Average luminosity distance in inhomogeneous universes
NASA Astrophysics Data System (ADS)
Kostov, Valentin Angelov
Using numerical ray tracing, the paper studies how the average distance modulus in an inhomogeneous universe differs from its homogeneous counterpart. The averaging is over all directions from a fixed observer not over all possible observers (cosmic), thus it is more directly applicable to our observations. Unlike previous studies, the averaging is exact, non-perturbative, an includes all possible non-linear effects. The inhomogeneous universes are represented by Sweese-cheese models containing random and simple cubic lattices of mass- compensated voids. The Earth observer is in the homogeneous cheese which has an Einstein - de Sitter metric. For the first time, the averaging is widened to include the supernovas inside the voids by assuming the probability for supernova emission from any comoving volume is proportional to the rest mass in it. For voids aligned in a certain direction, there is a cumulative gravitational lensing correction to the distance modulus that increases with redshift. That correction is present even for small voids and depends on the density contrast of the voids, not on their radius. Averaging over all directions destroys the cumulative correction even in a non-randomized simple cubic lattice of voids. Despite the well known argument for photon flux conservation, the average distance modulus correction at low redshifts is not zero due to the peculiar velocities. A formula for the maximum possible average correction as a function of redshift is derived and shown to be in excellent agreement with the numerical results. The formula applies to voids of any size that: (1) have approximately constant densities in their interior and walls, (2) are not in a deep nonlinear regime. The actual average correction calculated in random and simple cubic void lattices is severely damped below the predicted maximum. That is traced to cancelations between the corrections coming from the fronts and backs of different voids at the same redshift from the observer. The calculated correction at low redshifts allows one to readily predict the redshift at which the averaged fluctuation in the Hubble diagram is below a required precision and suggests a method to extract the background Hubble constant from low redshift data without the need to correct for peculiar velocities.
Icing Analysis of a Swept NACA 0012 Wing Using LEWICE3D Version 3.48
NASA Technical Reports Server (NTRS)
Bidwell, Colin S.
2014-01-01
Icing calculations were performed for a NACA 0012 swept wing tip using LEWICE3D Version 3.48 coupled with the ANSYS CFX flow solver. The calculated ice shapes were compared to experimental data generated in the NASA Glenn Icing Research Tunnel (IRT). The IRT tests were designed to test the performance of the LEWICE3D ice void density model which was developed to improve the prediction of swept wing ice shapes. Icing tests were performed for a range of temperatures at two different droplet inertia parameters and two different sweep angles. The predicted mass agreed well with the experiment with an average difference of 12%. The LEWICE3D ice void density model under-predicted void density by an average of 30% for the large inertia parameter cases and by 63% for the small inertia parameter cases. This under-prediction in void density resulted in an over-prediction of ice area by an average of 115%. The LEWICE3D ice void density model produced a larger average area difference with experiment than the standard LEWICE density model, which doesn't account for the voids in the swept wing ice shape, (115% and 75% respectively) but it produced ice shapes which were deemed more appropriate because they were conservative (larger than experiment). Major contributors to the overly conservative ice shape predictions were deficiencies in the leading edge heat transfer and the sensitivity of the void ice density model to the particle inertia parameter. The scallop features present on the ice shapes were thought to generate interstitial flow and horse shoe vortices which enhance the leading edge heat transfer. A set of changes to improve the leading edge heat transfer and the void density model were tested. The changes improved the ice shape predictions considerably. More work needs to be done to evaluate the performance of these modifications for a wider range of geometries and icing conditions.
Icing Analysis of a Swept NACA 0012 Wing Using LEWICE3D Version 3.48
NASA Technical Reports Server (NTRS)
Bidwell, Colin S.
2014-01-01
Icing calculations were performed for a NACA 0012 swept wing tip using LEWICE3D Version 3.48 coupled with the ANSYS CFX flow solver. The calculated ice shapes were compared to experimental data generated in the NASA Glenn Icing Research Tunnel (IRT). The IRT tests were designed to test the performance of the LEWICE3D ice void density model which was developed to improve the prediction of swept wing ice shapes. Icing tests were performed for a range of temperatures at two different droplet inertia parameters and two different sweep angles. The predicted mass agreed well with the experiment with an average difference of 12%. The LEWICE3D ice void density model under-predicted void density by an average of 30% for the large inertia parameter cases and by 63% for the small inertia parameter cases. This under-prediction in void density resulted in an over-prediction of ice area by an average of 115%. The LEWICE3D ice void density model produced a larger average area difference with experiment than the standard LEWICE density model, which doesn't account for the voids in the swept wing ice shape, (115% and 75% respectively) but it produced ice shapes which were deemed more appropriate because they were conservative (larger than experiment). Major contributors to the overly conservative ice shape predictions were deficiencies in the leading edge heat transfer and the sensitivity of the void ice density model to the particle inertia parameter. The scallop features present on the ice shapes were thought to generate interstitial flow and horse shoe vortices which enhance the leading edge heat transfer. A set of changes to improve the leading edge heat transfer and the void density model were tested. The changes improved the ice shape predictions considerably. More work needs to be done to evaluate the performance of these modifications for a wider range of geometries and icing conditions
Structural analyses of a rigid pavement overlaying a sub-surface void
NASA Astrophysics Data System (ADS)
Adam, Fatih Alperen
Pavement failures are very hazardous for public safety and serviceability. These failures in pavements are mainly caused by subsurface voids, cracks, and undulation at the slab-base interface. On the other hand, current structural analysis procedures for rigid pavement assume that the slab-base interface is perfectly planar and no imperfections exist in the sub-surface soil. This assumption would be violated if severe erosion were to occur due to inadequate drainage, thermal movements, and/or mechanical loading. Until now, the effect of erosion was only considered in the faulting performance model, but not with regards to transverse cracking at the mid-slab edge. In this research, the bottom up fatigue cracking potential, caused by the combined effects of wheel loading and a localized imperfection in the form of a void below the mid-slab edge, is studied. A robust stress and surface deflection analysis was also conducted to evaluate the influence of a sub-surface void on layer moduli back-calculation. Rehabilitative measures were considered, which included a study on overlay and fill remediation. A series regression of equations was proposed that provides a relationship between void size, layer moduli stiffness, and the overlay thickness required to reduce the stress to its original pre-void level. The effect of the void on 3D pavement crack propagation was also studied under a single axle load. The amplifications to the stress intensity was shown to be high but could be mitigated substantially if stiff material is used to fill the void and impede crack growth. The pavement system was modeled using the commercial finite element modeling program Abaqus RTM. More than 10,000 runs were executed to do the following analysis: stress analysis of subsurface voids, E-moduli back-calculation of base layer, pavement damage calculations of Beaumont, TX, overlay thickness estimations, and mode I crack analysis. The results indicate that the stress and stress intensity are, on average, amplified considerably: 80% and 150%, respectively, by the presence of the void and more severe in a bonded pavement system compared to an un-bonded system. The sub-surface void also significantly affects the layer moduli back-calculation. The equivalent moduli of the layers are reduced considerably when a sub-surface void is present. However, the results indicate the back-calculated moduli derived using surface deflection, and longitudinal stress basins did not yield equivalent layer moduli under mechanical loading; the back-calculated deflection-based moduli were larger than the stress-based moduli, leading to stress calculations that were lower than those found in the real system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heo, Sung; College of Information and Communication Engineering, Sungkyunkwan University, Cheoncheon-dong 300, Jangan-gu, Suwon 440-746; Lee, Hyung-Ik
2015-06-29
To investigate the band gap profile of Cu(In{sub 1−x},Ga{sub x})(Se{sub 1−y}S{sub y}){sub 2} of various compositions, we measured the band gap profile directly as a function of in-depth using high-resolution reflection energy loss spectroscopy (HR-REELS), which was compared with the band gap profile calculated based on the auger depth profile. The band gap profile is a double-graded band gap as a function of in-depth. The calculated band gap obtained from the auger depth profile seems to be larger than that by HR-REELS. Calculated band gaps are to measure the average band gap of the spatially different varying compositions with respectmore » to considering its void fraction. But, the results obtained using HR-REELS are to be affected by the low band gap (i.e., out of void) rather than large one (i.e., near void). Our findings suggest an analytical method to directly determine the band gap profile as function of in-depth.« less
Saito, Y; Mishima, K; Matsubayashi, M
2004-10-01
To evaluate measurement error of local void fraction and velocity field in a gas-molten metal two-phase flow by high-frame-rate neutron radiography, experiments using a rotating stainless-steel disc, which has several holes of various diameters and depths simulating gas bubbles, were performed. Measured instantaneous void fraction and velocity field of the simulated bubbles were compared with the calculated values based on the rotating speed, the diameter and the depth of the holes as parameters and the measurement error was evaluated. The rotating speed was varied from 0 to 350 rpm (tangential velocity of the simulated bubbles from 0 to 1.5 m/s). The effect of shutter speed of the imaging system on the measurement error was also investigated. It was revealed from the Lagrangian time-averaged void fraction profile that the measurement error of the instantaneous void fraction depends mainly on the light-decay characteristics of the fluorescent converter. The measurement error of the instantaneous local void fraction of simulated bubbles is estimated to be 20%. In the present imaging system, the light-decay characteristics of the fluorescent converter affect the measurement remarkably, and so should be taken into account in estimating the measurement error of the local void fraction profile.
Aylward, Lesa L; Hays, Sean M; Zidek, Angelika
2017-01-01
Population biomonitoring data sets such as the Canadian Health Measures Survey (CHMS) and the United States National Health and Nutrition Examination Survey (NHANES) collect and analyze spot urine samples for analysis for biomarkers of exposure to non-persistent chemicals. Estimation of population intakes using such data sets in a risk-assessment context requires consideration of intra- and inter-individual variability to understand the relationship between variation in the biomarker concentrations and variation in the underlying daily and longer-term intakes. Two intensive data sets with a total of 16 individuals with collection and measurement of serial urine voids over multiple days were used to examine these relationships using methyl paraben, triclosan, bisphenol A (BPA), monoethyl phthalate (MEP), and mono-2-ethylhexyl hydroxyl phthalate (MEHHP) as example compounds. Composited 24 h voids were constructed mathematically from the individual collected voids, and concentrations for each 24 h period and average multiday concentrations were calculated for each individual in the data sets. Geometric mean and 95th percentiles were compared to assess the relationship between distributions in spot sample concentrations and the 24 h and multiday collection averages. In these data sets, spot sample concentrations at the 95th percentile were similar to or slightly higher than the 95th percentile of the distribution of all 24 h composite void concentrations, but tended to overestimate the maximum of the multiday concentration averages for most analytes (usually by less than a factor of 2). These observations can assist in the interpretation of population distributions of spot samples for frequently detected analytes with relatively short elimination half-lives. PMID:27703149
The wire-mesh sensor as a two-phase flow meter
NASA Astrophysics Data System (ADS)
Shaban, H.; Tavoularis, S.
2015-01-01
A novel gas and liquid flow rate measurement method is proposed for use in vertical upward and downward gas-liquid pipe flows. This method is based on the analysis of the time history of area-averaged void fraction that is measured using a conductivity wire-mesh sensor (WMS). WMS measurements were collected in vertical upward and downward air-water flows in a pipe with an internal diameter of 32.5 mm at nearly atmospheric pressure. The relative frequencies and the power spectral density of area-averaged void fraction were calculated and used as representative properties. Independent features, extracted from these properties using Principal Component Analysis and Independent Component Analysis, were used as inputs to artificial neural networks, which were trained to give the gas and liquid flow rates as outputs. The present method was shown to be accurate for all four encountered flow regimes and for a wide range of flow conditions. Besides providing accurate predictions for steady flows, the method was also tested successfully in three flows with transient liquid flow rates. The method was augmented by the use of the cross-correlation function of area-averaged void fraction determined from the output of a dual WMS unit as an additional representative property, which was found to improve the accuracy of flow rate prediction.
Systematic void fraction studies with RELAP5, FRANCESCA and HECHAN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stosic, Z.; Preusche, G.
1996-08-01
In enhancing the scope of standard thermal-hydraulic codes applications beyond its capabilities, i.e. coupling with a one and/or three-dimensional kinetics core model, the void fraction, transferred from thermal-hydraulics to the core model, plays a determining role in normal operating range and high core flow, as the generated heat and axial power profiles are direct functions of void distribution in the core. Hence, it is very important to know if the void quality models in the programs which have to be coupled are compatible to allow the interactive exchange of data which are based on these constitutive void-quality relations. The presentedmore » void fraction study is performed in order to give the basis for the conclusion whether a transient core simulation using the RELAP5 void fractions can calculate the axial power shapes adequately. Because of that, the void fractions calculated with RELAP5 are compared with those calculated by BWR safety code for licensing--FRANCESCA and the best estimate model for pre- and post-dryout calculation in BWR heated channel--HECHAN. In addition, a comparison with standard experimental void-quality benchmark tube data is performed for the HECHAN code.« less
Comparison between uroflowmetry and sonouroflowmetry in recording of urinary flow in healthy men.
Krhut, Jan; Gärtner, Marcel; Sýkora, Radek; Hurtík, Petr; Burda, Michal; Luňáček, Libor; Zvarová, Katarína; Zvara, Peter
2015-08-01
To evaluate the accuracy of sonouroflowmetry in recording urinary flow parameters and voided volume. A total of 25 healthy male volunteers (age 18-63 years) were included in the study. All participants were asked to carry out uroflowmetry synchronous with recording of the sound generated by the urine stream hitting the water level in the urine collection receptacle, using a dedicated cell phone. From 188 recordings, 34 were excluded, because of voided volume <150 mL or technical problems during recording. Sonouroflowmetry recording was visualized in a form of a trace, representing sound intensity over time. Subsequently, the matching datasets of uroflowmetry and sonouroflowmetry were compared with respect to flow time, voided volume, maximum flow rate and average flow rate. Pearson's correlation coefficient was used to compare parameters recorded by uroflowmetry with those calculated based on sonouroflowmetry recordings. The flow pattern recorded by sonouroflowmetry showed a good correlation with the uroflowmetry trace. A strong correlation (Pearson's correlation coefficient 0.87) was documented between uroflowmetry-recorded flow time and duration of the sound signal recorded with sonouroflowmetry. A moderate correlation was observed in voided volume (Pearson's correlation coefficient 0.68) and average flow rate (Pearson's correlation coefficient 0.57). A weak correlation (Pearson's correlation coefficient 0.38) between maximum flow rate recorded using uroflowmetry and sonouroflowmetry-recorded peak sound intensity was documented. The present study shows that the basic concept utilizing sound analysis for estimation of urinary flow parameters and voided volume is valid. However, further development of this technology and standardization of recording algorithm are required. © 2015 The Japanese Urological Association.
Quantifying Void Ratio in Granular Materials Using Voronoi Tessellation
NASA Technical Reports Server (NTRS)
Alshibli, Khalid A.; El-Saidany, Hany A.; Rose, M. Franklin (Technical Monitor)
2000-01-01
Voronoi technique was used to calculate the local void ratio distribution of granular materials. It was implemented in an application-oriented image processing and analysis algorithm capable of extracting object edges, separating adjacent particles, obtaining the centroid of each particle, generating Voronoi polygons, and calculating the local void ratio. Details of the algorithm capabilities and features are presented. Verification calculations included performing manual digitization of synthetic images using Oda's method and Voronoi polygon system. The developed algorithm yielded very accurate measurements of the local void ratio distribution. Voronoi tessellation has the advantage, compared to Oda's method, of offering a well-defined polygon generation criterion that can be implemented in an algorithm to automatically calculate local void ratio of particulate materials.
Khavari, Rose; Karmonik, Christof; Shy, Michael; Fletcher, Sophie; Boone, Timothy
2017-02-01
Neurogenic lower urinary tract dysfunction, which is common in patients with multiple sclerosis, has a significant impact on quality of life. In this study we sought to determine brain activity processes during the micturition cycle in female patients with multiple sclerosis and neurogenic lower urinary tract dysfunction. We report brain activity on functional magnetic resonance imaging and simultaneous urodynamic testing in 23 ambulatory female patients with multiple sclerosis. Individual functional magnetic resonance imaging activation maps at strong desire to void and at initiation of voiding were calculated and averaged at Montreal Neuroimaging Institute. Areas of significant activation were identified in these average maps. Subgroup analysis was performed in patients with elicitable neurogenic detrusor overactivity or detrusor-sphincter dyssynergia. Group analysis of all patients at strong desire to void yielded areas of activation in regions associated with executive function (frontal gyrus), emotional regulation (cingulate gyrus) and motor control (putamen, cerebellum and precuneus). Comparison of the average change in activation between previously reported healthy controls and patients with multiple sclerosis showed predominantly stronger, more focal activation in the former and lower, more diffused activation in the latter. Patients with multiple sclerosis who had demonstrable neurogenic detrusor overactivity and detrusor-sphincter dyssynergia showed a trend toward distinct brain activation at full urge and at initiation of voiding respectively. We successfully studied brain activation during the entire micturition cycle in female patients with neurogenic lower urinary tract dysfunction and multiple sclerosis using a concurrent functional magnetic resonance imaging/urodynamic testing platform. Understanding the central neural processes involved in specific parts of micturition in patients with neurogenic lower urinary tract dysfunction may identify areas of interest for future intervention. Copyright © 2017 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Barlow, Andrew; Klima, Matej; Shashkov, Mikhail
2018-04-02
In hydrocodes, voids are used to represent vacuum and model free boundaries between vacuum and real materials. We give a systematic description of a new treatment of void closure in the framework of the multimaterial arbitrary Lagrangian–Eulerian (ALE) methods. This includes a new formulation of the interface-aware sub-scale-dynamics (IA-SSD) closure model for multimaterial cells with voids, which is used in the Lagrangian stage of our indirect ALE scheme. The results of the comprehensive testing of the new model are presented for one- and two-dimensional multimaterial calculations in the presence of voids. Finally, we also present a sneak peek of amore » realistic shaped charge calculation in the presence of voids and solids.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barlow, Andrew; Klima, Matej; Shashkov, Mikhail
In hydrocodes, voids are used to represent vacuum and model free boundaries between vacuum and real materials. We give a systematic description of a new treatment of void closure in the framework of the multimaterial arbitrary Lagrangian–Eulerian (ALE) methods. This includes a new formulation of the interface-aware sub-scale-dynamics (IA-SSD) closure model for multimaterial cells with voids, which is used in the Lagrangian stage of our indirect ALE scheme. The results of the comprehensive testing of the new model are presented for one- and two-dimensional multimaterial calculations in the presence of voids. Finally, we also present a sneak peek of amore » realistic shaped charge calculation in the presence of voids and solids.« less
Analysis of flow reversal test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, L.Y.; Tichler, P.R.
A series of tests has been conducted to measure the dryout power associated with a flow transient whereby the coolant in a heated channel undergoes a change in flow direction. An analysis of the test was made with the aid of a system code, RELAP5. A dryout criterion was developed in terms of a time-averaged void fraction calculated by RELAP5 for the heated channel. The dryout criterion was also compared with several CHF correlations developed for the channel geometry.
Reactivity effects of moderator voids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahlfeld, C.E.; Pryor, R.J.
1975-01-01
Reactivity worths for large moderator voids similar to those produced by steaming in postulated reactor transients were measured in the Process Development Pile (PDP) reactor. The experimental results were compared to the computed void worths obtained from techniques currently used in routine safety analyses. Neutron energy spectrum measurements were used to verify a modified lattice pattern that correctly computed the measured spectrum, and consequently, improved macroscopic cross sections. In addition, a special two-dimensional transport calculation was performed to obtain an axially defined diffusion coefficient for the void region. The combination of the modified lattice calculations and the axial diffusion coefficientmore » yielded void reactivity worths which agreed very well with experiment. It was concluded that the computational modules available in the JOSHUA system (GLASS, GRIMHX) would yield accurate void reactivity worths in SLR--SRP safety analysis studies, provided the above mentioned modifications were made.« less
Sadasivan, Chander; Brownstein, Jeremy; Patel, Bhumika; Dholakia, Ronak; Santore, Joseph; Al-Mufti, Fawaz; Puig, Enrique; Rakian, Audrey; Fernandez-Prada, Kenneth D; Elhammady, Mohamed S; Farhat, Hamad; Fiorella, David J; Woo, Henry H; Aziz-Sultan, Mohammad A; Lieber, Baruch B
2013-03-01
Endovascular coiling of cerebral aneurysms remains limited by coil compaction and associated recanalization. Recent coil designs which effect higher packing densities may be far from optimal because hemodynamic forces causing compaction are not well understood since detailed data regarding the location and distribution of coil masses are unavailable. We present an in vitro methodology to characterize coil masses deployed within aneurysms by quantifying intra-aneurysmal void spaces. Eight identical aneurysms were packed with coils by both balloon- and stent-assist techniques. The samples were embedded, sequentially sectioned and imaged. Empty spaces between the coils were numerically filled with circles (2D) in the planar images and with spheres (3D) in the three-dimensional composite images. The 2D and 3D void size histograms were analyzed for local variations and by fitting theoretical probability distribution functions. Balloon-assist packing densities (31±2%) were lower ( p =0.04) than the stent-assist group (40±7%). The maximum and average 2D and 3D void sizes were higher ( p =0.03 to 0.05) in the balloon-assist group as compared to the stent-assist group. None of the void size histograms were normally distributed; theoretical probability distribution fits suggest that the histograms are most probably exponentially distributed with decay constants of 6-10 mm. Significant ( p <=0.001 to p =0.03) spatial trends were noted with the void sizes but correlation coefficients were generally low (absolute r <=0.35). The methodology we present can provide valuable input data for numerical calculations of hemodynamic forces impinging on intra-aneurysmal coil masses and be used to compare and optimize coil configurations as well as coiling techniques.
A Visual Basic program for analyzing oedometer test results and evaluating intergranular void ratio
NASA Astrophysics Data System (ADS)
Monkul, M. Murat; Önal, Okan
2006-06-01
A visual basic program (POCI) is proposed and explained in order to analyze oedometer test results. Oedometer test results have vital importance from geotechnical point of view, since settlement requirements usually control the design of foundations. The software POCI is developed in order perform the necessary calculations for convential oedometer test. The change of global void ratio and stress-strain characteristics can be observed both numerically and graphically. It enables the users to calculate some parameters such as coefficient of consolidation, compression index, recompression index, and preconsolidation pressure depending on the type and stress history of the soil. Moreover, it adopts the concept of intergranular void ratio which may be important especially in the compression behavior of sandy soils. POCI shows the variation of intergranular void ratio and also enables the users to calculate granular compression index.
Kumar, Vikash; Dhabalia, Jayesh V.; Nelivigi, Girish G.; Punia, Mahendra S.; Suryavanshi, Manav
2009-01-01
Objectives: The objective of this study was measurement of urine flow parameters by a non invasive urodynamic test. Variation of flow rates based on voided volume, age, and gender are described. Different nomograms are available for different populations and racial differences of urethral physiology are described. Currently, there has been no study from the Indian population on uroflow parameters. So the purpose of this study was to establish normal reference ranges of maximum and average flow rates, to see the influence of age, gender, and voided volume on flow rates, and to chart these values in the form of a nomogram. Methods: We evaluated 1,011 uroflowmetry tests in different age groups in a healthy population (healthy relatives of our patients) 16-50 year old males, >50 year old males, 5-15 year old children, and >15 year pre-menopausal and post-menopausal females. The uroflowmetry was done using the gravitimetric method. Flow chart parameters were analyzed and statistical calculations were used for drawing uroflow nomograms. Results: Qmax values in adult males were significantly higher than in the elderly and Qmax values in young females were significantly higher than in young males. Qmax values in males increased with age until 15 years old; followed by a slow decline until reaching 50 years old followed by a rapid decline after 50 years old even after correcting voided volume. Qmax values in females increased with age until they reached age 15 followed by decline in flow rate until a pre-menopausal age followed by no significant decline in post-menopausal females. Qmax values increased with voided volume until 700 cc followed by a plateau and decline. Conclusions: Qmax values more significantly correlated with age and voided volume than Qavg. Nomograms were drawn in centile form to provide normal reference ranges. Qmax values in our population were lower than described in literature. Patients with voided volume up to 50 ml could be evaluated with a nomogram. PMID:19955668
Grace Sun; Rebecca E. Ibach; Meghan Faillace; Marek Gnatowski; Jessie A. Glaeser; John Haight
2016-01-01
After exposure in the field and laboratory soil block culture testing, the void content of woodâplastic composite (WPC) decking boards was compared to unexposed samples. A void volume analysis was conducted based on calculations of sample density and from micro-computed tomography (microCT) data. It was found that reference WPC contains voids of different sizes from...
NASA Astrophysics Data System (ADS)
Rai, Nirmal Kumar; Schmidt, Martin J.; Udaykumar, H. S.
2017-04-01
Void collapse in energetic materials leads to hot spot formation and enhanced sensitivity. Much recent work has been directed towards simulation of collapse-generated reactive hot spots. The resolution of voids in calculations to date has varied as have the resulting predictions of hot spot intensity. Here we determine the required resolution for reliable cylindrical void collapse calculations leading to initiation of chemical reactions. High-resolution simulations of collapse provide new insights into the mechanism of hot spot generation. It is found that initiation can occur in two different modes depending on the loading intensity: Either the initiation occurs due to jet impact at the first collapse instant or it can occur at secondary lobes at the periphery of the collapsed void. A key observation is that secondary lobe collapse leads to large local temperatures that initiate reactions. This is due to a combination of a strong blast wave from the site of primary void collapse and strong colliding jets and vortical flows generated during the collapse of the secondary lobes. The secondary lobe collapse results in a significant lowering of the predicted threshold for ignition of the energetic material. The results suggest that mesoscale simulations of void fields may suffer from significant uncertainty in threshold predictions because unresolved calculations cannot capture the secondary lobe collapse phenomenon. The implications of this uncertainty for mesoscale simulations are discussed in this paper.
PRECISION COSMOGRAPHY WITH STACKED VOIDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lavaux, Guilhem; Wandelt, Benjamin D.
2012-08-01
We present a purely geometrical method for probing the expansion history of the universe from the observation of the shape of stacked voids in spectroscopic redshift surveys. Our method is an Alcock-Paczynski (AP) test based on the average sphericity of voids posited on the local isotropy of the universe. It works by comparing the temporal extent of cosmic voids along the line of sight with their angular, spatial extent. We describe the algorithm that we use to detect and stack voids in redshift shells on the light cone and test it on mock light cones produced from N-body simulations. Wemore » establish a robust statistical model for estimating the average stretching of voids in redshift space and quantify the contamination by peculiar velocities. Finally, assuming that the void statistics that we derive from N-body simulations is preserved when considering galaxy surveys, we assess the capability of this approach to constrain dark energy parameters. We report this assessment in terms of the figure of merit (FoM) of the dark energy task force and in particular of the proposed Euclid mission which is particularly suited for this technique since it is a spectroscopic survey. The FoM due to stacked voids from the Euclid wide survey may double that of all other dark energy probes derived from Euclid data alone (combined with Planck priors). In particular, voids seem to outperform baryon acoustic oscillations by an order of magnitude. This result is consistent with simple estimates based on mode counting. The AP test based on stacked voids may be a significant addition to the portfolio of major dark energy probes and its potentialities must be studied in detail.« less
Emergence of cracks by mass transport in elastic crystals stressed at high temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, B.; Suo, Z.; Evans, A.G.
1995-12-31
Single crystals are used under high temperature and high stresses in hostile environments (usually gases). A void produced in the fabrication process can change shape and volume, as atoms migrate under various thermodynamic forces. A small void under low stress remains rounded in shape, but a large void under high stress evolves to a crack. The material fractures catastrophically when the crack becomes sufficiently large. In this article three kinetic processes are analyzed: diffusion along the void surface, diffusion in a low melting point second phase inside the void, and surface reaction with the gases. An approximate evolution path ismore » simulated, with the void evolving as a sequence of spheroids, from a sphere to a penny-shaped crack. The free energy is calculated as a functional of void shape, from which the instability conditions are determined. The evolution rate is calculated by using variational principles derived from the valance of the reduction in the free energy and the dissipation is the kinetic processes. Crystalline anisotropy and surface heterogeneity can be readily incorporated in this energetic framework. Comparisons are made with experimental strength date for sapphire fibers measured at various strain rates.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Atwani, O.; Esquivel, E.; Efe, M.
Displacement damage, through heavy ion irradiation was studied on two tungsten grades (coarse grained tungsten (CGW) and nanocrystalline and ultrafine grained tungsten (NCW)) using different displacement per atom rates and different irradiation temperatures (RT and 1050 K). Percentage of <111> and <100> type loops at the irradiation conditions was determined. Irradiation damage in the microstructure was quantified using average loop areas and densities (method A) and loop areal fraction in the grain matrices under 2-beam diffraction conditions (method B). Average values of <111> and <100> loops were calculated from method A. Loop coalescence was shown to occur for CGW atmore » 0.25 dpa. Using both methods of quantifying microstructural damage, no effect of dpa rate was observed and damage in CGW was shown to be the same at RT and 1050 K. Swelling from voids observed at 1050 K was quantified. The loop damage in NCW was compared to CGW at the same diffraction and imaging conditions. NCW was shown to possess enhanced irradiation resistance at RT regarding loop damage and higher swelling resistance at 1050 K compared to CGW. For irradiation at 1050 K, the NCW was shown to have a similar defect densities to the CGW which is attributed to higher surface effects in the CGW, vacancy loop growth to voids and a better sink efficiency in the CGW deduced from the vacancy distribution profiles from Kinetic Monte Carlo simulations. Loop density and swelling was shown to have similar values in grains sizes that range from 80-600 nm. No loop or void denuded zones occurred at any of the irradiation conditions. This work has a collection of experiments and conclusions that are of vital importance to materials and nuclear communities.« less
El-Atwani, O.; Esquivel, E.; Efe, M.; ...
2018-02-20
Displacement damage, through heavy ion irradiation was studied on two tungsten grades (coarse grained tungsten (CGW) and nanocrystalline and ultrafine grained tungsten (NCW)) using different displacement per atom rates and different irradiation temperatures (RT and 1050 K). Percentage of <111> and <100> type loops at the irradiation conditions was determined. Irradiation damage in the microstructure was quantified using average loop areas and densities (method A) and loop areal fraction in the grain matrices under 2-beam diffraction conditions (method B). Average values of <111> and <100> loops were calculated from method A. Loop coalescence was shown to occur for CGW atmore » 0.25 dpa. Using both methods of quantifying microstructural damage, no effect of dpa rate was observed and damage in CGW was shown to be the same at RT and 1050 K. Swelling from voids observed at 1050 K was quantified. The loop damage in NCW was compared to CGW at the same diffraction and imaging conditions. NCW was shown to possess enhanced irradiation resistance at RT regarding loop damage and higher swelling resistance at 1050 K compared to CGW. For irradiation at 1050 K, the NCW was shown to have a similar defect densities to the CGW which is attributed to higher surface effects in the CGW, vacancy loop growth to voids and a better sink efficiency in the CGW deduced from the vacancy distribution profiles from Kinetic Monte Carlo simulations. Loop density and swelling was shown to have similar values in grains sizes that range from 80-600 nm. No loop or void denuded zones occurred at any of the irradiation conditions. This work has a collection of experiments and conclusions that are of vital importance to materials and nuclear communities.« less
The multiscale nature of magnetic pattern on the solar surface
NASA Astrophysics Data System (ADS)
Scardigli, S.; Del Moro, D.; Berrilli, F.
Multiscale magnetic underdense regions (voids) appear in high resolution magnetograms of quiet solar surface. These regions may be considered a signature of the underlying convective structure. The study of the associated pattern paves the way for the study of turbulent convective scales from granular to global. In order to address the question of magnetic pattern driven by turbulent convection we used a novel automatic void detection method to calculate void distributions. The absence of preferred scales of organization in the calculated distributions supports the multiscale nature of flows on the solar surface and the absence of preferred convective scales.
Cosmology with void-galaxy correlations.
Hamaus, Nico; Wandelt, Benjamin D; Sutter, P M; Lavaux, Guilhem; Warren, Michael S
2014-01-31
Galaxy bias, the unknown relationship between the clustering of galaxies and the underlying dark matter density field is a major hurdle for cosmological inference from large-scale structure. While traditional analyses focus on the absolute clustering amplitude of high-density regions mapped out by galaxy surveys, we propose a relative measurement that compares those to the underdense regions, cosmic voids. On the basis of realistic mock catalogs we demonstrate that cross correlating galaxies and voids opens up the possibility to calibrate galaxy bias and to define a static ruler thanks to the observable geometric nature of voids. We illustrate how the clustering of voids is related to mass compensation and show that volume-exclusion significantly reduces the degree of stochasticity in their spatial distribution. Extracting the spherically averaged distribution of galaxies inside voids from their cross correlations reveals a remarkable concordance with the mass-density profile of voids.
Multiphase flow calculation software
Fincke, James R.
2003-04-15
Multiphase flow calculation software and computer-readable media carrying computer executable instructions for calculating liquid and gas phase mass flow rates of high void fraction multiphase flows. The multiphase flow calculation software employs various given, or experimentally determined, parameters in conjunction with a plurality of pressure differentials of a multiphase flow, preferably supplied by a differential pressure flowmeter or the like, to determine liquid and gas phase mass flow rates of the high void fraction multiphase flows. Embodiments of the multiphase flow calculation software are suitable for use in a variety of applications, including real-time management and control of an object system.
Gas-liquid Phase Distribution and Void Fraction Measurements Using the MRI
NASA Technical Reports Server (NTRS)
Daidzic, N. E.; Schmidt, E.; Hasan, M. M.; Altobelli, S.
2004-01-01
We used a permanent-magnet MRI system to estimate the integral and spatially- and/or temporally-resolved void-fraction distributions and flow patterns in gas-liquid two-phase flows. Air was introduced at the bottom of the stagnant liquid column using an accurate and programmable syringe pump. Air flow rates were varied between 1 and 200 ml/min. The cylindrical non-conducting test tube in which two-phase flow was measured was placed in a 2.67 kGauss MRI with MRT spectrometer/imager. Roughly linear relationship has been obtained for the integral void-fraction, obtained by volume-averaging of the spatially-resolved signals, and the air flow rate in upward direction. The time-averaged spatially-resolved void fraction has also been obtained for the quasi-steady flow of air in a stagnant liquid column. No great accuracy is claimed as this was an exploratory proof-of-concept type of experiment. Preliminary results show that MRI a non-invasive and non-intrusive experimental technique can indeed provide a wealth of different qualitative and quantitative data and is especially well suited for averaged transport processes in adiabatic and diabatic multi-phase and/or multi-component flows.
Fluid intake and voiding; habits and health knowledge in a young, healthy population
Das, Rebekah N; Grimmer-Somers, Karen A
2012-01-01
Objectives Health professionals commonly advise patients with incontinence and other lower urinary tract symptoms about modifiable contributing factors such as drinking and voiding habits. Poor drinking and voiding habits may begin early in life, before symptoms emerge. However, little is known about the habits and knowledge young people have regarding healthy drinking and voiding behaviors. This research aimed to assess the habits and health knowledge of young people regarding fluid intake and voiding. Methods A questionnaire was used to assess the drinking and voiding behaviors of first year university students and their knowledge about healthy fluid intake and voiding. Results The average daily fluid intake was >2 L/day for both genders. Poor drinking and voiding habits (such as high consumption of caffeinated drinks and alcohol, or nocturia) were common. Widely reported myths about the benefits of a high fluid intake were commonly believed. Conclusion More informed public education regarding healthy fluid intake, and drinking and voiding habits, is required as part of the effort to reduce the development of lower urinary tract symptoms, including incontinence. PMID:24199175
Fluid intake and voiding; habits and health knowledge in a young, healthy population.
Das, Rebekah N; Grimmer-Somers, Karen A
2012-01-01
Health professionals commonly advise patients with incontinence and other lower urinary tract symptoms about modifiable contributing factors such as drinking and voiding habits. Poor drinking and voiding habits may begin early in life, before symptoms emerge. However, little is known about the habits and knowledge young people have regarding healthy drinking and voiding behaviors. This research aimed to assess the habits and health knowledge of young people regarding fluid intake and voiding. A questionnaire was used to assess the drinking and voiding behaviors of first year university students and their knowledge about healthy fluid intake and voiding. The average daily fluid intake was >2 L/day for both genders. Poor drinking and voiding habits (such as high consumption of caffeinated drinks and alcohol, or nocturia) were common. Widely reported myths about the benefits of a high fluid intake were commonly believed. More informed public education regarding healthy fluid intake, and drinking and voiding habits, is required as part of the effort to reduce the development of lower urinary tract symptoms, including incontinence.
Video Voiding Device for Diagnosing Lower Urinary Tract Dysfunction in Men.
Shokoueinejad, Mehdi; Alkashgari, Rayan; Mosli, Hisham A; Alothmany, Nazeeh; Levin, Jacob M; Webster, John G
2017-01-01
We introduce a novel diagnostic Visual Voiding Device (VVD), which has the ability to visually document urinary voiding events and calculate key voiding parameters such as instantaneous flow rate. The observation of the urinary voiding process along with the instantaneous flow rate can be used to diagnose symptoms of Lower Urinary Tract Dysfunction (LUTD) and improve evaluation of LUTD treatments by providing subsequent follow-up documentations of voiding events after treatments. The VVD enables a patient to have a urinary voiding event in privacy while a urologist monitors, processes, and documents the event from a distance. The VVD consists of two orthogonal cameras which are used to visualize urine leakage from the urethral meatus, urine stream trajectory, and its break-up into droplets. A third, lower back camera monitors a funnel topped cylinder where urine accumulates that contains a floater for accurate readings regardless of the urine color. Software then processes the change in level of accumulating urine in the cylinder and the visual flow properties to calculate urological parameters. Video playback allows for reexamination of the voiding process. The proposed device was tested by integrating a mass flowmeter into the setup and simultaneously measuring the instantaneous flow rate of a predetermined voided volume in order to verify the accuracy of VVD compared to the mass flowmeter. The VVD and mass flowmeter were found to have an accuracy of ±2 and ±3% relative to full scale, respectively. A VVD clinical trial was conducted on 16 healthy male volunteers ages 23-65.
An observation of prominence condensation out of a coronal void
NASA Astrophysics Data System (ADS)
Wagner, W. J.; Newkirk, G., Jr.; Schmidt, H. U.
1983-02-01
Photographic averaging of cine-camera data-frames from the 7 March 1970 eclipse provided a record of the inner white light corona with unusually high resolution for low-contrast features. The authors report that a coronal void, similar to high corona structures associated with prominence formation (MacQueen et al., 1983), extended low into the corona. During eclipse totality, a coronal rain prominence condensed from the base of the void.
Variability of Basal Melt Beneath the Pine Island Glacier Ice Shelf, West Antarctica
NASA Technical Reports Server (NTRS)
Bindschadler, Robert; Vaughan, David G.; Vornberger, Patricia
2011-01-01
Observations from satellite and airborne platforms are combined with model calculations to infer the nature and efficiency of basal melting of the Pine Island Glacier ice shelf, West Antarctica, by ocean waters. Satellite imagery shows surface features that suggest ice-shelf-wide changes to the ocean s influence on the ice shelf as the grounding line retreated. Longitudinal profiles of ice surface and bottom elevations are analyzed to reveal a spatially dependent pattern of basal melt with an annual melt flux of 40.5 Gt/a. One profile captures a persistent set of surface waves that correlates with quasi-annual variations of atmospheric forcing of Amundsen Sea circulation patterns, establishing a direct connection between atmospheric variability and sub-ice-shelf melting. Ice surface troughs are hydrostatically compensated by ice-bottom voids up to 150m deep. Voids form dynamically at the grounding line, triggered by enhanced melting when warmer-than-average water arrives. Subsequent enlargement of the voids is thermally inefficient (4% or less) compared with an overall melting efficiency beneath the ice shelf of 22%. Residual warm water is believed to cause three persistent polynyas at the ice-shelf front seen in Landsat imagery. Landsat thermal imagery confirms the occurrence of warm water at the same locations.
[Physiotherapy in Women with Overactive Bladder].
Henscher, U; Tholen, R; Kirschner-Hermanns, R
2016-08-01
As regards treatment for overactive bladder, physiotherapeutic interventions can be seen as an alternative to drug treatment. Targeted pelvic floor and bladder training is used to decrease the number of voids and the incontinence episodes or to increase the average voided volume in women with overactive bladder (3 systematic reviews with evidence level 1/1a).An additional option to treat women with overactive bladder is to use functional electrical stimulation and magnetic stimulation.2 systematic reviews 1 2 and 2 RCTs 3 4 reveal a low level of evidence (2 studies with level 2/2b) for the use of electrical stimulation (transcutaneous, vaginal or transanal) to reduce incontinence episodes and the number of voids and to increase the average voided volume. The trial from Yamanishi et al. (2014) shows that magnetic stimulation has a positive effect 5. Further studies are needed to evaluate the benefit of conservative treatment procedures for overactive bladder. © Georg Thieme Verlag KG Stuttgart · New York.
NASA Astrophysics Data System (ADS)
Ma, Wen; Liu, Fushun
Voids are inevitable in the fabrication of fiber reinforced composites and have a detrimental impact on mechanical properties of composites. Different void contents were acquired by applying different vacuum bag pressures. Ultrasonic inspection and ablation density method were adopted to measure the ultrasonic characteristic parameters and average porosity, the characterization of voids' distribution, shape and size were carried out through metallographic analysis. Effects of void content on the tensile, flexural and interlaminar shear properties and the ultrasonic characteristic parameters were discussed. The results showed that, as vacuum bag pressure went from -50kPa to -98kPa, the voids content decreased from 4.36 to 0.34, the ultrasonic attenuation coefficient decreased, but the mechanical strengths all increased.
Molecular dynamics simulations of void defects in the energetic material HMX.
Duan, Xiao Hui; Li, Wen Peng; Pei, Chong Hua; Zhou, Xiao Qing
2013-09-01
A molecular dynamics (MD) simulation was carried out to characterize the dynamic evolution of void defects in crystalline octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine (HMX). Different models were constructed with the same concentration of vacancies (10 %) to discuss the size effects of void. Energetic ground state properties were determined by annealing simulations. The void formation energy per molecule removed was found to be 55-63 kcal/mol(-1), and the average binding energy per molecule was between 32 and 34 kcal/mol(-1) according to the change in void size. Voids with larger size had lower formation energy. Local binding energies for molecules directly on the void surface decreased greatly compared to those in defect-free lattice, and then gradually increased until the distance away from the void surface was around 10 Å. Analysis of 1 ns MD simulations revealed that the larger the void size, the easier is void collapse. Mean square displacements (MSDs) showed that HMX molecules that had collapsed into void present liquid structure characteristics. Four unique low-energy conformers were found for HMX molecules in void: two whose conformational geometries corresponded closely to those found in HMX polymorphs and two, additional, lower energy conformers that were not seen in the crystalline phases. The ratio of different conformers changed with the simulated temperature, in that the ratio of α conformer increased with the increase in temperature.
Uji, Akihito; Balasubramanian, Siva; Lei, Jianqin; Baghdasaryan, Elmira; Al-Sheikh, Mayss; Sadda, SriniVas R
2017-11-01
Imaging of the choriocapillaris in vivo is challenging with existing technology. Optical coherence tomography angiography (OCTA), if optimized, could make the imaging less challenging. To investigate multiple en face image averaging on OCTA images of the choriocapillaris. Observational, cross-sectional case series at a referral institutional practice in Los Angeles, California. From the original cohort of 21 healthy individuals, 17 normal eyes of 17 participants were included in the study. The study dates were August to September 2016. All participants underwent OCTA imaging of the macula covering a 3 × 3-mm area using OCTA software (Cirrus 5000 with AngioPlex; Carl Zeiss Meditec). One eye per participant was repeatedly imaged to obtain 9 OCTA cube scan sets. Registration was first performed using superficial capillary plexus images, and this transformation was then applied to the choriocapillaris images. The 9 registered choriocapillaris images were then averaged. Quantitative parameters were measured on binarized OCTA images and compared with the unaveraged OCTA images. Vessel caliber measurement. Seventeen eyes of 17 participants (mean [SD] age, 35.1 [6.0] years; 9 [53%] female; and 9 [53%] of white race/ethnicity) with sufficient image quality were included in this analysis. The single unaveraged images demonstrated a granular appearance, and the vascular pattern was difficult to discern. After averaging, en face choriocapillaris images showed a meshwork appearance. The mean (SD) diameter of the vessels was 22.8 (5.8) µm (range, 9.6-40.2 µm). Compared with the single unaveraged images, the averaged images showed more flow voids (1423 flow voids [95% CI, 967-1909] vs 1254 flow voids [95% CI, 825-1683], P < .001), smaller average size of the flow voids (911 [95% CI, 301-1521] µm2 vs 1364 [95% CI, 645-2083] µm2, P < .001), and greater vessel density (70.7% [95% CI, 61.9%-79.5%] vs 61.9% [95% CI, 56.0%-67.8%], P < .001). The distribution of the number vs sizes of the flow voids was skewed in both unaveraged and averaged images. A linear log-log plot of the distribution showed a more homogeneous distribution in the averaged images compared with the unaveraged images. Multiple en face averaging can improve visualization of the choriocapillaris on OCTA images, transforming the images from a granular appearance to a level where the intervascular spaces can be resolved in healthy volunteers.
Morphological Segregation in the Surroundings of Cosmic Voids
NASA Astrophysics Data System (ADS)
Ricciardelli, Elena; Cava, Antonio; Varela, Jesus; Tamone, Amelie
2017-09-01
We explore the morphology of galaxies living in the proximity of cosmic voids, using a sample of voids identified in the Sloan Digital Sky Survey Data Release 7. At all stellar masses, void galaxies exhibit morphologies of a later type than galaxies in a control sample, which represent galaxies in an average density environment. We interpret this trend as a pure environmental effect, independent of the mass bias, due to a slower galaxy build-up in the rarefied regions of voids. We confirm previous findings about a clear segregation in galaxy morphology, with galaxies of a later type being found at smaller void-centric distances with respect to the early-type galaxies. We also show, for the first time, that the radius of the void has an impact on the evolutionary history of the galaxies that live within it or in its surroundings. In fact, an enhanced fraction of late-type galaxies is found in the proximity of voids larger than the median void radius. Likewise, an excess of early-type galaxies is observed within or around voids of a smaller size. A significant difference in galaxy properties in voids of different sizes is observed up to 2 R void, which we define as the region of influence of voids. The significance of this difference is greater than 3σ for all the volume-complete samples considered here. The fraction of star-forming galaxies shows the same behavior as the late-type galaxies, but no significant difference in stellar mass is observed in the proximity of voids of different sizes.
3D Simulations of Void collapse in Energetic Materials
NASA Astrophysics Data System (ADS)
Rai, Nirmal Kumar; Udaykumar, H. S.
2017-06-01
Voids present in the microstructure of heterogeneous energetic materials effect the sensitivity towards ignition. It is established that the morphology of voids can play a significant role in sensitivity enhancement of energetic materials. Depending on the void shape, sensitivity can be either increased or decreased under given loading conditions. In the past, effects of different void shapes i.e. triangular, ellipse, cylindrical etc. on the sensitivity of energetic materials have been analyzed. However, most of these studies are performed in 2D and are limited under the plain strain assumption. Axisymmetric studies have also been performed in the past to incorporate the 3D effects, however axisymmetric modeling is limited to only certain geometries i.e. sphere. This work analyzes the effects of various void shapes in three dimensions on the ignition behavior of HMX. Various void shapes are analyzed including spherical, prolate and oblate speheroid oriented at different orientations, etc. Three dimensional void collapse simulations are performed on a single void to quantify the effects void morphology on initiation. A Cartesian grid based Eulerian solver SCIMITAR3D is used to perform the void collapse simulations. Various aspects of void morphology i.e. size, thickness of voids, elongation, orientation etc. are considered to obtain a comprehensive analysis. Also, 2D plane strain calculations are compared with the three dimensional analysis to evaluate the salient differences between 2D and 3D modeling.
Feasibility of detecting near-surface feature with Rayleigh-wave diffraction
Xia, J.; Nyquist, Jonathan E.; Xu, Y.; Roth, M.J.S.; Miller, R.D.
2007-01-01
Detection of near-surfaces features such as voids and faults is challenging due to the complexity of near-surface materials and the limited resolution of geophysical methods. Although multichannel, high-frequency, surface-wave techniques can provide reliable shear (S)-wave velocities in different geological settings, they are not suitable for detecting voids directly based on anomalies of the S-wave velocity because of limitations on the resolution of S-wave velocity profiles inverted from surface-wave phase velocities. Therefore, we studied the feasibility of directly detecting near-surfaces features with surface-wave diffractions. Based on the properties of surface waves, we have derived a Rayleigh-wave diffraction traveltime equation. We also have solved the equation for the depth to the top of a void and an average velocity of Rayleigh waves. Using these equations, the depth to the top of a void/fault can be determined based on traveltime data from a diffraction curve. In practice, only two diffraction times are necessary to define the depth to the top of a void/fault and the average Rayleigh-wave velocity that generates the diffraction curve. We used four two-dimensional square voids to demonstrate the feasibility of detecting a void with Rayleigh-wave diffractions: a 2??m by 2??m with a depth to the top of the void of 2??m, 4??m by 4??m with a depth to the top of the void of 7??m, and 6??m by 6??m with depths to the top of the void 12??m and 17??m. We also modeled surface waves due to a vertical fault. Rayleigh-wave diffractions were recognizable for all these models after FK filtering was applied to the synthetic data. The Rayleigh-wave diffraction traveltime equation was verified by the modeled data. Modeling results suggested that FK filtering is critical to enhance diffracted surface waves. A real-world example is presented to show how to utilize the derived equation of surface-wave diffractions. ?? 2006 Elsevier B.V. All rights reserved.
Reliability of void detection in structural ceramics using scanning laser acoustic microscopy
NASA Technical Reports Server (NTRS)
Roth, D. J.; Klima, S. J.; Kiser, J. D.; Baaklini, G. Y.
1985-01-01
The reliability of scanning laser acoustic microscopy (SLAM) for detecting surface voids in structural ceramic test specimens was statistically evaluated. Specimens of sintered silicon nitride and sintered silicon carbide, seeded with surface voids, were examined by SLAM at an ultrasonic frequency of 100 MHz in the as fired condition and after surface polishing. It was observed that polishing substantially increased void detectability. Voids as small as 100 micrometers in diameter were detected in polished specimens with 0.90 probability at a 0.95 confidence level. In addition, inspection times were reduced up to a factor of 10 after polishing. The applicability of the SLAM technique for detection of naturally occurring flaws of similar dimensions to the seeded voids is discussed. A FORTRAN program listing is given for calculating and plotting flaw detection statistics.
VizieR Online Data Catalog: A cosmic void catalog of SDSS DR12 BOSS galaxies (Mao+, 2017)
NASA Astrophysics Data System (ADS)
Mao, Q.; Berlind, A. A.; Scherrer, R. J.; Neyrinck, M. C.; Scoccimarro, R.; Tinker, J. L.; McBride, C. K.; Schneider, D. P.; Pan, K.; Bizyaev, D.; Malanushenko, E.; Malanushenko, V.
2017-08-01
We present a cosmic void catalog using the large-scale structure galaxy catalog from the Baryon Oscillation Spectroscopic Survey (BOSS). This galaxy catalog is part of the Sloan Digital Sky Survey (SDSS) Data Release 12 and is the final catalog of SDSS-III. We take into account the survey boundaries, masks, and angular and radial selection functions, and apply the ZOBOV (Neyrinck 2008MNRAS.386.2101N) void finding algorithm to the Galaxy catalog. We identify a total of 10643 voids. After making quality cuts to ensure that the voids represent real underdense regions, we obtain 1228 voids with effective radii spanning the range 20-100h-1Mpc and with central densities that are, on average, 30% of the mean sample density. We release versions of the catalogs both with and without quality cuts. We discuss the basic statistics of voids, such as their size and redshift distributions, and measure the radial density profile of the voids via a stacking technique. In addition, we construct mock void catalogs from 1000 mock galaxy catalogs, and find that the properties of BOSS voids are in good agreement with those in the mock catalogs. We compare the stellar mass distribution of galaxies living inside and outside of the voids, and find no large difference. These BOSS and mock void catalogs are useful for a number of cosmological and galaxy environment studies. (1 data file).
General analytic results on averaging Lemaître-Tolman-Bondi models
NASA Astrophysics Data System (ADS)
Sussman, Roberto A.
2010-12-01
An effective acceleration, which mimics the effect of dark energy, may arise in the context of Buchert's scalar averaging formalism. We examine the conditions for such an acceleration to occur in the asymptotic radial range in generic spherically symmetric Lemaître-Tolman-Bondi (LTB) dust models. By looking at the behavior of covariant scalars along space slices orthogonal to the 4-velocity, we show that this effective acceleration occurs in a class of models with negative spatial curvature that are asymptotically convergent to sections of Minkowski spacetime. As a consequence, the boundary conditions that favor LTB models with an effective acceleration are not a void inhomogeneity embedded in a homogeneous FLRW background (Swiss cheese models), but a local void or clump embedded in a large cosmic void region represented by asymptotically Minkowski conditions.
Filling the voids in the SRTM elevation model — A TIN-based delta surface approach
NASA Astrophysics Data System (ADS)
Luedeling, Eike; Siebert, Stefan; Buerkert, Andreas
The Digital Elevation Model (DEM) derived from NASA's Shuttle Radar Topography Mission is the most accurate near-global elevation model that is publicly available. However, it contains many data voids, mostly in mountainous terrain. This problem is particularly severe in the rugged Oman Mountains. This study presents a method to fill these voids using a fill surface derived from Russian military maps. For this we developed a new method, which is based on Triangular Irregular Networks (TINs). For each void, we extracted points around the edge of the void from the SRTM DEM and the fill surface. TINs were calculated from these points and converted to a base surface for each dataset. The fill base surface was subtracted from the fill surface, and the result added to the SRTM base surface. The fill surface could then seamlessly be merged with the SRTM DEM. For validation, we compared the resulting DEM to the original SRTM surface, to the fill DEM and to a surface calculated by the International Center for Tropical Agriculture (CIAT) from the SRTM data. We calculated the differences between measured GPS positions and the respective surfaces for 187,500 points throughout the mountain range (ΔGPS). Comparison of the means and standard deviations of these values showed that for the void areas, the fill surface was most accurate, with a standard deviation of the ΔGPS from the mean ΔGPS of 69 m, and only little accuracy was lost by merging it to the SRTM surface (standard deviation of 76 m). The CIAT model was much less accurate in these areas (standard deviation of 128 m). The results show that our method is capable of transferring the relative vertical accuracy of a fill surface to the void areas in the SRTM model, without introducing uncertainties about the absolute elevation of the fill surface. It is well suited for datasets with varying altitude biases, which is a common problem of older topographic information.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ricciardelli, Elena; Tamone, Amelie; Cava, Antonio
We explore the morphology of galaxies living in the proximity of cosmic voids, using a sample of voids identified in the Sloan Digital Sky Survey Data Release 7. At all stellar masses, void galaxies exhibit morphologies of a later type than galaxies in a control sample, which represent galaxies in an average density environment. We interpret this trend as a pure environmental effect, independent of the mass bias, due to a slower galaxy build-up in the rarefied regions of voids. We confirm previous findings about a clear segregation in galaxy morphology, with galaxies of a later type being found atmore » smaller void-centric distances with respect to the early-type galaxies. We also show, for the first time, that the radius of the void has an impact on the evolutionary history of the galaxies that live within it or in its surroundings. In fact, an enhanced fraction of late-type galaxies is found in the proximity of voids larger than the median void radius. Likewise, an excess of early-type galaxies is observed within or around voids of a smaller size. A significant difference in galaxy properties in voids of different sizes is observed up to 2 R {sub void}, which we define as the region of influence of voids. The significance of this difference is greater than 3 σ for all the volume-complete samples considered here. The fraction of star-forming galaxies shows the same behavior as the late-type galaxies, but no significant difference in stellar mass is observed in the proximity of voids of different sizes.« less
Force measurement-based discontinuity detection during friction stir welding
Shrivastava, Amber; Zinn, Michael; Duffie, Neil A.; ...
2017-02-23
Here, the objective of this work is to develop a method for detecting the creation of discontinuities ( i.e., voids, volume defects) during friction stir welding. Friction stir welding is inherently cost effective, however, the need for significant weld inspection can make the process cost prohibitive. A new approach to weld inspection is required in which an in situ characterization of weld quality can be obtained, reducing the need for postprocess inspection. To this end, friction stir welds with subsurface voids and without voids were created. The subsurface voids were generated by reducing the friction stir tool rotation frequency andmore » increasing the tool traverse speed in order to create “colder” welds. Process forces were measured during welding, and the void sizes were measured postprocess by computerized tomography ( i.e., 3D X-ray imaging). Two parameters, based on frequency domain content and time-domain average of the force signals, were found to be correlated with void size. Criteria for subsurface void detection and size prediction were developed and shown to be in good agreement with experimental observations. Furthermore, with the proper choice of data acquisition system and frequency analyzer the occurrence of subsurface voids can be detected in real time.« less
Force measurement-based discontinuity detection during friction stir welding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shrivastava, Amber; Zinn, Michael; Duffie, Neil A.
Here, the objective of this work is to develop a method for detecting the creation of discontinuities ( i.e., voids, volume defects) during friction stir welding. Friction stir welding is inherently cost effective, however, the need for significant weld inspection can make the process cost prohibitive. A new approach to weld inspection is required in which an in situ characterization of weld quality can be obtained, reducing the need for postprocess inspection. To this end, friction stir welds with subsurface voids and without voids were created. The subsurface voids were generated by reducing the friction stir tool rotation frequency andmore » increasing the tool traverse speed in order to create “colder” welds. Process forces were measured during welding, and the void sizes were measured postprocess by computerized tomography ( i.e., 3D X-ray imaging). Two parameters, based on frequency domain content and time-domain average of the force signals, were found to be correlated with void size. Criteria for subsurface void detection and size prediction were developed and shown to be in good agreement with experimental observations. Furthermore, with the proper choice of data acquisition system and frequency analyzer the occurrence of subsurface voids can be detected in real time.« less
Small-angle x-ray scattering in amorphous silicon: A computational study
NASA Astrophysics Data System (ADS)
Paudel, Durga; Atta-Fynn, Raymond; Drabold, David A.; Elliott, Stephen R.; Biswas, Parthapratim
2018-05-01
We present a computational study of small-angle x-ray scattering (SAXS) in amorphous silicon (a -Si) with particular emphasis on the morphology and microstructure of voids. The relationship between the scattering intensity in SAXS and the three-dimensional structure of nanoscale inhomogeneities or voids is addressed by generating large high-quality a -Si networks with 0.1%-0.3% volume concentration of voids, as observed in experiments using SAXS and positron annihilation spectroscopy. A systematic study of the variation of the scattering intensity in the small-angle scattering region with the size, shape, number density, and the spatial distribution of the voids in the networks is presented. Our results suggest that the scattering intensity in the small-angle region is particularly sensitive to the size and the total volume fraction of the voids, but the effect of the geometry or shape of the voids is less pronounced in the intensity profiles. A comparison of the average size of the voids obtained from the simulated values of the intensity, using the Guinier approximation and Kratky plots, with that of the same from the spatial distribution of the atoms in the vicinity of void surfaces is presented.
Linking initial microstructure and local response during quasistatic granular compaction
Hurley, R. C.; Lind, J.; Pagan, D. C.; ...
2017-07-24
In this study, we performed experiments combining three-dimensional x-ray diffraction and x-ray computed tomography to explore the relationship between microstructure and local force and strain during quasistatic granular compaction. We found that initial void space around a grain and contact coordination number before compaction can be used to predict regions vulnerable to above-average local force and strain at later stages of compaction. We also found correlations between void space around a grain and coordination number, and between grain stress and maximum interparticle force, at all stages of compaction. Finally, we observed grains that fracture to have an above-average initial localmore » void space and a below-average initial coordination number. In conclusion, our findings provide (1) a detailed description of microstructure evolution during quasistatic granular compaction, (2) an approach for identifying regions vulnerable to large values of strain and interparticle force, and (3) methods for identifying regions of a material with large interparticle forces and coordination numbers from measurements of grain stress and local porosity.« less
Rayleigh-wave diffractions due to a void in the layered half space
Xia, J.; Xu, Y.; Miller, R.D.; Nyquist, Jonathan E.
2006-01-01
Void detection is challenging due to the complexity of near-surface materials and the limited resolution of geophysical methods. Although multichannel, high-frequency, surface-wave techniques can provide reliable shear (S)-wave velocities in different geological settings, they are not suitable for detecting voids directly based on anomalies of the S-wave velocity because of limitations on the resolution of S-wave velocity profiles inverted from surface-wave phase velocities. Xia et al. (2006a) derived a Rayleigh-wave diffraction traveltime equation due to a void in the homogeneous half space. Encouraging results of directly detecting a void from Rayleigh-wave diffractions were presented (Xia et al., 2006a). In this paper we used four two-dimensional square voids in the layered half space to demonstrate the feasibility of detecting a void with Rayleigh-wave diffractions. Rayleigh-wave diffractions were recognizable for all these models after removing direct surface waves by F-K filtering. We evaluate the feasibility of applying the Rayleigh-wave diffraction traveltime equation to a void in the layered earth model. The phase velocity of diffracted Rayleigh waves is predominately determined by surrounding materials of a void. The modeling results demonstrate that the Rayleigh-wave diffraction traveltime equation due to a void in the homogeneous half space can be applied to the case of a void in the layered half space. In practice, only two diffraction times are necessary to define the depth to the top of a void and the average velocity of diffracted Rayleigh waves. ?? 2005 Society of Exploration Geophysicists.
NASA Astrophysics Data System (ADS)
Zhao, Jifeng; Kontsevoi, Oleg Y.; Xiong, Wei; Smith, Jacob
2017-05-01
In this work, a multi-scale computational framework has been established in order to investigate, refine and validate constitutive behaviors in the context of the Gurson-Tvergaard-Needleman (GTN) void mechanics model. The eXtended Finite Element Method (XFEM) has been implemented in order to (1) develop statistical volume elements (SVE) of a matrix material with subscale inclusions and (2) to simulate the multi-void nucleation process due to interface debonding between the matrix and particle phases. Our analyses strongly suggest that under low stress triaxiality the nucleation rate of the voids f˙ can be well described by a normal distribution function with respect to the matrix equivalent stress (σe), as opposed to that proposed (σbar + 1 / 3σkk) in the original form of the single void GTN model. The modified form of the multi-void nucleation model has been validated based on a series of numerical experiments with different loading conditions, material properties, particle shape/size and spatial distributions. The utilization of XFEM allows for an invariant finite element mesh to represent varying microstructures, which implies suitability for drastically reducing complexity in generating the finite element discretizations for large stochastic arrays of microstructure configurations. The modified form of the multi-void nucleation model is further applied to study high strength steels by incorporating first principles calculations. The necessity of using a phenomenological interface separation law has been fully eliminated and replaced by the physics-based cohesive relationship obtained from Density Functional Theory (DFT) calculations in order to provide an accurate macroscopic material response.
Percolation Thresholds in Angular Grain media: Drude Directed Infiltration
NASA Astrophysics Data System (ADS)
Priour, Donald
Pores in many realistic systems are not well delineated channels, but are void spaces among grains impermeable to charge or fluid flow which comprise the medium. Sparse grain concentrations lead to permeable systems, while concentrations in excess of a critical density block bulk fluid flow. We calculate percolation thresholds in porous materials made up of randomly placed (and oriented) disks, tetrahedrons, and cubes. To determine if randomly generated finite system samples are permeable, we deploy virtual tracer particles which are scattered (e.g. specularly) by collisions with impenetrable angular grains. We hasten the rate of exploration (which would otherwise scale as ncoll1 / 2 where ncoll is the number of collisions with grains if the tracers followed linear trajectories) by considering the tracer particles to be charged in conjunction with a randomly directed uniform electric field. As in the Drude treatment, where a succession of many scattering events leads to a constant drift velocity, tracer displacements on average grow linearly in ncoll. By averaging over many disorder realizations for a variety of systems sizes, we calculate the percolation threshold and critical exponent which characterize the phase transition.
The evolution of voids in the adhesion approximation
NASA Astrophysics Data System (ADS)
Sahni, Varun; Sathyaprakah, B. S.; Shandarin, Sergei F.
1994-08-01
We apply the adhesion approximation to study the formation and evolution of voids in the universe. Our simulations-carried out using 1283 particles in a cubical box with side 128 Mpc-indicate that the void spectrum evolves with time and that the mean void size in the standard Cosmic Background Explorer Satellite (COBE)-normalized cold dark matter (CDM) model with H50 = 1 scals approximately as bar D(z) = bar Dzero/(1+2)1/2, where bar Dzero approximately = 10.5 Mpc. Interestingly, we find a strong correlation between the sizes of voids and the value of the primordial gravitational potential at void centers. This observation could in principle, pave the way toward reconstructing the form of the primordial potential from a knowledge of the observed void spectrum. Studying the void spectrum at different cosmological epochs, for spectra with a built in k-space cutoff we find that the number of voids in a representative volume evolves with time. The mean number of voids first increases until a maximum value is reached (indicating that the formation of cellular structure is complete), and then begins to decrease as clumps and filaments erge leading to hierarchical clustering and the subsequent elimination of small voids. The cosmological epoch characterizing the completion of cellular structure occurs when the length scale going nonlinear approaches the mean distance between peaks of the gravitaional potential. A central result of this paper is that voids can be populated by substructure such as mini-sheets and filaments, which run through voids. The number of such mini-pancakes that pass through a given void can be measured by the genus characteristic of an individual void which is an indicator of the topology of a given void in intial (Lagrangian) space. Large voids have on an average a larger measure than smaller voids indicating more substructure within larger voids relative to smaller ones. We find that the topology of individual voids is strongly epoch dependent, with void topologies generally simplifying with time. This means that as voids grow older they become progressively more empty and have less structure within them. We evaluate the genus measure both for individual voids as well as for the entire ensemble of voids predicted by CDM model. As a result we find that the topology of voids when taken together with the void spectrum is a very useful statistical indicator of the evolution of the structure of the universe on large scales.
The evolution of voids in the adhesion approximation
NASA Technical Reports Server (NTRS)
Sahni, Varun; Sathyaprakah, B. S.; Shandarin, Sergei F.
1994-01-01
We apply the adhesion approximation to study the formation and evolution of voids in the universe. Our simulations-carried out using 128(exp 3) particles in a cubical box with side 128 Mpc-indicate that the void spectrum evolves with time and that the mean void size in the standard Cosmic Background Explorer Satellite (COBE)-normalized cold dark matter (CDM) model with H(sub 50) = 1 scals approximately as bar D(z) = bar D(sub zero)/(1+2)(exp 1/2), where bar D(sub zero) approximately = 10.5 Mpc. Interestingly, we find a strong correlation between the sizes of voids and the value of the primordial gravitational potential at void centers. This observation could in principle, pave the way toward reconstructing the form of the primordialpotential from a knowledge of the observed void spectrum. Studying the void spectrum at different cosmological epochs, for spectra with a built in k-space cutoff we find that the number of voids in a representative volume evolves with time. The mean number of voids first increases until a maximum value is reached (indicating that the formation of cellular structure is complete), and then begins to decrease as clumps and filaments erge leading to hierarchical clustering and the subsequent elimination of small voids. The cosmological epoch characterizing the completion of cellular structure occurs when the length scale going nonlinear approaches the mean distance between peaks of the gravitaional potential. A central result of this paper is that voids can be populated by substructure such as mini-sheets and filaments, which run through voids. The number of such mini-pancakes that pass through a given void can be measured by the genus characteristic of an individual void which is an indicator of the topology of a given void in intial (Lagrangian) space. Large voids have on an average a larger measure than smaller voids indicating more substructure within larger voids relative to smaller ones. We find that the topology of individual voids is strongly epoch dependent, with void topologies generally simplifying with time. This means that as voids grow older they become progressively more empty and have less structure within them. We evaluate the genus measure both for individual voids as well as for the entire ensemble of voids predicted by CDM model. As a result we find that the topology of voids when taken together with the void spectrum is a very useful statistical indicator of the evolution of the structure of the universe on large scales.
NASA Astrophysics Data System (ADS)
Haspel, C.; Adler, G.
2017-04-01
In the current study, the electromagnetic properties of porous aerosol particles are calculated in two ways. In the first, a porous target input file is generated by carving out voids in an otherwise homogeneous particle, and the discrete dipole approximation (DDA) is used to compute the extinction efficiency of the particle assuming that the voids are near vacuum dielectrics and assuming random particle orientation. In the second, an effective medium approximation (EMA) style approach is employed in which an apparent polarizability of the voids is defined based on the well-known solution to the problem in classical electrostatics of a spherical cavity within a dielectric. It is found that for porous particles with smaller overall diameter with respect to the wavelength of incident radiation, describing the voids as near vacuum dielectrics within the DDA sufficiently reproduces measured values of extinction efficiency, whereas for porous particles with moderate to larger overall diameters with respect to the wavelength of the radiation, the apparent polarizability EMA approach better reproduces the measured values of extinction efficiency.
McKinney, Timothy B; Babin, Elizabeth A; Ciolfi, Veronica; McKinney, Cynthia R; Shah, Nima
2018-04-01
Air-charged (AC) and water-perfused (WP) catheters have been evaluated for differences in measuring pressures for voiding dysfunction. Typically, a two-catheter system was used. We believe that simultaneous pressure measurements with AC and WP in a single catheter will provide analogous pressures for coughs, Valsalvas, and maximum pressures in voiding pressure studies (VPS). This IRB approved prospective study included 50 women over age 21. AC dual TDOC catheters were utilized. The water-filling channel served as the bladder filler and the water pressure readings. Patients were evaluated with empty bladders and at volumes of 50-100 mL, 200 mL, and maximum capacity with cough and Valsalva maneuvers. Comparative analysis was performed on maximum stress peak pressures. At maximum bladder capacity, VPS was done and maximum voiding pressure was recorded. Comparing coughs and Valsalva maneuvers pressures, there was significant increase in variability between AC and WP measurements with less than 50 mL volume (P < 0.001). Significant correlations were observed between AC and WP measurements for coughs and Valsalvas with bladder volume over 50 mL. Visual impression showed virtually identical tracings. Cough measurements had an average difference of 0.25 cmH 2 O (±8.81) and Valsalva measurements had an average difference of 3.15 cmH 2 O (±4.72). Thirty-eight women had usable maximum voiding pressure measurements and had a strong correlation. Cystometrogram and maximum voiding pressure measurements done with either water or air charged catheters will yield similarly accurate results and are comparable. Results suggest more variability at low bladder volumes <50 mL. © 2018 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ninokata, H.; Deguchi, A.; Kawahara, A.
1995-09-01
A new void drift model for the subchannel analysis method is presented for the thermohydraulics calculation of two-phase flows in rod bundles where the flow model uses a two-fluid formulation for the conservation of mass, momentum and energy. A void drift model is constructed based on the experimental data obtained in a geometrically simple inter-connected two circular channel test sections using air-water as working fluids. The void drift force is assumed to be an origin of void drift velocity components of the two-phase cross-flow in a gap area between two adjacent rods and to overcome the momentum exchanges at themore » phase interface and wall-fluid interface. This void drift force is implemented in the cross flow momentum equations. Computational results have been successfully compared to experimental data available including 3x3 rod bundle data.« less
Discrete meso-element simulation of chemical reactions in shear bands
NASA Astrophysics Data System (ADS)
Tamura, S.; Horie, Y.
1998-07-01
A meso-dynamic simulation technique is used to investigate the chemical reactions in high speed shearing of reactive porous mixtures. The reaction speed is assumed to be a function of temperature, pressure and mixing of materials. To gain a theoretical insight into the experiments reported by Nesterenko et al., a parametric study of material flow and local temperature was carried out using a Nb and Si mixture. In the model calculation, a heterogeneous shear region of 5 μm width, consisting of alternating layers of Nb and Si, was created first in a mixture and then sheared at the rate of 8.0×107s-1. Results show that the material flow is mostly homogeneous, but contains a local agglomeration and circulatory flow. This behavior accelerates mass mixing and causes a significant temperature increase. To evaluate the mixing of material, average minimum distance of materials separation was calculated. Voids effect were also investigated.
Voids at the tunnel-soil interface for calculation of ground vibration from underground railways
NASA Astrophysics Data System (ADS)
Jones, Simon; Hunt, Hugh
2011-01-01
Voids at the tunnel-soil interface are not normally considered when predicting ground vibration from underground railways. The soil is generally assumed to be continuously bonded to the outer surface of the tunnel to simplify the modelling process. Evidence of voids around underground railways motivated the study presented herein to quantify the level of uncertainty in ground vibration predictions associated with neglecting to include such voids at the tunnel-soil interface. A semi-analytical method is developed which derives discrete transfers for the coupled tunnel-soil model based on the continuous Pipe-in-Pipe method. The void is simulated by uncoupling the appropriate nodes at the interface to prevent force transfer between the systems. The results from this investigation show that relatively small voids ( 4 m×90∘) can significantly affect the rms velocity predictions in the near-field and moderately affect predictions in the far-field. Sensitivity of the predictions to void length and void sector angle are both deemed to be significant. The findings from this study suggest that the uncertainty associated with assuming a perfect bond at the tunnel-soil interface in an area with known voidage can reasonably reach ±5 dB and thus should be considered in the design process.
Can recording only the day-time voided volumes predict bladder capacity?
Cho, Won Yeol; Kim, Seong Cheol; Kim, Sun-Ouck; Park, Sungchan; Lee, Sang Don; Chung, Jae Min; Kim, Kyung Do; Moon, Du Geon; Kim, Young Sig; Kim, Jun Mo
2018-05-01
This study aimed to demonstrate a method to easily assess bladder capacity using knowledge of day-time voided volumes, which can be obtained even from patients with nocturnal enuresis where the first morning void cannot accurately predict the bladder capacity due to bladder emptying overnight. We evaluated 177 healthy children from 7 Korean medical centres entered the study between January 2008 and January 2009. Voided volumes measured for more than 48 hours were recorded in the frequency volume chart (FVC). Most voided volumes during day-time were showed between 30% and 80% of the maximal voided volume (MVV). The maximal voided volume during day-time (MVVDT) was significantly less than the MVV (179.5±71.1 mL vs. 227.0±79.2 mL, p<0.001). The correlation coefficients with the MVV were 0.801 for the estimated MVV using the MVVDT (MVVDT×1.25), which suggested a fairly strong relationship between the MVVDT×1.25 and the MVV. The MVV derived from the FVC excluding the FMV was less than if the FMV had been included. When an accurate first morning voided volume cannot be obtained, as in patients with nocturnal enuresis, calculating MVVDT×1.25 allows estimation of the bladder capacity in place of the MVV.
