 10 μm, which corresponds to a dose range covering over eight orders of magnitude. Differences between our results and those of previously published analytical models are discussed.

  14. Radial dose distributions from protons of therapeutic energies calculated with Geant4-DNA

    NASA Astrophysics Data System (ADS)

    Wang, He; Vassiliev, Oleg N.

    2014-07-01

    Models based on the amorphous track structure approximation have been successful in predicting the biological effects of heavy charged particles. Development of such models remains an active area of research that includes applications to hadrontherapy. In such models, the radial distribution of the dose deposited by delta electrons and directly by the particle is the main characteristic of track structure. We calculated these distributions with Geant4-DNA Monte Carlo code for protons in the energy range from 10 to 100 MeV. These results were approximated by a simple formula that combines the well-known inverse square distance dependence with two factors that eliminate the divergence of the radial dose integral at both small and large distances. A clear physical interpretation is given to the asymptotic behaviour of the radial dose distribution resulting from these two factors. The proposed formula agrees with the Monte Carlo data within 10% for radial distances of up to 10 μm, which corresponds to a dose range covering over eight orders of magnitude. Differences between our results and those of previously published analytical models are discussed.

  15. Volume 1: Calculating potential to emit releases and doses for FEMP's and NOCs

    SciTech Connect

    HILL, J.S.

    1999-07-27

    The purpose of this document is to provide Hanford Site facilities a handbook for estimating potential emissions and the subsequent offsite doses. General guidelines and information are provided to assist personnel in estimating emissions for use with U.S. Department of Energy (DOE) facility effluent monitoring plans (FEMPs) and regulatory notices of construction (NOCs), per 40 Code of Federal Regulations (CFR) Part 61, Subpart H, and Washington Administrative Code (WAC) Chapter 246-247 requirements. This document replaces Unit Dose Calculation Methods and Summary of Facility Effluent Monitoring Plan Determinations (WHC-EP-0498). Meteorological data from 1983 through 1996, 13-year data set, was used to develop the unit dose factors provided by this document, with the exception of two meteorological stations. Meteorological stations 23 and 24, located at Gable Mountain and the 100-F Area, only have data from 1986 through 1996, 10-year data set. The scope of this document includes the following: Estimating emissions and resulting effective dose equivalents (EDE) to a facility's nearest offsite receptor (NOR) for use with NOCs under 40 CFR Part 61, Subpart H, requirements Estimating emissions and resulting EDEs to a facility's or emission unit's NOR for use with NOCs under the WAC Chapter 246-247 requirements Estimating emissions and resulting EDEs to a facility's or emission unit's NOR for use with FEMPs and FEMP determinations under DOE Orders 5400.1 and 5400.5 requirements.

  16. TH-A-19A-03: Impact of Proton Dose Calculation Method On Delivered Dose to Lung Tumors: Experiments in Thorax Phantom and Planning Study in Patient Cohort

    SciTech Connect

    Grassberger, C; Daartz, J; Dowdell, S; Ruggieri, T; Sharp, G; Paganetti, H

    2014-06-15

    Purpose: Evaluate Monte Carlo (MC) dose calculation and the prediction of the treatment planning system (TPS) in a lung phantom and compare them in a cohort of 20 lung patients treated with protons. Methods: A 2-dimensional array of ionization chambers was used to evaluate the dose across the target in a lung phantom. 20 lung cancer patients on clinical trials were re-simulated using a validated Monte Carlo toolkit (TOPAS) and compared to the TPS. Results: MC increases dose calculation accuracy in lung compared to the clinical TPS significantly and predicts the dose to the target in the phantom within ±2%: the average difference between measured and predicted dose in a plane through the center of the target is 5.6% for the TPS and 1.6% for MC. MC recalculations in patients show a mean dose to the clinical target volume on average 3.4% lower than the TPS, exceeding 5% for small fields. The lower dose correlates significantly with aperture size and the distance of the tumor to the chest wall (Spearman's p=0.0002/0.004). For large tumors MC also predicts consistently higher V{sub 5} and V{sub 10} to the normal lung, due to a wider lateral penumbra, which was also observed experimentally. Critical structures located distal to the target can show large deviations, though this effect is very patient-specific. Conclusion: Advanced dose calculation techniques, such as MC, would improve treatment quality in proton therapy for lung cancer by avoiding systematic overestimation of target dose and underestimation of dose to normal lung. This would increase the accuracy of the relationships between dose and effect, concerning tumor control as well as normal tissue toxicity. As the role of proton therapy in the treatment of lung cancer continues to be evaluated in clinical trials, this is of ever-increasing importance. This work was supported by National Cancer Institute Grant R01CA111590.

  17. MEASURED AND CALCULATED HEATING AND DOSE RATES FOR THE HFIR HB4 BEAM TUBE AND COLD SOURCE

    SciTech Connect

    Slater, Charles O; Primm, Trent; Pinkston, Daniel; Cook, David Howard; Selby, Douglas L; Ferguson, Phillip D; Bucholz, James A; Popov, Emilian L

    2009-03-01

    The High Flux Isotope Reactor at the Oak Ridge National Laboratory was upgraded to install a cold source in horizontal beam tube number 4. Calculations were performed and measurements were made to determine heating within the cold source and dose rates within and outside a shield tunnel surrounding the beam tube. This report briefly describes the calculations and presents comparisons of the measured and calculated results. Some calculated dose rates are in fair to good agreement with the measured results while others, particularly those at the shield interfaces, differ greatly from the measured results. Calculated neutron exposure to the Teflon seals in the hydrogen transfer line is about one fourth of the measured value, underpredicting the lifetime by a factor of four. The calculated cold source heating is in good agreement with the measured heating.

  18. The development of early pediatric models and their application to radiation absorbed dose calculations

    SciTech Connect

    Poston, J.W.

    1989-01-01

    This presentation will review and describe the development of pediatric phantoms for use in radiation dose calculations . The development of pediatric models for dose calculations essentially paralleled that of the adult. In fact, Snyder and Fisher at the Oak Ridge National Laboratory reported on a series of phantoms for such calculations in 1966 about two years before the first MIRD publication on the adult human phantom. These phantoms, for a newborn, one-, five-, ten-, and fifteen-year old, were derived from the adult phantom. The pediatric'' models were obtained through a series of transformations applied to the major dimensions of the adult, which were specified in a Cartesian coordinate system. These phantoms suffered from the fact that no real consideration was given to the influence of these mathematical transformations on the actual organ sizes in the other models nor to the relation of the resulting organ masses to those in humans of the particular age. Later, an extensive effort was invested in designing individual'' pediatric phantoms for each age based upon a careful review of the literature. Unfortunately, the phantoms had limited use and only a small number of calculations were made available to the user community. Examples of the phantoms, their typical dimensions, common weaknesses, etc. will be discussed.

  19. The development of early pediatric models and their application to radiation absorbed dose calculations

    SciTech Connect

    Poston, J.W.

    1989-12-31

    This presentation will review and describe the development of pediatric phantoms for use in radiation dose calculations . The development of pediatric models for dose calculations essentially paralleled that of the adult. In fact, Snyder and Fisher at the Oak Ridge National Laboratory reported on a series of phantoms for such calculations in 1966 about two years before the first MIRD publication on the adult human phantom. These phantoms, for a newborn, one-, five-, ten-, and fifteen-year old, were derived from the adult phantom. The ``pediatric`` models were obtained through a series of transformations applied to the major dimensions of the adult, which were specified in a Cartesian coordinate system. These phantoms suffered from the fact that no real consideration was given to the influence of these mathematical transformations on the actual organ sizes in the other models nor to the relation of the resulting organ masses to those in humans of the particular age. Later, an extensive effort was invested in designing ``individual`` pediatric phantoms for each age based upon a careful review of the literature. Unfortunately, the phantoms had limited use and only a small number of calculations were made available to the user community. Examples of the phantoms, their typical dimensions, common weaknesses, etc. will be discussed.

  20. Rigorous-two-Steps scheme of TRIPOLI-4® Monte Carlo code validation for shutdown dose rate calculation

    NASA Astrophysics Data System (ADS)

    Jaboulay, Jean-Charles; Brun, Emeric; Hugot, François-Xavier; Huynh, Tan-Dat; Malouch, Fadhel; Mancusi, Davide; Tsilanizara, Aime

    2017-09-01

    After fission or fusion reactor shutdown the activated structure emits decay photons. For maintenance operations the radiation dose map must be established in the reactor building. Several calculation schemes have been developed to calculate the shutdown dose rate. These schemes are widely developed in fusion application and more precisely for the ITER tokamak. This paper presents the rigorous-two-steps scheme implemented at CEA. It is based on the TRIPOLI-4® Monte Carlo code and the inventory code MENDEL. The ITER shutdown dose rate benchmark has been carried out, results are in a good agreement with the other participant.

  1. Comparison of EGS4 and MCNP Monte Carlo codes when calculating radiotherapy depth doses.

    PubMed

    Love, P A; Lewis, D G; Al-Affan, I A; Smith, C W

    1998-05-01

    The Monte Carlo codes EGS4 and MCNP have been compared when calculating radiotherapy depth doses in water. The aims of the work were to study (i) the differences between calculated depth doses in water for a range of monoenergetic photon energies and (ii) the relative efficiency of the two codes for different electron transport energy cut-offs. The depth doses from the two codes agree with each other within the statistical uncertainties of the calculations (1-2%). The relative depth doses also agree with data tabulated in the British Journal of Radiology Supplement 25. A discrepancy in the dose build-up region may by attributed to the different electron transport algorithims used by EGS4 and MCNP. This discrepancy is considerably reduced when the improved electron transport routines are used in the latest (4B) version of MCNP. Timing calculations show that EGS4 is at least 50% faster than MCNP for the geometries used in the simulations.