Long-term therapeutic efficacy of photo-selective vaporization of prostate
NASA Astrophysics Data System (ADS)
Arum, Carl-Jørgen; Muller, Camilla; Romundstad, Pal; Stokkan, Inger; Mjønes, Jan
2010-02-01
OBJECTIVES: We evaluated the long term therapeutic efficacy of 80 watt photo-selective vaporization of the prostate (PVP) in patients suffering from lower urinary tract symptoms (LUTS) secondary to prostatic obstruction. MATERIAL & METHODS: 150 unselected patients at the average age 73 (range 51-92) and a mean American Society of Anesthesiologists score of 2.4 (median 2.0), of whom 33% were medicated with acetylsalicylic acid and 5% were anticoagulated with warfarin. Inclusion/exclusion criteria were the same as for TUR-P at our institution. First patient was operated March 2004 and yearly follow-up of all patients has been attempted for 5 years. Follow-up variables have included yearly creatinine, PSA, IPSS, ØOL, post-void residual urin and maximum/average urine flow rate. RESULTS: At 12 and 24 months postoperatively, the following parameters were significantly (p<0.001) improved: trans-rectal ultrasound, international prostate symptom score, quality of life score, post-void residual urine volume, flow max/average, opening pressure, pressure @ flow-max, and micturition resistance. At 48 and 60 months creatinine, PSA, IPSS, ØOL, post-void residual urin and maximum/average urine flow rates were still significantly (p<0.001) improved compared to pre-operative values. CONCLUSION: Up to 5 year follow-up reveals that 80 watt PVP provides significant and stable symptom relief as well as objective improvement in residual urine and flowmetric outcomes.
Simulation of dust voids in complex plasmas
NASA Astrophysics Data System (ADS)
Goedheer, W. J.; Land, V.
2008-12-01
In dusty radio-frequency (RF) discharges under micro-gravity conditions often a void is observed, a dust free region in the discharge center. This void is generated by the drag of the positive ions pulled out of the discharge by the electric field. We have developed a hydrodynamic model for dusty RF discharges in argon to study the behaviour of the void and the interaction between the dust and the plasma background. The model is based on a recently developed theory for the ion drag force and the charging of the dust. With this model, we studied the plasma inside the void and obtained an understanding of the way it is sustained by heat generated in the surrounding dust cloud. When this heating mechanism is suppressed by lowering the RF power, the plasma density inside the void decreases, even below the level where the void collapses, as was recently shown in experiments on board the International Space Station. In this paper we present results of simulations of this collapse. At reduced power levels the collapsed central cloud behaves as an electronegative plasma with corresponding low time-averaged electric fields. This enables the creation of relatively homogeneous Yukawa balls, containing more than 100 000 particles. On earth, thermophoresis can be used to balance gravity and obtain similar dust distributions.
Molecular microelectrostatic view on electronic states near pentacene grain boundaries
NASA Astrophysics Data System (ADS)
Verlaak, Stijn; Heremans, Paul
2007-03-01
Grain boundaries are the most inevitable and pronounced structural defects in pentacene films. To study the effect of those structural defects on the electronic state distribution, the energy levels of a hole on molecules at and near the defect have been calculated using a submolecular self-consistent-polarization-field approach in combination with atomic charge-quadrupole interaction energy calculations. This method has been benchmarked prior to application on four idealized grain boundaries: a grain boundary void, a void with molecules squeezed in between two grains, a boundary between two grains with different crystallographic orientations, and a grain boundary void in which a permanent dipole (e.g., a water molecule) has nested. While idealized, those views highlight different aspects of real grain boundaries. Implications on macroscopic charge transport models are discussed, as well as some relation between growth conditions and the formation of the grain boundary.
Phase-field modeling of void anisotropic growth behavior in irradiated zirconium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, G. M.; Wang, H.; Lin, De-Ye
2017-06-01
A three-dimensional (3D) phase field model was developed to study the effects of surface energy and diffusivity anisotropy on void growth behavior in irradiated Zr. The gamma surface energy function, which is used in the phase field model, was developed with the surface energy anisotropy calculated from the molecular dynamics (MD) simulations. It is assumed that vacancies have much larger mobility in c-axis than a- and b- axes while interstitials have much larger mobility in basal plane then that in c-axis. With the model, the equilibrium void morphology and the effect of defect concentrations and defect mobility anisotropy on voidmore » growth behavior were simulated. The simulations demonstrated that 1) The developed phase-field model can correctly reproduce the faceted void morphology predicted by the Wullf construction. 2) With isotropic diffusivity the void prefers to grow on the basal plane. 3) When the vacancy has large mobility along c-axis and interstitial has a large mobility on the basal plane of hexagonal closed packed (hcp) Zr alloys a platelet void grows in c-direction and shrinks on the basal plane, which is in agreement with the experimental observation of void growth behavior in irradiated Zr.« less
Krauss, J K; Regel, J P; Vach, W; Jüngling, F D; Droste, D W; Wakhloo, A K
1997-01-01
We investigate the predictive value of cerebrospinal fluid (CSF) flow void on outcome after shunting in a prospective series of patients with idiopathic normal pressure hydrocephalus (NPH). The degree and extension of CSF flow void were examined on T2-weighted magnetic resonance imaging scans of 37 elderly patients with idiopathic NPH who underwent subsequent shunting. The degree of flow void was assessed in comparison with the signal of large cerebral arteries. The extension was evaluated via the calculation of sum scores for the occurrence of flow void in different locations of the ventricular system. Those parameters were not considered in the decision to perform shunting. CSF flow void in the aqueduct and the adjacent third and fourth ventricles of the 37 patients with idiopathic NPH was compared with that of 37 age-matched control patients. CSF flow void scores in patients with idiopathic NPH were investigated for correlations between postoperative outcome scores and ventricular width indices. No difference was found between the occurrence of aqueductal CSF flow void in patients with idiopathic NPH and the control group. A significant difference, however, was noted for the extension of the CSF flow void, which was greater in the NPH group. Postoperative improvement was found in 33 of 37 patients with idiopathic NPH at a mean follow-up of 15.6 months. Only small, statistically not significant correlations were found between CSF flow void and postoperative outcome. Flow void sum scores, however, correlated significantly with ventricular width indices. The degree and extension of CSF flow void on T2-weighted magnetic resonance imaging scans have little predictive value for outcome after shunting in patients with idiopathic NPH. The greater extension of the CSF flow void in patients with NPH is most likely related to increased ventricular width. It is not useful to consider CSF flow void findings on conventional magnetic resonance imaging scans in making the decision to offer shunting in patients with idiopathic NPH.
The Metallicity of Void Dwarf Galaxies
NASA Astrophysics Data System (ADS)
Kreckel, K.; Croxall, K.; Groves, B.; van de Weygaert, R.; Pogge, R. W.
2015-01-01
The current ΛCDM cosmological model predicts that galaxy evolution proceeds more slowly in lower density environments, suggesting that voids are a prime location to search for relatively pristine galaxies that are representative of the building blocks of early massive galaxies. To test the assumption that void galaxies are more pristine, we compare the evolutionary properties of a sample of dwarf galaxies selected specifically to lie in voids with a sample of similar isolated dwarf galaxies in average density environments. We measure gas-phase oxygen abundances and gas fractions for eight dwarf galaxies (Mr > -16.2), carefully selected to reside within the lowest density environments of seven voids, and apply the same calibrations to existing samples of isolated dwarf galaxies. We find no significant difference between these void dwarf galaxies and the isolated dwarf galaxies, suggesting that dwarf galaxy chemical evolution proceeds independent of the large-scale environment. While this sample is too small to draw strong conclusions, it suggests that external gas accretion is playing a limited role in the chemical evolution of these systems, and that this evolution is instead dominated mainly by the internal secular processes that are linking the simultaneous growth and enrichment of these galaxies.
Analysis of Dislocation Emission during Microvoid Growth in Ductile Metals
NASA Astrophysics Data System (ADS)
Belak, James; Rudd, Robert E.
2001-03-01
Fracture in ductile metals occurs through the nucleation and growth of microscopic voids. This talk focuses on the initial stage when dislocations are first emitted from the void surface. The model system consists of a spherical void in an otherwise perfect crystal under triaxial tension. The stress field is calculated using continuum techniques, both finite element and analytic forms due to Eshelby, and compared with large-scale molecular dynamics (MD) simulation. The stress field is used to derive a criterion for dislocation nucleation on the glide planes intersecting the void surface. The critical resolved shear stress and the unstable stacking fault energy for the strain at the surface are used to compare to the critical stress for void growth in the MD simulations. Acknowledgement: This work was performed under the auspices of the US Dept. of Energy at the University of California/Lawrence Livermore National Laboratory under contract no. W-7405-Eng-48. [1] J. Belak, "On the nucleation and growth of voids at high strain-rates," J. Comp.-Aided Mater. Design 5, 193 (1998).
Effect of void shape in Czochralski-Si wafers on the intensity of laser-scattering
NASA Astrophysics Data System (ADS)
Takahashi, J.; Kawakami, K.; Nakai, K.
2001-06-01
The shape effect of anisotropic-shaped microvoid defects in Czochralski-grown silicon wafers on the intensity of laser scattering has been investigated. The size and shape of the defects were examined by means of transmission electron microscopy. Octahedral voids in conventional (nitrogen-undoped) wafers showed an almost isotropic scattering property under the incident condition of a p-polarization beam. On the other hand, parallelepiped-plate-shaped voids in nitrogen-doped wafers showed an anisotropic scattering property on both p- and s-polarized components of scattered light, depending strongly on the incident laser direction. The measured results were explained not by scattering calculation using Born approximation but by calculation based on Rayleigh scattering. It was found that the s component is explained by an inclination of a dipole moment induced on a defect from the scattering plane. Furthermore, using numerical electromagnetic analysis it was shown that the asymmetric behavior of the s component on the parallelepiped-plate voids is ascribed to the parallelepiped shape effect. These results suggest that correction of the scattering intensity is necessary to evaluate the size and volume of anisotropic-shaped defects from the scattered intensity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Endo, T.; Sato, S.; Yamamoto, A.
2012-07-01
Average burnup of damaged fuels loaded in Fukushima Dai-ichi reactors is estimated, using the {sup 134}Cs/{sup 137}Cs ratio method for measured radioactivities of {sup 134}Cs and {sup 137}Cs in contaminated soils within the range of 100 km from the Fukushima Dai-ichi nuclear power plants. As a result, the measured {sup 134}Cs/{sup 137}Cs ratio from the contaminated soil is 0.996{+-}0.07 as of March 11, 2011. Based on the {sup 134}Cs/{sup 137}Cs ratio method, the estimated burnup of damaged fuels is approximately 17.2{+-}1.5 [GWd/tHM]. It is noted that the numerical results of various calculation codes (SRAC2006/PIJ, SCALE6.0/TRITON, and MVP-BURN) are almost themore » same evaluation values of {sup 134}Cs/ {sup 137}Cs ratio with same evaluated nuclear data library (ENDF-B/VII.0). The void fraction effect in depletion calculation has a major impact on {sup 134}Cs/{sup 137}Cs ratio compared with the differences between JENDL-4.0 and ENDF-B/VII.0. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, Fuping, E-mail: fpyuan@lnm.imech.ac.cn; Wu, Xiaolei, E-mail: xlwu@imech.ac.cn
2014-12-15
A series of large-scale molecular dynamics simulations were conducted to investigate the scaling laws and the related atomistic deformation mechanisms of Cu monocrystal samples containing randomly placed nanovoids under adiabatic uniaxial strain compression. At onset of yielding, plastic deformation is accommodated by dislocations emitted from void surfaces as shear loops. The collapse of voids are observed by continuous emissions of dislocations from void surfaces and their interactions with further plastic deformation. The simulation results also suggest that the effect modulus, the yield stress and the energy aborption density of samples under uniaxial strain are linearly proportional to the relative densitymore » ρ. Moreover, the yield stress, the average flow stress and the energy aborption density of samples with the same relative density show a strong dependence on the void diameter d, expressed by exponential relations with decay coefficients much higher than -1/2. The corresponding atomistic mechanisms for scaling laws of the relative density and the void diameter were also presented. The present results should provide insights for understanding deformation mechanisms of nanoporous metals under extreme conditions.« less
Li, Ka; Yan, Jun; Yang, Qiang; Li, Zhenfeng; Li, Jianmin
2015-01-28
For osteoporosis or spinal metastases, percutaneous vertebroplasty is effective in pain relief and improvement of mobility. However, the complication rate (cement extravasation and fat embolisms) is relatively higher in the treatment of spinal metastases. The presence of tumor tissue plays a significant role in intravertebral pressure and cement distribution and thereby affects the occurrence of complications. We investigated the effect of void creation prior to vertebroplasty on intravertebral pressure and cement distribution in spinal metastases. Eighteen vertebrae (T8-L4) from five cadaveric spines were randomly allocated for two groups (group with and without void) of nine vertebrae each. Defect was created by removing a central core of cancellous bone in the vertebral body and then filling it with 30% or 100% fresh muscle paste by volume to simulate void creation or no void creation, respectively. Then, 20% bone cement by volume of the vertebral body was injected into each specimen through a unipedicular approach at a rate of 3 mL/min. The gender of the donor, vertebral body size, bone density, cement volume, and intravertebral pressure were recorded. Then, computed tomography scans and cross sections were taken to evaluate the cement distribution in vertebral bodies. No significant difference was found between the two groups in terms of the gender of the donor, vertebral body size, bone density, or bone cement volume. The average maximum intravertebral pressure in the group with void creation was significantly lower than that in the group without void creation (1.20 versus 5.09 kPa, P = 0.001). Especially during the filling of void, the difference was more pronounced. Void creation prior to vertebroplasty allowed the bone cement to infiltrate into the lytic defect. In vertebroplasty for spinal metastases, void creation produced lower intravertebral pressure and facilitated cement filling. To reduce the occurrence of complication, it may be an alternative to eliminate the tumor tissue to create a void prior to cement injection.
Zhao, Shijun; Zhang, Yanwen; Weber, William J.
2017-10-17
Using first-principles calculations based on density-functional theory, the energetics of different vacancy-type defects, including voids, stacking fault tetrahedra (SFT) and vacancy loops, in Ni are investigated. It is found that voids are more stable than SFT at 0 K, which is also the case after taking into account the volumetric strains. By carrying out ab initio molecular dynamics simulations at temperatures up to 1000 K, direct transformations from vacancy loops and voids into SFT are observed. Our results suggest the importance of temperature effects in determining thermodynamic stability of vacancy clusters in face-centered cubic metals.
Effect of Moisture Exchange on Interface Formation in the Repair System Studied by X-ray Absorption
Lukovic, Mladena; Ye, Guang
2015-01-01
In concrete repair systems, material properties of the repair material and the interface are greatly influenced by the moisture exchange between the repair material and the substrate. If the substrate is dry, it can absorb water from the repair material and reduce its effective water-to-cement ratio (w/c). This further affects the hydration rate of cement based material. In addition to the change in hydration rate, void content at the interface between the two materials is also affected. In this research, the influence of moisture exchange on the void content in the repair system as a function of initial saturation level of the substrate is investigated. Repair systems with varying level of substrate saturation are made. Moisture exchange in these repair systems as a function of time is monitored by the X-ray absorption technique. After a specified curing age (3 d), the internal microstructure of the repair systems was captured by micro-computed X-ray tomography (CT-scanning). From reconstructed images, different phases in the repair system (repair material, substrate, voids) can be distinguished. In order to quantify the void content, voids were thresholded and their percentage was calculated. It was found that significantly more voids form when the substrate is dry prior to application of the repair material. Air, initially filling voids and pores of the dry substrate, is being released due to the moisture exchange. As a result, air voids remain entrapped in the repair material close to the interface. These voids are found to form as a continuation of pre-existing surface voids in the substrate. Knowledge about moisture exchange and its effects provides engineers with the basis for recommendations about substrate preconditioning in practice. PMID:28787801
Simulation of defects in fusion plasma first wall materials
NASA Astrophysics Data System (ADS)
T, Troev; N, Nankov; T, Yoshiie
2014-06-01
Numerical calculations of radiation damages in beryllium, alpha-iron and tungsten irradiated by fusion neutrons were performed using molecular dynamics (MD) simulations. The displacement cascades efficiency has been calculated using the Norgett-Robinson-Torrens (NRT) formula, the universal pair-potential of Ziegler-Biersack-Littmark (ZBL) and the EAM inter-atomic potential. The pair potential overestimates the defects production by a factor of 2. The ZBL pair potential results and the EAM are comparable at higher primary knock-on atom (PKA) energies (E > 100 keV). We found that the most common types of defects are single vacancies, di-vacancies, interstitials and small number of interstitial clusters. On the bases of calculated results, the behavior of vacancies, empty nano-voids and nano-voids with hydrogen and helium were discussed.
Han, In-Kyu; Duan, Xiaoli; Zhang, Lin; Yang, Hongbiao; Rhoads, George G; Wei, Fusheng; Zhang, Junfeng
2008-09-01
Urinary 1-hydroxypyrene (1-OHP) has been suggested as an exposure biomarker for polycyclic aromatic hydrocarbons (PAHs). However, it remains unknown whether a first morning urine sample can be used to reflect average exposure. In this paper, we examine intra-individual differences and inter-individual associations between first morning voids and 24-h composite urine samples. The analysis was performed using data collected from 100 adults who had a wide range of PAH exposure due to differences in their occupation, e.g., coke oven workers vs. non-coke oven workers. For each subject, all the urine voids within each of two 24-h measurement periods were collected. Results showed a significant (40% to 62%) intra-individual difference between first morning voids and 24-h urinary 1-OHP concentrations (in ng/ml urine). Creatinine adjustments of 1-OHP concentrations (in micromol/mol urinary creatinine) reduced the intra-individual difference by approximately 10%. Across all the subjects, a high overall correlation (r=0.76) was observed between first morning and 24-h average 1-OHP concentrations. Work environment and sampling season were found to significantly affect the relationship between first morning and 24-h 1-OHP concentrations. An increase of 1 ng/ml of first morning urinary 1-OHP predicted an increase of 0.5 and 0.25 ng/ml of 24-h urinary 1-OHP for coke oven workers and non-coke oven workers, respectively. Data collected in a winter season showed a higher correlation between first morning and 24-h concentrations than data collected in a fall season. Creatinine adjustments did not significantly improve overall correlations between first morning void and 24-h measurements, but increased total variances for 24-h urines explained by first morning urines in coke workers.
Void Formation during Diffusion - Two-Dimensional Approach
NASA Astrophysics Data System (ADS)
Wierzba, Bartek
2016-06-01
The final set of equations defining the interdiffusion process in solid state is presented. The model is supplemented by vacancy evolution equation. The competition between the Kirkendall shift, backstress effect and vacancy migration is considered. The proper diffusion flux based on the Nernst-Planck formula is proposed. As a result, the comparison of the experimental and calculated evolution of the void formation in the Fe-Pd diffusion couple is shown.
NASA Astrophysics Data System (ADS)
Miyakawa, Erina; Fujii, Hiroyuki; Hattori, Kiyohito; Tatekura, Yuki; Kobayashi, Kazumichi; Watanabe, Masao
2016-12-01
Diffuse optical tomography (DOT), which is still under development, has a potential to enable non-invasive diagnoses of thyroid cancers in the human neck using the near-infrared light. This modality needs a photon migration model because scattered light is used. There are two types of photon migration models: the radiative transport equation (RTE) and diffusion equation (DE). The RTE can describe photon migration in the human neck with accuracy, while the DE enables an efficient calculation. For developing the accurate and efficient model of photon migration, it is crucial to investigate a condition where the DE holds in a scattering medium including a void region under the refractive-index mismatch at the void boundary because the human neck has a trachea (void region) and the refractive indices are different between the human neck and trachea. Hence, in this paper, we compare photon migration using the RTE with that using the DE in the medium. The numerical results show that the DE is valid under the refractive-index match at the void boundary even though the void region is near the source and detector positions. Under the refractive-index mismatch at the boundary, the numerical results using the DE disagree with those using the RTE when the void region is near the source and detector positions. This is probably because the anisotropy of the light scattering remains around the void boundary.
BORAX V EXPONENTIAL EXPERIMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirn, F.S.; Hagen, J.I.
1963-04-01
The cadmium ratio was measured in an exponential mockup of Borax V as a function of the void fraction. The extent of voids, simulated by lengths of closed polyethylene tubes, ranged from 0 to 40%. The corresponding cadmium ratios ranged from 6.1 to 4.6. The exponential was also used to determine the radial flux pattern across a Borax-type fuel assembly and the fine flux detail in and around fuel rods. For a normal loading the maximum-to-average power generation across an assembly was 1.24. (auth)
Choi, Kyongsik; Chon, James W; Gu, Min; Lee, Byoungho
2007-08-20
In this paper, a simple confocal laser scanning microscopic (CLSM) image mapping technique based on the finite-difference time domain (FDTD) calculation has been proposed and evaluated for characterization of a subwavelength-scale three-dimensional (3D) void structure fabricated inside polymer matrix. The FDTD simulation method adopts a focused Gaussian beam incident wave, Berenger's perfectly matched layer absorbing boundary condition, and the angular spectrum analysis method. Through the well matched simulation and experimental results of the xz-scanned 3D void structure, we first characterize the exact position and the topological shape factor of the subwavelength-scale void structure, which was fabricated by a tightly focused ultrashort pulse laser. The proposed CLSM image mapping technique based on the FDTD can be widely applied from the 3D near-field microscopic imaging, optical trapping, and evanescent wave phenomenon to the state-of-the-art bio- and nanophotonics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waters, A M
2001-05-01
In an effort to increase automobile fuel efficiency as well as decrease the output of harmful greenhouse gases, the automotive industry has recently shown increased interest in cast light metals such as magnesium alloys in an effort to increase weight savings. Currently several magnesium alloys such as AZ91 and AM60B are being used in structural applications for automobiles. However, these magnesium alloys are not as well characterized as other commonly used structural metals such as aluminum. This dissertation presents a methodology to nondestructively quantify damage accumulation due to void behavior in three dimensions in die-cast magnesium AM60B tensile bars asmore » a function of mechanical load. Computed tomography data was acquired after tensile bars were loaded up to and including failure, and analyzed to characterize void behavior as it relates to damage accumulation. Signal and image processing techniques were used along with a cluster labeling routine to nondestructively quantify damage parameters in three dimensions. Void analyses were performed including void volume distribution characterization, nearest neighbor distance calculations, shape parameters, and volumetric renderings of voids in the alloy. The processed CT data was used to generate input files for use in finite element simulations, both two- and three-dimensional. The void analyses revealed that the overwhelming source of failure in each tensile bar was a ring of porosity within each bar, possibly due to a solidification front inherent to the casting process. The measured damage parameters related to void nucleation, growth, and coalescence were shown to contribute significantly to total damage accumulation. Void volume distributions were characterized using a Weibull function, and the spatial distributions of voids were shown to be clustered. Two-dimensional finite element analyses of the tensile bars were used to fine-tune material damage models and a three-dimensional mesh of an extracted portion of one tensile bar including voids was generated from CT data and used as input to a finite element analysis.« less
Measurements of void fraction distribution in cavitating pipe flow using x-ray CT
NASA Astrophysics Data System (ADS)
Bauer, D.; Chaves, H.; Arcoumanis, C.
2012-05-01
Measuring the void fraction distribution is still one of the greatest challenges in cavitation research. In this paper, a measurement technique for the quantitative void fraction characterization in a cavitating pipe flow is presented. While it is almost impossible to visualize the inside of the cavitation region with visible light, it is shown that with x-ray computed tomography (CT) it is possible to capture the time-averaged void fraction distribution in a quasi-steady pipe flow. Different types of cavitation have been investigated including cloud-like cavitation, bubble cavitation and film cavitation at very high flow rates. A specially designed nozzle was employed to induce very stable quasi-steady cavitation. The obtained results demonstrate the advantages of the measurement technique compared to other ones; for example, structures were observed inside the cavitation region that could not be visualized by photographic images. Furthermore, photographic images and pressure measurements were used to allow comparisons to be made and to prove the superiority of the CT measurement technique.
Void migration in fusion materials
NASA Astrophysics Data System (ADS)
Cottrell, G. A.
2002-04-01
Neutron irradiation in a fusion power plant will cause helium bubbles and voids to form in the armour and blanket structural materials. If sufficiently large densities of such defects accumulate on the grain boundaries of the materials, the strength and the lifetimes of the metals will be reduced by helium embrittlement and grain boundary failure. This Letter discusses void migration in metals, both by random Brownian motion and by biassed flow in temperature gradients. In the assumed five-year blanket replacement time of a fusion power plant, approximate calculations show that the metals most resilient to failure are tungsten and molybdenum, and marginally vanadium. Helium embrittlement and grain boundary failure is expected to be more severe in steel and beryllium.
Mechanical Properties versus Morphology of Ordered Polymers. Volume III. Part I
1982-08-01
measured by wide angle x-ray scattering and differential scanning calorimetry, is unrelated to the diffuse scattered intensity [62]. Cellulose acetate which...increasing void fraction, in air swollen cellulose . Comparison of the volume fraction of voids calculated from the SAXS integrated intensity with...1964). 63. P.H. Hermans, D. Heikens, and A. Weidinger, "A Quantitative Investigation on the X-Ray Small Angle Scattering of Cellulose Fibers. Part II
Examination of ductile spall failure through direct numerical simulation
NASA Astrophysics Data System (ADS)
Becker, Richard
2017-06-01
Direct numerical simulation is used to examine the growth and coalescence of a random population of voids leading to spall failure. Void nucleating particles are explicitly represented in the initial geometry, and the arbitrary Lagrange-Eulerian finite element code tracks the void evolution to create the spall surface. The flow fields capture strain localization associated with void interaction at low porosities and ligament necking at final coalescence. Simulations are run to assess the influence of material strain hardening and strain rate sensitivity on void growth and coalescence. These analyses also provide the evolution of longitudinal stress and the energy dissipated, and they reveal a length scale associated with the spall. Additional calculations are performed to examine the influence of loading pulse shape on spall behavior for triangular shaped pressure loading. A dependence of spall scab thickness on pulse shape is determined. These results show localization delayed until porosities reach a few percent and they demonstrate a consistent stress versus porosity relation. The simulations also provide a direct correlation between the spall stress history and the free surface velocity, which can aid in understanding stress corrections applied to experimental data.
NASA Technical Reports Server (NTRS)
Psioda, J. A.; Low, J. R., Jr.
1977-01-01
Fractography and metallographic sectioning were used to investigate the influence of microstructure and strength on the fracture toughness (KIc) and fracture mechanism of an 18 Ni, 300 grade maraging steel. Increased yield strength from 1442 to 2070 MN/m squared through precipitation hardening results in a KIc loss from 143 to 55 MN/m superscript 3/2. Ti (C,N) Ti2S, and TiC inclusions in sizes from 1 to 8, 1 to 15, and 0.1 to 2 microns respectively serve as sites for void nucleation and lead to fracture by the dimpled rupture process in all strength levels considered. TiC nucleated dimples occupy more than half the fracture in all conditions. Void nucleation rate and resultant number of dimples per unit area of fracture increase with increasing yield strength. Average dimple size decreases with increasing strength and/or overaging which follows from the decreasing amount of stable void growth measured by sectioning tensile specimens. Void growth is assisted by crack branching along a path of TiC inclusions. Coalescence occurs in the highest strength materials by a combination of TiC void nucleation and premature separation at strengthening precipitates.
Mechanical cloak design by direct lattice transformation
Bückmann, Tiemo; Kadic, Muamer; Schittny, Robert; Wegener, Martin
2015-01-01
Spatial coordinate transformations have helped simplifying mathematical issues and solving complex boundary-value problems in physics for decades already. More recently, material-parameter transformations have also become an intuitive and powerful engineering tool for designing inhomogeneous and anisotropic material distributions that perform wanted functions, e.g., invisibility cloaking. A necessary mathematical prerequisite for this approach to work is that the underlying equations are form invariant with respect to general coordinate transformations. Unfortunately, this condition is not fulfilled in elastic–solid mechanics for materials that can be described by ordinary elasticity tensors. Here, we introduce a different and simpler approach. We directly transform the lattice points of a 2D discrete lattice composed of a single constituent material, while keeping the properties of the elements connecting the lattice points the same. After showing that the approach works in various areas, we focus on elastic–solid mechanics. As a demanding example, we cloak a void in an effective elastic material with respect to static uniaxial compression. Corresponding numerical calculations and experiments on polymer structures made by 3D printing are presented. The cloaking quality is quantified by comparing the average relative SD of the strain vectors outside of the cloaked void with respect to the homogeneous reference lattice. Theory and experiment agree and exhibit very good cloaking performance. PMID:25848021
Jones, Alan Wayne; Kugelberg, Fredrik C
2010-01-30
For various reasons, many people suspected of driving under the influence of alcohol (DUIA) are not apprehended sitting behind the wheel, but some time after the driving. This gives them the opportunity to claim they drank alcohol after the time of driving or after they were involved in a road-traffic crash. Alleged post-offence drinking is not easy for the prosecution to disprove, which often means that the DUIA charge is dropped or the person is acquitted if the case goes to trial. The routine practice of sampling and measuring the concentration of alcohol in blood (BAC) and urine (UAC) and calculating urine/blood ratios (UAC/BAC) and the changes in UAC between two successive voids furnishes useful information to support or challenge alleged drinking after driving. We present here a retrospective case series of DUIA offenders (N=40) in half of which there was supporting evidence of an after-drink (eye witness or police reports) and in the other half no such evidence existed apart from the suspect's admission. When there was supporting evidence of an after-drink, the UAC/BAC ratio for the first void was close to or less than unity (mean 1.04, median 1.08, range 0.54-1.21) and the UAC increased by 0.21 g/L (range 0.02-0.57) between the two voids. Without any supporting evidence of post-offence drinking the mean UAC/BAC ratio was 1.46 (range 1.35-1.93) for the first void, verifying that absorption and distribution of alcohol in all body fluids and tissues was complete. In these cases, the UAC between successive voids decreased by 0.25 g/L on average (range 0.10-0.49), indicating the post-absorptive phase of the BAC curve. Long experience from investigating claims of post-offence drinking leads us to conclude that in the vast majority of cases this lacks any substance and is simply a last resort by DUIA offenders to evade justice. Unless supporting evidence exists (eye witness, police reports, etc.) of post-offence drinking the courts are encouraged to ignore this defence argument. 2009 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Healy, D.; Davis, T.
2017-12-01
In low porosity rocks it is widely believed that planes of shear failure nucleate through the interaction of arrays of smaller tensile microcracks. This model has been confirmed through laboratory rock deformation experiments and detailed microstructural analyses. In this contribution we use the Boundary Element Method (BEM) to model the interactions of arrays of tensile cracks, discretised as ellipsoidal voids in three dimensions (3D). We calculate the elastic stresses in the solid matrix surrounding the cracks resulting from an applied load and include the interaction effects of each crack upon all the others. We explore the role of variations in crack shape, size, position and orientation upon the total and locally perturbed stress fields. We calculate the average crack normal stress (CNS) acting over the area of each tensile crack, and then find the locus of the maximum value of this stress throughout the modelled volume. Following Reches & Lockner (1994) and Healy et al. (2006a, 2006b), we assert that planes of shear failure will most likely nucleate on surfaces parallel to the locus of maximum average CNS. These shear planes are oblique to all three principal stresses in the far field.
ON THE STAR FORMATION PROPERTIES OF VOID GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moorman, Crystal M.; Moreno, Jackeline; White, Amanda
2016-11-10
We measure the star formation properties of two large samples of galaxies from the SDSS in large-scale cosmic voids on timescales of 10 and 100 Myr, using H α emission line strengths and GALEX FUV fluxes, respectively. The first sample consists of 109,818 optically selected galaxies. We find that void galaxies in this sample have higher specific star formation rates (SSFRs; star formation rates per unit stellar mass) than similar stellar mass galaxies in denser regions. The second sample is a subset of the optically selected sample containing 8070 galaxies with reliable H i detections from ALFALFA. For the fullmore » H i detected sample, SSFRs do not vary systematically with large-scale environment. However, investigating only the H i detected dwarf galaxies reveals a trend toward higher SSFRs in voids. Furthermore, we estimate the star formation rate per unit H i mass (known as the star formation efficiency; SFE) of a galaxy, as a function of environment. For the overall H i detected population, we notice no environmental dependence. Limiting the sample to dwarf galaxies still does not reveal a statistically significant difference between SFEs in voids versus walls. These results suggest that void environments, on average, provide a nurturing environment for dwarf galaxy evolution allowing for higher specific star formation rates while forming stars with similar efficiencies to those in walls.« less
Suassuna, Fernanda Clotilde Mariz; Maia, Ana Marly Araújo; Melo, Daniela Pita; Antonino, Antônio Celso Dantas; Gomes, Anderson Stevens Leônidas; Bento, Patrícia Meira
2018-02-01
To comparein vitro differences in the apical filling regarding working length (WL) change and presence of voids and to validate optical coherence tomography (OCT) in comparison with computerized microtomography (µCT) for the detection of failures in the apical filling. Forty-five uniradicular teeth with round canals, divided into groups (n = 15) following the obturation protocols: LC (lateral condensation), TMC (thermomechanical compaction) and SC (single cone). Samples were scanned using µCT (parameters: 80 kV, 222 µA, and resolution of 11 µm), OCT (parameters: SSOCT, 1300 nm and axial resolution of 12 µm), and periapical digital radiography. The images were analyzsed by two blind and calibrated observers using ImageJ software to measure the boundary of the obturation WL and voids presence. Categorical and metric data were submitted to inferential analysis, and the validity of the OCT as a diagnostic test was assessed with performance and reliability tests. The WL average remained constant for all obturation techniques and image methods. OCT showed adequate sensitivity and specificity to detect voids in the WL of apical obturations in vitro in comparison with µCT. Both image methods found a higher number of voids for LC technique (µCT p = 0.011/OCT p = 0.002). OCT can be used in apical obturation voids assessment and the LC technique revealed more voids with larger dimensions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stubos, A.K.; Caseiras, C.P.; Buchlin, J.M.
The transient two-phase flow and phase change heat transfer processes in porous media are investigated. Based on an enthalpic approach, a one-domain formulation of the problem is developed, avoiding explicit internal boundary tracking between single- and two-phase regions. An efficient numerical scheme is applied to obtain the solution on a fixed two-dimensional grid. The transient response of a liquid-saturated, self-heated porous bed is examined in detail. A physical interpretation of a liquid-saturated, self-heated porous bed is examined in detail. A physical interpretation of the computed response to fast power transients is attempted. Comparisons with experimental data are made regarding themore » average void fraction and the limiting dryout heat flux. The numerical approach is extended, keeping the one-domain formulation, to include the surrounding wall structure in the calculation.« less
Eisenhardt, Andreas; Schneider, Tim; Cruz, Francisco; Oelke, Matthias
2014-10-01
Nocturia is prevalent and bothersome in men with lower urinary tract symptoms suggestive of BPH (LUTS/BPH). α-Adrenoceptor antagonists without subtype selectivity have inconsistently shown significant effects on nocturia in these patients. We explored the effects of the α1A-adrenoceptor subtype-selective antagonist silodosin on nocturia by analyzing three placebo-controlled registration studies. Responses to question 7 of the IPSS questionnaire were analyzed for the entire study population and patients with ≥ 2 voids/night at baseline. Improvement/worsening rates for nocturia were calculated for once-daily silodosin 8 mg and placebo. Silodosin effects on the mean number of nocturnal voids were compared with placebo, and the number of patients in whom nocturia was reduced to <2 times was calculated. In total, 1,479 men were treated with silodosin or placebo; 1,266 men (85 %) had ≥ 2 voids/night at baseline. Compared to placebo, more men treated with silodosin reported about nocturia improvement (53.4 vs. 42.8 %, p < 0.0001) and fewer patients about worsening (9.0 vs. 14.3 %, p < 0.0001). Silodosin significantly reduced nocturia within each study and pooled cohort compared to placebo (p < 0.001). In men with ≥ 2 nocturnal voids at baseline, 61 and 49 % of patients with silodosin and placebo had reductions of ≥ 1 voids/night, respectively (p = 0.0003), and significantly more patients with silodosin had <2 nocturia episodes at study end compared to placebo (29.3 vs. 19.0 %; p = 0.0002). Although a weak impact on nocturia is already known from α-adrenoceptor antagonists without subtype selectivity, the individual placebo-controlled studies and the pooled data analysis showed that the α1A-adrenoceptor subtype-selective antagonist silodosin consistently and significantly improves nocturia in men with LUTS/BPH.
Urine Flow Dynamics Through Prostatic Urethra With Tubular Organ Modeling Using Endoscopic Imagery
Kambara, Yoichi; Yamanishi, Tomonori; Naya, Yukio; Igarashi, Tatsuo
2014-01-01
Voiding dysfunction is common in the aged male population. However, the obstruction mechanism in the lower urinary tract and critical points for obstruction remains uncertain. The aim of this paper was to develop a system to investigate the relationship between voiding dysfunction and alteration of the shape of the prostatic urethra by processing endoscopic video images of the urethra and analyzing the fluid dynamics of the urine stream. A panoramic image of the prostatic urethra was generated from cystourethroscopic video images. A virtual 3-D model of the urethra was constructed using the luminance values in the image. Fluid dynamics using the constructed model was then calculated assuming a static urethra and maximum urine flow rate. Cystourethroscopic videos from 11 patients with benign prostatic hyperplasia were recorded around administration of an alpha-1 adrenoceptor antagonist. The calculated pressure loss through the prostatic urethra in each model corresponded to the prostatic volume, and the improvements of the pressure loss after treatment correlated to the conventional clinical indices. As shown by the proposed method, the shape of the prostatic urethra affects the transporting urine fluid energy, and this paper implies a possible method for detecting critical lesions responsible for voiding dysfunction. The proposed method provides critical information about deformation of the prostatic urethra on voiding function. Detailed differences in the various types of relaxants for the lower urinary tract could be estimated. PMID:27170869
ERIC Educational Resources Information Center
Bailey, F. Lee
1973-01-01
Evidence indicates a tremendous void in the understanding of law by the average citizen. Participation by lawyers in the educational process is suggested to begin the task of introducing law into the classroom. (Author/KM)
Min, Yi; Song, Ying; Gao, Yuan; Dummer, Paul M H
2016-08-01
This study aimed to present a new method based on numeric calculus to provide data on the theoretical volume ratio of voids when using the cold lateral compaction technique in canals with various diameters and tapers. Twenty-one simulated mathematical root canal models were created with different tapers and sizes of apical diameter, and were filled with defined sizes of standardized accessory gutta-percha cones. The areas of each master and accessory gutta-percha cone as well as the depth of their insertion into the canals were determined mathematically in Microsoft Excel. When the first accessory gutta-percha cone had been positioned, the residual area of void was measured. The areas of the residual voids were then measured repeatedly upon insertion of additional accessary cones until no more could be inserted in the canal. The volume ratio of voids was calculated through measurement of the volume of the root canal and mass of gutta-percha cones. The theoretical volume ratio of voids was influenced by the taper of canal, the size of apical preparation and the size of accessory gutta-percha cones. Greater apical preparation size and larger taper together with the use of smaller accessory cones reduced the volume ratio of voids in the apical third. The mathematical model provided a precise method to determine the theoretical volume ratio of voids in root-filled canals when using cold lateral compaction.
Liu, Ning; Man, Li-Bo; He, Feng; Huang, Guang-Lin; Zhou, Ning; Zhu, Xiao-Fei
2015-01-01
Background: Work in voiding (WIV) of the bladder may be used to evaluate bladder status throughout urination rather than at a single time point. Few studies, however, have assessed WIV owing to the complexity of its calculations. We have developed a method of calculating work capacity of the bladder while voiding and analyzed the associations of bladder work parameters with bladder contractile function and bladder outlet obstruction (BOO). Methods: The study retrospectively evaluated 160 men and 23 women, aged >40 years and with a detrusor pressure at maximal flow rate (Pdet Qmax) of ≥40 cmH2O in men, who underwent urodynamic testing. The bladder power integration method was used to calculate WIV; WIV per second (WIV/t) and WIV per liter of urine voided (WIV/v) were also calculated. In men, the relationships between these work capacity parameters and Pdet Qmax and Abrams-Griffiths (AG) number were determined using linear-by-linear association tests, and relationships between work capacity parameters and BOO grade were investigated using Spearman's association test. Results: The mean WIV was 1.15 ± 0.78 J and 1.30 ± 0.88 J, mean WIV/t was 22.95 ± 14.45 mW and 23.78 ± 17.02 mW, and mean WIV/v was 5.59 ± 2.32 J/L and 2.83 ± 1.87 J/L in men and women, respectively. In men, WIV/v showed significant positive associations with Pdet Qmax (r = 0.845, P = 0.000), AG number (r = 0.814, P = 0.000), and Schafer class (r = 0.726, P = 0.000). Conversely, WIV and WIV/t showed no associations with Pdet Qmax or AG number. In patients with BOO (Schafer class > II), WIV/v correlated positively with increasing BOO grade. Conclusions: WIV can be calculated from simple urodynamic parameters using the bladder power integration method. WIV/v may be a marker of BOO grade, and the bladder contractile function can be evaluated by WIV and WIV/t. PMID:26668148
Performance of Velicer's Minimum Average Partial Factor Retention Method with Categorical Variables
ERIC Educational Resources Information Center
Garrido, Luis E.; Abad, Francisco J.; Ponsoda, Vicente
2011-01-01
Despite strong evidence supporting the use of Velicer's minimum average partial (MAP) method to establish the dimensionality of continuous variables, little is known about its performance with categorical data. Seeking to fill this void, the current study takes an in-depth look at the performance of the MAP procedure in the presence of…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marra, Valerio; Kolb, Edward W.; Matarrese, Sabino
We analyze a toy Swiss-cheese cosmological model to study the averaging problem. In our Swiss-cheese model, the cheese is a spatially flat, matter only, Friedmann-Robertson-Walker solution (i.e., the Einstein-de Sitter model), and the holes are constructed from a Lemaitre-Tolman-Bondi solution of Einstein's equations. We study the propagation of photons in the Swiss-cheese model, and find a phenomenological homogeneous model to describe observables. Following a fitting procedure based on light-cone averages, we find that the expansion scalar is unaffected by the inhomogeneities (i.e., the phenomenological homogeneous model is the cheese model). This is because of the spherical symmetry of the model;more » it is unclear whether the expansion scalar will be affected by nonspherical voids. However, the light-cone average of the density as a function of redshift is affected by inhomogeneities. The effect arises because, as the universe evolves, a photon spends more and more time in the (large) voids than in the (thin) high-density structures. The phenomenological homogeneous model describing the light-cone average of the density is similar to the {lambda}CDM concordance model. It is interesting that, although the sole source in the Swiss-cheese model is matter, the phenomenological homogeneous model behaves as if it has a dark-energy component. Finally, we study how the equation of state of the phenomenological homogeneous model depends on the size of the inhomogeneities, and find that the equation-of-state parameters w{sub 0} and w{sub a} follow a power-law dependence with a scaling exponent equal to unity. That is, the equation of state depends linearly on the distance the photon travels through voids. We conclude that, within our toy model, the holes must have a present size of about 250 Mpc to be able to mimic the concordance model.« less
Bubble and Slug Flow at Microgravity Conditions: State of Knowledge and Open Questions
NASA Technical Reports Server (NTRS)
Colin, C.; Fabre, J.; McQuillen, J.
1996-01-01
Based on the experiments carried out over the past decade at microgravity conditions, an overview of our current knowledge of bubbly and slug flows is presented. The transition from bubble to slug flow, the void fraction and the pressure drop are discussed from the data collected in the literature. The transition from bubble to slug flow may be predicted by introducing a critical void fraction that depends on the fluid properties and the pipe diameter; however, the role of coalescence which controls this transition is not clearly understood. The void fraction may be accurately calculated using a drift-flux model. It is shown from local measurements that the drift of the gas with respect to the mixture is due to non-uniform radial distribution of void fraction. The pressure drop happens to be controlled by the liquid flow for bubbly flow whereas for slug flow the experimental results show that pressure drops is larger than expected. From this study, the guidelines for future research in microgravity are given.
NASA Astrophysics Data System (ADS)
Hickson, D. C.; Boivin, A.; Daly, M. G.; Ghent, R. R.; Nolan, M. C.; Tait, K.; Cunje, A.; Tsai, C. A.
2017-12-01
Planetary radar is widely used to survey the Near-Earth Asteroid (NEA) population and can provide insight into target shapes, sizes, and spin states. The dual-polarization reflectivity is sensitive to surface roughness as well as material properties, specifically the real part of the complex permittivity, or dielectric constant. Knowledge of the behavior of the dielectric constant of asteroid regolith analogue material with environmental parameters can be used to inversely solve for such parameters, such as bulk density, from radar observations. In this study laboratory measurements of the complex permittivity of powdered aluminum oxide and dunite samples are performed in a low-pressure environment chamber using a coaxial transmission line from roughly 1 GHz to 8.5 GHz. The bulk densities of the samples are varied across the measurements by incrementally adding silica aerogel, a low-density material with a very low dielectric constant. This allows the alteration of the proportions of void space to solid particle grains to achieve microgravity-relevant porosities without significantly altering the dielectric properties of the powder sample. The data are then modeled using various electromagnetic mixing equations to characterize the change in dielectric constant with increasing volume fractions of void space (decreasing bulk density). Using spectral analogues as constraints on the composition of NEAs allows us to calculate the range in bulk densities in the near surface of NEAs that have been observed by planetary radar. Utilizing existing radar data from Arecibo Observatory we calculate the bulk density in the near-surface on (101955) Bennu, the target of NASA's OSIRIS-Rex mission, to be ρ = 1.27 ± 0.33 g cm-3 based on an average of the likely range in particle density and dielectric constant of the regolith material.
Constraints on Cosmology and Gravity from the Dynamics of Voids.
Hamaus, Nico; Pisani, Alice; Sutter, P M; Lavaux, Guilhem; Escoffier, Stéphanie; Wandelt, Benjamin D; Weller, Jochen
2016-08-26
The Universe is mostly composed of large and relatively empty domains known as cosmic voids, whereas its matter content is predominantly distributed along their boundaries. The remaining material inside them, either dark or luminous matter, is attracted to these boundaries and causes voids to expand faster and to grow emptier over time. Using the distribution of galaxies centered on voids identified in the Sloan Digital Sky Survey and adopting minimal assumptions on the statistical motion of these galaxies, we constrain the average matter content Ω_{m}=0.281±0.031 in the Universe today, as well as the linear growth rate of structure f/b=0.417±0.089 at median redshift z[over ¯]=0.57, where b is the galaxy bias (68% C.L.). These values originate from a percent-level measurement of the anisotropic distortion in the void-galaxy cross-correlation function, ϵ=1.003±0.012, and are robust to consistency tests with bootstraps of the data and simulated mock catalogs within an additional systematic uncertainty of half that size. They surpass (and are complementary to) existing constraints by unlocking cosmological information on smaller scales through an accurate model of nonlinear clustering and dynamics in void environments. As such, our analysis furnishes a powerful probe of deviations from Einstein's general relativity in the low-density regime which has largely remained untested so far. We find no evidence for such deviations in the data at hand.
Effect of laminate edge conditions on the formation of microvoids in composite laminates
NASA Astrophysics Data System (ADS)
Anderson, J. P.; Altan, M. C.
2015-05-01
Manufacturing defects such as microvoids are common in thermoset composite components and are known to negatively affect their strength. The resin pressure developed in and the resin flow out from the laminates during cure have been reported to be the primary factors influencing the final void content of a composite component. In this work, the effect of laminate edge conditions during the cure process on the formation of microvoids was experimentally investigated. This was achieved by fabricating eight-ply laminates from TenCate® BT250/7781 prepreg in a hot-press at a constant cure pressure of 170 kPa while limiting the laminate perimeter available for resin flow by 0%, 25%, 50%, 75%, and 100%. The individual plies of these five laminates were conditioned at 99% relative humidity before curing to maximize the moisture present in the lay-up before fabrication. The presence of moisture in the lay-ups was expected to promote void formation and allow the effect of restricting flow at the edges of a laminate to be better identified. The restriction of resin outflow was found to cause the average characteristic void diameter to decrease by 17% and void content to rise by 33%. This phenomenon was identified to be a result of the outflow restriction increasing the number of voids trapped within the laminate and indicates that for laminates cured at low pressures resin outflow is the dominant mechanism for void reduction.
NASA Astrophysics Data System (ADS)
Hu, Lin; Wirth, Brian D.; Maroudas, Dimitrios
2017-08-01
We report results on the lattice thermal conductivities of tungsten single crystals containing nanoscale-sized pores or voids and helium (He) nanobubbles as a function of void/bubble size and gas pressure in the He bubbles based on molecular-dynamics simulations. For reference, we calculated lattice thermal conductivities of perfect tungsten single crystals along different crystallographic directions at room temperature and found them to be about 10% of the overall thermal conductivity of tungsten with a weak dependence on the heat flux direction. The presence of nanoscale voids in the crystal causes a significant reduction in its lattice thermal conductivity, which decreases with increasing void size. Filling the voids with He to form He nanobubbles and increasing the bubble pressure leads to further significant reduction of the tungsten lattice thermal conductivity, down to ˜20% of that of the perfect crystal. The anisotropy in heat conduction remains weak for tungsten single crystals containing nanoscale-sized voids and He nanobubbles throughout the pressure range examined. Analysis of the pressure and atomic displacement fields in the crystalline region that surrounds the He nanobubbles reveals that the significant reduction of tungsten lattice thermal conductivity in this region is due to phonon scattering from the nanobubbles, as well as lattice deformation around the nanobubbles and formation of lattice imperfections at higher bubble pressure.
Influence of the internal anatomy on the leakage of root canals filled with thermoplastic technique.
Al-Jadaa, Anas; Attin, T; Peltomäki, T; Heumann, C; Schmidlin, P R; Paquè, F
2018-04-01
The aim of this paper is to evaluate the influence of the internal anatomy on the leakage of root canals filled with the thermoplastic technique. The upper central incisors (UCI) and mesial roots of the lower molars (MRLM) (n = 12 each) were tested regarding leakage using the gas-enhanced permeation test (GEPT) after root filling. The quality of the root fillings was assessed using micro-computed tomography (μCT) by superimposing scans before and after treatment to calculate unfilled volume. The calculated void volume was compared between the groups and correlated to the measured leakage values. Data were analyzed using t test and Pearson's correlation tests (p < 0.05). The mean void volume did not differ between UCI and MRLM (13.7 ± 6.2% vs. 14.2 ± 6.8%, respectively). However, significantly more leakage was evident in the MRLM (p < 0.001). While the leakage correlated highly to the void volume in the MRLM group (R 2 = 0.981, p < 0.001), no correlation was found in UCI (R 2 = 0.467, p = 0.126). MRLM showed higher leakage values, which correlated to the void volume in the root canal fillings. Care should always be taken while doing root canal treatments, but attention to teeth with known/expected complex root canal anatomy should be considered.
Extended Burnup Credit for BWR Spent Nuclear Fuel in Storage and Transportation Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ade, Brian J; Bowman, Stephen M; Gauld, Ian C
2015-01-01
[Full Text] Oak Ridge National Laboratory and the United States Nuclear Regulatory Commission have initiated a multiyear project to investigate the application of burnup credit (BUC) for boiling-water reactor (BWR) fuel in storage and transportation casks. This project includes two phases. The first phase investigates the applicability of peak reactivity methods currently used for spent fuel pools to spent fuel storage and transportation casks and the validation of reactivity (k eff) calculations and depleted fuel compositions. The second phase focuses on extending BUC beyond peak reactivity. This paper documents work performed to date, investigating some aspects of extended BUC, andmore » it also describes the plan to complete the evaluations. The technical basis for application of peak reactivity methods to BWR fuel in storage and transportation systems is presented in a companion paper. Two reactor operating parameters are being evaluated to establish an adequate basis for extended BWR BUC, including investigation of the axial void profile effect and the effect of control blade utilization during operation. A detailed analysis of core simulator data for one cycle of an operating BWR plant was performed to determine the range of void profiles and the variability of the profile experienced during irradiation. While a single cycle does not provide complete data, the data obtained are sufficient to use to determine the primary effects and identify conservative modeling approaches. Using data resulting from a single cycle, the axial void profile is studied by first determining the temporal fidelity necessary in depletion modeling, and then using multiple void profiles to examine the effect of the void profile on cask reactivity. The results of these studies are being used to develop recommendations for conservatively modeling the void profile effects for BWR depletion calculations. The second operational parameter studied is control blade exposure. Control blades are inserted in various locations and at varying degrees during BWR operation based on the reload design. The presence of control blades during depletion hardens the neutron spectrum locally due to both moderator displacement and introduction of a thermal neutron absorber. The reactivity impact of control blade presence is investigated herein, as well as the effect of multiple (continuous and intermittent) exposure periods. The coupled effects of control blade presence on power density, void profile, or burnup profile have not been considered to date but will be addressed in future work.« less
[Comparison of new portable home electronic uroflowmeter with Laborie uroflowmeter].
Guan, Zhi-chen; Deng, Xiao-lin; Zhang, Qian
2011-08-18
To design a new portable home electronic uroflowmeter and compare it with traditional methods. The system consists of collectors, urine conducting apparatus, intelligent cell phone, wireless network communication technology, computer analysis and drawing, and data storage technology, etc., and can automatically collect voiding information from patients with lower urinary tract symptoms(LUTS) Through Bluetooth, the voiding information was sent to the patient's intelligent cell phone from the collector, then stored directly by intelligent cell phone and wirelessly transmitted to the workstation in hospital. The system was primarily tested with regard to accuracy of measurement of the voided volume. Multiple doses with known volume were introduced in the system and Laborie uroflowmeter. Furthermore, 38 outpatients who had LUTS were tested simultaneously with the system and Laborie uroflowmeter. The statistical method for assessing agreement between the two methods of clinical measurement was Bland-Altman analysis. Among the subjects, there were 22 male patients and 16 female patients, ranging from 21 to 37 years old, with an average age of 25.5 years, of whom, 19 were tested once and 19 patients twice, equaling to 57 tests. The system could accurately collect and analyze voiding time, uroflowmetry, voided volume, and automatically provide uroflowmetry parameters. The measurement error of 100, 200, 300, 500 and 800 mL is less than 5%. 12.28%, 5.26% and 3.51% of the Qmax, Qave and voided volume points were beyond the 95% limits of agreement. The maximum absolute values of the Qmax, Qave and voided volume difference were 0.38 mL/s, 0.70 mL/s and 2.90 mL, respectively.They agreed with the recommendation of Standardization International Continence Society. The new portable home electronic uroflowmeter has good agreement with Laborie uroflowmeter,and is a new LUTS monitoring system integrated with correct, reliable, real-time, convenient and easy-managing advantages. It is as noninvasive and reliable as traditional methods, and its portable feature facilitates application out of hospitals. It can also record voiding diaries.
Nordic Sea Level - Analysis of PSMSL RLR Tide Gauge data
NASA Astrophysics Data System (ADS)
Knudsen, Per; Andersen, Ole
2015-04-01
Tide gauge data from the Nordic region covering a period of time from 1920 to 2000 are evaluated. 63 stations having RLR data for at least 40 years have been used. Each tide gauge data record was averaged to annual averages after the monthly average seasonal anomalies were removed. Some stations lack data, especially before around 1950. Hence, to compute representative sea level trends for the 1920-2000 period a procedure for filling in estimated sea level values in the voids, is needed. To fill in voids in the tide gauge data records a reconstruction method was applied that utilizes EOF.s in an iterative manner. Subsequently the trends were computed. The estimated trends range from about -8 mm/year to 2 mm/year reflecting both post-glacial uplift and sea level rise. An evaluation of the first EOFs show that the first EOF clearly describes the trends in the time series. EOF #2 and #3 describe differences in the inter-annual sea level variability with-in the Baltic Sea and differences between the Baltic and the North Atlantic / Norwegian seas, respectively.
Refractive index dependence of Papilio Ulysses butterfly wings reflectance spectra
NASA Astrophysics Data System (ADS)
Isnaeni, Muslimin, Ahmad Novi; Birowosuto, Muhammad Danang
2016-02-01
We have observed and utilized butterfly wings of Papilio Ulysses for refractive index sensor. We noticed this butterfly wings have photonic crystal structure, which causes blue color appearance on the wings. The photonic crystal structure, which consists of cuticle and air void, is approximated as one dimensional photonic crystal structure. This photonic crystal structure opens potential to several optical devices application, such as refractive index sensor. We have utilized small piece of Papilio Ulysses butterfly wings to characterize refractive index of several liquid base on reflectance spectrum of butterfly wings in the presence of sample liquid. For comparison, we simulated reflectance spectrum of one dimensional photonic crystal structure having material parameter based on real structure of butterfly wings. We found that reflectance spectrum peaks shifted as refractive index of sample changes. Although there is a slight difference in reflectance spectrum peaks between measured spectrum and calculated spectrum, the trend of reflectance spectrum peaks as function of sample's refractive index is the similar. We assume that during the measurement, the air void that filled by sample liquid is expanded due to liquid pressure. This change of void shape causes non-similarity between measured spectrum and calculated spectrum.
An experimental investigation of the internal methane pressure in hydrogen attack
NASA Technical Reports Server (NTRS)
Natan, M.; Johnson, H. H.
1983-01-01
An experimental investigation of the internal methane pressure that is the driving force for bubble growth in hydrogen attack (HA) was done on pure iron (204 ppm C) and on two low carbon steels of slightly different compositions. The methane content N (c.c gas/g. material) in attacked specimens was measured by a vacuum extraction technique. The total void volume V (c.c) was determined from density measurements before and after HA exposure. The two values, N and V, were then used in an equation of state to calculate an average methane pressure P for the attack stages beyond a density loss (d.l.) greater than 0.05 pct. It was determined that N and P depend on hydrogen exposure conditions and the presence of traces of strong carbide forming alloying elements (in steel). They are independent of specimen size and grain size over a limited range. P varies as the bubble volume increases, showing a generally decreasing trend which brings it to values lower than calculated equilibrium pressures, although well within the same order of magnitude. Possible reasons for this behavior are discussed.
NASA Astrophysics Data System (ADS)
Katsuyama, Kozo; Nagamine, Tsuyoshi; Matsumoto, Shin-ichiro; Sato, Seichi
2007-02-01
The central void formations and deformations of fuel pins were investigated in fuel assemblies irradiated to high burn-up, using a non-destructive X-ray CT (computer tomography) technique. In this X-ray CT, the effect of strong gamma ray activity could be reduced to a negligible degree by using the pulse of a high energy X-ray source and detecting the intensity of the transmitted X-rays in synchronization with the generated X-rays. Clear cross-sectional images of fuel assemblies irradiated to high burn-up in a fast breeder reactor were successively obtained, in which the wrapping wires, cladding, pellets and central voids could be distinctly seen. The diameter of a typical central void measured by X-ray CT agreed with the one obtained by ceramography within an error of 0.1 mm. Based on this result, the dependence of the central void diameter on the linear heating rate was analyzed. In addition, the deformation behavior of a fuel pin along its axial direction could be analyzed from 20 stepwise X-ray cross-sectional images obtained in a small interval, and the results obtained showed a good agreement with the predictions calculated by two computer codes.
Is the far border of the Local Void expanding?
NASA Astrophysics Data System (ADS)
Iwata, I.; Chamaraux, P.
2011-07-01
Context. According to models of evolution in the hierarchical structure formation scenarios, voids of galaxies are expected to expand. The Local Void (LV) is the closest large void, and it provides a unique opportunity to test observationally such an expansion. It has been found that the Local Group, which is on the border of the LV, is running away from the void center at ~260 km s-1. Aims: In this study we investigate the motion of the galaxies at the far-side border of the LV to examine the presence of a possible expansion. Methods: We selected late-type, edge-on spiral galaxies with radial velocities between 3000 km s-1 and 5000 km s-1, and carried out HI 21 cm line and H-band imaging observations. The near-infrared Tully-Fisher relation was calibrated with a large sample of galaxies and carefully corrected for Malmquist bias. It was used to compute the distances and the peculiar velocities of the LV sample galaxies. Among the 36 sample LV galaxies with good quality HI line width measurements, only 15 galaxies were selected for measuring their distances and peculiar velocities, in order to avoid the effect of Malmquist bias. Results: The average peculiar velocity of these 15 galaxies is found to be -419+208-251 km s-1, which is not significantly different from zero. Conclusions: Due to the intrinsically large scatter of Tully-Fisher relation, we cannot conclude whether there is a systematic motion against the center of the LV for the galaxies at the far-side boundary of the void. However, our result is consistent with the hypothesis that those galaxies at the far-side boundary have an average velocity of ~260 km s-1 equivalent to what is found at the position of the Local Group. Based on data taken at Nançay radiotelescope operated by Observatoire de Paris, CNRS and Université d'Orléans, Infrared Survey Facility (IRSF) which is operated by Nagoya university under the cooperation of South African Astronomical Observatory, Kyoto University, and National Astronomical Observatory of Japan.This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/ California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation.
NanoXCT: a novel technique to probe the internal architecture of pharmaceutical particles.
Wong, Jennifer; D'Sa, Dexter; Foley, Matthew; Chan, John Gar Yan; Chan, Hak-Kim
2014-11-01
To demonstrate the novel application of nano X-ray computed tomography (NanoXCT) for visualizing and quantifying the internal structures of pharmaceutical particles. An Xradia NanoXCT-100, which produces ultra high-resolution and non-destructive imaging that can be reconstructed in three-dimensions (3D), was used to characterize several pharmaceutical particles. Depending on the particle size of the sample, NanoXCT was operated in Zernike Phase Contrast (ZPC) mode using either: 1) large field of view (LFOV), which has a two-dimensional (2D) spatial resolution of 172 nm; or 2) high resolution (HRES) that has a resolution of 43.7 nm. Various pharmaceutical particles with different physicochemical properties were investigated, including raw (2-hydroxypropyl)-beta-cyclodextrin (HβCD), poly (lactic-co-glycolic) acid (PLGA) microparticles, and spray-dried particles that included smooth and nanomatrix bovine serum albumin (BSA), lipid-based carriers, and mannitol. Both raw HβCD and PLGA microparticles had a network of voids, whereas spray-dried smooth BSA and mannitol generally had a single void. Lipid-based carriers and nanomatrix BSA particles resulted in low quality images due to high noise-to-signal ratio. The quantitative capabilities of NanoXCT were also demonstrated where spray-dried mannitol was found to have an average void volume of 0.117 ± 0.247 μm(3) and average void-to-material percentage of 3.5%. The single PLGA particle had values of 1993 μm(3) and 59.3%, respectively. This study reports the first series of non-destructive 3D visualizations of inhalable pharmaceutical particles. Overall, NanoXCT presents a powerful tool to dissect and observe the interior of pharmaceutical particles, including those of a respirable size.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hursin, M.; Koeberl, O.; Perret, G.
2012-07-01
High Conversion Light Water Reactors (HCLWR) allows a better usage of fuel resources thanks to a higher breeding ratio than standard LWR. Their uses together with the current fleet of LWR constitute a fuel cycle thoroughly studied in Japan and the US today. However, one of the issues related to HCLWR is their void reactivity coefficient (VRC), which can be positive. Accurate predictions of void reactivity coefficient in HCLWR conditions and their comparisons with representative experiments are therefore required. In this paper an inter comparison of modern codes and cross-section libraries is performed for a former Benchmark on Void Reactivitymore » Effect in PWRs conducted by the OECD/NEA. It shows an overview of the k-inf values and their associated VRC obtained for infinite lattice calculations with UO{sub 2} and highly enriched MOX fuel cells. The codes MCNPX2.5, TRIPOLI4.4 and CASMO-5 in conjunction with the libraries ENDF/B-VI.8, -VII.0, JEF-2.2 and JEFF-3.1 are used. A non-negligible spread of results for voided conditions is found for the high content MOX fuel. The spread of eigenvalues for the moderated and voided UO{sub 2} fuel are about 200 pcm and 700 pcm, respectively. The standard deviation for the VRCs for the UO{sub 2} fuel is about 0.7% while the one for the MOX fuel is about 13%. This work shows that an appropriate treatment of the unresolved resonance energy range is an important issue for the accurate determination of the void reactivity effect for HCLWR. A comparison to experimental results is needed to resolve the presented discrepancies. (authors)« less
Void effect analysis of Pb-208 of fast reactors with modified CANDLE burn-up scheme
DOE Office of Scientific and Technical Information (OSTI.GOV)
Widiawati, Nina, E-mail: nina-widiawati28@yahoo.com; Su’ud, Zaki, E-mail: szaki@fi.itb.ac.id
Void effect analysis of Pb-208 as coolant of fast reactors with modified candle burn-up scheme has been conducted. Lead cooled fast reactor (LFR) is one of the fourth-generation reactor designs. The reactor is designed with a thermal power output of 500 MWt. Modified CANDLE burn-up scheme allows the reactor to have long life operation by supplying only natural uranium as fuel cycle input. This scheme introducing discrete region, the fuel is initially put in region 1, after one cycle of 10 years of burn up it is shifted to region 2 and region 1 is filled by fresh natural uraniummore » fuel. The reactor is designed for 100 years with 10 regions arranged axially. The results of neutronic calculation showed that the void coefficients ranged from −0.6695443 % at BOC to −0.5273626 % at EOC for 500 MWt reactor. The void coefficients of Pb-208 more negative than Pb-nat. The results showed that the reactors with Pb-208 coolant have better level of safety than Pb-nat.« less
2016-01-01
Purpose The aims of this study were to assess the prevalence of nocturia and nocturnal polyuria (NP) and to define new cutoff values according to age and sex for both conditions. Methods Data from a population-based prevalence survey conducted among a random sample of 2,128 adults were analyzed in this study. Participants were requested to fill out a questionnaire including the International Continence Society (ICS) definitions of lower urinary tract symptoms and the International Consultation on Incontinence Questionnaire - Short Form. Additionally, a 1-day bladder diary was given to each individual. The participants were divided into 5 age groups. The prevalence of nocturia was calculated based on definitions of nocturia as ≥1 voiding episodes, ≥2 episodes, and ≥3 episodes. NP was evaluated according to the ICS definition. The mean±standard errors and 95th percentile values were calculated in each group as new cutoff values for NP. Results The prevalence of nocturia was estimated as 28.4%, 17.6%, and 8.9% for ≥1, ≥2, and ≥3 voiding episodes each night, respectively. When nocturia was defined as 2 or more voiding episodes at night, the prevalence decreased significantly. The mean NP index was 29.4%±15.0% in men and 23.1%±11.8% in women. For the age groups of <50 years, 50–59 years, and ≥60 years, the new cutoff values for the diagnosis of NP were calculated as 48%, 69%, and 59% for men and 41%, 50%, and 42% for women, respectively. Conclusions We found that the definition of nocturia was still controversial and that waking up once for voiding might be within the normal spectrum of behavior. The definition of NP should be modified, and new cutoff values should be defined using the data presented in our study and in other forthcoming studies. PMID:28043108
Fission gas bubble identification using MATLAB's image processing toolbox
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collette, R.; King, J.; Keiser, Jr., D.
Automated image processing routines have the potential to aid in the fuel performance evaluation process by eliminating bias in human judgment that may vary from person-to-person or sample-to-sample. In addition, this study presents several MATLAB based image analysis routines designed for fission gas void identification in post-irradiation examination of uranium molybdenum (U–Mo) monolithic-type plate fuels. Frequency domain filtration, enlisted as a pre-processing technique, can eliminate artifacts from the image without compromising the critical features of interest. This process is coupled with a bilateral filter, an edge-preserving noise removal technique aimed at preparing the image for optimal segmentation. Adaptive thresholding provedmore » to be the most consistent gray-level feature segmentation technique for U–Mo fuel microstructures. The Sauvola adaptive threshold technique segments the image based on histogram weighting factors in stable contrast regions and local statistics in variable contrast regions. Once all processing is complete, the algorithm outputs the total fission gas void count, the mean void size, and the average porosity. The final results demonstrate an ability to extract fission gas void morphological data faster, more consistently, and at least as accurately as manual segmentation methods.« less
Fission gas bubble identification using MATLAB's image processing toolbox
Collette, R.; King, J.; Keiser, Jr., D.; ...
2016-06-08
Automated image processing routines have the potential to aid in the fuel performance evaluation process by eliminating bias in human judgment that may vary from person-to-person or sample-to-sample. In addition, this study presents several MATLAB based image analysis routines designed for fission gas void identification in post-irradiation examination of uranium molybdenum (U–Mo) monolithic-type plate fuels. Frequency domain filtration, enlisted as a pre-processing technique, can eliminate artifacts from the image without compromising the critical features of interest. This process is coupled with a bilateral filter, an edge-preserving noise removal technique aimed at preparing the image for optimal segmentation. Adaptive thresholding provedmore » to be the most consistent gray-level feature segmentation technique for U–Mo fuel microstructures. The Sauvola adaptive threshold technique segments the image based on histogram weighting factors in stable contrast regions and local statistics in variable contrast regions. Once all processing is complete, the algorithm outputs the total fission gas void count, the mean void size, and the average porosity. The final results demonstrate an ability to extract fission gas void morphological data faster, more consistently, and at least as accurately as manual segmentation methods.« less
Arya, Lily A; Northington, Gina M; Asfaw, Tirsit; Harvie, Heidi; Malykhina, Anna
2012-07-01
Study Type - Prevalence (case control) Level of Evidence 4. What's known on the subject? and What does the study add? Urinary tract infections (UTIs) have been implicated in the aetiology of interstitial cystitis/painful bladder syndrome (IC/PBS). Prior studies have described symptoms and laboratory tests suggestive of UTI at the onset of IC/PBS as well as a significant history of childhood recurrent UTIs. However, the mechanism by which recurrent UTIs contribute to the development of IC/PBS is not clear. Our study shows that women with recurrent UTI suffer from bladder oversensitivity. Our findings have useful clinical implications. Women with bladder oversensitivity complain of urinary frequency which is often misdiagnosed as an infection and treated with unnecessary antibiotics. Additionally, there are no effective therapies for bladder oversensitivity. Therefore, women with recurrent UTI should undergo prompt evaluation and treatment of episodes of infection to prevent the development of bladder oversensitivity. Our findings also provide a possible mechanism for the development of IC/PBS. Whether women with recurrent UTI are at increased risk for developing IC/PBS in the future will need to be confirmed in future studies. • To compare the mean voided volume and bladder sensation during filling cystometry in women with a history of recurrent urinary tract infection (UTI) and controls. • This was a case-control study including adult women seen in the urogynaecology clinic. • The cases were 49 women with at least three documented positive urine cultures >105 colonies/mL in the previous 12 months and no active infection at the time of data collection. • Controls were 53 women with stress urinary incontinence and no history of recurrent UTI or coexistent urge urinary incontinence. • We compared bladder diary variables and filling cystometry data in the absence of an active infection. • There was no significant difference in the median age, parity and body mass index of women with a history of recurrent UTI and controls. • The median number of voids per day and median number of voids per litre of fluid intake was significantly greater in women with recurrent UTI than controls (12 vs 7 voids/day and 6 vs 4 voids/L, P= 0.005 and P= 0.004 respectively). • The median average voided volume was significantly lower in women with recurrent UTI than controls (155 vs 195 mL, P= 0.008). • On filling cystometry, median volumes of strong desire to void and maximum cystometric capacity were significantly lower in women with recurrent UTI than controls (all P < 0.05). • In the absence of an infection, premenopausal women with a history of recurrent UTI have significantly greater urinary frequency, lower average voided volume and a lower threshold of bladder sensitivity than controls. © 2011 THE AUTHORS. BJU INTERNATIONAL © 2011 BJU INTERNATIONAL.
Lu, Shing-Hwa; Groat, William C de; Lin, Alex T L; Chen, Kuang-Kuo; Chang, Luke S
2007-10-01
To investigate the effect of a selective P2X(3-)P2X(2/3) purinergic receptor antagonist (a-317491) on detrusor hyperreflexia in conscious chronic spinal cord-injured female rats. Six chronic spinal cord-transected female Sprague-Dawley rats (290-336 g) were used in this study. Spinal transection at the T8-T9 segmental level was performed using aseptic techniques under halothane anesthesia. Fourteen to 16 weeks after spinal transection, A-317491, a selective P2X(3-)P2X(2/3) purinergic receptor antagonist, was administered intravenously in cystometry studies at increasing doses of 0.03, 0.1, 0.3, 1, 3, 10 and 30 micromol/kg at 40-50 minute intervals. Cystometrograms (CMGs) were performed before and after the administration of each dose of the drug. The continuous filling of CMGs revealed a large number of small-amplitude (> 8 cmH(2)O), non-voiding contractions (NVCs) (average, 9.7 per voiding cycle) preceding voiding contractions (mean amplitude, 31 cmH(2)O; duration, 2.5 minutes), which occurred at an interval of 539 seconds and at a pressure threshold of 5.7 cmH(2)O. When tested in a range of doses (0.03-30 micromol/kg, intravenous), A-317491 in doses between 1 and 30 micromol/kg significantly (p < 0.05) increased the interval between voids by 25%, reduced the number of NVCs by 42-62%, and increased the pressure threshold for voiding by 53-73%, but did not change the amplitude of the duration of the voiding contractions. The effects of the drug were apparent within 10 minutes following administration. These results indicate that purinergic mechanisms, presumably involving P2X(3) or P2X(2/3) receptors on bladder C-fiber afferent nerves, play an important role in the detrusor hyperreflexia that occurs after spinal cord injury in rats.
Fujii, Mizue; Takahashi, Ichiro; Honma, Masaru; Ishida-Yamamoto, Akemi
2015-11-01
Herpes zoster (HZ), a common vesiculo-erythematous skin disease associated with reactivation of varicella zoster virus in the cranial nerve, dorsal root, and autonomic ganglia, is accompanied by several related symptoms represented by postherpetic neuralgia. Among them, involvement of vesicorectal dysfunction is relatively rare. The vesicorectal symptom can usually be recovered in transient course, but is quite important in terms of impaired quality of life. Male individuals affected with HZ and skin lesions on sacral dermatome have been reported as independent risk factors of zoster-related voiding dysfunction. In this study, urinary symptoms were focused upon and six patients with zoster-related voiding dysfunction at a single faculty of dermatology in Japan from 2009 to 2014 were retrospectively analyzed. All patients showed HZ lesions on the sacral area and the urinary symptom recovered in approximately 2 months (14 days to 7 months). The term of treatment for zoster-associated urinary dysfunction was positively correlated with that for zoster-related pain without significance (r = 0.661, P = 0.153). Average treatment term for pain relief of sacral HZ accompanied by voiding dysfunction (91.3 ± 76.44 days) was significantly longer than that of sacral HZ without urinary symptom (18.9 ± 20.42 days) (P = 0.032). These results suggested that zoster-related voiding dysfunction would mainly be involved in sacral HZ and closely associated with severity of zoster-related pain. Dermatologists should be aware that severe zoster-related pain accompanied by sacral HZ, which is related to prolonged treatment of pain relief, can be a predictive factor of voiding dysfunction. © 2015 Japanese Dermatological Association.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McHugh, P.R.; Ramshaw, J.D.
MAGMA is a FORTRAN computer code designed to viscous flow in in situ vitrification melt pools. It models three-dimensional, incompressible, viscous flow and heat transfer. The momentum equation is coupled to the temperature field through the buoyancy force terms arising from the Boussinesq approximation. All fluid properties, except density, are assumed variable. Density is assumed constant except in the buoyancy force terms in the momentum equation. A simple melting model based on the enthalpy method allows the study of the melt front progression and latent heat effects. An indirect addressing scheme used in the numerical solution of the momentum equationmore » voids unnecessary calculations in cells devoid of liquid. Two-dimensional calculations can be performed using either rectangular or cylindrical coordinates, while three-dimensional calculations use rectangular coordinates. All derivatives are approximated by finite differences. The incompressible Navier-Stokes equations are solved using a new fully implicit iterative technique, while the energy equation is differenced explicitly in time. Spatial derivatives are written in conservative form using a uniform, rectangular, staggered mesh based on the marker and cell placement of variables. Convective terms are differenced using a weighted average of centered and donor cell differencing to ensure numerical stability. Complete descriptions of MAGMA governing equations, numerics, code structure, and code verification are provided. 14 refs.« less
1978-09-01
Models HELP Ductile Material HEMP Brittle Material PUFF Iron Aluminum Eulerian Codea Tap«.r«»H Flyor Pl^«-» rmp«^» tO. ABITRACT (Conllmjm M r«v... HEMP ) code with those obtained by the Eulerian (HELP) code 5.3 Relative void volume of damage regions at three times after impact in the 1145...plate calculation 5.5 Relative void volume of material in the 1145 aluminum target at 1.46 us after impact as computed by the Lagrangian ( HEMP
Delbarco-Trillo, Javier; Harelimana, Innocent H; Goodwin, Thomas E; Drea, Christine M
2013-07-01
Urine serves a communicative function in many mammalian species. In some species, the signaling function of urine can be enhanced by the addition of chemical compounds from glands along the distal portion of the urogenital tract. Although urine marking is the main mode of chemical communication in many primate species, there has been no study of the contribution of urogenital secretions to the chemical complexity of primate urine. Here, we compared the chemical composition of bladder urine versus voided urine in the aye-aye, Daubentonia madagascariensis, a strepsirrhine primate that relies on urine in intraspecific communication. Both types of urine, collected from each of 11 aye-ayes representing both sexes of varying adult ages, underwent headspace analysis via gas chromatography and mass spectrometry. Although the average number of compounds was similar in bladder and voided urine, 17% of the compounds detected occurred exclusively in voided urine (but only in a subset of individuals). An overall measure of chemical complexity (using a nonmetric multidimensional scaling analysis) showed that both types of urine were chemically different at the individual level. There was no apparent sex or age differences in the chemical components found in aye-aye urine. Nonetheless, the individual dissimilarities between bladder urine and voided urine indicate chemical contributions from structures along the urogenital tract and offer further support for the relevance of urinary communication in the aye-aye. © 2012 Wiley Periodicals, Inc.
Casas, Marta; Strusi, Orazio Luca; Jiménez-Castellanos, M Rosa; Colombo, Paolo
2011-01-01
This paper studies the Riboflavin release from systems made of assembled modules of Dome Matrix® technology using tapioca starch-ethylmethacrylate (TSEMA) and tapioca hydroxypropylstarch-ethylmethacrylate (THSEMA) graft copolymers produced by two different drying methods. Two different shape modules were manufactured for this study, i.e., female and male modules, in order to facilitate their assemblage in "void configuration", a system with an internal void space. Drug release studies on void configurations based on THSEMA show faster releases than TSEMA; HPMC systems used as a comparative reference showed intermediate release. Moreover, using void configurations made with one module of TSEMA and the other of THSEMA is possible to average the drug release, without difference between the drying methods used for the polymers. With respect to the floatation characteristics, all the void configurations floated immediately and, due to the mass center of the system, the floatation position of the system was always axial with the female module up and the male down. The drug release studies performed with a sinker to force the immersion of the systems in the medium did not show differences with respect to the dissolution test without a sinker. The combination of floatation capability of the assembled modules and the prolonged drug release provided with the graft copolymers make these assembled modules candidates as controlled release gastro-retentive dosage forms. Copyright © 2010 Elsevier B.V. All rights reserved.
Shock loading and reactive flow modeling studies of void induced AP/AL/HTPB propellant
NASA Astrophysics Data System (ADS)
Miller, P. J.; Lindfors, A. J.
1998-07-01
The unreactive Hugoniot of a class 1.3 propellant has been investigated by shock compression experiments. The results are analyzed in terms of an ignition and growth reactive flow model using the DYNA2D hydrocode. The calculated shock ignition parameters of the model show a linear dependence on measured void volume which appears to reproduce the observed gauge records well. Shock waves were generated by impact in a 75 mm single stage powder gun. Manganin and PVDF pressure gauges provided pressure-time histories to 140 kbar. The propellants were of similar formulation differing only in AP particle size and the addition of a burn rate modifer (Fe2O3) from that of previous investigations. Results show neglible effect of AP particle size on shock response in contrast to the addition of Fe2O3 which appears to `stiffen' the unreactive Hugoniot and enhances significantly the reactive rates under shock. The unreactive Hugoniot, within experimental error, compares favorably to the solid AP Hugoniot. Shock experiments were performed on propellant samples strained to induce insitu voids. The material state was quantified by uniaxial tension dialatometry. The experimental records show a direct correlation between void volume (0 to 1.7%) and chemical reactivity behind the shock front. These results are discussed in terms of `hot spot' ignition resulting from the shock collapse of the voids.
Enhanced phonon scattering by nanovoids in high thermoelectric power factor polysilicon thin films
NASA Astrophysics Data System (ADS)
Dunham, Marc T.; Lorenzi, Bruno; Andrews, Sean C.; Sood, Aditya; Asheghi, Mehdi; Narducci, Dario; Goodson, Kenneth E.
2016-12-01
The ability to tune the thermal conductivity of semiconductor materials is of interest for thermoelectric applications, in particular, for doped silicon, which can be readily integrated in electronic microstructures and have a high thermoelectric power factor. Here, we examine the impact of nanovoids on the thermal conductivity of highly doped, high-power factor polysilicon thin films using time-domain thermoreflectance. Voids are formed through ion implantation and annealing, evolving from many small (˜4 nm mean diameter) voids after 500 °C anneal to fewer, larger (˜29 nm mean diameter) voids with a constant total volume fraction after staged thermal annealing to 1000 °C. The thermal conductivity is reduced to 65% of the non-implanted reference film conductivity after implantation and 500 °C anneal, increasing with anneal temperature until fully restored after 800 °C anneal. The void size distributions are determined experimentally using small-angle and wide-angle X-ray scattering. While we believe multiple physical mechanisms are at play, we are able to corroborate the positive correlation between measurements of thermal conductivity and void size with Monte Carlo calculations and a scattering probability based on Matthiessen's rule. The data suggest an opportunity for thermal conductivity suppression combined with the high power factor for increased material zT and efficiency of nanostructured polysilicon as a thermoelectric material.
Kayen, Robert E.; Barnhardt, Walter A.; Ashford, Scott; Rollins, Kyle
2000-01-01
A ground penetrating radar (GPR) experiment at the Treasure Island Test Site [TILT] was performed to non-destructively image the soil column for changes in density prior to, and following, a liquefaction event. The intervening liquefaction was achieved by controlled blasting. A geotechnical borehole radar technique was used to acquire high-resolution 2-D radar velocity data. This method of non-destructive site characterization uses radar trans-illumination surveys through the soil column and tomographic data manipulation techniques to construct radar velocity tomograms, from which averaged void ratios can be derived at 0.25 - 0.5m pixel footprints. Tomograms of void ratio were constructed through the relation between soil porosity and dielectric constant. Both pre- and post-blast tomograms were collected and indicate that liquefaction related densification occurred at the site. Volumetric strains estimated from the tomograms correlate well with the observed settlement at the site. The 2-D imagery of void ratio can serve as high-resolution data layers for numerical site response analysis.
Coolant Density and Control Blade History Effects in Extended BWR Burnup Credit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ade, Brian J; Marshall, William BJ J; Bowman, Stephen M
2015-01-01
Oak Ridge National Laboratory and the US Nuclear Regulatory Commission have initiated a multiyear project to investigate the application of burnup credit (BUC) for boiling water reactor (BWR) fuel in storage and transportation casks. This project includes two phases. The first phase investigates the applicability of peak reactivity methods currently used for spent fuel pools to spent fuel storage and transportation casks and the validation of reactivity (k eff) calculations and predicted spent fuel compositions. The second phase focuses on extending BUC beyond peak reactivity. This paper documents work performed to date investigating some aspects of extended BUC. (The technicalmore » basis for application of peak reactivity methods to BWR fuel in storage and transportation systems is presented in a companion paper.) Two reactor operating parameters are being evaluated to establish an adequate basis for extended BWR BUC: (1) the effect of axial void profile and (2) the effect of control blade utilization during operation. A detailed analysis of core simulator data for one cycle of a modern operating BWR plant was performed to determine the range of void profiles and the variability of the profile experienced during irradiation. Although a single cycle does not provide complete data, the data obtained are sufficient to determine the primary effects and to identify conservative modeling approaches. These data were used in a study of the effect of axial void profile. The first stage of the study was determination of the necessary moderator density temporal fidelity in depletion modeling. After the required temporal fidelity was established, multiple void profiles were used to examine the effect on cask reactivity. The results of these studies are being used to develop recommendations for conservatively modeling the void profile effects for BWR depletion calculations. The second operational parameter studied was control blade history. Control blades are inserted in various locations and at varying degrees during BWR operation based on the core loading pattern. When present during depletion, control blades harden the neutron spectrum locally because they displace the moderator and absorb thermal neutrons. The investigation of the effect of control blades on post operational cask reactivity is documented herein, as is the effect of multiple (continuous and intermittent) exposure periods with control blades inserted. The coupled effects of control blade presence on power density, void profile, or burnup profile will be addressed in future work.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karthikeyan, R.; Tellier, R. L.; Hebert, A.
2006-07-01
The Coolant Void Reactivity (CVR) is an important safety parameter that needs to be estimated at the design stage of a nuclear reactor. It helps to have an a priori knowledge of the behavior of the system during a transient initiated by the loss of coolant. In the present paper, we have attempted to estimate the CVR for a CANDU New Generation (CANDU-NG) lattice, as proposed at an early stage of the Advanced CANDU Reactor (ACR) development. We have attempted to estimate the CVR with development version of the code DRAGON, using the method of characteristics. DRAGON has several advancedmore » self-shielding models incorporated in it, each of them compatible with the method of characteristics. This study will bring to focus the performance of these self-shielding models, especially when there is voiding of such a tight lattice. We have also performed assembly calculations in 2 x 2 pattern for the CANDU-NG fuel, with special emphasis on checkerboard voiding. The results obtained have been validated against Monte Carlo codes MCNP5 and TRIPOLI-4.3. (authors)« less
Simulation of Initiation in Hexanitrostilbene
NASA Astrophysics Data System (ADS)
Thompson, Aidan; Shan, Tzu-Ray; Yarrington, Cole; Wixom, Ryan
We report on the effect of isolated voids and pairs of nearby voids on hot spot formation, growth and chemical reaction initiation in hexanitrostilbene (HNS) crystals subjected to shock loading. Large-scale, reactive molecular dynamics simulations are performed using the reactive force field (ReaxFF) as implemented in the LAMMPS software. The ReaxFF force field description for HNS has been validated previously by comparing the isothermal equation of state to available diamond anvil cell (DAC) measurements and density function theory (DFT) calculations. Micron-scale molecular dynamics simulations of a supported shockwave propagating in HNS crystal along the [010] orientation are performed (up = 1.25 km/s, Us =4.0 km/s, P = 11GPa.) We compare the effect on hot spot formation and growth rate of isolated cylindrical voids up to 0.1 µm in size with that of two 50nm voids set 100nm apart. Results from the micron-scale atomistic simulations are compared with hydrodynamics simulations. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lock- heed Martin Corporation, for the U.S. DOE National Nuclear Security Administration under Contract DE-AC04-94AL85000.
Cozmuta, Ioana; Blanco, Mario; Goddard, William A
2007-03-29
It is important for many industrial processes to design new materials with improved selective permeability properties. Besides diffusion, the molecule's solubility contributes largely to the overall permeation process. This study presents a method to calculate solubility coefficients of gases such as O2, H2O (vapor), N2, and CO2 in polymeric matrices from simulation methods (Molecular Dynamics and Monte Carlo) using first principle predictions. The generation and equilibration (annealing) of five polymer models (polypropylene, polyvinyl alcohol, polyvinyl dichloride, polyvinyl chloride-trifluoroethylene, and polyethylene terephtalate) are extensively described. For each polymer, the average density and Hansen solubilities over a set of ten samples compare well with experimental data. For polyethylene terephtalate, the average properties between a small (n = 10) and a large (n = 100) set are compared. Boltzmann averages and probability density distributions of binding and strain energies indicate that the smaller set is biased in sampling configurations with higher energies. However, the sample with the lowest cohesive energy density from the smaller set is representative of the average of the larger set. Density-wise, low molecular weight polymers tend to have on average lower densities. Infinite molecular weight samples do however provide a very good representation of the experimental density. Solubility constants calculated with two ensembles (grand canonical and Henry's constant) are equivalent within 20%. For each polymer sample, the solubility constant is then calculated using the faster (10x) Henry's constant ensemble (HCE) from 150 ps of NPT dynamics of the polymer matrix. The influence of various factors (bad contact fraction, number of iterations) on the accuracy of Henry's constant is discussed. To validate the calculations against experimental results, the solubilities of nitrogen and carbon dioxide in polypropylene are examined over a range of temperatures between 250 and 650 K. The magnitudes of the calculated solubilities agree well with experimental results, and the trends with temperature are predicted correctly. The HCE method is used to predict the solubility constants at 298 K of water vapor and oxygen. The water vapor solubilities follow more closely the experimental trend of permeabilities, both ranging over 4 orders of magnitude. For oxygen, the calculated values do not follow entirely the experimental trend of permeabilities, most probably because at this temperature some of the polymers are in the glassy regime and thus are diffusion dominated. Our study also concludes large confidence limits are associated with the calculated Henry's constants. By investigating several factors (terminal ends of the polymer chains, void distribution, etc.), we conclude that the large confidence limits are intimately related to the polymer's conformational changes caused by thermal fluctuations and have to be regarded--at least at microscale--as a characteristic of each polymer and the nature of its interaction with the solute. Reducing the mobility of the polymer matrix as well as controlling the distribution of the free (occupiable) volume would act as mechanisms toward lowering both the gas solubility and the diffusion coefficients.
Ceramic impregnated superabrasives
Radtke, Robert P.; Sherman, Andrew
2009-02-10
A superabrasive fracture resistant compact is formed by depositing successive layers of ceramic throughout the network of open pores in a thermally stable self-bonded polycrystalline diamond or cubic boron nitride preform. The void volume in the preform is from approximately 2 to 10 percent of the volume of the preform, and the average pore size is below approximately 3000 nanometers. The preform is evacuated and infiltrated under at least about 1500 pounds per square inch pressure with a liquid pre-ceramic polymerizable precursor. The precursor is infiltrated into the preform at or below the boiling point of the precursor. The precursor is polymerized into a solid phase material. The excess is removed from the outside of the preform, and the polymer is pyrolized to form a ceramic. The process is repeated at least once more so as to achieve upwards of 90 percent filling of the original void volume. When the remaining void volume drops below about 1 percent the physical properties of the compact, such as fracture resistance, improve substantially. Multiple infiltration cycles result in the deposition of sufficient ceramic to reduce the void volume to below 0.5 percent. The fracture resistance of the compacts in which the pores are lined with formed in situ ceramic is generally at least one and one-half times that of the starting preforms.
40 CFR 85.2217 - Loaded test-EPA 91.
Code of Federal Regulations, 2010 CFR
2010-07-01
....2217 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... determinations is a simple running average of the measurements taken over five seconds. (2) Pass/fail... measurements are voided if the measured concentration of CO plus CO2 falls below six percent or the vehicle's...
Modeling of ductile fragmentation that includes void interactions
NASA Astrophysics Data System (ADS)
Meulbroek Fick, J. P.; Ramesh, K. T.; Swaminathan, P. K.
2015-12-01
The failure and fragmentation of ductile materials through the nucleation, growth, and coalescence of voids is important to the understanding of key structural materials. In this model of development effort, ductile fragmentation of an elastic-viscoplastic material is studied through a computational approach which couples these key stages of ductile failure with nucleation site distributions and wave propagation, and predicts fragment spacing within a uniaxial strain approximation. This powerful tool is used to investigate the mechanical and thermal response of OFHC copper at a strain rate of 105. Once the response of the material is understood, the fragmentation of this test material is considered. The average fragment size as well as the fragment size distribution is formulated.
NASA Astrophysics Data System (ADS)
Pathak, R. K. P.; Pei, X.; Hallquist, M.; Pagels, J. H.
2017-12-01
Morphological transformation of soot particle by condensation of low volatility materials on it is a dominant atmospheric process with serious implications for its optical and hygroscopic properties, and atmospheric lifetime. In this study, the morphological transformation of soot agglomerate under the influence of condensation of vapours of sulphuric acid, and/or limonene ozonolysis products were investigated systematically using a Differential Mobility Analyser-Aerosol Particle Mass Analyser (DMA-APM) and the Tandem DMA techniques integrated with a laminar flow-tube system. We discovered that the morphology transformation of soot in general was a sequence of two-step process, i.e. (i) filling of void space within soot agglomerate; (ii) growth of particle diameter. These two steps followed and complimented each other. In the very beginning the filling was the dominant process followed by growth until it led to the accumulation of enough material that in turn exerted surface forces that eventually facilitated the further filling. The filling of void space was constrained by the initial morphology of fresh soot and the nature and amount of the material condensed. This process continued in several sequential steps until all void space within the soot agglomerate was filled completely and then growth of a spherical particle continued as long as mass was condensed on it. In this study, we developed a framework to quantify the microphysical transformation of soot upon the condensation of various materials. The framework utilized experimental data and hypothesis of ideal sphere growth and filling of voids to quantify the distribution of condensed materials in these two processes complimenting each other. Using this framework, we have quantified the percentage of material that went into processes of particle growth and void filling at each step. Using the same framework, we further estimated the fraction of internal voids and open voids and used this information to derive the volume equivalent diameter of soot agglomerate containing internal voids and calculated in-situ dynamic shape factor. Our study is the first study that tracks in situ microphysical changes in soot morphology quantitatively, providing the detailed status of both fresh and coated soot particles.
DeAngelis, Anthony; Kuchel, George A.
2012-01-01
The prevalence of urinary symptoms increases with age and is a significant source of distress, morbidity, and expense in the elderly. Recent evidence suggests that symptoms in the aged may result from sensory dysfunction, rather than abnormalities of detrusor performance. Therefore, we employed a pressure/flow multichannel urethane-anesthetized mouse cystometry model to test the hypothesis that in vivo detrusor performance does not degrade with aging. Secondarily, we sought to evaluate sensory responsiveness to volume using pressure-volume data generated during bladder filling. Cystometric data from 2-, 12-, 22-, and 26-mo-old female C57BL6 mice were compared. All 2- and 12-mo-old mice, 66% of 22-mo-old mice, and 50% of 26-mo-old mice responded to continuous bladder filling with periodic reflex voiding. Abdominal wall contraction with voiding had a minimal contribution to expulsive pressure, whereas compliance pressure was a significant contributor. Maximum bladder pressure, estimated detrusor pressure, detrusor impulse (pressure-time integral), as well as indices of detrusor power and work, did not decrease with aging. Bladder precontraction pressures decreased, compliance increased, and nonvoiding contraction counts did not change with increasing age. Intervoid intervals, per-void volumes, and voiding flow rates increased with age. Calculations approximating wall stress during filling suggested loss of bladder volume sensitivity with increasing age. We conclude that aging is associated with an impaired ability to respond to the challenge of continuous bladder filling with cyclic voiding, yet among responsive animals, voiding detrusor contraction strength does not degrade with aging in this murine model. Furthermore, indirect measures suggest that bladder volume sensitivity is diminished. Thus, changes in homeostatic reserve and peripheral and/or central sensory mechanisms may be important contributors to aging-associated changes in bladder function. PMID:22204955
NASA Astrophysics Data System (ADS)
Warlick, Kent M.
While the addition of short fiber to 3D printed articles has increased structural performance, ultimate gains will only be realized through the introduction of continuous reinforcement placed along pre-planned load paths. Most additive manufacturing research focusing on the addition of continuous reinforcement has revolved around utilization of a prefrabricated composite filament or a fiber and matrix mixed within a hot end prior to deposition on a printing surface such that conventional extrusion based FDM can be applied. Although stronger 3D printed parts can be made in this manner, high quality homogenous composites are not possible due to fiber dominated regions, matrix dominated regions, and voids present between adjacent filaments. Conventional composite manufacturing processes are much better at creating homogeneous composites; however, the layer by layer approach in which they are made is inhibiting the alignment of reinforcement with loads. Automated Fiber Placement techniques utilize in plane bending deformation of the tow to facilitate tow steering. Due to buckling fibers on the inner radius of curves, manufacturers recommend a minimum curvature for path placement with this technique. A method called continuous tow shearing has shown promise to enable the placement of tows in complex patterns without tow buckling, spreading, and separation inherent in conventional forms of automated reinforcement positioning. The current work employs fused deposition modeling hardware and the continuous tow shearing technique to manufacture high quality fiber reinforced composites with high positional fidelity, varying continuous reinforcement orientations within a layer, and plastic elements incorporated enabling the ultimate gains in structural performance possible. A mechanical system combining concepts of additive manufacturing with fiber placement via filament winding was developed. Paths with and without tension inherent in filament winding were analyzed through microscopy in order to examine best and worst case scenarios. High quality fiber reinforced composite materials, in terms of low void content, high fiber volume fractions and homogeneity in microstructure, were manufactured in both of these scenarios. In order to improve fidelity and quality in fiber path transition regions, a forced air cooling manifold was designed, printed, and implemented into the current system. To better understand the composite performance that results from varying pertinent manufacturing parameters, the effect of feed rate, hot end temperature, forced air cooling, and deposition surface (polypropylene and previously deposited glass polypropylene commingled tow) on interply performance, microstructure, and positional fidelity were analyzed. Interply performance, in terms of average maximum load and average peel strength, was quantified through a t-peel test of the bonding quality between two surfaces. With use of forced air cooling, minor decreases in average peel strength were present due to a reduction in tow deposition temperature which was found to be the variable most indicative of performance. Average maximum load was comparable between the forced air cooled and non-air cooled samples. Microstructure was evaluated through characterization of composite area, void content, and flash percentage. Low void contents mostly between five to seven percent were attained. Further reduction of this void content to two percent is possible through higher processing temperatures; however, reduced composite area, low average peel strength performance, and the presence of smoke during manufacturing implied thermal degradation of the polypropylene matrix occurred in these samples with higher processing temperatures. Positional fidelity was measured through calculations of shear angle, shift width, and error of a predefined path. While positional fidelity variation was low with a polypropylene deposition surface, forced air cooling is necessary to achieve fidelity on top of an already deposited tow surface as evident by the fifty-six percent reduction in error tolerance profile achieved. Lastly, proof of concept articles with unique fiber paths and neat plastic elements incorporated were produced to demonstrate fiber placement along pre-planned load paths and the ability to achieve greater structural efficiency through the use of less material. The results show that high positional fidelity and high quality composites can be produced through the use of the tow shearing technique implemented in the developed mechanical system. The implementation of forced air cooling was critical in achieving fidelity and quality in transition regions. Alignment of continuous reinforcement with pre-planned load paths was demonstrated in the proof of concept article with varying fiber orientations within a layer. Combining fused deposition modeling of plastic with the placement of continuous reinforcement enabled a honeycomb composite to be produced with higher specific properties than traditional composites. Thus, the current system demonstrated a greater capability of achieving ultimate gains in structural performance than previously possible.
NASA Astrophysics Data System (ADS)
Park, Young-Joon; Andleigh, Vaibhav K.; Thompson, Carl V.
1999-04-01
An electromigration model is developed to simulate the reliability of Al and Al-Cu interconnects. A polynomial expression for the free energy of solution by Murray [Int. Met. Rev. 30, 211 (1985)] was used to calculate the chemical potential for Al and Cu while the diffusivities were defined based on a Cu-trapping model by Rosenberg [J. Vac. Sci. Technol. 9, 263 (1972)]. The effects of Cu on stress evolution and lifetime were investigated in all-bamboo and near-bamboo stud-to-stud structures. In addition, the significance of the effect of mechanical stress on the diffusivity of both Al and Cu was determined in all-bamboo and near-bamboo lines. The void nucleation and growth process was simulated in 200 μm, stud-to-stud lines. Current density scaling behavior for void-nucleation-limited failure and void-growth-limited failure modes was simulated in long, stud-to-stud lines. Current density exponents of both n=2 for void nucleation and n=1 for void growth failure modes were found in both pure Al and Al-Cu lines. Limitations of the most widely used current density scaling law (Black's equation) in the analysis of the reliability of stud-to-stud lines are discussed. By modifying the input materials properties used in this model (when they are known), this model can be adapted to predict the reliability of other interconnect materials such as pure Cu and Cu alloys.
Borrelli, Enrico; Souied, Eric H; Freund, K Bailey; Querques, Giuseppe; Miere, Alexandra; Gal-Or, Orly; Sacconi, Riccardo; Sadda, SriniVas R; Sarraf, David
2018-04-30
To study choriocapillaris (CC) flow in eyes with Type 3 neovascularization (NV) and age-related macular degeneration, using optical coherence tomography angiography analysis. In this multicenter, retrospective, observational study, we collected data from 21 patients with unilateral Type 3 NV and age-related macular degeneration, based on clinical examination, structural optical coherence tomography, and fluorescein angiography when available. An additional group of 20 nonneovascular age-related macular degeneration eyes with unilateral Type 1 or Type 2 NV due to age-related macular degeneration was included for comparison. En face optical coherence tomography angiography imaging (3 × 3 mm scans) with quantitative microvascular analysis of the CC was performed. Main outcome measures were: 1) the percent nonperfused choriocapillaris area; and 2) the average CC signal void size. We included 21 patients with unilateral Type 3 NV (15 female, 71.5%) and 20 patients with unilateral Type 1 or 2 NV (9 female, 45.0% P = 0.118). Mean ± SD age was 82.1 ± 7.4 years in the unilateral Type 3 patients and 78.3 ± 8.1 in unilateral Type 1/2 NV subjects (P = 0.392). The percent nonperfused choriocapillaris area was 56.3 ± 8.1% in eyes with Type 3 NV and 51.9 ± 4.3% in the fellow eyes (P = 0.016). The average signal void size was also increased in those eyes with Type 3 NV (939.9 ± 680.9 μm), compared with the fellow eyes (616.3 ± 304.2 μm, P = 0.039). The number of signal voids was reduced in the Type 3 NV eyes (604.5 ± 282.9 vs. 747.3 ± 195.8, P = 0.046). The subfoveal choroidal thickness was 135.9 ± 54.2 μm in eyes with Type 3 NV and 167.2 ± 65.4 μm in the fellow eyes (P = 0.003). In addition, the fellow eyes of patients with unilateral Type 3 NV displayed more significant CC flow abnormalities versus the fellow eyes with unilateral Type 1/2 NV (percent nonperfused choriocapillaris area = 51.9 ± 4.3% vs. 46.0 ± 2.1%, respectively, P < 0.0001; and average signal void size 616.3 ± 304.2 μm versus 351.4 ± 65.5 μm, respectively, P < 0.0001; and number of signal voids 747.3 ± 195.8 vs. 998.5 ± 147.3, respectively, P < 0.0001). Eyes with unilateral Type 3 NV illustrated increased CC nonperfusion versus fellow nonneovascular eyes. These results suggest that choroidal ischemia may play an important role in the development of Type 3 NV.
NASA Astrophysics Data System (ADS)
Nepal, Neerajan; Altafim, Ruy Alberto Pisani; Mellinger, Axel
2017-06-01
Ferroelectrets, i.e., soft materials with electric charges deposited on the surfaces of internal voids, are well known for their potential in transducer applications and energy harvesting. Due to their regular geometry and optical transparency, tubular channel ferroelectrets (manufactured by laminating polymer films around a polytetrafluoroethylene template which is later removed) are well-suited for studying the process of charge deposition. Understanding how space charges are formed on the internal surfaces will lead to improvements in the charge density and in the piezoelectric performance of these films. In this work, the inception voltage for dielectric barrier discharges (and hence the onset of charge deposition) was measured using two independent techniques, fluorescence imaging and the laser intensity modulation method (LIMM). The results (around 1.4-1.7 kV, depending on the void height) are in agreement within ±50 V. The internal electric field distribution was calculated using finite element analysis (FEA). Combined with Paschen's law, these calculations explained the experimentally observed discharge patterns, starting from the channel edges in thick samples, but glowing more uniformly in films with void heights of 50 μm or less. A time-dependent FEA simulation of the LIMM measurement reproduced the observed thermoelastic resonances and their effect on the LIMM signal, and explained its seemingly erratic behavior. This approach has great potential for analyzing LIMM and thermal pulse data obtained in inhomogeneous materials.
Atomistic Simulation of Initiation in Hexanitrostilbene
NASA Astrophysics Data System (ADS)
Shan, Tzu-Ray; Wixom, Ryan; Yarrington, Cole; Thompson, Aidan
2015-06-01
We report on the effect of cylindrical voids on hot spot formation, growth and chemical reaction initiation in hexanitrostilbene (HNS) crystals subjected to shock. Large-scale, reactive molecular dynamics simulations are performed using the reactive force field (ReaxFF) as implemented in the LAMMPS software. The ReaxFF force field description for HNS has been validated previously by comparing the isothermal equation of state to available diamond anvil cell (DAC) measurements and density function theory (DFT) calculations and by comparing the primary dissociation pathway to ab initio calculations. Micron-scale molecular dynamics simulations of a supported shockwave propagating through the HNS crystal along the [010] orientation are performed with an impact velocity (or particle velocity) of 1.25 km/s, resulting in shockwave propagation at 4.0 km/s in the bulk material and a bulk shock pressure of ~ 11GPa. The effect of cylindrical void sizes varying from 0.02 to 0.1 μm on hot spot formation and growth rate has been studied. Interaction between multiple voids in the HNS crystal and its effect on hot spot formation will also be addressed. Results from the micron-scale atomistic simulations are compared with hydrodynamics simulations. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE National Nuclear Security Administration under Contract DE-AC04-94AL85000.
Ladefoged, Claes N; Hansen, Adam E; Keller, Sune H; Fischer, Barbara M; Rasmussen, Jacob H; Law, Ian; Kjær, Andreas; Højgaard, Liselotte; Lauze, Francois; Beyer, Thomas; Andersen, Flemming L
2015-12-01
In the absence of CT or traditional transmission sources in combined clinical positron emission tomography/magnetic resonance (PET/MR) systems, MR images are used for MR-based attenuation correction (MR-AC). The susceptibility effects due to metal implants challenge MR-AC in the neck region of patients with dental implants. The purpose of this study was to assess the frequency and magnitude of subsequent PET image distortions following MR-AC. A total of 148 PET/MR patients with clear visual signal voids on the attenuation map in the dental region were included in this study. Patients were injected with [(18)F]-FDG, [(11)C]-PiB, [(18)F]-FET, or [(64)Cu]-DOTATATE. The PET/MR data were acquired over a single-bed position of 25.8 cm covering the head and neck. MR-AC was based on either standard MR-ACDIXON or MR-ACINPAINTED where the susceptibility-induced signal voids were substituted with soft tissue information. Our inpainting algorithm delineates the outer contour of signal voids breaching the anatomical volume using the non-attenuation-corrected PET image and classifies the inner air regions based on an aligned template of likely dental artifact areas. The reconstructed PET images were evaluated visually and quantitatively using regions of interests in reference regions. The volume of the artifacts and the computed relative differences in mean and max standardized uptake value (SUV) between the two PET images are reported. The MR-based volume of the susceptibility-induced signal voids on the MR-AC attenuation maps was between 1.6 and 520.8 mL. The corresponding/resulting bias of the reconstructed tracer distribution was localized mainly in the area of the signal void. The mean and maximum SUVs averaged across all patients increased after inpainting by 52% (± 11%) and 28% (± 11%), respectively, in the corrected region. SUV underestimation decreased with the distance to the signal void and correlated with the volume of the susceptibility artifact on the MR-AC attenuation map. Metallic dental work may cause severe MR signal voids. The resulting PET/MR artifacts may exceed the actual volume of the dental fillings. The subsequent bias in PET is severe in regions in and near the signal voids and may affect the conspicuity of lesions in the mandibular region.
NASA Astrophysics Data System (ADS)
Seiler, J. M.; Rameau, B.
Bundle sodium boiling in nominal geometry for different accident conditions is reviewed. Voiding of a subassembly is controlled by not only hydrodynamic effects but mainly by thermal effects. There is a strong influence of the thermal inertia of the bundle material compared to the sodium thermal inertia. Flow instability, during a slow transient, can be analyzed with numerical tools and estimated using simplified approximations. Stable boiling operational conditions under bundle mixed convection (natural convection in the reactor) can be predicted. Voiding during a fast transient can be approximated from single channel calculations. The phenomenology of boiling behavior for a subassembly with inlet completely blocked, submitted to decay heat and lateral cooling; two-phase sodium flow pressure drop in a tube of large hydraulic diameter under adiabatic conditions; critical flow phenomena and voiding rate under high power, slow transient conditions; and onset of dry out under local boiling remains problematical.
Subsurface Void Characterization with 3-D Time Domain Full Waveform Tomography.
NASA Astrophysics Data System (ADS)
Nguyen, T. D.
2017-12-01
A new three dimensional full waveform inversion (3-D FWI) method is presented for subsurface site characterization at engineering scales (less than 30 m in depth). The method is based on a solution of 3-D elastic wave equations for forward modeling, and a cross-adjoint gradient approach for model updating. The staggered-grid finite-difference technique is used to solve the wave equations, together with implementation of the perfectly matched layer condition for boundary truncation. The gradient is calculated from the forward and backward wavefields. Reversed-in-time displacement residuals are induced as multiple sources at all receiver locations for the backward wavefield. The capability of the presented FWI method is tested on both synthetic and field experimental datasets. The test configuration uses 96 receivers and 117 shots at equal spacing (Fig 1). The inversion results from synthetic data show the ability of characterizing variable low- and high-velocity layers with embedded void (Figs 2-3). The synthetic study shows good potential for detection of voids and abnormalities in the field.
ERIC Educational Resources Information Center
Harris, Watson
2011-01-01
There are many articles about space management, including those that discuss space calculations, metrics, and categories. Fewer articles discuss the space budgeting processes used by administrators to allocate space. The author attempts to fill this void by discussing her administrative experiences with Middle Tennessee State University's (MTSU)…
Damage assessment and progression in a polyisocyanurate-based continuous swirl mat composite
NASA Astrophysics Data System (ADS)
Worley, Darwell Carlton, II
This research conducted in conjunction with Oak Ridge National Laboratories and the Automotive Composite Consortium, ACC, was motivated by the desire to reduce vehicle weight for increased efficiency. At present, there are no databases of failure mechanisms, experimental procedures to study failure, mathematical expressions for empirical or theoretical prediction of properties of a continuous swirl mat composite, CSMC. Therefore, to contribute to the increased utilization of this class of materials the following research was performed. This research enabled the failure mechanism to be formulated, development of a method to quantify failure based on ultrasonic attenuation maps, and the prediction of the fracture toughness parameter KIC. The use of scanning electron microscopy, light microscopy, and real-time tensile loading showed that the CSMC failed in a brittle mode. These techniques also provided imaging information as to how a dominant crack propagates in the presence of a continuously swirled E-glass mat reinforcement and voids. This evaluation enabled a reconstruction of failure in order to demonstrate a possible failure mechanism. The aforementioned techniques revealed that the dominant crack follows the fiber/matrix interface, but may be influenced by the presence of voids. Voids have the tendency of luring the growing crack away from the interface. A growing crack would, however, return to a fiber/matrix interface until complete failure occurred. Another aspect of this work was the quantification of progressive damage using ultrasound. Comparisons were made between ultrasonic attenuation maps for unloaded and sequentially loaded specimens. The sequential loads were applied at different percentages of the ultimate tensile strength, UTS. This technique provided attenuation maps for a series of specimens with a controlled degree of damage, which showed an increase in attenuation with an increase in percent UTS. Fracture toughness experiments yielded an average KIC value of 17.1 MPa√m, while the prediction of the fracture toughness parameter, KIC, was achieved by combining K-solution expressions for in-line and parallel crack configurations while evaluating the needed stress, sigma, using of the "Rule of Mixtures". The average void length was used as the crack length, which was obtained by light microscopy in conjunction with NIHTM software. The predicted KIC value at 40% glass fiber and void orientations of 45°, 30° and 25° was 11.4 MPa√m, 17.0 MPa√m and 18.6 MPa√m, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdulla, S.; Liu, X.; Anderson, M.H.
One concept being considered for steam generation in innovative nuclear reactor applications, involves water coming into direct contact with a circulating molten metal. The vigorous agitation of the two fluids, the direct liquid-liquid contact and the consequent large interfacial area can give rise to large heat transfer coefficients and rapid steam generation. For an optimum design of such direct contact heat exchange and vaporization systems, detailed knowledge is necessary of the various flow regimes, interfacial transport phenomena, heat transfer and operational stability. In order to investigate the interfacial transport phenomena, heat transfer and operational stability of direct liquid-liquid contact, amore » series of experiments are being performed in a 1-d test facility at Argonne National Laboratory and a 2-d experimental facility at UW-Madison. Each of the experimental facilities primarily consist of a liquid-metal melt chamber, heated test section (10 cm diameter tube for 1-d facility and 10 cm 50 cm rectangle for 2-d facility), water injection system and steam suppression tank. This paper is part II which, primarily addresses results and analysis of a set of preliminary experiments and void fraction measurements conducted in the 2-d facility at UW-Madison, part I deals with the heat transfer in the 1-d test facility at Argonne National Laboratory. A real-time high energy X-ray imaging system was developed and utilized to visualize the multiphase flow and measure line-average local void fractions, time-dependent void fraction distribution as well as estimates of the vapor bubble sizes and velocities. These measurements allowed us to determine the volumetric heat transfer coefficient and gain insight into the local heat transfer mechanisms. In this study, the images were captured at frame rates of 100 fps with spatial resolution of about 7 mm with a full-field view of a 15 cm square and five different positions along the test section height. The full-field average void fraction increases rapidly to about 15% in these preliminary tests, with the apparent boiling length of less than 20 cm. The volumetric heat transfer coefficient between the liquid metal and water are compared to the CRIEPI data, the only prior data for direct contact heat exchange for these liquid metal/water systems. (authors)« less
Benchmark measurements and calculations of a 3-dimensional neutron streaming experiment
NASA Astrophysics Data System (ADS)
Barnett, D. A., Jr.
1991-02-01
An experimental assembly known as the Dog-Legged Void assembly was constructed to measure the effect of neutron streaming in iron and void regions. The primary purpose of the measurements was to provide benchmark data against which various neutron transport calculation tools could be compared. The measurements included neutron flux spectra at four places and integral measurements at two places in the iron streaming path as well as integral measurements along several axial traverses. These data have been used in the verification of Oak Ridge National Laboratory's three-dimensional discrete ordinates code, TORT. For a base case calculation using one-half inch mesh spacing, finite difference spatial differencing, an S(sub 16) quadrature and P(sub 1) cross sections in the MUFT multigroup structure, the calculated solution agreed to within 18 percent with the spectral measurements and to within 24 percent of the integral measurements. Variations on the base case using a fewgroup energy structure and P(sub 1) and P(sub 3) cross sections showed similar agreement. Calculations using a linear nodal spatial differencing scheme and fewgroup cross sections also showed similar agreement. For the same mesh size, the nodal method was seen to require 2.2 times as much CPU time as the finite difference method. A nodal calculation using a typical mesh spacing of 2 inches, which had approximately 32 times fewer mesh cells than the base case, agreed with the measurements to within 34 percent and yet required on 8 percent of the CPU time.
Study of galaxies in the Lynx-Cancer void - VII. New oxygen abundances
NASA Astrophysics Data System (ADS)
Pustilnik, S. A.; Perepelitsyna, Y. A.; Kniazev, A. Y.
2016-11-01
We present new or improved oxygen abundances (O/H) for the nearby Lynx-Cancer void updated galaxy sample. They are obtained via the SAO 6-m telescope spectroscopy (25 objects), or derived from the Sloan Digital Sky Survey spectra (14 galaxies, of which for seven objects O/H values were unknown). For eight galaxies with detected [O III] λ4363 line, O/H values are derived via the direct (Te) method. For the remaining objects, O/H was estimated via semi-empirical and empirical methods. For all accumulated O/H data for 81 galaxies of this void (with 40 of them derived via Te method), their relation `O/H versus MB' is compared with that for similar late-type galaxies from denser environments (the Local Volume `reference sample'). We confirm our previous conclusion derived for a subsample of 48 objects: void galaxies show systematically reduced O/H for the same luminosity with respect to the reference sample, in average by 0.2 dex, or by a factor of ˜1.6. Moreover, we confirm the fraction of ˜20 per cent of strong outliers, with O/H of two to four times lower than the typical values for the `reference' sample. The new data are consistent with the conclusion on the slower evolution of the main void galaxy population. We obtained Hα velocity for the faint optical counterpart of the most gas-rich (M(H I)/LB = 25) void object J0723+3624, confirming its connection with the respective H I blob. For similar extremely gas-rich dwarf J0706+3020, we give a tentative O/H ˜(O/H)⊙/45. In Appendix A, we present the results of calibration of semi-empirical method by Izotov & Thuan and of empirical calibrators by Pilyugin & Thuan and Yin et al. on the sample of ˜150 galaxies from the literature with O/H measured by Te method.
Spherical Harmonic Solutions to the 3D Kobayashi Benchmark Suite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, P.N.; Chang, B.; Hanebutte, U.R.
1999-12-29
Spherical harmonic solutions of order 5, 9 and 21 on spatial grids containing up to 3.3 million cells are presented for the Kobayashi benchmark suite. This suite of three problems with simple geometry of pure absorber with large void region was proposed by Professor Kobayashi at an OECD/NEA meeting in 1996. Each of the three problems contains a source, a void and a shield region. Problem 1 can best be described as a box in a box problem, where a source region is surrounded by a square void region which itself is embedded in a square shield region. Problems 2more » and 3 represent a shield with a void duct. Problem 2 having a straight and problem 3 a dog leg shaped duct. A pure absorber and a 50% scattering case are considered for each of the three problems. The solutions have been obtained with Ardra, a scalable, parallel neutron transport code developed at Lawrence Livermore National Laboratory (LLNL). The Ardra code takes advantage of a two-level parallelization strategy, which combines message passing between processing nodes and thread based parallelism amongst processors on each node. All calculations were performed on the IBM ASCI Blue-Pacific computer at LLNL.« less
Zubiaga, A; Tuomisto, F; Puska, M J
2015-01-29
We investigate the modeling of positronium (Ps) states and their pick-off annihilation trapped at open volumes pockets in condensed molecular matter. Our starting point is the interacting many-body system of Ps and a He atom because it is the smallest entity that can mimic the energy gap between the highest occupied and lowest unoccupied molecular orbitals of molecules, and yet the many-body structure of the HePs system can be calculated accurately enough. The exact-diagonalization solution of the HePs system enables us to construct a pairwise full-correlation single-particle potential for the Ps-He interaction, and the total potential in solids is obtained as a superposition of the pairwise potentials. We study in detail Ps states and their pick-off annihilation rates in voids inside solid He and analyze experimental results for Ps-induced voids in liquid He obtaining the radii of the voids. More importantly, we generalize our conclusions by testing the validity of the Tao-Eldrup model, widely used to analyze ortho-Ps annihilation measurements for voids in molecular matter, against our theoretical results for the solid He. Moreover, we discuss the influence of the partial charges of polar molecules and the strength of the van der Waals interaction on the pick-off annihilation rate.
Brown, A. D.; Pham, Q.; Fortin, E. V.; ...
2016-11-10
Here, three-dimensional x-ray tomography (XRT) provides a nondestructive technique to characterize the size, shape, and location of damage in dynamically loaded metals. A shape-fitting method comprising the inertia tensors of individual damage sites was applied to study differences of spall damage development in face-centered-cubic (FCC) and hexagonal-closed-packed (HCP) multicrystals and for a suite of experiments on high-purity copper to examine the influence of loading kinetics on the spall damage process. Applying a volume-weighted average to the best-fit ellipsoidal aspect-ratios allows a quantitative assessment for determining the extent of damage coalescence present in a shocked metal. It was found that incipientmore » transgranular HCP spall damage nucleates in a lenticular shape and is heavily oriented along particular crystallographic slip directions. In polycrystalline materials, shape distributions indicate that a decrease in the tensile loading rate leads to a transition to coalesced damage dominance and that the plastic processes driving void growth are time dependent.« less
Inverted initial conditions: Exploring the growth of cosmic structure and voids
Pontzen, Andrew; Roth, Nina; Peiris, Hiranya V.; ...
2016-05-18
We introduce and explore “paired” cosmological simulations. A pair consists of an A and B simulation with initial conditions related by the inversion δ A(x,t initial) = –δ B(x,t initial) (underdensities substituted for overdensities and vice versa). We argue that the technique is valuable for improving our understanding of cosmic structure formation. The A and B fields are by definition equally likely draws from ΛCDM initial conditions, and in the linear regime evolve identically up to the overall sign. As nonlinear evolution takes hold, a region that collapses to form a halo in simulation A will tend to expand tomore » create a void in simulation B. Applications include (i) contrasting the growth of A-halos and B-voids to test excursion-set theories of structure formation, (ii) cross-correlating the density field of the A and B universes as a novel test for perturbation theory, and (iii) canceling error terms by averaging power spectra between the two boxes. Furthermore, generalizations of the method to more elaborate field transformations are suggested.« less
NASA Astrophysics Data System (ADS)
Cui, Yi; Chen, Zengtao
2017-02-01
Silicon particles with diameters from 1.9 nm to 30 nm are embedded in a face-centered-cubic copper matrix to form nanocomposite specimens for simulation. The interfacial debonding of silicon particles from the copper matrix and the subsequent growth of nucleated voids are studied via molecular dynamics (MD). The MD results are examined from several different perspectives. The overall mechanical performance is monitored by the average stress-strain response and the accumulated porosity. The ‘relatively farthest-traveled’ atoms are identified to characterize the onset of interfacial debonding. The relative displacement field is plotted to illustrate both subsequent interfacial debonding and the growth of a nucleated void facilitated by a dislocation network. Our results indicate that the initiation of interfacial debonding is due to the accumulated surface stress if the matrix is initially dislocation-free. However, pre-existing dislocations can make a considerable difference. In either case, the dislocation emission also contributes to the subsequent debonding process. As for the size effect, the debonding of relatively larger particles causes a drop in the stress-strain curve. The volume fraction of second-phase particles is found to be more influential than the size of the simulation box on the onset of interfacial debonding. The volume fraction of second-phase particles also affects the shape of the nucleated void and, therefore, influences the stress response of the composite.
Porru, D; Cervigni, M; Nasta, L; Natale, F; Lo Voi, R; Tinelli, C; Gardella, B; Anghileri, A; Spinillo, A; Rovereto, B
2008-05-01
The aim of our study was to test the effect of a more viscous compound than existent hyaluronic acid formulation in helping to restore a defective glycosaminoglycan layer, and therefore in improving Interstitial Cystitis/Painful Bladder Syndrome (IC/PBS) symptoms when administered intravesically in IC/PBS patients. A total of 23 female patients completed the study. Patients received endovesical administration of hyaluronic acid and chondroitin sulfate in normal saline, 40 ml, weekly for 12 weeks and then bi-weekly for 6 months, if there was initial response. After 12 weeks treatment both Interstitial Cystitis Symptom and Problem Index (ICSI/ICPI), pelvic pain and Urgency/Frequency Symptom Scale (PUF) showed a mean significant improvement, which was maintained thereafter. The average number of voidings and mean voiding volumes revealed significant improvement after the 12 weeks' treatment period, with a significant reduction and increase, respectively. Mean voiding volume increased from 143 ml to 191, which apparently was not reflected in a corresponding reduction of number of daily voids (from 15,5 to 14). VAS values decreased from 5,4 to 3,6 (pain) and from 6,0 to 3,5 (urgency) after the treatment cycle, showing a significant improvement. In our preliminary experience, the administration of intravesical hyaluronic acid plus chondroitine sulphate appears to be a safe and efficacious method of treatment in IC/PBS.
Lee, Yeon-Gun; Won, Woo-Youn; Lee, Bo-An; Kim, Sin
2017-01-01
In this study, a new and improved electrical conductance sensor is proposed for application not only to a horizontal pipe, but also an inclined one. The conductance sensor was designed to have a dual layer, each consisting of a three-electrode set to obtain two instantaneous conductance signals in turns, so that the area-averaged void fraction and structure velocity could be measured simultaneously. The optimum configuration of the electrodes was determined through numerical analysis, and the calibration curves for stratified and annular flow were obtained through a series of static experiments. The fabricated conductance sensor was applied to a 45 mm inner diameter U-shaped downward inclined pipe with an inclination angle of 3° under adiabatic air-water flow conditions. In the tests, the superficial velocities ranged from 0.1 to 3.0 m/s for water and from 0.1 to 18 m/s for air. The obtained mean void fraction and the structure velocity from the conductance sensor were validated against the measurement by the wire-mesh sensor and the cross-correlation technique for the visualized images, respectively. The results of the flow regime classification and the corresponding time series of the void fraction at a variety of flow velocities were also discussed. PMID:28481308
Heeringa, R; van Koeveringe, G A; Winkens, B; van Kerrebroeck, P E V; de Wachter, S G G
2012-04-01
To describe the terminology and pattern of bladder sensations experienced during non-invasive rapid bladder filling in a controlled setting in patients with OAB and to compare these results with a previous study conducted in healthy volunteers. Three groups of patients with OAB, in total 10 patients, participated in three consecutive focus group sessions. Before each session a strict water loading protocol was given. During the first two sessions, participants described how they experienced their bladder sensations in daily life and during a non-invasive bladder filling with constant focus on their bladder. The third session focused on verifying the interpretation of the data gathered and describing the pattern of sensations. Patients describe their bladder sensations as a pressure or a tingling sensation and the pattern can be described by terms ranging from no sensation to an absolute need to void. The absolute need to void may develop suddenly or more slowly progressive. The mean development of bladder sensation is significantly different between patients and healthy volunteers as well as their average diuresis. Patients with OAB describe their bladder sensations as a pressure or a tingling sensation. There appear to be two types of urgency: a sudden absolute need to void and a slowly developing absolute need to void. Furthermore bladder sensation develops significantly different in volunteers than in OAB patients. Copyright © 2012 Wiley Periodicals, Inc.
Stiffness optimization of non-linear elastic structures
Wallin, Mathias; Ivarsson, Niklas; Tortorelli, Daniel
2017-11-13
Our paper revisits stiffness optimization of non-linear elastic structures. Due to the non-linearity, several possible stiffness measures can be identified and in this work conventional compliance, i.e. secant stiffness designs are compared to tangent stiffness designs. The optimization problem is solved by the method of moving asymptotes and the sensitivities are calculated using the adjoint method. And for the tangent cost function it is shown that although the objective involves the third derivative of the strain energy an efficient formulation for calculating the sensitivity can be obtained. Loss of convergence due to large deformations in void regions is addressed bymore » using a fictitious strain energy such that small strain linear elasticity is approached in the void regions. We formulate a well-posed topology optimization problem by using restriction which is achieved via a Helmholtz type filter. The numerical examples provided show that for low load levels, the designs obtained from the different stiffness measures coincide whereas for large deformations significant differences are observed.« less
Stiffness optimization of non-linear elastic structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallin, Mathias; Ivarsson, Niklas; Tortorelli, Daniel
Our paper revisits stiffness optimization of non-linear elastic structures. Due to the non-linearity, several possible stiffness measures can be identified and in this work conventional compliance, i.e. secant stiffness designs are compared to tangent stiffness designs. The optimization problem is solved by the method of moving asymptotes and the sensitivities are calculated using the adjoint method. And for the tangent cost function it is shown that although the objective involves the third derivative of the strain energy an efficient formulation for calculating the sensitivity can be obtained. Loss of convergence due to large deformations in void regions is addressed bymore » using a fictitious strain energy such that small strain linear elasticity is approached in the void regions. We formulate a well-posed topology optimization problem by using restriction which is achieved via a Helmholtz type filter. The numerical examples provided show that for low load levels, the designs obtained from the different stiffness measures coincide whereas for large deformations significant differences are observed.« less
Qualification of APOLLO2 BWR calculation scheme on the BASALA mock-up
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaglio-Gaudard, C.; Santamarina, A.; Sargeni, A.
2006-07-01
A new neutronic APOLLO2/MOC/SHEM/CEA2005 calculation scheme for BWR applications has been developed by the French 'Commissariat a l'Energie Atomique'. This scheme is based on the latest calculation methodology (accurate mutual and self-shielding formalism, MOC treatment of the transport equation) and the recent JEFF3.1 nuclear data library. This paper presents the experimental validation of this new calculation scheme on the BASALA BWR mock-up The BASALA programme is devoted to the measurements of the physical parameters of high moderation 100% MOX BWR cores, in hot and cold conditions. The experimental validation of the calculation scheme deals with core reactivity, fission rate maps,more » reactivity worth of void and absorbers (cruciform control blades and Gd pins), as well as temperature coefficient. Results of the analysis using APOLLO2/MOC/SHEM/CEA2005 show an overestimation of the core reactivity by 600 pcm for BASALA-Hot and 750 pcm for BASALA-Cold. Reactivity worth of gadolinium poison pins and hafnium or B{sub 4}C control blades are predicted by APOLLO2 calculation within 2% accuracy. Furthermore, the radial power map is well predicted for every core configuration, including Void configuration and Hf / B{sub 4}C configurations: fission rates in the central assembly are calculated within the {+-}2% experimental uncertainty for the reference cores. The C/E bias on the isothermal Moderator Temperature Coefficient, using the CEA2005 library based on JEFF3.1 file, amounts to -1.7{+-}03 pcm/ deg. C on the range 10 deg. C-80 deg. C. (authors)« less
A finite-strain homogenization model for viscoplastic porous single crystals: I - Theory
NASA Astrophysics Data System (ADS)
Song, Dawei; Ponte Castañeda, P.
2017-10-01
This paper presents a homogenization-based constitutive model for the finite-strain, macroscopic response of porous viscoplastic single crystals. The model accounts explicitly for the evolution of the average lattice orientation, as well as the porosity, average shape and orientation of the voids (and their distribution), by means of appropriate microstructural variables playing the role of internal variables and serving to characterize the evolution of both the "crystallographic" and "morphological" anisotropy of the porous single crystals. The model makes use of the fully optimized second-order variational method of Ponte Castañeda (2015), together with the iterated homogenization approach of Agoras and Ponte Castañeda (2013), to characterize the instantaneous effective response of the porous single crystals with fixed values of the microstructural variables. Consistent homogenization estimates for the average strain rate and vorticity fields in the phases are then used to derive evolution equations for the associated microstructural variables. The model is 100% predictive, requiring no fitting parameters, and applies for porous viscoplastic single crystals with general crystal anisotropy and average void shape and orientation, which are subjected to general loading conditions. In Part II of this work (Song and Ponte Castañeda, 2017a), results for both the instantaneous response and the evolution of the microstructure will be presented for porous FCC and HCP single crystals under a wide range of loading conditions, and good agreement with available FEM results will be shown.
Planar spatial correlations, anisotropy, and specific surface area of stationary random porous media
NASA Astrophysics Data System (ADS)
Berryman, James G.
1998-02-01
An earlier result of the author showed that an anisotropic spatial correlation function of a random porous medium could be used to compute the specific surface area when it is stationary as well as anisotropic by first performing a three-dimensional radial average and then taking the first derivative with respect to lag at the origin. This result generalized the earlier result for isotropic porous media of Debye et al. [J. Appl. Phys. 28, 679 (1957)]. The present article provides more detailed information about the use of spatial correlation functions for anisotropic porous media and in particular shows that, for stationary anisotropic media, the specific surface area can be related to the derivative of the two-dimensional radial average of the correlation function measured from cross sections taken through the anisotropic medium. The main concept is first illustrated using a simple pedagogical example for an anisotropic distribution of spherical voids. Then, a general derivation of formulas relating the derivative of the planar correlation functions to surface integrals is presented. When the surface normal is uniformly distributed (as is the case for any distribution of spherical voids), our formulas can be used to relate a specific surface area to easily measurable quantities from any single cross section. When the surface normal is not distributed uniformly (as would be the case for an oriented distribution of ellipsoidal voids), our results show how to obtain valid estimates of specific surface area by averaging measurements on three orthogonal cross sections. One important general observation for porous media is that the surface area from nearly flat cracks may be underestimated from measurements on orthogonal cross sections if any of the cross sections happen to lie in the plane of the cracks. This result is illustrated by taking the very small aspect ratio (penny-shaped crack) limit of an oblate spheroid, but holds for other types of flat surfaces as well.
Planar spatial correlations, anisotropy, and specific surface area of stationary random porous media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berryman, J.G.
1998-02-01
An earlier result of the author showed that an anisotropic spatial correlation function of a random porous medium could be used to compute the specific surface area when it is stationary as well as anisotropic by first performing a three-dimensional radial average and then taking the first derivative with respect to lag at the origin. This result generalized the earlier result for isotropic porous media of Debye {ital et al.} [J. Appl. Phys. {bold 28}, 679 (1957)]. The present article provides more detailed information about the use of spatial correlation functions for anisotropic porous media and in particular shows that,more » for stationary anisotropic media, the specific surface area can be related to the derivative of the two-dimensional radial average of the correlation function measured from cross sections taken through the anisotropic medium. The main concept is first illustrated using a simple pedagogical example for an anisotropic distribution of spherical voids. Then, a general derivation of formulas relating the derivative of the planar correlation functions to surface integrals is presented. When the surface normal is uniformly distributed (as is the case for any distribution of spherical voids), our formulas can be used to relate a specific surface area to easily measurable quantities from any single cross section. When the surface normal is not distributed uniformly (as would be the case for an oriented distribution of ellipsoidal voids), our results show how to obtain valid estimates of specific surface area by averaging measurements on three orthogonal cross sections. One important general observation for porous media is that the surface area from nearly flat cracks may be underestimated from measurements on orthogonal cross sections if any of the cross sections happen to lie in the plane of the cracks. This result is illustrated by taking the very small aspect ratio (penny-shaped crack) limit of an oblate spheroid, but holds for other types of flat surfaces as well.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, B.; The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610207; Wang, L.
With large-scale molecular dynamics simulations, we investigate shock response of He nanobubbles in single crystal Cu. For sufficient bubble size or internal pressure, a prismatic dislocation loop may form around a bubble in unshocked Cu. The internal He pressure helps to stabilize the bubble against plastic deformation. However, the prismatic dislocation loops may partially heal but facilitate nucleation of new shear and prismatic dislocation loops. For strong shocks, the internal pressure also impedes internal jetting, while a bubble assists local melting; a high speed jet breaks a He bubble into pieces dispersed among Cu. Near-surface He bubbles may burst andmore » form high velocity ejecta containing atoms and small fragments, while the ejecta velocities do not follow the three-dimensional Maxwell-Boltzmann distributions expected for thermal equilibrium. The biggest fragment size deceases with increasing shock strength. With a decrease in ligament thickness or an increase in He bubble size, the critical shock strength required for bubble bursting decreases, while the velocity range, space extension and average velocity component along the shock direction, increase. Small bubbles are more efficient in mass ejecting. Compared to voids and perfect single crystal Cu, He bubbles have pronounced effects on shock response including bubble/void collapse, Hugoniot elastic limit (HEL), deformation mechanisms, and surface jetting. HEL is the highest for perfect single crystal Cu with the same orientations, followed by He bubbles without pre-existing prismatic dislocation loops, and then voids. Complete void collapse and shear dislocations occur for embedded voids, as opposed to partial collapse, and shear and possibly prismatic dislocations for He bubbles. He bubbles lower the threshhold shock strength for ejecta formation, and increase ejecta velocity and ejected mass.« less
Changes in voiding behavior in a mouse model of Alzheimer’s disease
Biallosterski, B. T.; Prickaerts, J.; Rahnama’i, M. S.; de Wachter, S.; van Koeveringe, G. A.; Meriaux, C.
2015-01-01
Besides cognitive decline and behavioral alteration, urinary incontinence often occurs in patients suffering from Alzheimer’s disease (AD). To determine whether the transgenic mouse model of AD, APP/PS1 (APPSL/PS1M146L) mouse, shows alteration of the urinary bladder function and anxiety, as for patients with AD, we examined the urinary marking behavior in relation to affective behavior. At 18 months of age voiding behavior of APP/PS1 and wild type (WT) mice was assessed by using a modified filter paper assay in combination with video tracing, with the cage divided into a center and corner zones. Anxiety-related behavior and locomotion were respectively tested in an elevated zero maze (EZM) and an open field (OF). The APP/PS1 mice urinated more in the center zone than the WT mice. The total volume of markings was significantly lower in the APP/PS1 mice. In both groups, the average volume of a marking in the corner zone was larger than in the center zone. In the EZM, the APP/PS1 mice spent less time in the open arms of the arena, considered as anxiogenic zones, than the WT mice. During the OF task, the APP/PS1 mice covered a longer distance than the WT mice. These findings show that the APP/PS1 mice have a different voiding behavior compared to the WT mice, i.e., urinating with small volumes and voiding in the center of the cage, and suggest that increased locomotor activity and anxiety-related behaviors are factors in the change in voiding pattern in the APP/PS1 mouse. PMID:26379542
NASA Technical Reports Server (NTRS)
Smith, J. G., Jr.; Connell, J. W.; Hergenrother, P. M.
1997-01-01
As part of a program to develop high temperature/high performance structural resins for aeronautical applications, imide oligomers containing terminal phenylethynyl groups with calculated number average molecular weights of 1250, 2500 and 5000 g/mol were prepared, characterized, and evaluated as adhesives and composite matrix resins. The goal of this work was to develop resin systems that are processable using conventional processing equipment into void free composites that exhibit high mechanical properties with long term high temperature durability, and are not affected by exposure to common aircraft fluids. The imide oligomers containing terminal phenylethynyl groups were fabricated into titanium adhesive specimens and IM-7 carbon fiber laminates under 0.1 - 1.4 MPa for 1 hr at 350-371 C. The lower molecular weight oligomers exhibited higher cured Tg, better processability, and better retention of mechanical properties at elevated temperature without significantly sacrificing toughness or damage tolerance than the higher molecular weight oligomer. The neat resin, adhesive and composite properties of the cured polymers will be presented.
Benchmark tests of JENDL-3.2 for thermal and fast reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takano, Hideki; Akie, Hiroshi; Kikuchi, Yasuyuki
1994-12-31
Benchmark calculations for a variety of thermal and fast reactors have been performed by using the newly evaluated JENDL-3 Version-2 (JENDL-3.2) file. In the thermal reactor calculations for the uranium and plutonium fueled cores of TRX and TCA, the k{sub eff} and lattice parameters were well predicted. The fast reactor calculations for ZPPR-9 and FCA assemblies showed that the k{sub eff} reactivity worths of Doppler, sodium void and control rod, and reaction rate distribution were in a very good agreement with the experiments.
NASA Technical Reports Server (NTRS)
Walker, Kevin P.; Freed, Alan D.; Jordan, Eric H.
1993-01-01
Local stress and strain fields in the unit cell of an infinite, two-dimensional, periodic fibrous lattice have been determined by an integral equation approach. The effect of the fibres is assimilated to an infinite two-dimensional array of fictitious body forces in the matrix constituent phase of the unit cell. By subtracting a volume averaged strain polarization term from the integral equation we effectively embed a finite number of unit cells in a homogenized medium in which the overall stress and strain correspond to the volume averaged stress and strain of the constrained unit cell. This paper demonstrates that the zeroth term in the governing integral equation expansion, which embeds one unit cell in the homogenized medium, corresponds to the generalized self-consistent approximation. By comparing the zeroth term approximation with higher order approximations to the integral equation summation, both the accuracy of the generalized self-consistent composite model and the rate of convergence of the integral summation can be assessed. Two example composites are studied. For a tungsten/copper elastic fibrous composite the generalized self-consistent model is shown to provide accurate, effective, elastic moduli and local field representations. The local elastic transverse stress field within the representative volume element of the generalized self-consistent method is shown to be in error by much larger amounts for a composite with periodically distributed voids, but homogenization leads to a cancelling of errors, and the effective transverse Young's modulus of the voided composite is shown to be in error by only 23% at a void volume fraction of 75%.
Comparison of air void content measurements in fresh versus hardened concretes.
DOT National Transportation Integrated Search
1990-01-01
This study compares the air content of freshly mixed and hardened concretes. At the fresh stage, pressure meters (Types A and B) and a volumetric meter were used to determine the air content. At the hardened stage, the air content was calculated usin...
Chlorine toxicity to early life stages of freshwater mussels (Bivalvia: Unionidae)
Valenti, T.W.; Cherry, D.S.; Currie, R.J.; Neves, R.J.; Jones, J.W.; Mair, R.; Kane, C.M.
2006-01-01
Chlorine (Cl) is a highly toxic, widely used halogen disinfectant that is present in point-source pollution discharges from wastewater treatment plants and industrial facilities. The U.S. Environmental Protection Agency freshwater criteria for Cl are 19 ??g total residual Cl (TRC)/L as a maximum 1-h average concentration and 11 ??g TRC/L as a maximum 4-d average; however, toxicological data for unionids were not used in these calculations. To address this void in the data, we conducted acute tests with glochidia from several species and 21-d bioassays with three-month-old Epioblasma capsaeformis and three-, six-, and 12-month-old Villosa iris juveniles. The 24-h lethal concentration 50 values for glochidia were between 70 and 220 ??g TRC/L, which are 2.5 to 37 times higher than those reported in other studies for cladocerans. Significant declines in growth and survivorship were observed in the 21-d test with E. capsaeformis at 20 ??g TRC/L. Lowest-observed-adverse- effects concentrations in bioassays with juvenile V. iris were higher (30-60 ??g TRC/L) but showed a significant trend of declining toxicity with increased age. Although endpoints were above water quality criteria, the long life spans of unionids and potential implications of chronic exposure to endangered juvenile mussels still warrant concern. ?? 2006 SETAC.
The sparkling Universe: clustering of voids and void clumps
NASA Astrophysics Data System (ADS)
Lares, Marcelo; Ruiz, Andrés N.; Luparello, Heliana E.; Ceccarelli, Laura; Garcia Lambas, Diego; Paz, Dante J.
2017-07-01
We analyse the clustering of cosmic voids using a numerical simulation and the main galaxy sample from the Sloan Digital Sky Survey. We take into account the classification of voids into two types that resemble different evolutionary modes: those with a rising integrated density profile (void-in-void mode or R-type) and voids with shells (void-in-cloud mode or S-type). The results show that voids of the same type have stronger clustering than the full sample. We use the correlation analysis to define void clumps, associations with at least two voids separated by a distance of at most the mean void separation. In order to study the spatial configuration of void clumps, we compute the minimal spanning tree and analyse their multiplicity, maximum length and elongation parameter. We further study the dynamics of the smaller sphere that enclose all the voids in each clump. Although the global densities of void clumps are different according to their member-void types, the bulk motions of these spheres are remarkably lower than those of randomly placed spheres with the same radius distribution. In addition, the coherence of pairwise void motions does not strongly depend on whether voids belong to the same clump. Void clumps are useful to analyse the large-scale flows around voids, since voids embedded in large underdense regions are mostly in the void-in-void regime, where the expansion of the larger region produces the separation of voids. Similarly, voids around overdense regions form clumps that are in collapse, as reflected in the relative velocities of voids that are mostly approaching.
Tugtepe, H; Thomas, D T; Ergun, R; Kalyoncu, A; Kaynak, A; Kastarli, C; Dagli, T E
2015-06-01
While there are many options for children with treatment refractory urinary incontinence, there is no single accepted method. This study's aim was to prospectively evaluate the effect of transcutaneous electrical nerve stimulation in children with urinary incontinence resistant to standard medical, urological therapy and/or biofeedback. This study was performed at a university hospital. For inclusion, patients >5 years of age first underwent evaluation with urinary ultrasonography, uroflow-electromyogram and voiding diaries. Treatment with biofeedback, alpha adrenergic blockers, anticholinergics and/or urotherapy was commenced according to uroflow-EMG and voiding diary findings. Patients with partial or no response to this standard therapy were then included in this study, performed between April 2012 and February 2014. Patients with anatomical or neurological causes for urinary incontinence were excluded. TENS was performed on S3 dermatome, every day for 3 months. Each session lasted 20 min with a frequency of 10 Hz and generated pulse of 350 μs. Intensity was determined by the child's sensitivity threshold. Medical treatment and urological therapy was continued during TENS. Uroflow parameters (voiding volume as percentage of expected bladder capacity, Qmax, Qave, flow and voiding time, postvoiding residual urine) and urinary system symptoms (presence of urinary tract infection, frequency, urge incontinence, fractionated voiding and constipation) were compared immediately before commencement and immediately after the completion of 3 months of TENS. Twenty-seven patients were included in this study (4 males, 23 females). Patients' average age was 7.2 years, 11 had overactive bladder and 16 had dysfunctional voiding. Comparison of urinary system symptoms and uroflow parameters before and after TENS are shown in Table. After 3 months of TENS; a statistically significant decrease was observed in the number of patients with frequency, urge incontinence, urinary tract infections and constipation. There was a decrease in the number of patients with fractionated voiding, although this change was not statistically significant. Similarly, for uroflow-EMG parameters; bladder capacity, Qmax, Qave and flow time increased while voiding time and PVR decreased. Changes seen in bladder capacity, Qmax and PVR were statically significant, while other changes were not. Patients' response rates after 3 months of TENS were; complete response in 70.4%, partial response in 22.2% and no response in 7.4%. This study has shown that transcutaneous electrical nerve stimulation is a promising treatment option for standard-treatment refractory children with urinary incontinence. Copyright © 2015 Journal of Pediatric Urology Company. Published by Elsevier Ltd. All rights reserved.
Advanced Neutronics Tools for BWR Design Calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santamarina, A.; Hfaiedh, N.; Letellier, R.
2006-07-01
This paper summarizes the developments implemented in the new APOLLO2.8 neutronics tool to meet the required target accuracy in LWR applications, particularly void effects and pin-by-pin power map in BWRs. The Method Of Characteristics was developed to allow efficient LWR assembly calculations in 2D-exact heterogeneous geometry; resonant reaction calculation was improved by the optimized SHEM-281 group mesh, which avoids resonance self-shielding approximation below 23 eV, and the new space-dependent method for resonant mixture that accounts for resonance overlapping. Furthermore, a new library CEA2005, processed from JEFF3.1 evaluations involving feedback from Critical Experiments and LWR P.I.E, is used. The specific '2005-2007more » BWR Plan' settled to demonstrate the validation/qualification of this neutronics tool is described. Some results from the validation process are presented: the comparison of APOLLO2.8 results to reference Monte Carlo TRIPOLI4 results on specific BWR benchmarks emphasizes the ability of the deterministic tool to calculate BWR assembly multiplication factor within 200 pcm accuracy for void fraction varying from 0 to 100%. The qualification process against the BASALA mock-up experiment stresses APOLLO2.8/CEA2005 performances: pin-by-pin power is always predicted within 2% accuracy, reactivity worth of B4C or Hf cruciform control blade, as well as Gd pins, is predicted within 1.2% accuracy. (authors)« less
NASA Astrophysics Data System (ADS)
Li, Zhuopei; Jiang, Yanlong; Gan, Zhihua; Qiu, Limin; Chen, Jie
2015-09-01
Stirling type pulse tube cryocoolers (SPTC), typically operating at 30-60 Hz, have the advantage of compact structure, light weight, and long life compared with Gifford-McMahon type (1-2 Hz) PTC (GMPTC). The behavior of flow and heat transfer in the regenerator of a 4 K SPTC deviates from that at warmer temperatures and low frequencies. In this paper the behavior of 4 K regenerator at high frequencies is investigated based on a single-stage 4 K SPTC precooled by a two-stage GMPTC. The 4 K SPTC and the GMPTC is thermally coupled with two thermal bridges. The 4 K SPTC uses a 10 K cold inertance tube as phase shifter to improve phase relationship between mass flow and pressure. The regenerator void volume is an important factor that significantly influences the heat transfer between regenerator matrix and working fluid helium, pressure drop along the regenerator, and phase shift between mass flow and pressure. In this paper, influence of regenerator void volume on the performance of the 4 K SPTC with different operating parameters including operating frequencies and average pressure is studied theoretically and experimentally. The first and second precooling powers provided by the GMPTC are obtained which are important parameters to evaluate the efficiency of the whole 4 K system with precooling. The results of the regenerator void volume are given and discussed in normalized form for general use.