  2. Calculation of dose, dose equivalent, and relative biological effectiveness for high charge and energy ion beams

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Chun, S. Y.; Reginatto, M.; Hajnal, F.

    1995-01-01

    The Green's function for the transport of ions of high charge and energy is utilized with a nuclear fragmentation database to evaluate dose, dose equivalent, and RBE for C3H10T1/2 cell survival and neo-plastic transformation as function of depth in soft tissue. Such evaluations are useful to estimates of biological risk for high altitude aircraft, space operations, accelerator operations, and biomedical application.

  3. Calculation of Dose, Dose Equivalent, and Relative Biological Effectiveness for High Charge and Energy Ion Beams

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Reginatto, M.; Hajnal, F.; Chun, S. Y.

    1995-01-01

    The Green's function for the transport of ions of high charge and energy is utilized with a nuclear fragmentation database to evaluate dose, dose equivalent, and RBE for C3H1OT1/2 cell survival and neoplastic transformation as a function of depth in soft tissue. Such evaluations are useful to estimates of biological risk for high altitude aircraft, space operations, accelerator operations, and biomedical applications.

  4. MILDOS - A Computer Program for Calculating Environmental Radiation Doses from Uranium Recovery Operations

    SciTech Connect

    Strange, D. L.; Bander, T. J.

    1981-04-01

    The MILDOS Computer Code estimates impacts from radioactive emissions from uranium milling facilities. These impacts are presented as dose commitments to individuals and the regional population within an 80 km radius of the facility. Only airborne releases of radioactive materials are considered: releases to surface water and to groundwater are not addressed in MILDOS. This code is multi-purposed and can be used to evaluate population doses for NEPA assessments, maximum individual doses for predictive 40 CFR 190 compliance evaluations, or maximum offsite air concentrations for predictive evaluations of 10 CFR 20 compliance. Emissions of radioactive materials from fixed point source locations and from area sources are modeled using a sector-averaged Gaussian plume dispersion model, which utilizes user-provided wind frequency data. Mechanisms such as deposition of particulates, resuspension. radioactive decay and ingrowth of daughter radionuclides are included in the transport model. Annual average air concentrations are computed, from which subsequent impacts to humans through various pathways are computed. Ground surface concentrations are estimated from deposition buildup and ingrowth of radioactive daughters. The surface concentrations are modified by radioactive decay, weathering and other environmental processes. The MILDOS Computer Code allows the user to vary the emission sources as a step function of time by adjustinq the emission rates. which includes shutting them off completely. Thus the results of a computer run can be made to reflect changing processes throughout the facility's operational lifetime. The pathways considered for individual dose commitments and for population impacts are: • Inhalation • External exposure from ground concentrations • External exposure from cloud immersion • Ingestioo of vegetables • Ingestion of meat • Ingestion of milk • Dose commitments are calculated using dose conversion factors, which are ultimately based

  5. Neutron spectra and dose equivalents calculated in tissue for high-energy radiation therapy

    PubMed Central

    Kry, Stephen F.; Howell, Rebecca M.; Salehpour, Mohammad; Followill, David S.

    2009-01-01

    Neutrons are by-products of high-energy radiation therapy and a source of dose to normal tissues. Thus, the presence of neutrons increases a patient’s risk of radiation-induced secondary cancer. Although neutrons have been thoroughly studied in air, little research has been focused on neutrons at depths in the patient where radiosensitive structures may exist, resulting in wide variations in neutron dose equivalents between studies. In this study, we characterized properties of neutrons produced during high-energy radiation therapy as a function of their depth in tissue and for different field sizes and different source-to-surface distances (SSD). We used a previously developed Monte Carlo model of an accelerator operated at 18 MV to calculate the neutron fluences, energy spectra, quality factors, and dose equivalents in air and in tissue at depths ranging from 0.1 to 25 cm. In conjunction with the sharply decreasing dose equivalent with increased depth in tissue, the authors found that the neutron energy spectrum changed drastically as a function of depth in tissue. The neutron fluence decreased gradually as the depth increased, while the average neutron energy decreased sharply with increasing depth until a depth of approximately 7.5 cm in tissue, after which it remained nearly constant. There was minimal variation in the quality factor as a function of depth. At a given depth in tissue, the neutron dose equivalent increased slightly with increasing field size and decreasing SSD; however, the percentage depth-dose equivalent curve remained constant outside the primary photon field. Because the neutron dose equivalent, fluence, and energy spectrum changed substantially with depth in tissue, we concluded that when the neutron dose equivalent is being determined at a depth within a patient, the spectrum and quality factor used should be appropriate for depth rather than for in-air conditions. Alternately, an appropriate percent depth-dose equivalent curve should

  6. An analytical model for calculating internal dose conversion coefficients for non-human biota.

    PubMed

    Amato, Ernesto; Italiano, Antonio

    2014-05-01

    To assess the radiation burden of non-human living organisms, dose coefficients are available in the literature, precalculated by assuming an ellipsoidal shape of each organism. A previously developed analytical method was applied for the determination of absorbed fractions inside ellipsoidal volumes from alpha, beta, and gamma radiations to the calculation of dose conversion coefficients (DCCs) for 15 reference organisms, animals and plants, either terrestrial, amphibian, or aquatic, and six radionuclides ((14)C, (90)Sr, (60)Co, (137)Cs, (238)U, and (241)Am). The results were compared with the reference values reported in Publication 108 of the International Commission on Radiological Protection, in which a different calculation approach for DCCs was employed. The results demonstrate that the present analytical method, originally intended for applications in internal dosimetry of nuclear medicine therapy, gives consistent results for all the beta-, beta-gamma-, and alpha-emitting radionuclides tested in a wide range of organism masses, between 8 mg and 1.3 kg. The applicability of the method proposed can take advantage from its ease of implementation in an ordinary electronic spreadsheet, allowing to calculate, for virtually all possible radionuclide emission spectra, the DCCs for ellipsoidal models of non-human living organisms in the environment.

  7. SU-F-19A-01: APBI Brachytherapy Treatment Planning: The Impact of Heterogeneous Dose Calculations

    SciTech Connect

    Loupot, S; Han, T; Salehpour, M; Gifford, K

    2014-06-15

    Purpose: To quantify the difference in dose to PTV-EVAL and OARs (skin and rib) as calculated by (TG43) and heterogeneous calculations (CCC). Methods: 25 patient plans (5 Contura and 20 SAVI) were selected for analysis. Clinical dose distributions were computed with a commercially available treatment planning algorithm (TG43-D-(w,w)) and then recomputed with a pre-clinical collapsed cone convolution algorithm (CCCD-( m,m)). PTV-EVAL coverage (V90%, V95%), and rib and skin maximum dose were compared via percent difference. Differences in dose to normal tissue (V150cc, V200cc of PTV-EVAL) were also compared. Changes in coverage and maximum dose to organs at risk are reported in percent change, (100*(TG43 − CCC) / TG43)), and changes in maximum dose to normal tissue are absolute change in cc (TG43 − CCC). Results: Mean differences in V90, V95, V150, and V200 for the SAVI cases were −0.2%, −0.4%, −0.03cc, and −0.14cc, respectively, with maximum differences of −0.78%, −1.7%, 1.28cc, and 1.01cc, respectively. Mean differences in the 0.1cc dose to the rib and skin were −1.4% and −0.22%, respectively, with maximum differences of −4.5% and 16%, respectively. Mean differences in V90, V95, V150, and V200 for the Contura cases were −1.2%, −2.1%, −1.8cc, and −0.59cc, respectively, with maximum differences of −2.0%, −3.16%, −2.9cc, and −0.76cc, respectively. Mean differences in the 0.1cc dose to the rib and skin were −2.6% and −3.9%, respectively, with maximum differences of −3.2% and −5.7%, respectively. Conclusion: The effects of translating clinical knowledge based on D-(w,w) to plans reported in D-(m,m) are minimal (2% or less) on average, but vary based on the type and placement of the device, source, and heterogeneity information.

  8. Moving GPU-OpenCL-based Monte Carlo dose calculation toward clinical use: Automatic beam commissioning and source sampling for treatment plan dose calculation.

    PubMed

    Tian, Zhen; Li, Yongbao; Hassan-Rezaeian, Nima; Jiang, Steve B; Jia, Xun

    2017-03-01

    We have previously developed a GPU-based Monte Carlo (MC) dose engine on the OpenCL platform, named goMC, with a built-in analytical linear accelerator (linac) beam model. In this paper, we report our recent improvement on goMC to move it toward clinical use. First, we have adapted a previously developed automatic beam commissioning approach to our beam model. The commissioning was conducted through an optimization process, minimizing the discrepancies between calculated dose and measurement. We successfully commissioned six beam models built for Varian TrueBeam linac photon beams, including four beams of different energies (6 MV, 10 MV, 15 MV, and 18 MV) and two flattening-filter-free (FFF) beams of 6 MV and 10 MV. Second, to facilitate the use of goMC for treatment plan dose calculations, we have developed an efficient source particle sampling strategy. It uses the pre-generated fluence maps (FMs) to bias the sampling of the control point for source particles already sampled from our beam model. It could effectively reduce the number of source particles required to reach a statistical uncertainty level in the calculated dose, as compared to the conventional FM weighting method. For a head-and-neck patient treated with volumetric modulated arc therapy (VMAT), a reduction factor of ~2.8 was achieved, accelerating dose calculation from 150.9 s to 51.5 s. The overall accuracy of goMC was investigated on a VMAT prostate patient case treated with 10 MV FFF beam. 3D gamma index test was conducted to evaluate the discrepancy between our calculated dose and the dose calculated in Varian Eclipse treatment planning system. The passing rate was 99.82% for 2%/2 mm criterion and 95.71% for 1%/1 mm criterion. Our studies have demonstrated the effectiveness and feasibility of our auto-commissioning approach and new source sampling strategy for fast and accurate MC dose calculations for treatment plans.