The effect of alpha blockers on uroflowmetric parameters in different voiding positions
Koc, Gokhan; Yilmaz, Yuksel; Un, Sitki; Akbay, Kaan; Akdeniz, Firat
2013-01-01
Introduction: We assessed the effect of different voiding positions on uroflowmetric parameters and post-void residual (PVR) urine volume in symptomatic benign prostatic hyperplasia (BPH) patients. We also evaluated the effect of alpha blockers on PVR in different voiding positions. Methods: The study was performed with 110 BPH patients over 50 years old. In total, 4 uroflowmetries were performed in all patients: 2 patients in the sitting position and 2 in the standing position. PVR was measured with transabdominal ultrasonography. Also, patients were divided into two groups according to the alpha adrenergic blocker treatment; the effect of this treatment on their uroflowmetric parameters in different positions was evaluated. Results: Maximum flow rate (Qmax) and average flow rate (Qave) were significantly higher in patients in the sitting position, but there were no differences in other uroflowmetric parameters and PVR volume (Qmax: 15.5±5.9 mL/s vs. 13.7±5.2 mL/s, Qave: 11.4±4.6 mL/s vs. 10.7± 3.9 mL/s, respectively; p < 0.05). The Qmax and Qave were significantly higher in sitting position, compared to the standing position, in both alpha adrenergic treatment and non-treated groups; again, there were no differences in other uroflowmetric parameters and PVR volume. Conclusion: Qmax and Qave values were significantly higher in the sitting position. Alpha blockers did not affect any change. PMID:23766834
Theoretical study for volume changes associated with the helix-coil transition of peptides.
Imai, T; Harano, Y; Kovalenko, A; Hirata, F
2001-12-01
We calculate the partial molar volumes and their changes associated with the coil(extended)-to-helix transition of two types of peptide, glycine-oligomer and glutamic acid-oligomer, in aqueous solutions by using the Kirkwood-Buff solution theory coupled with the three-dimensional reference interaction site model (3D-RISM) theory. The volume changes associated with the transition are small and positive. The volume is analyzed by decomposing it into five contributions following the procedure proposed by Chalikian and Breslauer: the ideal volume, the van der Waals volume, the void volume, the thermal volume, and the interaction volume. The ideal volumes and the van der Waals volumes do not change appreciably upon the transition. In the both cases of glycine-peptide and glutamic acid-peptide, the changes in the void volumes are positive, while those in the thermal volumes are negative, and tend to balance those in the void volumes. The change in the interaction volume of glycine-peptide does not significantly contribute, while that of glutamic acid-peptide makes a negative contribution. Copyright 2001 John Wiley & Sons, Inc. Biopolymers 59: 512-519, 2001
Nilpotent symmetries in supergroup field cosmology
NASA Astrophysics Data System (ADS)
Upadhyay, Sudhaker
2015-06-01
In this paper, we study the gauge invariance of the third quantized supergroup field cosmology which is a model for multiverse. Further, we propose both the infinitesimal (usual) as well as the finite superfield-dependent BRST symmetry transformations which leave the effective theory invariant. The effects of finite superfield-dependent BRST transformations on the path integral (so-called void functional in the case of third quantization) are implemented. Within the finite superfield-dependent BRST formulation, the finite superfield-dependent BRST transformations with specific parameter switch the void functional from one gauge to another. We establish this result for the most general gauge with the help of explicit calculations which holds for all possible sets of gauge choices at both the classical and the quantum levels.
Mathematical modeling of the process of filling a mold during injection molding of ceramic products
NASA Astrophysics Data System (ADS)
Kulkov, S. N.; Korobenkov, M. V.; Bragin, N. A.
2015-10-01
Using the software package Fluent it have been predicted of the filling of a mold in injection molding of ceramic products is of great importance, because the strength of the final product is directly related to the presence of voids in the molding, making possible early prediction of inaccuracies in the mold prior to manufacturing. The calculations were performed in the formulation of mathematical modeling of hydrodynamic turbulent process of filling a predetermined volume of a viscous liquid. The model used to determine the filling forms evaluated the influence of density and viscosity of the feedstock, and the injection pressure on the mold filling process to predict the formation of voids in the area caused by the shape defect geometry.
NASA Astrophysics Data System (ADS)
Reben, M.; Golis, E.; Filipecki, J.; Sitarz, M.; Kotynia, K.; Jeleń, P.; Grelowska, I.
2014-08-01
PALS in comparison with FTIR studies have been applied to investigate the structure of different oxide glasses. Three components of the positron lifetime τ (τ1 para- and τ3 ortho-positronium and τ2 intermediate lifetime component) and their intensities were obtained. The results of the calculation of mean values of positron lifetimes for the investigated glasses showed the existence of a long-living component on the positron annihilation lifetime spectra. From the Tao-Eldrup formula we can estimate the size of free volume. On the basis of the measurements we can conclude that the size and fraction of free volume reaches the biggest value for the fused silica glass. The degree of network polymerisation increases void size.
Investigation of the Performance of D 2O-Cooled High-Conversion Reactors for Fuel Cycle Calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hiruta, Hikaru; Youinou, Gilles
2013-09-01
This report presents FY13 activities for the analysis of D 2O cooled tight-pitch High-Conversion PWRs (HCPWRs) with U-Pu and Th-U fueled cores aiming at break-even or near breeder conditions while retaining the negative void reactivity. The analyses are carried out from several aspects which could not be covered in FY12 activities. SCALE 6.1 code system is utilized, and a series of simple 3D fuel pin-cell models are developed in order to perform Monte Carlo based criticality and burnup calculations. The performance of U-Pu fueled cores with axial and internal blankets is analyzed in terms of their impact on the relativemore » fissile Pu mass balance, initial Pu enrichment, and void coefficient. In FY12, Pu conversion performances of D 2O-cooled HCPWRs fueled with MOX were evaluated with small sized axial/internal DU blankets (approximately 4cm of axial length) in order to ensure the negative void reactivity, which evidently limits the conversion performance of HCPWRs. In this fiscal year report, the axial sizes of DU blankets are extended up to 30 cm in order to evaluate the amount of DU necessary to reach break-even and/or breeding conditions. Several attempts are made in order to attain the milestone of the HCPWR designs (i.e., break-even condition and negative void reactivity) by modeling of HCPWRs under different conditions such as boiling of D 2O coolant, MOX with different 235U enrichment, and different target burnups. A similar set of analyses are performed for Th-U fueled cores. Several promising characteristics of 233U over other fissile like 239Pu and 235U, most notably its higher fission neutrons per absorption in thermal and epithermal ranges combined with lower ___ in the fast range than 239Pu allows Th-U cores to be taller than MOX ones. Such an advantage results in 4% higher relative fissile mass balance than that of U-Pu fueled cores while retaining the negative void reactivity until the target burnup of 51 GWd/t. Several other distinctions between U-Pu and Th-U fueled cores are identified by evaluating the sensitivity coefficients of keff, mass balance, and void coefficient. The effect of advanced iron alloy cladding (i.e., FeCrAl) on the performance of Pu conversion in MOX fueled cores is studied instead of using standard stainless-steel cladding. Variations in clad thickness and coolant-to-fuel volume ratio are also exercised. The use of FeCrAl instead of SS as a cladding alloy reduces the required Pu enrichment and improves the Pu conversion rate primarily due to the absence of nickel in the cladding alloy that results in the reduction of the neutron absorption. Also the difference in void coefficients between SS and FeCrAl alloys is nearly 500 pcm over the entire burnup range. The report also shows sensitivity and uncertainty analyses in order to characterize D 2O cooled HCPWRs from different aspects. The uncertainties of integral parameters (keff and void coefficient) for selected reactor cores are evaluated at different burnup points in order to find similarities and trends respect to D 2O-HCPWR.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Thao; Luscher, D. J.; Wilkerson, J. W.
We developed a framework for dislocation-based viscoplasticity and dynamic ductile failure to model high strain rate deformation and damage in single crystals. The rate-dependence of the crystal plasticity formulation is based on the physics of relativistic dislocation kinetics suited for extremely high strain rates. The damage evolution is based on the dynamics of void growth, which are governed by both micro-inertia as well as dislocation kinetics and dislocation substructure evolution. Furthermore, an averaging scheme is proposed in order to approximate the evolution of the dislocation substructure in both the macroscale as well as its spatial distribution at the microscale. Inmore » addition, a concept of a single equivalent dislocation density that effectively captures the collective influence of dislocation density on all active slip systems is proposed here. Together, these concepts and approximations enable the use of semi-analytic solutions for void growth dynamics developed in [J. Wilkerson and K. Ramesh. A dynamic void growth model governed by dislocation kinetics. J. Mech. Phys. Solids, 70:262–280, 2014.], which greatly reduce the computational overhead that would otherwise be required. The resulting homogenized framework has been implemented into a commercially available finite element package, and a validation study against a suite of direct numerical simulations was carried out.« less
Zhang, Li Tao; Lee, Sung Won; Park, Kwangsung; Chung, Woo Sik; Kim, Sae Woong; Hyun, Jae Seog; Moon, Doo Geon; Yang, Sang-Kuk; Ryu, Ji Kan; Yang, Dae Yul; Moon, Ki Hak; Min, Kweon Sik; Park, Jong Kwan
2015-01-01
The objective of this study was to assess the efficacy and safety of alfuzosin 10 mg monotherapy or combined antihypertensive medication on blood pressure (BP) in patients with lower urinary tract symptoms suggestive of benign prostatic hyperplasia (BPH/LUTS) with or without antihypertensive medication. This was a 3-month, multicenter, randomized, open-label study in 335 patients aged ≥45 years with a clinical diagnosis of BPH/LUTS by medical history and clinical examination, a total International Prostatic Symptom Score (IPSS) ≥8 points, a maximum flow rate >5 mL/sec and ≤15 mL/sec, and a voided volume ≥120 mL. Eligible subjects were randomized to receive alfuzosin 10 mg as monotherapy (group 1) or alfuzosin 10 mg + antihypertensive combination therapy (group 2). Based on baseline BP and hypertensive history with or without antihypertensive medications at first medical examination, group 1 was divided into two subgroups of normotensive and untreated hypertensive patients, and group 2 into two subgroups of controlled hypertensive and uncontrolled hypertensive patients. The primary study outcomes were change in IPSS, BP, and heart rate from baseline. Secondary outcomes were change in IPSS-quality of life score, maximum flow rate, average flow rate, voided volume, and post-voided volume. The overall BP change was not significantly different between groups 1 and 2 (systolic BP, P=0.825; diastolic BP, P>0.999). In patients with uncontrolled or untreated hypertension, alfuzosin 10 mg alone or combined with antihypertensive therapy significantly decreased systolic and diastolic BP. The mean difference in total IPSS and IPSS-quality of life scores from baseline between groups 1 and 2 was 0.45 (95% CI: -1.26, 2.16) and 0.12 (95% CI: -0.21, 0.45), respectively (both P>0.05). Maximum flow rate, average flow rate, voided volume, and post-voided volume at endpoint were numerically, but not significantly, changed from baseline (all P>0.05). This study shows that alfuzosin 10 mg is effective and well tolerated in patients with BPH/LUTS with or without antihypertensive medications. However, in patients with uncontrolled or untreated hypertension, alfuzosin 10 mg alone or in combination with antihypertensive medication appears to decrease systolic and diastolic BP, and these patients should be warned about a decrease in BP on initiation of therapy.
Laboratory measurements of electrical resistivity versus water content on small soil cores
NASA Astrophysics Data System (ADS)
Robain, H.; Camerlynck, C.; Bellier, G.; Tabbagh, A.
2003-04-01
The assessment of soil water content variations more and more leans on geophysical methods that are non invasive and that allow a high spatial sampling. Among the different methods, DC electrical imaging is moving forward. DC Electrical resistivity shows indeed strong seasonal variations that principally depend on soil water content variations. Nevertheless, the widely used Archie's empirical law [1], that links resistivity with voids saturation and water conductivity is not well suited to soil materials with high clay content. Furthermore, the shrinking and swelling properties of soil materials have to be considered. Hence, it is relevant to develop new laboratory experiments in order to establish a relation between electrical resistivity and water content taking into account the rheological and granulometrical specificities of soil materials. The experimental device developed in IRD laboratory allows to monitor simultaneously (i) the water content, (ii) the electrical resistivity and (iii) the volume of a small cylindrical soil core (100cm3) put in a temperature controlled incubator (30°C). It provides both the shrinkage curve of the soil core (voids volume versus water content) and the electrical resistivity versus water content curve The modelisation of the shrinkage curve gives for each moisture state the water respectively contained in macro and micro voids [2], and then allows to propose a generalized Archie's like law as following : 1/Rs = 1/Fma.Rma + 1/Fmi.Rmi and Fi = Ai/(Vi^Mi.Si^Ni) with Rs : the soil resistivity. Fma and Fmi : the so called "formation factor" for macro and micro voids, respectively. Rma and Rmi : the resistivity of the water contained in macro and micro voids, respectively. Vi : the volume of macro and micro voids, respectively. Si : the saturation of macro and micro voids, respectively. Ai, Mi and Ni : adjustment coefficients. The variations of Rmi are calculated, assuming that Rma is a constant. Indeed, the rise of ionic concentration in water may be neglected during the sewage of macro voids as it corresponds to a small quantity of water for the studied samples. Soil solid components are generally electrical insulators, the conduction of electrical current only lies on two phenomenon occurring in water : (i) volume conduction controlled by the electrolyte concentration in water and the geometrical characteristics of macro voids network ; (ii) surface conduction controlled by the double diffuse layer that depends on the solid-liquid interactions, the specific surface of clay minerals and the geometry of particles contacts. For the water contained in macro voids the preeminent phenomenon seems to be volume conduction while for the water contained in micro voids, it seems to be surface conduction. This hypothesis satisfyingly explains the shape of the electrical resistivity versus water content curves obtained for three different oxisols with clayey, clayey-sandy and sandy-clayey texture. [1] Archie G.E. 1942. The electrical resistivity log as an aid in determining some reservoirs characteristics. Trans. AIME, 146, 54-67. [2] Braudeau E. et al. 1999. New device and method for soil shrinkage curve measurement and characterization. S.S.S.A.J., 63(3), 525-535.
How do we extract the three chi's that describe a compressible blend from SANS ?
NASA Astrophysics Data System (ADS)
Gujrati, P. D.; Rane, Sagar
2000-03-01
We demonstrate that a lattice model of a compressible blend is characterized by three bare chi parameters; chi-01 (between void and polymer1), chi-02 (between void and polymer2) and chi-12 (between polymer1 and polymer2). We propose a methodology to extract the corresponding three effective chi's from the scattering intensity and additional information on the compressibility and partial molar volumes. We have also defined and obtained a single effective chi for the blend (without RPA) and compared this single effective chi with the other three effective chi's. In all calculations, the athermal part was removed exactly resulting in an interaction part which remains finite over the entire composition regime. From thermodynamics, we know that this single chi is not the same as chi-12, and we shall determine when the two are close or similar. We have also obtained the values of the three chi's at the critical point for different systems to display their utility. We have carried out the calculations in different ensembles and find that the value of chi's depend on the ensemble chosen.
NASA Astrophysics Data System (ADS)
Iveson, Simon M.
2003-06-01
Pietruszczak and coworkers (Internat. J. Numer. Anal. Methods Geomech. 1994; 18(2):93-105; Comput. Geotech. 1991; 12( ):55-71) have presented a continuum-based model for predicting the dynamic mechanical response of partially saturated granular media with viscous interstitial liquids. In their model they assume that the gas phase is distributed uniformly throughout the medium as discrete spherical air bubbles occupying the voids between the particles. However, their derivation of the air pressure inside these gas bubbles is inconsistent with their stated assumptions. In addition the resultant dependence of gas pressure on liquid saturation lies outside of the plausible range of possible values for discrete air bubbles. This results in an over-prediction of the average bulk modulus of the void phase. Corrected equations are presented.
NASA Astrophysics Data System (ADS)
Homma, Yuto; Moriwaki, Hiroyuki; Ohki, Shigeo; Ikeda, Kazumi
2014-06-01
This paper deals with verification of three dimensional triangular prismatic discrete ordinates transport calculation code ENSEMBLE-TRIZ by comparison with multi-group Monte Carlo calculation code GMVP in a large fast breeder reactor. The reactor is a 750 MWe electric power sodium cooled reactor. Nuclear characteristics are calculated at beginning of cycle of an initial core and at beginning and end of cycle of equilibrium core. According to the calculations, the differences between the two methodologies are smaller than 0.0002 Δk in the multi-plication factor, relatively about 1% in the control rod reactivity, and 1% in the sodium void reactivity.
Descriptors of sensation confirm the multidimensional nature of desire to void.
Das, Rebekah; Buckley, Jonathan D; Williams, Marie T
2015-02-01
To collect and categorize descriptors of "desire to void" sensation, determine the reliability of descriptor categories and assess whether descriptor categories discriminate between people with and without symptoms of overactive bladder. This observational, repeated measures study involved 64 Australian volunteers (47 female), aged 50 years or more, with and without symptoms of overactive bladder. Descriptors of desire to void sensation were derived from a structured interview (conducted on two occasions, 1 week apart). Descriptors were recorded verbatim and categorized in a three-stage process. Overactive bladder status was determined by the Overactive Bladder Awareness Tool and the Overactive Bladder Symptom Score. McNemar's test assessed the reliability of descriptors volunteered between two occasions and Partial Least Squares Regression determined whether language categories discriminated according to overactive bladder status. Post hoc Chi squared analysis and relative risk calculation determined the size and direction of overactive bladder prediction. Thirteen language categories (Urgency, Fullness, Pressure, Tickle/tingle, Pain/ache, Heavy, Normal, Intense, Sudden, Annoying, Uncomfortable, Anxiety, and Unique somatic) encapsulated 344 descriptors of sensation. Descriptor categories were stable between two interviews. The categories "Urgency" and "Fullness" predicted overactive bladder status. Participants who volunteered "Urgency" descriptors were twice as likely to have overactive bladder and participants who volunteered "Fullness" descriptors were almost three times as likely not to have overactive bladder. The sensation of desire to void is reliably described over sessions separated by a week, the language used reflects multiple dimensions of sensation, and can predict overactive bladder status. © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Saffari, H.; Moosavi, R.
2014-11-01
In this article, turbulent single-phase and two-phase (air-water) bubbly fluid flows in a vertical helical coil are analyzed by using computational fluid dynamics (CFD). The effects of the pipe diameter, coil diameter, coil pitch, Reynolds number, and void fraction on the pressure loss, friction coefficient, and flow characteristics are investigated. The Eulerian-Eulerian model is used in this work to simulate the two-phase fluid flow. Three-dimensional governing equations of continuity, momentum, and energy are solved by using the finite volume method. The k- ɛ turbulence model is used to calculate turbulence fluctuations. The SIMPLE algorithm is employed to solve the velocity and pressure fields. Due to the effect of a secondary force in helical pipes, the friction coefficient is found to be higher in helical pipes than in straight pipes. The friction coefficient increases with an increase in the curvature, pipe diameter, and coil pitch and decreases with an increase in the coil diameter and void fraction. The close correlation between the numerical results obtained in this study and the numerical and empirical results of other researchers confirm the accuracy of the applied method. For void fractions up to 0.1, the numerical results indicate that the friction coefficient increases with increasing the pipe diameter and keeping the coil pitch and diameter constant and decreases with increasing the coil diameter. Finally, with an increase in the Reynolds number, the friction coefficient decreases, while the void fraction increases.
Fission gas bubble identification using MATLAB's image processing toolbox
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collette, R.
Automated image processing routines have the potential to aid in the fuel performance evaluation process by eliminating bias in human judgment that may vary from person-to-person or sample-to-sample. This study presents several MATLAB based image analysis routines designed for fission gas void identification in post-irradiation examination of uranium molybdenum (U–Mo) monolithic-type plate fuels. Frequency domain filtration, enlisted as a pre-processing technique, can eliminate artifacts from the image without compromising the critical features of interest. This process is coupled with a bilateral filter, an edge-preserving noise removal technique aimed at preparing the image for optimal segmentation. Adaptive thresholding proved to bemore » the most consistent gray-level feature segmentation technique for U–Mo fuel microstructures. The Sauvola adaptive threshold technique segments the image based on histogram weighting factors in stable contrast regions and local statistics in variable contrast regions. Once all processing is complete, the algorithm outputs the total fission gas void count, the mean void size, and the average porosity. The final results demonstrate an ability to extract fission gas void morphological data faster, more consistently, and at least as accurately as manual segmentation methods. - Highlights: •Automated image processing can aid in the fuel qualification process. •Routines are developed to characterize fission gas bubbles in irradiated U–Mo fuel. •Frequency domain filtration effectively eliminates FIB curtaining artifacts. •Adaptive thresholding proved to be the most accurate segmentation method. •The techniques established are ready to be applied to large scale data extraction testing.« less
NASA Astrophysics Data System (ADS)
Tominaga, M.
2010-12-01
Understanding the detailed architecture of the upper ocean crust is one of the key components to advance our knowledge on numerous events occurring in the oceanic lithosphere from spreading ridges to subduction zones. Studies on crustal characterization are limited to either the crustal or hand-specimen scales so far, and little has been done at centimeter - meter scale, which potentially ties those two end-member prospects. The lack of this scale is due mainly to the difficulties in direct sampling and the limited resolution of geophysical experiments; as a consequence, critical questions remain unanswered, e.g., what does the cross-section of actual ocean crust look like and what does it tell us?; where exactly in the lithosphere does fluid exist and promote the deep hydration and biosphere?; to what extent do we average out the heterogeneity in the crustal properties depending on the scale? Ocean Drilling Program (ODP) Hole 1256D is located at the 15 Ma super-fast spreading Cocos Plate and the first drilled hole that successfully penetrate through the intact upper ocean crust. Coring in the Hole 1256D basement is suffered from the low core recovery rates (~ 32 %) and the origins of recovered cores are mostly biased toward formations with minimal fractures. Wire-line logging in this hole becomes, thus, extremely useful for both the physical and chemical characterization of the crust. In particular, Formation MicroScanner (FMS) data acquired from multiple paths during three drilling expeditions have unprecedented lateral coverage of the borehole wall. The FMS images are the first realization of the cross-section of in situ architecture of the intact upper ocean crust with a centimeter-meter scale resolution. A lithostratigraphy model is reconstructed by integrating the analyses on FMS electrofacies, other physical property logs, and recovered cores. The new lithostratigraphy reveals that nearly 50 % of the in situ lithofacies in the Hole 1256D crust consists of either breccias or highly fractured lava flows, inferring that the shipboard stratigraphy with mostly massive flows is inaccurate. The meticulously deciphered lava morphology tie the lava deposition history in Hole 1256D to the East Pacific Rise surface volcanology, and with this, the upper ocean crustal construction processes in the Hole 1256D crust, from the spreading axis to the abyssal plain, can be proposed. Furthermore, the vacancy in the crustal matrix, where water and minerals can be stored and microbes can exist, is determined from the FMS images. The distribution and areas of the surface void calculated by ImageJ image processor reveals that the visible void in the 1256D crust vary 10 to 60 % depending on lithofacies, with the average of 37 %. This downhole distribution of the void areas also shows the positive correlation with previously observed lab-based porosity and 1-D sonic-log based fractional porosity data. Further study is in progress on scaling of the porosity structure from hand-specimen to crustal scales in the Hole 1256D crust: from the lab porosity data, to 1D sonic-log, to the areas of surface void detected observed in the FMS images, and ultimately to the vertical seismic experiments.
Konstantinidis, Charalampos; Kratiras, Zisis; Samarinas, Michael; Skriapas, Konstantinos
2016-01-01
To identify the minimum bladder diary's length required to furnish reliable documentation of LUTS in a specific cohort of patients suffering from neurogenic urinary dysfunction secondary to suprapontine pathology. From January 2008 to January 2014, patients suffering from suprapontine pathology and LUTS were requested to prospectively complete a bladder diary form for 7 consecutive days. Micturitions per day, excreta per micturition, urgency and incontinence episodes and voided volume per day were evaluated from the completed diaries. We compared the averaged records of consecutive days (2-6 days) to the total 7 days records for each patient's diary, seeking the minimum diary's length that could provide records comparable to the 7 days average, the reference point in terms of reliability. From 285 subjects, 94 male and 69 female patients enrolled in the study. The records of day 1 were significantly different from the average of the 7 days records in every parameter, showing relatively small correlation and providing insuficiente documentation. Correlations gradually increased along the increase in diary's duration. According to our results a 3-day duration bladder diary is efficient and can provide results comparable to a 7 day length for four of our evaluated parameters. Regarding incontinence episodes, 3 days seems inadequate to furnish comparable results, showing a borderline difference. A 3-day diary can be used, as its reliability is efficient regarding number of micturition per day, excreta per micturition, episodes of urgency and voided volume per day. Copyright© by the International Brazilian Journal of Urology.
NASA Astrophysics Data System (ADS)
Yang, Zailin; Yang, Qinyou; Zhang, Guowei; Yang, Yong
2018-03-01
The relationship between void size/location and mechanical behavior under biaxial loading of copper nanosheets containing voids are investigated by molecular dynamics method. The void location and the void radius on the model are discussed in the paper. The main reason of break is discovered by the congruent relationship between the shear stress and its dislocations. Dislocations are nucleated at the corner of system and approached to the center of void with increased deformation. Here, a higher stress is required to fail the voided sheets when smaller voids are utilized. The void radius influences the time of destruction. The larger the void radius is, the lower the shear stress and the earlier the model breaks. The void location impacts the dislocation distribution.
The Dimension of the Pore Space in Sponges
ERIC Educational Resources Information Center
Silva, L. H. F.; Yamashita, M. T.
2009-01-01
A simple experiment to reveal the dimension of the pore space in sponges is proposed. This experiment is suitable for the first year of a physics or engineering course. The calculated dimension of the void space in a sponge of density 16 mg cm[superscript -3] was 2.948 [plus or minus] 0.008. (Contains 2 figures.)
Modeling multiscale evolution of numerous voids in shocked brittle material.
Yu, Yin; Wang, Wenqiang; He, Hongliang; Lu, Tiecheng
2014-04-01
The influence of the evolution of numerous voids on macroscopic properties of materials is a multiscale problem that challenges computational research. A shock-wave compression model for brittle material, which can obtain both microscopic evolution and macroscopic shock properties, was developed using discrete element methods (lattice model). Using a model interaction-parameter-mapping procedure, qualitative features, as well as trends in the calculated shock-wave profiles, are shown to agree with experimental results. The shock wave splits into an elastic wave and a deformation wave in porous brittle materials, indicating significant shock plasticity. Void collapses in the deformation wave were the natural reason for volume shrinkage and deformation. However, media slippage and rotation deformations indicated by complex vortex patterns composed of relative velocity vectors were also confirmed as an important source of shock plasticity. With increasing pressure, the contribution from slippage deformation to the final plastic strain increased. Porosity was found to determine the amplitude of the elastic wave; porosity and shock stress together determine propagation speed of the deformation wave, as well as stress and strain on the final equilibrium state. Thus, shock behaviors of porous brittle material can be systematically designed for specific applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zelenyuk, Alla; Reitz, Paul; Stewart, Mark L.
Gasoline Compression Ignition (GCI) engines have the potential to achieve high fuel efficiency and to significantly reduce both NOx and particulate matter (PM) emissions by operating under dilute partially-premixed conditions. This low temperature combustion strategy is dependent upon direct-injection of gasoline during the compression stroke and potentially near top dead center (TDC). The timing and duration of the in-cylinder injections can be tailored based on speed and load to create optimized conditions that result in a stable combustion. We present the results of advanced aerosol analysis methods that have been used for detailed real-time characterization of PM emitted from amore » single-cylinder GCI engine operated at different speed, load, timing, and number and duration of near-TDC fuel injections. PM characterization included 28 measurements of size and composition of individual particles sampled directly from the exhaust and after mass and/or mobility classification. We use these data to calculate particle effective density, fractal dimension, dynamic shape factors in free-molecular and transition flow regimes, average diameter of primary spherules, number of spherules, and void fraction of soot agglomerates.« less
Formation of Voids from Negative Density Perturbations
NASA Astrophysics Data System (ADS)
de Araujo, J. C. N.; Opher, R.
1990-11-01
RESUMEN. Se estudia la formaci6n de huecos a partir de un espectro negativo de perturbaciones, tomando en cuenta la expansi6n del Universo, arrastre por fotones, enfriamiento por fotones, fotoionizaci6n, ioniza- ci6n colisional, enfriamiento Lyman a y la formaci6n y enfriamiento de moleculas H2. Nuestros resultados predicen la existencia de regiones 1/10 de Ia densidad promedio para regiones de masa lO - 1O10M . ABSTRACT. In the present paer we study the formation of voids from a negative spectrum of perturbations taking into account the expansion of the Universe, photon-drag, photon-cooling, photoionization, collisional ionization, Lyman a cooling and the formation and cooling of 112 molecules. Our results predict the existence of regions 1/10 the average density for regions of mass 1O - 1O10M@ : CLUSTERS-GALAXIES - COSMOLOGY
NASA Technical Reports Server (NTRS)
Wu, Xiaoqing; Paden, John; Jezek, Ken; Rignot, Eric; Gim, Young
2013-01-01
We produced the high resolution bedmaps of several glaciers in western Greenland from IceBridge Mission sounding radar data using tomographic sounding technique. The bedmaps cover 3 regions: Russell glaciers, Umanaq glaciers and Jakobshavn glaciers of western Greenland. The covered areas is about 20x40 km(sup 2) for Russell glaciers and 300x100 sq km, and 100x80 sq km for Jakobshavn glaciers. The ground resolution is 50 meters and the average ice thickness accuracy is 10 to 20 meters. There are some void areas within the swath of the tracks in the bedmaps where the ice thickness is not known. Tomographic observations of these void areas indicate that the surface and shallow sub-surface pockets, likely filled with water, are highly reflective and greatly weaken the radar signal and reduce the energy reaching and reflected from the ice sheet bottom.
A dislocation-based crystal plasticity framework for dynamic ductile failure of single crystals
Nguyen, Thao; Luscher, D. J.; Wilkerson, J. W.
2017-08-02
We developed a framework for dislocation-based viscoplasticity and dynamic ductile failure to model high strain rate deformation and damage in single crystals. The rate-dependence of the crystal plasticity formulation is based on the physics of relativistic dislocation kinetics suited for extremely high strain rates. The damage evolution is based on the dynamics of void growth, which are governed by both micro-inertia as well as dislocation kinetics and dislocation substructure evolution. Furthermore, an averaging scheme is proposed in order to approximate the evolution of the dislocation substructure in both the macroscale as well as its spatial distribution at the microscale. Inmore » addition, a concept of a single equivalent dislocation density that effectively captures the collective influence of dislocation density on all active slip systems is proposed here. Together, these concepts and approximations enable the use of semi-analytic solutions for void growth dynamics developed in [J. Wilkerson and K. Ramesh. A dynamic void growth model governed by dislocation kinetics. J. Mech. Phys. Solids, 70:262–280, 2014.], which greatly reduce the computational overhead that would otherwise be required. The resulting homogenized framework has been implemented into a commercially available finite element package, and a validation study against a suite of direct numerical simulations was carried out.« less
Urodynamic measurements reflect physiological bladder function in rats.
Schneider, Marc P; Sartori, Andrea M; Tampé, Juliane; Moors, Selina; Engmann, Anne K; Ineichen, Benjamin V; Hofer, Anna-Sophie; Schwab, Martin E; Kessler, Thomas M
2018-04-01
Our objective was to investigate and compare bladder function in rats assessed by metabolic cage and by urodynamic measurements in fully awake animals. Bladder function of female Lewis rats was investigated in naïve animals by metabolic cage at baseline, 14-16 days after bladder catheter and external urethral sphincter electromyography electrode implantation in fully awake animals by urodynamics, and again by metabolic cage. Investigating the same animals (n = 8), voided volume, average flow, and duration of voiding were similar (P > 0.05) in naïve animals measured by metabolic cage and after catheter implantation by urodynamic measurements and by metabolic cage. In naïve animals measured by metabolic cage, voided volumes were significantly different in the light (resting phase) versus the dark (active phase) part of the 24 h cycle (mean difference 0.14 mL, 21%, P = 0.004, n = 27). Lower urinary tract function assessed by metabolic cage or by urodynamic meaurements in fully awake rats was indistinguishable. Thus, catheter implantation did not significantly change physiological bladder function. This shows that urodynamic measurements in awake animals are an appropriate approach to study lower urinary tract function in health and disease in animal models, directly paralleling the human diagnostic procedures. © 2017 Wiley Periodicals, Inc.
Conceptual Designing of a Reduced Moderation Pressurized Water Reactor by Use of MVP and MVP-BURN
NASA Astrophysics Data System (ADS)
Kugo, T.
A conceptual design of a seed-blanket assembly PWR core with a complicated geometry and a strong heterogeneity has been carried forward by use of the continuous-energy Monte Carlo method. Through parametric survey calculations by repeated use of MVP and a lattice burn-up calculation by MVP-BURN, a seed-blanket assembly configuration suitable for a concept of RMWR has been established, by evaluating precisely reactivity, a conversion ratio and a coolant void reactivity coefficient in a realistic computation time on a super computer.
Methodology Development of a Gas-Liquid Dynamic Flow Regime Transition Model
NASA Astrophysics Data System (ADS)
Doup, Benjamin Casey
Current reactor safety analysis codes, such as RELAP5, TRACE, and CATHARE, use flow regime maps or flow regime transition criteria that were developed for static fully-developed two-phase flows to choose interfacial transfer models that are necessary to solve the two-fluid model. The flow regime is therefore difficult to identify near the flow regime transitions, in developing two-phase flows, and in transient two-phase flows. Interfacial area transport equations were developed to more accurately predict the dynamic nature of two-phase flows. However, other model coefficients are still flow regime dependent. Therefore, an accurate prediction of the flow regime is still important. In the current work, the methodology for the development of a dynamic flow regime transition model that uses the void fraction and interfacial area concentration obtained by solving three-field the two-fluid model and two-group interfacial area transport equation is investigated. To develop this model, detailed local experimental data are obtained, the two-group interfacial area transport equations are revised, and a dynamic flow regime transition model is evaluated using a computational fluid dynamics model. Local experimental data is acquired for 63 different flow conditions in bubbly, cap-bubbly, slug, and churn-turbulent flow regimes. The measured parameters are the group-1 and group-2 bubble number frequency, void fraction, interfacial area concentration, and interfacial bubble velocities. The measurements are benchmarked by comparing the prediction of the superficial gas velocities, determined using the local measurements with those determined from volumetric flow rate measurements and the agreement is generally within +/-20%. The repeatability four-sensor probe construction process is within +/-10%. The repeatability of the measurement process is within +/-7%. The symmetry of the test section is examined and the average agreement is within +/-5.3% at z/D = 10 and +/-3.4% at z/D = 32. Revised source/sink terms for the two-group interfacial area transport equations are derived and fit to area-averaged experimental data to determine new model coefficients. The average agreement between this model and the experiment data for the void fraction and interfacial area concentration is 10.6% and 15.7%, respectively. This revised two-group interfacial area transport equation and the three-field two-fluid model are used to solve for the group-1 and group-2 interfacial area concentration and void fraction. These values and a dynamic flow regime transition model are used to classify the flow regimes. The flow regimes determined using this model are compared with the flow regimes based on the experimental data and on a flow regime map using Mishima and Ishii's (1984) transition criteria. The dynamic flow regime transition model is shown to predict the flow regimes dynamically and has improved the prediction of the flow regime over that using a flow regime map. Safety codes often employ the one-dimensional two-fluid model to model two-phase flows. The area-averaged relative velocity correlation necessary to close this model is derived from the drift flux model. The effects of the necessary assumptions used to derive this correlation are investigated using local measurements and these effects are found to have a limited impact on the prediction of the area-averaged relative velocity.
Dynamic void behavior in polymerizing polymethyl methacrylate cement.
Muller, Scott D; McCaskie, Andrew W
2006-02-01
Cement mantle voids remain controversial with respect to survival of total hip arthroplasty. Void evolution is poorly understood, and attempts at void manipulation can only be empirical. We induced voids in a cement model simulating the constraints of the proximal femur. Intravoid pressure and temperature were recorded throughout polymerization, and the initial and final void volumes were measured. Temperature-dependent peak intravoid pressures and void volume increases were observed. After solidification, subatmospheric intravoid pressures were observed. The magnitude of these observations could not be explained by the ideal gas law. Partial pressures of the void gas at peak pressures demonstrated a dominant effect of gaseous monomer, thereby suggesting that void growth is a pressure-driven phenomenon resulting from temperature-dependent evaporation of monomer into existing trapped air voids.
Voids and superstructures: correlations and induced large-scale velocity flows
NASA Astrophysics Data System (ADS)
Lares, Marcelo; Luparello, Heliana E.; Maldonado, Victoria; Ruiz, Andrés N.; Paz, Dante J.; Ceccarelli, Laura; Garcia Lambas, Diego
2017-09-01
The expanding complex pattern of filaments, walls and voids build the evolving cosmic web with material flowing from underdense on to high density regions. Here, we explore the dynamical behaviour of voids and galaxies in void shells relative to neighbouring overdense superstructures, using the Millenium simulation and the main galaxy catalogue in Sloan Digital Sky Survey data. We define a correlation measure to estimate the tendency of voids to be located at a given distance from a superstructure. We find voids-in-clouds (S-types) preferentially located closer to superstructures than voids-in-voids (R-types) although we obtain that voids within ˜40 h-1 Mpc of superstructures are infalling in a similar fashion independently of void type. Galaxies residing in void shells show infall towards the closest superstructure, along with the void global motion, with a differential velocity component depending on their relative position in the shell with respect to the direction to the superstructure. This effect is produced by void expansion and therefore is stronger for R-types. We also find that galaxies in void shells facing the superstructure flow towards the overdensities faster than galaxies elsewhere at the same relative distance to the superstructure. The results obtained for the simulation are also reproduced for the Sky Survey Data Release data with a linearized velocity field implementation.
Johnson, Emilie K; Estrada, Carlos R; Johnson, Kathryn L; Nguyen, Hiep T; Rosoklija, Ilina; Nelson, Caleb P
2014-09-01
One potential strategy for improving voiding diary completion rates and data quality is use of a mobile electronic format. We evaluated the acceptability and feasibility of mobile voiding diaries for patients with nonneurogenic lower urinary tract dysfunction, and compared mobile and paper voiding diaries. We prospectively enrolled children presenting with daytime symptoms of lower urinary tract dysfunction between July 2012 and April 2013. We enrolled an initial cohort of patients who were provided a paper voiding diary and a subsequent cohort who were provided a mobile voiding diary. We conducted in person interviews and assessed completion rates and quality, comparing paper and mobile voiding diary groups. We enrolled 45 patients who received a paper voiding diary and 38 who received a mobile voiding diary. Completion rates were 78% for paper voiding diaries and 61% for mobile voiding diaries (p = 0.10). Data quality measures for patients completing paper vs mobile voiding diaries revealed a larger proportion (63% vs 52%) providing a full 5 days of data and a smaller proportion (20% vs 65%) with data gaps. However, the paper voiding diary also demonstrated a lower proportion (80% vs 100%) that was completely legible and a lower proportion (40% vs 65%) with completely prospective data entry. The use of a mobile voiding diary was acceptable and feasible for our patients with lower urinary tract dysfunction, although completion rates were somewhat lower compared to paper voiding diaries. Data quality was not clearly better for either version. The mobile voiding diary format may offer data quality advantages for select groups but it did not display significant superiority when provided universally. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Weijin; Peng, Yuyi; Li, Xu'an; Chen, Kelang; Ma, Jun; Wei, Lingfeng; Wang, Biao; Zheng, Yue
2017-10-01
In this work, a phase-field model is established to capture the void migration behavior under a temperature gradient within a crystal matrix, with an appropriate consideration of the surface diffusion mechanism and the vapor transport mechanism. The interfacial energy and the coupling between the vacancy concentration field and the crystal order parameter field are carefully modeled. Simulations are performed on UO2. The result shows that for small voids (with an area ≤ πμm2), the well-known characteristics of void migration, in consistence with the analytical model, can be recovered. The migration is manifested by a constant velocity and a minor change of the void shape. In contrast, for large voids (with an area of ˜10 μm2) initially in circular shapes, significant deformation of the void from a circular to cashew-like shape is observed. After long-time migration, the deformed void would split into smaller voids. The size-dependent behavior of void migration is due to the combined effect of the interfacial energy (which tends to keep the void in circular shape) and the surface diffusion flow (which tends to deform the void due to the nonuniform diffusion along the surface). Moreover, the initial shape of the void modifies the migration velocity and the time point when splitting occurs (for large voids) at the beginning of migration due to the shape relaxation of the void. However, it has a minor effect on the long-time migration. Our work reveals novel void migration behaviors in conditions where the surface-diffusion mechanism is dominant over the vapor transport mechanism; meanwhile, the size of the void lies at a mediate size range.
Study of GRBs Hosts Galaxies Vicinity Properties
NASA Astrophysics Data System (ADS)
Bernal, S.; Vasquez, N.; Hoyle, F.
2017-07-01
The study of GRBs host galaxies and its vicinity could provide constrains on the progenitor and an opportunity to use these violent explosions to characterize the nature of the highredshift universe. Studies of GRB host galaxies reveal a population of starforming galaxies with great diversity, spanning a wide range of masses, star formation rate, and redshifts. In order to study the galactic ambient of GRBs we used the S. Savaglio catalog from 2015 where 245 GRBs are listed with RA-Dec position and z. We choose 22 GRBs Hosts galaxies from Savaglio catalog and SDSS DR12, with z range 0
Redshift-space distortions around voids
NASA Astrophysics Data System (ADS)
Cai, Yan-Chuan; Taylor, Andy; Peacock, John A.; Padilla, Nelson
2016-11-01
We have derived estimators for the linear growth rate of density fluctuations using the cross-correlation function (CCF) of voids and haloes in redshift space. In linear theory, this CCF contains only monopole and quadrupole terms. At scales greater than the void radius, linear theory is a good match to voids traced out by haloes; small-scale random velocities are unimportant at these radii, only tending to cause small and often negligible elongation of the CCF near its origin. By extracting the monopole and quadrupole from the CCF, we measure the linear growth rate without prior knowledge of the void profile or velocity dispersion. We recover the linear growth parameter β to 9 per cent precision from an effective volume of 3( h-1Gpc)3 using voids with radius >25 h-1Mpc. Smaller voids are predominantly sub-voids, which may be more sensitive to the random velocity dispersion; they introduce noise and do not help to improve measurements. Adding velocity dispersion as a free parameter allows us to use information at radii as small as half of the void radius. The precision on β is reduced to 5 per cent. Voids show diverse shapes in redshift space, and can appear either elongated or flattened along the line of sight. This can be explained by the competing amplitudes of the local density contrast, plus the radial velocity profile and its gradient. The distortion pattern is therefore determined solely by the void profile and is different for void-in-cloud and void-in-void. This diversity of redshift-space void morphology complicates measurements of the Alcock-Paczynski effect using voids.
Solution of the one-dimensional consolidation theory equation with a pseudospectral method
Sepulveda, N.; ,
1991-01-01
The one-dimensional consolidation theory equation is solved for an aquifer system using a pseudospectral method. The spatial derivatives are computed using Fast Fourier Transforms and the time derivative is solved using a fourth-order Runge-Kutta scheme. The computer model calculates compaction based on the void ratio changes accumulated during the simulated periods of time. Compactions and expansions resulting from groundwater withdrawals and recharges are simulated for two observation wells in Santa Clara Valley and two in San Joaquin Valley, California. Field data previously published are used to obtain mean values for the soil grain density and the compression index and to generate depth-dependent profiles for hydraulic conductivity and initial void ratio. The water-level plots for the wells studied were digitized and used to obtain the time dependent profiles of effective stress.
ICPP tank farm closure study. Volume 2: Engineering design files
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-02-01
Volume 2 contains the following topical sections: Tank farm heel flushing/pH adjustment; Grouting experiments for immobilization of tank farm heel; Savannah River high level waste tank 20 closure; Tank farm closure information; Clean closure of tank farm; Remediation issues; Remote demolition techniques; Decision concerning EIS for debris treatment facility; CERCLA/RCRA issues; Area of contamination determination; Containment building of debris treatment facility; Double containment issues; Characterization costs; Packaging and disposal options for the waste resulting from the total removal of the tank farm; Take-off calculations for the total removal of soils and structures at the tank farm; Vessel off-gas systems; Jet-groutedmore » polymer and subsurface walls; Exposure calculations for total removal of tank farm; Recommended instrumentation during retrieval operations; High level waste tank concrete encasement evaluation; Recommended heavy equipment and sizing equipment for total removal activities; Tank buoyancy constraints; Grout and concrete formulas for tank heel solidification; Tank heel pH requirements; Tank cooling water; Evaluation of conservatism of vehicle loading on vaults; Typical vault dimensions and approximately tank and vault void volumes; Radiological concerns for temporary vessel off-gas system; Flushing calculations for tank heels; Grout lift depth analysis; Decontamination solution for waste transfer piping; Grout lift determination for filling tank and vault voids; sprung structure vendor data; Grout flow properties through a 2--4 inch pipe; Tank farm load limitations; NRC low level waste grout; Project data sheet calculations; Dose rates for tank farm closure tasks; Exposure and shielding calculations for grout lines; TFF radionuclide release rates; Documentation of the clean closure of a system with listed waste discharge; and Documentation of the ORNL method of radionuclide concentrations in tanks.« less
A dynamical classification of the cosmic web
NASA Astrophysics Data System (ADS)
Forero-Romero, J. E.; Hoffman, Y.; Gottlöber, S.; Klypin, A.; Yepes, G.
2009-07-01
In this paper, we propose a new dynamical classification of the cosmic web. Each point in space is classified in one of four possible web types: voids, sheets, filaments and knots. The classification is based on the evaluation of the deformation tensor (i.e. the Hessian of the gravitational potential) on a grid. The classification is based on counting the number of eigenvalues above a certain threshold, λth, at each grid point, where the case of zero, one, two or three such eigenvalues corresponds to void, sheet, filament or a knot grid point. The collection of neighbouring grid points, friends of friends, of the same web type constitutes voids, sheets, filaments and knots as extended web objects. A simple dynamical consideration of the emergence of the web suggests that the threshold should not be null, as in previous implementations of the algorithm. A detailed dynamical analysis would have found different threshold values for the collapse of sheets, filaments and knots. Short of such an analysis a phenomenological approach has been opted for, looking for a single threshold to be determined by analysing numerical simulations. Our cosmic web classification has been applied and tested against a suite of large (dark matter only) cosmological N-body simulations. In particular, the dependence of the volume and mass filling fractions on λth and on the resolution has been calculated for the four web types. We also study the percolation properties of voids and filaments. Our main findings are as follows. (i) Already at λth = 0.1 the resulting web classification reproduces the visual impression of the cosmic web. (ii) Between 0.2 <~ λth <~ 0.4, a system of percolated voids coexists with a net of interconnected filaments. This suggests a reasonable choice for λth as the parameter that defines the cosmic web. (iii) The dynamical nature of the suggested classification provides a robust framework for incorporating environmental information into galaxy formation models, and in particular to semi-analytical models.
Poisson-Nernst-Planck-Fermi theory for modeling biological ion channels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jinn-Liang, E-mail: jinnliu@mail.nhcue.edu.tw; Eisenberg, Bob, E-mail: beisenbe@rush.edu
2014-12-14
A Poisson-Nernst-Planck-Fermi (PNPF) theory is developed for studying ionic transport through biological ion channels. Our goal is to deal with the finite size of particle using a Fermi like distribution without calculating the forces between the particles, because they are both expensive and tricky to compute. We include the steric effect of ions and water molecules with nonuniform sizes and interstitial voids, the correlation effect of crowded ions with different valences, and the screening effect of water molecules in an inhomogeneous aqueous electrolyte. Including the finite volume of water and the voids between particles is an important new part ofmore » the theory presented here. Fermi like distributions of all particle species are derived from the volume exclusion of classical particles. Volume exclusion and the resulting saturation phenomena are especially important to describe the binding and permeation mechanisms of ions in a narrow channel pore. The Gibbs free energy of the Fermi distribution reduces to that of a Boltzmann distribution when these effects are not considered. The classical Gibbs entropy is extended to a new entropy form — called Gibbs-Fermi entropy — that describes mixing configurations of all finite size particles and voids in a thermodynamic system where microstates do not have equal probabilities. The PNPF model describes the dynamic flow of ions, water molecules, as well as voids with electric fields and protein charges. The model also provides a quantitative mean-field description of the charge/space competition mechanism of particles within the highly charged and crowded channel pore. The PNPF results are in good accord with experimental currents recorded in a 10{sup 8}-fold range of Ca{sup 2+} concentrations. The results illustrate the anomalous mole fraction effect, a signature of L-type calcium channels. Moreover, numerical results concerning water density, dielectric permittivity, void volume, and steric energy provide useful details to study a variety of physical mechanisms ranging from binding, to permeation, blocking, flexibility, and charge/space competition of the channel.« less
Laboratory and environmental decay of wood–plastic composite boards: flexural properties
Rebecca Ibach; Marek Gnatowski; Grace Sun; Jessie Glaeser; Mathew Leung; John Haight
2017-01-01
The flexural properties of woodâplastic composite (WPC) deck boards exposed to 9.5 years of environmental decay in Hilo, Hawaii, were compared to samples exposed to moisture and decay fungi for 12 weeks in the laboratory, to establish a correlation between sample flexural properties and calculated void volume. Specimens were tested for flexural strength and modulus,...
Deng, Bo; Shi, Yaoyao; Yu, Tao; Kang, Chao; Zhao, Pan
2018-01-31
The composite tape winding process, which utilizes a tape winding machine and prepreg tapes, provides a promising way to improve the quality of composite products. Nevertheless, the process parameters of composite tape winding have crucial effects on the tensile strength and void content, which are closely related to the performances of the winding products. In this article, two different object values of winding products, including mechanical performance (tensile strength) and a physical property (void content), were respectively calculated. Thereafter, the paper presents an integrated methodology by combining multi-parameter relative sensitivity analysis and single-parameter sensitivity analysis to obtain the optimal intervals of the composite tape winding process. First, the global multi-parameter sensitivity analysis method was applied to investigate the sensitivity of each parameter in the tape winding processing. Then, the local single-parameter sensitivity analysis method was employed to calculate the sensitivity of a single parameter within the corresponding range. Finally, the stability and instability ranges of each parameter were distinguished. Meanwhile, the authors optimized the process parameter ranges and provided comprehensive optimized intervals of the winding parameters. The verification test validated that the optimized intervals of the process parameters were reliable and stable for winding products manufacturing.
Yu, Tao; Kang, Chao; Zhao, Pan
2018-01-01
The composite tape winding process, which utilizes a tape winding machine and prepreg tapes, provides a promising way to improve the quality of composite products. Nevertheless, the process parameters of composite tape winding have crucial effects on the tensile strength and void content, which are closely related to the performances of the winding products. In this article, two different object values of winding products, including mechanical performance (tensile strength) and a physical property (void content), were respectively calculated. Thereafter, the paper presents an integrated methodology by combining multi-parameter relative sensitivity analysis and single-parameter sensitivity analysis to obtain the optimal intervals of the composite tape winding process. First, the global multi-parameter sensitivity analysis method was applied to investigate the sensitivity of each parameter in the tape winding processing. Then, the local single-parameter sensitivity analysis method was employed to calculate the sensitivity of a single parameter within the corresponding range. Finally, the stability and instability ranges of each parameter were distinguished. Meanwhile, the authors optimized the process parameter ranges and provided comprehensive optimized intervals of the winding parameters. The verification test validated that the optimized intervals of the process parameters were reliable and stable for winding products manufacturing. PMID:29385048
Cause Analysis on the Void under Slabs of Cement Concrete Pavement
NASA Astrophysics Data System (ADS)
Wen, Li; Zhu, Guo Xin; Baozhu
2017-06-01
This paper made a systematic analysis on the influence of the construction, environment, water and loads on the void beneath road slabs, and also introduced the formation process of structural void and pumping void, and summarizes the deep reasons for the bottom of the cement concrete pavement. Based on the analysis above, this paper has found out the evolution law of the void under slabs which claimed that the void usually appeared in the slab corners and then the cross joint, resulting void in the four sides with the void area under the front slab larger than the rear one.
Redshift drift in an inhomogeneous universe: averaging and the backreaction conjecture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koksbang, S.M.; Hannestad, S., E-mail: koksbang@phys.au.dk, E-mail: sth@phys.au.dk
2016-01-01
An expression for the average redshift drift in a statistically homogeneous and isotropic dust universe is given. The expression takes the same form as the expression for the redshift drift in FLRW models. It is used for a proof-of-principle study of the effects of backreaction on redshift drift measurements by combining the expression with two-region models. The study shows that backreaction can lead to positive redshift drift at low redshifts, exemplifying that a positive redshift drift at low redshifts does not require dark energy. Moreover, the study illustrates that models without a dark energy component can have an average redshiftmore » drift observationally indistinguishable from that of the standard model according to the currently expected precision of ELT measurements. In an appendix, spherically symmetric solutions to Einstein's equations with inhomogeneous dark energy and matter are used to study deviations from the average redshift drift and effects of local voids.« less
Impact of nuclear data on sodium-cooled fast reactor calculations
NASA Astrophysics Data System (ADS)
Aures, Alexander; Bostelmann, Friederike; Zwermann, Winfried; Velkov, Kiril
2016-03-01
Neutron transport and depletion calculations are performed in combination with various nuclear data libraries in order to assess the impact of nuclear data on safety-relevant parameters of sodium-cooled fast reactors. These calculations are supplemented by systematic uncertainty analyses with respect to nuclear data. Analysed quantities are the multiplication factor and nuclide densities as a function of burn-up and the Doppler and Na-void reactivity coefficients at begin of cycle. While ENDF/B-VII.0 / -VII.1 yield rather consistent results, larger discrepancies are observed between the JEFF libraries. While the newest evaluation, JEFF-3.2, agrees with the ENDF/B-VII libraries, the JEFF-3.1.2 library yields significant larger multiplication factors.
Closure behavior of spherical void in slab during hot rolling process
NASA Astrophysics Data System (ADS)
Cheng, Rong; Zhang, Jiongming; Wang, Bo
2018-04-01
The mechanical properties of steels are heavily deteriorated by voids. The influence of voids on the product quality should be eliminated through rolling processes. The study on the void closure during hot rolling processes is necessary. In present work, the closure behavior of voids at the center of a slab at 800 °C during hot rolling processes has been simulated with a 3D finite element model. The shape of the void and the plastic strain distribution of the slab are obtained by this model. The void decreases along the slab thickness direction and spreads along the rolling direction but hardly changes along the strip width direction. The relationship between closure behavior of voids and the plastic strain at the center of the slab is analyzed. The effects of rolling reduction, slab thickness and roller diameter on the closure behavior of voids are discussed. The larger reduction, thinner slab and larger roller diameter all improve the closure of voids during hot rolling processes. Experimental results of the closure behavior of a void in the slab during hot rolling process mostly agree with the simulation results..
Kim, Sung Han; Oh, Shin Ah; Oh, Seung-June
2014-02-01
To identify the voiding characteristics of bladder pain syndrome/interstitial cystitis and overactive bladder. Between September 2005 and June 2010, 3-day voiding diaries of 49 consecutive bladder pain syndrome/interstitial cystitis patients and 301 overactive bladder patients were prospectively collected at an outpatient clinic and retrospectively analyzed. The characteristics of the two groups were not significantly different. However, all voiding variables including volume and frequency were significantly different except for the total voided volume: patients with bladder pain syndrome/interstitial cystitis showed significantly higher voiding frequencies, smaller maximal and mean voided volume, and more constant and narrower ranges of voided volume compared with overactive bladder patients (P < 0.005). Furthermore, mean intervals between voiding in bladder pain syndrome/interstitial cystitis were shorter and more consistent during the day and night (P < 0.001), although mean night-time variances were greater than daytime variances. Logistic regression analysis showed that total night-time frequency, maximal night-time voided volume and mean variance of daytime voiding intervals most significantly differentiated the two groups. Some voiding characteristics of bladder pain syndrome/interstitial cystitis and overactive bladder patients differ significantly according to 3-day voiding diary records. These findings provide additional information regarding the differences between these two diseases in the outpatient clinical setting. © 2013 The Japanese Urological Association.
NASA Astrophysics Data System (ADS)
Rai, Nirmal Kumar; Schmidt, Martin J.; Udaykumar, H. S.
2017-04-01
The sensitivity of porous energetic materials depends on mesostructural heterogeneities such as voids, defects, cracks, and grain boundaries. The mesostructure of pressed explosives contains voids of arbitrary shapes including elongated voids of various orientations and aspect ratios. Mesoscale simulations to date have analyzed the effect of void morphology on the sensitivity of energetic materials for idealized shapes such as cylindrical, conical, and elliptical. This work analyzes the sensitivity behavior of elongated voids in an HMX matrix subject to shock loading. Simulations show that sensitivity of elongated voids depends strongly on orientation as well as aspect ratio. Ranges of orientations and aspects ratios are identified that enhance or inhibit initiation. Insights obtained from single elongated void analyses are used to identify sensitive locations in an imaged mesostructure of a pressed explosive sample.
Friction stir welding process to repair voids in aluminum alloys
NASA Technical Reports Server (NTRS)
Rosen, Charles D. (Inventor); Litwinski, Edward (Inventor); Valdez, Juan M. (Inventor)
1999-01-01
The present invention provides an in-process method to repair voids in an aluminum alloy, particularly a friction stir weld in an aluminum alloy. For repairing a circular void or an in-process exit hole in a weld, the method includes the steps of fabricating filler material of the same composition or compatible with the parent material into a plug form to be fitted into the void, positioning the plug in the void, and friction stir welding over and through the plug. For repairing a longitudinal void (30), the method includes machining the void area to provide a trough (34) that subsumes the void, fabricating filler metal into a strip form (36) to be fitted into the trough, positioning the strip in the trough, and rewelding the void area by traversing a friction stir welding tool longitudinally through the strip. The method is also applicable for repairing welds made by a fusing welding process or voids in aluminum alloy workpieces themselves.
2-stage repair in infancy for severe hypospadias with chordee: long-term results after puberty.
Lam, Po N; Greenfield, Saul P; Williot, Pierre
2005-10-01
Urinary and sexual functions were assessed in post-pubescent boys who had undergone 2-stage hypospadias repair in infancy for severe hypospadias with chordee. A total of 44 boys who had undergone 2-stage hypospadias repair from 1985 to 1993 and who were at least 13 years old were contacted. Of the 44 boys 27 (61%) with an average age of 15.4 years (range 13 to 21) responded. Meatal locations were midshaft in 14 cases, penoscrotal in 9 and perineal in 4. Four boys had bifid scrotum and 5 had intersex disorders. Intramuscular testosterone was administered preoperatively to 15 (56%) boys. A Nesbit procedure was performed in 18 boys (67%). Average patient age at stage 2 repair was 2.3 years. Mean followup was 12.7 years (range 10.7 to 17.2). Additional surgery was performed for diverticuli in 5 cases, fistula in 3 and minor strictures in 4. Of the 27 patients 25 presented for examination and 2 responded to questionnaire only. All patients had normal meatal position, normal glanular anatomy, a well-defined coronal sulcus, normal cylindrical shafts without extra skin and well-defined penoscrotal junctions. Ten boys (40%) had minor spraying of stream, all stood to void and 10 (40%) milked the urethra after voiding. None had chordee. Twenty patients were able to ejaculate and 9 (42.9%) had to milk the ejaculate. Two patients (7.7%) had minor pain with erection. All subjects were satisfied with urinary, erectile and ejaculatory functions, and 23 (92%) were pleased with appearance. The 2-stage approach for severe hypospadias results in excellent function, cosmesis and patient satisfaction after puberty, with no chordee. Minor voiding and ejaculatory problems are to be expected. Late complications are rare. The use of extragenital skin to either primarily repair or salvage a "cripple" has not been necessary.
Cosmic voids and void lensing in the Dark Energy Survey science verification data
Sánchez, C.; Clampitt, J.; Kovacs, A.; ...
2016-10-26
Galaxies and their dark matter halos populate a complicated filamentary network around large, nearly empty regions known as cosmic voids. Cosmic voids are usually identified in spectroscopic galaxy surveys, where 3D information about the large-scale structure of the Universe is available. Although an increasing amount of photometric data is being produced, its potential for void studies is limited since photometric redshifts induce line-of-sight position errors of ~50 Mpc/h or more that can render many voids undetectable. In this paper we present a new void finder designed for photometric surveys, validate it using simulations, and apply it to the high-quality photo-zmore » redMaGiC galaxy sample of the Dark Energy Survey Science Verification (DES-SV) data. The algorithm works by projecting galaxies into 2D slices and finding voids in the smoothed 2D galaxy density field of the slice. Fixing the line-of-sight size of the slices to be at least twice the photo- z scatter, the number of voids found in these projected slices of simulated spectroscopic and photometric galaxy catalogs is within 20% for all transverse void sizes, and indistinguishable for the largest voids of radius ~70 Mpc/h and larger. The positions, radii, and projected galaxy profiles of photometric voids also accurately match the spectroscopic void sample. Applying the algorithm to the DES-SV data in the redshift range 0.2 < z < 0.8 , we identify 87 voids with comoving radii spanning the range 18-120 Mpc/h, and carry out a stacked weak lensing measurement. With a significance of 4.4σ, the lensing measurement confirms the voids are truly underdense in the matter field and hence not a product of Poisson noise, tracer density effects or systematics in the data. In conclusion, it also demonstrates, for the first time in real data, the viability of void lensing studies in photometric surveys.« less
Complex doping of group 13 elements In and Ga in caged skutterudite CoSb 3
Xi, Lili; Qiu, Yting; Zheng, Shang; ...
2014-12-12
The complex doping behavior of Ga and In in CoSb 3 has been investigated using ab initio total-energy calculations and thermodynamics. The formation energies of void filling, Sb substitution and complex dual-site occupancy defects with different charge states, and their dependence on chemical potentials of species, were studied. Results show that Ga predominantly forms dual-site 2Ga VF–Ga Sb defects and substitutes for Sb only at very high Fermi levels or electron concentrations. In, on the other hand, can play multiple roles in skutterudites, including filling in the crystalline voids, substituting for Sb atoms or forming dual-site occupancy, among which themore » fully charge-compensated dual-site defects (2In VF–In Sb and 4In VF–2In Sb) are dominant. The equilibrium concentration ratio of impurities at void-filling sites to those at Sb-substitution sites for Ga-doped CoSb 3 is very close to be 2:1, while this value markedly deviates from 2:1 for In-doped CoSb 3. Furthermore, the 2:1 ratio of Ga doping in CoSb 3 leads to low electron concentration (~2 × 10 19 cm –3) and makes the doped system a semiconductor.« less
Contribution to irradiation creep arising from gas-driven bubbles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woo, C.H.; Garner, F.A.
1998-03-01
In a previous paper the relationship was defined between void swelling and irradiation creep arising from the interaction of the SIPA and SIG creep-driven deformation and swelling-driven deformation was highly interactive in nature, and that the two contributions could not be independently calculated and then considered as directly additive. This model could be used to explain the recent experimental observation that the creep-swelling coupling coefficient was not a constant as previously assumed, but declined continuously as the swelling rate increased. Such a model thereby explained the creep-disappearance and creep-damping anomalies observed in conditions where significant void swelling occurred before substantialmore » creep deformation developed. At lower irradiation temperatures and high helium/hydrogen generation rates, such as found in light water cooled reactors and some fusion concepts, gas-filled cavities that have not yet exceeded the critical radius for bubble-void conversion should also exert an influence on irradiation creep. In this paper the original concept is adapted to include such conditions, and its predictions then compared with available data. It is shown that a measurable increase in the creep rate is expected compared to the rate found in low gas-generating environments. The creep rate is directly related to the gas generation rate and thereby to the neutron flux and spectrum.« less
NASA Astrophysics Data System (ADS)
Pochet, Steven
The measurement of the void fraction is an important parameter in many industrial fields. Whether it is to prevent the phenomenon of critical heat flux in heat tube of thermal power plants, the explosion of gas pockets in oil rigs’ pipes or to detect bubbles in medical catheters, the knowledge of the void fraction can be a key parameter in many diverse applications. Several invasive and non-invasive measurements techniques have been developed these last decades and are based on the difference between the physical properties of liquid and gas. Some of these techniques are not always possible to implement due to restrictions in the geometry of tubes or regulatory standards limiting their use. Throughout this work we propose a new non-invasive void fraction measurement technique based on the reflection of electromagnetic waves on the water-air interface of the mixture. The reflection of electromagnetic wave is induced by a change in the impedance of the propagation medium. The impedance is function of the dielectric properties of the medium. The characteristics of air and water being distinct, it is possible to calculate the complex reflection coefficient at the interface of a double phase mixture. To this end, mathematical modeling of the response of an electromagnetic wave in a tube containing a two phase mixture was made using the model of transmission lines, applicable to microwave frequencies we use. The effects of the amount of air in water and the position of the bubbles in the section of the tube were simulated. It was shown that the phase of the reflected wave was sensitive to the position of bubbles in the tube’s section and that the magnitude of the reflection coefficient varied with the mixture’s void fraction. Subsequently, we designed and built a six-ports reflectometer operating at 2.45
NASA Astrophysics Data System (ADS)
Hellaby, Charles
2012-01-01
A new method for constructing exact inhomogeneous universes is presented, that allows variation in 3 dimensions. The resulting spacetime may be statistically uniform on average, or have random, non-repeating variation. The construction utilises the Darmois junction conditions to join many different component spacetime regions. In the initial simple example given, the component parts are spatially flat and uniform, but much more general combinations should be possible. Further inhomogeneity may be added via swiss cheese vacuoles and inhomogeneous metrics. This model is used to explore the proposal, that observers are located in bound, non-expanding regions, while the universe is actually in the process of becoming void dominated, and thus its average expansion rate is increasing. The model confirms qualitatively that the faster expanding components come to dominate the average, and that inhomogeneity results in average parameters which evolve differently from those of any one component, but more realistic modelling of the effect will need this construction to be generalised.
The ePLAS code for Ignition Studies
NASA Astrophysics Data System (ADS)
Faehl, R. J.; Mason, R. J.; Kirkpatrick, R. C.
2012-10-01
The ePLAS code is a multi-fluid/PIC hybrid developing self-consistent E & B-fields by the Implicit Moment Method for stable calculations of high density plasma problems with voids on the electron Courant time scale. See: http://www.researchapplicationscorp.com. Here, we outline typical applications to: 1) short pulse driven electron transport along void (or high Z) insulated wires, and 2) the 2D development of shock ignition pressure peaks with B-fields. We outline the code's recent inclusion of SESAME EOS data, a DT/DD burn capability, a new option for K-alpha imaging of modeling output, and demonstrate a foil expansion tracked with either fluid or particle ions. Also, we describe a new super-hybrid extension of our implicit solver that permits full target dynamics studies on the ion Courant scale. Finally, we will touch on the very recent application of ePLAS to possible non-local/kinetic hydro effects NIF capsules.
On the abundance of extreme voids II: a survey of void mass functions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chongchitnan, Siri; Hunt, Matthew, E-mail: s.chongchitnan@hull.ac.uk, E-mail: m.d.hunt@2012.hull.ac.uk
2017-03-01
The abundance of cosmic voids can be described by an analogue of halo mass functions for galaxy clusters. In this work, we explore a number of void mass functions: from those based on excursion-set theory to new mass functions obtained by modifying halo mass functions. We show how different void mass functions vary in their predictions for the largest void expected in an observational volume, and compare those predictions to observational data. Our extreme-value formalism is shown to be a new practical tool for testing void theories against simulation and observation.
Atomistic modeling of shock-induced void collapse in copper
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davila, L P; Erhart, P; Bringa, E M
2005-03-09
Nonequilibrium molecular dynamics (MD) simulations show that shock-induced void collapse in copper occurs by emission of shear loops. These loops carry away the vacancies which comprise the void. The growth of the loops continues even after they collide and form sessile junctions, creating a hardened region around the collapsing void. The scenario seen in our simulations differs from current models that assume that prismatic loop emission is responsible for void collapse. We propose a new dislocation-based model that gives excellent agreement with the stress threshold found in the MD simulations for void collapse as a function of void radius.
Nanovoid growth in BCC α-Fe: influences of initial void geometry
NASA Astrophysics Data System (ADS)
Xu, Shuozhi; Su, Yanqing
2016-12-01
The growth of voids has a great impact on the mechanical properties of ductile materials by altering their microstructures. Exploring the process of void growth at the nanoscale helps in understanding the dynamic fracture of metals. While some very recent studies looked into the effects of the initial geometry of an elliptic void on the plastic deformation of face-centered cubic metals, a systematic study of the initial void ellipticity and orientation angle in body-centered cubic (BCC) metals is still lacking. In this paper, large scale molecular dynamics simulations with millions of atoms are conducted, investigating the void growth process during tensile loading of metallic thin films in BCC α-Fe. Our simulations elucidate the intertwined influences on void growth of the initial ellipticity and initial orientation angle of the void. It is shown that these two geometric parameters play an important role in the stress-strain response, the nucleation and evolution of defects, as well as the void size/outline evolution in α-Fe thin films. Results suggest that, together with void size, different initial void geometries should be taken into account if a continuum model is to be applied to nanoscale damage progression.
Naoemova, Irina; De Wachter, Stefan; Wyndaele, Jean-Jacques
2008-01-01
To describe and compare voiding patterns on a 3-day sensation-related bladder diary (SR-BD) in women with urinary incontinence (UI) and healthy volunteers. A total of 251 women (224 incontinent patients and 27 healthy volunteers) who recorded a 3-day SR-BD and underwent standard cystometry participated in the study. Parameters from the 3-day SR-BD were compared between incontinent patients and healthy volunteers. Compared to continent women, all groups of incontinent women noted a significantly higher 24 hr voiding frequency, a greater voiding frequency per liter diuresis, a smaller mean voided volume for different degrees of bladder sensation with more voids made with higher intensity of desire to void. The smallest mean voided volumes for different degrees of desire to void and the highest voiding frequency per liter diuresis were observed in the urge incontinence group. There were different sensation-related voiding patterns on the 3-day SR-BD from incontinent women and healthy volunteers. All incontinence groups had increased bladder sensation compared to healthy volunteers. The most severe increase of bladder sensation was observed in the patients with urgency incontinence. (c) 2007 Wiley-Liss, Inc.
The dark matter of galaxy voids
NASA Astrophysics Data System (ADS)
Sutter, P. M.; Lavaux, Guilhem; Wandelt, Benjamin D.; Weinberg, David H.; Warren, Michael S.
2014-03-01
How do observed voids relate to the underlying dark matter distribution? To examine the spatial distribution of dark matter contained within voids identified in galaxy surveys, we apply Halo Occupation Distribution models representing sparsely and densely sampled galaxy surveys to a high-resolution N-body simulation. We compare these galaxy voids to voids found in the halo distribution, low-resolution dark matter and high-resolution dark matter. We find that voids at all scales in densely sampled surveys - and medium- to large-scale voids in sparse surveys - trace the same underdensities as dark matter, but they are larger in radius by ˜20 per cent, they have somewhat shallower density profiles and they have centres offset by ˜ 0.4Rv rms. However, in void-to-void comparison we find that shape estimators are less robust to sampling, and the largest voids in sparsely sampled surveys suffer fragmentation at their edges. We find that voids in galaxy surveys always correspond to underdensities in the dark matter, though the centres may be offset. When this offset is taken into account, we recover almost identical radial density profiles between galaxies and dark matter. All mock catalogues used in this work are available at http://www.cosmicvoids.net.
Groutz, A; Gordon, D; Lessing, J B; Wolman, I; Jaffa, A; David, M P
1999-08-01
To examine the prevalence and characteristics of voiding difficulties in women. Two hundred six consecutive female patients who attended a urogynecology clinic were recruited. Patients were interviewed regarding the presence and severity of symptoms that would suggest voiding difficulties (ie, hesitancy, straining to void, weak or prolonged stream, intermittent stream, double voiding, incomplete emptying, reduction, and positional changes to start or complete voiding). Urodynamic evidence of voiding difficulty was considered as a peak flow rate less than 12 mL/s (voided volume greater than 100 mL), or residual urine volume greater than 150 mL, on two or more readings. Residual urinary volume, flow patterns, and pressure-flow parameters were analyzed and compared between symptomatic and asymptomatic patients who had urodynamic parameters of voiding difficulties. One hundred twenty-seven (61.7%) women reported having voiding difficulty symptoms; 79 others (38.3%) were free of such symptoms. Urodynamic diagnosis of voiding difficulty was made in 40 women (19.4% of the study population): 27 in the symptomatic group and 13 in the asymptomatic group (21.2% and 16.5%, respectively). Only 1 patient had voiding difficulty due to bladder outlet obstruction. All other cases of low flow rate were due to impaired detrusor contractility. Objective evidence of voiding difficulty may be found in both symptomatic and asymptomatic patients and is usually due to impaired detrusor contractility. The clinical significance of the abnormal flow parameters in asymptomatic patients is unclear.
Visualization and void-fraction measurements in a molten metal bath
NASA Astrophysics Data System (ADS)
Baker, Michael Charles
In the experimental study of multiphase flow phenomena, including intense multiphase interactions, such as vapor explosions, the fluids are often opaque. To obtain images, suitable for quantitative analysis, of such phenomena requires the use of something other than visible light, such as x-rays or neutrons. In this study a unique flow visualization technique using a continuous high energy x-ray source to measure void fraction with good spatial and temporal resolution in pools of liquid metal has been developed. In the present experiments, 11 to 21 kg of molten tin at 360sp° C to 425sp° C is collected in a pre-heated stainless steel test section of rectangular cross section (18 x 10 cm). In the base of the test section are two injection ports for the introduction of nitrogen gas and water. Each port is composed of two coaxial tubes. Nitrogen gas flows through the annular region and either nitrogen gas or water flows through the central tube. The test section is imaged using a high energy x-ray source (Varian Linatron 3000A) with a peak energy of 9 MeV and a maximum on axis dose rate of 30 Gy/min. The transmitted x-rays are viewed with an imaging system composed of a high density silicate glass screen, a mirror, a lens coupled image intensifier, and a CCD camera. Two interchangeable CCD cameras allow for either high resolution imaging (1128 x 480 pixels) at a frame rate of 30 Hz or low resolution imaging (256 x 256 pixels) at a frame rate of 220 Hz. The collected images are digitally processed to obtain the chordal averaged local and volume integral void fractions. At the experimental conditions examined, estimated relative uncertainty using this measurement technique is 10% for worst case conditions. The upper bound on the relative systematic error due to void dynamics is estimated to be 20%. Reasonable agreement has been demonstrated between the data generated from the processed images, past integral void fraction experimental data, and a semi-empirical drift-flux correlation.
Weil, E H; Ruiz-Cerdá, J L; Eerdmans, P H; Janknegt, R A; Van Kerrebroeck, P E
1998-01-01
The aim of this study was to determine the long-term clinical efficacy and complications of neuromodulation with a unilateral sacral foramen electrode in 36 patients with chronic voiding dysfunction. Following a positive effect of a percutaneous nerve evaluation test, patients underwent open surgery. A permanent electrode was implanted in 24 patients with urge incontinence, in 6 with urgency-frequency syndrome, and in 6 with nonobstructive urinary retention. After an average follow-up period of 37.8 months, 19 patients (52.8%) continue to benefit from the neuromodulation with a significant improvement of symptoms and urodynamic parameters. The median duration of the therapeutic effect for the total study population was longer than 60 months. No significant difference in the median duration of therapeutic effect with regard to sex, the type of voiding disorder, or the implant pulse generator was found. However, in patients with previous psychological disorders the median duration of therapeutic effect was only 12 months (P = 0.008). Complications were mild. In the group of patients in whom the therapeutic effect remains, 37 reoperations have had to be performed. We conclude that although reoperations were needed to overcome technical problems, patients can achieve lasting symptomatic improvement. Since technical changes in the equipment have reduced the number of complications, even better results can be expected in terms of the reoperation rate.
Tong, Yat-Ching
2007-01-01
The urodynamic findings and voiding habits in patients with concomitant clinical benign prostatic hyperplasia (BPH) and detrusor overactivity (DO) presenting with or without the symptom of urgency were compared. 84 BPH patients with an urodynamic diagnosis of DO by conventional cystometry were included in the study. The patients were grouped according to the presence or absence of the symptom of urgency. The urodynamic findings, urinary diary and clinical information were analyzed. Among the 84 BPH-DO patients, 52 reported the symptom of urgency while 32 did not. There were no significant differences in mean age, International Prostate Symptom Score and flow rate between the two groups. Patients without urgency had a higher incidence of terminal DO and abnormal bladder sensation. The occurrence of unfelt phasic DO was also significantly higher in this group. Sphincter electromyography showed conscious and subconscious sphincter contractions associated with DO. The urinary diary showed lower 24-hour urinary output, smaller bladder functional capacity and average voided volume in the BPH-DO patients without urgency. BPH patients with DO may neglect the symptom of urgency due to abnormal bladder sensation, or negate the symptom by subconscious sphincter contraction to abort the overactivity. Some may avoid the symptom by drinking less fluid and emptying the bladder at a smaller volume. Copyright 2007 S. Karger AG, Basel.
[External sphincterotomy using bipolar vaporisation in saline. First results].
Even, L; Guillotreau, J; Mingat, N; Castel-Lacanal, E; Braley, E; Malavaud, B; Marque, P; Rischmann, P; Gamé, X
2012-07-01
The aim of this study was to assess the feasibility, efficacy and tolerance of external urethral sphincter vaporization in saline for treating detrusor-sphincter dyssynergia. Between 2009 and 2011 a monocentric prospective study of ten men mean age 58±9 years with neurogenic detrusor-sphincter dyssynergia was carried out. Preoperative evaluation included kidney ultrasound scan, 24-hour creatinine clearance, urodynamics, retrograde and voiding urethrocystography and an at least 6 months temporary stent sphincterotomy. Postoperative assessment was composed of an ultrasound scan post-void residual volume measurement when the urethral catheter were removed and 1 year after the procedure, a retrograde and voiding urethrocystography at 3 months and a flexible cystoscopy at 1 year. At the catheter removal, eight patients emptied their bladder at completion, a supra-pubic catheter was temporary left in one case and a patient had a permanent urinary retention. For a mean follow-up of 22±11 months, eight patients emptied their bladder at completion and two had a complete urinary retention related to a detrusor underactivity. An orchitis occurred in one case 1 month after the procedure and an urethral stricture in four cases in 12.75±5.68 months on average. External urethral sphincter vaporisation saline was feasible and efficient for treating detrusor-sphincter dyssynergia but was associated with a high risk of urethral stricture. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Theoretical Comparison Between Candidates for Dark Matter
NASA Astrophysics Data System (ADS)
McKeough, James; Hira, Ajit; Valdez, Alexandra
2017-01-01
Since the generally-accepted view among astrophysicists is that the matter component of the universe is mostly dark matter, the search for dark matter particles continues unabated. The Large Underground Xenon (LUX) improvements, aided by advanced computer simulations at the U.S. Department of Energy's Lawrence Berkeley National Laboratory's (Berkeley Lab) National Energy Research Scientific Computing Center (NERSC) and Brown University's Center for Computation and Visualization (CCV), can potentially eliminate some particle models of dark matter. Generally, the proposed candidates can be put in three categories: baryonic dark matter, hot dark matter, and cold dark matter. The Lightest Supersymmetric Particle(LSP) of supersymmetric models is a dark matter candidate, and is classified as a Weakly Interacting Massive Particle (WIMP). Similar to the cosmic microwave background radiation left over from the Big Bang, there is a background of low-energy neutrinos in our Universe. According to some researchers, these may be the explanation for the dark matter. One advantage of the Neutrino Model is that they are known to exist. Dark matter made from neutrinos is termed ``hot dark matter''. We formulate a novel empirical function for the average density profile of cosmic voids, identified via the watershed technique in ΛCDM N-body simulations. This function adequately treats both void size and redshift, and describes the scale radius and the central density of voids. We started with a five-parameter model. Our research is mainly on LSP and Neutrino models.
Urodynamic findings in women with pelvic organ prolapse and obstructive voiding symptoms.
Dain, Lena; Auslander, Ron; Rosen, Talma; Segev, Yakir; Goldschmidt, Eyal; Abramov, Yoram
2010-11-01
To determine whether obstructive voiding symptoms in women with advanced pelvic organ prolapse (POP) were associated with objective bladder outflow tract obstruction. We reviewed preoperative data from patients with advanced POP who underwent surgical correction at the Department of Obstetrics and Gynecology, Carmel Medical Center, Haifa, Israel, between December 1, 2005, and November 30, 2007. Obstructive voiding symptoms were recorded from Pelvic Floor Distress Inventory-20 questionnaires. Of the 81 women aged 44-80 years who were included in the study, 40 (49.4%) reported incomplete bladder emptying preoperatively. There was no significant difference between these women and asymptomatic women in terms of demographic and clinical parameters such as age, parity, and stage of prolapse. Furthermore, there was no significant difference with regard to postvoid residual bladder volume (52.8 ± 65.8 vs 41.6 ± 41.2 mL), maximal (23.8 ± 11 vs 21.9 ± 9.6 mL/second) and average (10.3 ± 6.2 vs 9.3 ± 4 mL/second) urinary flow velocities, prevalence of increased postvoid residual volume (10.0% vs 4.8%), or obstructive urinary flow (17.5% vs 7.3%). Almost half of all women with advanced POP experienced incomplete bladder emptying; however, this symptom did not correlate with objective urodynamic bladder outflow tract obstruction. Copyright © 2010 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved.
21 CFR 888.3045 - Resorbable calcium salt bone void filler device.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Resorbable calcium salt bone void filler device... salt bone void filler device. (a) Identification. A resorbable calcium salt bone void filler device is... entitled “Class II Special Controls Guidance: Resorbable Calcium Salt Bone Void Filler Device; Guidance for...
21 CFR 888.3045 - Resorbable calcium salt bone void filler device.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Resorbable calcium salt bone void filler device... salt bone void filler device. (a) Identification. A resorbable calcium salt bone void filler device is... entitled “Class II Special Controls Guidance: Resorbable Calcium Salt Bone Void Filler Device; Guidance for...
21 CFR 888.3045 - Resorbable calcium salt bone void filler device.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Resorbable calcium salt bone void filler device... salt bone void filler device. (a) Identification. A resorbable calcium salt bone void filler device is... entitled “Class II Special Controls Guidance: Resorbable Calcium Salt Bone Void Filler Device; Guidance for...
21 CFR 888.3045 - Resorbable calcium salt bone void filler device.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Resorbable calcium salt bone void filler device... salt bone void filler device. (a) Identification. A resorbable calcium salt bone void filler device is... entitled “Class II Special Controls Guidance: Resorbable Calcium Salt Bone Void Filler Device; Guidance for...
21 CFR 888.3045 - Resorbable calcium salt bone void filler device.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Resorbable calcium salt bone void filler device... salt bone void filler device. (a) Identification. A resorbable calcium salt bone void filler device is... entitled “Class II Special Controls Guidance: Resorbable Calcium Salt Bone Void Filler Device; Guidance for...
21 CFR 1305.28 - Canceling and voiding electronic orders.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 9 2014-04-01 2014-04-01 false Canceling and voiding electronic orders. 1305.28... I AND II CONTROLLED SUBSTANCES Electronic Orders § 1305.28 Canceling and voiding electronic orders. (a) A supplier may void all or part of an electronic order by notifying the purchaser of the voiding...
21 CFR 1305.28 - Canceling and voiding electronic orders.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Canceling and voiding electronic orders. 1305.28... I AND II CONTROLLED SUBSTANCES Electronic Orders § 1305.28 Canceling and voiding electronic orders. (a) A supplier may void all or part of an electronic order by notifying the purchaser of the voiding...
38 CFR 3.207 - Void or annulled marriage.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Void or annulled marriage... Void or annulled marriage. Proof that a marriage was void or has been annulled should consist of: (a... marriage void, together with such other evidence as may be required for a determination. (b) Annulled. A...
Molecular dynamics modeling and simulation of void growth in two dimensions
NASA Astrophysics Data System (ADS)
Chang, H.-J.; Segurado, J.; Rodríguez de la Fuente, O.; Pabón, B. M.; LLorca, J.
2013-10-01
The mechanisms of growth of a circular void by plastic deformation were studied by means of molecular dynamics in two dimensions (2D). While previous molecular dynamics (MD) simulations in three dimensions (3D) have been limited to small voids (up to ≈10 nm in radius), this strategy allows us to study the behavior of voids of up to 100 nm in radius. MD simulations showed that plastic deformation was triggered by the nucleation of dislocations at the atomic steps of the void surface in the whole range of void sizes studied. The yield stress, defined as stress necessary to nucleate stable dislocations, decreased with temperature, but the void growth rate was not very sensitive to this parameter. Simulations under uniaxial tension, uniaxial deformation and biaxial deformation showed that the void growth rate increased very rapidly with multiaxiality but it did not depend on the initial void radius. These results were compared with previous 3D MD and 2D dislocation dynamics simulations to establish a map of mechanisms and size effects for plastic void growth in crystalline solids.
NASA Technical Reports Server (NTRS)
Dominquez, Jesus A.; Tate, Lanetra C.; Wright, M. Clara; Caraccio, Anne
2013-01-01
Accomplishing the best-performing composite matrix (resin) requires that not only the processing method but also the cure cycle generate low-void-content structures. If voids are present, the performance of the composite matrix will be significantly reduced. This is usually noticed by significant reductions in matrix-dominated properties, such as compression and shear strength. Voids in composite materials are areas that are absent of the composite components: matrix and fibers. The characteristics of the voids and their accurate estimation are critical to determine for high performance composite structures. One widely used method of performing void analysis on a composite structure sample is acquiring optical micrographs or Scanning Electron Microscope (SEM) images of lateral sides of the sample and retrieving the void areas within the micrographs/images using an image analysis technique. Segmentation for the retrieval and subsequent computation of void areas within the micrographs/images is challenging as the gray-scaled values of the void areas are close to the gray-scaled values of the matrix leading to the need of manually performing the segmentation based on the histogram of the micrographs/images to retrieve the void areas. The use of an algorithm developed by NASA and based on Fuzzy Reasoning (FR) proved to overcome the difficulty of suitably differentiate void and matrix image areas with similar gray-scaled values leading not only to a more accurate estimation of void areas on composite matrix micrographs but also to a faster void analysis process as the algorithm is fully autonomous.
Voids in cosmological simulations over cosmic time
NASA Astrophysics Data System (ADS)
Wojtak, Radosław; Powell, Devon; Abel, Tom
2016-06-01
We study evolution of voids in cosmological simulations using a new method for tracing voids over cosmic time. The method is based on tracking watershed basins (contiguous regions around density minima) of well-developed voids at low redshift, on a regular grid of density field. It enables us to construct a robust and continuous mapping between voids at different redshifts, from initial conditions to the present time. We discuss how the new approach eliminates strong spurious effects of numerical origin when voids' evolution is traced by matching voids between successive snapshots (by analogy to halo merger trees). We apply the new method to a cosmological simulation of a standard Λ-cold-dark-matter cosmological model and study evolution of basic properties of typical voids (with effective radii 6 h-1 Mpc < Rv < 20 h-1 Mpc at redshift z = 0) such as volumes, shapes, matter density distributions and relative alignments. The final voids at low redshifts appear to retain a significant part of the configuration acquired in initial conditions. Shapes of voids evolve in a collective way which barely modifies the overall distribution of the axial ratios. The evolution appears to have a weak impact on mutual alignments of voids implying that the present state is in large part set up by the primordial density field. We present evolution of dark matter density profiles computed on isodensity surfaces which comply with the actual shapes of voids. Unlike spherical density profiles, this approach enables us to demonstrate development of theoretically predicted bucket-like shape of the final density profiles indicating a wide flat core and a sharp transition to high-density void walls.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruggles, A.E.; Morris, D.G.
The RELAP5/MOD2 code was used to predict the thermal-hydraulic behavior of the HFIR core during decay heat removal through boiling natural circulation. The low system pressure and low mass flux values associated with boiling natural circulation are far from conditions for which RELAP5 is well exercised. Therefore, some simple hand calculations are used herein to establish the physics of the results. The interpretation and validation effort is divided between the time average flow conditions and the time varying flow conditions. The time average flow conditions are evaluated using a lumped parameter model and heat balance. The Martinelli-Nelson correlations are usedmore » to model the two-phase pressure drop and void fraction vs flow quality relationship within the core region. Systems of parallel channels are susceptible to both density wave oscillations and pressure drop oscillations. Periodic variations in the mass flux and exit flow quality of individual core channels are predicted by RELAP5. These oscillations are consistent with those observed experimentally and are of the density wave type. The impact of the time varying flow properties on local wall superheat is bounded herein. The conditions necessary for Ledinegg flow excursions are identified. These conditions do not fall within the envelope of decay heat levels relevant to HFIR in boiling natural circulation. 14 refs., 5 figs., 1 tab.« less
Dinçer, Alp; Yildiz, Erdem; Kohan, Saeed; Memet Özek, M
2011-01-01
The aim of the study is to evaluate the efficiency of turbo spin-echo (TSE), three-dimensional constructive interference in the steady state (3D CISS) and cine phase contrast (Cine PC) sequences in determining flow through the endoscopic third ventriculostomy (ETV) fenestration, and to determine the effect of various TSE sequence parameters. The study was approved by our institutional review board and informed consent from all patients was obtained. Two groups of patients were included: group I (24 patients with good clinical outcome after ETV) and group II (22 patients with hydrocephalus evaluated preoperatively). The imaging protocol for both groups was identical. TSE T2 with various sequence parameters and imaging planes, and 3D CISS, followed by cine PC were obtained. Flow void was graded as four-point scales. The sensitivity, specificity, accuracy, positive and negative predictive values of sequences were calculated. Bidirectional flow through the fenestration was detected in all group I patients by cine PC. Stroke volumes through the fenestration in group I ranged 10-160.8 ml/min. There was no correlation between the presence of reversed flow and flow void grading. Also, there was no correlation between the stroke volumes and flow void grading. The sensitivity of 3D CISS was low, and 2 mm sagittal TSE T2, nearly equal to cine PC, provided best result. Cine PC and TSE T2 both have high confidence in the assessment of the flow through the fenestration. But, sequence parameters significantly affect the efficiency of TSE T2.
Nakai, Yasushi; Ozawa, Toshiyuki; Mizuno, Fumiko; Onishi, Sayuri; Owari, Takuya; Hori, Syunta; Morizawa, Yosuke; Tatsumi, Yosihiro; Miyake, Makito; Tanaka, Nobumichi; Tsuruta, Daisuke; Fujimoto, Kiyohide
2017-11-01
To evaluate the feasibility of hexaminolevulinate (HAL) for the photodynamic detection of cancer cells in voided urine. This study included 50 patients with bladder cancer that was confirmed histologically after transurethral resection (bladder cancer group) and 50 outpatients without a history of urothelial carcinoma or cancer-related findings (no malignancy group). One third of the voided urine samples were incubated with aminolevulinic acid (ALA-treated samples), one third were incubated with HAL (HAL-treated samples), and the remaining samples were incubated without treatment (untreated samples). For detecting cellular protoporphyrin IX levels, the intensity of the samples at the excitation wavelength of 405 nm was measured using a spectrophotometer. The difference between the intensity of the ALA-treated or HAL-treated samples and the untreated samples at 635 nm was calculated. HAL-induced fluorescence cytology (HFC) showed that the difference was significantly higher in patients with high-grade tumors than in those with low-grade tumors (p = 0.0003) and the difference was significantly higher in patients with low-grade tumors than in those without a history of urothelial carcinoma or cancer-related findings (p = 0.021). The areas under the receiver operating characteristic curves of ALA-induced fluorescence cytology (AFC) and HFC were 0.77 and 0.81, respectively. The AUC of HFC was significantly higher than that of AFC (p < 0.0001). The overall sensitivity values for conventional cytology, AFC, and HFC were 49, 74, and 74%, respectively. The overall specificity values for AFC and HFC were 70 and 94%, respectively. Spectrophotometric photodynamic detection involving extracorporeal treatment with HAL for bladder cancer cells in voided urine showed high accuracy. This bladder cancer detection method is easy and cost-effective, and has the potential for clinical use.
Predicting efficiency of solar cells based on transparent conducting electrodes
NASA Astrophysics Data System (ADS)
Kumar, Ankush
2017-01-01
Efficiency of a solar cell is directly correlated with the performance of its transparent conducting electrodes (TCEs) which dictates its two core processes, viz., absorption and collection efficiencies. Emerging designs of a TCE involve active networks of carbon nanotubes, silver nanowires and various template-based techniques providing diverse structures; here, voids are transparent for optical transmittance while the conducting network acts as a charge collector. However, it is still not well understood as to which kind of network structure leads to an optimum solar cell performance; therefore, mostly an arbitrary network is chosen as a solar cell electrode. Herein, we propose a new generic approach for understanding the role of TCEs in determining the solar cell efficiency based on analysis of shadowing and recombination losses. A random network of wires encloses void regions of different sizes and shapes which permit light transmission; two terms, void fraction and equivalent radius, are defined to represent the TCE transmittance and wire spacings, respectively. The approach has been applied to various literature examples and their solar cell performance has been compared. To obtain high-efficiency solar cells, optimum density of the wires and their aspect ratio as well as active layer thickness are calculated. Our findings show that a TCE well suitable for one solar cell may not be suitable for another. For high diffusion length based solar cells, the void fraction of the network should be low while for low diffusion length based solar cells, the equivalent radius should be lower. The network with less wire spacing compared to the diffusion length behaves similar to continuous film based TCEs (such as indium tin oxide). The present work will be useful for architectural as well as material engineering of transparent electrodes for improvisation of solar cell performance.
Effect of voids on Arrhenius relationship between H-solubility and temperature in nickel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Q.Y.; Sun, X.K.; Hu, Z.Q.
1997-01-15
Many investigations about the states of hydrogen in voids within metals have been carried out over the past years. These probable states of hydrogen in the voids are directly relevant to hydrogen embrittlement mechanisms. Therefore, a knowledge of the states of hydrogen in the voids is important to an understanding of hydrogen-related degradation of material properties. Some results show that hydrogen exists as a molecule in the voids, while others suggest it is in the chemisorbed state on the internal surface of the voids. The results of Sung-Man lee et al. suggested that hydrogen in the voids in nickel existsmore » both in the gaseous and chemisorbed stats, and most of the hydrogen trapped in the voids seems to be present as a chemisorbed state in 1 atm. hydrogen pressure in the temperature range of 350--582 C. But there is no quantitative description concerning the effects of the voids on the solubility of hydrogen in materials. The purpose of this work is to describe quantitatively the effects of the voids on hydrogen solubility in nickel, considering hydrogen exists as gaseous and chemisorbed states in the voids, and the very weak physical adsorption above room temperature is neglected.« less
Nonlinear consolidation in randomly heterogeneous highly compressible aquitards
NASA Astrophysics Data System (ADS)
Zapata-Norberto, Berenice; Morales-Casique, Eric; Herrera, Graciela S.
2018-05-01
Severe land subsidence due to groundwater extraction may occur in multiaquifer systems where highly compressible aquitards are present. The highly compressible nature of the aquitards leads to nonlinear consolidation where the groundwater flow parameters are stress-dependent. The case is further complicated by the heterogeneity of the hydrogeologic and geotechnical properties of the aquitards. The effect of realistic vertical heterogeneity of hydrogeologic and geotechnical parameters on the consolidation of highly compressible aquitards is investigated by means of one-dimensional Monte Carlo numerical simulations where the lower boundary represents the effect of an instant drop in hydraulic head due to groundwater pumping. Two thousand realizations are generated for each of the following parameters: hydraulic conductivity ( K), compression index ( C c), void ratio ( e) and m (an empirical parameter relating hydraulic conductivity and void ratio). The correlation structure, the mean and the variance for each parameter were obtained from a literature review about field studies in the lacustrine sediments of Mexico City. The results indicate that among the parameters considered, random K has the largest effect on the ensemble average behavior of the system when compared to a nonlinear consolidation model with deterministic initial parameters. The deterministic solution underestimates the ensemble average of total settlement when initial K is random. In addition, random K leads to the largest variance (and therefore largest uncertainty) of total settlement, groundwater flux and time to reach steady-state conditions.
Mechanism of Void Prediction in Flip Chip Packages with Molded Underfill
NASA Astrophysics Data System (ADS)
Wu, Kuo-Tsai; Hwang, Sheng-Jye; Lee, Huei-Huang
2017-08-01
Voids have always been present using the molded underfill (MUF) package process, which is a problem that needs further investigation. In this study, the process was studied using the Moldex3D numerical analysis software. The effects of gas (air vent effect) on the overall melt front were also considered. In this isothermal process containing two fluids, the gas and melt colloid interact in the mold cavity. Simulation enabled an appropriate understanding of the actual situation to be gained, and, through analysis, the void region and exact location of voids were predicted. First, the global flow end area was observed to predict the void movement trend, and then the local flow ends were observed to predict the location and size of voids. In the MUF 518 case study, simulations predicted the void region as well as the location and size of the voids. The void phenomenon in a flip chip ball grid array underfill is discussed as part of the study.
Three-dimensional simulations of void collapse in energetic materials
NASA Astrophysics Data System (ADS)
Rai, Nirmal Kumar; Udaykumar, H. S.
2018-03-01
The collapse of voids in porous energetic materials leads to hot-spot formation and reaction initiation. This work advances the current knowledge of the dynamics of void collapse and hot-spot formation using 3D reactive void collapse simulations in HMX. Four different void shapes, i.e., sphere, cylinder, plate, and ellipsoid, are studied. For all four shapes, collapse generates complex three-dimensional (3D) baroclinic vortical structures. The hot spots are collocated with regions of intense vorticity. The differences in the vortical structures for the different void shapes are shown to significantly impact the relative sensitivity of the voids. Voids of high surface area generate hot spots of greater intensity; intricate, highly contorted vortical structures lead to hot spots of corresponding tortuosity and therefore enhanced growth rates of reaction fronts. In addition, all 3D voids are shown to be more sensitive than their two-dimensional (2D) counterparts. The results provide physical insights into hot-spot formation and growth and point to the limitations of 2D analyses of hot-spot formation.
[Effect of the night shift work on micturition patterns of nurses].
Wang, Q; Hu, H; Liang, C; Wang, J; Xu, K X
2016-02-18
To compare the effects of rotational night shifts on the micturition patterns of female nurses. A total of 58 nurses without lower urinary tract symptoms were recruited, who worked in the Peking University People's Hospital during January and June in 2014. The nurses aged 20-43 years were divided into two groups, the night-shift group (n=28) and the non-shift group (n=30). The alcohol or coffee intaking were forbidden. In the night-shift group, nurses had worked on rotational shifts for at least 6 months. Their average age was (26.75±4.11) years. In the non-shift group, nurses took regular day-time work, whose average age was (27.80±5.60) years. A voiding diary was kept for 7 consecutive days at the end of 6 months, starting 2 days before their night duties until 4 days after completion of their night duties. For comparison, the non-shift group with regular shifts completed a 7-day voiding diary. In the 7-day recording voiding diary, the nurses were required to have the normal intake of liquid about 1 500-2 000 mL/d. The frequency volume charts of nocturia, the 8-hour interval urine production and frequency were compared between the two groups. Nocturia frequency was increased in the night-shift group [0.5 (0-2.4)] compared with the non-shift group [0 (0-2), P=0.02]. The volume of nocturia was increased in the night-shift group [125 mL (0-660 mL)] compared with the non-shift group [0 mL (0-340 mL), P<0.01]. The 8-hour interval indices showed that urine production changed with shift (P<0.01). In the consecutive 7 days, the nocturnal volume of the night-shift group increased on the day after night shift. When the night-shift nurses returned to daytime duty, the volume of urine decreased but nocturnal urine production remained high, and the frequency of nocturia also increased significantly (P<0.05). Compared with the 8-hour interval indices, the night-shift group's voiding volume [(542.35±204.66) mL] and voiding frequency (2.24±0.69) were more than those of the non-shift group at the afternoon time (from 2 pm to 10 pm). During the 8 h interval night time (from 10 pm to 6 am), the volume of nocturia in the night-shift group [(309.74±162.74) mL] was more than that in the non-shift group [(199.38±153.98) mL, P=0.01]; the frequency of nocturia in the night-shift group (1.31±0.52) was increased than that in the non-shift group (0.82±0.55, P<0.01). The rotational shifts affect the micturition patterns of nurses who go through the night shift work, which increases the volume and frequency of the nocturia.
[Effect of the night shift work on micturition patterns of nurses].
Wang, Q; Hu, H; Liang, C; Wang, J; Xu, K X
2016-08-18
To compare the effects of rotational night shifts on the micturition patterns of female nurses. A total of 58 nurses without lower urinary tract symptoms were recruited, who worked in the Peking University People's Hospital during January and June in 2014. The nurses aged 20-43 years were divided into two groups, the night-shift group (n=28) and the non-shift group (n=30). The alcohol or coffee intaking were forbidden. In the night-shift group, nurses had worked on rotational shifts for at least 6 months. Their average age was (26.75±4.11) years. In the non-shift group, nurses took regular day-time work, whose average age was (27.80±5.60) years. A voiding diary was kept for 7 consecutive days at the end of 6 months, starting 2 days before their night duties until 4 days after completion of their night duties. For comparison, the non-shift group with regular shifts completed a 7-day voiding diary. In the 7-day recording voiding diary, the nurses were required to have the normal intake of liquid about 1 500-2 000 mL/d. The frequency volume charts of nocturia, the 8-hour interval urine production and frequency were compared between the two groups. Nocturia frequency was increased in the night-shift group [0.5 (0-2.4)] compared with the non-shift group [0 (0-2), P=0.02]. The volume of nocturia was increased in the night-shift group [125 mL (0-660 mL)] compared with the non-shift group [0 mL (0-340 mL), P<0.01]. The 8-hour interval indices showed that urine production changed with shift (P<0.01). In the consecutive 7 days, the nocturnal volume of the night-shift group increased on the day after night shift. When the night-shift nurses returned to daytime duty, the volume of urine decreased but nocturnal urine production remained high, and the frequency of nocturia also increased significantly (P<0.05). Compared with the 8-hour interval indices, the night-shift group's voiding volume [(542.35±204.66) mL] and voiding frequency (2.24±0.69) were more than those of the non-shift group at the afternoon time (from 2 pm to 10 pm). During the 8 h interval night time (from 10 pm to 6 am), the volume of nocturia in the night-shift group [(309.74±162.74) mL] was more than that in the non-shift group [(199.38±153.98) mL, P=0.01]; the frequency of nocturia in the night-shift group (1.31±0.52) was increased than that in the non-shift group (0.82±0.55, P<0.01). The rotational shifts affect the micturition patterns of nurses who go through the night shift work, which increases the volume and frequency of the nocturia.
Methods of predicting aggregate voids.
DOT National Transportation Integrated Search
2013-03-01
Percent voids in combined aggregates vary significantly. Simplified methods of predicting aggregate : voids were studied to determine the feasibility of a range of gradations using aggregates available in Kansas. : The 0.45 Power Curve Void Predictio...
Direct evidence of void passivation in Cu(InGa)(SSe){sub 2} absorber layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Dongho; Kim, Young-Su; Mo, Chan B.
We have investigated the charge collection condition around voids in copper indium gallium sulfur selenide (CIGSSe) solar cells fabricated by sputter and a sequential process of selenization/sulfurization. In this study, we found direct evidence of void passivation by using the junction electron beam induced current method, transmission electron microscopy, and energy dispersive X-ray spectroscopy. The high sulfur concentration at the void surface plays an important role in the performance enhancement of the device. The recombination around voids is effectively suppressed by field-assisted void passivation. Hence, the generated carriers are easily collected by the electrodes. Therefore, when the S/(S + Se)more » ratio at the void surface is over 8% at room temperature, the device performance degradation caused by the recombination at the voids is negligible at the CIGSSe layer.« less
Log-Normal Distribution of Cosmic Voids in Simulations and Mocks
NASA Astrophysics Data System (ADS)
Russell, E.; Pycke, J.-R.
2017-01-01
Following up on previous studies, we complete here a full analysis of the void size distributions of the Cosmic Void Catalog based on three different simulation and mock catalogs: dark matter (DM), haloes, and galaxies. Based on this analysis, we attempt to answer two questions: Is a three-parameter log-normal distribution a good candidate to satisfy the void size distributions obtained from different types of environments? Is there a direct relation between the shape parameters of the void size distribution and the environmental effects? In an attempt to answer these questions, we find here that all void size distributions of these data samples satisfy the three-parameter log-normal distribution whether the environment is dominated by DM, haloes, or galaxies. In addition, the shape parameters of the three-parameter log-normal void size distribution seem highly affected by environment, particularly existing substructures. Therefore, we show two quantitative relations given by linear equations between the skewness and the maximum tree depth, and between the variance of the void size distribution and the maximum tree depth, directly from the simulated data. In addition to this, we find that the percentage of voids with nonzero central density in the data sets has a critical importance. If the number of voids with nonzero central density reaches ≥3.84% in a simulation/mock sample, then a second population is observed in the void size distributions. This second population emerges as a second peak in the log-normal void size distribution at larger radius.
Theory of Dust Voids in Plasmas
NASA Technical Reports Server (NTRS)
Goree, J.; Morfill, G. E.; Tsytovich, V. N.; Vladimirov, S. V.
1999-01-01
Dusty plasmas in a gas discharge often feature a stable void, i.e., a dust-free region inside the dust cloud. This occurs under conditions relevant to both plasma processing discharges and plasma crystal experiments. The void results from a balance of the electrostatic and ion drag forces on a dust particle. The ion drag force is driven by a flow of ions outward from an ionization source and toward the surrounding dust cloud, which has a negative space charge. In equilibrium the force balance for dust particles requires that the boundary with the dust cloud be sharp, provided that the particles are cold and monodispersive. Numerical solutions of the one-dimensional nonlinear fluid equations are carried out including dust charging and dust-neutral collisions, but not ion-neutral collisions. The regions of parameter space that allow stable void equilibria are identified. There is a minimum ionization rate that can sustain a void. Spatial profiles of plasma parameters in the void are reported. In the absence of ion-neutral collisions, the ion flow enters the dust cloud's edge at Mach number M = 1. Phase diagrams for expanding or contracting voids reveal a stationary point corresponding to a single stable equilibrium void size, provided the ionization rate is constant. Large voids contract and small voids expand until they attain this stationary void size. On the other hand, if the ionization rate is not constant, the void size can oscillate. Results are compared to recent laboratory and microgravity experiments.
Cosmic voids detection without density measurements
NASA Astrophysics Data System (ADS)
Elyiv, Andrii; Marulli, Federico; Pollina, Giorgia; Baldi, Marco; Branchini, Enzo; Cimatti, Andrea; Moscardini, Lauro
2015-03-01
Cosmic voids are effective cosmological probes to discriminate among competing world models. Their identification is generally based on density or geometry criteria that, because of their very nature, are prone to shot noise. We propose two void finders that are based on dynamical criterion to select voids in Lagrangian coordinates and minimize the impact of sparse sampling. The first approach exploits the Zel'dovich approximation to trace back in time the orbits of galaxies located in voids and their surroundings; the second uses the observed galaxy-galaxy correlation function to relax the objects' spatial distribution to homogeneity and isotropy. In both cases voids are defined as regions of the negative velocity divergence, which can be regarded as sinks of the back-in-time streamlines of the mass tracers. To assess the performance of our methods we used a dark matter halo mock catalogue CODECS, and compared the results with those obtained with the ZOBOV void finder. We find that the void divergence profiles are less scattered than the density ones and, therefore, their stacking constitutes a more accurate cosmological probe. The significance of the divergence signal in the central part of voids obtained from both our finders is 60 per cent higher than for overdensity profiles in the ZOBOV case. The ellipticity of the stacked void measured in the divergence field is closer to unity, as expected, than what is found when using halo positions. Therefore, our void finders are complementary to the existing methods, which should contribute to improve the accuracy of void-based cosmological tests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Yi, E-mail: tanyi@dlut.edu.cn; You, Xiaogang; You, Qifan
Electron beam smelting (EBS) has been used to fabricate the Inconel 740 superalloy. Microstructures, hardness, and deformation characteristics of the alloy are studied. It is observed that carbides and fine secondary phase nuclei are distributed in the hot worked EBS 740 superalloy. The Ostwald ripening occurs during solution treatment and leads to aggregation of the γ′ precipitates, the size of γ′ precipitates varies from several nanometers to more than one hundred nanometers as a result. The average size of the secondary phase is < 30 nm after aging treatment and the average Vickers hardness is measured to be about 370.more » The critical shear stress is calculated to be 0.627 GPa with governing mechanism of shearing, causing a stronger strengthening effect than the traditionally prepared Inconel 740 superalloy. The compression behavior indicates that the EBS 740 superalloy shows higher flow stress than 740H at low Zener-Hollomon parameter, which may arise from the undissolved γ′ precipitates and higher activation energy Q. The tensile results show that the fracture surface exhibits a ductile fracture pattern, in contrast to no obvious plastic deformation on the macroscopic fracture. Crack propagation proceeds in a transgranular fracture mode with facets and voids presented on the fracture surface. - Graphical abstract: Electron beam smelting (EBS) has been used to fabricate the Inconel 740 superalloy. Microstructures, hardness, and deformation characteristics of the alloy are studied. The average size of the secondary phase is < 30 nm after aging treatment and the average Vickers hardness is measured to be about 370. The critical shear stress is calculated to be 0.627 GPa with governing mechanism of shearing, causing a stronger strengthening effect than the traditionally prepared Inconel 740 superalloy. The EBS 740 superalloy shows higher flow stress than 740H at low Zener-Hollomon parameter, which may arise from the undissolved γ′ precipitates and higher activation energy Q. The EBS technology shows encouraging potential in preparation of nickel-based superalloys. Morphologies of γ′ precipitates and Vickers hardness as well as hot compression curves for electron beam smelting 740 superalloy. - Highlights: • Electron beam smelting, a novel method, was used to prepare the Inconel 740 superalloy. • The average size of the γ′ precipitates after aging treatment is < 30 nm. • The shearing mode generates a stronger strengthening effect than the traditional 740. • At low Zener-Hollomon parameter, the EBS 740 shows higher flow stress than 740H.« less
Electromigration Mechanism of Failure in Flip-Chip Solder Joints Based on Discrete Void Formation.
Chang, Yuan-Wei; Cheng, Yin; Helfen, Lukas; Xu, Feng; Tian, Tian; Scheel, Mario; Di Michiel, Marco; Chen, Chih; Tu, King-Ning; Baumbach, Tilo
2017-12-20
In this investigation, SnAgCu and SN100C solders were electromigration (EM) tested, and the 3D laminography imaging technique was employed for in-situ observation of the microstructure evolution during testing. We found that discrete voids nucleate, grow and coalesce along the intermetallic compound/solder interface during EM testing. A systematic analysis yields quantitative information on the number, volume, and growth rate of voids, and the EM parameter of DZ*. We observe that fast intrinsic diffusion in SnAgCu solder causes void growth and coalescence, while in the SN100C solder this coalescence was not significant. To deduce the current density distribution, finite-element models were constructed on the basis of the laminography images. The discrete voids do not change the global current density distribution, but they induce the local current crowding around the voids: this local current crowding enhances the lateral void growth and coalescence. The correlation between the current density and the probability of void formation indicates that a threshold current density exists for the activation of void formation. There is a significant increase in the probability of void formation when the current density exceeds half of the maximum value.
Measurement of thermal diffusivity of depleted uranium metal microspheres
NASA Astrophysics Data System (ADS)
Humrickhouse-Helmreich, Carissa J.; Corbin, Rob; McDeavitt, Sean M.
2014-03-01
The high void space of nuclear fuels composed of homogeneous uranium metal microspheres may allow them to achieve ultra-high burnup by accommodating fuel swelling and reducing fuel/cladding interactions; however, the relatively low thermal conductivity of microsphere nuclear fuels may limit their application. To support the development of microsphere nuclear fuels, an apparatus was designed in a glovebox and used to measure the apparent thermal diffusivity of a packed bed of depleted uranium (DU) microspheres with argon fill in the void spaces. The developed Crucible Heater Test Assembly (CHTA) recorded radial temperature changes due to an initial heat pulse from a central thin-diameter cartridge heater. Using thermocouple positions and time-temperature data, the apparent thermal diffusivity was calculated. The thermal conductivity of the DU microspheres was calculated based on the thermal diffusivity from the CHTA, known material densities and specific heat capacities, and an assumed 70% packing density based on prior measurements. Results indicate that DU metal microspheres have very low thermal conductivity, relative to solid uranium metal, and rapidly form an oxidation layer even in a low oxygen environment. At 500 °C, the thermal conductivity of the DU metal microsphere bed was 0.431 ± 0.0560 W/m-K compared to the literature value of approximately 32 W/m-K for solid uranium metal.
Morphology of the supercluster-void network in ΛCDM cosmology
NASA Astrophysics Data System (ADS)
Shandarin, Sergei F.; Sheth, Jatush V.; Sahni, Varun
2004-09-01
We report here the first systematic study of the supercluster-void network in the ΛCDM concordance cosmology in which voids and superclusters are treated on an equal footing. We study the dark matter density field in real space smoothed on a scale of 5 h-1 Mpc. Superclusters are defined as individual members of an overdense excursion set, and voids are defined as individual members of a complementary underdense excursion set at the same density threshold. We determine the geometric, topological and morphological properties of the cosmic web at a large set of density levels by computing Minkowski functionals for every supercluster and void using SURFGEN (described recently by Sheth et al.). The properties of the largest (percolating) supercluster and the complementary void are found to be very different from those of the individual superclusters and voids. In total, the individual superclusters occupy no more than about 5 per cent of the volume and contain no more than 20 per cent of the mass if the largest supercluster is excluded. Likewise, in total, individual voids occupy no more than 14 per cent of the volume and contain no more than 4 per cent of the mass if the largest void is excluded. Although superclusters are more massive and voids are more voluminous, the difference in maximum volumes is no greater than an order of magnitude. The genus value of individual superclusters can be ~5, while the genus of individual voids can reach ~50, implying a significant amount of substructure in superclusters and especially in voids. One of our main results is that large voids, as defined through the dark matter density field in real space, are distinctly non-spherical.
Void Growth and Coalescence in Dynamic Fracture of FCC and BCC Metals - Molecular Dynamics Study
NASA Astrophysics Data System (ADS)
Seppälä, Eira
2004-03-01
In dynamic fracture of ductile metals, the state of tension causes the nucleation of voids, typically from inclusions or grain boundary junctions, which grow and ultimately coalesce to form the fracture surface. Significant plastic deformation occurs in the process, including dislocations emitted to accommodate the growing voids. We have studied at the atomistic scale growth and coalescence processes of voids with concomitant dislocation formation. Classical molecular dynamics (MD) simulations of one and two pre-existing spherical voids initially a few nanometers in radius have been performed in single-crystal face-centered-cubic (FCC) and body-centered-cubic (BCC) lattices under dilational strain with high strain-rates. Million atom simulations of single void growth have been done to study the effect of stress triaxiality,^1 along with strain rate and lattice-structure dependence. An interesting prolate-to-oblate transition in the void shape in uniaxial expansion has been observed and quantitatively analyzed. The simulations also confirm that the plastic strain results directly from the void growth. Interaction and coalescence between two voids have been studied utilizing a parallel MD code in a seven million atom system. In particular, the movement of centers of the voids, linking of the voids, and the shape changes in vicinity of the other void are studied. Also the critical intervoid ligament distance after which the voids can be treated independently has been searched. ^1 E. T. Seppälä, J. Belak, and R. E. Rudd, cond-mat/0310541, submitted to Phys. Rev. B. Acknowledgment: This work was done in collaboration with Dr. James Belak and Dr. Robert E. Rudd, LLNL. It was performed under the auspices of the US Dept. of Energy at the Univ. of Cal./Lawrence Livermore National Laboratory under contract no. W-7405-Eng-48.
Methods of predicting aggregate voids : [technical summary].
DOT National Transportation Integrated Search
2013-03-01
Percent voids in combined aggregates vary significantly. Simplified methods of predicting aggregate voids were studied to determine the feasibility of a range of gradations using aggregates available in Kansas. : The 0.45 Power Curve Void Prediction ...
Kon, Masafumi; Mitsui, Takahiko; Kitta, Takeya; Moriya, Kimihiko; Shinohara, Nobuo; Takeda, Masayuki; Nonomura, Katsuya
2018-02-01
We measured posterior urethra diameter (PUD) and external urethral sphincter diameter (EUSD), which can also be measured by voiding cystourethrography (VCUG) and investigated the relationship between PUD/EUSD and detrusor pressure (Pdet) during voiding by videourodynamics (VUDS). Sixty-three children, who were 3 years old or less and underwent VUDS, were enrolled in the present study. We measured PUD and EUSD in addition to detrusor pressure at the time of the widest EUS during voiding (Pdet-voiding) by VUDS, and PUD/EUSD was investigated compared to Pdet-voiding. Seventy-eight VUDS were performed in 63 patients, and the median age at VUDS was 10.2 months. These studies revealed a significant correlation between PUD/EUSD and Pdet-voiding (r = 0.641, p < 0.001). However, a significant correlation was not observed between PUD/EUSD and age (r = 0.180). We defined Pdet-voiding of more than 80 cmH 2 O as a high voiding pressure, and a PUD/EUSD of 2.4 was a good predictor for the cutoff value for high voiding pressure. Pdet-voiding was significantly higher in children with a PUD/EUSD of ≥ 2.4 (p < 0.001). In 19 children who had neurological diseases, a significant correlation was found between PUD/EUSD and Pdet-voiding (r = 0.842, p < 0.001), and a PUD/EUSD of 2.4 was a useful cutoff value for high voiding pressure. PUD/EUSD is a valuable tool to predict high voiding pressure in pediatric patients. A PUD/EUSD of ≥ 2.4 in VCUG indicates the need to perform more invasive tests, such as VUDS, in pediatric patients aged 3 and under with neuropathic diseases.
Mass and heat transfer in crushed oil shale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carley, J.F.; Straub, J.S.; Ott, L.L.
1984-04-01
Heat and mass transfer between gases and oil-shale particles are both important for all proposed retorting processes. Past studies of transfer in packed beds, which have disagreed substantially in their results, have nearly all been done with beds of regular particles of uniform size, whereas oil-shale retorting involves particles of diverse shapes and widely ranging sizes. To resolve these questions, we have made 349 runs in which we measured mass-transfer rates from naphthalene particles of diverse shapes buried in packed beds through which air was passed at room temperature. This technique permits calculation of the mass-transfer coefficient for each activemore » particle in the bed rather than, as in most past studies, for the bed as a whole. The data were analyzed in two ways: (1) by the traditional correlation of Colburn j/sub D/ vs Reynolds number and (2) by multiple regression of the mass-transfer coefficient on air rate, traditional correlation of Colburn j/sub D/ vs Reynolds number and (3) by multiple regression of the mass-transfer coefficient on air rate, sizes of active and inert particles, void fraction, and temperature. Principal findings are: (1) local Reynolds number should be based on active particle size rather than average size for the bed; (2) no appreciable differences were seen between shallow beds and deep ones; (3) mass transfer was 26% faster for spheres and lozenges buried in shale than for all-sphere beds; (4) orientation of lozenges in shale beds has little effect on mass-transfer rate; (5) a useful summarizing equation for either mass or heat transfer in shale beds is log j.epsilon = -.0747 - .6344 log Re + .0592 log/sup 2/Re where j = either j/sub D/ or j/sub H/, the Chilton-Colburn j-factors for mass and heat transfer, Re = the Reynolds number defined for packed beds, and epsilon = the void fraction in the bed. 12 references, 15 figures.« less
Dose Reconstruction of Di(2-ethylhexyl) Phthalate Using a Simple Pharmacokinetic Model
Calafat, Antonia M.
2012-01-01
Background: Di(2-ethylhexyl) phthalate (DEHP), used primarily as a plasticizer for polyvinyl chloride, is found in a variety of products. Previous studies have quantified human exposure by back calculating intakes based on DEHP metabolite concentrations in urine and by determining concentrations of DEHP in exposure media (e.g., air, food, dust). Objectives: To better understand the timing and extent of DEHP exposure, we used a simple pharmacokinetic model to “reconstruct” the DEHP dose responsible for the presence of DEHP metabolites in urine. Methods: We analyzed urine samples from eight adults for four DEHP metabolites [mono(2-ethylhexyl) phthalate, mono(2-ethyl-5-hydroxyhexyl) phthalate, mono(2-ethyl-5-oxohexyl) phthalate, and mono(2-ethyl-5-carboxypentyl) phthalate]. Participants provided full volumes of all voids over 1 week and recorded the time of each void and information on diet, driving, and outdoor activities. Using a model previously calibrated on a single person self-dosed with DEHP in conjunction with the eight participants’ data, we used a simple trial-and-error method to determine times and doses of DEHP that resulted in a best fit of predicted and observed urinary concentrations of the metabolites. Results: The average daily mean and median reconstructed DEHP doses were 10.9 and 5.0 µg/kg-day, respectively. The highest single modeled dose of 60 µg/kg occurred when one study participant reported consuming coffee and a bagel with egg and sausage that was purchased at a gas station. About two-thirds of all modeled intake events occurred near the time of reported food or beverage consumption. Twenty percent of the modeled DEHP exposure occurred between 2200 hours and 0500 hours. Conclusions: Dose reconstruction using pharmacokinetic models—in conjunction with biomonitoring data, diary information, and other related data—can provide a powerful means to define timing, magnitude, and possible sources of exposure to a given contaminant. PMID:23010619
LM-research opportunities and activities at Beer-Sheva
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lesin, S.
1996-06-01
Energy conversion concepts based on liquid metal (LM) magnetohydrodynamic (MHD) technology was intensively investigated at the Center for MHD Studies (CMHDS), in the Ben-Gurion University of the Negev in Israel. LMMHD energy conversion systems operate in a closed cycle as follows: heat intended for conversion into electricity is added to a liquid metal contained in a closed loop of pipes. The liquid metal is mixed with vapor or gas introduced from outside so that a two-phase mixture is formed. The gaseous phase performs a thermodynamic cycle, converting a certain amount of heat into mechanical energy of the liquid metal. Thismore » energy is converted into electrical power as the metal flows across a magnetic field in the MHD channel. Those systems where the expanding thermodynamic fluid performs work against gravitational forces (natural circulation loops) and using heavy liquid metals are named ETGAR systems. A number of different heavy-metal facilities have been specially constructed and tested with fluid combinations of mercury and steam, mercury and nitrogen, mercury and freon, lead-bismuth and steam, and lead and steam. Since the experimental investigation of such flows is a very difficult task and all the known measurment methods are incomplete and not fully reliable, a variety of experimental approaches have been developed. In most experiments, instantaneous pressure distribution along the height of the upcomer were measured and the average void fraction was calculated numerically using the one-dimensional equation for the two-phase flow. The research carried out at the CMHDS led to significant improvements in the characterization of the two-phase phenomena expected in the riser of ETGAR systems. One of the most important outcomes is the development of a new empirical correlation which enables the reliable prediction of the velocity ratio between the LM and the steam (slip), the friction factor, as well as of the steam void fraction distribution along the riser.« less
On the observability of coupled dark energy with cosmic voids
NASA Astrophysics Data System (ADS)
Sutter, P. M.; Carlesi, Edoardo; Wandelt, Benjamin D.; Knebe, Alexander
2015-01-01
Taking N-body simulations with volumes and particle densities tuned to match the sloan digital sky survey DR7 spectroscopic main sample, we assess the ability of current void catalogues to distinguish a model of coupled dark matter-dark energy from Λ cold dark matter cosmology using properties of cosmic voids. Identifying voids with the VIDE toolkit, we find no statistically significant differences in the ellipticities, but find that coupling produces a population of significantly larger voids, possibly explaining the recent result of Tavasoli et al. In addition, we use the universal density profile of Hamaus et al. to quantify the relationship between coupling and density profile shape, finding that the coupling produces broader, shallower, undercompensated profiles for large voids by thinning the walls between adjacent medium-scale voids. We find that these differences are potentially measurable with existing void catalogues once effects from survey geometries and peculiar velocities are taken into account.
3D simulation of polyurethane foam injection and reacting mold flow in a complex geometry
NASA Astrophysics Data System (ADS)
Özdemir, İ. Bedii; Akar, Fırat
2018-05-01
The aim of the present work is to develop a flow model which can be used to determine the paths of the polyurethane foam in the mold filling process of a refrigerator cabinet so that improvements in the distribution and the size of the venting holes can be achieved without the expensive prototyping and experiments. For this purpose, the multi-component, two-phase chemically reacting flow is described by Navier Stokes and 12 scalar transport equations. The air and the multi-component foam zones are separated by an interface, which moves only with advection since the mass diffusion of species are set zero in the air zone. The inverse density, viscosity and other diffusion coefficients are calculated by a mass fraction weighted average of the corresponding temperature-dependent values of all species. Simulations are performed in a real refrigerator geometry, are able to reveal the problematical zones where air bubbles and voids trapped in the solidified foam are expected to occur. Furthermore, the approach proves itself as a reliable design tool to use in deciding the locations of air vents and sizing the channel dimensions.
Salamon, J; Wicklein, D; Didié, M; Lange, C; Schumacher, U; Adam, G; Peldschus, K
2014-04-01
The aim of this study was to establish co-labeling of mesenchymal stromal cells (MSC) for the detection of single MSC in-vivo by MRI and histological validation. Mouse MSC were co-labeled with fluorescent iron oxide micro-particles and carboxyfluorescein succinimidyl ester (CFSE). The cellular iron content was determined by atomic absorption spectrometry. Cell proliferation and expression of characteristic surface markers were determined by flow cytometry. The chondrogenic differentiation capacity was assessed. Different amounts of cells (n1 = 5000, n2 = 15 000, n3 = 50 000) were injected into the left heart ventricle of 12 mice. The animals underwent sequential MRI on a clinical 3.0 T scanner (Intera, Philips Medical Systems, Best, The Netherlands). For histological validation cryosections were examined by fluorescent microscopy. Magnetic and fluorescent labeling of MSC was established (mean cellular iron content 23.6 ± 3 pg). Flow cytometry showed similar cell proliferation and receptor expression of labeled and unlabeled MSC. Chondrogenic differentiation of labeled MSC was verified. After cell injection MRI revealed multiple signal voids in the brain and fewer signal voids in the kidneys. In the brain, an average of 4.6 ± 1.2 (n1), 9.0 ± 3.6 (n2) and 25.0 ± 1.0 (n3) signal voids were detected per MRI slice. An average of 8.7 ± 3.1 (n1), 22.0 ± 6.1 (n2) and 89.8 ± 6.5 (n3) labeled cells per corresponding stack of adjacent cryosections could be detected in the brain. Statistical correlation of the numbers of MRI signal voids in the brain and single MSC found by histology revealed a correlation coefficient of r = 0.91. The study demonstrates efficient magnetic and fluorescent co-labeling of MSC and their detection on a single cell level in mice by in-vivo MRI and histology. The described techniques may broaden the methods for in-vivo tracking of MSC. • Detection of single magnetically labeled MSC in-vivo using a clinical 3.0 T MRI is possible.• Fluorescent and magnetic co-labeling does not affect cell vitality.• The number of cells detected by MRI and histology has a high correlation. © Georg Thieme Verlag KG Stuttgart · New York.
Micro-CT and nano-CT analysis of filling quality of three different endodontic sealers.
Huang, Yan; Celikten, Berkan; de Faria Vasconcelos, Karla; Ferreira Pinheiro Nicolielo, Laura; Lippiatt, Nicholas; Buyuksungur, Arda; Jacobs, Reinhilde; Orhan, Kaan
2017-12-01
To investigate voids in different root canal sealers using micro-CT and nano-CT, and to explore the feasibility of using nano-CT for quantitative analysis of sealer filling quality. 30 extracted mandibular central incisors were randomly assigned into three groups according to the applied root canal sealers (Total BC Sealer, Sure Seal Root, AH Plus) by the single cone technique. Subsequently, micro-CT and nano-CT were performed to analyse the incidence rate of voids, void fraction, void volume and their distribution in each sample. Micro-CT evaluation showed no significant difference among sealers for the incidence rate of voids or void fraction in the whole filling materials (p > 0.05), whereas a significant difference was found between AH Plus and the other two sealers using nano-CT (p < 0.05). All three sealers presented less void volume in the apical third; however, higher void volumes were observed in the apical and coronal thirds in AH Plus using micro-CT (p < 0.05), while nano-CT results displayed higher void volume in AH Plus among all the sealers and regions (p < 0.05). Bioactive sealers showed higher root filling rate, lower incidence rate of voids, void fraction and void volume than AH Plus under nano-CT analysis, when round root canals were treated by the single cone technique. The disparate results suggest that the higher resolution of nano-CT have a greater ability of distinguishing internal porosity, and therefore suggesting the potential use of nano-CT in quantitative analysis of filling quality of sealers.
LOG-NORMAL DISTRIBUTION OF COSMIC VOIDS IN SIMULATIONS AND MOCKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, E.; Pycke, J.-R., E-mail: er111@nyu.edu, E-mail: jrp15@nyu.edu
2017-01-20
Following up on previous studies, we complete here a full analysis of the void size distributions of the Cosmic Void Catalog based on three different simulation and mock catalogs: dark matter (DM), haloes, and galaxies. Based on this analysis, we attempt to answer two questions: Is a three-parameter log-normal distribution a good candidate to satisfy the void size distributions obtained from different types of environments? Is there a direct relation between the shape parameters of the void size distribution and the environmental effects? In an attempt to answer these questions, we find here that all void size distributions of thesemore » data samples satisfy the three-parameter log-normal distribution whether the environment is dominated by DM, haloes, or galaxies. In addition, the shape parameters of the three-parameter log-normal void size distribution seem highly affected by environment, particularly existing substructures. Therefore, we show two quantitative relations given by linear equations between the skewness and the maximum tree depth, and between the variance of the void size distribution and the maximum tree depth, directly from the simulated data. In addition to this, we find that the percentage of voids with nonzero central density in the data sets has a critical importance. If the number of voids with nonzero central density reaches ≥3.84% in a simulation/mock sample, then a second population is observed in the void size distributions. This second population emerges as a second peak in the log-normal void size distribution at larger radius.« less
Morphological statistics of the cosmic web
NASA Astrophysics Data System (ADS)
Shandarin, Sergei F.
2004-07-01
We report the first systematic study of the supercluster-void network in the ΛCDM concordance cosmology treating voids and superclusters on an equal footing. We study the dark matter density field in real space smoothed with the Ls = 5 h[minus sign]1Mpc Gaussian window. Superclusters and voids are defined as individual members of over-dense and under-dense excursion sets respectively. We determine the morphological properties of the cosmic web at a large number of dark matter density levels by computing Minkowski functionals for every supercluster and void. At the adopted smoothing scale individual superclusters totally occupy no more than about 5% of the total volume and contain no more than 20% of mass if the largest supercluster is excluded. Likewise, individual voids totally occupy no more than 14% of volume and contain no more than 4% of mass if the largest void is excluded. The genus of individual superclusters can be ˜ 5 while the genus of individual voids reaches ˜ 55, implying significant amount of substructure in superclusters and especially in voids. Large voids are typically distinctly non-spherical.
NASA Technical Reports Server (NTRS)
Roth, D. J.; Baaklini, G. Y.
1986-01-01
The reliability of 100 MHz scanning laser acoustic microscopy (SLAM) for detecting internal voids in sintered specimens of silicon nitride and silicon carbide was evaluated. The specimens contained artificially implanted voids and were positioned at depths ranging up to 2 mm below the specimen surface. Detection probability of 0.90 at a 0.95 confidence level was determined as a function of material, void diameter, and void depth. The statistical results presented for void detectability indicate some of the strengths and limitations of SLAM as a nondestructive evaluation technique for structural ceramics.
Mechanisms for Ductile Rupture - FY16 ESC Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyce, Brad L.; Carroll, Jay D.; Noell, Phillip
2017-01-01
Ductile rupture in metals is generally a multi-step process of void nucleation, growth, and coalescence. Particle decohesion and particle fracture are generally invoked as the primary microstructural mechanisms for room-temperature void nucleation. However, because high-purity materials also fail by void nucleation and coalescence, other microstructural features must also act as sites for void nucleation. Early studies of void initiation in high-purity materials, which included post-mortem fracture surface characterization using scanning electron microscopy (SEM) and high-voltage electron microscopy (HVEM) and in-situ HVEM observations of fracture, established the presence of dislocation cell walls as void initiation sites in high-purity materials. Direct experimentalmore » evidence for this contention was obtained during in-situ HVEM tensile tests of Be single crystals. Voids between 0.2 and 1 μm long appeared suddenly along dislocation cell walls during tensile straining. However, subsequent attempts to replicate these results in other materials, particularly α -Fe single crystals, were unsuccessful because of the small size of the dislocation cells, and these remain the only published in-situ HVEM observations of void nucleation at dislocation cell walls in the absence of a growing macrocrack. Despite this challenge, other approaches to studying void nucleation in high-purity metals also indicate that dislocation cell walls are nucleation sites for voids.« less
Quantifying Effects of Voids in Woven Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Goldsmith, Marlana B.; Sankar, Bhavani V.; Haftka, Raphael T.; Goldberg, Robert K.
2013-01-01
Randomness in woven ceramic matrix composite architecture has been found to cause large variability in stiffness and strength. The inherent voids are an aspect of the architecture that may cause a significant portion of the variability. A study is undertaken to investigate the effects of many voids of random sizes and distributions. Response surface approximations were formulated based on void parameters such as area and length fractions to provide an estimate of the effective stiffness. Obtaining quantitative relationships between the properties of the voids and their effects on stiffness of ceramic matrix composites are of ultimate interest, but the exploratory study presented here starts by first modeling the effects of voids on an isotropic material. Several cases with varying void parameters were modeled which resulted in a large amount of variability of the transverse stiffness and out-of-plane shear stiffness. An investigation into a physical explanation for the stiffness degradation led to the observation that the voids need to be treated as an entity that reduces load bearing capabilities in a space larger than what the void directly occupies through a corrected length fraction or area fraction. This provides explanation as to why void volume fraction is not the only important factor to consider when computing loss of stiffness.
NASA Astrophysics Data System (ADS)
Uhm, Z. Lucas; Zhang, Bing
2014-07-01
We investigate the dynamics and afterglow light curves of gamma-ray burst blast waves that encounter various density structures (such as bumps, voids, or steps) in the surrounding ambient medium. We present and explain the characteristic response features that each type of density structure in the medium leaves on the forward shock (FS) and reverse shock (RS) dynamics for blast waves with either a long-lived or short-lived RS. We show that when the ambient medium density drops, the blast waves exhibit in some cases a period of an actual acceleration (even during their deceleration stage) due to adiabatic cooling of blast waves. Comparing numerical examples that have different shapes of bumps or voids, we propose a number of consistency tests that must be satisfied by correct modeling of blast waves. Our model results successfully pass these tests. Employing a Lagrangian description of blast waves, we perform a sophisticated calculation of afterglow emission. We show that as a response to density structures in the ambient medium, the RS light curves produce more significant variations than the FS light curves. Some observed features (such as rebrightenings, dips, or slow wiggles) can be more easily explained within the RS model. We also discuss the origin of these different features imprinted on the FS and RS light curves.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uhm, Z. Lucas; Zhang, Bing, E-mail: uhm@pku.edu.cn, E-mail: zhang@physics.unlv.edu
2014-07-01
We investigate the dynamics and afterglow light curves of gamma-ray burst blast waves that encounter various density structures (such as bumps, voids, or steps) in the surrounding ambient medium. We present and explain the characteristic response features that each type of density structure in the medium leaves on the forward shock (FS) and reverse shock (RS) dynamics for blast waves with either a long-lived or short-lived RS. We show that when the ambient medium density drops, the blast waves exhibit in some cases a period of an actual acceleration (even during their deceleration stage) due to adiabatic cooling of blastmore » waves. Comparing numerical examples that have different shapes of bumps or voids, we propose a number of consistency tests that must be satisfied by correct modeling of blast waves. Our model results successfully pass these tests. Employing a Lagrangian description of blast waves, we perform a sophisticated calculation of afterglow emission. We show that as a response to density structures in the ambient medium, the RS light curves produce more significant variations than the FS light curves. Some observed features (such as rebrightenings, dips, or slow wiggles) can be more easily explained within the RS model. We also discuss the origin of these different features imprinted on the FS and RS light curves.« less
Kaija, A R; Wilmer, C E
2017-09-08
Designing better porous materials for gas storage or separations applications frequently leverages known structure-property relationships. Reliable structure-property relationships, however, only reveal themselves when adsorption data on many porous materials are aggregated and compared. Gathering enough data experimentally is prohibitively time consuming, and even approaches based on large-scale computer simulations face challenges. Brute force computational screening approaches that do not efficiently sample the space of porous materials may be ineffective when the number of possible materials is too large. Here we describe a general and efficient computational method for mapping structure-property spaces of porous materials that can be useful for adsorption related applications. We describe an algorithm that generates random porous "pseudomaterials", for which we calculate structural characteristics (e.g., surface area, pore size and void fraction) and also gas adsorption properties via molecular simulations. Here we chose to focus on void fraction and Xe adsorption at 1 bar, 5 bar, and 10 bar. The algorithm then identifies pseudomaterials with rare combinations of void fraction and Xe adsorption and mutates them to generate new pseudomaterials, thereby selectively adding data only to those parts of the structure-property map that are the least explored. Use of this method can help guide the design of new porous materials for gas storage and separations applications in the future.
Method of simulating spherical voids for use as a radiographic standard
Foster, Billy E.
1977-01-01
A method of simulating small spherical voids in metal is provided. The method entails drilling or etching a hemispherical depression of the desired diameter in each of two sections of metal, the sections being flat plates or different diameter cylinders. A carbon bead is placed in one of the hemispherical voids and is used as a guide to align the second hemispherical void with that in the other plate. The plates are then bonded together with epoxy, tape or similar material and the two aligned hemispheres form a sphere within the material; thus a void of a known size has been created. This type of void can be used to simulate a pore in the development of radiographic techniques of actual voids (porosity) in welds and serve as a radiographic standard.
Voids characteristics of asphaltic concrete containing coconut shell
NASA Astrophysics Data System (ADS)
Ezree Abdullah, Mohd; Hannani Madzaili, Amirah; Putra Jaya, Ramadhansyah; Yaacob, Haryati; Hassan, Norhidayah Abdul; Nazri, Fadzli Mohamed
2017-07-01
Asphalt durability is often linked to the thickness of the asphalt coating on the aggregate particles. In order to have adequate film thickness in asphaltic concrete, there must be sufficient space between the aggregate particles in the compacted pavement. This void space is referred to as voids in total mix (VTM), voids with filled bitumen (VFB), and voids in mineral aggregate (VMA). Hence, this study investigates the performance of coconut shell (CS) as coarse aggregate replacement on voids characteristics of asphaltic concrete. Four CS were used as coarse aggregates replacement in asphalt mixture namely 0%, 10%, 20%, 30%, and 40% (by weight volume). The voids properties of asphalt mixture were determined based on Marshall Mix design test. Test results show that VTM and VMA values were decrease with the increasing bitumen content where VFB was increase with increasing bitumen content. Furthermore, increasing the percentage of coconut shell in asphalt mixture was found to increases the voids value up to a peak level and then decreases with further additions of CS.
The Effect of Filaments and Tendrils on the H I Content of Galaxies
NASA Astrophysics Data System (ADS)
Crone Odekon, Mary; Hallenbeck, Gregory; Haynes, Martha P.; Koopmann, Rebecca A.; Phi, An; Wolfe, Pierre-Francois
2018-01-01
We use the ALFALFA H I survey to examine whether the cold gas reservoirs of galaxies are inhibited or enhanced in large-scale filaments. Our sample includes 9947 late-type galaxies with H I detections and 4236 late-type galaxies with well-determined H I detection limits that we incorporate using survival analysis statistics. We find that, even at fixed local density and stellar mass, and with group galaxies removed, the H I deficiency of galaxies in the stellar mass range 8.5 < log(M/M ⊙) < 10.5 decreases with distance from the filament spine, suggesting that galaxies are cut off from their supply of cold gas in this environment. We also find that, at fixed local density and stellar mass, the galaxies that are the most gas-rich are those in small, correlated “tendril” structures within voids: although galaxies in tendrils are in significantly denser environments, on average, than galaxies in voids, they are not redder or more H I deficient. This stands in contrast to the fact that galaxies in tendrils are more massive than those in voids, suggesting a more advanced stage of evolution. Finally, at fixed stellar mass and color, galaxies closer to the filament spine, or in high-density environments, are more deficient in H I. This fits a picture where, as galaxies enter denser regions, they first lose H I gas and then redden as star formation is reduced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moutanabbir, O.; Scholz, R.; Goesele, U.
We present a detailed study of the thermal evolution of H ion-induced vacancy related complexes and voids in bulk GaN implanted under ion-cut conditions. By using transmission electron microscopy, we found that the damage band in as-implanted GaN is decorated with a high density of nanobubbles of approx1-2 nm in diameter. Variable energy Doppler broadening spectroscopy showed that this band contains vacancy clusters and voids. In addition to vacancy clusters, the presence of V{sub Ga}, V{sub Ga}-H{sub 2}, and V{sub Ga}V{sub N} complexes was evidenced by pulsed low-energy positron lifetime spectroscopy. Subtle changes upon annealing in these vacancy complexes weremore » also investigated. As a general trend, a growth in open-volume defects is detected in parallel to an increase in both size and density of nanobubbles. The observed vacancy complexes appear to be stable during annealing. However, for temperatures above 450 deg. C, unusually large lifetimes were measured. These lifetimes are attributed to the formation of positronium in GaN. Since the formation of positronium is not possible in a dense semiconductor, our finding demonstrates the presence of sufficiently large open-volume defects in this temperature range. Based on the Tao-Eldrup model, the average lattice opening during thermal annealing was quantified. We found that a void diameter of 0.4 nm is induced by annealing at 600 deg. C. The role of these complexes in the subsurface microcracking is discussed.« less
Clinical development of holmium:YAG laser prostatectomy
NASA Astrophysics Data System (ADS)
Kabalin, John N.
1996-05-01
Holmium:YAG (Ho:YAG) laser vaporization and resection of the prostate offers advantages in immediate tissue removal compared to the Neodymium:YAG (Nd:YAG) laser. Ongoing development of appropriate operative techniques and Ho:YAG laser delivery systems suitable for endoscopic prostate surgery, including side-firing optical delivery fibers, have facilitated this approach. We performed Ho:YAG laser prostatectomy in 20 human subjects, including 2 men treated immediately prior to radical prostatectomy to assess Ho:YAG laser effects in the prostate. A total of 18 men were treated in an initial clinical trial of Ho:YAG prostatectomy. Estimated excess hyperplastic prostate tissue averaged 24 g (range 5 - 50 g). A mean of 129 kj Ho:YAG laser energy was delivered, combined with a mean of 11 kj Nd:YAG energy to provide supplemental coagulation for hemostasis. We have observed no significant perioperative or late complications. No significant intraoperative changes in hematocrit or serum electrolytes were documented. In addition to providing acute removal of obstructing prostate tissue, Ho:YAG laser resection allowed tissue specimen to be obtained for histologic examination. A total of 16 of 18 patients (90%) underwent successful removal of their urinary catheter and voiding trial within 24 hours following surgery. Immediate improvement in voiding, comparable to classic transurethral electrocautery resection of the prostate (TURP), was reported by all patients. Ho:YAG laser resection of the prostate appears to be a viable surgical technique associated with minimal morbidity and immediate improvement in voiding.
Comparison between wire mesh sensor and gamma densitometry void measurements in two-phase flows
NASA Astrophysics Data System (ADS)
Sharaf, S.; Da Silva, M.; Hampel, U.; Zippe, C.; Beyer, M.; Azzopardi, B.
2011-10-01
Wire mesh sensors (WMS) are fast imaging instruments that are used for gas-liquid and liquid-liquid two-phase flow measurements and experimental investigations. Experimental tests were conducted at Helmholtz-Zentrum Dresden-Rossendorf to test both the capacitance and conductance WMS against a gamma densitometer (GD). A small gas-liquid test facility was utilized. This consisted of a vertical round pipe approximately 1 m in length, and 50 mm internal diameter. A 16 × 16 WMS was used with high spatial and temporal resolutions. Air-deionized water was the two-phase mixture. The gas superficial velocity was varied between 0.05 m s-1 and 1.4 m s-1 at two liquid velocities of 0.2 and 0.7 m s-1. The GD consisted of a collimated source and a collimated detector. The GD was placed on a moving platform close to the plane of wires of the sensor, in order to align it accurately using a counter mechanism, with each of the wires of the WMS, and the platform could scan the full section of the pipe. The WMS was operated as a conductivity WMS for a half-plane with eight wires and as a capacitance WMS for the other half. For the cross-sectional void (time and space averaged), along each wire, there was good agreement between WMS and the GD chordal void fraction near the centre of the pipe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Maolong; Ryals, Matthew; Ali, Amir
2016-08-01
A variety of instruments are being developed and qualified to support the Accident Tolerant Fuels (ATF) program and future transient irradiations at the Transient Reactor Test (TREAT) facility at Idaho National Laboratory (INL). The University of New Mexico (UNM) is working with INL to develop capacitance-based void sensors for determining the timing of critical boiling phenomena in static capsule fuel testing and the volume-averaged void fraction in flow-boiling in-pile water loop fuel testing. The static capsule sensor developed at INL is a plate-type configuration, while UNM is utilizing a ring-type capacitance sensor. Each sensor design has been theoretically and experimentallymore » investigated at INL and UNM. Experiments are being performed at INL in an autoclave to investigate the performance of these sensors under representative Pressurized Water Reactor (PWR) conditions in a static capsule. Experiments have been performed at UNM using air-water two-phase flow to determine the sensitivity and time response of the capacitance sensor under a flow boiling configuration. Initial measurements from the capacitance sensor have demonstrated the validity of the concept to enable real-time measurement of void fraction. The next steps include designing the cabling interface with the flow loop at UNM for Reactivity Initiated Accident (RIA) ATF testing at TREAT and further characterization of the measurement response for each sensor under varying conditions by experiments and modeling.« less
Computing the complex : Dusty plasmas in the presence of magnetic fields and UV radiation
NASA Astrophysics Data System (ADS)
Land, V.
2007-12-01
About 90% of the visible universe is plasma. Interstellar clouds, stellar cores and atmospheres, the Solar wind, the Earth's ionosphere, polar lights, and lightning are all plasma; ionized gases, consisting of electrons, ions, and neutrals. Not only many industries, like the microchip and solar cell industry, but also future fusion power stations, rely heavily on the use of plasma. More and more, home appliances include plasma technologies, like compact fluorescent light sources, and plasma screens. Dust particles, which can disrupt plasma processes, enter these plasmas, through chemical reactions in the plasma, or through interactions between plasma and walls. For instance, during microchip fabrication, dust particles can destroy the tiny, nanometre-sized structures on the surface of these chips. On the other hand, dust particles orbiting Young Stellar Objects coagulate and form the seeds of planets. In order to understand fundamental processes, such as planet formation, or to optimize industrial plasma processes, a thorough description of dusty plasma is necessary. Dust particles immersed in plasma collect ions and electrons from the plasma and charge up electrically. Therefore, the presence of dust changes plasma, while at the same time many forces start acting on the dust. Therefore, the dust and plasma become coupled, making dusty plasma a very complex medium to describe, in which many length and time scales play a role, from the Debye length to the length of the electrodes, and from the inverse plasma frequencies to the dust transport times. Using a self-consistent fluid model, we simulate these multi-scale dusty plasmas in radio frequency discharges under micro-gravity. We show that moderate non-linear scattering of ions by the dust particles is the most important aspect in the calculation of the ion drag force. This force is also responsible for the formation of a dust-free 'void' in dusty plasma under micro-gravity, caused by ions moving from the centre of the void towards the outside of the discharge. The void thus requires electron-impact ionizations inside the void. The electrons gain the energy for these ionizations inside the dust cloud surrounding the void, however. We show that a growing electron temperature gradient is responsible for the transport of electron energy from the surrounding dust cloud into the void. An axial magnetic field in the discharge magnetizes the electrons. This changes the ambipolar flux of ions through the bulk of the discharge. The ion drag force changes, resulting in a differently shaped void and faster void formation. Experiments in a direct current discharge, show a response of both dust and plasma in the E?B direction, when a magnetic field is applied. The dust response consists of two phases: an initial fast phase, and a later, slow phase. Using a Particle-In-Cell plus Monte Carlo model, we show that the dust charge can be reduced by adding a flux of ultraviolet radiation. A source of ultraviolet light can thus serve as a tool to manipulate dusty plasmas, but might also be important for the coagulation of dust particles around young stars and planet formation in general.
Filling the Astronomical Void - A Visual Medium for a Visual Subject
NASA Astrophysics Data System (ADS)
Ryan, J.