  9. Dose conversion coefficients calculated using tomographic phantom, KTMAN-2, for X-ray examination of cardiac catheterisation.

    PubMed

    Park, S H; Lee, J K; Lee, C

    2008-01-01

    In this study, organ-absorbed doses and effective doses to patient during interventional radiological procedures were estimated using tomographic phantom, Korean Typical Man-2 (KTMAN-2). Four projections of cardiac catheterisation were simulated for dose calculation by Monte Carlo technique. The parameters of X-ray source and exposure conditions were obtained from literature data. Particle transport was simulated using general purposed Monte Carlo code, MCNPX 2.5.0. Organ-absorbed doses and effective doses were normalised to dose area product (DAP). The effective doses per DAP were between 0.1 and 0.5 mSv Gy(-1) per cm2. The results were compared with those derived from adult stylised phantom. KTMAN-2 received up to 105% higher effective doses than stylised phantom. The dose differences were mainly caused by more realistic internal topology of KTMAN-2 compared to stylised phantom that are closely positioned organs near the heart and shift of abdominal organs to the thoracic region due to supine position. The results of this study showed that tomographic phantoms are more suitable for dose assessment of supine patients undergoing the interventional radiology. The results derived from KTMAN-2 were the first radiation dose data based on non-Caucasian individuals for interventional procedures.

  10. Evaluation of a commercial MRI Linac based Monte Carlo dose calculation algorithm with GEANT 4

    SciTech Connect

    Ahmad, Syed Bilal; Sarfehnia, Arman; Kim, Anthony; Sahgal, Arjun; Keller, Brian; Paudel, Moti Raj; Hissoiny, Sami

    2016-02-15

    Purpose: This paper provides a comparison between a fast, commercial, in-patient Monte Carlo dose calculation algorithm (GPUMCD) and GEANT4. It also evaluates the dosimetric impact of the application of an external 1.5 T magnetic field. Methods: A stand-alone version of the Elekta™ GPUMCD algorithm, to be used within the Monaco treatment planning system to model dose for the Elekta™ magnetic resonance imaging (MRI) Linac, was compared against GEANT4 (v10.1). This was done in the presence or absence of a 1.5 T static magnetic field directed orthogonally to the radiation beam axis. Phantoms with material compositions of water, ICRU lung, ICRU compact-bone, and titanium were used for this purpose. Beams with 2 MeV monoenergetic photons as well as a 7 MV histogrammed spectrum representing the MRI Linac spectrum were emitted from a point source using a nominal source-to-surface distance of 142.5 cm. Field sizes ranged from 1.5 × 1.5 to 10 × 10 cm{sup 2}. Dose scoring was performed using a 3D grid comprising 1 mm{sup 3} voxels. The production thresholds were equivalent for both codes. Results were analyzed based upon a voxel by voxel dose difference between the two codes and also using a volumetric gamma analysis. Results: Comparisons were drawn from central axis depth doses, cross beam profiles, and isodose contours. Both in the presence and absence of a 1.5 T static magnetic field the relative differences in doses scored along the beam central axis were less than 1% for the homogeneous water phantom and all results matched within a maximum of ±2% for heterogeneous phantoms. Volumetric gamma analysis indicated that more than 99% of the examined volume passed gamma criteria of 2%—2 mm (dose difference and distance to agreement, respectively). These criteria were chosen because the minimum primary statistical uncertainty in dose scoring voxels was 0.5%. The presence of the magnetic field affects the dose at the interface depending upon the density of the material

  11. Dose Rate Calculation of TRU Metal Ingot in Pyroprocessing - 12202

    SciTech Connect

    Lee, Yoon Hee; Lee, Kunjai

    2012-07-01

    Spent fuel management has been a main problem to be solved for continuous utilization of nuclear energy. Spent fuel management policy of Korea is 'Wait and See'. It is focused on Pyro-process and SFR (Sodium-cooled Fast Reactor) for closed-fuel cycle research and development in Korea. For peaceful use of nuclear facilities, the proliferation resistance has to be proved. Proliferation resistance is one of key constraints in the deployment of advanced nuclear energy systems. Non-proliferation and safeguard issues have been strengthening internationally. Barriers to proliferation are that reduces desirability or attractiveness as an explosive and makes it difficult to gain access to the materials, or makes it difficult to misuse facilities and/or technologies for weapons applications. Barriers to proliferation are classified into intrinsic and extrinsic barriers. Intrinsic barrier is inherent quality of reactor materials or the fuel cycle that is built into the reactor design and operation such as material and technical barriers. As one of the intrinsic measures, the radiation from the material is considered significantly. Therefore the radiation of TRU metal ingot from the pyro-process was calculated using ORIGEN and MCNP code. (authors)

  12. Influence of z overscanning on normalized effective doses calculated for pediatric patients undergoing multidetector CT examinations

    SciTech Connect

    Tzedakis, Antonis; Damilakis, John; Perisinakis, Kostas; Karantanas, Apostolos; Karabekios, Spiros; Gourtsoyiannis, Nicholas

    2007-04-15

    multidetector CT system were calculated. This data was found to depend strongly on CT acquisition mode and exposure parameters as well as patient age and sex. The effective dose from a pediatric CT scan performed in axial mode was always considerably lower compared to the corresponding scan performed in helical mode, due to the additional tissue regions exposed to the primary beam in helical examinations as a result of z overscanning.

  13. SU-E-T-135: Assessing the Clinical Impact of Approximations in Analytical Dose Calculations for Proton Therapy

    SciTech Connect

    Schuemann, J; Giantsoudi, D; Grassberger, C; Paganetti, H

    2015-06-15

    Purpose: To estimate the clinical relevance of approximations made in analytical dose calculation methods (ADCs) used for treatment planning on tumor coverage and tumor control probability (TCP) in proton therapy. Methods: We compared dose distributions planned with ADC to delivered dose distributions (as determined by TOPAS Monte Carlo (MC) simulations). We investigated 10 patients per site for 5 treatment sites (head-and-neck, lung, breast, prostate, liver). We evaluated differences between the two dose distributions analyzing dosimetric indices based on the dose-volume-histograms, the γ-index and the TCP. The normal tissue complication probability (NTCP) was estimated for the bladder and anterior rectum for the prostate patients. Results: We find that the target doses are overestimated by the ADC by 1–2% on average for all patients considered. All dosimetric indices (the mean dose, D95, D50 and D02, the dose values covering 95%, 50% and 2% of the target volume, respectively) are predicted within 5% of the delivered dose. A γ-index with a 3%/3mm criteria had a passing rate for target volumes above 96% for all patients. The TCP predicted by the two algorithms was up to 2%, 2.5%, 6%, 6.5%, and 11% for liver and breast, prostate, head-and-neck and lung patients, respectively. Differences in NTCP for anterior-rectum and bladder for prostate patients were less than 3%. Conclusion: We show that ADC provide adequate dose distributions for most patients, however, they can Result in underdosage of the target by as much as 5%. The TCP was found to be up to 11% lower than predicted. Advanced dose-calculation methods like MC simulations may be necessary in proton therapy to ensure target coverage for heterogeneous patient geometries, in clinical trials comparing proton therapy to conventional radiotherapy to avoid biases due to systematic discrepancies in calculated dose distributions, and, if tighter range margins are considered. Fully funded by NIH grants.

  14. (Considerations of beta and electron transport in internal dose calculations): (Progress report)

    SciTech Connect

    Poston, J.W.

    1989-01-01

    This task involved use of the code INDOSE-EGS for calculation of S-values for radionuclides of importance in nuclear medicine. This task was proposed to proceed in a logical fashion as outlined below: identification of radionuclides for which more refined dose estimates are required; identification of the target and source combinations for which the previous assumption is clearly invalid; production of a base of data for monoenergetic radiations with sufficient accuracy to be used in dose calculations; calculation of revised dose estimates, i.e., S-values. The extension of this code to include head and neck models, gall bladder models, and kidney models are discussed. 2 refs.

  15. [Cost-effectiveness analysis of prevention of reinfarction using low-dose acetylsalicylic acid; model calculation].

    PubMed

    Schädlich, P K; Brecht, J G

    1997-01-01

    The purpose of this study is to estimate the potential of savings which can be achieved by prophylaxis of myocardial reinfarction with low-dose acetylsalicylic acid (ASA) at 75 mg per day over a treatment period of two years. After secondary analysis of published data, the effectiveness of low-dose ASA is compared to placebo by a model calculation. The difference in the effectiveness between the prophylaxis with ASA and placebo is taken from an international meta-analysis. The economic valuation of this difference is carried out by a cost-effectiveness analysis applying disease costs per case. According to the model calculation, 5535 DM can be saved per patient with a history of myocardial infarction with 75 mg ASA a day over a treatment period of two years. In 1991 there were around 740,000 patients with a history of myocardial infarction in the age group of 25-64 in the Old Bundesländer of the Federal Republic of Germany. The application of the results of the model calculation would lead to considerable savings. Even in the sensitivity analysis with different assumptions regarding costs incurred by hospital treatment and costs incurred by premature retirement, the cost advantage of the ASA-prophylaxis remains. Due to the cautious and conservative assumptions in the model calculation the potential of savings is likely underestimated. Nevertheless, there is a distinct advantage for the prophylaxis with low-dose ASA which already occurs in direct costs thus leading to advantages also for cost carriers.