1996-12-01
Astronomy is fundamentally a visual subject. The modern science of astronomy has at its foundation the ancient art of observing the sky visually. The visual elements of astronomy are arguably the most important. Every person in the entire world is affected by visually-observed astronomical phenomena such as the seasonal variations in daylight. However, misconceptions abound and the average person cannot recognize the simple signs in the sky that point to the direction, the hour and the season. Educators and astronomy popularizers widely lament that astronomy is not appreciated in our society. Yet, there is a remarkable dearth of popular literature for teaching the visual elements of astronomy. This is what I refer to as *the astronomical void.* Typical works use illustrations sparsely, relying most heavily on text-based descriptions of the visual astronomical phenomena. Such works leave significant inferential gaps to the inexperienced reader, who is unequipped for making astronomical observations. Thus, the astronomical void remains unfilled by much of the currently available literature. I therefore propose the introduction of a visually-oriented medium for teaching the visual elements of Astronomy. To this end, I have prepared a series of astronomy "comic strips" that are intended to fill the astronomical void. By giving the illustrations the central place, the comic strip medium permits the depiction of motion and other sequential activity, thus effectively representing astronomical phenomena. In addition to the practical advantages, the comic strip is a "user friendly" medium that is inviting and entertaining to a reader. At the present time, I am distributing a monthly comic strip entitled *Starman*, which appears in the newsletters of over 120 local astronomy organizations and on the web at http://www.cyberdrive.net/ starman. I hope to eventually publish a series of full-length books and believe that astronomical comic strips will help expand the perimeter of astronomical awareness.
Fluid outlet at the bottom of an in situ oil shale retort
Hutchins, Ned M.
1984-01-01
Formation is excavated from within the boundaries of a retort site in formation containing oil shale for forming at least one retort level void extending horizontally across the retort site, leaving at least one remaining zone of unfragmented formation within the retort site. A production level drift is excavated below the retort level void, leaving a lower zone of unfragmented formation between the retort level void and the production level drift. A plurality of raises are formed between the production level drift and the retort level void for providing product withdrawal passages distributed generally uniformly across the horizontal cross section of the retort level void. The product withdrawal passages are backfilled with a permeable mass of particles. Explosive placed within the remaining zone of unfragmented formation above the retort level void is detonated for explosively expanding formation within the retort site toward at least the retort level void for forming a fragmented permeable mass of formation particles containing oil shale within the boundaries of the retort site. During retorting operations products of retorting are conducted from the fragmented mass in the retort through the product withdrawal passages to the production level void. The products are withdrawn from the production level void.
Void formation in INCONEL MA-754 by high temperature oxidation
NASA Astrophysics Data System (ADS)
Rosenstein, Alan H.; Tien, John K.; Nix, William D.
1986-01-01
Subsurface void formation in oxide dispersion strengthened MA-754 caused by high temperature oxidation was investigated at temperatures of 1100, 1150, and 1200 °C for times of 1, 10, 50, and 100 hours. Material exposed at 1200 °C was examined using microprobe, SEM, and optical microscopy techniques. After exposure in air at 1200 °C for 100 hours, chromium depletion by as much as 10 wt pct was observed near the surface, and voids of various sizes up to 15 µm in diameter were found to depths of 300 µm. The fraction of voids increases with exposure time and, with the exception of anomalous values near the surface, decreases with depth. The maximum area fraction of voids observed was approximately 8 pct. Correlation of the void area fraction profile with the measured chromium depletion through a diffusion analysis shows that void formation is due to vacancy injection. Similar void formation in Ni-Cr alloys without oxide dispersions suggests that void formation is not dependent upon the presence of oxide dispersions. The diffusion coefficient for chromium in MA-754 at 1200 °C was computed from microprobe data to be 4 × 10-10 cm2 per second.
Method for explosive expansion toward horizontal free faces for forming an in situ oil shale retort
Ricketts, Thomas E.
1980-01-01
Formation is excavated from within a retort site in formation containing oil shale for forming a plurality of vertically spaced apart voids extending horizontally across different levels of the retort site, leaving a separate zone of unfragmented formation between each pair of adjacent voids. Explosive is placed in each zone, and such explosive is detonated in a single round for forming an in situ retort containing a fragmented permeable mass of formation particles containing oil shale. The same amount of formation is explosively expanded upwardly and downwardly toward each void. A horizontal void excavated at a production level has a smaller horizontal cross-sectional area than a void excavated at a lower level of the retort site immediately above the production level void. Explosive in a first group of vertical blast holes is detonated for explosively expanding formation downwardly toward the lower void, and explosive in a second group of vertical blast holes is detonated in the same round for explosively expanding formation upwardly toward the lower void and downwardly toward the production level void for forming a generally T-shaped bottom of the fragmented mass.
NASA Astrophysics Data System (ADS)
Rahmes, Mark; Yates, J. Harlan; Allen, Josef DeVaughn; Kelley, Patrick
2007-04-01
High resolution Digital Surface Models (DSMs) may contain voids (missing data) due to the data collection process used to obtain the DSM, inclement weather conditions, low returns, system errors/malfunctions for various collection platforms, and other factors. DSM voids are also created during bare earth processing where culture and vegetation features have been extracted. The Harris LiteSite TM Toolkit handles these void regions in DSMs via two novel techniques. We use both partial differential equations (PDEs) and exemplar based inpainting techniques to accurately fill voids. The PDE technique has its origin in fluid dynamics and heat equations (a particular subset of partial differential equations). The exemplar technique has its origin in texture analysis and image processing. Each technique is optimally suited for different input conditions. The PDE technique works better where the area to be void filled does not have disproportionately high frequency data in the neighborhood of the boundary of the void. Conversely, the exemplar based technique is better suited for high frequency areas. Both are autonomous with respect to detecting and repairing void regions. We describe a cohesive autonomous solution that dynamically selects the best technique as each void is being repaired.
Correlation of air void parameters obtained by linear traverse with freeze-thaw durability.
DOT National Transportation Integrated Search
1983-01-01
The correlations obtainable from comparisons of the various air void parameters with the freeze-thaw durability of concretes are listed. It is shown that correlations are no better when only small voids are used than when the total void content is us...
NASA Astrophysics Data System (ADS)
Lares, M.; Luparello, H. E.; Garcia Lambas, D.; Ruiz, A. N.; Ceccarelli, L.; Paz, D.
2017-10-01
Cosmic voids are of great interest given their relation to the large scale distribution of mass and the way they trace cosmic flows shaping the cosmic web. Here we show that the distribution of voids has, in consonance with the distribution of mass, a characteristic scale at which void pairs are preferentially located. We identify clumps of voids with similar environments and use them to define second order underdensities. Also, we characterize its properties and analyze its impact on the cosmic microwave background.
Gravitational Effects on Closed-Cellular-Foam Microstructure
NASA Technical Reports Server (NTRS)
Noever, David A.; Cronise, Raymond J.; Wessling, Francis C.; McMannus, Samuel P.; Mathews, John; Patel, Darayas
1996-01-01
Polyurethane foam has been produced in low gravity for the first time. The cause and distribution of different void or pore sizes are elucidated from direct comparison of unit-gravity and low-gravity samples. Low gravity is found to increase the pore roundness by 17% and reduce the void size by 50%. The standard deviation for pores becomes narrower (a more homogeneous foam is produced) in low gravity. Both a Gaussian and a Weibull model fail to describe the statistical distribution of void areas, and hence the governing dynamics do not combine small voids in either a uniform or a dependent fashion to make larger voids. Instead, the void areas follow an exponential law, which effectively randomizes the production of void sizes in a nondependent fashion consistent more with single nucleation than with multiple or combining events.
The Santiago-Harvard-Edinburgh-Durham void comparison - I. SHEDding light on chameleon gravity tests
NASA Astrophysics Data System (ADS)
Cautun, Marius; Paillas, Enrique; Cai, Yan-Chuan; Bose, Sownak; Armijo, Joaquin; Li, Baojiu; Padilla, Nelson
2018-05-01
We present a systematic comparison of several existing and new void-finding algorithms, focusing on their potential power to test a particular class of modified gravity models - chameleon f(R) gravity. These models deviate from standard general relativity (GR) more strongly in low-density regions and thus voids are a promising venue to test them. We use halo occupation distribution (HOD) prescriptions to populate haloes with galaxies, and tune the HOD parameters such that the galaxy two-point correlation functions are the same in both f(R) and GR models. We identify both three-dimensional (3D) voids and two-dimensional (2D) underdensities in the plane of the sky to find the same void abundance and void galaxy number density profiles across all models, which suggests that they do not contain much information beyond galaxy clustering. However, the underlying void dark matter density profiles are significantly different, with f(R) voids being more underdense than GR ones, which leads to f(R) voids having a larger tangential shear signal than their GR analogues. We investigate the potential of each void finder to test f(R) models with near-future lensing surveys such as EUCLID and LSST. The 2D voids have the largest power to probe f(R) gravity, with an LSST analysis of tunnel (which is a new type of 2D underdensity introduced here) lensing distinguishing at 80 and 11σ (statistical error) f(R) models with parameters, |fR0| = 10-5 and 10-6, from GR.
How Very Massive Metal-Free Stars Start Cosmological Reionization
NASA Technical Reports Server (NTRS)
Wise, John H.; Abel, Tom
2008-01-01
The initial conditions and relevant physics for the formation of the earliest galaxies are well specified in the concordance cosmology. Using ab initio cosmological Eulerian adaptive mesh refinement radiation hydrodynamical calculations, we discuss how very massive stars start the process of cosmological reionization. The models include nonequilibrium primordial gas chemistry and cooling processes and accurate radiation transport in the case B approximation using adaptively ray-traced photon packages, retaining the time derivative in the transport equation. Supernova feedback is modeled by thermal explosions triggered at parsec scales. All calculations resolve the local Jeans length by at least 16 grid cells at all times and as such cover a spatial dynamic range of approx.10(exp 6). These first sources of reionization are highly intermittent and anisotropic and first photoionize the small-scale voids surrounding the halos they form in, rather than the dense filaments they are embedded in. As the merging objects form larger, dwarf-sized galaxies, the escape fraction of UV radiation decreases and the H II regions only break out on some sides of the galaxies, making them even more anisotropic. In three cases, SN blast waves induce star formation in overdense regions that were formed earlier from ionization front instabilities. These stars form tens of parsecs away from the center of their parent DM halo. Approximately five ionizing photons are needed per sustained ionization when star formation in 10(exp 6) stellar Mass halos is dominant in the calculation. As the halos become larger than approx.10(exp 7) Stellar Mass, the ionizing photon escape fraction decreases, which in turn increases the number of photons per ionization to 15-50, in calculations with stellar feedback only. Radiative feedback decreases clumping factors by 25% when compared to simulations without star formation and increases the average temperature of ionized gas to values between 3000 and 10,000 K.
Cement-based materials' characterization using ultrasonic attenuation
NASA Astrophysics Data System (ADS)
Punurai, Wonsiri
The quantitative nondestructive evaluation (NDE) of cement-based materials is a critical area of research that is leading to advances in the health monitoring and condition assessment of the civil infrastructure. Ultrasonic NDE has been implemented with varying levels of success to characterize cement-based materials with complex microstructure and damage. A major issue with the application of ultrasonic techniques to characterize cement-based materials is their inherent inhomogeneity at multiple length scales. Ultrasonic waves propagating in these materials exhibit a high degree of attenuation losses, making quantitative interpretations difficult. Physically, these attenuation losses are a combination of internal friction in a viscoelastic material (ultrasonic absorption), and the scattering losses due to the material heterogeneity. The objective of this research is to use ultrasonic attenuation to characterize the microstructure of heterogeneous cement-based materials. The study considers a real, but simplified cement-based material, cement paste---a common bonding matrix of all cement-based composites. Cement paste consists of Portland cement and water but does not include aggregates. First, this research presents the findings of a theoretical study that uses a set of existing acoustics models to quantify the scattered ultrasonic wavefield from a known distribution of entrained air voids. These attenuation results are then coupled with experimental measurements to develop an inversion procedure that directly predicts the size and volume fraction of entrained air voids in a cement paste specimen. Optical studies verify the accuracy of the proposed inversion scheme. These results demonstrate the effectiveness of using attenuation to measure the average size, volume fraction of entrained air voids and the existence of additional larger entrapped air voids in hardened cement paste. Finally, coherent and diffuse ultrasonic waves are used to develop a direct relationship between attenuation and water to cement (w/c) ratio. A phenomenological model based on the existence of fluid-filled capillary voids is used to help explain the experimentally observed behavior. Overall this research shows the potential of using ultrasonic attenuation to quantitatively characterize cement paste. The absorption and scattering losses can be related to the individual microstructural elements of hardened cement paste. By taking a fundamental, mechanics-based approach, it should be possible to add additional components such as scattering by aggregates or even microcracks in a systematic fashion and eventually build a realistic model for ultrasonic wave propagation study for concrete.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersson, P., E-mail: peter.andersson@physics.uu.se; Andersson-Sunden, E.; Sjöstrand, H.
2014-08-01
In nuclear boiling water reactor cores, the distribution of water and steam (void) is essential for both safety and efficiency reasons. In order to enhance predictive capabilities, void distribution assessment is performed in two-phase test-loops under reactor-relevant conditions. This article proposes the novel technique of fast-neutron tomography using a portable deuterium-tritium neutron generator to determine the time-averaged void distribution in these loops. Fast neutrons have the advantage of high transmission through the metallic structures and pipes typically concealing a thermal-hydraulic test loop, while still being fairly sensitive to the water/void content. However, commercially available fast-neutron generators also have the disadvantagemore » of a relatively low yield and fast-neutron detection also suffers from relatively low detection efficiency. Fortunately, some loops are axially symmetric, a property which can be exploited to reduce the amount of data needed for tomographic measurement, thus limiting the interrogation time needed. In this article, three axially symmetric test objects depicting a thermal-hydraulic test loop have been examined; steel pipes with outer diameter 24 mm, thickness 1.5 mm, and with three different distributions of the plastic material POM inside the pipes. Data recorded with the FANTOM fast-neutron tomography instrument have been used to perform tomographic reconstructions to assess their radial material distribution. Here, a dedicated tomographic algorithm that exploits the symmetry of these objects has been applied, which is described in the paper. Results are demonstrated in 20 rixel (radial pixel) reconstructions of the interior constitution and 2D visualization of the pipe interior is demonstrated. The local POM attenuation coefficients in the rixels were measured with errors (RMS) of 0.025, 0.020, and 0.022 cm{sup −1}, solid POM attenuation coefficient. The accuracy and precision is high enough to provide a useful indication on the flow mode, and a visualization of the radial material distribution can be obtained. A benefit of this system is its potential to be mounted at any axial height of a two-phase test section without requirements for pre-fabricated entrances or windows. This could mean a significant increase in flexibility of the void distribution assessment capability at many existing two-phase test loops.« less
Andersson, P; Andersson-Sunden, E; Sjöstrand, H; Jacobsson-Svärd, S
2014-08-01
In nuclear boiling water reactor cores, the distribution of water and steam (void) is essential for both safety and efficiency reasons. In order to enhance predictive capabilities, void distribution assessment is performed in two-phase test-loops under reactor-relevant conditions. This article proposes the novel technique of fast-neutron tomography using a portable deuterium-tritium neutron generator to determine the time-averaged void distribution in these loops. Fast neutrons have the advantage of high transmission through the metallic structures and pipes typically concealing a thermal-hydraulic test loop, while still being fairly sensitive to the water/void content. However, commercially available fast-neutron generators also have the disadvantage of a relatively low yield and fast-neutron detection also suffers from relatively low detection efficiency. Fortunately, some loops are axially symmetric, a property which can be exploited to reduce the amount of data needed for tomographic measurement, thus limiting the interrogation time needed. In this article, three axially symmetric test objects depicting a thermal-hydraulic test loop have been examined; steel pipes with outer diameter 24 mm, thickness 1.5 mm, and with three different distributions of the plastic material POM inside the pipes. Data recorded with the FANTOM fast-neutron tomography instrument have been used to perform tomographic reconstructions to assess their radial material distribution. Here, a dedicated tomographic algorithm that exploits the symmetry of these objects has been applied, which is described in the paper. Results are demonstrated in 20 rixel (radial pixel) reconstructions of the interior constitution and 2D visualization of the pipe interior is demonstrated. The local POM attenuation coefficients in the rixels were measured with errors (RMS) of 0.025, 0.020, and 0.022 cm(-1), solid POM attenuation coefficient. The accuracy and precision is high enough to provide a useful indication on the flow mode, and a visualization of the radial material distribution can be obtained. A benefit of this system is its potential to be mounted at any axial height of a two-phase test section without requirements for pre-fabricated entrances or windows. This could mean a significant increase in flexibility of the void distribution assessment capability at many existing two-phase test loops.
Electrical Resistivity Measurement of Petroleum Coke Powder by Means of Four-Probe Method
NASA Astrophysics Data System (ADS)
Rouget, G.; Majidi, B.; Picard, D.; Gauvin, G.; Ziegler, D.; Mashreghi, J.; Alamdari, H.
2017-10-01
Carbon anodes used in Hall-Héroult electrolysis cells are involved in both electrical and chemical processes of the cell. Electrical resistivity of anodes depends on electrical properties of its constituents, of which carbon coke aggregates are the most prevalent. Electrical resistivity of coke aggregates is usually characterized according to the ISO 10143 standardized test method, which consists of measuring the voltage drop in the bed of particles between two electrically conducing plungers through which the current is also applied. Estimation of the electrical resistivity of coke particles from the resistivity of particle bed is a challenging task and needs consideration of the contribution of the interparticle void fraction and the particle/particle contact resistances. In this work, the bed resistivity was normalized by subtracting the interparticle void fraction. Then, the contact size was obtained from discrete element method simulation and the contact resistance was calculated using Holm's theory. Finally, the resistivity of the coke particles was obtained from the bed resistivity.
Void statistics of the CfA redshift survey
NASA Technical Reports Server (NTRS)
Vogeley, Michael S.; Geller, Margaret J.; Huchra, John P.
1991-01-01
Clustering properties of two samples from the CfA redshift survey, each containing about 2500 galaxies, are studied. A comparison of the velocity distributions via a K-S test reveals structure on scales comparable with the extent of the survey. The void probability function (VPF) is employed for these samples to examine the structure and to test for scaling relations in the galaxy distribution. The galaxy correlation function is calculated via moments of galaxy counts. The shape and amplitude of the correlation function roughly agree with previous determinations. The VPFs for distance-limited samples of the CfA survey do not match the scaling relation predicted by the hierarchical clustering models. On scales not greater than 10/h Mpc, the VPFs for these samples roughly follow the hierarchical pattern. A variant of the VPF which uses nearly all the data in magnitude-limited samples is introduced; it accounts for the variation of the sampling density with velocity in a magnitude-limited survey.
Urinary incontinence self-report questions: reproducibility and agreement with bladder diary.
Bradley, Catherine S; Brown, Jeanette S; Van Den Eeden, Stephen K; Schembri, Michael; Ragins, Arona; Thom, David H
2011-12-01
This study aims to measure self-report urinary incontinence questions' reproducibility and agreement with bladder diary. Data were analyzed from the Reproductive Risk of Incontinence Study at Kaiser. Participating women reporting at least weekly incontinence completed self-report incontinence questions and a 7-day bladder diary. Self-report question reproducibility was assessed and agreement between self-reported and diary-recorded voiding and incontinence frequency was measured. Test characteristics and area under the curve were calculated for self-reported incontinence types using diary as the gold standard. Five hundred ninety-one women were included and 425 completed a diary. The self-report questions had moderate reproducibility and self-reported and diary-recorded incontinence and voiding frequencies had moderate to good agreement. Self-reported incontinence types identified stress and urgency incontinence more accurately than mixed incontinence. Self-report incontinence questions have moderate reproducibility and agreement with diary, and considering their minimal burden, are acceptable research tools in epidemiologic studies.
Void statistics of the CfA redshift survey
NASA Astrophysics Data System (ADS)
Vogeley, Michael S.; Geller, Margaret J.; Huchra, John P.
1991-11-01
Clustering properties of two samples from the CfA redshift survey, each containing about 2500 galaxies, are studied. A comparison of the velocity distributions via a K-S test reveals structure on scales comparable with the extent of the survey. The void probability function (VPF) is employed for these samples to examine the structure and to test for scaling relations in the galaxy distribution. The galaxy correlation function is calculated via moments of galaxy counts. The shape and amplitude of the correlation function roughly agree with previous determinations. The VPFs for distance-limited samples of the CfA survey do not match the scaling relation predicted by the hierarchical clustering models. On scales not greater than 10/h Mpc, the VPFs for these samples roughly follow the hierarchical pattern. A variant of the VPF which uses nearly all the data in magnitude-limited samples is introduced; it accounts for the variation of the sampling density with velocity in a magnitude-limited survey.
NASA Astrophysics Data System (ADS)
Pomarède, Daniel; Hoffman, Yehuda; Courtois, Hélène M.; Tully, R. Brent
2017-08-01
The network of filaments with embedded clusters surrounding voids, which has been seen in maps derived from redshift surveys and reproduced in simulations, has been referred to as the cosmic web. A complementary description is provided by considering the shear in the velocity field of galaxies. The eigenvalues of the shear provide information regarding whether or not a region is collapsing in three dimensions, which is the condition for a knot, expanding in three dimensions, which is the condition for a void, or in the intermediate condition of a filament or sheet. The structures that are quantitatively defined by the eigenvalues can be approximated by iso-contours that provide a visual representation of the cosmic velocity (V) web. The current application is based on radial peculiar velocities from the Cosmicflows-2 collection of distances. The three-dimensional velocity field is constructed using the Wiener filter methodology in the linear approximation. Eigenvalues of the velocity shear are calculated at each point on a grid. Here, knots and filaments are visualized across a local domain of diameter ˜ 0.1c.
Scattering matrices of Lamb waves at irregular surface and void defects.
Feng, Feilong; Shen, Jianzhong; Lin, Shuyu
2012-08-01
Time-harmonic solution of Lamb wave scattering in a plane-strain waveguide with irregular thickness is investigated based on stair-step discretization and stepwise mode matching. The transfer relations of the transmission matrices and reflection matrices are derived in both directions of the waveguide. With these, an explicit expression of the scattering matrix is derived. When the scattering region of an inner irregular defect is geometrically divided into several parts composed of sub-waveguides with variable thicknesses and void regions with vertical free edges corresponding to the plate surfaces, the scattering matrix of the whole region could then be derived by modal matching along the artificial boundaries, as explicit functions of all the scattering matrices of the sub-waveguides and reflection matrices of the free edges. The effectiveness of the formulation is examined by numerical examples; the calculated scattering coefficients are in good accordance with those obtained from numerical simulation models. Copyright © 2012 Elsevier B.V. All rights reserved.
Hollow-Wall Heat Shield for Fuel Injector Component
NASA Technical Reports Server (NTRS)
Hanson, Russell B. (Inventor)
2018-01-01
A fuel injector component includes a body, an elongate void and a plurality of bores. The body has a first surface and a second surface. The elongate void is enclosed by the body and is integrally formed between portions of the body defining the first surface and the second surface. The plurality of bores extends into the second surface to intersect the elongate void. A process for making a fuel injector component includes building an injector component body having a void and a plurality of ports connected to the void using an additive manufacturing process that utilizes a powdered building material, and removing residual powdered building material from void through the plurality of ports.
Probability of detection of internal voids in structural ceramics using microfocus radiography
NASA Technical Reports Server (NTRS)
Baaklini, G. Y.; Roth, D. J.
1986-01-01
The reliability of microfocous X-radiography for detecting subsurface voids in structural ceramic test specimens was statistically evaluated. The microfocus system was operated in the projection mode using low X-ray photon energies (20 keV) and a 10 micro m focal spot. The statistics were developed for implanted subsurface voids in green and sintered silicon carbide and silicon nitride test specimens. These statistics were compared with previously-obtained statistics for implanted surface voids in similar specimens. Problems associated with void implantation are discussed. Statistical results are given as probability-of-detection curves at a 95 precent confidence level for voids ranging in size from 20 to 528 micro m in diameter.
Probability of detection of internal voids in structural ceramics using microfocus radiography
NASA Technical Reports Server (NTRS)
Baaklini, G. Y.; Roth, D. J.
1985-01-01
The reliability of microfocus x-radiography for detecting subsurface voids in structural ceramic test specimens was statistically evaluated. The microfocus system was operated in the projection mode using low X-ray photon energies (20 keV) and a 10 micro m focal spot. The statistics were developed for implanted subsurface voids in green and sintered silicon carbide and silicon nitride test specimens. These statistics were compared with previously-obtained statistics for implanted surface voids in similar specimens. Problems associated with void implantation are discussed. Statistical results are given as probability-of-detection curves at a 95 percent confidence level for voids ranging in size from 20 to 528 micro m in diameter.
Note: Void effects on eddy current distortion in two-phase liquid metal.
Kumar, M; Tordjeman, Ph; Bergez, W; Cavaro, M
2015-10-01
A model based on the first order perturbation expansion of magnetic flux in a two-phase liquid metal flow has been developed for low magnetic Reynolds number Rem. This model takes into account the distortion of the induced eddy currents due to the presence of void in the conducting medium. Specific experiments with an eddy current flow meter have been realized for two periodic void distributions. The results have shown, in agreement with the model, that the effects of velocity and void on the emf modulation are decoupled. The magnitude of the void fraction and the void spatial frequency can be determined from the spectral density of the demodulated emf.
46 CFR 154.1210 - Hold space, void space, cofferdam, and spaces containing cargo piping.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Hold space, void space, cofferdam, and spaces containing... Design, Construction and Equipment Cargo Area: Mechanical Ventilation System § 154.1210 Hold space, void space, cofferdam, and spaces containing cargo piping. (a) Each hold space, void space, cofferdam, and...
46 CFR 154.1210 - Hold space, void space, cofferdam, and spaces containing cargo piping.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Hold space, void space, cofferdam, and spaces containing... Design, Construction and Equipment Cargo Area: Mechanical Ventilation System § 154.1210 Hold space, void space, cofferdam, and spaces containing cargo piping. (a) Each hold space, void space, cofferdam, and...
46 CFR 154.1210 - Hold space, void space, cofferdam, and spaces containing cargo piping.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Hold space, void space, cofferdam, and spaces containing... Design, Construction and Equipment Cargo Area: Mechanical Ventilation System § 154.1210 Hold space, void space, cofferdam, and spaces containing cargo piping. (a) Each hold space, void space, cofferdam, and...
46 CFR 154.1210 - Hold space, void space, cofferdam, and spaces containing cargo piping.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Hold space, void space, cofferdam, and spaces containing... Design, Construction and Equipment Cargo Area: Mechanical Ventilation System § 154.1210 Hold space, void space, cofferdam, and spaces containing cargo piping. (a) Each hold space, void space, cofferdam, and...
46 CFR 154.1210 - Hold space, void space, cofferdam, and spaces containing cargo piping.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Hold space, void space, cofferdam, and spaces containing... Design, Construction and Equipment Cargo Area: Mechanical Ventilation System § 154.1210 Hold space, void space, cofferdam, and spaces containing cargo piping. (a) Each hold space, void space, cofferdam, and...
Deformation of periodic nanovoid structures in Mg single crystals
NASA Astrophysics Data System (ADS)
Xu, Shuozhi; Su, Yanqing; Zare Chavoshi, Saeed
2018-01-01
Large scale molecular dynamics (MD) simulations in Mg single crystal containing periodic cylindrical voids subject to uniaxial tension along the z direction are carried out. Models with different initial void sizes and crystallographic orientations are explored using two interatomic potentials. It is found that (i) a larger initial void always leads to a lower yield stress, in agreement with an analytic prediction; (ii) in the model with x[\\bar{1}100]-y[0001]-z[11\\bar{2}0] orientations, the two potentials predict different types of tension twins and phase transformation; (iii) in the model with x[0001]-y[11\\bar{2}0]-z[\\bar{1}100] orientations, the two potentials identically predict the nucleation of edge dislocations on the prismatic plane, which then glide away from the void, resulting in extrusions at the void surface; in the case of the smallest initial void, these surface extrusions pinch the void into two voids. Besides bringing new physical understanding of the nanovoid structures, our work highlights the variability and uncertainty in MD simulations arising from the interatomic potential, an issue relatively lightly addressed in the literature to date.
Experimental Detection and Characterization of Void using Time-Domain Reflection Wave
NASA Astrophysics Data System (ADS)
Zahari, M. N. H.; Madun, A.; Dahlan, S. H.; Joret, A.; Zainal Abidin, M. H.; Mohammad, A. H.; Omar, A. H.
2018-04-01
Recent technologies in engineering views have brought the significant improvement in terms of performance and precision. One of those improvements is in geophysics studies for underground detection. Reflection method has been demonstrated to able to detect and locate subsurface anomalies in previous studies, including voids. Conventional method merely involves field testing only for limited areas. This may lead to undiscovered of the void position. Problems arose when the voids were not recognised in early stage and thus, causing hazards, costs increment, and can lead to serious accidents and structural damages. Therefore, to achieve better certainty of the site investigation, a dynamic approach is needed to be implemented. To estimate and characterize the anomalies signal in a better way, an attempt has been made to model air-filled void as experimental testing at site. Robust detection and characterization of voids through inexpensive cost using reflection method are proposed to improve the detectability and characterization of the void. The result shows 2-Dimensional and 3-Dimensional analyses of void based on reflection data with P-waves velocity at 454.54 m/s.
Kulaksizoğlu, Haluk; Akand, Murat; Çakmakçi, Evrim; Gül, Murat; Seçkin, Bedreddin
2015-01-01
To evaluate the effects of pelvic floor muscle training (PFMT) on symptoms of overactive bladder (OAB) as well as uroflowmetry parameters and functional bladder capacity. Fifty-nine female patients with OAB symptoms were included. Patients were assessed by SEAPI-QMM, uroflowmetry, and abdominal ultrasound. A specially designed PFMT program using a Pilates ball was generated for patients. The training period was 1-h sessions twice a week for 6 weeks and aerobic home exercises to be performed at home 4 or 5 times every other day. Following training, subjects were reevaluated for body mass index, SEAPI questionnaire, and uroflowmetry. Initial mean SEAPI score, mean maximum and average flow rates, and mean voided volume were 9.8 ± 7.2, 29.8 ± 16.4 mL/s, 16.3 ± 8.7 mL/s, and 211.6 ± 173.5 mL, respectively. After completion of the training program, SEAPI scores improved significantly to 3.4 ± 6.4 (P < 0.05). Maximum and average flow rate results did not show significant changes, whereas voided volume seemed to have improved in conjunction with patients' symptom scores (Pearson correlation coefficient: 0.86). According to. our results, we think that proper PFMT results in increase of functional bladder capacity as well as improvement in OAB symptoms and can be recommended as first-line therapy or in conjunction with medical therapy in severe cases.
Object Kinetic Monte Carlo Simulations of Radiation Damage In Bulk Tungsten
NASA Astrophysics Data System (ADS)
Nandipati, Giridhar; Setyawan, Wahyu; Heinisch, Howard; Roche, Kenneth; Kurtz, Richard; Wirth, Brian
2015-11-01
Results are presented for the evolution of radiation damage in bulk tungsten investigated using the object KMC simulation tool, KSOME, as a function of dose, dose rate and primary knock-on atom (PKA) energies in the range of 10 to 100 keV, at temperatures of 300, 1025 and 2050 K. At 300 K, the number density of vacancies changes minimally with dose rate while the number density of vacancy clusters slightly decreases with dose rate indicating that larger clusters are formed at higher dose rates. Although the average vacancy cluster size increases slightly, the vast majority exists as mono-vacancies. At 1025 K void lattice formation was observed at all dose rates for cascades below 60 keV and at lower dose rates for higher PKA energies. After the appearance of initial features of the void lattice, vacancy cluster density increased minimally while the average vacancy cluster size increases rapidly with dose. At 2050 K, no accumulation of defects was observed over a broad range of dose rates for all PKA energies studied in this work. Further comparisons of results of irradiation simulations at various dose rates and PKA spectra, representative of the High Flux Isotope Reactor and future fusion relevant irradiation facilities will be discussed. The U.S. Department of Energy, Office of Fusion Energy Sciences (FES) and Office of Advanced Scientific Computing Research (ASCR) has supported this study through the SciDAC-3 program.
Impact of cholesterol on voids in phospholipid membranes
NASA Astrophysics Data System (ADS)
Falck, Emma; Patra, Michael; Karttunen, Mikko; Hyvönen, Marja T.; Vattulainen, Ilpo
2004-12-01
Free volume pockets or voids are important to many biological processes in cell membranes. Free volume fluctuations are a prerequisite for diffusion of lipids and other macromolecules in lipid bilayers. Permeation of small solutes across a membrane, as well as diffusion of solutes in the membrane interior are further examples of phenomena where voids and their properties play a central role. Cholesterol has been suggested to change the structure and function of membranes by altering their free volume properties. We study the effect of cholesterol on the properties of voids in dipalmitoylphosphatidylcholine (DPPC) bilayers by means of atomistic molecular dynamics simulations. We find that an increasing cholesterol concentration reduces the total amount of free volume in a bilayer. The effect of cholesterol on individual voids is most prominent in the region where the steroid ring structures of cholesterol molecules are located. Here a growing cholesterol content reduces the number of voids, completely removing voids of the size of a cholesterol molecule. The voids also become more elongated. The broad orientational distribution of voids observed in pure DPPC is, with a 30% molar concentration of cholesterol, replaced by a distribution where orientation along the bilayer normal is favored. Our results suggest that instead of being uniformly distributed to the whole bilayer, these effects are localized to the close vicinity of cholesterol molecules.
Zhou, Tingting; Lou, Jianfeng; Zhang, Yangeng; Song, Huajie; Huang, Fenglei
2016-07-14
We report million-atom reactive molecular dynamic simulations of shock initiation of β-cyclotetramethylene tetranitramine (β-HMX) single crystals containing nanometer-scale spherical voids. Shock induced void collapse and subsequent hot spot formation as well as chemical reaction initiation are observed which depend on the void size and impact strength. For an impact velocity of 1 km s(-1) and a void radius of 4 nm, the void collapse process includes three stages; the dominant mechanism is the convergence of upstream molecules toward the centerline and the downstream surface of the void forming flowing molecules. Hot spot formation also undergoes three stages, and the principal mechanism is kinetic energy transforming to thermal energy due to the collision of flowing molecules on the downstream surface. The high temperature of the hot spot initiates a local chemical reaction, and the breakage of the N-NO2 bond plays the key role in the initial reaction mechanism. The impact strength and void size have noticeable effects on the shock dynamical process, resulting in a variation of the predominant mechanisms leading to void collapse and hot spot formation. Larger voids or stronger shocks result in more intense hot spots and, thus, more violent chemical reactions, promoting more reaction channels and generating more reaction products in a shorter duration. The reaction products are mainly concentrated in the developed hot spot, indicating that the chemical reactivity of the hmx crystal is greatly enhanced by void collapse. The detailed information derived from this study can aid a thorough understanding of the role of void collapse in hot spot formation and the chemical reaction initiation of explosives.
Chae, Ji Y; Bae, Jae H; Lee, Jeong G; Park, Hong S; Moon, Du G; Oh, Mi M
2017-06-02
To evaluate the effects of preoperative low maximal flow rate (Qmax) on voiding trials after the midurethral sling (MUS) procedure in women with stress urinary incontinence (SUI). One hundred and sixty-eight women who underwent MUS procedure were enrolled. Preoperative free uroflowmetry was performed and patients were divided by Qmax. Low Qmax was defined as a Qmax under 15 mL/sec with voided volume at least 150 mL. Surgical results, failure of voiding trial, and postoperative uroflowmetry parameters were compared between the groups. Failure of voiding trial was defined by a PVR more than 100 mL on postoperative uroflowmetry. At the discharge day, there were 42 cases showing failure of voiding trial and 33 cases requiring CIC, but only one patient showed failure of voiding trial at 12 months postoperatively. Overall, 48 patients had preoperative low Qmax. Low Qmax group showed lower Qmax in all of postoperative uroflowmetry, but there were no significant differences in the rate of postoperative voiding trial failure or CIC. The low Qmax group was then divided into two groups according to the preoperative detrusor pressure at Qmax over and under 20 cmH 2 O in pressure flow study. Comparing the two groups, no significant differences were observed in the cure rate, voiding trial failure or CIC. Our results suggest that women with preoperative low Qmax experienced no definite unfavorable voiding problem from the MUS procedure compared to those with normal voiding function. MUS procedure may be regarded as a safe and successful procedure in SUI women with low Qmax. © 2017 John Wiley & Sons Australia, Ltd.
Dynamic nightside electron precipitation at Mars: ggeographical and solar wind dependence
NASA Astrophysics Data System (ADS)
Lillis, R. J.; Brain, D. A.
2012-12-01
Electron precipitation is usually the dominant source of energy input to the nightside Martian atmosphere, with consequences for ionospheric densities, chemistry, electrodynamics, communications and navigation. We examine downward-traveling superthermal electron flux on the Martian nightside from May 1999 to November 2006 at 400 km altitude and 2 AM local time. Electron precipitation is geographically organized by crustal magnetic field strength and elevation angle, with higher fluxes occurring in regions of weak and/or primarily vertical crustal fields, while stronger and more horizontal fields retard electron access to the atmosphere. We investigate how these crustal field-organized precipitation patterns vary with proxies for solar wind (SW) pressure and interplanetary magnetic field (IMF) direction. Generally, higher precipitating fluxes accompany higher SW pressures. Specifically, we identify four characteristic spectral behaviors: 1) 'stable' regions where fluxes increase mildly with SW pressure, 2) 'high flux' regions where accelerated spectra are more common and where fluxes below ~500 eV are largely independent of SW pressure, 3) permanent plasma voids and 4) intermittent plasma voids where fluxes depend strongly on SW pressure. The locations, sizes, shapes and absence/existence of these plasma voids vary significantly with solar wind pressure proxy and appreciably with IMF direction proxy. Overall, average precipitating fluxes are 40% lower in strong crustal field regions and 15% lower globally for one primary IMF direction proxy compared with the other. This variation of the strength and geographic pattern of the shielding effect of Mars' crustal fields exemplifies the complex interaction between those fields and the solar wind.; Stereographic maps of nightside downward electron flux between 96 and 148 eV, measured at 2 AM local time, averaged over the period 05/1999-11/2006. The top, middle and bottom rows are for solar wind pressure proxy ranges of 0-30 nT, 30-50 nT and >50 nT. The left and right columns are for IMF direction proxy ranges of 320-140° and 140-320°. Contour lines are represented on the vertical color bars by horizontal lines.
Roe, Brenda; Ostaszkiewicz, Joan; Milne, Jill; Wallace, Sheila
2007-01-01
This paper reports a comparison of the data analysis and outcomes from four Cochrane systematic reviews on bladder training and voiding programmes for the management of urinary incontinence using metastudy descriptive techniques to inform clinical practice, generate new ideas and identify future research directions. Bladder training is used for cognitively and physically able adults to regain continence by increasing the time interval between voids. Prompted voiding, habit retraining and timed voiding, collectively known as voiding programmes, are generally used for people with cognitive and physical impairments in institutional settings. Bladder training and voiding programmes feature as common clinical practice for the management of urinary incontinence. A synopsis of four Cochrane systematic reviews that included randomized controlled trials on bladder training, prompted voiding, habit retraining and timed voiding was undertaken using metastudy techniques for the synthesis of qualitative research, and has provided a discursive comparison and contrast of the meta-data analysis and outcomes of these reviews. Frequency of incontinence was the most common and constant outcome measure of effectiveness in the reviews. Limited data were available on other health outcomes, change in dependency status, quality of life and cost-effectiveness. The systematic review on bladder training included different types of urinary incontinence, whereas those on voiding programmes did not differentiate the type of incontinence. There is evidence on the effectiveness of bladder training but long-term follow up studies are needed. Evidence on the effectiveness of voiding programmes is limited and not available for many outcomes. Future research needs to consider the theory underpinning interventions for bladder training and voiding programmes for urinary incontinence and should incorporate recognized 'quality' research designs, established outcomes and long-term follow up. It is unclear whether health outcomes for people with comorbidities, cognitive and physical impairments will improve if extensive diagnostic and assessment investigations are undertaken.
NASA Astrophysics Data System (ADS)
van de Weygaert, R.; van Kampen, E.
1993-07-01
The first results of an extensive study of the structure and dynamics of underdense regions in gravitational instability scenarios are presented. Instead of adopting spherically symmetric voids with some idealized initial density and velocity profile, underdense regions of a given size and depth, embedded in an initial density fluctuation field, are generated. In order to accomplish this in a consistent way, these initial conditions are set up by means of Bertschinger's constrained random field code. The generated particle samples of 64^3^ particles in a box of side 100 Mpc are followed into the non-linear regime by Bertschinger's PM N- body code. In this way we address the dependence of the structure and kinematics of the void both on the initial depth of the void and on the fluctuation field in which it is embedded. In particular, this study provides some understanding of how far fluctuations on small scales modify the dynamics of the large-scale void, and especially of how far the properties of small structures inside the void are affected by the global properties of the void. One of the conspicuous features of the initial density fields inside protovoids appears to be the existence of a `void hierarchy', with small voids embedded in larger voids. The survival of this hierarchy during the riot evolution of the void depends critically on the initial depth as well as on the clustering scenario involved. As well as presenting a qualitative discussion of the structure of underdense regions in initial density fields in different scenarios, and the results of simulations of the ensuing non-linear evolution, we concentrate in particular on a comparison of the global density and velocity fields in voids with predictions from linear theory as well as from the spherical outflow model. The relation between the initial linear depth, the resulting non-linear depth and the excess expansion velocities in voids is addressed. In addition, we find that, while near its centre a void becomes more and more spherical, the shape of its boundary is influenced to a large extent by the structures surrounding the void and therefore is generally more irregular. In this first study we concentrate on single voids in Einstein-de Sitter universes. The underdense regions considered are linear 1 σ_0_, 2 σ_0_ and 3 σ_0_ dips in fields that are Gaussian-smoothed on a scale of R_G_ = 10 h^-1^ Mpc, approximately half the size of the Bootes void. These regions are studied in terms of the Cold Dark Matter and Hot Dark Matter scenarios as well as in terms of the scale-free scenarios P(k) is proportional to k^0^, k^-1^ and k^-2^. The Hubble constant is taken to be H_0_ = 100 h km s^-1^ Mpc^-1^.
NASA Astrophysics Data System (ADS)
Zubov, N. O.; Kaban'kov, O. N.; Yagov, V. V.; Sukomel, L. A.
2017-12-01
Wide use of natural circulation loops operating at low redused pressures generates the real need to develop reliable methods for predicting flow regimes and friction pressure drop for two-phase flows in this region of parameters. Although water-air flows at close-to-atmospheric pressures are the most widely studied subject in the field of two-phase hydrodynamics, the problem of reliably calculating friction pressure drop can hardly be regarded to have been fully solved. The specific volumes of liquid differ very much from those of steam (gas) under such conditions, due to which even a small change in flow quality may cause the flow pattern to alter very significantly. Frequently made attempts to use some or another universal approach to calculating friction pressure drop in a wide range of steam quality values do not seem to be justified and yield predicted values that are poorly consistent with experimentally measured data. The article analyzes the existing methods used to calculate friction pressure drop for two-phase flows at low pressures by comparing their results with the experimentally obtained data. The advisability of elaborating calculation procedures for determining the friction pressure drop and void fraction for two-phase flows taking their pattern (flow regime) into account is demonstrated. It is shown that, for flows characterized by low reduced pressures, satisfactory results are obtained from using a homogeneous model for quasi-homogeneous flows, whereas satisfactory results are obtained from using an annular flow model for flows characterized by high values of void fraction. Recommendations for making a shift from one model to another in carrying out engineering calculations are formulated and tested. By using the modified annular flow model, it is possible to obtain reliable predictions for not only the pressure gradient but also for the liquid film thickness; the consideration of droplet entrainment and deposition phenomena allows reasonable corrections to be introduced into calculations. To the best of the authors' knowledge, it is for the first time that the entrainment of droplets from the film surface is taken into consideration in the dispersed-annular flow model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez-Gonzalez, Jesus S.; Ade, Brian J.; Bowman, Stephen M.
2015-01-01
Simulation of boiling water reactor (BWR) fuel depletion poses a challenge for nuclide inventory validation and nuclear criticality safety analyses. This challenge is due to the complex operating conditions and assembly design heterogeneities that characterize these nuclear systems. Fuel depletion simulations and in-cask criticality calculations are affected by (1) completeness of design information, (2) variability of operating conditions needed for modeling purposes, and (3) possible modeling choices. These effects must be identified, quantified, and ranked according to their significance. This paper presents an investigation of BWR fuel depletion using a complete set of actual design specifications and detailed operational datamore » available for five operating cycles of the Swedish BWR Forsmark 3 reactor. The data includes detailed axial profiles of power, burnup, and void fraction in a very fine temporal mesh for a GE14 (10×10) fuel assembly. The specifications of this case can be used to assess the impacts of different modeling choices on inventory prediction and in-cask criticality, specifically regarding the key parameters that drive inventory and reactivity throughout fuel burnup. This study focused on the effects of the fidelity with which power history and void fraction distributions are modeled. The corresponding sensitivity of the reactivity in storage configurations is assessed, and the impacts of modeling choices on decay heat and inventory are addressed.« less
NASA Astrophysics Data System (ADS)
Nimmo, John; Kroll, Peter
2015-03-01
The occurrence of the various SiCxO4-x (1 <=x <=4) mixed tetrahedra in silicon oxycarbide (SiCO) is often quantified by means of experimental 29Si nuclear magnetic resonance. The structural centers are assigned to individual peaks in the spectrum, which can be integrated to give the relative populations. Using a recently-developed method, we show that is is also possible to recover information on the connectivity of these tetrahedra. By combining a huge library of model structures an GIPAW calculations, we show that simple relations exist between the Si-O-Si linking angles and the 29Si NMR chemical shift. In this work, we perform detailed analyses of SiCO 29Si NMR spectra available in literature. We extract angular distributions in agreement with the experimental X-ray and neutron diffraction data. Furthermore, in glasses with large amounts of so-called ``free'' carbon, we observe a significant portion of the {Si}O4 tetrahedra which have disproportionately large angles. These angles indicate the presence of internal SiO2 surfaces or cages-like voids, similar to those found in zeolites or clathrates. This analysis suggests that in SiCO, the ``free'' carbon is incorporated into these voids, which produces strain on the bonding angles of the surrounding host glass.
Anderson localized modes in a disordered glass optical fiber
NASA Astrophysics Data System (ADS)
Karbasi, Salman; Hosseini, Seyedrasoul; Koch, Karl W.; Hawkins, Thomas; Ballato, John; Mafi, Arash
2014-02-01
A beam of light can propagate in a time-invariant transversely disordered waveguide because of transverse Anderson localization. We developed a disordered glass optical ber from a porous artisan glass (satin quartz). The refractive index pro le of the disordered glass optical ber is composed of a non-uniform distribution of air voids which can be approximated as longitudinally invariant. The ll-fraction of air voids is higher at the regions closer to the boundary compared with the central regions. The experimental results show that the beam radius of a localized beam is smaller at the regions closer to the boundary than the one at the central regions. In order to understand the reason behind these observations, the fully vectorial modes of the disordered glass ber are calculated using the actual scanning electron microscope image of the ber tip. The numerical calculations show that the modes at regions closer to the boundary of the ber are more localized compared with the modes at the central regions. Coupling of an input beam to the less-localized modes with large tails at the central regions of the ber results in a large beam radius. In comparison, a beam of light launched at the regions close to the boundary couples to the highly compact modes of the ber and results in a small localized beam radius.
Microstructure and mechanical properties of FeCrAl alloys under heavy ion irradiations
NASA Astrophysics Data System (ADS)
Aydogan, E.; Weaver, J. S.; Maloy, S. A.; El-Atwani, O.; Wang, Y. Q.; Mara, N. A.
2018-05-01
FeCrAl ferritic alloys are excellent cladding candidates for accident tolerant fuel systems due to their high resistance to oxidation as a result of formation of a protective Al2O3 scale at high temperatures in steam. In this study, we report the irradiation response of the 10Cr and 13Cr FeCrAl cladding tubes under Fe2+ ion irradiation up to ∼16 dpa at 300 °C. Dislocation loop size, density and characteristics were determined using both two-beam bright field transmission electron microscopy and on-zone scanning transmission electron microscopy techniques. 10Cr (C06M2) tube has a lower dislocation density, larger grain size and a slightly weaker texture compared to the 13Cr (C36M3) tube before irradiation. After irradiation to 0.7 dpa and 16 dpa, the fraction of <100> type sessile dislocations decreases with increasing Cr amount in the alloys. It has been found that there is neither void formation nor α‧ precipitation as a result of ion irradiations in either alloy. Therefore, dislocation loops were determined to be the only irradiation induced defects contributing to the hardening. Nanoindentation testing before the irradiation revealed that the average nanohardness of the C36M3 tube is higher than that of the C06M2 tube. The average nanohardness of irradiated tube samples saturated at 1.6-2.0 GPa hardening for both tubes between ∼3.4 dpa and ∼16 dpa. The hardening calculated based on transmission electron microscopy was found to be consistent with nanohardness measurements.
Microstructure and mechanical properties of FeCrAl alloys under heavy ion irradiations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aydogan, E.; Weaver, J. S.; Maloy, S. A.
FeCrAl ferritic alloys are excellent cladding candidates for accident tolerant fuel systems due to their high resistance to oxidation as a result of formation of a protective Al 2O 3 scale at high temperatures in steam. In this study, we report the irradiation response of the 10Cr and 13Cr FeCrAl cladding tubes under Fe 2+ ion irradiation up to ~16 dpa at 300 °C. Dislocation loop size, density and characteristics were determined using both two beam bright field transmission electron microscopy and on-zone scanning transmission electron microscopy techniques. 10Cr (C06M2) tube has a lower dislocation density, larger grain size andmore » a slightly weaker texture compared to the 13Cr (C36M3) tube before irradiation. After irradiation to 0.7 dpa and 16 dpa, the fraction of <100> type sessile dislocations decreases with increasing Cr amount in the alloys. It has been found that there is neither void formation nor α' precipitation as a result of ion irradiations in either alloy. Therefore, dislocation loops were determined to be the only irradiation induced defects contributing to the hardening. Nanoindentation testing before the irradiation revealed that the average nanohardness of the C36M3 tube is higher than that of the C06M2 tube. The average nanohardness of irradiated tube samples saturated at 1.6-2.0 GPa hardening for both tubes between ~3.4 dpa and ~16 dpa. The hardening calculated based on transmission electron microscopy was found to be consistent with nanohardness measurements.« less
Microstructure and mechanical properties of FeCrAl alloys under heavy ion irradiations
Aydogan, E.; Weaver, J. S.; Maloy, S. A.; ...
2018-03-02
FeCrAl ferritic alloys are excellent cladding candidates for accident tolerant fuel systems due to their high resistance to oxidation as a result of formation of a protective Al 2O 3 scale at high temperatures in steam. In this study, we report the irradiation response of the 10Cr and 13Cr FeCrAl cladding tubes under Fe 2+ ion irradiation up to ~16 dpa at 300 °C. Dislocation loop size, density and characteristics were determined using both two beam bright field transmission electron microscopy and on-zone scanning transmission electron microscopy techniques. 10Cr (C06M2) tube has a lower dislocation density, larger grain size andmore » a slightly weaker texture compared to the 13Cr (C36M3) tube before irradiation. After irradiation to 0.7 dpa and 16 dpa, the fraction of <100> type sessile dislocations decreases with increasing Cr amount in the alloys. It has been found that there is neither void formation nor α' precipitation as a result of ion irradiations in either alloy. Therefore, dislocation loops were determined to be the only irradiation induced defects contributing to the hardening. Nanoindentation testing before the irradiation revealed that the average nanohardness of the C36M3 tube is higher than that of the C06M2 tube. The average nanohardness of irradiated tube samples saturated at 1.6-2.0 GPa hardening for both tubes between ~3.4 dpa and ~16 dpa. The hardening calculated based on transmission electron microscopy was found to be consistent with nanohardness measurements.« less
42 CFR 457.216 - Treatment of uncashed or canceled (voided) CHIP checks.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 42 Public Health 4 2011-10-01 2011-10-01 false Treatment of uncashed or canceled (voided) CHIP... canceled (voided) CHIP checks. (a) Purpose. This section provides rules to ensure that States refund the... section— Canceled (voided) check means an CHIP check issued by a State or fiscal agent that prior to its...
42 CFR 457.216 - Treatment of uncashed or canceled (voided) CHIP checks.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 42 Public Health 4 2014-10-01 2014-10-01 false Treatment of uncashed or canceled (voided) CHIP... canceled (voided) CHIP checks. (a) Purpose. This section provides rules to ensure that States refund the... section— Canceled (voided) check means an CHIP check issued by a State or fiscal agent that prior to its...
42 CFR 457.216 - Treatment of uncashed or canceled (voided) CHIP checks.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 42 Public Health 4 2010-10-01 2010-10-01 false Treatment of uncashed or canceled (voided) CHIP... canceled (voided) CHIP checks. (a) Purpose. This section provides rules to ensure that States refund the... section— Canceled (voided) check means an CHIP check issued by a State or fiscal agent that prior to its...
42 CFR 457.216 - Treatment of uncashed or canceled (voided) CHIP checks.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 42 Public Health 4 2012-10-01 2012-10-01 false Treatment of uncashed or canceled (voided) CHIP... canceled (voided) CHIP checks. (a) Purpose. This section provides rules to ensure that States refund the... section— Canceled (voided) check means an CHIP check issued by a State or fiscal agent that prior to its...
42 CFR 457.216 - Treatment of uncashed or canceled (voided) CHIP checks.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 42 Public Health 4 2013-10-01 2013-10-01 false Treatment of uncashed or canceled (voided) CHIP... canceled (voided) CHIP checks. (a) Purpose. This section provides rules to ensure that States refund the... section— Canceled (voided) check means an CHIP check issued by a State or fiscal agent that prior to its...
Dynamics of voids and their shapes in redshift space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maeda, Kei-ichi; Sakai, Nobuyuki; Triay, Roland, E-mail: maeda@waseda.jp, E-mail: nsakai@e.yamagata-u.ac.jp, E-mail: triay@cpt.univ-mrs.fr
2011-08-01
We investigate the dynamics of a single spherical void embedded in a Friedmann-Lemaitre universe, and analyze the void shape in the redshift space. We find that the void in the redshift space appears as an ellipse shape elongated along the line of sight (i.e., an opposite deformation to the Kaiser effect). Applying this result to observed void candidates at the redshift z ∼ 1-2, it may provide us with a new method to evaluate the cosmological parameters, in particular the value of a cosmological constant.
Pores and Void in Asclepiades’ Physical Theory
Leith, David
2012-01-01
This paper examines a fundamental, though relatively understudied, aspect of the physical theory of the physician Asclepiades of Bithynia, namely his doctrine of pores. My principal thesis is that this doctrine is dependent on a conception of void taken directly from Epicurean physics. The paper falls into two parts: the first half addresses the evidence for the presence of void in Asclepiades’ theory, and concludes that his conception of void was basically that of Epicurus; the second half focuses on the precise nature of Asclepiadean pores, and seeks to show that they represent void interstices between the primary particles of matter which are the constituents of the human body, and are thus exactly analogous to the void interstices between atoms within solid objects in Epicurus’ theory. PMID:22984299
TEM characterization of irradiated microstructure of Fe-9%Cr ODS and ferritic-martensitic alloys
NASA Astrophysics Data System (ADS)
Swenson, M. J.; Wharry, J. P.
2018-04-01
The objective of this study is to evaluate the effects of irradiation dose and dose rate on defect cluster (i.e. dislocation loops and voids) evolution in a model Fe-9%Cr oxide dispersion strengthened steel and commercial ferritic-martensitic steels HCM12A and HT9. Complimentary irradiations using Fe2+ ions, protons, or neutrons to doses ranging from 1 to 100 displacements per atom (dpa) at 500 °C are conducted on each alloy. The irradiated microstructures are characterized using transmission electron microscopy (TEM). Dislocation loops exhibit limited growth after 1 dpa upon Fe2+ and proton irradiation, while any voids observed are small and sparse. The average size and number density of loops are statistically invariant between Fe2+, proton, and neutron irradiated specimens at otherwise fixed irradiation conditions of ∼3 dpa, 500 °C. Therefore, we conclude that higher dose rate charged particle irradiations can reproduce the neutron irradiated loop microstructure with temperature shift governed by the invariance theory; this temperature shift is ∼0 °C for the high sink strength alloys studied herein.
NASA Astrophysics Data System (ADS)
Yamada, Takayuki; Takahashi, Mutsuya; Ozawa, Takashi; Tawara, Satoshi; Goto, Takayuki
2002-11-01
The purpose of this work is to demonstrate that a novel fabrication method for 3-D microstructures (FORMULA) is applicable to fabrication of micro mechanical parts with a large flexibility. This method is a kind of layer manufacturing method of thin films for metallic or dielectric microstructures using surface-activated bonding (SAB). The bonding interfaces of thin films are investigated by transmission electron microscope (TEM). Voids were observed at the interfaces of both pure aluminum films and Al-Cu alloy films. The ratio of void on the Al-Cu/Al-Cu interface is much larger than that of Al/Al interface, although the films have the same surface roughness of 3nm in Ra (average roughness). And approximately 10nm-thick amorphous intermediate layers were found at the interfaces. Furthermore, we have fabricated a micro gear of 900μm in diameter and 200μm in height, which is about ten times as large as our previous test pieces. Overhung structures such as a bridge structure and a cantilever were also fabricated without supporting layers beneath them.
Velocity and void distribution in a counter-current two-phase flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gabriel, S.; Schulenberg, T.; Laurien, E.
2012-07-01
Different flow regimes were investigated in a horizontal channel. Simulating a hot leg injection in case of a loss of coolant accident or flow conditions in reflux condenser mode, the hydraulic jump and partially reversed flow were identified as major constraints for a high amount of entrained water. Trying to simulate the reflux condenser mode, the test section now includes an inclined section connected to a horizontal channel. The channel is 90 mm high and 110 mm wide. Tests were carried out for water and air at ambient pressure and temperature. High speed video-metry was applied to obtain velocities frommore » flow pattern maps of the rising and falling fluid. In the horizontal part of the channel with partially reversed flow the fluid velocities were measured by planar particle image velocimetry. To obtain reliable results for the gaseous phase, this analysis was extended by endoscope measurements. Additionally, a new method based on the optical refraction at the interface between air and water in a back-light was used to obtain time-averaged void fraction. (authors)« less
Verboven, Pieter; Kerckhofs, Greet; Mebatsion, Hibru Kelemu; Ho, Quang Tri; Temst, Kristiaan; Wevers, Martine; Cloetens, Peter; Nicolaï, Bart M
2008-06-01
Our understanding of the gas exchange mechanisms in plant organs critically depends on insights in the three-dimensional (3-D) structural arrangement of cells and voids. Using synchrotron radiation x-ray tomography, we obtained for the first time high-contrast 3-D absorption images of in vivo fruit tissues of high moisture content at 1.4-microm resolution and 3-D phase contrast images of cell assemblies at a resolution as low as 0.7 microm, enabling visualization of individual cell morphology, cell walls, and entire void networks that were previously unknown. Intercellular spaces were always clear of water. The apple (Malus domestica) cortex contains considerably larger parenchyma cells and voids than pear (Pyrus communis) parenchyma. Voids in apple often are larger than the surrounding cells and some cells are not connected to void spaces. The main voids in apple stretch hundreds of micrometers but are disconnected. Voids in pear cortex tissue are always smaller than parenchyma cells, but each cell is surrounded by a tight and continuous network of voids, except near brachyssclereid groups. Vascular and dermal tissues were also measured. The visualized network architecture was consistent over different picking dates and shelf life. The differences in void fraction (5.1% for pear cortex and 23.0% for apple cortex) and in gas network architecture helps explain the ability of tissues to facilitate or impede gas exchange. Structural changes and anisotropy of tissues may eventually lead to physiological disorders. A combined tomography and internal gas analysis during growth are needed to make progress on the understanding of void formation in fruit.
A New Void Fraction Measurement Method for Gas-Liquid Two-Phase Flow in Small Channels
Li, Huajun; Ji, Haifeng; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing; Wu, Guohua
2016-01-01
Based on a laser diode, a 12 × 6 photodiode array sensor, and machine learning techniques, a new void fraction measurement method for gas-liquid two-phase flow in small channels is proposed. To overcome the influence of flow pattern on the void fraction measurement, the flow pattern of the two-phase flow is firstly identified by Fisher Discriminant Analysis (FDA). Then, according to the identification result, a relevant void fraction measurement model which is developed by Support Vector Machine (SVM) is selected to implement the void fraction measurement. A void fraction measurement system for the two-phase flow is developed and experiments are carried out in four different small channels. Four typical flow patterns (including bubble flow, slug flow, stratified flow and annular flow) are investigated. The experimental results show that the development of the measurement system is successful. The proposed void fraction measurement method is effective and the void fraction measurement accuracy is satisfactory. Compared with the conventional laser measurement systems using standard laser sources, the developed measurement system has the advantages of low cost and simple structure. Compared with the conventional void fraction measurement methods, the proposed method overcomes the influence of flow pattern on the void fraction measurement. This work also provides a good example of using low-cost laser diode as a competent replacement of the expensive standard laser source and hence implementing the parameter measurement of gas-liquid two-phase flow. The research results can be a useful reference for other researchers’ works. PMID:26828488
A New Void Fraction Measurement Method for Gas-Liquid Two-Phase Flow in Small Channels.
Li, Huajun; Ji, Haifeng; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing; Wu, Guohua
2016-01-27
Based on a laser diode, a 12 × 6 photodiode array sensor, and machine learning techniques, a new void fraction measurement method for gas-liquid two-phase flow in small channels is proposed. To overcome the influence of flow pattern on the void fraction measurement, the flow pattern of the two-phase flow is firstly identified by Fisher Discriminant Analysis (FDA). Then, according to the identification result, a relevant void fraction measurement model which is developed by Support Vector Machine (SVM) is selected to implement the void fraction measurement. A void fraction measurement system for the two-phase flow is developed and experiments are carried out in four different small channels. Four typical flow patterns (including bubble flow, slug flow, stratified flow and annular flow) are investigated. The experimental results show that the development of the measurement system is successful. The proposed void fraction measurement method is effective and the void fraction measurement accuracy is satisfactory. Compared with the conventional laser measurement systems using standard laser sources, the developed measurement system has the advantages of low cost and simple structure. Compared with the conventional void fraction measurement methods, the proposed method overcomes the influence of flow pattern on the void fraction measurement. This work also provides a good example of using low-cost laser diode as a competent replacement of the expensive standard laser source and hence implementing the parameter measurement of gas-liquid two-phase flow. The research results can be a useful reference for other researchers' works.
Determination of void volume in normal phase liquid chromatography.
Jiang, Ping; Wu, Di; Lucy, Charles A
2014-01-10
Void volume is an important fundamental parameter in chromatography. Little prior discussion has focused on the determination of void volume in normal phase liquid chromatography (NPLC). Various methods to estimate the total void volume are compared: pycnometry; minor disturbance method based on injection of weak solvent; tracer pulse method; hold-up volume based on unretained compounds; and accessible volume based on Martin's rule and its descendants. These are applied to NPLC on silica, RingSep and DNAP columns. Pycnometry provides a theoretically maximum value for the total void volume and should be performed at least once for each new column. However, pycnometry does not reflect the volume of adsorbed strong solvent on the stationary phase, and so only yields an accurate void volume for weaker mobile phase conditions. 1,3,5-Tri-t-butyl benzene (TTBB) results in hold-up volumes that are convenient measures of the void volume for all eluent conditions on charge-transfer columns (RingSep and DNAP), but is weakly retained under weak eluent conditions on silica. Injection of the weak mobile phase component (hexane) may be used to determine void volume, but care must be exercised to select the appropriate disturbance feature. Accessible volumes, that are determined using a homologous series, are always biased low, and are not recommended as a measure of the void volume. Copyright © 2013 Elsevier B.V. All rights reserved.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., and optional repeating of void discrete modes. 1065.525 Section 1065.525 Protection of Environment... repeating of void discrete modes. (a) Start the engine using one of the following methods: (1) Start the... during one of the modes of a discrete-mode test, you may void the results only for that individual mode...
A sharp interface model for void growth in irradiated materials
NASA Astrophysics Data System (ADS)
Hochrainer, Thomas; El-Azab, Anter
2015-03-01
A thermodynamic formalism for the interaction of point defects with free surfaces in single-component solids has been developed and applied to the problem of void growth by absorption of point defects in irradiated metals. This formalism consists of two parts, a detailed description of the dynamics of defects within the non-equilibrium thermodynamic frame, and the application of the second law of thermodynamics to provide closure relations for all kinetic equations. Enforcing the principle of non-negative entropy production showed that the description of the problem of void evolution under irradiation must include a relationship between the normal fluxes of defects into the void surface and the driving thermodynamic forces for the void surface motion; these thermodynamic forces are identified for both vacancies and interstitials and the relationships between these forces and the normal point defect fluxes are established using the concepts of transition state theory. The latter theory implies that the defect accommodation into the surface is a thermally activated process. Numerical examples are given to illustrate void growth dynamics in this new formalism and to investigate the effect of the surface energy barriers on void growth. Consequences for phase field models of void growth are discussed.
NASA Astrophysics Data System (ADS)
Das, Mousumi; Iono, Daisuke; Saito, Toshiki; Subramanian, Smitha
Since the early redshift surveys of the large scale structure of our universe, it has become clear that galaxies cluster along walls, sheet and filaments leaving large, empty regions called voids between them. Although voids represent the most under dense parts of our universe, they do contain a sparse but significant population of isolated galaxies that are generally low luminosity, late type disk galaxies. Recent studies show that most void galaxies have ongoing star formation and are in an early stage of evolution. We present radio, optical studies of the molecular gas content and star formation in a sample of void galaxies. Using SDSS data, we find that AGN are rare in these systems and are found only in the Bootes void; their black hole masses and radio properties are similar to bright spirals galaxies. Our studies suggest that close galaxy interactions and gas accretion are the main drivers of galaxy evolution in these systems despite their location in the underdense environment of the voids.
The void in the Sculptor group spiral galaxy NGC 247
NASA Astrophysics Data System (ADS)
Wagner-Kaiser, R.; De Maio, T.; Sarajedini, A.; Chakrabarti, S.
2014-10-01
The dwarf galaxy NGC 247, located in the Sculptor Filament, displays an apparent void on the north side of its spiral disc. The existence of the void in the disc of this dwarf galaxy has been known for some time, but the exact nature and cause of this strange feature has remained unclear. We investigate the properties of the void in the disc of NGC 247 using photometry of archival Hubble Space Telescope data to analyse the stars in and around this region. Based on a grid of isochrones from log(t) = 6.8 to 10.0, we assign ages using nearest-neighbour interpolation. Examination of the spatial variation of these ages across the galaxy reveals an age difference between stars located inside the void region and stars located outside this region. We speculate that the void in NGC 247 's stellar disc may be due to a recent interaction with a nearly dark subhalo that collided with the disc and could account for the long-lived nature of the void.
NASA Astrophysics Data System (ADS)
Deng, Bo; Shi, Yaoyao
2017-11-01
The tape winding technology is an effective way to fabricate rotationally composite materials. Nevertheless, some inevitable defects will seriously influence the performance of winding products. One of the crucial ways to identify the quality of fiber-reinforced composite material products is examining its void content. Significant improvement in products' mechanical properties can be achieved by minimizing the void defect. Two methods were applied in this study, finite element analysis and experimental testing, respectively, to investigate the mechanism of how void forming in composite tape winding processing. Based on the theories of interlayer intimate contact and Domain Superposition Technique (DST), a three-dimensional model of prepreg tape void with SolidWorks has been modeled in this paper. Whereafter, ABAQUS simulation software was used to simulate the void content change with pressure and temperature. Finally, a series of experiments were performed to determine the accuracy of the model-based predictions. The results showed that the model is effective for predicting the void content in the composite tape winding process.
Ripperda, Christopher M; Kowalski, Joseph T; Chaudhry, Zaid Q; Mahal, Aman S; Lanzer, Jennifer; Noor, Nabila; Good, Meadow M; Hynan, Linda S; Jeppson, Peter C; Rahn, David D
2016-11-01
The rates reported for postoperative urinary retention following midurethral sling procedures are highly variable. Determining which patients have a higher likelihood of failing a voiding trial will help with preoperative counseling prior to a midurethral sling. The objective of the study was to identify preoperative predictors for failed voiding trial following an isolated midurethral sling. A retrospective, multicenter, case-control study was performed by including all isolated midurethral sling procedures performed between Jan. 1, 2010 to June 30, 2015, at 6 academic centers. We collected demographics, medical and surgical histories, voiding symptoms, urodynamic evaluation, and intraoperative data from the medical record. We excluded patients not eligible for attempted voiding trial after surgery (eg, bladder perforation requiring catheterization). Cases failed a postoperative voiding trial and were discharged with an indwelling catheter or taught intermittent self-catheterization; controls passed a voiding trial. We also recorded any adverse events such as urinary tract infection or voiding dysfunction up to 6 weeks after surgery. Bivariate analyses were completed using Mann-Whitney and Pearson χ 2 tests as appropriate. Multivariable stepwise logistic regression was used to determine predictors of failing a voiding trial. A total of 464 patients had an isolated sling (70.9% retropubic, 28.4% transobturator, 0.6% single incision); 101 (21.8%) failed the initial voiding trial. At follow-up visits, 90.4% passed a second voiding trial, and 38.5% of the remainder passed on the third attempt. For the bivariate analyses, prior prolapse or incontinence surgery was similar in cases vs controls (31% vs 28%, P = .610) as were age, race, body mass index, and operative time. Significantly more of the cases (32%) than controls (22%) had a Charlson comorbidity index score of 1 or greater (P = .039). Overactive bladder symptoms of urgency, frequency, and urgency incontinence were similar in both groups as was detrusor overactivity in those with a urodynamic evaluation (29% vs 22%, P = .136), but nocturia was reported more in the cases (50% vs 38%, P = .046). Mean (SD) bladder capacity was similar in both groups (406 [148] mL vs 388 [122] mL, P = .542) as was maximum flow rate with uroflowmetry and pressure flow studies. Cases were significantly more likely to have a voiding type other than detrusor contraction: 37% vs 25%, P = .027, odds ratio, 1.79 (95% confidence interval, 1.07-3.00). There was no difference in voiding trial failures between retropubic and transobturator routes (23.1% vs 18.9%, P = .329). Within 6 weeks of surgery, the frequency of urinary tract infection in cases was greater than controls (20% vs 6%, P < .001; odds ratio, 3.51 [95% confidence interval, 1.82-6.75]). After passing a repeat voiding trial, cases were more likely to present with acute urinary retention (10% vs 3%, P = .003; odds ratio, 4.00 [95% confidence interval, 1.61-9.92]). For multivariable analyses, increasing Charlson comorbidity index increased the risk of a voiding trial failure; apart from this, we did not identify other demographic information among the patients who did not undergo urodynamic evaluation that reliably forecasted a voiding trial failure. The majority of women will pass a voiding trial on the first attempt after an isolated midurethral sling. Current medical comorbidities are predictive of a voiding trial failure, whereas other demographic/examination findings are not. Patients failing the initial voiding trial are at an increased risk of postoperative urinary tract infection or developing acute retention after passing a subsequent voiding trial. Copyright © 2016 Elsevier Inc. All rights reserved.
An investigation of the plastic fracture of AISI 4340 and 18 nickel - 200 grade maraging steels
NASA Technical Reports Server (NTRS)
Cox, T. B.; Low, J. R., Jr.
1974-01-01
The mechanisms of plastic fracture (dimpled rupture) in high-purity and commercial 18 Ni, 200 grade maraging steels and quenched and tempered AISI 4340 steels have been studied. Plastic fracture takes place in the maraging alloys through void initiation by fracture of titanium carbo-nitride inclusions and the growth of these voids until impingement results in coalescence and final fracture. The fracture of AISI 4340 steel at a yield strength of 200 ksi occurs by nucleation and subsequent growth of voids formed by fracture of the interface between manganese sulfide inclusions and the matrix. The growth of these inclusion-nucleated voids is interrupted long before coalescence by impingement, by the formation of void sheets which connect neighboring sulfide-nucleated voids.
Delaunay based algorithm for finding polygonal voids in planar point sets
NASA Astrophysics Data System (ADS)
Alonso, R.; Ojeda, J.; Hitschfeld, N.; Hervías, C.; Campusano, L. E.
2018-01-01
This paper presents a new algorithm to find under-dense regions called voids inside a 2D point set. The algorithm starts from terminal-edges (local longest-edges) in a Delaunay triangulation and builds the largest possible low density terminal-edge regions around them. A terminal-edge region can represent either an entire void or part of a void (subvoid). Using artificial data sets, the case of voids that are detected as several adjacent subvoids is analyzed and four subvoid joining criteria are proposed and evaluated. Since this work is inspired on searches of a more robust, effective and efficient algorithm to find 3D cosmological voids the evaluation of the joining criteria considers this context. However, the design of the algorithm permits its adaption to the requirements of any similar application.
Direct observation of void evolution during cement hydration
Moradian, Masoud; Hu, Qinang; Aboustait, Mohammed; ...
2017-09-28
This study follows the hydration of both portland cement and tricalcium silicate pastes between 30 min and 16 h of hydration. In-situ fast X-ray Computed Tomography (fCT) was used to make direct observations of the air-filled void formation in w/s of 0.40 to 0.70 with a micron resolution. The results show that over the first hour of the acceleration period the volume of air-filled voids reaches a maximum value and then decreases during the acceleration period and stays constant. The void distribution changes from a few coarse voids to a large number of smaller and more uniformly distributed voids. Thismore » behavior is suggested to be controlled by changes in the ionic strength that cause exsolution of dissolved air from the pore solution.« less
Direct observation of void evolution during cement hydration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moradian, Masoud; Hu, Qinang; Aboustait, Mohammed
This study follows the hydration of both portland cement and tricalcium silicate pastes between 30 min and 16 h of hydration. In-situ fast X-ray Computed Tomography (fCT) was used to make direct observations of the air-filled void formation in w/s of 0.40 to 0.70 with a micron resolution. The results show that over the first hour of the acceleration period the volume of air-filled voids reaches a maximum value and then decreases during the acceleration period and stays constant. The void distribution changes from a few coarse voids to a large number of smaller and more uniformly distributed voids. Thismore » behavior is suggested to be controlled by changes in the ionic strength that cause exsolution of dissolved air from the pore solution.« less
Influence of voids distribution on the deformation behavior of nanocrystalline palladium
NASA Astrophysics Data System (ADS)
Bachurin, D. V.
2018-07-01
Uniaxial deformation of three-dimensional nanocrystalline palladium containing porosity in the form of voids was investigated by means of molecular dynamics method. Simulations were performed at temperature of 300 K and at a constant strain rate of 108s-1. Two cases of voids distribution were considered: random and at triple or quadrupole junctions. It has been revealed that both the voids distribution and subsequent annealing at elevated temperature influence the deformation behavior of nanocrystalline palladium. In particular, the presence of voids at grain junctions results in a reduction of the Young's modulus and more pronounced softening effect during plastic deformation. The subsequent annealing evokes shrinkage of voids and strengthening effect. Contribution of grain boundary accommodation processes into both elastic and plastic deformation of nanocrystalline materials is discussed.
Voids and the Cosmic Web: cosmic depression & spatial complexity
NASA Astrophysics Data System (ADS)
van de Weygaert, Rien
2016-10-01
Voids form a prominent aspect of the Megaparsec distribution of galaxies and matter. Not only do theyrepresent a key constituent of the Cosmic Web, they also are one of the cleanest probesand measures of global cosmological parameters. The shape and evolution of voids are highly sensitive tothe nature of dark energy, while their substructure and galaxy population provides a direct key to thenature of dark matter. Also, the pristine environment of void interiors is an important testing groundfor our understanding of environmental influences on galaxy formation and evolution. In this paper, we reviewthe key aspects of the structure and dynamics ofvoids, with a particular focus on the hierarchical evolution of the void population. We demonstratehow the rich structural pattern of the Cosmic Web is related to the complex evolution and buildupof voids.
The cosmic web in CosmoGrid void regions
NASA Astrophysics Data System (ADS)
Rieder, Steven; van de Weygaert, Rien; Cautun, Marius; Beygu, Burcu; Portegies Zwart, Simon
2016-10-01
We study the formation and evolution of the cosmic web, using the high-resolution CosmoGrid ΛCDM simulation. In particular, we investigate the evolution of the large-scale structure around void halo groups, and compare this to observations of the VGS-31 galaxy group, which consists of three interacting galaxies inside a large void. The structure around such haloes shows a great deal of tenuous structure, with most of such systems being embedded in intra-void filaments and walls. We use the Nexus+} algorithm to detect walls and filaments in CosmoGrid, and find them to be present and detectable at every scale. The void regions embed tenuous walls, which in turn embed tenuous filaments. We hypothesize that the void galaxy group of VGS-31 formed in such an environment.
Void structure of O+ ions in the inner magnetosphere observed by the Van Allen Probes
NASA Astrophysics Data System (ADS)
Nakayama, Y.; Ebihara, Y.; Ohtani, S.; Gkioulidou, M.; Takahashi, K.; Kistler, L. M.; Tanaka, T.
2016-12-01
The Van Allen Probes Helium Oxygen Proton Electron instrument observed a new type of enhancement of O+ ions in the inner magnetosphere during substorms. As the satellite moved outward in the premidnight sector, the flux of the O+ ions with energy 10 keV appeared first in the energy-time spectrograms. Then, the enhancement of the flux spread toward high and low energies. The enhanced flux of the O+ ions with the highest energy remained, whereas the flux of the ions with lower energy vanished near apogee, forming what we call the void structure. The structure cannot be found in the H+ spectrogram. We studied the generation mechanism of this structure by using numerical simulation. We traced the trajectories of O+ ions in the electric and magnetic fields from the global magnetohydrodynamics simulation and calculated the flux of O+ ions in the inner magnetosphere in accordance with the Liouville theorem. The simulated spectrograms are well consistent with the ones observed by Van Allen Probes. We suggest the following processes. (1) When magnetic reconnection starts, an intensive equatorward and tailward plasma flow appears in the plasma lobe. (2) The flow transports plasma from the lobe to the plasma sheet where the radius of curvature of the magnetic field line is small. (3) The intensive dawn-dusk electric field transports the O+ ions earthward and accelerates them nonadiabatically to an energy threshold; (4) the void structure appears at energies below the threshold.
Preliminary topical report on comparison reactor disassembly calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
McLaughlin, T.P.
1975-11-01
Preliminary results of comparison disassembly calculations for a representative LMFBR model (2100-l voided core) and arbitrary accident conditions are described. The analytical methods employed were the computer programs: FX2- POOL, PAD, and VENUS-II. The calculated fission energy depositions are in good agreement, as are measures of the destructive potential of the excursions, kinetic energy, and work. However, in some cases the resulting fuel temperatures are substantially divergent. Differences in the fission energy deposition appear to be attributable to residual inconsistencies in specifying the comparison cases. In contrast, temperature discrepancies probably stem from basic differences in the energy partition models inherentmore » in the codes. Although explanations of the discrepancies are being pursued, the preliminary results indicate that all three computational methods provide a consistent, global characterization of the contrived disassembly accident. (auth)« less
Analysis of the Browns Ferry Unit 3 irradiation experiments. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simmons, G.L.
1984-11-01
The results of the analysis of two experiments performed at the Browns Ferry-3 reactor are presented. These calculations utilize state-of-the-art neutron transport techniques and a new neutron cross-section library that has been developed for LWR applications. The calculations agree well with the experimental data obtained in irradiations inside the reactor vessel. For the measurements performed in the reactor cavity, the calculations agree well at the reactor midplane. Accurate determination of the axial distribution of the neutron fluence in the reactor cavity depends on having a concise representation of the axial-void distribution in the core. Detailed data are presented describing themore » procedures used in the generation of the new cross-section library that has been named SAILOR. This library is available from the Radiation-Shielding Information Center.« less
Catalytically enhanced thermal decomposition of chemically grown silicon oxide layers on Si(001)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leroy, F., E-mail: leroy@cinam.univ-mrs.fr; Passanante, T.; Cheynis, F.
2016-03-14
The thermal decomposition of Si dioxide layers formed by wet chemical treatment on Si(001) has been studied by low-energy electron microscopy. Independent nucleations of voids occur into the Si oxide layers that open by reaction at the void periphery. Depending on the voids, the reaction rates exhibit large differences via the occurrence of a nonlinear growth of the void radius. This non-steady state regime is attributed to the accumulation of defects and silicon hydroxyl species at the SiO{sub 2}/Si interface that enhances the silicon oxide decomposition at the void periphery.
Theory of void formation in dusty plasmas
NASA Astrophysics Data System (ADS)
Hu, Zuquan; Chen, Yinhua; Zheng, Xiang; Huang, Feng; Shi, Gei-fen; Yu, M. Y.
2009-06-01
A fluid theory of void formation in dusty plasmas taking into account ionization is proposed. It is shown that if the ionization rate is larger than a threshold, an initial steady-state dust-density distribution can evolve into a stable distribution containing a void. As the ionization rate is further increased, the time required for void formation decreases. The void size first increases, but then decreases. However, for still larger ionization rates, the dusty region of the plasma becomes ringlike, including the convection term in dust momentum equation. The results are in agreement with existing experiments and theories.
The sudden coalescene model of the boiling crisis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carrica, P.M.; Clausse, A.
1995-09-01
A local two-phase flow integral model of nucleate boiling and crisis is presented. The model is based on average balances on a control volume, yielding to a set of three nonlinear differential equations for the local void fraction, bubble number density and velocity. Boiling crisis as critical heat flux is interpreted as a dynamic transition caused by the coalescence of bubbles near the heater. The theoretical dynamic model is compared with experimental results obtained for linear power ramps in a horizontal plate heater in R-113, showing an excellent qualitative agreement.
Numerical simulation of asphalt mixtures fracture using continuum models
NASA Astrophysics Data System (ADS)
Szydłowski, Cezary; Górski, Jarosław; Stienss, Marcin; Smakosz, Łukasz
2018-01-01
The paper considers numerical models of fracture processes of semi-circular asphalt mixture specimens subjected to three-point bending. Parameter calibration of the asphalt mixture constitutive models requires advanced, complex experimental test procedures. The highly non-homogeneous material is numerically modelled by a quasi-continuum model. The computational parameters are averaged data of the components, i.e. asphalt, aggregate and the air voids composing the material. The model directly captures random nature of material parameters and aggregate distribution in specimens. Initial results of the analysis are presented here.
Development of Personalized Urination Recognition Technology Using Smart Bands.
Eun, Sung-Jong; Whangbo, Taeg-Keun; Park, Dong Kyun; Kim, Khae-Hawn
2017-04-01
This study collected and analyzed activity data sensed through smart bands worn by patients in order to resolve the clinical issues posed by using voiding charts. By developing a smart band-based algorithm for recognizing urination activity in patients, this study aimed to explore the feasibility of urination monitoring systems. This study aimed to develop an algorithm that recognizes urination based on a patient's posture and changes in posture. Motion data was obtained from a smart band on the arm. An algorithm that recognizes the 3 stages of urination (forward movement, urination, backward movement) was developed based on data collected from a 3-axis accelerometer and from tilt angle data. Real-time data were acquired from the smart band, and for data corresponding to a certain duration, the absolute value of the signals was calculated and then compared with the set threshold value to determine the occurrence of vibration signals. In feature extraction, the most essential information describing each pattern was identified after analyzing the characteristics of the data. The results of the feature extraction process were sorted using a classifier to detect urination. An experiment was carried out to assess the performance of the recognition technology proposed in this study. The final accuracy of the algorithm was calculated based on clinical guidelines for urologists. The experiment showed a high average accuracy of 90.4%, proving the robustness of the proposed algorithm. The proposed urination recognition technology draws on acceleration data and tilt angle data collected via a smart band; these data were then analyzed using a classifier after comparative analyses with standardized feature patterns.
2017-01-01
Purpose To investigate whether seasonal changes occurred in lower urinary tract symptoms (LUTS) in patients with benign prostatic hyperplasia (BPH). Methods Patients aged 50 years and older with BPH treated with α1-blockers were enrolled. The International Prostate Symptom Score (IPSS), quality of life (QoL) score, maximum and average flow rate, voided volume, and postvoid residual volume were measured in summer and winter. Results A total of 164 patients were enrolled. The total IPSS and QoL index did not show a significant difference between the 2 seasons. When the IPSS was divided into storage symptoms and voiding symptoms, storage symptoms in winter were substantially but nonsignificantly higher than those in summer (P=0.056). Of the 7 individual symptoms in the IPSS, a significant seasonal difference was observed only for nocturia, with a higher score in winter. Moreover, none of the uroflowmetric parameters showed a seasonal change. Voided volume had significant correlations with each symptom (urgency and nocturia) and overall subjective scores (storage, total IPSS, and QoL) exclusively in summer, while this correlation remained only for nocturia in winter. Conclusions As it has generally been assumed that LUTS deteriorate in winter, the present study corroborated that the severity of storage symptoms was higher in winter than in summer, even in patients treated with α1-blockers. In contrast, a seasonal difference was not observed in the uroflowmetric parameters, which may be partly due to the loss of the correlation between subjective and objective measurements of storage symptoms in winter. PMID:28954461
Scattering of Airy elastic sheets by a cylindrical cavity in a solid.
Mitri, F G
2017-11-01
The prediction of the elastic scattering by voids (and cracks) in materials is an important process in structural health monitoring, phononic crystals, metamaterials and non-destructive evaluation/imaging to name a few examples. Earlier analytical theories and numerical computations considered the elastic scattering by voids in plane waves of infinite extent. However, current research suggesting the use of (limited-diffracting, accelerating and self-healing) Airy acoustical-sheet beams for non-destructive evaluation or imaging applications in elastic solids requires the development of an improved analytical formalism to predict the scattering efficiency used as a priori information in quantitative material characterization. Based on the definition of the time-averaged scattered power flow density, an analytical expression for the scattering efficiency of a cylindrical empty cavity (i.e., void) encased in an elastic medium is derived for compressional and normally-polarized shear-wave Airy beams. The multipole expansion method using cylindrical wave functions is utilized. Numerical computations for the scattering energy efficiency factors for compressional and shear waves illustrate the analysis with particular emphasis on the Airy beam parameters and the non-dimensional frequency, for various elastic materials surrounding the cavity. The ratio of the compressional to the shear wave speed stimulates the generation of elastic resonances, which are manifested as a series of peaks in the scattering efficiency plots. The present analysis provides an improved method for the computations of the scattering energy efficiency factors using compressional and shear-wave Airy beams in elastic materials as opposed to plane waves of infinite extent. Copyright © 2017 Elsevier B.V. All rights reserved.
Vidlar, Ales; Vostalova, Jitka; Ulrichova, Jitka; Student, Vladimir; Stejskal, David; Reichenbach, Richard; Vrbkova, Jana; Ruzicka, Filip; Simanek, Vilim
2010-10-01
Lower urinary tract symptoms (LUTS) are a common condition in older men. The objective of the present study was to evaluate the efficacy and tolerability of cranberry (Vaccinium macrocarpon) powder in men at risk of prostate disease with LUTS, elevated prostate-specific antigen (PSA), negative prostate biopsy and clinically confirmed chronic non-bacterial prostatitis. Forty-two participants received either 1500 mg of the dried powdered cranberries per d for 6 months (cranberry group; n 21) or no cranberry treatment (control group; n 21). Physical examination, International Prostate Symptom Score, quality of life (QoL), five-item version of the International Index of Erectile Function (IIEF-5), basic clinical chemistry parameters, haematology, Se, testosterone, PSA (free and total), C-reactive protein (CRP), antioxidant status, transrectal ultrasound prostate volume, urinary flow rate, ultrasound-estimated post-void residual urine volume at baseline, and at 3 and 6 months, and urine ex vivo anti-adherence activity were determined in all subjects. In contrast to the control group, patients in the cranberry group had statistically significant improvement in International Prostate Symptom Score, QoL, urination parameters including voiding parameters (rate of urine flow, average flow, total volume and post-void residual urine volume), and lower total PSA level on day 180 of the study. There was no influence on blood testosterone or serum CRP levels. There was no statistically significant improvement in the control group. The results of the present trial are the first firm evidence that cranberries may ameliorate LUTS, independent of benign prostatic hyperplasia or C-reactive protein level.
NASA Astrophysics Data System (ADS)
Lillis, Robert J.; Brain, David A.
2013-06-01
Electron precipitation is usually the dominant source of energy input to the nightside Martian atmosphere, with consequences for ionospheric densities, chemistry, electrodynamics, communications, and navigation. We examine downward-traveling superthermal electron flux on the Martian nightside from May 1999 to November 2006 at 400 km altitude and 2 A.M. local time. Electron precipitation is geographically organized by crustal magnetic field strength and elevation angle, with higher fluxes occurring in regions of weak and/or primarily vertical crustal fields, while stronger and more horizontal fields retard electron access to the atmosphere. We investigate how these crustal field-organized precipitation patterns vary with proxies for solar wind (SW) pressure and interplanetary magnetic field (IMF) direction. Generally, higher precipitating fluxes accompany higher SW pressures. Specifically, we identify four characteristic spectral behaviors: (1) "stable" regions where fluxes increase mildly with SW pressure, (2) "high-flux" regions where accelerated (peaked) spectra are more common and where fluxes below ~500 eV are largely independent of SW pressure, (3) permanent plasma voids, and (4) intermittent plasma voids where fluxes depend strongly on SW pressure. The locations, sizes, shapes, and absence/existence of these plasma voids vary significantly with solar wind pressure proxy and moderately with IMF proxy direction; average precipitating fluxes are 40% lower in strong crustal field regions and 15% lower globally for approximately southwest proxy directions compared with approximately northeast directions. This variation of the strength and geographic pattern of the shielding effect of Mars' crustal fields exemplifies the complex interaction between those fields and the solar wind.
Zachary, Chase E; Jiao, Yang; Torquato, Salvatore
2011-05-01
We extend the results from the first part of this series of two papers by examining hyperuniformity in heterogeneous media composed of impenetrable anisotropic inclusions. Specifically, we consider maximally random jammed (MRJ) packings of hard ellipses and superdisks and show that these systems both possess vanishing infinite-wavelength local-volume-fraction fluctuations and quasi-long-range pair correlations scaling as r(-(d+1)) in d Euclidean dimensions. Our results suggest a strong generalization of a conjecture by Torquato and Stillinger [Phys. Rev. E 68, 041113 (2003)], namely, that all strictly jammed saturated packings of hard particles, including those with size and shape distributions, are hyperuniform with signature quasi-long-range correlations. We show that our arguments concerning the constrained distribution of the void space in MRJ packings directly extend to hard-ellipse and superdisk packings, thereby providing a direct structural explanation for the appearance of hyperuniformity and quasi-long-range correlations in these systems. Additionally, we examine general heterogeneous media with anisotropic inclusions and show unexpectedly that one can decorate a periodic point pattern to obtain a hard-particle system that is not hyperuniform with respect to local-volume-fraction fluctuations. This apparent discrepancy can also be rationalized by appealing to the irregular distribution of the void space arising from the anisotropic shapes of the particles. Our work suggests the intriguing possibility that the MRJ states of hard particles share certain universal features independent of the local properties of the packings, including the packing fraction and average contact number per particle.
High-resolution electron microscope observation of voids in amorphous Ge.
NASA Technical Reports Server (NTRS)
Donovan, T. M.; Heinemann, K.
1971-01-01
Electron micrographs have been obtained which clearly show the existence of a void network in amorphous Ge films formed at substrate temperatures of 25 and 150 C, and the absence of a void network in films formed at higher substrate temperatures of 200 and 250 C. These results correlate quite well with density measurements and predictions of void densities by indirect methods.
Radiation shielding quality assurance
NASA Astrophysics Data System (ADS)
Um, Dallsun
For the radiation shielding quality assurance, the validity and reliability of the neutron transport code MCNP, which is now one of the most widely used radiation shielding analysis codes, were checked with lot of benchmark experiments. And also as a practical example, follows were performed in this thesis. One integral neutron transport experiment to measure the effect of neutron streaming in iron and void was performed with Dog-Legged Void Assembly in Knolls Atomic Power Laboratory in 1991. Neutron flux was measured six different places with the methane detectors and a BF-3 detector. The main purpose of the measurements was to provide benchmark against which various neutron transport calculation tools could be compared. Those data were used in verification of Monte Carlo Neutron & Photon Transport Code, MCNP, with the modeling for that. Experimental results and calculation results were compared in both ways, as the total integrated value of neutron fluxes along neutron energy range from 10 KeV to 2 MeV and as the neutron spectrum along with neutron energy range. Both results are well matched with the statistical error +/-20%. MCNP results were also compared with those of TORT, a three dimensional discrete ordinates code which was developed by Oak Ridge National Laboratory. MCNP results are superior to the TORT results at all detector places except one. This means that MCNP is proved as a very powerful tool for the analysis of neutron transport through iron & air and further it could be used as a powerful tool for the radiation shielding analysis. For one application of the analysis of variance (ANOVA) to neutron and gamma transport problems, uncertainties for the calculated values of critical K were evaluated as in the ANOVA on statistical data.
Temperature feedback of TRIGA MARK-II fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Usang, M. D., E-mail: mark-dennis@nuclearmalaysia.gov.my; Minhat, M. S.; Rabir, M. H.
2016-01-22
We study the amount of temperature feedback on reactivity for the three types of TRIGA fuel i.. ST8, ST12 and LEU fuel, are used in the TRIGA MARK II reactor in Malaysia Nuclear Agency. We employ WIMSD-5B for the calculation of kin f for a single TRIGA fuel surrounded by water. Typical calculations of TRIGA fuel reactivity are usually limited to ST8 fuel, but in this paper our investigation extends to ST12 and LEU fuel. We look at the kin f of our model at various fuel temperatures and calculate the amount reactivity removed. In one instance, the water temperaturemore » is kept at room temperature of 300K to simulate sudden reactivity increase from startup. In another instance, we simulate the sudden temperature increase during normal operation where the water temperature is approximately 320K while observing the kin f at various fuel temperatures. For accidents, two cases are simulated. The first case is for water temperature at 370K and the other is without any water. We observe that the higher Uranium content fuel such as the ST12 and LEU have much smaller contribution to the reactivity in comparison to the often studied ST8 fuel. In fact the negative reactivity coefficient for LEU fuel at high temperature in water is only slightly larger to the negative reactivity coefficient for ST8 fuel in void. The performance of ST8 fuel in terms of negative reactivity coefficient is cut almost by half when it is in void. These results are essential in the safety evaluation of the reactor and should be carefully considered when choices of fuel for core reconfiguration are made.« less
Temperature feedback of TRIGA MARK-II fuel
NASA Astrophysics Data System (ADS)
Usang, M. D.; Minhat, M. S.; Rabir, M. H.; M. Rawi M., Z.
2016-01-01
We study the amount of temperature feedback on reactivity for the three types of TRIGA fuel i.. ST8, ST12 and LEU fuel, are used in the TRIGA MARK II reactor in Malaysia Nuclear Agency. We employ WIMSD-5B for the calculation of kin f for a single TRIGA fuel surrounded by water. Typical calculations of TRIGA fuel reactivity are usually limited to ST8 fuel, but in this paper our investigation extends to ST12 and LEU fuel. We look at the kin f of our model at various fuel temperatures and calculate the amount reactivity removed. In one instance, the water temperature is kept at room temperature of 300K to simulate sudden reactivity increase from startup. In another instance, we simulate the sudden temperature increase during normal operation where the water temperature is approximately 320K while observing the kin f at various fuel temperatures. For accidents, two cases are simulated. The first case is for water temperature at 370K and the other is without any water. We observe that the higher Uranium content fuel such as the ST12 and LEU have much smaller contribution to the reactivity in comparison to the often studied ST8 fuel. In fact the negative reactivity coefficient for LEU fuel at high temperature in water is only slightly larger to the negative reactivity coefficient for ST8 fuel in void. The performance of ST8 fuel in terms of negative reactivity coefficient is cut almost by half when it is in void. These results are essential in the safety evaluation of the reactor and should be carefully considered when choices of fuel for core reconfiguration are made.
Reactor physics behavior of transuranic-bearing TRISO-particle fuel in a pressurized water reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pope, M. A.; Sen, R. S.; Ougouag, A. M.
2012-07-01
Calculations have been performed to assess the neutronic behavior of pins of Fully-Ceramic Micro-encapsulated (FCM) fuel in otherwise-conventional Pressurized Water Reactor (PWR) fuel pins. The FCM fuel contains transuranic (TRU) - only oxide fuel in tri-isotropic (TRISO) particles with the TRU loading coming from the spent fuel of a conventional LWR after 5 years of cooling. Use of the TRISO particle fuel would provide an additional barrier to fission product release in the event of cladding failure. Depletion calculations were performed to evaluate reactivity-limited burnup of the TRU-only FCM fuel. These calculations showed that due to relatively little space availablemore » for fuel, the achievable burnup with these pins alone is quite small. Various reactivity parameters were also evaluated at each burnup step including moderator temperature coefficient (MTC), Doppler, and soluble boron worth. These were compared to reference UO{sub 2} and MOX unit cells. The TRU-only FCM fuel exhibits degraded MTC and Doppler coefficients relative to UO{sub 2} and MOX. Also, the reactivity effects of coolant voiding suggest that the behavior of this fuel would be similar to a MOX fuel of very high plutonium fraction, which are known to have positive void reactivity. In general, loading of TRU-only FCM fuel into an assembly without significant quantities of uranium presents challenges to the reactor design. However, if such FCM fuel pins are included in a heterogeneous assembly alongside LEU fuel pins, the overall reactivity behavior would be dominated by the uranium pins while attractive TRU destruction performance levels in the TRU-only FCM fuel pins is retained. From this work, it is concluded that use of heterogeneous assemblies such as these appears feasible from a preliminary reactor physics standpoint. (authors)« less
Reactor Physics Behavior of Transuranic-Bearing TRISO-Particle Fuel in a Pressurized Water Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael A. Pope; R. Sonat Sen; Abderrafi M. Ougouag
2012-04-01
Calculations have been performed to assess the neutronic behavior of pins of Fully-Ceramic Micro-encapsulated (FCM) fuel in otherwise-conventional Pressurized Water Reactor (PWR) fuel pins. The FCM fuel contains transuranic (TRU)-only oxide fuel in tri-isotropic (TRISO) particles with the TRU loading coming from the spent fuel of a conventional LWR after 5 years of cooling. Use of the TRISO particle fuel would provide an additional barrier to fission product release in the event of cladding failure. Depletion calculations were performed to evaluate reactivity-limited burnup of the TRU-only FCM fuel. These calculations showed that due to relatively little space available for fuel,more » the achievable burnup with these pins alone is quite small. Various reactivity parameters were also evaluated at each burnup step including moderator temperature coefficient (MTC), Doppler, and soluble boron worth. These were compared to reference UO{sub 2} and MOX unit cells. The TRU-only FCM fuel exhibits degraded MTC and Doppler coefficients relative to UO{sub 2} and MOX. Also, the reactivity effects of coolant voiding suggest that the behavior of this fuel would be similar to a MOX fuel of very high plutonium fraction, which are known to have positive void reactivity. In general, loading of TRU-only FCM fuel into an assembly without significant quantities of uranium presents challenges to the reactor design. However, if such FCM fuel pins are included in a heterogeneous assembly alongside LEU fuel pins, the overall reactivity behavior would be dominated by the uranium pins while attractive TRU destruction performance levels in the TRU-only FCM fuel pins is. From this work, it is concluded that use of heterogeneous assemblies such as these appears feasible from a preliminary reactor physics standpoint.« less
Tu, Hongjian; Cao, Nailong; Gu, Baojun; Si, Jiemin; Chen, Zhong; Andersson, Karl-Erik
2015-07-01
To examine the effects of the serotonin (5-HT)2A/2C receptor agonist (2,5-dimethoxy-4-idophenyl)-2-aminopropane hydrochloride (DOI) on micturition in rats with diabetes mellitus (DM). Female Sprague-Dawley rats (n = 16) were divided into two groups: rats with Type 1 DM and age-matched control rats. DM was induced by i.p. injection of streptozotocin (65 mg/kg) and detailed cystometrogram (CMG) studies were performed 8 weeks post-injection in all rats under urethane anaesthesia. The selective 5-HT2A antagonist ketanserin was administered after each DOI dose-response curve was plotted. All drugs were administered i.v. Compared with controls, comprehensive urodynamic studies showed that DM rats had a higher bladder capacity and post-void residual urine volume (PVR), and a markedly lower voiding efficiency. In DM rats, DOI (0.01-0.3 mg/kg) induced significant dose-dependent increases in micturition volume and reductions in PVR, resulting in greater voiding efficiency. CMG measurements showed a dose-dependent increase in high-frequency oscillation (HFO) activity, evidenced by an increased duration of HFOs per voiding. This correlated with the improved voiding efficiency. Ketanserin (0.1 mg/kg) partially or completely reversed the DOI-induced changes. The HFOs observed in the present study seem to correlate with external urethral sphincter bursting activity during voiding. Bladder voiding efficiency was reduced in DM rats. The 5-HT2A receptor agonist can enhance HFO activity and improves voiding efficiency, and so may represent a new strategy to improve voiding efficiency after DM in experimental studies. © 2014 The Authors BJU International © 2014 BJU International Published by John Wiley & Sons Ltd.
Verboven, Pieter; Kerckhofs, Greet; Mebatsion, Hibru Kelemu; Ho, Quang Tri; Temst, Kristiaan; Wevers, Martine; Cloetens, Peter; Nicolaï, Bart M.
2008-01-01
Our understanding of the gas exchange mechanisms in plant organs critically depends on insights in the three-dimensional (3-D) structural arrangement of cells and voids. Using synchrotron radiation x-ray tomography, we obtained for the first time high-contrast 3-D absorption images of in vivo fruit tissues of high moisture content at 1.4-μm resolution and 3-D phase contrast images of cell assemblies at a resolution as low as 0.7 μm, enabling visualization of individual cell morphology, cell walls, and entire void networks that were previously unknown. Intercellular spaces were always clear of water. The apple (Malus domestica) cortex contains considerably larger parenchyma cells and voids than pear (Pyrus communis) parenchyma. Voids in apple often are larger than the surrounding cells and some cells are not connected to void spaces. The main voids in apple stretch hundreds of micrometers but are disconnected. Voids in pear cortex tissue are always smaller than parenchyma cells, but each cell is surrounded by a tight and continuous network of voids, except near brachyssclereid groups. Vascular and dermal tissues were also measured. The visualized network architecture was consistent over different picking dates and shelf life. The differences in void fraction (5.1% for pear cortex and 23.0% for apple cortex) and in gas network architecture helps explain the ability of tissues to facilitate or impede gas exchange. Structural changes and anisotropy of tissues may eventually lead to physiological disorders. A combined tomography and internal gas analysis during growth are needed to make progress on the understanding of void formation in fruit. PMID:18417636
Overview of the Epidemiology of Lower Urinary Tract Dysfunction in South Korea
2016-01-01
This review assessed the epidemiology of voiding dysfunctions in South Korea. Comprehensive understanding of this epidemiology is crucial because the senior population and the social burden are increasing because of voiding dysfunctions is growing. We searched the medical records using several terms related to voiding dysfunction: benign prostatic hyperplasia, urinary incontinence, lower urinary tract symptoms, overactive bladder, and nocturia. We then estimated the prevalence of voiding dysfunctions in South Korea; our data were comparable with those from other countries, with slight differences. The ranges of incidences varied widely between studies, mostly because investigators defined disorders differently. Voiding dysfunction greatly affects healthcare costs and individual quality of life; therefore, more proper and valuable epidemiologic data are needed. In addition, efforts to unify the definitions of various voiding dysfunctions and progress in investigational methodologies using multimedia are warranted. PMID:27377940
Thermal analysis of void cavity for heat pipe receiver under microgravity
NASA Astrophysics Data System (ADS)
Gui, Xiaohong; Song, Xiange; Nie, Baisheng
2017-04-01
Based on theoretical analysis of PCM (Phase Change Material) solidification process, the model of improved void cavity distribution tending to high temperature region is established. Numerical results are compared with NASA (National Aeronautics and Space Administration) results. Analysis results show that the outer wall temperature, the melting ratio of PCM and the temperature gradient of PCM canister, have great difference in different void cavity distribution. The form of void distribution has a great effect on the process of phase change. Based on simulation results under the model of improved void cavity distribution, phase change heat transfer process in thermal storage container is analyzed. The main goal of the improved designing for PCM canister is to take measures in reducing the concentration distribution of void cavity by adding some foam metal into phase change material.
Force field inside the void in complex plasmas under microgravity conditions
NASA Astrophysics Data System (ADS)
Kretschmer, M.; Khrapak, S. A.; Zhdanov, S. K.; Thomas, H. M.; Morfill, G. E.; Fortov, V. E.; Lipaev, A. M.; Molotkov, V. I.; Ivanov, A. I.; Turin, M. V.
2005-05-01
Observations of complex plasmas under microgravity conditions onboard the International Space Station performed with the Plasma-Kristall experiment-Nefedov facility are reported. A weak instability of the boundary between the central void (region free of microparticles) and the microparticle cloud is observed at low gas pressures. The instability leads to periodic injections of a relatively small number of particles into the void region (by analogy this effect is called the “trampoline effect”). The trajectories of injected particles are analyzed providing information on the force field inside the void. The experimental results are compared with theory which assumes that the most important forces inside the void are the electric and the ion drag forces. Good agreement is found clearly indicating that under conditions investigated the void formation is caused by the ion drag force.
Murine social stress results in long lasting voiding dysfunction.
Butler, Stephan; Luz, Sandra; McFadden, Kile; Fesi, Joanna; Long, Christopher; Spruce, Lynn; Seeholzer, Steven; Canning, Douglas; Valentino, Rita; Zderic, Stephen
2018-01-01
Repeated exposure to social stress shifts the voiding phenotype in male mice leading to bladder wall remodeling and is associated with increased expression of the stress neuropeptide, corticotropin-releasing factor (CRF) in Barrington's nucleus neurons. In these studies, we set out to determine if the voiding phenotype could recover upon removal from the stressor. Male mice were exposed for 1h daily to an aggressor and the voiding phenotype was assessed at one month followed by randomization to three groups. One group underwent immediate sacrifice. Two groups were allowed a one month recovery from the social stress exposure with or without the addition of fluoxetine (1.2mg/ml) in their drinking water and repeat voiding patterns were measured prior to sacrifice. Social stress significantly increased bladder mass, bladder mass corrected for body weight, voided volumes, and decreased urinary frequency. The abnormal voiding phenotype persisted after a 1month recovery with no effect from the addition of fluoxetine. CRF mRNA in Barrington's nucleus was increased by social stress and remained elevated following recovery with no effect from the addition of fluoxetine. The mRNA and protein expression for the alpha 1 chains of type 1 and type III collagen was unchanged across all groups suggesting that changes in the extracellular matrix of the bladder are not responsible for the voiding phenotype. This persisting voiding dysfunction correlates with the persistent elevation of CRF mRNA expression in Barrington's nucleus. Copyright © 2017. Published by Elsevier Inc.
Comparison of different obturation techniques for primary molars by digital radiography.
Memarpour, Mahtab; Shahidi, Shoaleh; Meshki, Razieh
2013-01-01
The purpose of this study was to compare six methods of root canal filling in primary mandibular second molars via digital radiography. A total of 239 canals were prepared and obturated with zinc-oxide eugenol paste. Obturation methods compared were: anesthetic syringe; NaviTip syringe; pressure syringe; tuberculin syringe; lentulo spiral; and packing with a plugger. The canals were evaluated in photostimulated phosphor radiographs for length of obturation, presence of voids, and number and sum of void sizes. The data were analyzed using chi-square, Kruskal-Wallis and Mann-Whitney tests. There were significant differences between all groups in the length of obturation (P>.01) and presence of voids (P<.001). The lentulo and tuberculin syringe groups, respectively, showed the best and worst results for length of obturation. Significant differences were also found in the number of voids (P<.001) and mean sum of void sizes in the coronal (P<.001) and middle third (P=.003). For the number and size of the voids, the NaviTip group showed the best results. Lentulo produced the best results in terms of length of obturation, while NaviTip syringe produced the best results in controlling paste extrusion from the apical foramen and having the smallest void size and lowest number of voids.
On localization and void coalescence as a precursor to ductile fracture.
Tekoğlu, C; Hutchinson, J W; Pardoen, T
2015-03-28
Two modes of plastic flow localization commonly occur in the ductile fracture of structural metals undergoing damage and failure by the mechanism involving void nucleation, growth and coalescence. The first mode consists of a macroscopic localization, usually linked to the softening effect of void nucleation and growth, in either a normal band or a shear band where the thickness of the band is comparable to void spacing. The second mode is coalescence with plastic strain localizing to the ligaments between voids by an internal necking process. The ductility of a material is tied to the strain at macroscopic localization, as this marks the limit of uniform straining at the macroscopic scale. The question addressed is whether macroscopic localization occurs prior to void coalescence or whether the two occur simultaneously. The relation between these two modes of localization is studied quantitatively in this paper using a three-dimensional elastic-plastic computational model representing a doubly periodic array of voids within a band confined between two semi-infinite outer blocks of the same material but without voids. At sufficiently high stress triaxiality, a clear separation exists between the two modes of localization. At lower stress triaxialities, the model predicts that the onset of macroscopic localization and coalescence occur simultaneously. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Void collapse under distributed dynamic loading near material interfaces
NASA Astrophysics Data System (ADS)
Shpuntova, Galina; Austin, Joanna
2012-11-01
Collapsing voids cause significant damage in diverse applications from biomedicine to underwater propulsion to explosives. While shock-induced void collapse has been studied extensively, less attention has been devoted to stress wave loading, which will occur instead if there are mechanisms for wave attenuation or if the impact velocity is relatively low. A set of dynamic experiments was carried out in a model experimental setup to investigate the effect of acoustic heterogeneities in the surrounding medium on void collapse. Two tissue-surrogate polymer materials of varying acoustic properties were used to create flowfield geometries involving a boundary and a void. A stress wave, generated by projectile impact, triggered void collapse in the gelatinous polymer medium. When the length scales of features in the flow field were on the same order of magnitude as the stress wave length scale, the presence of the boundary was found to affect the void collapse process relative to collapse in the absence of a boundary. This effect was quantified for a range of geometries and impact conditions using a two-color, single-frame particle image velocimetry technique. Research supported by NSF Award #0954769, ``CAREER: Dynamics and damage of void collapse in biological materials under stress wave loading'' with Prof. Henning Winter as Program Manager.
NASA Astrophysics Data System (ADS)
Sudarja, Indarto, Deendarlianto, Haq, Aqli
2016-06-01
Void fraction is an important parameter in two-phase flow. In the present work, the adiabatic two-phase air-water flow void fraction in a horizontal minichannel has been studied experimentally. A transparent circular channel with 1.6 mm inner diameter was employed as the test section. Superficial gas and liquid velocities were varied in the range of 1.25 - 66.3 m/s and 0.033 - 4.935 m/s, respectively. Void fraction data were obtained by analyzing the flow images being captured by using a high-speed camera. Here, the homogeneous (β) and the measured void fractions (ɛ), respectively, were compared to the existing correlations. It was found that: (1) for the bubbly and slug flows, the void fractions increases with the increase of JG, (2) for churn, slug-annular, and annular flow patterns, there is no specific correlation between JG and void fraction was observed due to effect of the slip between gas and liquid, and (3) whilst for bubbly and slug flows the void fractions are close to homogeneous line, for churn, annular, and slug-annular flows are far below the homogeneous line. It indicates that the slip ratios for the second group of flow patterns are higher than unity.
Thermal and ultrasonic evaluation of porosity in composite laminates
NASA Technical Reports Server (NTRS)
Johnston, Patrick H.; Winfree, William P.; Long, Edward R., Jr.; Kullerd, Susan M.; Nathan, N.; Partos, Richard D.
1992-01-01
The effects of porosity on damage incurred by low-velocity impact are investigated. Specimens of graphite/epoxy composite were fabricated with various volume fractions of voids. The void fraction was independently determined using optical examination and acid resin digestion methods. Thermal diffusivity and ultrasonic attenuation were measured, and these results were related to the void volume fraction. The relationship between diffusivity and fiber volume fraction was also considered. The slope of the ultrasonic attenuation coefficient was found to increase linearly with void content, and the diffusivity decreased linearly with void volume fraction, after compensation for an approximately linear dependence on the fiber volume fraction.
Thermal inertia mapping of below ground objects and voids
NASA Astrophysics Data System (ADS)
Del Grande, Nancy K.; Ascough, Brian M.; Rumpf, Richard L.
2013-05-01
Thermal inertia (effusivity) contrast marks the borders of naturally heated below ground object and void sites. The Dual Infrared Effusivity Computed Tomography (DIRECT) method, patent pending, detects and locates the presence of enhanced heat flows from below ground object and void sites at a given area. DIRECT maps view contrasting surface temperature differences between sites with normal soil and sites with soil disturbed by subsurface, hollow or semi-empty object voids (or air gaps) at varying depths. DIRECT utilizes an empirical database created to optimize the scheduling of daily airborne thermal surveys to view and characterize unseen object and void types, depths and volumes in "blind" areas.
Characteristics of dust voids in a strongly coupled laboratory dusty plasma
NASA Astrophysics Data System (ADS)
Bailung, Yoshiko; Deka, T.; Boruah, A.; Sharma, S. K.; Pal, A. R.; Chutia, Joyanti; Bailung, H.
2018-05-01
A void is produced in a strongly coupled dusty plasma by inserting a cylindrical pin (˜0.1 mm diameter) into a radiofrequency discharge argon plasma. The pin is biased externally below the plasma potential to generate the dust void. The Debye sheath model is used to obtain the sheath potential profile and hence to estimate the electric field around the pin. The electric field force and the ion drag force on the dust particles are estimated and their balance accounts well for the maintenance of the size of the void. The effects of neutral density as well as dust density on the void size are studied.
The Kirkendall and Frenkel effects during 2D diffusion process
NASA Astrophysics Data System (ADS)
Wierzba, Bartek
2014-11-01
The two-dimensional approach for inter-diffusion and voids generation is presented. The voids evolution and growth is discussed. This approach is based on the bi-velocity (Darken) method which combines the Darken and Brenner concepts that the volume velocity is essential in defining the local material velocity in multi-component mixture at non-equilibrium. The model is formulated for arbitrary multi-component two-dimensional systems. It is shown that the voids growth is due to the drift velocity and vacancy migration. The radius of the void can be easily estimated. The distributions of (1) components, (2) vacancy and (3) voids radius over the distance is presented.
NASA Astrophysics Data System (ADS)
Sawadogo, Teguewinde
This study focuses on the modeling of fluidelastic instability induced by two-phase cross-flow in tube bundles of steam generators. The steam generators in CANDU type nuclear power plants for e.g., designed in Canada by AECL and exploited worldwide, have thousands of tubes assembled in bundles that ensure the heat exchange between the internal circuit of heated heavy water coming from the reactor core and the external circuit of light water evaporated and directed toward the turbines. The main objective of this research project is to extend the theoretical models for fluidelastic instability to two-phase flow, validate the models and develop a computer program for simulating flow induced vibrations in tube bundles. The quasi-steady model has been investigated in scope of this research project. The time delay between the structure motion and the fluid forces generated thereby has been extensively studied in two-phase flow. The study was conducted for a rotated triangular tube array. Firstly, experimental measurements of unsteady and quasi-static fluid forces (in the lift direction) acting on a tube subject to two-phase flow were conducted. Quasi-static fluid force coefficients were measured at the same Reynolds number, Re = 2.8x104, for void fractions ranging from 0% to 80%. The derivative of the lift coefficient with respect to the quasi-static dimensionless displacement in the lift direction was deduced from the experimental measurements. This derivative is one of the most important parameters of the quasi-steady model because this parameter, in addition to the time delay, generates the fluid negative damping that causes the instability. This derivative was found to be positive in liquid flow and negative in two-phase flow. It seemed to vanish at 5% of void fraction, challenging the ability of the quasi-steady model to predict fluidelastic instability in this case. However, stability tests conducted at 5% void fraction clearly showed fluidelastic instability. Stability tests were conducted in the second stage of the project to validate the theoretical model. The two phase damping, the added mass and the critical velocity for fluidelastic instability were measured in two-phase flow. A viscoelastic damper was designed to vary the damping of the flexible tube and thus measure the critical velocity for a certain range of the mass-damping parameter. A new formulation of the added mass as a function of the void fraction was proposed. This formulation has a better agreement with the experimental results because it takes into account the reduction of the void fraction in the vicinity of the tubes in a rotated triangular tube array. The experimental data were used to validate the theoretical results of the quasi-steady model. The validity of the quasi-steady model for two-phase flow was confirmed by the good agreement between its results and the experimental data. The time delay parameter determined in the first stage of the project has improved significantly the theoretical results, especially for high void fractions (90%). However, the model could not be verified for void fractions lower or equal to 50% because of the limitation of the water pump capability. Further studies are consequently required to clarify this point. However, this model can be used to simulate the flow induced vibrations in steam generators' tube bundles as their most critical parts operate at high void fractions (≥ 60%). Having verified the quasi-steady model for high void fractions in two-phase flow, the third and final stage of the project was devoted to the development of a computer code for simulating flow induced vibrations of a steam generator tube subjected to fluidelastic and turbulence forces. This code was based on the ABAQUS finite elements code for solving the equation of motion of the fluid-structure system, and a development of a subroutine in which the fluid forces are calculated and applied to the tube. (Abstract shortened by UMI.)
Mechanical Stress Effects on Electromigration Voiding in a Meandering Test Stripe
NASA Technical Reports Server (NTRS)
Lowry, L. E.; Tai, B. H.; Mattila, J.; Walsh, L. H.
1993-01-01
Earlier experimental findings concluded that electromigratin voids in these meandering stripe test structures were not randomly distributed and that void nucleation frequenly occurred sub-surface at the metal/thermal oxide interface.
Using voids to unscreen modified gravity
NASA Astrophysics Data System (ADS)
Falck, Bridget; Koyama, Kazuya; Zhao, Gong-Bo; Cautun, Marius
2018-04-01
The Vainshtein mechanism, present in many models of gravity, is very effective at screening dark matter haloes such that the fifth force is negligible and general relativity is recovered within their Vainshtein radii. Vainshtein screening is independent of halo mass and environment, in contrast to e.g. chameleon screening, making it difficult to test. However, our previous studies have found that the dark matter particles in filaments, walls, and voids are not screened by the Vainshtein mechanism. We therefore investigate whether cosmic voids, identified as local density minima using a watershed technique, can be used to test models of gravity that exhibit Vainshtein screening. We measure density, velocity, and screening profiles of stacked voids in cosmological N-body simulations using both dark matter particles and dark matter haloes as tracers of the density field. We find that the voids are completely unscreened, and the tangential velocity and velocity dispersion profiles of stacked voids show a clear deviation from Λ cold dark matter at all radii. Voids have the potential to provide a powerful test of gravity on cosmological scales.
Relation Between Bitumen Content and Percentage Air Voids in Semi Dense Bituminous Concrete
NASA Astrophysics Data System (ADS)
Panda, R. P.; Das, Sudhanshu Sekhar; Sahoo, P. K.
2018-02-01
Hot mix asphalt (HMA) is a heterogeneous mix of aggregate, mineral filler, bitumen, additives and air voids. Researchers have indicated that the durability of the HMA is sensitive on the actual bitumen content and percentage air void. This paper aims at establishing the relationship between the bitumen content and the percentage air voids in Semi Dense Bituminous Concrete (SDBC) using Viscosity Grade-30 (VG-30) bitumen. Total 54 samples have been collected, for formulation and validation of relationship and observed that the percentage air voids increases with decrease in actual bitumen content and vice versa. A minor increase in percentage air voids beyond practice of designed air voids in Marshall Method of design is required for better performance, indicating a need for reducing the codal provision of minimum bitumen content for SDBC as specified in Specification for Road & Bridges (Fourth Revision) published by Indian Road Congress, 2001. The study shows a possibility of reducing designed minimum bitumen content from codal provision for SDBC by 0.2% of weight with VG-30 grade of Bitumen.
Relation Between Bitumen Content and Percentage Air Voids in Semi Dense Bituminous Concrete
NASA Astrophysics Data System (ADS)
Panda, R. P.; Das, Sudhanshu Sekhar; Sahoo, P. K.
2018-06-01
Hot mix asphalt (HMA) is a heterogeneous mix of aggregate, mineral filler, bitumen, additives and air voids. Researchers have indicated that the durability of the HMA is sensitive on the actual bitumen content and percentage air void. This paper aims at establishing the relationship between the bitumen content and the percentage air voids in Semi Dense Bituminous Concrete (SDBC) using Viscosity Grade-30 (VG-30) bitumen. Total 54 samples have been collected, for formulation and validation of relationship and observed that the percentage air voids increases with decrease in actual bitumen content and vice versa. A minor increase in percentage air voids beyond practice of designed air voids in Marshall Method of design is required for better performance, indicating a need for reducing the codal provision of minimum bitumen content for SDBC as specified in Specification for Road & Bridges (Fourth Revision) published by Indian Road Congress, 2001. The study shows a possibility of reducing designed minimum bitumen content from codal provision for SDBC by 0.2% of weight with VG-30 grade of Bitumen.
Turbine superalloy component defect repair with low-temperature curing resin
Hunt, David W.; Allen, David B.
2015-09-08
Voids, cracks or other similar defects in substrates of thermal barrier coated superalloy components, such as turbine blades or vanes, are filled with resin, without need to remove substrate material surrounding the void by grinding or other processes. The resin is cured at a temperature under 200.degree. C., eliminating the need for post void-filling heat treatment. The void-filled substrate and resin are then coated with a thermal barrier coating.
An initial study of void formation during solidification of aluminum in normal and reduced-gravity
NASA Technical Reports Server (NTRS)
Chiaramonte, Francis P.; Foerster, George; Gotti, Daniel J.; Neumann, Eric S.; Johnston, J. C.; De Witt, Kenneth J.
1992-01-01
Void formation due to volumetric shrinkage during aluminum solidification was observed in real time using a radiographic viewing system in normal and reduced gravity. An end chill directional solidification furnace with water quench was developed to solidify aluminum samples during the approximately 16 seconds of reduced gravity (+/- 0.02g) achieved by flying an aircraft through a parabolic trajectory. Void formation was recorded for two cases: first a nonwetting system; and second, a wetting system where wetting occurs between the aluminum and crucible lid. The void formation in the nonwetting case is similar in normal and reduced gravity, with a single vapor cavity forming at the top of the crucible. In the wetting case in reduced gravity, surface tension causes two voids to form in the top corners of the crucible, but in normal gravity only one large voids forms across the top.
Toews, Michael D; Pearson, Tom C; Campbell, James F
2006-04-01
Computed tomography, an imaging technique commonly used for diagnosing internal human health ailments, uses multiple x-rays and sophisticated software to recreate a cross-sectional representation of a subject. The use of this technique to image hard red winter wheat, Triticum aestivm L., samples infested with pupae of Sitophilus oryzae (L.) was investigated. A software program was developed to rapidly recognize and quantify the infested kernels. Samples were imaged in a 7.6-cm (o.d.) plastic tube containing 0, 50, or 100 infested kernels per kg of wheat. Interkernel spaces were filled with corn oil so as to increase the contrast between voids inside kernels and voids among kernels. Automated image processing, using a custom C language software program, was conducted separately on each 100 g portion of the prepared samples. The average detection accuracy in the five infested kernels per 100-g samples was 94.4 +/- 7.3% (mean +/- SD, n = 10), whereas the average detection accuracy in the 10 infested kernels per 100-g sample was 87.3 +/- 7.9% (n = 10). Detection accuracy in the 10 infested kernels per 100-g samples was slightly less than the five infested kernels per 100-g samples because of some infested kernels overlapping with each other or air bubbles in the oil. A mean of 1.2 +/- 0.9 (n = 10) bubbles (per tube) was incorrectly classed as infested kernels in replicates containing no infested kernels. In light of these positive results, future studies should be conducted using additional grains, insect species, and life stages.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jakubowicz, J., E-mail: jaroslaw.jakubowicz@put.poznan.pl; Adamek, G.; Pałka, K.
The paper describes the formation, morphology and mechanical properties of Ti void composites. The Ti void composites were made using 100 and 325 mesh Ti powder for solid scaffold formation. The spherical and polyhedral voids (pores) were formed using saccharose particles (table sugar) of different shapes. The Ti void composite morphology was investigated by microcomputed tomography and scanning electron microscopy. The Ti void composites of designed porosity of 50–70% were made. Compression test was applied for mechanical properties estimation. It has been found, that Ti void composites made from 100 mesh Ti and those having spherical pores have a highermore » strength and elastic modulus, i.e. for the designed porosity of 50% for 100 and 325 mesh Ti void composites, a compressive strength was 32.32 and 20.13 MPa, respectively. It has been shown that this is related to better sintering of the 100 mesh Ti powders compared with the 325 mesh Ti powders. A correlation between microcomputed tomography data and mechanical properties has also been shown. The Ti void composites, made with the use of saccharose as a space holder, described in this work should be a promising material for biomedical applications, where interconnected pores and good mechanical properties are required. - Highlights: • Ti scaffolds of the porosity of 50–70% were made. • Saccharose particles as space holder were applied. • The voids in the scaffolds were designed with spherical and polyhedral shape. • The scaffold structure was investigated by SEM and micro-CT. • Micro-CT data and mechanical properties of the Ti scaffold have been correlated.« less
Cheng, Ying; Mansfield, Kylie J; Allen, Wendy; Walsh, Colin A; Burcher, Elizabeth; Moore, Kate H
2010-03-01
Adenosine triphosphate released from urothelium during stretch stimulates afferent nerves and conveys information on bladder fullness. We measured adenosine triphosphate released during cystometric bladder filling in women with idiopathic detrusor overactivity and stress incontinence (controls), and assessed whether the level of released adenosine triphosphate is related to cystometric parameters. Routine cystometry was done in 51 controls and 48 women with detrusor overactivity who were 28 to 87 years old. Voided urodynamic fluid was collected and stored at -30 C. Adenosine triphosphate was measured by a bioluminescence assay. Adenosine triphosphate levels were similar in voided urodynamic fluid of controls and patients with detrusor overactivity (p = 0.79). A significant inverse correlation was seen between adenosine triphosphate and maximal cystometric capacity in controls (p = 0.013), and between voided volume and adenosine triphosphate in controls (p = 0.015) and detrusor overactivity cases (p = 0.019). A significant correlation between first desire to void and adenosine triphosphate was also noted in detrusor overactivity cases (p = 0.033) but not in controls (p = 0.58). No correlation was seen between adenosine triphosphate and detrusor pressure during filling or voiding. Adenosine triphosphate measurement in voided urodynamic fluid is a novel approach to understanding signals that may contribute to the urgency sensation (a sudden compelling desire to pass urine). The inverse correlation between adenosine triphosphate in voided urodynamic fluid and first desire to void suggests that adenosine triphosphate has a role in modulating the early filling sensation in patients with detrusor overactivity. 2010 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Distribution of voids in field concrete.
DOT National Transportation Integrated Search
1978-01-01
This study was intended to evaluate the air void characteristics of concrete in an attempt to identify, quantitatively or semi-quantitatively, different types of voids and to predict their influence on strength and durability. At the outset, it was a...
Short-range wakefields generated in the blowout regime of plasma-wakefield acceleration
NASA Astrophysics Data System (ADS)
Stupakov, G.
2018-04-01
In the past, calculation of wakefields generated by an electron bunch propagating in a plasma has been carried out in linear approximation, where the plasma perturbation can be assumed small and plasma equations of motion linearized. This approximation breaks down in the blowout regime where a high-density electron driver expels plasma electrons from its path and creates a cavity void of electrons in its wake. In this paper, we develop a technique that allows us to calculate short-range longitudinal and transverse wakes generated by a witness bunch being accelerated inside the cavity. Our results can be used for studies of the beam loading and the hosing instability of the witness bunch in plasma-wakefield and laser-wakefield acceleration.
RHIC BPM system average orbit calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michnoff,R.; Cerniglia, P.; Degen, C.
2009-05-04
RHIC beam position monitor (BPM) system average orbit was originally calculated by averaging positions of 10000 consecutive turns for a single selected bunch. Known perturbations in RHIC particle trajectories, with multiple frequencies around 10 Hz, contribute to observed average orbit fluctuations. In 2006, the number of turns for average orbit calculations was made programmable; this was used to explore averaging over single periods near 10 Hz. Although this has provided an average orbit signal quality improvement, an average over many periods would further improve the accuracy of the measured closed orbit. A new continuous average orbit calculation was developed justmore » prior to the 2009 RHIC run and was made operational in March 2009. This paper discusses the new algorithm and performance with beam.« less
NASA Astrophysics Data System (ADS)
Tutyshkin, Nikolai D.; Lofink, Paul; Müller, Wolfgang H.; Wille, Ralf; Stahn, Oliver
2017-01-01
On the basis of the physical concepts of void formation, nucleation, and growth, generalized constitutive equations are formulated for a tensorial model of plastic damage in metals based on three invariants. The multiplicative decomposition of the metric transformation tensor and a thermodynamically consistent formulation of constitutive relations leads to a symmetric second-order damage tensor with a clear physical meaning. Its first invariant determines the damage related to plastic dilatation of the material due to growth of the voids. The second invariant of the deviatoric damage tensor is related to the change in void shape. The third invariant of the deviatoric tensor describes the impact of the stress state on damage (Lode angle), including the effect of rotating the principal axes of the stress tensor (Lode angle change). The introduction of three measures with related physical meaning allows for the description of kinetic processes of strain-induced damage with an equivalent parameter in a three-dimensional vector space, including the critical condition of ductile failure. Calculations were performed by using experimentally determined material functions for plastic dilatation and deviatoric strain at the mesoscale, as well as three-dimensional graphs for plastic damage of steel DC01. The constitutive parameter was determined from tests in tension, compression, and shear by using scanning electron microscopy, which allowed to vary the Lode angle over the full range of its values [InlineEquation not available: see fulltext.]. In order to construct the three-dimensional plastic damage curve for a range of triaxiality parameters -1 ≤ ST ≤ 1 and of Lode angles [InlineEquation not available: see fulltext.], we used our own, as well as systematized published experimental data. A comparison of calculations shows a significant effect of the third invariant (Lode angle) on equivalent damage. The measure of plastic damage, based on three invariants, can be useful for assessing the quality of metal mesostructure produced during metal forming processes. In many processes of metal sheet forming the material experiences, a non-proportional loading accompanied by rotating the principal axes of the stress tensor and a corresponding change of Lode angle.
Glass composition and process for sealing void spaces in electrochemical devices
Meinhardt, Kerry D [Richland, WA; Kirby, Brent W [Kennewick, WA
2012-05-01
A glass foaming material and method are disclosed for filling void spaces in electrochemical devices. The glass material includes a reagent that foams at a temperature above the softening point of the glass. Expansion of the glass fills void spaces including by-pass and tolerance channels of electrochemical devices. In addition, cassette to cassette seals can also be formed while channels and other void spaces are filled, reducing the number of processing steps needed.
Electromigration of intergranular voids in metal films for microelectronic interconnects
NASA Astrophysics Data System (ADS)
Averbuch, Amir; Israeli, Moshe; Ravve, Igor
2003-04-01
Voids and cracks often occur in the interconnect lines of microelectronic devices. They increase the resistance of the circuits and may even lead to a fatal failure. Voids may occur inside a single grain, but often they appear on the boundary between two grains. In this work, we model and analyze numerically the migration and evolution of an intergranular void subjected to surface diffusion forces and external voltage applied to the interconnect. The grain-void interface is considered one-dimensional, and the physical formulation of the electromigration and diffusion model results in two coupled fourth-order one-dimensional time-dependent PDEs. The boundary conditions are specified at the triple points, which are common to both neighboring grains and the void. The solution of these equations uses a finite difference scheme in space and a Runge-Kutta integration scheme in time, and is also coupled to the solution of a static Laplace equation describing the voltage distribution throughout the grain. Since the voltage distribution is required only along the interface line, the two-dimensional discretization of the grain interior is not needed, and the static problem is solved by the boundary element method at each time step. The motion of the intergranular void was studied for different ratios between the diffusion and the electric field forces, and for different initial configurations of the void.
Effect of Dark Energy Perturbation on Cosmic Voids Formation
NASA Astrophysics Data System (ADS)
Endo, Takao; Nishizawa, Atsushi J.; Ichiki, Kiyotomo
2018-05-01
In this paper, we present the effects of dark energy perturbation on the formation and abundance of cosmic voids. We consider dark energy to be a fluid with a negative pressure characterised by a constant equation of state w and speed of sound c_s^2. By solving fluid equations for two components, namely, dark matter and dark energy fluids, we quantify the effects of dark energy perturbation on the sizes of top-hat voids. We also explore the effects on the size distribution of voids based on the excursion set theory. We confirm that dark energy perturbation negligibly affects the size evolution of voids; c_s^2=0 varies the size only by 0.1% as compared to the homogeneous dark energy model. We also confirm that dark energy perturbation suppresses the void size when w < -1 and enhances the void size when w > -1 (Basse et al. 2011). In contrast to the negligible impact on the size, we find that the size distribution function on scales larger than 10 Mpc/h highly depends on dark energy perturbation; compared to the homogeneous dark energy model, the number of large voids of radius 30Mpc is 25% larger for the model with w = -0.9 and c_s^2=0 while they are 20% less abundant for the model with w = -1.3 and c_s^2=0.
Borch, Luise; Hagstroem, Soeren; Kamperis, Konstantinos; Siggaard, C V; Rittig, Soeren
2017-08-01
We evaluated whether combination therapy with transcutaneous electrical nerve stimulation and oxybutynin results in a superior treatment response compared to either therapy alone in children with urge incontinence. In this placebo controlled study 66 children with a mean ± SD age of 7.3 ± 1.6 years who were diagnosed with urge incontinence were randomized to 3 treatment groups. Group 1 consisted of 22 children undergoing transcutaneous electrical nerve stimulation plus active oxybutynin administration. Group 2 included 21 children undergoing active transcutaneous electrical nerve stimulation plus placebo oxybutynin administration. Group 3 consisted of 23 children undergoing active oxybutynin administration plus placebo transcutaneous electrical nerve stimulation. The children received active or placebo transcutaneous electrical nerve stimulation over the sacral S2 to S3 outflow for 2 hours daily in combination with 5 mg active or placebo oxybutynin twice daily. The intervention period was 10 weeks. Primary outcome was number of wet days weekly. Secondary outcomes were severity of incontinence, frequency, maximum voided volume over expected bladder capacity for age, average voided volume over expected bladder capacity for age and visual analogue scale score. Combination therapy was superior to oxybutynin monotherapy, with an 83% greater chance of treatment response (p = 0.05). Combination therapy was also significantly more effective than transcutaneous electrical nerve stimulation monotherapy regarding reduced number of wet days weekly (mean difference -2.28, CI -4.06 to -0.49), severity of incontinence (-3.11, CI -5.98 to -0.23) and daily voiding frequency (-2.82, CI -4.48 to -1.17). Transcutaneous electrical nerve stimulation in combination with oxybutynin for childhood urge incontinence was superior to monotherapy consisting of transcutaneous electrical nerve stimulation or oxybutynin, although the latter only reached borderline statistical significance. Furthermore, transcutaneous electrical nerve stimulation was associated with a decreased risk of oxybutynin induced post-void residual urine greater than 20 ml. Copyright © 2017 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Uroflowmetry nomograms for healthy children 5 to 15 years old.
Gupta, Dheeraj Kumar; Sankhwar, Satya Narayan; Goel, Apul
2013-09-01
We determined flow rates and generated flow rate-voided volume nomograms based on healthy children 5 to 15 years old voiding spontaneously in their natural environment. A total of 824 healthy school children of both genders were enrolled. A single uroflow record from each child was evaluated. A total of 103 children with a voided volume of less than 50 ml and/or a staccato/interrupted uroflow pattern were excluded, and 721 records were analyzed. Data were evaluated using several mathematical formulas and goodness of fit was determined. Linear regression analysis was used to generate nomograms. Flow rates and voided volumes increased with increasing age, with the effect being more pronounced in girls. No significant difference was noted in uroflow rates from 5 to 10 years, but significant differences (p <0.001) started appearing at 11 to 15 years. Also no significant difference was noted in uroflow rates among children 11 to 15 years. Therefore, 2 age groups were designated, with group 1 consisting of patients 5 to 10 years old and group 2 consisting of patients 11 to 15 years old. There were 222 boys and 122 girls in group 1 and 240 boys and 137 girls in group 2. In group 1 the maximum and average ± SD flow rates were 15.26 ± 4.54 ml per second and 7.68 ± 3.26 ml per second, respectively, for boys and 17.98 ± 6.06 ml per second and 9.19 ± 4.23 ml per second, respectively, for girls. In group 2 these rates were 22.50 ± 7.24 ml per second and 10.78 ± 4.03 ml per second, respectively, for boys and 27.16 ± 9.37 ml per second and 13.48 ± 5.21 ml per second, respectively, for girls. This large study, which expands the scant existing literature on uroflow parameters in healthy children, will hopefully promote wider application of uroflowmetry testing in the pediatric population. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Miller, Janis M.; Garcia, Caroline E.; Hortsch, Sarah Becker; Guo, Ying; Schimpf, Megan O.
2016-01-01
Purpose Common advice for lower urinary tract symptoms (LUTS) of frequency, urgency and related bother includes elimination of potentially irritating beverages (coffee, tea, alcohol, and carbonated and/or artificially sweetened beverages). The purpose of this study was to determine compliance with standardized instruction to eliminate these potentially irritating beverages, whether LUTS improved after instruction, and if symptoms worsened with partial reintroduction. Design The three-phase fixed sequence design was: 1) baseline, 2) eliminate potentially irritating beverages listed above, and 3) reintroduce at 50% of baseline volume, with a washout period between each 3-day phase. We asked participants to maintain total intake volume by swapping in equal amounts of non-potentially irritating beverages (primarily water). Subjects and Setting The study sample comprised 30 community-dwelling women recruited through newspaper advertisement. Methods Quantification measures included 3-day voiding diaries and detailed beverage intake, and LUTS questionnaires completed during each phase. Results During Phase 2, we found significant reduction in potentially irritating beverages but complete elimination was rare. Despite the protocol demands, total beverage intake was not stable; mean (± standard deviation) daily total intake volume dropped by 6.2±14.9oz (p=0.03) during Phase 2. In Phase 3, the volume of total beverage intake returned to baseline, but intake of potentially irritating beverages also returned to near baseline rather than 50% as requested by protocol. Despite this incomplete adherence to study protocols, women reported reduction in symptoms of urge, inability to delay voiding, and bother during both phases (p≤0.01). The number of voids per day decreased on average by 1.3 and 0.9 voids during phases 2 and 3 respectively (p=0.002 and p=0.035). Conclusions Education to reduce potentially irritating beverages resulted in improvement in LUTS. However, eliminating potentially irritating beverages was difficult to achieve and maintain. Study findings do not allow us to determine if LUTS improvement was attributable to intake of fewer potentially irritating beverages, reduced intake of all beverages, the effect of self-monitoring, or some combination of these factors. PMID:26727685
Miller, Janis M; Garcia, Caroline E; Hortsch, Sarah Becker; Guo, Ying; Schimpf, Megan O
2016-01-01
Common advice for lower urinary tract symptoms (LUTS) such as frequency, urgency, and related bother includes elimination of potentially irritating beverages (coffee, tea, alcohol, and carbonated and/or artificially sweetened beverages). The purpose of this study was to determine compliance with standardized instruction to eliminate these potentially irritating beverages, whether LUTS improved after instruction, and whether symptoms worsened with partial reintroduction. The 3-phase fixed sequence design was (1) baseline, (2) eliminate potentially irritating beverages listed above, and (3) reintroduce at 50% of baseline volume, with a washout period between each 3-day phase. We asked participants to maintain total intake volume by swapping in equal amounts of nonpotentially irritating beverages (primarily water). The study sample comprised 30 community-dwelling women recruited through newspaper advertisement. Quantification measures included 3-day voiding diaries and detailed beverage intake, and LUTS questionnaires completed during each phase. During Phase 2, we found significant reduction in potentially irritating beverages but complete elimination was rare. Despite protocol demands, total beverage intake was not stable; mean (± standard deviation) daily total intake volume dropped by 6.2 ± 14.9 oz (P = .03) during Phase 2. In Phase 3, the volume of total beverage intake returned to baseline, but the intake of potentially irritating beverages also returned to near baseline rather than 50% as requested by protocol. Despite this incomplete adherence to study protocols, women reported reduction in symptoms of urge, inability to delay voiding, and bother during both phases (P ≤ .01). The number of voids per day decreased on average by 1.3 and 0.9 voids during Phases 2 and 3, respectively (P = .002 and P = .035). Education to reduce potentially irritating beverages resulted in improvement in LUTS. However, eliminating potentially irritating beverages was difficult to achieve and maintain. Study findings do not allow us to determine whether LUTS improvement was attributable to intake of fewer potentially irritating beverages, reduced intake of all beverages, the effect of self-monitoring, or some combination of these factors.
NASA Astrophysics Data System (ADS)
Johnson, J. N.; Dick, J. J.
2000-04-01
Data are presented for the spall fracture of Estane. Estane has been studied previously to determine its low-pressure Hugoniot properties and high-rate viscoelastic response [J.N. Johnson, J.J. Dick and R.S. Hixson, J. Appl. Phys. 84, 2520-2529, 1998]. These results are used in the current analysis of spall fracture data for this material. Calculations are carried out with the characteristics code CHARADE and the finite-difference code FIDO. Comparison of model calculations with experimental data show the onset of spall failure to occur when the longitudinal stress reaches approximately 130 MPa in tension. At this point complete material separation does not occur, but rather the tensile strength in the material falls to approximately one-half the value at onset, as determined by CHARADE calculations. Finite-difference calculations indicate that the standard void-growth model (used previously to describe spall in metals) gives a reasonable approximation to the dynamic failure process in Estane. [Research supported by the USDOE under contract W-7405-ENG-36
Detection of submicron scale cracks and other surface anomalies using positron emission tomography
Cowan, Thomas E.; Howell, Richard H.; Colmenares, Carlos A.
2004-02-17
Detection of submicron scale cracks and other mechanical and chemical surface anomalies using PET. This surface technique has sufficient sensitivity to detect single voids or pits of sub-millimeter size and single cracks or fissures of millimeter size; and single cracks or fissures of millimeter-scale length, micrometer-scale depth, and nanometer-scale length, micrometer-scale depth, and nanometer-scale width. This technique can also be applied to detect surface regions of differing chemical reactivity. It may be utilized in a scanning or survey mode to simultaneously detect such mechanical or chemical features over large interior or exterior surface areas of parts as large as about 50 cm in diameter. The technique involves exposing a surface to short-lived radioactive gas for a time period, removing the excess gas to leave a partial monolayer, determining the location and shape of the cracks, voids, porous regions, etc., and calculating the width, depth, and length thereof. Detection of 0.01 mm deep cracks using a 3 mm detector resolution has been accomplished using this technique.
Radioisotope measurement of selected parameters of liquid-gas flow using single detector system
NASA Astrophysics Data System (ADS)
Zych, Marcin; Hanus, Robert; Jaszczur, Marek; Mosorov, Volodymyr; Świsulski, Dariusz
2018-06-01
To determine the parameters of two-phase flows using radioisotopes, usually two detectors are used. Knowing the distance between them, the velocity of the dispersed phase is calculated based on time delay estimation. Such a measurement system requires the use of two gamma-ray sealed sources. But in some situations it is also possible to determine velocity of dispersed phase using only one scintillation probe and one gamma-ray source. However, this requires proper signal analysis and prior calibration. This may also cause larger measurement errors. On the other hand, it allows measurements in hard to reach areas where there is often no place for the second detector. Additionally, by performing a previous calibration, it is possible to determine the void fraction or concentration of the selected phase. In this work an autocorrelation function was used to analyze the signal from the scintillation detector, which allowed for the determination of air velocities in slug and plug flows with an accuracy of 8.5%. Based on the analysis of the same signal, a void fraction with error of 15% was determined.
Neutronic safety parameters and transient analyses for Poland's MARIA research reactor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bretscher, M. M.; Hanan, N. A.; Matos, J. E.
1999-09-27
Reactor kinetic parameters, reactivity feedback coefficients, and control rod reactivity worths have been calculated for the MARIA Research Reactor (Swierk, Poland) for M6-type fuel assemblies with {sup 235}U enrichments of 80% and 19.7%. Kinetic parameters were evaluated for family-dependent effective delayed neutron fractions, decay constants, and prompt neutron lifetimes and neutron generation times. Reactivity feedback coefficients were determined for fuel Doppler coefficients, coolant (H{sub 2}O) void and temperature coefficients, and for in-core and ex-core beryllium temperature coefficients. Total and differential control rod worths and safety rod worths were calculated for each fuel type. These parameters were used to calculate genericmore » transients for fast and slow reactivity insertions with both HEU and LEU fuels. The analyses show that the HEU and LEU cores have very similar responses to these transients.« less
Study of an External Neutron Source for an Accelerator-Driven System using the PHITS Code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sugawara, Takanori; Iwasaki, Tomohiko; Chiba, Takashi
A code system for the Accelerator Driven System (ADS) has been under development for analyzing dynamic behaviors of a subcritical core coupled with an accelerator. This code system named DSE (Dynamics calculation code system for a Subcritical system with an External neutron source) consists of an accelerator part and a reactor part. The accelerator part employs a database, which is calculated by using PHITS, for investigating the effect related to the accelerator such as the changes of beam energy, beam diameter, void generation, and target level. This analysis method using the database may introduce some errors into dynamics calculations sincemore » the neutron source data derived from the database has some errors in fitting or interpolating procedures. In this study, the effects of various events are investigated to confirm that the method based on the database is appropriate.« less
Analyzing near infrared scattering from human skin to monitor changes in hematocrit
NASA Astrophysics Data System (ADS)
Chaiken, Joseph; Deng, Bin; Goodisman, Jerry; Shaheen, George; Bussjager, R. J.
2012-01-01
The leading preventable cause of death, world-wide, civilian or military, for all people between the ages of 18-45 is undetected internal hemorrhage. Autonomic compensation mechanisms mask changes such as e.g. hematocrit fluctuations that could give early warning if only they could be monitored continuously with reasonable degrees of precision and relative accuracy. Probing tissue with near infrared radiation (NIR) simultaneously produces remitted fluorescence and Raman scattering (IE) plus Rayleigh/Mie light scattering (EE) that noninvasively give chemical and physical information about the materials and objects within. We model tissue as a three-phase system: plasma and red blood cell (RBC) phases that are mobile and a static tissue phase. In vivo, any volume of tissue naturally experiences spatial and temporal fluctuations of blood plasma and RBC content. Plasma and RBC fractions may be discriminated from each other on the basis of their physical, chemical and optical properties. Thus IE and EE from NIR probing yield information about these fractions. Assuming there is no void volume in viable tissue, or that void volume is constant, changes in plasma and RBC volume fractions may be calculated from simultaneous measurements of the two observables, EE and IE. In a previously published analysis we showed the underlying phenomenology but did not provide an algorithm for calculating volume fractions from experimental data. Here we present a simple analysis that allows continuous monitoring of fluid fraction and hematocrit (Hct) changes by measuring IE and EE, and apply it to some experimental in vivo measurements.
Development of a reactive burn model based upon an explicit visco-plastic pore collapse model
NASA Astrophysics Data System (ADS)
Bouton, Eric; Lefrançois, Alexandre; Belmas, Robert
2015-06-01
Our aim in this study is to develop a reactive burn model based upon a microscopic hot spot model to compute the initiation and shock to detonation of pressed TATB explosives. For the sake of simplicity, the hot spots are supposed to result from the viscoplastic collapse of spherical micro-voids inside the composition. Such a model has been incorporated in a lagrangian hydrodynamic code. In our calculations, 8 different pore diameters, ranging from 100 nm to 1.2 μm, have been taken into account and the porosity associated to each pore size has been deduced from the PBX-9502 void distribution derived from the SAXS. The last ingredient of our model is the burn rate that depends on two main variables. The first one is the shock pressure as proposed by the developers of the CREST model. The second one is the number of effective chemical reaction sites calculated by the microscopic model. Furthermore, the function of the reaction progress variable of the burn rate is similar to that in the SURF model proposed by Menikoff. Our burn rate has been calibrated by using pressure profile, material velocities wave forms obtained with embedded particle velocity gauges and run distance to detonation. The comparison between the numerical and experimental results is really good and sufficient to perform a wide variety of simulations including single, double shock waves and the desensitization phenomenon. In conclusion, future works are described.
Air void analyzer for plastic concrete : technical summary report.