  16. Calculating tumor trajectory and dose-of-the-day using cone-beam CT projections

    SciTech Connect

    Jones, Bernard L. Westerly, David; Miften, Moyed

    2015-02-15

    Purpose: Cone-beam CT (CBCT) projection images provide anatomical data in real-time over several respiratory cycles, forming a comprehensive picture of tumor movement. The authors developed and validated a method which uses these projections to determine the trajectory of and dose to highly mobile tumors during each fraction of treatment. Methods: CBCT images of a respiration phantom were acquired, the trajectory of which mimicked a lung tumor with high amplitude (up to 2.5 cm) and hysteresis. A template-matching algorithm was used to identify the location of a steel BB in each CBCT projection, and a Gaussian probability density function for the absolute BB position was calculated which best fit the observed trajectory of the BB in the imager geometry. Two modifications of the trajectory reconstruction were investigated: first, using respiratory phase information to refine the trajectory estimation (Phase), and second, using the Monte Carlo (MC) method to sample the estimated Gaussian tumor position distribution. The accuracies of the proposed methods were evaluated by comparing the known and calculated BB trajectories in phantom-simulated clinical scenarios using abdominal tumor volumes. Results: With all methods, the mean position of the BB was determined with accuracy better than 0.1 mm, and root-mean-square trajectory errors averaged 3.8% ± 1.1% of the marker amplitude. Dosimetric calculations using Phase methods were more accurate, with mean absolute error less than 0.5%, and with error less than 1% in the highest-noise trajectory. MC-based trajectories prevent the overestimation of dose, but when viewed in an absolute sense, add a small amount of dosimetric error (<0.1%). Conclusions: Marker trajectory and target dose-of-the-day were accurately calculated using CBCT projections. This technique provides a method to evaluate highly mobile tumors using ordinary CBCT data, and could facilitate better strategies to mitigate or compensate for motion during

  17. Scoping calculation for components of the cow-milk dose pathway for evaluating the dose contribution from iodine-131

    SciTech Connect

    Ikenberry, T.A.; Napier, B.A.

    1992-12-01

    A series of scoping calculations have been undertaken to evaluate The absolute and relative contribution of different exposure pathways to doses that may have been received by individuals living in the vicinity of the Hanford site. This scoping calculation (Calculation 001) examined the contributions of the various exposure pathways associated with environmental transport and accumulation of iodine-131 in the pasture-cow-milk pathway. Addressed in this calculation were the contributions to thyroid dose of infants and adult from (1) the ingestion by dairy cattle of various feedstuffs (pasturage, silage, alfalfa hay, and grass hay) in four different feeding regimes; (2) ingestion of soil by dairy cattle; (3) ingestion of stared feed on which airborne iodine-131 had been deposited; and (4) inhalation of airborne iodine-131 by dairy cows.

  18. Evaluation of a commercial MRI Linac based Monte Carlo dose calculation algorithm with GEANT4.

    PubMed

    Ahmad, Syed Bilal; Sarfehnia, Arman; Paudel, Moti Raj; Kim, Anthony; Hissoiny, Sami; Sahgal, Arjun; Keller, Brian

    2016-02-01

    This paper provides a comparison between a fast, commercial, in-patient Monte Carlo dose calculation algorithm (GPUMCD) and geant4. It also evaluates the dosimetric impact of the application of an external 1.5 T magnetic field. A stand-alone version of the Elekta™ GPUMCD algorithm, to be used within the Monaco treatment planning system to model dose for the Elekta™ magnetic resonance imaging (MRI) Linac, was compared against GEANT4 (v10.1). This was done in the presence or absence of a 1.5 T static magnetic field directed orthogonally to the radiation beam axis. Phantoms with material compositions of water, ICRU lung, ICRU compact-bone, and titanium were used for this purpose. Beams with 2 MeV monoenergetic photons as well as a 7 MV histogrammed spectrum representing the MRI Linac spectrum were emitted from a point source using a nominal source-to-surface distance of 142.5 cm. Field sizes ranged from 1.5 × 1.5 to 10 × 10 cm(2). Dose scoring was performed using a 3D grid comprising 1 mm(3) voxels. The production thresholds were equivalent for both codes. Results were analyzed based upon a voxel by voxel dose difference between the two codes and also using a volumetric gamma analysis. Comparisons were drawn from central axis depth doses, cross beam profiles, and isodose contours. Both in the presence and absence of a 1.5 T static magnetic field the relative differences in doses scored along the beam central axis were less than 1% for the homogeneous water phantom and all results matched within a maximum of ±2% for heterogeneous phantoms. Volumetric gamma analysis indicated that more than 99% of the examined volume passed gamma criteria of 2%-2 mm (dose difference and distance to agreement, respectively). These criteria were chosen because the minimum primary statistical uncertainty in dose scoring voxels was 0.5%. The presence of the magnetic field affects the dose at the interface depending upon the density of the material on either sides of the interface

  19. MO-F-CAMPUS-I-01: A System for Automatically Calculating Organ and Effective Dose for Fluoroscopically-Guided Procedures

    SciTech Connect

    Xiong, Z; Vijayan, S; Rana, V; Rudin, S; Bednarek, D

    2015-06-15

    Purpose: A system was developed that automatically calculates the organ and effective dose for individual fluoroscopically-guided procedures using a log of the clinical exposure parameters. Methods: We have previously developed a dose tracking system (DTS) to provide a real-time color-coded 3D- mapping of skin dose. This software produces a log file of all geometry and exposure parameters for every x-ray pulse during a procedure. The data in the log files is input into PCXMC, a Monte Carlo program that calculates organ and effective dose for projections and exposure parameters set by the user. We developed a MATLAB program to read data from the log files produced by the DTS and to automatically generate the definition files in the format used by PCXMC. The processing is done at the end of a procedure after all exposures are completed. Since there are thousands of exposure pulses with various parameters for fluoroscopy, DA and DSA and at various projections, the data for exposures with similar parameters is grouped prior to entry into PCXMC to reduce the number of Monte Carlo calculations that need to be performed. Results: The software developed automatically transfers data from the DTS log file to PCXMC and runs the program for each grouping of exposure pulses. When the dose from all exposure events are calculated, the doses for each organ and all effective doses are summed to obtain procedure totals. For a complicated interventional procedure, the calculations can be completed on a PC without manual intervention in less than 30 minutes depending on the level of data grouping. Conclusion: This system allows organ dose to be calculated for individual procedures for every patient without tedious calculations or data entry so that estimates of stochastic risk can be obtained in addition to the deterministic risk estimate provided by the DTS. Partial support from NIH grant R01EB002873 and Toshiba Medical Systems Corp.

  20. Evaluation of PENFAST--a fast Monte Carlo code for dose calculations in photon and electron radiotherapy treatment planning.

    PubMed

    Habib, B; Poumarede, B; Tola, F; Barthe, J

    2010-01-01

    The aim of the present study is to demonstrate the potential of accelerated dose calculations, using the fast Monte Carlo (MC) code referred to as PENFAST, rather than the conventional MC code PENELOPE, without losing accuracy in the computed dose. For this purpose, experimental measurements of dose distributions in homogeneous and inhomogeneous phantoms were compared with simulated results using both PENELOPE and PENFAST. The simulations and experiments were performed using a Saturne 43 linac operated at 12 MV (photons), and at 18 MeV (electrons). Pre-calculated phase space files (PSFs) were used as input data to both the PENELOPE and PENFAST dose simulations. Since depth-dose and dose profile comparisons between simulations and measurements in water were found to be in good agreement (within +/-1% to 1 mm), the PSF calculation is considered to have been validated. In addition, measured dose distributions were compared to simulated results in a set of clinically relevant, inhomogeneous phantoms, consisting of lung and bone heterogeneities in a water tank. In general, the PENFAST results agree to within a 1% to 1 mm difference with those produced by PENELOPE, and to within a 2% to 2 mm difference with measured values. Our study thus provides a pre-clinical validation of the PENFAST code. It also demonstrates that PENFAST provides accurate results for both photon and electron beams, equivalent to those obtained with PENELOPE. CPU time comparisons between both MC codes show that PENFAST is generally about 9-21 times faster than PENELOPE.

  1. Calculation of fluence and absorbed dose in head tissues due to different photon energies.

    PubMed

    Azorín, C; Vega-Carrillo, H R; Rivera, T; Azorín, J

    2014-01-01

    Calculations of fluence and absorbed dose in head tissues due to different photon energies were carried out using the MCNPX code, to simulate two models of a patient's head: one spherical and another more realistic ellipsoidal. Both head models had concentric shells to describe the scalp skin, the cranium and the brain. The tumor was located at the center of the head and it was a 1 cm-radius sphere. The MCNPX code was run for different energies. Results showed that the fluence decreases as the photons pass through the different head tissues. It can be observed that, although the fluence into the tumor is different for both head models, absorbed dose is the same.

  2. A GPU implementation of a track-repeating algorithm for proton radiotherapy dose calculations.

    PubMed

    Yepes, Pablo P; Mirkovic, Dragan; Taddei, Phillip J

    2010-12-07

    An essential component in proton radiotherapy is the algorithm to calculate the radiation dose to be delivered to the patient. The most common dose algorithms are fast but they are approximate analytical approaches. However their level of accuracy is not always satisfactory, especially for heterogeneous anatomical areas, like the thorax. Monte Carlo techniques provide superior accuracy; however, they often require large computation resources, which render them impractical for routine clinical use. Track-repeating algorithms, for example the fast dose calculator, have shown promise for achieving the accuracy of Monte Carlo simulations for proton radiotherapy dose calculations in a fraction of the computation time. We report on the implementation of the fast dose calculator for proton radiotherapy on a card equipped with graphics processor units (GPUs) rather than on a central processing unit architecture. This implementation reproduces the full Monte Carlo and CPU-based track-repeating dose calculations within 2%, while achieving a statistical uncertainty of 2% in less than 1 min utilizing one single GPU card, which should allow real-time accurate dose calculations.

  3. Validation of Monte Carlo calculated surface doses for megavoltage photon beams.

    PubMed

    Abdel-Rahman, Wamied; Seuntjens, Jan P; Verhaegen, Frank; Deblois, François; Podgorsak, Ervin B

    2005-01-01

    Recent work has shown that there is significant uncertainty in measuring build-up doses in mega-voltage photon beams especially at high energies. In this present investigation we used a phantom-embedded extrapolation chamber (PEEC) made of Solid Water to validate Monte Carlo (MC)-calculated doses in the dose build-up region for 6 and 18 MV x-ray beams. The study showed that the percentage depth ionizations (PDIs) obtained from measurements are higher than the percentage depth doses (PDDs) obtained with Monte Carlo techniques. To validate the MC-calculated PDDs, the design of the PEEC was incorporated into the simulations. While the MC-calculated and measured PDIs in the dose build-up region agree with one another for the 6 MV beam, a non-negligible difference is observed for the 18 MV x-ray beam. A number of experiments and theoretical studies of various possible effects that could be the source of this discrepancy were performed. The contribution of contaminating neutrons and protons to the build-up dose region in the 18 MV x-ray beam is negligible. Moreover, the MC calculations using the XCOM photon cross-section database and the NIST bremsstrahlung differential cross section do not explain the discrepancy between the MC calculations and measurement in the dose build-up region for the 18 MV. A simple incorporation of triplet production events into the MC dose calculation increases the calculated doses in the build-up region but does not fully account for the discrepancy between measurement and calculations for the 18 MV x-ray beam.

  4. A deterministic partial differential equation model for dose calculation in electron radiotherapy

    NASA Astrophysics Data System (ADS)

    Duclous, R.; Dubroca, B.; Frank, M.

    2010-07-01

    High-energy ionizing radiation is a prominent modality for the treatment of many cancers. The approaches to electron dose calculation can be categorized into semi-empirical models (e.g. Fermi-Eyges, convolution-superposition) and probabilistic methods (e.g. Monte Carlo). A third approach to dose calculation has only recently attracted attention in the medical physics community. This approach is based on the deterministic kinetic equations of radiative transfer. We derive a macroscopic partial differential equation model for electron transport in tissue. This model involves an angular closure in the phase space. It is exact for the free streaming and the isotropic regime. We solve it numerically by a newly developed HLLC scheme based on Berthon et al (2007 J. Sci. Comput. 31 347-89) that exactly preserves the key properties of the analytical solution on the discrete level. We discuss several test cases taken from the medical physics literature. A test case with an academic Henyey-Greenstein scattering kernel is considered. We compare our model to a benchmark discrete ordinate solution. A simplified model of electron interactions with tissue is employed to compute the dose of an electron beam in a water phantom, and a case of irradiation of the vertebral column. Here our model is compared to the PENELOPE Monte Carlo code. In the academic example, the fluences computed with the new model and a benchmark result differ by less than 1%. The depths at half maximum differ by less than 0.6%. In the two comparisons with Monte Carlo, our model gives qualitatively reasonable dose distributions. Due to the crude interaction model, these so far do not have the accuracy needed in clinical practice. However, the new model has a computational cost that is less than one-tenth of the cost of a Monte Carlo simulation. In addition, simulations can be set up in a similar way as a Monte Carlo simulation. If more detailed effects such as coupled electron-photon transport, bremsstrahlung

  5. A deterministic partial differential equation model for dose calculation in electron radiotherapy.

    PubMed

    Duclous, R; Dubroca, B; Frank, M

    2010-07-07

    High-energy ionizing radiation is a prominent modality for the treatment of many cancers. The approaches to electron dose calculation can be categorized into semi-empirical models (e.g. Fermi-Eyges, convolution-superposition) and probabilistic methods (e.g.Monte Carlo). A third approach to dose calculation has only recently attracted attention in the medical physics community. This approach is based on the deterministic kinetic equations of radiative transfer. We derive a macroscopic partial differential equation model for electron transport in tissue. This model involves an angular closure in the phase space. It is exact for the free streaming and the isotropic regime. We solve it numerically by a newly developed HLLC scheme based on Berthon et al (2007 J. Sci. Comput. 31 347-89) that exactly preserves the key properties of the analytical solution on the discrete level. We discuss several test cases taken from the medical physics literature. A test case with an academic Henyey-Greenstein scattering kernel is considered. We compare our model to a benchmark discrete ordinate solution. A simplified model of electron interactions with tissue is employed to compute the dose of an electron beam in a water phantom, and a case of irradiation of the vertebral column. Here our model is compared to the PENELOPE Monte Carlo code. In the academic example, the fluences computed with the new model and a benchmark result differ by less than 1%. The depths at half maximum differ by less than 0.6%. In the two comparisons with Monte Carlo, our model gives qualitatively reasonable dose distributions. Due to the crude interaction model, these so far do not have the accuracy needed in clinical practice. However, the new model has a computational cost that is less than one-tenth of the cost of a Monte Carlo simulation. In addition, simulations can be set up in a similar way as a Monte Carlo simulation. If more detailed effects such as coupled electron-photon transport, bremsstrahlung

  6. SU-F-BRD-06: Robust Dose Calculation in Intensity Modulated Proton Therapy

    SciTech Connect

    Brosch, R; Liu, W

    2015-06-15

    Purpose: Commissioning data for intensity modulated proton therapy (IMPT) must be post-processed by fits to ad-hoc functions to derive the dose calculation kernel parameters in a treatment planning system (TPS). Whether from experimental measurement or Monte Carlo simulation, the limited and noisy nature of such data makes this task very challenging. We present a method to improve the modeling of the lateral dose distribution of clinical energy proton beams in water to commission an in-house IMPT dose calculation engine. Methods: A linear sum of three Gaussian distribution functions was fitted to the lateral dose data in logarithmic scale. Starting values of fitting solutions were determined from the Generalized Highland Approximation. We exhaustively optimized the combinations of data weights with upper bounds of the fitting solutions to minimize confidence intervals of the fitting solutions while maintaining the coefficient of determination (R{sup 2}). Results: Across all energies, average confidence bounds improved 72.88% [Max: 88.28%, Min: 55.05%] for small angle coulomb scattering, 114.25% [409.13%, 66.72%,] for nuclear scattering, and 68.66% [141.09%, 33.27%] for large angle coulomb scattering, while the coefficients of determination of the fits (R{sup 2}) remained comparable. On average R {sup 2} only changed 0.18% and were very close to 1 (approx. 0.999). Wilcoxon signed rank tests comparing unweighted/unbounded fits with weighted/bounded fits averaged 0.0146 (Max: 0.177, Min: 7.05×10−{sup 7}) for small angle Coulomb, 0.0903 (0.945, 7.05×10−{sup 7}) for nuclear, and 0.254 (0.871, 1.86×10−{sup 6}) for large angle Coulomb scattering. This allows rejection of the null hypothesis for small angle Coulomb scattering at the 0.015 level and nuclear interaction at the 0.1 level. Conclusion: Optimal weights assigned to IMPT lateral dose data minimized fitting to stochastic noise in the tail region. Optimizing the upper bounds of fitting parameters improved

  7. The neutron dose conversion coefficients calculation in human tooth enamel in an anthropomorphic phantom.

    PubMed

    Khailov, A M; Ivannikov, A I; Skvortsov, V G; Stepanenko, V F; Tsyb, A F; Trompier, F; Hoshi, M

    2010-02-01

    In the present study, MCNP4B simulation code is used to simulate neutron and photon transport. It gives the conversion coefficients that relate neutron fluence to the dose in tooth enamel (molars and pre-molars only) for 20 energy groups of monoenergetic neutrons with energies from 10-9 to 20 MeV for five different irradiation geometries. The data presented are intended to provide the basis for connection between EPR dose values and standard protection quantities defined in ICRP Publication 74. The results of the calculations for critical organs were found to be consistent with ICRP data, with discrepancies generally less than 10% for the fast neutrons. The absorbed dose in enamel was found to depend strongly on the incident neutron energy for neutrons over 10 keV. The dependence of the data on the irradiation geometry is also shown. Lower bound estimates of enamel radiation sensitivity to neutrons were made using obtained coefficients for the secondary photons. Depending on neutron energy, tooth enamel was shown to register 10-120% of the total neutron dose in the human body in the case of pure neutron exposure and AP irradiation geometry.