DOT National Transportation Integrated Search
2008-11-01
The best protection against freeze-thaw cycles in concrete is to have a good air void : system. Although microscopic, concrete is a porous material. Conventional field tests, : the volumetric or pressure tests, only provide the volume of air voids in...
Sonar imaging of flooded subsurface voids phase I : proof of concept.
DOT National Transportation Integrated Search
2011-04-15
Damage to Ohio highways due to subsidence or collapse of subsurface voids is a serious problem : for the Office of Geotechnical Engineering (OGE) at the Ohio Department of Transportation : (ODOT). These voids have often resulted from past underground...
Risk management of low air void asphalt concrete mixtures.
DOT National Transportation Integrated Search
2013-07-01
Various forms of asphalt pavement distress, such as rutting, shoving and bleeding, can be attributed, in many cases, to low air voids in : the mixtures during production and placement. The occurrence of low air void contents during plant production m...
Shao, I-Hung; Wu, Chia-Chen; Tseng, Hsiao-Jung; Lee, Ta-Jen; Lin, Yu-Hsiang; Tam, Yuan-Yun
2016-01-01
Pseudoephedrine is a sympathomimetic drug widely used as a nasal decongestant. However, it can cause adverse effects, such as voiding dysfunction. The risk of voiding dysfunction remains uncertain in patients without subjective voiding problems. We prospectively enrolled patients with nasal congestion who required treatment with pseudoephedrine from May to August 2015. All patients denied concomitant subjective voiding problem. The International Prostate Symptom Score (IPSS) questionnaire was used to evaluate voiding function before and 1 week after the pseudoephedrine treatment. The results of the IPSS questionnaire were analyzed as the total (IPSS-T), voiding (IPSS-V), storage (IPSS-S), and quality of life due to urinary symptom scores. We enrolled 131 males with a mean age of 42.0±14.3 years. The IPSS-T, IPSS-V, and IPSS-S scores slightly increased after the medication (IPSS-T increased from 6.49 to 6.77, IPSS-V from 3.33 to 3.53, and IPSS-S from 3.17 to 3.24). The quality of life due to urinary symptom score nonsignificantly decreased from 2.02 to 1.87. We observed that older age and a higher premedication IPSS-V score yielded significant differences (P<0.05) for subclinical voiding dysfunction and unchanged voiding function. In patients aged ≥50 years, the IPSS-T, IPSS-V, and IPSS-S scores significantly increased after the pseudoephedrine treatment (IPSS-T increased from 9.95 to 11.45, IPSS-V from 5.38 to 6.07, and IPSS-S 4.57 to 5.38), whereas the quality of life due to urinary symptom score nonsignificantly decreased from 2.71 to 2.48 (P=0.057). In patients aged <50 years, all scores did not significantly differ. Pseudoephedrine treatment for nasal congestion requires extra precautions in males >50 years, even without subjective voiding symptoms.
Shao, I-Hung; Wu, Chia-Chen; Tseng, Hsiao-Jung; Lee, Ta-Jen; Lin, Yu-Hsiang; Tam, Yuan-Yun
2016-01-01
Background Pseudoephedrine is a sympathomimetic drug widely used as a nasal decongestant. However, it can cause adverse effects, such as voiding dysfunction. The risk of voiding dysfunction remains uncertain in patients without subjective voiding problems. Methodology We prospectively enrolled patients with nasal congestion who required treatment with pseudoephedrine from May to August 2015. All patients denied concomitant subjective voiding problem. The International Prostate Symptom Score (IPSS) questionnaire was used to evaluate voiding function before and 1 week after the pseudoephedrine treatment. The results of the IPSS questionnaire were analyzed as the total (IPSS-T), voiding (IPSS-V), storage (IPSS-S), and quality of life due to urinary symptom scores. Results We enrolled 131 males with a mean age of 42.0±14.3 years. The IPSS-T, IPSS-V, and IPSS-S scores slightly increased after the medication (IPSS-T increased from 6.49 to 6.77, IPSS-V from 3.33 to 3.53, and IPSS-S from 3.17 to 3.24). The quality of life due to urinary symptom score nonsignificantly decreased from 2.02 to 1.87. We observed that older age and a higher premedication IPSS-V score yielded significant differences (P<0.05) for subclinical voiding dysfunction and unchanged voiding function. In patients aged ≥50 years, the IPSS-T, IPSS-V, and IPSS-S scores significantly increased after the pseudoephedrine treatment (IPSS-T increased from 9.95 to 11.45, IPSS-V from 5.38 to 6.07, and IPSS-S 4.57 to 5.38), whereas the quality of life due to urinary symptom score nonsignificantly decreased from 2.71 to 2.48 (P=0.057). In patients aged <50 years, all scores did not significantly differ. Conclusion Pseudoephedrine treatment for nasal congestion requires extra precautions in males >50 years, even without subjective voiding symptoms. PMID:27486310
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamilton, T; Kehl, S; Brown, T
2007-06-08
This report contains individual radiological protection surveillance data developed during 2006 for adult members of a select group of families living on Utrok Atoll. These Group I volunteers all underwent a whole-body count to determine levels of internally deposited cesium-137 ({sup 137}Cs) and supplied a bioassay sample for analysis of plutonium isotopes. Measurement data were obtained and the results compared with an equivalent set of measurement data for {sup 137}Cs and plutonium isotopes from a second group of adult volunteers (Group II) who were long-term residents of Utrok Atoll. For the purposes of this comparison, Group II volunteers were consideredmore » representative of the general population on Utrok Atoll. The general aim of the study was to determine residual systemic burdens of fallout radionuclides in each volunteer group, develop data in response to addressing some specific concerns about the preferential uptake and potential health consequences of residual fallout radionuclides in Group I volunteers, and generally provide some perspective on the significance of radiation doses delivered to volunteers (and the general Utrok Atoll resident population) in terms of radiological protection standards and health risks. Based on dose estimates from measurements of internally deposited {sup 137}Cs and plutonium isotopes, the data and information developed in this report clearly show that neither volunteer group has acquired levels of internally deposited fallout radionuclides specific to nuclear weapons testing in the Marshall Islands that are likely to have any consequence on human health. Moreover, the dose estimates are well below radiological protection standards as prescribed by U.S. regulators and international agencies, and are very small when compared to doses from natural sources of radiation in the Marshall Islands and the threshold where radiation health effects could be either medically diagnosed in an individual or epidemiologically discerned in a group of people. In general, the results from the whole-body counting measurements of 137Cs are consistent with our knowledge that a key pathway for exposure to residual fallout contamination on Utrok Atoll is low-level chronic uptake of {sup 137}Cs from the consumption of locally grown produce (Robison et al., 1999). The error-weighted, average body burden of {sup 137}Cs measured in Group I and Group II volunteers was 0.31 kBq and 0.62 kBq, respectively. The associated average, annual committed effective dose equivalent (CEDE) delivered to Group I and Group II volunteers from {sup 137}Cs during the year of measurement was 2.1 and 4.0 mrem. For comparative purposes, the annual dose limit for members of the public as recommended by the National Council on Radiation Protection and Measurements (NCRP) and the International Commission on Radiological Protection (ICRP) is 100 mrem. Consequently, specific concerns about elevated levels of {sup 137}Cs uptake and higher risks from radiation exposure to Group I volunteers would be considered unfounded. Moreover, the urinary excretion of plutonium-239 ({sup 239}Pu) from Group I and Group II volunteers is statistically indistinguishable. In this case, the error-weighted, average urinary excretion of {sup 239}Pu from Group I volunteers of 0.10 {mu}Bq per 24-h void with a range between -0.01 and 0.23 {mu}Bq per 24-h void compares with an error-weighted average from Group II volunteers of 0.11 {mu}Bq per 24-h void with a range between -0.20 and 0.47 {mu}Bq per 24-h void. The range in urinary excretion of {sup 239}Pu from Utrok Atoll residents is very similar to that observed for other population groups in the Marshall Islands (Bogen et al., 2006; Hamilton et al., 2006a; 2006b; 2006c, 2007a; 2007b; 2007c) and is generally considered representative of worldwide background.« less
Pang, Wei-Wei; Zhang, Ping; Zhang, Guang-Cai; Xu, Ai-Guo; Zhao, Xian-Geng
2014-11-10
Numerous theoretical and experimental efforts have been paid to describe and understand the dislocation and void nucleation processes that are fundamental for dynamic fracture modeling of strained metals. To date an essential physical picture on the self-organized atomic collective motions during dislocation creation, as well as the essential mechanisms for the void nucleation obscured by the extreme diversity in structural configurations around the void nucleation core, is still severely lacking in literature. Here, we depict the origin of dislocation creation and void nucleation during uniaxial high strain rate tensile processes in face-centered-cubic (FCC) ductile metals. We find that the dislocations are created through three distinguished stages: (i) Flattened octahedral structures (FOSs) are randomly activated by thermal fluctuations; (ii) The double-layer defect clusters are formed by self-organized stacking of FOSs on the close-packed plane; (iii) The stacking faults are formed and the Shockley partial dislocations are created from the double-layer defect clusters. Whereas, the void nucleation is shown to follow a two-stage description. We demonstrate that our findings on the origin of dislocation creation and void nucleation are universal for a variety of FCC ductile metals with low stacking fault energies.
Sandwich-like C@SnO2/Sn/void@C hollow spheres as improved anode materials for lithium ion batteries
NASA Astrophysics Data System (ADS)
Wang, Huijun; Jiang, Xinya; Chai, Yaqin; Yang, Xia; Yuan, Ruo
2018-03-01
As lithium ion batteries (LIBs) anode, SnO2 suffers fast capacity fading due to its large volume expansion during discharge/charge process. To overcome the problem, sandwich-like C@SnO2/Sn/void@C hollow spheres (referred as C@SnO2/Sn/void@C HSs) are prepared by in-situ polymerization and carbonization, using hollow SnO2 as self-template and dopamine as carbon source. The C@SnO2/Sn/void@C HSs possesses the merits of hollow and core/void/shell structure, so that they can accommodate the volume change under discharge/charge process, shorten the transmission distance of Li ions, own more contact area for the electrolyte. Thanks to these advantages, C@SnO2/Sn/void@C HSs display excellent electrochemical performance as anode materials for LIBs, which deliver a high capacity of 786.7 mAh g-1 at the current density of 0.5 A g-1 after 60 cycles. The simple synthesis method for C@SnO2/Sn/void@C HSs with special structure will provide a promising method for preparing other anode materials for LIBs.
Yamamoto, Yuta; Iriyama, Yasutoshi; Muto, Shunsuke
2016-04-01
In this article, we propose a smart image-analysis method suitable for extracting target features with hierarchical dimension from original data. The method was applied to three-dimensional volume data of an all-solid lithium-ion battery obtained by the automated sequential sample milling and imaging process using a focused ion beam/scanning electron microscope to investigate the spatial configuration of voids inside the battery. To automatically fully extract the shape and location of the voids, three types of filters were consecutively applied: a median blur filter to extract relatively larger voids, a morphological opening operation filter for small dot-shaped voids and a morphological closing operation filter for small voids with concave contrasts. Three data cubes separately processed by the above-mentioned filters were integrated by a union operation to the final unified volume data, which confirmed the correct extraction of the voids over the entire dimension contained in the original data. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Using volcanic spatter to contain eruptions in Idaho and at the Marius Hills on the Moon
NASA Astrophysics Data System (ADS)
Rader, E. L.; Heldmann, J.; Wysocki, R.; Kobs-Nawotniak, S. E.; Hughes, S. S.; Sehlke, A.; Garry, W. B.
2017-12-01
Natural spatter clasts from Craters of the Moon volcanic field ( 49 wt.% SiO2) exhibit characteristic morphological traits including clast length, width, vesicularity, and degree of fusion between clasts. Experimental spatter clasts created at the Syracuse Lava Project ( 50 wt.% SiO2) mimic these traits, suggesting spatter only forms in a narrow range of thermal and eruptive conditions. The possible identification of spatter cones at the Marius Hills allows for the conditions that form spatter on Earth to be applied (given lunar thermal constants) to the Moon and constrain eruption duration and eruption temperature for these lunar volcanoes. Higher emplacement temperatures of experimental spatter were associated with more fusion between clasts, less void space between clasts, and more elongated clast shape. Natural clasts had, on average, about 15-35% fusion between clasts, which was achieved experimentally with clasts that were emplaced at 800-950oC, had cooling rates between 6-9oC/min, and were above the glass transition temperature (700oC) for between 35-70 minutes. Numerical modeling allowed for the calculation of accumulation rates based on heat loss resulting in the listed conditions above and were found to be 0.5-2 m/h for Craters of the Moon spatter cones. Heat loss on the Moon will be less efficient as clasts travel from the vent to the ground, retaining more heat by the time of emplacement due to the lack of cooling by convection. By adjusting the numerical model to account for heat transfer in a vacuum, cooling rates of 4oC and emplacement temperatures between 850-1000oC allowed for similar time above 700oC with accumulation rates between 1-10 m/h. Given the height of one hypothesized spatter cone in the Marius Hills is about 100 m tall, it would have taken 10-100 eruption hours to build that feature. Further imaging of spatter deposits on the Moon would allow for the direct comparison of ellipticity of clasts as well as fusion and void space between clasts. This would allow for better constrained accumulations rates, emplacement temperatures, and eventually eruption characteristics of lunar volcanism.
Sonar imaging of flooded subsurface voids phase I : proof of concept : executive summary report.
DOT National Transportation Integrated Search
2011-04-15
Damage to Ohio highways due to subsidence : or collapse of subsurface voids is a serious : problem for the Ohio Department of : Transportation (ODOT). These voids have : often resulted from past underground mining : activities for coal, clay, limesto...
NASA Astrophysics Data System (ADS)
Grzegorz Kossakowski, Paweł; Wciślik, Wiktor
2017-10-01
The paper is concerned with the nucleation, growth and coalescence of microdefects in the form of voids in S235JR steel. The material is known to be one of the basic steel grades commonly used in the construction industry. The theory and methods of damage mechanics were applied to determine and describe the failure mechanisms that occur when the material undergoes deformation. Until now, engineers have generally employed the Gurson-Tvergaard- Needleman model. This material model based on damage mechanics is well suited to define and analyze failure processes taking place in the microstructure of S235JR steel. It is particularly important to determine the critical void volume fraction fc , which is one of the basic parameters of the Gurson-Tvergaard-Needleman material model. As the critical void volume fraction fc refers to the failure stage, it is determined from the data collected for the void coalescence phase. A case of multi-axial stresses is considered taking into account the effects of spatial stress state. In this study, the parameter of stress triaxiality η was used to describe the failure phenomena. Cylindrical tensile specimens with a circumferential notch were analysed to obtain low values of initial stress triaxiality (η = 0.556 of the range) in order to determine the critical void volume fraction fc . It is essential to emphasize how unique the method applied is and how different it is from the other more common methods involving parameter calibration, i.e. curve-fitting methods. The critical void volume fraction fc at void coalescence was established through digital image analysis of surfaces of S235JR steel, which involved studying real, physical results obtained directly from the material tested.
X-ray Computed Tomography Assessment of Air Void Distribution in Concrete
NASA Astrophysics Data System (ADS)
Lu, Haizhu
Air void size and spatial distribution have long been regarded as critical parameters in the frost resistance of concrete. In cement-based materials, entrained air void systems play an important role in performance as related to durability, permeability, and heat transfer. Many efforts have been made to measure air void parameters in a more efficient and reliable manner in the past several decades. Standardized measurement techniques based on optical microscopy and stereology on flat cut and polished surfaces are widely used in research as well as in quality assurance and quality control applications. Other more automated methods using image processing have also been utilized, but still starting from flat cut and polished surfaces. The emergence of X-ray computed tomography (CT) techniques provides the capability of capturing the inner microstructure of materials at the micrometer and nanometer scale. X-ray CT's less demanding sample preparation and capability to measure 3D distributions of air voids directly provide ample prospects for its wider use in air void characterization in cement-based materials. However, due to the huge number of air voids that can exist within a limited volume, errors can easily arise in the absence of a formalized data processing procedure. In this study, air void parameters in selected types of cement-based materials (lightweight concrete, structural concrete elements, pavements, and laboratory mortars) have been measured using micro X-ray CT. The focus of this study is to propose a unified procedure for processing the data and to provide solutions to deal with common problems that arise when measuring air void parameters: primarily the reliable segmentation of objects of interest, uncertainty estimation of measured parameters, and the comparison of competing segmentation parameters.
Ambartsumyan, Lusine; Siddiqui, Anees; Bauer, Stuart; Nurko, Samuel
2016-01-01
Background Children with urinary incontinence (UI) have associated functional constipation (FC) and fecal incontinence (FI). The physiology between lower urinary tract (LUT) and anorectum in children has not been elucidated. Aims Observe the effect of rectal distention (RD) on LUT function, and bladder filling and voiding on anorectal function. Methods Children with voiding dysfunction referred to Boston Children’s Hospital were prospectively enrolled for combined urodynamic (UDS) and anorectal manometry (ARM). Anorectal and urodynamic parameters were simultaneously measured. Patients underwent 2 micturition cycles, 1st with rectal balloon deflated and 2nd with it inflated (RD). LUT and anorectal parameters were compared between cycles. Key Results 10 children (7 UI, 4 recurrent UTIs, 9 FC ± FI) were enrolled. Post void residual (PVR) increased (p=0.02) with RD. No differences were observed in percent of bladder filling to expected bladder capacity, sensation, and bladder compliance with and without RD. Bladder and abdominal pressures increased at voiding with RD (p<0.05). Intra-anal pressures decreased at voiding (p<0.05), at 25% (p=0.03) and 50% (p=0.06) of total volume of bladder filling. Conclusions & Inferences The PVR volume increased with RD. Stool in the rectum does not alter filling cystometric capacity but decreases the bladder’s ability to empty predisposing patients with fecal retention to UI and UTIs. Bladder and abdominal pressures increased during voiding demonstrating a physiological correlate of dysfunctional voiding. Intra-anal pressures decreased during bladder filling and voiding. This is the first time intra-anal relaxation during bladder filling and voiding has been described. PMID:27214097
Honjo, Hisashi; Kawauchi, Akihiro; Nakao, Masahiro; Ukimura, Osamu; Kitakoji, Hiroshi; Miki, Tsuneharu
2010-09-01
Bladder diaries including bladder perception grade were analyzed to assess convenience void (CV) in community-dwelling women 40 years of age or older. A total of 310 women completed a 3-day bladder diary with a grade for bladder perception. The grade was defined on scores 0-5 as follows: 0 = No bladder sensation, 1 = Sensation of bladder filling without desire to void, 2 = Desire to void, 3 = Strong desire to void, 4 = Urgency without urge urinary incontinence (UUI), and 5 = Urge incontinence episode. CV was defined as void without desire to void: when the grade was 0, CV in a narrow sense, and when 0 or 1, CV in a broad sense. The incidence of CV in the broad sense significantly decreased with age. Of the 310 women, 48 (15.5%) had overactive bladder (OAB) symptoms on the medical interview, including 37 (11.9%) without UUI (OAB-Dry) and 11 (3.5%) with UUI (OAB-Wet). Of the remaining 262 women, 111 (35.8%), who had urgency but a urinary frequency of 7 or less, and another 141 (48.7%) were classified into the Normal with Urgency and Normal without Urgency groups, respectively. The incidence of CV in a broad sense in the Normal without Urgency group was significantly greater than that in the Normal with Urgency and OAB-Wet groups. The mean voided volumes of CV in the broad sense in the OAB-Wet group were significantly smaller than those in the other three groups. The evaluation of CV may be a new tool in assessing storage condition and voiding dysfunction. © 2010 Wiley-Liss, Inc.
Effect of Marangoni Convection Generated by Voids on Segregation During Low-G and 1-G Solidification
NASA Technical Reports Server (NTRS)
Kassemi, M.; Fripp, A.; Rashidnia, N.; deGroh, H.
1999-01-01
Solidification experiments, especially microgravity solidification experiments are often hampered by the evolution of unwanted voids or bubbles in the melt. Although these voids and/or bubbles are highly undesirable, there are currently no effective means of preventing their formation or eliminating their adverse effects, particularly, during low-g experiments. Marangoni Convection caused by these voids can drastically change the transport processes in the melt and, therefore, introduce enormous difficulties in interpreting the results of the space investigations. Recent microgravity experiments by Matthiesen, Andrews, and Fripp are all good examples of how the presence of voids and bubbles affect the outcome of costly space experiments and significantly increase the level of difficulty in interpreting their results. In this work we examine mixing caused by Marangoni convection generated by voids and bubbles in the melt during both 1-g and low-g solidification experiments. The objective of the research is to perform a detailed and comprehensive combined numerical-experimental study of Marangoni convection caused by voids during the solidification process and to show how it can affect segregation and growth conditions by modifying the flow, temperature, and species concentration fields in the melt. While Marangoni convection generated by bubbles and voids in the melt can lead to rapid mixing that would negate the benefits of microgravity processing, it could be exploited in some terrestrial processing to ensure effective communication between a melt/solid interface and a gas phase stoichiometry control zone. Thus we hope that this study will not only aid us in interpreting the results of microgravity solidification experiments hampered by voids and bubbles but to guide us in devising possible means of minimizing the adverse effects of Marangoni convection in future space experiments or of exploiting its beneficial mixing features in ground-based solidification.
Supernovae as seen by off-center observers in a local void
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blomqvist, Michael; Mörtsell, Edvard, E-mail: michaelb@astro.su.se, E-mail: edvard@fysik.su.se
2010-05-01
Inhomogeneous universe models have been proposed as an alternative explanation for the apparent acceleration of the cosmic expansion that does not require dark energy. In the simplest class of inhomogeneous models, we live within a large, spherically symmetric void. Several studies have shown that such a model can be made consistent with many observations, in particular the redshift-luminosity distance relation for type Ia supernovae, provided that the void is of Gpc size and that we live close to the center. Such a scenario challenges the Copernican principle that we do not occupy a special place in the universe. We usemore » the first-year Sloan Digital Sky Survey-II supernova search data set as well as the Constitution supernova data set to put constraints on the observer position in void models, using the fact that off-center observers will observe an anisotropic universe. We first show that a spherically symmetric void can give good fits to the supernova data for an on-center observer, but that the two data sets prefer very different voids. We then continue to show that the observer can be displaced at least fifteen percent of the void scale radius from the center and still give an acceptable fit to the supernova data. When combined with the observed dipole anisotropy of the cosmic microwave background however, we find that the data compells the observer to be located within about one percent of the void scale radius. Based on these results, we conclude that considerable fine-tuning of our position within the void is needed to fit the supernova data, strongly disfavouring the model from a Copernican principle point of view.« less
Betthauser, Tobey J; Hillmer, Ansel T; Lao, Patrick J; Ehlerding, Emily; Mukherjee, Jogeshwar; Stone, Charles K; Christian, Bradley T
2017-12-01
The α4β2* nicotinic acetylcholine receptor (nAChR) system is implicated in many neuropsychiatric pathologies. [ 18 F]Nifene is a positron emission tomography (PET) ligand that has shown promise for in vivo imaging of the α4β2* nAChR system in preclinical models and humans. This work establishes the radiation burden associated with [ 18 F]nifene PET scans in humans. Four human subjects (2M, 2F) underwent whole-body PET/CT scans to determine the human biodistribution of [ 18 F]nifene. Source organs were identified and time-activity-curves (TACs) were extracted from the PET time-series. Dose estimates were calculated for each subject using OLINDA/EXM v1.1. [ 18 F]Nifene was well tolerated by all subjects with no adverse events reported. The mean whole-body effective dose was 28.4±3.8 mSv/MBq without bladder voiding, and 22.6±1.9 mSv/MBq with hourly micturition. The urinary bladder radiation dose limited the maximum injected dose for a single scan to 278 MBq without urinary bladder voiding, and 519 MBq with hourly voiding. [ 18 F]Nifene is a safe PET radioligand for imaging the α4β2* nAChR system in humans. This works presents human internal dosimetry for [ 18 F]nifene in humans for the first time. These results facilitate safe development of future [ 18 F]nifene studies to image the α4β2* nAChR system in humans. Copyright © 2017 Elsevier Inc. All rights reserved.
van Haarst, Ernst P; Bosch, J L H Ruud
2012-09-01
We sought criteria for nocturnal polyuria in asymptomatic, nonurological adults of all ages by reporting reference values of the ratio of daytime and nighttime urine volumes, and finding nocturia predictors. Data from a database of frequency-volume charts from a reference population of 894 nonurological, asymptomatic volunteers of all age groups were analyzed. The nocturnal polyuria index and the nocturia index were calculated and factors influencing these values were determined by multivariate analysis. The nocturnal polyuria index had wide variation but a normal distribution with a mean ± SD of 30% ± 12%. The 95th percentile of the values was 53%. Above this cutoff a patient had nocturnal polyuria. This value contrasts with the International Continence Society definition of 33% but agrees with several other reports. On multivariate regression analysis with the nocturnal polyuria index as the dependent variable sleeping time, maximum voided volume and age were the covariates. However, the increase in the nocturnal polyuria index by age was small. Excluding polyuria and nocturia from analysis did not alter the results in a relevant way. The nocturnal voiding frequency depended on sleeping time and maximum voided volume but most of all on the nocturia index. The prevalence of nocturnal polyuria is overestimated. We suggest a new cutoff value for the nocturnal polyuria index, that is nocturnal polyuria exists when the nocturnal polyuria index exceeds 53%. The nocturia index is the best predictor of nocturia. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Nakai, Yasushi; Anai, Satoshi; Onishi, Sayuri; Masaomi, Kuwada; Tatsumi, Yoshihiro; Miyake, Makito; Chihara, Yoshitomo; Tanaka, Nobumichi; Hirao, Yoshihiko; Fujimoto, Kiyohide
2015-06-01
We evaluated the feasibility of photodynamic diagnosis of bladder cancer by spectrophotometric analysis of voided urine samples after extracorporeal treatment with 5-aminolevulinic acid (ALA). Sixty-one patients with bladder cancer, confirmed histologically after the transurethral resection of a bladder tumor, were recruited as the bladder cancer group, and 50 outpatients without history of urothelial carcinoma or cancer-related findings were recruited as the control group. Half of the voided urine sample was incubated with ALA (ALA-treated sample), and the rest was incubated without treatment (ALA-untreated sample). For detecting cellular protoporphyrin IX levels, intensity of the samples at the excitation wavelength of 405 nm was measured using a spectrophotometer. The difference between the intensity of the ALA-treated and ALA-untreated samples at 635 nm was calculated. The differences in the bladder cancer group were significantly greater than those in the control group (p < 0.001). These differences were also significantly greater in patients with high-grade tumors than in those with low-grade tumors (p = 0.004), and also in patients with invasive bladder cancer than in those with noninvasive bladder cancer (p = 0.007). The area under the curve was 0.84. Sensitivity and specificity of the method were 82% and 80%, respectively. We demonstrated that protoporphyrin IX levels in urinary cells treated with ALA could be quantitatively detected by spectrophotometer in patients with bladder cancer. Therefore, this cancer detection system has a potential for clinical use. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hakim, I.; May, D.; Abo Ras, M.; Meyendorf, N.; Donaldson, S.
2016-04-01
On the present work, samples of carbon fiber/epoxy composites with different void levels were fabricated using hand layup vacuum bagging process by varying the pressure. Thermal nondestructive methods: thermal conductivity measurement, pulse thermography, pulse phase thermography and lock-in-thermography, and mechanical testing: modes I and II interlaminar fracture toughness were conducted. Comparing the parameters resulted from the thermal nondestructive testing revealed that voids lead to reductions in thermal properties in all directions of composites. The results of mode I and mode II interlaminar fracture toughness showed that voids lead to reductions in interlaminar fracture toughness. The parameters resulted from thermal nondestructive testing were correlated to the results of mode I and mode II interlaminar fracture toughness and voids were quantified.
Microstructural characterization and simulation of damage for geared sheet components
NASA Astrophysics Data System (ADS)
Gerstein, G.; Isik, K.; Gutknecht, F.; Sieczkarek, P.; Ewert, J.; Tekkaya, A. E.; Clausmeyer, T.; Nürnberger, F.
2017-09-01
The evolution of damage in geared components manufactured from steel sheets was investigated, to analyse the influence of damage caused by the sheet-bulk-metal forming. Due to the inhomogeneous and multi-axial deformation in the investigated parts, different aspects such as the location-dependent shape and size of voids are analysed by means of various microscopic methods. In particular, a method to characterize the state of damage evolution, i. e. void nucleation, growth and coalescence using scanning electron microscopy (SEM) is applied. The investigations reveal a strong dependence of the void area fraction, shape of voids and thus damage evolution on the loading mode. The microstructural analysis is complemented with FEM simulations using material models which consider the characteristics of the void evolution.
Atypical cells in a voided urine cytology specimen in a renal transplant recipient.
Lu, Miao; Ho, Julie; Azordegan, Nazila; Perry, Anamarija M; Gibson, Ian W; Baker, Patricia
2017-01-01
Voided urine is routinely collected from renal transplant patients to screen for polyomavirus. In rare cases, atypical lymphoid cells can be detected in voided urine and raise the suspicion of post-transplant lymphoproliferative disorder (PTLD). However, further immunohistochemistry of the cell block and flow cytometry is frequently limited by the low cellularity and poor preservation of voided urine. Therefore, PTLD of the renal allograft is usually diagnosed from tissue biopsy or nephrectomy specimens. Herein, we report a rare case of atypical cells in a voided urine cytology specimen from a kidney transplant recipient. Needle core biopsy of the renal allograft showed monomorphic PTLD. Diagn. Cytopathol. 2017;45:69-72. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Zheng, Youqi; Choi, Sooyoung; Lee, Deokjung
2017-12-01
A new approach based on the method of characteristics (MOC) is proposed to solve the neutron transport equation. A new three-dimensional (3D) spatial discretization is applied to avoid the instability issue of the transverse leakage iteration of the traditional 2D/1D approach. In this new approach, the axial and radial variables are discretized in two different ways: the linear expansion is performed in the axial direction, then, the 3D solution of the angular flux is transformed to be the planar solution of 2D angular expansion moments, which are solved by the planar MOC sweeping. Based on the boundary and interface continuity conditions, the 2D expansion moment solution is equivalently transformed to be the solution of the axially averaged angular flux. Using the piecewise averaged angular flux at the top and bottom surfaces of 3D meshes, the planes are coupled to give the 3D angular flux distribution. The 3D CMFD linear system is established from the surface net current of every 3D pin-mesh to accelerate the convergence of power iteration. The STREAM code is extended to be capable of handling 3D problems based on the new approach. Several benchmarks are tested to verify its feasibility and accuracy, including the 3D homogeneous benchmarks and heterogeneous benchmarks. The computational sensitivity is discussed. The results show good accuracy in all tests. With the CMFD acceleration, the convergence is stable. In addition, a pin-cell problem with void gap is calculated. This shows the advantage compared to the traditional 2D/1D MOC methods.
25 CFR 533.7 - Void agreements.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 25 Indians 2 2013-04-01 2013-04-01 false Void agreements. 533.7 Section 533.7 Indians NATIONAL INDIAN GAMING COMMISSION, DEPARTMENT OF THE INTERIOR MANAGEMENT CONTRACT PROVISIONS APPROVAL OF MANAGEMENT CONTRACTS § 533.7 Void agreements. Management contracts and changes in persons with a financial...
25 CFR 533.7 - Void agreements.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 25 Indians 2 2011-04-01 2011-04-01 false Void agreements. 533.7 Section 533.7 Indians NATIONAL INDIAN GAMING COMMISSION, DEPARTMENT OF THE INTERIOR MANAGEMENT CONTRACT PROVISIONS APPROVAL OF MANAGEMENT CONTRACTS § 533.7 Void agreements. Management contracts and changes in persons with a financial...
25 CFR 533.7 - Void agreements.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 25 Indians 2 2010-04-01 2010-04-01 false Void agreements. 533.7 Section 533.7 Indians NATIONAL INDIAN GAMING COMMISSION, DEPARTMENT OF THE INTERIOR MANAGEMENT CONTRACT PROVISIONS APPROVAL OF MANAGEMENT CONTRACTS § 533.7 Void agreements. Management contracts and changes in persons with a financial...
25 CFR 533.7 - Void agreements.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 25 Indians 2 2012-04-01 2012-04-01 false Void agreements. 533.7 Section 533.7 Indians NATIONAL INDIAN GAMING COMMISSION, DEPARTMENT OF THE INTERIOR MANAGEMENT CONTRACT PROVISIONS APPROVAL OF MANAGEMENT CONTRACTS § 533.7 Void agreements. Management contracts and changes in persons with a financial...
40 CFR 91.123 - Denial, revocation of certificate of conformity.
Code of Federal Regulations, 2010 CFR
2010-07-01
....203(f), 91.206(d), 91.208(c) or 91.209(g), the Administrator may void such certificate ab initio. (d) When the Administrator denies, revokes, or voids ab initio a certificate of conformity, the engine... makes the certificate void ab initio. ...
40 CFR 86.1850-01 - Denial, suspension or revocation of certificate of conformity.
Code of Federal Regulations, 2010 CFR
2010-07-01
... conditions specified in § 86.1843-01, the Administrator may deem such certificate void ab initio. (e) When the Administrator denies, suspends, revokes, or voids ab initio a certificate, EPA will provide the... that makes the certification void ab initio. ...
40 CFR 86.1850-01 - Denial, suspension or revocation of certificate of conformity.
Code of Federal Regulations, 2014 CFR
2014-07-01
... conditions specified in § 86.1843-01, the Administrator may deem such certificate void ab initio. (e) When the Administrator denies, suspends, revokes, or voids ab initio a certificate, EPA will provide the... that makes the certification void ab initio. ...
40 CFR 91.123 - Denial, revocation of certificate of conformity.
Code of Federal Regulations, 2013 CFR
2013-07-01
....203(f), 91.206(d), 91.208(c) or 91.209(g), the Administrator may void such certificate ab initio. (d) When the Administrator denies, revokes, or voids ab initio a certificate of conformity, the engine... makes the certificate void ab initio. ...
40 CFR 91.123 - Denial, revocation of certificate of conformity.
Code of Federal Regulations, 2011 CFR
2011-07-01
....203(f), 91.206(d), 91.208(c) or 91.209(g), the Administrator may void such certificate ab initio. (d) When the Administrator denies, revokes, or voids ab initio a certificate of conformity, the engine... makes the certificate void ab initio. ...
40 CFR 91.123 - Denial, revocation of certificate of conformity.
Code of Federal Regulations, 2012 CFR
2012-07-01
....203(f), 91.206(d), 91.208(c) or 91.209(g), the Administrator may void such certificate ab initio. (d) When the Administrator denies, revokes, or voids ab initio a certificate of conformity, the engine... makes the certificate void ab initio. ...
40 CFR 86.1850-01 - Denial, suspension or revocation of certificate of conformity.
Code of Federal Regulations, 2012 CFR
2012-07-01
... conditions specified in § 86.1843-01, the Administrator may deem such certificate void ab initio. (e) When the Administrator denies, suspends, revokes, or voids ab initio a certificate, EPA will provide the... that makes the certification void ab initio. ...
40 CFR 86.1850-01 - Denial, suspension or revocation of certificate of conformity.
Code of Federal Regulations, 2013 CFR
2013-07-01
... conditions specified in § 86.1843-01, the Administrator may deem such certificate void ab initio. (e) When the Administrator denies, suspends, revokes, or voids ab initio a certificate, EPA will provide the... that makes the certification void ab initio. ...
40 CFR 91.123 - Denial, revocation of certificate of conformity.
Code of Federal Regulations, 2014 CFR
2014-07-01
....203(f), 91.206(d), 91.208(c) or 91.209(g), the Administrator may void such certificate ab initio. (d) When the Administrator denies, revokes, or voids ab initio a certificate of conformity, the engine... makes the certificate void ab initio. ...
40 CFR 86.1850-01 - Denial, suspension or revocation of certificate of conformity.
Code of Federal Regulations, 2011 CFR
2011-07-01
... conditions specified in § 86.1843-01, the Administrator may deem such certificate void ab initio. (e) When the Administrator denies, suspends, revokes, or voids ab initio a certificate, EPA will provide the... that makes the certification void ab initio. ...
Adhesion of voids to bimetal interfaces with non-uniform energies
Zheng, Shijian; Shao, Shuai; Zhang, Jian; ...
2015-10-21
Interface engineering has become an important strategy for designing radiation-resistant materials. Critical to its success is fundamental understanding of the interactions between interfaces and radiation-induced defects, such as voids. Using transmission electron microscopy, here we report an interesting phenomenon in their interaction, wherein voids adhere to only one side of the bimetal interfaces rather than overlapping them. We show that this asymmetrical void-interface interaction is a consequence of differing surface energies of the two metals and non-uniformity in their interface formation energy. Specifically, voids grow within the phase of lower surface energy and wet only the high-interface energy regions. Furthermore,more » because this outcome cannot be accounted for by wetting of interfaces with uniform internal energy, our report provides experimental evidence that bimetal interfaces contain non-uniform internal energy distributions. Ultimately, this work also indicates that to design irradiation-resistant materials, we can avoid void-interface overlap via tuning the configurations of interfaces.« less
Critical velocities for deflagration and detonation triggered by voids in a REBO high explosive
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herring, Stuart Davis; Germann, Timothy C; Jensen, Niels G
2010-01-01
The effects of circular voids on the shock sensitivity of a two-dimensional model high explosive crystal are considered. We simulate a piston impact using molecular dynamics simulations with a Reactive Empirical Bond Order (REBO) model potential for a sub-micron, sub-ns exothermic reaction in a diatomic molecular solid. The probability of initiating chemical reactions is found to rise more suddenly with increasing piston velocity for larger voids that collapse more deterministically. A void with radius as small as 10 nm reduces the minimum initiating velocity by a factor of 4. The transition at larger velocities to detonation is studied in amore » micron-long sample with a single void (and its periodic images). The reaction yield during the shock traversal increases rapidly with velocity, then becomes a prompt, reliable detonation. A void of radius 2.5 nm reduces the critical velocity by 10% from the perfect crystal. A Pop plot of the time-to-detonation at higher velocities shows a characteristic pressure dependence.« less
Influence investigation of a void region on modeling light propagation in a heterogeneous medium.
Yang, Defu; Chen, Xueli; Ren, Shenghan; Qu, Xiaochao; Tian, Jie; Liang, Jimin
2013-01-20
A void region exists in some biological tissues, and previous studies have shown that inaccurate images would be obtained if it were not processed. A hybrid radiosity-diffusion method (HRDM) that couples the radiosity theory and the diffusion equation has been proposed to deal with the void problem and has been well demonstrated in two-dimensional and three-dimensional (3D) simple models. However, the extent of the impact of the void region on the accuracy of modeling light propagation has not been investigated. In this paper, we first implemented and verified the HRDM in 3D models, including both the regular geometries and a digital mouse model, and then investigated the influences of the void region on modeling light propagation in a heterogeneous medium. Our investigation results show that the influence of the region can be neglected when the size of the void is less than a certain range, and other cases must be taken into account.
Magnetic pattern at supergranulation scale: the void size distribution
NASA Astrophysics Data System (ADS)
Berrilli, F.; Scardigli, S.; Del Moro, D.
2014-08-01
The large-scale magnetic pattern observed in the photosphere of the quiet Sun is dominated by the magnetic network. This network, created by photospheric magnetic fields swept into convective downflows, delineates the boundaries of large-scale cells of overturning plasma and exhibits "voids" in magnetic organization. These voids include internetwork fields, which are mixed-polarity sparse magnetic fields that populate the inner part of network cells. To single out voids and to quantify their intrinsic pattern we applied a fast circle-packing-based algorithm to 511 SOHO/MDI high-resolution magnetograms acquired during the unusually long solar activity minimum between cycles 23 and 24. The computed void distribution function shows a quasi-exponential decay behavior in the range 10-60 Mm. The lack of distinct flow scales in this range corroborates the hypothesis of multi-scale motion flows at the solar surface. In addition to the quasi-exponential decay, we have found that the voids depart from a simple exponential decay at about 35 Mm.
The void spectrum in two-dimensional numerical simulations of gravitational clustering
NASA Technical Reports Server (NTRS)
Kauffmann, Guinevere; Melott, Adrian L.
1992-01-01
An algorithm for deriving a spectrum of void sizes from two-dimensional high-resolution numerical simulations of gravitational clustering is tested, and it is verified that it produces the correct results where those results can be anticipated. The method is used to study the growth of voids as clustering proceeds. It is found that the most stable indicator of the characteristic void 'size' in the simulations is the mean fractional area covered by voids of diameter d, in a density field smoothed at its correlation length. Very accurate scaling behavior is found in power-law numerical models as they evolve. Eventually, this scaling breaks down as the nonlinearity reaches larger scales. It is shown that this breakdown is a manifestation of the undesirable effect of boundary conditions on simulations, even with the very large dynamic range possible here. A simple criterion is suggested for deciding when simulations with modest large-scale power may systematically underestimate the frequency of larger voids.
Dynamics of bubble collapse under vessel confinement in 2D hydrodynamic experiments
NASA Astrophysics Data System (ADS)
Shpuntova, Galina; Austin, Joanna
2013-11-01
One trauma mechanism in biomedical treatment techniques based on the application of cumulative pressure pulses generated either externally (as in shock-wave lithotripsy) or internally (by laser-induced plasma) is the collapse of voids. However, prediction of void-collapse driven tissue damage is a challenging problem, involving complex and dynamic thermomechanical processes in a heterogeneous material. We carry out a series of model experiments to investigate the hydrodynamic processes of voids collapsing under dynamic loading in configurations designed to model cavitation with vessel confinement. The baseline case of void collapse near a single interface is also examined. Thin sheets of tissue-surrogate polymer materials with varying acoustic impedance are used to create one or two parallel material interfaces near the void. Shadowgraph photography and two-color, single-frame particle image velocimetry quantify bubble collapse dynamics including jetting, interface dynamics and penetration, and the response of the surrounding material. Research supported by NSF Award #0954769, ``CAREER: Dynamics and damage of void collapse in biological materials under stress wave loading.''
Hemani, H; Warrier, M; Sakthivel, N; Chaturvedi, S
2014-05-01
Molecular dynamics (MD) simulations are used in the study of void nucleation and growth in crystals that are subjected to tensile deformation. These simulations are run for typically several hundred thousand time steps depending on the problem. We output the atom positions at a required frequency for post processing to determine the void nucleation, growth and coalescence due to tensile deformation. The simulation volume is broken up into voxels of size equal to the unit cell size of crystal. In this paper, we present the algorithm to identify the empty unit cells (voids), their connections (void size) and dynamic changes (growth and coalescence of voids) for MD simulations of large atomic systems (multi-million atoms). We discuss the parallel algorithms that were implemented and discuss their relative applicability in terms of their speedup and scalability. We also present the results on scalability of our algorithm when it is incorporated into MD software LAMMPS. Copyright © 2014 Elsevier Inc. All rights reserved.
Void Formation/Elimination and Viscoelastic Response of Polyphenylsilsesquioxane Monolith.
Daiko, Yusuke; Oda, Yuki; Honda, Sawao; Iwamoto, Yuji
2018-05-19
Polyphenylsilsesquioxane (PhSiO 3/2 ) particles as an organic-inorganic hybrid were prepared using sol-gel method, and monolithic samples were obtained via a warm-pressing. The reaction mechanism of particles' polymerization and transformation to the monolith under the warm-press were investigated using solid state 29 Si nuclear magnetic resonance (NMR) spectrometer, thermal gravimetric-differential thermal analyzer (TG-DTA), mass spectrometer (MS) and scanning electron microscope (SEM). Transparent and void-free monoliths are successfully obtained by warm-pressing above 180 °C. Both the terminal ⁻OH groups on particles' surface and warm-pressing are necessary for preparation of void-free PhSiO 3/2 monolith. From the load-displacement measurement at various temperatures, a viscoelastic deformation is seen for PhSiO 3/2 monolith with voids. On the other hand, an elastic deformation is seen for void-free PhSiO 3/2 monolith, and the void-free monolith shows much higher breakdown voltage.
Control of thermal expansion in a low-density framework modification of silicon
NASA Astrophysics Data System (ADS)
Beekman, Matt; Kaduk, James A.; Wong-Ng, Winnie; Troesch, Michael; Lee, Glenn S.; Nolas, George S.
2018-04-01
The low-density clathrate-II modification of silicon, Si136, contains two distinct cage-like voids large enough to accommodate various types of guest atoms which influence both the host structure and its properties. Although the linear coefficient of thermal expansion of Si136 (293 K < T < 423 K) is only about 20% larger than that of the ground state α-Si (diamond structure), the coefficient of thermal expansion monotonically increases by more than 150% upon filling the framework cages with Na atoms in NaxSi136 (0 < x < 24), ranging from α = 2.6 × 10-6 K-1 (x = 0) to 6.8 × 10-6 K-1 (extrapolated to x = 24) by only varying the Na content, x. Taken together with the available heat capacity and bulk modulus data, the dramatic increase in thermal expansion can be attributed to an increase in the mode-averaged Grüneisen parameter by a factor of nearly 3 from x = 0 to x = 24. These results highlight a potential mechanism for tuning thermal expansion, whereby guest atoms are incorporated into the voids of rigid, covalently bonded inorganic frameworks to influence the lattice dynamics.
Is Cold Gas Removed from Galaxies in Filaments and Tendrils?
NASA Astrophysics Data System (ADS)
Crone Odekon, Mary; Shah, Ebrahim; Hall, Ryan; Cane, Thomas; Maloney, Erin; Hallenbeck, Gregory; Haynes, Martha P.; Koopmann, Rebecca A.; APPSS Team, Undergraduate ALFALFA Team, ALFALFA Team
2018-01-01
We present results from an ALFALFA HI study to examine whether the cold gas reservoirs of galaxies are inhibited or enhanced in large-scale filaments, and we discuss implications for follow-up work using the new Arecibo Pisces-Perseus Supercluster survey (APPSS). From the ALFALFA survey, we find that the HI deficiency for galaxies in the range 10^8.5-10^10.5 solar masses decreases with distance from the filament spine, suggesting that galaxies are cut off from cold gas, possibly by heating or by dynamical detachment from the smaller-scale cosmic web. This contrasts with previous results for larger galaxies in the HI Parkes All-Sky Survey. We discuss the prospects for elucidating this apparent dependence on galaxy mass with data from the APPSS, which will extend to smaller masses. We also find that the most gas-rich galaxies at fixed local density and stellar mass are those in small, correlated ``tendril” structures within voids: although galaxies in tendrils are in significantly denser environments, on average, than galaxies in voids, they are not redder or more HI deficient. This work has been supported by NSF grants AST-1211005 and AST-1637339.
Structure and kinematics of the Bootes filament
NASA Astrophysics Data System (ADS)
Nasonova, O.; Karachentsev, I.; Karachentseva, V.
2016-10-01
Bootes filament of galaxies is a dispersed chain of groups residing on sky between the Local Void and the Virgo cluster. We consider a sample of 361 galaxies inside the sky area of RA = 13h0...18h.5 and Dec = .5°... + 10° with radial velocities VLG < 2000 km/s to clarify its structure and kinematics. In this region, 161 galaxies have individual distance estimates. We use these data to draw the Hubble relation for galaxy groups, pairs as well as the field galaxies, and to examine the galaxy distribution on peculiar velocities. Our analysis exposes the known Virgo-centric infall at RA < 14h and some signs of outflow from the Local Void at RA > 17h. According to the galaxy grouping criterion, this complex contains the members of 13 groups, 11 pairs and 140 field galaxies. The most prominent group is dominated by NGC 5846. The Bootes filament contains the total stellar mass of 2.7 ×1012 M⊙ and the total virial mass of 9.07×1013 M⊙, having the average density of dark matter to be Ωm = 0.09, i.e. a factor three lower than the global cosmic value.
Dorsal buccal mucosa graft urethroplasty for female urethral strictures.
Migliari, Roberto; Leone, Pierluigi; Berdondini, Elisa; De Angelis, M; Barbagli, Guido; Palminteri, Enzo
2006-10-01
We describe the feasibility and complications of dorsal buccal mucosa graft urethroplasty in female patients with urethral stenosis. From April 2005 to July 2005, 3 women 45 to 65 years old (average age 53.7) with urethral stricture disease underwent urethral reconstruction using a dorsal buccal mucosa graft. Stricture etiology was unknown in 1 patient, ischemic in 1 and iatrogenic in 1. Buccal mucosa graft length was 5 to 6 cm and width was 2 to 3 cm. The urethra was freed dorsally until the bladder neck and then opened on the roof. The buccal mucosa patch was sutured to the margins of the opened urethra and the new roof of the augmented urethra was quilted to the clitoris corpora. In all cases voiding urethrogram after catheter removal showed a good urethral shape with absent urinary leakage. No urinary incontinence was evident postoperatively. On urodynamic investigation all patients showed an unobstructed Blaivas-Groutz nomogram. Two patients complained about irritative voiding symptoms at catheter removal, which subsided completely and spontaneously after a week. The dorsal approach with buccal mucosa graft allowed us to reconstruct an adequate urethra in females, decreasing the risks of incontinence and fistula.
A dislocation-based crystal plasticity framework for dynamic ductile failure of single crystals
NASA Astrophysics Data System (ADS)
Nguyen, Thao; Luscher, D. J.; Wilkerson, J. W.
2017-11-01
A framework for dislocation-based viscoplasticity and dynamic ductile failure has been developed to model high strain rate deformation and damage in single crystals. The rate-dependence of the crystal plasticity formulation is based on the physics of relativistic dislocation kinetics suited for extremely high strain rates. The damage evolution is based on the dynamics of void growth, which are governed by both micro-inertia as well as dislocation kinetics and dislocation substructure evolution. An averaging scheme is proposed in order to approximate the evolution of the dislocation substructure in both the macroscale as well as its spatial distribution at the microscale. Additionally, a concept of a single equivalent dislocation density that effectively captures the collective influence of dislocation density on all active slip systems is proposed here. Together, these concepts and approximations enable the use of semi-analytic solutions for void growth dynamics developed in (Wilkerson and Ramesh, 2014), which greatly reduce the computational overhead that would otherwise be required. The resulting homogenized framework has been implemented into a commercially available finite element package, and a validation study against a suite of direct numerical simulations was carried out.
Ghasemi, Negin; Janani, Maryam; Razi, Tahmineh; Atharmoghaddam, Faezeh
2017-03-01
It is necessary apical plug material to exhibit proper adaptation with the root canal walls. Presence of voids at the interface between the root canal wall and this material result in micro leakage, which might have a relationship with post treatment disease. The aim of the present study was to evaluate the effect of different mixing (manual and ultrasonic) and placement (manual and manual in association with indirect ultrasonic) method of Mineral Trioxide Aggregate (MTA) on the void count and dimension in the apical plug in natural teeth with simulated open apices. Eighty human maxillary central incisors were selected. After simulation of the open apex model, the teeth were assigned to 4 groups based on the mixing and placement techniques of MTA: group 1, manual mixing and manual placement; group 2, manual mixing and manual placement in association with indirect ultrasonic; group 3, ultrasonic mixing and and manual placement; and group 4, ultrasonic mixing and manual placement in association with indirect ultrasonic. The prepared samples were placed within gypsum sockets in which the periodontal ligament was reconstructed with polyether impression material. In group 1, after mixing, the material was condensed with a hand plugger. In group 2, after mixing, the ultrasonic tip was contacted with the hand plugger for 2 seconds. In groups 3 and 4, mixing was carried out with the ultrasonic tip for 5 seconds and in groups 3 and 4, similar to groups 1 and 2, respectively, the materials were placed as apical plugs, measuring 3 mm in length. A wet cotton pellet was placed at canal orifices and dressed with Cavit. After one week, the cone beam computed tomography (CBCT) technique was used to count the number of voids between the material and root canal walls. The void dimensions were determined using the following scoring system: score 1, absence of voids; score 2, the void size less than half of the dimensions of the evaluated cross-section; score 3, the void size larger than half of the dimensions of the evaluated cross-section. Chi-squared and Fisher's exact tests were used for statistical analyses. Statistical significance was set at P <0.05. The maximum (13) and minimum (3) number of voids were detected in groups 2 and 3, respectively. There were no significant differences between groups 1 and 3 in the number of voids ( p >0.05). Evaluation of void dimensions showed no score 3 in any of the study groups and the dimensions of all the voids conformed to score 2. Under the limitations of the present study, use of ultrasonic mixing and manual placement techniques resulted in a decrease in the number of voids in the apical plug. Key words: Apical plug, MTA, ultrasonic, void.
Volume change associated with formation and dissociation of hydrate in sediment
Ruppel, Carolyn D.; Lee, J.Y.; Santamarina, J. Carlos
2017-01-01
Gas hydrate formation and dissociation in sediments are accompanied by changes in the bulk volume of the sediment and can lead to changes in sediment properties, loss of integrity for boreholes, and possibly regional subsidence of the ground surface over areas where methane might be produced from gas hydrate in the future. Experiments on sand, silts, and clay subject to different effective stress and containing different saturations of hydrate formed from dissolved phase tetrahydrofuran are used to systematically investigate the impact of gas hydrate formation and dissociation on bulk sediment volume. Volume changes in low specific surface sediments (i.e., having a rigid sediment skeleton like sand) are much lower than those measured in high specific surface sediments (e.g., clay). Early hydrate formation is accompanied by contraction for all soils and most stress states in part because growing gas hydrate crystals buckle skeletal force chains. Dilation can occur at high hydrate saturations. Hydrate dissociation under drained, zero lateral strain conditions is always associated with some contraction, regardless of soil type, effective stress level, or hydrate saturation. Changes in void ratio during formation-dissociation decrease at high effective stress levels. The volumetric strain during dissociation under zero lateral strain scales with hydrate saturation and sediment compressibility. The volumetric strain during dissociation under high shear is a function of the initial volume average void ratio and the stress-dependent critical state void ratio of the sediment. Other contributions to volume reduction upon hydrate dissociation are related to segregated hydrate in lenses and nodules. For natural gas hydrates, some conditions (e.g., gas production driven by depressurization) might contribute to additional volume reduction by increasing the effective stress.
VizieR Online Data Catalog: SDSS DR7 voids and superclusters (Nadathur+, 2014)
NASA Astrophysics Data System (ADS)
Nadathur, S.; Hotchkiss, S.
2016-02-01
This is a public catalogue of voids and superclusters identified in the SDSS DR7 main galaxy and luminous red galaxy samples. This version is dated 04.11.2013. We make the catalogues available for general use. If you use them for your own work, we ask that you cite the original paper, Nadathur & Hotchkiss (2014MNRAS.440.1248N). The top-level directory cat_v11.11.13 contains an example python script called postproc.py, and two folders called comovcoords and redshiftcoords containing two versions of the catalogue in different coordinate systems. The comoving coordinate system is pretty self-explanatory, for a description of the other one please refer to the paper. Each of these directories is further divided into six folders containing the Type1 and Type2 void catalogues and the supercluster catalogue for each of the galaxy samples analysed here, and a folder called tools, which contains data useful for users wishing to apply their own selection criteria. The basic information provided includes the location of the barycentre of each structure, its volume, effective radius, average density and minimum or maximum density, its core galaxy and seed zone, the total number of galaxies in the seed zone, the number of zones merged to form the structure, the total number of particles in the structure, and its density ratio. These are split between two files for each structure type and each sample, named xxxinfo.txt and xxxlist.txt, where xxx refers to the structure type. It is also possible to extract lists of member galaxies of each structure and their magnitudes. An example python script, postproc.py, demonstrates how to access this information and how to build alternative catalogues using user-defined selection criteria. (27 data files).
Experimental study on interfacial area transport in downward two-phase flow
NASA Astrophysics Data System (ADS)
Wang, Guanyi
In view of the importance of two group interfacial area transport equations and lack of corresponding accurate downward flow database that can reveal two group interfacial area transport, a systematic database for adiabatic, air-water, vertically downward two-phase flow in a round pipe with inner diameter of 25.4 mm was collected to gain an insight of interfacial structure and provide benchmarking data for two-group interfacial area transport models. A four-sensor conductivity probe was used to measure the local two phase flow parameters and data was collected with data sampling frequency much higher than conventional data sampling frequency to ensure the accuracy. Axial development of local flow parameter profiles including void fraction, interfacial area concentration, and Sauter mean diameter were presented. Drastic inter-group transfer of void fraction and interfacial area was observed at bubbly to slug transition flow. And the wall peaked interfacial area concentration profiles were observed in churn-turbulent flow. The importance of local data about these phenomenon on flow structure prediction and interfacial area transport equation benchmark was analyzed. Bedsides, in order to investigate the effect of inlet conditions, all experiments were repeated after installing the flow straightening facility, and the results were briefly analyzed. In order to check the accuracy of current data, the experiment results were cross-checked with rotameter measurement as well as drift-flux model prediction, the averaged error is less than 15%. Current models for two-group interfacial area transport equation were evaluated using these data. The results show that two-group interfacial area transport equations with current models can predict most flow conditions with error less than 20%, except some bubbly to slug transition flow conditions and some churn-turbulent flow conditions. The disagreement between models and experiments could result from underestimate of inter-group void transfer.
Saladrigas, Amalia H.; Goldbogen, Jeremy A.
2017-01-01
ABSTRACT Baleen whales are obligate filter feeders, straining prey‐laden seawater through racks of keratinized baleen plates. Despite the importance of baleen to the ecology and natural history of these animals, relatively little work has been done on baleen morphology, particularly with regard to the three‐dimensional morphology and structure of baleen. We used computed tomography (CT) scanning to take 3D images of six baleen specimens representing five species, including three complete racks. With these images, we described the three‐dimensional shape of the baleen plates using cross‐sectional profiles from within the gum tissue to the tip of the plates. We also measured the percentage of each specimen that was composed of either keratinized plate material or was void space between baleen plates, and thus available for seawater flow. Baleen plates have a complex three‐dimensional structure with curvature that varies across the anterior‐posterior, proximal‐distal, and medial‐lateral (lingual‐labial) axes. These curvatures also vary with location along the baleen rack, and between species. Cross‐sectional profiles resemble backwards‐facing airfoils, and some specimens display S‐shaped, or reflexed, camber. Within a baleen specimen, the intra‐baleen void volume correlates with the average bristle diameter for a species, suggesting that essentially, thinner plates (with more space between them for flow) have thinner bristles. Both plate curvature and the relative proportions of plate and void volumes are likely to have implications for the mechanics of mysticete filtration, and future studies are needed to determine the particular functions of these morphological characters. Anat Rec, 300:1942–1952, 2017. © 2017 The Authors The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists PMID:28971628
Doss, Mohan; Zhang, James J; Bélanger, Marie-José; Stubbs, James B; Hostetler, Eric D; Alpaugh, Katherine; Kolb, Hartmuth C; Yu, Jian Q
2010-12-01
F-HX4 is a novel positron emission tomography (PET) tracer for imaging hypoxia. The purpose of this study was to determine the biodistribution and estimate the radiation dose of F-HX4 using whole-body PET/computed tomography (CT) scans in monkeys and humans. Successive whole-body PET/CT scans were done after the injection of F-HX4 in four healthy humans (422±142 MBq) and in three rhesus monkeys (189±3 MBq). Biodistribution was determined from PET images and organ doses were estimated using OLINDA/EXM software. The bladder, liver, and kidneys showed the highest percentage of the injected radioactivity for humans and monkeys. For humans, approximately 45% of the activity is eliminated by bladder voiding in 3.6 h, and for monkeys 60% is in the bladder content after 3 h. The critical organ is the urinary bladder wall with the highest absorbed radiation dose of 415±18 (monkeys) and 299±38 μGy/MBq (humans), in the 4.8-h bladder voiding interval model. The average value of effective dose for the adult male was estimated at 42±4.2 μSv/MBq from monkey data and 27±2 μSv/MBq from human data. Bladder, kidneys, and liver have the highest uptake of injected F-HX4 activity for both monkeys and humans. The urinary bladder wall receives the highest dose of F-HX4 and is the critical organ. Thus, patients should be encouraged to maintain adequate hydration and void frequently. The effective dose of F-HX4 is comparable with that of other F-based imaging agents.
Differential cosmic expansion and the Hubble flow anisotropy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolejko, Krzysztof; Nazer, M. Ahsan; Wiltshire, David L., E-mail: bolejko@physics.usyd.edu.au, E-mail: ahsan.nazer@canterbury.ac.nz, E-mail: david.wiltshire@canterbury.ac.nz
2016-06-01
The Universe on scales 10–100 h {sup −1}Mpc is dominated by a cosmic web of voids, filaments, sheets and knots of galaxy clusters. These structures participate differently in the global expansion of the Universe: from non-expanding clusters to the above average expansion rate of voids. In this paper we characterize Hubble expansion anisotropies in the COMPOSITE sample of 4534 galaxies and clusters. We concentrate on the dipole and quadrupole in the rest frame of the Local Group. These both have statistically significant amplitudes. These anisotropies, and their redshift dependence, cannot be explained solely by a boost of the Local Groupmore » in the Friedmann-Lemaitre-Robertson-Walker (FLRW) model which expands isotropically in the rest frame of the cosmic microwave background (CMB) radiation. We simulate the local expansion of the Universe with inhomogeneous Szekeres solutions, which match the standard FLRW model on ∼> 100 h {sup −1}Mpc scales but exhibit nonkinematic relativistic differential expansion on small scales. We restrict models to be consistent with observed CMB temperature anisotropies, while simultaneously fitting the redshift variation of the Hubble expansion dipole. We include features to account for both the Local Void and the 'Great Attractor'. While this naturally accounts for the Hubble expansion and CMB dipoles, the simulated quadrupoles are smaller than observed. Further refinement to incorporate additional structures may improve this. This would enable a test of the hypothesis that some large angle CMB anomalies result from failing to treat the relativistic differential expansion of the background geometry; a natural feature of solutions to Einstein's equations not included in the current standard model of cosmology.« less
Kingery, L; Martin, M L; Naegeli, A N; Khan, S; Viktrup, L
2012-09-01
The objective of this qualitative interview study was to assess the content validity of the Benign Prostatic Hyperplasia Impact Index (BII) in a sample of men with signs and symptoms of Benign Prostatic Obstruction believed to be caused by benign prostatic hyperplasia (BPH lower urinary tract symptoms/BPH-LUTS) using concept elicitation (CE) and cognitive interviewing (CI) methods. Fifty men with BPH-LUTS participated in the study; 27 completed CE interviews and 23 completed cognitive interviews. Patient's average age was 69 years with a mean duration of BPH-LUTS of 6.5 years. IPSS scores ranged from 8 to 33 (higher scores indicating greater symptom severity). Overall, the most frequent symptoms (prevalence of ≥ 75%) reported spontaneously or after further explanation were awakening from sleep, increased daytime voiding (frequency), urgent desire to void (urgency), slow stream, and feeling of incomplete bladder emptying. Symptoms primarily recognized in response to follow up probe questions with a prevalence of ≥ 40% included terminal dribble, splitting of urinary stream, intermittent stream, straining and post-micturition dribble. Especially bothersome [> 5 on the numerical rating scale (NRS) of 0-10] and frequent symptoms included urgency and awakening at night to void. Discomfort or pain while urinating and post-micturition dribble were equally bothersome though less frequent. Five BPH symptom-related impact themes were identified: coping, daily responsibilities, emotion, lifestyle and relationships, and sleep. The BII was found to be easily understood, does capture clinically relevant BPH impacts related to urinary trouble and problems, and does capture most of the important symptom-related impacts as described by participants in this study. © 2012 Blackwell Publishing Ltd.
Zanotti-Fregonara, Paolo; Chastan, Mathieu; Edet-Sanson, Agathe; Ekmekcioglu, Ozgul; Erdogan, Ezgi Basak; Hapdey, Sebastien; Hindie, Elif; Stabin, Michael G
2016-11-01
Data from the literature show that the fetal absorbed dose from 18 F-FDG administration to the pregnant mother ranges from 0.5E-2 to 4E-2 mGy/MBq. These figures were, however, obtained using different quantification techniques and with basic geometric anthropomorphic phantoms. The aim of this study was to refine the fetal dose estimates of published as well as new cases using realistic voxel-based phantoms. The 18 F-FDG doses to the fetus (n = 19; 5-34 wk of pregnancy) were calculated with new voxel-based anthropomorphic phantoms of the pregnant woman. The image-derived fetal time-integrated activity values were combined with those of the mothers' organs from the International Commission on Radiological Protection publication 106 and the dynamic bladder model with a 1-h bladder-voiding interval. The dose to the uterus was used as a proxy for early pregnancy (up to 10 wk). The time-integrated activities were entered into OLINDA/EXM 1.1 to derive the dose with the classic anthropomorphic phantoms of pregnant women, then into OLINDA/EXM 2.0 to assess the dose using new voxel-based phantoms. The average fetal doses (mGy/MBq) with OLINDA/EXM 2.0 were 2.5E-02 in early pregnancy, 1.3E-02 in the late part of the first trimester, 8.5E-03 in the second trimester, and 5.1E-03 in the third trimester. The differences compared with the doses calculated with OLINDA/EXM 1.1 were +7%, +70%, +35%, and -8%, respectively. Except in late pregnancy, the doses estimated with realistic voxelwise anthropomorphic phantoms are higher than the doses derived from old geometric phantoms. The doses remain, however, well below the threshold for any deterministic effects. Thus, pregnancy is not an absolute contraindication of a clinically justified 18 F-FDG PET scan. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
VandenBussche, Christopher J; Rosenthal, Dorothy L; Olson, Matthew T
2016-03-01
Adequacy assessment is one of the most controversial and overlooked components in the daily practice of cytopathology, because it is generally determined from limited samples. Because voided urine varies widely in terms of its volume and cellularity, there is little consensus about the proper role for these variables in assessing specimen adequacy. In this study, the authors explored the role of volume in voided urine specimens to determine whether it plays a role in determining adequacy for the detection of high-grade urothelial carcinoma. Voided urine specimens received at the authors' laboratory over the 9.5 years since the introduction of the Johns Hopkins Template for Reporting Urinary Cytopathology were analyzed for correlations between volume, specimen adequacy, and the diagnosis of high-grade malignancy. The same data set also was queried to determine whether a patient who provided a voided low-volume specimen could yield a higher volume specimen and thereby increase adequacy. In total, 15,731 voided urine specimens with a cumulative volume of 891 liters originating from 8594 individual patients were analyzed. Specimen adequacy increased linearly for each increment of volume submitted to the laboratory up to 30 mL, after which the correlation was nonlinear. Low-volume specimens below this cutoff also had lower fractions of specimens that were diagnosed as malignant or suspicious. Volume is an important component in the evaluation of adequacy for voided urine cytology specimens. © 2015 American Cancer Society.
Bioinspired toughening mechanism: lesson from dentin.
An, Bingbing; Zhang, Dongsheng
2015-07-09
Inspired by the unique microstructure of dentin, in which the hard peritubular dentin surrounding the dentin tubules is embedded in the soft intertubular dentin, we explore the crack propagation in the bioinspired materials with fracture process zone possessing a dentin-like microstructure, i.e. the composite structure consisting of a soft matrix and hard reinforcements with cylindrical voids. A micromechanical model under small-scale yielding conditions is developed, and numerical simulations are performed, showing that the rising resistant curve (R-curve) is observed for crack propagation caused by the plastic collapse of the intervoid ligaments in the fracture process zone. The dentin-like microstructure in the fracture process zone exhibits enhanced fracture toughness, compared with the case of voids embedded in the homogeneous soft matrix. Further computational simulations show that the dentin-like microstructure can retard void growth, thereby promoting fracture toughness. The typical fracture mechanism of the bioinspired materials with fracture process zone possessing the dentin-like structure is void by void growth, while it is the multiple void interaction in the case of voids in the homogeneous matrix. Based on the results, we propose a bioinspired material design principle, which is that the combination of a hard inner material encompassing voids and a soft outer material in the fracture process zone can give rise to exceptional fracture toughness, achieving damage tolerance. It is expected that the proposed design principle could shed new light on the development of novel man-made engineering materials.
Chen, Chi-Hau; Hsiao, Sheng-Mou; Chang, Ting-Chen; Wu, Wen-Yih; Lin, Ho-Hsiung
2016-05-01
To investigate the efficacy and urodynamic effects of baclofen in women with functional bladder outlet obstruction. Between January 2011 and December 2012, women who underwent baclofen treatment for functional bladder outlet obstruction, defined as <15 mL/s maximum flow rate and >20 cmH2 O detrusor pressure at maximum flow rate, but without significant anatomic causes, were retrospectively reviewed. Urodynamic variables at baseline and after 12 weeks of treatment were compared. Twenty women with functional bladder outlet obstruction underwent 12 weeks of baclofen treatment (oral baclofen 5 mg, three times daily). All patients reported improvement in voiding dysfunction symptoms after treatment, and no significant adverse effects were found on review of medical records. All patients underwent urodynamic studies after 12 weeks' treatment. Voided volume, voiding efficiency and maximum flow rate at voiding cystometry were significantly improved (mean, 273 vs. 368 mL, P = 0.002; 62.8% vs. 73.6%, P <0.001, and 10.3 vs. 11.6 mL/s, P = 0.046; respectively). Moreover, baclofen did not affect continence function, as indicated by non-significant changes in the parameters of urethral pressure profiles. Oral baclofen can improve symptoms of voiding dysfunction, voided volume, voiding efficiency and maximum flow rate in women with functional bladder outlet obstruction. None of the patients experienced intolerable side-effects. Thus, oral baclofen may be used as an initial treatment for women with symptoms of voiding dysfunction. © 2016 Japan Society of Obstetrics and Gynecology.
Effects of void anisotropy on the ignition and growth rates of energetic materials
NASA Astrophysics Data System (ADS)
Rai, Nirmal Kumar; Sen, Oishik; Udaykumar, H. S.
2017-06-01
Initiation of heterogeneous energetic materials is thought to occur at hot spots; reaction fronts propagate from sites of such hot spots into the surrounding material resulting in complete consumption of the material. Heterogeneous materials, such as plastic bonded explosives (PBXs) and pressed materials contain numerous voids, defects and interfaces at which hot spots can occur. Amongst the various mechanisms of hot spot formation, void collapse is considered to be the predominant one in the high strain rate loading conditions. It is established in the past the shape of the voids has a significant effect on the initiation behavior of energetic materials. In particular, void aspect ratio and orientations play an important role in this regard. This work aims to quantify the effects of void aspect ratio and orientation on the ignition and growth rates of chemical reaction from the hot spot. A wide range of aspect ratio and orientations is considered to establish a correlation between the ignition and growth rates and the void morphology. The ignition and growth rates are obtained from high fidelity reactive meso-scale simulations. The energetic material considered in this work is HMX and Tarver McGuire HMX decomposition model is considered to capture the reaction mechanism of HMX. The meso-scale simulations are performed using a Cartesian grid based Eulerian solver SCIMITAR3D. The void morphology is shown to have a significant effect on the ignition and growth rates of HMX.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-19
...-0015] RIN 2132-AB01 Bus Testing: Calculation of Average Passenger Weight and Test Vehicle Weight, and... of proposed rulemaking (NPRM) regarding the calculation of average passenger weights and test vehicle... passenger weights and actual transit vehicle loads. Specifically, FTA proposed to change the average...
Bias of air void system data from fly ash concretes.
DOT National Transportation Integrated Search
1983-01-01
Hollow censopheres of fly ash may have walls so thin that they will appear to be air voids when they appear on a polished slab prepared for air void determination by ASTM C457. Therefore the following precautions are recommended. 1. The operator of t...
Void Fraction Instrument operation and maintenance manual
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borgonovi, G.; Stokes, T.I.; Pearce, K.L.
This Operations and Maintenance Manual (O&MM) addresses riser installation, equipment and personnel hazards, operating instructions, calibration, maintenance, removal, and other pertinent information necessary to safely operate and store the Void Fraction Instrument. Final decontamination and decommissioning of the Void Fraction Instrument are not covered in this document.
Comparison of spacing factors as measured by the air-void analyzer and ASTM C457.
DOT National Transportation Integrated Search
2015-12-01
Freezing and thawing cycles will result in damage to concrete that is saturated : unless the concrete is properly entrained with small and well-dispersed air : voids. Durable concrete subject to cycles of freezing and thawing must : have an air-void ...
Iundusi, Riccardo; Gasbarra, Elena; D'Arienzo, Michele; Piccioli, Andrea; Tarantino, Umberto
2015-05-13
Reduction of tibial plateau fractures and maintain a level of well aligned congruent joint is key to a satisfactory clinical outcome and is important for the return to pre-trauma level of activity. Stable internal fixation support early mobility and weight bearing. The augmentation with bone graft substitute is often required to support the fixation to mantain reduction. For these reasons there has been development of novel bone graft substitutes for trauma applications and in particular synthetic materials based on calcium phosphates and/or apatite combined with calcium sulfates. Injectable bone substitutes can optimize the filling of irregular bone defects. The purpose of this study was to assess the potential of a novel injectable bone substitute CERAMENT™|BONE VOID FILLER in supporting the initial reduction and preserving alignment of the joint surface until fracture healing. From June 2010 through May 2011 adult patients presenting with acute, closed and unstable tibial plateau fractures which required both grafting and internal fixation, were included in a prospective study with percutaneous or open reduction and internal fixation (ORIF) augmented with an injectable ceramic biphasic bone substitute CERAMENT™|BONE VOID FILLER (BONESUPPORT™, Lund, Sweden) to fill residual voids. Clinical follow up was performed at 1, 3, 9 and 12 months and any subsequent year; including radiographic analysis and Rasmussen system for knee functional grading. Twenty four patients, balanced male-to-female, with a mean age of 47 years, were included and followed with an average of 44 months (range 41-52 months). Both Schatzker and Müller classifications were used and was type II or 41-B3 in 7 patients, type III or 41-B2 in 12 patients, type IV or 41-C1 in 2 patients and type VI or 41-C3 in 3 patients, respectively. The joint alignement was satisfactory and manteined within a range of 2 mm, with an average of 1.18 mm. The mean Rasmussen knee function score was 26.5, with 14 patients having an excellent result and the remaining 10 with a good result. It can be concluded that radiological and clinical outcome was satisfactory and obtained in all cases without complications. This injectable novel biphasic hydroxyapatite and calcium sulfate ceramic material is a valuable armamentarium in the treatment of trauma where bone graft is required.
47 CFR 24.53 - Calculation of height above average terrain (HAAT).
Code of Federal Regulations, 2012 CFR
2012-10-01
... height above mean sea level. (b) Average terrain elevation shall be calculated using elevation data from... Digital Chart of the World (DCW) may be used. (c) Radial average terrain elevation is calculated as the...