  8. Standardizing Benchmark Dose Calculations to Improve Science-Based Decisions in Human Health Assessments

    PubMed Central

    Wignall, Jessica A.; Shapiro, Andrew J.; Wright, Fred A.; Woodruff, Tracey J.; Chiu, Weihsueh A.; Guyton, Kathryn Z.

    2014-01-01

    Background: Benchmark dose (BMD) modeling computes the dose associated with a prespecified response level. While offering advantages over traditional points of departure (PODs), such as no-observed-adverse-effect-levels (NOAELs), BMD methods have lacked consistency and transparency in application, interpretation, and reporting in human health assessments of chemicals. Objectives: We aimed to apply a standardized process for conducting BMD modeling to reduce inconsistencies in model fitting and selection. Methods: We evaluated 880 dose–response data sets for 352 environmental chemicals with existing human health assessments. We calculated benchmark doses and their lower limits [10% extra risk, or change in the mean equal to 1 SD (BMD/L10/1SD)] for each chemical in a standardized way with prespecified criteria for model fit acceptance. We identified study design features associated with acceptable model fits. Results: We derived values for 255 (72%) of the chemicals. Batch-calculated BMD/L10/1SD values were significantly and highly correlated (R2 of 0.95 and 0.83, respectively, n = 42) with PODs previously used in human health assessments, with values similar to reported NOAELs. Specifically, the median ratio of BMDs10/1SD:NOAELs was 1.96, and the median ratio of BMDLs10/1SD:NOAELs was 0.89. We also observed a significant trend of increasing model viability with increasing number of dose groups. Conclusions: BMD/L10/1SD values can be calculated in a standardized way for use in health assessments on a large number of chemicals and critical effects. This facilitates the exploration of health effects across multiple studies of a given chemical or, when chemicals need to be compared, providing greater transparency and efficiency than current approaches. Citation: Wignall JA, Shapiro AJ, Wright FA, Woodruff TJ, Chiu WA, Guyton KZ, Rusyn I. 2014. Standardizing benchmark dose calculations to improve science-based decisions in human health assessments. Environ Health

  9. SU-E-T-465: Dose Calculation Method for Dynamic Tumor Tracking Using a Gimbal-Mounted Linac

    SciTech Connect

    Sugimoto, S; Inoue, T; Kurokawa, C; Usui, K; Sasai, K; Utsunomiya, S; Ebe, K

    2014-06-01

    Purpose: Dynamic tumor tracking using the gimbal-mounted linac (Vero4DRT, Mitsubishi Heavy Industries, Ltd., Japan) has been available when respiratory motion is significant. The irradiation accuracy of the dynamic tumor tracking has been reported to be excellent. In addition to the irradiation accuracy, a fast and accurate dose calculation algorithm is needed to validate the dose distribution in the presence of respiratory motion because the multiple phases of it have to be considered. A modification of dose calculation algorithm is necessary for the gimbal-mounted linac due to the degrees of freedom of gimbal swing. The dose calculation algorithm for the gimbal motion was implemented using the linear transformation between coordinate systems. Methods: The linear transformation matrices between the coordinate systems with and without gimbal swings were constructed using the combination of translation and rotation matrices. The coordinate system where the radiation source is at the origin and the beam axis along the z axis was adopted. The transformation can be divided into the translation from the radiation source to the gimbal rotation center, the two rotations around the center relating to the gimbal swings, and the translation from the gimbal center to the radiation source. After operating the transformation matrix to the phantom or patient image, the dose calculation can be performed as the no gimbal swing. The algorithm was implemented in the treatment planning system, PlanUNC (University of North Carolina, NC). The convolution/superposition algorithm was used. The dose calculations with and without gimbal swings were performed for the 3 × 3 cm{sup 2} field with the grid size of 5 mm. Results: The calculation time was about 3 minutes per beam. No significant additional time due to the gimbal swing was observed. Conclusions: The dose calculation algorithm for the finite gimbal swing was implemented. The calculation time was moderate.

  10. Poster — Thur Eve — 14: Improving Tissue Segmentation for Monte Carlo Dose Calculation using DECT

    SciTech Connect

    Di Salvio, A.; Bedwani, S.; Carrier, J-F.; Bouchard, H.

    2014-08-15

    Purpose: To improve Monte Carlo dose calculation accuracy through a new tissue segmentation technique with dual energy CT (DECT). Methods: Electron density (ED) and effective atomic number (EAN) can be extracted directly from DECT data with a stoichiometric calibration method. Images are acquired with Monte Carlo CT projections using the user code egs-cbct and reconstructed using an FDK backprojection algorithm. Calibration is performed using projections of a numerical RMI phantom. A weighted parameter algorithm then uses both EAN and ED to assign materials to voxels from DECT simulated images. This new method is compared to a standard tissue characterization from single energy CT (SECT) data using a segmented calibrated Hounsfield unit (HU) to ED curve. Both methods are compared to the reference numerical head phantom. Monte Carlo simulations on uniform phantoms of different tissues using dosxyz-nrc show discrepancies in depth-dose distributions. Results: Both SECT and DECT segmentation methods show similar performance assigning soft tissues. Performance is however improved with DECT in regions with higher density, such as bones, where it assigns materials correctly 8% more often than segmentation with SECT, considering the same set of tissues and simulated clinical CT images, i.e. including noise and reconstruction artifacts. Furthermore, Monte Carlo results indicate that kV photon beam depth-dose distributions can double between two tissues of density higher than muscle. Conclusions: A direct acquisition of ED and the added information of EAN with DECT data improves tissue segmentation and increases the accuracy of Monte Carlo dose calculation in kV photon beams.

  11. Sub-second pencil beam dose calculation on GPU for adaptive proton therapy.

    PubMed

    da Silva, Joakim; Ansorge, Richard; Jena, Rajesh

    2015-06-21

    Although proton therapy delivered using scanned pencil beams has the potential to produce better dose conformity than conventional radiotherapy, the created dose distributions are more sensitive to anatomical changes and patient motion. Therefore, the introduction of adaptive treatment techniques where the dose can be monitored as it is being delivered is highly desirable. We present a GPU-based dose calculation engine relying on the widely used pencil beam algorithm, developed for on-line dose calculation. The calculation engine was implemented from scratch, with each step of the algorithm parallelized and adapted to run efficiently on the GPU architecture. To ensure fast calculation, it employs several application-specific modifications and simplifications, and a fast scatter-based implementation of the computationally expensive kernel superposition step. The calculation time for a skull base treatment plan using two beam directions was 0.22 s on an Nvidia Tesla K40 GPU, whereas a test case of a cubic target in water from the literature took 0.14 s to calculate. The accuracy of the patient dose distributions was assessed by calculating the γ-index with respect to a gold standard Monte Carlo simulation. The passing rates were 99.2% and 96.7%, respectively, for the 3%/3 mm and 2%/2 mm criteria, matching those produced by a clinical treatment planning system.

  12. SU-E-J-200: A Dosimetric Analysis of 3D Versus 4D Image-Based Dose Calculation for Stereotactic Body Radiation Therapy in Lung Tumors

    SciTech Connect

    Ma, M; Rouabhi, O; Flynn, R; Xia, J; Bayouth, J

    2014-06-01

    Purpose: To evaluate the dosimetric difference between 3D and 4Dweighted dose calculation using patient specific respiratory trace and deformable image registration for stereotactic body radiation therapy in lung tumors. Methods: Two dose calculation techniques, 3D and 4D-weighed dose calculation, were used for dosimetric comparison for 9 lung cancer patients. The magnitude of the tumor motion varied from 3 mm to 23 mm. Breath-hold exhale CT was used for 3D dose calculation with ITV generated from the motion observed from 4D-CT. For 4D-weighted calculation, dose of each binned CT image from the ten breathing amplitudes was first recomputed using the same planning parameters as those used in the 3D calculation. The dose distribution of each binned CT was mapped to the breath-hold CT using deformable image registration. The 4D-weighted dose was computed by summing the deformed doses with the temporal probabilities calculated from their corresponding respiratory traces. Dosimetric evaluation criteria includes lung V20, mean lung dose, and mean tumor dose. Results: Comparing with 3D calculation, lung V20, mean lung dose, and mean tumor dose using 4D-weighted dose calculation were changed by −0.67% ± 2.13%, −4.11% ± 6.94% (−0.36 Gy ± 0.87 Gy), −1.16% ± 1.36%(−0.73 Gy ± 0.85 Gy) accordingly. Conclusion: This work demonstrates that conventional 3D dose calculation method may overestimate the lung V20, MLD, and MTD. The absolute difference between 3D and 4D-weighted dose calculation in lung tumor may not be clinically significant. This research is supported by Siemens Medical Solutions USA, Inc and Iowa Center for Research By Undergraduates.

  13. Monte Carlo calculation of the sensitivity of a commercial dose calibrator to gamma and beta radiation.

    PubMed

    Laedermann, Jean-Pascal; Valley, Jean-François; Bulling, Shelley; Bochud, François O

    2004-06-01

    The detection process used in a commercial dose calibrator was modeled using the GEANT 3 Monte Carlo code. Dose calibrator efficiency for gamma and beta emitters, and the response to monoenergetic photons and electrons was calculated. The model shows that beta emitters below 2.5 MeV deposit energy indirectly in the detector through bremsstrahlung produced in the chamber wall or in the source itself. Higher energy beta emitters (E > 2.5 MeV) deposit energy directly in the chamber sensitive volume, and dose calibrator sensitivity increases abruptly for these radionuclides. The Monte Carlo calculations were compared with gamma and beta emitter measurements. The calculations show that the variation in dose calibrator efficiency with measuring conditions (source volume, container diameter, container wall thickness and material, position of the source within the calibrator) is relatively small and can be considered insignificant for routine measurement applications. However, dose calibrator efficiency depends strongly on the inner-wall thickness of the detector.

  14. NOTE: A sector-integration method for dose/MU calculation in a uniform scanning proton beam

    NASA Astrophysics Data System (ADS)

    Zhao, Qingya; Wu, Huanmei; Wolanski, Mark; Pack, Daniel; Johnstone, Peter A. S.; Das, Indra J.

    2010-02-01

    An accurate, simple and time-saving sector integration method for calculating the proton output (dose/monitor unit, MU) is presented based on the following treatment field parameters: aperture shape, aperture size, measuring position, beam range and beam modulation. The model is validated with dose/MU values for 431 fields previously measured at our center. The measurements were obtained in a uniform scanning proton beam with a parallel plate ionization chamber in a water phantom. For beam penetration depths of clinical interest (6-27 cm water), dose/MU values were measured as a function of spread-out Bragg peak (SOBP) extent and aperture diameter. First, 90 randomly selected fields were used to derive the model parameters, which were used to compute the dose/MU values for the remaining 341 fields. The min, max, average and the standard deviation of the difference between the calculated and the measured dose/MU values of the 341 fields were used to evaluate the accuracy and stability, for different energy ranges, aperture sizes, measurement positions and SOBP values. The experimental results of the five different functional sets showed that the calculation model is accurate with calculation errors ranging from -2.4% to 3.3%, and 99% of the errors are less than ±2%. The accuracy increases with higher energy, larger SOBP and bigger aperture size. The average error in the dose/MU calculation for small fields (field size <25 cm2) is 0.31 ± 0.96 (%).

  15. GPUMCD: A new GPU-oriented Monte Carlo dose calculation platform.

    PubMed

    Hissoiny, Sami; Ozell, Benoît; Bouchard, Hugo; Després, Philippe

    2011-02-01

    Monte Carlo methods are considered as the gold standard for dosimetric computations in radiotherapy. Their execution time is, however, still an obstacle to the routine use of Monte Carlo packages in a clinical setting. To address this problem, a completely new, and designed from the ground up for the GPU, Monte Carlo dose calculation package for voxelized geometries is proposed: GPUMCD. GPUMCD implements a coupled photon-electron Monte Carlo simulation for energies in the range of 0.01-20 MeV. An analog simulation of photon interactions is used and a class II condensed history method has been implemented for the simulation of electrons. A new GPU random number generator, some divergence reduction methods, as well as other optimization strategies are also described. GPUMCD was run on a NVIDIA GTX480, while single threaded implementations of EGSnrc and DPM were run on an Intel Core i7 860. Dosimetric results obtained with GPUMCD were compared to EGSnrc. In all but one test case, 98% or more of all significant voxels passed the gamma criteria of 2%-2 mm. In terms of execution speed and efficiency, GPUMCD is more than 900 times faster than EGSnrc and more than 200 times faster than DPM, a Monte Carlo package aiming fast executions. Absolute execution times of less than 0.3 s are found for the simulation of 1M electrons and 4M photons in water for monoenergetic beams of 15 MeV, including GPU-CPU memory transfers. GPUMCD, a new GPU-oriented Monte Carlo dose calculation platform, has been compared to EGSnrc and DPM in terms of dosimetric results and execution speed. Its accuracy and speed make it an interesting solution for full Monte Carlo dose calculation in radiation oncology.

  16. GPU-accelerated Monte Carlo convolution∕superposition implementation for dose calculation

    PubMed Central

    Zhou, Bo; Yu, Cedric X.; Chen, Danny Z.; Hu, X. Sharon

    2010-01-01

    Purpose: Dose calculation is a key component in radiation treatment planning systems. Its performance and accuracy are crucial to the quality of treatment plans as emerging advanced radiation therapy technologies are exerting ever tighter constraints on dose calculation. A common practice is to choose either a deterministic method such as the convolution∕superposition (CS) method for speed or a Monte Carlo (MC) method for accuracy. The goal of this work is to boost the performance of a hybrid Monte Carlo convolution∕superposition (MCCS) method by devising a graphics processing unit (GPU) implementation so as to make the method practical for day-to-day usage. Methods: Although the MCCS algorithm combines the merits of MC fluence generation and CS fluence transport, it is still not fast enough to be used as a day-to-day planning tool. To alleviate the speed issue of MC algorithms, the authors adopted MCCS as their target method and implemented a GPU-based version. In order to fully utilize the GPU computing power, the MCCS algorithm is modified to match the GPU hardware architecture. The performance of the authors’ GPU-based implementation on an Nvidia GTX260 card is compared to a multithreaded software implementation on a quad-core system. Results: A speedup in the range of 6.7–11.4× is observed for the clinical cases used. The less than 2% statistical fluctuation also indicates that the accuracy of the authors’ GPU-based implementation is in good agreement with the results from the quad-core CPU implementation. Conclusions: This work shows that GPU is a feasible and cost-efficient solution compared to other alternatives such as using cluster machines or field-programmable gate arrays for satisfying the increasing demands on computation speed and accuracy of dose calculation. But there are also inherent limitations of using GPU for accelerating MC-type applications, which are also analyzed in detail in this article. PMID:21158271

  17. SU-E-T-467: Implementation of Monte Carlo Dose Calculation for a Multileaf Collimator Equipped Robotic Radiotherapy System

    SciTech Connect

    Li, JS; Fan, J; Ma, C-M

    2015-06-15

    Purpose: To improve the treatment efficiency and capabilities for full-body treatment, a robotic radiosurgery system has equipped with a multileaf collimator (MLC) to extend its accuracy and precision to radiation therapy. To model the MLC and include it in the Monte Carlo patient dose calculation is the goal of this work. Methods: The radiation source and the MLC were carefully modeled to consider the effects of the source size, collimator scattering, leaf transmission and leaf end shape. A source model was built based on the output factors, percentage depth dose curves and lateral dose profiles measured in a water phantom. MLC leaf shape, leaf end design and leaf tilt for minimizing the interleaf leakage and their effects on beam fluence and energy spectrum were all considered in the calculation. Transmission/leakage was added to the fluence based on the transmission factors of the leaf and the leaf end. The transmitted photon energy was tuned to consider the beam hardening effects. The calculated results with the Monte Carlo implementation was compared with measurements in homogeneous water phantom and inhomogeneous phantoms with slab lung or bone material for 4 square fields and 9 irregularly shaped fields. Results: The calculated output factors are compared with the measured ones and the difference is within 1% for different field sizes. The calculated dose distributions in the phantoms show good agreement with measurements using diode detector and films. The dose difference is within 2% inside the field and the distance to agreement is within 2mm in the penumbra region. The gamma passing rate is more than 95% with 2%/2mm criteria for all the test cases. Conclusion: Implementation of Monte Carlo dose calculation for a MLC equipped robotic radiosurgery system is completed successfully. The accuracy of Monte Carlo dose calculation with MLC is clinically acceptable. This work was supported by Accuray Inc.

  18. Investigation of the usability of conebeam CT data sets for dose calculation

    PubMed Central

    Richter, Anne; Hu, Qiaoqiao; Steglich, Doreen; Baier, Kurt; Wilbert, Jürgen; Guckenberger, Matthias; Flentje, Michael

    2008-01-01

    Background To investigate the feasibility and accuracy of dose calculation in cone beam CT (CBCT) data sets. Methods Kilovoltage CBCT images were acquired with the Elekta XVI system, CT studies generated with a conventional multi-slice CT scanner (Siemens Somatom Sensation Open) served as reference images. Material specific volumes of interest (VOI) were defined for commercial CT Phantoms (CATPhan® and Gammex RMI®) and CT values were evaluated in CT and CBCT images. For CBCT imaging, the influence of image acquisition parameters such as tube voltage, with or without filter (F1 or F0) and collimation on the CT values was investigated. CBCT images of 33 patients (pelvis n = 11, thorax n = 11, head n = 11) were compared with corresponding planning CT studies. Dose distributions for three different treatment plans were calculated in CT and CBCT images and differences were evaluated. Four different correction strategies to match CT values (HU) and density (D) in CBCT images were analysed: standard CT HU-D table without adjustment for CBCT; phantom based HU-D tables; patient group based HU-D tables (pelvis, thorax, head); and patient specific HU-D tables. Results CT values in the CBCT images of the CATPhan® were highly variable depending on the image acquisition parameters: a mean difference of 564 HU ± 377 HU was calculated between CT values determined from the planning CT and CBCT images. Hence, two protocols were selected for CBCT imaging in the further part of the study and HU-D tables were always specific for these protocols (pelvis and thorax with M20F1 filter, 120 kV; head S10F0 no filter, 100 kV). For dose calculation in real patient CBCT images, the largest differences between CT and CBCT were observed for the standard CT HU-D table: differences were 8.0% ± 5.7%, 10.9% ± 6.8% and 14.5% ± 10.4% respectively for pelvis, thorax and head patients using clinical treatment plans. The use of patient and group based HU-D tables resulted in small dose differences

  19. A generalized 2D pencil beam scaling algorithm for proton dose calculation in heterogeneous slab geometries

    SciTech Connect

    Westerly, David C.; Mo Xiaohu; DeLuca, Paul M. Jr.; Tome, Wolfgang A.; Mackie, Thomas R.

    2013-06-15

    Purpose: Pencil beam algorithms are commonly used for proton therapy dose calculations. Szymanowski and Oelfke ['Two-dimensional pencil beam scaling: An improved proton dose algorithm for heterogeneous media,' Phys. Med. Biol. 47, 3313-3330 (2002)] developed a two-dimensional (2D) scaling algorithm which accurately models the radial pencil beam width as a function of depth in heterogeneous slab geometries using a scaled expression for the radial kernel width in water as a function of depth and kinetic energy. However, an assumption made in the derivation of the technique limits its range of validity to cases where the input expression for the radial kernel width in water is derived from a local scattering power model. The goal of this work is to derive a generalized form of 2D pencil beam scaling that is independent of the scattering power model and appropriate for use with any expression for the radial kernel width in water as a function of depth. Methods: Using Fermi-Eyges transport theory, the authors derive an expression for the radial pencil beam width in heterogeneous slab geometries which is independent of the proton scattering power and related quantities. The authors then perform test calculations in homogeneous and heterogeneous slab phantoms using both the original 2D scaling model and the new model with expressions for the radial kernel width in water computed from both local and nonlocal scattering power models, as well as a nonlocal parameterization of Moliere scattering theory. In addition to kernel width calculations, dose calculations are also performed for a narrow Gaussian proton beam. Results: Pencil beam width calculations indicate that both 2D scaling formalisms perform well when the radial kernel width in water is derived from a local scattering power model. Computing the radial kernel width from a nonlocal scattering model results in the local 2D scaling formula under-predicting the pencil beam width by as much as 1.4 mm (21%) at the depth

  20. A generalized 2D pencil beam scaling algorithm for proton dose calculation in heterogeneous slab geometries

    PubMed Central

    Westerly, David C.; Mo, Xiaohu; Tomé, Wolfgang A.; Mackie, Thomas R.; DeLuca, Paul M.

    2013-01-01

    Purpose: Pencil beam algorithms are commonly used for proton therapy dose calculations. Szymanowski and Oelfke [“Two-dimensional pencil beam scaling: An improved proton dose algorithm for heterogeneous media,” Phys. Med. Biol. 47, 3313–3330 (2002)10.1088/0031-9155/47/18/304] developed a two-dimensional (2D) scaling algorithm which accurately models the radial pencil beam width as a function of depth in heterogeneous slab geometries using a scaled expression for the radial kernel width in water as a function of depth and kinetic energy. However, an assumption made in the derivation of the technique limits its range of validity to cases where the input expression for the radial kernel width in water is derived from a local scattering power model. The goal of this work is to derive a generalized form of 2D pencil beam scaling that is independent of the scattering power model and appropriate for use with any expression for the radial kernel width in water as a function of depth. Methods: Using Fermi-Eyges transport theory, the authors derive an expression for the radial pencil beam width in heterogeneous slab geometries which is independent of the proton scattering power and related quantities. The authors then perform test calculations in homogeneous and heterogeneous slab phantoms using both the original 2D scaling model and the new model with expressions for the radial kernel width in water computed from both local and nonlocal scattering power models, as well as a nonlocal parameterization of Molière scattering theory. In addition to kernel width calculations, dose calculations are also performed for a narrow Gaussian proton beam. Results: Pencil beam width calculations indicate that both 2D scaling formalisms perform well when the radial kernel width in water is derived from a local scattering power model. Computing the radial kernel width from a nonlocal scattering model results in the local 2D scaling formula under-predicting the pencil beam width by as

  1. 78 FR 64030 - Monitoring Criteria and Methods To Calculate Occupational Radiation Doses

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Monitoring Criteria and Methods To Calculate Occupational Radiation Doses AGENCY: Nuclear Regulatory Commission. ACTION: Draft regulatory guide; request for comment. SUMMARY: The U.S....

  2. The Monte Carlo code MCPTV--Monte Carlo dose calculation in radiation therapy with carbon ions.

    PubMed

    Karg, Juergen; Speer, Stefan; Schmidt, Manfred; Mueller, Reinhold

    2010-07-07

    The Monte Carlo code MCPTV is presented. MCPTV is designed for dose calculation in treatment planning in radiation therapy with particles and especially carbon ions. MCPTV has a voxel-based concept and can perform a fast calculation of the dose distribution on patient CT data. Material and density information from CT are taken into account. Electromagnetic and nuclear interactions are implemented. Furthermore the algorithm gives information about the particle spectra and the energy deposition in each voxel. This can be used to calculate the relative biological effectiveness (RBE) for each voxel. Depth dose distributions are compared to experimental data giving good agreement. A clinical example is shown to demonstrate the capabilities of the MCPTV dose calculation.

  3. Lung Dose Calculation With SPECT/CT for {sup 90}Yittrium Radioembolization of Liver Cancer

    SciTech Connect

    Yu, Naichang; Srinivas, Shaym M.; DiFilippo, Frank P.; Shrikanthan, Sankaran; Levitin, Abraham; McLennan, Gordon; Spain, James; Xia, Ping; Wilkinson, Allan

    2013-03-01

    Purpose: To propose a new method to estimate lung mean dose (LMD) using technetium-99m labeled macroaggregated albumin ({sup 99m}Tc-MAA) single photon emission CT (SPECT)/CT for {sup 90}Yttrium radioembolization of liver tumors and to compare the LMD estimated using SPECT/CT with clinical estimates of LMD using planar gamma scintigraphy (PS). Methods and Materials: Images of 71 patients who had SPECT/CT and PS images of {sup 99m}Tc-MAA acquired before TheraSphere radioembolization of liver cancer were analyzed retrospectively. LMD was calculated from the PS-based lung shunt assuming a lung mass of 1 kg and 50 Gy per GBq of injected activity shunted to the lung. For the SPECT/CT-based estimate, the LMD was calculated with the activity concentration and lung volume derived from SPECT/CT. The effect of attenuation correction and the patient's breathing on the calculated LMD was studied with the SPECT/CT. With these effects correctly taken into account in a more rigorous fashion, we compared the LMD calculated with SPECT/CT with the LMD calculated with PS. Results: The mean dose to the central region of the lung leads to a more accurate estimate of LMD. Inclusion of the lung region around the diaphragm in the calculation leads to an overestimate of LMD due to the misregistration of the liver activity to the lung from the patient's breathing. LMD calculated based on PS is a poor predictor of the actual LMD. For the subpopulation with large lung shunt, the mean overestimation from the PS method for the lung shunt was 170%. Conclusions: A new method of calculating the LMD for TheraSphere and SIR-Spheres radioembolization of liver cancer based on {sup 99m}Tc-MAA SPECT/CT is presented. The new method provides a more accurate estimate of radiation risk to the lungs. For patients with a large lung shunt calculated from PS, a recalculation of LMD based on SPECT/CT is recommended.

  4. Radiobiological impact of dose calculation algorithms on biologically optimized IMRT lung stereotactic body radiation therapy plans.

    PubMed

    Liang, X; Penagaricano, J; Zheng, D; Morrill, S; Zhang, X; Corry, P; Griffin, R J; Han, E Y; Hardee, M; Ratanatharathom, V

    2016-01-22

    is associated with the lower PTV coverage in AXB-recalculated plans. No obvious trend was observed between the calculation-resulted TCP differences and tumor size or location. AAA and AXB yield very similar NTCP on lung pneumonitis according to the LKB model estimation in the present study. AAA apparently overestimates the PTV dose; the magnitude of resulting difference in calculated TCP was up to 5.8 % in our study. AAA and AXB yield very similar NTCP on lung pneumonitis based on the LKB model parameter sets we used in the present study.

  5. Calculation of Residual Dose Around Small Objects Using Mu2e Target as an Example

    SciTech Connect

    Pronskikh, V.S.; Leveling, A.F.; Mokhov, N.V.; Rakhno, I.L.; Aarnio, P.; /Aalto U.

    2011-09-01

    The MARS15 code provides contact residual dose rates for relatively large accelerator and experimental components for predefined irradiation and cooling times. The dose rate at particular distances from the components, some of which can be rather small in size, is calculated in a post Monte-Carlo stage via special algorithms described elsewhere. The approach is further developed and described in this paper.

  6. Les modèles de calcul de dose en radiothérapie clinique

    NASA Astrophysics Data System (ADS)

    Rosenwald, J. C.

    1998-04-01

    In radiation therapy, it is important to know precisely the dose distribution in the target volume and in the critical organs. To be clinically applicable, the dose calculation models must account for the actual characteristics of the beams and for the tissue densities. An accuracy of 2% in low dose gradient regions and 2mm in high dose gradient is expected, while keeping the computation time consistent with an interactive approach. We describe and discuss briefly the dose calculation models currently used. En radiothérapie, il est indispensable d'avoir une connaissance précise de la dose délivrée dans le volume cible et dans les organes critiques avoisinants. Pour être utilisables cliniquement, les modèles de calcul doivent tenir compte des caractéristiques exactes des faisceaux utilisés et des densités des tissus. Une précision de l'ordre de 2% dans les régions à faible gradient de dose, et de 2mm dans les régions à fort gradient est nécessaire tout en conservant un temps de calcul compatible avec une approche interactive. Les modèles de calcul utilisés sont ici succintement décrits et commentés.

  7. Photonuclear dose calculations for high-energy photon beams from Siemens and Varian linacs.

    PubMed

    Chibani, Omar; Ma, Chang-Ming Charlie

    200